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Performance Limits for Channelized 
Cellular Telephone Systems 

Robert J. McEliece and Kumar N. Sivarajan 

Abstract-In this paper, we study the performance of channel 
assignment algorithms for “channelized” (e.g., FDMA or TDMA) 
cellular telephone systems, via mathematical models, each of 
which is characterized by a pair (H,p) ,  where H is a hypergraph 
describing the channel reuse restrictions, and p is a probability 
vector describing the variation of traffic intensity from cell to ceU. 
For a given channel assignment algorithm, we define T(r)  to be 
the amount of carried traffic, as a function of the offered traffic, 
where both r and T(r) are measured in Erlangs per channel. We 
show that for a given H and p ,  there exists a function T H , ~ ( ~ ) ,  
which can be computed by linear programming, such that for 
every channel assignment algorithm, T(r)  5 T H , ~ ( T ) .  More- 
over, we show that there exist channel assignment algorithms 
whose performance approaches TH,  p ( r )  arbitrarily closely as the 
number of channels increases. As a corollary, we show that for a 
given ( H , p )  there is a number r o ,  which also can be computed by 
linear programming, such that if the offered traffic exceeds 7-0, 

then for any channel assignment algorithm, a positive fraction of 
all call requests must be blocked, whereas if the offered traffic is 
less than 1 0 ,  all call requests can be honored, if the number of 
channels is sufficiently large. We call r o ,  whose units are Erlangs 
per channel, the capacity of the cellular system. 

Index Terms- Cellular, performance limits, channel assign- 
ment, capacity. 

I. Z”0DUCTION AND SUMMARY 

NE of the fastest growing segments of the telecommuni- 0 cations industry is cellular telephony. Nearly every major 
US. city is currently covered by a network of localized “cells,” 
which allow mobile customers to be connected, via short-range 
radio links, to the international wire-line telephone network. 
In most of these cellular systems, a mobile user requesting 
service is assigned one of a number of nonoverlapping radio- 
frequency channels, each of which is characterized by either a 
fixed frequency-slot or time-slot allocation, or both [6], [ 121. 
The key resources are the cells, which are the discrete locations 
in which call requests arise, and the channels, which are used 
to service these requests. Such systems are interesting for the 
theoretician, and lucrative for the service providers, largely 
because of the possibility of channel reuse, which allows 
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a channel to be used simultaneously in several cells, under 
certain circumstances. 

This paper represents an attempt to make an information- 
theoretic study of such “channelized” cellular telephone sys- 
tems, and in particular to identify the ultimate limits of 
such systems, as measured by the maximum possible number 
of calls that can be carried simultaneously. Of course, we 
cannot deal directly with real cellular telephone systems, but 
must base our studies on certain models for such systems, 
models which are mathematically tractable but which we hope 
capture the essence of the real systems.’ We should say at the 
beginning, however, that our models cannot be used to study 
nonchannelized cellular telephone systems, such as the CDMA 
systems proposed by Gilhousen et al. [5] or the frequency- 
hopped system proposed by Wallace [20]. 

In our models, we assume that there is a finite set of N 
cells, and an underlying offered traffic model for each cell, 
which is independent from cell to cell. The N cells share 
a common set of n channels, and the intensity of the offered 
traffic is measured in Erlangs per channel. Thus, if A; denotes 
the expected number of calls that would be in progress in 
cell i at a given time if all call requests in that cell could 
be honored, then the intensity of the offered traffic in cell 
i is A ; / n  Erlangs per channel. The overall offered traffic is 
then A = E; A; Erlangs, and the overall intensity of offered 
traffic is T = A / n  Erlangs per channel. The ratio p; = A i / A  
represents the fraction of the total traffic present in cell i ,  and 
we call the vector p = (PI, p 2 , .  . . , p ~ )  the trufic pattern. In 
what follows, we shall assume the traffic pattem p is fixed, 
while the offered traffic intensity T may vary. 

We further assume that when a call request arrives in a 
particular cell, it is either assigned to one of the n channels or 
blocked by a channel assignment algorithm. (A blocked call 
disappears from the system.) The channels assigned to calls 
cannot be arbitrary; they must satisfy certain channel reuse 
constraints, which can be described as follows. There is a 
fixed collection E = { E l ,  Ea, .  .. , E K }  of subsets of cells, 
called “forbidden” subsets. It is illegal for a given channel to 
be in use simultaneously in each cell of a forbidden set.2 As 

‘Although we shall not emphasize the point, our models can also be thought 
of as models for multitasking concurrent computation, in which the “cells” 
correspond to various types of tasks and the “channels” correspond to the 
(identical) processors available to perform these tasks, it being understood 
that a given processor may be able to handle different tasks simultaneously, 

’The assumption of fixed forbidden sets means, in effect, that we are re- 
stricting our attention to channel assignment algorithms which make decisions 
based only on the knowledge of which channels are in use in which cells, and 
not on more detailed information about the location of the mobile users within 
the cells, or current propagation conditions. 
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we will discuss in the next section, a finite set together with 
a collection of subsets is called a hypergraph, and so we call 
our cellular systems hypergraph systems. If the hypergraph 
associated with the system is denoted by H and the traffic 
pattem by p, we will call our system the (H, p) system. 

For a given system (H, p), and with a given channel 
assignment algorithm in mind, we define the carried fraflc 
function T(T)  to be the expected number of calls per channel 
that the channel assignment algorithm will permit to be in 
progress at a given time as a function of the offered traffic 
intensity T .  If the offered traffic is small, one expects the 
carried traffic T(T)  to be nearly equal to T for an intelligent 
channel assignment algorithm. However, as T increases, the 
system will become overloaded, and one expects the difference 
between T and T ( r )  to become pronounced. In this paper, we 
will show that it is possible to give a precise “asymptotic” 
description of the behavior of T(r )  for the best possible 
channel assignment algorithms for all values of T 2 0. Indeed, 
for a given system (H, p), we shall define a function T H , ~ ( T ) ,  
which can be computed by linear programming, and which has 
the following significance. If T ( r )  denotes the carried traffic 
function for any channel assignment algorithm for the (H, p) 
system, then T ( T )  5 TH, p ( ~ ) .  On the other hand, in the limit 
as the number of available channels becomes large, there exist 
channel assignment algorithms for the (H, p) system whose 
carried traffic functions are arbitrarily close to TH, p ( ~ ) .  Thus, 
T H , ~ ( T )  can fairly be called the carried traffic function for the 
(H, p) system. The following two examples, which will be 
referred to throughout the paper, illustrate our general results. 

Example 1.1: Consider the seven-cell system shown in 
Fig. l(a). There are 14 minimal forbidden sets, viz. the 12 
pairs of adjacent cells, and the sets (1, 3, 5) and (2, 4, 6). 
(From the definition of a forbidden subset, any superset of a 
forbidden subset is also a forbidden subset. Therefore, we need 
only consider minimal forbidden subsets.) The traffic pattern is 
(PI, ... , p 7 )  = (1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/4). We shall 
see below that the TH,~(T) curve for this system is as shown 

Example 1.2: Consider the 19-cell system shown in 
Fig. 2(a). In an attempt to model a real system in which 
signals propagate isotropically and attenuate according to an 
inverse fourth-power law, we define a forbidden set E to be 
any subset of cells such that ‘&E-{ul d(u, w ) - ~  2 3/8, for 
all U E E, where d(u,  TJ) is the Euclidean distance between 
the center of cell U and the center of cell v, where the 
distance between the centers of adjacent cells is defined as 
1. It turns out that there are 93 distinct, minimal, forbidden 
subsets of this kind: the 42 pairs of adjacent cells, and also 
45 subsets of cardinality 5, and 6 of cardinality 6. For this 
example, we assume uniform traffic, i.e., the traffic pattern 
is p = (1/19, 1/19,..., 1/19). We shall see below that the 
T H , ~ ( T )  curve for this system is as shown in Fig. 2(b). 0 

The organization of the paper is as follows. In Section 
11, we present some preliminary material about hypergraphs, 
including a discussion of what we call random hypergraph 
mulficolorings, a notion which is central to our analysis of 
channel assignment algorithms. In Section 111, we will show 
that for any channel assignment algorithm, the carried-traffic 

in Fig. l(b). 0 

0 1 2 3 4 
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(b) 

Fig. 1. (a) A seven cell system. There are 14 forbidden subsets, the 12 pairs 
of adjacent cells, and the sets { 1,3,5} and { 2,4,6}. (b) The carried traffic 
function TH, p ( r )  = min (r,  i r  + 1 , 2 )  for the 7-cell ( H ,  p )  system of (a). 
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Fig. 2. (a) A 19-41 system. There are 93 forbidden subsets: the 42 pairs of 
adjacent cells, 45 subsets of size 5, and 6 of size 6. (b) The carried traffic fmc- 
tionTH,p(r) = min(r, gr+y, & ~ + 3 ,  &r+$f ,  &r+4, &r+6, 7) 
for the 19-cell ( H ,  p )  system of (a). 

function must satisfy T ( T )  5 To(T), where TO(.) is a simple 
function that can be computed by linear programming. In 
Section IV, on the other hand, we will give an asymptotic 
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analysis of a class of “fixed” channel assignment algofithms, 
and show that in the limit as n ---f 00, these algorithms 
achieve carried traffic functions that are at least as large 
as TI(T) ,  another simple function that can be computed 
by linear programming. In Section V, we will show that 
To(.) = Tl(r) .  This common value, denoted by T H , ~ ( T ) ,  
is the function referred to above. In Section V, we will also 
describe some of the most important properties of the function 
TH, p ( ~ ) ,  and identify the “most favorable” traffic patterns for 
a given hypergraph H .  In Section VI, we will compare the 
performance of two specific channel assignment algorithms to 
our asymptotic performance limits. Finally, in Section VII, we 
will discuss the extension of our results to more general traffic 
models, including models which allow calls to be “handed 
off’ from one cell to another. We will also show that for 
a given system ( H ,  p ) ,  even for these more general traffic 
models, there is a quantity TO,  which we call the capacity of 
the system, such that if the offered traffic intensity exceeds TO,  

then for any channel assignment algorithm, a positive fraction 
of all call requests must be blocked, while if the offered traffic 
intensity is less than TO, all call requests can be honored if the 
number of channels is sufficiently large. 

11. HYPERGRAPH MULITCOLORINGS AND 
RANDOM HWERGRAPH MULTICOLORINGS 

A hypergraph H is a pair (V, E ) ,  where V = 
{ V I ,  02,  ‘ . .  ,‘UN} is a finite set of vertices, and 
E = { E l ,  Ea , . .  . , E K }  is a finite collection of subsets 
of V ,  called the edges of H .  (See Berge [ l ]  as a general 
reference for hypergraphs. Note that an ordinary graph is 
just a hypergraph in which every edge has two elements.) 
We shall assume that each edge of H contains at least two 
vertices. An independent set for H is a set of vertices which 
contains no edge as a subset. A maximal independent set is 
an independent set which is not a proper subset of any other 
independent set. We assume H has M maximal independent 
sets {VI, Vz, . . . , VM) .  For future reference, we also define 
the indicator set Ij for the maximal independent set Vj as 
Ij = ( 2 :  vi E Vj), and the incidence matrix A = ( a i j )  as 

The hypergraph H can be reconstructed from A,  and for our 
purposes, it is the preferred representation of H .  

If w = (w1 , w2, . . . , W N )  is a list of real numbers assigned 
to the vertices of H ,  define the v - m transform (vertex- 
maximal independent set) of w as W = (WI, W 2 , .  . . , W M ) ,  
where W = wA,  i.e., 

N 

Forexample, if w = (1, 1 , - . . , 1 ) ,  then W = ( N I ,  N 2 , . . . ,  
N M ) ,  where Nj is the size of the j th  maximal independent 
set Vj. Similarly, if X = ( X I ,  Xz, . . . , X M )  is a list of real 
numbers assigned to the maximal independent sets of H ,  the 
m-v transform (maximal independent set-vertex transform) of 

~ 

23 

X is x = (XI, 2 2 , .  . . , XN), where xT = A X T ,  i.e., 

M 

For example, if X = (1, 1 , . . . , 1 ) ,  then x = (MI, M 2 , . - + ,  
M N ) ,  where Mi denotes the number of maximal independent 
sets containing vertex vi. 

Example 2.1: The seven-cell system of Fig. l(a) can be 
viewed as a hypergraph with seven vertices and 14 edges, 
viz. the 12 pairs of adjacent cells, together with (1, 3, 5) and 
{ 2, 4, 6). This hypergraph has exactly ten maximal indepen- 
dent sets, viz. V = {VI , Vz, . . . , Vloj, where the correspond- 
ing adjacency matrix A is given by 

1 
2 
3 

A =  4 
5 
6 
7 

1 2  3 4 5 6 7 8 9 1 0  
I 1  1 1  0 0 0 0 0 0 0 

0 0 0 1 1 1 0 0 0 0  
1 0 0 0 0 0 1 1 0 0  
0 1 0 1 0 0 0 0 1 0  
0 0 1 0 1 0 1 0 0 0  
0 0 0 0 0 1 0 1 1 0  

( 0  0 0 0 0 0 0 0 0 1 

(2.3) 

Thus, e.g., I5 = (2, 5) and I10 = (7) .  Note that the 
Nj’s  are the column sums of A and the Mi’s are the 
row sums of A. In the example, ( N I ,  N2, . . .  , N I O )  = 

U 
Example 2.2: The 19-cell system of Fig. 2(a) can be viewed 

as a hypergraph with 19 vertices and 93 edges, as we saw in 
Example 1.2. It turns out that there are exactly 187 maximal 
independent sets, and so the incidence matrix A for this 

0 
An n-multicoloring of a hypergraph H = (V, E )  is an 

assignment of a set of distinct elements (“colors”) from 
{ 1, 2, . . . , n} to each vertex in such a way that for all colors 
c = 1, 2, . . . , n, the set of vertices assigned color c must be 
an independent set. In principle, an n-multicoloring can be 
described by an N x n matrix (mi,) of 0’s and 1’s such that 
mi, = 1 if color c is assigned to vertex i and 0 otherwise. 
Given an n-multicoloring, if the number of colors assigned to 
vi is mi, then plainly, 

(2, 2, 2, 2, 2, 2, 21 21 2, 1) and (Mil M2, ’ . ’  M7) = (3, 3, 
3, 3, 3, 3,  1). 

example has dimensions 19 x 187. 

n - 
mi = Xmi,,  i = 1, 2, .  . . , N .  (2.4) 

c=l 

Theorem 2.1: Suppose (mi,) is an n-multicoloring of the 
hypergraph H .  If ( W I ,  w ~ ,  . . . , W N )  is any set of nonnegative 
weights attached to the vertices of H ,  we have 

(2.5) 
i=l 

where W,, is the maximum component of the v - m transform 
of (w1, wZ,”.,wN). 
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Proof: From (2.4), we have 
N N n  

C w i m i  = C w i C m i c  

i=l i=l  c=l 
n N  

c=l i= l  

For a fixed value of e, the inner sum in (2.6) is equal to 
CiEJc w;, where J,  = {i: m i ,  = 1) .  But by the definition 
of a multicoloring, the set of vertices assigned a fixed color 
must be an independent set, so that J ,  C Ij  for some index j. 
Hence (recall that the weights w; are nonnegative), 

N 

Thus, combining (2.5) and (2.6), we have 
N n 

C w i m i  I XWmax = n w m a x ,  
i=l c= 1 

as asserted. 0 
We next define a random n-multicoloring of H as a random 

N x n matrix M = (mi,) of 0’s and 1’s such that for 
each point w in the underlying sample space, M ( w )  is an 
n-multicoloring of H. 

Theorem 2.2: If M is a random n-multicoloring for H ,  then 
for  any set of numbers (y1,  y2,  . . . , Y N )  satisfying 0 I yi I 1, 
we have 

where Nj is the size of the j t h  maximal independent set Vj, and 
(Y1, Y2,. . . , Y M )  is the U - m transfonn of (y1, y z , .  . . , Y N ) .  

Proof: For any w, we have 

N N N 

C m i ( w )  C m i ( w ) y i  + C m i ( w ) ( l -  y i ) .  

The theorem now follows by applying Theorem 2.1 to the 
second sum on the right side, and then taking expectations of 
both sides. 0 

i=l i=l i=l 

111. UPPER BOUNDS ON THE PERFORMANCE 
OF CHANNEL ASSIGNMENT ALGORITHMS 

Let us review the system model we introduced in Section 
I, using the terminology developed in Section 11. We are 
given a hypergraph H = (V, E), with vertex set V = 
{ V I ,  V ~ , . . - , U N )  and edge set E = {El ,  E~,...,EK}, a 
probability vector p = (p1 ,  p z ,  . . . , p ~ ) ,  and a positive integer 
n. The vertices of H represent the cells of our system, 
the edges of H represent the minimal forbidden reuse sets, 
the components of p represent the relative distribution of 
the offered traffic, and n represents the number of available 
channels. 

We assume that calls arrive randomly, and that the nor- 
malized traffic intensity is r Erlangs per available channel, so 

that the expected number of offered calls in the system is rn. 
The traffic pattern p = (p1 ,  p2 ,  . . . , p ~ )  says that the traffic 
intensity in the ith cell is p z n ,  i.e., the offered traffic in the 
ith cell is pirn. The traffic is assumed to be independent from 
cell to cell. 

We wish to analyze the performance of a given channel 
assignment algorithm, which takes each call request in each 
cell and either assigns it to a channel or blocks it. We 
shall make no formal attempt to define a channel-assignment 
algorithm, except to assume that at any point in time the set 
of cells using a given channel must be a subset of a maximal 
independent set of H, i.e., that any such algorithm produces 
a random n-multicoloring of H. If we denote the number of 
channels being used in cell i by p;, then the carried traffic, 
which is the expected number of channels in use at a given 
time, is E(C:, pi) .  As mentioned in Section I, we measure 
the performance of a given channel assignment algorithm 
by its carried-traffic function T(r) ,  defined as the expected 
number of accepted calls per available channel: 

The main result of this section is the following. 
Theorem 3.1: Let ( y 1 ,  y z ,  . . . , Y N )  be any list of N num- 

bers satisfying 0 I yi 5 1 for  i = 1, 2 ,  . . . , N .  Then, for any 
channel assignment algorithm, 

where (Y1 , Y2, . . . , YM)  is the v-m transform of ( y ~ ,  y2, . . . , 

Proof: Since the average carried traffic cannot exceed the 
average offered traffic, and since the average offered traffic in 
the ith cell is pirn, then E ( p i )  5 p;rn for i = 1, 2 , .  . . , N .  
The result now follows from (3.1) and Theorem 2.2. 0 

The following result is a simple corollary to Theorem 3.1, 
but it allows us to define the important function To(T), which is 
an upper bound on the carried traffic function for any channel 
assignment algorithm for the (H, p) system. 

Theorem 3.2: Suppose To(.) is the value of the following 
linear program: 

?/NI- 

N 

r C p i y i  + YN+1 = minimum, subject to (3.3) 
i=l 

Then, for  any channel-assignment algorithm for  the ( H ,  p )  
system, T ( r )  5 T0(r). 
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Proof: If (3.4) is satisfied, then by Theorem 3.1, the 
bound (3.2) holds. If now yN+1 is a real number satisfying 
(3.5), then by the definition (2.1) of the %r - m transform, 

y ~ + 1  2 Nj - Yj j = 1, 2 , .  . . , M.  (3.6) 

Thus, from (3.2), it follows that 
N 

T(T) 5 7-CP.u; + YN+1 (3.7) 

for any set of numbers y1, yz, . . . , y ~ + 1  satisfying (3.4) and 
0 

Example 3.1: We can illustrate Theorem 3.1 
with the ( H ,  p )  system of Fig. l(a) for which 
(NI,  ... , Nlo) = (2, 2, 2, 2, 2, 2, 2, 2, 2, 1). If we take y = 
( 1 , 1 , 1 , 1 , 1 , 1 , 1 ) , t h e n Y  = ( 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 1 )  
and maxj(Nj - y 3 )  = 0. Thus, Theorem 3.1 implies 
T(T) 5 T for all T 2 0. If y = (0, 0, 0, 0, 0, 0, O), then 
Y = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) and maxj(Nj - Yj) = 2, 
so that T(T) 5 2 for all T 2 0. Finally, if 
y = (1/2, l / 2 ,  1/2, 1/2,  1/2,  1/2, O),  then Y = 
(1, 1, 1, 1, 1, 1, 1,  1, 1, 0) and maxj(Nj - y 3 )  = 1, so 
that T(T) 5 3r/8 + 1 for all T 5 0. Combining these 
three inequalities, we find that the carried traffic function 
T(T) for the ( H ,  p )  system in Fig. I(a) must satisfy 
T(T) 5 min (T, 3r/8 + 1, 2). Indeed it is possible to show 
that TO(.) = min (T, 3r/8 + 1, 2) for this system. [See Fig. 

Example 3.2: Consider the 19-cell example of Fig. 2(a). 
If we take y = (1, 1 , . . . , 1 )  , max(Nj - &) = 0, and 
Theorem 3.1 implies T(T) 5 T for all T 2 0. If we take 
y = (0, 0 , .  . . , 0), max (Nj  - yj)  = 7, and we get T(T) 5 7 
for all T 2 0. Therefore, T(T) 5 min(r, 7 )  for all T 2 0. 
Solving the linear program of Theorem 3.2 using a computer, 
we get 

i = l  

(3.5). This completes the proof. 

I@).] U 

To(.) = min T, -T + ?, + 3, ( :: l3 
6 18 5 

- T +  - - ~ + 4 ,  
19  5 ’ 19 

This function is shown in Fig. 2(b). I7 

Iv. ASYMPTOTIC PERFORMANCE OF FIXED 
CHANNEL ASSIGNMENT ALGORITHMS 

In this section, we will study the asymptotic performance of 
a class of channel assignment algorithms which we call Jixed 
channel assignment algorithms. By asymptotic, we mean that 
n, the number of available channels, is large. We shall not 
be precise about the underlying model of the offered traffic, 
except to require that it satisfy the following “asymptotic 
traffic property (ATP),” originally introduced by McEliece and 
Sivarajan [13], which can be defined by the performance of a 
simple one-cell channel assignment algorithm. 

Suppose, then, that there is just one cell, and that there 
are n available channels. An obvious channel assignment 
algorithm in this situation is a “greedy” algorithm, i.e., one 
in which when a new call request arrives, it is assigned to 

any unoccupied channel, if there is one, and otherwise it is 
blocked. If the intensity of the offered traffic is k Erlangs, 
we denote by C ( k ,  n )  the carried traffic, i.e., the expected 
number of occupied channels for the greedy algorithm. The 
ATP referred to above is 

lim ~ c(kn’ = min(r, 1) if k,/n --$ T. (4.1) 
n-m n 

The ATP says that if the offered traffic is less than the number 
of available channels, then, asymptotically, the fraction of 
offered calls that are blocked approaches zero, whereas if 
the offered traffic exceeds the number of available channels, 
then, asymptotically, the fraction of the avaiIable channels 
that are occupied approaches one. It is thus a kind of law or 
large numbers. Most common traffic models satisfy the ATP, 
including the standard Poisson arrivals with exponential call 
durations. (We give a proof of this in Section VI.) 

We will now define the family of channel assignment algo- 
rithms, which we callfied channel assignment algorithms, and 
proceed to analyze their asymptotic performance, assuming 
the ATP. 

Thus, let X = (XI ,  X 2 , - . .  ,X,) be a list of A4 real 
numbers satisfying X, 2 0 and E, X ,  = 1. For 3 = 
1, 2, . . . , M ,  we define n, = LnX,], and create M disjoint 
classes of channels C1, C2, ‘ . , C,, with class CJ containing 
exactly n, channels. Then, for j = 1, 2, . . . , M ,  we allocate 
each of the channels in C, to each vertex in the jth maximal 
independent set 5. Thus, m, = 1, n,a,, channels are 
allocated to vertex U , .  But since nX, - 1 < n, 5 nX,, and 
since E, X,a2, = xz, where ( X I ,  2 2 , .  . . ,.AT) is the m - U 
transform of X, it follows that nx, - Ma < m, 5 nxz, and so 

m. 
lini -2 = IC; for i = 1, 2 , . . .  , N .  (4.2) 

n+cc n 

For a given X and n, we define a channel assignment 
algorithm as follows. When a call request arrives at U;, assign 
it one of the m; channels available at U ; ,  if at least one is 
not in use; otherwise, block the call. We call this the XJixed 
channel assignment algorithm. It is, in effect, N independent 
greedy algorithms, one for each cell in the system. 

At any given time, the channels in use in each of the 
cells constitute an n-multicoloring of the hypergraph H .  
Moreover, these n-multicolorings have the property that the 
channels assigned to call requests in cell i in each of these 
n-multicolorings is a subset of the m; channels allocated to 
cell i .  

Theorem 4.1: Assume the ATP. If Tx ( r )  denotes the carried 
trafic function of the X j xed  channel assignment algorithm 
for the ( H ,  p )  system, then 

N 

n-cc lim Tx(T) = min  pi, xi) for all T 2 0. (4.3) 
i = l  

Proof: In the X fixed channel assignment algorithm, 
each of the N cells operates independently of the others. 
Within the ith cell, the algorithm is a greedy algorithm with mi 
available channels and the offered traffic is pirn Erlangs. Thus, 
the carried traffic in the ith cell is E ( p i )  = C(pjrn, mi), and 
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the carried traffic for the entire system is 
so that 

C(pirn, mi), 

l N  Tx(r) = --CC(p;rn, mi). 
n .  a=1 

(4.4) 

But from the ATP property (4.1) and the known rate of growth 
of mi (4.2), 

1 
n-twn lim -C(p;rn,  mi) = min (pir, xi). (4.5) 

Combining (4.4) and (4.5), we obtain (4.3). 0 
Theorem 4.2: Suppose TI(r) is the value of the following 

linear program: 

M N 

C N j X j  - z’ z - - maximum, subject to (4.6) 
j=1 i=l 

M 

C X j  = 1 
j=1 

(4.9) 

M 

C X j a i j  - zi 5 pir  
j=1 

i = 1, 2,. . . , N .  (4.10) 

Then, for any jked  r ,  there exists a jked  channel assignment 
algorithm for the ( H ,  p )  system whose asymptotic carried 
traficfinction is arbitrarily close to TI ( r ) .  

Proo$ We begin with vectors X = ( X I ,  X2, . . . , X M )  
and z = (z1, z2, . . .  , Z N )  whose components satisfy 
(4.7)-(4.10). Let (zl, z 2 , .  . f  ,zn) be the m - w transform 
of X .  We note that (4.10) is equivalent to zi - z; I p i r ,  
and so by (4.8) and (4.10), we have z; - z; 5 min (p ir ,  z;). 
Therefore, 

Note also 

so that 

N N M  

M 

= C X j N j  

j=1 

(4.12) 

N M N 

C(.i - Zi) = C X j N j  - C Z i .  
i=l j=1 i=l 

(4.13) 

,,’ - X-Algorithm 
. . - Y-Algoriihm 

Onered Traffic Intensity r 

Fig. 3. The functions T x ( T )  = min(r, t) and 
T y ( r )  = min( S T ,  2) for the 7-cell (H, p )  system of 
Fig. l(a). Here, X = (0, 6 ,  0, 0, $, 0, 0, $-, 0, g) and 
Y = (0, $, 0, 0, $, 0, 0,  +, 0, 0). 

Therefore, we have 

N 

lim Tx(r)  = min (pir,  z;) by Theorem 4.1 
n - t m  

i= 1 
N 

2 C ( X ~  - zi) by (4.11) 
i=l 
S N 

= C N j X j  - C Z ~  by (4.13) (4.14) 
j=1 i=l 

Thus, the X fixed channel assignment algorithm has a carried 
traffic function which is asymptotically at least as large as the 
objective function (4.6), and this proves the theorem. 0 

Example 4.1: To illustrate Theorem 4.1, we return to the 
hypergraph of Fig. l(a). If we let X2 = X5 = x8 = 
1/5, Xlo = 2/5, and X ,  = 0 for all other values of j ,  then the 
m-w transform of X is (1/5, 1/5, 1/5, 1/5, 1/5, 1/5, 2/5), 
and Theorem 4.1 implies that the X algorithm’s asymp- 
totic carried traffic curve is Tx(r)  = 6min( i r ,  i) + 
min (ar ,  2/5) = min (a., i) + min (ar,  2/5) = min ( r ,  E) .  
Similarly, if Y2 = Ys = Y8 = 1/3, and Y, = 0 for 
all other values of j, then the m - w transform of Y is 
(1/3, 1/3, 1/3, 1/3, 1/3, 1/3, 0), and by Theorem 4.1, the 
Y algorithm’s asymptotic carried traffic curve is Ty(r)  = 
6min( i r ,  i) = min( i r ,  2). These two functions are shown 
in Fig. 3. By taking all possible convex combinations of 
X and Y ,  i.e., vectors of the form 2 = AX + (1 - A)Y, 
we obtain a family of curves which give the convex hull of 
T’(r) and Ty(r ) .  But this convex hull is the same as the 
curve TO(.) given in Fig. l(b). Since we saw in Section I11 
that no point above this curve is achievable by any channel 
assignment algorithm, and we have shown that every point 
below the curve is asymptotically achievable, we are justified 
in asserting that the function TO(.) is the achievable region 
for the performance of channel assignment algorithms for the 
(H, p) system of Fig. l(a). In the next section, we will see 
that this is no accident, but an instance of a general rule. 

Enample 4.2: For another illustration of Theorem 4.1, we 
consider the 19-cell hypergraph of Fig. 2(a). For this hy- 
pergraph, there exist vectors X ( ” ,  k = 1 , . - . , 6  (of length 
M = 187) whose m - w transforms are the respective vectors 
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.(le) (of length N = 19) listed below. The vectors dk)  satisfy 

and 

and hence are completely specified by 

and 

For example, there exists a vector X(l) whose m-v transform 
is the vector dl), and hence, a fixed CAA, viz. the X ( l ) -  
fixed CAA, that allocates a fraction 13/49 of all the available 
channels to each of the 19 cells. It turns out again that the 
convex hull of the carried traffic functions T X ( k ) ( r )  of the 
X(k) algorithms corresponding to these vectors X(k) is the 
same as the curve To(r) given in Fig. 2(b). Therefore, as in 
the previous example, the function TO(.) is the achievable 
region for the performance of channel assignment algorithms 

U for the ( H ,  p )  system of Fig. 2(a). 

V. EQUALITY OF To(.) AND Ti(r): 
GENERAL PROPERTIES OF THIS FUNCTION 

In Section 111, we showed that for any channel assignment 
algorithm for the ( H ,  p )  system, the corresponding carried 
traffic function was bounded above by TO(.). On the other 
hand, in Section IV, we showed that if n is sufficiently large, 
then the performance of certain fixed channel assignment 
algorithms for the ( H ,  p )  system is bounded below by Tl(r). 
Interestingly, however, these two functions are equal. 

Theorem 5.1: To(r) = Tl(r), for all r 2 0.  

~ 

27 

Proof: By Theorem 3.2, To(r) is the value of a certain 
linear program, and by Theorem 4.2, Tl ( r )  is the value of 
another linear program. However, these programs are dual 
programs (see Franklin [4, Sect. 1.2]), and so by the Duality 
Theorem of Linear Programming [4, Sect. 1.81, the values of 
these two programs are equal, provided both programs are 
feasible. It is easy to show that both programs are feasible: a 
feasible solution for the TO(.) program is y1 = y2 = . . . = 
y , ~  = 0 and YN+1 = maxj Nj,  and a feasible solution for the 
TI ( r )  program is XI = 1, XZ = . . . = XM = 0 and zi = ail  
f o r i = l ,  2;~.,N.Thus,T0(r)=T1(r),asasserted. 0 

Let us denote the common value of the functions T o ( r )  and 
Tl(r) by TH, p ( r ) .  The next theorem gives the most important 
general properties of this function. 

Theorem 5.2: The function TH, p ( r )  has the following prop- 
erties. 

a)  TH, p ( r )  is nondecreasing, continuous, piecewise linear, 
and convex n. 

b)  TH, p ( r )  = r for  all r 5 T O ,  where T O  is the value of the 
following linear program: 

r = maximum, subject to (5.1) 

M 

c x j  = 1 
j=1 

(5.3) 

Furthermore, TO 2 1. 
c ) I f p i  > O f o r a l l i , t h e n T ~ , , ( r )  =maxjNjforal l r  2 rl, 

where T I  is the value of the following linearprogram (here, and 
henceforth VI , V2 , . . . , V,. are the maximal independent sets 
of largest cardinality): 

(5 .5)  r = minimum, subject to 

M’ 
E X j  = 1 
j=1 

(5.7) 

M‘ 

cxjaij I p i r  2 = 1, 2 , .  ’ . , N .  (5 .8)  
j=1 

If some of the p i ’ s  are zero, then the above statement must 
be modijied by replacing the original system ( H ,  p )  with the 
reduced system ( H I ,  p’ )  consisting of only those cells with 
nonzero p i .  
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Proof: a) According to Theorem 4.2, a feasible solution 
for the Tl(r) program will also be feasible for all r’ 2 r ,  
and so Tl(r’) 3 Tl(r) for all r’ 2 r.  Thus, TH,~(T) is 
nondecreasing. Furthermore, the 7’1 (r) program is a parametric 
linear program (with parameter r )  in the sense of [4, Sect. 1.91, 
and so by a result proved there (p. 70), the function Tl(r)  is 
continuous, convex n, and piecewise linear. 

b) We use the Tl(r)  program (Theorem 4.2) as our 
definition of T H , ~ ( T ) .  Since Nj = C i a i j ,  the objective 
function (4.6) can be written as 

N / M  

(5.9) 

By the constraint (4.10); it follows that Tl(r )  5 r, with 
equality if and only if C j  Xjai j  - zi = p ; ~  for i = 
1, 2 , . . . , N  . Thus, since z; 2 0, we have that Tl(r) = r 
if and only if there exists a vector ( X I ,  . . . , X M )  satisfying 
(5.2)-(5.4). 

To prove that ro 2 1, we consider the following choice for 
the Xj’s:  

N 

where, in (5.10), we recall the notation introduced in Section 
11, Mi = C j  aij. Plainly, X j  2 0 for all j, and a routine 
calculation shows that C j  X j  = 1.  We now consider the sum 
C j  X j  aij : 

- & . M i  - 
Mi 

= pa. 

Thus, the Xj’s  defined in (5.10) satisfy the constraints 
(5.2)-(5.4) with r = 1, which shows that TO 2 1. 

c) We again use the Tl(r)  program definition of TH,~(T), 
and define N,,, = maxjNj. Because of the constraints 
(4.7)-(4.9), the objective function (4.6) is at most N,,,, with 
equality if and only if the zi’s are all zero and X j  = 0 for 
j > M * .  Thus, Tl(r) = N,, if and only if there exists 
a vector ( X I , .  . . , X M )  satisfying (5.6)-(5.8). To show that 
the program (5.5)-(5.8) is feasible, we consider the choice 
X1 = 1, X j  = 0 for j > 1. Since (5.6) and (5.7) are satisfied, 
this vector will be feasible iff (5.8) is satisfied, i.e., if ail 5 p;r 
for i = 1, 2, , N .  If p; > 0 for all i, this will hold for all 
sufficiently large r. 

If, on the other hand, some of the pi’s are zero, the program 
(5.5)-(5.8) may no longer be feasible. However, if we remove 
from the system all cells v; in which there is no traffic, i.e., 

for which pi = 0, then plainly we will not affect the function 
T ( r ) ,  and then the above reasoning may safely be applied to 

For a given hypergraph H, Theorem 5.2 gives us the 
following upper and lower bounds on TH,~(T), which do not 
depend on the traffic pattem p: 

(5.1 1) 

If, for a particular p ,  we have TN,~(T) = min ( r ,  l), we say 
that p is an unfavorable trafic pattern for H. On the other 
hand, if TH, p ( ~ )  = min ( r ,  N,,,), we say that p is a favorable 
traficpattern. The next theorem identifies these extreme traffic 
patterns. 

Theorem 5.3: Let N L ,  denote the size of the largest max- 
imal independent set of HI. For a jixed hypergraph H ,  the 
traffic pattern p ’  is unfavorable if and only if NL,, = 1. On 
the other hand, p is favorable ifand only ifthe vector N,,p is 
a convex combination of thefirst M* columns of the incidence 
matrix A, i.e., ifthere exists a vector (XI ;- . . , X M * )  satisfying 
(5.6) and (5.7) such that 

the reduced system. U 

min (T ,  1) 5 T H , ~ ( T )  5 min (T ,  N,,,=). 

M 

E X j a i j  = N,,, pi  for i = 1, 2 , .  . . , N .  
j=1 

Proof: Suppose that p is unfavorable for H. By Theorem 
5.2c), this implies N k ,  = 1. On the other hand, if N;,, = 1, 
then combining the result TH,~(T) = r for r 5 1 from 
Theorem 5.2b) with T H , ~ ( T )  = Nkm = 1 for r 2 r1 from 
part c) and T H , ~ ( T )  is nondecreasing from part a), we obtain 
that TH,~(T) = min (T ,  l), i.e., p is unfavorable. 

We tum now to favorable traffic patterns. By Theorem 5.2, 
p is favorable if and only if TO = r1. If this holds, then 
7-0 = TH,~(TO) = T ~ , ~ ( r 1 )  = N,,, and so p is favorable 
if and only if Tl(N,,) = N,,,. We saw in the proof of 
Theorem 5.2c), however, that Tl ( r )  = N,,, if and only if 
z; = 0 and X j  = 0 for j > M* in the T l ( r )  program. Then, 
by (4.10), with T = N,,,, the components xi of the m - w 
transform of X satisfy 

M’ 

xi = X.O,.. 3 a3 < -Pa .N,,, i = l , . . .  , N .  
j=1 

But also, 

N M’ N M’ 

C x i  = CxjCaij = C X ~ N ~  = N,,,. 

On the other hand, xi Nmaxpi = Nmax, SO if X i  < NmaxPi for 
any value of i, we would have xi  xi < N,,,, a contradiction. 

0 
To illustrate Theorem 5.3, we retum to the hypergraph 

described in Fig. l(a). Here, N,,, = 2, and so a traffic pattem 
p is favorable if and only if 2p is a convex combination of 
the first nine columns of the incidence matrix A given in (2.3) 
(see Fig. 4). For this hypergraph, NL,, = 1 if and only if 
the reduced system (H’, p ‘ )  consists of one of the following 
sets of three mutually adjacent cells: (1, 2, 7}, (2, 3, 7 } ,  
(3, 4, 7}, (4, 5 ,  7 } ,  ( 5 ,  6, 7}, and (6, 1, 7). Therefore, a 

i=l j = 1  i=l j = 1  
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Offered Traffic Intensity r 

Fig. 4. The carried traffic function for the ( H ,  p )  system, where H is the 
hypergraph in Fig. l(a), for a favorable traffic pattem p .  

traffic pattem p is unfavorable if and only if p is concentrated 
in some one of these sets. 

Theorem 5.2a) tells us that TH, p ( ~ )  is piecewise linear, but 
it does not say how many pieces there are. Nor do we know. 
However, if we define a breakpoint as a value of the offered 
traffic intensity r > 0 for which the slope of TH, p ( r )  changes 
its value, we offer the following conjecture. 

Conjecture: For an N-cell system, there are at most N 
breakpoints. 

For the 7-cell hypergraph of Fig. l(a) there are two break- 
points, viz. r = 8/5 and r = 8/3. For the 19-cell hy- 
pergraph of Fig. 2(a), there are six breakpoints, viz. T = 
247/49,38/7,57/10,38/5,19/2, and 19. Neither of these ex- 
amples strains our conjecture very far. The following example, 
however, shows that the value N cannot be replaced by any 
smaller number. 

Example 5.1: Consider an N-cell system with no forbidden 
subsets, i.e., the same channel may be used simultaneously in 
all N cells. For such a system, the transpose of the vertex- 
maximal independent set incidence matrix A is given by 
AT = (1, 1,. . . ,1). From Theorem 4.2, for this system, 

N 

i=1 

The breakpoints for this system are given by r = l/pi, 
i = 1,. . . , N .  If the vector p is such that no two of the pi's  

0 
Computational Complexity: For given H ,  p, and I-,  

TH,~(T) is the value of a linear program with N + 1 
variables and M + N constraints [(3.3)-(3.5)] or vice versa 
[(4.6)-(4.10)], where N is the number of vertices of H and 
M ,  the number of maximal independent sets. In general, the 
number of maximal independent sets M of a (hyper)graph 
can be exponential in the number of vertices N [16]. 
Therefore, the worst-case complexity of computing TH, ( r )  
is exponential in the number of vertices of H .  This implies 
that, in general, TH,~(T) can be explicitly calculated only 
for systems of moderate size. However, large linear programs 
commonly occur in the solution of many problems of practical 
importance, and one of the practical uses of our results may 
be the evaluation of practical channel assignment algorithms 
whose performance can be compared against TH, p ( r )  for 
systems of moderate size. 

are equal, there will be N distinct breakpoints. 

VI. PERFORMANCE OF ACTUAL 
CHANNEL ASSIGNMENT ALGORITHMS 

So far, we have not specified a definite probabilistic traffic 
model for call arrivals and holding times (durations). We have 
only required that such a model must satisfy the asymptotic 
traffic property (ATP). In this section, we focus on a specific 
model that satisfies the ATP. Namely, we assume that the 
process of call arrivals is Poisson with rate X per second, i.e., 
the probability that there are n call arrivals in an interval of 
length T seconds is given by 

, -AT -. (AT)" 
n! 

Since we are assuming that call arrivals are independent from 
cell to cell, each cell will have a different X associated with 
it. We assume that the mean duration of a call is l /p seconds, 
but we will not need to assume any specific distribution for 
call durations. 

We will first show that this model for offered traffic satisfies 
the ATP. Then, using this model, we will compare the perfor- 
mance of two specific channel assignment algorithms to each 
other and to the asymptotic performance limits of Theorem 5.2 

Consider first a one-cell system. Let p = X/p. Then, p is 
the offered traffic (in Erlangs). If n denotes the number of 
available channels, the probability that m calls are in progress 
is given by the well-known truncated Poisson distribution 

(See Syski [19, p. 1471 or Bertsekas and Gallager [2, p. 1401.) 
In particular, the probability that an incoming call is blocked 
is given by the celebrated Erlang B formula: 

The following lemma, whose proof we leave to the reader, 
characterizes the asymptotic behavior of Pb(p, n).  

Lemma: If f ( r )  denotes the limits, U S  n 4 cc, of the 
quantity Pb(p, n), for abed r = p / n ,  then 

0 5 r L l  
r > 1. f = {; - 1/r 

Theorem 6.1: For the trafic model with Poisson arrivals 
and arbitrary holding times, the ATP is satisfied, i.e., 

lim ___ c(Tn' = min(r, 1) for all r 2 0 (6.2) 
n-cc n 

where C ( p ,  n) denotes the carried trafic for an offered trafic 
of p Erlangs and n channels. 

Proof: From Syski [19, p. 1471, 

c (P ,  n) = P ( 1  - pb(P, n)) .  (6.3) 

Using this and the above lemma, 

for all r 2 0 

0 and the theorem is proved. 
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Having now established that our Poisson traffic model 
indeed satisfies the ATP, we know that the limits described 
in Theorem 5.2 apply to any channel assignment algorithm 
for any (H, p) cellular system with Poisson traffic. We next 
introduce two specific channel assignment algorithms, whose 
performance we will then study in detail. 
Dynamic Channel Assignment Algorithm (DCAA): Let the 
channels be numbered from 1 through n. A channel is said to 
be available in a cell if it can be assigned to a new call in that 
cell without violating any of the reuse constraints. The DCAA 
is a greedy algorithm which assigns the first (lowest numbered) 
available channel in a cell to a new call. Because of the 
difficulty of analyzing the performance of this algorithm, we 
have simulated its performance, and the results are presented 
below. For the simulations, we make the further assumption 
that the call durations are exponentially distributed with a 
mean of 3 min. 

Fixed Channel Assignment Algorithm (FCAA): For a given 
value of T ,  let X be a solution to the linear program in Theorem 
4.2 (T~(T) program) and let x; = Cj Xjai j .  From Theorem 
4.2, a fixed channel assignment algorithm (FCAA) that assigns 
a fraction x; of the total number of channels to cell i when the 
offered traffic intensity is T is asymptotically optimal. Given 
n, consider an FCAA that assigns x;n channels to cell i. For 
the rest of this section, when we speak of the FCAA, we 
will be referring to this algorithm. This algorithm is not, as 
it stands, a practical one since it needs to know the intensity 
of the offered traffic, which may be unknown and changing 
in time. An additional aspect that may render the algorithm 
impractical for large systems is the fact that it requires us 
to solve the linear program in Theorem 4.2, the complexity of 
which can be exponential in the number of cells in the system, 
as remarked at the end of Section V. 

The carried traffic in cell i for the FCAA is given by (Syski 
U9, p. 1471) 

C(p;m,  x;n) = p;Tn(l  - Pb(p;rn, .in)) 

where Pb(p, n) is given by the Erlang B formula (6.1), An 
alternate expression for Pb(p, n) is 

where 
00 

rf (n + 1) = tne--t d t  

is the incomplete Gamma function (Syski [19, p. 4971). This 
is the formula we used for our computations. 

We compute the channel assignments at the breakpoints 
(defined in Section V) using the linear program, and for values 
of T between breakpoints, we use the linear combination of 
the assignments at the breakpoints (see Section IV), which is 
asymptotically optimal. For T 5 TO,  we use the solution for 
T = TO, and for T 2 rl, we use the solution for T = T I .  

(The solutions at the breakpoints that we use for the 7-cell 
and the 19-cell examples are listed in Examples 4.1 and 4.2, 

- r 2 2.0 
c .- c 

1.5 
U 
0 
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-- n=200 

n=400 
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(c) 

Fig. 5. (a) The performance of the FCAA for the 7-cell ( H ,  p )  system of 
Fig. l(a). n is the number of channels available in the system. The function 
T H , ~ ( T )  of Fig. l(b) is also shown for comparison. (b) The performance 
of the DCAA for the 7-cell ( H ,  p )  system of Fig. l(a). n is the number of 
channels available in the system. The function TH, p ( ~ )  of Fig. l(b) is also 
shown for comparison. (c) A comparison of the performance of the FCAA 
and the DCAA for the 7 - 4 1  (H, p )  system of Fig. l(a) when the number 
of channels n = 400. The function T H , ~ ( T )  of Fig. l(b) is also shown for 
comparison. 

Having described our two channel assignment algorithms, 
we now present, in Figs. 5(a)-(c) and 6(a)-(c), the results of 
our studies of their performances on the 7- and 19-cell systems. 
All figures show T H , ~ ( T )  for the purposes of comparison. In 
addition, for the 7-cell example, 

0 Fig. 5(a) shows the performance of the FCAA for n = 
100, 200, and 400, 

0 Fig. 5(b) shows the performance of the DCAA for n = 
respectively.) 100, 200, 400, and 
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Fig. 6. (a) The performance of the FCAA for the 19-cell ( H ,  p )  system of 
Fig. 2(a) n is the number of channels available in the system. The function 
T H , ~ ( T )  of Fig. 2(b) is also shown for comparison. (l~) The performance of 
the DCAA for the 19-cell ( H ,  p )  system of Fig. 2(a) n is the number of 
channels available in the system. The function T H , ~ ( T )  of Fig. 2(b) is also 
shown for comparison. (c) A comparison of the performance of the FCAA 
and the DCAA for the 19-cell ( H ,  p )  system of Fig. 2(a) when the number 
of channels n = 400. The function TH. p ( ~ )  of Fig. 2(b) is also shown for 
comparison. 

0 Fig. 5(c) compares the performance of the FCAA and the 

Similarly, for the 19-cell example, 
0 Fig. 6(a) shows the performance of the FCAA for n = 

0 Fig. 6(b) shows the performance of the DCAA for n = 

0 Fig. 6(c) compares the performance of the FCAA and the 

DCAA for n = 400. 

100, 200, and 400. 

100, 200, 400, and 

DCAA for n = 400. 

We see that the performance of the DCAA is better than 
that of the FCAA, and quite close to the asymptotic limit in 
the 7-cell example for n = 400. Thus, the DCAA cannot 
be improved upon by much, if at all, in this example, and 
based on these performance results, we conjecture that it, 
like the FCAA, is asymptotically optimal. This is surprising 
because the DCAA is quite unsophisticated (and greedy), and 
its implementation does not require an estimate of the offered 
traffic, unlike the FCAA. 

The performance of the DCAA is quite good in the case 
of the 19-cell example, too, although the "impractical" FCAA 
does do better. 

We find these numerical results, especially those of the 
DCAA, encouraging. They suggest that the asymptotic limits 
of Theorem 5.2 are closely approached for relatively small 
values of n with relative unsophisticated channel assignment 
algorithms. Perhaps future researchers will be able to verify 
this more convincingly. In any case, we have been able to 
estimate the rate of convergence of the performance of the 
"impractical" FCAA to the limit T H , ~ ( T )  quite closely. We 
present these results in the last part of this section. 

The carried traffic function of the FCAA is given by 

[This is the same function that is defined by (3.1), but now we 
explicitly exhibit the dependence of the carried traffic function 
of a CAA on n by writing T(T? n) rather than T(r ) . ]  

From Theorem 4.2, for all r 2 0, 

lim T(T, n) = T H , ~ ( T ) .  
n-cc 

We wish to know how "far away" T(r ,  n) is from TH, p ( ~ )  for 
some given, finite n. A natural notion of the distance between 
the two functions of r is 

def 
d(n)=suplTH,p(r) - T ( r ,  .>I = s u P T H , p ( r )  - T(r ,  n). 

r20  r20 
(6.4) 

The last step holds since T H , ~ ( T )  2 T(r,  n) (by Theorem 
3.2). Clearly, 

lim d ( n )  = 0. 

We will use this function d ( n )  to measure the distance between 
T(T, n) and T H , ~ ( T ) .  We begin with a simple single-cell 
system. 

For a single-cell system, TH, ,(r) = min ( T ,  l), and 
T(r,  n) = G(rn, a)/. is easily expressed in terms 
of the Erlang B formula using (6.3). Fig. 7 compares 
T(r ,  100),T(r, 200),T(r,  400), and T H , ~ ( T )  for T E [O, 21. 
Since T ( r ,  n) is a monotonically nondecreasing function of 
T (from the Erlang B formula) and T H , ~ ( T )  is constant for 
T 2 1, it is clear that the supremum in (6.4) is achieved for 
some r 5 1, and we can write max instead of sup in (6.4). 
Therefore, 

n-m 

It can be shown from the Erlang B formula that r - T(T, n)  
is a monotonically nondecreasing function of r. Therefore, the 
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which p is either a favorable or an unfavorable traffic pattern 
(Theorem 5.3). For such systems, the FCAA that assigns piron 

d(n) for a single-cell system, 

n"/n! 
S(n) = 1 - T(1, n) = P*(n, n )  = E;=, n"llc!. 

Ramanujan developed the following asymptotic expression for For large n* 

if N even b(n) (Knuth [ll, p. 1171): N 

d(n)  - { T e  if N odd. 
0 

Example 6.2: Consider the 7-cell example. The maximum 
in the definition of d ( n )  is achieved for T = 8/3, independent 

1 4 

a s n + m .  

Using this, we obtain, for a single-cell system, 

T H , ~ ( T )  - T(T, n)  = O(n-l/ ') as n -+ 00. (6.5) 

(Since the FCAA and DCAA are identical for a single-cell 
system, this holds for DCAA as well.) 

Now, we consider a multiple-cell system. Again, since 
T(r ,  n)  is monotonically nondecreasing and T H , ~ ( T )  is con- 
stant for T 2 T I ,  we have, 

d ( n )  = max T H , ~ ( T )  - T(r ,  n). 
O<T<Tl 

Since TH,~(T) = T for T- 5 TO and T - T(r ,  n )  is a 
monotonically nondecreasing function of T ,  

N 

T(T, n) = C p i ~ - ( l  - Pb(pi~-n, x in ) )  (6.6) 
i=l 

so that 
N 

T H , ~ ( T )  - T(r,  n) = CO(n- ' / ' )  = O(Nn-1'2) 

= ~ ( n - ' / ' )  
i=l 

as n + 00 

for finite N.  
The determination of the constant implied by the 0 notation 

appears difficult in general, but can be determined in some 
special cases. Consider the systems (H, p )  for which r0 = rl. 

of n. For T = 8/3, the asymptotically optimum FCAA assigns 
n/3 channels to all cells except the central cell and no channels 
to the central cell (cell 7). Therefore, xi = 0 for the central 
cell and pir  = xi = 1/3 for each of the other cells. Using 
(6.4) and (6.6), 

= 2.76n-1/2 for large n. 0 

Example 6.3: Consider the 19-cell example. The maximum 
in the definition of d ( n )  is achieved for T = 57/10, indepen- 
dent of n. For T = 57/10, the asymptotically optimum FCAA 
assigns 3n/10 channels to all cells except the central cell and 
no channels to the central cell (cell 10). Therefore, xi = 0 for 
the central cell and p i r  = xi = 3/10 for each of the other 
cells. Using (6.4) and (6.6), 

= 7.87n-1/2 for large n. 0 

VII. GENERALIZATIONS: CAPACITY OF A CELLULAR SYSTEM 
In obtaining our asymptotic performance limits for channel 

assignment algorithms, we have assumed that the offered 
traffic is independent from cell to cell. Unfortunately, this 
assumption may be violated in practice. For example, if users 
are free to move from one cell to another when a call is in 



MCELIECE AND SIVARAJAN: CHANNELIZED CELLULAR TELEPHONE SYSTEMS 

- 

33 

progress, the offered traffic in one cell will depend on the 
carried traffic in adjacent cells. Similarly, if the offered traffic 
includes requests for intercell calls, call requests can arrive 
simultaneously in two different cells. In this section, we will 
briefly discuss how our results extend to the case of traffic 
arrival models with intercell dependencies. We will see that 
such dependencies do not change the carried traffic function 
for T 5 TO,  but for T > TO,  they will in general decrease T(T) .  
The exact amount of the decrease, we do not know. 

We first recall our upper bounds on the performance of 
channel assignment algorithms. In Section I, we defined the 
offered traffic A; in cell i as the expected number of calls 
that would be in progress in cell i at a given time if all 
call requests in that cell could be honored. When the traffic 
is not independent from cell to cell, and in particular when 
the offered traffic in one cell may depend on the carried 
traffic in other cells, this definition needs to modified. In this 
more general case, we define the offered traffic A; to be the 
expected number of calls that would be in progress in cell 
i at a given time if all call requests in all cells could be 
honored. (Of course, if the traffic is independent from cell 
to cell, the two definitions are equivalent.) With this more 
general definition, we can see that Theorems 3.1 and 3.2 
hold, even for dependent traffic, because the proofs depend 
only on the assumptions that the carried traffic cannot exceed 
the offered traffic, and that any channel assignment algorithm 
produces a random n-multicoloring of the underlying hyper- 
graph. Both of these assumptions hold even when the offered 
traffic is not independent from cell to cell. In short, traffic 
dependencies cannot increase the maximum possible carried 
traffic. 

However, simple examples show that traffic dependencies 
can decrease the maximum possible carried traffic for T > TO, 

and we are currently studying this interesting phenomenon. 
Nevertheless, if we make a certain plausible assumption about 
the asymptotic behavior of the traffic, we can show that 
TH,*(T) = T for r 5 TO,  i.e., Theorem 5.2b) holds, even 
when intercell dependencies are present. We will now discuss 
this extension of our results. 

The assumption we need to make we call the “weak 
asymptotic traffic property (WATP).” In order to define this 
property, we extend the X fixed channel assignment algorithm 
introduced in Section IV to handle the case of dependent 
traffic. Given a vector X = ( X I ,  . . . , X M )  and an integer 
n, the X fixed channel assignment algorithm allocates m; = cj LnXjJaij channels to cell i. When a call request arrives 
in cell i, the algorithm assigns it any one of the mi channels 
available in cell i if at least one is not in use; otherwise, it 
blocks the call. The algorithm does not distinguish among new 
calls, handoff calls, intercell calls, etc. In other words, it is, 
just as in the independent traffic case, N independent greedy 
algorithms, one for each cell in the system. 

As in Section IV, we denote by C ( k ,  n)  the carried traffic 
for this algorithm when the offered traffic is k Erlangs and 
there is a total of n channels. Recall that [see (4.2)] 

where z; = cj Xjai j .  The WATP referred to above is 

If zi 2 p i r  for all i, 

= p ; r  for all i. C(pirn, m;) then lim 
n+cc n 

In words, the WATP says that, if for every cell in the system 
the offered traffic is less than the number of available channels, 
then, asymptotically, the fraction of offered calls that are 
blocked approaches zero. We offer as a thesis the assertion 
that any reasonable traffic model which includes intercell 
dependencies must satisfy this property. 

Note that the original ATP for the case of independent traffic 
states that 

Since min(p;r, z;) = p ; r  if xi 2 pir ,  the ATP implies the 
WATP. The term “weak” refers to the fact that the WATP, 
unlike the original ATP, makes no assertion about the case 
when one or more of the z; < pir .  It appears to be very 
difficult to formulate a version of the ATP in this case because 
of the possible dependence of the offered traffic in one cell 
on the carried traffic in other cells. In any case, the WATP 
is enough to allow us to prove the result cited above, viz. 
TH,*(T) = r for r 5 TO.  

Theorem 7. I :  Assume the WATP. Then, even in the presence 
of intercell dependencies, TH,* (T)  = r for all r 5 T O ,  

where rO is the value dejined in Theorem 5.2b). Furthermore, 
T H , p ( T )  < r for all r > ro. 

Proof: Given any feasible solution to the linear program 
of Theorem 5.2b), we consider the corresponding X 
fixed channel assignment algorithm that allocates mi = 
xjLnXjJa ; j  channels to cell i. By (5.4), xi 2 p;r  for 
all z, and so by the WATP, 

N 

i=l 

Therefore, TH, ( T )  = T for all T 6 TO.  That TH, ( r )  < r for 
T > TO follows from Theorem 3.2, which holds for dependent 
traffic, as we have seen above. 0 

Theorem 7.1 says that for very general traffic models, 
including models which include intercell dependencies, the 
quantity rO has the following significance. 

0 If the offered traffic intensity r exceeds TO,  then for any 
channel assignment algorithm, a positive fraction (independent 
of n) of all call requests must be blocked. 

0 On the other hand, if the offered traffic intensity is less 
than TO,  all call requests can be honored if the number of 
channels is sufficiently large. 

Because of this strong and general property, we feel justified 
in calling TO the capacity of the cellular system, as measured 
in Erlangs per channel. For example, the capacity of our 7-cell 
example is 8/5 = 1.60 Erlangs per channel, and that of the 
19-cell example is 247/49 = 5.04 Erlangs per channel. This 
result is significant enough to merit a restatement, with which 
we end our paper. 
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Theorem 7.2: The capacity C(H,  p )  of the ( H ,  p )  cellular 
system, measured in Erlangs per channel, is given by the 
following linear program: 

j=1 j=1 
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