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Numerical simulations and experimental observations reveal that unsteady fluid
systems can be divided into regions of qualitatively different dynamics. The key to
understanding transport and stirring is to identify the dynamic boundaries between
these almost-invariant regions. Recently, ridges in finite-time Lyapunov exponent
fields have been used to define such hyperbolic, almost material, Lagrangian co-
herent structures in two-dimensional systems. The objective of this paper is to
develop and apply a similar theory in higher dimensional spaces. While the sepa-
ratrix nature of these structures is their most important property, a necessary con-
dition is their almost material nature. This property is addressed in this paper. These
results are applied to a model of Rayleigh-Bénard convection based on a three-
dimensional extension of the model of Solomon and Gollub. © 2007 American
Institute of Physics. �DOI: 10.1063/1.2740025�

I. INTRODUCTION

There is mounting computational and empirical evidence that hyperbolic structures strongly
influence the transport geometry in both laminar and turbulent fluid systems. The role of hyper-
bolic structures in steady, periodic, and near-integrable planar systems has been well studied
�Guckenheimer and Holmes �1986�; Ottino �1989�; Rom-Kedar et al. �1990�; Rom-Kedar and
Wiggins �1991��. For these restricted classes of systems, hyperbolic, saddle-type fixed points
exponentially stretch nearby trajectories, and the extended influence of these hyperbolic points can
be understood in terms of their stable and unstable manifolds. For systems with aperiodic time
dependence, characterizing the most important hyperbolic structures is not as straightforward.
Nevertheless, the study of Lagrangian coherent structures1 �LCS� helps extend these constructs to
aperiodic systems to allow a more precise characterization of the flow than traditional methods.

There have recently been a handful of methods proposed for locating LCS, which have mostly
focused on analyzing planar systems. First, one can fix a portion of time and identify uniformly
hyperbolic trajectories and then grow their associated finite-time invariant manifolds �Haller and
Poje �1998�; Mancho et al. �2004�; Toner and Poje �2004�� to define LCS. This approach is similar
to traditional methods for construction of stable and unstable manifolds �Homburg et al. �2003�;
Krauskopf et al. �2005��. It consists in “straddling” the manifolds and iteratively constructing
them. This method is attractive because it obtains a fairly explicit construction of the LCS.
However, it is often difficult to compute LCS from this method in practical fluid applications due

a�Electronic mail: sshadden@gmail.com
1Throughout this paper, LCS is used both for the singular and plural forms, where the appropriate abbreviation should be
clear from context.
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to their nonuniqueness, the explicit reference to the equations of motion in the definition, and the
conditions that must be satisfied to guarantee their existence.2 Moreover this approach is also
difficult to extend to systems with dimension greater than 2 since it requires an explicit solution of
the linearized dynamics inside the LCS. Such solutions are unavailable for LCS of dimensions
higher than 1, and hence spaces with dimensions higher than 2.

Alternatively, one can derive a measure of hyperbolic stretching and define LCS as the most
hyperbolic structures. This approach is usually more robust than direct methods for systems with
arbitrary time dependence. For planar systems, LCS are defined as curves that maximize some
measure of hyperbolicity over a fixed time horizon. This “averaging” may result in LCS that are
not exactly transport barriers. However, numerous applications have shown that the resulting
distributed flux in a fixed horizon approach is very small and justifies its use as a means to define
the LCS rigorously �Shadden et al. �2005��.

In Shadden et al. �2005�, LCS are defined from finite-time Lyapunov exponent �FTLE� fields,
an idea proposed by Haller �2001, 2002�. The FTLE is a robust approximation of local hyperbo-
licity, the average rate of stretching about a single trajectory. Numerical simulations �Haller
�2001�; Lekien et al. �2005b�; Green et al. �2007��, experimental results �Voth et al. �2002�;
Shadden et al. �2006��, and theoretical considerations �Shadden et al. �2005�� demonstrate that the
FTLE field for planar systems reveals coherent lines that behave as separatrices in a wide variety
of applications.

The ridge definition in Shadden et al. �2005� focused on the use of FTLE fields in defining
LCS. Using FTLE is, however, not necessary and ridges can be computed from other measures of
hyperbolicity, such as hyperbolicity time �Haller �2000, 2001��, finite strain �Jones and Winkler
�2002��, or finite-size Lyapunov exponents �FSLE� �Koh and Legras �2002�; Joseph and Legras
�2002��.

The objective of this paper is to extend the definition and results in Shadden et al. �2005� to
higher dimensional systems. In this case, we seek hypersurfaces of dimension 1 less than the phase
space of the dynamical system. For periodic and near-integrable systems, there has been progress
on computing invariant manifolds for systems with dimension greater than 2 �see Krauskopf et al.
�2005� and Wysham and Meiss �2006��. Relatively few results exist for computing invariant
manifolds for aperiodic systems with dimension greater than 2, with Haller �2001� and Padberg
�2005� being exceptions. The difficulties between computing LCS in two dimensions and three
dimensions are that �1� it is no longer possible to obtain a global parameterization of the structure
and �2� although the dimension increases by 1, the possible flow configurations increase by
several. This second issue presents a more challenging concern for iterative methods, but both of
these issues must be addressed in extending the results of Shadden et al. �2005�.

In Sec. II we define LCS for n-dimensional dynamical systems and in Sec. III we derive some
properties of these structures, including a bound to describe the Lagrangian behavior. To illustrate
the concepts developed, we compute the LCS for a model of unsteady, three-dimensional
Rayleigh-Bénard convection in Sec. IV.

II. DEFINITIONS

We study the dynamical system

ẋ�t� = v�x�t�,t� , �1�

where x�D�Rn together with a piecewise smooth boundary, and with the following assump-
tions:

A1. The velocity field is at least C0 in time and C3 in space.
A2. The domain D is compact.

2Straddling requires the existence of uniformly hyperbolic trajectories, which are difficult to locate in most practical
applications because hyperbolic trajectories regularly become instantaneously nonhyperbolic due to short-term anomalies.
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The first assumption is required to allow for the calculus needed to prove the analytic results
of this paper. Although this condition can be ensured by proper interpolation when working with
data, it is typically not needed for practical purposes or numerical stability. For example, if v is
specified on a Cartesian mesh, Lekien and Marsden �2005� provide a C1 tricubic interpolation,
which is typically sufficient. Unstructured data can be interpolated by normal modes for complex
boundaries �Lekien et al. �2004��. Additionally, nearly all examples of practical importance must
be handled numerically, so there is no loss of generality by assuming that the domain is closed and
bounded, and hence compact.

The flow map is denoted by �t
T :x�t��x�t+T�, which is simply the solution to Eq. �1� written

as a mapping whose input is the initial location of a point at time t and whose output is the
position at time t+T. We begin by recalling two important properties of the flow map that we will
later exploit.

Theorem 2.1: For each fixed t0�0 and T0�0, there is a constant K�0 such that

�d�t
T�x�

dx
� � eK�T�,

for all x�D, all t satisfying 0� �t�� t0, and all T satisfying 0� �T��T0.
This theorem results from the fact that we have taken v to be C3 in space. Gronwall’s

inequality is typically used in standard textbooks to prove this result �Hirsh and Smale �1974��.
Also note that since the flow is invertible, the linearization of the flow map is nonsingular, and

hence

�d�t
T�x�

dx
� � 0, �2�

for arbitrary T.

A. Finite-time Lyapunov exponents

The growth of an infinitesimal perturbation ��t��0 to a point x�t� obeys

0 � �d�t
T�x�

dx
��t��2

= � d�t
T�x�

dx
��t�,

d�t
T�x�

dx
��t�� = ���t�,

d�t
T�x�

dx

*d�t
T�x�

dx
��t�� = 	��t + T�	2,

�3�

where the symbol * denotes the adjoint �transpose�. The strict inequality in Eq. �3� is a conse-
quence of Eq. �2�. Equation �3� highlights the importance of the finite-time deformation tensor3

��x,t;T� =
d�t

T�x�
dx

*d�t
T�x�

dx

in the study of attraction and separation in fluids. We may regard ��x , t ;T� as a symmetric,
positive definite, linear operator on Rn. As a result, ��x , t ;T� has n real, positive eigenvalues and
we define the FTLE as

��x,t;T� �
1

�T�
ln
�max���x,t;T�� , �4�

where �max���x , t ;T�� denotes the maximum eigenvalue of ��x , t ;T�.
It is easily shown that the norm of a perturbation ��t� to a point x�t� evolves as

3Also called the �finite-time� Cauchy-Green tensor.

065404-3 LCS in n-dimensional systems J. Math. Phys. 48, 065404 �2007�

Downloaded 25 Jul 2007 to 131.215.225.175. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



	��t + T�	 � e��x,t;T��T�	��t�	 ,

where strict equality holds if ��t� is chosen in the eigenvector direction of �max���x , t ;T��. Fur-
thermore, most ��t� will typically tend to this most unstable eigenvalue direction over time. Note
that the integration time T can be positive or negative, corresponding to the forward-time and
backward-time FTLE. In the next section, we build LCS as hypersurfaces that “locally maximize”
the FTLE field. The type of LCS obtained depends on the sign of the integration time T; attracting
LCS are obtained from negative T and repelling LCS are obtained from positive T.

When the integration time T is too short, the FTLE only reveals time-varying features in the
velocity gradient and therefore is not indicative of particle transport when the system is unsteady.
When T is too large, the FTLE can contain averaged information for several different dynamic
regimes of the flow if the system has general aperiodic time dependence. Consideration for the
time scales of the flow and numerical experimentation is usually sufficient to determine an appro-
priate integration time �Lekien and Leonard �2004��. For most practical purposes, experience
dictates that LCS are not sensitive to variations of T and become better resolved as �T� increases
�Coulliette et al. �to be published��.

A criterion similar to the FTLE is the FSLE, which consists of measuring how much time it
takes for a sphere of radius r0 about a trajectory to reach a distance rf �r0. The inverse of this
time, weighted by ln�rf /r0�, tends to the FTLE as rf →0 �while keeping r0�rf�. In this case, the
effective integration time T is not constant; it depends on the choices for r0, rf, and the actual
value of the FTLE. One can think of this method as a way to change the integration time T in the
definition of the FTLE based on local properties. For systems with marked regimes such as
seasonal geophysical events, the integration time T can be determined based on the time scale of
the event to observe �Lekien and Leonard �2004��. For systems where inhomogeneous time scales
govern the phenomena of interest, FSLE is sometimes more appropriate by providing a framework
where the integration time T adapts to the local stretching strength �Koh and Legras �2002��.

Whether the hyperbolicity measure � is defined by the FTLE or FSLE, it is important to
differentiate trajectories from neighboring points in the grid used to discretize the computation of
� as to not ignore lines of high stretching between grid points. Additionally, for the results listed
herein to carry over to other criteria the only requirement is that � must be transported in some
manner by the flow, as in the relationship given by Corollary 3.1. In this paper, we consider the
FTLE; hence this condition is realized by the O�1/ �T�� term in Corollary 3.1. Using FSLE, one
follows the same development with O��r0 /rf� , �r0��.

B. Lagrangian coherent structures

Observations of FTLE fields for time-dependent fluid systems reveal the presence of orga-
nized regions of high relative FTLE values �Pierrehumbert �1991�; Pierrehumbert and Yang
�1993�; Haller �2001, 2002�; Inanc et al. �2005�; Lekien et al. �2005b�; Arratia et al. �2005�;
Shadden et al. �2005, 2006��. Suppose that the fluid is experiencing qualitatively different dynam-
ics in two almost-invariant regions of the flow. In each of these regions, we expect a coherent
motion of the fluid �such as in an eddy� and the eigenvalues of ��x , t ;T� in that region will be
close to 1, an indication that the fate of nearby particles is similar inside the subregion.

At the boundary of two regions of qualitatively different dynamics �e.g., two eddies with
different vorticities�, perturbations of the initial conditions can cause particles to move in one or
the another region. This creates a higher eigenvalue in a direction transverse to the boundary.
These boundaries or separatrices will be defined as LCS. The definition that we introduce below
�the extension to n dimensions of the definition in Shadden et al. �2005�� captures this aspect by
requiring that one eigenvalue of ��x , t ;T� be greater than 1 while all the others have modulus less
than 1. We exclude cases where, along the boundary, we have multiple eigenvalues larger than 1.
These cases correspond to hyperbolic structures that are not codimension 1. As a result, they do
not qualify as hypersurfaces that divide regions, cf. Fig. 3 of Haller �2001�. Notice that this creates
a nontrivial difference between two-dimensional systems and higher dimensional systems. In two
dimensions, excluding sources and sinks, there are only one-dimensional hyperbolic structures. In
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higher dimensions, we need to refine our conditions on the spectrum of ��x , t ;T� to exclude
hyperbolic structures of codimension higher than 1. This is motivated by our desire to define true
codimension 1 boundaries. Nevertheless, chaotic dynamics may occur around lower level struc-
tures and the LCS in higher dimensional system may no longer be the only source of chaotic
advection.

The other main difference with the two-dimensional theory presented in Shadden et al. �2005�
is the fact that a global parametrization the LCS cannot be assumed. In two dimensions, the LCS
can be represented by an explicit parametrization p�s� where s� �a ,b��R. In higher dimensions,
such a global parametrization is usually nonexistent. We define the LCS as a manifold, a hyper-
surface that can locally be represented as the graph of a continuous function. This allows for a
more general theory but necessitates a new formalism to extend the results in Shadden et al.
�2005�.

Definition 2.1: Consider a positive integration time T with ��x , t ;T� and ��x , t ;T� defined as
above. A repelling LCS is a condimension 1, orientable, differentiable manifold M�D�Rn

satisfying the following conditions for each x�M:
LCS1. ��x , t ;T� has n−1 eigenvalues less than 1 and one eigenvalue greater than 1.
LCS2. The unit normal vector n̂�x� to the manifold M is orthogonal to ���x , t ;T�.
LCS3. Let � be the second derivative of ��x ; t ;T�, thought of as a bilinear form evaluated at

the point x. We require that

��n̂,n̂� � 0,

and for all unit vectors û such that ��û , n̂���1,

��n̂,n̂� � ��û,û� .

We require that M be orientable to guarantee the existence and uniqueness of a continuous
normal unit vector on M. In general, M is orientable if there is a nonvanishing volume form on
M. In this paper, we will represent M as the level set of a C2 function �cf. Definition 3.1 below�
and use the gradient of the function to provide a well-defined normal.

To define attracting LCS, we consider the system with the flow reversed in time, that is, the
backward-time flow �t

−T�x� :x�t��x�t−T� is used to compute the FTLE field at time t. Attracting
LCS will appears as repelling LCS when the flow is reversed in time. The motivation for this is
that attracting LCS can be defined and computed by only slight modification of the definition or
computational method used to obtain repelling LCS.

Definition 2.2: An attracting LCS is a repelling LCS of the backward-time flow (i.e., negative
integration time T�.

We next discuss the smoothness of the LCS. In general, the smoothness of the FTLE field or
LCS is directly related to the smoothness of the vector field. As shown below, assumption A1
allows the LCS to be sufficiently well defined.

Lemma 2.1: The FTLE ��x , t ;T� is C3 in an open neighborhood G of the LCS.
Proof: Assumption A1 guarantees that the entries of the matrix ��x , t ;T� are C3. This does not

necessarily imply that �max is C3 since the maximum value can switch from one eigenvalue to
another in a nonsmooth manner. However, since the eigenvalues vary continuously, we are guar-
anteed that LCS1 holds in an open neighborhood G of the LCS. Inside G, �max is outside the unit
circle and all other eigenvalues are inside the unit circle. Therefore, �max does not undergo a
switch, and thus �see, for instance, Kato �1980� and Dieci and Eirola �1999��, is C3, making
��x , t ;T� a C3 function of x. �

Corollary 2.1: The normal vector n̂ to the LCS is C1.
Proof: From Lemma 2.1, � varies in a C1 fashion. Since � is C1 and the smallest eigenvalue

of � is isolated, by LCS3, it follows that the associated eigenvector is C1, as is well known �see,
for instance, Kato �1980� or Dieci and Eirola �1999��. This eigenvector �when normalized� corre-
sponds to n̂ by LCS3. �
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III. FLUX

For convenience, the following corollary from Shadden et al. �2005� is restated:
Corollary 3.1: The variation of the FTLE field satisfies

� � ��x,t;T�
�t

= − J* � ��x,t;T� − �v + O�1/�T�� , �5�

where J is the spatial derivative (Jacobian matrix) of the velocity field v.
Above, we use a classical abuse of notation and view � as a linear operator �using the Riesz

representation theorem�. That is, we define �� to be the unique vector � such that �y ,���
= �y ,�� for all y�Rn. Corollary 3.1 will be used later in proving the Lagrangian properties of the
LCS; this result is independent of the dimension of the system and the derivation in Shadden et al.
�2005� of Eq. �5� above carries over to the n-dimensional case without modification.

A. Representation

Suppose that we are given a FTLE field ��x , t ;T� for t� �t1 , t2� of system �1� that admits a
LCS in the sense of Definition 2.1 or 2.2. We define the scalar function L of space and time as
follows:

Definition 3.1: For all t, let L�x , t� be the function of x�D defined by the following condi-
tions:

1. �L�x , t��= 	x−xq	, where xa is a point on the LCS closest to point x.
2. L�x , t��x−xq , n̂�xq��	0, where n̂�xq� is the unit normal to the LCS at point xq.

The function L�x , t� gives the “signed distance” from x to the nearest point on the LCS. That
is, the first condition for L specifies the magnitude of the function as the distance between the
points, and the second determines the sign of L. In a neighborhood of the LCS, points on one side
of the LCS have a positive value of L and a negative value on the other side. By definition of L,
the LCS is given by the zero set L=0. This function is never computed in practical applications
and is used in this work as a theoretical tool to derive the properties of the LCS. As shown in the
next section, �L can be viewed as an extension of the normal vector n̂ away from the LCS.

B. Properties

Our objective is to analyze the Lagrangian properties of the LCS by analyzing the function L
defined above. For this purpose, the first and second derivatives of L are needed. We need to start
by showing that L is C2 near the LCS. Clearly L is continuous everywhere. However, there may
exist points in the domain that have multiple possible values for xq; hence L might not be C1

everywhere. However, we can prove that we can always find an open set that contains the LCS and
excludes any of these points. Furthermore, we show that the second derivative of L is continuous
over this set.

Theorem 3.1: Let B�D be the set of points with nonunique xq. The LCS and the closure of
B are disjoint.

Proof: The critical ingredient in this proof is the fact that the curvature of the LCS must
remain finite, and thus, close enough to the LCS, each point has a unique closest point on the LCS.
The only prerequisite for this theorem is, therefore, the smoothness of the LCS, as given by

Corollary 2.1. To prove the result, we will show that B̄ �i.e., the closure of B� must be at a finite

distance from the LCS by contradiction; if B̄�M��, then the curvature of the LCS would
become infinite.

Consider an arbitrary point p� B̄�M. In this case, p is in the closure of B, so there exists at
least one sequence xi�B such that xi→p�M. By definition of B, for each xi, there exists at least
two separate points xi

1 and xi
2 on M that are equidistant from xi, and every other point on the LCS

is located at the same distance from xi as these points or farther.
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Notice that 	xi−p	→0 as i→
 and 	xi
1−xi	= 	xi

2−xi	� 	p−xi	 so we must have

xi
1 →

i→

p ,

xi
2 →

i→

p , �6�

xi
1 � xi

2 for all i .

Since the LCS is a C2 manifold, there exists an open set about point p, Op�M, where the
LCS can be described by a C2 diffeomorphism, h :A�Rn−1→Op�M �i.e., a local chart of the
manifold containing the point p�. We will denote by s= �s1 ,s2 , . . . ,sn−1� the coordinates in the open
set of Rn−1. We can assume that the points xi, xi

1, and xi
2 are all contained in Op since the three

sequences converge toward p.
The mapping h is a bijection; therefore for any i, there are unique si

1 and si
2 such that

h�si
1�=xi

1 and h�si
2�=xi

2. Similarly, we denote by sp the unique point of A such that h�sp�=p.
Notice that the largest principal curvature at point p equals the largest singular value of

 �h−1n̂�h�s��
�s


sp

.

Therefore, Corollary 2.1 implies that

� �n̂�h�sp��
�s

�s� � 
 , �7�

for any �s. The converging sequences of Eq. �6� in Op allow us to express the derivative above as
the limit of the difference between the normal vectors at points xi

1 and xi
2. Let us denote by n̂i

1 and
n̂i

2 the unit vectors normal to the LCS at, respectively, xi
1 and xi

2; cf. Fig. 1 for the geometric
interpretation of this setting for n=3. Since Eq. �7� holds for all �s, we can choose

FIG. 1. For any LCS, there exists an open cover that excludes points of discontinuity of L.
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�s = lim
i→


si
2 − si

1

	si
2 − si

1	
.

From Eq. �7�, we get the curvature

� � lim
i→


	n̂i
2 − n̂i

1	
	si

2 − si
1	

� 
 . �8�

We will compute the limit in Eq. �8� and show that it goes unbounded, providing the contra-
diction.

Notice that points xi
1 and xi

2 are the points on the LCS that are the closest to xi; hence the
vectors xi

1−xi and xi
2−xi must be aligned with, respectively, n̂i

1 and n̂i
2. Therefore the difference

between the normal vectors can be written as

	n̂i
2 − n̂i

1	 = � xi
2 − xi

	xi
2 − xi	

−
xi

1 − xi

	xi
1 − xi	

� =
	xi

2 − xi
1	

	xi
2 − xi	

, �9�

where we have used the fact that 	xi
1−xi	= 	xi

2−xi	. We also have

� �h�s�
�s


sp

�s� = lim
i→


	xi
2 − xi

1	
	si

2 − si
1	

= Dp � 0,

because h�s� is a C1 diffeomorphism, and hence 	�h�s� /�s	�0 on the LCS and so must remain
positive in a neighborhood of s=sp by continuity. As a result, there is an i* such that for all
i� i*,

	xi
2 − xi

1	
	si

2 − si
1	

	
Dp

2
� 0, �10�

by definition of the limit.
Equations �9� and �10� give

� = lim
i→


1

	xi
2 − xi	

	xi
2 − xi

1	
	si

2 − si
1	

	
Dp

2
lim
i→


1

	xi
2 − xi	

= + 
 ,

which contradicts Eq. �8�. �

Lemma 2.1 states that ��x , t ;T� is C3 on an open set G containing the LCS. Theorem 3.1

shows that B̄, the closure of the set of points with nonunique xq, does not intersect the LCS. It is
therefore natural to combine these two results and define

Ut = �D \ B̄� � G . �11�

The resulting set Ut is an open set containing the LCS since both G and D \ B̄ contain the LCS.
Inside Ut, the field ��x , t ;T� is C3 and each point has a unique xq. We next use this to prove the
smoothness of L inside this open cover.

Theorem 3.2: L�x , t� is C2 over the open set Ut containing the LCS.
Proof: Since

L�x,t� = ± 	x − xq	 ,

we have

�L =
±1

	x − xq	�I −
dxq

dx
,x − xq� .

However,
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� dxq

dx
,x − xq� = 0

in Ut because the closest point on the LCS does not change with variations in the direction normal
to M. As a result,

�L =
x − xq

±	x − xq	
=

x − xq

L
= n̂�xq� , �12�

where we have used the fact that xq is the point on the LCS closest to x; hence n̂�xq� must be
parallel to x−xq. Recall that there is a unique xq for each x�Ut, by virtue of Theorem 3.1. By
Corollary 2.1, the map n̂�xq� that gives the normal vector at a point xq�LCS is C1; thus �L�x�
= n̂�xq� is C1, which implies that L is C2. �

The primary result that we derive is an estimate for the flux across a LCS in Theorem 3.3,
which reduces to the result in Shadden et al. �2005� for planar systems. Below, t̂ denotes an
arbitrary vector in the tangent plane to M, i.e., �t̂ , n̂�=0. Let L be the Hessian of L and note the
following properties of L and �:

Lemma 3.1: � and L are self-adjoint.
Proof: The symmetry of � is standard and is due to the symmetry of mixed partials. From

��u ,v�=��v ,u�, we deduce that �u ,�v�= �v ,�u�= ��u ,v� because the derivatives are necessarily
real numbers. The same result applies to L since it is the �symmetric� Hessian of the scalar
function L, which is C2 by Theorem 3.2. �

Lemma 3.2: For L=0 and for all t̂, we have

�t̂,n̂� = 0 ⇒ �t̂,�n̂� = �n̂,�t̂� = 0.

Proof: From Definition 2.1, LCS3 implies that �L= n̂ is an eigenvector of �. Hence �t̂ ,�n̂�
=�min����t̂ , n̂�=0, where �min��� is the smallest eigenvalue of �. �

Corollary 3.2: For L=0 and an arbitrary vector v, we have �n̂ ,�v�= �n̂ ,�n̂��n̂ ,v�.
Proof: Notice that any vector v can be written as

v = t̂ + �n̂,v�n̂ �13�

for a properly chosen t̂ in the tangent plane to M. Computing �n̂ ,�v� from the expansion in Eq.
�13� and applying Lemma 3.2 gives the desired result. �

Lemma 3.3: Ln̂=0 everywhere in Ut.
Proof: Everywhere in Ut, L is C2, so the gradient �L exists and is differentiable. In particular,

	�L	=1; therefore

0 = ��	�L	2� = 2L � L = 2Ln̂ .

�

Lemma 3.4: On the LCS, i.e., for L=0,

�n̂,�n̂�
�L

�t
=

��n̂,���x,t;T��
�t

.

Proof: Take x on the LCS at time t, i.e., L�x , t�=0. Define y=x+��t�n̂ such that L�y , t
+�t�=0. In other words, y is at the intersection of the LCS at time t+�t and the line starting at x,
orthogonal to the LCS at time t �see Fig. 2�. Since we require y=x for �t=0, it follows that ��t�
is O��t�. Expanding L to first order in �t gives the following �where all derivatives on the
right-hand side of the following equations are evaluated at x and t unless otherwise specified�:
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0 = L�y,t + �t� = L�x,t� +  +
�L

�t
�t + O��t2� ,

= +
�L

�t
�t + O��t2� .

Therefore,

 = −
�L

�t
�t + O��t2� . �14�

Now expanding �L and plugging in Lemma 3.3 gives

� � L�y,t+�t = �L +
� � L

�t
�t + O��t2� .

Taylor expanding ����x , t ;T��y,t+�t gives

� � ��x,t;T��y,t+�t = ���x,t;T� + �n̂ +
� � ��x,t;T�

�t
�t + O��t2� .

From Eqs. �12� and �14� we have

� � ��x,t;T��y,t+�t = ���x,t;T� −
�L

�t
� � L�t +

� � ��x,t;T�
�t

�t + O��t2� .

Since y is on the LCS at time t+�t, we must have

0 = �� � L�y,t+�t, � � ��x,t;T��y,t+�t�

= ��L,���x,t;T�� + �t�−
�L

�t
��L,� � L� +

���L,���x,t;T��
�t

� + O��t2�

= �t�− �n̂,�n̂�
�L

�t
+

��n̂,���x,t;T��
�t

� + O��t2� .

Hence, we get the desired result, since �t is arbitrary. �

By definition of the function L it is not hard to show, as in Shadden et al. �2005�, that

FIG. 2. Quantities discussed in Lemma 3.4.
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dL

dt
= �L · �dx

dt
−

dxq

dt
� . �15�

On the LCS, i.e., for L=0, the two points x and xq are equal; however, we think of x as being a
Lagrangian or material point while xq is viewed as a point that moves with the LCS. Therefore,
the total flux across the LCS is given by

��t� = �
LCS

dL

dt
ds ,

where the integral is taken over the LCS, i.e., the codimension 1 surface M. The next theorem
contains an expression for dL /dt based on quantities defining the FTLE and velocity fields.

Theorem 3.3: For L=0, we have

dL

dt
=

1

�n̂,�n̂�
����x,t;T�,

�n̂

�t
− Jn̂� + O�1/�T�� . �16�

Proof: Lemma 3.4 gives

�n̂,�n̂�
dL

dt
=

��n̂,���x,t;T��
�t

+ �n̂,�n̂��n̂,v� .

Applying Corollary 3.2 and the chain rule for the derivative gives

�n̂,�n̂�
dL

dt
= ����x,t;T�,

�n̂

�t
� + �n̂,

� � ��x,t;T�
�t

� + �n̂,�v� . �17�

Using Corollary 3.1 in Eq. �17� gives Eq. �16�. �

The above theorem provides an estimate for the instantaneous flux across a LCS. For two-
dimensional systems, the estimate given in Eq. �16� is nearly identical to the expression in Shad-
den et al. �2005� for the case of two-dimensional dynamical systems. In particular, we note that the
flux is inversely proportional to how well defined the LCS is, which is measured by the term
�n̂ ,�n̂�. The term

����x,t;T�,
�n̂

�t
− Jn̂�

can be thought of as the difference between the local rotation rate of the LCS and the instanta-
neous rotation due to the Eulerian velocity field measured in the direction of ��. The O�1/ �T��
term in Eq. �16� decreases rapidly with the integration time used to compute the FTLE field.

Theorem 3.3 does not involve the tangent vector t̂. This property suggests that the flux
through a LCS is determined by the FTLE in its normal bundle. More specifically, �n̂ /�t, Jn̂, and
�n̂ ,�n̂� are, respectively, the rotation rate of the normal vector, the velocity gradient in the normal
direction, and the curvature in the normal direction. In Theorem 3.3, the only term related to the
tangent bundle is ��, since n̂ ·��=0 by definition. Nevertheless, � characterizes the ejection rate
�or attraction rate for T�0� in a direction transverse to the LCS. As a result, the term �� does not
depend on the dynamics in the tangent bundle. It is, instead, a measure of how homogeneous the
normal attraction or repulsion is along the LCS.

IV. EXAMPLE: THREE-DIMENSIONAL RAYLEIGH-BÉNARD CONVECTION CELL

In this section, we illustrate the computation of LCS on a three-dimensional dynamical model
of time-dependent Rayleigh-Bénard convection derived from the work of Solomon and Gollub
�1988, 1990, 1991�.
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A. The model

The model of Solomon and Gollub involves an infinite array of two-dimensional convection
cells bounded from above and below by horizontal free-slip boundaries. It is derived from the
stream function

� =
A

k
sin�k�x − g�t���sinz ,

where A is the maximum vertical velocity in the system, k is the wave number, and g�t� dictates
the lateral motion of the cells. This kinematic model does not satisfy the Navier-Stokes equations,
but as in Solomon and Gollub �1988�, the parameters are chosen to match flow patterns observed
during experiments. The methods of this paper are, however, independent of the source of the
velocity field. One can compute LCS for a kinematic model �as in the present example�, for an
analytic model that satisfies the Navier-Stokes equations, for the output of a CFD program, or from
empirical data.

To extend this model to three-dimensional cylindrical cells, we start by considering the au-
tonomous version of Solomon and Gollub’s model �i.e., g�t�=0� applied to the vertical, z, and the
radial, r=
x2+y2, variables. In cylindrical coordinates, the stream function is �=r2��r ,z� and the
vector field is given by ��1/r���� /�z� ,−�1/r���� /�r��. Converting to Cartesian coordinates we
obtain

ẋ =
A

k
x sinkr cosz ,

ẏ =
A

k
y sinkr cosz , �18�

ż = − A sinz�r coskr +
2

k
sinkr� ,

where r2=x2+y2.
Notice from system �18� that the vector field vanishes when r=0. This could represent a case

where there is a thin wire placed along the axis, which has a no-slip boundary condition. This
condition will have little consequence on the transport structure of the time-dependent system
since it is nonhyperbolic and of codimension 2.

The vector field is defined for all of R3 and is spatially periodic in the radial and axial
directions. In the radial direction there is an array of concentric cells. The flow field for the
innermost cell, which is the cell considered here, is shown in Fig. 3. The radius and diameter of
the cell are both � /2. For the steady system, Eq. �18�, the cell is invariant and all the flow is
confined to the region shown. In particular, the circumference of the cell is bounded by a family
of heteroclinic trajectories. Next, we show that if a time-dependent forcing is added to the system,
these heteroclinic connections break, resulting in transport to and from this center cell, which is
captured by the LCS.

To add unsteadiness to the model, we follow the same procedure as in Solomon and Gollub
�1988�. We replace x in the autonomous velocity field by �=x−g�t�. Such a spatially homoge-
neous, time-dependent translation does not affect the divergence.4

The resulting model is

4Any autonomous, divergence-free vector field ẋ= f�x� can be transformed into a divergence-free, time-dependent system
ẋ= f�x−p�t�� for any p�t�. For the Rayleigh-Bénard cell, the translation p�t� is chosen to align with the x axis.
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ẋ =
A

k
� sink� cosz ,

ẏ =
A

k
y sink� cosz , �19�

ż = − A sinz�� cosk� +
2

k
sink�� ,

where �=x−g�t� and �2=�2+y2.

B. Three-dimensional Lagrangian coherent structures

The LCS for the model given in Eq. �19� are shown in Fig. 4 for parameters A=0.24 and
k=2. The red and blue surfaces are the repelling and attracting LCS, respectively. The integration
time used to compute the FTLE fields was T=12. In general, longer integration times will allow
the LCS to be better resolved but at the price of a higher computational cost.

To compute the LCS, a specific forcing g�t� had to be chosen. Since the main advantage of the
method developed in this paper is to accommodate arbitrary time dependence, selecting a periodic
or even quasiperiodic forcing would not explore the full potential of LCS computation. To get a
random forcing, g�t� is chosen as a realization of a Gaussian noise with unit variance and unit
correlation in time. Such a one-dimensional displacement can be easily computed by taking the
inverse Fourier transform of the Fourier transform of a random sequence fitted to the desired
Gaussian spectrum �Lekien et al. �2005a��. Notice that we do not select g�t� randomly at each time
step t; this would result in a nonsmooth system. Furthermore, we do not investigate statistical
properties of the system. The function g�t� is a realization of the random process but, once
computed, it becomes a deterministic oscillating forcing.

To avoid the lateral motion of the image, the LCS in Fig. 4 are shown in the �� ,y ,z� coordi-
nate system, instead of �x ,y ,z�. High resolution snapshots and complete animations can be down-
loaded at http://www.lekien.com/�francois/papers/lcs3d.

C. Dynamics and transport

Figures 4 and 5 reveal LCS that bound the inner cell. For the time-independent system �g�t�
constant�, the attracting and repelling LCS coincide and no transport to or from the cell would be
present. For the randomly chosen g�t�, the LCS intersect to form sequences of lobes. Fluid is

FIG. 3. Sectioned model of Rayleigh-Bénard convection. The flow is made time dependent by shifting the cell back and
forth in the x direction, as indicated.
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entrained and detrained as these three-dimensional lobes deform from lobes of fluid outside the
cell into lobes of fluid inside the cell, and vice versa. Such lobe mechanics have been routinely
shown for near-integrable or near-periodic systems in two-dimensional examples �e.g., Gucken-
heimer and Holmes �1986�, Rom-Kedar �1990�, Rom-Kedar and Wiggins �1991�, Beigie et al.
�1991�, and Coulliette and Wiggins �2000�� and even for three-dimensional computations �e.g.,
Beigie �1995� and Wysham and Meiss �2006��. However, the significance of the method presented
here is to generalize these notions to systems with arbitrary time dependence.

It is interesting to note that lobes formed by LCS are not always as regular as the ones
presented in this paper. In fact, lobes need not exist at all. Beigie �1995� presents examples where
lobes in three-dimensional systems can have connections between the lobes. In some cases, none

FIG. 4. Attracting �blue� and repelling �red� LCS for a model of Rayleigh-Bénard convection. The center cell is bound by
the moving LCS. The intersections between the LCS lead to lobes whose dynamics govern transport to and from the cell.
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of the lobes are disjoint from the others and it is impossible to describe transport in terms of lobe
mapping. In such systems, one cannot identify localized lobes carrying fluid from one region to
another. Nevertheless, for the particular model of Rayleigh-Bénard convection used in this paper,
one can prove formally that regular sequences of disjoint lobes govern transport �see the Appen-
dix�.

Figure 5 shows the inside of the separatrix and reveals highly convoluted lobes. In particular,
lobes have secondary intersections, which explains how complex, chaotic dynamics can take place
in such a structured system �Rom-Kedar �1990��. Since the goal of the definition in this paper is

FIG. 5. Attracting �blue� and repelling �red� LCS for a model of Rayleigh-Bénard convection. The vertical section reveals
the complex entanglement of the lobes inside the center cell. Transport of particles can be derived from the shape and
dynamics of the lobes.
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to find hypersurfaces that locally maximize the Lyapunov exponent, it is evident that the system is
sensitive to initial conditions in a neighborhood of the LCS. Although there does not exist any
formal theorem to support this assertion, it should be clear from Fig. 5 that a chaotic Cantor set is
expected to be found in the entanglement of the two LCS. Smale and Morse proved the existence
of chaos near the hyperbolic manifolds of two-dimensional periodic systems �Smale �1965�; Guck-
enheimer and Holmes �1986��. The extension to chaotic forcing and higher dimensional systems is
work in progress, but these computations of LCS reveal that such chaotic motion is the general
behavior in the vicinity of intersecting LCS, even for systems that are of higher dimension or more
complex time dependency than previously studied.

D. Flux across Lagrangian coherent structures

Theorem 3.3 provides a convenient way to find an upper bound on the flux of particles across
the LCS. The instantaneous flux is given by

dL

dt
=

���,�n̂/�t − Jn̂�
�n̂,�n̂�

�
	��	

�n̂,�n̂�
�� �n̂

�t
� + 	Jn̂	� .

The last term in the equation above is the hardest to evaluate. Nevertheless, notice that each
component in J is bounded by 4A /k�0.5. We evaluate the other terms for two points P1 and P2

indicated in Fig. 6. P1 is on the main sheet of the LCS �before intersections create lobes� and P2

is located at the tip the first internal lobe.

x y z 	��	 �n̂ ,�n̂� 	�n̂ /�t	 	Jn̂	 �dL /dt�

Point P1 0.000 −1.5225 2.0 0.005142 11 194.6 �10−4 �0.5 �2.3�10−7

Point P2 0.000 1.0147 0.334 0.012614 5 154.0 �10−2 �0.5 �1.2�10−6

As in Shadden et al. �2005�, it is convenient to compare this flux estimate to the typical
magnitude of the velocity field. For both points P1 and P2, the velocity ranges around 	v	�0.2.
Furthermore, the maximum velocity inside the central cell �i.e., �2+y2��2� is given by

2�A2�2 /k2�+A2�0.6. The flux, as computed above, is therefore several orders of magnitude
below the usual velocity. Also notice that the upper bound 	Jn̂	�4A /k is highly conservative.
Computing this explicitly could lower the flux estimate significantly.

The estimate given in Theorem 3.3 is an instantaneous flux. On one hand a negligible instan-

FIG. 6. Points where flux is evaluated. P1 is located on the initial segment of the repelling LCS and P2 on the tip of the
first lobe of the attracting LCS.
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taneous flux can aggregate to a non-negligible integrated flux or, on the other hand, the flux can
rapidly change sign and thus remain negligible. Experience has shown that the net flux of La-
grangian particles across a LCS is usually much lower than what Theorem 3.3 indicates and LCS
can be considered as material lines except at times when the LCS are very poorly defined. In fact,
the flux that we have computed is on the same order of magnitude as the numerical error of
computations of trajectories. That is, by computing a true invariant manifold, one would not
normally achieve a smaller flux than what is observed by defining the LCS from FTLE.

We would like to point out that LCS can become poorly defined when the flow structure
undergoes a large qualitative change. This is common for aperiodic systems where the flow
drastically changes regimes. In this case a LCS that was well defined may become poorly defined
and diminishes in length as time passes. For such a LCS, the curvature �n̂ ,�n̂� becomes less
pronounced and thus, according to Theorem 3.3, the LCS loses its impermeability. However, this
is consistent with the realization that the flow structure is changing regimes and the LCS, which
may no longer be relevant, is naturally adjusting to the regime change of the flow. Therefore, it is
not necessarily a weakness that LCS are not always perfectly Lagrangian. Theorem 3.3 allows us
to track the relevancy of the LCS.

V. CONCLUSIONS

This paper extends the ideas and proofs presented in Shadden et al. �2005� to n-dimensional
systems. Here, LCS are defined as codimension 1 maximizing surfaces of the FTLE field, which
is made precise in Definition 2.1. It is shown that the advection property of the LCS shown in
Shadden et al. �2005� can be extended to higher dimension systems. These results are applied to
a model of Rayleigh-Bénard convection based on the work of Solomon and Gollub.

Previous dynamical systems methods for unsteady systems have mostly been applied to two-
dimensional problems. However, a vast majority of interesting unsteady fluid systems are inher-
ently three dimensional. The method presented here has no inherent limitation imposed by the
dimension of the system. However, the computational cost increases exponentially with the di-
mension of the system based on current computation techniques used to produce the results shown
here. Therefore, to ensure that the method presented in this paper can be used as a practical tool
in the analysis of unsteady systems with dimension higher than 2, it is important to develop
efficient numerical methods. This is currently an active area of research. Additionally, visualiza-
tion of LCS becomes difficult for higher dimensional systems.
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APPENDIX: THREE-DIMENSIONAL LOBES

Transport in the three-dimensional model given in Eq. �19� is governed by two sequences of
lobes. Fluid inside the lobes will be progressively transported from one side of the center cell to
the other. Furthermore, this is the only mechanism of transport to and from the cell.

Such transport mechanisms are the general rules near hyperbolic tangles in two-dimensional
systems �see, e.g., Smale �1965� and Rom-Kedar �1990��. In higher dimensions, the geometry
might be more complex. In particular, the lobes might not be disjoint and do not lead to the same
transport mechanism �Beigie �1995��.

In the case of the Rayleigh-Bénard convection in this paper, the resulting lobes are, however,
always disjoint. We can show this property by noticing that the three-dimensional model in Eq.
�19� can be reduced to a bundle of two-dimensional invariant planes. Indeed, the intersection of
the two planes x=g�t� and y=0 defines a line that is parallel to the z axis and intersects the x axis
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at x=g�t�. The equation y=K�, where K�R, parametrizes all planes that contain this line. Each of

these vertical planes remains invariant. To see this, let �̃ denote the angle the plane y=K� makes
with the x axis. Thus we have

� = � cos �̃ ,

y = � sin �̃ . �A1�

The vector �sin �̃ ,−cos �̃� is orthogonal to the plane y=K�. Using Eq. �A1�, we can show

�sin �̃ − cos �̃�� �̇

ẏ
� = − ��̃

˙
.

However, it is easy to show that �̃
˙

=0 for all ��0. Hence the “moving” planes y=K� are invariant.

To take advantage of the reduction, we can fix �̃= �̃0 for each plane and allow negative values of

� to avoid the discontinuity of �̃ along �=0. The dynamics on each plane is given by

�̇ =
A

k
� sink� cosz − g��t� cos �̃0,

ż = − A sinz�� cosk� +
2

�
sink�� .

This form results from a nonlinear coordinate change from the physical plane �x ,y ,z� to the

coordinate system �� ,z , �̄�, where �̄
˙

=0. One can also see this transformation as a mapping from

the cylindrical coordinates �r ,z ,�� to the coordinates �r ,z , �̄�. This transformation is also nonlinear

and nontrivial since �̄=sin−1�r sin� /�� is highly nonlinear. Indeed, r depends on � as

r = g�t� cos� + 
�2 − g2�t� sin2 �;

hence the full transformation reads

�̄ = sin−1� �g�t�/2�sin2� + sin�
�2 − g2�t� sin2 �

�
� ,

which is nonlinear for g�t��0.
To study transport and lobe geometry, one can restrict the analysis to an invariant moving

plane. Since the plane is two dimensional, transport is governed by sequences of two-dimensional
lobes. The three-dimensional lobes that we observe in the full system are the stacking of the
two-dimensional lobes of each invariant plane. These lobes will not be disjoint, as in Beigie
�1995�, because that would imply motion of the particles in a direction transverse to the invariant
planes.
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