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Abstract—We consider the problem of controlling a linear time
invariant process when the controller is located at a location re-
mote from where the sensor measurements are being generated.
The communication from the sensor to the controller is supported
by a communication network with arbitrary topology composed
of analog erasure channels. Using a separation principle, we prove
that the optimal linear-quadratic-Gaussian (LQG) controller con-
sists of an LQ optimal regulator along with an estimator that esti-
mates the state of the process across the communication network.
We then determine the optimal information processing strategy
that should be followed by each node in the network so that the
estimator is able to compute the best possible estimate in the min-
imum mean squared error sense. The algorithm is optimal for any
packet-dropping process and at every time step, even though it is
recursive and hence requires a constant amount of memory, pro-
cessing and transmission at every node in the network per time
step. For the case when the packet drop processes are memoryless
and independent across links, we analyze the stability properties
and the performance of the closed loop system. The algorithm is
an attempt to escape the viewpoint of treating a network of com-
munication links as a single end-to-end link with the probability of
successful transmission determined by some measure of the relia-
bility of the network.

Index Terms—Analog erasure channels, control across commu-
nication channels, linear-quadratic-Gaussian (LQG), networked
control, sensor networks.

I. INTRODUCTION

R ECENTLY a lot of attention has been directed towards
networked control systems in which components com-

municate over wireless links or communication networks that
may also be used for transmitting other unrelated data (see, e.g.,
[1], [2], and [11] and the references therein). The estimation
and control performance in such systems is severely affected by
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the properties of the communication channels. Communication
links introduce many potentially detrimental phenomena, such
as random delays, data loss and data corruption to name a few,
that lead to performance degradation or even loss of stability.

In this work, we are specifically interested in the problem
of estimation and control across a network of communica-
tion links that drop data packets. We consider a dynamical
process evolving in time that is being observed by a sensor.
The sensor needs to transmit the data over a network to a
remote node, which can either be an estimator or a controller.
However, the links in the network stochastically drop packets.
Preliminary work in this area has concentrated on networks
consisting of a single link between the sensor and the remote
estimator/controller. Within the one-link framework, both
the stability [19], [23] and the performance [15], [19] have
been analyzed. Approaches to compensate for the data loss
to counteract the degradation in performance have also been
proposed [9], [15], [16], [21]. Also relevant are the works of
Azimi–Sadjadi [3], Schenato et al. [18] and Imer et al. [12] who
looked at controller structures to minimize quadratic costs for
systems in which both sensor-controller and controller-actuator
channels are present. The related problem of estimation across
a packet-dropping link was considered by Sinopoli et al. in [20]
for the case of one sensor and packet drops occurring in an i.i.d.
fashion, while Gupta et al. [7] considered multiple sensors and
more general packet drop models.

It has often been recognized that typical network/communi-
cation data packets have much more space for carrying informa-
tion than required inside a traditional control loop. For instance,
the minimum size of an ethernet data packet is 72 bytes, while
a typical data point may only consume 2 bytes. Many other ex-
amples are given in Lian et al. [14]. Moreover, many of the de-
vices used in networked control systems possess processing and
memory capabilities on account of being equipped to commu-
nicate across wireless channels or networks. Thus, the question
arises if we can exploit these capabilities to pre-process infor-
mation prior to transmission and transmit extra data in every
packet to combat the performance degradation due to commu-
nication channels. In Gupta et al. [8] it was shown that pre-pro-
cessing (or encoding) information before transmission over the
communication link can indeed yield significant improvements
in terms of stability and performance. In this paper, we consider
the design of encoders and decoders when the sensor data has
to be transmitted over a network of arbitrary topology.

Transmission of data over networks for the purpose of esti-
mation and control is largely an open problem. Tatikonda [22]
studied some issues related to the quantization rates required for
stability when data is being transmitted over a network of digital
noiseless channels. Also relevant is the work of Robinson and
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Kumar [17] who considered the problem of optimal placement
of the controller when the sensor and the actuator are connected
via a series of communication links. They ignore the issue of
delays over paths of different lengths (consisting of different
number of links) and under a Long Packet Assumption come up
with the optimal controller structure. There are two main rea-
sons why the problem of encoding data for transmission is much
more complicated in the case of transmission over a network:

1) Intermediate nodes have memory and processing ability.
This memory should be used and one should not view the
network as a “passive” memoryless erasure channel.

2) Typically there are many paths from the sensor to the
remote estimator/controller. These paths typically exhibit
different delays and levels of reliability. This diversity
should be exploited by the system designer.

The main contributions of the paper are as follows:
1) We present a separation principle that decomposes the op-

timal control problem into an LQ optimal regulator design
and estimation of a process across a network. Moreover,
we show that for the estimation problem, the intermediate
nodes of the network do not require access to the control
inputs.

2) We propose a recursive algorithm for information pro-
cessing at the nodes of the network so that the estimator
can calculate the optimal estimate at every time step. The
estimate is optimal given the maximal possible informa-
tion set that the estimator can have access to given any
causal information processing algorithm. Our algorithm is
optimal for any realization of the packet-dropping process
yet requires a constant amount of memory, processing and
transmission at any node per time step.

3) We analyze the stability of the expected error covariance
for this strategy when the packet drops are independent
across time steps and across channels. For any other
scheme (e.g., transmitting measurements without any
processing), these conditions are necessary for stability.
The analysis identifies a property of the network called
the max-cut probability that completely characterizes the
network for its ability to be used for stabilizing a control
loop. For channels with correlated drops, we show how to
extend this analysis.

4) We calculate the performance for our algorithm for chan-
nels that drop packets independently. We provide a math-
ematical framework for evaluating the performance for a
general network and provide expressions for networks con-
taining links in series and parallel. We also provide lower
and upper bounds for the performance over general net-
works. For any other strategy, these provide lower bounds
for achievable performance.

As shown in [5], the results can also be used for synthesis of
networks from a control oriented viewpoint.

II. PROBLEM SETUP

Consider the problem setup shown in Fig. 1. Let a discrete-
time linear process evolve as

(1)

where is the process state, is the con-
trol input and is the process noise assumed to be white,

Fig. 1. Set-up of the control across communication networks problem. Every
node computes a function of the incoming messages and transmits it. For most
of the discussion in the paper, we ignore the network between the controller and
the actuator. See, however, Remark 4.

Gaussian, and zero mean with covariance matrix . The
initial condition is assumed to be independent of and
to have mean zero and covariance matrix . The process
state is measured by a sensor that generates measurements ac-
cording to the equation

(2)

The measurement noise is white, zero-mean, Gaussian
(with covariance matrix ) and independent of the plant
noise . We assume that the pair is stabilizable
and the pair is observable. Denote the above setup as
system . Even though we consider the time-invariant case
to simplify the presentation, most of the results in the paper
continue to hold for time-varying systems. A time-varying
model can be useful, e.g., if the discrete-time process (1) results
from non-uniform sampling of a continuous-time process.

The sensor communicates with a controller across a network
of communication links that stochastically drop packets. We
make no assumptions about the topology of the network. The
sensor constitutes the source node and is denoted by . The
controller is designated as the destination node . The commu-
nication network defines a directed graph with node set (in
particular, contains and ) and edge set . The
edges of the graph represent the communication links and are,
in general, directed. Specifically, the link models a
communication channel from node to node . We assume there
are edges or links present in the network. For any node ,
the set of outgoing edges corresponds to the channels along
which the node can transmit messages while the set of incoming
edges corresponds to the channels along which the node receives
messages. We denote the set of in-neighbors of node by .

The communication links are modeled using an analog era-
sure model. Each link takes in as input a vector of real numbers
with a finite dimension. At each time-step, this message is either
dropped or received without any error at the output node. We as-
sume sufficient bits per data packet so that the quantization error
is negligible. This assumption makes sense if the communica-
tion packet provides enough bits for transmitting data (as in most
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modern communication network protocols) so that the effect of
quantization error is dominated by the effect of the process and
the measurement noises. We nominally consider the delays in-
troduced by the channel to be less than one time step according
to which the discrete-time dynamic process evolves. Most of the
results in the paper can however directly be extended to the case
when larger delays are present. In particular, the algorithm in the
case of arbitrary delays and packet rearrangements is provided
in Remark 3. In this paper, we also assume a global clock so that
each node is synchronized. Finally, we assume that each node
can receive all the messages coming along the incoming links
without interference from each other1.

If the packet dropping process is independent from one time
step to the next (or, in other words, memoryless), the probability
of dropping a packet on link is given by (or,
equivalently, ) independent of time. If the process is uncor-
related in space, each such packet drop event is independent of
packet drops in other links. While our stability and performance
analysis is largely limited to packet drop processes that are in-
dependent in time and uncorrelated in space, the algorithm that
we propose is optimal for more sophisticated models such as
drops occurring according to a Markov chain. We refer to in-
dividual realizations of the random processes that describes the
drops for the networks as a packet drop sequence. The operation
of the different nodes in the network at every time-step can be
described as follows:

1) Every node computes a function of the information it has
access to at time .

2) It transmits the function on the out-going edges. Potentially
the node can transmit different functions along different
edges. The destination node calculates the control input

based on the information it possesses.
3) Every node observes the messages from the incoming links

and updates its information set for the next time step. For
the source node, this message is .

This time line ensures a strictly causal operation. At time step ,
the function that the source node transmits depends on measure-
ments . Similarly, even if there were no packet
drops, if the destination node is hops away from the source
node (i.e., the shortest path from the source node to the desti-
nation node involves edges), its control input can only
depend on measurements . Thus, every
communication edge consumes one hop, or one time step, as
data is transmitted across it. We can easily adapt the discussion
presented below to the causal case.

At every time step, the controller calculates a control input
and transmits it to the actuator. For the present, we ignore any
communication channel between the controller and the actuator.
The controller aims at minimizing the cost function

(3)

1This property can be easily achieved by using a division multiple access
scheme like FDMA, TDMA, CDMA etc. Technologies like Software Radio
(SWR) also have this property.

where the expectation is taken over the uncorrelated variables
, and and the horizon is finite. Note that

the cost functional also depends on the random packet-drop
sequences in each link. However, we do not average across
packet-drop processes; the solution we present is optimal for
arbitrary realizations of the packet dropping processes. We
assume that the controller has access to all the previous control
inputs while calculating . Without the
communication network, the control problem is the same as
the classical LQG control synthesis problem. However, in the
presence of the network, it is unclear a priori, what the structure
of the optimal control algorithm should be, and in what way
the links in the network should be used to transmit information.
Clearly, transmitting merely the latest measurements might not
be optimal, since in such a scheme, dropping a packet would
mean information loss that cannot be compensated for in the
future. We are particularly interested in strategies that do not
entail an increasing amount of transmission, memory and pro-
cessing at the nodes. We are not interested in interleaving bits to
transfer infinite amount of data since it is unclear what the effect
of having finite (even though large) number of bits would be for
such a strategy. We will also identify the conditions on the net-
work for stability. We are interested in stability in the bounded
second moment or the mean squared sense. Thus, the system is
stable if is bounded, where and
the expectation is taken over the packet dropping processes in
the network. We denote this problem set-up as problem .

III. A SEPARATION PRINCIPLE

For the node , denote by the information set that it can
use to generate the message that it transmits at time step . This
set contains the aggregate of the information the node has re-
ceived on the incoming edges at time steps . As an
example, for the source node ,

Without loss of generality, we can restrict our attention
to information-set feedback controllers, i.e., controllers of the
form For a given information set at the
destination , denote the minimal value of that can pos-
sibly be achieved by . Let be the binary random
variable describing the packet drop event on link at
time . assumes the value 0 if the packet is erased on
link at time and 1 otherwise. For a network with in-
dependent and memoryless packet drops, is distributed
according to Bernoulli distribution with parameter . We de-
fine . Given the packet drop sequences in each link,
at time step we can define a time stamp for node such
that the packet drops did not allow any information transmitted
by the source after to reach the th node in time for it to
be a part of .

Now consider an algorithm in which every node takes the
following actions at every time step:

1) Transmit its entire information set on the outgoing edges.
2) Receive data successfully transmitted along the incoming

edges.
3) Update its information set and affix a time stamp corre-

sponding to the time of the latest measurement in it.
For any drop sequence, the information set at node with this
algorithm is of the form
where is the time stamp as defined above. This is
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the maximal information set that the node can pos-
sibly have access to with any algorithm. For any other algorithm,
the information set is smaller than in the sense that
the smallest sigma algebra generated by the information set is a
subset of the smallest sigma algebra generated by .

Consider two arbitrary information sets and
. Let the smallest sigma algebras generated by the

two information sets be denoted by and
respectively. If the two information sets are such that

, we have
Thus, one way to achieve the optimal value of is through the
combination of an information processing algorithm that makes
the information set available to the controller and a
controller that optimally utilizes the information set. Further,
one such information processing algorithm is the algorithm
described above. However, this algorithm requires increasing
amount of data transmission as time evolves. Surprisingly, we
can achieve the same performance using a constant amount
of transmission and memory. To see this, we first state the
following separation principle. For any random variable

, denote by the minimum mean squared error
(MMSE) estimate of given the information .

Proposition 1 (Separation Principle): Consider the packet-
based optimal control problem defined in Section II. Sup-
pose that each node transmits all the measurements it has access
to at every time step, so that the decoder has access to the max-
imal information set at every time step . Then, the
optimal control input at time is calculated to be

where is the optimal LQ control law and
denotes its minimum mean

squared error (MMSE) estimate given the information set
and the previous control inputs .

Proof: Proof is similar to the standard separation principle
[10, Ch.9], [13] and is omitted for space constraints.

There are two reasons this principle is useful to us:
1) We recognize that the optimal controller does not need

the information set . The encoders and the de-
coder only need to ensure that the controller receives the
quantity , or equivalently,

.
2) If the controller has access to this quantity, the optimal

controller is the solution to the LQ control problem.
We can make another simplification by separating the depen-

dence of the estimate on measurements from the effect of the
control inputs. In the context of our problem, this implies that
the nodes in the network do not need access to the control in-
puts, and can concentrate solely on the effect of measurements.
The effect of the control inputs can be included by the controller
that has access to previous control inputs.

Proposition 2 (Separation of the Effect of Control Inputs):
Consider the problem defined in Section II. The estimate

, where is of the form
, can be calculated as

where depends only on and
depends only on the control inputs. Further, both

and can be calculated recursively.
Proof: For simplicity of notation, let . Define the

quantity calculated at any time using the measure-
ments from time to according to the following
modified Kalman filter equations.

Measurement update for the modified Kalman filter:

Time update for the modified Kalman filter:

The initial conditions are given by and
. The effect of the control inputs can be

taken care of through the term that evolves as

with . It can readily be verified that

To complete the proof, we simply identify

(4)

IV. RECURSIVE OPTIMAL ENCODING ALGORITHM

We now describe an algorithm that achieves the same per-
formance as algorithm with constant memory, processing
and transmission (modulo transmission of a time stamp). At
each time step , every node takes the following actions:

1) Calculate the quantity using data received
from other nodes at the previous time step and the
quantity that it calculated at time

. This can be computed using a switched linear filter, as
follows. The source node implements a modified Kalman
filter and calculates the quantity . It sets
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Fig. 2. Summary of the algorithm � .

the time-stamp to . Every other node checks the
time-stamps on the data coming on the incoming edges.
The time-stamp on the data transmitted by a node at time

is simply the time-stamp of the node and
corresponds to the latest measurement used in the calcula-
tion of the quantity being transmitted by node . Then node

updates its time-stamp using the relation

(5)

Suppose the maximum in (5) is achieved by node .
The node calculates

and time-stamp .

2) Transmit the quantities and the time
stamp on the outgoing edges.

3) Receive data on the incoming edges, if any, and store it for
the next time step.

A ’flow-chart’ version of the algorithm is provided in Fig. 2.
To prove that algorithm is indeed optimal, we need the fol-
lowing intermediate result.

Lemma 1: Consider any node and any packet drop pat-
tern. At time step , the node transmits the measurement set

on all outgoing edges
if algorithm is executed. If, instead, algorithm is ex-
ecuted, the node transmits the quantity

along all outgoing edges.
Proof: The statement about the algorithm follows

from the definition of the algorithm. The proof of the second
statement can be proven by induction on the time step . For
time , by definition, the source node transmits the
quantity along all outgoing edges while executing
algorithm . Since , the statement is true. No
other node transmits any information at this time. Thus the
statement is true for . Now assume that the statement
is true for for all nodes. Consider the node at time

. If the node is the source node, the statement is
true once again by definition of and the first step of the
algorithm. Let us assume that node is not the source node.
Consider all nodes that transmitted data at time to node
. For such that , by the assumption of the

statement being true at time , the node receives from
node the quantity Also, since at
time the node transmitted on
all outgoing edges, it has access to this quantity. Let be the
node for which

Clearly, the set is the superset of all sets
for different nodes and the set

. Thus, from (4), we have

with the time-stamp . But, by defini-
tion from the step 1 of algorithm , at time ,
the node transmits along all outgoing edges the quantity

and the time-stamp .
Thus the statement is true at time step for the node
. Since the node was arbitrary, the statement is true for the

entire graph. Thus we have proven that if the statement is true
at time , it is true at time . But it is true at time

. Thus, by the principle of mathematical induction, it is
true at all time steps.

Proposition 3: The algorithm is optimal in the sense that
it allows the controller to calculate the control input that
minimizes the quadratic cost in (3).

Proof: Consider the controller node . At time , let
be a node for which . Denote the

measurement set transmitted from node to node at time step
under algorithm by . Let be the node for which

is the superset of all the sets . Thus, the controller at time
under algorithm calculates the quantity From

Lemma 1, when algorithm is executed, at time step , the
controller has access to the quantities . Since
is the superset of all the sets , the controller under algorithm

also calculates at time the quantity which is
the same as Now, because of the Propositions 1 and
2, the control input calculated when the controller has access to

leads to the minimum possible quadratic cost. Thus,
the algorithm is optimal.

Remark 1 (Boundedness of the Transmitted Quantities): It
is important to emphasize that the quantity is
not the estimate of based only on the measurements
through that form the set . In particular, under
the constraints of stabilizability, detectability and the conditions
on erasure probabilities for stability that are derived in the next
section, the system is stable and hence the measurements

are bounded. Thus the quantity is stable.
This can also be seen by rewriting the equations that govern its
evaluation. From the equations of the Modified Kalman Filter,
we have

where is the (conventional) Kalman filter gain. Due to the
detectability and stabilizability assumptions, the matrix
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is stable. Thus, if is a bounded term, the quantity
and, in turn, is stable. Thus, the quan-

tities that are transmitted by the nodes in the optimal algorithm
are stable. If the closed loop system is not stable due to
high erasure probabilities, the measurements and hence the
quantity would, of course, not be stable. How-
ever, the optimality result means that the system cannot be sta-
bilized by sending any other quantity (whether measurements

or innovations etc).
Remark 2 (Optimality for any Drop Sequence and the

’Washing Away’ Effect): We have made no assumptions on the
packet drop pattern or knowledge of the statistics of the packet
drops at any of the nodes. The algorithm is optimal for an arbi-
trary packet drop sequence, irrespective of whether the packet
drop can be modeled as an i.i.d. process or a more sophisticated
model like a Markov chain. The algorithm is optimal at every
time step for any instantiation of the packet drop sequence, not
merely in the optimal average performance. Also note that any
received data vector ’washes away’ the effect
of all previous packet drops. It ensures that the control input is
identical to the case when all measurements
were available, irrespective of which previous data packets had
been dropped.

Remark 3 (Presence of Delays): If the links introduce delays,
the algorithm remains optimal irrespective of the possibility of
packet rearrangements. Each node , at every time step , still
calculates the quantity based on any informa-
tion received at that time step and the previous estimate from its
memory, affixes the correct time stamp and transmits it along
outgoing edges. Further if the graph is finite, the stability con-
ditions in the next section also do not change.

Remark 4 (Channel Between the Controller and the Actu-
ator): The crucial assumption in the separation principle is that
the controller knows what control input is applied. Thus, if we
have a channel between the controller and the plant, the sepa-
ration principle would still hold, provided there is a provision
for acknowledgment from the receiver to the transmitter for
packets successfully received over that channel2. The optimal
information processing algorithm presented above also carries
over to this case. We can also ask the question of the optimal
encoder-decoder design for the controller-actuator channel. The
optimal decoding at the actuator end depends on the information
assumed to be known to the actuator (e.g., the cost matrices
and ). Design of the decoder for various information sets is an
interesting open problem.

It should be noted that a priori we had not made any assump-
tion about a node transmitting the same message along all the
out-going edges. It turned out that in this optimal algorithm,
the messages are the same along all the edges. This property
is useful in the context of wireless communication which is in-
herently broadcast in nature. Finally, the extent of time synchro-
nization that is strictly necessary for the above algorithm is that
the controller and the process be synchronized in the sense that
a new control input is generated at every time step. Apart from
that, the information that the nodes need to know is the time
stamp of the last measurement used to calculate the estimate

2We do not require acknowledgements for the sensor-controller channel.

that they have received. They do not require to be synchronized
to the process. However, for simplicity of the analysis, we will
assume time synchronization.

We now analyze the stability and performance of the above
algorithm by assuming that packets are dropped independently
from one time step to next and uncorrelated in space. We return
to more general packet dropping processes in Section VII.

V. STABILITY ANALYSIS

We begin by posing an alternate problem. Consider an open
loop system that evolves as

(6)

(7)

where the noises have the same value at every time step as those
appearing in the description of the system and .
An encoder has access to the measurements . The node
now denotes an estimator across a network of analog erasure
links that needs to calculate the MMSE estimate of based
on information it receives. The network has the same topology
as the network for the problem . The cost function is to min-
imize the mean squared error based cost function

(8)

where the expectation is taken over the uncorrelated variables
, and . Every communication link in the

network suffers an erasure at time if and only if the corre-
sponding communication link in the network for the system

suffers an erasure. Assume that the algorithm is im-
plemented for both the problems. Note that for problem ,
the quantity is precisely the MMSE estimate
of given the measurements , . At time

, the decoder for the system has access to the quantity
and the decoder for the systems has access

to the quantity . For the system , denote by
the error between the state and the estimate at the

decoder . Also, denote for the system , the
error between the state and the estimate at the controller

by . Due to Proposition 2,
at every time step . Also, because of Propo-

sition 1, determines the stability and performance of the
system . Thus, to analyze the stability and performance for
the closed-loop system, we can concentrate on the open-loop
system . We will denote this estimation problem as .

Remark 5: Note that this problem has been posed merely for
analytical convenience. We need not worry about the quantity
being transmitted being stable for the problem because as we
have seen, the quantity for the closed-loop system is stable.
Of course, problem may be of individual interest. Estimating
an open-loop unstable process has been studied by many re-
searchers recently for analog erasure channels under a variety
of settings. It may be noted that the quantity transmitted in all
these works is unstable.

For the problem , denote the covariance of the error
at time by where the expecta-
tion is taken over the initial condition , the process noise
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and the measurement noise. We can further compute the expec-
tation with respect to the packet dropping process and denote

Finally, compute the steady-state error
covariance If the limit exists and
is bounded, we say that the estimate error is stable. Because of
Proposition 1, the stability conditions for problems and
are identical.

As in problem , for node and time , let denote the
time-stamp of the most recent observation used in estimating

at the destination node . This time-stamp evolves ac-
cording to (5). We have

where the expectation with respect to the packet dropping
process has been evaluated. Thus, the effect of the packet drop-
ping process enters through the distribution of the time-stamp
of the most recent observation used in estimating . For
future use, we denote the latency for the the node at time
as Also, denote the MMSE estimate of

given all the measurements by
. We can now rewrite the error covariance as

(9)

Thus, the stability of the system depends on how fast the prob-
ability distribution of the latency decreases. To analyze the sta-
bility, we use the following result from [8].

Proposition 4 (From [8]): Consider a process of the form (6)
being estimated using measurements from a sensor of the form
(7) over a packet-dropping link that drops packets in an i.i.d.
fashion with probability . Suppose that the sensor transmits
the MMSE estimate of the state at every time step. Then the
estimate error at the receiver is stable in the bounded second
moment sense if and only if where is the
spectral radius of the matrix appearing in (6).

We will also use the following definition. Consider every pos-
sible division of the nodes of the network into two sets with
the source and the destination node being in different sets (also
called a cut-set). For any such cut-set, let de-
note the packet erasure probabilities of the edges that connect
the two sets. Define the cut-set erasure probability as

Then, the max-cut probability is given by

(10)

A. Network With Links in Parallel

Let the source and the destination node be connected by a
network with links in parallel with the probability of packet
drop in the th link being . Since the same data is being trans-
mitted over all the links, the distribution of the latency remains
the same if the network is replaced by a single link that drops
packets when all the links in the original network drop packets
and transmits the information if even one link in the original
network allows transmission. Thus the packet drop probability

of this equivalent link is . The necessary and suf-
ficient condition for the error covariance to converge thus be-
comes where

B. Necessary Condition for Stability in Arbitrary Networks

Proposition 5: Consider the problem where the links drop
packets i.i.d. in time and independently across links. A neces-
sary condition for stability is

Proof: Consider a cut set of the given network , with
the source being in set and the destination node in set

and the links joining the sets and . Form an-
other network by replacing all links within the sets and
by links that do not drop packets and do not consume one time
step to transmit data. For any packet drop pattern, denote the in-
formation sets that the destination node has access to at time
step over networks and by and
respectively. The estimate error covariances at the destination
node for the two networks are related by

Hence, by considering the stability of error co-
variance over network , we can obtain a necessary condition
for the stability of error covariance over network . Since the
edges within the source and the destination sets do not introduce
any delay or error, consists of the source and the destina-
tion joined by edges in parallel. The condition for the
error covariance across to converge is thus

where This is, thus, a necessary condi-
tion for error covariance across to be stable. By considering
all cut-sets, we obtain that a necessary condition for the error
covariance to converge is .

C. Network With Links in Series

Consider a network consisting of two links in series with
probabilities of packet drop and respectively. Denote the
nodes as , and with being the source node and
the destination. Also, denote the estimate at node at time
by . Let be the error between and . Sim-
ilarly let be the error between and . We are
interested in the second moment stability of . A
sufficient condition is that both and individually be
second moment stable. Applying Proposition 4, if

, would be stable. Now for the second link, we can con-
sider the sensor

generating the measurements. The quantity transmitted by
node 2 at any time step in the algorithm can be seen to
be the MMSE estimate of given all the measurements

Consequently, if , then the error
is stable. If be the greater of the probabilities and

, the sufficient condition thus is But this is
identical to the necessary condition stated in Proposition 5.
Thus the condition above is both necessary and sufficient.3

This argument can be extended to any finite number of links
in series. If there are links in series with the probability of
drop of the th link being , then a necessary and sufficient
condition for the estimate error to converge at the destination
node is where

3A more rigorous approach to find the necessary and sufficient condition for
stability is to evaluate � for a series of links. This approach is taken in Sec-
tion VI-A.
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D. Sufficient Condition for Arbitrary Networks

Proposition 6: For problem with the assumptions of
Proposition 5 on the packet drops, the estimation error covari-
ance with algorithm is stable if

Proof: First note that if a packet dropping link between
two nodes and with probability of drop is replaced by
two parallel links with drop probabilities and such that

, then under algorithm does not change.
This is true because the probability distribution of the latency
does not change with this replacement.

We will prove the proposition by exploiting a technique used
in fluid networks. Consider the set of all
simple directed paths from the source to the destination in the
network graph. Note that these paths may overlap. If the edge is
in path , we denote that as . Now consider the following
optimization problem

(11)

(12)

(13)

A simple change of variables transforms the
above optimization problem into the following linear program
in the variables ’s:

(14)

The solutions and of the optimization problems (11)
and (14) are related through The structure of
the linear program (14) is the same as the one used for finding
the maximum flow possible in a fluid network [4, Page 59],
which has the same topology as our packet dropping network
with the capacity of the link equal to . The solution to
the problem of finding the maximum flow through a fluid net-
work is given by the max-flow min-cut theorem as

Thus for the optimization problem (11), the solution is

(15)

Consider the paths in the set . Form a new set of all those
paths ’s for which the associated optimal variable is strictly
less than one. Now form a new network as follows. The node
set of is the union of those nodes of the original network
that are present on any path in . Each pair of nodes in
the node set of is connected by (possibly) multiple links. If
an edge between nodes and is present in a path ,

add an edge between nodes and in and assign an erasure
probability . By considering all the edges in and following
this procedure, we construct the edge set of . The following
properties of are easily verified.

• By construction, is a union of edge-disjoint paths. Fur-
thermore, for each path, the probabilities of packet drop on
all the links are equal.

• By virtue of (15) and the procedure followed to construct
, the product of the probabilities of packet drop of the

different paths is equal to the .
• Because of (12), for any pair of nodes that were connected

by a link with erasure probability in , the product of
the probabilities of packet dropping of the links in con-
necting these two nodes is no less than .

Therefore the estimate error covariance at the destination by
following algorithm in the original network is less than
or equal to the error covariance by following in the new
network . Thus, to obtain a sufficient condition on stability,
we can analyze the performance of in the network . For
this we consider another algorithm in which we assume that
estimates on the disjoint paths in are routed separately. Thus,
if a node lies on many paths, on each path it forwards only the
packets it received on that path. The performance of cannot
be better than since in we send the most recent estimate
received from different paths at any node.

Therefore, to prove the theorem, we only need to show the
stability of estimation using protocol assuming that the con-
dition of Proposition 5 holds. Since we do not mix the estimates
obtained from different paths in , the network can be consid-
ered as a collection of parallel paths, with each path consisting
of links with equal drop probability. We further upper-bound the
error covariance through two means:

1) Convert the network into a network by introducing
links in the different paths from the source to the destina-
tion in such that each path consists of equal number of
links, while retaining the property that every link in a path
has the same probability of drop. Thus, we can consider
nodes present in layers, with layer 0 corresponding to the
source, layer 1 consisting of all nodes one hop away along
the different paths from the source and so on. Let the des-
tination be at layer .

2) Let the nodes in level have estimate error covariances
’s at time . When selecting messages to be trans-

mitted to the nodes in level , we use the algorithm ,
in which the nodes transmit the estimate that has the max-
imum 4.

Let us now prove that the condition in Proposition 5 is sufficient
for the stability of the error covariance when algorithm is ex-
ecuted over network . Clearly implies

for the probability corresponding to any path
. Thus the error covariance at the nodes in the layer 1 is stable.

Repeating an argument similar to the one in Section VI-A, we
can obtain that all the nodes in layer have stable
estimate error covariance as well. Finally for the estimate at the
destination node, all the estimates from the nodes in layer
can be considered to be in parallel with each other. Since for this
network if ,

4Note that all � ���’s form an ordered set.
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the estimate at the destination has bounded error covariance as
well.

Remark 6: We have provided a necessary and sufficient con-
dition for the expected error covariance to remain bounded for
a network of arbitrary topology. For any other causal data pro-
cessing algorithm, it provides a necessary condition for stability.
Let us, in particular, compare the stability conditions for the al-
gorithm to those for a simpler algorithm in which the in-
termediate nodes do not have any memory. At each time step

, the source node forwards the measurement . The
intermediate nodes compare the time stamps of the measure-
ments they received at the previous time step along different in-
coming edges and forward the most recent one. If they did not
receive any measurement on the previous time step, they do not
transmit anything. The probability that the destination node re-
ceives any particular measurement from the source over the
network is upper-bounded by the reliability [6] of the network.
For a line network in which edges each with drop probability

are combined in series, the probability that any measurement
is received by the destination node is By a
method similar to the one used in [20], it can be proven that a
necessary condition for stability is With our op-
timal algorithm, the necessary and sufficient condition for ex-
pected estimate error covariance to be stable is
As an example, for links and drop probability ,

. Thus our algorithm improves the stability margin
from for to .

VI. PERFORMANCE ANALYSIS

In this section we calculate the probability mass function of
the latency at any node for various networks, assuming the era-
sures to be independent in time and uncorrelated across various
links. This will allow us to study the performance of the algo-
rithm . The latency at any node depends on the erasure pat-
terns along different links in all the paths from the source to the
node. Since the paths may be overlapping, the evaluation of the
latency may, in general, be very complicated.

Let denote the time elapsed since any information
was received by the node over the link , i.e.

We define . The last time that any message is re-
ceived at node from link is and that
message has time-stamp . Since the erasures are
independent across links and i.i.d. in time, is a truncated
geometric random variable with the mass function

We can express the latest information used by node in terms
of the variables . From (5) the time stamp is given by

(16)

For analytical ease, we get rid of the truncation in the defini-
tion of the variable by extending the definition of the
time stamp . For all , define As an ex-
ample, for the source node , without extending the definition
we have for . Using the extended defi-
nition, for all , where .
For any node , using the extended definition of for all ,
(16) continues to hold; however, ’s are now independent
random variables distributed according to a geometric distribu-
tion with parameters ’s. Thus

(17)

Since ’s do not depend anymore on , we omit this
argument.

We can now begin to combine the variables ’s to calcu-
late the latest information received by any node from the source.
Along any path, this involves adding the times since last suc-
cessful transmission along different paths. Since there may be
multiple paths from the source, we need to compute the max-
imum such sum. From (16), we can write in terms of the
time-stamp at the source node as

(18)

where the maximum is taken over all paths from source to the
node . The latency at node can now be written as

For the steady-state error covariance, we consider the steady-
state behavior of the latency . As , the distribution
of approaches that of the variable defined as

(19)

We now concentrate on the destination node5. For the destina-
tion node , denote by the steady-state latency of the network.
From (9), the steady-state error covariance is

(20)

where is the steady-state estimation error covariance of
based on and is the solution to the
Discrete Algebraic Riccati Equation (DARE)

Because of the observability and stabilizability assumptions, the
rate of convergence of to is exponential and the sub-
stitution of for in (9) does not change the steady-state
error covariance. On vectorizing (20) we obtain

(21)

5For covariance at another node �, simply denote � as the destination node.
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where is the Kronecker product of matrices and ,
is the generating function of the complementary density

function and is the moment generating function of
the steady state latency defined as

for an arbitrary matrix . Note that

(22)

Proposition 7: Consider the problem . Let the packet drops
be independent from one time step to the next and across links.
The minimum expected steady-state estimation error covariance
at the receiver is given by (21).

In particular, the system is stable if and only if is
bounded at . Since is a power series, boundedness
of at is equivalent to the boundedness of
(evaluated for a scalar ) at the square of the spectral radius
of .

A. Networks With Links in Series

In this case, the network consists of only one path from the
source to the destination. Thus, we have

where the summation is taken over all the edges in the path.
Since the drops across different links are uncorrelated, the vari-
ables ’s are independent. Thus we have

where we have used the independence of ’s. Since from
(17), is a geometric random variable

provided that , where is the spectral radius
of matrix . Therefore,

Using partial fractions and the relation in (22), we then obtain

Therefore the cost can be written as

Moreover, the system is stable if for every link we have
or equivalently . This

matches with the condition in Section V. Also note that for the
case that some of ’s are equal, a different partial fraction
expansion applies. In particular for the case when there are
links all with the erasure probability , we obtain

Finally, when there is only one link between the source and the
destination, the steady state error covariance is the solution to
the Lyapunov equation

B. Network of Parallel Links

Consider a network with the sensor connected to a desti-
nation node through links with probabilities of packet drop

. Since the same data is transmitted over all the links,
using (19) the steady state latency is Since

’s are all independent geometrically distributed variables with
parameters ’s respectively, their minimum is itself geometri-
cally distributed with parameter Thus can
be evaluated as

and can, in turn, be written as

Thus the steady-state error can be evaluated using (21). Note that
convergence of enforces for stability
which is the condition derived in Section V.

C. Arbitrary Network of Parallel and Serial Links

We can obtain the following two rules for the steady-state
error covariance of any network derived from the parallel and
serial concatenations of sub-networks. Let denote the
steady-state latency function of network . Also given two
subnetworks and , denote their series combination by

and their parallel combination by .
1) Suppose the network can be decomposed as a series of

two subnetworks and . Since packet erasures in the
two subnetworks are independent of each other
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Finally using (22), the complementary density function of
the network is given by

where in the second equation we have used the fact that

2) If the network can be decomposed as parallel combina-
tion of two sub-networks and , we have

Once again, the erasures in the two subnetworks are inde-
pendent of each other. Thus

Thus we see that if

Thus, we can use (21) with the above two rules to derive
the steady state error of any network consisting of links in
series and parallel with each other.

D. Networks With Arbitrary Topology

Finding the distribution of the steady-state latency of a gen-
eral network is not an easy task because different paths may
overlap. This can introduce dependency in the delays incurred
along different paths. Thus, the calculation of the minimum
delay and, hence the steady-state latency, becomes involved.
However, we can provide upper and lower bounds on the perfor-
mance. We first mention the following intuitive lemma without
proof.

Lemma 2: Let denote the ex-
pected steady-state error of a system with communication net-
work represented by graph and probabilities of
packet drop . Then the expected steady-state
error is non-increasing in ’s, i.e., if

where means that is positive semi-definite.
Lower Bound: We can lower bound the steady-state error

by making a subset of links erasure free. This is similar to the
method we used to obtain a necessary condition for stability in
Section V. Thus once again consider any cut-set of the network.
Setting the probability of erasure equal to zero for every link

except those crossing the cut (i.e., of the form where
is in the source set and in the destination set) gives a lower
bound on the error. Therefore

otherwise.

Now can be evaluated using the re-
sults given above for a network of parallel links. By considering
the maximum along all possible cut-sets, we obtain the closest
lower bound.

Upper Bound: We use a method similar to the one used
to obtain the sufficient condition for stability in Section V. In
the proof of Proposition 6, it is shown that the performance of
the network is lower bounded by the performance of another
network that has series and parallel links only and has the
following properties:

• and have the same node set.
• is the combination of edge-disjoint paths from the

source to destination.
• The value of the max-cut in is the same as in the original

network .
The performance of can be computed based on the results
given above for arbitrary networks composed of subnetworks in
series and parallel. This provides an upper bound on the perfor-
mance of the original network.

VII. CORRELATED ERASURE EVENTS

Even though the algorithm is optimal for any packet drop-
ping pattern, the stability and performance analysis so far as-
sumed that the erasure events are memoryless and independent
across different links in the network. We now look at the effect
of dropping these assumptions.

A. Markov Erasure Events

If we assume that the drop events on each link are governed
by a Markov chain (but are still independent of other links), we
can obtain the performance as follows. Suppose that the packet
drop event on link , denoted by evolves ac-
cording to a Markov chain with transition matrix assumed
to be irreducible and reversible. Let us first consider the case
where the initial distribution of packet drop on each link is the
stationary distribution of the Markov chain on that link. Then
we can rewrite (5) in a similar fashion as (18) with being a
geometric random variable with distribution

where is the probability of packet drop based on the sta-
tionary distribution of link and as the

th element of . Thus, the problem can be analyzed
along similar lines to the preceding discussion. In particular, the
stability condition is
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If the initial distribution is not the stationary distribution, the
variables have time-varying distributions and the anal-
ysis fails. However, since for large the Markov chains ap-
proach their stationary distribution, the stability condition re-
mains unchanged.

B. Spatially Correlated Events

Suppose that the packet drop events are correlated across the
network but memoryless over time. In other words, at each time
step , the packet drop events occur according to distribution

. Now ’s are not independent across
the network and hence finding the steady-state error covariance
does not seem to be tractable. However, we can find the con-
dition for stability. For this, we define a generalized notion of
equivalent probability of packet drop for correlated events. Con-
sider a cut-set , and let denote the set of edges crossing
this cut. Then the equivalent probability of packet drop for this
cut is

The value of the max-cut for the network is the maximum of
over all the cuts, We

can then show that the condition for stability of the system is
To see this, consider the scenario when

only one packet is to be routed from the source to destination
starting at time . For each time-step let denote
the set of nodes that have received the packet at time . Clearly

. Note that for every time-step between and
, defines a cut-set since it contains and not . Now the

size of does not increase with respect to time-step iff
all the links that cross the cut generated by drop packets.
However by the definition of the probability of this event
is at most . Therefore, we have

with prob. at most
with prob. at least

Thus for large , the probability that at time the des-
tination node has not received the packet is upper bounded by

where is the number of nodes
in the network. Now, the error covariance can be upper-bounded
by considering that the network is only routing the latest packet
generated at time . The probability that the latency is larger
than thus grows like , where is polynomial in

with bounded degree and the sufficiency of the stability con-
dition follows. The necessity part involves similar ideas and is
omitted.

VIII. CONCLUSION

In this paper, we considered the problem of estimation and
control of a process across an arbitrary network of communi-
cation links. We identified an optimal information processing
algorithm to be followed by each node in the network that al-
lows the estimator to calculate the best possible estimate in the
minimum mean square sense and the controller to minimize
a quadratic cost. The recursive algorithm requires a constant
amount of memory, processing and transmission at every node

in the network per time step yet is optimal for any packet-drop-
ping process and at every time step. It has numerous other desir-
able properties as well such as being able to take care of delays
and packet reordering. We also carried out the stability and per-
formance analysis for this algorithm.
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