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CHAPTER	I. INTRODUCTION	

 

1. Big	picture	

The human brain is the central organ of the nervous system that controls most of the activities of 

the body by integrating, processing and coordinating the information that is received from the sense 

organs and making decisions on the instructions to be sent out to the rest of the body. Understanding the 

development of brain microstructure is essential to understanding neurodevelopment. Neuroimaging is 

used to visualize the brain and record brain activity providing information related to both the structure and 

function of the brain. Neuroimaging analysis provides an opportunity to gain valuable insight into the 

microstructural changes in the brain associated with healthy growth and neurological disorders when 

conducting longitudinal or cross-sectional studies involving multiple subjects. 

New imaging techniques [1, 2] or protocols [3] have been introduced over the past few years that 

make it possible to capture microstructural complexity of dendrites and axons at millimeter scale in 

clinical settings. Moreover, recent advances [4-6] in the medical imaging community have made it 

possible to access large scale datasets acquired at various sites across the world, including different 

modalities and parameters of interest like tissue properties and blood oxygenation. With the increasing 

number of publicly available neuroimaging databases, including the Adolescent Brain Cognitive 

Development (ABCD) [7], the UK BioBank [8] and Connectome studies [9], there is an opportunity to 

combine large-scale imaging resources to increase the power of statistical analyses to test the common 

biological hypothesis. Community-wide efforts are underway to address standardization of acquisitions 

and analyses for imaging biomarkers as described in imaging biomarker road map for cancer studies [10]. 

These innovations bring exciting opportunities to probe into understanding the brain microstructure in a 

multidimensional setting with extensive demographic information. The data not only help in 

standardizing the expected tissue microstructure composition in a given population but also aid in 
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personalized therapeutic treatments based on the deviation observed from the healthy population. 

However, the data interpretation in this area needs to be approached with extreme care as it poses 

challenges because of group bias and heteroskedastic variance. Three main factors that lead to biased 

conclusions in research findings, limiting the validity of published results in imaging studies with 

neuroscience applications are: widespread low statistical power, selective outcome and selective analysis 

reporting [11]. As part of this dissertation, we propose strategies that focus on improving statistical power 

in quantifying brain microarchitecture features for conducting group studies. We propose to demonstrate 

the application of these techniques in three different clinical applications to carry out a multivariate 

analysis of brain microstructure features in psychosis population, to study the effects of aging on brain 

microstructure features on a large-scale population study, and improving human brain sulcal curve 

labeling of aging population in a large-scale MRI dataset. Our goal is to show that in both cases we 

achieve improved spatial statistics and better predictability. 

The rest of the chapter is structured in the following order. First, anatomical background relevant 

to neuroscience or psychiatry is presented in the context of this dissertation. In the next section, 

neuroimaging techniques appropriate for the goal of our analysis are briefly covered. Then, data 

processing steps involved in converting the signal from imaging the brain to relevant metrics in the 

context of understanding brain microstructure are discussed.  These cover both intra-subject, (i.e., dealing 

with multi-modal data from a single subject) and inter-subject (i.e., analyzing data across multiple 

subjects) analyses. Then various types of group analysis techniques are presented that include the region 

of interest (ROI) based, parametric and non-parametric tests that are commonly used in neuroimaging 

along with the trends and challenges associated with each of them. A brief rationale of why we are 

leaning to non-parametric tests as part of this study is stated. Then a list of possible sources of bias in the 

data analysis for population studies is presented that includes template bias and the variability arising 

from site/scanner differences. The challenges/gaps that we are trying to address as part of this dissertation 

are presented. These challenges are targeted for improving the statistical power while incorporating the 

multi-modal analysis in brain microstructure analysis. Then we present the targeted clinical applications 
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from this study. 

2. The	anatomical	context	in	neuroscience	or	psychiatry	

The human brain is composed of more than 100 billion neurons [12] that vary in size, shape, and 

function and they form networks for information processing that are responsible for all of our thoughts, 

sensations, feelings, and actions [13]. The cortical layers of neurons constitute much of the brain's gray 

matter (GM), which are interconnected to other brain areas by axons (WM). The mature human brain has 

a characteristic pattern of folds called the gyri and the grooves in between them are called the sulci.   

Much of the brain (approximately 45%) comprises WM, the predominantly myelinated axon 

bundles that originate in the neurons and carry electrical impulses between adjacent gyri and between 

different lobes of the brain [14]. The human brain continues to undergo myelination (which implies WM 

microstructure changes are prevalent in the context of neuroimaging) until at least the third decade of age 

[15]. The frontal regions of the cerebral cortex, which carry out higher-level executive functions, are the 

last to become myelinated [16]. GM constitutes both cortical and subcortical structures. GM cerebral 

cortex is about < 5 mm thick and is key to many executive functions of the brain. Any alterations in this 

region with neuropathologic conditions could be a potential biomarker to facilitate early diagnosis and 

assessment of disease severity. Another critical component is cerebrospinal fluid (CSF) that is a colorless 

fluid that fills and surrounds the brain and spinal cord. It provides a mechanical barrier against shock. An 

increase in the volume of blood or brain tissue results in a corresponding decrease in the fluid and vice 

versa. Illustration of these regions is shown in Figure I-1 with a zoomed in the region showing the axonal 

pathways entering and exiting the GM.    
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Figure I-1 Schematic illustration of brain anatomy with (a) gray matter which is < 5 mm thick (b) 
white matter (c) CSF (d) sulcus and (e) gyrus as indicated by the arrows. The boxed image is zoomed 

in to show a portion of GM and WM region with an illustration of axonal pathways entering and 
exiting the gray matter. Dotted lines indicate the pathways exiting GM. (By Ms. Emma Vought [17]) 

 

3. Types	of	Neuroimaging	

Neuroimaging is the use of imaging techniques to either directly or indirectly image the structure 

or function of the central nervous system. While there are other types of neuroimaging, like computed 

tomography (CT), magnetoencephalography (MEG), single-photon emission computed tomography 

(SPECT), in this section, we focus on magnetic resonance imaging (MRI) as it is relevant in the context 

of neuroscience or psychiatry applications to study brain microstructure features. Structural imaging deals 

with the structure of the nervous system and helps in the diagnosis of diseases such as brain tumor and 

injury. Functional imaging is used to diagnose metabolic diseases at a finer scale in addition to 

neurological and cognitive psychology research. In recent years, the development of neuroimaging 
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techniques such as high-resolution magnetic resonance imaging (MRI), functional magnetic resonance 

imaging (fMRI), diffusion-weighted magnetic resonance imaging (dMRI), positron emission tomography 

(PET) or single photon emission tomography (SPECT) have promoted the identification of structural and 

functional characteristics of the developing brain and underlying mental disorders [18-24].  

3.1. T1	weighted	MRI	

T1 weighted MRI (Figure I-2) is one of the essential contrast mechanisms in MRI that provides 

differences in the T1 relaxation times of different tissues. T1 images are typically acquired at a high 

resolution around 1mm. 

 

  

Figure I-2 T1 weighted image showing the anatomical structure of the human brain in axial, sagittal 
and coronal planes.  

 

T1 weighted images are typically used for segmentation of brain into different tissues like WM, 

GM and CSF. Image segmentation is a critical step in clinical applications that is used for visualizing 

specific anatomical regions in the brain or for analyzing brain related changes. There are different 

segmentation methods like intensity-based approaches [25, 26], atlas-based approaches [27] or surface-

based approaches [28] that can further label the images into smaller anatomical regions. In this study, we 

used multi-atlas segmentation [29] according to the BrainCOLOR protocol [30]: 132 brain regions and 1 

background (Figure I-3) to automatically label each voxel of the image.   
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Figure I-3 Segmentation of T1 weighted image according to brainColor protocol with 133 labels.  

 

T1 images are also used for cortical surface reconstruction that is a 2D representation of brain 

surface with corresponding cortical parcellation (Figure I-4). 

 

 

Figure I-4 Cortical parcellation from brainColor protocol  

 

The cerebral cortex is the outermost layer of neural gray matter and is critical for many brain 

functions including memory, attention, cognition, language, and consciousness[31]. Features that 

characterize the cortex (including sulcal curves, gyral curves, sulcal depth, curvature, and cortical 

thickness) are essential in neuroimaging studies involving these regions [32-34]. 

3.2. Diffusion	MRI		

Diffusion-weighted magnetic resonance imaging (DW-MRI) is an advanced imaging technique to 

characterize the diffusion of water in biological tissues non-invasively [35]. Diffusion MRI has been used 
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to produce images of brain tissue structure and connectivity, in the healthy and diseased brain. This 

technology has revolutionized the management of acute brain ischemia (stroke), saving the lives of many 

patients and sparing them significant disabilities as diffusion MRI was able to capture the dying brain 

cells early on highlighting them as bright spots while no abnormality is seen in standard MRI images 

[36]. Besides, diffusion MRI is now widely used for the detection of cancers and metastases (breast, 

prostate, liver) [37, 38]. Another major field of application of diffusion MRI is in studies on the 

connectivity of the brain [39].  Diffusion tensor imaging (DTI) [40] is a DW-MRI technique that enables 

the measurement of the diffusion anisotropy of water in tissue for producing neuronal tract images and 

has become an established method for assessing white matter ‘integrity' and connectivity in healthy and 

unhealthy brain structure (Figure I-5).  

 

 

Figure I-5 Illustration of DTI based measures typically used in most studies (a) Fractional anisotropy 
(b) Tractography representing neural tracts. 

 

However, DTI assumes that diffusion follows a tri-variate Gaussian distribution containing a 

single, coherently oriented bundle of white matter axons (e.g., the diffusion "ellipsoid") thus leading to 

non-specificity of the underlying microstructure of neurite-specific measures such as their density and 

orientation dispersion. 
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3.3. Advanced	diffusion	MRI	

Recent advances in diffusion MRI modeling have led to the development of several state-of-the-

art methods that allow for distinct features of the diffusion to be computed, which in turn reflect 

properties of fibrous tissue in the brain and other organs [14]. Microstructure imaging aims to address this 

limitation by fitting more descriptive models of tissue (e.g., axons, glial cells, and extra-cellular space) 

that relate to specific parameters in different tissue compartments [41-50]. Neurite orientation dispersion 

density imaging (NODDI) [48] has emerged as a clinically feasible MRI technique for estimating the 

microstructural complexity by combining a three-compartment tissue model with a two-shell high-

angular-resolution diffusion imaging (HARDI) protocol [48]. Briefly, NODDI provides quantification of 

the volume fraction of the intracellular compartment with restricted diffusion, extra-cellular compartment 

with hindered diffusion and isotropic compartment along with an orientation dispersion index (ODI) of 

the neurites. 

 

 

Figure I-6 Illustration of the metrics obtained from NODDI model (a) Intracellular volume fraction 
(Vic) providing neurite density index (b) Orientation dispersion index (ODI) (c) isotropic volume 

fraction (Viso) providing volume fraction of CSF compartment. 

 

Intracellular volume fraction (Vic) is modeled to represent the compartment defined by axons and 

dendrites, which are collectively called neurites. Extra-cellular volume fraction (Vec) refers to the space 

around the neurites that is occupied by various types of glial cells and cell bodies (somas) in gray matter. 
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Isotropic volume fraction (Viso) refers to the volume fraction of the cerebrospinal fluid (CSF) 

compartment in each voxel[48]. Voxel-wise quantification of these metrics over the whole brain (Figure 

I-6) presents new opportunities for understanding brain development and disorders. 

3.4. Functional	MRI	

Functional MRI is based on the essential observation that when a neural activity increased in a 

particular area of the brain, MR signal is also increased by a small amount. It is currently the most widely 

used method for brain mapping and for studying mechanisms of human cognition. The vascular 

architecture of the brain limits biological spatial resolution of fMRI. Neural correspondence, measured as 

a correlation between cortical activity and the evoked BOLD response, falls to less than 50% for voxel 

sizes below 2.8 mm3 [51] 

4. Data	processing	steps	in	Neuroimaging	

There are various steps involved in the quantification of brain microarchitecture through 

multivariate image processing (Figure I-7). These steps range from acquiring the brain MRI from a 

scanner to the final analysis for hypotheses based testing. Quality check procedures are a vital part in 

carrying out any analysis as each step involves data manipulation in preparing it for the next step. 

4.1. Intra-Subject	data	processing	

A preliminary step is the intra-subject processing of the data as illustrated in Figure I-7. Different 

types of images like T1 weighted, DWI, and fMRI could be acquired from an MRI scanner based on the 

scan protocol settings. T1w images are used to segment the brain into WM, GM and CSF regions and can 

further be extended to cortical reconstruction [52] to obtain GM surface. The segmentation can further be 

divided into smaller regions using multi-atlas segmentation approaches [53].  DWI images are processed 

to obtain model specific parameters like fractional anisotropy from DTI or ODI from NODDI. The first 

level analysis is performed on fMRI data to obtain contrast maps. Images from all modalities are co-

registered to T1w image. All the images are then transferred to a standard template preparing it for cross-
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subject analysis. 

 

 

Figure I-7 Intra subject processing workflow: Illustrated are the steps involved in intra-subject 
processing from image acquisition through the quantification across modalities. 1) Setting up scan 
protocols to obtain the imaging parameters of interest. 2) Image modalities including T1 weighted 
tissue contrast, 4-dimensional diffusion-weighted images with the corresponding gradient in the time 
domain and four-dimensional functional MRI imaging bold signal. 3) Segmentation of T1 weighted 
image into CSF, WM and GM components and also further segmenting them into multi atlas labels 
both in volume and cortical surface domain. 4) Obtain model based images from DWI images top 
row showing DTI based metrics like FA and corresponding tracts in white matter and bottom row 
showing NODDI outputs obtained with HARDI sequences. 5) First level analysis of functional MRI 
images to obtain contrast maps. 6) Both volume and surface-based registration to MNI space from 
T1 weighted images and applying the transform to other modalities to transfer all metrics to MNI 
space. 

 

4.2. Inter-Subject	data	processing	

The human brain varies in shape and size across different subjects. While intra-subject analysis 

addresses spatial alignment issues within the same subject, it does not necessarily involve shape or size 

differences. Inter-subject analysis, on the other hand, addresses the difference in shape and size 



 
 

11 

information of the brain that could cause potential inconsistencies for carrying out of group analysis. It is 

common to normalize anatomical images to a standard template to overcome the brain shape variability.  

Several techniques are proposed for carrying out this step including both intensity-based normalization 

[54] and cortical surface (shape) based normalization [33, 34, 55-59]. 

4.2.1. Volume-based	Registration	(VBR)	

Volume-based registration [54] is achieved based on maximum overlapping voxels between the 

template image and individual subject anatomical image. The ultimate aim is to transform the individual 

brains into a common space to make them spatially comparable to each other as needed for group 

analysis. The transformation that is achieved from the anatomical images to normalize to the template 

space is applied to the low-resolution images from the same subject to align all the modalities to a 

template space. 

4.2.2. Surface-based	Registration	(SBR)	

The cerebral cortex is the outermost layer of neural gray matter and is critical for many brain 

functions. Cortical surfaces are widely used for analyses in this region as they preserve topology [33, 34, 

55-59]. It is common to align all the cortical surfaces to a common space [60, 61] to study group 

differences in these regions between control and clinical samples. Representative template space-based 

approaches have been proposed to study local individual differences in cortical morphometric 

measurement due to their ability to represent data involving cortical patterns and other model-based voxel 

wise parameters mapped onto a common surface in both normal and clinical populations [62, 63]. 

5. Group	analysis	methodologies	in	Neuroimaging	

There are different types of cross-subject analysis performed for group studies as shown in Figure 

I-8. Data from each modality across all subjects are aligned to target template either an Montreal 

Neurological Institute, MNI template or population-based template as mentioned in the above section. 

Below are different types of group analysis carried out at each level. 



 
 

12 

 

Figure I-8 Inter-subject analysis: Different levels involved in conducting a group analysis across 
subjects is shown. 1) Multi-modal data from all the subjects need to be aligned to a common template 
space before conducting group studies to derive metrics of interest. 2) Statistical metrics can be 
derived from each of those subjects at regions of interest (ROI) level to compare across subjects or 
between groups. ROI analysis can be done using volume segmentation or cortical surface 
segmentation. As the results are often averages across multiple voxels/vertices, there is low sensitivity 
or specificity to report underlying microarchitecture differences. 3) Voxel-based morphometry 
(VBM) analysis is performed across the entire volume at voxel level by applying smoothing to 
overcome registration artifacts and partial volume effects. VBM improves the sensitivity of the study 
but loses specificity due to smoothing. 4) Tract-based spatial statistics for WM or Gray matter based 
spatial statistics (GSBSS) for gray matter is carried out at voxel/vertex level retaining both sensitivity 
and specificity by overcoming registration artifacts and partial volume effects. This analysis has the 
potential to increase statistical power as the voxels/vertices get reduced to highly probable WM/GM 
units.  

   

5.1. Region	of	interest	(ROI)	analysis	

For the region of interest (ROI) analysis [61, 64, 65], statistical metrics are derived from each 

segmentation label from volume segmentation or cortical surface parcellation. Another approach would 

be to consider metrics along the tracts [66] based on diffusion tensor imaging (DTI) or based on sulcal 

curves [62].  

5.2. 	Whole	brain	voxel-based	analysis/Parametric	tests	

Voxel-based morphometry (VBM) analysis [67], considers the whole volume and performs 

parametric tests across the corresponding voxels in an image. This technique allows investigation of local 

differences in brain anatomy using a statistical approach using statistical parametric mapping [68]. In 
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volumetric neuroimaging analyses, spatial smoothing is generally performed to improve image alignment 

and statistical sensitivity. However, this could lose specificity of the underlying region of interest [69]. As 

the GM of healthy adult subjects is typically only <5 mm thick, spatial smoothing needs to be carefully 

performed to retain the sensitivity and specificity of the underlying changes [70, 71]. 

5.3. Non-parametric	analysis	

Non-parametric tests [72] the data at hand to perform inference making as few assumptions as 

possible thus providing a flexible methodology for neuroimaging. These tests include nonparametric 

equivalent to two-sample t-tests [73], one-sample t-tests [74], paired t-tests [75] with techniques like 

bootstrap and permutation tests that are computationally intensive. Statistical nonparametric testing [76] 

is equivalent to SPM using permutation tests instead of random field theory. FSL randomize [77] is 

another popular tool that is used for carrying out non-parametric permutation-based tests. Threshold-free 

cluster environment (TFCE) [78] is the most used thresholding option for finding clusters where cluster-

like structures are enhanced, but the image remains primarily voxel wise. In order to gain power in non-

parametric tests involving many voxels from the whole brain analysis, and also to improve the sensitivity 

of the analysis, skeleton based approaches are introduced where the data is analyzed in 2D domain. 

Following analysis fall into that category of performing non-parametric tests using TFCE option in 2D 

domain.   

5.3.1. Skeleton-based	analysis	

TBSS Tract-based spatial statistics (TBSS) has proven to be a popular technique for performing 

voxel-wise statistical analysis that aims to improve sensitivity and interpretability of analysis of multi-

subject diffusion imaging studies in white matter. Gray matter based spatial statistics method (GBSS) was 

first proposed in studying the cortical microstructure development of preterm human brain [79]. This 

method adapted tract-based spatial statistics (TBSS) [80] framework to overcome partial volume 

contamination in diffusion measures within cortical microstructure where spatially transformed individual 

cortical measurements are projected onto the mean cortical skeleton by searching in a direction 
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perpendicular to the cortical skeleton identifying maximally probable cortical voxels. Unlike TBSS where 

projection was based on high fractional anisotropy (FA), GBSS method seeks voxels with a high 

probability of gray matter (GM). 

5.3.2. Surface-based	analysis	

Surface-based approaches have been proposed with improved sensitivity in cortical morphometry 

[63, 69, 81-84] over volumetric neuroimaging in both fMRI and cortical features of interest. In surface 

based approaches morphometric measures are derived from the geometry of the cortical surfaces. Cortical 

surfaces are inherently two-dimensional in nature with set of vertices/coordinates that are derived from 

the MRI during cortical surface reconstruction process. 

5.4. Strengths	and	weaknesses	of	each	of	the	group	analysis	methods	

 Once the ROIs are defined either through the segmentation labels or with the custom region of 

interest like boundary around a brain tumor region, statistical metrics like mean and standard deviation 

within this region are captured. For example, in a single subject, for metric M within an ROI of n voxels, 

statistical mean is obtained as the sum of all the intensity values within the ROI as,  

𝑅𝑂𝐼!"#$ =
!
!

𝑀!
!
!!!       (1.1)   

The difference in the statistical metrics across all the subjects within a single group or between different 

groups is compared for hypothesis testing [64] [85].  However, if the region of effect is much smaller than 

the ROI, then it is possible that the measures taken in this approach can get obscured. As the results are 

often averages across multiple voxels/vertices [86], it is possible to lose the spatial sensitivity and 

specificity of underlying microstructure feature changes. 

Localized regional abnormalities can be captured in VBM using statistical parametric mapping 

with Generalized linear model (GLM) [87] that is used to construct statistical maps. Gaussian random 

field theory [88] is used to resolve multiple comparison issues. In GLM, each outcome variable 𝑌 is 

assumed to be generated of the dependent variable 𝑋 from a particular exponential family of distributions 
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(like Poison or normal).  

𝑦! = 𝛽! + 𝛽!𝑥!! +⋯+ 𝛽!𝑥!" + 𝜖!      (1.2) 

Random field theory [88] has the characteristic of data under Null hypothesis 𝐻!, which holds 

that all data activations are merely by chance, and each voxel has a random number.  If 𝐻! is assumed to 

be true, and the probability of falsely rejecting 𝐻! is controlled by some fixed threshold 𝛼, then, the 

probability of making one or more Type I errors in a family of tests is given by,  

𝐹𝑊𝐸𝑅 = 𝑃(∪ 𝑇! ≥ 𝑢! 𝐻! ≤ 𝛼
!!!,..!

    (1.3) 

where 𝑚 is the number of voxels in the image. As this necessitates knowing the distribution of t-statistic 

𝑇! under the null, several methods are attempted to approximate this distribution. The most conservative 

approach for dealing with multiple comparisons is to use the Bonferroni correction [89] defined as, 

𝑃(𝑇! ≥ 𝑢!|𝐻!) ≤
!
!

          (1.4) 

With Boole’s inequality [90], we are guaranteed to control FWER at threshold 𝛼 using Bonferroni 

correction as,  

𝐹𝑊𝐸𝑅 ≤ 𝑃 𝑇! ≥ 𝑢 𝐻! ≤ !
!
= 𝛼!!     (1.5) 

In random field theory (RFT) the image of voxel wise test statistics are assumed to be a discrete 

sampling of a continuous smooth random field. Smoothness of the image is defined in terms of resolution 

elements called resels, which are roughly equal to number of comparisons. In a two dimensional image, 

with volume of search region as V, and full width half maximum (FWHM) representing estimated 

smoothness, resels are defined as, 

𝑅 = !
!"#$!!!"#$!

           (1.6) 

RFT uses information on smoothness of the image and resel counts to compute Euler 

characteristic, a topological property at different thresholds 𝑢 to determine the needed threshold 𝛼. While 

each of these correction methods are acceptable in the neuroimaging field, RFT also provides cluster-

level correction.  As these two models are parametric that make number of assumptions (normal 
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distribution, derivative of multivariate Gaussian, etc), the results of such approach are influenced by the 

validity of the assumptions.   

Non-parametric tests, on the other hand, do not make assumptions on the distribution of 

underlying data thus making it a better choice compared to that of parametric tests. These are shown to 

provide improvements in power and validity, especially in small datasets. Permutation tests can be used 

for getting approximate of the distribution of the maximum statistics by repeatedly resampling the data 

under the null hypothesis. The only assumption needed for permutation tests is the exchangeability of the 

data. 

6. Possible	sources	of	error	in	group	analysis	for	population	studies	

6.1. Model	reproducibility	

Different scan protocols could have an impact on the data quality specific to the model of interest. 

Moreover. Jones et al. [91] argues “Knowing the uncertainties, higher moments, and probability 

distributions of various DT-MRI parameters could improve our ability to glean more information from 

DT-MRI data and to design DT-MRI experiments more efficiently, particularly longitudinal or multi-site 

studies”. As more studies consider the NODDI model, it is essential to investigate the empirical 

reproducibility and performance of this model with respect to scan time.  

6.2. Harmonization	of	diffusion	microstructure	features	

Using diffusion tensor imaging (DTI), ENIGMA’s disease working groups have begun to 

compile evidence across cohorts for differences in a range of DTI measures and discovering factors that 

consistently affect brain structure and function [92]. However, the community of clinicians, engineers, 

and physicists is not yet ready to agree on a single best practice approach to advanced DW-MRI. 

Therefore, it is imperative to understand when (and how) diverse protocols can be analyzed to enable 

comparison and optimization across protocols based on practical study design and imaging constraints. 

An application of advanced DW-MRI methods in clinical research studies has been hindered by a 
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lack of consensus on best protocols. DW-MRI suffers from between-scanner variation that hinders 

comparisons of images across imaging sites, scanners and over time, a model that can preserve biological 

variability and remove the unwanted variation introduced by the site is needed. Using fractional 

anisotropy (FA) and mean diffusivity (MD) maps, Fortin et al. compared several harmonization 

approaches and found that ComBat performed best at inter-site variability correction [93]. ComBat has 

also been applied to harmonization of cortical thickness measures across scanners and sites [94] and 

multicenter radiomic studies with positron emission tomography [95].  

6.3. Bias	in	template	selection	

Prior work has addressed the importance of template surface selection from the perspective of 

pairwise registration [56, 57, 96]. In a template based registration approach, each surface is mapped to a 

common template surface in coordinate space by regularizing based on feature information. However, 

surface-based analyses employing a predefined template might yield undesirable results if the selected 

template surface is substantially different from the population or if it is biased towards a particular set of 

surfaces [97]. Template-based registration is dependent on the a priori template specification thus 

constraining the underlying data to be biased to the selected template. Methods have addressed the issue 

of dissimilarity between template surface and surfaces of population under consideration by organizing 

the population of cortical surfaces into pairs with high shape similarity to achieve a higher accuracy by 

only corresponding such similar pairs [96], while others factored in the pattern of folding across the entire 

cortical surface in considering the inter-subject average [98]. But these approaches are still prone to bias 

towards the majority representation of the underlying population that could pose a problem in cross 

subject analysis. 

7. Contributions	

In this study, we proposed techniques to improve statistical power for population studies to 

quantify brain microstructure with a focus on gray matter. The main contributions of this dissertation are 

(1) to show that our gray matter surface based spatial statistics (GSBSS) approach improves the statistical 
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power for performing group studies in neuroimaging compared to that of traditional registration methods 

(Chapter III, IV), (2) to address source of bias and variance in group studies by investigating empirical 

reproducibility of the NODDI model (Chapter II), correcting for inter-scanner variability effects of 

diffusion microstructure features (Chapter V) and constructing unbiased feature based cortical surface 

template (Chapter VI), (3) to apply deep learning techniques on cortical surfaces for improved sulcal 

curve labeling on large datasets (Chapter VII). 

More specifically:  

• Empirical model reproducibility is performed on NODDI model in Chapter II as the 

optimized NODDI protocol can be carried out in a clinical setting. Moreover, as we delve into 

understanding brain tissue microstructure including GM. This model was chosen as it 

disentangles neurite density and orientation dispersion estimates yielding more specific markers.   

• The GSBSS approach was developed using gray matter surfaces in Chapter III to overcome the 

challenges of alignment issues and partial volume effects in low-resolution images like 

diffusion/functional MRI. Application of this technique was shown in diffusion MRI in 

psychosis population. This effort will facilitate getting the corresponding metrics of interest 

from each modality (T1, fMRI, DWI) in subject space and map them onto a target surface 

template in MNI space by making use of high-resolution T1 images for cortical surface 

segmentation and registration.  

• We enhanced the GSBSS pipeline with a search methodology and also showed the application 

in functional MRI in Chapter VI.  We showed that this approach improves statistical power 

compared to that of volumetric (VBM) or surface-based registration methods and human 

connectome project minimum processing pipeline.  

• We performed data harmonization of diffusion microstructure features in both white matter 

and gray matter with data across multiple sites and scanners. While data harmonization has been 
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addressed in different contexts in previous works [93, 99], the novel part of our contribution is to 

apply this technique to spatial statistics derived from TBSS and GSBSS as shown in Chapter V. 

• We showed the approach for constructing statistically unbiased cortical surface templates 

using feature-space covariance in Chapter VI to address population bias in template selection. 

Since we are dealing with cortical surfaces for GM spatial statistics, we have chosen to address 

the issue of bias in choosing a template for population studies.  

• We presented how the cortical surface features are integrated into a deep neural network to 

achieve improved brain sulcal curve labeling for achieving improved speed, higher accuracy 

and better consistency in Chapter VII in large-scale brain MRI datasets.  

Finally, observations of GSBSS reproducibility and lessons learned with different clinical applications are 

captured in an observation chapter followed by the conclusion. 

7.1. Clinical	applications	

The motivation behind each of the contribution is to apply in clinical studies ultimately. We show 

three different clinical applications with improvement in statistical power. The first application is in 

psychosis population to study the differences between healthy vs. psychosis, the second application is to 

validate aging effects in diffusion microstructure features, and third application to label sulcal curves on a 

large-scale MRI dataset in an ageing population. 

7.1.1. Application	I:	Hypothesis	testing	on	Psychosis	population	

Based on post-mortem studies, microstructure changes were seen in the prefrontal cortex, in 

individuals with psychosis [100, 101]. Recent in vivo studies have demonstrated the ability of NODDI 

technique in identifying the group differences between healthy and psychosis groups in white matter 

[102] and gray matter (GM) regions [103, 104]. Using the NODDI model, neurite orientation dispersion 

index (ODI), a putative marker of dendritic structure and complexity, was calculated and compared 

between healthy controls and individuals with psychosis. Prior post-mortem studies have shown reduced 

dendritic length in prefrontal cortex region in schizophrenia and bipolar disorder population. To validate 
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the results, statistical tests are compared between GSBSS and gray matter based spatial statistics using 

NODDI (N-GBSS) to study the differences between healthy and psychosis population. Significant results 

confirming the microstructural changes are presented. GSBSS results show higher sensitivity to group 

differences between healthy and psychosis population in previously known regions. 

7.1.2. Application	II:	Ageing	effects	of	brain	microstructure	in	white	and	gray	matter	

Aging effects on the white matter have been studied on large-scale datasets using UK Biobank 

with NODDI metrics [105]. With the increasing number of publicly available neuroimaging databases, 

there is an opportunity to combine large-scale imaging studies to increase the power of statistical analyses 

to test the common biological hypothesis. However, cross-study, cross-sectional analyses are confounded 

by inter-scanner variability that can cause both spatially and anatomically dependent signal aberrations. In 

particular, scanner related differences in the diffusion-weighted magnetic resonance imaging (DW-MRI) 

signal are substantially different for sub-cortical gray versus the neighboring white matter region or 

cortical gray matter region. There is a scope for studying brain microarchitecture features in gray matter 

using the approaches that are mentioned in earlier sections. We applied data harmonization techniques to 

correct for scanner differences and show that the biological variability with age is retained or improved 

while correcting for variability across scanners. 

7.1.3. Application	III:	Sulcal	curve	labeling	of	the	aging	population	on	a	large	scale	MRI	

The human cortex is one of the most complex anatomical structures with substantial variation in 

shape across individuals. Despite its complexity, the cortical sulci are known as relatively stable regions 

that embed consistent cortical folds [106-108] by which the cerebral cortex can be subdivided into 

functionally and structurally homogeneous regions. From a morphological view, each sulcus (or sulcal 

region) can be well represented as a curve by tracing its sulcal fundus. Despite their advantages, there has 

not yet been a common agreement of a rigorous definition of the cortical sulci as they exhibit phenotypic 

variability. Such variability hampers consistent labeling of such cortical sulci and is challenging even for 

neuroanatomists. Moreover, creating a complete set of sulcal delineation is practically time-consuming 
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and requires qualified experts. In this study, we showed a new application of deep learning on cortical 

surfaces using a U-Net model. We achieved substantively faster labeling with better accuracy than multi-

atlas approaches in an aging population.  

7.2. Previous	publications	

Many contributions of this dissertation have been previously published. Empirical reproducibility 

of NODDI is evaluated and presented on a single subject with verification using the second subject for 

two-shell protocol and also for single shell ODI [109]. Gray matter surface based spatial statistics in 

diffusion microstructure approach with an application in psychosis is presented [110, 111]. Data 

harmonization of diffusion microstructure features in gray matter, and white matter is presented [112]. 

Constructing statistically unbiased cortical surface template using feature space covariance is presented 

[113].  Contributions related to improved GSBSS with search methodology and application to functional 

MRI (Chapter IV), and improved brain sulcal curve labeling using deep neural networks (Chapter VII) 

are currently in submitted status.  

 



22 
 

CHAPTER	II. 	EMPIRICAL	REPRODUCIBILITY,	SENSITIVITY,	AND	

OPTIMIZATION	OF	ACQUISITION	PROTOCOL,	FOR	NEURITE	

ORIENTATION	DISPERSION	AND	DENSITY	IMAGING	USING	AMICO	

 

1. Introduction	

Diffusion weighted magnetic resonance imaging (DW-MRI) is an advanced imaging technique to 

characterize the diffusion of water in biological tissues non-invasively [1]. Diffusion tensor imaging 

(DTI) [2] is a DW-MRI technique that enables the measurement of the diffusion anisotropy of water in 

tissue for producing neuronal tract images and has become an established method for assessing white 

matter ‘integrity’ and connectivity in normal and unhealthy brain structure. However, DTI assumes that 

diffusion follows a tri-variate Gaussian distribution containing a single, coherently oriented bundle of 

white matter axons (e.g., the diffusion “ellipsoid”) thus leading to non-specificity of underlying 

microstructure of neurite-specific measures such as their density and orientation dispersion. 

Microstructure imaging aims to address this limitation by fitting more descriptive models of tissue (e.g., 

axons, glial cells and extra-cellular space) that relate to specific parameters in different tissue 

compartments [3-12].  

Neurite orientation dispersion density imaging (NODDI) [10] has emerged as a clinically feasible 

MRI technique for estimating the microstructural complexity by combining a three-compartment tissue 

model with a two-shell high-angular-resolution diffusion imaging (HARDI) protocol[10]. Briefly, 

NODDI provides quantification of the volume fraction of the intra-cellular compartment with restricted 

diffusion, extra-cellular compartment with hindered diffusion and isotropic compartment along with an 

orientation dispersion index (ODI) of the neurites. Intracellular volume fraction (Vic) is modeled to 

represent the compartment defined by axons and dendrites, which are collectively called neurites. Extra-
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cellular volume fraction (Vec) refers to the space around the neurites that is occupied by various types of 

glial cells and cell bodies (somas) in gray matter. Isotropic volume fraction (Viso) refers to the volume 

fraction of the cerebrospinal fluid compartment in each voxel[10]. Voxel-wise quantification of these 

metrics over the whole brain presents new opportunities for understanding brain development and 

disorders. To accelerate the fitting process, the accelerated microstructure imaging via convex 

optimization (AMICO)[13] analysis algorithm fits a linearized version of the NODDI model that greatly 

reduces the calculation time to approximately 1/40–1/80th of the original time. AMICO can achieve 

slightly more accurate and robust parameter estimates than the original technique and guarantees 

convergence to a global minimum[13].  

NODDI has been applied in clinical applications including normal brain development and ageing 

[14-16], epilepsy[17, 18], traumatic brain injury[19], stroke[20], brain tumor[21], neonates[4], 

Alzheimer’s disease[22], Parkinson’s disease[23], functional connectivity predictors[24], multiple 

sclerosis [25, 26], age effects and sex differences [27], as it allows quantification of microstructure 

changes in both grey matter (GM) and white matter (WM). The originally proposed acquisition protocol 

is a two-shell sequence with a 711 s/mm2 shell with 30 gradient directions and a 2855 s/mm2 shell with 60 

directions for maximum gradient (Gmax) of 60 mT/m or b=2000 s/mm2 shell for Gmax=40 mT/m with 9 

b=0 measurements. Yet, the acquisition protocols in the above referenced studies range from b-values 

~300-1000 s/mm2 (9-126 gradient directions) in the inner shell and ~2000 - 9375 s/mm2 (30-126 gradient 

directions) on the outer shell b-values and are implemented on different scanner models and gradient 

strengths.  

As more studies consider the NODDI model, it is essential to understand the empirical 

reproducibility and performance of this model with respect to scan time. Alexander et al. [28] designed an 

optimized protocol under an acquisition time constraint of 30 min that was considered for clinical 

viability in the original work [10]. While the scan-rescan analysis was performed on synthetic data in the 

original NODDI paper [10] over different acquisition schemes, the empirical data validation was limited 

to a single scan over four shells and focused on the number of shells and directions needed within the 
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optimized protocol range. Later work addressed scan-rescan reproducibility using a single subject on 3T 

across 2 sessions [29], within session reproducibility and between subject variability with magnetic 

strengths at 1.5T and 3T [30, 31] using the optimized protocol for NODDI. However extensive 

reproducibility analysis with empirical data across various acquisition protocols has not yet been 

performed on the NODDI model as has been done in the case of DTI [32-35]. Moreover, as mentioned in 

the original paper [10], ODI can be computed from single shell data. Similarly, the reproducibility of the 

estimated single shell ODI has not yet been evaluated systematically in empirical studies. 

In this study, we perform the first evaluation of empirical reproducibility of AMICO/NODDI 

metrics for a two-shell HARDI protocol and characterize the impacts of protocol relative to acquisition 

time by comparing with a gold standard (extended scan time) dataset. We investigate how the number of 

directions in each shell and the selection of outer shell b-value (in a well-balanced DW scheme), affects 

NODDI-derived metrics through direct in vivo analyses of empirical data and provide optimized protocol 

settings to strike a practical balance between scan time and error. We perform similar analysis using 

single shell for ODI across all b-values. For reproducibility and sensitivity analysis, we scanned a single 

subject across multiple sessions including multiple repeats in each session as in [34] and analyze the 

results both qualitatively and quantitatively using the mean and standard deviation of bias within chosen 

ROI and report the root mean square error (RMSE) of each protocol with respect to the gold standard 

data. Recommended protocol settings are proposed based on the overlap of 95% confidence interval of 

each protocol with minimum RMSE across all the protocols within an ROI. These findings are validated 

with a dataset from second subject with a different scan protocol. Significant differences seen between the 

subjects and across protocols were compared using paired Wilcoxon ranksum tests and performance of 

each protocol with respect to gold standard is reported with Pearson pairwise correlation coefficient.  

2. Methods	

2.1. Data	Acquisition	

Diffusion weighted MRI data was acquired on a single healthy subject (S1) in three different 
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sessions, 2 hours each on a 3T scanner (Achieva, Philips Medical Systems, Best, The Netherlands) with a 

32-channel head coil on consecutive days. The study protocol was performed four times in each of two 

sessions and three times in one session resulting in a total of 11 equivalent sets of scan data. The scan 

protocol included a B0 map, five diffusion shells with b-values of 3000, 2500, 2000, 1500 and 1000 

s/mm2, each with 96 diffusion-weighted directions. The data were acquired at 2.5mm isotropic resolution 

with a matrix of 96 x 96 and 38 slices using DW PGSE-EPI sequence (TR=2.65s, TE=101ms) and 

Gmax=~37.5mT/m with multiband (factor 2). Each scan was preceded by a scanner average of 10 

minimally weighted (“b0”) reference images. Scan time for each shell was ~4.7 minutes and the total scan 

time for each session was ~106 minutes/session. Second subject (S2) considered for validation is from 

Tractography-reproducibility Challenge with Empirical Data (TraCED) 

(https://my.vanderbilt.edu/ismrmtraced2017/publications/) whose scan protocol included three shells with 

b=1000 s/mm2, 2000 s/mm2, 3000 s/mm2 with 20, 48 and 64 evenly distributed shells respectively and 15 

b0 images (interspersed with 5 per shell one for each repeat). This data is acquired at 2.5mm resolution as 

well with a matrix of 96X96 and 44 slices (TR=2.92s, TE=99ms). Scan time of each shell with 48 

gradient directions is ~2.25 minutes and equivalent scan time for 96 directions would be ~4.5 minutes. 

Total scan time for each session was ~99 minutes/session. Reported times are for multiband factor of 2 

and can vary based on availability of simultaneous multi-slice and hardware capabilities. TR was fixed for 

all shells and TE held constant across scanners. Additionally, 5 reverse phase-encoded b0 images and 3 

diffusion-weighted directions were acquired to aid in distortion correction. Cardiac and respiratory gating 

was not used. All data were acquired in accordance with the Vanderbilt University Institutional Review 

Board (IRB) guidelines and with the signed consent of the volunteer. 

2.2. Preprocessing	

Data from all sessions were corrected for patient movement, eddy current distortion and 

susceptibility distortion through FSL’s topup and eddy functions [36]. The b-vectors were rotated by the 

rotation component from the transformation obtained from the correction.  
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Data from both intra- and inter-session scans were brought into the same target space by first 

registering the mean b0 images in scanner space to T2 in 2.5 mm isotropic MNI-152 space, thus obtaining 

an in-plane matrix of 78x93 and 75 slices using the FMRIB Software Library's (FSL 5.0) FLIRT [37]. 

Then, for each session, all b0’s were combined to obtain a mean b0 image for individual sessions. The 

mean b0 of first session was registered to MNI T2 using 6 degrees of freedom (DOF) thus getting b0 into 

target space (b0_S1_T2_Reg). The mean b0 for the other two sessions were then registered to 

b0_S1_T2_Reg with 6 DOF. All individual b0’s and diffusion-weighted images from the first session 

were brought to target space by applying the same transform. Accordingly, all b0’s and diffusion-

weighted images from the other two sessions were moved to target space using their corresponding 

transforms obtained from registration. All preprocessing was implemented with custom scripts using the 

FSL software (http://www.fmrib.ox.ac.uk/fsl). 

All the b0 images from all sessions were combined together to form a mean b0 (b0m) image in 

target space by compensating for scanner gain factors. Briefly, weights of each scan, Ws, were calculated 

by taking the inverse of the median of individual b0s images divided by the b0m image intensity to remove 

the scanner gain variations observed across scans. The MNI weighted mean b0 (b0wm) image was 

generated using equation (2.1)  

𝐼(𝑏0!") =
(!!∗!(!!!))!

!!!
!!!

!!!
                   (2.1) 

Each DWI was then normalized using equation (2.2)  

𝐷𝑊𝐼!"#$ = 𝐼(𝑏0!") ∗
!"#!
!(!!!)

                                 (2.2) 

2.3. Segmentation:		

In a multi-atlas segmentation framework, each target image was first affinely registered to the 

MNI305 atlas [38] and then N4 bias correction [39] using the Advanced Normalization Tools (ANTs) 

[40] software package was applied to the atlas and target images. Atlas images were non-rigidly 

registered to the target image with the ANTs package and the symmetric image normalization algorithm 

(SyN) [41]. Deformation of image and label volumes for the atlas to the target space was performed with 
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bi-cubic and nearest-neighbor interpolation respectively. The registered label volumes were then 

combined together with non-local spatial STAPLE [42, 43] and AdaBoost correction [44] was applied. 

Each voxel in the brain was then assigned to one of the 133 labels (including background) using the 

BrainCOLOR protocol [45]. T1 image labels were down-sampled using the multi-label interpolation 

technique in ANTs and the segmented image was brought back to the original target space by computing 

the ANTs inverse transformation. Then, all cortical gray matter (GM) labels were combined into one GM 

region of interest (ROI) while all white matter (WM) labels are combined to one WM ROI. Additional 

ROI images of the splenium of the corpus callosum (SCC), internal capsule (IC) and centrum semiovale 

(CS) were hand drawn using ITK-SNAP [46] for further analysis of white matter regions (Figure II-2b).  

2.4. NODDI/AMICO	Processing	

The NODDI algorithm provides a unified model for gray and white matter microstructure. It uses 

a three compartment model representing restricted, hindered and isotropic components in each voxel and 

adopts the Watson distribution to model the orientation distribution of the sticks[10]. The full normalized 

signal (A), as described in the original work [10], is 

 

𝐴 = 1 − 𝑉!"# 𝑉!"𝐴!" + 1 − 𝑉!" 𝐴!" + 𝑉!"#𝐴!!"     (2.3) 

 

where Aic and Vic are the normalized signal and volume fraction of the intra-cellular compartment; Aec is 

the normalized signal of the extracellular compartment; and Aiso and Viso are the normalized signal and 

volume fraction of the CSF compartment. Orientation dispersion index is redefined from first proposed in 

[47] as below 

𝑂𝐷 =  !
∏
arctan (1 𝐾)     (2.4) 

where K is the concentration parameter of the Watson distribution. The default diffusivities are fixed to 

their respective typical values in vivo: d∥ = 1.7 × 10−3 mm2 s−1 and diso = 3.0 × 10−3 mm2s−1 and the 

remaining parameters are estimated from the fitting procedure.  

Data from each shell was split into multiple datasets of different number of directions, from 16 to 



28 
 

88 in increments of 8 for b=1000 s/mm2 which were used as the inner shell and from 24 to 96 directions 

in all other shells that were considered outer shells (i.e., more directions were used in the outer shell than 

the inner shell). We used “orderpoints” [48] from Camino software [49] to get the desired subset of 

gradient directions such that a partial scan has evenly spaced gradient directions on a sphere. It takes a set 

of N gradient directions as inputs and searches for an ordering that minimizes the electrostatic energy of 

the first P (where 5 < P < N) directions. It uses simulated-annealing optimization to search for the best 

configuration. . For each session and repetition, the inner shell data with b=1000s/mm2 was combined 

with corresponding data in outer shells for different combinations of gradient directions. Outer shell 

gradient directions were chosen to be greater than the inner shell gradient directions, thus providing 220 

unique combinations across outer shell b-values of 1500, 2000, 2500 and 3000s/mm2. With 11 repetitions 

across the sessions, this yielded a total of 2420 datasets that were considered for analysis. The NODDI 

model was applied and processed using the Python version of AMICO 

[https://github.com/daducci/AMICO/tree/master/python] on these datasets to estimate Vic, Viso and ODI 

parameters. As a gold standard, the data from all shells with all 96 directions were combined and 

processed through AMICO with the NODDI model to get the parameter maps Vic_gs, Viso_gs, and 

ODI_gs. To investigate the single shell ODI analysis, each shell was split into multiple datasets of various 

numbers of directions from 16 to 96 in increments of 8 for each session and repetition, across all b-values.  

2.5. Statistical	Analysis	

Statistical analysis was carried out based on scan-rescan reproducibility across multiple repeats of each 
combination and performance of each of the NODDI parameters within an ROI, is assessed based on voxel-wise 
analysis. The whole brain voxel-wise mean (Vmean) and standard deviation (Vstd) of each parameter was calculated 
across the 11 repeats for all combinations. 
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Figure II-1 Data acquisition included 3 sessions of 5 shells with b values of 1000, 1500, 2000, 2500 and 
3000s/mm2 each with 96 gradient directions and a total of 11 repeats. Preprocessing included topup 
and eddy current correction after which all the images are registered to MNI template. Mean b0 is 
generated from these images and DWI normalization is performed. For each repetition and session, 
normalized DWI data is then split into n multiple combinations including inner and outer shells 
based on corrected gradient indices to account for uniform sampling. AMICO processing is 
performed on each of these combinations thus yielding metrics Vic(n), ODI(n) and ISOVF(n) for 
each combination. Data from all shells and repeats are combined to obtain full protocol that is 
considered to be the gold standard dataset. with Vic_GS, ODI_GS and ISOVF_GS as corresponding 
metrics from AMICO processing. Multi atlas label segmentation is performed on the T1 image and 
labels are obtained through label fusion method, which is used in further quantitative analysis. 
Results included both qualitative and quantitative metrics. 

 

The voxel-wise bias (Vbias) was calculated by subtracting Vmean from the gold standard data for 

each parameter Vic, Viso and ODI as, 

Vic _bias = Vic _gs – Vic _Vmean                                     (2.5) 

Viso _bias = Viso _gs – Viso _Vmean         (2.6) 

ODI_bias = ODI_gs – ODI_Vmean    (2.7)  

For evaluating the empirical reproducibility and sensitivity of each acquisition protocol, the 

following metrics were reported for each of the microstructure imaging parameters across all ROIs where 

n is the number of voxels in an ROI:  

BiasMroi = (!!"#$)!
!

      (2.8) 

BiasSDroi = 𝜎!(𝑉!"#$)     (2.9) 
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  RMSEroi = (!!"#$)!!
!

     (2.10) 

Confidence intervals to describe RMSE values were calculated from 𝝌2 distribution table with (r-

1) degrees of freedom where r is the number of repeats as in equation 2.11. Since we are considering the 

confidence interval of the error metric this approach is considered to be similar to that of calculating 95% 

confidence interval of the variance. For a 95% confidence interval, we get 2.5% of the area at either end 

of chi-square distribution. For S1 with 11 repeats we have 10 degrees of freedom and based on the chi-

square table, we got 𝜒!.!"#!  =3.247 and 𝜒!.!"#!  =20.483 that are used in evaluating the confidence intervals 

based on below equations.  

!!! ∗!"#
!!.!"#! < 𝑅𝑀𝑆𝐸 <  !!! ∗!"#

!!.!"#!      (2.11) 

Similarly for S2, we have 10 repeats thus yielding 9 degrees of freedom for which the chi-square 

table values are 𝜒!.!"#!  =2.7 and 𝜒!.!"#!  =19.023 that are used in evaluating 95% confidence interval for 

S2.  

Within each ROI, minimum RMSE across all protocols is computed for individual NODDI 

parameters. We made use of the confidence intervals of the RMSE values in arriving at the recommended 

settings as it captures the possible range of RMSE values across multiple repeats. If the 95% confidence 

interval limit of any protocol overlaps with minimum RMSE value it is considered to be in the 

recommended range.  

Performance of different protocols with respect to gold standard is calculated based on pairwise 

Pearson correlation coefficient and linear correlation coefficient (R) values are reported. Significant group 

differences across subjects are computed using Wilcoxon rank-sum test and corresponding p values are 

reported. P value < 0.05 is considered to be significant.  

2.6. Second	subject	processing	

A second subject (S2) was scanned with a slightly different scan protocol consisting of three 

shells with b=1000 s/mm2, 2000 s/mm2 and 3000 s/mm2 and evenly distributed gradient directions of 20, 
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48, and 64 respectively. The data from these shells were split into multiple datasets similar to that of S1. 

Since we have fewer gradient directions in S2 for each shell, lower shell with b=1000 s/mm2 was split to 

have 16 gradient directions to match with S1 while outer shells were split in the increments of 4 from 20 

to 48 gradient directions for b=2000 s/mm2 and 20 to 64 directions for b=3000 s/mm2. Combining the 

inner shell data of b=1000 s/mm2 with corresponding data in outer shells yielded 20 unique combinations 

for each session and repetition. With 10 repetitions across the 2 sessions, this yielded a total of 200 

datasets that were considered for analysis. The NODDI model was applied and processed on these 

datasets to get Vic, ODI and Viso parameters. Data from all shells including all gradient directions for each 

session and repetition were combined and processed with NODDI model and the parameters Vic_gs, 

Viso_gs, and ODI_gs thus obtained were considered to be gold standard for second dataset S2.   

Whole brain voxel-wise mean (Vmean) and standard deviation (Vstd) of each parameter were 

calculated across the 10 repeats for all combinations. Voxel-wise bias (Vbias) with respect to gold standard 

was calculated using equations (2.5-2.8). For empirical reproducibility and sensitivity analysis of each 

acquisition protocol in S2, BiasMroi, BiasSDroi, RMSEroi values were calculated using equations (2.8-2.10). 

To compare the reproducibility results across different subjects, a subset of data from S1 that match with 

unique combinations yielded from S2 data processing was considered for further analysis of results.  

SNR was calculated by the difference method as indicated in [50]. First, an average image and a 

difference image were computed voxel wise with two consecutive b0 images. Then SNR was taken to be 

the mean of the average image divided by the standard deviation of the difference image within an ROI. 

This was repeated for all sequential b0 images within a session and a scan and the median of these 

measurements was reported for the corresponding SNR by ROI in Table 1. It is to be noted that the b0 

reported below is based on the scanner average of 10 b0’s. S1 and S2 represent the first and second 

subjects respectively. 

3. Results	

We examined the performance of microstructural measures obtained from the NODDI model 
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based on the acquisition protocol and characterized the impacts of acquisition time with respect to the 

extended scan time gold standard data. Evaluation was performed in terms of change in outer shell b-

values and variation of gradient directions in inner and outer shells.  

3.1. Qualitative	results	

A qualitative representation of microstructural parameters from a single session with respect to 

the gold standard across different acquisition protocols is indicated in Figure II-2a. Gold standard results 

are shown in column 1 where clear variation between WM and GM can be seen in both Vic and ODI and 

Viso is higher in cerebrospinal fluid (CSF) spaces. Columns 4 and 5 outlined with blue dotted lines were 

close to the proposed protocol from the original NODDI paper [10]. Lower shell of all the results is fixed 

at b=1000 s/mm2.  Number of gradient directions in lower shell and outer shell are indicated besides each 

b-value for each column. Column 2 has results from b=1500 s/mm2 in outer shell with 24 gradient 

directions while inner shell has 16 gradient directions. Similarly, column 3 has results from b=1500 

s/mm2 as outer shell with 96 and 88 gradient directions respectively in outer and inner shells. Last 2 

columns have results from b=3000 s/mm2 as outer shell with the minimum (16 and 24) and maximum 

number of gradient directions (88 and 96) in inner and outer shells respectively. Residual images of Vic 

and ODI, shown in rows 2 and 4, were obtained by subtracting the result image from gold standard of the 

corresponding metric. Most variation was observed in Vic from overestimation at low b-values to 

underestimation at high b-values in the outer shell. However, qualitatively, there was little difference 

between minimum and maximum number of gradient directions chosen within a given outer shell b-value. 

ODI showed better performance (R=0.94) with maximum number of directions when compared to the 

minimum number of gradient directions(R=0.9), as expected, and also no significant variation was 

noticed across outer shell b-values (R=0.98).  



33 
 

 
Figure II-2 Qualitative results for Vic, ODI and Viso maps and ROIs. (A) Qualitative results of 
NODDI maps with respect to gold standard data for different protocols with columns: (1) Gold 
Standard results with 5 shell data (2) Session results with b=1500 s/mm2 (16,24) (3) Session results 
with b=1500 s/mm2 (88,96) (4) Session results with b=2000 s/mm2 (32,64)  (5) Session results with 
b=2500 s/mm2 (32,64). (6) Session results with b=3000 s/mm2 (16,24). (7) Session results with b=3000 
s/mm2 (88,96). All session data has fixed inner shell of b=1000 s/mm2. Difference between gold 
standard and Vic and ODI parameters for corresponding protocols are represented in rows 2 and 4 
respectively. Protocols with b=2000s/mm2 and b=2500 s/mm2 in outer shells similar to the proposed 
optimized protocol from original NODDI is highlighted in blue dotted line. (B) ROIs used in the 
study (a) Splenium of corpus callosum (SCC) (b) Internal capsule (IC) (c) Centrum semiovale (d) 
White matter (WM) (e) Gray matter. 
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One interesting observation with the minimum number of gradient directions was that the 

deviation of ODI from the gold standard was higher for b=3000 s/mm2 (R=0.9) compared to lower outer 

shell b-values (R=0.91). Viso showed better performance (R=0.95 at b=3000s/mm2, R=0.88 at 

b=1500s/mm2) with increased outer shell b-values, but is still considerably higher than the gold standard 

Viso_gs. Figure II-2b shows the ROIs that were used for analysis in this study.  

Qualitative results of ODI from a single shell with the highest number of gradient directions 

across b-values are presented in Figure II-3. As can be seen in the second row of Figure II-3, ODI values 

from single shell data were underestimated at lower b-values in GM regions but overestimated across the 

brain towards higher b-values.  When compared with the gold standard, 2-shell ODI was always 

overestimated (row 3). When compared with 2-shell results (row 4), single shell ODI with b=2000 s/mm2 

was optimal where any b-value below lead to underestimation and any value higher produced 

overestimation. 

3.2. Quantitative	results	

Empirical data were quantitatively evaluated by first analyzing the variation of estimated 

microstructure parameters Vic, ODI and Viso with respect to the gold standard for all combinations of 

acquisition protocols within WM, GM and CSF regions. A similar analysis was then extended to evaluate 

these parameters in specific white matter regions, SCC, IC and CS, which were chosen to represent a 

range of complexity of the underlying white matter fibers in those regions.  

Bias statistics with respect to the gold standard dataset are presented in the following section. In 

each plot, the x-axis indicates acquisition time considering the number of gradient directions in both inner 

and outer shells.   
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Figure II-3 Qualitative results with single shell ODI. (a) ODI from single shell data with 96 gradient 
directions for b=1000, 1500, 2000, 2500 and 3000 s/mm2. (b) Difference ODI images from gold 
standard for single shell protocols as indicated (a). (c) Difference ODI images from gold standard for 
2-shell protocols with b=1500, 2000, 2500 and 3000 s/mm2 in outer shell with 88 and 96 gradient 
directions in inner and outer shells. (d) Difference ODI images from 2 shell and single shell protocols. 

 

3.3. Whole	Brain	Analysis	

Figure II-4a-b plots the bias statistics of Vic for each combination within WM and GM regions 

with respect to the gold standard protocol. Based on the observed results, for WM outer-shell b-values of 

2500 or 3000 s/mm2 were optimal with b=2000 s/mm2 also falling within the recommended range 

whereas b=1500 s/mm2 showed the poorest performance. In case of GM, b=2500 s/mm2 was optimal 

while b=2000 s/mm2 and 3000 s/mm2 were within the recommended range. Bias mean and standard 

deviation (provided in supplementary results) reflected similar information showing overestimation of Vic 
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in both WM and GM with less than the optimal b-value and underestimation in GM with higher b-values. 

Error metrics were slightly improved with an increase in the number of gradient directions. Within GM, at 

lower number of gradient directions, b=3000/2000 s/mm2 showed similar performance.  

Figure II-5 a-b plots the bias statistics of ODI for each combination within WM and GM regions with 

respect to the gold standard protocol. Compared to higher b-values in outer shell, RMSE of ODI is low at 

lower b-values. However with increase in number of gradient directions, RMSE value is reduced for all b-

values in both WM and GM In both cases, the ODI was better estimated with an increase in the number of 

gradient directions. However, based on the bias mean and standard deviation (details in supplementary 

results), ODI was always overestimated in WM. Also, lower numbers of gradient directions with highest 

b-values had the poorest performance, thus b=3000 s/mm2 with (16,24) directions had the highest error as 

shown in qualitative images in Figure II-2a. 

3.4. WM	Regions	Analysis	

ROIs considered for analysis were chosen to be representative of the level of complexity of white 

matter regions based on the underlying tissue microstructure. SCC is highly anisotropic with a mean FA 

of 0.92. IC is another white matter region with a moderate FA of 0.73. CS, a complicated white matter 

region containing crossing and fanning fibers that has been used in many studies [30] for evaluating the 

performance of HARDI methods had a mean FA of 0.37. Reported FA values were calculated for the gold 

standard data.  

Figure II-4 c-e plots the RMSE values of Vic for each combination within SCC, IC and CS 

regions with respect to the gold standard protocol. For SCC, b=3000 s/mm2 was found to be optimal 

followed by b=2500 s/mm2 with lower b-values having the poorest performance stabilizing around 32 

gradient directions for inner shell based on RMSE. In this region, b=1500 and 2000 s/mm2 had same 

performance across different acquisition times. Vic had lower RMSE for both b=2500 s/mm2 and 3000 

s/mm2 in IC and highest error for b=1500 s/mm2. Moreover, with an increase in number of directions, 

b=2000 to 3000 s/mm2 showed similar performance.  
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Figure II-4 The x-axis indicates the combination of inner and outer shells represented as acquisition 
time. Labels on x-axis within shaded region indicate the outer shell gradient directions while the 
inner scale within each shade indicates the inner shell gradient directions. Legend indicates the 
outer-shell b-values (a) RMSE of Vic in WM (b) RMSE of Vic in GM. (c) RMSE of Vic in splenium of 
corpus callosum (d) RMSE of Vic in internal capsule (e) RMSE of Vic in centrum semioval 

 

With low number of gradient directions, Vic in CS was optimal for b=2500 s/mm2 whereas 

b=2000 s/mm2 displayed lower error with increase in both inner and outer shell gradient directions. 

Poorest performance in this region was seen with b=1500 s/mm2 followed by b=3000 s/mm2. However, 

based on the bias (provided in supplementary results), Vic was underestimated for all protocols in SCC. 
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When compared to the gold standard, Vic in IC was optimal for b=3000 s/mm2, overestimated for both 

b=2500 and 2000 s/mm2 and underestimated for b=1500 s/mm2. For CS, Vic was overestimated overall 

and b=1500 s/mm2 had the highest standard deviation. Inner shell with 16 gradient directions showed the 

poorest performance across all b-values.  

 

Figure II-5 RMSE of ODI across white matter regions of interest for multiple b-values and 
acquisition times. X-axis indicates the combination of inner and outer shells represented as 
acquisition time. Labels on x-axis within shaded region indicate the outer shell gradient directions 
while the inner scale within each shade indicates the inner shell gradient directions. Legend indicates 
the outer-shell b-values (a) RMSE of ODI in WM (b) RMSE of ODI in GM. (c) RMSE of ODI in 
splenium of corpus callosum (d) RMSE of ODI in internal capsule (e) RMSE of ODI in centrum 
semiovale. Mean FA values for each of the ROIs are indicated at the top of the figure. 
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Figure II-5c-e plots the bias statistics of ODI for each combination of acquisition protocol within 

SCC, IC and CS regions with respect to the gold standard protocol. In case of ODI within SCC, b=3000 

s/mm2 with higher number of gradient directions had better performance; however, b=1500 s/mm2 

performed consistently across all gradient directions which was also reflected with lower bias mean 

values but with high standard deviation. ODI was overestimated at lower number of gradient directions 

and slightly improved with increase in acquisition time/gradient directions. Within IC, ODI had lower 

RMSE with b=1500 s/mm2 and poor performance with b=3000 s/mm2 and improved with increased 

acquisition times. Overall ODI was overestimated and standard deviation increased with higher b-values. 

ODI in CS also showed similar performance with b=1500 s/mm2 being optimal and b = 3000 s/mm2 

having highest error. Moreover, it was more sensitive to both outer and inner gradient directions. 

3.5. Single-Shell	ODI	vs.	Two-Shell	ODI	quantitative	result	

 Figure II-6a-b plots the RMSE values of single and 2-shell ODI estimates across WM and 

GM. As seen in the qualitative results, lower b-values showed low RMSE compared to 2-shell, while high 

b-values in single shell were comparable with higher numbers of gradient directions. Figure II-6c-e plots 

the RMSE values of single and 2-shell ODI in WM regions of SCC, IC and CS. Overall ODI in SCC had 

lowest er-ror compared to the other ROIs, IC and CS. Yet, within SCC b=3000 s/mm2 had the poorest 

performance. In IC, b=1000 s/mm2 had lower error and increased with b-value and number of gradient 

directions after 54 seem to have similar performance. There is high variation in ODI values with higher b-

values based on the bias mean and standard deviation for both single shell and 2 shell data. 
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Figure II-6 Single and 2-shell RMSE of ODI. (a) White matter (b) Gray matter (c) Splenium of 
corpus collosum (d) Internal capsule (e) Centrum semiovale. Breakout boxes indicate qualitative 
results. Labels on x-axis shaded region indicate the combination of inner and outer shell gradient 
directions. For visual representation of results from both single and 2-shell scenario, these are scaled 
as inner shell gradient directions +10*outer shell gradient directions. For example, the combination 
of 88 directions in inner shell and 96 in outer shell is represented with 88+10 � 96=1048 on x-axis. 

 

3.6. Second	healthy	subject	analysis	results		

RMSE values for S1 and S2 were used in plotting the performance of each protocol setting for 

individual subjects based on the unique combinations of b-values and combined gradient directions from 

inner and outer shells. To represent the results on the same scale, each RMSE value is divided by the 
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minimum RMSE value (RMSEmin) within the region of interest for each subject. Overall RMSE value in 

S2 is higher compared to S1, which could be due to the lower SNR of data acquisition in S2 (Table 1). 

Minimum RMSE value associated with each subject for corresponding ROIs are provided in 

supplementary material. For both the subjects, ratios of RMSE value with respect to RMSEmin for Vic 

were plotted in Figure II-7 in different ROIs. RMSE ratio for ODI in different ROIs for different 

combinations of b-values and combined gradient directions were plotted in Figure II-8. As b=3000 s/mm2 

shell had 64 gradient directions, we have 12 total unique combinations with total gradient directions (36, 

40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80) whereas there are 8 unique combinations (36, 40, 44, 48, 52, 56, 

60, 64) for b=2000 s/mm2 with 48 gradient directions when combined with inner shell of 16 gradient 

directions.  

X-axis in Figure II-7 and II-8 indicates combined (inner + outer shell) gradient directions with 

fixed inner shell of 16 directions. Y-axis is the ratio of RMSE values divided by the RMSEmin for each 

subject by ROI. Black line indicates the minimum ratio of 1 for RMSE/RMSEmin. Blue and green indicate 

b=2000 s/mm2 and b=3000 s/mm2 for S2, orange and yellow indicate b=2000 s/mm2 and b=3000 s/mm2 

for S1. Overall trend between the two subjects based on varying gradient directions in outer shell was 

matched in most of the ROIs for both Vic and ODI (p<0.001) in spite of scan differences and SNR 

differences. Recommended protocol settings based on 95% confidence interval overlap of RMSE value 

with RMSE min for each ROI and NODDI parameter are listed in Table 4. The trends seen in Figure II-7 

matches with the recommended settings where there is higher RMSE ratio of Vic in SCC for b=2000 

s/mm2 for S1 and higher RMSE ratio of ODI in SCC for b=3000 s/mm2.   

4. Discussion		

The findings confirmed [10] the sensitivity of Vic to the choice of outer shell b-value in contrast 

to ODI, which was more sensitive to the number of gradient directions. They suggested that the choice of 

b-value and number of gradient directions in conventional NODDI acquisition could further be optimized 

depending on the specific tissue type and region of interest or targeted pathologies.  
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Figure II-7 RMSE values in Vic for the two subjects S1 and S2 across ROIs for multiple b-values and 
acquisition times. X-axis indicates combined (inner+outer shell) gradient directions with fixed inner 
shell of 16 directions. Y-axis is the ratio of RMSE values divided by the RMSEmin for each subject by 
ROI. Black line indicates the minimum ratio. 

 

However, it is to be noted that caution must be taken in interpreting NODDI indices across 

studies with different acquisition schemes. Unlike Vic, single shell ODI results were comparable to 2 shell 

results and a recent study [51] also confirmed that the single shell ODI analysis was able to reproduce the 

group differences from multi-shell analysis (Figure II-3).  

Vic in white matter and gray matter was in agreement with the results from the optimized protocol 

for NODDI [10]. However, within WM ROIs, Vic was less sensitive to gradient directions in SCC and IC 

compared to CS. This could be because of the complexity of the underlying microstructure in CS. Thus, 

additional care should be taken when considering the protocol selection in such regions (Figure II-4). 

Interestingly, Vic at b=1500 s/mm2 was less sensitive to gradient directions compared to higher b-values 

in the IC region.  
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Figure II-8 RMSE values in ODI for two subjects S1 and S2 across ROIs for multiple b-values and 
acquisition times. X-axis indicates combined (inner+outer shell) gradient directions with fixed inner 
shell of 16 directions. Y-axis is the ratio of RMSE values divided by the RMSEmin for each subject by 
ROI. Black line indicates the minimum ratio and dotted red line 5% range from the minimum value. 

 

ODI in white matter was more sensitive to the number of directions compared to gray matter 

(Figure II-5). ODI represents spatial configuration of the neurite structures thus by increasing the number 

of directions it could capture the variation in the underlying complex structure. This is apparent with the 

variation seen within WM ROIs with least variation in SCC to highest variation in CS by changing the 

number of directions. ODI was highly dependent on the underlying complexity of the WM ROI. SCC 

results were similar to WM, as expected, which can be attributed to its high anisotropy. In IC and CS, 

ODI was optimal with b=1500 s/mm2 and the error showed an increasing trend with increases in b-values. 

In IC, ODI was mainly dependent on inner shell directions, consistently improving with increases in 

number of inner shell directions. However in CS, it showed dependency on both inner and outer shell 

directions with 16 and 24 directions in inner shell having the poorest performance. Thus for considering 
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the analysis in CS, the inner shell acquisition should at least have 32 directions for better performance.  

Single shell ODI results comparison with 2-shell results yielded some interesting findings as 

shown in Figure II-6. In WM, lower b-values showed lower RMSE compared to both single shell higher 

b-values and 2-shell results. Based on the WM ROIs, this performance was reflected in IC and CS 

regions.  Moreover, in SCC 2-shell protocol always showed better performance compared to all single 

shell protocols. The implication of ODI variation within WM regions needs to be carefully reviewed and 

additional care should be taken when interpreting ODI results from these regions based on the protocol 

settings.  In gray matter, ODI results were largely consistent across b-values with improved performance 

with increase in the number of gradient directions. However, 2-shell data always had better performance 

even when compared with the highest number of gradient directions in a single shell in gray matter. 

4.1. Optimized	NODDI	Protocols		

Recommended protocol settings based on acquisition time and performance by error statistics are 

presented in Tables 2, 3 and 4. Based on Table 2, when considering both Vic across all ROIs, b=2500 

s/mm2 with highest number of gradient directions (>104) was optimal whereas for ODI, b=2500/3000 

s/mm2 was optimal with total gradient directions (>128). Considering the scan time equivalent (STE) of 

~4.5 minutes for 96 directions, the corresponding minimum scan time for each scenario is indicated in 

parentheses in the last column. Considering the performance of different NODDI acquisition parameters 

in all ROIs, overall recommended settings for acquisition is listed to have b-value of  2500 s/mm2 with at 

least 128 total gradient directions.  

A subset of original scan protocol is considered in further analysis for comparing with a second 

subject S2 from TRACED dataset. The data and analysis was carried out separately for two subjects 

under consideration. Even though we are comparing the overall trend between the subjects, and added the 

second subject for validity/reproducibility check of the results, these results are not combined into a 

quantitative comparison. Also the idea is to confirm similar trend of performance in NODDI across 

different data acquisitions. 
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Table II-1: Recommended protocol settings by acquisition time are reported based on RMSE values 
with respect to gold standard. Biasmin column indicates the acquisition parameters (outer shell b-
value, inner shell gradient directions, outer shell gradient directions) that had lowest bias mean. 
RMSEmin column indicates the acquisition parameters (outer shell b-value, inner shell gradient 
directions, outer shell gradient directions) that had lowest RMSE. Last two columns were based on 
95% confidence interval overlap of RMSE value with RMSE min for each ROI and NODDI 
parameter. Rows highlighted in gray under each parameter indicate recommended settings based on 
all the ROIs. Overall recommended scan protocol based on all parameters is highlighted in green in 
the last row. Acquisition time in the last column is sum of gradient directions in both shells (inner 
shell gradient directions + outer shell gradient directions). Minimum scan time based on scan time 
equivalent of ~4.5 minutes for 96 directions is indicated in the parenthesis. 

Parameter ROI Biasmin RMSEmin Recommended Acquisition time by 
b-value total gradient 

directions 
ICVF WM 1500,16,80 2500,88,96 [2000;2500;3000] >=56 (~2.5 mins) 
ICVF GM 1500,16,80 2500,88,96 [2000;2500;3000] >=64 (~3 mins) 
ICVF CSF 2000,80,96 2000,80,96 [1500;2000;2500;3000] >=48 (~2 mins) 
ICVF SCC 3000,16,96 3000,80,96 [2500;3000] >=40 (~ 2mins) 
ICVF IC 2000,16,24 3000,72,80 [2000;2500;3000] >=48 (~2 mins) 
ICVF CS 1500,16,80 2000,88,96 [2000;2500] >=104 (~5 mins) 

ICVF - REC 
 

  2500 >=104 (~5 mins) 

ODI WM 2500,16,[64;72] 3000,88,96 [1500;2000;2500;3000] >=40(~2 mins) 
ODI GM 2000,80,96 2500,88,96 [1500;2000;2500;3000] >=40(~2mins) 
ODI CSF 3000,16,24 2000,80,96 [1500;2000;2500;3000] >=72 (~3 mins) 
ODI SCC 3000,16,24 2500,88,96 [2500;3000] >=128 (~6 mins) 
ODI IC 3000,16,72 1500,88,96 [1500;2000;2500;3000] >=40(~2 mins) 
ODI CS 3000,16,56 1500,64,80 [1500;2000;2500;3000] >=40(~2 mins) 

ODI - REC 
 

  2500/3000 >=128 (~6 mins) 

ISOVF WM 1500,16,24 3000,88,96 [1500;2000;2500;3000] >=40(~2 mins) 
ISOVF GM 1500,16,80 3000,88,96 [2500;3000] >=40(~2 mins) 
ISOVF CSF 2500,16,24 2000,80,96 [1500;2000;2500;3000] >=88(~4 mins) 
ISOVF SCC 3000,16,24 3000,40,48 [1500;2000;2500;3000] >=40(~2 mins) 
ISOVF IC 3000,24,80 2500,80,88 [2000;2500;3000] >=56 (~2.5 mins) 
ISOVF CS 3000,16,32 2000,80,96 [1500;2000;2500] >=96(~4.5 mins) 

ISOVF - REC 
 

  2500 >=96 (~4.5 mins) 

Overall REC 
 

  2500 >=128 (~6 mins) 

 

Recommended settings are in agreement between the two subjects based on most of the ROIs as 

we reach higher number of gradient directions except for ODI in IC and CS where the trend seem to be 
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favoring lower number of gradient directions. RMSE of Vic in b=2000 s/mm2 for S1 is higher compared 

to that of b=3000 s/mm2. Thus, even though it matched the overall trend when compared to S2, it was not 

within the recommended settings range. There is a general decrease in RMSE of Vic with increasing 

gradient directions. However, when looking at the crossing fiber regions of IC and CS, S1 showed 

uncertain pattern with varying gradient directions specially in b=2000 s/mm2 thus favoring higher b-

values and higher gradient directions.  

 

Table II-2 Recommended protocol settings by acquisition time for single shell data are reported 
based on RMSE values with respect to gold standard. Biasmin column indicates the acquisition 
parameters (b-value, gradient directions) that had lowest bias mean. RMSEmin column indicates the 
acquisition parameters (b-value, gradient directions) that had lowest RMSE. Last two columns were 
based on 95% confidence interval overlap of RMSE value with RMSE min for each ROI in ODI. 
Overall recommended scan protocol based on all ROIs is highlighted in green in the last row. 
Acquisition time in the last column is sum of gradient directions in both shells (inner shell gradient 
directions + outer shell gradient directions). Minimum scan time based on scan time equivalent of 
~4.5 minutes for 96 directions is indicated in the parenthesis. 

Parameter ROI Biasmin RMSEmin Recommended  
b-value 

Acquisition time by  
total gradient directions 

ODI WM 3000,24 1500, 96 1000,1500,2000 >=24 (~1.5 mins) 
ODI GM 3000,16 2000,96 1000,1500,2000, 2500,3000 >=24 (~1.5 mins) 
ODI SCC 3000,96 1000,16 1000,1500,2000 >=16 (~1 min) 
ODI IC 3000,24 1000,96 1000,1500 >=16 (~1 min) 
ODI CS 3000,24 1500,80 1500 >= 40 (2 mins) 

Overall REC 
 

  1500 >=40 (~ 2mins) 

 

ODI is lower in white matter regions (highly aligned axons) compared to crossing fiber regions 

within WM or that of gray matter (highly dispersed neuritis) where there is higher dispersion [10]. Within 

ODI, even though there is not a general trend in WM region with varying gradient directions, most of the 

scan protocol combinations fell within the 95% confidence interval overlap with respect to minimum 

RMSE value. Similar uncertainty is seen in highly oriented SCC region but most of the scan protocol 

combinations fall outside the recommended setting range making it an unreliable metric in this region. 
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Table II-3 Recommended protocol settings by acquisition time are reported based on RMSE for each 
protocol for both the subjects S1 and S2 with respect to gold standard. These settings were based on 
95% confidence interval overlap of RMSE value with RMSE min for each ROI and NODDI 
parameter. Rows highlighted in gray under each parameter indicate recommended settings based on 
all the ROIs. Overall recommended scan protocol based on all parameters is highlighted in green in 
the last row. Acquisition time is sum of gradient directions in both shells (inner shell gradient 
directions + outer shell gradient directions). Minimum scan time based on scan time equivalent of 
~4.5 minutes for 96 directions is indicated in the parenthesis. 

Parameter ROI Recommended 
B-value – S1 

Acquisition time by 
Gradient directions – 

S1 

Recommended 
B-value – S2 

Acquisition time by 
Gradient directions 

S2 
ICVF WM [2000;3000] >=36 (~2 mins) [2000;3000] >=36 (~2 mins) 

ICVF GM [2000;3000] >=36 (~2 mins) [2000;3000] >=36 (~2 mins) 

ICVF CSF [2000;3000] >=36 (~2 mins) [2000;3000] >=36 (~2 mins) 

ICVF SCC 3000 >=36 (~2 mins) [2000;3000] >=36 (~2 mins) 

ICVF IC [2000;3000] >=36 (~2 mins) [2000;3000] >=36 (~2 mins) 

ICVF CS [2000;3000] >=36 (~2 mins) [2000;3000] >=36 (~2 mins) 

ICVF - REC 3000 >=36 (~2 mins) [2000;3000] >=36 (~2 mins) 

ODI WM [2000;3000] >=36 (~2 mins) [2000;3000] >=36 (~2 mins) 

ODI GM [2000;3000] >=36 (~2 mins) [2000;3000] >=36 (~2 mins) 

ODI CSF [2000;3000] >=36 (~2 mins) [2000;3000] >=36 (~2 mins) 

ODI SCC [2000;3000] >=48 (~2 mins) 2000 >=36 (~2 mins) 

ODI IC [2000;3000] >=36 (~2 mins) [2000;3000] >=36 (~2 mins) 

ODI CS [2000;3000] >=36 (~2 mins) [2000;3000] >=36 (~2 mins) 

ODI - REC [2000;3000] >=48 (~2 mins) 2000 >=36 (~2 mins) 

ISOVF WM [2000;3000] >=36 (~2 mins) [2000;3000] >=36 (~2 mins) 

ISOVF GM 3000 >=36 (~2 mins) [2000;3000] >=36 (~2 mins) 

ISOVF CSF [2000;3000] >=36 (~2 mins) [2000;3000] >=36 (~2 mins) 

ISOVF SCC [2000;3000] >=36 (~2 mins) [2000;3000] >=36 (~2 mins) 

ISOVF IC [2000;3000] >=36 (~2 mins) [2000;3000] >=36 (~2 mins) 

ISOVF CS [2000;3000] >=36 (~2 mins) [2000;3000] >=36 (~2 mins) 

ISOVF - REC [2000;3000] >=36 (~2 mins) [2000;3000] >=36 (~2 mins) 

Overall REC 3000 >=48 (~2 mins) 2000 >=36 (~2 mins) 

 

In GM region, higher gradient directions in both b=2000 s/mm2 and b=3000 s/mm2 yield low 

RMSE values. Moreover, with high b-value, more number of gradient directions were needed to yield 

lower error. In crossing fiber regions of IC and CS, higher gradient directions were leading to higher 

error, thus making this metric most optimal with lower gradient directions in these regions.  
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One of the limitations of this study is the use of same subject for repeating measurements instead 

of acquiring data on multiple subjects that could have lead to higher confidence and impact.  But because 

of the duration of scan time and availability of willing subjects to participate in such lengthy protocol we 

have limited this to a single subject study. However we added second subject to validate the trend 

observed in NODDI protocol performance. As shown in the results irrespective of the scan protocol 

differences the two subjects are in agreement with the recommended settings range for NODDI 

acquisition. 

5. Conclusion	

The performance of the microstructure based NODDI model’s estimated parameters was 

evaluated for a range of acquisition protocol parameters. These results are based on a sub-sampling 

scheme, which assumes that a subset of a reduced number of gradient directions is largely equivalent to 

the same number of directions directly achieved on an MR-scanner. It was observed that the performance 

of these parameters was sensitive to the acquisition protocol based on the regions of interest. We provide 

guidelines for the selection of optimal protocols based on the type of study and acquisition time. Further 

work could aim at extending this to inter-session, intra-session and inter-site variability using the rich 

dataset that was acquired in the current project. Additional error metrics could also be considered in 

evaluating robust performance across these protocols. All work was performed based on the default 

settings offered in NODDI and AMICO, and could be extended to evaluate adjustment of the 

regularization parameters in optimization by acquisition time. Another limitation of this work is the 

number of ROIs that were included in the study, future studies could aim at more representative regions 

that were used in the literature based on the white matter tracts such as the superior longitudinal 

fasciculus (SLF), etc.  
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CHAPTER	III. GRAY	MATTER	SURFACE	BASED	SPATIAL	STATISTICS	(GS-

BSS)	IN	DIFFUSION	MICROSTRUCTURE	

	

1. Introduction	

Gray matter based spatial statistics method (GBSS) was first proposed in studying the cortical 

microstructure development of preterm human brain [1]. This method adapted tract-based spatial statistics 

(TBSS) [2] framework to overcome partial volume contamination in diffusion measures within cortical 

microstructure where spatially transformed individual cortical measurements are projected onto the mean 

cortical skeleton by searching in a direction perpendicular to the cortical skeleton identifying maximally 

probable cortical voxels. Unlike TBSS where projection was based on high fractional anisotropy (FA), 

GBSS method seeks voxels with a high probability of gray matter (GM). This approach was customized 

as NODDI-GBSS (will be called as N-GBSS in rest of the chapter for ease of reference), in a recent study 

[3] to take advantage of indices provided in NODDI in segmenting the GM instead of using T1 weighted 

images. GM concentration is then used along with FA to construct T1 like the image in diffusion space 

that is then used to normalize to standard space (Montreal Neurological Institute, MNI). Thinning of the 

voxels based on the TBSS approach is advantageous in improving the sensitivity of diffusion measures in 

GM; however it could lead to missing some of the significant regions of interest within GM. Also, 

registration approach followed in N-GBSS has the possibility of compromising on the sensitivity of 

voxel-based correspondence when compared to using better registration and segmentation methods. 

Caveats associated with using TBSS based approach have been presented in a recent literature [4] some of 

which could hold for GBSS approaches as well.   

In this chapter, we present GM surface based spatial statistics (GS-BSS) approach where GM 

central surface is derived from structural scan using Multi-Atlas Cortical Reconstruction Using Implicit 
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Surface Evolution (MaCRUISE) [5] method. MaCRUISE has been shown to have superior performance 

in achieving surface accuracy by combining multi-atlas segmentation with cortical surface reconstruction. 

Structural images are segmented and normalized to MNI template space with diffeomorphic anatomical 

registration using exponentiated lie algebra (DARTEL) method [6]. Also, instead of using TBSS based 

approach, smooth correspondence between cortical surfaces is obtained with a diffeomorphic spectral 

matching algorithm [7] proposed for cortical surfaces. This method retains the speed advantage of 

spectral matching methods while assuring smooth correspondence between surfaces by performing 

spectral analysis of the joint graph Laplacian after an initial surface match. To validate our results, we 

have applied this method for identifying underlying microstructural changes in gray matter regions 

between healthy and psychosis groups. 

Based on post-mortem studies, microstructure changes are exhibited in the prefrontal cortex, in 

individuals with psychosis [8, 9]. Recent in vivo studies have demonstrated the ability of NODDI 

technique in identifying the group differences between healthy and psychosis groups in white matter [10] 

and gray matter (GM) regions [3, 11]. Using the NODDI model, neurite orientation dispersion index 

(ODI), a putative marker of dendritic structure and complexity, was calculated and compared between 

healthy controls and individuals with psychosis.  

When compared to N-GBSS, GM surface-based approach has yielded 1) double the number of 

most probable gray matter voxels within cortical regions that can be used for further analysis, 2) better 

sensitivity in VBM analysis with registration based on structural image, and 3) significant regions that are 

reported to have altered microstructure in psychosis group from post mortem studies. 

2. Theory	and	implementation	

Flowchart of the approach followed in our method is described in Figure III-1 where registration 

and segmentation steps are performed on T1 weighted image.  
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Figure III-1 Data processing flowchart. 

 

2.1. Registration	

Each subject’s structural scan was segmented into gray matter, white matter, and cerebral-spinal 

fluid (CSF) tissue classes using the VBM8 toolbox (http://dbm.neuro.uni-jena.de/vbm/) for SPM12 

(http://www.fil.ion.ucl.ac.uk/spm). After an initial affine registration of the DARTEL [6] templates to the 

corresponding tissue probability maps in MNI space (http://www.mni.mcgill.ca/), non-linear warping of 

the segmented images were then performed to match the corresponding MNI space DARTEL templates 

(GM, WM). Forward and inverse deformation fields are saved that can be used in further processing. 

2.2. Segmentation	

Individual T1 images are segmented and gray matter surfaces are derived using MaCRUISE as 

described in [12] where inner, central and outer cortical surfaces are reconstructed by using the topology-

preserving geometric deformable surface model. Gray matter central surface is then normalized to MNI 

space by applying inverse deformation field to the vertices. 
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2.3. Surface	matching	approach	

As the cortical surfaces derived between subjects do not have a shape correspondence, non-rigid 

surface registration is required after normalizing to MNI space. Following procedure is followed to 

account for misalignment of vertices and get voxel-based correspondence needed for group analysis. 

Mahalanobis distance (MD) is calculated from each point in a source surface to target surface 

which is a multi-dimensional generalization of the idea of measuring how many standard deviations away 

P is from the mean of D. Mean of this metric as shown in Eq (2) is taken to be the distance measure 

between surfaces for comparison. The distance metric, d from surface Y to surface X is computed by, 

                              𝑑 = (! –!")
!"

∗ (𝑌 − 𝜇𝑥)′ ,    (2) 

where 𝜇𝑥 and 𝐶𝑥 are the mean and covariance of X. Average distance of the individual surface from all 

other surfaces is calculated by taking the mean of distance measures for that subject. Finally target surface 

𝑇! is chosen based on the minimum distance measure. 

2.4. Surface	projection	

Let 𝑆! = {(𝑥!, 𝑦!), (𝑥!, 𝑦!), . . , (𝑥! , 𝑦!)}  be the vertices on each surface S. Delaunay 

triangulation 𝐷𝑇(𝑆) based on the convex hull of points in S [13] is generated which ensures that the 

circumcircle associated with each triangle contains no other point in its interior. N-D nearest point search 

is performed to obtain initial match K1, between source surface S and the target surface 𝑇! using 𝐷𝑇(𝑆). 

Similarly, corresponding indices K2, from 𝑇! to S are also captured. K1 and K2 are used as a starting point 

for execution of diffeomorphic spectral matching [7].  Weighted adjacency matrices are calculated for 

both surfaces as W1 and W2 based on vertices and edge information from each surface. Single 

correspondence 𝐺𝑐 graph is then obtained based on the volumetric entity formed by 2 surfaces and with 

associated links obtained through K1 and K2. The spectral matching algorithm yields the final 

transformation files T12 and T21 that can be used to register  𝑇! to S and vice versa.  

For each surface, Si let Ci be the correlation map T12 obtained in the above step, then the intensity 

values Ik are projected onto the 𝑇!. Individual measurements from GM surface can then be projected onto 
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the target surface. Surface coordinates are converted to actual volume co-ordinates by applying the 

inverse transform of the matrix from image volume in MNI space to the vertices.  

2.5. NODDI	processing		

The NODDI model was applied and processed using Accelerated Microstructure Imaging via Convex 

Optimization (AMICO) [https://github.com/daducci/AMICO_matlab] to estimate intracellular volume 

fraction (Vic), isotropic volume fraction (Viso) and orientation dispersion index (ODI) which is defined as 

                              𝑂𝐷 =  !
∏
arctan (1 𝐾)          (1) 

where K is the concentration parameter of the Watson distribution. ODI is the metric of interest in further 

analysis for this study. NODDI metrics are first co-registered to intra-subject T1 through b0 image using 

normalized mutual information as a similarity metric. These are then transformed to MNI space by 

applying forward deformation field obtained from the DARTEL registration step with nearest neighbor 

interpolation. 

2.6. N-GBSS	processing		

GM fraction based on ODI and FA and a corresponding psuedoT1 are generated in diffusion space that is 

used for the registration to MNI space as proposed in N-GBSS [3]. A threshold of 0.55 is used for GM 

mask.  

2.7. Experimental	setup/Statistical	Analysis	

Data Acquisition and Preprocessing: T1 and diffusion-weighted MRI were acquired on a 3T 

scanner (Achieva, Philips Medical Systems, Best, The Netherlands) with a 32-channel head coil. The data 

were acquired at 2.5mm isotropic resolution with FOV of 96 x 96 using DW PGSE-EPI sequence 

(TR=2.65s, TE=101ms) and Gmax = ~37.5 mT/m. The diffusion scan protocol included a B0 map, two 

diffusion shells with b-values of 1000, s/mm2 (24 directions), and a HARDI shell with b-value of 2000 

s/mm2 (60 directions). This raw data is then corrected for patient movement, eddy current distortion and 

susceptibility distortion through FSL’s topup and eddy functions [14, 15]. 
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 The proposed method is tested on the schizophrenic population in identifying the significant 

regions of decreased ODI between healthy and psychosis groups. In this study, we have considered a 

dataset with 114 subjects of whom 47 are healthy, and 67 are classified as a psychosis group. To compare 

the sensitivity retained after registration in identifying significant regions between the groups, VBM 

analysis is performed in SPM. Each individual ODI maps are merged into a 4D volume to prepare for 

voxel-based analysis within gray matter surface skeleton regions. The design matrix is made with two 

groups having 47 healthy subjects and 67 psychosis subjects with age as a covariate. Permutation-based 

statistics are performed on skeletonized ODI for each method using FSL randomize (10000 permutations) 

and results are presented within a different region of interests (ROIs) in Table 1. P-value < 0.05 corrected 

for multiple comparisons is considered to be significant.  

3. Results	

GBSS based skeleton and GS-BSS based skeleton are overlaid on mean ODI as shown in Figure 

III-2. As can be noticed from the qualitative image, the coverage of GBSS based skeleton is limited 

especially in the cortical folding regions.  

 

 

Figure III-2 Mean ODI image with an overlay of GBSS based skeleton (blue) and GS-BSS based 
skeleton (yellow).  

 

Mean voxel count after skeletonization is around ~56K from GBSS whereas it is around ~101K 

for GS-BSS based approach. However, GBSS does capture regions like putamen and caudate which are 

not overlapped with surface-based skeleton from GS-BSS. Significant results from group comparison 
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between healthy and psychosis patients are shown in Figure III-3. Based on the ROI analysis, ODI for the 

medial PFC sub-region is reduced in psychosis patients. To validate the group differences specific to 

these regions, permutation tests are performed by passing the mask of these ROIs to both GBSS and GS-

BSS skeleton images. Significant values are presented in Table 1. GBSS did show significance in anterior 

cingulate gyrus (ACG) but with less number of voxels in the cluster compared to that of GS-BSS. Also, 

medial frontal cortex (mFC) was identified to be significant with p<0.001 using GS-BSS approach 

whereas none of the voxels showed significance from GBSS approach. Figure III-4a shows the overlay of 

mFC region with skeletons from both the methods where it is noticeable that there is little overlap of 

GBSS skeleton on this region that could be causing this issue. 

 

 

Figure III-3 Significant regions with FWE corrected p<0.05 where ODI in healthy>psychosis. 

 

Table III-1 Significant regions of between-group analysis with healthy>psychosis using threshold-
free cluster enhancement with FSL randomize cluster analysis  

ROI GS-BSS N-GBSS 

 Voxel# p-value X, Y, Z Voxel# p-value X, Y, Z 

ACG 539 <0.001 58,111,51 103 0.002 63,115,51 

mFC 29 0.006 64,109,38 - 
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4. Discussion	

In this chapter, we have presented a technique to carry out voxel wise spatial statistics using gray 

matter surfaces. We have then presented the application of this approach to NODDI based metrics in 

identifying the group differences between healthy and psychosis subjects. We have shown the difference 

in performance between N-GBSS and GS-BSS based approaches.  

 

 

Figure III-4 Results indicating a comparison between GS-BSS vs. N-GBSS methods a) mFC region 
(yellow) overlaid on mean ODI and GS-BSS (blue) and GBSS skeleton (red) b) Segmented gray 

matter surfaces c) VBM results for whole brain analysis after registration with a threshold at 250 
voxels. 

 

While N-GBSS method is yielding highly probable gray matter voxels that are sensitive to 

underlying microstructural changes, it still has some limitations. These issues, with possible improvement 

from GS-BSS based approach, are shown in Figure III-4.  N-GBSS was not able to capture the mFC that 

has shown to be significant in GS-BSS approach with high probability (p<0.01). Secondly, GS-BSS 

yields more number of highly probable gray matter voxels on the overall skeleton (Figure III-4b) that 

could be beneficial in further analysis.  VBM based ODI results are shown in Figure III-4c (uncorrected 
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p<0.001 thresholding at 250 voxels) After applying the correction for multiple comparisons, none of the 

regions are shown to be significant in N-GBSS whereas significant clusters (FWEcorr p<0.005 at cluster 

level with 1797 voxels) in prefrontal cortex are seen in the overall ODI based on the registration approach 

followed in GS-BSS. Lastly, though the results are validated by applying on NODDI derived indices, GS-

BSS approach is by no means limited to this particular model and can be applied to any parameter of 

interest for analyzing the results in the gray matter. 

In future work, we would like to improve the accuracy of the surfaces for capturing additional 

regions like putamen and also incorporate detailed validation to account for any compromise in variance 

with increased voxel count in gray matter regions. 

5. Conclusion	

We have presented a generalized approach of carrying out voxel wise spatial statistics using gray 

matter surfaces from structural images. It can be applied to any model parameter of interest in 

understanding the underlying diffusion microstructural changes in gray matter. We have shown that by 

utilizing the established methods of registration and segmentation, the sensitivity can be retained for 

performing voxel-wise group analysis compared to N-GBSS method. Moreover, we have shown that 

using the gray matter surface as opposed TBSS based skeleton provides more number of highly probable 

gray matter voxels that can be helpful in further analysis. 
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CHAPTER	IV. IMPROVED	GRAY	MATTER	SURFACE	BASED	SPATIAL	

STATISTICS	IN	NEUROIMAGING	STUDIES	

	

1. Introduction	

Gray matter (GM) in the cerebral cortex is key to many sensory, cognitive, and motor functions 

of the brain. Detecting cortical alterations with neuropathologic conditions could provide potential 

biomarkers to facilitate early diagnosis and assessment of disease severity. In recent years, the 

development of neuroimaging techniques, such as high-resolution magnetic resonance imaging (MRI), 

functional magnetic resonance imaging (fMRI), diffusion-weighted magnetic resonance imaging (DW-

MRI), positron emission tomography (PET) or single photon emission computed tomography (SPECT), 

have promoted the identification of structural and functional characteristics of the developing brain and 

underlying mental disorders [1-7]. An increasing number of studies have shown structural and functional 

gray matter changes in clinical applications - e.g., amyotrophic lateral sclerosis [8], schizophrenia and 

bipolar disorder [9, 10], age-related effects [11], attention deficit hyperactivity disorder [12], and 

Alzheimer’s disease [13]. While T1 images can be acquired at high resolution (e.g., 1 mm isotropic), 

clinical imaging in other modalities (such as DW-MRI and fMRI) is constrained by imaging and 

physiological factors leading to a lower resolution (2-3 mm isotropic). As the cortex is about 1.6 – 4.5 

mm thick [14-16] within the gray matter tissue region between white and pial surfaces, significant 

challenges arise with cross-subject analysis involving registration artifacts and partial volume effects [17]. 

The individual cortical anatomy may not be sufficiently aligned after non-rigid volumetric registration 

since it is quite challenging to incorporate spatial coherence in the volumetric images (see Figure IV-1a). 

In particular, volumetric smoothing potentially introduces partial volume effects since the cortical 

structure is thinner, as seen in Figure IV-1b. This issue was successfully addressed in WM using tract-
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based spatial statistics (TBSS) [18], which has proven to be a popular technique for performing voxel-

wise statistical analysis with improved sensitivity and interpretability of analysis of multi-subject 

diffusion imaging studies in white matter (WM) [19-23].  

Gray matter based spatial statistics (GBSS) adapted the TBSS framework for GM using neurite 

orientation dispersion and density imaging (NODDI) [11] to perform voxel-wise statistical analysis on 

GM microstructure in diffusion studies. GBSS employs skeletonized cortical ribbon to capture diffusion 

metrics along its trajectories. However, this approach could yield low sensitivity to the cross-sectional 

differences around the cortical sulci since GM skeletonization is extracted only along highly overlapping 

regions. To overcome this issue, we proposed an alternative approach known as gray matter surface based 

spatial statistics (GS-BSS) [24] that employs a cortical surface to increase the number of highly probable 

GM vertices that closely follow the cortex (Figure IV-1b).  

In volumetric neuroimaging analyses, spatial smoothing is generally performed to improve image 

alignment and statistical sensitivity, at the cost of specificity of the underlying region of interest [25]. As 

the GM of healthy adult subjects is typically < 5 mm thick, spatial smoothing needs to be carefully 

performed to retain the sensitivity and specificity of the underlying changes [26, 27]. Even if optimal 

spatial smoothing exists, the individual cortical anatomy may not be sufficiently aligned after non-rigid 

volumetric registration. Consequently, surface-based approaches have been proposed with improved 

sensitivity in cortical morphometry [25, 28-33] over volumetric neuroimaging in both fMRI and cortical 

features of interest. There is a wide agreement that the surface-based morphometric (SBM) analyses [34-

36] have theoretical and empirical advantages over traditional voxel-based morphometry (VBM) 

approaches for addressing the problem of inference in group studies. However, substantial inter-subject 

variation in the shapes of local features (e.g., mean curvature) still hampers accurate cortical surface 

registration. 



60 
 

 

Figure IV-1 (a) Non-rigid image registration of GM probability maps of three subjects. Each color 
box highlights the corresponding region of interest. The right column shows detailed differences in 
cortical folding patterns across the subjects. (b) Skeletonized GM (red) and cortical central surface 
(yellow) are overlaid on T1 image. GM central surface closely follows the cortical structure 
compared to that of skeletonized GM approach. Two examples are highlighted in blue and green 
boxes where GM cortical surface closely follows the cortical structure compared to the volumetric 
based GM skeletonization approach. Darker regions on T1 indicate GM and lighter regions 
represent WM. 

 

A majority of studies focus on volume- or surface-based analysis on a particular modality [9, 37]. 

Few studies [32, 38, 39, 40] have incorporated multi-modalities into a single integrated pipeline of 

surface-based analyses. The desire to better understand structural-functional relationships drives the need 

for robust analysis frameworks. The Human Connectome Project (HCP) minimal preprocessing pipeline 

[38] is one such approach that integrates multimodal data for cross-subject analysis. It is built upon the 

FreeSurfer software tool (https://surfer.nmr.mgh.harvard.edu) for surface generation and alignment to 

standard space in addition to defining Connectivity Informatics Technology Initiative (CIFTI) format and 

gray matter coordinate system that incorporates cortical and subcortical information. In a recent study, 

multimodal surface matching (MSM) [39] registration is incorporated into a pipeline that uses multimodal 

registration features containing myelin maps (Glasser and Van Essen, 2011), resting-state networks 

(RSNs) and visuotopic features to drive alignment to a group template. In the HCP approach [38], the 

data acquisition protocol is customized and often requires newly developed preprocessing methods, 
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unlike conventional data acquisition schemes. 

In this chapter, we propose N-GSBSS for carrying out localized statistical testing of 

neuroimaging data across multiple modalities in GM. Unlike the skeletonization approach in GBSS, 

cortical surfaces reconstructed from high-resolution T1 images are employed to facilitate cross-subject 

analysis. This method provides a bridge between volume and surface registration approaches to achieve 

cross-subject correspondence of low-resolution image data. This method is an extension of our previous 

work, GS-BSS [24]. While conceptually similar, improvements are made in registration methodology that 

allows mapping of the metrics of interest in subject space. The key idea in this method is to incorporate 

normal search from the cortical surface to get metrics from highly probable GM voxels using the 

orientation dispersion index (ODI) from the NODDI model. ODI is higher in GM compared to that of 

WM [41], thus searching for higher ODI could help to locate underlying highly probable GM. Toward 

this end, we show an application to the statistical analysis of fMRI data. To test the sensitivity of the 

approach, a simulation study is performed by varying region of interest (ROI) size and percentage change 

of intensity values within the ROI. It is presented as a full end-to-end pipeline to perform such spatial 

statistics in group analysis. The source code for N-GSBSS is made available at 

https://github.com/MASILab/N-GSBSS/. The computational time of N-GSBSS is 68 times faster than 

that of traditional SBM or 86 times faster than the HCP minimum-processing pipeline. 

2. Methods	

2.1. Background	

GS-BSS method was proposed to perform voxel-based statistical analysis of diffusion 

microstructure features acquired at low resolution on GM surfaces using high-resolution T1 images.  

Structural images are segmented and normalized to MNI template space using diffeomorphic anatomical 

registration using exponentiated lie algebra (DARTEL) method [42]. Diffusion metrics of interest are co-

registered to structural T1 and transformed to MNI template space using forward deformation. GM 

surfaces are deformed to MNI template space using inverse transformation obtained from the registration 
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step. Correspondence between cortical surfaces is obtained with diffeomorphic spectral matching DSM 

[44] and the mapping is applied to the deformed diffusion microstructure data in MNI template space to 

project onto the target surface for group analysis. GS-BSS is shown to yield better performance compared 

to that of VBM or the skeletonization approach of GBSS, which is based on alignment invariant skeleton 

projection. However, some methodological limitations could impact the sensitivity of such an analysis. 

Firstly, the possibility of having any misalignment between diffusion microstructure and structural images 

after co-registration could impact the sensitivity of the analysis to be performed on highly probable GM 

region. Secondly, the diffusion metrics of interest are projected onto the GM cortical surface in MNI 

template space that could allow the prospect of including distortions caused in the data from the volume 

registration step. Finally, while the GM surfaces are used for achieving cortical correspondence, all the 

data is mapped back into voxel-space before performing statistical analysis. 

In this chapter, the goal is to improve spatial statistics in GM by projecting all the metrics of 

interest from each modality onto a single target cortical surface and carry out vertex based statistical 

analysis. Current work addressed the limitations of GS-BSS and provided an improvement in the 

following areas, 

• To overcome possible alignment issues from the co-registration step and improve intra-subject 

correspondence, the cortical search is proposed that can further improve the sensitivity of the 

method. 

• To minimize distortions and keep the data as close to the raw images that are acquired as 

possible, metrics of interest are mapped onto the cortical surface in subject space, unlike the GS-

BSS method where the metrics of interest are mapped from the volume image in MNI space onto 

the deformed cortical surface in MNI template space. 

• To perform spatial statistics on vertices, unlike the voxel-based spatial statistics that is performed 

in GS-BSS. 

• To show the applicability of the method in additional modalities like fMRI. 
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2.2. Subjects	and	neuroimaging	data	acquisition	

Neuroimaging data were collected on 30 healthy subjects (average age = 31.94 (male, n=18) / 

35.83 (female, n=12)) who participated in an on-going study of brain connectivity in neuropsychiatric 

disorders. The Vanderbilt University Institutional Review Board approved the study, and all participants 

provided written informed consent before enrolling in the study. Neuroimaging data were acquired on a 

3T scanner (Achieva, Philips Medical Systems, Best, The Netherlands) equipped with a 32-channel head 

coil located at the Vanderbilt University Institute of Imaging Sciences. The following neuroimaging data 

were acquired on each subject: 1) a T1-weighted MPRAGE anatomical scan (1mm isotropic resolution, 

TE=2ms, TR=8.95 ms and TI=643 ms), 2) up to 6 functional EPI scans (3 mm resolution during which 

subjects completed an event related spatial working memory task (described below), and 3) a diffusion-

weighted imaging scan protocol (2.5 mm isotropic resolution, FOV=96 x 96, TR=2.65s, TE=101ms, 

Gmax = 37.5 mT/m) that included two diffusion shells with b-values of 1000 s/mm2 (24 directions) and 

2000 s/mm2 (60 directions). Cardiac and respiratory gating was not used. 

2.3. Preprocessing	

2.3.1. T1	anatomical	data	processing	

Each structural scan was segmented into GM, WM, and cerebrospinal fluid (CSF) tissue classes 

using the VBM8 toolbox (http://dbm.neuro.uni-jena.de/vbm/) from SPM12 

(http://www.fil.ion.ucl.ac.uk/spm). Additionally, each voxel of the images was automatically labeled 

using multi-atlas segmentation [45] according to the BrainCOLOR protocol [46] into 132 brain regions 

and one background. The white, central and pial cortical surfaces were reconstructed by MaCRUISE [47] 

using the topology-preserving geometric deformable surface model. The central surfaces were used in 

further surface-based processing including registration and mapping volume data onto the surfaces. 

2.3.2. Diffusion	data	processing	

Diffusion-weighted images (DWI) were first affinely registered to b0 with 12 degrees of freedom 
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using FMRIB Software Library's (FSL 5.0) FLIRT [48] for eddy current correction. The registration 

matrix of each DWI was used to measure patient movement, and the gradient table was rotated 

accordingly. For diffusion data processing, the data from 2 shells were combined into a single DWI file 

and corresponding b-values and b-vectors were concatenated accordingly. A scheme file was generated 

using the fsl2scheme command from Camino (http://camino.cs.ucl.ac.uk). A brain mask was created 

using the FSL brain extraction tool [49]. 

For NODDI processing, the DWI file, scheme file, and mask (generated as described above) were 

passed to the AMICO package (https://github.com/daducci/AMICO/tree/master/matlab), which is a fast 

implementation of NODDI [42] with a linear approximation. Intracellular volume fraction, isotropic 

volume fraction (Viso), and orientation dispersion index (ODI) obtained from the above method were co-

registered to the individual structural T1-weighted scan using SPM12. These ODI and Viso maps from 

multiple subjects were used in further analysis and validation of N-GSBSS. 

2.3.3. Working	memory	fMRI	processing	

During the functional EPI scans, subjects completed a slow event-related spatial working memory 

task. Briefly, on each trial, three filled circles were presented sequentially, one at a time, during a 3-

second encoding phase. The encoding phase was followed by a 16 second delay period during which a 

fixation dot was shown. Following the delay period, a probe (open circle) was presented for 1 second and 

subjects had to indicate with a button press whether or not the probe matched one of the previously 

encoded locations. Each trial was followed by a 14 second inter-trial interval. Subjects complete 30 

working memory trials and 18 control trials. The working memory and control trials were identical, 

except for the fact that subjects were asked not to memorize the locations during the cue period of the 

control trials and pressed both the yes and no button during the probe period. Different colored circles, 

red and grey, were used to alert subjects to working memory and control trials, respectively. 

Preprocessing and generation of first-level, subject-specific statistical parametric maps were performed in 

SPM12 [43]. Preprocessing included slice timing and motion correction, and co-registration of subject's 
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functional EPI scans to their anatomical T1-weighted scans. Subject-specific, voxel-wise maps showing 

relative difference in the BOLD response between working memory and un-modeled baseline for the cue, 

maintenance, and probe conditions were generated by modeling each subject's time series data. Note that 

the contrast maps for the cue, maintenance, and probe conditions were kept in the individual subject-

specific space co-registered to T1 before being entered into the N-GSBSS pipeline described below. 

2.4. N-GSBSS	pipeline	

The steps involved in carrying out the spatial statistics starting from the preprocessed multi-

modal data to transferring all the metrics of interest onto a single target surface are illustrated in this 

section. The data from the co-registered volume images are projected onto the GM central surface using 

enclosing voxel approach. If there are alignment issues after co-registration, it would introduce partial 

volume effects or outliers by fetching data from the voxels that may not belong to highly probable GM. In 

order to overcome this limitation, the cortical search is proposed using ODI measure as it has been shown 

to be higher in GM compared to that of WM [41].  

2.4.1. Cortical	search	using	NODDI	maps	

Diffusion microstructure indices from NODDI including ODI and Viso are used in the cortical 

search. First ODI is masked with Viso to exclude any voxels with the isotropic volume fraction of greater 

than 0.5 indicating CSF regions. The surface normal is calculated at each vertex on the central surface. As 

the T1 was acquired at 1 mm resolution and the cortical thickness is < 5 mm thick, we search the 

maximum ODI at each vertex along positive and negative normal directions (2 mm at maximum range 

with an interval of 1 mm). We create a search map by collecting these enclosing voxels that the normal 

directions point out. The metrics of interest in other modalities are finally transferred onto the central 

surface via the search map. Figure IV-2a illustrates this approach and corresponding histogram of masked 

ODI is shown in Figure IV-2b before and after the search. 
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Figure IV-2 (a) ODI overlaid with cortical surface mapping based on enclosing voxels, 1mm above, 
2mm above, 1mm below and 2mm below of central surface obtained using normal search. At each 
vertex, maximum ODI value is selected from these five values along the vertex normal (white arrow 
in zoomed in box) and corresponding map is used for projecting the diffusion metrics on to the 
cortical surface. (b) Histogram of ODI projected on to the cortical surface on a single subject before 
and after ODI search. 

 

2.4.2. Cortical	correspondence	on	the	target	surface	

Cortical surfaces are highly variable, so roughly similar surfaces would be useful for surface 

registration. As preprocessing volume registration can provide reasonably well-aligned surfaces, 

structural T1 is non-linearly registered with MNI template using ANTs SyN registration method [52]. 

Corresponding inverse deformation is applied to the surface as the first step. The vertex coordinates of the 

surface are converted to RAS format before applying “antsApplyTransformsToPoints” from ANTs 

toolbox. The deformed coordinates are converted back into original format thus transforming the surface 

from subject space to MNI space (#2 from Figure IV-3). However, as shown in Figure IV-1a, the cortical 

anatomy is not yet well aligned across the subjects after volume deformation. Then, we refine/update the 

correspondence using surface registration step [44] in the same way as [24], which is expected to 

establish better correspondence. It provides mapping information of the cortical surface from each subject 

onto the target surface (#3 from Figure IV-3) on which spatial statistics can be performed. 
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Figure IV-3 Flowchart of the N-GSBSS data processing for each subject. (1) The central surface is 
reconstructed via MaCRUISE (red) (2) and transformed to the MNI space (yellow) using ANTs 
volume registration. (3) These volumes are diffeomorphically registered to a single target surface. (4) 
Metrics of interest in other modalities are co-registered to corresponding anatomical T1-weighted 
image. (5) Cortical ODI search is performed using ODI and Viso from NODDI metrics to search for 
higher ODI excluding Viso within a given range (6) Data are processed for each modality (NODDI for 
diffusion microstructure and first level analysis for working memory tasks) to derive metrics of 
interest for cross-sectional analysis. (7) Metrics of interest are mapped onto the individual surface. 
(8) The mappings from shape correspondence are used to project the intensity values of metrics of 
interest to the target surface (blue). (9) Vertex-wise spatial statistics on all projected data are 
performed on the target surface.  

 

2.4.3. Project	metrics	of	interest	on	the	target	surface	

As cortical anatomical properties such as cortical thickness were derived from the surface, they 

were already assigned to each vertex. These properties were then projected onto the target surface via the 

established shape correspondence from step 3. Images from different modalities are co-registered to T1 

anatomical images before proceeding with further analysis as shown in step 4. Cortical ODI search is 

performed by taking in ODI and Viso measures from the NODDI model to get the corresponding map of 

highly probable GM vertices for co-registered images (step 5 in Figure IV-3). Step 6 illustrates the first 

level analysis carried out on each modality to derive metrics of interest. In the volume images, the metrics 
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of interest were mapped onto the individual GM surface (step 7 in Figure IV-3) from the voxel that 

encloses the corresponding vertex coordinate obtained from the cortical ODI search (step 5 in Figure IV-

3). Both DW-MRI based NODDI metrics and fMRI based working memory contrast maps were thus 

projected via the vertex coordinates and the mapped properties were then transferred onto a common 

target surface (Step 8 in Figure IV-3). Spatial statistics across the subjects is performed on the target 

surface by applying a 2mm smoothing kernel for cross-subject analysis. We adapted the Gaussian kernel 

smoothing proposed by [45], where each vertex was weighted based on data from the neighboring 

vertices and scaled by the vertex area. 

2.4.4. Summary	of	highlighting	enhancements	

A novel ODI search along the surface normal for maximum ODI value is used to probe for highly 

probable GM regions in the co-registered image. Additionally, enhancements that are made to the earlier 

method [24] are the transfer of metrics of interest on to the GM cortical surface in the individual subject 

space instead of MNI space, to reduce the error that could occur with volume and surface deformation to 

the MNI template. While [24] showed the application to diffusion microarchitecture features, this work 

extends the applications to fMRI data, thus enabling multimodal analysis across structural and functional 

changes. Group analysis is performed at vertex level on the target surface. 

The evaluation of the approach is carried out in the following ways. 1) We compare qualitative 

mean ODI, a diffusion microstructure feature, for N-GSBSS with and without cortical ODI based search 

in comparison with HCP minimum processing pipeline. 2) We perform non-parametric permutation 

testing on contrast maps obtained from first level analysis of working memory tasks in fMRI. 3) We 

perform a simulation study in structural MRI to evaluate the sensitivity and specificity of the approach. 

2.5. Spatial	statistics	

Once all the properties from different modalities were projected on the target surface, GM based 

vertex-wise spatial statistics were calculated using the Permutation Analysis of Linear Models (PALM) 

[51] package from the FSL software library (FMRIB; http://www.fmrib.ox.ac.uk/fsl/) which performs 
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inference through permutation. Significant results are reported after controlling for family-wise error 

(FWE) with p<0.05 through threshold-free cluster environment (TFCE). 

2.6. Baseline	methods	

2.6.1. Volume-based	registration	(VBR)	processing:	

Volume images of metrics of interest from other modalities were registered to MNI template by 

applying the non-rigid transformation obtained from anatomical T1-weighted images. A GM mask was 

calculated based on 0.5 thresholds on the GM probability map in each subject and 70 percent overlap 

across all the subjects to filter the number of voxels to retain highly probable GM voxels. A Gaussian 

kernel smoothing of 2 mm was applied before performing spatial statistics. Nonparametric permutation-

based testing was performed on smoothed volume data within a brain mask using FSL PALM [51] 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM). Statistical results were projected onto the target surface 

based on the enclosing voxel approach for visualization and comparison with surface-based results. 

2.6.2. Surface-based	registration	(SBR)	processing:	

In order to compare the proposed approach, we used the FreeSurfer surface registration method 

[30] for cortical shape correspondence. Metrics of interest from volume data in subject space were 

projected onto the central surface using the enclosing voxel approach. These metrics were transferred to 

the target surface via the shape correspondence and then smoothed on the target surface for cross-

sectional analysis. In order to make a fair comparison with N-GSBSS results with optimal multiple 

comparison correction, metrics of interest from two hemispheres were considered as a single data set 

before carrying out the permutation-based statistical tests. 

2.6.3. HCP	minimum	processing	pipeline	

As the tools (https://github.com/Washington-University/HCPpipelines) provided for the HCP 

pipeline [38] are specific to the data acquired for the Human Connectome Project, the ciftify 

(https://github.com/edickie/ciftify) tool has been developed by HCP community to adapt the HCP 
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pipeline to non-HCP datasets. For preprocessing, surface reconstruction is carried out using recon-all 

from FreeSurfer 6.0 (https://surfer.nmr.mgh.harvard.edu) by supplying a raw structural T1 image as we 

do not have T2 weighted images as required by HCP pipeline for recon-all. Since the acquired diffusion 

data do not have phase-encoding reversed pairs for distortion correction as suggested for the HCP 

pipeline, distortion corrected images are obtained from diffusion data processing mentioned in the above 

section. Then the diffusion to the structural script provided in the HCP pipeline is adapted to process 

epi_reg_dof from the HCP pipeline to register DW-MRI images to the structural T1 image.  

WM segmentation obtained from FreeSurfer processing is supplied as an input argument. For 

fMRI processing, since we do not have field maps as required by the HCP pipeline, preprocessed first-

level images that are co-registered to the T1 structural image using SPM12 are used as a starting point. 

Conversion tools provided in ciftify toolbox are used to put preprocessed T1, dMRI data and fMRI data 

into an HCP-like folder structure. Volume to the surface mapping of diffusion measures is performed 

using a ribbon mapping method that uses white and pial surfaces to get the voxels within the GM ribbon, 

as described in [38]. As we do not have T2 weighted images in our custom dataset, myelin maps are not 

calculated and thus myelin-style volume to surface mapping is not considered for diffusion analysis. Also, 

the results are based on the gray ordinates at 2 mm resolution with a total of ~64000 cortical vertices for 

both hemispheres as proposed by the default settings. 

Processing time comparison between N-GSBSS and SBR using FreeSurfer are reported in Table 

1. We used a single thread (Intel Xeon CPU E5-2630 v4 @ 2.20GHz and 32 GB of RAM) on an Ubuntu 

16.04 LTS Linux Workstation. 
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Table IV-4: Processing time comparison for SBR, HCP and N-GSBSS based approaches. In SBR, a 
spherical mapping was conducted for each hemisphere followed by spherical registration. HCP 
minimum processing pipeline involves the recon-all step and ciftify step to convert to gray ordinates. 
Details of the time taken for each step are provided in the processing details column. 

Pipeline Processing steps details Total time 
SBR Per hemisphere: 

FSRUNTIME@ mris_sphere 1.48 hours, 1 thread 

FSRUNTIME@ mris_register 0.80 hours, 1 thread 
 

~273.6 mins 

HCP ReconAll (mris_sphere and mris_register) : 4.71 hours 
hrs, 1 thread 

Ciftify : 1hr 5 mins, 1 thread 

~345 mins 

N-GSBSS ANTs volume registration: ~2.12 mins, 1 thread 
DSM surface registration: ~1.49 mins, 1 thread 

~4 mins 

 

2.7. Simulation	study	setup	

The spherical masks with a radius of 3, 4, and 5 mm were created in template space and 

transferred back to subject space via the inverse transformation from ANTs SyN [52] registration for each 

subject. This range was chosen since the cortex is around 3-5 mm thick and because capturing the ROIs 

with different radii could reflect the differences in accounting for partial volume effects in the GM and 

WM border regions. The location was chosen to contain cortical folding that is variable across multiple 

subjects to account for partial volume effects when performing cross subject studies.  

The GM probability maps for the 30 subjects were randomly divided into two groups, G1 and G2, 

with 15 subjects in each group. The GM probability data in G2 were then modified in the subject space to 

simulate percentage change of intensity values in intervals of 10% in the corresponding mask regions. A 

total of 27 combinations (3 masks and 9 different scalings) were considered for evaluation.  

With 0% change, the images in G2 were the same as original images. Thus, we considered the 

difference between the groups as a baseline. We excluded 100% change of the region of interest in G2, 

which is completely reduced to zero. With 50% change, the intensity values were half of the original 

values in ROIs from G2 images.  

GM probability data from each of the 27 combinations in G2 were then processed through N-
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GSBSS to place all the data on the target surface for cross-sectional analysis. GM probability data were 

also evaluated for VBR, SBR and HCP pipeline for comparison with the same parameter/experimental 

settings, including 2 mm Gaussian kernel smoothing. Non-parametric permutation tests were then 

performed between G1 and G2 for all combinations using FSL’s PALM [51] package with 5000 

iterations.  

To assess the sensitivity of the approaches, we examined the ratio of maximum t-statistic ("t-stat 

ratio"), which was defined as the amount of scaling with respect to the baseline. To have a single metric 

with comparable result across all the methods, we reported the ratio with respect to the baseline. A 

baseline is where we performed second level analysis for group differences across the two groups where 

no changes are applied to original GM probability maps. 

3. Results	

In this section, we present the results of all the N-GSBSS analysis as follows: 1) Qualitative 

results of mean ODI with and without search in comparison with the HCP processing pipeline 2) 

Application in fMRI to identify active regions in task-based working memory. 3) GM simulation results 

in structural MRI based on different ROI size and intensity differences. 

 

 
Figure IV-4 Mean ODI across 30 healthy subjects using (a) N-GSBSS – S0 with no search (a) N-
GSBSS - S2 including ODI search of 2mm (c) HCP minimal processing pipeline. The HCP results are 
based on the “gray ordinates” with 64 thousand vertices (the suggested tessellation) on both left and 
right hemispheres for HCP while the target surface template used in N-GSBSS has about 261 
thousand vertices. 

 

Mean ODI values across 30 subjects are shown on the target surface (Figure IV-4) for N-GSBSS 
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without search, with cortical ODI search and the HCP pipeline. With cortical ODI search, partial volume 

effects are addressed reflecting higher ODI across the cortex compared to that of other two approaches. 

3.1. Working	memory	fMRI	results	

As an application of N-GSBSS in fMRI, working memory data was processed for 30 healthy 

subjects in cue, probe and delay tasks. We compared significant regions revealed by VBR, SBR, the HCP 

pipeline and N-GSBSS methods as shown in Figure IV-5. For all these tasks, the overall activation 

pattern is comparable across different methods. As expected, the significant vertices in VBR are fewer 

and more scattered than the cortical surface-based approaches of SBR, HCP, and N-GSBSS. 

 

 
Figure IV-5 Working memory fMRI data were processed for 30 healthy controls and results are 
reported for (a) correct cue, (b) correct delay (c) correct probe tasks with 2 mm smoothing for VBR, 
SBR, HCP, N-GSBSS -S0 with no search and N-GSBSS-S2 with 2mm search methods. Significant p-
values after FWE correction based on nonparametric randomize one sample t-test with 10000 
iterations are reported. Pfwe <0.05 are highlighted in red.  

 

Quantitative representation of the number of significant vertices with p<0.05 for all the three tasks are 

shown in Figure IV-6. It is noteworthy that N-GSBSS has a higher number of significant vertices in all the tasks 

than VBR, SBR, and HCP pipeline results. The HCP pipeline results are comparable to that of N-GSBSS more 
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than VBR or SBR approaches. Applying cortical ODI search further improved the activation percentage in N-

GSBSS.  

 

 
Figure IV-6 Percentage activation of working memory fMRI data were processed for 30 healthy 
controls and results are reported for (a) correct cue, (b) correct delay (c) correct probe tasks with 2 
mm smoothing for VBR, SBR, HCP, N-GSBSS –S0 with no search and N-GSBSS –S2 with 2mm 
search methods. The number of significant vertices, with p-values < 0.05 after FWE correction based 
on nonparametric randomize one sample t-test with 10000 iterations, is divided by a total number of 
vertices and the percentage is reported.  

 

3.2. A	simulation	study	in	structural	MRI	with	changes	in	regions	of	interest	

Here, we evaluate N-GSBSS with respect to VBR, SBR and HCP pipeline techniques in 

identifying sensitivity and specificity of changes in GM voxels located in spherical ROIs of 3, 4, and 5 

mm radius located in a region of the frontal cortex. Figure IV-7 illustrates spheres with a radius of 5 and 3 

mm. 
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Figure IV-7 The gray matter probability map shows the simulated effect as an overlay mask of 5 mm 
(red) and 3 mm (dark blue) spheres. 

 

Quantitative results in Figure IV-8 show the t-statistics ratio for varying ROI sizes of 3mm, 4mm, 

and 5mm, and percentage change in the GM probability values from 10% to 90% in the intervals of 10%.  

 

 

Figure IV-8 Quantitative results for statistical group differences over the change in lesion size from 3 
to 5mm and percentage change from 10 percent to 90 percent. (a) Results from VBR analysis. (b) 
Results from Free surfer registration analysis. (c) Results from HCP minimum processing pipeline 
with default gray ordinates. (d) Results from GSBSS based analysis. Y-axis indicates maximum t-
statistic ratio with respect to the baseline. The x-axis indicates the percentage change of GM 
probability in G2 with respect to original GM probability images in G2. 

 

A t-stat ratio is the maximum t-statistic for each scenario with respect to the baseline to reflect 

how much it was scaled with induced changes in the region of interest. A baseline is chosen to be the 

differences between the two groups in the current experiment. For VBR, to capture the intensity 
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difference between groups, the probability change must be at least 40% with 5 mm spherical ROI, 50% 

for 4 mm, and 60% for 3 mm. 

GSBSS results are much more sensitive starting at 10% with 5 mm ROI, 20% with 4 mm and 30% for 3 

mm spherical ROI. N-GSBSS also showed higher maximum t-statistics than SBR. With higher intensity differences 

starting at 70%, VBR results have higher t-statistic ratio than that of N-GSBSS. In all other cases, N-GSBSS has a 

higher maximum t-statistic ratio and better sensitivity. 

4. Discussion	

Herein, we describe an approach for carrying out multi-modal spatial statistics in low-resolution 

images by taking advantage of high-resolution T1 weighted images that are acquired as part of the scan 

protocol. This approach favorably compares with traditional volume-based analyses and with respect to 

the FreeSurfer surface registration approach along with the HCP minimum processing pipeline. Our 

approach offers an advantage over VBM by achieving improved cortical alignment in agreement with 

other surface-based registration techniques [25, 28-33]. Moreover, in comparison with FreeSurfer, SBR, 

and HCP pipelines, the N-GSBSS approach showed an improvement in sensitivity. It suggests that the 

initial alignment obtained by non-rigid deformation from the T1 image makes surface registration much 

easier. Consequently, this improves the statistical power compared to existing approaches.  

The key aspect of this work is the addition of NODDI based search, which ensures that metrics 

from low-resolution images are retrieved from highly probable GM. It is achieved by use of the ODI 

measure from NODDI, which is known to be higher in GM compared to that of WM [42]. Thus by 

searching for maximum ODI, alignment issues after co-registration or PVE effects from underlying 

voxels are addressed. As we are interested in low resolution with dMRI acquired at 2.5 mm resolution and 

fMRI at 3 mm resolution, we assume that after co-registration to T1, the underlying data is roughly 

aligned at the voxel level. Thus we utilize the search map obtained from diffusion modality to apply to 

fMRI for getting the data based on enclosing voxel approach. The reported fMRI t-statistics suggest an 

improvement in sensitivity with N-GSBSS. 



77 
 

The simulation study is set-up to perform sensitivity or specificity check for N-GSBSS to the 

underlying changes in tissue microstructure. As we are interested in performing analysis in psychiatric 

applications including schizophrenia [53, 54] that are known to have changes in the prefrontal region, the 

ROI is chosen from this region. The GM probability map is chosen as the parameter of interest and the 

intensity changes are simulated within an ROI region. Compared to the baseline methods, N-GSBSS 

showed superior sensitivity to the underlying changes in both intensity and the size of the ROI as shown 

in Figure IV-8. While the volume-based analysis was not able to detect any significant differences 

between groups for at least up to 50% change in the GM probability values, N-GSBSS was able to 

capture differences starting from 10% change with ROI size of 5 mm, 20% for 4 mm and 30% for 3 mm. 

The low performance of VBM could be potentially due to partial volume effects prevalent in the volume-

based approach even after applying the GM mask to limit the analysis to highly probable GM regions. 

In the simulation study, SBR analysis showed a similar pattern as N-GSBSS. However, the 

sensitivity of this approach is not as high as N-GSBSS. Differences between the methods are likely due to 

different registration approaches since both of them used the same surface to obtain corresponding GM 

probability values from the volume image. The HCP pipeline results are similar to those of SBR, which is 

expected since the HCP pipeline uses FreeSurfer registration. 

The subtle differences seen between HCP and SBR results could be due to the difference in 

preprocessing steps including surface reconstruction performed in each of these methods. The data of 

interest in the current analysis is not acquired as per the HCP pipeline guidelines. So the preprocessing is 

carried out using third party tool called "ciftify" as recommended by the HCP community. This tool 

adapted the HCP minimum-processing pipeline to make it work for non-HCP datasets. Once the legacy 

data is brought into the gray ordinates space, the second level analysis is performed as applicable to the 

HCP data processing. For a fair comparison, we used the HCP pipeline with default parameters to the 

extent possible. For example, the analysis results for HCP are based on the "gray ordinates" with 64 

thousand vertices (the suggested tessellation) on both left and right hemispheres. It differed from the 

target central surface used in SBR and N-GSBSS analysis that has about 261 thousand vertices for both 
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hemispheres. These could have contributed to the lower sensitivity of this pipeline in this simulation 

study with GM probability percentage change greater than 40% with an ROI size of radius 5mm. 

Overall significant regions captured by N-GSBSS agree with those of VBR, SBR, and HCP 

pipelines across different modalities while achieving high spatial specificity. It is highly likely that the 

volumetric transformation already deformed cortical surfaces into similar shapes (geometry) before the 

surface registration, which results in better shape correspondence by greatly reducing the local anatomical 

ambiguity in the surface registration. Particularly, the proposed approach showed significantly improved 

performance in our study. However extensive validation in different studies might be also interesting in 

future work. Finally, N-GSBSS possesses high flexibility that allows any registration method as well as 

multiple modalities. We expect that such a feature can be generally extended to various modalities in 

general neuroimaging studies. 

The source code for N-GSBSS is posted in a Docker image: (https://github.com/MASILab/N-

GSBSS/).   
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CHAPTER	V. HARMONIZATION	OF	WHITE	AND	GRAY	MATTER	FEATURES	

IN	DIFFUSION	MICROARCHITECTURE	FOR	CROSS-SECTIONAL	STUDIES	

	

1. Introduction	

Understanding the development of white matter microstructure is essential in neurodevelopmental 

studies. With the increasing number of publicly available neuroimaging databases, including the 

Adolescent Brain Cognitive Development (ABCD), the UK BioBank and Connectome studies, there is an 

opportunity to combine large-scale imaging resources to increase the power of statistical analyses to test 

the common biological hypothesis. Community-wide efforts are underway to address standardization of 

acquisitions and analyses for imaging biomarkers as described in imaging biomarker road map for cancer 

studies [10]. Using diffusion tensor imaging (DTI), ENIGMA’s disease working groups have begun to 

compile evidence across cohorts for differences in a range of DTI measures and discovering factors that 

consistently affect brain structure and function [88]. However, the community of clinicians, engineers, 

and physicists is not yet ready to agree on a single best practice approach to advanced DW-MRI. 

Therefore, it is imperative to understand when (and how) different protocols can be analyzed to enable 

comparison and optimization across protocols based on practical study design and imaging constraints. 

Application of advanced DW-MRI methods in clinical research studies has been hindered by a 

lack of consensus on best protocols. DW-MRI suffers from between-scanner variation that hinders 

comparisons of images across imaging sites, scanners and over time. A model that can preserve biological 

variability and remove the unwanted variation introduced by the site is needed. Harmonization of data 

across scan protocols and site differences is an important preliminary step to conduct group analysis 

involving cross-sectional data acquired across different regions or on different scan protocols (Figure V-

1). Using fractional anisotropy (FA) and mean diffusivity (MD) maps, Fortin et al. compared several 
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harmonization approaches and found that ComBat performed best at inter-site variability correction [89]. 

ComBat has also been applied to harmonization of cortical thickness measures across scanners and sites 

[90] and multicenter radiomic studies with positron emission tomography [91]. With the advent of 

advanced diffusion MRI models, e.g., the neurite orientation dispersion density imaging (NODDI), along 

with white matter, it is also possible to analyze microstructural changes within gray matter (GM). 

 

 

Figure V-1 Scanner differences are illustrated in a) Study 2: FA in white matter using TBSS between 
scanners with 1.5T and 3T field strengths b) Study 3: ODI in gray matter using GSBSS across two 
distinct 3T scanners. 

 

In this study, we propose three different applications of ComBat for diffusion microstructure. 

First, we propose to extend the applicability of ComBat in white matter using the tract-based spatial 

statistics (TBSS) [76]. Second, we evaluate the performance of ComBat for correction of FA maps in 

white matter across two scanners with different gradient strengths of 1.5T and 3T using TBSS. Finally, 

we propose to use ComBat [89] in GM for correcting the scanner variability of orientation dispersion 

index (ODI) using GSBSS. 

2. Methods	
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2.1. Data		

This manuscript examines three independent datasets (noted as Study 1, Study 2 and Study 3). Study 1 

included young adults (average age= 26.02 (male, n=194), 26 (female, n=223)) ranging from 23 to 34 

years old with data acquired from two different 3T scanners. Study 1 has diffusion-weighted imaging 

scan protocol with b-value 1000 s/mm2 with 33 directions. Study 2 included 119 subjects from elderly 

population (average age= 78.29 (male, n=45), 71.38 (female, n=66)) acquired on two different scanners 

with gradient strengths of 1.5T and 3T with b-value 700 s/mm2 with 30 and 32 gradient directions, 

respectively. Study 3 included 30 healthy subjects (average age= 31.94 (male, n=18), 35.83 (female, 

n=12)) with data acquired from two different 3T scanners. For each subject in Study 3, we have: 1) a T1-

weighted anatomical scan (MPRAGE, 1mm isotropic resolution, TE=2ms, TR=8.95 ms and TI=643 ms); 

2) a diffusion-weighted imaging scan (2.5 mm isotropic resolution, FOV=96 x 96, TR=2.65s, TE=101ms, 

Gmax = 37.5 mT/m) that included two diffusion shells with b-values of 1000 s/mm2 (24 directions) and 

2000 s/mm2 (60 directions). Diffusion-weighted images (DWI) were affinely registered to b0 using 

FMRIB Software Library's (FSL 5.0) FLIRT for eddy current correction. The data was then processed 

using DTIFIT from FSL to obtain diffusion tensor that yields FA maps and other tensor-based metrics. 

Overall processing flow used in this approach is presented in Figure V-2.  

2.1.1. TBSS	and	GSBSS	processing:		

Individual FA maps were registered to the FMRIB58 template [76]. For group analysis, the mean FA-

image was created following registration and thinned to represent the mean FA skeleton. Individual FA 

maps were projected onto this common skeleton.  

NODDI processing was carried out using the AMICO package which is a fast implementation of 

NODDI [45].  Orientation dispersion index (ODI) obtained from the above method was co-registered to 

the individual structural T1-weighted scan using SPM12 (http://www.fil.ion.ucl.ac.uk/spm).  Cortical 

surfaces were obtained from the MaCRUISE pipeline [172] and initially deformed via non-rigid 

transformation obtained by template-based volume registration using ANTs SyN [137] registration. Then, 
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surface registration (DSM) [148] was performed to establish cortical shape correspondence across cortical 

surfaces as mentioned in GSBSS [106]. ODI was mapped onto the individual gray matter (GM) surface 

and evaluated for cross-subject analysis. 

 

 
Figure V-2 DWI/HARDI images are processed with DTIFIT to extract FA map and NODDI model to 
extract ODI. FA maps are then processed using TBSS to extract skeletonized WM voxels. T1 image is 
used for generating GM surfaces that are used for GSBSS. ODI maps are then processed using 
GSBSS to compute mapped values on the target surface. These measures are passed into ComBat 
tool for variability correction for statistical analysis. Gray arrows indicate the previous application of 
ComBat to DTI data. 

 

2.1.2. Variability	correction	and	statistical	analysis:			

FA skeletonized voxels from TBSS and ODI indices along the target surface were then corrected using 

ComBat as reformulated in the context of DTI images. Additive (γ) and multiplicative (δ) effects of the 

site were included in the formulation to account for scanner/site variability as shown in below equation 

from [89].  In our study, the outcome would be FA in white matter or ODI  in GM with scanner effect. 

For each site i, scan session j and at voxel v, corrected measure is given by, 

y!"#!"#$%&=
!!"#-!!-!!"!!-!!"

!!"
+α!+X!"β!    (5.1) 

A design matrix was formed with unpaired 2 sample t-tests between the groups (Site A and B) adjusting 



83 
 

for age. Permutation-based statistics were performed on skeletonized FA for each method using FSL 

randomise [173] (5,000 permutations). Significant results (p<0.05) comprising a threshold-free cluster 

environment (TFCE) [74] clustering were presented after accounting for multiple comparisons by 

controlling for family-wise error (FWE) rate. GM based vertex-wise spatial statistics were calculated 

using the Permutation Analysis of Linear Models (PALM) [173] using 5000 permutations followed by a 

generalized Pareto distribution to the tail of the approximation distribution [174]. The significance is 

reported for p<0.05 (FDR corrected). 

3. Results	and	Conclusion	

For study 1 with two scanners having same field strength, Figure V-3 shows significant differences 

between scanner A and scanner B (~20450 voxels) before correction with an overlay of negative effects 

of age (~37700 voxels). As noted, the number of significant voxels between scanners is reduced to zero 

voxels while retaining the age effects (~37500 voxels) after ComBat correction. 

 

 

Figure V-3 Study 1: Overlay of the significance of scanner effects (red-yellow) with age (magenta) 
with FWE. The left image shows before correction and the right image shows after ComBat 
correction. Note that ComBat eliminates the scanner effect, but the age effect is essentially 

unchanged.  

 

For the scanners of different gradient strengths from Study 2, significant results of scanner effects 
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before correction (~97100 voxels) were reduced to zero while improving the number of significant voxels 

with negative effects of age from ~70800 before correction to ~72200 voxels as shown in Figure V-4. 

  

 

Figure V-4 Study 2: Overlay of the significance of scanner effects (red-yellow) with age (magenta) 
with FWE. The top row shows before correction and lower row shows the additional significant 

effects of age with ComBat correction. Note that ComBat eliminates the scanner effect, while the age 
effect is increased. 

 

Finally, scanner differences are shown for ODI in the gray matter before and after correction in 

Figure V-5. Since the population in this study has a narrow distribution of age range, age-related effects 

analysis is not included for this study. 

Figure V-6 illustrates the effect size as the difference in mean values of the parameter of interest. Figure 

V-6a shows the effect size of FA values in WM before and after correction from Study 1. Figure V-6(b) 

shows the effect size of FA values in WM from scanner A and B with field strengths 1.5T and 3T from 

study 2. Figure V-6c shows the ODI effect size shown as the difference in mean ODI values between the 

two scanners in gray matter from Study 3 with two different 3T scanners. 
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Figure V-5 Study 3: Significance of scanner effects is shown in magenta before correction (~179 
vertices with FDR) overlaid on the cluster of uncorrected p-values (yellow). After ComBat correction 

for ODI, there is no significant scanner effect.  

 

In all the cases, we see the reduction in the mean difference between the two groups after applying 

ComBat. Mean FA and ODI values between Scanner A and B after applying variability correction are 

shown in Figure V-7. 

 

 

Figure V-6 Effect size values for before and after correction are shown for (a) Study 1: before 
correction, there was a ~0.02 FA effect between the two and 3T scanners (blue), while with ComBat, 
both the voxel-wise variance and size (red) were reduced by ~2-fold. (b) Study 2: before correction, 
there was a ~0.05 FA effect between the 1.5T and 3T scanners (blue), while with ComBat, both the 

voxel-wise variance and size (red) were reduced by ~5-fold. (c) Study 3: before correction, there was 
a ~0.2 ODI effect between the two 3T scanners (blue), while with ComBat, vertex wise ODI effect is 

dropped to ~0.1 with the corresponding reduction in variance.   

 

Harmonization of WM and GM indices from DWMRI models using ComBat are shown in 1) 

Study 1 by applying ComBat to TBSS for correcting FA values in DTI for two different scanners with a 
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field strength of 3T 2) Study 2 characterizing at field strength differences showing the positive effects of 

ComBat correction while improving the age effect. 3) Study 3 showing the applicability of ComBat in 

GM with advanced DWMRI models like NODDI. In the first two studies, the scanner effect is corrected 

while retaining the biological variability with age. Detailed analysis in this domain could provide an 

opportunity to combine large-scale imaging studies to increase the power of statistical analyses to test the 

common biological hypothesis of understanding the development of brain microarchitecture.  

 

 

Figure V-7 Mean values between Scanner A and B are shown after applying variability correction in 
a) FA in white matter using TBSS between 1.5T and 3T gradient strengths b) ODI in gray matter 

using GSBSS within 3T scanners. 

 

While we have shown the possibility of application of ComBat technique in three different 

scenarios, a detailed analysis is needed to interpret the results in a meaningful way. In the first study 

where we have shown the applicability of the technique to TBSS, further analysis showing the 

comparison with the initially proposed method as the baseline is needed if this approach indeed improves 

the statistical power. We are considering carrying out a detailed analysis of these approaches in future 

studies.
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CHAPTER	VI. CONSTRUCTING	STATISTICALLY	UNBIASED	CORTICAL	

SURFACE	TEMPLATES	USING	FEATURE-SPACE	COVARIANCE	

 

1. Introduction	

The cerebral cortex is the outermost layer of neural gray matter critical for many brain functions 

including memory, attention, cognition, language and consciousness [28]. Features that characterize the 

cortex (including sulcal curves, gyral curves, sulcal depth, curvature and cortical thickness) are important 

in neuroimaging studies involving these regions [29-31]. Cortical surfaces are widely used for such 

analysis as they preserve topology [30, 31, 53-57]. In order to study group differences in these regions 

between control and clinical samples, it is common to align all the cortical surfaces to a common space 

[94, 175-177]. In this context, representative template space-based approaches have been proposed to 

studying local individual differences in cortical morphometric measurement due to their ability to 

represent data involving cortical patterns and other model-based voxel wise parameters mapped onto a 

common surface in both normal and clinical populations [52, 178]. Prior work has addressed the 

importance of template surface selection from the perspective of pairwise registration [54, 55, 92]. In a 

template based registration approach, each surface is mapped to a common template surface in coordinate 

space by regularizing based on feature information. However, surface-based analyses employing a 

predefined template might yield undesirable results if the selected template surface is substantially 

different from the population or if it is biased towards a particular set of surfaces [93]. Template-based 

registration is dependent on the a priori template specification thus constraining the underlying data to be 

biased to the selected template. Methods have addressed the issue of dissimilarity between template 

surface and surfaces of population under consideration by organizing the population of cortical surfaces 

into pairs with high shape similarity to achieve a higher accuracy by only corresponding such similar 

pairs [92], while others factored in the pattern of folding across the entire cortical surface in considering 
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the inter-subject average [94].  

However, these approaches are still prone to bias towards the majority representation of the 

underlying population that could pose a problem in cross-subject analysis. We propose to address the 

above limitations using an a priori covariance matrix approach that de-weights subjects with similar 

features instead of treating all observations as independent instances. This approach uses inverse 

covariance weighting under the assumption that there is one latent feature of interest from the 

representative group. An optimal weighted mean is then reconstructed on the basis of that assumption. 

Features considered in this approach are mean curvature and sulcal depth. Mean curvature captures the 

mean amount of change with respect to surface normal [56]. Sulcal depth measures the closest distance 

between a cortical surface and its cerebral hull [177]. In this chapter we present an approach for 

constructing an unbiased mean of cortical surfaces in feature space that is representative of the underlying 

population while not being biased to multiple representations of the same feature from multiple surfaces 

by using a priori based covariance information. To simplify the analysis, we use the correlation matrix 

between scans as an approximation of the true covariance. 

This framework is flexible and scalable for selecting the target template space, involving cross-

sectional subject analysis, or performing template-based registration. The proposed technique can be 

factored into group-wise registration [29] to include de-weighting based on population information. 

2. Methods	

2.1. Data	Acquisition		

We considered the Kirby dataset [179] that was acquired with scan-rescan imaging sessions on 21 

control volunteers. The acquisition protocol includes T1 MPRAGE employing a gradient echo read out 

with a short TE value (TR/TE/TI=6.7/3.1/842ms) with 240 X 204 X 256 mm FOV and 1 X 1 X 1.2 mm3 

resolution acquired in sagittal plane. No fat saturation was employed and the total scan time was 5 min 

and 56 s. We also included a second dataset with 10 control subjects and 10 individuals with 

schizophrenia for analysis. The scan protocol for this project included T1 MPRAGE (256 X 256 mm 



89 
 

FOV, 1 X 1 X 1 mm, TE=2ms, TR=8.95 ms and TI=643 ms) acquired on a 3T scanner (Achieva, Philips 

Medical Systems, Best, The Netherlands) with a 32-channel head coil.  

2.2. Preprocessing	

T1 images are bias-corrected using N4 bias correction [136] to account for spatial inhomogeneity. 

Individual T1 images are then segmented using multi-atlas segmentation [26] that segments the images 

into 133 BrainColor labels with 132 brain regions and a background [180]. After segmentation, the GM 

surfaces are derived using multi-atlas segmentation to surface method proposed as Multi-atlas Cortical 

Reconstruction Using Implicit Surface Evolution (MaCRUISE) [181] where inner, central and outer 

cortical surfaces are reconstructed by using the topology-preserving geometric deformable surface model. 

These central surfaces are used in further cortical surface-based analysis. 

2.3. Feature-based	template	space	selection	approach	

Cortical surfaces are initially aligned to MNI space (http://www.mni.mcgill.ca/) using affine 

transformation acquired from T1 image using trilinear interpolation. For each T1, gray matter (GM) 

central surface is reconstructed via an MaCRUISE pipeline and then mapped onto a unit sphere of a 

standard icosahedron subdivision with 163,842 vertices [176]. Features are generated on central surface 

after applying 3 smoothing iterations to reduce local noise influences. We compute weighted and un-

weighted mean from these features. The weights are represented as the approximated covariance matrix 

as shown in Figure VI-1.  

Again our goal is to build an unbiased mean of surface in feature space. So the idea is to de-

weight multiple representations of similar data while capturing maximum variance in the population. 

From this perspective, an a priori covariance matrix is built based on the population information (e.g., 

demographics, patient status, cortical shapes). For example, in reproducibility analysis scan and rescan 

entries are provided with the same correspondence in the off-diagonal elements. Similarly for psychosis 

population, subjects belonging to same group are assigned to have correspondence based on setting the 

off-diagonal elements to have the same weighting as the diagonal elements for that group in building the 
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approximated covariance matrix. 

 
Figure VI-1 After preprocessing: a) A spherical representation is generated based on central surface. 
b) Features are computed and resampled along with central surface into 163,842 vertices via 
icosahedron subdivision. c) The covariance matrix is constructed. d) The weighted mean of features 
is computed based on weights from the covariance matrix. e) The un-weighted mean is computed f) 
Qualitative and quantitative analysis are performed based on weighted and un-weighted mean 
information. 

 

By taking inverse covariance weighting approach, elements belonging to same group are de-

weighted to make it a single representation for underlying population.   

We compute the mean feature based template using the weights obtained in the previous step. 

This weighted mean of the surfaces in feature space is then compared with to un-weighted mean based on 

a vertex wise relative distance metric with respect to baseline for evaluation.  

The idea behind the bias compensation is illustrated in a toy example in Figure VI-2. Here we 

have six points in 2-D space where three of them belong to one group. If we do not consider this 

information then the un-weighted average (red *) is biased towards the single group containing three 

points.  
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Figure VI-2 This figure shows a comparison between un-weighted average versus a weighted average 
for a toy example on the 2D plane. The equal weighting is given to off-diagonal elements belonging to 
a similar group (yellow dashed oval) as illustrated in the correlation matrix presented in the lower 
left-hand corner. 

 

By factoring in the information about underlying data in a similarity matrix Σ 𝑋  as indicated 

below, we can compute a weighted average, by down-weighting three points in the same group to be a 

single representation thus yielding unbiased mean (green o).  

Σ 𝑋 =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 1 1 0
0 0 1 1 1 0
0 0 1 1 1 0
0 0 0 0 0 1

  

By taking the pseudo inverse also called the Moore-Penrose inverse of above a similarity matrix 

Σ 𝑋  𝑎𝑛𝑑 taking the sum of the elements we can compute weights associated with each point which are 

then used in computing vertex wise weighted average as below,  

𝑋! =  !!!!
!
!!!

!!!
!!!

      (6.1) 
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A similar approach can be adapted when computing the average in feature space for template 

space selection in pairwise registration or group-wise registration. Thus, one can address explicit bias 

towards multiple representations of similar data in the underlying population. 

2.4. Quantitative	Analysis	

The results are validated on a reproducibility dataset using scan-rescan protocols. In order to 

quantitatively evaluate the proposed unbiased template, we used cortical surface features (mean curvature 

and sulcal depth) that are commonly used in surface registration approaches. We used two different 

distance metrics for this quantitative evaluation: 1) Mean square error (MSE) (L2 norm) of the weighted 

and un-weighted average with respect to baseline data as described for each scenario as described in eq (2) 

below where Xi is the baseline data and Yi is the corresponding average at each vertex i. 2) The relative 

distance of weighted average WMDi and relative distance of un-weighted average as MDi in ith iteration 

from the group averages HCmean and SZmean with an equal number of subjects in each group. Vertex-wise 

differences of the feature measurements are captured based on the relative distance measure with respect 

to baseline for evaluation. 

𝑀𝑆𝐸 = 𝑌! − 𝑋! !!
!!!        (6.2) 

𝑀𝐷! =
!"# !!!!"!"#$ !!"# !!!!"!"#$

!"# !"!"#$!!"!"#$
      (6.3) 

𝑊𝑀𝐷! =
!"# !"!!!"!"#$ !!"# !"!!!"!"#$

!"# !"!"#$!!"!"#$
      (6.4) 

3. Results	

In the Kirby dataset, rescan data is given the same weighting as corresponding scan data in the 

off-diagonal elements. Inverse covariance weighting from this approximated matrix is taken which is used 

to compute the weighted average. In order to test the reproducibility of the approach, we have taken 21 

subjects with scan data as a baseline and computed both weighted and un-weighted mean.  
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Figure VI-3 Iterative rescan data example of sulcal depth feature from Kirby dataset. Row 1 is un-
weighted mean and row 2 is weighted mean from (a) to (c) with each scenario containing (a) 21 
subjects with no rescan data, (b) 21 subjects with 10 repeats of rescan from one of the subjects, and 
(c) 21 subjects with 20 repeats of rescan from one of the subjects. The inlay (d) shows the sulcal depth 
of subject whose rescan is added iteratively. Plot (e) presents the mean squared distance to rescan 
subject from the un-weighted mean (blue) and weighted mean (green). 

 

As seen in Figure VI-3a the means of the sulcal depth feature obtained with both these 

approaches are the same when no rescan data is added and 21 subjects are considered to be independent 

of each other. Then, we added rescan data of one subject giving it equal weighting as its scan data in the 

approximated covariance matrix. We repeated the addition iteratively for 20 times and captured the 

weighted and un-weighted means at each iteration. Figure VI-3b and Figure VI-3c present the qualitative 

results at 10 and 20 iterations. Figure VI-3d shows the sulcal depth feature information on the sphere for 

the rescan subject that was used in these iterations. With each iteration of adding rescan data, un-weighted 

mean comes closer to the vertex-wise feature information of the corresponding subject making it biased 

towards that subject. However, the weighted mean remains unchanged irrespective of the number of items 

as it de-weights additional duplicate scans based on approximated covariance information. Quantitative 

values of mean squared error distance of each of the mean to the rescanned subject feature information 

are presented in Figure VI-3e. 

In the second application, we used two groups with a control and schizophrenia population. The 
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diagnosis is considered as the prior information in this dataset.  

 

 

Figure VI-4 Mean curvature qualitative plot of un-weighted mean and weighted mean with a 
different number of subjects in control and schizophrenia populations. Feature data in each scenario 
included (a) 6 controls and 18 schizophrenic patients, (b) 18 controls and 18 schizophrenic patients, 
and (c) 18 controls and 6 schizophrenic patients. Both unweighted and weighted mean are similar 
with equal number of subjects in each group. However, the un-weighted mean had higher variance 
across the sampling strategies. The ovals emphasize qualitative areas of difference. 

 

For this analysis mean curvature is employed as an evaluation metric and approximated 

covariance matrix is built based on the diagnosis information. Weights are calculated based on the inverse 

covariance weighting and corresponding covariance based mean is computed.  

Weighted and unweighted means of mean curvature feature for a different number of subjects in 

each group are shown in the qualitative plot (Figure VI-4). For the same number of subjects in each 

group, it can be seen that weighted and unweighted means are equal. The weighted mean shows less 

variance compared to the unweighted mean, while increasing/decreasing the number of subjects in each 

group. 

To compare the effect of the varying number of subjects in each group and evaluate bias 
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information, 10 subjects from each group are considered. Mean curvature feature based mean for 10 

control subjects HCmean and similarly mean for 10 schizophrenic subjects SZmean are calculated. As we 

increase the number of subjects in each group, the un-weighted mean becomes biased towards the group 

with a higher number of subjects compared to the other as shown in Figure VI-5. The plot shows the 

difference in vertex-wise absolute distance of un-weighted and weighted mean with respect to HCmean and 

SZmean. By adding more control subjects, the un-weighted mean becomes closer to HCmean as opposed to 

SZmean and vice versa. For the equal number of subjects from each group (HC=5 and SZ=5) the relative 

distance to both the means from corresponding group averages, HCmean and SZmean are equal as 

highlighted in the red box. However, as the number of subjects in one group increases compared to other 

un-weighted mean is biased towards that group which is also reflected with a lower mean square error in 

Figure VI-5d and Figure VI-5e. Green lines in the plot indicate L2 norm distance of weighted mean from 

HCmean and SZmean. Blue lines show L2 norm of the un-weighted mean from the mean of each group. 

4. Discussion	

In both the applications, the effect of bias towards the underlying dataset is shown when 

considering the un-weighted mean, while the weighted mean is stable when capturing the details of the 

representative features.  
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Figure VI-5 Mean curvature quantitative plot with a relative absolute distance of un-weighted mean 
and the weighted mean between control and schizophrenic means. Data are normalized between -1 
and 1 between patients with schizophrenia and controls. Feature data in each scenario from 
qualitative plot included (a) 5 controls and 10 patients with schizophrenia (b) 5 controls and 5 
patients with schizophrenia, and (c) 10 controls and 5 patients with schizophrenia. The color bar on 
the side indicates how close the relative distance is with respect to control mean (blue) and 
schizophrenia mean (red). The top row is from weighted mean while the lower row is from the un-
weighted mean. Mean square error of mean curvature values with respect to control and 
schizophrenic means with a varying number of subjects in each group is shown below. In (d), the 
number of controls was fixed at 5 and the number of patients with schizophrenia varied from 1 to 10. 
In (e), the number of patients with schizophrenia was fixed at 5 and the number of control subjects 
varied from 1 to 10. When the number of subjects in each group is equal, then both the un-weighted 
and weighted means are equal as highlighted in the red box.
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While we have presented the effect of incorporating covariance in computing the feature based 

unbiased average for template-based pairwise registration, this approach is also adaptable to group-wise 

registration methods [54] where no prior template is needed. In these methods, group-wise cortical 

correspondence is achieved by making use of various cortical features while preserving the topology. As 

the result still has the possibility of having a bias towards the representation of the majority of the 

population, incorporating covariance information at the stage of feature averaging could aid in reducing 

such bias. 

5. Conclusion	

We have presented feature based unbiased average template surface approach using an a priori 

covariance matrix. The proposed approach is compared with a typical un-weighted mean by applying to 

two different applications; one with scan/rescan data and another with clinical data with two groups. In 

both the cases, the weighted average is shown to be more stable and less biased when measured in terms 

of relative distance from the group mean or mean squared error. Incorporating covariance based approach 

at template selection level or when considering the mean of features in group registration methods could 

potentially minimize the bias. Much work remains to effectively estimate appropriate covariance 

structures either from study designs or in a data-driven manner. 
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CHAPTER	VII. IMPROVING	BRAIN	SULCAL	CURVE	LABELING	IN	LARGE	

SCALE	CROSS-SECTIONAL	MRI	USING	DEEP	NEURAL	NETWORKS	

	

1. Introduction	

The human cortex is one of the most complex anatomical structures with substantial variation in 

shape across individuals. Despite its complexity, the cortical sulci are known as relatively stable regions 

that embed consistent cortical folds [102-104] by which the cerebral cortex can be subdivided into 

functionally and structurally homogeneous regions. From a morphological view, each individual sulcus 

(or sulcal region) can be well represented as a curve by tracing its sulcal fundus. By taking advantage of 

such a representation, sulcal curves have played key roles as a distinguishing indicator in cortical surface 

registration [57], brain development and degeneration [102, 182] and morphological variability [183, 

184]. Yet, a concrete representation of cortical sulci is not commonly agreed upon due to an unclear 

anatomic boundary between sulci and gyri [53, 185, 186]. With recent advance of 3D cortical surface 

reconstruction techniques; [4, 16-18] cortical geometric features greatly support sulcal curve extraction 

[15,19-21]. 

Despite the success in extracting sulcal curves, labeling of these curves is still an open and 

challenging problem because of high complexity and variability in cortical folding patterns [187]. For 

example, the inferior temporal sulcus is highly variable with several discontinuous pieces [188]. Such 

variability hampers consistent labeling of cortical sulci, which is challenging even for neuro-anatomists. 

Sulcal labeling could be sensitive to variations in labeling protocols, and even in the same protocol, 

delineation of sulci can vary across experts (e.g., inconsistent endpoint delineation) [188-190]. Although 

one could employ cortical parcellation for sulcal labeling, it could still have challenges, as sulci do not 
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always obey cortical parcellation boundaries. Accurate labeling is essential to derive meaningful 

inferences from brain-related changes in health and disease 

Manual sulcal labeling is a tedious task and needs a very high level of expertise in achieving high 

accuracy that agrees with sulcal nomenclature [188]. This necessitates well-developed neuroanatomical 

conventions in the existence of high individual variability [188-190]. Joshi et al [191] proposed a multi-

atlas labeling method that uses predefined curves. In these approaches, sulcal curves from an atlas brain 

surface are projected onto the target subject surface and evolve along sulcal fundi via a level-set 

approach. Statistical shape models [192] define a shape variation prior as projections of landmarks onto 

tangent planes to the sphere. A watershed approach [193] extracts regions around sulcal fundi that embed 

some meaningful geometric characteristics like geodesic depth. However, their method is not fully 

automated, as sulcal regions are manually selected from the extracted sulcal regions. Another semi-

automated approach [194] guides the user through a cortical surface delineation protocol implemented as 

a tool with an interface incorporated into BrainSuite software [28] reducing the inter-rater variability. All 

these manual/semi-automatic methods need manual intervention in addition to very long processing time. 

In the last decades, fully automated techniques have been proposed to overcome the need for 

manual intervention. For example, Shi et al. [30] proposed  a probabilistic graphical model of sulci, from 

which major sulcal curves are jointly labeled by solving a maximum a posteriori (MAP) estimation. Tu et 

al. [195] used a discriminative model using a boosting tree to extract major cortical sulci without 

employing any user-defined rules. On the other hand, Joshi et al. [196] proposed an atlas registration 

method that transfers the sulcal curves from an atlas surface to the subject surface and then refines the 

sulcal curves’ locations to closely follow the sulcal fundi using geodesic curvature flow. However, this 

approach uses only a single subject atlas. Lyu et al. [53] proposed a multi-atlas sulcal curve labeling using 

spectral point matching. This method does not require surface registration. Mangin et al. [197] noted that 

“the future of sulcus recognition is in pattern matching methods informed by a very large dataset of 

manually labeled sulci”. In this context, readily accessible large-scale neuroimaging dataset is highly 
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likely to capture sulcal variability with the improved accuracy of labeling the sulcal curves on unseen 

subjects. As the gold standard is not available, learning variability in the cortical folding patterns from big 

data can better infer new models that encode the complex folding patterns. However, handling such huge 

data with existing methods could be practically implausible or requires a well-defined prior model that 

can fully incorporate sulcal variability [188, 198, 199]. 

Recently, deep neural networks (DNN) have become popular in the medical imaging field [200, 

201] involving large datasets due to the accuracy, speed and flexibility offered by these models. In 

neuroimaging, deep learning has shown its success in a wide range of applications including anatomical 

brain segmentation [202], brain tumor segmentation [203], biological psychiatry [204], deep unsupervised 

learning in traumatic brain injury [205], epileptic discharge detection for EEG-fMRI [206], segmentation 

of deep brain regions in MRI and ultrasound [207], inter-scanner harmonization in diffusion MRI [208], 

understanding sensory cortex [209], et cetera. Convolution neural nets (CNN) are a specific type of DNN 

that uses convolution and pooling layers. These are widely used for image recognition tasks as they 

reflect the translation-invariant nature of most images. U-Net [210] is a deep CNN model that is adapted 

from fully convolutional networks. It can work with very few training images and provide more precise 

segmentations. CNNs are successfully applied for segmentation and other applications in volume images. 

However, relatively little work has applied these approaches to 2-manifolds of cortical surfaces. For 

example, the application of CNNs is extended onto non-structured data with geometric deep learning 

[211, 212]. Seong et al. [213] implemented a graph CNN that samples the data over a surface and 

reshapes the data to make it compatible with conventional CNN toolbox. Cucurull et al. [214] used graph 

based methods for performing parcellation of two regions (44 and 45) in Broca’s area using structural and 

functional features on the cortical surface patches.  

In this study, our goal is to label sulcal curves by using a U-Net model [210]. The novelty of our 

approach is a new application of deep learning on cortical surfaces using a U-Net model. We aim to 

achieve substantively faster labeling with better accuracy than multi-atlas approaches [53, 191]. Briefly, 
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we use a large dataset of healthy controls to train a neural network for performing sulcal curve extraction 

and labeling. We train samples with prelabeled sulcal curves and geometric feature maps. These features 

are mapped onto a 2-D polar plane to fully utilize a 2-D U-Net model. Specifically, we use the following 

geometric features: sulcal curve distance map, mean curvature, surface parcels, and spectral features 

(eigenfunctions of 2-manifold). We enhance the accuracy of the model using an independent dataset of 

manual labels. In the experiments, we show that our approach outperforms the standard curve labeling 

method [53] that is considered as reference.  

2. Methods	

2.1. Data	Acquisition	

We analyzed structural data from two cohorts of participants. We first constructed a sulcal curve 

atlas dataset using 21 subjects from the publicly available KIRBY21 database (11 males; 10 females; 

age range=22-61) [49]. Structural images in the atlas dataset were acquired with (3T Philips 

MPRAGE sequence with a 1x1x1.2 mm3 resolution and an FOV of 240x204x256 mm3). Our 

primary analyses were carried out using data from 784 participants in the Baltimore Longitudinal 

Study of Aging (BLSA) (349 males; 435 females; mean age=72 years; range = 25-99) [215]. Participants 

in this study were scanned 1-7 times over a period of 8.5 years on a Philips 3T scanner using a 3D 

“magnetization prepared rapid gradient echo” (MPRAGE) sequence. Each image had 170x256x256 

voxels with 1.2x1x1 mm3 resolution. The local Institutional Review Boards approved the study, and all 

participants provided written informed consent at each visit.  From the BLSA dataset, we created 3 

samples of participants. The training set consisted of 1-7 longitudinal scans from 759 individuals for a 

total of 1374 separate MRI sessions. The validation dataset was constructed from single sessions from 28 

individuals that are not included as part of the training set. Single session data from 22 participants not 

included in the training or validation datasets were used to create a test dataset.  
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2.1.1. Sulcal	curve	atlas	

For sulcal curve atlases from the KIRBY21 dataset, eight primary sulcal curves were manually 

labeled on both hemispheres by an expert according to a published sulcal curve labeling protocol [199]: 

central sulcus (CS), superior temporal sulcus (STS), superior frontal sulcus (SFS), inferior frontal sulcus 

(IFS), occipitotemporal sulcus (OTS), cingulate sulcus (CingS), calcarine sulci (CalcS), and olfactory 

sulcus (OLF) (see Figure VII-5 for examples). 

2.2. Preprocessing	

Structural data were processed for cortical surface reconstruction using the MaCRUISE pipeline 

[49]. Sulcal curves were extracted using the TRACE method [187] . Sulcal curves were labeled using a 

curve labeling protocol [53].  
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Figure VII-1. An overview of the proposed method: (a) Preprocessing steps include surface 
reconstruction, sulcal curve extraction, surface registration, and curve-labeling. (b) Cortical features 

are generated including distance maps, spectral features, mean curvature, parcellation, and sulcal 
labels. (c) Features defined on spherical polar coordinates are mapped onto a uniformly spaced grid. 
(d) The features are then passed into 2-D U-net model and fitted with batch size of 10 for maximum 

of 20 epochs. (e) Labels are predicted on the test set for evaluation.. 

 

All datasets were quality checked for each label and any faulty surfaces or extremely inconsistent 

curve labeling results are excluded. Note that we used these labels for training the deep learning model 

using various geometric features including distance map, surface parcels, mean curvature and spectral 

features. Cortical features were finally projected onto a plane to feed CNN for training with the U-Net 

model. An overview of the proposed workflow is shown in Figure VII-1.  

2.2.1. Sulcal	curve	extraction	

The TRACE method [187] was applied on each hemisphere to extract a set of sulcal curves along 

the sulcal fundic regions. Briefly, candidate sulcal points were selected to form a topological graph of the 

points, and Dijkstra trajectories over the graph to delineate optimal sulcal curves. This includes primary 

and secondary sulcal curves as a set of points (a subset of vertices) without curve labels, which needs to 

be pruned and labeled through the proposed pipeline. In this chapter, we used default parameter settings 

as suggested in [187]. The code is available at https://github.com/ilwoolyu/CurveExtraction. 

2.2.2. 	Surface	registration	

Although surface registration is not a mandatory step for the reference method [53] it could 

improve the quality of sulcal curve-labeling after surface registration. We first mapped each 

hemisphere onto the unit sphere while minimizing area distortion [78] and then established cortical 

surface correspondence [216] (https://github.com/ilwoolyu/HSD). A custom template was obtained 

by averaging in a group-wise fashion [216] of co-registered 21 subjects from the publicly available 

dataset [179] of the Kirby Research Center for Functional Brain Imaging in Baltimore 

(http://mri.kennedykrieger.org/databases.html). 
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2.2.3. 	Sulcal	curve	labeling	for	model	training	

We used the standard curve labeling method [53] to assign labels to primary sulcal curves by 

pruning minor sulcal curves and branches. The reference method employs multi-atlas to determine a 

label for each individual sulcus. It establishes a point-wise curve correspondence with each atlas and 

finds the best match across the established correspondence. However, we found in this work that a 

majority vote shows better performance since the best match can sometimes work poorly if only 

partial perfect match (few points) with a particular atlas yields the highest score among the other 

atlases. Therefore, final labels were assigned if at least half of atlases agree. 

2.3. Deep	Neural	Network	for	Sulcal	Curve	Labeling	

We used cortical geometric features to capture both cortical folding patterns and individual 

variability. First, the sulcal curve distance map (geodesic distances between sulcal curves) was generated 

to represent cortical folding patterns. As complementary features to cortical folds, we used mean 

curvature and surface parcellation labels [217]. In addition, spectral features were computed to capture 

intrinsic geometric characteristics in the embedding space being spanned by the eigenvectors associated 

with the first five smallest eigenvalues. These features were fed into the neural network for sulcal label 

prediction. 

2.3.1. Sulcal	curve	distance	map		

To represent cortical folding patterns, we computed a geodesic distance map 𝑢:ℜ! → ℜ on the 

cortical surface 𝛀 between the sulcal curves. We set all the extracted sulcal curves as a source 𝐶 ⊆ 𝛀. By 

letting 𝑐 ⊆ 𝐶 , the minimum travel time 𝑢 𝐱 :ℜ! ⟶ ℜ from the source to any point 𝐱 ∈ 𝛀  can be 

obtained from the following propagation equation with some speed function ∃𝐹 𝜖 ℜ!, 

𝑢 𝑐 = 0 ,     (7.1)  

∥ ∇𝑢 𝐱 ∥ 𝐹 𝐱, ∇! 𝐱
∥∇! 𝐱 ∥

= 1  .    (7.2) 
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This wavefront propagation formulation is a static Hamilton-Jacobi partial differential equation. 

We set a constant speed function in every direction by letting F=1 as follows: 

∥ ∇𝑢 𝐱 ∥= 1 .     (7.3) 

By solving equation (7.3), we have the minimum travel time with unit speed. This is equivalent to 

the geodesic distance between sulcal curves, which generates the geodesic distance map 𝑢 of the sulcal 

curves. Typically, gyral regions have high values whereas sulcal regions have a zero distance. We later 

feed this map to the network for training. 

Given a threshold 𝜉 𝜖 ℜ!, sulcal regions can be segmented by a binary mask 𝑀: ℜ⟶ 0,1  as 

follows 

𝑀 𝑢; 𝜉 =  𝑓 𝐱 = 1, if 𝑢 ≦ 𝜉
 0, otherwise .    (7.4) 

This threshold widens the extracted sulcal curves to prevent them to being too narrow to provide 

sufficient geometric information within sulcal regions. We empirically set 𝜉 =10 to sufficiently cover 

regions along a single sulcus similar to the previous studies [187, 218]. 

2.3.2. 	Spectral	features	of	cortical	surface		

Spectral features were generated for each cortical surface to feed the neural network. We first 

build a graph G = {V, E}, where V is a set of vertices and E is a set of edges. We then setup a |V | by |V | 

weighted adjacency matrix W that stores node affinities.  A diagonal node degree matrix D encodes the 

sum of all the point affinities (vertex degree) at point i. 

𝑑! = 𝑊!"
|!|
!!! .        (7.5) 

 A diagonal node-weighting matrix G is given by the exponential of negative mean curvature. The 

node weighting at point i is defined as,  

𝑔! = 𝑒!!!,      (7.6) 
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where ℎ! is mean curvature at point i. Finally a general Laplacian operator is formulated on the 

connectivity adjacency matrix as the following |V | by |V | matrix: 

𝐿 = 𝐺!!(𝐷 −𝑊).     (7.7) 

Since L is symmetric, positive, and semi definite, its eigenvalues Λ and their associated 

eigenvectors U hold the following form: 

𝐿 = 𝑈⋀𝑈!! .      (7.8) 

We then use [148] to correct sign ambiguity in eigenvectors. Here we refer to spectra of a 

fixed subject being arbitrarily chosen from the dataset. The spectral features were given by the 

eigenvectors associated with the first five nonzero smallest eigenvalues, which were ultimately fed 

as five additional input channels into the neural network. 

2.3.3. 	Planar	mapping	

In general, the cortical surface has a genus-zero form that is not yet fully compatible with a neural 

network optimized for a uniform grid representation. To address this issue, we represent a cortical surface 

with polar coordinates (𝜃,𝜙) at (x, y, z) as follows. 

𝜃 = arctan 𝐲
𝐱

,      (7.9) 

𝜙 = arctan 𝐳
𝐱𝟐!𝐲𝟐

,     (7.10) 

where 𝜃 is the azimuth angle and 𝜙 is the elevation angle. However, a polar coordinate system 

inherently has non-uniform angular representations, which yields substantial length distortion around the 

poles. To reduce such distortion, we rotate each sphere such that the poles are located around insular and 

ventricle regions so as to minimize length distortion of sulcal curves around the poles [219]. The 

inspiration for choosing a pole is drawn from Auzias et al.’s approach [220]. Given a set of sulcal curves 

𝐶 ⊆ Ω for each of N subjects, we approximate global pole location by maximizing the following 
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objective function: 

z = argmax∥!∥!! arccos! z ∙ 𝑐!∈!!
!
!!! ,     (7.11) 

with underlying assumptions that the cortical anatomy on the spheres is roughly aligned and the initial 

value for 𝐳 is chosen such that it is roughly located away from most of the sulcal curves (i.e., insular and 

ventricle regions). Spherical reparameterization is done by updating the pole as obtained from equation 

(2.11). In this way, we reduce the planar projection distortion on the primary sulci of interest.   

 

 

Figure VII-2 Qualitative representation showing normalized distance map feature on cortical 
surface, sphere and planar map. 

 

After the planar projection, we resampled the plane with a 512 x 512 resolution that is optimized for 

convolutional layers of the neural network. The cortical features and label maps were then used for 

training. Figure VII-2 illustrates the distance map normalized between 0 and 1 on a cortical surface, a 

sphere and after projection to a planar map.  

2.3.4. Training	

The network architecture is inspired and motivated from the original U-Net design that has been 
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known to perform well for image segmentation tasks [221]. A 5-level architecture has been used for each 

sulcal label with curve overlap as the loss function. A batch size of 10 was used to meet with GPU 

memory constraints while also achieving better performance. Hence, the network weights are saved using 

check pointing and batch images are fed into the training model using a fit generator. 

The network consists of 2D convolution layers followed by batch normalization and a rectified 

linear unit (ReLU) activation, which yielded better performance during preliminary evaluations. Max 

pooling is used after each convolution layer. In the last layer, 1×1 convolution produces probability of 

sulcal curve label from a sigmoid activation function. We can threshold this probability map to derive 

desirable label information. In this study the threshold was empirically set to 0.7. Each network was 

trained until convergence for a maximum of 20 epochs. Finally, as the network was trained on planar 

maps, the predicted labels were mapped back onto the unit sphere: 

x = cos θ cos∅,      (7.12) 

y = cos θ sin∅,      (7.13) 

z = sin θ.      (7.14) 

2.3.5. Post	Processing	

Predicted labels are generated based on the various features supplied to the training model and do 

not consider cortical shape to delineate labels to only primary sulcal curves. This can yield to issues such 

as partial labeling on the primary curves or labeling extra minor branches due to the limited ability in 

cortical shape representation in the U-Net.  

As our goal is to label primary sulcal curves, the extra minor branches need to be pruned, and 

missing label information needs to be filled before further analysis (see Figure VII-3). Since a sulcal 

fundus is represented by a single curve, it is reasonable for final sulcal label decision to include or 

exclude whole branches as major sulci are generally delineated along the entire sulcal fundi. We propose 
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curve length-based pruning to trim the minor branches. Briefly, we measure both the length (i.e., geodesic 

distance on Ω) of the extracted sulcal curves in 𝐶 by TRACE and that of the predicted sulcal curves by the 

proposed method. For each predicted curve, we compute a length ratio 𝑟 proportional to its corresponding 

extracted curve in 𝐶. If the extracted and predicted curves are perfectly matched, we have 𝑟 = 1, whereas 

𝑟 < 1 if the extracted curves are partially labeled. Thus, this quantity is used to prune the predicted curves 

(𝑟 < 0.2) or fill partially missing labels along the extracted curves (𝑟 > 0.8). Although we empirically 

choose such thresholds in this study, they could be learned from datasets for better decision-making. 

 

 
Figure VII-3. Example of pruning and filling of sulcal curves in post processing. Inflated surfaces are 
used for better visualization. Mean curvature is shown as the background on the inflated surface. 
Sulcal curves in 𝑪 by TRACE are shown in green lines. Arrows indicate the areas of change before 
and after post processing. (a) SFS curve with missing branch before post processing. (b) SFS curve 
after filling. (c) IFS curve with extra branches before post processing. (d) IFS curve after pruning 
extra branches. 
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2.3.6. Evaluation	

We used the sulcal curve editor (https://github.com/ilwoolyu/SulcalCurveEditor) to manually 

label major sulcal curves on 22 subjects via the sulcal delineation protocol [199]. These labels were used 

for evaluation to validate the proposed DNN predicted labels. These results were compared with a 

standard curve labeling method [53]. Since true curve correspondence was unavailable between major 

curves, the closest distance measures at sulcal points may not be able to capture the missing or extra 

curves. In particular, we have computed the sulcal Dice coefficient (SDC) as described below for 

evaluation. This measure summarizes labeling accuracy as well as false positives in a single metric. From 

equation (7.4), we have two masks 𝑀! and 𝑀! on a cortical surface Ω, which cover two corresponding 

major curves A and B, respectively, as follows. 

𝑀! 𝐱 = 𝑀(𝑢!(𝐱); 𝜉) ,    (7.15) 

𝑀! 𝐱 = 𝑀(𝑢!(𝐱); 𝜉),     (7.16) 

where 𝑢! and 𝑢! are geodesic distance from A and B. SDC can be computed by taking surface 

integral of 𝑀! and 𝑀!. 

𝑆𝐷𝐶 = !! 𝐱  ∙!! 𝐱  !! 
!! 𝐱  !!! !! 𝐱  !!

 .    (7.17) 

It is challenging to derive analytical solutions to the above surface integrals on an arbitrary 

cortical surface. In triangular mesh, we can instead approximate the solution by counting the numbers of 

vertices within the masks, where the numerator is the intersection between the vertices belonging to both 

𝑀! and 𝑀!. 

In evaluation, we computed SDC for the proposed and reference methods with respect to manual 

labeling. For each label, we summarized mean SDC values across all the subjects. Two sample t-tests are 

performed between the reference and proposed methods.  Finally, we used false discovery rate (FDR) 
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[222] on resulting SDC for multi-comparison correction. 

3. Results	

We found that the proposed method significantly improved sulcal curve labeling in 9 out of 16 

sulcal curves across the left and right hemispheres compared to the reference method [6], after multi-

comparison correction via false discovery rate [223]. The average SDC is improved by 12.5 percent for 

the left hemisphere and 20.6 percent for the right hemisphere. Figure VII-4 shows mean SDC values for 

each of the eight curves on both hemispheres. There is marginal, but not statistically significant, 

improvement of SDC across both hemispheres in SFS (12.8%), STS (11.3%), and IFS (15.3%) using the 

proposed method. The highest improvement of SDC is seen in CS with over 28.8% in left hemisphere and 

45.3% in right hemisphere with SDC above 0.93 in both hemispheres (p<0.05). 

Figure VII-5 shows qualitative comparisons of the reference and proposed methods with manual 

labeling for a single subject on the left hemisphere. The predicted CS from the proposed method is 

consistent with manual labeling while the reference method only captures about a half of the total curve. 

Some false positives on minor branches are exhibited in the reference method for STS and SFS that are 

not present in the proposed method. The proposed method consistently label IFS agreed with manual 

labeling whereas the reference method includes extra branches (false positives) or is missing a portion of 

the corresponding curve (false negatives). CingS is consistent with manual labeling for both methods. 

There is a false positive branch apparent towards the frontal region in both methods (Figure VII-5), while 

the standard curve labeling method also has a false negative in the parietal region in which the curve label 

is not captured. OTS and OLF are consistent across all the methods except for extra minor branch on 

OLF. 
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 Figure VII-4. Sulcal Dice coefficients are shown across eight curves in both left and right 
hemispheres. * p<0.05. ** p < 0.005. Reference method shown in blue bar and Predicted labeling 
from DNN model is shown in green. 

 

Although sulcal labels by the proposed method reasonably well agree with manual labeling, the 

proposed method sometimes misses a portion of the corresponding curve or shows extra branches of the 

curve, as shown in Figure VII-6. CS and OLF are well matched with manual labels (Figure VII-6a). 

While OTS is also well matched to the manual labels in this example, there are apparent false positives or 

false negatives in the remaining five curves (Figure VII-6b-g). 
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Figure VII-5. Qualitative results of eight curves on the left hemisphere for a single subject. Inflated 
surfaces are used for better visualization. Results are shown in 3 different views for reference, 
predicted labeling and manual labeling methods for comparison. The color code at the bottom 
indicates the color associated with each curve.  Mean curvature is shown as the background on the 
inflated surface. 

 

Figure VII-7 shows an overlay of all eight curves using manual labeling from 22 subjects. They 

are overlaid on the resampled template surface from 21 subjects in the Kirby21 dataset [49] after surface 

registration [48]. Heterogeneity is observed in most of the sulcal curves. In particular, variability in IFS 

appears to be higher in the right hemisphere compared to that of left hemisphere. Similarly, higher 

variability is seen across the frontal region of the SFS curve and the entire region of STS curves across 

the subjects. 
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Figure VII-6: Illustrative example of inconsistencies seen in predicted labeling. Yellow arrows 
indicate false negatives and white arrows indicate false positives of predicted labeling compared to 
that of manual labeling. (a) Overlay of eight manual curves (black tube representation) and 
predicted curves (line representation) on a single subject. (b) STS with false positives. (c) SFS with a 
false negative and two false positive branches. (d) IFS with false positives. (e) OTS with no false 
positives or false negatives. (f) CingS with false positive. (g) CalcS with false negative. All the curves 
in (b-g) are rotated in the best view for the corresponding curves. 

 

Figure VII-8 highlights the disparities in left and right hemisphere between the proposed method 

and manual labeling. Shorter curves are seen in the frontal region of SFS for labeling from the proposed 

method compared to that of manual labeling in the left hemisphere. In the right hemisphere, the difference 

in curve lengths of the two methods is not as pronounced as seen in the left hemisphere [224, 225]; 

however, there is higher curve variability in the frontal region. In contrast, STS displays false positives 
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with longer curves in labeling from the proposed method compared to that of manual labeling in the left 

hemisphere. Moreover, there is also higher curve variability in the left hemisphere compared to that of the 

right hemisphere. This is in agreement with the higher SDC seen in right hemisphere for STS compared 

to that of the left hemisphere (Figure VII-4). Similarly, CingS has higher variability in the predicted 

curves in the left hemisphere compared to that of the right hemisphere. 

 

 

Figure VII-7. Eight major sulcal curves manually labeled across 22 subjects in left and right 
hemispheres.  

 

1. DISCUSSION  

Deep learning has shown high efficiency and scalability on large datasets [200, 226]. In 

supervised learning approaches, initial labeling is essential in training for segmentation or classification 

tasks in medical imaging [221, 227]. This is time-consuming for manual sulcal labeling or semi-

automated approaches. In the proposed method, we collected large datasets and employed automated 

processing pipelines [53, 187] for curve extraction and labeling to produce training sets with reasonably 

plausible initial labels. We further performed liberal manual QA of all the curves to ensure filtering out 

extreme outliers in the data. This step helps prevent the model in learning from outlier examples while 

Left Hemisphere Right Hemisphere
 

CS STS SFS IFS OTS CalcS CingS OLF
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retaining the variability needed for training. As initial labels were generated automatically, the liberal QA 

was not as time-consuming as the manual or semi-automated approaches. However, it could further be 

improved by incorporating labeling uncertainty as proposed in [228, 229] that can guide in filtering out 

the data used for training. This will be promising in future work.  

A higher SDC is achieved in all the sulcal curves in both hemispheres except for OLF in the right 

hemisphere (Figure VII-4). This might be because the reference method already has good performance on 

OLF in the right hemisphere (SDC=0.85). The false positives or negatives shown in Figure VII-6 could 

have been partially caused because of the heterogeneity across the population among these major sulcal 

curves, as illustrated in Figure VII-7. Such variability has been acknowledged and measured in many 

previous studies [189, 230, 231]. Although the focus in our study is not to measure such variability, a 

qualitative analysis would be helpful in understanding the major curves. For example, different variability 

in IFS between hemispheres may explain lower SDC in the right hemisphere than that of the left 

hemisphere (Figure VII-3).  

Low performance in certain sulcal curves could also be attributed to labeling inconsistency 

obtained in the proposed method as highlighted in Figure VII-8. Possibly, the inconsistency across the 

predicted labels in certain anatomical regions has risen from the training data acquired by the reference 

method even after liberal manual QA. The high variability in sulcal curves with several discontinuous 

pieces [188] could be another contributing factor. Despite the existence of such high variability, the 

proposed method achieved better SDC values compared to that of reference method. The contributing 

factors for improved performance could be the use of multiple geometric features and parcellation labels 

for training the large dataset used in the proposed method. We have included multiple (1-7) longitudinal 

sessions for individual subjects in training data to create a large dataset needed for deep learning to 

perform well allowing it to generalize to new examples without over fitting. Also having the 

regularization step though layers like drop out is another factor that is known to help generalizing to new 

examples. Even though multiple sessions per subject are used in training, we have only included one 
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session per subject in testing for fair comparison. In this work, we have shown the possibility of using a 

deep learning approach that integrates both sulcal curve extraction and labeling to achieve improved 

curve-labeling results. 

 

 

Figure VII-8. Illustration highlighting Sulcal curves variability differences between manual and 
proposed predicted labeling in left and right hemispheres. Dotted squares show differences in STS 
curves in the left hemisphere. Dotted ovals highlight the differences in SFS curves in both 
hemispheres. Dotted rectangles indicate differences in CingS curves towards the frontal region.  

 

Although the proposed method outperformed the reference method in most curves, there is still a 

room for improvement. First, in order to use existing architecture for U-Net models designed for uniform 

grid data, we have mapped cortical surface features onto a plane, which causes mapping distortions. We 

alleviated distortions to some extent by choosing pole locations and placing the labels away from the 

poles, yet they are not fully addressed but attenuated. Second, while results from [53] are based on a 
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young healthy population, the majority of our sample is middle to older age adults. This difference in 

training and test population demographics could have led to failures in labeling certain curves due to high 

variation in sulcal shapes between the two age groups. Although we removed outlier cortical surfaces and 

labeling results from training data, there is still variability and inconsistency within the data used for 

training this model.  

In future work, we will investigate recent spherical CNN methods [232-234] or graph CNN 

methods [235] in training these datasets to overcome the distortion issues caused with planar mapping of 

such data. Our approach is not limited to a curve-labeling problem, but it could be extended to tackle 

other problems like cortical parcellation. 

4. Conclusion	

In this method, we proposed a DNN predicted labeling method using a U-Net model for labeling 

eight major sulcal curves on each hemisphere. The proposed method has shown improvement in most of 

the curves in both left and right hemispheres. We observed significant improvement in CS, OTS, and 

CingS in the left hemisphere and six curves in the right hemisphere including CS, STS, IFS, OTS, CingS, 

and CalcS (p<0.05). The overall SDC is improved by 16.6 percent for both hemispheres. CS showed the 

highest improvement with over 28.8 and 45.3 percent in the left and right hemispheres, respectively, 

compared to those of the reference method. This provides an opportunity to explore the application of 

deep learning techniques to methods involving cortical surfaces. 

The trained model and code are available on the Github project:  

(https://github.com/MASILab/slabelDNN).  
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CHAPTER	VIII. QUALITY	ASSESSMENT	OF	GSBSS	AND	CAPTURING	

OBSERVATIONS	ON	DIFFERENT	CLINICAL	DATASETS	

	

1. Introduction	

Understanding changes in the gray matter through imaging parameters is an essential aspect of 

many clinical studies,[152, 236] including mindfulness meditation [237-239] and aging effects [236]. 

However, partial volume effects and alignment issues need to be corrected before considering for further 

analysis [152, 240]. GSBSS has been shown to overcome partial volume effects to improve the sensitivity 

of detecting underlying changes in imaging parameters [241]. Method reproducibility is essential for 

advancing the science, as it is the primary basis for verifying a scientific result. Therefore, it is important 

to understand the individual components and specifications involved in the GSBSS process in preparation 

for transferring the data onto a target surface for cross-subject analysis. Preliminary analysis showed 

improved statistical power for DW-MRI and functional MRI datasets using GSBSS on a single study 

(Chapters III and IV). The accuracy of the method needs to be carefully reviewed before applying to 

various clinical datasets for hypothesis testing. 

In this chapter, we first describe the preprocessing steps for GSBSS (Section#2) and then develop 

and describe quality-checking measures with examples that can be used for evaluation of GSBSS results 

before considering for group analysis (Section#3). Since structural T1 is used for registering subject space 

metrics to a target surface, segmentation labels obtained on the T1 image are used for evaluation of 

reproducibility and robustness of the approach. In addition, reproducibility of metrics of interest from 

other modalities is reported in terms of accuracy and coefficient of variation (CV) on a scan rescan 

dataset (Section#4). Robustness of the method is evaluated using Dice similarity coefficient (DSC) on 

multiple clinical datasets that are acquired on different scanners and sites in diverse population 
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(Section#5). Finally, interpretability of the results is presented on clinical applications with expected 

outcomes (Section#6). 

2. Preprocessing	

In this section, the preprocessing steps involved in obtaining the input data for GSBSS processing 

are described. Individual T1 images are segmented using multi-atlas segmentation into 132 brain regions 

and 1 background. Gray matter surfaces are derived using MaCRUISE [49] and the central surfaces are 

used for further processing in GSBSS. Diffusion-weighted images (DWI) are processed using a protocol 

described in [242]. For NODDI processing [45], the DWI file, scheme file, and mask are passed to the 

AMICO package (https://github.com/daducci/AMICO/tree/master/matlab), which is a fast 

implementation of NODDI with a linear approximation. Intracellular volume fraction Vic, isotropic 

volume fraction (Viso), and orientation dispersion index (ODI) are obtained from AMICO method.  

3. Quality	assurance		

In this section, quality assurance components involved in GSBSS processing are described. When 

applying GSBSS to new datasets each step needs to be reviewed. Quality can be assessed based on both 

qualitative and quantitative measures as described in Figure VIII-1. We assess quality at four levels, first 

to ensure the quality of input data from structural T1 and also for metrics of interest from other 

modalities, then to ensure the quality of intermediate volume registration and corresponding surface 

deformation, and finally to ensure the quality of output data through both qualitative and quantitative 

measures. These processes are described below. 
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Figure VIII-1. Flowchart indicating the steps in GSBSS processing and corresponding qualitative 
and quantitative QA measures. The first column shows the steps involved in GSBSS and the dotted 
line indicates corresponding QA measures produced at that step. 

 

3.1. Quality	of	input	data	

First, the overlay of the central surface on structural T1 images ensures that cortical surface well 

represents the underlying cortical structure. Then, data maps projected on the input cortical surface 

provide a qualitative assessment of input data in gray matter. These are obtained by projecting volume 

data onto the cortical surface based on the enclosing voxel approach. Our report includes metrics of 

interest with data from other modalities like diffusion MRI and functional MRI along with the data on 

structural T1 like segmentation labels and gray matter fraction images. Images from other modalities need 

to be first co-registered to structural T1 to take advantage of the mapping from native space onto the 

target surface. This is an important preprocessing step and any failure happening at this step could 
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seriously impact further analysis. To address any issue arising from this step, complementary measures 

for quality checking are incorporated that can take advantage of a priori information of the expected 

image intensity values in the GM region. For example, the orientation dispersion index (ODI) is higher in 

gray matter and lower in white matter. So lower values of ODI on the cortical surface could indicate 

partial volume effects from white matter regions. 

 

 

Figure VIII-2. ODI intensity distribution is indicated using kernel-smoothing function estimate for 
volume based metric with the application of 0.7 thresholds for GM masks along with SBR and 
GSBSS based ODI.  

 

The probability density estimate of mean ODI measure over the target surface is shown in Figure VIII-2 

for GSBSS. Surface-based registration (SBR) and volume based registration (VBR) methods provide an 

expected range of ODI on GM surface. It can be seen that GSBSS and SBR measures have higher ODI 

and do not have partial volume effects in comparison with that of the volume based registration measure. 

Using this criterion, the percentage of outliers is captured with a customizable threshold 𝑇 to 

check if data on the surfaces is falling outside the expected range. In equation (8.1), N indicated the 
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number of vertices of the surface Ω, and 𝑝 is the metric of interest on Ω,  

𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑠 = !
!

(𝑝! < 𝑇!
!!! )×100       (8.1) 

 

 

Figure VIII-3. Example of quality checking measures in two subjects. (a) Overlay of the cortical 
surface on structural T1 for Subject#1. (b) Segmentation label map on input cortical surface of 
Subject#1. (c) Overlay of the cortical surface on structural T1 for Subject#2. (d) Overlay of co-
registered ODI on structural T1.  (e) A PDF map of ODI for Subject#1 and Subject#2. Outliers are 
identified in Subject#2 due to acquisition quality issues in structural T1 and problems due to 
segmentation. 

 

Figure VIII-3 illustrates two examples of the good and bad quality of input data. Outlier % measures from 

equation (1) captures this scenario (Figure VIII-3e) indicating > 10% outliers in Subject#2 with ODI 

threshold set to 0.1. 

3.2. Quality	assurance	at	intermediate	steps.		

The T1 image is non-linearly registered to MNI template to obtain initial deformation for aligning 

T1 images to template space. The inverse deformation obtained in this step is then applied to the vertices 

of the cortical surface in native space. This step will provide the deformed surface that is in alignment 

with the volume image registered to MNI template.  Figure VIII-3a illustrates a good example with an 



124 
 

overlay of the central surface on the anatomical image after deformation to the MNI template with 

cortical surface following the underlying gray matter structure. Quality can be quantified using 

segmentation labels that are transferred to MNI space after applying volume transformation and 

projecting the labels onto the deformed cortical surface using enclosing voxel approach. Dice similarity 

coefficient (DSC) is used as a quantification measure by comparing the overlap of the labels on the 

deformed surface with that of the reference labels from the MNI template projected onto the deformed 

surface. Lower mean DSC across all the segmentation labels indicates an issue in the registration step. 

𝐷𝑆𝐶 = !|!∩!|
|!|!|!|

      (8.2) 

 

 

Figure VIII-4. Example of quality checking measures in two subjects in the intermediate step after 
volume deformation. (a) Overlay of deformed surface on structural T1 in MNI for Subject#1. (b) 
Segmentation label map on deformed cortical surface of Subject#1. (c) Overlay of deformed surface 
on structural T1 in MNI for Subject#2. (d) Segmentation label map on deformed cortical surface of 
Subject#2. (Blue region indicates white matter region that is showing up due to cortical surface 
reconstruction issue) 

 

3.3. Quality	assurance	of	output	data	after	surface	registration	

In order to achieve cortical correspondence across multiple subjects, surfaces in MNI space are 

registered to a target template surface. This step provides a mapping that can be used to transfer the 

properties from each of the vertices on the subject surface to the target template surface. To evaluate the 

accuracy of the processing results quantitatively, DSC is computed. Lower DSC indicates lower accuracy. 

For example, DSC of the two subjects is illustrated in Figure VIII-5 where Subject#1 has higher DSC, 
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indicating good processing result and the Subject#2 with lower DSC indicating registration failure. 

 

 

Figure VIII-5. Dice similarity coefficients for two subjects in frontal, parietal, occipital and temporal 
lobes. Subject#2 has lower DSC across all the four lobes.   

 

Qualitative results of two additional subjects with lower DSC are illustrated in Figure VIII-6.  

 

 

Figure VIII-6. Two example subjects of outliers with lower Dice similarity coefficients. Arrows indicate 
the regions of mislabels at different locations on the left and right hemispheres. The dotted vowel regions 
indicate the CSF vertices showing up along the parietal region. 
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The mislabeling in these subjects could have been caused due to registration issues, unlike the 

issue that is highlighted in Subject#2 which has a segmentation problem. 

In addition to DSC values, the quantitative measures of PDF and outliers % as in equation (1) 

described in section 3.1 for input data can also be obtained for output data. As part of first level quality 

checks, the percentage of outliers is calculated as indicated in equation (1) for both inputs and output 

parameters of GSBSS. Before considering the data for group analysis, these measures could be evaluated 

to determine the filter criteria.  

The top outliers from the underlying dataset can be further reviewed to determine the cause of 

failure. These measures could then be used for filtering out the major outliers from the group analysis 

data. Figure VIII-7 illustrates an example of the percentage of outliers in input data and output data from 

multiple subjects. Outlier1 is from the Subject#2 example that was shown in earlier sections. The 

difference in scaling could be because of the different number of vertices in the subject surface versus 

target surface in addition to the mapping effect when transferring the metrics using surface registration. 

The scatter plot indicates that the outliers from input data are propagated to GSBSS outputs. 

 

 

Figure VIII-7. Scatter plot of Outliers % for both inputs and outputs associated with ODI. There are 
2 major outliers in the dataset as indicated by the arrows.  
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3.4. Identifying	reason	for	failure	from	quantitative	measures	

Consolidating all the above strategies, we demonstrate three examples that can help identify the 

underlying issues based on quality checking measures (Figure VIII-8).  

 

 

Figure VIII-8 Three examples are illustrating the issues caught from quality checking measures that 
helped to identify underlying issues. (a) Skull stripping issue identified based on outliers in ODI 
measure and lower DSC. (b) Image quality issue of structural T1 scan identified based on outliers in 
gray matter fraction measure. (c) Surface reconstruction issue was leading to missing regions of 
volume image identified based on outliers in gray matter fraction. Arrows highlight the problem 
areas in each of these examples. (Blue regions indicate regions of lower GM fraction). 

 

Each of these scenarios is different, and the proposed cumulative approach of assessing quality through 

multiple measures presented in this section can help identify the underlying problem. 

• In the first example (Figure VIII-8a), the subject showed a high percentage of outliers based on 

intensity threshold criteria on ODI and low DSC on the target surface. This issue is caused 
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because of the skull stripping issue that led to failure in subsequent steps of segmentation, surface 

reconstruction and co-registration (Subject#2). 

• In the second example (Figure VIII-8b), a higher percentage of outliers are seen on gray matter 

fraction measure. This issue is caused due to the image quality issues in structural T1. 

• The third example (Figure VIII-8c) illustrates an issue with surface reconstruction that caused an 

increased number of outliers on gray matter fraction in the frontal region. 

4. Reproducibility	study	

In this section, two experiments are conducted (1) to determine the effect of skull stripping of 

structural T1 on GSBSS reproducibility using DSC measure and (2) to evaluate scan reproducibility and 

method reproducibility using DSC and reliability measures. 

4.1. Data	

Six subjects with multiple scan sessions with a total of 42 sessions are considered from the data 

of scan-rescan study acquired on a 3T (Achieva, Philips Medical Systems, Best, The Netherlands) 

equipped with a 32-channel head coil located at the Vanderbilt University Institute of Imaging Sciences. 

Each subject has two repeats of structural T1 (1 mm resolution, FOV=256 x 256, TE=2ms, TR=8.95 ms 

and TI=643 ms) for each session and a diffusion-weighted imaging scan protocol (2.5 mm isotropic 

resolution, FOV=96 x 96, TR=2.65s, TE=101ms, Gmax = 37.5 mT/m) with two shells of b=1000 s/mm2 

(32 directions each) and one shell of b=2000 s/mm2 (60 directions).  The Vanderbilt University 

Institutional Review Board approved the study and all participants provided written informed consent 

prior to enrolling in the study. Co-registration is performed using “epi_reg_12dof” from FSL toolbox.  

4.1.1. Quantitative	evaluation	with	DSC		

Any challenges that arise in volume registration step [243] are also applicable to that of GSBSS 

method. For example, registering the raw images is known to be a much more challenging problem than 

that of the registration of the images without the skull [244]. The effect of skull-stripping in the overall 
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accuracy of GSBSS is evaluated using DSC for quantitative validation. The DSC of 42 sessions in 6 

subjects was evaluated for two scenarios with, 

(a) Raw structural T1 of the subject and a reference template with skull, and  

(b) Bias-corrected skull stripped subject T1 and a reference template without the skull. 

From Figure VIII-9, DSC of the bias-corrected T1 as input has better performance results in frontal, 

parietal, occipital and temporal lobes. In all cases, it is noticed that occipital lobe has lower DSC. 

 

 

Figure VIII-9 Mean dice similarity coefficient across 42 sessions in 6 subjects is shown for (a) raw 
structural T1 with reference template with skull and (b) bias-corrected skull stripped structural T1 
with skull stripped template. 

 

4.2. Method	reproducibility	with	DSC		

The GSBSS pipeline is run twice as run1 (𝑟!) and run2 (𝑟!) on the same set of inputs for eight 

sessions in four subjects. Mean DSC across all the sessions with two repeated GSBSS processing runs is 

shown for 49 cortical surface labels in both left and right hemispheres in Figure VIII-10.  
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Figure VIII-10 Mean dice similarity coefficient across 49 labels in two hemispheres for repeated 
processing of GSBSS in 8 sessions.  

 

Overall mean DSC of 0.99 is achieved in both hemispheres. Though the DSC is high in most of 

the cortical ROIs, there are few ROIs (e.g., MPoG) that exhibited lower DSC in both hemispheres 

indicating there could be some instability arising with the pipeline in these regions.  

4.3. Reliability	measures	

Scan reproducibility for NODDI metrics and cortical thickness from structural T1 with GSBSS 

are reported using coefficient of variation (CV) and accuracy measures. Mean and standard deviation 

between run1 (𝑟!) and run2 (𝑟!) is calculated for each of the sessions and reproducibility is evaluated with 

CV and accuracy measures. Mean and standard deviation values across all the sessions for all subjects are 

calculated and CV is reported for Vic, ODI, Viso, and cortical thickness measures in GSBSS. In the 

following equations, n is the number of subjects and m is the number of sessions for each subject. In 

𝐶𝑉!"#$ measure, for each session s, average of (𝑟!) and (𝑟!) is taken as session measure 𝑆! = {𝑠!, 𝑠!, 𝑠!}. 

Percentage of CV is defined as standard deviation over mean as defined in equation (8.2). Similarly, CV 

for scan reproducibility (𝐶𝑉!"#$)  and GSBSS reproducibility (𝐶𝑉!"#"")  are calculated as shown in 
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equations (8.4) and (8.5).  

𝐶𝑉 =  !
!
×100      (8.3) 

𝐶𝑉!"#$ =
! !! !

! !! !

!
!!! ×100    (8.4) 

𝐶𝑉!"#"" =
! !!,!! !"

! !!,!! !"

!
!!!

!
!!! ×100   (8.5) 

Accuracy is calculated as shown in equation (8.6) where 𝜇 is the mean of the measure from repeated runs 

of GSBSS processing and 𝜀 is the difference in the measurement from the repeated processing at each 

vertex.  

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  !
!!!"#(!)

     (8.6) 

Reproducibility measures of mean accuracy, mean coefficient of variation (CV) for repeated 

GSBSS processing and for repeated scans are reported in Table 1 for cortical thickness, Vic, ODI, and 

Viso.  

 

Table VIII-5: Reproducibility measures of accuracy, CV in GSBSS reproducibility and CV in scan 
reproducibility, are reported for cortical thickness, Vic, ODI, Viso 

Reliability 
measures 

Accuracy CV % CV – Scan % 

Thickness 0.96 2.8 10.7 

Vic 0.96 2.9 11.3 

ODI 0.98 1.83 7.4 

Viso 0.8 23 74 

 

Higher accuracy and lower CV are seen for GSBSS processing reproducibility in Vic, ODI, and 

cortical thickness measures.  However, Viso is unstable with high CV and relatively lower accuracy 

measure. One reason for higher CV could be because Viso is either too low or has a value closer to 1 on 

most of the vertices on the cortical surface. So any vertex having a difference would capture higher 

variance.  

Vertex level reproducibility measures are shown in Figure VIII-11 for accuracy and CV of GSBSS 
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processing reproducibility (Figure VIII-11a-b) and scan reproducibility (Figure VIII-11c). Cortical 

thickness has lower accuracy and higher CV along the sulcal patterns.  Vic displayed lower accuracy and 

higher CV in the parietal region. ODI has higher accuracy and lower variance compared to that of other 

measures. Viso is unstable in temporal and frontal regions. For scan reproducibility, CV is relatively 

higher in occipital region and sulcal patterns are not as obvious as seen in CV of GSBSS reproducibility. 

Vic has a higher CV in parietal region and ODI has lower CV compared to other measures similar to that 

of CV from GSBSS reproducibility.   

 

 

Figure VIII-11 Reproducibility measures at vertex level are shown for cortical thickness, Vic, ODI, 
and Viso. (a) Accuracy for GSBSS processing reproducibility. (b) The coefficient of variation for 
GSBSS reproducibility. (c) The coefficient of variation for scan reproducibility using GSBSS. 
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5. Robustness		

For evaluating the robustness of the method across multiple clinical datasets, two experiments are 

conducted, first quantitative validation is performed using mean DSC, and, then, qualitative validation is 

performed by computing mean ODI and comparing with mean ODI from HCP minimum processing 

pipeline.    

5.1. Data	

In this study, four clinical datasets that are acquired on different scanners, sites and different 

populations are considered as summarized in Table 2.  

 

Table VIII-6: Data acquisition parameters of four clinical datasets used in the robustness evaluation. 

Dataset Clinical population Scanner T1 acquisition 
parameters 

DW-MRI acquisition 
parameters 

Number of 
sessions 

Psychosis Healthy and psychosis Phillips 
3T 

256x256 FOV 

1x1x1 mm 

b=1000/2000 s/mm2 

24/60 directions 

96x96 FOV, 2.5 mm 
resolution 

185 

BLSA Healthy, MCI and AD 
Ages: 50 – 98 years 

Phillips 
3T 

256x256 FOV 

1x1x1.2 mm 

b=700/700 s/mm2  

32/32 directions 
0.81×0.81×2.2 mm 

260x260 FOV 

1664 

MBSR-1 
Healthy controls and 
MBSR participants 
Ages; 23 – 52 years 

Siemens 
1.5T 

256x256 FOV 

1x1x1.33 mm 
NA 66 

MBSR-2 
Healthy controls and 
MBSR participants 

Ages: 19-50 
 

256x256 FOV 

1x1x1 mm 
NA 152 

 

Study 1 includes psychosis population who participated in an on-going study of brain 

connectivity in neuropsychiatric disorders with one session per subject. Study 2 data is from the 

Baltimore Longitudinal Study of Aging (BLSA). Study 3 and 4 has data from individuals enrolled in 
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mindfulness-based stress reduction (MBSR) courses along with healthy control subjects. The 

corresponding local Institutional Review Boards approve each of the studies, and all participants provided 

written informed consent at each visit.  De-identified access is obtained to these datasets. 

5.2. Experiment	1:	Quantitative	validation	with	DSC	measure	

Mean DSC across all the subjects within each of the four datasets acquired on different scanners 

are shown in boxplots in Figure VIII-12. These are reported for frontal, parietal, occipital and temporal 

lobes separately. In all the datasets mean DSC is ~0.85 for frontal lobe except for MBSR data on the 3T 

scanner that have shown slightly higher DSC.  

 

 

Figure VIII-12 Mean dice similarity coefficient in frontal, parietal, occipital and temporal lobes is 
shown on different datasets as (a) 185 sessions in psychosis population on 3T Philips scanner (b) 1658 
sessions in aging population on 3T Philips scanner. (c) 66 sessions in MBSR data acquired on 1.5T 
Siemens scanner (d) 152 sessions in MBSR data acquired on 3T Siemens scanner. 

 

While the mean DSC remained similar, higher variation is seen in parietal lobe for BLSA data 

and MBSR data acquired on 1.5T Siemens scanner. The occipital lobe has lower DSC compared to the 
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other three lobes. 

5.3. Experiment	2:	Qualitative	validation	of	mean	ODI		

In this experiment mean ODI from GSBSS processing with and without search is computed for 

two clinical datasets of interest and compared with that of mean ODI from HCP minimum processing 

pipeline.  

 

Figure VIII-13 Mean and standard deviation of ODI values are shown from (a) HCP minimum 
processing pipeline on 163 healthy subjects in clinical dataset 2 of the aging population. (b) GSBSS 
processing on 163 healthy subjects in clinical dataset 2 of the aging population with no search. (b) 
GSBSS processing on 28 healthy subjects with the 2mm search. 

 

For this experiment, gender-matched random healthy subjects are chosen from BLSA data and 

Psychosis dataset. Qualitative results of mean ODI values for 163 healthy subjects from BLSA data and 

for 28 healthy subjects from psychosis dataset are shown on a template surface. In BLSA data, as the data 

is acquired on the single shell, no search is performed. Results from both HCP minimum processing 

pipeline and GSBSS processing results are shown for this dataset (Figure VIII-13a-b). The patterns of 
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mean ODI are comparable between these methods with higher values along the gyral regions. Overall, 

GSBSS has higher ODI compared to that of HCP results. However, the standard deviation of ODI values 

from GSBSS processing is higher in the parietal and occipital regions compared to that of HCP 

processing. In the psychosis dataset, the mean and standard deviation of ODI from GSBSS processing 

with 2 mm search are shown in Figure VIII-13c. Here, overall mean ODI is noted to be higher than that of 

the mean ODI result from BLSA data with no search. And the mean ODI pattern on the cortical structure 

is not as prominent as that seen in either HCP processing result or that of GSBSS processing result from 

BLSA dataset. Also, higher standard deviation is seen across the entire surface. 

6. Clinical	validations	

To validate the applicability of the GSBSS processing results in clinical datasets with the 

expected outcome from the literature, three experiments are conducted and observations are captured. 

(a) ODI is negatively associated with FA [245]. In order to validate this expected result, 

the Pearson correlation between ODI and FA is reported on clinical datasets 1. 

(b) Cortical thickness is negatively associated with ODI [245]. In order to validate this 

expected result, the Pearson correlation between ODI and cortical thickness is 

reported on clinical datasets 1. 

(c) Mean diffusivity is shown to be higher in older age (>70 years) compared to that of 

the relatively younger (50-59 years) age group [236]. To test this hypothesis, the 

difference in mean diffusivity between two age groups (a) 50- 59 years with gender-

matched 28 subjects and (b) 70-79 years with gender-matched 29 subjects is reported 

on BLSA data. 

With 28 healthy subjects, quantitative validation showing the correlation between ODI and cortical 

thickness are shown in Figure VIII-14a indicating a negative correlation with (𝑅 = −0.22). The negative 

correlation of ODI with FA is shown in Figure VIII-14b with (𝑅 = −0.75). 
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Figure VIII-14 Pearson correlation coefficient between (a) ODI and cortical thickness. (b) ODI and 
FA. 

 

Finally, the difference in MD values between two groups of ages 50-59 years and 70-79 years is captured 

to compare with that of the observations reported in previous studies [236].  MD is significantly higher in 

all the four lobes in the 70-79 years age group compared to that of 50-59 years age group (p<0.001). 

 

 

Figure VIII-15 MD in gray matter in four lobes for two groups of 50-59 age range (blue bar) and 70-
79 age range (green bar). P<0.001 for a two-sample t-test is indicated by **. 
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7. Discussion	and	conclusion	

In this chapter, quality checking aspects involved in GSBSS methodology are presented in detail 

with the goal of encouraging the reproducibility of the method. From various reliability and reproducible 

measures that are reported, the occipital lobe appears to have lower accuracy compared to that of other 

regions in all the experiments. CSF vertices are showing up in some of the regions as highlighted in the 

dotted oval region in Figure VIII-6. While some of these could have occurred from the volume image 

mapping, further evaluation is needed to check if any of these are appearing as a result of the specific 

surface registration method that is adapted for this pipeline. Based on the DSC reported across different 

datasets, GSBSS seems to be consistent across all the four lobes including large datasets (Figure VIII-12).  

However, based on the robustness check there is higher variance in ODI values for search criteria (VIII- 

13) that needs further attention in evaluating the accuracy of the measures.  The mean ODI values in HCP 

minimum processing pipeline appear to be less than that of the GSBSS approach with or without search 

(Figure VIII-13).  Lower values could be due to the partial volume effects arising from thinner cortex 

regions [245].  

When compared to that of Fukutumi et al. [245] paper, there is a weaker correlation between ODI 

and thickness in clinical dataset#1 (𝑅 = −0.22 vs 𝑅 = −0.46 ) while ODI vs FA has a stronger negative 

correlation (𝑅 = −0.75 vs. 𝑅 = −0.53). The search strategy used in the GSBSS method could be one 

reason for this deviation in addition to the number of differences between the two datasets in comparison 

like demographics, data acquisition, and processing. 

The experiment conducted for MD differences based on age group is chosen to be consistent with 

that of the Lauren et al. method [236].  Mean diffusivity values are slightly higher in the clinical dataset#2 

compared to that of the [236] method. Significantly increased MD is seen across all the four lobes unlike 

the two lobes reported in [236] which could indicate improved sensitivity with GSBSS approach.  

In this chapter, quality-checking aspects of GSBSS are presented, followed by the evaluation of 

the method for reproducibility, accuracy, and robustness. Following are the lessons learned capturing the 
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areas of improvement that need to be considered for further improvement of accuracy and robustness of 

the method. 

a) Registration accuracy in both volume and surface registration is important for the 

accuracy of GSBSS.  

b) There are two steps in GBSSS processing that depend on header information of the 

structural T1 and corresponding cortical surface reconstructed from structural T1. The 

first step is the application of inverse deformation from volume registration to the 

vertices on the surface. The second step is for retrieving the metrics of interest from 

volume image using enclosing voxel approach to project on the surface. Any discrepancy 

in the header fields would yield incorrect results and caution need to be exercised in this 

area when applying to newer datasets.  

c) The GSBSS processing and analysis results are presented for a whole brain surface. It 

may have some drawbacks in causing labeling inconsistencies between the two 

hemishpheres. However, having a hemi-separation step prior to GSBSS processing could 

further aid in the flexibility of incorporating surface specific approaches like retesselation 

and surface registration that can be useful for second level processing. 

d) While spectral matching is used for surface registration method, as it is flexible to 

incorporate whole brain surface without the need for reparameterization as needed for 

spherical based registration methods, additional surface registration approaches could be 

incorporated and would need to be validated.  

e) The preliminary normal search is proposed based on higher ODI. While this seems to 

improve sensitivity for the changes occurring in pure gray matter, these results may have 

to be carefully reviewed if a regional variation is essential for the study of interest.  Also, 

there seems to be higher variance in the ODI when using search. Additional validations 

need to be performed to improve the accuracy of the measure. 
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f) Viso metric appears to be having lower accuracy in the preliminary analysis. Further 

evaluation is needed to establish the validity of this metric in different datasets. 

g) While raw data is kept to the extent possible for the metrics of interest in volume images, 

further evaluation needs to be performed if the median filter or any other regularization 

technique could aid in reducing the noise in volume images in native space that could 

reduce some of the variance seen in the search based approach. 
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