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Absolute photonic band gaps in two-dimensional square and honeycomb lattices of circular cros
section rods can be increased by reducing the structure symmetry. The addition of a smaller diame
rod into the center of each lattice unit cell lifts band degeneracies to create significantly larger ba
gaps. Symmetry breaking is most effective at filling fractions near those which produce absolute ba
gaps for the original lattice. Rod diameter ratios in the range 0.1–0.2 yield the greatest improveme
in absolute gap size. Crystal symmetry reduction opens up new ways for engineering photonic ga
[S0031-9007(96)01328-2]
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The last few years have witnessed an ongoing se
for periodic dielectric structures which give rise to
photonic band gap (PBG)—a region of the frequen
spectrum where propagating modes are forbidden. T
“photonic crystals” could alter radiation-matter intera
tions and thus improve the efficiency of optical devic
by controlling spontaneous emission [1]. Applications
these crystals in semiconductor lasers and solar cells
and high-quality resonant cavities and filters [2] have b
proposed. Although three-dimensional (3D) PBG crys
suggest the most interesting ideas for novel applicati
two-dimensional (2D) structures could also find seve
important uses, as a result of their strong angular refle
ity properties over a wide frequency band. For exam
2D PBG crystals with absolute band gaps provide a la
stop band for use as a feedback mirror in laser diodes
Photonic gaps at visible to near-infrared (IR) waveleng
could have the widest impact in applications. As the b
gap frequency is directly related to the size of the sca
ing elements comprising the lattice, a near-IR band
requires features with dimensions in the submicron
regime. Fabricating 3D periodic structures in this regi
poses an overwhelming challenge, despite progress in
crofabrication technology. Perhaps for this reason at
tion has been drawn towards 2D lattice structures.
successful fabrication of 2D crystals with near-IR ba
gaps has been recently reported [4,5].

The larger a PBG is, the greater the forbidden reg
of the frequency spectrum. Thus, it is essential to de
crystal structures with the largest PBGs possible for a g
dielectric contrast. For two different crystals possess
absolute band gaps of equal size, it may be advantag
from a fabrication standpoint to choose the one that
the band gap occurring at the higher nondimensional
frequency,vay2pc, wherev is the frequency,a is the
lattice constant, andc is the speed of light in vacuum. Fo
a given filling fraction, the feature size scales witha; thus,
the crystal with the highervay2pc should be easier t
fabricate. But how does one sift through the countl
geometrical arrangements to select manufacturable s
tures with large band gaps in the desired frequency reg
0031-9007y96y77(14)y2949(4)$10.00
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Theoretical calculations are necessary, albeit a formid
task in view of the numerous structures to model with ma
variational parameters (e.g., lattice type, filling fractio
shape of filling element). A rational approach towards
design of photonic crystals would be indispensable br
force computation.

Overlapping bands in a photonic band diagram con
tute a degeneracy that can be lifted by symmetry break
Consider, for example, the 3D face-centered-cubic c
tal, which does not possess a full PBG. By decreasing
symmetry through the introduction of a two-point basis
(which produces the diamond structure), a degenerac
the bands is lifted and a full PBG is obtained [6]. Pre
ous studies of symmetry breaking by varying the shape
or size [8] of the cylinders comprising the lattice failed
produce 2D structures having a larger PBG than the c
tal with symmetric rods. However, we will show in th
Letter that symmetry breaking through the addition o
different size rod into the lattice unit cell can be effecti
in producing larger PBGs in 2D crystals.

The first structure examined consists of two interpe
trating square lattices of the same lattice constanta, dis-
placed with respect to each other bya ­

1
2 asx̂1 1 x̂2d,

where x̂1 and x̂2 are the primitive lattice vectors. Th
crystal is composed of infinite length circular rods of
ameterd1 at the corners of a square lattice, and diam
ter d2 at the center of each unit cell. This arrangem
forms a new structure whend1 fi d2, which we name the
“reduced-symmetry square lattice.” Both the single-r
and the reduced-symmetry square lattices belong to
plane groupp4mm, with all the unit cell elements havin
4mmsymmetry [9]. Symmetry reduction is accomplish
by increasing the number of rods in the primitive unit ce
All rods are assumed to be made of the same diele
material, and are embedded in a different dielectric ba
ground. The ratio of the two rod diameters,b ­ d2yd1,
critically affects the gap size.

The electromagnetic frequency spectra of the dielec
crystals have been calculated using the plane-wave ex
sion technique, described in detail in the literature [6,
11]. The results were obtained using 729 plane waves
© 1996 The American Physical Society 2949
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the square lattice, and 1225 plane waves for the reduc
symmetry one. When using 1757 plane waves, the b
frequencies differed from those calculated with few
plane waves by a maximum of 0.8%. Most bands differ
by less than 0.5%. Thus, we believe that all results her
are accurate to within at least 1% of their true values.

We start with the single-rod square lattice of air holes
a dielectric material, whose photonic properties have b
previously studied by several groups [12–14], each rep
ing that band gaps for each of the two orthogonal polari
tions occur. However, there has been some discrepa
as to whether an absolute PBG is present. Our calc
tions for the square lattice when the background mate
has a dielectric constanteb ­ 11.4 (eGaAs atl ø 1.5 mm)
are summarized in Fig. 1, where nondimensionalized f
quencies are plotted as a function of the filling fractio
f. The “gap map” shows two gaps for each of theH
andE polarizations, with the upper gaps overlapping fro
filling fractions of 0.68 to 0.79 to produce an absolu
band gap. The absolute gap is bounded on the lo
side by theH-polarization gap boundary, and on its u
per side by theE-polarization gap. A maximum gap o
Dv ­ 0.0188s2pcyad occurs whenf ­ 0.77.

Our aim is to rationally modify this structure to enlarg
the absolute band gap. The square lattice gap map cle
indicates that theH-polarization gap drops off sharply fo
f $ 0.77, thus limiting the overlap with theE-polarization
gap. Band structure analysis shows that the second
third bands forH polarization (those that bound the high
frequency gap in Fig. 1) are degenerate at theM point of
the Brillouin zone at large filling fractions, closing the ban
gap. If this band degeneracy can be lifted while ma
taining (or increasing) the size of theE-polarization gap, a
larger absolute band gap will ensue. We will show that t
occurs by reducing the symmetry of the square lattice.

When a smaller diameter rod is placed at the cente
each square unit cell, the crystal symmetry is reduced.

FIG. 1. Gap map for the single-rod square lattice of air ho
in a background dielectric (eb ­ 11.4). An absolute band gap
occurs where the upper two polarization gaps overlap. T
maximum gap occurs atf ­ 0.77 (indicated by arrow).
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between 0.1 and 0.2 provide the most dramatic impro
ment in the size of the absolute band gaps. Figure 2 sh
the gap map for the reduced-symmetry square lattice w
b ­ 0.16. Introducing the smaller diameter rod does i
crease the size of the upperH-polarization gap. Remark
ably, it also greatly enlarges the upperE-polarization gap.
Thus, the overlap between the two gaps increases, re
ing in a much larger absolute band gap. The maxim
photonic gap occurs forb ­ 0.16 andf ­ 0.793. With
a maximum gap width ofDv ­ 0.0548s2pcyad, this band
gap is nearly3 timeslarger than the best value obtained f
the single-rod square lattice case. It is noteworthy that
latter structure possesses no absolute gap atf ­ 0.793.
Symmetry breaking has introduced a large absolute p
tonic gap where none existed before.

Symmetry reduction may not be effective for all fillin
fractions. Figure 3 shows the effect of the parameterb

on the size and position of the band gaps forf ­ 0.675.
The band gaps for the single-rod square lattice are obta
when b ­ 0 or, equivalently, unity [15]. It is seen tha
as the lattice moves away from the equal diameter ca
the upperH-polarization gap tends to increase in siz
reaching a maximum at an intermediate value ofb. There
is a region in the middle of the plot where the lowerH-
polarization gap disappears at roughly the sameb where a
new higher gap appears. This is a result of the equivale
of the two lattices whenb is either 0 or 1. TwoE-
polarization gaps exist, but they do not overlap with t
H-polarization gaps. Thus, symmetry breaking in this ca
does not help to produce an absolute band gap.

However, at a larger valuef ­ 0.793, a much more
complex gap map unfolds as a result of symmetry bre
ing, as shown in Fig. 4. Several gaps in bothE and H
polarizations appear and disappear asb is varied. How-
ever, in contrast to Fig. 3, the secondE- andH-polarization

FIG. 2. Gap map for the reduced-symmetry square latt
(b ­ 0.16) of air holes in a background dielectric (eb ­ 11.4),
showing a significantly larger absolute band gap than that
the single-rod lattice. The maximum gap occurs at a filli
fraction of 0.793 (arrow).
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FIG. 3. Gap map for the reduced-symmetry square latt
( f ­ 0.675) of air holes in a background dielectric (eb ­
11.4), showing the effect of changing the rod diameter ra
on gaps for the two orthogonal light polarizations. No overl
exists between theH- andE-polarization gaps.

gaps both increase and overlap more asb becomes larger.
Thus, a new absolute gap forms which reaches a maxim
at b ­ 0.16. In addition, another absolute gap forms
b ø 0.5, albeit of smaller magnitude.

Both the filling fraction and the size of the symmetr
breaking element are important in dictating which stru
tures will possess absolute PBGs. Many band gaps c
or open at filling fractions where the rods begin to ove
lap [16]. Adding a small rod in each unit cell may crea

FIG. 4. Gap map for the reduced-symmetry square latt
( f ­ 0.793) of air holes in a background dielectric (eb ­ 11.4)
as a function ofb. Symmetry reduction at the larger filling
fraction opens up many new gaps for both polarizations, so
of which do overlap to produce absolute band gaps. The larg
absolute gap occurs atb ­ 0.16 (arrow).
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larger absolute band gaps because the filling fraction
increased without disrupting the lattice connectivity.

The honeycomb lattice of dielectric rods in air is
promising candidate for the fabrication of a PBG crys
in the visible to near-IR because it exhibits a very lar
absolute gap (at a high non-dimensionalized frequen
that extends over a wide range of filling fractions [17
Symmetry breaking can lead to even larger absolute b
gaps when another rod is placed in the center of
honeycomb cell. The honeycomb structure itself can
viewed as an extreme case of asymmetry in the triang
lattice. Both the triangular and honeycomb lattices ha
plane group symmetryp6mm; however, the rod symmetry
(6mm) of the former lattice is reduced to3min the latter [9].
The symmetry of the triangular lattice can be reduced
changing the diameter of the rod inside one hexagonal
cell (Fig. 5 inset), yielding a new lattice. This “reduce
symmetry triangular lattice” is comprised of both3m and
6mmsymmetry rods. Here, the ratio of the rod diamet
is defined asb ­ d2yd1, where the index 1 refers to th
rods on the cell edge, and index 2 refers to the center
The honeycomb lattice is generated whenb ­ 0, and the
triangular lattice whenb ­ 1. All calculations for the
reduced-symmetry triangular lattice were performed us
1261 plane waves, to better than 1% accuracy.

For the reduced-symmetry triangular lattice of dielect
rods in air, adjusting the value ofb has the opposite effec
on the gaps of the two orthogonal polarizations. TheH-
polarization gaps tend to decrease monotonically asb

increases, while theE-polarization gaps reach a maximu
for an intermediate value ofb. This trend is expected
since the high dielectric constant material is now loca
in the rods. A rod diameter ratio is sought which tak
advantage of the increasing size of theE-polarization gap,

FIG. 5. Gap map for the reduced-symmetry triangular latt
( f ­ 0.14) of dielectric rods (ea ­ 11.4) in air, as a function
of b. The large honeycomb lattice gap (shown atb ­ 0)
can be increased further through symmetry reduction.
maximum absolute gap occurs atb ­ 0.11 (arrow).
2951
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without a significant reduction in theH-polarization gap.
The largest absolute gap for the honeycomb lattice oc
at f ­ 0.14, and has a magnitudeDv ­ 0.0880s2pcyad.
Increasingb causes the gaps to shift as illustrated in
gap map of Fig. 5. The absolute band gap is alw
bounded at the top by the upper boundary of theH-
polarization gap. The lower boundary switches fromE to
H polarization. The maximum value of the absolute g
occurs at this crossover point, which forf ­ 0.14 occurs
at b ­ 0.11. Here, the size of the absolute gap becom
0.0967s2pcyad, an increase of 9.9% over the largest g
for the honeycomb lattice.

Symmetry reduction also helps increase the size
the PBG at filling fractions different from that of th
maximum for the honeycomb lattice. For example, Fig
shows the gap map for the reduced-symmetry triang
lattice whenf ­ 0.22. For the honeycomb lattice (b ­
0) the absolute band gap at this filling fraction is mu
smaller than the maximum atf ­ 0.14. However, the
addition of a small rod (b ­ 0.17) into the honeycomb
cell center increases the absolute gap to0.0849s2pcyad,
nearly double the size of that for the honeycomb latt
at the same filling fraction, albeit 12% smaller than t
maximum gap observed in Fig. 5. This trend could
important when fabrication issues are considered. It m
be beneficial to sacrifice a small amount of the band
width in order to gain the ability to make more robu
photonic crystals with larger filling fractions.

There is a remarkable similarity between the optimal
diameter ratios for both the reduced-symmetry square
triangular lattices, emerging from a comparison of Figs
5, and 6. This similarity suggests that the lattice type m
not be the critical factor in the creation of an absolute ga

FIG. 6. Gap map for the reduced-symmetry triangular lat
( f ­ 0.22) of dielectric rods (ea ­ 11.4) in air, showing a
two-fold increase in the absolute gap size over the honeyc
lattice gap at the same filling fraction. The maximum absol
gap occurs atb ­ 0.17 (arrow).
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2D. Instead, the elements comprising the lattice may p
a critical role in determining the maximum absolute g
that can be achieved for a given dielectric contrast. T
observation is also supported by the work of Villeneu
and Piché in their study of the shape of the rod cross sec
[12]. Extending the concept of symmetry reduction
3D crystals by changing the relative size of the eleme
comprising the lattice may also lead to increased 3D PB

In conclusion, we have shown that symmetry reduct
in both the 2D square and honeycomb lattices can incre
the size of absolute photonic band gaps. Specifica
addition of a smaller rod in the center of a square latt
can yield photonic crystals with gaps significantly larg
than the single-rod lattice with the same dielectric contra
For air holes in a background medium of GaAs (e ­
11.4), the maximum gap of the reduced-symmetry squ
lattice was nearly 3 times the size of the best single-
lattice band gap. The largest absolute band gap of
honeycomb lattice of dielectric rods in air can be increas
by ,10% also by inserting a small rod in the center
each unit cell. Crystal symmetry reduction opens up n
vistas for engineering the band gap of 2D and possibly
crystals.
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