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The unsteady force acting on a sphere that is held fixed in a steady uniform flow 
with small-amplitude oscillations is evaluated to 0 (Re) for small Reynolds number, 
Re. Good agreement is shown with the numerical results of Mei, Lawrence & Adrian 
(1991) up to Re = 0.5. The analytical result is transformed by Fourier inversion to 
allow for an arbitrary time-dependent motion which is small relative to the steady 
uniform flow. This yields a history-dependent force which has an integration kernel 
that decays exponentially for large time. 

1. Introduction 
Recently Mei, Lawrence & Adrian (1991, hereinafter referred to as MLA) numeri- 

cally computed the unsteady force acting on a spherical particle held fixed in a fluid 
which has small fluctuations about its steady free-stream velocity. Specifically, the 
force was obtained numerically for the following imposed flow: 

(1.1) ~ “ ’ ( t ’ )  = U(I + ale-iut’), 

with the condition a, 4. The primes are used to indicate dimensional quantities when 
there exists a corresponding non-dimensional quantity elsewhere in the paper. The 
Reynolds number, Re, based on the particle radius, a, and free-stream velocity, U ,  
ranged from zero up to 50 in their numerical study. In the low-frequency limit, their 
results indicated that the force has a much shorter memory than that predicted by 
the Basset history integral from the unsteady Stokes solution. 

Later, Mei & Adrian (1992, hereinafter referred to as MA) evaluated the force 
analytically at small Reynolds number and low frequency, o, for the above imposed 
flow. A matched asymptotic solution was used in the limit Sl,-=zReel, where S1, is the 
Strouhal number ( a o / U ) .  The results agreed well with the previous numerical study 
of MLA in this limit. Based on the results from both the numerical and analytical 
studies, a modified expression for the history force was proposed in the time domain. 
It had an integration kernel that decayed as t r 2  at large time for both small and finite 
Reynolds numbers, as opposed to the t d  decay, associated with the Basset term for 
zero Reynolds number. 

In the present study, we extend the above analytical results to arbitrary frequency 
(or Sl,) ,  maintaining the requirement of R e e l .  This is accomplished by making use 
of a previously obtained expression from Lovalenti & Brady (1993) for the unsteady 
force acting on a particle in arbitrary motion (relative to the fluid) accurate to O(Re). 
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It is derived from the general reciprocal theorem for the Navier-Stokes equations 
through the use of a uniformly valid asymptotic expansion for the flow field. When 
the result is applied to the motion given by ( l . l ) ,  it is found that the force agrees 
with both the analytical results of MA and the numerical results of MLA up to 
Re rn 0.5. However, when the expression is transformed to account for arbitrary 
time-dependent motion, a history-dependent force with an integration kernel that 
decays exponentially at large time is obtained, in contrast to the proposed expression 
of MA which decays algebraically. 

In what follows, we first derive the force expression in the frequency domain for 
the flow given by (1.1) and compare it to the results of MLA and MA. Next, in 53, 
we generalize the expression to arbitrary time-dependent motion through Fourier 
inversion and evaluate its behaviour at large time. We conclude in $4 with a 
discussion of the results. 
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2. Evaluation of the force expression in the frequency domain 

force derived in Lovalenti & Brady (1993) reduces to 
For a fixed spherical particle in a rectilinear imposed flow, U"(t), the hydrodynamic 

F H ( t )  = 67cU"(t) + 27cReS1 U"(t) 

where 
r t  

A(t,s)  = - 1 ( R e > $  - J! 
2 Sl (t - s)l * 

The Reynolds number and Strouhal number are defined by 

a uc a /  u, R e = - ,  S l = - ,  
V z c  

(2.3) 

where U, and z, are the characteristic velocity and timescale of the imposed flow and v 
is the kinematic viscosity of the fluid. The force, FH(t) ,  has been non-dimensionalized 
by apU,, where p is the viscosity of the fluid. The first term of (2.1) is the steady 
Stokes drag; the second represents a combination of the added mass and the force 
due to the accelerating imposed flow (which would have been exerted on the fluid 
displaced by the sphere); and the last term is a new history integral: it reduces to 
the steady Oseen correction for steady motion, and to the Basset history integral for 
short-time unsteady motion. 

For the flow given by (Ll ) ,  we let U, = U and z, = o r 1 ,  allowing the dimensionless 
imposed flow to be expressed as 

(2.4) 

If we use this flow in the force expression (2.1) and take the limit of c 1 , - 4 ,  we obtain to 

Um(t) = (1 + alepit). 
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0 (al) after some tedious, but straightforward, manipulation and change of variables 

FH(t) = 671 (1 + :Re + ale-") - 2ni ReS1,(ale-") 

ds 
sz 

3 e-sr* - e-s 
- e-') 7 dx +PReniale-i ' i l  (e) ( j S 

where y, = 4Sl,/Re, and S1, = ao/U. We note that by taking the limit of small a1 
we have linearized the relationship between the time-dependent part of the velocity 
and the force, which will allow for Fourier inversion to the time domain in the next 
section. The above integrations were carried out using Mathematica to obtain 

F H ( t )  = 671 (1 + :Re + ale-") - 2ni ReSl,(ale-") 
2f(1-i)(ym +i)$ -2i 

4Y" 
+67~Rea,e-'~ (2.6) 

If we expand this expression for small y, (i.e. for small frequency such that Sl,<Re), 
the force to O(S1,) is 

FH(t) = 671 (1 + $Re +ale-") - 271i ReS1,(ale-") 
. 3  S1, +671Re ale-" ( f - I -  4 -) Re , 

This expression agrees with the analytical result of MA. In addition, further terms in 
the low-frequency expansion are in integer powers of the frequency; the even powers 
are associated with the real coefficients of the imposed flow (alepiL) and the odd 
powers with the imaginary coefficients. 

To compare (2.6) with the numerical work of MLA, we define the following 
quantities based on their equivalence to those in MLA: 

Here, DlRAc represents the real part of the frequency-dependent drag coefficient and 
Al l  is the imaginary part of the frequency-dependent drag coefficient excluding the 
-271i ReSl,-term, both of which are nondimensionalized by 6 n p .  In figures l(a,b) 
and 2(a,b) these quantities are plotted as a function of y, for various Reynolds 
numbers, with the numerical data from MLA included for comparison. The same 
quantities scaled by the Reynolds number are presented as well to show that the 
results may be collapsed on a single curve for small Re. The figures show good 
agreement of the analytical and numerical results up to Re M 0.5. This might appear 
somewhat surprising given that the force expression is valid strictly for the limit of 
infinitesimally small Reynolds number, its accuracy being only to O(Re). We note, 
however, that a similar finding was made by Maxworthy (1965) who determined 
that the experimentally observed terminal settling velocity of spheres was adequately 
predicted by the O(Re)-accurate Oseen approximation up to Re = 0.4. 
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FIGURE 1. The real part of the acceleration-dependent drag coefficient for small-amplitude oscilla- 
tions about a uniform flow past a sphere as a function of the dimensionless frequency at various 
Reynolds numbers, (a) unscaled; (b) scaled. The lines are the analytical result (2.8) and the symbols 
are the numerical results of MLA. 
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FIGURE 2. The difference between the imaginary part of the acceleration-dependent drag coefficient 
and -2niReS1, for small-amplitude oscillations about a uniform flow past a sphere as a function 
of the dimensionless frequency at various Reynolds numbers, (a) unscaled; (b) scaled. The lines are 
the analytical result (2.9) and the symbols are the numerical results of MLA. 
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3. Generalization of the force expression to arbitrary time- 
dependent motion 

In order to evaluate the force for a small general time-dependent flow, we must 
consider at as the Fourier transform of a small unsteady velocity, U,(t), which is 
superimposed on the steady uniform flow U ,  under the condition that U,(t)-dJ for 
all t. Then al is a function of w and is related to Ul(t) by 
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Ul(t') = - ale-'"'' do,  al(w) = U1(s')e-iws' ds'. (3.1) 
271 Jm -m 1, 

Thus the al-dependent part of the force expression (2.6) may be readily transformed 
to the time domain by integration with respect to o to obtain 

F H ( t )  = 671. (1 + Ul(t) + +Re (1 + 2U,(t)) + F' ( t ) )  + 2nReS1 Ul( t ) ,  ( 3 4  
where 

Here S1 is as defined in (2.3) and y = 4Sl/Re. 
The yw-integration in the expression for F'(t) may be simplified by contour inte- 

gration. The branch cut for the square root in the complex yo-plane originates at 
y, = -i and extends along the negative imaginary axis to -ice. The boundedness of 
the integrand in (3.3), particularly at the origin, means that its integration along any 
closed contour not crossing the branch cut must be zero. Therefore, the appropriate 
contours for s > t and s < t are in the upper and lower half-planes, respectively. The 
radius of the semicircular portions of the contours are taken to the limit of infinity, 
and it can be seen that there is no contribution from the integration along these parts 
of the contours. As expected, this implies that there is no contribution to the integral 
when s > t. When s c t, the y,-integration reduces to two integrals along each side 
of the branch cut: 

F'(t) = 1 U1(s) 
271 -m 

where E. is an infinitesimally small, real, positive number. If we set x = iy, 
expression simplifies to 

F'(t)  = - G(t - s )U, (S)  ds. ;: 1: 
The integration kernel for this history force is given by 

where Y is a confluent hypergeometric function, sometimes known as the Kummer 
function (Abramowitz & Stegun 1972). 
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The asymptotic properties of G(t) for small and large time are 

G ( t ) =  ( - ) ‘ -++O Yn ((t)’), 4 4 ,  
t Y 

(3.7) 

In dimensional time these limits are t’<v/U2 and t’s-v/U2, where v / U 2  represents 
the time it takes vorticity to diffuse out to, or be convected through, the Oseen 
distance v / U .  The integration kernel behaves as that in the Basset history integral for 
small time, but shows exponential decay for large time. Note that the second term 
of (3.7) will result in the cancelling of the fReUl(t)-term in the other part of the 
force expression (3.2) when the timescale of the motion is small. We note also that 
the behaviour for large time is in exact agreement with Lovalenti & Brady (1993) 
wherein the temporal response was observed for the force when the velocity made a 
step change from one non-zero velocity to another. 

4. Discussion of results 
The reason MA obtained the algebraic decay tP2 instead of exponential decay for 

their integration kernel can be explained as follows: Their result is based on the 
inversion of a function that interpolates only the one-term asymptotic forms of the 
imaginary part of the history force in the low- and high-frequency limits. The problem 
with this is that the one term in the low-frequency limit, -aSl,i, is insufficient to 
predict the long-time behaviour of the integration kernel. Indeed, when inverted for 
time-dependent motion this term would yield the acceleration at the current time, 
which has no history dependence. Thus, their resultant integration kernel depends 
critcally on the choice of interpolating functions; one can obtain a different decay 
by choosing a different interpolating function. In addition, by their own principle 
of causality, the imaginary part of the history force must be an odd function of the 
frequency. However, if their interpolated expression is expanded for low frequency, 
an expansion in all powers of the frequency is obtained, not just the odd powers. 

It is interesting to note that the force does decay as tr2 for a step change from 
a zero velocity, as can be observed from the result of Sano (1981). This distinction 
in decay rates is the result of the difference between the physical processes of the 
growth of the Oseen wake into essentially irrotational fluid, which is associated with 
algebraic decay, and the modification of the wake already established to infinite 
length, which is associated with exponential decay. In the case here, the wake clearly 
has been established by the uniform bulk flow U .  Once the disturbance created by 
the small unsteady flow has diffused through the viscous Stokes region surrounding 
the particle, it is balanced exponentially fast by modification of the wake structure 
through convective transport mechanisms. 
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