Provided by Caltech Authors - Main

1318

Correspondence

Metadata, citation and similar papers at core.ac.uk

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 10, OCTOBER 1992

New Techniques for Constructing EC/AUED Codes

Jehoshua Bruck and Mario Blaum

Abstract—The most common method to construct a ¢-error correct-
ing/all unidirectional error detecting (EC/AUED) code is to choose a
t-error correcting (EC) code and then to append a tail in such a way that
the new code can detect more than ¢ errors when they are unidirectional.
The tail is a function of the weight of the codeword.

We present two new techniques for constructing t-EC/AUED codes.
The first technique modifies the ¢-EC code in such a way that the weight
distribution of the original code is reduced. So, a smaller tail is needed.
Frequently, this technique gives less overall redundancy than the best
available ¢-EC/AUED codes.

The second technique improves the parameters of the tails with respect
to previous results.

Index Terms—Coset, decoding, descending tail matrix, encoding, error-
correcting codes, redundancy, unidirectional errors, unidirectional error
detecting codes.

I. INTRODUCTION

The problem of finding error correcting/all unidirectional error
detecting codes (EC/AUED) has received wide attention in recent
literature [1]—[10]. The reader can find good discussions about the
practical applications of EC/AUED codes in most of the references
cited above.

In this paper, we concentrate on the mathematical aspects of the
codes. Given two binary vectors # and v of length n, denote by
N (u,v) the number of 1 — 0 transitions from u to v. (For example,
if w = 10101 and » = 00011, then N(u,v) =2 and N(v,u) = 1).
Clearly, dz7(#,v) = N(u,v)+N(v,u), where dy denotes Hamming
distance.

We say that u is contained in v (u C v) if N(u,v) = 0.

Assume that u is transmitted but @ is received. We say that u has
suffered unidirectional errors if either u C @ or @ C u.

We are interested in codes that can correct up to ¢t errors and detect
all unidirectional errors when the number of unidirectional errors is
greater than ¢. In other words, when more than t errors occur and
those errors are unidirectional, we do not want the received word to
fall into a sphere of radius ¢ whose center is a codeword. The next
theorem [4], [5] gives necessary and sufficient conditions for a code
to be ¢-EC/AUED.

Theorem 1.1: Let C' be a subset of {0,1}". Then C is a
t-EC/AUED code if and only if, for any pair of vectors u € C
andv € C, N(u,v) > t+1and N(v,u) > t+1.

Given k information bits, the way most authors conmstruct a
t-EC/AUED code C' of length n is as follows: first the information
bits are encoded into a t-EC (error-correcting) code C' of length n’,
with n' as small as possible. Usually but not necessarily, this code
is systematic. Choosing a good [n’, k, 2t + 1] code is not a problem.
There is a vast literature on the subject. For instance, we can use
the tables in [11] to choose, given k and ¢, the best k-dimensional
t-EC code known.

Manuscript received May 15, 1989; revised July 10, 1990.

The authors are with IBM Research Division, Almaden Research Center,
San Jose, CA 95120.

IEEE Log Number 9103101.

The second step involves adding a tail of length r as further
redundancy. The length of the code is then n = n' + =, and the
total redundancy is n’ — k + 7. The tail is a function of the weight
of the vector. The goal is to obtain a tail with r as small as possible.

For the sake of completeness, we give a general construction for
t-EC/AUED codes. We need a definition first. We denote by [x]
(Lx]) the smallest (largest) integer j such that j > z (j < z).

Definition 1.1: A descending tail matrix of strength s is an m x r
{0,1}-matrix with rows t;, 0 < ¢ < m — 1, such that for all
0<i<j<m~-1,

N(ti,;) > min{s, [(j —)/2]}.

An m X r matrix of strength s is denoted T'(m, r; s).

Construction 1.1: Let C' be a t-EC of length n’ and let T be a
T(n'+1,r;t+ 1) descending tail matrix with rows o, 1, -, ¢,/
Let C be the following code of length n' + r:

C={(vtuwm):v€C’}

where w(v) denotes the Hamming weight of v. Then C is a
t-EC/AUED code.

Proving that C' is a t-EC/AUED is relatively easy using
Theorem 1.1 [1].

Some of the best descending tail matrices are given in [1]. As said
before, the goal is to make r as small as possible. The construction
in [1] heavily depends on the best asymmetric error-correcting codes
available.

In this paper, we propose two different techniques to reduce the
redundancy of t-EC/AUED codes. The two methods can be used
together. The first one involves using ¢-EC codes that contain the
all-1 vector (for instance, BCH codes and the Golay code have this
property). When choosing a codeword, we take either a codeword or
its complement, according to which of the two has smaller weight.
We have to pay a bit for this operation, but the weight distribution
is reduced by half. We then append a tail in the way described by
Construction 1.1. Overall, we will often gain in redundancy.

The construction will be described in detail in Section II. We
then discuss the problems of encoding and decoding in Section III.
Although the new codes are not strictly systematic, they are very
close to being so. We will see that encoding and decoding are nearly
as simple as in the systematic case. In Section IV, we provide tables
and examples.

Section V can be read independently of the rest of the paper. There,
we provide some techniques to improve upon the tail matrices given
in [1].

II. CONSTRUCTION

As stated in the Introduction, the construction in [1] depends on a
tail that is appended to each codeword in a t-EC code. This tail is
a function of the weight of the codeword and it is obtained from a
descending tail matrix of strength s (Definition 1.1). Table I gives a
list of parameters for the descending tail matrices obtained in [1].

The next construction is the main result in this seciton. It can be
viewed as a modification of Construction 1.1.

0018-9340/92803.00 © 1992 IEEE


https://core.ac.uk/display/216122689?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

[EEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 10, OCTOBER 1992

TABLE 1
PARAMETERS OF SOME DESCENDING TAIL MATRICES T'(m, 75t + 1)

t r m t r m t r m t r m
1 2 4 2 3 6 3 4 8 4 5 10
1 3 6 2 4 8 3 5 10 4 6 12
1 4 8 2 S5 10 3 6 12 4 7 14
1 5 12 2 6 12 3 7 14 4 8 16
1 6 16 2 7 16 3 8 16 4 9 18
1 7 24 2 8 20 3 9 20 4 10 20
1 8 48 2 9 24 3 10 24 4 11 24
1 9 72 2 10 32 3 1 28 4 12 28
1 10 144 2 11 48 3 12 32 4 13 32
1 11 248 2 12 72 3 13 40 4 14 36
1 12 432 2 13 120 3 14 48 4 15 40
2 14 216 3 15 72 4 16 48
2 15 392 3 16 120 4 17 56
3 17 180 4 18 72

3 18 264 4 19 104

3 19 488 4 20 156

4 21 216

4 22 288

Construction 2.1: Let k be the number of information bits. Assume
that we want to construct a t-EC/AUED code. Then:
1) Choose an [n',k + 1,d] EC code (d > 2t + 1) C’ containing
the all-1 vector with »’ as small as possible.
2) Choose a T(|n'/2| + 1,7;¢+1) descending tail matrix T
with rows t;, 0 < i < |[n'/2] and r as small as possible.
3) Let C be the code

C= {(c,tw(c)) :c € Cow(e) < n'/2}.

The code C obtained in the previous construction is {-EC/AUED
since the subset of codewords of weight < [n/2] is still a ¢t-EC
code. According to Construction 1.1, the tail makes it t-EC/AUED.

Example 2.1: Assume k = 3 and t = 1. According to Con-
struction 2.1, we consider the [7,4,3] Hamming code whose gen-
erator matrix is

oo o=
OO -=O
o= OO
o oo
= O
o= O
-0

We easily see that the codewords of weight < 3 are

co = 0000000
¢; = 1000011
¢z = 0100101
cs = 0010110
cs = 1001100
cs = 0101010
cs = 0011001
cr = 1110000.

According to [1], we can use the T'(4, 2;2) matrix

OO
S = O -

1319

The code is then given by the following set of codewords:

vo = 0000000 11
v, = 1000011 00
v2 = 0100101 00
v; = 0010110 00
vy = 1001100 00
v; = 0101010 00
ve = 0011001 00
v7 = 1110000 00.

Notice that we have 3 information bits and 6 redundant bits. If we
use the construction in {1], we need 7 redundant bits.

Sometimes, taking a coset instead of the code itself may be
convenient to reduce the span of the weight distribution.

I1I. ENCODING AND DECODING

In the previous section we described a t-EC/AUED code but we
did not explain how to encode the data. This is very easily done, as
we will see.

Assume we want to encode k bits into a t-EC/AUED code C.
Choose an [n',k + 1,2t + 1] code C' containing the all-1 vector
(with n’ as small as possible) and a T(|n'/2} + L, 7.t + 1) de-
scending tail matrix T' (with r as small as possible). The symbol &
denotes “exclusive-OR” and 1 denotes the all-1 vector. Then proceed
as follows:

Algorithm 3.1 (Encoding Algorithm) Let w = (u1,uz2," ,ur) be
the vector of information bits. Then:

1) Encode (,0) = (uy,ue,- -, ux,0) into a vector ¢ in C'.

2) If w(e) > [n'/2] then e — c® 1.

3) Let v = (c,ty(e)) be the output of the encoder, where ¢;,

0 < i < |n'/2], are the rows of T.
Observe that code C' is not required to be systematic. However, if that
is the case, the t-EC/AUED code C will be practically systematic,
in the sense that the first k bits in codeword v will either be the
information bits or their complements.

Example 3.1: Consider code C in Example 2.1. Assume that we
want to encode v = 010. The first step is to encode (v, 0) = 0100 into
the [7,4] Hamming code. This gives ¢ = 0100101. Since w(c) = 3,
t.,c) = 00. The encoded vector is then v = (¢, t3) = 010010100.

Similarly, assume that we want to encode u = 110. The encoding
of (2,0) = 1100 into C' gives ¢ = 1100110. Since w(c) = 4 >
3 = |n'/2], then ¢ = 1111111 & 1100110 = 0011001. As before,
the encoded vector is » = (¢, t3) = 001100100.

The decoding is also very simple. Essentially, it works as in [1],
with the extra step of taking complements when necessary.

Algorithm 3.2 (Decoding Algorithm) Let C be the EC/AUED
obtained from Construction 2.1. Let # be the received word and &
the first 7' bits of #. Then:

1) Decode ¢ with respect to C'. If more than t errors, declare an
uncorrectable error. Else let ¢ be the corrected word.

2) Let v = (6, tu(e)- If du(d,v) > t (du denotes Hamming
distance), then declare an uncorrectable error.

3) Else, let w1, u2, -, Ukt be the k + 1 information bits from
codeword ¢ € C'. Then, the output of the decoder is given by
the vector of length k

u=(u1 ® upt1,u2 D Uk41,° 7" Uk D uk41)-



1320

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 10, OCTOBER 1992

TABLE I TABLE 1V
PARAMETERS OF SOME 1-EC/AUED CODES PARAMETERS OF SOME 3-EC/AUED CODES
n—k n—k
k n' /2] r n—k from [1] EC-Code k n' n'/2] r n—k from [1] EC-Code
3 7 3 2 6 7 Hamming 4 15 7 4 15 18 BCH
10 15 7 4 9 10 Hamming 11 23 11 6 18 21 Golay
22 28 14 6 12 13 Hammings 15 31 15 8 24 26 BCH
25 31 15 6 12 13 Hamming 37 56 28 12 31 32 BCH;
87 95 47 8 16 17 Hammingg 44 63 31 12 31 32 BCH
246 255 127 10 19 20 Hamming 105 127 63 15 37 38 BCH
277 287 143 10 20 21 Hammingg 214 239 119 16 41 42 BCH;s
483 511 255 18 46 47 BCH
TABLE III
PARAMETERS OF SOME 2-EC/AUED CODES TABLE V
A PARAMETERS OF SOME 4-EC/AUED CODES
n—
k n' /2] r n—k from 1] EC-Code n—k
k n' [n'/2] r n—k from [1] EC-Code

6 15 7 4 13 15 BCH

15 26 13 7 18 20 BCH; 38 63 31 13 38 42 BCH
20 31 15 7 18 20 BCH 98 127 63 18 47 48 BCH
45 58 29 10 23 24 BCH;, 222 255 127 20 53 54 BCH
50 63 31 10 23 24 BCH
107 122 61 12 27 28 BCH;
;g ZZ 16139 g §(7) g? ll;ggs to obtain a ¢-EC/AUED code (Construction 2.1). Column 5 gives

Example 3.2: Again consider the code of Examples 2.1 and 3.1.

1) Assume we receive # = 100101110. According to the De-
coding Algorithm, we first consider ¢ = 1001011. The parity
check matrix of C’ is

01 11100
H=|1 011010
1101001

So, we obtain the syndrome s = ¢H T = 111 which cor-

responds to the fourth column of H, hence ¢ is decoded as
¢ = 1000011. Now, v = (c,ty(c)) = 100001100, hence
du(d,v) = 2 > 1 = t. Thus, the decoder declares an
uncorrectable error.

2) Assume we receive ¥ = 011011000. As before, ¢ = 0110110,
and s = éHT = 101, which corresponds to the second
column of H. Hence, ¢ is decoded as ¢ = 0010110. So,
v = (¢, ty(e)) = 001011000 and dp (¢,¢) = 1. Since ug = 0,
the output of the decoder is « = 001.

3) Assume we receive ¥ = 001110100. Now & = 0011101, and
s = ¢éHT = 100, which corresponds to the fifth column of
H. Hence ¢ is decoded as ¢ = 0011001. So, v = (e, tuc)) =
001100100 and dg (&, c) = 1. Since u4 = 1, the output of the
decoder is « = 001 & 111 = 110.

IV. TABLES AND COMPARISONS

We have seen in Example 2.1 that we gained one bit with our
construction with respect to [1]. In this section, we show that this is
not an isolated case.

As stated in Section II, Table I contains the parameters of some
descending tail matrices T'(m, ;¢ + 1) obtained from [1].

Construction 2.1 ties the results from [1] in most cases, but quite
often it also improves them, as shown in Tables II-V.

The tables have seven columns. The first column contains the
number of information bits k. The second column gives the length
n’ of the EC-code. Column 3 contains [n’/2]. Column 4 gives the
number of extra bits 7 that we have to add to the EC-code in order

the total redundancy n — k = n’ — k + r used in the Construction.
Column 6 gives the total redundancy obtained using the codes in [1].
Finally, column 7 indicates the EC-code used (containing the all-1
vector). The subscript “s” indicates a shortened code.

Notice that we use only BCH codes and the Golay code, which are
easy to decode, while in [1] the best codes of [11] have been chosen.
Sometimes no efficient decoder is known for the best possible code.

In order to shorten a code containing the all-1 vector in such a
way that the shortened code also contains the all-1 vector, we use
the following lemma. .

Lemma 4.1: Let C be an [n, k, d] EC code with parity-check matrix
H. Assume that the all-1 vector is in C. Let ¢ be a codeword in C
such that its nonzero components are iy,iz, -+, iw, 1 < i3 < 2 <
.-+ < iy < n. Let H be the matrix obtained by deleting columns
i1,12,---,i2 from H. Let C be the [n — w,k — w,d] code whose
parity check matrix is H. Then the all-1 vector is in C.

Proof: The all-1 vector is in C if and only if the sum (modulo
2) of all the columns in H gives the zero column.

Since the all-1 vector 1 is in C, then 1 @ ¢ is also in C. This
vector has zero components iy, iz, -,i,,. Summing the columns
corresponding to the nonzero components, we obtain the zero column.
But these columns correspond to the columns in H. O

Example 4.1: Consider the [7,4] Hamming code of Example 2.1.
Take codeword ¢ = 1110000. In order to obtain matrix H according
to Lemma 4.1, we have to delete the first three columns of matrix
H of Example 3.2. This gives

o [{1 100
A=[1010
1001

The shortened Hamming code has length 4 and dimension 1. The
all-1 vector is in the shortened code.

We use this procedure to shorten several of the codes presented
in Tables H-V.

V. IMPROVEMENTS ON THE TAIL MATRIX

In this section we show some methods to improve upon the
parameters given in Table I. Basically, fixing r and ¢, we want to
obtain a descending tail matrix T'(m,r;t + 1) such that m is larger



IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 10, OCTOBER 1992

TABLE VI
PARAMETERS OF IMPROVED DESCENDING TAIL MATRICES T'(m, 7;t 4 1)

t r m t r m t r m t r m
1 2 4 2 3 6 3 4 8 4 5 10
1 3 6 2 4 8 3 5 10 4 6 12
1 4 9B 2 5 10 3 6 12 4 7 14
1 5 12 2 6 12 307 14 4 8 16
1 6 185 2 7 16 3 8 16 4 9 18
1 7 296 2 8 20 3 9 20 4 10 20
1 8 56 2 9 24 3 10 26 4 11 24
1 9 7480 2 10 32 311 28 4 12 28
1 10 1460 2 11 5200 3 12 32 4 13 32
111 2500 2 12 76 3 13 40 4 14 36
1 12 434> 2 13 1240 3 14 360 4 15 40
2 14 22000 3 15 80(1) 4 16 48
2 15 3960 3 16 128D 4 17 60D
3 17 184D 4 18 801®
318 27120 4 19 116(0)
319 4960 4 20 164
4 21 224
4 22 292(4)

1. From Construction 5.1
2. From Example 5.1
3. From Construction 5.2
4. From Construction 5.3
5. From Construction 5.4
6. From Example 5.2

than the one given in Table I. The parameters in Table I come from
[1]. Table VI improves on Table I based on the results of this section.
The superindexes in Table VI denote the entries from Table I that
have been improved and the method (to be described later in this
section) used in the improvement.

Let us recall briefly how the descending tail matrices were obtained

in [1].
Let A be an m X r matrix with rows a;,a2,---,a,, and B an
m' x r' matrix with rows by, bz, - -, by,s. Then, we denote by A x B

(also called external or Kronecker product) the (mm') x (r 1)
matrix whose (i — 1)m' 4 j row, 1 <i <m,1 < j < m' is vector
a;, b;. Given j > 1, let T be the matrix constructed inductively as
follows:

11 1
0
1 1
T1:<0> and TJ+1= T]‘
0
|1
00 .10

For example,
111
11 110
10 1 01
L=lg | @ B=1g 1o
0 0 0 01
000

Given r and ¢, let A be an asymmetric ¢-error correcting code of
length r’ < r and cardinality |.A| = m'. Let A(m/,7';# + 1) be the
matrix obtained by ordering the elements of A in descending weight
order. Then, the matrix A(m',r';¢+1) x T,_,» is a descending
tail matrix T(m,r;t + 1), where m = 2(r —r')m' [1]. We call a
matrix of this type a Blaum-van Tilborg (BT) descending tail matrix

1321

of strength ¢ + 1. The construction is optimized over the best asym-
metric ¢-error correcting codes available and the matrices T in order
to obtain m as large as possible. Results concerning good asymmetric
error correcting codes can be found in [12].

Example 5.1: Let A be the 3-asymmetric error correcting code of
length 8. The rows of the corresponding matrix A(4,8;4) are

a; = 11111111

a; = 00001111

a3z = 11110000

a4 = 00000000.
The BT matrix 7(16,10;4) is then

11111111 11

00001111 11

01 11111111 x Ty
00 00001111 x Ty
A48 9)xTe = iqi0000 | 11| T 11110000 x 15
10 00000000 x To

00000000 11

We show next how we can construct a descending tail matrix T' by
inserting some rows in A(4,8;4) x T3. The new matrix is

11111111 x T
01111111 01
00111111 10
00111111 01
00011111 10
00001111 x T3
11001100 10
11001100 01
11110000 x To
01110000 01
00110000 10
00110000 01
00010000 10
00000000 x T

It is easy to verify that the new matrix is a 7(26,10:4) de-
scending tail matrix. In Table I, we can see that our best result was
m = 24. This example shows the potential of the method. In the
discussion that follows, whenever we have a matrix A(m,7';t 4+ 1)
with rows @,.a2, - - -, @, we make the following assumption: a; =

t41 t+1
1i--+1,a2 = 00---011---1,a,—y = 11---100---0 and @am =
00---0. This is not entirely correct, though. We can make the
assumption on az and on a,—; separately by an adequate permutation
of the columns of A(m,r';t + 1). In general, there is not necessarily
a permutation that can take a; and a1 to the form described above
simultaneously. However, this fact is not very relevant in the con-
t+1

struction that follows. The real assumption is a2 = 00---011---1,
t+1

and a,—; is a permutation of 11---100---0.



1322

The next construction partially generalizes Example 5.1.

Construction 5.1: Let A(m,r — 2;t + 1) x T, be a BT descending
tail matrix T'(4m, r; t + 1), where t > 2 and m > 3. Denote the rows
of A(m,7 — 2;t+ 1) a1,a2, - ,am. Let B and B’ be the following
T(2(t — 1),7r;t + 1) descending tail matrices:

t+1 t+1
—— e
01111...111..1 01 01111...100...0 { 01

t+1 t+1
e, ———
00111...111...1 | 10 00111...100...0 | 10
t+1 t+1
—— e e
00111...111...1 | 01 00111...100...0 | 01

t+1 t+1
r—— o
00011...111...1 | 10 00011...100...0 | 10

B= t+1
—
00011...111...1 | 01

and B = t+1
N
00011...100...0 | 01

t+1 t4+1

s — ——

00...01111...1 | 10 00...01100..0 | 10
t+1 t+1

—_—— ruber

00...01111...1 | 01 00...01100...0 | 01
t+1 t+1

p—— N
00...00111...1 | 10 00...00100..0 | 10

Then, the following matrix T is a T(4m + 4(t — 1), 7;t + 1) de-
scending tail matrix:

a, x Ty
B
azXTz
a3><T2

Qo1 X T2
BI
@m X T2

We prove that matrix T above is a T(4m +4(t — 1),r;¢ + 1)
descending tail matrix in the Appendix.

Example 5.2: Applying Construction 5.1 to the T'(16,10,;4) BT
matrix A(4,8;4) x T in Example 5.1, we obtain

11111111 x T

01111111 01
00111111 10
00111111 01
00011111 10
00001111 x T3
11110000 x T3
01110000 01
00110000 10
00110000 01
00010000 10
00000000 x T3

Matrix T" is a T/(24, 10,4) descending tail matrix. In Example 5.1,
we had obtained a T'(26,10;4) descending tail matrix 7. Construc-
tion 5.1 only shows how to insert rows between blocks 1 and 2
and between blocks m — 1 and m. However, in individual cases,
depending on the asymmetric code used, it is possible to insert rows
between the middle blocks, as shown in Example 5.1. Table VI shows
improvements over Table I using Construction 5.1 together with other
constructions to be presented in this section. However, the reader can

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 10, OCTOBER 1992

improve further on Table VI by taking individual cases and inserting
rows between the middle blocks.

A BT descending tail matrix A(m, '; ¢ + 1) x T} can be considered
as a sequence of m blocks a1 x T, a2 X T, - - -, @m X T;. Construction
5.1 gives a way of inserting extra rows between blocks 1 and 2 and
between blocks m — 1 and m whent > 2,m > 3 and j = 2. In [1],
most of the constructions involve j = 2,j = 3, and j = 4. The next
two constructions show how to insert rows between blocks 1 and 2
and between blocks m — 1 and m whent =4 and j =3 or j = 4.
The proofs that the new matrices are still descending tail matrices of
strength ¢ + 1 are similar to the case j = 2 and will be omitted.

Construction 5.2: Assume that we have a BT (6m,r; 5) descend-
ing tail matrix A(m,r —3;5) x Ta(m > 3). Let B and B’ be the
following 4 X r matrices:

011111...1 | 010 0111100...0 | 010

B= 001111...1 {001 and B = 0011100...0 | 001
— | 000111..1 | 110 — | 0001100...0 | 110
000011...1 ] 101 0000100...0 | 101

Then, the following matrix T is a T(6m + 8, 7;5) descending tail
matrix:

ay XT3

az x T3

as XT3

am—1 x T3
BI
am X T3

Construction 5.3: Assume that we have a BT T(8m, r; 5) descend-
ing tail matrix A(m,r —4;5) x Ty(m > 3). Let B and B’ be the
following 2 x 7 matrices:

p— |001111..1 fooll , 0011100...0
= |ooo111...1 1100 and B'= |0001100...0 [ 1100

Then, the following matrix T is a T(8m + 4, 7; 5) descending tail
matrix:

a1 XTq

a2 XT4
as XT4

am—1 X Ty

Qm XT4

Up to now, we have analyzed codes with t > 2. Let us turn now our
attention to the case t = 1.



IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 10, OCTOBER 1992

We have that T, = . Similarly, we can define T, =

SO ==
O~ O

1
0
1
0

= R R

The next construction shows how to modify a BT T'(4m,r;2)
descending tail matrix in such a way that a T'(4m+-2, r; 2) descending
tail matrix is obtained. The proof will be omitted.

Construction 5.4: Consider an A(m, r —2;2) matrix. Then, if m is
even, the following matrix is a T'(4m+2, r; 2) descending tail matrix:

a; X T2
0111...101
a; X T2’
az X T2

am_1 XT3
0100...0 01
am x T}

If m is odd, the same is true for the following matrix:

a; X T'z
0111..101
as X Té
az X T2

Q@m—-1 X TZ'
0100...0 10
am X T

Example 5.3: Let r = 7 and t = 2. Then, the following is a BT
T(24,7;2) descending tail matrix:

11111 x T
11100 x T»
10011 x T
00101 x T
01010 x 1>
00000 x T»

A(6,5:2) x Tz =

According to Construction 5.4, the following is a T(26,7;2) de-
scending tail matrix:

1 X s
11110 01
11100 x T}
10011 x T;
00101 x T}
01010 x T»

01000 01
00000 x T3

However, we can improve further and obtain a T'(29, 7; 2) descending

1323

tail matrix by adding more rows as follows:

111 x T»
11110 01
11100 x T3
11001 10
10011 x 15
00111 01
00101 x T4
00110 10
01010 x T>
01000 01
00000 x T}

It is straightforward to verify that 7" is indeed a T(29,7;2) de-
scending tail matrix.

As Example 5.3 shows, we can improve on Table VI by taking
separately each individual case and inserting more rows in an ad hoc
way that depends on the asymmetric error correcting code considered.

VI. CONCLUSIONS

Some new methods for constructing t-EC/AUED codes have been
presented. In the first method, the information bits are encoded first
into a t-EC code containing the all-1 vector. Since most codes used in
applications have this property (BCH, shortened BCH, Golay), this is
a natural assumption. The key idea in the construction is reducing the
weight distribution of the ¢-EC code used. Our codes have frequently
less redundancy than the best EC/AUED codes previously known.
The encoding and decoding procedures are as simple as those of
known codes.

The second procedure improves the tail matrices obtained by a
previously known method. The resuits of the new method, together
with some ad hoc constructions given in examples, are tabulated in
Table VI. Table VI should not be taken as a new record on m. The
reader should be able to improve upon Table VI by ad hoc methods
similar to the ones given in the examples.

APPENDIX

Lemma: The matrix T obtained in Construction 5.1 is a
T(4m + 4(t — 1), 7t + 1) descending tail matrix.

Proof: We have to prove that the rows corresponding to B
and B’ in T comply with Definition 1.1. Denote the rows of T as
t;.1 < j < 4m+4(t — 1). Notice that the rows corresponding to B
are rows t;, 5 < j < 2(t+1) in T, while the rows corresponding to
B'arerowstj, 4(m—1)+2(t—1)+1<j <4(m—-1)+4(t—1)in
T. Take the first r —2 elements of any row of B. We obtain a vector of
length r — 2 that contains a3, denote it by v. Since N(az,a;) > t+1
for all j > 3, also N(v,a;) > t+1. Now take the first r — 2 clements
of any row in B’, call the resulting vector v'. Since v' is contained
in @m_1, it is also clear that N(v,v') > ¢ + 1. So, it is enough to
compare the rows of B with the rows of a; x Tz and of az x T>.
Similarly, it is enough to compare the rows of B’ with the rows of
Am—-1 X T2 and of a,, X T2.

Take the first element of B in T, i.e., ts = 011...1 01. We have
the following:

N(ti,ts) = N(11..111, 011...101) = 2
N(tz,ts) = N(11...1 10, 011...1 01) = 2
N(ts,ts) = N(11..1 01, 011...101) = 1
N{ta,ts) = N(11..1 00, 011...1 01) = 1.



1324

So, Definition 1.1 is satisfied for ¢;, 1 < j < 4 with respect to &s.
Also, notice that
t+1
—~—
N(ts, ta(e41)+1) = N 011...1 01, 00...011..1 11 | =¢
t4+1

—~—
N(ts,t2(41)42) = N 011..101, 00..011...110 | =t +1

t+1

—~—
N(ts,tQ(tH)_{_;;) =N|[011.101, 00..011...101 | =¢
t+1

~~—
N(ts,taus1)+4) = N | 011..101, 00..011...1 00 | = ¢+ 1.

So, Definition 1.1 is satisfied for ¢;, 2(t+1)+1 < j < 2(¢t+1)+4
with respect to t5. Similarly, we verify Definition 1.1 with respect
to ta(s+1)-

Let us consider now the rows ¢;, 6 < j < 2t — 1. Take
142

—~—
toror = 00...011...1 10, 0 <! <t — 3. Notice that

2

N(t1,ts+21) (ll 111, 00 .011..110 ) =1+3
2

V(tg,t6+21)_N(11 110.00..011..110 | =142
2

N(ts, ts121) = ’\"(11 .101, 00 011..110 ) =1+3
+2
f-/\

N(ts,torz) = N|11..100,00..011..110 | =1+ 2

satisfying Definition 1.1 on block a; x T> with respect to fe421.
Similarly,

142 t+1
B v N
N (ts421, ta(t41)41) = N(00..011...1 10, 00...011...1 11)
=t-1-1
1+2 t+1
—— —~—
N (ts421, taip1y42) = N(00..011...1 10, 00..011...1 10)
=t-1-1
1+2 t4+1
o~ —Na—
N (tosan, tasy4s) = N(00..011...1 10, 00..011...1 01)
=t-1
i+2 t+1
——— —
N (tesantaep1yra) = N(00..011...1 10, 00...011...1 00)
=t-1

showing that Definition 1.1 is satisfied on block a2 x T with respect
to te421. We show analogously that Definition 1.1 is satisfied with
respect to elements #g42141.

Similarly, we verify Definition 1.1 on blocks am-1 X T> and
a., x T, with respect to the rows of B’, completing the proof.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 10, OCTOBER 1992

REFERENCES

[1] M. Blaum and H. van Tilborg, “On t-error correcting/all unidirec-
tional error detecting codes,” IEEE Trans. Comput., vol. 38, no. 11,
pp. 1493-1501, Nov. 1989.
[2] F.J.H. Boinck and H. van Tilborg, “Constructions and bounds for
systematic t EC/AUED codes,” IEEE Trans. Inform. Theory, vol. IT-36,
pp. 1381-1390, Nov. 1990.
[3] B. Bose, “On systematic SEC/MUED codes,” in Proc. FTCS, vol. 11,
June 1981, pp. 265-267.
[4] B. Bose and D.K. Pradhan, “Optimal unidirectional error detect-
ing/correcting codes,” IEEE Trans. Comput., vol. C-32, pp. 521-530,
June 1982.
B. Bose and T.R.N. Rao, “On the theory of unidirectional error cor-
recting/detecting codes,” IEEE Trans. Comput., vol. C-31, pp. 521-530,
June 1982.
[6] S. Kundu, “Design of testable CMOS circuits for TSC systems,” Ph.D.
dissertation, Univ. of lowa, May 1988.
D. Nikolos, N. Gaitanis, and G. Philokyprou, “t-error correcting all uni-
directional error detecting codes starting from cyclic AN codes,” in Proc.
Int. Conf. Fault-Tolerant Comput., Kissimmee, FL 1984, pp. 318-323.
[8] —, “Systematic r-error correcting/all unidirectional error detecting
codes,” IEEE Trans. Comput., vol. C-35, pp. 394-402, May 1986.
[9] D.K. Pradhan, “A new class of error-corrrecting/detecting codes for
fault-tolerant computer applications,” IEEE Trans. Comput., vol. C-29,
pp. 471-481, June 1980.
[10] D.L. Tao, C.R.P. Hartmann, and P.K. Lala, “An efficient class of
unidirectional error detecting/correcting codes,” IEEE Trans. Comput.,
vol. C-37, pp. 879-882, July 1988.
[11] T. Verhoeff, “An updated table of minimum-distance bounds for binary
linear codes,” IEEE Trans. Inform. Theory, vol. IT-33, pp. 665-680,
Sept. 1987.
J.H. Weber, C.de Vroedt, and D. E. Boekee, “Bounds and constructions
for binary codes of length less than 24 and asymmetric distance less than
6,” IEEE Trans. Inform. Theory, vol. IT-34, pp. 1321-1331, Sept. 1988.

[5

(7

[12]

Adaptation of the Mactaggart and Jack Complex
Multiplication Algorithm for Floating-Point Operators

Ronald J. Cosentino and John J. Vaccaro

Abstract— With a suitable treatment of the exponents in the input
operands, a hardware implementation of the Mactaggart and Jack fixed-
point complex multiplication algorithm can also calculate a fioating-point
product with no loss in accuracy from the greater dynamic range of
the floating-point inputs. This floating-point technique can be extended
to any sum of two products operation, such as encountered in matrix
multiplication and vector cross-products.

Index Terms— Complex multiplication, distributed arithmetic, FFT
butterfly, floating-point multiplication.

I. R. Mactaggart and M. A. Jack have developed an algorithm
and hardware implementation of an FFT butterfly using fixed-point
multiplication of complex numbers that requires, in effect, two real
multiplications instead of the conventional four real multiplications
[1]. This saving allows an implementation of the Mactaggart and
Jack algorithm to be more area-efficient than the modified Booth

Manuscript received April 5, 1990; revised December 15, 1990. This work
was supported by the Electronic Systems Division, U.S.A.F., Hanscom Air
Force Base, MA.

The authors are with The MITRE Corporation, Bedford, MA 01730.

IEEE Log Number 9103105.

0018-9340/92$03.00 © 1992 IEEE



