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the interrelations between the infinite linear array and the isolated
cluster setups, it can be shown that

C
IC
M � CM � 1 +

2

M
C
IC
(M+2) :

But from (A-3), both upper and lower bounds on CM converge to the
same limit CCopt asM !1. This completes the proof of the theorem,
since the term 2

M
CI in (3–6) vanishes with M .
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Degrees of Freedom for the MIMO Interference Channel

Syed Ali Jafar, Member, IEEE, and Maralle Jamal Fakhereddin

Abstract—In this correspondence, we show that the exact number
of spatial degrees of freedom (DOF) for a two user nondegenerate
(full rank channel matrices) multiple-input–multiple-output (MIMO)
Gaussian interference channel with M ;M antennas at trans-
mitters 1, 2 and N ;N antennas at the corresponding receivers,
and perfect channel knowledge at all transmitters and receivers, is
minfM +M ;N +N ;max(M ;N );max(M ;N )g. A constructive
achievability proof shows that zero forcing is sufficient to achieve all the
available DOF on the two user MIMO interference channel. We also show
through an example of a share-and-transmit scheme how the gains of
transmitter cooperation may be entirely offset by the cost of enabling that
cooperation so that the available DOF are not increased.

Index Terms—Broadcast, degrees of freedom (DOF), interference, mul-
tiple–input–multiple–output (MIMO), multiple access, zero forcing.

I. INTRODUCTION

Multiple-input–multiple-output (MIMO) systems have assumed
great importance in recent times because of their remarkably higher
capacity compared to single-input–single-output (SISO) systems. It
is well known [1]–[3] that capacity of a point–to–point (PTP) MIMO
system withM inputs andN outputs increases linearly as min(M;N)
at high signal–to–noise power ratio (SNR). For power and bandwidth
limited wireless systems, this opens up another dimension – “space”
that can be exploited in a similar way as time and frequency. Similar
to time division and frequency division multiplexing, MIMO systems
present the possibility of multiplexing signals in space. Spatial di-
mensions are especially interesting for how they may be limited by
distributed processing as well the amount of channel knowledge. Pre-
vious work has shown that in the absence of channel knowledge, spatial
degrees of freedom (DOF) are lost [4], [5]. Multiuser systems, with
constrained cooperation between inputs/outputs distributed among
multiple users, are especially challenging since, unlike PTP case, joint
processing is not possible at inputs and outputs. The available spatial
DOF are affected by the inability to jointly process the signals at the
distributed inputs and outputs. The two user interference channel with
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single antennas at all nodes is considered by Host-Madsen [6], [7]. It is
shown that the maximum multiplexing gain is only equal to one even
if cooperation between the two transmitters or the two receivers is
allowed via a noisy communication link. Nosratinia and Høst-Madsen
[8] show that even if communication links are introduced between
the two transmitters as well as between the two receivers the highest
multiplexing gain achievable is equal to one. These results are some-
what surprising as it can be shown that with ideal cooperation between
transmitters (broadcast channel) or with ideal cooperation between
receivers (multiple access channel) the maximum multiplexing gain is
equal to 2.

In this correspondence, we focus on the two user (M1; N1;M2; N2)
MIMO interference channel where transmitter 1 with M1 antennas
has a message for receiver 1 with N1 antennas, and transmitter 2
with M2 antennas has a message for receiver 2 with N2 an-
tennas. We develop a MIMO multiple-access channel (MAC) outer
bound on the sum capacity of this MIMO interference channel.
The outer bound is used to prove a converse result for the max-
imum number of DOF. We also provide a constructive proof of
achievability of the DOF based on zero forcing. We show that the
inner bound and the outer bound are tight, thereby establishing
the precise number of DOF on the MIMO interference channel as
minfM1 +M2; N1 + N2;max(M1; N2);max(M2; N1)g. We also
consider a simple cooperative scheme to understand why transmitter
cooperation may not increase DOF. Through this simple scheme, we
are able to show how the benefits of cooperation can be completely
offset by the cost of enabling it.

II. DEGREES OF FREEDOM MEASURE

We assume that channel state is fixed and perfectly known at all
transmitters and receivers. Also, we assume that the channel matrices
are sampled from a rich scattering environment. Therefore we can
ignore the measure zero event that some channel matrices are rank
deficient. It is well known that the capacity of a scalar additive
white Gaussian noise (AWGN) channel scales as log (SNR) at high
SNR. On the other hand, for a single user MIMO channel with M
inputs and N outputs, the capacity growth rate can be shown to
be min(M;N) log (SNR) at high SNR. This motivates the natural
definition of spatial DOF as

� lim
�!1

C�(�)

log(�)
(1)

where C�(�) is the sum capacity (just capacity in case of PTP chan-
nels) at SNR �. In other words, DOF � represent the maximum mul-
tiplexing gain [3] of the generalized MIMO system. For PTP case,
min(M;N) DOF are easily seen to correspond to the parallel channels
that can be separated using the singular value decomposition (SVD) of
the channel matrix, involving joint processing at the M inputs and N
outputs, i.e.,

�(PTP) = min(M;N): (2)

A. The Multiple Access Channel (MAC)

The MAC channel is an example of a MIMO system where coopera-
tion is allowed only between the channel outputs. Let the MAC consist
of N outputs controlled by the same receiver and two users, each con-
trolling M1 and M2 inputs for a total of M = M1 +M2 inputs. For
the MAC, the available DOF are the same as with perfect cooperation
between all users

�(MAC) = �(PTP) = min(M1 +M2; N): (3)

Fig. 1. (M , N ) , (M , N ) Interference channel.

The converse is straightforward because, for the same number of inputs
and outputs, �(MAC) � �(PTP) = min(M1 + M2; N). In other
words, the lack of cooperation at the inputs cannot increase DOF. For
achievability, it is interesting to note that zero forcing (ZF), which is
normally a suboptimal strategy, is easily seen to be sufficient to utilize
all DOF.

B. The Broadcast Channel

The BC channel is an example of a MIMO system where cooper-
ation is allowed only between the channel inputs. Let the BC consist
of M inputs controlled by the same transmitter and two users, each
controlling N1 and N2 outputs for a total of N = N1 + N2 outputs.
In a similar fashion as the MAC, it is easy to show that by ZF at the
BC transmitter, min(M;N) parallel channels can be created, so that
the total DOF are the same as with perfect cooperation between all the
users

�(BC) = �(MAC) = �(PTP) = min(M;N): (4)

III. INTERFERENCE CHANNEL

Consider an (M1; N1); (M2; N2) interference channel with two
transmitters T1 and T2, and two receivers R1 and R2, where T1 has
a message for R1 only and T2 has a message for R2 only. T1 and T2
have M1 and M2 antennas, respectively. R1 and R2 have N1 and N2

antennas, respectively. The interference channel is characterized by
the following input–output relationships:

Y
(1) =H(1)

X
(1) + Z

(1)
X

(2) +W
(1) (5)

Y
(2) =H(2)

X
(2) + Z

(2)
X

(1) +W
(2) (6)

where we denote the N1 �M1 channel matrix between T1 and R1 by
H(1), the N2 �M2 channel matrix between T2 and R2 by H(2), the
N2�M1 channel matrix between T1 andR2 byZ(2), and theN1�M2

channel matrix between T2 andR1 byZ(1).X(1); X(2) are theM1 and
M2 dimensional inputs vectors, Y (1); Y (2) are the N1 and N2 dimen-
sional output vectors, andW (1); W (2) are theN1 andN2 dimensional
additive white Gaussian noise (AWGN) vectors, respectively. As men-
tioned before, we assume that the channels are nondegenerate, i.e., all
channel matrices are full rank. Fig. 1 shows an illustration of this inter-
ference channel. Without loss of generality we arrange the links so that
link 1 always has the most number of antennas either at its transmitter
or receiver, i.e., max(M1; N1) � max(M2; N2).

A. Achievability: Inner Bound on the Degrees of Freedom

For the (M1; N1); (M2; N2) interference channel we prove the fol-
lowing inner bound on the available DOF.
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Fig. 2. Achievability proof for (M , N ) , (M , N ) Interference channel
when M � M ;N ;N .

Lemma 1:

�(INT) � min(M1; N1)

+ min(M2 �N1; N2)
+ 1(M1 > N1)

+ min(M2; N2 �M1)
+ 1(M1 < N1) (7)

where 1(�) is the indicator function and (x)+ = max(0; x).
Sketch of Achievability Proof: According to our model, either

M1 � N1;M2; N2 or N1 � M1;M2; N2. We explain the zero
forcing based constructive achievability argument for the case when
M1 � N1;M2; N2. The case with N1 � M1;M2; N2 follows
similarly and is omitted to avoid repetition.

Based on (7), whenM1 � N1;M2; N2, we need to show the achiev-
ability of N1 + min(M2 � N1; N2)

+ 1(M1 > N1) DOF. If either
M1 = N1 or M2 � N1 then we need to show the achievability of
only N1 DOF which can be trivially achieved by only allowing com-
munication between T1 and R1. Therefore, we consider the remaining
case of M1 > N1 and M2 > N1. In this case, we need to show the
achievability of N1 +min(M2 �N1; N2) DOF. Fig. 2 illlustrates the
scheme described in the remainder of this section with the example of
an interference channel with M1 = 5;M2 = 4; N1 = 3; N2 = 3
where a total of 4 DOF are achieved.

Step 1. Let the singular value decomposition (SVD), Z(1) =
U (1)�(1)V (1)y and Z(2) = U (2)�(2)V (2)y, where U (1), V (1), U (2),
V (2) are N1 � N1, M2 � M2, N2 � N2, and M1 � M1 unitary
matrices, respectively. �(1), �(2) areN1�M2 andN2�M1 matrices
with singular values of Z(1), Z(2) respectively on the main diagonal
and zeros elsewhere. Using the standard MIMO SVD approach, we
absorb the unitary matrices into the corresponding input and output
vectors to obtain

Y
(1) =H(1)

X
(1) +�(1)

X
(2) +W

(1) (8)

Y
(2) =H(2)

X
(2) +�(2)

X
(1) +W

(2) (9)

where Y (1) = U (1)yY (1), Y (2) = U (2)yY (2), X(1) = V (2)yX(1),
X(2) = V (1)yX(2), W (1) = U (1)yW (1), W (2) = U (2)yW (2),
H(1) = U (1)yH(1)V (2) and H(2) = U (2)yH(2)V (1). In particular
note that only the first N1 columns of �(1) are nonzero.

�(1) = Diag(�
(1)
1 ; . . . ; �

(1)
N ) 0N �(M �N ) : (10)

Therefore, only the inputs X(2)
1 ; X

(2)
2 ; . . . ; X

(2)
N present interfer-

ence atR1 from T2. Similarly, only the inputsX(1)
1 ; X

(1)
2 ; . . . ; X

(1)
N

present interference at R2 from T1. In Fig. 2 the bold channels repre-
sent the interference paths after the diagonalization achieved through
the SVD as there are min(5; 3) = 3 parallel paths from T1 to R2 and
min(4; 3) = 3 parallel paths from T2 to R1.

Step 2. At transmitter T1 we set inputs X(1)
1 ; X

(1)
2 ; . . . ; X

(1)
M �N

to zero, i.e., we do not transmit on these inputs. This leaves N1 avail-
able inputs X(1)

M �N +1; . . . ; X
(1)
M at T1. For the example of Fig. 2 the

M1 �N1 = 2 transmit antennas indicated by white circles have their
inputs set to zero and the dark circles indicate the three available inputs
at T1.

Step 3. At transmitter T2 we set inputs X(2)
1 ; X

(2)
2 ; . . . ; X

(2)
N to

zero, i.e., we do not transmit on these inputs. This leaves M2 � N1

available inputs X(2)
N +1; . . . ; X

(2)
M at T2. Fig. 2 illustrates this step as

the three unused inputs are indicated by white circles and the remaining
M2 � N1 = 1 input by a dark circle.

Step 4. The previous step eliminates any interference from T2 to R1

since all the interfering inputs have been set to 0. Therefore, communi-
cation between T1 andR1 takes place over anN1�N1 MIMO channel
with no interference from T2. N1 DOF are achieved through this com-
munication.

Step 5. At receiver R2 we consider only outputs Y [2]
1 ; Y

[2]
2 ; . . . ;

Y
[2]

min(M �N ;N ) and discard the rest. Note that because of Step 2, these
outputs do not contain any interference from T1.

Step 6. From Step 3, we haveM2�N1 available inputs at T2. From
Step 5, we havemin(M1�N1; N2) outputs atR2 with no interference
from T1. Therefore, the communication between T2 andR2 takes place
over a MIMO channel with min(M2 � N1;min(M1 � N1; N2)) =
min(M2 � N1; N2) DOF.

Combining Steps 4 and 6, we have established the achievability of
the required total of N1 +min(M2 �N1; N2) DOF. Fig. 2 illustrates
the proof with white circles indicating discarded inputs and outputs and
black circles indicating the inputs and outputs used for the achievability
scheme aforementioned.

B. Converse: Outer Bound on the Degrees of Freedom

For the (M1; N1); (M2; N2) interference channel, we prove the fol-
lowing outer bound on the available DOF.

Lemma 2:

�(INT) � minfM +M ;N +N ;max(M ;N );max(M ;N )g:

To start with, notice that a trivial outer bound is obtained from the PTP
case, i.e., �(INT) � min(M1+M2; N1+N2). Indeed this outer bound
coincides with the inner bound when eithermin(M1;M2) � N1+N2

or min(N1; N2) � M1 +M2. In general, while the capacity region
of the interference channel is not known even with single antennas at
all nodes, various outer bounds have been obtained [9]–[11] that have
been useful in finding the capacity region in some special cases [12],
[13]. Most of the existing outer bounds are for single antenna systems.

For our purpose, we develop a genie-based outer bound for MIMO
interference channel where the number of antennas at either receiver is
� the number of transmit antennas at the interfering transmitter, i.e.,
either N1 �M2 or N2 �M1. This outer bound is the key to the tight
converse needed to establish the number of DOF. Note that for this
section, since we do not need the assumption that max(M1; N1) �
max(M2; N2), the proof for the cases N1 � M2 or N2 � M1 is
identical.

Theorem 1: For the (M1; N1); (M2; N2) interference channel with
N1 � M2, the sum capacity is bounded above by that of the corre-
sponding (M1;M2; N1) MAC channel with additive noise W (1) �
N (0; IN ) modified to W (1) � N (0;K0) where

K
0 = IN � Z

(1)
Z
(1)y

Z
(1)

�1

Z
(1)y + �Z

(1)
Z
(1)

� = min
1

�2max(Z(1))
;

1

�2max(H(2))
:
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TABLE I
THE SAME NUMBER OF DEGREES OF FREEDOM ARE OBTAINED FROM THE UPPER BOUND AND THE LOWER BOUND IN ALL CASES

where �max(A) represents the principal singular value of matrix A.
Proof: Let us define

W
(1)
a �N 0; IN � Z(1)

Z
(1)y

Z
(1)

�1

Z
(1)y

W
(1)
b �N 0; Z(1)

Z
(1)y

Z
(1)

�1

Z
(1)y � �Z(1)

Z
(1)

W
(1)
c �N 0; �Z(1)

Z
(1)

as three N1 � 1 jointly Gaussian and mutually independent random
vectors. The positive semidefinite property of the respective covariance
matrices is easily established from the definition of �.

Without loss of generality we assume

W
(1) =W (1)

a +W
(1)
b +W

(1)
c

W
(1) =W (1)

a +W
(1)
c :

Since a part of the proof is similar to the corresponding proof for
the single antenna case, we will summarize the common steps, and
emphasize only the part that is unique to MIMO interference channel.
Consider any achievable scheme for any rate point within the capacity
region of the interference channel, so that R1 and R2 can correctly
decode their intended messages from their received signals with suffi-
ciently high probability.

Step 1. We replace the original additive noiseW (1) atR1 withW (1)

as defined in Theorem 1. We argue that this does not make the capacity
region smaller because the original noise statistics can easily be ob-
tained by locally generating and adding noise W (1)

b at R1. Therefore,
sinceR1 was originally capable of decoding its intended message with
noise W (1), it is still capable of decoding its intended message with
W (1) .

Step 2. Suppose that a genie providesR2 with side information con-
taining the entire codeword X(1). Since X(2) is independent of X(1),
R2 simply subtracts out the interference from its received signal. Thus,
the channel Z(2) can be eliminated without making the capacity region
smaller.

Step 3. By our assumption, R1 can decode its own message and
therefore it can subtract X(1) from its own received signal as well. In
this manner, after the interfering signals have been subtracted out we
have

Y
(1) =Z(1)

X
(2) +W

(1)

Y
(2) =H(2)

X
(2) +W

(2)
:

To complete the proof we need to show that if R2 can decode X(2)

then so can R1. This would imply that R1 can decode both messages,
hence giving us the MAC outer bound.

Step 4. Without loss of generality, let us perform SVD H(2) =
F (2)�(2)G(2)y on the channel between T2 and R2. This is a lossless
operation that leads to

Y
(2)new = X

(2)new +W
(2) (11)

whereX(2)new = G(2)yX(2) andW (2) is additive noise that consists
of independent zero mean complex Gaussian random variables with
variances 1

� (H )
and �i(H(2)) are the singular values ofH(2). Note

that we have dropped dimensions that correspond to zero channel gains
as these channels are useless for R2.

Step 5. Next, we show that R1 can obtain a stronger channel to
X(2)new so that if R2 can decode it, so can R1. To this end, let R1

use ZF to obtain

Y
(1)new =X(2)new + V

(2)
Z
(1)y

Z
(1)

�1

Z
(1)y

W
(1)

=X(2)new +W
(1)

whereW (1) is a vector of AWGN with i.i.d. elements and variance �.
Now both R1 and R2 have a diagonal channel with input X(2)new

and uncorrelated additive white noise components on each diagonal
channel. Moreover, the strongest channel forR2 has noise 1

� (H )
.

However the noise on any channel for R1 is only � which is smaller.
Thus, we argue once again that R1 can locally generate noise and add
it to its received signal to create a statistically equivalent noise signal
as seen by R2. In other words, R1 has a less noisy channel to T2 and
therefore can decode any signal thatR2 can. SinceR1 can decode T1s
message by assumption, we have the MAC outer bound.

The previous theorem leads directly to the following corollary.

Corollary 1: For the (M1; N1); (M2; N2) interference channel the
number of spatial DOF �(INT) � max(M2; N1).

Proof: If M2 � N1 the sum capacity of the interference channel
is upper-bounded by the multiple access channel with N1 receive an-
tennas. Therefore, for M2 � N1 we must have �(INT) � N1. Now, if
M2 > N1, then let us add more antennas to receiver 1 so that it has a
total of M2 receive antennas. Additional receive antennas cannot hurt,
so the converse argument is not violated. However, with M2 receive
antennas at receiver 1, once again the multiple-access upper bound ap-
plies to the new interference channel. The number of DOF is, therefore,
upper-bounded as �(INT) �M2 whenM2 > N1. Combining the two
cases, we have the result of the corollary �(INT) � max(M2; N1).

Simply by switching the arguments to user 2 instead of user 1, Corol-
lary 1 leads to another upper bound: �(INT) � max(M1; N2) that
holds for allM1;M2; N1; N2. Combining the two upper bounds of the
corollary and the trivial PTP upper bounds we have the converse result.

Finally, we show that the achievable inner bound and the converse
outer bound are always tight. The following theorem presents the main
result of this correspondence.

Theorem 2: For the (M1; N1); (M2; N2) interference channel the
number of spatial DOF

�(INT) = min(M1; N1)

+ min(M2 �N1; N2)
+ 1(M1 > N1)

+ min(M2; N2 �M1)
+ 1(M1 < N1)

= minfM +M ;N +N ;max(M ;N );max(M ;N )g:

Proof: The proof is found by verifying directly that the number
of DOF obtained from the inner and outer bounds always match. The
resulting number D from the �(INT) inner and outer bounds is listed
for all cases in Table I.
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TABLE II
DOF OF MIMO INTERFERENCE CHANNELS FOR VARIOUS M ;M ;N ;N

Thus, we have the exact number of DOF for all possible
M1;M2; N1; N2. Some examples are provided in Table II. A
couple of observations can be made about the spatial DOF. First,
there is a reciprocity in that �(INT ) is unaffected if M1 and M2 are
switched with N1 and N2, respectively. In other words, the DOF are
unaffected if the directions of the messages are reversed. However,
notice that �(INT ) may change if only M1 and N1 are switched
while M2 and N2 are not switched. Finally, from the constructive
achievability proof one can see that the available DOF can be divided
among the two users in all possible ways so that the sum is �(INT )
and the individual DOF allocations are within the individual maxima
of max(M1; N1) for user 1 and max(M2; N2) for user 2.

IV. EFFECT OF TRANSMIT COOPERATION ON THE NUMBER OF DOF

Comparing the interference channel and the BC channel obtained
by full cooperation between the transmitters, it is clear that the avail-
able DOF are severely limited by the lack of transmitter cooperation
in the interference channel. As an example, consider the interference
channel with (M1; N1) = (n; 1) and (M2; N2) = (1; n). From the
preceding section we know there is only one available DOF in this
channel. However, if full cooperation between the transmitters is pos-
sible the resulting BC channel has (M;N1; N2) = (n+ 1; 1; n). The
number of DOF is now n+1. Therefore, transmitter cooperation would
seem highly desirable. Rather surprisingly, it has been shown recently
[6] that for the (1; 1); (1; 1) interference channel, allowing the trans-
mitters to cooperate through a wireless link between them (even with
full duplex operation), does not increase DOF. For MIMO interference
channels, as suggested by the example above, the potential benefits of
cooperation are even stronger and it is not known if transmitter coop-
eration can increase DOF. The capacity results of [6] do not seem to
allow direct extensions to MIMO interference channels.

To gain insights into the cost and benefits of cooperation in a MIMO
interference channel, we consider a specific scheme where transmitters
first share their information in a full duplex mode as a MIMO channel
(Step 1) and subsequently transmit together as BC channel. We will
refer to this scheme as the share-and-transmit scheme.

A. Degrees of Freedom With Share-and-Transmit

Consider an (M;N); (M;N) interference channel (M � N ). Also
assume that each transmitter is sending information with rate R. Note
that while we make the preceding simplifying assumptions for sim-
plicity of exposition, the following analysis and the main result extend
directly to the general case of unequal number of antennas and unequal
rates.

From (7), we know that the number of DOF for this interference
channel with no transmitter cooperation ismin(M;N)+min(M;N�

M) = min(2M;N). For the share-and-transmit scheme, we compute
DOF as follows. We first find the capacity of the sharing link Cs and
the capacity of transmission Ct. Then, we find the total capacity of the

systemC by evaluating the total amount of data transmitted divided by
the total time it requires to transmit this data, i.e.

C =
2R

R

C
+ 2R

C

: (12)

Dividing by log(SNR) where SNR is large, we obtain the total number
of DOF as

lim
SNR!1

C

log SNR
=

2
1

DOF(sharing)
+ 2

DOF(transmit)

: (13)

The number of DOF for the sharing link is that of MIMO PTP channel
with M transmit and receive antennas = min(M;M) = M . After
transmitters share their information, they can fully cooperate as a
(2M;N;N) BC channel. The number of DOF for this channel is
min(2M; 2N) = 2min(M;N). Therefore, (13), which gives the
total number of degrees of freedom for the share-and-transmit scheme,
becomes 2M min(M;N)

M+min(M;N)
= M . Note that

M +min(M;N �M)+ �M: (14)

Therefore, we conclude that (for this specific scheme) transmitter co-
operation in the high SNR regime does not provide any advantage to
the number of degrees of freedom in the MIMO interference channel.

V. CONCLUSION

We investigate the degrees of freedom for the MIMO interference
channel. The distributed nature of the antennas significantly limits de-
grees of freedom. For an interference channel with a total ofN transmit
antennas and a total of N receive antennas, the available number of
DOF can vary from N to 1 based on how the antennas are distributed
among the two transmitters and receivers. Through an example of a
share-and-transmit scheme, we show how the gains of transmitter co-
operation can be entirely offset by the cost of enabling that cooperation
so that the available degrees of freedom are not increased. Our result is
in a sense a negative result, because similar to [7] it shows that on the
MIMO interference channel there is nothing beyond zero forcing as far
as spatial multiplexing is concerned.
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Derivatives of Entropy Rate in Special Families of
Hidden Markov Chains

Guangyue Han and Brian Marcus, Fellow, IEEE

Abstract—Consider a hidden Markov chain obtained as the observation
process of an ordinary Markov chain corrupted by noise. Recently Zuk et
al. showed how, in principle, one can explicitly compute the derivatives of
the entropy rate of at extreme values of the noise. Namely, they showed
that the derivatives of standard upper approximations to the entropy rate
actually stabilize at an explicit finite time. We generalize this result to a nat-
ural class of hidden Markov chains called “Black Holes.” We also discuss
in depth special cases of binary Markov chains observed in binary-sym-
metric noise, and give an abstract formula for the first derivative in terms
of a measure on the simplex due to Blackwell.

Index Terms—Analyticity, entropy, entropy rate, hidden Markov chain,
hidden Markov model, hidden Markov process.

I. INTRODUCTION

Let Y = fY1
�1

g be a stationary Markov chain with a finite state
alphabet f1; 2; . . . ; Bg. A function Z = fZ1

�1
g of the Markov chain

Y with the form Z = �(Y ) is called a hidden Markov chain; here �
is a finite-valued function defined on f1; 2; . . . ; Bg, taking values in
f1; 2; . . . ; Ag. Let � denote the probability transition matrix for Y ; it
is well known that the entropy rate H(Y ) of Y can be analytically ex-
pressed using the stationary vector of Y and �. Let W be the simplex,
comprising the vectors

fw = (w1; w2; . . . ; wB) 2
B : wi � 0;

i

wi = 1g

and let Wa be all w 2 W with wi = 0 for �(i) 6= a. For a 2 A,
let �a denote the B � B matrix such that �a(i; j) = �(i; j) for j
with �(j) = a, and �a(i; j) = 0 otherwise. For a 2 A, define the
scalar-valued and vector-valued functions ra and fa on W by

ra(w) =w�a1

and

fa(w) =w�a=ra(w):

Note that fa defines the action of the matrix �a on the simplex W .
If Y is irreducible, it turns out that the entropy rate

H(Z) = �
a

ra(w) log ra(w)dQ(w) (1.1)
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where Q is Blackwell’s measure [1] on W . This measure is defined as
the limiting distribution p(y0 = �jz0

�1
).

Recently, there has been a great deal of work on the entropy rate of a
hidden Markov chain. Jacquet et al. [6] considered entropy rate of the
hidden Markov chain Z , obtained by passing a binary Markov chain
through a binary-symmetric channel with crossover probability ", and
computed the derivative of H(Z) with respect to " at " = 0. For the
same channel, Ordentlich and Weissman used Blackwell’s measure to
bound the entropy rate [11] and obtained an asymptotical formula for
entropy rate [12]. For certain more general channels, Zuk et al. [16],
[17] proved a “stabilizing” property of the derivatives of entropy rate
of a hidden Markov chain and computed the Taylor series expansion
for a special case. Several authors have observed that the entropy rate
of a hidden Markov chain can be viewed as the top Lyapunov exponent
of a random matrix product [5], [6], [3]. Under mild positivity assump-
tions, Han and Marcus [4] showed the entropy rate of a hidden Markov
chain varies analytically as a function of the underlying Markov chain
parameters.

In Section II, we establish a “stabilizing” property for the deriva-
tives of the entropy rate in a family we call “Black Holes.” Using this
property, one can, in principle, explicitly calculate the derivatives of
the entropy rate for this case, generalizing the results of [16], [17].

In Section III, we consider binary Markov chains corrupted by bi-
nary-symmetric noise. For this class, we obtain results on the support of
Blackwell’s measure, and for a special case, that we call the “nonover-
lapping” case, we express the first derivative of the entropy rate as the
sum of terms, involving Blackwell’s measure, which have meaningful
interpretations.

II. STABILIZING PROPERTY OF DERIVATIVES IN BLACK HOLE CASE

Suppose that for every a 2 A, �a is a rank one matrix, and every
column of �a is either strictly positive or all zeros. In this case, the
image of fa is a single point and each fa is defined on the whole sim-
plex W . Thus, we call this the Black Hole case. Analyticity of the en-
tropy rate at a Black Hole follows from Theorem 1.1 of [4].

As an example, consider a binary-symmetric channel with crossover
probability ". Let fXng be the input Markov chain with the transition
matrix

� =
�00 �01
�10 �11

: (2.2)

At time n the channel can be characterized by the following equation:

Zn = Xn � En

where � denotes binary addition, En denotes the independent and
identically distributed (i.i.d.) binary noise with pE(0) = 1 � "
and pE(1) = ", and Zn denotes the corrupted output. Then
Yn = (Xn; En) is jointly Markov, so fZn = �(Yn)g is a hidden
Markov chain with the corresponding

� =

�00(1� ") �00" �01(1� ") �01"

�00(1� ") �00" �01(1� ") �01"

�10(1� ") �10" �11(1� ") �11"

�10(1� ") �10" �11(1� ") �11"

;

here, � maps states 1 and 4 to 0 and maps states 2 and 3 to 1 (the
reader should not confuse � with the 4 � 4 matrix �, which defines
the hidden Markov chain via a deterministic function). When " = 0

� =

�00 0 �01 0

�00 0 �01 0

�10 0 �11 0

�10 0 �11 0

:
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