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Broad-Band Wavelength Tunable Picosecond 
Pulses from CW Passively Mode-Locked 

Two-Section Multiple Quantum-Well 
Lasers 

Thomas Schrans, Steve Sanders, and Amnon Yariv 

Abstract- Wavelength tunable CW passive mode-locking of a 
two-section quantum-well laser coupled to an external cavity is 
demonstrated. A tuning range of 26 nm is achieved with typical 
autocorrelation full widths at half maximum of 4.5 ps. 

AVELENGTH tunable picosecond pulses have re- W cently been demonstrated in semiconductor lasers, 
using external cavity active mode-locking [ 11 - [6]. Tuning 
ranges of 33 nm [3], 60 nm [4], [5], and 40 nm [6] were 
obtained at wavelengths of 0.82, 1.3, and 1.55 pm, respec- 
tively, and typical minimum emitted pulse widths were 10-20 
ps reduced to as short as 3.7 ps by pulse compression [4]. 
Passive mode-locking of a semiconductor laser, using an 
external multiple-quantum-well (MQW) saturable absorber 
has resulted in subpicosecond deconvolved pulse widths after 
compression [7], [8], but the laser had to be tuned to a 
wavelength slightly longer than the excitonic absorption peak, 
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thereby preventing broadly tunable passive mode-locking. 
More recently external cavity passive mode-locking of two- 
section MQW semiconductor lasers, incorporating a mono- 
lithically integrated saturable absorber and gain medium was 
demonstrated [9], [ 101. Wavelength temperature tuning of a 
monolithic passively mode-locked CPM laser resulted in 
pulses shorter than 1.6 ps, tunable over 8.8 nm at 1.5 pm 
[ 111. In this letter we report on broad wavelength tuning of a 
passively mode-locked two-section quantum well laser cou- 
pled to an external grating, resulting in a tuning range of 26 
nm at 0.84 pm with a minimum autocorrelation full width at 
half maximum (FWHM) of 3.5 ps. 

The laser used in this experiment is a two-section quadru- 
ple quantum well laser similar to the lasers used in previous 
passive mode-locking experiments [9], [lo], with a high-re- 
flectivity (HR) coating (90%) on the absorber section side, 
and an anti-reflection (AR) coating (< 5%) on the gain 
section side. The AR-coated facet of the laser is coupled to 
an external cavity terminated by a 600 lines/mm blazed 
grating mounted in Littrow configuration, as shown in Fig. 1. 
The beam is focused by a 40 x (0.65 NA) microscope 
objective on the grating, which can be rotated for tuning 
purposes. A 9 % reflection pellicle beamsplitter (BS) placed at 
a 45” angle is used to couple the light out to an optical 
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Fig. 1. Two-section laser passively mode-locked in external cavity with 
grating. 
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Fig. 4. Optical intensity autocorrelations at different gain currents and 
wavelengths as indicated. 

grating spectrometer on one side, and to a second harmonic 
(SH) collinear intensity autocorrelator and a microwave spec- 
trum analyzer on the other side. The laser package is mounted 
to an aluminum block, which remained at a temperature of 
22.5 O C +_ 0.5 ' C during the experiment, and the gain section 
is pumped by a dc current source as shown in Fig. 1. The 
threshold current of the laser without external feedback and 
with the absorber floating is 42 mA. 

Due to hysteresis in the L-Z curve [9], and to avoid 
exposing the laser to high gain section currents, the laser is 
turned on with a floating absorber. After setting the gain 
current, I,, to an appropriate value, the absorber is grounded, 
and the laser switches to mode-locked operation. By adjust- 

ing the current I , ,  mode-locked operation at the first har- 
monic of the round-trip frequency is achieved [9]. The 
minimum current level for mode-locking as a function of the 
lasing wavelength is shown in Fig. 2. A tuning range of 26 
nm is obtained. 

The dashed line in Fig. 2 represents the current and 
wavelength values at which intensity autocorrelations and 
intensity power spectra were measured. The optical intensity 
power spectrum is measured from the photocurrent of an 
- 12 GHz bandwidth photodiode followed by a 0.5-4.5 
GHz bandwidth amplifier. Intensity power spectra are shown 
in Fig. 3 for different wavelengths, together with a back- 
ground measurement. The laser is mode-locked at 561 MHz, 
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In conclusion, we have demonstrated broad-band wave- 
length tuning of a passively mode-locked semiconductor laser, 
with a tuning range of 26 nm and typical autocorrelation 
FWHM of 4.5 ps. The pulses are not transform limited, 
having a typical time-bandwidth product of 2.5. 
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