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Larger Two-Dimensional Photonic Band Gaps
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Absolute photonic band gaps in two-dimensional square and honeycomb lattices of circular cross-
section rods can be increased by reducing the structure symmetry. The addition of a smaller diameter
rod into the center of each lattice unit cell lifts band degeneracies to create significantly larger band
gaps. Symmetry breaking is most effective at filling fractions near those which produce absolute band
gaps for the original lattice. Rod diameter ratios in the range 0.1-0.2 yield the greatest improvement
in absolute gap size. Crystal symmetry reduction opens up new ways for engineering photonic gaps.
[S0031-9007(96)01328-2]

PACS numbers: 42.70.Qs, 41.90.+e

The last few years have witnessed an ongoing searchheoretical calculations are necessary, albeit a formidable
for periodic dielectric structures which give rise to ataskinview of the numerous structures to model with many
photonic band gap (PBG)—a region of the frequencyvariational parameters (e.g., lattice type, filling fraction,
spectrum where propagating modes are forbidden. Theshape of filling element). A rational approach towards the
“photonic crystals” could alter radiation-matter interac-design of photonic crystals would be indispensable brute-
tions and thus improve the efficiency of optical devicesforce computation.
by controlling spontaneous emission [1]. Applications of Overlapping bands in a photonic band diagram consti-
these crystals in semiconductor lasers and solar cells [1jute a degeneracy that can be lifted by symmetry breaking.
and high-quality resonant cavities and filters [2] have beerConsider, for example, the 3D face-centered-cubic crys-
proposed. Although three-dimensional (3D) PBG crystalgal, which does not possess a full PBG. By decreasing its
suggest the most interesting ideas for novel applicationsymmetry through the introduction of a two-point basis set
two-dimensional (2D) structures could also find severalwhich produces the diamond structure), a degeneracy in
important uses, as a result of their strong angular reflectivthe bands is lifted and a full PBG is obtained [6]. Previ-
ity properties over a wide frequency band. For examplepus studies of symmetry breaking by varying the shape [7]
2D PBG crystals with absolute band gaps provide a larger size [8] of the cylinders comprising the lattice failed to
stop band for use as a feedback mirror in laser diodes [3produce 2D structures having a larger PBG than the crys-
Photonic gaps at visible to near-infrared (IR) wavelengthgal with symmetric rods. However, we will show in this
could have the widest impact in applications. As the band etter that symmetry breaking through the addition of a
gap frequency is directly related to the size of the scatterdifferent size rod into the lattice unit cell can be effective
ing elements comprising the lattice, a near-IR band gajn producing larger PBGs in 2D crystals.
requires features with dimensions in the submicron size The first structure examined consists of two interpene-
regime. Fabricating 3D periodic structures in this regimetrating square lattices of the same lattice constardis-
poses an overwhelming challenge, despite progress in mplaced with respect to each other hy= %a(ﬁl + %),
crofabrication technology. Perhaps for this reason attenahere £, and %, are the primitive lattice vectors. The
tion has been drawn towards 2D lattice structures. Therystal is composed of infinite length circular rods of di-
successful fabrication of 2D crystals with near-IR bandameterd; at the corners of a square lattice, and diame-
gaps has been recently reported [4,5]. ter d, at the center of each unit cell. This arrangement

The larger a PBG is, the greater the forbidden regiorforms a new structure wha#y # d», which we name the
of the frequency spectrum. Thus, it is essential to desigfreduced-symmetry square lattice.” Both the single-rod
crystal structures with the largest PBGs possible for a giveand the reduced-symmetry square lattices belong to the
dielectric contrast. For two different crystals possessinglane grougp4mm with all the unit cell elements having
absolute band gaps of equal size, it may be advantageodsnmsymmetry [9]. Symmetry reduction is accomplished
from a fabrication standpoint to choose the one that haby increasing the number of rods in the primitive unit cell.
the band gap occurring at the higher nondimensionalizedll rods are assumed to be made of the same dielectric
frequency,wa/2mc, wherew is the frequencyq is the  material, and are embedded in a different dielectric back-
lattice constant, and is the speed of light in vacuum. For ground. The ratio of the two rod diamete,= d,/d;,

a given filling fraction, the feature size scales withthus, critically affects the gap size.

the crystal with the highewa/27 ¢ should be easier to  The electromagnetic frequency spectra of the dielectric
fabricate. But how does one sift through the countleserystals have been calculated using the plane-wave expan-
geometrical arrangements to select manufacturable strusion technique, described in detail in the literature [6,10,
tures with large band gaps in the desired frequency regionP1]. The results were obtained using 729 plane waves for
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the square lattice, and 1225 plane waves for the reducetler extensive calculations, we have found that valueg8 of
symmetry one. When using 1757 plane waves, the banbetween 0.1 and 0.2 provide the most dramatic improve-
frequencies differed from those calculated with fewermentin the size of the absolute band gaps. Figure 2 shows
plane waves by a maximum of 0.8%. Most bands differedhe gap map for the reduced-symmetry square lattice when
by less than 0.5%. Thus, we believe that all results hereif® = 0.16. Introducing the smaller diameter rod does in-
are accurate to within at least 1% of their true values.  crease the size of the uppldrpolarization gap. Remark-
We start with the single-rod square lattice of air holes inably, it also greatly enlarges the upgepolarization gap.
a dielectric material, whose photonic properties have beemhus, the overlap between the two gaps increases, result-
previously studied by several groups [12—14], each reporing in a much larger absolute band gap. The maximum
ing that band gaps for each of the two orthogonal polarizaphotonic gap occurs fo = 0.16 andf = 0.793. With
tions occur. However, there has been some discrepan@maximum gap width ol w = 0.0548(27 ¢/ a), this band
as to whether an absolute PBG is present. Our calculagap is nearlyd timeslarger than the best value obtained for
tions for the square lattice when the background materiahe single-rod square lattice case. It is noteworthy that the
has a dielectric constaa; = 11.4 (egaas atA = 1.5 um) latter structure possesses no absolute gap &t0.793.
are summarized in Fig. 1, where nondimensionalized freSymmetry breaking has introduced a large absolute pho-
guencies are plotted as a function of the filling fraction,tonic gap where none existed before.
f. The “gap map” shows two gaps for each of tHe Symmetry reduction may not be effective for all filling
andE polarizations, with the upper gaps overlapping fromfractions. Figure 3 shows the effect of the paramger
filling fractions of 0.68 to 0.79 to produce an absoluteon the size and position of the band gaps for 0.675.
band gap. The absolute gap is bounded on the loweFhe band gaps for the single-rod square lattice are obtained
side by theH-polarization gap boundary, and on its up- when 8 = 0 or, equivalently, unity [15]. It is seen that
per side by theE-polarization gap. A maximum gap of as the lattice moves away from the equal diameter case,
Aw = 0.0188(27c/a) occurs whery = 0.77. the upperH-polarization gap tends to increase in size,
Our aim is to rationally modify this structure to enlarge reaching a maximum at an intermediate valugofThere
the absolute band gap. The square lattice gap map cleariy a region in the middle of the plot where the lowd+
indicates that théi-polarization gap drops off sharply for polarization gap disappears at roughly the sginehere a
f = 0.77, thus limiting the overlap with thE-polarization  new higher gap appears. This is a result of the equivalence
gap. Band structure analysis shows that the second amd the two lattices wheng is either 0 or 1. TwoE-
third bands foH polarization (those that bound the higher polarization gaps exist, but they do not overlap with the
frequency gap in Fig. 1) are degenerate atMhgoint of  H-polarization gaps. Thus, symmetry breaking in this case
the Brillouin zone at large filling fractions, closing the band does not help to produce an absolute band gap.
gap. If this band degeneracy can be lifted while main- However, at a larger valug = 0.793, a much more
taining (or increasing) the size of tiiepolarization gap, a complex gap map unfolds as a result of symmetry break-
larger absolute band gap will ensue. We will show that thisng, as shown in Fig. 4. Several gaps in bé&handH
occurs by reducing the symmetry of the square lattice. polarizations appear and disappearGas varied. How-
When a smaller diameter rod is placed at the center oéver, in contrast to Fig. 3, the secdadandH-polarization
each square unit cell, the crystal symmetry is reduced. Af-
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FIG. 2. Gap map for the reduced-symmetry square lattice
FIG. 1. Gap map for the single-rod square lattice of air holeq8 = 0.16) of air holes in a background dielectrie,(= 11.4),
in a background dielectricef, = 11.4). An absolute band gap showing a significantly larger absolute band gap than that for
occurs where the upper two polarization gaps overlap. Théhe single-rod lattice. The maximum gap occurs at a filling
maximum gap occurs gt = 0.77 (indicated by arrow). fraction of 0.793 (arrow).
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larger absolute band gaps because the filling fraction is
increased without disrupting the lattice connectivity.

The honeycomb lattice of dielectric rods in air is a
promising candidate for the fabrication of a PBG crystal
in the visible to near-IR because it exhibits a very large
absolute gap (at a high non-dimensionalized frequency)
that extends over a wide range of filling fractions [17].
Symmetry breaking can lead to even larger absolute band
gaps when another rod is placed in the center of the
honeycomb cell. The honeycomb structure itself can be
viewed as an extreme case of asymmetry in the triangular
lattice. Both the triangular and honeycomb lattices have
plane group symmetrg6mm however, the rod symmetry

Frequency (wa/2nc)

B H-Polarization

W B E:Polatzniion (6mm) of the former lattice is reduced &min the latter [9].
0.0 1 ! ! L The symmetry of the triangular lattice can be reduced by
0.0 0.2 0.4 0.6 0.8 1.0 changing the diameter of the rod inside one hexagonal unit
Rod Diameter Ratio (B) cell (Fig. 5 inset), yielding a new lattice. This “reduced-

~ symmetry triangular lattice” is comprised of bddm and
FIG. 3. Gap map for the reduced-symmetry square latticesmmsymmetry rods. Here, the ratio of the rod diameters
(f =0.675) of air holes in a background dielectriay(= s gefined as3 = d»/d;, where the index 1 refers to the
11.4), showing the effect of changing the rod diameter ratio T
on gaps for the two orthogonal light polarizations. No overlap'©ds on the cell edge, and index 2 refers to the center rod.
exists between thil- and E-polarization gaps. The honeycomb lattice is generated whgr= 0, and the
triangular lattice whend = 1. All calculations for the

. reduced-symmetry triangular lattice were performed using
gaps both increase and overlap moregdsecomes larger. 1261 plane waves, to better than 1% accuracy.

Thus, a new absolute gap forms which reaches a maximurn For the reduced-symmetry triangular lattice of dielectric

ati g 50';.I65ei![no?(sjr?':gﬁ; ;ZOIEEL daebsolute gap forms atrods in air, adjusting the value @f has the opposite effect
g BotH Ehe filling fraction ang the si'ze of the symmetry 2" the gaps of the two orthogonal polarizations. Fhe

. 9 . oV y ypolarization gaps tend to decrease monotonicallyBas
breakm_g element are important in dictating which StrUC . ~reases. while thE-polarization gaps reach a maximum
tures will POSSESS abgolute PBGs. Many banql gaps CIO%Sr an intermediate value g8. This trend is expected
or open at f|II|'ng fractions Wh_ere the rods begin to OV€lsince the high dielectric constant material is now located
lap [16]. Adding a small rod in each unit cell may createin the rods. A rod diameter ratio is sought which takes

advantage of the increasing size of thgolarization gap,
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FIG. 4. Gap map for the reduced-symmetry square lattice

(f = 0.793) of air holes in a background dielectrie,(= 11.4) FIG. 5. Gap map for the reduced-symmetry triangular lattice
as a function of@. Symmetry reduction at the larger filling (f = 0.14) of dielectric rods €, = 11.4) in air, as a function
fraction opens up many new gaps for both polarizations, somef B. The large honeycomb lattice gap (shown @t= 0)

of which do overlap to produce absolute band gaps. The largestan be increased further through symmetry reduction. The
absolute gap occurs @& = 0.16 (arrow). maximum absolute gap occurs @t= 0.11 (arrow).
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without a significant reduction in thid-polarization gap. 2D. Instead, the elements comprising the lattice may play
The largest absolute gap for the honeycomb lattice occurs critical role in determining the maximum absolute gap
at f = 0.14, and has a magnitudew = 0.0880(27c/a).  that can be achieved for a given dielectric contrast. This
IncreasingB causes the gaps to shift as illustrated in theobservation is also supported by the work of Villeneuve
gap map of Fig. 5. The absolute band gap is alwaysnd Piché in their study of the shape of the rod cross section
bounded at the top by the upper boundary of the [12]. Extending the concept of symmetry reduction to
polarization gap. The lower boundary switches frerto 3D crystals by changing the relative size of the elements
H polarization. The maximum value of the absolute gapcomprising the lattice may also lead to increased 3D PBGs.
occurs at this crossover point, which fér= 0.14 occurs In conclusion, we have shown that symmetry reduction
at 8 = 0.11. Here, the size of the absolute gap becomesn both the 2D square and honeycomb lattices can increase
0.0967(27c/a), an increase of 9.9% over the largest gapthe size of absolute photonic band gaps. Specifically,
for the honeycomb lattice. addition of a smaller rod in the center of a square lattice

Symmetry reduction also helps increase the size ofan yield photonic crystals with gaps significantly larger
the PBG at filling fractions different from that of the than the single-rod lattice with the same dielectric contrast.
maximum for the honeycomb lattice. For example, Fig. 6For air holes in a background medium of GaAs =
shows the gap map for the reduced-symmetry triangulat1.4), the maximum gap of the reduced-symmetry square
lattice whenf = 0.22. For the honeycomb lattice3(=  lattice was nearly 3 times the size of the best single-rod
0) the absolute band gap at this filling fraction is muchlattice band gap. The largest absolute band gap of the
smaller than the maximum gt = 0.14. However, the honeycomb lattice of dielectric rods in air can be increased
addition of a small rod 8 = 0.17) into the honeycomb by ~10% also by inserting a small rod in the center of
cell center increases the absolute ga.ti849(27c/a),  each unit cell. Crystal symmetry reduction opens up new
nearly double the size of that for the honeycomb latticevistas for engineering the band gap of 2D and possibly 3D
at the same filling fraction, albeit 12% smaller than thecrystals.
maximum gap observed in Fig. 5. This trend could be This work was partially supported by Caltech start-up
important when fabrication issues are considered. It majunds and by a Camille and Henry Dreyfus Foundation
be beneficial to sacrifice a small amount of the band gaplew Faculty Award to K. P. G.
width in order to gain the ability to make more robust
photonic crystals with larger filling fractions.
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