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Consensus Problems in Networks of Agents With
Switching Topology and Time-Delays
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Abstract—In this paper, we discuss consensus problems for
networks of dynamic agents with fixed and switching topologies.
We analyze three cases: 1) directed networks with fixed topology;
2) directed networks with switching topology; and 3) undirected
networks with communication time-delays and fixed topology. We
introduce two consensus protocols for networks with and without
time-delays and provide a convergence analysis in all three cases.
We establish a direct connection between the algebraic connec-
tivity (or Fiedler eigenvalue) of the network and the performance
(or negotiation speed) of a linear consensus protocol. This re-
quired the generalization of the notion of algebraic connectivity of
undirected graphs to digraphs. It turns out that balanced digraphs
play a key role in addressing average-consensus problems. We
introduce disagreement functions for convergence analysis of con-
sensus protocols. A disagreement function is a Lyapunov function
for the disagreement network dynamics. We proposed a simple
disagreement function that is a common Lyapunov function for
the disagreement dynamics of a directed network with switching
topology. A distinctive feature of this work is to address consensus
problems for networks with directed information flow. We provide
analytical tools that rely on algebraic graph theory, matrix theory,
and control theory. Simulations are provided that demonstrate the
effectiveness of our theoretical results.

Index Terms—Algebraic graph theory, consensus problems, di-
graph theory, graph Laplacians, networks of autonomous agents,
networks with time-delays, switching systems.

I. INTRODUCTION

D ISTRIBUTED coordination of networks of dynamic
agents has attracted several researchers in recent years.

This is partly due to broad applications of multiagent systems
in many areas including cooperative control of unmanned air
vehicles (UAVs), formation control [1]–[5], flocking [6]–[8],
distributed sensor networks [9], attitude alignment of clusters of
satellites, and congestion control in communication networks
[10].

Consensus problems have a long history in the field of
computer science, particularly in automata theory and dis-
tributed computation [11]. In many applications involving
multiagent/multivehicle systems, groups of agents need to
agree upon certain quantities of interest. Such quantities might
or might not be related to the motion of the individual agents.
As a result, it is important to address agreement problems in
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their general form for networks of dynamic agents with directed
information flow under link failure and creation (i.e., switching
network topology).

Our main contribution in this paper is to pose and address
consensus problems under a variety of assumptions on the net-
work topology (being fixed or switching), presence or lack of
communication time-delays, and directed or undirected network
information flow. In each case, we provide a convergence anal-
ysis. Moreover, we establish a connection between algebraic
connectivity of the network and the performance of reaching
an agreement. Furthermore, we demonstrate that the maximum
time-delay that can be tolerated by a network of integrators ap-
plying a linear consensus protocol is inversely proportional to
the largest eigenvalue of the network topology or the maximum
degree of the nodes of the network. This naturally led to the real-
ization that there exists a fundamental tradeoff between perfor-
mance of reaching a consensus and robustness to time-delays.

In the past, a number of researchers have worked in problems
that are essentially different forms of agreement problems with
differences regarding the types of agent dynamics, the proper-
ties of the graphs, and the names of the tasks of interest. In [1]
and [12], graph Laplacians are used for the task of formation
stabilization for groups of agents with linear dynamics. This
particular method for formation stabilization has not yet been
extended to systems with nonlinear dynamics that are not feed-
back linearizable. A special case of this approach is known as
the leader–follower architecture and has been widely used by
numerous researchers [13]–[15]. In [16], graph Laplacians are
used as an essential part of a dynamic theory of graphs.

The problem of synchronization of coupled oscillators is
closely related to consensus problems on graphs. This is a
broad field that is of great interest to researchers in physics,
biophysics, neurobiology, and systems biology [17]–[19]. In
synchronization of coupled oscillators, a consensus is reached
regarding the frequency of oscillation of all agents.

In recent years, there has been a tremendous amount of re-
newed interest in flocking/swarming [20]–[27] that has been pri-
marily originated from the pioneering work of Reynolds. In [7],
alignment of heading angles for multiple particles is analyzed
from the point of view of statistical mechanics. Moreover, a
phase transition phenomenon is observed that occurs when the
network topology becomes connected by increasing the density
of agents in a bounded region. The work in [28] focuses on at-
titude alignment on undirected graphs in which the agents have
simple dynamics motivated by the model used in [7]. It is shown
that the connectivity of the graph on average is sufficient for
convergence of the heading angles of the agents. In [29], the
authors provide a convergence analysis of linear and nonlinear
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protocols for undirected networks in presence or lack of com-
munication time-delays. Theoretically, the convergence analysis
of consensus protocols on digraphs (or directed graphs) is more
challenging than the case of undirected graphs. This is partly
due to the fact that the properties of graph Laplacians are mostly
known for undirected graphs and, as a result, an algebraic theory
of digraphs is practically a nonexistent theory. Here, our main
focus is analysis of consensus protocols on directed networks
with fixed/switching topology.

In this paper, our analysis relies on several tools from alge-
braic graph theory [30], [31], matrix theory [32], and control
theory. We establish a connection between the performance of a
linear consensus protocol on a directed network and the Fiedler
eigenvalue of the mirror graph of the information flow (obtained
via a mirror operation).

It turns out that a class of directed graphs called balanced
graphs have a crucial role in derivation of an invariant quantity
and a Lyapunov function for convergence analysis of average-
consensus problems on directed graphs. This Lyapunov func-
tion, called the disagreement function, is a measure of group dis-
agreement in a network. We show that a directed graph solves
the average-consensus problem using a linear protocol if and
only if it is balanced. Furthermore, we use properties of bal-
anced networks to analyze the convergence of an agreement pro-
tocol for networks with switching topology.

The variation of the network topology is usually due to
link failures or creations in networks with mobile nodes.
We introduce a common Lyapunov function that guarantees
asymptotic convergence to a group decision value in networks
with switching topology. Finally, we analyze the effects of
communication time-delays in undirected networks with fixed
topology. We provide a direct connection between the robust-
ness margin to time-delays and the maximum eigenvalue of the
network topology.

An outline of this paper is as follows. In Section II, we
define consensus problems on graphs. In Section III, we give
two protocols. In Section IV, the network dynamics is given for
the cases of fixed and switching topologies and the relation to
graph Laplacians is explained. Some background on algebraic
graph theory and matrix theory related to the properties of
graph Laplacians are provided in Section V. A counterex-
ample is given in Section VI that shows there exists a strongly
connected digraph that does not solve an average-consensus
problem. In Section VII, balanced graphs are defined and our
results on directed networks with fixed topology are stated. In
Section VIII, mirror graphs are defined and used to determine
the performance (or speed of convergence) of a consensus
protocol on digraphs and define the algebraic connectivity of
digraphs. In Section IX, our main results on networks with
switching topology are presented. Average-consensus problems
for networks with communication time-delays is discussed in
Section X. The simulation results are presented in Section XI.
Finally, in Section XII, concluding remarks are stated.

II. CONSENSUS PROBLEMS ON GRAPHS

Let be a weighted digraph (or directed graph)
of order with the set of nodes , set of edges

, and a weighted adjacency matrix with
nonnegative adjacency elements . The node indexes belong
to a finite index set . An edge of is denoted
by . The adjacency elements associated with the
edges of the graph are positive, i.e., .
Moreover, we assume for all . The set of neighbors
of node is denoted by . A
cluster is any subset of the nodes of the graph. The set
of neighbors of a cluster is defined by

(1)

Let denote the value of node . We refer to
with as a network (or algebraic

graph) with value and topology (or information flow)
. The value of a node might represent physical quantities in-

cluding attitude, position, temperature, voltage, and so on. We
say nodes and agree in a network if and only if .
We say the nodes of a network have reached a consensus if and
only if for all , . Whenever the nodes of a
network are all in agreement, the common value of all nodes is
called the group decision value.

Suppose each node of a graph is a dynamic agent with
dynamics

(2)

A dynamic graph (or dynamic network) is a dynamical system
with a state ( , ) in which the value evolves according to the
network dynamics . Here, is the column-
wise concatenation of the elements for .
In a dynamic network with switching topology, the information
flow is a discrete-state of the system that changes in time.

Let be a function of variables and
denote the initial state of the system. The -consensus

problem in a dynamic graph is a distributed way to calculate
by applying inputs that only depend on the states of

node and its neighbors. We say a state feedback

(A)

is a protocol with topology if the cluster
of nodes with indexes satisfies the property

. In addition, if for all , (A) is
called a distributed protocol.

We say protocol (A) asymptotically solves the -consensus
problem if and only if there exists an asymptotically stable equi-
librium of satisfying for all

. We are interested in distributed solutions of the -con-
sensus problem in which no node is connected to all other nodes.
The special cases with ,

, and are called average-con-
sensus, max-consensus, and min-consensus, respectively, due
to their broad applications in distributed decision-making for
multi-agent systems.

Solving the average-consensus problem is an example of dis-
tributed computation of a linear function using
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a network of dynamic systems (or integrators). This is a more
challenging task than reaching a consensus with initial state .
Since an extra condition , has to be satisfied
which relates the limiting state of the system to the initial
state .

III. CONSENSUS PROTOCOLS

In this section, we present two consensus protocols that solve
agreement problems in a network of continuous-time (CT) inte-
grator agents with dynamics

(3)

or agents with discrete-time (DT) model

(4)

and step-size . We consider two scenarios.

i) Fixed or switching topology and zero communication
time-delay: The following linear consensus protocol is used:

(A1)

where the set of neighbors of node is variable
in networks with switching topology.
ii) Fixed topology and communication time-

delay corresponding to the edge : We use the
following linear time-delayed consensus protocol:

(A2)

The primary objective in this paper is analysis of protocols
(A1) and (A2) for the aforementioned scenarios. We show that
in each case consensus is asymptotically reached. We also char-
acterize the class of digraphs that solve the average-consensus
problem using protocol (A1). Furthermore, we provide results
that directly relate performance and algorithmic robustness of
these consensus protocols to the eigenvalues of the network
topology.

Remark 1: In [29], the authors have introduced a Lyapunov-
based method for convergence analysis of the following non-
linear consensus protocol:

(A3)

for undirected networks. Here, ’s are continuous
mappings with for all which satisfy
the following properties: 1) is locally Lipschitz, 2)

, and 3) , . The convergence
analysis of protocol (A3) is very similar to the proof of Theorem
8 and is omitted from this paper due to the limitation of space.

The reader might wonder whether protocol (A1) is an ad hoc
protocol, or it can be analytically derived. For undirected net-
works, there exists a derivation of this protocol that can be sum-
marized as follows. Define the Laplacian potential associated
with the undirected graph as

(5)

and notice that the gradient-based feedback
is identical to protocol (A1). As

a result, the network dynamics for integrator agents applying
protocol (A1) is in the form

(6)

that is a gradient system (up to a fixed time-scaling) that is in-
duced by graph . The same argument is not applicable to the
case of digraphs. This is a reason that the analysis in the case of
directed networks is more challenging. For graphs with 0–1 ad-
jacency elements, the potential function in (5) is the same as the
Laplacian potential introduced in [29] (up to a positive factor)
as a measure of group disagreement.

A. Communication/Sensing Cost of Protocols

An important aspect of performing coordinated tasks in a dis-
tributed fashion in multiagent systems is to keep communication
and interagent sensing costs limited. We define the communica-
tion/sensing cost of the topology ( , ) of a protocol as ,
or the total number of the directed edges of the graph ( , ).
In [33], is called “communication complexity” of performing
a task. For weighted digraphs, the communication/sensing cost
can be defined as a function of the adjacency elements by

(7)

where is the sign function (i.e. for and
, otherwise). According to this definition, is

the same as for a digraph.
Apparently, the communication/sensing cost of protocols

with directed information flow is smaller than the communi-
cation/sensing cost of their undirected counterparts. This is
our primary reason for the analysis of consensus protocols for
digraphs.

An alternative reason for considering consensus problems on
digraphs is multiagent flocking. In [6], the information flow in a
flock is directed and the topology of the network of agents goes
through changes that are discrete-event type in nature.

Remark 2: Given a bounded communication cost , the
problem of choosing the weights in protocol (A1) such
that a certain performance index is maximized (or minimized)
is an optimization problem that falls within the category of
network design problems. We refer the reader to [34] for a net-
work design problem for reaching average-consensus using a
semidefinite programming approach. The framework presented
in [34] partially relies on the work in [29] that introduced
average-consensus for networks of integrators.
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IV. NETWORK DYNAMICS

Given protocol (A1), the state of a network of continuous-
time integrator agents evolves according to the following linear
system:

(8)

where is called the graph Laplacian induced by the informa-
tion flow and is defined by

(9)

Apparently, the stability properties of system (8) depends on the
location of the eigenvalues of the graph Laplacian . Spectral
properties of graphs is among the main topics of interest in al-
gebraic graph theory [30], [31]. The basic properties of graph
Laplacians that are used here are discussed in Section V.

In a network with switching topology, convergence analysis
of protocol (A1) is equivalent to stability analysis for a hybrid
system

(10)

where is the Laplacian of graph that belongs
to a set . The set is a finite collection of digraphs of order
with an index set . The map is a switching
signal that determines the network topology.

In Section IX, we will see that is a relatively large set for
. The task of stability analysis for the hybrid system in

(10) is rather challenging. One of the reasons is that the product
of two Laplacian matrices do not commute in general.

For agents with discrete-time models, applying protocol (A1)
gives the following discrete-time network dynamics:

(11)

with

(12)

Let denote the maximum node out-degree of
digraph . Then, is a nonnegative and stochastic matrix for
all . We refer to as the Perron matrix induced
by .

The convergence analysis of protocol (A1) for discrete-time
agents heavily relies on the theory of nonnegative matrices [32],
[35] and will be discussed in a separate paper. Our approach
presents a Lyapunov-based convergence analysis for agreement
in networks with discrete-time models. This is different than the
approach pursued in the work of Jadbabaie et al. which strongly
relies on matrix theoretic properties and infinite right-conver-
gent products (RCP) of stochastic matrices [36].

V. ALGEBRAIC GRAPH THEORY AND MATRIX THEORY

In this section, we introduce some basic concepts and notation
in graph theory that will be used throughout this paper. More in-
formation is available in [31] and [37]. A comprehensive survey
on properties of Laplacians of undirected graphs can be found in

[38]. However, we need to use some basic properties of Lapla-
cians of digraphs. These properties cannot be found in the graph
theory literature and will be stated here.

Let be a weighted directed graph (or digraph)
with nodes. The in-degree and out-degree of node are,
respectively, defined as follows:

(13)

For a graph with 0–1 adjacency elements, .
The degree matrix of the digraph is a diagonal matrix

where for all and . The
graph Laplacian associated with the digraph is defined as

(14)

This definition is consistent with the definition of in (9).
Remark 3: The graph Laplacian does not depend on the

diagonal elements of the adjacency matrix of . These di-
agonal elements correspond to the weights of loops ( , ) (i.e.,
cycles of length one) in a graph. We assume for all ,
unless stated otherwise.

For undirected graphs, the Laplacian potential defined in (5)
can be expressed as a quadratic form with a kernel , or

(15)

This shows that the Laplacian of an undirected graph is positive
semidefinite. This positive definiteness of does not necessarily
hold for digraphs. As an example, consider a digraph with
two nodes and an adjacency matrix and graph Laplacian given
by

(16)

We have that is a sign-indefinite
quadratic form.

By definition, every row sum of the Laplacian matrix is zero.
Therefore, the Laplacian matrix always has a zero eigenvalue
corresponding to a right eigenvector

with identical nonzero elements. This means that
.

A digraph is called strongly connected (SC) if and only if any
two distinct nodes of the graph can be connected via a path that
follows the direction of the edges of the digraph. The following
theorem establishes a direct relation between the SC property
of a digraph and the rank of its Laplacian. According to the fol-
lowing theorem, the Laplacian of a strongly connected digraph
has an isolated eigenvalue at zero.

Theorem 1: Let be a weighted digraph with
Laplacian . If is strongly connected, then .

Proof: See the Appendix.
Remark 4: For an undirected graph , Theorem 1 can be

stated as follows: is connected if and only if .
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The proof for the undirected case is available in the literature
[30], [31]. The opposite side of Theorem 1 does not hold. A
counterexample is the digraph specified in (16). Clearly,
is not strongly connected because there is no path connecting
node to node . However, .

For a connected graph that is undirected, the following
well-known property holds [31]:

(17)

The proof follows from a special case of Courant–Fischer
Theorem in [32]. We will later establish a connection between

with , called the Fiedler eigenvalue of
[39] and the performance (i.e., worst case speed of conver-

gence) of protocol (A1) on digraphs.
Remark 5: The notion of algebraic connectivity (or ) of

graphs was originally defined by Fiedler for undirected graphs
[39]. We extend this notion to algebraic connectivity of digraphs
by defining the mirror operation on digraphs that produces an
undirected graph from a digraph (See Definition 2).

The key in the stability analysis of (8) is in the spectral prop-
erties of graph Laplacian. The following result is well known
for undirected graphs (e.g., see [38]). Here, we state the result
for digraphs and prove it using Geršgorin disk theorem [32].

Theorem 2. (Spectral Localization): Let be a
digraph with the Laplacian . Denote the maximum node out-
degree of the digraph by . Then,
all the eigenvalues of are located in the following
disk:

(18)

centered at in the complex plane (see Fig. 1).

Proof: Based on the Geršgorin disk theorem, all the eigen-
values of are located in the union of the following
disks:

(19)

However, for the digraph , and

Thus, . On the other hand, all
these disks are contained in the largest disk with radius

. Clearly, all the eigenvalues of are located in the
disk that is the
mirror image of with respect to the imaginary axis.

Here, is an immediate corollary and the first convergence
proof for protocol (A1) for a directed network with fixed
topology .

Corollary 1: Consider a network of integrators
where each node applies protocol (A1). Assume is a strongly
connected digraph. Then, protocol (A1) globally asymptotically
solves a consensus problem.

Fig. 1. Demonstration of Geršgorin Theorem applied to graph Laplacian.

Proof: Since is strongly connected,
and has a simple eigenvalue at zero. Based on Theorem 2, the
rest of the eigenvalues of have negative real-parts and there-
fore the linear system in (8) is stable. On the other hand, any
equilibrium of (8) is a right eigenvector of associated with

. Since the eigenspace associated with the zero eigenvalue
is one-dimensional, there exists an such that ,
i.e., for all .

Keep in mind that Corollary 1 does not guarantee whether the
group decision value is equal to , or not. In other
words, Corollary 1 does not necessarily address the average-
consensus problem.

We need to provide a limit theorem for exponential matrices
of the form . Considering that the solution of (8) with
fixed topology is given by

(20)

by explicit calculation of , one can obtain the group
decision value for a general digraph. The following theorem
is closely related to a famous limit theorem in the theory of
nonnegative matrices known as the Perron–Frobenius Theorem
[32]. We will use this theorem for characterization of the class
of digraphs that solve average-consensus problems using pro-
tocol (A1).

Notation: Following the notation in [32], we denote the set
of real matrices by and the set of square
matrices by . Furthermore, throughout this paper, the right
and left eigenvectors of the Laplacian associated with
are denoted by and , respectively.

Theorem 3: Assume is a strongly connected digraph with
Laplacian satisfying , , and .
Then

(21)

Proof: Let and let be the Jordan
form associated with , i.e., . We have

and as ,
converges to a matrix with a single nonzero element

. The fact that other blocks in the diagonal of
vanish is due to the property that for all
where is the th-largest eigenvalue of in terms of
magnitude . Notice that . Since the
first column of is . Similarly, that means
the first row of is . Due to the fact that ,
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satisfies the property as stated in the question. A
straightforward calculation shows that .

VI. A COUNTEREXAMPLE FOR AVERAGE-CONSENSUS

A sufficient condition for the decision value of each node
in the proof of Corollary 1 to be equal to is that

. If is undirected (i.e. ,
), automatically the condition , holds

and is an invariant quantity [29]. However, this prop-
erty does not hold for a general digraph.

A simple counterexample is a digraph of order with

as shown in Fig. 2. Assume the graph has 0–1 weights. Notice
that is a strongly connected digraph. Given , we
have . Thus, if nodes and disagree,
the property does not hold for all . On the other
hand, the reader can verify that for this example

Using Theorem 3, one obtains the limit
for 1, 2, 3. This group decision value is different

from if and only if . As a re-
sult, for all initial conditions satisfying ,
protocol (A1) does not solve the average-consensus problem,
but all nodes asymptotically reach a consensus. This motivates
us to characterize the class of all digraphs that solve the av-
erage-consensus problem.

VII. NETWORKS WITH FIXED TOPOLOGY AND

BALANCED GRAPHS

The following class of digraphs turns out to be instrumental
in solving average-consensus problems for networks with both
fixed and switching topologies.

Definition 1. (Balanced Graphs): We say the node of a
digraph is balanced if and only if its in-degree
and out-degree are equal, i.e. . A graph

is called balanced if and only if all of its nodes
are balanced, or

(22)

Any undirected graph is balanced. Furthermore, the digraphs
shown in Fig. 3 are all balanced. Here is our first main result.

Theorem 4: Consider a network of integrators with a fixed
topology that is a strongly connected digraph.
Then, protocol (A1) globally asymptotically solves the average-
consensus problem if and only if is balanced.

Proof: The proof follows from Theorems 5 and 6,
below.

Remark 6: According to Theorem 4, if a graph is not
balanced, then protocol (A1) does not (globally) solve the

Fig. 2. Connected digraph of order 3 that does not solve the average-consensus
problem using protocol (A1).

Fig. 3. Four examples of balanced graphs.

average-consensus problem for all initial conditions. This
assertion is consistent with the counterexample given in Fig. 2.

Theorem 5: Consider a network of integrator agents with a
fixed topology that is a strongly connected di-
graph. Then, protocol (A1) globally asymptotically solves the
average-consensus problem if and only if .

Proof: From Theorem 3, with we obtain

This implies Protocol 1 globally exponentially solves a con-
sensus problem with the decision value for each
node. If this decision value is equal to , , then
necessarily , i.e. .
This implies that is the left eigenvector of . To prove the
converse, assume that . Let us take ,

with , . From condition , we
get and . This means that the de-
cision value for every node is

.
The following result provides the group decision value for

arbitrary digraphs including the ones that are unbalanced.
Corollary 2: Assume all the conditions in Theorem

5 hold. Suppose has a nonnegative left eigenvector
associated with that satisfies
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. Then, after reaching a consensus, the group deci-
sion value is

(23)

i.e., the decision value belongs to the convex hull of the initial
values.

Proof: Due to , we get (because
). Hence, is an invariant quantity. Suppose the

digraph is not balanced. Then, an agreement is asymptotically
reached. Let be the decision value of all nodes after reaching a
consensus. We have because of the invariance
of . However, , thus we obtain

and the result follows.
The following result shows that if one of the agents uses a rel-

atively small update rate (or step-size), then the group decision
value will be relatively close to . In other words, the agent
plays the role of a leader in a leader–follower architecture.

Corollary 3. (Multirate Integrators): Consider a network of
multirate integrators with the node dynamics

(24)

Assume the network has a fixed topology and
each node applies protocol (A1). Then, an agreement is globally
asymptotically reached and the group decision value will be

(25)

Proof: The dynamics of the network evolves according to

where is a diagonal matrix with the th diagonal
element . The last equation can be rewritten

where . Note that is
a valid Laplacian matrix for a digraph with the adjacency
matrix . To obtain from , one needs to divide
the weights of the edges leaving node by . Clearly, is a
vector with positive elements that is the left eigenvector of
and based on Corollary 2 the decision value is in the weighted
average of ’s with the weights that are specified by .

Remark 7: The discrete-time model and attitude alignment
protocol discussed in [28] correspond to the first-order Euler ap-
proximation of (24) with protocol (A1) and the special choice
of in Corollary 3. In [1], a Laplacian
matrix is defined as which in the context of this
paper is equivalent to a multirate network of integrators with

. The singularity of that is caused by the
choice of is avoided in [28] by properly adding
a positive constant to .

Theorem 6: Let be a digraph with an adja-
cency matrix . Then, all the following statements are
equivalent.

i) is balanced.
ii) is the left eigenvector of the Laplacian of asso-

ciates with the zero eigenvalue, i.e., .
iii) , with .

Proof: We show i) ii) and ii) iii).
Proof of i) ii): We have and

, thus the th column sum of is equal
to zero, or

if and only if node of is balanced. Noting that the column
sum of is the same as the th element of the row vector ,
one concludes that iff all the nodes of are balanced,
i.e., is balanced.

Proof of ii) iii): Since ,
.

Notice that in Theorem 6, graph does not need to be
connected.

VIII. PERFORMANCE OF PROTOCOLS AND MIRROR GRAPHS

In this section, we discuss performance issues of protocol
(A1) with balanced graphs. An important consequence of The-
orem 6 is that for networks with balanced information flow,

is an invariant quantity. This is certainly not true
for an arbitrary digraph. The invariance of allows de-
composition of according to the following equation:

(26)

where and satisfies . We refer to
as the (group) disagreement vector. The vector is orthogonal

to and belongs to an -dimensional subspace called the
disagreement eigenspace of provided that is strongly con-
nected. Moreover, evolves according to the (group) disagree-
ment dynamics given by

(27)

Define the Laplacian disagreement function of a digraph as

(28)

with . The Laplacian disagreement for digraphs is
not necessarily nonnegative. An example of a digraph with a
Laplacian disagreement that is sign-indefinite is given in (16).

In the following, we show that for any balanced digraph ,
there exists an undirected graph with a Laplacian disagree-
ment function that is identical to the Laplacian disagreement of

. This proves that the Laplacian of balanced graphs is positive
semidefinite. Here, is the definition of this induced undirected
graph.

Definition 2. (Mirror Graph/Operation): Let
be weighted digraph. Let be the set of reverse edges of
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obtained by reversing the order of nodes of all the pairs in .
The mirror of denoted by is an undirected graph
in the form with the same set of nodes as , the
set of edges , and the symmetric adjacency matrix

with elements

(29)

The following result shows that the operations of and
on a weighted adjacency matrix commute.

Theorem 7: Let be a digraph with adjacency matrix
and Laplacian . Then

is a valid Laplacian matrix for if and
only if is balanced, or equivalently, the following diagram
commutes if and only if is balanced:

(30)

Moreover, if is balanced, the Laplacian disagreement func-
tions of and are equal.

Proof: We know that is balanced iff . Since
, we have . Thus,

is balanced iff has a right eigenvector of associated with
, i.e. is a valid Laplacian matrix. Now, we prove that

. For doing so, let us calculate element-wise. We
get

Thus, . On the other hand, we have

The last part simply follows from the fact that is equal to the
symmetric part of and .

Notation: For simplicity of notation, in the context of alge-
braic graph theory, is used to denote .

Now, we are ready to present our main result on the per-
formance of protocol (A1) in terms of the worst-case speed of
reaching an agreement.

Theorem 8 (Performance of Agreement): Consider a network
of integrators with a fixed topology that is a strongly con-
nected digraph. Given protocol (A1), the following statements
hold.

i) The group disagreement (vector) , as the solution of the
disagreement dynamics in (27), globally asymptotically
vanishes with a speed equal to , or the Fiedler
eigenvalue of the mirror graph induced by , i.e.,

(31)

ii) The following smooth, positive–definite, and proper
function

(32)

is a valid Lyapunov function for the disagreement
dynamics.

Proof: We have

(33)

This proves that is a valid Lyapunov function for the group
disagreement dynamics. Moreover, vanishes globally ex-
ponentially fast with a speed of as . The fact that

is a valid Laplacian matrix of the undirected graph
(i.e., the mirror of ) is based on Theorem 7. In addition, the
inequality

(34)

follows from (17).
A well-known observation regarding the Fiedler eigenvalue

of an undirected graph is that for dense graphs is relatively
large and for sparse graphs is relatively small [31]. This is
why is called the algebraic connectivity of the graph. Ac-
cording to this observation, from Theorem 8, one can conclude
that a network with dense interconnections solves an agreement
problem faster than a connected but sparse network. As a spe-
cial case, a cycle of length that creates a balanced digraph on

nodes solves an agreement problem. However, this is a rela-
tively slow way to solve such a consensus problem.

IX. NETWORKS WITH SWITCHING TOPOLOGY

Consider a network of mobile agents that communicate with
each other and need to agree upon a certain objective of interest
or perform synchronization. Since, the nodes of the network
are moving, it is not hard to imagine that some of the existing
communication links can fail simply due to the existence of an
obstacle between two agents. The opposite situation can arise
where new links between nearby agents are created because the
agents come to an effective range of detection with respect to
each other. In terms of the network topology , this means that
certain number of edges are added or removed from the graph.
Here, we are interested to investigate that in case of a network
with switching topology whether it is still possible to reach a
consensus, or not.

Consider a hybrid system with a continuous-state and
a discrete-state that belongs to a finite collection of digraphs

such that is a digraph of order that is strongly
connected and balanced. This set can be analytically expressed
as

Given protocol (A1), the continuous-state of the system evolves
according to the following dynamics:

(35)
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where is a switching signal and
is the index set associated with the elements of . The set
is finite because at most a graph of order is complete and has

directed edges.
The key in our analysis for reaching an average-consensus

in mobile networks with directed switching topology is a basic
property of the disagreement function in (32). This disagree-
ment function does not depend on the network topology .
Moreover, for all , the Laplacian of the digraph
is positive semi-definite because is balanced. Thus, is
nonincreasing along the solutions of the switching system. This
property of makes it an appropriate candidate as a common
Lyapunov function for stability analysis of the switching system
(35).

Theorem 9: For any arbitrary switching signal , the
solution of the switching system (35) globally asymptotically
converges to (i.e., average-consensus is reached).
Moreover, the following smooth, positive–definite, and proper
function:

(36)

is a valid common Lyapunov function for the disagreement dy-
namics given by

(37)

Furthermore, the inequality holds,
i.e., the disagreement vector vanishes exponentially fast with
the least rate of

(38)

Proof: Due to the fact that is balanced for all and
, we have . Thus,

is an invariant quantity. This allows the decompo-
sition of in the form . Therefore, the disagreement
switching system induced by (35) takes the form (37). Calcu-
lating , we get

(39)

This guarantees that is a valid common Lyapunov function
for the disagreement switching system in (37). Moreover, we
have

and the disagreement vector globally exponentially van-
ishes with a speed of as . The minimum in
(38) always exists and is achieved because is a finite set.

X. NETWORKS WITH COMMUNICATION TIME-DELAYS

Consider a network of continuous-time integrators with a
fixed topology in which the state of node

passes through a communication channel with time-delay
before getting to node . The transfer function associ-

ated with the edge can be expressed as

in the Laplace domain. Given protocol (A2), the network dy-
namics can be written as

(40)

After taking the Laplace transform of both sides of (40), we get

(41)

where denotes the Laplace transform of for all
. The last set of equations can be rewritten in a compact form

as

(42)

where is the Laplacian matrix of a graph with adjacency
matrix . Any linear filtering effects of
channel can be incorporated in the transfer function
of the link. The convergence analysis of protocol (A2) for a net-
work of integrator agents with communication time-delays re-
duces to stability analysis for a multiple-input–multiple-output
(MIMO) transfer function

(43)

To gain further insight in the relation between the graph Lapla-
cian and the convergence properties of consensus protocol (A2),
we focus on the simplest possible case where the time-delays in
all channels are equal to and the network topology is
fixed and undirected. Immediately, it follows that
and, thus, is an invariant quantity. In addition,
we have

where . Here is our main result for average-con-
sensus in a network with communication time-delays and fixed
topology [29]:

Theorem 10: Consider a network of integrator agents with
equal communication time-delay in all links. Assume the
network topology is fixed, undirected, and connected. Then,
protocol (A2) with globally asymptotically solves the
average-consensus problem if and only if either of the following
equivalent conditions are satisfied.

i) with , .
ii) The Nyquist plot of has a zero encir-

clement around , .
Moreover, for the system has a globally asymptotically
stable oscillatory solution with frequency .

Proof: See the Appendix.
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A. Tradeoff Between Performance and Robustness

Based on part i) of Theorem 10, one concludes that the upper
bound on the admissible channel time-delay in the network is
inversely proportional to , i.e., the largest eigenvalue of the
Laplacian of the information flow.

From Geršgorin theorem, we know that
where is the maximum out-degree of the nodes of .
Therefore, a sufficient condition for convergence of protocol
(A2) is

(44)

This means that networks with nodes that have relatively high
out-degrees cannot tolerate relatively high communication time-
delays. On the other hand, let with be the adja-
cency matrix of . Denote the Laplacian of by and notice
that . Thus, for any arbitrary delay ,
there exists a sufficiently small such that .
As a result, by scaling down the weights of a digraph, an arbi-
trary large time-delay can be tolerated. The tradeoff is that
the negotiation speed, or , degrades by a factor of . In
other words, there is a tradeoff between robustness of a protocol
to time-delays and its performance.

B. Tradeoff Between High Performance and Low
Communication Cost

For undirected graphs with 0–1 weights, a graph with a rel-
atively high communication cost is expected to have a rela-
tively high algebraic connectivity (e.g., a complete graph).
In contrast, a graph with a relatively low communication cost is
expected to have a relatively low (e.g., a cycle). This implies
that there is another tradeoff between performance and commu-
nication cost. This second tradeoff is between achieving a high
performance and maintaining a low communication cost.

The existence of the aforementioned two tradeoffs suggests
posing and addressing a network design problem that attempts
to find an adjacency matrix with a bounded communication
cost that attempts to achieve a balanced interplay between
performance and robustness (see Remark 2).

XI. SIMULATION RESULTS

Fig. 4 shows four different networks each with nodes.
All digraphs in this figure have 0–1 weights. Moreover, they
are all strongly connected and balanced. In Fig. 5(a), a finite
automaton is shown with the set of states
representing the discrete-states of a network with switching
topology as a hybrid system. The hybrid system starts at the
discrete-state and switches every second to the
next state according to the state machine in Fig. 5(a). The
continuous-time state trajectories and the group disagreement
(i.e., ) of the network are shown in Fig. 5(b). Clearly,
the group disagreement is monotonically decreasing. One can
observe that an average-consensus is reached asymptotically.
Moreover, the group disagreement vanishes exponentially fast.

For a random initial state satisfying , the state
trajectories of the system and the disagreement function
in time are shown in Fig. 6 for four digraphs. It is clear that

Fig. 4. Four examples of balanced and strongly connected digraphs: (a) G ,
(b) G , (c) G , and (d) G .

Fig. 5. (a) Finite automaton with four states representing the discrete-states
of a network with switching topolog. (b) Trajectory of the node values and the
group disagreement for a network with a switching information flow.

as the number of the edges of the graph increases, algebraic
connectivity (or ) increases, and the settling time of the state
trajectories decreases.

The case of a directed cycle of length 10, or , has the
highest over-shoot. In all four cases, a consensus is asymptoti-
cally reached and the performance is improved as a function of

for .
Next, we present simulation results for the average-consensus

problem with communication time-delay for a network with
a topology shown in Fig. 3(d). Fig. 7 shows the state trajec-
tories of this network with communication time-delay for

, 0.7 , with
. Here, the initial state is a random set of numbers with

zero-mean. Clearly, the agreement is achieved for the cases with
in Fig. (7a), (b), and (c). For the case with ,

synchronous oscillations are illustrated in Fig. 7(d). A second-
order Pade approximation is used to model the time-delay as a
finite-order LTI system.

XII. CONCLUSION

We provided the convergence analysis of a consensus pro-
tocol for a network of integrators with directed information flow
and fixed/switching topology. Our analysis relies on several
tools from algebraic graph theory, matrix theory, and control
theory. We established a connection between the performance
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Fig. 6. State trajectories of all nodes corresponding to networks with topologies shown in Fig. 4.

of a linear consensus protocol and the Fiedler eigenvalue of
the mirror graph of a balanced digraph. This provides an ex-
tension of the notion of algebraic connectivity of graphs to
algebraic connectivity of balanced digraphs. A simple disagree-
ment function was introduced as a Lyapunov function for the
group disagreement dynamics. This was later used to provide a
common Lyapunov function that allowed convergence analysis
of an agreement protocol for a network with switching topology.
A commutative diagram was given that shows the operations of
taking Laplacian and symmetric part of a matrix commute for
adjacency matrix of balanced graphs. Balanced graphs turned
out to be instrumental in solving average-consensus problems.

For undirected networks with fixed topology, we gave suf-
ficient and necessary conditions for reaching an average-con-
sensus in presence of communication time-delays. It was shown
that there is a tradeoff between robustness to time-delays and the
performance of a linear consensus protocol. Moreover, a second
tradeoff exists between maintaining a low communication cost
and achieving a high performance in reaching a consensus. Ex-
tensive simulation results are provided that demonstrate the ef-
fectiveness of our theoretical results and analytical tools.

APPENDIX

PROOFS

This section contains the proofs of some of the theorems of
this paper.

A. Proof of Theorem 1

Proof: To establish this result, we show that if a digraph
of order is strongly connected, then the null space of its Lapla-
cian is a one-dimensional subspace of .

Define for all . It is trivial that if
for all , then . Thus, we prove the converse:

implies that all nodes are in agreement. If the values of
all nodes are equal, the result follows. Thus, assume there exists
a node , called the max-leader, such that for all

, i.e., (if is not unique, choose
one arbitrarily).

Define the initial cluster and denote the indexes
of all the first-neighbors of by . Then,
implies that

(45)

Since for all and for
(i.e., all weights are nonnegative), we get for all the
first-neighbors , (i.e., the max-leader and all of its firs-
neighbors are in agreement). Next, we define the th neighbors
of and show that the max-leader is in agreement with all of
its th neighbors for . The set of th neighbors
of is defined by the following recursive equation:

(46)
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Fig. 7. Consensus problem with communication time-delays on graph G given in Fig. 3(d): (a) � = 0, (b) � = 0:5� ,(c) � = 0:7� , and (d) � = � .

where denotes the set of neighbors of cluster (see
(1)). By definition, for and
is a monotonically increasing sequence of clusters (in terms of
inclusion).

Notice that in a strongly connected digraph, the maximum
length of the minimum path connecting any node to
node is . Thus, . By induction, we prove that
all the nodes in are in agreement for . The statement
holds for (i.e., the set of first-neighbors of the max-
leader). Assume all the nodes in are in agreement with

, we show that all the nodes in are in agreement with
as well. It is sufficient to show this for an arbitrary node

with . This is because in
a strongly connected digraph, for all . Thus, if

for all , we get and
the statement holds. For node , we have

(47)

But and
. Keeping in mind that

for all and contains the set of first-neighbors of node
, or , we have

(48)

and

(49)

The first summation is equal to zero because for all
nodes . Hence, the second summation
must be zero. However, for all and

which implies all nodes in are
in agreement with . This means that all nodes in the cluster

(50)

are in agreement with the max-leader , i.e., all the nodes in
are in agreement. Combining this result with the fact

that , one concludes that all the nodes in are in
agreement.

B. Proof of Theorem 10

Notice that despite the existence of a nonzero delay ,
. Thus, is an invariant quantity.
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Given that the solutions of (40) globally asymptotically con-
verge to a limit , due to the invariance of , ,

and the average-consensus will be reached. To establish
the stability of (40), we use a frequency domain analysis. We
have where

(51)

Define . We need to find
sufficient conditions such that all the zeros of are on the
open LHP or . Let be the th normalized eigenvector of

associated with the eigenvalue in an increasing order. For
a connected graph , .
Clearly, in the direction is a zero of the MIMO transfer
function , because . Furthermore,
any eigenvector of is an eigenvector of and vice verse.
Let with be a right MIMO transmission zero of

at frequency in the direction , i.e., .
Then, satisfies the following equation:

(52)

or

(53)

where is the th eigenvalue of corresponding to . This
is due to the fact that

(54)

but , thus . Equation (53) a Nyquist cri-
terion for convergence of protocol (A2). If the net encirclement
of the Nyquist plot of around for
is zero, then all the zeros of (or poles of ) other
than are stable. For the special case, where is sym-
metric, all the eigenvalues are real and the Nyquist stability cri-
terion reduces to zero net encirclement of the Nyquist plot of

around (note that ). This is because
the plot of in the -plane remains on the right-hand side
of . Since

(55)

and clearly is a sinc function satisfying
. A conservative upper bound on can

be obtained according to the property of the
Nyquist plot of by setting which gives the
convergence condition . As a by-product, for ,
the protocol always converges regardless of the value of for

.
A better upper bound on the time-delay can be calculated as

follows. Let us find the smallest value of the time-delay
such that has a zero on the imaginary axis. To do so, set

in (52), we have

(56)

multiplying both sides of the last two equations gives

(57)

or

(58)

Assuming (due to ), from (58), we get

(59)

Since both terms in the left-hand side of the last equation are
positive semidefinite, the equality holds if and only if both terms
are zero, i.e.,

(60)

This implies for , thus the
smallest satisfies . Therefore, we have

(61)

Due to the continuous dependence of the roots of (52) in and
the fact that all the zeros of this equation other than for

are located on the open LHP, for all , the
roots of (52) with are on the open LHP and, therefore,
the poles of (except for ) are all stable. One can
repeat a similar argument for the assumption that and get
the equation

(62)

which leads to and .
For , has three poles on the imaginary axis

given by

(63)

All other poles of are stable and in the steady-state the
values of each node takes the following form:

(64)

where , , are constants that depend on the initial
conditions.
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