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CHAPTER 1

INTRODUCTION

1.1 Motivation

A typical problem in sampling theory is to reconstruct a function (signal) f in a separable Hilbert

space from its samples, for which a natural approach would be to sample the function f at as many

accessible positions as possible. In general, one expects that, with some a priori information, f can

be reconstructed from those samples. This idea motivates the classical sampling theory. Related

results can be consulted in, e.g., [3, 4, 8, 16, 20, 53, 54]. However, there are various restrictions in

real-world applications. For example, sensors may not be permitted to be installed at some required

locations. Moreover, the spatial sampling density can be very limited, because sensors are often

expensive and it is costly to achieve a high sampling density.

On the other hand, in many instances, the function f comes from an evolving system which is

driven by a (partially) known operator, and the feature of the function can be exploited to compen-

sate for the insufficiency in sampling locations. An intuitive example is provided by diffusion and

modeled by the heat equation [43] which exemplifies a spatio-temporal trade-off. Aldroubi and his

collaborators have developed a novel mathematical framework, called dynamical sampling, to study

the spatio-temporal trade-off problem [5, 6, 12]. Dynamical sampling has potential applications in

signal processing, medical imaging, wireless sensor networks, and to name a few.

1.2 Problem Formulation for General Dynamical Sampling

The general formulation can be stated as follows. Let f be a vector in a Hilbert space pH, x¨, ¨yq

and A be a bounded linear operator on H. The initial signal f evolves, and at time t becomes

ft “ Atf.
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Given a countable (finite or countably infinite) set of vectors G Ă H, the samples (measurements)

over a time set T are of the form

M “
 

xAtf, gy : g P G, t P T
(

.

The general dynamical sampling problem can be described as

Problem 1. What are the conditions on the operator A, the sampling set G, and the time set T Ă

r0,8q such that any function f P H can be recovered or stably recovered from M?

Remark 1.2.1. In general, the measurements
 

xAtf, gy : g P G
(

at every single time point t P T

are insufficient to recover Atf . In other words, Atf is undersampled.

By the recovery of f we mean that there exists an operator R from G ˆ T to H such that

RpxAtf, gyq “ f for all f P H. If R is bounded, then we say that the recovery of f is stable. Using

the relation between A and its adjoint operator A˚, Problem 1 is equivalent to

Problem 2. What are the conditions on the operator A, G, and the time set T Ă r0,8q that ensure

that the system tA˚tg : g P G, t P T u is complete or a (continuous) frame for H?

Because of this equivalence, we can investigate Problem 2 instead of Problem 1. For the nota-

tional simplicity, we drop the * and study the system of the form tAtg : g P G, t P T u in Problem

2.

1.3 Relation to Other Fields

Dynamical sampling, as a new sampling theory, has relations with other areas of mathematics.

For instance, it has similarities with wavelet theory [18, 29, 36, 38]. In wavelet theory, a high-pass

operator H and a low-pass operator L are applied to the function f . The goal is to design operators

H and L so that the reconstruction of f from the combined samples of Hf and Lf is possible.

Similarly, in dynamical sampling the main purpose is to reproduce f via the samples M collected

from different time points. However, in dynamical sampling there is only one operator A, which

acts on the function f iteratively. There is no specific structural restrictions on A.
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Dynamical sampling has close relation with inverse problems (see [47] and the references

therein). An inverse problem is the process of finding the factors that result in a set of observa-

tions. The main goal of dynamical sampling is thus the inverse problem of finding the factor f from

the knowledge of the driving operatorA and the set M “ txAtf, gy : t P T, g P Gu of observations.

If the full information of A is given, then the inverse problem is linear. Otherwise, the problem

is non-linear and in this case we also want to recover the operator A. In other words, we ask the

following question.

Question 1. What are the conditions on A, T , and G such that A and f can be recovered from the

observed data M?

In addition, methods to solve dynamical sampling problems have close relation with spectral

theory, operator algebras, numerical linear algebra, frame theory, and complex analysis.

1.4 Overview and Organization

In the existing studies of dynamical sampling, only the case for discrete time sets T has been

considered. However, time is continuous in the physical world, and thus it is natural to consider the

dynamical sampling problem for continuous time intervals T . This work is presented in Chapter 2.

In this work, we consider systems of the form tAtg : g P G, t P r0, Lsu Ă H, whereA P BpHq. The

goal is to study the frame property of such systems. To this end, we derive some other properties

in the intermediate steps. In particular, we study the completeness and Besselness of these systems.

These results are a joint work with Akram Aldroubi and Armenak Petrosyan and it is documented in

the preprint entitled “Frames induced by the action of continuous powers of an operator”, see [11].

In addition, noises are ubiquitous in real world and sampling applications which necessitates

an investigation of the impacts of noise on dynamic sampling. The related results are reported in

Chapter 3. The work is joint with Akram Aldroubi, Ilya Krishtal, Akos Ledeczi, Roy R. Lederman,

and Peter Volgyesi and appears in [9, 10].
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CHAPTER 2

Frames Induced by the Action of Continuous Powers of an Operator

2.1 Problem Formulation

In this chapter, we consider dynamical sampling with the time set belonging to a bounded in-

terval. Specifically, we investigate systems of the form tAtg : g P G, t P r0, Lsu, where A is a

bounded linear normal operator in a separable Hilberst space H, G Ă H is a countable set, and L is

a positive real number. The main goal is to investigate the following problems.

Problem 3. What are the conditions onA, G, andL that ensure that system tAtg : g P G, t P r0, Lsu

is complete, Bessel, or a continuous frame in H?

The discretization of continuous frames [31, 32] is a central question. For systems of the form

tAtg : g P G, t P r0, Lsu, we ask

Problem 4. Suppose tAtg : g P G, t P r0, Lsu is a continuous frame. Is there a partition 0 “ t1 ă

t2 ă . . . ă tn ă L of r0, Ls such that the system tAtig : g P G, 1 ď i ď n and i P Nu is a discrete

frame (see inequality (2.1))?

2.2 Recent Results on Dynamical Sampling and Frames

Existing studies on various aspect of the dynamical sampling problem and related frame theory

grew out of the work in [1, 5, 6, 7, 42, 49], see, for example, [2, 21, 22, 24, 40, 45, 46, 48, 56, 57]

and the references therein. However, except for a few, they all focus on uniform discrete-time sets

T Ă t0, 1, 2, . . .u, e.g., T “ t1, . . . , Nu or T “ N (see e.g., [36]).

Even though the general dynamical sampling problem for discrete-time sets in finite dimen-

sions (hence problems of systems and frames induced by iterations tAng : g P G, n P T u) have

been mostly resolved in [6], many problems and conjectures remain open for the infinite dimen-

sional case. This state of affairs is not surprising because some of these problems take root in the

deep theory of functional analysis and operator theory such as the Kadison Singer Theorem [44],
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some open generalizations of the Müntz-Szász Theorem [51], and the famous invariant subspace

conjecture.

When T “ N and A P BpHq, it is not difficult to show that

Theorem 2.2.1 ([13]). If, for an operator A P BpHq, there exists a countable set of vectors G in H

such that tAngugPG, ně0 is a frame in H, then for every f P H, pA˚qnf Ñ 0 as nÑ8.

Thus, in particular it is not possible to construct frames using non-negative iterations when A is

a unitary operator. For example, the right-shift operator S on H “ `2pNq generates an orthonormal

basis for `2pNq by iterations over G “ tp1, 0, . . . , qu. Clearly, pS˚qnf Ñ 0 as nÑ8 for this case.

However, if we change the space to H “ `2pZq, the right-shift operator S becomes unitary, and

there exists no subset G of `2pZq such that tSngugPG, ně0 is a frame for `2pZq.

On the other hand, for normal operators, it is possible to find frames of the form tAngugPG, ně0;

however, no such a frame can be a basis [5].

Frames for H can be generated by the iterative action on a single vector g, i.e., there exist normal

operators and associated cyclic vectors such that tAngu ně0 is a frame for H [6]. Specifically,

Theorem 2.2.2 ([5]). LetA be a bounded normal operator on an infinite dimensional Hilbert space

H. Then, tAnguně0 is a frame for H if and only if the following five conditions are satisfied:

(i) A “
ř

j λjPj , where Pj are rank one orthogonal projections; (ii) |λk| ă 1 for all k; (iii)

|λk| Ñ 1; (iv) tλku satisfies Carleson’s condition infn
ś

k‰n
|λn´λk|

|1´λ̄nλk|
ě δ, for some δ ą 0; and

(v) 0 ă c ď
}Pjg}?
1´|λk|2

ď C ă 8, for some constants c, C.

It turns out that if A is normal in an infinite dimensional Hilbert space H, and tAngugPG, ně0

is a frame for some G Ă H with |G| ă 8, then A is necessarily of the form described in Theorem

2.2.2:

Theorem 2.2.3 ([13]). Let A be a bounded normal operator in an infinite dimensional Hilbert

space H. If the system of vectors tAngugPG, ně0 is a frame for some G Ă H with

|G| ă 8, then A “
ř

j λjPj where Pj are projections such that rank pPjq ď |G|

pi.e., the global multiplicity of A is less than or equal to |G|q . In addition, (ii) and (iii) of Theorem

2.2.2 are satisfied.

5



The necessary and sufficient conditions generalizing Theorem 2.2.2 for the case 1 ă |G| ă 8

have been derived in [21].

Viewing Theorem 2.2.2 from a different perspective, Christensen and Hasannasab ask whether a

frame thnunPI has a representation of the form hn “ Anh0 for some operator A when I “ NYt0u

or I “ Z. This question is partially answered in [25] and gives rise to many new open problems and

conjectures [24].

The set of self-adjoint operators is an important class of normal operators because it is often

encountered in applications. For this class, one can rule out certain types of normalized frames.

Theorem 2.2.4 ([6]). If A is a self-adjoint operator on H, then the system
!

Ang
‖Ang‖

)

gPG, ně0
is not

a frame for H.

However, for normal operators, the following conjecture remains open:

Conjecture 2.2.5. The statement of Theorem 2.2.4 holds for normal operators.

Conjecture 2.2.5 does not hold if the operator is not normal. For example, the shift-operator S

on `2pNq defined by Spx1, x2, . . . q “ p0, x1, x2, . . . q, is not normal, and tSne1u is an orthonormal

basis for `2pNq, where e1 “ p1, 0, . . . q.

2.3 Notation and preliminaries

2.3.1 Frames

In a foundational paper, Duffin and Schaeffer introduced the theory of frames in the context of

non-harmonic Fourier series [30]. Specifically, a frame tφnunPZ in a separable Hilbert space H is a

sequence of vectors satisfying

c }f}2 ď
ÿ

nPZ
|xf, φny|

2
ď C}f}2, for all f P H, (2.1)

for some positive constants c, C ą 0. Later, the notion in (2.1) is generalized to continuous frames

[14, 15, 31, 33], where the definition is stated below:

Definition 2.3.1. Let H be a complex Hilbert space and let pΩ, µq be a measure space with positive

measure µ. A mapping F : Ω Ñ H is called a frame with respect to pΩ, µq, if

6



1. F is weakly-measurable, i.e., ω Ñ xf, F pωqy is a measurable function on Ω for all f P H;

2. there exist constants c and C ą 0 such that

c}f}2 ď

ż

Ω
|xf, F pωqy|2dµpωq ď C}f}2, for all f P H. (2.2)

Here the constants c and C are called continuous frame (lower and upper) bounds. In addition, F

is called a tight continuous frame if c “ C. The mapping F is called Bessel if the second inequality

in (2.2) holds. In this case, C is called a Bessel constant.

The frame operator S “ SF on H associated with F is defined in the weak sense by

SF f “

ż

Ω
xf, F pωqyF pωqdµpωq.

According to (2.2), SF is well defined, invertible with bounded inverse (see [31]). Thus every f P H

has the representations

f “ S´1
F SF f “

ż

Ω
xf, F pωqyS´1

F F pωqdµpωq,

f “ SFS
´1
F f “

ż

Ω
xf, S´1

F F pωqyF pωqdµpωq.

If µ is the counting measure and Ω “ N, then one gets back the Duffin-Schaffer frame in (2.1).

In the sequel, Ω “ G ˆ r0, Ls, and µ is the product of the counting measure on G and the

Lebesgue measure on r0, Ls. In this case, F is called a semi-continuous frame and (2.2) becomes

c}f}2 ď
ÿ

gPG

L
ż

0

|xf,Atgy|2dt ď C}f}2, for all f P H. (2.3)

2.3.2 Normal operators

Let BpHq denote the space of bounded linear operators on a complex separable Hilbert space

H. In the sequel, all the operators are assumed to be normal. Normal operators have the following

invertibility property (see [52, Theorem 12.12]).
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Theorem 2.3.2. If A P BpHq, then A is invertible pi.e., A has bounded inverseq if and only if there

exists c ą 0 such that }Af} ě c}f} for all f P H.

For completeness, the spectral theorem with multiplicity is stated below, and the following

notation is used in its statement.

For a non-negative regular Borel measure µ on C, Nµ will denote the multiplication operator

acting on L2pµq, i.e., for a µ-measurable function f : CÑ C such that
ş

C |fpzq|
2dµpzq ă 8,

Nµfpzq “ zfpzq.

We will use the notation rµs “ rνs to denote two mutually absolutely continuous measures µ

and ν.

The operator N pkqµ will denote the direct sum of k copies of Nµ, i.e.,

pNµq
pkq “ ‘ki“1Nµ.

Similarly, the space pL2pµqqpkq will denote the direct sum of k copies of L2pµq.

Theorem 2.3.3 (Spectral theorem with multiplicity). For any normal operator A on H there are

mutually singular non-negative Borel measures µj , 1 ď j ď 8, such that A is equivalent to the

operator

N p8qµ8 ‘Nµ1 ‘N
p2q
µ2 ‘ . . . ,

i.e., there exists a unitary transformation

U : HÑ pL2pµ8qq
p8q ‘ L2pµ1q ‘ pL

2pµ2qq
p2q ‘ . . .

such that

UAU´1 “ N p8qµ8 ‘Nµ1 ‘N
p2q
µ2 ‘ . . . . (2.4)

Moreover, if Ã is another normal operator with corresponding measures ν8, ν1, ν2, . . ., then Ã is

unitary equivalent to A if and only if rνjs “ rµjs for j “ 1, . . . ,8.

A proof of the theorem can be found in [28, Ch. IX, Theorem 10.16] and [27, Theorem 9.14].
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Since the measures µj are mutually singular, there are mutually disjoint Borel sets tEju8j“1 Y

tE8u such that µj is supported on Ej for every 1 ď j ď 8. The scalar-valued spectral measure µ

associated with the normal operator A is defined as

µ “
ÿ

1ďjď8

µj . (2.5)

The Borel function mA : CÑ N˚ Y t0u given by

mApzq “ 8 ¨ χE8pzq `
8
ÿ

j“1

jχEj pzq (2.6)

is called the multiplicity function of the operator A, where N is the set of natural numbers start-

ing with 1, N˚ “ N Y t8u, χEpzq is the characteristic function on set E defined by χEpzq “
$

’

’

&

’

’

%

1, z P E

0, otherwise
and8 ¨ 0 “ 0.

From Theorem 2.3.3, every normal operator is uniquely determined, up to a unitary equivalence,

by the pair prµs,mAq.

For j P N, let Ωj be the set t1, ..., ju and let Ω8 be the set N. Then `2pΩjq – Cj , for j P N,

and `2pΩ8q “ `2pNq. For j “ 0, we use `2pΩ0q to represent the trivial space t0u.

Let W be the Hilbert space

W “ pL2pµ8qq
p8q ‘ L2pµ1q ‘ pL

2pµ2qq
p2q ‘ ¨ ¨ ¨

associated with the operator A and let U : HÑW be the unitary operator given by Theorem 2.3.3.

If g P H, we denote by rg the image of g under U . Since rg PW , one has rg “ prgjqjPN˚ , where rgj is

the restriction of rg to pL2pµjqq
pjq. Thus, for any j P N˚, rgj is a function from C to `2pΩjq and

ÿ

jPN˚

ż

C
}rgjpzq}

2
`2pΩjq

dµjpzq “ }g}
2 ă 8.

Let Pj be the projection defined for every rg PW by Pjrg “ rf , where rfj “ rgj and rfk “ 0 for k ‰ j.

Let E be the spectral measure for the normal operator A. Then, for every µ-measurable set
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G Ă C and vectors f, g in H, one has the following formula

xEpGqf, gyH “

ż

G

«

ÿ

1ďjď8

χEj pzqx
rfjpzq, rgjpzqy`2pΩjq

ff

dµpzq,

which relates the spectral measure of A to the scalar-valued spectral measure of A.

Definition 2.3.4. Given a normal operator A, At is defined as follows:

At : HÑ H

by

xAtf1, f2y “

ż

zPσpAq
ztxf̃1pzq, f̃2pzqydµpzq, for all f1, f2 P H,

where zt “ expptplnp|z|q ` i argpzqqq and argpzq P r´π, πq.

Using the fact that exppi argpzq ` i argpz̄qq “ 1, it follows that pA˚qt “ pAtq˚ for t P R.

Section 2.5 will exploit the reductive operators which were introduced by P.Halmos and

J.Wermer [37, 55]. For clarity, the definition is given as follows.

Definition 2.3.5. A closed subspace V Ă H is called reducing for the operator A if both V and its

orthogonal complement V K are invariant subspaces of A.

Definition 2.3.6. An operator A is called reductive if every invariant subspace of A is reducing.

2.3.3 Holomorphic Function

The techniques of complex analysis, e.g., the properties of holomorphic functions (see [26, 51]

and the references therein), are used extensively in the present work, including Montel’s Theorem

as stated below.

Definition 2.3.7 (Normal family). A family F of holomorphic functions in a region X of the com-

plex plane with values in C is called normal if every sequence in F contains a subsequence which

converges uniformly to a holomorphic function on compact subsets of X.

Theorem 2.3.8 (Montel’s Theorem). A uniformly bounded family of holomorphic functions defined

on an open subset of the complex numbers is normal.
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2.4 Contributions and Organization

The present work concentrates on systems of the form tAtg : g P G, t P r0, Lsu Ă H, where

A P BpHq. The goal is to study the frame property of such systems. To this end, we need to

derive some other properties in the intermediate steps. In particular, we study the completeness and

Besselness of these systems.

For the completeness of tAtg : g P G, t P r0, Lsu, necessary and sufficient conditions are de-

rived in Section 2.5. In light of the results in [5], the form of the necessary and sufficient conditions

are not surprising. However, the proofs and reductions to the known cases are appealing due to the

use of certain techniques of complex analysis, and they are useful for the analysis of frames in the

subsequent sections.

The Bessel property of the system tAtg : g P G, t P r0, Lsu is investigated in Section 2.6.

Specifically, if H is a finite dimensional space (e.g., Cd) and A is a normal operator in H, then the

system tAtgugPG,tPr0,Ls being Bessel is equivalent to the Besselness of G in the space RangepAq.

On the other hand, if H is an infinite dimensional separable Hilbert space and A is a bounded

invertible normal operator, then the only condition ensuring that tAtgugPG,tPr0,Ls is Bessel is that G

itself is a Bessel system in H. In addition, an example is described to explain that the non-singularity

of A is necessary for the equivalence between the Besselness of tAtgugPG,tPr0,Ls and that of G.

Section 5 is devoted to the relations between a semi-continuous frame tAtgugPG,tPr0,Ls generated

by the action of an operator A P BpHq and the discrete systems generated by its time discretization.

Specifically, we show that under some mild conditions, tAtgugPG,tPr0,Ls is a semi-continuous frame

if and only if there exists T “ tti : i “ Iu Ă r0, Lq with |I| ă 8 such that tAtgugPG,tPT is a

frame system in H. Additionally, Theorem 2.7.5 shows that under proper conditions, the property

that tAtgugPG,tPr0,Ls is a semi-continuous frame is independent of L.

2.5 Completeness

In this section, we characterize the completeness of the system tAtgugPG,tPr0,Ls, where A is a

(reductive) normal operator on a separable Hilbert space H, G is a set of vectors in H, and L is a

finite positive number.
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Theorem 2.5.1. Let A P BpHq be a normal operator, and let G be a countable set of vectors in H

such that tAtgugPG,tPr0,Ls is complete in H. Let µ8, µ1, µ2, . . . be the measures in the representation

(2.4) of the operator A. Then for every 1 ď j ď 8 and µj-a.e. z, the system of vectors tg̃jpzqugPG

is complete in `2pΩjq.

If A is also reductive, then tAtgugPG,tPr0,Ls being complete in H is equivalent to tg̃jpzqugPG

being complete in `2pΩjq µj-a.e. z for every 1 ď j ď 8.

Particularly, if the evolution operator belongs to the following class A of bounded self-adjoint

operators:

A “ tA P Bp`2pNqq : A “ A˚,

and there exists a basis of `2pNq of eigenvectors of Au, (2.7)

then, for A P A, there exists a unitary operator U such that A “ U˚DU with D “
ř

j λjPj , where

λj are the spectrum of A and Pj is the orthogonal projection to the eigenspace Ej of D associated

with the eigenvalue λj . Since the operators in A are also normal and reductive, the following

corollary holds.

Corollary 2.5.2. Let A P A with A “ U˚DU , and let G be a countable set of vectors in `2pNq.

Then, tAtgugPG,tPr0,Ls is complete in `2pNq if and only if tPjpUgqugPG is complete in Ej .

The proof of Theorem 2.5.1 below, also shows that, for normal reductive operators, complete-

ness in H is equivalent to completeness of the system tN t
µj g̃jugPG,tPr0,Ls in pL2pµjqq

pjq for every

1 ď j ď 8. In other words, the completeness of tAtgugPG,tPr0,Ls is equivalent to the completeness

of its projections onto the mutually orthogonal subspaces U˚PjUH of H. The following Theorem

2.5.3 summarizes the discussion above.

Theorem 2.5.3. Let A P BpHq be a normal reductive operator on the Hilbert space H, and let G

be a countable system of vectors in H. Then, tAtgugPG,tPr0,Ls is complete in H if only if the system

tN t
µj g̃jugPG,tPr0,Ls is complete in pL2pµjqq

pjq for every j, 1 ď j ď 8.
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2.5.1 Proofs

We begin this section by stating and proving a lemma used to prove Theorem 2.5.1 as well as

other results in later sections.

LetA be a normal operator, L be a positive number, f P H, f̃ “ Uf “ pf̃jq, and g̃ “ Ug “ pg̃jq

(as in the notation section). Define F ptq by

F ptq “ xAtg, fy “

ż

C
ztxg̃pzq, f̃pzqydµpzq.

Then, the following lemma holds.

Lemma 2.5.4. F ptq is an analytic function of t in the domain Ω “ tt : <ptq ą L{2u, where <ptq

stands for the real part of t.

Proof. First, we aim to prove that F ptq is a continuous function in Ω. Consider t0 P Ω. For

|z| ďM, where M “ }A}, and for t P Ω with |t´ t0| ă L{4, one has

|ztxg̃pzq, f̃pzqy| “ |et lnpzq||xg̃pzq, f̃pzqy|

ď ep| lnpMq|`πq|t||xg̃pzq, f̃pzqy|

ď ep| lnpMq|`πqp|t0|`
L
4
q|xg̃pzq, f̃pzqy|.

Since the right hand side of the last inequality is an L2pµq function, we can use the dominated

convergence theorem for <ptq ą L{2 ą 0, and get that for t0 P Ω,

lim
tÑt0

F ptq “ lim
tÑt0

ż

C
ztxg̃pzq, f̃pzqydµpzq “

ż

C
lim
tÑt0

ztxg̃pzq, f̃pzqydµpzq “ F pt0q.

Therefore, F ptq is a continuous function in Ω.

Next we show that for every closed piecewise C1 curve γ in Ω,

¿

γ

F ptqdt “ 0.
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For fixed γ, there exists finite M1 ą 0 such that L{2 ă |t| ăM1. Therefore, for |z| ďM ,

|ztxg̃pzq, f̃pzqy| ď eM̃ |xg̃pzq, f̃pzqy|,

with M̃ “M1p| lnM | ` πq. Then

¿

γ

ż

C
|zt||xg̃pzq, f̃pzqy|dµpzqdt ď eM̃}f}2}g}2 ¨m1pγq ă 8,

where m1pγq stands for the length of γ.

By Fubini’s theorem,

¿

γ

ż

C
ztxg̃pzq, f̃pzqydµpzqdt “

ż

C

¿

γ

ztxg̃pzq, f̃pzqydtdµpzq

“

ż

C
xg̃pzq, f̃pzqy

¿

γ

ztdtdµpzq “ 0.

where the last equality follows from the fact that for z P C, hzptq “ zt is an analytic function of t

in Ω and hence
ű

γ z
tdt “ 0. Then, by Morera’s Theorem [51, pp 208], F ptq is analytic on Ω.

Proof of Theorem 2.5.1. Since tAtgugPG,tPr0,Ls is complete in H,

UtAtg : g P G, t P r0, Lsu “ tpN t
µj g̃jqjPN˚ : g P G, t P r0, Lsu

is complete in W “ UH. Hence, for every 1 ď j ď 8, the system rSj “ tN t
µj g̃jugPG,tPr0,Ls is

complete in pL2pµjqq
pjq.

To finish the proof of the first statement of Theorem 2.5.1 we use the following lemma, which

is an adaptation of [39, Lemma 1] ([5, Lemma 3.5]).

Lemma 2.5.5. Let S be a complete countable set of vectors in pL2pµjqq
pjq, then for µj-almost

every z, thpzq : h P Su is complete in `2pΩjq.

Since H is separable, there exists a countable set T “ ttiu
8
i“1 Ă r0, Ls with t1 “ 0 such

that spantAtgugPG,tPT “ spantAtgugPG,tPr0,Ls. Hence, the fact that rSj “ tN t
µj g̃jugPG,tPr0,Ls is

complete in pL2pµjqq
pjq (together with Lemma 2.5.5) implies that tztg̃jpzqugPG,tPT is complete in
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`2pΩjq for each j P N˚. Let f P H and F ptq “ xAtg, fy “ 0 for all g P G, t P r0, Ls. Since

F ptq “ 0 for all t P r0, Ls, and F is analytic for t P Ω “ tt : <ptq ą L{2u, it follows that

F ptq “ 0, for all t P Ω (see [51, Theorem 10.18]). Thus, F pnq “ 0 for all n P N, i.e., for all n P N,

ż

C
znxg̃pzq, f̃pzqydµpzq “

ż

C
zn

«

ÿ

1ďjď8

χEj pzqxg̃jpzq, f̃jpzqy`2pΩjq

ff

dµpzq “ 0. (2.8)

To finish the proof, we need the following proposition from [55].

Proposition 2.5.6. Let A be a normal operator on the Hilbert space H and let µj be the measures

in the representation (2.4) of A. Let µ be as in (2.5). Then, A is reductive if and only if, for any two

vectors f, g P H,
ż

C
zn

«

ÿ

1ďjď8

χEj pzqxg̃jpzq, f̃jpzqy`2pΩjq

ff

dµpzq “ 0

for every n ě 0 implies µj-a.e. xg̃jpzq, f̃jpzqy`2pΩjq
“ 0 for every j P N˚.

Since A is reductive, it follows from Proposition 2.5.6 that xg̃jpzq, f̃jpzqy`2pΩjq
“ 0 for

every j P N˚. Finally, since tg̃jpzqugPG is complete in `2pΩjq for µj-a.e. z, we get that

f̃jpzq “ 0, µj-a.e. z for every j P N˚. Thus, f̃ “ 0 µ-a.e. z, and hence f “ 0. Therefore,

tAtgugPG,tPr0,Ls is complete in H.

2.6 Bessel system

The goal of this section is to study the conditions for which the system tAtgugPG,tPr0,Ls is Bessel

in H. There are two main theorems that correspond to the finite dimensional case and the infinite

dimensional case, respectively. The proofs of the results are relegated to the last subsection. We

begin with the following proposition which is valid for both finite and infinite dimensional spaces.

Proposition 2.6.1. Let A P BpHq be normal, G Ă H be a countable set of vectors, and let L be a

positive finite number. If G is a Bessel system in H, then tAtgugPG,tPr0,Ls is a Bessel system in H.

The fact that G is a Bessel system in H implies that tAtgugPG,tPr0,Ls is Bessel in H is not too

surprising. However, the converse implication is not obvious. The next result characterizes the finite

dimensional case.
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Theorem 2.6.2 (Besselness in finite dimensional space). Let A be a normal operator on Cd and

L be a positive finite number. Let M “ RangepA˚q and PMG “ tPMgugPG , where PM is the

orthogonal projection on M . Then, tAtgugPG,tPr0,Ls is a Bessel system in Cd if and only if PMG is

a Bessel system in M .

Under the appropriate restrictions on the spectrum σpAq of A, one can obtain a result similar

to Theorem 2.6.2 for the infinite dimensional case. However, if 0 R σpAq, the main result for the

infinite dimensional Hilbert space is stated in the following theorem.

Theorem 2.6.3 (Besselness in infinite dimensions). Let A P BpHq be an invertible normal op-

erator, and let G be a countable system of vectors in H. Then, for any finite positive number L,

tAtgugPG,tPr0,Ls is a Bessel system in H if and only if G is a Bessel system in H.

The condition thatA is invertible is necessary in Theorem 2.6.3 as can be shown by the following

example.

Example 1. Let G “ tnenu8n“1 with tenu8n“1 being the standard basis of `2pNq, f P `2pNq with

fpnq “ 1{n, and let D be the diagonal infinite matrix with diagonal entries Dn,n “ e´n
2
. The

operator D is injective but not an invertible operator on `2pNq.

Note that
ÿ

gPG
|xf, gy|2 “ 8.

Hence, G is not a Bessel system in `2pNq. On the other hand,

ÿ

gPG

ż 1

0
|xf,Dtgy|dt “

8
ÿ

n“1

1´ e´2n2

2
|fn|

2 ď }f}2{2. (2.9)

Thus tDtgugPG,tPr0,1s is Bessel in `2pNq.

2.6.1 Proofs for Section 2.6

Proof of Proposition 2.6.1. For all f P H,

ÿ

gPG

L
ż

0

|xf,Atgy|2dt “
ÿ

gPG

L
ż

0

|xA˚tf, gy|2dt
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“

L
ż

0

ÿ

gPG
|xA˚tf, gy|2dt ď

L
ż

0

CG}A
˚tf}2dt

ď

L
ż

0

CG}A}
2t}f}2dt “

$

’

’

&

’

’

%

CG
}A}2L´1
ln }A}2

}f}2, }A} ‰ 1

CGL}f}
2, }A} “ 1,

where CG is a Bessel constant of the Bessel system G. Therefore, tAtgugPG,tPr0,Ls is Bessel in

H.

In order to prove Theorem 2.6.2, we need the following lemma:

Lemma 2.6.4. Let G “ tgjujPJ Ă Cd where J is a countable set. Then, G is a Bessel system if and

only if
ř

jPJ }gj}
2 ă 8.

Proof of Lemma 2.6.4. pùñqLet tuiudi“1 be an orthonormal basis in Cd. If tgjujPJ is a Bessel

system with Bessel constant C, then, for i “ 1, . . . , d

ÿ

jPJ

|xui, gjy|
2 ď C.

Since }gj}2 “
řd
i“1 |xui, gjy|

2 for j P J , one obtains

ÿ

jPJ

}gj}
2 “

ÿ

jPJ

d
ÿ

i“1

|xui, gjy|
2 ď Cd ă 8.

pðùq For any f P H, one has

ÿ

jPJ

|xf, gjy|
2 ď

ÿ

jPJ

}f}2}gj}
2 “ }f}2p

ÿ

jPJ

}gj}
2q.

Therefore, tgjujPJ is Bessel in Cd.

Proof of Theorem 2.6.2. pðùq Since A is a normal operator on H “ Cd, it is clear that A “

ř

iPI λiPi where PiPj “ 0 for i ‰ j, I “ ti : λi ‰ 0u, and p
ř

iPI PiqpCdq “ M , where

M “ RangepA˚q “ NullKpAq “ NullKpA˚q.
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For f P Cd, one has

ÿ

gPG

ż L

0
|xf,Atgy|2dt “

ÿ

gPG

ż L

0

ˇ

ˇxA˚tf, gy
ˇ

ˇ

2
dt “

ÿ

gPG

ż L

0

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPI

λi
t
xPif, Pigy

ˇ

ˇ

ˇ

ˇ

ˇ

2

dt

ď
ÿ

gPG

ż L

0
}A}2t

˜

ÿ

iPI

|xPif, Pigy|

¸2

dt

ď

ż L

0
}A}2t

ÿ

gPG

˜

ÿ

iPI

}Pif}
2

¸˜

ÿ

iPI

}Pig}
2

¸

dt

ď

ż L

0
}A}2t}PMf}

2
ÿ

gPG

}PMg}
2dt ď C1 ¨ CPMG ¨ }f}

2,

where C1 “

$

’

’

&

’

’

%

p}A}2L ´ 1q{ lnp}A}2q, }A} ‰ 1

L, }A} “ 1

and CPMG “
ř

gPG }PMg}
2.

In addition, one can use Lemma 2.6.4 to conclude that CPMG “
ř

gPG }PMg}
2 ă 8. There-

fore, tAtgugPG,tPr0,Ls is Bessel in Cd.

(ùñ) Since A is normal, A can be written as A “
ř

iPI λiPi, with rank pPiq “ 1 (in this rep-

resentation, we allow λi “ λj for i ‰ j) and I “ ti : λi ‰ 0u, PiPj “ 0 for i ‰ j, and

p
ř

iPI PiqpCdq “ M . Specifically, by setting f “ ui, where ui is a unit vector in the one dimen-

sional space PipCdq with i P I , one has

ÿ

gPG

ż L

0
|xui, A

tgy|2dt “
ÿ

gPG

ż L

0
|xui, λ

t
iPigy|

2dt

“
ÿ

gPG

ż L

0
|λi|2t}Pig}2dt

“

$

’

’

&

’

’

%

L
ř

gPG }Pig}
2, |λi| “ 1

|λi|
2L´1

2 ln |λi|

ř

gPG }Pig}
2, otherwise.

.

In addition, since by assumption tAtgugPG,tPr0,Ls is a Bessel system in Cd with Bessel constant C,

then
ř

gPG
şL
0 |xui, A

tgy|2dt ď C}ui}
2 “ C. Hence, for each i,

ÿ

gPG
}Pig}

2 ă 8.
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Therefore, summing over (the finitely many) i P I we obtain

ÿ

gPG
}PMg}

2 ă 8.

If f PM “ RangepA˚q, then

ÿ

gPG
|xf, gy|2 “

ÿ

gPG

∣∣∣∣∣ÿ
iPI

xPif, Pigy

∣∣∣∣∣
2

ď
ÿ

gPG

˜

ÿ

iPI

}Pif}
2

¸˜

ÿ

iPI

}Pig}
2

¸

“ }f}2
ÿ

gPG
}PMg}

2.

Thus, PMG is Bessel in M .

Before proving Theorem 2.6.3, we first state and prove the following lemmas.

Lemma 2.6.5. Let A P BpHq be an invertible operator in H, then a countable set G Ă H is a

Bessel system in H if and only if G̃ “ AG is a Bessel system in H.

Proof of Lemma 2.6.5. pùñq For all f P H,

ÿ

gPG
|xf,Agy|2 “

ÿ

gPG
|xA˚f, gy|2

ď C}A˚f}22 ď C}A}22}f}
2
2,

where C is a Bessel constant of the Bessel system G. Therefore, AG is a Bessel system in H.

pðùq For all f P H,

ÿ

gPG
|xf, gy|2 “

ÿ

gPG

ˇ

ˇxpA˚q´1f,Agy
ˇ

ˇ

2

ď C1}pA
˚q´1f}22 ď C1}A

´1}22}f}
2
2,

where C1 is a Bessel constant of the Bessel system AG. Therefore, G is a Bessel system in H.

Proof of Theorem 2.6.3. pðùq See Proposition 2.6.1.

pùñq Since A is a normal operator in H, by the Spectral Theorem, there exists a unitary operator
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U such that

UAU´1 “ N p8qµ8 ‘N p1qµ1 ‘N
p2q
µ2 ‘ . . .

and µ is defined as by (2.5). Therefore, the task of proving that G is a Bessel system in H is

equivalent to the task of showing that UG is a Bessel system in W “ UH. Let T : W ÑW be the

operator defined by:

T f̃pzq :“

ż `

0
ztdtf̃pzq, for all f̃ PW and z P σpAq with ` “ mintL, 1{2u. (2.10)

The condition that ` “ mintL, 1{2u ensures that T is an invertible operator as will be proved later.

By Lemma 2.6.5, UG is a Bessel system in W if and only if T pUGq is a Bessel system in W as

long as T is a bounded invertible normal operator. The fact that T is a bounded invertible operator

is stated in the following lemma whose proof is postponed till after the completion of the proof of

this theorem.

Lemma 2.6.6. T is a bounded invertible operator in W .

So, to finish the proof of Theorem 2.6.3, it only remains to show that T pUGq is a Bessel system

in W which we do next.

Since tAtgugPG,tPr0,Ls is a Bessel system in H, and 0 ă ` ď L, one has that, for all f P H,

ÿ

gPG

ż `

0
|xf,Atgy|2dt ď C}f}2.

Thus, using Hölder’s inequality, we get

ÿ

gPG

ˇ

ˇ

ˇ

ˇ

ż `

0
xf,Atgydt

ˇ

ˇ

ˇ

ˇ

2

ď ` ¨
ÿ

gPG

ż `

0
|xf,Atgy|2dt ď `C}f}2. (2.11)

In addition,

ÿ

gPG

ˇ

ˇ

ˇ

ˇ

ż `

0
xf,Atgydt

ˇ

ˇ

ˇ

ˇ

2

“
ÿ

gPG

ˇ

ˇ

ˇ

ˇ

ż `

0

ż

C
ztxf̃pzq, g̃pzqydµpzqdt

ˇ

ˇ

ˇ

ˇ

2

“
ÿ

gPG

ˇ

ˇ

ˇ

ˇ

ż

C

ż `

0
ztdtxf̃pzq, g̃pzqydµpzq

ˇ

ˇ

ˇ

ˇ

2
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“
ÿ

gPG
|xf̃ , T g̃y|2. (2.12)

Together, (2.11) and (2.12) induce the following inequality:

ÿ

gPG
|xf̃ , T g̃y|2 ď `C}f}2 “ `C}f̃}2, for all f P H.

This shows that T pUGq is a Bessel system in W .

In conclusion, by Lemma 2.6.6, T is bounded invertible. In addition, T is normal. Hence, UG

is a Bessel system in W by Lemma 2.6.5. Consequently, G is a Bessel in H.

Proof of Lemma 2.6.6.

}T f̃}2 “ xT f̃ , T f̃y

“

B
ż `

0
ztdtf̃pzq,

ż `

0
zτdτ f̃pzq

F

L2pσpAqq

“

ż

C

ż `

0

ż `

0
ztzτ xf̃pzq, f̃pzqydtdτdµpzq

“

ż

C
|φpzq|2}f̃pzq}2dµpzq,

where

φpzq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

`, z “ 1

0, z “ 0

z`´1
lnpzq , otherwise

. (2.13)

Letm “ inft|φpzq| : z P σpAqu andM “ supt|φpzq| : z P σpAqu. As shown below in claim 2.6.7,

m ą 0 and M ă 8. Thus

}T f̃}2 ď

ż

C
M2}f̃pzq}2dµpzq “M2}f̃}2,

}T f̃}2 ě

ż

C
m2}f̃pzq}2dµpzq “ m2}f̃}2, for all f̃ PW.

Since T is normal, it follows that T is a bounded invertible operator (see [52, Theorem 12.12]). We
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finish by proving the following fact that was used in the proof of this lemma.

Claim 2.6.7. Let φ be the function defined in (2.13). Then M “ supt|φpzq| : z P σpAqu ă 8, and

m “ inft|φpzq| : z P σpAqu ą 0.

Proof of Claim 2.6.7. Since A is a bounded invertible normal operator, it follows that }A´1}´1 ď

|z| ď }A} for z P σpAq. Let S “ tz P C : }A´1}´1 ď |z| ď }A}u. Since σpAq Ă S,

M ď supt|φpzq| : z P Su and m ě t|φpzq| : z P Su. Therefore, in order to prove Claim 2.6.7, it is

sufficient to show that supt|φpzq| : z P Su ă 8, inft|φpzq| : z P Su ą 0.

To prove that supt|φpzq| : z P Su ă 8, it is noteworthy that

|φpzq| “

ˇ

ˇ

ˇ

ˇ

ż `

0
ztdt

ˇ

ˇ

ˇ

ˇ

ď

ż `

0
|zt|dt “

ż `

0
|z|tdt “

$

’

’

&

’

’

%

`, z P S and |z| “ 1

|z|`´1
ln |z| , z P S and |z| ‰ 1.

Let

ψpxq “

$

’

’

&

’

’

%

`, x “ 1

x`´1
lnx , x P R

`zt1u,

and note that (since limxÑ1
x`´1
lnx “ ` “ ψp1q) ψ is continuous at x “ 1. In addition, x

`´1
lnx is a

continuous function on R`zt1u. Hence, ψ is continuous on R`. Particularly, ψ is continuous on

the closed interval r}A´1}´1, }A}s. Therefore,

supt|φpzq| : z P Su “ max
xPr}A´1}´1,}A}s

ψpxq ă 8.

Finally, it remains to show that inft|φpzq| : z P Su ą 0. First, we divide S into two sets with

S1 “ tz P S : argpzq P r´π{2, π{2su and S2 “ SzS1. Since |φpzq| is a continuous function on S1

and S1 is compact, there exists z0 P S1 such that |φpz0q| “ inft|φpzq| : z P S1u. In addition, |φpzq|

has no root on S1. Hence, inft|φpzq| : z P S1u ą 0.

For z P S2, π{2 ď | argpzq| ď π. Therefore,

|z` ´ 1| “ ||z|`ei` argpzq ´ 1|

ě |z|`| sinp` argpzqq|
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ě mint}A´1}´` sinp`πq, }A´1}´` sinp`π{2qu ą 0,

where the last inequality follows from the fact that 0 ă ` ă 1 (in particular, we chose ` “

mintL, 1{2u as in Definition (2.10) for T ). In addition, for z P S2, one has

| lnpzq| ď | lnp|z|q| ` | argpzq| ď maxt| lnp}A´1}´1q|, | lnp}A}q|u ` π ă 8.

Hence, inft|φpzq| : z P S2u ą 0. Combining the estimates on S1 and S2, we conclude that

inft|φpzq| : z P Su ą 0.

2.7 Frames generated by the action of bounded normal operators.

In this section, we study some properties of a semi-continuous frame of the form

tAtgugPG,tPr0,Ls generated by the continuous action of a normal operator A P BpHq and relate them

to the properties of the discrete systems generated by its time discretization. We also show that,

under the appropriate conditions, if tAtgugPG,tPr0,L1s is a semi-continuous frame for some positive

number L1, then tAtgugPG,tPr0,Ls a semi-continuous frame for all 0 ă L ă 8. Before presenting

the two main theorems, we first provide some necessary conditions for obtaining semi-continuous

frames, and treat some special cases. The proofs are postponed to Subsection 2.7.1.

The following proposition (whose proof is obtained by direct calculation) provides a necessary

condition to ensure the lower bound of the semi-continuous frame generated by A P BpHq.

Proposition 2.7.1. Let A P BpHq be an invertible normal operator, L be a finite positive number,

and G Ă H be a countable set of vectors. If, for all f P H,

ÿ

gPG
|xf, gy|2 ě c}f}2, (2.14)

where c is a positive constant, then there exists a finite positive constant C such that

ÿ

gPG

ż L

0
|xf,Atgy|2dt ě C}f}2, for all f P H. (2.15)

The converse of Proposition 2.7.1 is false, even in finite dimensional space as shown in Example
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2. For the special case that A is equivalent to a diagonal operator on `2pNq we get:

Lemma 2.7.2. Let A P A, where A is defined in (2.7), and let G Ă `2pNq be a countable set of

vectors. If tAtgugPG,tPr0,Ls satisfies (2.15) in `2pNq, then

ÿ

gPG
}g}2 “ 8.

From Lemma 2.7.2, it follows that the cardinality of G must be infinite as stated in the following

corollary.

Corollary 2.7.3. If the assumptions of Lemma 2.7.2 hold then |G| “ `8. In particular, |G| “ `8

if tAtgugPG,tPr0,Ls is a frame for `2pNq.

The discretization of continuous frames is a central question and has been studied extensively

(see [31, 32] and the references therein). In particular, Freeman and Speegle have found necessary

and sufficient conditions for the discretization of continuous frames [32]. In our situation, the

systems tAtgugPG,tPr0,Ls can be viewed as continuous frames and the theory in [32] may be applied

to conclude that the system can be discretized. However, because of the particular structure of the

systems tAtgugPG,tPr0,Ls, we can say more and obtain finer results for their discretization, as stated

in the following theorem.

Theorem 2.7.4. Let A P BpHq be a normal operator on the Hilbert space H and let G be a Bessel

system of vectors in H. If tAtgugPG,tPr0,Ls is a semi-continuous frame for H, then there exists δ ą 0

such that for any finite set T “ tti : i “ 1, . . . , nu with 0 “ t1 ă t2 ă . . . ă tn ă tn`1 “ L and

|ti`1 ´ ti| ă δ, the system tAtgugPG,tPT is a frame for H.

If, in addition, A is invertible, then tAtgugPG,tPr0,Ls is a semi-continuous frame for H if and

only if there exists a finite set T “ tti : i “ 1, . . . , nu and 0 “ t1 ă t2 ă . . . ă tn ă L, such that

tAtgugPG,tPT is a frame for H.

Example 3 shows that the condition that A is invertible is necessary for the second statement of

Theorem 2.7.4.

The next theorem shows that, under some appropriate conditions, if tAtgugPG,tPr0,L1s is a semi-

continuous frame for some finite positive number L1, then tAtgugPG,tPr0,Ls is a semi-continuous

frame for any finite positive number L.
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Theorem 2.7.5. Let A P BpHq be an invertible self-adjoint operator and G be a countable set

in H. Then, tAtgugPG,tPr0,1s is a semi-continuous frame in H if and only if tAtgugPG,tPr0,Ls is a

semi-continuous frame in H for all finite positive L.

We postulate the following conjecture:

Conjecture 2.7.6. Theorem 2.7.5 remains true if A is a normal reductive operator.

This first example shows that the converse of Proposition 2.7.1 is false.

Example 2. Let A “

»

—

–

ε 0

0 1

fi

ffi

fl

with 0 ă ε ă 1 and g “

»

—

–

1

1

fi

ffi

fl

.

Note that for L ą 0,

G1 “

$

’

&

’

%

g “

»

—

–

1

1

fi

ffi

fl

, AL{2g “

»

—

–

εL{2

1

fi

ffi

fl

,

/

.

/

-

is complete in R2. In addition, A is a bounded invertible normal operator in R2. Therefore, G1 is a

frame in R2. By Theorem 2.7.4, tAtgutPr0,Ls is a semi-continuous frame in R2. However, the lower

bound of (2.14) does not hold for G “ tgu. For example, let f “

»

—

–

´1

1

fi

ffi

fl

, then xf, gy “ 0.

This next example shows that the condition that A is invertible is required for the second state-

ment of Theorem 2.7.4.

Example 3. Let G “ teju8j“1 be the standard basis of `2pNq. Because G is an orthonormal basis,

one has G Ă tAtgugPG,tPT , for any bounded operator A, and for any time steps T “ tti : i “

1, . . . , nu with 0 “ t1 ă t2 ă . . . ă tn ă L. Thus, G Ă tAtgugPG,tPT is a frame for `2pNq.

However, there exists a non-trivial bounded operator such that tAtejujPN,tPr0,Ls is not a semi-

continuous frame. For example, if D is a diagonal infinite matrix with diagonal entries Dj,j “
1
j ,

then
8
ÿ

j“1

ż L

0
|xek, D

tejy|
2dt “

1{k2L ´ 1

lnp1{k2q
. (2.16)

Since lim
kÑ8

1{k2L´1
lnp1{k2q

“ 0, it follows that tDtejujPN,tPr0,Ls is not a semi-continuous frame for `2pNq.

Additionally, a number of examples are available to illustrate that tAtgugPG,tPr0,Ls is a semi-

continuous frame for H does not require G to be a frame or even complete in H. In fact, this is
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precisely why space-time sampling trade-off is feasible. The next two examples are toy examples

to show this fact.

Example 4 (G is not a frame for H). Let tenu8n“1 be the standard basis of `2pNq and

G “ tgn “ en ` en`1 : n P Nu, and let D be a diagonal operator with Dn,n “

$

’

’

&

’

’

%

1, n is odd

3, n is even
.

It can be shown that G is complete but that G is neither a basis nor a frame for `2pNq [23].

However, for all f P `2pNq, after a somewhat tedious computation, one gets

1

2
}f}2 ď

8
ÿ

n“1

ż 1

0
|xf,Dtgny|

2dt ď
16

lnp3q
}f}2,

so that tDtgnunPN,tPr0,1s is a semi-continuous frame for `2pNq.

Example 5 (G is not complete in H). Let tenu8n“1 be the standard basis of `2pNq and G “ tgn “

en`2en`1 : n P Nu. The set G is not complete in `2pNq. For example f “ pfkq with fk “ p´1qk 1
2k

is orthogonal to span G. Thus, G is not a frame in `2pNq. Let D be the diagonal operator with

Dn,n “

$

’

’

&

’

’

%

9, n “ 1

1´ 1
n , n ě 2

.

A lengthy computation yields

1

4
}f}2 ď

8
ÿ

n“1

|xf, gny|
2 `

8
ÿ

n“1

|xf,Dgny|
2 ď 164}f}2.

This implies that tDtgugPG,tPt0,1u is a frame in `2pNq. In addition, sinceD is a self-adjoint invertible

operator, Theorem 2.7.4 implies that tDtgnunPN,tPr0,2s is a semi-continuous frame of `2pNq.

2.7.1 Proofs of Section 2.7

Proof of Lemma 2.7.2. One can always assume that A “
8
ř

i“1
λiPi with rank pPiq “ 1, PiPj “ 0

and
ř

i Pi “ Id`2pNq as long as λi “ λj for i ‰ j in the representation of A is allowed. Let ei be a
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vector such that }ei} “ 1 and spanteiu “ PipHq. Then

ÿ

gPG

ż L

0
|xei, A

tgy|22dt “
ÿ

gPG

ż L

0
|λi|

2t|xei, Pipgqy|
2dt.

Since tAtgugPG,tPr0,Ls satisfies (2.15), we have that λi ‰ 0 for all i P N. Moreover, if
ř

gPG }g}
2
2 “

ř

iPN
ř

gPG }Pig}
2 ă 8, then lim

iÑ8

ř

gPG }Pig}
2 “ 0. In addition, since }A}2L´1

2 lnp}A}q ě
|λi|

2L´1
2 lnp|λi|q

ą 0,

we get that lim
iÑ8

|λi|
2L´1

2 lnp|λi|q

ř

gPG }Pig}
2 “ 0. This contradicts (2.15). Hence,

ř

gPG }g}
2 “ 8.

Proof of theorem 2.7.4. From the assumption that G is a Bessel sequence in H, there exists K ą 0

such that
ř

gPG |xf, gy|
2 ď K}f}2, for all f P H. Since A is a bounded normal operator, for any

0 ď t ă 8, one has

ÿ

gPG
|xf,Atgy|2 “

ÿ

gPG
|xA˚tf, gy|2 ď K}A˚tf}2 ď K}A}2t}f}2. (2.17)

Summing the inequalities (2.17) over t P T “ tti : i “ 1, . . . , nu, it immediately follows that

tAtgugPG,tPT is a Bessel sequence in H.

Using (2.17), it follows that

ÿ

gPG

ż L

0
|xf,Atgy|2dt ď K

ż L

0
}A}2tdt}f}2. (2.18)

Inequality (2.18) implies that for any ε ą 0, there exists an l with L{2 ą l ą 0, such that

ÿ

gPG

ż l

0
|xf,Atgy|2dt ă ε}f}2. (2.19)

Next, the goal is to find δ ą 0 such that for any finite set T “ tti : i “ 1, . . . , nu with

0 “ t1 ă t2 ă . . . ă tn ă tn`1 “ L and |ti`1´ ti| ă δ, the system tAtgugPG,tPT is a frame for H,

as long as tAtgugPG,tPr0,Ls is a semi-continuous frame for H, i.e.,

c}f}2 ď
ÿ

gPG

ż L

0
|xf,Atgy|2dt ď C}f}2, for all f P H, (2.20)

for some c, C ą 0.

To finish the proof, we use the following lemma.
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Lemma 2.7.7. Let A P BpHq be a normal operator and `, L be positive numbers with 0 ă ` ă L.

Then for any ε ą 0, there exists δ ą 0 such that whenever s1, s2 P r`, Ls with |s1 ´ s2| ă δ, we

have }As1 ´As2} ă ε.

Proof of Lemma 2.7.7. For s1, s2 P r`, Ls,

|zs1 ´ zs2 |2 “ |z|2s1 ´ 2|z|s1 |z|s2 cospps1 ´ s2qargpzqq ` |z|
2s2

“ ||z|s1 ´ |z|s2 |2 ` 2|z|s1 |z|s2p1´ cospps1 ´ s2qargpzqqq.

For all z P σpAq, one has 0 ď |z| ď }A}. Thus |z|s is uniformly bounded for all s P r`, Ls. In

addition, the function pt, rq ÞÑ rt is a continuous function on the compact set r`, Ls ˆ r0, }A}s and

the function t ÞÑ cospt ¨ argpzqq is equicontinuous at t “ 0 for argpzq P r´π, πq. The lemma then

follows from the spectral theorem (i.e., Theorem 2.3.3).

By Lemma 2.7.7, there exists δ with l{2 ą δ ą 0 such that whenever |s1 ´ s2| ă 2 ¨ δ for

s1, s2 P rl{2, Ls, then }As1 ´ As2} ă ε. Assume that the set T “ tti : i “ 1, . . . , nu satisfies

0 “ t1 ă t2 ă . . . ă tn ă tn`1 “ L and |ti`1 ´ ti| ă δ. Set m “ minti : ti ą l{2u. Note that

l{2 ą δ ą 0. Therefore tm ă l. Then, using (2.19), the difference

∆ “

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

gPG

ż L

0
|xf,Atgy|2dt´

ÿ

gPG

n
ÿ

i“m

ż ti`1

ti

|xf,Atigy|2dt

ˇ

ˇ

ˇ

ˇ

ˇ

, (2.21)

can be estimated as follows.

∆ “

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

gPG

ż L

0
|xf,Atgy|2dt´

ÿ

gPG

n
ÿ

i“m

ż ti`1

ti

|xf,Atigy|2dt

ˇ

ˇ

ˇ

ˇ

ˇ

ď

˜

ÿ

gPG

ż tm

0
|xf,Atgy|2dt

¸

`

n
ÿ

i“m

ż ti`1

ti

ÿ

gPG
||xf,Atgy|2 ´ |xf,Atigy|2|dt

“

˜

ż tm

0

ÿ

gPG
|xf,Atgy|2dt

¸

`

n
ÿ

i“m

ż ti`1

ti

ÿ

gPG
p|xf,Atgy| ` |xf,Atigy|qp||xf,Atgy| ´ |xf,Atigy||qdt

ď ε}f}2 `
n
ÿ

i“m

ż ti`1

ti

ÿ

gPG
p|xA˚tf, gy| ` |xA˚tif, gy|qp|xA˚tf ´A˚tif, gy|qdt
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ď ε}f}2 `
n
ÿ

i“m

ż ti`1

ti

˜

ÿ

gPG
p|xA˚tf, gy| ` |xA˚tif, gy|q2

¸1{2 ˜
ÿ

gPG
p|xA˚tf ´A˚tif, gy|q2

¸1{2

dt

ď ε}f}2 `
n
ÿ

i“m

ż ti`1

ti

`

2Kp}A˚tf}2 ` }A˚tif}2q
˘1{2

pK}A˚tf ´A˚tif}2q1{2dt

ď pε` 2C1KLεq}f}
2, where C1 “ maxt1, }A}Lu.

Using (2.21) and choosing ε so small that p1` 2C1KLqε ă c{2, we find δ such that

δ
ÿ

gPG

n
ÿ

i“m

|xf,Atigy|2 ě c}f}2 ´ c{2}f}2 “ c{2}f}2.

Therefore, for any finite set T “ tti : i “ 1, . . . , nu with 0 “ t1 ă t2 ă . . . ă tn ă tn`1 “ L and

|ti`1 ´ ti| ă δ, the system tAtgugPG,tPT is a frame in H.

To prove the second statement, it is sufficient to prove that tAtgugPG,tPr0,Ls is a semi-continuous

frame under the assumption that tAtgugPG,tPT is a frame in H andA is an invertible normal operator.

We already know by Theorem 2.6.3 that tAtgugPG,tPr0,Ls is Bessel since G is Bessel by assumption.

Let T “ tti : i “ 1, . . . , nu with 0 “ t1 ă t2 ă . . . ă tn ă L be such that tAtgugPG,tPT is a frame

for H with frame constants c, C i.e., for all f P H,

c}f}2 ď
ÿ

gPG

n
ÿ

i“1

|xf,Atigy| ď C}f}2.

Let m “ mintti`1 ´ ti, 1 ď i ď nu with tn`1 “ L. Then,

ÿ

gPG

ż L

0
|xf,Atgy|2dt “

ÿ

gPG

n
ÿ

i“1

ż ti`1

ti

|xf,Atgy|2dt

“
ÿ

gPG

n
ÿ

i“1

ż ti`1´ti

0
|xpA˚tf,Atigy|2dt

ě
ÿ

gPG

n
ÿ

i“1

ż m

0
|xA˚tf,Atigy|2dt

ě

ż m

0
c}A˚tf}22dt.
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Since A is an invertible bounded normal operator, we have

ż m

0
c}A˚tf}22dt ě c ¨

1´ }A´1}´2m

2 lnp}A´1}q
}f}2.

This concludes the proof that tAtgugPG,tPr0,Ls is a semi-continuous frame for H.

To prove Theorem 2.7.5, the following three lemmas, i.e., Lemmas 2.7.8, 2.7.9 and 2.7.10 are

needed.

Lemma 2.7.8. Let G be a countable Bessel sequence in H and let A P BpHq be a normal operator.

Let L be any positive real number, ΩL “ tz : <pzq ą L ą 0u, and let tgiuiPI be any indexing of G.

Then, for fixed f P H, the partial sums
n
ř

i“1
|xAzgi, fy|

2 converge uniformly on any compact subset

of ΩL.

Proof of Lemma 2.7.8. Let Dr denote the closed disk of radius r. Then using the fact that G is

Bessel with Bessel constant CG , for z P Dr X ΩL, one gets,

n
ÿ

i“1

|xAzgi, fy|
2 “

n
ÿ

i“1

|xf,Azgiy|
2 “

n
ÿ

i“1

|xpAzq˚f, gy|2 ď CG ¨ e
2πr ¨ }A}2r}f}2,

from which the lemma follows.

Lemma 2.7.9. Let G be a countable Bessel sequence in H and let A P BpHq be a normal operator.

Let L be any positive real number and let ΩL “ tz : <pzq ą L ą 0u. Then, for fixed f P H,

F pzq “
ÿ

gPG
pxAzg, fyq2,

is an analytic function of z in ΩL.

Proof of Lemma 2.7.9. Since A is a normal operator on H, by Lemma 2.5.4, pxAzg, fyq2 is

analytic in ΩL. Since
ˇ

ˇ

ˇ

ř

gPGpxA
zg, fyq2

ˇ

ˇ

ˇ
ď

ř

gPG |xA
zg, fy|2, by Lemma 2.7.8, the series

ř

gPGpxA
zg, fyq2 converges absolutely and uniformly on any compact subset of ΩL, and the par-

tial sums of
ř

gPGpxA
zg, fyq2 are analytic in ΩL and converge uniformly on any compact subset
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of ΩL. It follows that the series
ř

gPGpxA
zg, fyq2 is an analytic function of z in ΩL [51, Theorem

10.28].

Let A P BpHq be a normal operator, by the spectral theorem, there exists a unitary operator U

such that

UAU´1 “ N p8qµ8 ‘N p1qµ1 ‘N
p2q
µ2 ‘ . . . .

For every f P H, we define f̃ “ Uf P UH. Note that f̃ : σpAq Ñ `2pΩ8q ‘ `2pΩ1q ‘

`2pΩ2q ‘ . . . is a function and hence it makes sense to talk about its real and imaginary parts. Set

f< “ U´1<pf̃q and f= “ U´1=pf̃q.

Lemma 2.7.10. If G is a Bessel sequence in H, then, tg<ugPG and tg=ugPG are also Bessel se-

quences in H for any given normal operator A P H.

Proof of Lemma 2.7.10. Consider the subspace S Ă H defined by S “ tf P H :

Uf is real valuedu. Then, for f P S, using the following identity

ÿ

gPG
|xf, gy|2 “

ÿ

gPG
|xf̃ , g̃y| “

ÿ

gPG
|xf̃ ,<pg̃qy|2 ` |xf̃ ,=pg̃qy|2 “

ÿ

gPG
|xf, g<y|2 ` |xf, g=y|2,

it follows that tg<ugPG and tg=ugPG are Bessel sequences in S. For general f P H, we have f< P S,

f= P S, and
ÿ

gPG
|xf, g<y|2 “

ÿ

gPG
|xf<, g<y|2 `

ÿ

gPG
|xf=, g<y|2,

ÿ

gPG
|xf, g=y|2 “

ÿ

gPG
|xf<, g=y|2 `

ÿ

gPG
|xf=, g=y|2.

It follows that tg<ugPG and tg=ugPG are Bessel sequences for H.

Proof of Theorem 2.7.5. Assume that tAtgugPG,tPr0,1s is a semi-continuous frame in H with frame

bounds c, C. By Theorem 2.7.4, there exists a finite set T such that tAtgugPG,tPT is a frame for H.

Therefore, for L ě 1, tAtgugPG,tPr0,Ls is also a semi-continuous frame.
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To prove that tAtgugPG,tPr0,Ls is a semi-continuous frame for L ă 1, we note that the inequality

ÿ

gPG

ż L

0
|xf,Atgy|2dt ď

ÿ

gPG

ż 1

0
|xf,Atgy|2dt ď C}f}22

implies that tAtgugPG,tPr0,Ls is a Bessel system in H. Moreover, A is an invertible bounded self-

adjoint operator. Therefore, by Theorem 2.6.3, G is Bessel in H with Bessel constant CG .

Suppose that tAtgugPG,tPr0,Ls is not a frame. Then, there exists a sequence tfnu with }fn} “ 1

such that
ř

gPG
şL
0 |xfn, A

tgy|2dt Ñ 0. It follows that
ř

gPG |xfn, A
tgy|2 Ñ 0 in measure. Thus,

there exists a subsequence tfnk
u of tfnu such that

ř

gPG |xfnk
, Atgy|2 Ñ 0, for a.e. t P r0, Ls. By

passing to a subsequence, assume that
ř

gPG |xfn, A
tgy|2 Ñ 0, for a.e. t P r0, Ls.

To finish the proof, we next prove that there exists a subsequence tfnk
u of tfnu such that

ÿ

gPG

ż 1

0
|xfnk

, Atgy|2dtÑ 0.

Since A is a self-adjoint operator, by the spectral theorem, there exists a unitary operator U

such that A can be represented as (2.4) and σpAq Ă R. In addition, A is invertible. Then there exist

m,M ą 0 such that m ď |z| ďM for all z P σpAq. Set f̃ “ Uf and g̃ “ Ug.

Case 1. A is a positive self-adjoint operator, and tUgugPG and tUfnu are real-valued,

i.e., Ug “ <pg̃q for all g P G and Ufn “ <pf̃nq: In this case, one has |xfn, Atgy|2 “

pxAtg, fnyq
2, for all t P R`. Therefore

ÿ

gPG
|xfn, A

tgy|2 “
ÿ

gPG
pxAtg, fnyq

2, for all t P R`.

Moreover, since G is Bessel, by Lemma 2.7.9, the functions Fnptq “
ř

gPGpxA
tg, fnyq

2 are analytic

for t P ΩL{4 XDr Ă C and satisfy

|Fnptq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

gPG
pxAtg, fnyq

2

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

gPG

ˇ

ˇxg, pAtq˚fny
ˇ

ˇ

2
ď CG}A}

2r, for t P ΩL{4 XDr.

Thus, by Montel’s theorem, there exists a subsequence tFnk
u of tFnu such that tFnk

u converge to

an analytic function F on ΩL{4 XDr. Let Dr Ă C be a disk of radius r containing rL{2, 1s. Since

32



Fn are analytic and Fnptq Ñ 0, for all t P rL{2, Ls, it follows that F ptq “ 0, for all t P rL{2, Ls.

Moreover, since F is analytic, we conclude that F ptq “ 0 for all t P ΩL{4 XDr, and hence also on

rL{2, 1s, i.e., limnkÑ8 Fnk
ptq “ 0 for all t P rL{2, 1s. Thus,

ÿ

gPG

ż 1

0
|xfnk

, Atgy|2dt

“
ÿ

gPG

ż L{2

0
|xfnk

, Atgy|2dt`
ÿ

gPG

ż 1

L{2
|xfnk

, Atgy|2dt.

Taking limits as nk tends to infinity, one sees that lim
nkÑ8

ř

gPG
ş1
0 |xfnk

, Atgy|2dt “ 0. This contra-

dicts the assumption that tAtgugPG,tPr0,1s is a semi-continuous frame. Therefore, tAtgugPG,tPr0,Ls

is a semi-continuous frame.

Case 2. The general case:

Let f̃n “ <pf̃nq ` i=pf̃nq and g̃ “ <pg̃q ` i=pg̃q. Define f<n “ U´1<pf̃nq, f=n “ U´1=pf̃nq,

g< “ U´1<pg̃q, and g= “ U´1=pg̃q. Define At` and At´ as

xAt`g, fy “

ż

zPσpAq,zą0
ztxg̃, f̃ydµpzq,

xAt´g, fy “

ż

zPσpAq,ză0
p´zqtxg̃, f̃ydµpzq.

Then A´ and A` are positive operators, and xAtg, fy “ xAt`g, fy ` e
iπtxAt´g, fy.

For t P R`, one has
ÿ

gPG
|xfn, A

tgy|2 “ Fnptq `Gnptq, (2.22)

where

Fnptq “
ÿ

gPG
pxAt`g

<, f<n y ` xA
t
`g

=, f=n y ` cospπtq ¨ pxAt´g
<, f<n y ` xA

t
´g

=, f=n yq `

sinpπtq ¨ pxAt´g
<, f=n y ´ xA

t
´g

=, f<n yqq
2,

33



and

Gnptq “
ÿ

gPG
pxAt`g

=, f<n y ´ xA
t
`g

<, f=n y ` sinpπtq ¨ pxAt´g
<, f<n y ` xA

t
´g

=, f=n yq `

cospπtq ¨ pxAt´g
=, f<n y ´ xA

t
´g

<, f=n yqq
2.

Note that for t P ΩL{4 XDr, by Lemma 2.7.10, one has

|Fnptq| ď 6 ¨

˜

ÿ

gPG
|xf<n , A

t
`g

<y|2 ` |xf=n , A
t
`g

=y|2 `
3` e2πr

4
¨ p|xf<n , A

t
´g

<y|2`

|xf=n , A
t
´g

=y|2q `
3` e2πr

4
¨ p|xf<n , A

t
´g

=y|2 ` |xf=n , A
t
´g

<y|2q

˙

ď 6 ¨

ˆ

CG}A}
2r `

3` e2πr

4
¨ CG}A}

2r `
3` e2πr

4
¨ CG}A}

2r

˙

“ p15` 3e2πrq ¨ CG ¨ }A}
2r,

and

|Gnptq| ď p15` 3e2πrq ¨ CG ¨ }A}
2r.

Thus, (using a similar proof as in Lemma 2.7.9) Fn and Gn are uniformly bounded analytic

functions in ΩL{4 XDr.

As in Case 1, one can find two subsequences tFnk
u and tGnk

u converging to analytic

functions F and G, respectively. Moreover, since Gnptq ď
ř

gPG |xfn, A
tgy|2, and Fnptq ď

ř

gPG |xfn, A
tgy|2 for all t P R` , and limnÑ8

ř

gPG |xfn, A
tgy|2 “ 0, a.e. t P r0, Ls, one can

proceed as in the proof of Case 1 and get the contradiction that

lim
nkj

Ñ8

ÿ

gPG

ż 1

0
|xfnkj

, Atgy|2 “ 0.

Thus, tAtgugPG,tPr0,Ls is a semi-continuous frame for H.
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CHAPTER 3

Dynamical Sampling with Additive Random Noise

In this chapter, we study dynamical sampling in a finite dimensional space when the samples are

corrupted by additive random noise. The main purpose of this work is to analyze the performance

of the basic dynamical sampling algorithms (see [7, 12]) and study the impact of additive noise on

the reconstructed signal. The general formulation is summarized in Section 3.1.

3.1 Problem Formulation

We consider a signal f P Cd and a bounded linear operator A P Cdˆd. f evolves and becomes

fn “ Anf (3.1)

at time level n P N. Let Ω Ă t1, . . . , du be a set of spatial locations. The noiseless dynamical

samples are then

tfnpjq : j P Ω, 0 ď n ď L and n P Nu.

In [6], necessary and sufficient conditions for recovering f P Cd have been derived in terms of A,

Ω, and L. In the noisy case, we consider the corrupted dynamical samples of the form

tfnpjq ` ηnpjq, j P Ω, 0 ď n ď L and n P Nu , (3.2)

where ηn, n ě 0 are independent identically distributed (i.i.d.) d-dimensional random variables

with zero mean and covariance matrix σ2I , and ηnpjq denotes the j-th component of ηn. Let

ỹn “ SΩpfn ` ηnq be the vector of noisy samples at time level n, where the sub-sampling operator

SΩ is a d ˆ d diagonal matrix such that pSΩqjj “ 1 if j P Ω and pSΩqjj “ 0 otherwise. When

A is given, the signal f can be approximately recovered by solving the least-square minimization
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problem

f̃N “ arg min
g

N
ÿ

n“0

}SΩpA
ngq ´ ỹn}

2
2 . (3.3)

The main question is

Problem 5. How does the mean squared error (MSE) Ep}f̃N ´ f}22q behave, e.g., does it behave

asymptotically?

When A is not given but assumed to have some particular structure, the following question is

considered:

Problem 6. What is the performance of the algorithm in [12, Section 4.1](which is also stated in

Algorithm 2) for estimating the spectrum of A? Can a denoising method be designed to effectively

treat the corrupted data? How does the dynamical sampling theory perform on real data sets?

3.2 Contribution and Organization.

In this study, an iterative algorithm for solving problem (3.3) is investigated. In addition, the

mean squared error (MSE)Ep}εN}2q is estimated with εN
.
“ f̃N´f and the behavior of the MSE is

analyzed as N Ñ 8 for an unbiased linear estimator. The second problem of dynamical sampling

deals with the case when the evolution operator A is unknown (or only partially known). In [12],

an algorithm has been proposed for finding the spectrum of A from the dynamical samples. The

present work delves deeper into this algorithm from both theoretical and numerical perspectives.

From the theoretical perspective, an alternative proof is given for the fact that the algorithm in [12]

can (almost surely) recover the spectrum ofA from dynamical samples and also recover the operator

A itself, in the case when it is known that A is given by circular convolution, i.e. Af “ a ˚ f with

some real symmetric filter a in Cd. From a numerical point of view, this analytical result lays the

theoretical foundation and paves the way toward recovering the operator A and the initial signal

from the real data set. The nature of the spectrum recovery algorithm also motivates an integration

of Cadzow-like denoising techniques [19, 34], which can be applied to both synthetic and real data.

In Section 3.3, we summarize the notation that is used throughout the chapter and present the

algorithms for signal and filter recovery that work ideally in the noiseless case. To recover the sig-
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nal, we borrow a least square updating technique from [17] and tailor it for dynamical sampling. To

recover the driving operator (in the case of a convolution), we review the algorithm from [12] and

provide its new derivation, which is more straightforward than the general proof in [12]. In Section

3.4, the Cadzow denoising method is sketched for a special case of uniform sub-sampling; it is vali-

dated to be numerically efficient in the context of dynamical sampling in Section 3.6. Section 3.5 is

dedicated to the error analysis of the least square solutions for finding the original signal in the pres-

ence of additive white noise. It shows the relation between the MSE of the solution and the number

of time levels considered. In Section 3.6, we outline the outcomes of the extensive tests performed

for the algorithms discussed in Sections 3.3 and 3.4. More precisely, Section 3.6.1 demonstrates

the consistency of the theory for the MSE of the least square solutions on synthetic data. Section

3.6.2 illustrates the effect of Cadzow denoising method on signal and filter recovery in the case

of synthetic data. Finally, in Section 3.6.3, the recovery algorithms and denoising techniques are

integrated together to process real data collected from cooling processes.

3.3 Notation and Preliminaries

3.3.1 Notation

Let Z be the set of all integers and Zd be the cyclic group of order d. By Cd and Cmˆd we

denote the linear space of all column vectors with d complex components and the space of complex

matrices of dimension m ˆ d, respectively. Given a matrix A P Cmˆd, Aij stands for the entry of

the i-th row and j-th column of A, A˚ represents the conjugate transpose of A, and the 2-norm of

A is defined by

}A} “ sup
fPCd,}f}2“1

}Af}2,

where }f}2 “
b

řd
i“1 |fpiq|

2 and fpiq refers to i-th component of a vector f P Cd.

For a random variable x that is distributed normally with mean µ and variance σ2, we may write

x „ Npµ, σ2q.
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3.3.2 A general least squares updating technique for signal recovery

We borrow from [35] the following updating technique for adjusting a least squares solution

when new equations are added. Consider the following least squares problem

f 7L “ arg min
gPCd

L
ÿ

i“1

}Aig ´ bi}
2
2 , (3.4)

where Ai P Cmiˆd, and rankpA1q “ d (i.e., A1 has full column rank).

We take the case of L “ 2 as an example to explain the updating technique. Consider the QR

decomposition A1 “ Q1R1, where Q1 is an m1 ˆ d matrix satisfying Q˚1Q1 “ I and R1 is a dˆ d

triangular matrix. Then

f 71 “ arg min
g
}A1g ´ b1}

2
2 “ arg min

g
}R1g ´Q

˚
1b1}

2
2 .

Let b̃1 “ Q˚1b1. Since A1 has full rank, we have f 71 “ R´1
1 b̃1. Suppose that new informa-

tion is added, then the least squares problem and its solution needs to be updated, i.e., f 72 “

arg min
gPCd

ř2
i“1 }Aig ´ bi}

2
2 .

To solve the new least squares problem, we note that

arg min
gPCd

2
ÿ

i“1

}Aig ´ bi}
2
2 “ arg min

gPCd

›

›

›

›

›

›

›

¨

˚

˝

A1

A2

˛

‹

‚

g ´

¨

˚

˝

b1

b2

˛

‹

‚

›

›

›

›

›

›

›

2

2

“ arg min
gPCd

›

›

›

›

›

›

›

¨

˚

˝

Q1 0

0 I

˛

‹

‚

¨

˚

˝

R1

A2

˛

‹

‚

g ´

¨

˚

˝

b1

b2

˛

‹

‚

›

›

›

›

›

›

›

2

2

“ arg min
gPCd

›

›

›

›

›

›

›

¨

˚

˝

R1

A2

˛

‹

‚

g ´

¨

˚

˝

Q˚1b1

b2

˛

‹

‚

›

›

›

›

›

›

›

2

2

“ arg min
gPCd

›

›

›

›

›

›

›

¨

˚

˝

R1

A2

˛

‹

‚

g ´

¨

˚

˝

b̃1

b2

˛

‹

‚

›

›

›

›

›

›

›

2

2

.
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Therefore, the problem reduces to finding

f 72 “ arg min
gPCd

›

›

›

›

›

›

›

¨

˚

˝

R1

A2

˛

‹

‚

g ´

¨

˚

˝

b̃1

b2

˛

‹

‚

›

›

›

›

›

›

›

2

2

.

One further needs to calculate the QR decomposition

¨

˚

˝

R1

A2

˛

‹

‚

“ Q2R2,

where Q2 is a unitary matrix and R2 is a dˆ d triangular matrix. Denote

b̃2 “ Q˚2

¨

˚

˝

b̃1

b2

˛

‹

‚

.

It follows that f 72 “ R´1
2 b̃2.

The same process can be applied to the caseL ě 3 which leads to the iterated updating algorithm

that is summarized in Algorithm 1.

This algorithm demonstrates that the recovery problem in dynamical sampling can be solved in

a streaming setup, where the solution is updated as new measurements are collected over time,

1. without storing all the previous samples (bj) or explicitly rewriting all the matrices (Aj) for

all j ă i at the ith step,

2. and taking advantage of quantities that are stored from previous iterations to avoid the naive

computation involving all the previous samples and matrices.

Observe that in the dynamical sampling framework we have Ai “ SΩA
i´1. Assume that at step

i, the QR decomposition for

Ai “

¨

˚

˚

˚

˚

˚

˚

˚

˝

SΩI

SΩA

...

SΩA
i´1

˛

‹

‹

‹

‹

‹

‹

‹

‚
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is

Ai “ QR.

At step i` 1, Ai`1 can thus be written in the convenient form

¨

˚

˝

SΩI

QRA

˛

‹

‚

“

¨

˚

˝

I 0

0 Q

˛

‹

‚

¨

˚

˝

SΩI

RA

˛

‹

‚

.

Goal: Recover the original signal by processing time series data.

Input A1, b1

Set A1 “ Q1R1, the economic QR decomposition of A1 with the assumption that A1 has

full column rank (see Remark 3.5.4).

Set b̃1 “ Q˚1b1.

Set f 71 “ R´1b̃1.

for i “ 2 to L do
Input Ai, bi

Compute the QR decomposition for

¨

˚

˝

Ri´1

Ai

˛

‹

‚

“ QiRi using the Householder

transformation [35].

Set b̃i “ Q˚i

¨

˚

˝

b̃i´1

bi

˛

‹

‚

.

Set f 7i “ R´1
i b̃i.

end

Output f 7L
Algorithm 1: Pseudo-code of the iterated updating algorithm.

3.3.3 Filter recovery for the special case of convolution operators and uniform subsampling

In this section, we recall from [12] an algorithm for recovering an unknown driving operator

A that is defined via a convolution with a real symmetric filter i.e., A is a circulant matrix cor-

responding to a convolution with a: Af “ a ˚ f ), and where the spatial sampling is uniform at

every time-instant n. We also provide a new, direct proof of validity for the filter recovery algo-

rithm for this case. Specifically, we consider samples of A`f “ a` ˚ f at mZd where m ě 2, and
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a` “ a ˚ ¨ ¨ ¨ ˚ a is the ` times convolution of the filter a. We also assume that the Fourier transform

â of the filter a is real symmetric, and strictly decreasing on r0, d´1
2 s. We will use the notation

Smfn to describe this uniform subsampling. In particular, for a vector z P `2pZdq, Smz belongs to

`2pZJq, and Smzpjq “ zpmjq for j “ 1, . . . , J , where throughout we will assume that m is odd,

and d “ Jm for some odd integer J .

Let

y` “ SmpA
`fq “ Smpa

` ˚ fq, ` ě 0, (3.5)

be the dynamical samples at time level `. By Poisson’s summation formula,

{pSmzqpjq “
1

m

m´1
ÿ

n“0

ẑpj ` nJq, 0 ď j ď J ´ 1, z P `2pZdq, (3.6)

An application of the Fourier transform to (3.5) yields

ŷ`pjq “
1

m

m´1
ÿ

n“0

â`pj ` nJqf̂pj ` nJq, 0 ď j ď J ´ 1. (3.7)

For each fixed j P ZJ and for some integer L with L ě 2m ´ 1 (L “ 2m ´ 1 is the minimum

number of time levels that we need to recover the filter), we introduce the following notation:

ȳ`pjq “
`

ŷ`pjq, ŷ``1pjq, . . . , ŷ``Lpjq
˘T
,

f̄pjq “
`

f̂pjq, f̂pj ` Jq, . . . , f̂pj ` pm´ 1qJq
˘T
,

and

Vmpjq “

¨

˚

˚

˚

˚

˚

˚

˚

˝

1 1 . . . 1

âpjq âpj ` Jq . . . âpj ` pm´ 1qJq

...
...

...
...

âL´1pjq âL´1pj ` Jq . . . âL´1pj ` pm´ 1qJq

˛

‹

‹

‹

‹

‹

‹

‹

‚

, (3.8)

where 0 ď j ď J ´ 1. From (3.7), it follows that

ȳ`pjq “
1

m
VmpjqD`pjqf̄pjq, for 0 ď j ď J ´ 1, ` ě 0, (3.9)
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where Dpjq is the diagonal matrix Dpjq “ diag
`

âpjq, âpj ` Jq, . . . , âpj ` pm ´ 1qJq
˘

. Let

pjpxq “ c0pjq` c1pjqx`¨ ¨ ¨` c1pjqx
nj´1`xnj be the minimal polynomial that annihilates Dpjq.

The degree of pj is equal to the number of distinct diagonal values of Dpjq. Since L ě 2m ´ 1,

it follows from the assumptions on â (â is real symmetric, and strictly decreasing on r0, d´1
2 s) that

degppjq “ m for j ‰ 0 and degpp0q “ pm` 1q{2. Moreover, the rectangular Vandermonde matrix

Vmpjq has rank rj “ m if j ‰ 0, and r0 “ pm` 1q{2 if j “ 0. Consequently, using (3.9), we have

that for almost all f̂ ,

ȳk`rj pjq `

rj´1
ÿ

`“0

c`pjqȳk``pjq “ 0, 0 ď j ď J ´ 1, (3.10)

where c`pjq are the coefficients of the polynomial pj and rj “ deg pj “ rank Vmpjq. The above

discussion leads to the following Algorithm 2 for recovering the spectrum σpAq.

Goal: Recover the spectrum σpAq.

Set J “ d{m.

for j “ 0 to J ´ 1 do
Find the minimal integer rj for which the system (3.10) has a solution cpjq and

find the solution;

set pjpλq “ λrj `
řrj´1
`“0 c`pjqλ

` and find the set Rpjq of all roots of pj .

end

Set σpAq “
ŤJ´1
j“0 Rpjq.

Algorithm 2: A spectrum recovery algorithm for convolution operators.

Remark 3.3.1. The algorithm for spectrum recovery involves finding the roots of a set polynomials

of degree m or m`1
2 , where m is the subsampling factor. This problem becomes more and more

difficult as m becomes larger and larger. However, in applications, one could expect m to be of

moderate size (m ď 5). Moreover, if some of the spectral values are too close to each other, then

finding the coefficients of the minimal polynomials becomes unstable.

Remark 3.3.2. The recovery of both the filter and the signal from the measurements points to

certain relations to the problem of Blind Deconvolution (see for example [41]); typically, Blind

Deconvolution does not involve the difficulty arising from the sub-sampling (the operator Sm), but

it is restricted to one time measurement, and uses other assumptions on the signal and filter.
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3.4 Cadzow Denoising Method

In this section, we describe a Cadzow-like algorithm (see Algorithm 3) [19, 34] which can be

effectively applied to approximate the dynamical samples yn in (3.5) from the noisy measurements

ỹn “ yn ` ηn.

Suppose data points yn in (3.5) are such that m is an odd integer and A is a symmetric circulant

matrix generated by a real symmetric filter a, i.e., the Fourier transform â of the filter a is real

symmetric. In addition, we also assume that â is monotonic on r0, d´1
2 s. Let L be the number of

time levels as in (3.8). In particular, it is necessary that L ě 2m´ 1. Without loss of generailty we

assume that L is even. From (3.7), (3.9), (3.10) in Section 3.3.3 (see also [7, 12]), it follows that the

Hankel matrix

Hpjq “

¨

˚

˚

˚

˚

˚

˚

˚

˝

ŷ0pjq ŷ1pjq . . . ŷL
2
pjq

ŷ1pjq ŷ2pjq . . . ŷL
2
`1pjq

...
...

...
...

ŷL
2
pjq ŷL

2
`1pjq . . . ŷLpjq

˛

‹

‹

‹

‹

‹

‹

‹

‚

, (3.11)

has rank m for j ‰ 0 and pm ` 1q{2 for j “ 0. However, the matrices rHpjq formed as in (3.11)

using the noisy measurments ỹn will fail the rank conditions. Cadzow’s Algorithm approximates

Hpjq via iterative changes of rHpjq that enforce the rank and the Hankel conditions successively.
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Goal : Denoising measurements matrix rY “ pỹ0 ỹ1 . . . ỹLq.

Input : rY and kmax (maximal number of iterations).

Generate the matrix prY q^ by taking the Fourier transform on rY .

for j “ 0 to J ´ 1 do

if j “ 0, then
Set r “ m`1

2

end

else Set r “ m;

Form Hankel matrix X “ rHpjq as in (3.11) from the jth row of prY q^.

for k “ 1 to kmax do
Compute the SVD of X: X “ UΣV ˚, Σ “ diagpσ1, . . . , σL

2
`1q.

Set X “ Udiagpσ1, . . . , σr, 0, . . . , 0qV
˚.

Generate a Hankel matrix Hnew by averaging X across its anti-diagonals.

Set X “ Hnew.

end

Update the jth row of prY q^ by the vector obtained by averaging the

anti-diagonals of X .

end

Update rY by taking inverse Fourier transform on prY q^.

Output: Denoised data rY .
Algorithm 3: The pseudo-code for the Cadzow denoising method.

For each j P ZJ , an application of the singular value decomposition (SVD) technique produces

a decomposition rHpjq “ UΣV ˚, where Σ “ diagpσ1, . . . , σL
2
`1q and σ1 ě . . . ě σL

2
`1. Since

the rank is known to be rj , one can set σi “ 0 for i ą rj and obtain an amended matrix of

singular values Σrj . Then, one may proceed to compute the matrix Xnew “ UΣrjV
˚ and form a

new Hankel matrix Hnew by averaging Xnew across its anti-diagonals. This procedure is applied

iteratively. After several iterations, a better approximation of the Hankel matrix Hpjq is obtained

and a vector of denoised data can be retrieved by applying the inverse Fourier transform.
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3.5 Error Analysis

3.5.1 Error analysis for general least squares problems

We begin this section with the error analysis of a least squares problem that is more general than

the first dynamical sampling problem. We let Ai P Cmiˆd, f P Cd, and ỹi “ Aif ` ηi, where

ηi are i.i.d. random variables with a zero mean and a variance matrix σ2I . The signal f can be

approximately recovered via

f 7L “ arg min
g

L
ÿ

i“1

}Aig ´ ỹi}
2
2. (3.12)

Denote the error εL “ f 7L ´ f . By (3.12) and the definition for ỹi, it follows that

εL “ arg min
ε

L
ÿ

i“1

}Aiε´ ηi}
2
2. (3.13)

Let

AL “

¨

˚

˚

˚

˚

˚

˚

˚

˝

A1

A2

...

AL

˛

‹

‹

‹

‹

‹

‹

‹

‚

, (3.14)

and assume that for L ě N , where N is some fixed number, AL, defined by (3.14) above, has full

rank. By solving problem (3.13), we have

εL “

˜

L
ÿ

i“1

A˚iAi

¸´1 L
ÿ

i“1

A˚i ηi, for all L ě N. (3.15)

The following proposition can be derived from [50, Theorem B on p. 574]. For the convenience

of the reader, however, we include the proof in the Appendix.

Proposition. Assume that AL is defined as in (3.14) and has full rank for L ě N . Let λjpLq,

1 ď j ď d, denote the eigenvalues of the matrix A˚LAL “
řL
i“1A

˚
iAi, 1 ď j ď d. Then, the

following holds:

Ep}εL}
2
2q “ σ2

d
ÿ

j“1

1{λjpLq, (3.16)
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where εL is obtained from (3.13) and σ is the variance of the noise.

To study the behavior of the MSE function in (3.16), we recall the well-known Courant-Fischer

Minimax Theorem and one of its most useful corollaries.

Theorem 3.5.1. pCourant-Fischer Minimax Theoremq Let A be a d ˆ d Hermitian matrix with

eigenvalues λ1 ě . . . ě λk ě . . . ě λd. Then,

λk “ max
U

"

min
x

"

x˚Ax

x˚x
: x P U and x ‰ 0

*

: dimpUq “ k

*

.

Corollary 3.5.2. Let A P Cdˆd and B P Cdˆd be self-adjoint positive semidefinite matrices. Then,

λipA`Bq ě λipAq and λipA`Bq ě λipBq.

The following result is immediate from Corollary 3.5.2.

Proposition. The function Ep}εL}22q defined by (3.16) is a non-negative non-increasing function of

L for L ě N where N is some fixed number, such that AN in (3.14) has full rank. Consequently,

as L goes to8, it converges to a non-negative constant.

The goal of the following example is to illustrate the above result in the context of dynamical

sampling but without sub-sampling.

Example 6 (Special case: no sub-sampling). Suppose that A is a normal matrix and suppose that

Ai “ Ai´1 in (3.13). Because A is normal, it can be written as A “ U˚DU , where U is a unitary

matrix and D is a diagonal matrix with the diagonal entries s1, s2, . . . , sd. Hence, A˚LAL can be

computed as

A˚LAL “

L
ÿ

k“1

pA˚qk´1Ak´1 “ U˚
L
ÿ

k“1

pD˚Dqk´1 U. (3.17)

Defining Λ “ ΛpLq by

A˚LAL “ U˚ΛU,

and

Λ “

¨

˚

˚

˚

˚

˝

λ1pLq

. . .

λdpLq

˛

‹

‹

‹

‹

‚

,
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we get from (3.17) that

λjpLq “

$

’

’

&

’

’

%

1´|sj |
2L

1´|sj |2
, |sj | ‰ 1;

L, |sj | “ 1.

The error εL can be represented as

εL “

˜

L
ÿ

i“1

A˚iAi

¸´1 L
ÿ

i“1

A˚i ηi “ U˚Λ´1
L
ÿ

i“1

pD˚qi´1Uηi,

and (3.16) follows immediately for this special case.

To illustrate Proposition 3.5.1, note that, when |sj | ă 1, the expression 1
λjpLq

“
1´|sj |

2

1´|sj |2L
de-

creases and converges to 1´ |sj |
2 as n increases and tends to8.

When |sj | “ 1, then 1
λjpLq

“ 1
L which decreases as L increases.

When |sj | ą 1, 1
λjpLq

“
1´|sj |

2

1´|sj |2L
decreases (as L increases) and converges to 0 as LÑ8.

Thus, in all three cases the function Ep}εL}22q is decreasing as L increases. In addition,

Ep}εL}
2
2q Ñ σ2

ÿ

1ďjďd
|sj |ă1

p1´ |sj |
2q, as LÑ8.

3.5.2 Error analysis for dynamical sampling

To derive a similar result for dynamical sampling, we replace the general operator Ai in (3.13)

with the i ´ 1 power Ai´1 of a matrix A followed by a subsampling matrix SΩ, i.e., we let Ai “

SΩpA
i´1q. By Propositions 3.5.1 and 3.5.1, and using the fact that S˚ΩSΩ “ SΩ, the following

assertions hold.

Theorem 3.5.3. Let λjpLq denote the j-th eigenvalue of the matrix
řL´1
i“0 pA

˚qiSΩA
i. Then

Ep}εL}
2
2q “ σ2

d
ÿ

j“1

1{λjpLq,

is non-increasing as a function of L. Hence, it converges to some constant as LÑ8.

Remark 3.5.4. The theorem above shows how the mean squared error depends on Ω, A and L.

However, for a given A, not all choices of Ω are allowable: there are necessary and sufficient
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conditions on the choice of Ω that will allow us to reconstruct f by solving (3.12) when Ai “

SΩpA
i´1q and no noise is present [6] (i.e., A1 is full rank and λjpLq ą 0 for all j, L) .

3.6 Numerical Results

3.6.1 Error Analysis

In this section, we illustrate the performance of the least squares based method for signal re-

covery (i.e., Algorithm 1) in the case when the dynamical samples are corrupted by noise. We

describe the numerical simulations that we conducted using synthetic data and examine the behav-

ior of Ep}εL}22{σ
2q as a function of the number of time levels L.
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(a) Noise with standard deviation σ “ 0.023714.
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(b) Noise with standard deviate σ “ 1.3335ˆ 10´3.

Figure 3.1: The behavior of Ep}εL}22{σ
2q for randomly generated signal. The signal f is randomly

generated with norm 2.2914. Three signals f , 10f , and 100f are used for the simulations, where
x-axis stands for the time levels and y-axis represents the value of Ep}εL}22{σ

2q.

To obtain synthetic data for the simulation, we use a random signal f P `2pZ18q and a

convolution operator Af “ a ˚ f , determined by a real symmetric vector a with non-zero

components given by p1
8 ,

1
2 , 1,

1
2 ,

1
8q, i.e., A P R18ˆ18 is a circulant matrix with the first row

p1, 1{2, 1{8, 0, . . . , 0, 1{8, 1{2q . We generate the signals fi “ Aif at time levels i “ 0, 1, . . . , L.

The non-uniform locations Ω “ t1, 5, 7, 10, 13, 15, 18u are chosen to generate the samples tfipjq :

j P Ωu. Independent and identically distributed Gaussian noise with zero mean is then added to the

samples to obtain a set of noisy data tfipjq ` ηipjq : j P Ωu.

Figure 3.1 shows the relationship between Ep}εL}22{σ
2q and the time levels, where εL is defined
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Figure 3.2: The original signals and the reconstructed signals are represented by blue circles and
red stars, respectively. The signals in 3.2c and 3.2d are obtained from the signals in 3.2a and 3.2b,
respectively, by multiplying by 10. The norm of the original signal in 3.2a equals the norm of the
original signal in 3.2b, the same is true for the signals in 3.2c and 3.2d.
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by (3.13). For each L, the simulation was repeated 100 times with the same distribution of noise,

and Ep}εL}22{σ
2q was estimated by averaging the 100 values of }εL}22{σ

2. Figure 3.1a shows how

Ep}εL}
2
2{σ

2q changes as L varies for three different signals: f , 10f , and 100f , where the noise

variance is σ “ 2.3714ˆ10´2 and the 2-norm of f approximately equals 2.2914. The graph of 10f

is given in Figure 3.2a. Figure 3.1b shows the behavior of Ep}εL}22{σ
2q for the same signals as in

Figure 3.2a, where the noise variance is σ “ 1.3335ˆ 10´3. As shown in Figure 3.1, Ep}εL}22{σ
2q

decreases as n increases and approaches the constant predicted by Theorem 3.5.3.
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Figure 3.3: The behavior of Ep}εL}22{σ
2q are shown in (3.3a) and (3.3b) for the sparsely supported

signals without and with applying the threshold method, respectively, where the samples are cor-
rupted by Gaussian noise with zero mean and standard deviation 2.3714ˆ 10´2.

Figure 3.2 depicts the graphs of the reconstructed signals and the original signals 10f , 100f ,

10g, and 100g in Figures 3.2a, 3.2c, 3.2b, and 3.2d, respectively, where f, g P R18 are randomly

generated and scaled to the norm 2.2914. The reconstructed signals from the noisy data and the

original signals are shown in Figure 3.2a for 10f , in Figure 3.2b for 10g, in Figure 3.2c for 100f ,

and in Figure 3.2d for 100g, respectively. The noisy data are corrupted by Gaussian noise with zero

mean and standard deviation 2.3714 ˆ 10´2. As displayed in Figure 3.2, while the reconstructed

signals in Figures 3.2a and 3.2b are clearly different from the original signals, it is hard to distinguish

the reconstructed signals from the original signals in Figures 3.2c and 3.2d because the reconstructed

signals are very close to the original signals.

Figures 3.3 and 3.4 are simulation results for the sparsely supported signals. For these spe-

cial signals, a threshold method [50] is introduced for the samples and reconstructed signals. The

method is implemented as follows. Let the threshold T be 2σ, let ỹ denote the sample vector, and let
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Figure 3.4: A comparison of the reconstruction results before and after applying the threshold
method. (3.4a) and (3.4b) show the reconstruction results before and after applying the thresh-
old method, respectively. In (3.4a) and (3.4b), the original signals have the same sparse support
t8, 9, 10u. The samples are corrupted by the independent Gaussian noise with mean 0 and standard
deviation 2.3714ˆ 10´2.

f 7L be the reconstructed signal. If |ỹpiq| ď T , we set ỹpiq “ 0, where ỹpiq is the i-th component of ỹ.

Similarly, if |f 7Lpiq| ď T , we set f 7Lpiq “ 0. Then the reconstruction results before and after apply-

ing the threshold method are compared. Figures 3.3 and 3.4 illustrate the behavior of Ep}εL}22{σ
2q

and the reconstructed signals before and after applying the threshold method, respectively. In the

simulation, the samples are corrupted by Gaussian noise with zero mean and standard deviation

2.3714 ˆ 10´2. A sparsely supported signal f P R18 is generated with support in the locations

t8, 9, 10u with fp8q “ fp9q “ fp10q “ 1. The MSE Ep}εL}22{σ
2q are estimated for signals f , 10f ,

and 100f separately. As shown in Figure 3.3, for n sufficiently large, Ep}εL}22{σ
2q is about 20%

smaller after the threshold method is applied to the samples and reconstructed signals. Figure 3.4

shows the graphs of the original signal 10f and the reconstructed signal, which suggests that the

signal reconstructed by applying the threshold method is more accurate than the one reconstructed

without applying the threshold method in the locations outside the support of the original signal.

These observations suggest that the threshold method can reduce Ep}εL}22{σ
2q by improving the

accuracy of the zero sets.
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3.6.2 Cadzow Denoising

In this section, we describe the impact of the Cadzow denoising technique described in Section

3.4 on dynamical sampling using synthetic data.

3.6.2.1 Denoising of the sampled data

We use a symmetric convolution operator A with eigenvalues t1{8, 1{4, 3{8, 1{2, 5{8, 3{4,

7{8, 1u. We let A act on the normalized randomly generated signal f “ p0.2931, 0.3258, 0.04568,

0.3286, 0.2275, 0.0351, 0.1002, 0.1967, 0.3444, 0.34710, 0.0567, 0.3492, 0.3443, 0.1746, 0.2879qT

iteratively for 100 times. The iterated signals are stored in a matrix Π as

Π “
`

f Af A2f . . . A100f
˘

“ pf0 f1 f2 . . . f100q

where Akf is a column vector for each 0 ď k ď 100 (see (3.1)). At each time level, the

generated signals are perturbed by i.i.d. Gaussian noise with zero mean and standard deviation

σ P t10´2, 10´3, 10´4, 10´5u; the noisy signals are denoted by

rΠ “ Π`H,

where Hi,j „ Np0, σ2q and every two entries of H are independent (see (3.2)).

The samples are taken uniformly on 3Z15 (i.e., m “ 3), specifically at locations Ω “

t1, 4, 7, 10, 13u. The Cadzow algorithm (Algorithm 3) is applied to the data rY “ SmΠ̃ where

Sm is defined in the first paragraph of Section 3.3.3. The denoised data are denoted by Z which is

compared to SmΠ directly by computing

}Z ´ SmΠ}

}SmΠ}
. (3.18)

In addition, the relative difference between the noisy data SmrΠ and SmΠ is computed as

}SmrΠ´ SmΠ}

}SmΠ}
. (3.19)

The same process is repeated for 80 times (with the same Π and different H). The numerical
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results are obtained by averaging the 80 values of (3.18) and (3.19), respectively.

The simulation results are shown in Figure 3.5. For rank ě 3, the horizontal values depict the

threshold ranks in the Cadzow algorithm. The corresponding vertical values are log10 of the values

of (3.18) averaged over 80 repetitions. When rank “ 0, (3.19) is used instead of (3.18). As shown

in Figure 3.5, the Cadzow denoising technique works best for noise reduction when the rank of the

Hankel matrix is chosen to be 3, which is consistent with the theory described in Section 3.4.
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Figure 3.5: The relative errors using Cadzow denoising method. The vertical axis represents log10

of averaged (3.18) when the threshold rank in the Cadzow denoising Algorithm 3 is greater than or
equal to 3. When the threshold rank is 0 (3.19) is used instead of (3.18).

In Figure 3.6, the curve labeled “rank “ 0” shows the relationship between log10 of the av-

eraged (3.19) and log10 of the noise standard deviations, while the curves labeled as “rank “ r”

for r “ 3, 7, 11, 15 show the relationship between log10 of the averaged (3.18) and log10 of the

noise standard deviation. As displayed in Figure 3.6, the curves are almost linear. For fixed noise

standard deviation, the figure shows that, as predicted by the theory described in Section 3.4, the

best denoising happens when “rank “ 3” since the sub-sampling is 3.

3.6.2.2 Spectrum Reconstruction of the Convolution Operator

In order to evaluate the impact of the Cadzow denoising technique when reconstructing the

spectrum of the convolution operator, we conducted a number of simulations on synthetic data. We

repeated the same process as in Section 3.6.2.1 until the denoised data Z was generated. Then
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Figure 3.6: The relation between the relative errors and the noise standard deviations using the
Cadzow denoising method with different threshold ranks. The curves labeled “rank “ r”, r “
3, 7 . . . reflect the relationship between log10 of the averaged relative errors and log10 of the noise
standard deviations, where the relative errors are represented in (3.18) for rank ě 3 and in (3.19)
for rank “ 0.
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we used the results of Section 3.3.3 and Algorithm 2 to recover the spectrum of the convolution

operator using separately denoised data Z and noisy data rY “ SmrΠ. The simulation results are

shown in Figures 3.7, 3.8, and 3.9 for different noise standard deviations. Figure 3.7 shows the

simulation results when the standard deviation of the noise is 10´5. The curves in Figure 3.7 are

simulation results for three different random choices of noise. For Figures 3.8 and 3.9, the noise has

standard deviations 10´4 and 10´3, respectively. As shown in Figures 3.7, 3.8, and 3.9, the Cadzow

denoising technique can make a big difference for the spectrum recovery.

Using the estimated convolution operator and the denoised data, we also evaluated the effective-

ness of the reconstruction algorithm, i.e., Algorithm 1, for which the simulation results are shown

in Figure 3.10. The figure shows that if the noise is small, the recovered signals are extremely close

to the original signals, which also verifies the effectiveness of the Cadzow denoising technique for

dynamical sampling.

3.6.3 Real data

In this section, we describe numerical tests that we performed using two sets of real data. One

data set documents a cooling process with a single heat source, and the other – a similar process with

two heat sources. These data sets were labeled as “one hotspot” and “two hotspots”, respectively.

The set-up for the real data sets is shown in Figure 3.11. We used the bicycle (aluminum) wheel

for the circular pattern. Fifteen (15) sensors are equidistantly placed around the perimeter of the

wheel with 4.5 inches apart. The specified accuracy of the sensors is 0.5˝C and the temperature

samples are taken at 1.05Hz.

The goal was to estimate the dynamical operator and the original signals by using information

from a subset of the thermometer measuring devices, while the totality of the measurements from all

devices was used as control to assess the performance of our estimations. In our reconstructions, we

did not use any a priori knowledge about the conducting material, its parameters, or the underlying

operator driving the evolution of the temperature. Only raw, time-space subsamples of the tem-

peratures was used to estimate the evolution operator, and the initial temperature distribution. The

operator was assumed to be real, symmetric convolution operator whose Fourier transform consists

of two monotonic pieces, so that recovery of the spectrum of the driving operator sufficed to recover
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Figure 3.7: A comparison of the spectrum reconstruction with and without the Cadzow denoising
technique for σ “ 10´5.
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Figure 3.8: A comparison of the spectrum reconstruction with and without the Cadzow denoising
technique for σ “ 10´4.
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Figure 3.9: A comparison of the spectrum reconstruction with and without the Cadzow denoising
technique for σ “ 10´3.
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Figure 3.10: A comparison of the recovered signal and the original signal by using the estimated
recovered convolution operator.
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Figure 3.11: Set-up.

the filter.

In the experiment, the signal at time level 20 was set as the original state. First, we smoothed

the data by averaging over time to obtain a new data set Γ “ pγ1 γ2 . . .q, where γ1 “
ř10
i“1 fi,

γ2 “
ř20
i“11 fi, etc. Next, we extracted the information from the new data set at uniform locations

Ω with gap m “ 3 generating the data set SmpΓq. Cadzow Algorithm 3 is then used on rY “ SmpΓq

with the threshold rank close to 2 or 3 to obtain the denoised data Z. Using the data Z, Algorithm

2 was applied to estimate the filter. Finally, using the recovered filter, the original signals were

estimated by repeating the computations as in Section 3.6.1.

The test results on the data set with one hotspot are shown in Figure 3.12. Figure 3.12a depicts

the evolved signals at all 15 locations. Figure 3.12b shows the recovered spectrum of the evolution

filter using the data from locations Ω “ t1, 4, 7, 10, 13u to estimate the filter driving the system.

Using the driving operatorA recovered from Ω and the necessary extra sampling locations at t3, 15u

needed to recover the signal (Ωe “ ΩY t3, 15u) (see [7]), we reconstructed an approximation f 7 of

the signal that is displayed in Figure 3.12c; it has a relative error }γ1´f
7}2

}γ1}2
of 9.94% compared to the
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actual measurements at all 15 locations as the reference. This relative error shows that dynamical

sampling also works reasonably well for a real data set.
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Figure 3.12: Simulation results for the data set with one hotspot. Here, (3.12a) plots the evolved
signals, (3.12b) shows the recovered spectrum by using the data from partial locations, and (3.12c)
sketches the recovered signal by using the recovered operator from partial locations and the sampled
original signal. The partial locations for recovering the operator are Ω “ t1, 4, 7, 10, 13u. To
recover the original signals, we use the data from locations Ωe “ t1, 3, 4, 7, 10, 13, 15u.

The test results using the data set with two hotspots are shown in Figure 3.13. Figure 3.13a plots

the evolved signals at the 15 locations. Figure 3.13b exhibits the recovered spectrum of the filter with

Ω “ t2, 5, 8, 11, 14u. Using the driving operator A recovered from Ω and the data from locations

Ωe “ t2, 3, 5, 8, 10, 11, 14u, we recovered an approximation of the signal that is displayed in Figure

3.13c. In this case, the relative error was 12.45% compared to the actual measurements at all 15

locations. Such relative error is generally considered acceptable in this kind of real applications.

By making similar tests with different choices of Ω and Ωe, we found that the relative errors
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Figure 3.13: Simulation results for the data set with two hotspots. Here, (3.13a) plots the evolved
signals, (3.13b) shows the recovered spectrum by using the data from partial locations, and (3.13c)
sketches the recovered signal by using the recovered operator from partial locations and the sampled
original signal. The partial locations for recovering the operator are Ω “ t2, 5, 8, 11, 14u. To
recover the original signals, we use the data from locations Ωe “ t2, 3, 5, 8, 10, 11, 14u.
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Figure 3.14: Simulation results for the data set with one hotspot. Here, (3.14a) shows the recovered
spectrum by using the data from partial locations, while (3.14b) plots the recovered signal by using
the recovered operator from partial locations, where the partial locations for recovering the operator
are Ω “ t2, 5, 8, 11, 14u. To recover the original signals, we use the samples from locations Ωe “

t2, 3, 5, 8, 10, 11, 14u.

depend heavily on the choice of locations. The two pictures in Figure 3.14 are the results of the

same process that was used to generate the last two pictures in Figure 3.12. In this case, however,

we chose Ω “ t2, 5, 8, 11, 14u and Ωe “ t2, 3, 5, 8, 10, 11, 14u. This choice resulted in the relative

error of 34.29% which is considerably larger than the 9.94% in Figure 3.12.

3.7 Concluding remarks

This chapter introduces the problem of noise into the modeling of dynamical sampling and

discusses certain unbiased linear estimators for the recovery of signals from dynamical sampling.

The addition of noise to the model highlights some of the difficulties in recovering a signal from

measurements in dynamical sampling, and sets the stage for more detailed studies of the information

theoretic bounds and other types of estimators.

In addition, this chapter studies a special case related to blind deconvolution, where the subsam-

pling is uniform (to which extra samples are added for the recovery of the unknown signal), and

the evolution operator is unknown, but is one dimensional, symmetric, real and decreasing in the

frequency domain. The existence of multiple measurements over time, along with the assumptions

on the properties of the filter, allow for the recovery of the unknown signal and unknown filter; we
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point to some of the factors that have an adverse effect on the stability of this procedure.

The basic algorithms and discussion of certain special cases are presented here with the intent

of providing a starting point for future work on both the theoretical and algorithmic aspects of noisy

instances of dynamical sampling and the case where the evolution operator is unknown.
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Appendix A

Appendix for Chapter 3

A.1 Appendix for Proposition 3.5.1

Proof of Proposition 3.5.1. It is clear that
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where A˚plqj denotes the l-th column of matrix A˚j and ηlj is the l-th entry of ηj . Additionally, ηlj and

ηpj are independent for l ‰ p. It follows that
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and the proposition is proved.
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[36] K. Gröchenig, J.L. Romero, J. Unnikrishnan, and M. Vetterli. On minimal trajectories for

mobile sampling of bandlimited fields. Appl. Comput. Harmon. Anal., 39(3):487–510, 2015.

[37] P.R. Halmos. Normal dilations and extensions of operators. Summa Brasil. Math., 2:125–134,

1950.

[38] C. Heil. Wavelets and frames. In Signal processing, Part I, volume 22 of IMA Vol. Math.

Appl., pages 147–160. Springer, New York, 1990.

[39] T.L. Kriete III. An elementary approach to the multiplicity theory of multiplication operators.

Rocky Mountain J. Math., 16(1):23–32, 1986.

[40] P. Jorgensen and F. Tian. Von Neumann indices and classes of positive definite functions.

Journal of Mathematical Physics, 55(9):093502, 2014.

[41] D. Kundur and D. Hatzinakos. Blind image deconvolution. IEEE signal processing magazine,

13(3):43–64, 1996.

[42] Y.M. Lu, P.L. Dragotti, and M. Vetterli. Localizing point sources in diffusion fields from spa-

tiotemporal measurements. In Proc. Int. Conf. Sampling Theory and applications (SampTA),

Singapore, 2011.

[43] Y.M. Lu and M. Vetterli. Spatial super-resolution of a diffusion field by temporal oversampling

in sensor networks. In Proc. IEEE International Conference on Acoustics, Speech and Signal

Processing, number LCAV-CONF-2009-009, pages 2249–2252, 2009.

[44] A.W. Marcus, D.A. Spielman, and N. Srivastava. Interlacing families II: Mixed characteristic

polynomials and the Kadison-Singer problem. Ann. of Math. (2), 182(1):327–350, 2015.

[45] J. Murray-Bruce and P.L. Dragotti. Estimating localized sources of diffusion fields using

spatiotemporal sensor measurements. IEEE Trans. Signal Process., 63(12):3018–3031, 2015.

[46] J. Murray-Bruce and P.L. Dragotti. A sampling framework for solving physics-driven inverse

source problems. IEEE Transactions on Signal Processing, 65(24):6365–6380, Dec 2017.

70



[47] M. Zuhair Nashed. Inverse problems, moment problems, signal processing: un menage a

trois. In Mathematics in science and technology, pages 2–19. World Sci. Publ., Hackensack,

NJ, 2011.

[48] F. Philipp. Bessel orbits of normal operators. Journal of Mathematical Analysis and Applica-

tions, 448(2):767 – 785, 2017.

[49] J. Ranieri, A. Chebira, Y.M. Lu, and M. Vetterli. Sampling and reconstructing diffusion fields

with localized sources. In Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE

International Conference on, pages 4016–4019, May 2011.

[50] J.A. Rice. Mathematical Statistics and Data Analysis. Duxbury Advanced Series. 3 edition,

2007. ISBN 0-534-39942-8.

[51] W. Rudin. Real and Complex Analysis. International Series in Pure and Applied Mathematics.

McGraw-Hill Science/Engineering/Math, 3 edition, 1986.

[52] W. Rudin. Functional Analysis. International Series in Pure and Applied Mathematics.

McGraw-Hill Science/Engineering/Math, 2 edition, 1991.

[53] T. Strohmer. Finite- and infinite-dimensional models for oversampled filter banks. In Modern

sampling theory, Appl. Numer. Harmon. Anal., pages 293–315. Birkhäuser Boston, Boston,
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