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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Motivation and objectives 

The goal of this PhD is to correlate the changes that occur in the colon 

as part of inflammatory bowel disease to differences seen in Rama spectra. This 

work demonstrates that the sensitivity of Raman spectroscopy (RS) to colon 

changes can be used to detect and characterize inflammatory bowel disease in 

humans and experimental colitis in mice. 

In 2015, inflammatory bowel disease (IBD), including ulcerative colitis 

(UC) and Crohn’s colitis (CC), was estimated to affect nearly 1.5 million 

Americans and 2.2 million Europeans, and the incidence is increasing 

worldwide.1-3 Despite advances in therapy, hospitalization rates for IBD, 

particularly CC, have shown significant increase, incurring a substantial rise in 

inflation-adjusted economic burden.4 Ulcerative and Crohn’s colitis are two 

distinct forms of IBD and require different medical and surgical management 

despite significant overlap in clinical presentation, symptoms, and disease 

progression. Currently, the distinction between UC and CC is made based on 

inexact clinical, radiologic, endoscopic, and pathologic features,5-8 such that in 

up to 15% IBD cases, indeterminate colitis (IC, or IBD unspecified) is 
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diagnosed because of the difficulty in distinguishing between UC and CC.3,9 In 

these patients, diagnosis ultimately relies on long term follow up based on 

success or failure of existing treatment and recurrence of disease. Therefore, 

accurate diagnosis of IBD is of paramount importance for appropriate medical 

and surgical care, intervention, and prognosis.  

Development of new technologies that can improve understanding of 

IBD and aide objective diagnosis is urgently needed. One of the objectives of 

this research is to apply RS, an optical technique, as a novel tool to characterize 

IBD in vivo during colonoscopy. In order to develop robust techniques that can 

effectively evaluate tissue changes several steps must be undertaken including 

optimization of instrumentation for this application, characterization of the 

effects of colon variability and disease severity, and evaluate a clinical 

population to demonstrate feasibility of this technique for further application. 

Therefore, the overall objective of this doctoral research is to 

characterize the effects that IBD related changes in the colon have on Raman 

spectra in order to develop a viable optical tool for studying IBD and provide 

and accurate, objective aide for diagnosis and monitoring. 

 

1.2 Specific aims 

 Aim 1: Develop a multimodal probabilistic Monte Carlo model 

incorporating absorption, elastic scattering, Raman scattering and 



3 
 

fluorescence to evaluate fiber optic probe designs used for Raman 

spectroscopy. Fiber optic probes are the primary interface between most 

Raman instruments and the target samples. Numerous designs have been 

implemented for in vivo applications for soft tissues however most have been 

optimized based on theoretical performance in low or non-scattering scenarios 

that are not representative of biomedical applications. In this aim, a 

probabilistic model incorporating all of the competing optical phenomena 

detected by fiber optic Raman spectroscopy probes was implemented and 

experimentally validated in both biological and synthetic phantoms to compare 

four distinct volume integrating probe designs. Modelling results were 

evaluated between probe designs relative to experimental results and theoretical 

design parameters for each probe, such as excitation and collection cone 

overlap, surface area for detection, and fiber optic collection angle. 

 Aim 2: Characterize IBD and normal signals in vivo during 

colonoscopy and assess influential patient variables that impact disease 

discrimination. Previous studies have demonstrated promising disease 

discrimination for ex vivo IBD tissue biopsies based on Raman spectra. To 

evaluate the performance of Raman spectroscopy in vivo, patients undergoing 

colonoscopy in the VUMC were recruited and measured under this aim. Raman 

spectra were collected from multiple locations in each segment of the colon and 

compared with endoscopic findings and tissue biopsies obtained from each 

measurement site as determined by the clinician. Spectral classification was 
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implemented using statistical multivariate analysis relative to established 

diagnosis which served as the gold standard. Subsequent discrimination based 

on stratification of colon segment and disease severity was implemented to 

demonstrate potential for improved performance when accounting for relevant 

patient and disease variables. 

 Aim 3: Characterize the effects of IBD disease presentation on 

Raman spectra acquired from the colon in (A) human colectomy specimens 

and (B) a murine model of experimental colitis. In this aim, Raman spectra 

were acquired from excised colon tissues to more fully characterize the 

complex disease presentation as a function of inter-anatomical variability and 

disease severity. To thoroughly assess the impact of colon segment and 

histological markers of chronic and acute disease severity, total or partial colon 

resection samples were collected from patients undergoing colectomy 

procedures at VUMC. Gross mapping of the tissue with a Raman fiber optic 

probe was correlated with histologically scored tissue biopsies to establish 

factors that significantly impact the Raman spectral measurements of 

inflammatory disease in the colon. To assess the impact of active inflammation 

on acquired spectra with relative control over disease severity, a murine model 

of experimental colitis was be evaluated with ex vivo Raman 

microspectroscopic mapping and correlated with clinical disease indicators and 

histologic scoring of epithelial injury and inflammation. Hypothesis: The 

degree of active inflammation will impact acquired spectra and controlled 
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murine models of IBD will yield information to improve classification accuracy 

in vivo. 

 In Appendix 1, an evaluation of several user, instrument, and 

physiological factors that influence Raman spectra collected from in vivo 

tissues are discussed. Multiple identical clinical fiber optic probe based Raman 

spectroscopy systems were used to measure the skin from multiple anatomical 

sites across a pilot cohort of subjects. This work supports prior reports of intra-

anatomical and inter-patient variability sources as influential factors for in vivo 

Raman spectra, as well as provides guidelines for mitigating the impact of non-

physiological sources of spectral variability. 

 The combination of these three Aims and Appendix 1 serves to establish 

the potential for in vivo Raman spectroscopy as a clinical adjunct for disease 

discrimination and evaluation of inflammatory bowel disease. Further, this 

work establishes new methods for evaluating instrumentation and provides a 

characterization of several influential variables from patients and models of 

inflammatory disease that impact Raman spectral measurements. The 

completion of this project demonstrates the sensitivity of Raman scattering to 

subtle biochemical changes in colon tissues associated with anatomic variation 

and disease presentation. Understanding these influential factors resulted in 

improved classification of disease type based on decoupling the complex 

interplay of disease and natural variations in the colon.  
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1.3 Summary of chapters 

Following this introductory chapter, Chapter 2 contains relevant 

background information on the biology and anatomy of the colon, 

inflammatory bowel disease, as well as a review of developments for clinical 

instrumentation and applications of Raman spectroscopy. 

In Chapter 3, an assessment of the instrumentation designs utilized for 

fiber optic probe based Raman spectroscopy in vivo is undertaken based on a 

comparison of results generated from a new multimodal optical model and 

experimental results from both biological and synthetic phantoms. 

Chapter 4 provides the first report on the sensitivity of in vivo RS from 

this research, or any other peer-reviewed work, specifically addressing 

differences between disease classes, colon segments, and disease severity in 

measurements obtained during colonoscopy from healthy control, Crohn’s 

disease, or ulcerative colitis patients. 

Chapter 5 details the effects of colon tissue variability on Raman spectra 

obtained from unique locations and disease presentations in colectomy tissues 

to decouple the interactions of disease and tissue variability effects based on 

histopathological scoring. 

Chapter 6 presents the results of Raman microspectroscopic evaluation 

of a controlled experimental colitis model to interrogate the effects of disease 

severity and active inflammation in the colon wall compared with both clinical 

and histopathological indicators of disease. 
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Chapter 7 comprises a summary of the major results presented in this 

dissertation and potential avenues for future directions for this project. It also 

provides information about the impact of this research on the larger scientific 

field and society. 

Appendix I entails a characterization of sources of variability associated 

with in vivo Raman spectroscopy. This chapter identifies and isolates the 

contributions from user, instrumentation, and physiology induced sources of 

variation, and presents guidelines for minimizing these effects for clinical 

applications of Raman spectroscopy. 
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CHAPTER 2 

 

BACKGROUND 

 

2.1 Physiology of the normal colon and rectum 

 

 
Figure 2.1. Anatomy of healthy human colon (courtesy of Johns Hopkins 
Gastroenterology and Hepatology). 

 

The colon is the organ in the gastrointestinal (GI) tract responsible for 

concentrating waste through water and electrolyte absorption, storing and 

controlled evacuation of waste, and digestion and absorption of undigested 

food.1,2 Extracting water, salt, and some fat soluble vitamins from the chyme 

deposited from the small intestine, the colon stores and transports feces prior to 
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elimination from the body. The colon is generally divided in to three segments, 

the right (cecum and ascending colon), transverse, and left (descending and 

sigmoid colon) colon which connects to the rectum. The outside of the colon is 

connected to the abdominal wall by folds of peritoneum (mesentery), in 

ascending, transverse, descending, and sigmoid colon segments.3,4 As depicted 

in Figure 2.1, the colon is a muscular organ composed four layers found in other 

hollow GI organs: the mucosa, submucosa, circular muscle and longitudinal 

muscle layers. Unlike the small intestine which has a villous projections, the 

colon mucosa is relatively smooth with crypt invaginations. This mucosal layer, 

lining the inner lumen is composed of simple (non-ciliated) columnar epithelial 

cells and mucous secreting goblet cells to promote waste transport.3,4 Haustral 

folds are a constantly changing anatomic factor caused by circular muscle 

contractions that last for hours. The outer longitudinal muscles, called tenia 

coli, are three equidistantly spaced bands that extend from the cecum to the 

rectum where they fuse to form a continuous muscular layer. The muscular 

contractions in the right colon cause mixing to facilitate water absorption, while 

feces is slowly moved in the left colon prior to reflexes that activate 

contractions to evacuate stool.2 Due to the slow movement of waste through 

this organ, the colon also has a large population of commensal bacteria which 

are typically harmless and compete with potentially pathogenic microbes, 

promote motility, help maintain mucosal integrity, and make nutritional 

contributions. 
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2.2 Inflammatory bowel disease 

 Inflammatory bowel disease (IBD) describes a group of disorders in 

which the inner lining of the GI tract become inflamed. IBD affects nearly 1.5 

million people in the United States and 2.2 million in Europe, with increasing 

incidence worldwide.5-8 It has recently been cited that IBD is one of the five 

most prevalent gastrointestinal disease burdens in the US, with an annual 

overall health care cost of more than $1.7 billion.9,10 The two major types of 

IBD are ulcerative colitis (UC) and Crohn's disease (CD), with different causes 

and discrete mechanisms of tissue damage.11 Ulcerative colitis is limited to the 

colon whereas CD can rise in any part of the GI tract, although it often manifests 

itself in the colon. IBD contributes to significant morbidity and reduced quality 

of life; the estimated incidence and prevalence of 7-9 and 210-240 per 100,000 

and 6-8 and 130-200 per 100,000, for UC and CD respectively.12,13 Patients 

with IBD are at increased risk of developing colon cancer.14,15 They also have 

an higher risk of endothelial dysfunction and coronary artery disease.16 Despite 

advances in therapy, hospitalization and surgery rates for IBD in the United 

States have increased since 1990.17,18 With the high drug costs, and up to 75% 

of CC and 25-33% of UC patients that require surgery in the long-term, IBD is 

one of the most costly conditions on a per year basis in the US, with expenses 

for CC surpassing diabetes, coronary artery disease, and chronic obstructive 

pulmonary disorder.19,20 This reinforces the need to improve the current 

diagnostic and therapeutic strategies for IBD. 
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2.3 Crohn’s disease 

Crohn’s disease is a chronic inflammatory disorder that can affect the 

entire GI tract. The key pathological feature is an inflammatory process that 

extends through all layers of the bowel wall. Microscopic examination of 

tissues from CD reveals lymphoid hyperplasia, diffuse granuloma infiltration, 

discrete noncaseating granulomas in the submucosa and lamina propria, diffuse 

edema, and monocytic infiltration in lymph nodules.2 Aphthous ulcers, small 

superficial ulcerations, are the earliest mucosal lesion in CD. As disease 

progresses, these tiny lesions enlarge and coalesce to form longitudinal and 

transverse ulcers and have a characteristic cobblestone appearance from the 

deep mucosal ulceration and submucosal thickening.2 Skip lesions, or discrete 

locations of inflammation surrounded by tissue without gross or histological 

abnormalities are also characteristic of Crohn’s disease. CD is often signified 

by thickened fatty mesentery in the vicinity of the disease. As the mesentery 

are inflamed fibrosis of the bowel tissue can often cause adhesion of and may 

extend into all layers of the bowel wall, forming fistulae and abscesses (Figure 

2.2).  

Crohn’s disease onset can occur at any age but most commonly begins 

between 15 and 30 years of age. There is a familial association of CD such that 

20-30% of CD patients having a family history of the disorder, further 

indicating genetic influences.2,5 In CD, the T-cell response is T-helper 1 (Th1) 

dominant. The activation of central immune-cell populations is eventually 
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accompanied by the production of a wide variety of nonspecific mediators of 

inflammation, such as cytokines, chemokines, and growth factors.22-24 These 

mediators enhance the inflammatory process itself and tissue destruction, which 

eventuate in the clinical manifestations of disease.25 

 
Figure 2.2. Histology slide of an UC and CC case (Courtesy Johns Hopkins 
Gastroenterology and Hepatology Resource Center, www.hopkins-gi.org). 
 

2.4 Ulcerative colitis 

Ulcerative colitis is a chronic inflammatory disease affecting the 

colonic mucosa from the rectum to the cecum. Characterized by rectal bleeding 

and diarrhea, remission and relapse, UC is limited to mucosal inflammation that 

does not become transmural (Figure 2.2).2,5 Sharp localized abdominal pain and 

fistula formation are uncommon. Extensive superficial mucosal ulceration 

develops in conjunction with severe inflammation and the coincident 
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production of a complex mixture of inflammatory mediators. Histopathological 

features of UC include the presence of a significant number of neutrophils 

within the lamina propria and the crypts, where they form micro-abscesses.21 

Crypt abscesses may extend laterally and undermine the integrity of the mucosa 

on three sides, resulting in the formation of a hanging fragment of mucosa that 

appears in endoscopy and radiography as a pseudopolyp.2,5 After mucosal 

destruction, epithelial healing processes cause the formation of highly vascular 

granulation tissue is formed.2,26,27 

Ulcerative colitis typically occurs in patients between 20 and 50 years 

of age either as an acute attack or a chronic course with little pain. Roughly 

70% of patients will have complete remission of symptoms between 

intermittent attacks, however another 15% will suffer from continuous 

symptoms without remission.2,11 As UC is not a distinct clinical entity and has 

histological features that overlap with several other inflammatory states in the 

colon, the diagnosis relies on the discovery of several clinical and pathological 

criteria and exclusion of other causes for colitis such as infection.2,11 In UC, the 

response is either Th2 [interleukin (IL) -4, IL-13] or is mediated by specialized 

cells such as natural killer T cells (NKT).28,29 
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2.5 IBD differentiation 

It is extremely important to accurately differentiate between CD and UC 

as they have different prognoses and differing response to medical and surgical 

treatment. One method of medical care implements a “bottom-up” approach to 

treatment, as depicted in Figure 2.3, where the level of severity dictates the 

avenue for treatment.2 certain medications have shown efficacy in the treatment 

of CD (methotrexate, natalizumab, and certolizumab), while others work well 

for UC (mesalamine). Long-term treatment with antibiotics (nitroimidazoles or 

clofazimine) is effective in patients with CD30 while its efficacy in UC is not 

observed.31 Current research and clinical trials indicate the development of new 

drugs that are specific for either UC32-34 or CD35-37 with more than 50 

personalized medications under investigation.38,39  

 
Figure 2.3. Standard approach for medical management of IBD. Courtesy of 
Crohn's and Colitis Foundation of America. 
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For surgical intervention and prognosis, it is vital to accurately delineate 

IBD because an errant diagnosis may result in serious consequences. The vast 

majority of patients with UC will benefit from surgery, such as restorative 

proctocolectomy (RPC) with ileal pouch-anal anastomosis (IPAA). In contrast, 

surgery for CD patients is generally not curative and can lead to severe 

complications as malnutrition and multiple surgical procedures. In fact, up to 

50% of CD patients who undergo RPC with IPAA require removal of the pouch 

or diversion due to Crohn’s recurrence or disease flare-ups in other parts of the 

GI tract.40 For therapy and patient outcomes, the proper management of IBD 

calls for an accurate diagnostic tool that can distinguish between CD and UC, 

and potentially predict which patients will respond to specific medications and 

give clinicians an indicator for the most effective treatment option. 

Current techniques for differentiating CD and UC have deficiencies in 

terms of diagnostic accuracy. The American College of Gastroenterology 

Practice Parameters Committee recommends a combination of clinical, 

endoscopic, histologic, radiographic and surgical findings to differentiate 

between CD and UC.11,41,42 While certain features can be used to differentiate 

the diseases during routine colonoscopy and other procedures, many cases do 

not present definitive indicators of disease type. Ulcerative colitis is generally 

confirmed when a patient that presents with systemic features has colonoscopy 

and biopsy confirmed colitis and no presence of infectious or non-infectious 

causes, while the methods for CD diagnosis are more complex and dependent 
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upon patient presentation.41 This distinction cannot always be made due to 

overlapping symptoms, as well as similarities in radiographic and histologic 

features.43 Serological markers have limited sensitivity (65% for CD and 76% 

for UC) in differentiating UC from CD.44 While 40 susceptibility genes for CD 

and UC have been identified,45 testing is not readily available to the clinician 

nor do these genes account for the majority of IBD cases. The lack of a reliable 

method for differentiating CD and UC imposes a burden on the medical 

community. Up to 300,000 patients in the US cannot be diagnosed as UC or 

CD and they are labeled as indeterminate colitis (IC).7 Additionally, failure to 

recognize characteristic signs of CD such as granulomas and transmural 

inflammation often leads to errors in pathological interpretation in at least 15% 

of the cases.46 Thus, there is at least a 15% misdiagnosis rate of CD as UC in 

addition to the 15% of IC cases.46 This results in approximately 600,000 

patients in the US that cannot be correctly diagnosed as CD or UC and thus do 

not receive appropriate treatments. Limitations in current diagnostic methods, 

therefore, highlight the need for a rapid, accurate, automated method that can 

be used to differentiate patient disease as well as the degree of the 

inflammation. This could significantly improve the management of the disease 

with respect to both time and cost. 
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2.6 Clinical instrumentation and applications of Raman spectroscopy 

Clinical diagnostic devices provide new sources of information that 

give insight about the state of health which can then be used to manage patient 

care. These tools can be as simple as an otoscope to better visualize the ear 

canal or as complex as a wireless capsule endoscope to monitor the 

gastrointestinal tract. It is with tools such as these that medical practitioners can 

determine when a patient is healthy and to make an appropriate diagnosis when 

he/she is not. The goal of diagnostic medicine then is to efficiently determine 

the presence and cause of disease in order to provide the most appropriate 

intervention. The earliest form of medical diagnostics relied on the eye - direct 

visual observation of the interaction of light with the sample. This technique 

was espoused by Hippocrates in his 5th century BCE work Epidemics, in which 

the pallor of a patient’s skin and the coloring of the bodily fluids could be 

indicative of health. In the last hundred years, medical diagnosis has moved 

from relying on visual inspection to relying on numerous technological tools 

that are based on various types of interaction of the sample with different types 

of energy – light, ultrasound, radio waves, x-rays etc. Modern advances in 

science and technology have depended on enhancing technologies for the 

detection of these interactions for improved visualization of human health. 

Optical methods have been focused on providing this information in the micron 

to millimeter scale while ultrasound, x-ray, and radio waves have been key in 

aiding in the millimeter to centimeter scale.  While a few optical technologies 
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have achieved the status of medical instruments, many remain in the research 

and development phase despite persistent effort by many researchers in the 

translation of these methods for clinical care. Of these, Raman spectroscopy 

has been described as a sensitive method that can provide biochemical 

information about tissue state while maintaining the capability of delivering 

this information in real-time, non-invasively, and in an automated manner. This 

review presents the various instrumentation considerations relevant to the 

clinical implementation of Raman spectroscopy and reviews a subset of 

interesting applications that have successfully demonstrated the efficacy of this 

technique for clinical diagnostics and monitoring in large (n ≥ 50) in vivo 

human studies. 

2.6.1 Why Raman spectroscopy? 

As described by Dr. C.V. Raman in 1928, the Raman signal is usually 

weak (one in one hundred million incident photons) and “requires very 

powerful illumination for its observation.”47 Today, advances in laser sources 

and sensitive detectors enable the application of this scattering event for 

samples that are more complex than the original “dust-free liquids or gases.” 

Raman peaks are typically spectrally narrow (a few wavenumbers) and in many 

cases can be associated with the vibration of a particular chemical bond (or 

normal mode dominated by the vibration of a single functional group) within a 

molecule.48 Figure 2.4 displays an example Raman spectrum, that of 
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phosphatidylcholine, a phospholipid molecule, where each band can be 

correlated to specific stretching and bending modes of vibration in the 

molecule, thus providing a molecular fingerprint. Consequently, in tissue, 

which is composed of a complex mixture of molecules, the presence of the 

unique bands of phosphatidylcholine can be tracked resulting in the quantitative 

evaluation of the sample’s chemical composition. Such quantitative or 

qualitative assessment in turn can be used to infer specific biochemical changes 

associated with tissue pathology or physiology for diagnosis or monitoring. 

 

Figure 2.4. Raman spectrum of phosphatidylcholine, a phospholipid known to 
be present in cells and tissues, measured using a fiber optic probe based Raman 
system at 785 nm excitation. Characteristic spectral peaks correspond to 
molecular vibrations of the molecule of interest. 

 

Thus Raman spectroscopy is a molecular specific technique that can be 

used to develop a fundamental biochemical understanding of tissue physiology 

and pathology and extend this knowledge for tissue diagnosis and monitoring. 



21 
 

The optical nature of the technique makes it possible to extract this information 

non-invasively, or at the very least non-intrusively, facilitating the utility of this 

technique in a clinical setting. Because Raman scattering is both a sensitive and 

weak phenomenon, instrument considerations for adapting this technique for 

clinical applications can be challenging. Since the initial reports of in vivo 

human tissue spectra in 199349, technological development and technique 

refinement have enabled Raman measurements in humans with integration 

times of 0.5-5 seconds allowing real-time assessment of tissue state50-52. Spectra 

can now be collected, corrected for undesirable signal components, processed 

and analyzed rapidly to provide automated feedback at the time of 

measurement53-55. With these advancements, Raman techniques satisfy many 

of the criteria required for the adoption of a novel biomedical diagnostic 

technique in clinical practice: sensitivity to changes in tissue, in vivo 

application, and unique information obtained noninvasively, in real time56. This 

review will focus on the considerations vital to efficiently implementing Raman 

spectroscopy for in vivo clinical applications in diagnosis and sensing and some 

of the major clinical research under continued investigation. 

2.6.2 Clinical instrumentation 

A dispersive Raman system is similar to most optical spectroscopic 

systems and consists of three primary components – light source, sample light 

delivery and collection, and dispersive element with detector (Figure 2.5). The 
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specifics of these components are challenged by the needs of the clinical setting 

and application. Like standard medical instruments, a clinical Raman system 

should be small and easily transportable, optical alignment and calibration 

should be robust, sample light delivery and collection should be sterilizable and 

rugged, and the detection system should be sensitive to the weak biological 

signals. 

 
Figure 2.5. Basic schematic of an optical (including Raman) spectroscopic 
system. 

 

The components that comprise a clinical Raman system can be broadly 

categorized into excitation and detection branches. Excitation is achieved by 

delivering the light from a given laser source to the tissue site of interest, in 

general by means of a fiber-optic probe or an articulated light delivery arm. The 

Raman scattered light is then collected, often through the same delivery system, 

and directed to a spectrograph and detector. As the technology utilized in vivo 

for clinical measurements has developed, so too has the breadth of individual 
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components that have been investigated and accepted within these systems. The 

following sections will discuss many of the requirements for the individual 

components in order to perform clinical Raman spectroscopy. 

2.6.2.a Lasers 

Due to the weak nature of Raman scattering, it is imperative to deliver 

sufficient power to the sample in order to generate Raman scattered photons for 

detection in a reasonable integration time relevant to the clinical setting under 

consideration. However, Raman scattering is mediated by the other competing 

optical phenomena within the sample. Furthermore, it is important to consider 

issues such as maximum permissible exposure (determined by ANSI or similar 

organizations)57 and temperature increase (relevant to patient comfort and 

minimizing tissue damage).58 Laser power then becomes a function of 

identifying a compromise between signal to noise, patient safety and comfort, 

and instrumentation considerations. Choice of laser is also governed by other 

factors such as laser stability especially when using a multimode laser. Raman 

lines are narrow and highly specific for a given vibrational mode. This then 

implies that the precise position and width of the Raman line requires the 

excitation source to be stable in wavelength position, bandwidth, and spatial 

mode for consistent results. Having accounted for these factors, the properties 

of the target tissue or sample are one of the major criteria for the choice of laser 

excitation source for a clinical Raman instrument. Since Raman shifts are 

relative to the Rayleigh (excitation) line, similar results can theoretically be 
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obtained from many different instrument configurations. However, the optical 

properties of the samples, including scattering and total attenuation coefficients 

as well as excitation, emission, and yield properties for any endogenous 

fluorophores present in the sample, are critical factors for consideration. The 

impact of each of these parameters is a function of wavelength.59 Samples with 

high attenuation coefficients will limit the ability to deliver and collect the light 

beyond very superficial layers. Furthermore, strong absorbing molecules in a 

sample can also lead to the generation of excess heat deposition in the tissue, 

which can cause damage with high irradiance. Likewise, the presence of strong 

fluorophores can generate signals that overwhelm the modest Raman peaks that 

are concurrently detected. Due to the associated decrease in total attenuation 

coefficient for the major absorbing molecules in many biological tissues (water, 

melanin, oxy- and deoxy- hemoglobin), NIR excitation sources are commonly 

chosen for clinical instruments.60 Further, since few known biological 

fluorophores have their peak emission in this region of the spectrum, with a 

noted exception of melanin, moving to the NIR wavelengths for excitation 

results in lower fluorescence background in the tissue at these wavelengths and 

simplifies the signal processing needed for extracting the Raman bands 

compared with visible or UV excitation.61 As depicted in Figure 2.6, tissues 

such as the breast (A) that do not have strong autofluorescence signals relative 

to the Raman features can be collected with several different wavelengths; 

however, highly autofluorescent tissues like the kidney (B) require the use of 
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longer excitation wavelengths to obtain useful Raman spectra. Thus tissue 

properties are vital considerations when choosing the laser source for the 

clinical application of Raman spectroscopy. 

 
Figure 2.6. Raman scattering and autofluorescence polynomial fit signals for 
(A) breast and (B) kidney tissues measured ex vivo at 785 nm (blue) and 1064 
nm (green) excitation wavelengths. Strong Raman features of breast tissue are 
apparent despite tissue background while low Raman intensities of the kidney 
are completely overwhelmed by the strong intrinsic signal at 785 nm but more 
readily visible at 1064 nm. 

 

Early Raman systems were based on the Argon ion laser for visible 

excitation62,63, Nd:YAG (Neodymium doped Yttrium Aluminum Garnet) laser 

for FT-Raman applications64, and Titanium:Sapphire (Ti:Sapph) laser for NIR 

excitation. High output powers, single spatial and longitudinal modes of 

operation, and Gaussian beam profiles enable near-diffraction-limited optical 

performance for all of these sources.65 However, the size of these lasers and 

their electronic and cooling requirements limit their practicality in a portable 

clinical Raman system. Some current Raman instruments, especially those with 

confocal capabilities, still use the Ti:Sapph laser. The development and 

continued advancement of diode laser technology has completely changed the 



26 
 

footprint of a typical Raman system. Diode lasers utilize electro-optical 

components (diodes), which emit light as a function of both applied current and 

operating temperature.66 Diodes themselves are small (<1 mm3) and require 

highly accurate controlling electronics to obtain the stable output necessary for 

Raman excitation. Without highly stabilized thermal and current control, laser 

diodes are prone to thermo-elastic effects on the laser cavity length (and thus 

output frequency) and output power fluctuations, respectively. Laser diodes are 

also characterized by their elliptical beam output (rectangular shape of the 

output facet) and astigmatism (unequal beam divergence from each dimension 

of the rectangular facet). These factors complicate free beam coupling of diode 

lasers, typically requiring beam shaping optics for successful implementation. 

Most commercial diode lasers are available with a pigtail option to directly 

couple a fiber to the laser diode to minimize the losses due to astigmatism and 

elliptical nature of the beam. 

More recently, external cavity diode lasers (ECDLs) have emerged as 

robust and cost-effective light sources for Raman applications. The extended 

length of the resonant cavity of the laser diode minimizes the effect of small 

thermo-elastic changes on the output frequency by extending the distance 

between the diode’s longitudinal modes. Compared with a standard laser diode, 

the ECDL diminishes mode hops, minimizes the spectral bandwidth of output 

light, permits wavelength tunability, and decreases temperature-dependent 

frequency response.67 The laser linewidths of <0.001 nm (at 785 nm) with mode 
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locking provided by an ECDL is vital for medical applications where 

measurement repeatability and spectral resolution are important performance 

parameters. ECDLs are commercially available in tunable Littman–Metcalf or 

Littrow configurations, and can be made at specific wavelengths using 

distributed Bragg reflector configurations68,69. Mode stabilized diode lasers 

with powers on the order of 300 mW, either in single mode or multimode 

configurations, designed specifically for Raman spectroscopy are commercially 

available, lightening the burden for those developing clinical Raman systems. 

2.6.2.b Fiber Optic Probes  

Clinical application of Raman spectroscopy requires the delivery and 

collection of light to and from the sample (tissue). This is typically mediated 

through the use of optical fibers configured to maximize signal collection while 

minimizing interfering signals generated in the fibers and related optics 

themselves70. Since fiber optic probes will be discussed in a related manuscript 

in this special issue, here we only present considerations relevant to clinical 

translation. Depending upon the constraints of the clinical target, probe designs 

can be tailored to best interface with a sample and access the region of interest. 

Design considerations are dependent on the Raman configuration under study 

(discussed later), location of organ under study, microanatomy of the tissue, 

and pathophysiology of the disease. 

A critical aspect for consideration in translating Raman spectroscopy 

from the laboratory to the clinic is the inherent nature of Raman scattering. 
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Raman scattering is a weak phenomenon but most materials are Raman active, 

and therefore the materials used in the Raman system generate Raman signals 

that interfere with the detection of sample signal.71 Most fiber optic probes use 

optical fibers made of low-OH silica which has been extensively used in many 

applications of light in a clinical setting.72 Silica is inherently inert, amenable 

to sterilization, and relatively low-cost, making it the material of first choice 

when designing fiber probes. Unfortunately, silica has a strong Raman signal, 

with several bands that can overwhelm sample signal.71 This fiber signal can 

have magnitudes equal to and sometimes greater than that of the sample under 

study and thus any probe design needs to account for this behavior.73 Fiber 

signal can be generated in the delivery fiber core and cladding by the excitation 

light. In addition, background signal can also be generated in the collection 

fibers by any excitation wavelength light returning into the collection 

fiber(s).73,74 Mathematical techniques typically fail to de-convolve this 

unwanted fiber signal from sample signal as silica signal strength depends on 

the reflective and scattering nature of the sample and photon loss due to fiber 

bending. A feasible probe design that uses silica fibers must therefore prevent 

silica signal generated in the delivery fiber from illuminating the sample as well 

as prevent elastically scattered excitation light from entering the collection 

fibers and generating this signal.  

Several different designs have been proposed for potential clinical 

acquisition of Raman spectra using silica based fiber-optic probes.71,75 Since 
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the earliest design reports, most fiber designs have been based on similar 

concepts with modifications. In general, Raman probe designs utilize a band-

pass filter placed after the excitation fiber lens, thus allowing only transmission 

of the excitation light. To achieve this, dielectric bandpass filters have been 

used to blue shift the wavelength cutoff with increasing angle of incidence and 

have therefore been shown to act as a one-way mirror for elastically scattered 

light76. This phenomenon increases the overall efficiency of the probe by 

preventing multiple scattered incident photons from exiting the tissue and 

returning into the source fiber. Longpass or notch filters are placed in front of 

the collection fibers to block the transmission of Fresnel reflected excitation 

light as well as to prevent the elastically scattered light from entering the 

collection fibers. These filters can be placed either at the tip of the probe, at 

fiber connections within the probe, or deposited directly on the end of the fibers 

themselves to maximize effectiveness, generally requiring sizes in the order of 

a few millimeters or smaller for distal tip filtering. There is thus a demand for 

high-quality optical coatings and micro-optical components that will simplify 

the design of much needed compact fiber-optic probes for Raman spectroscopy 

in biomedicine. Alternatively, non-silica based materials such as crystalline 

fibers and hollow waveguides have been evaluated for Raman applications77,78; 

however, these have not been tested for clinical use and as such are not included 

here.   



30 
 

The different silica fiber based probe designs available commercially 

yield different sample geometries and probe diameters, which in turn affect the 

application under consideration. It is therefore critical to consider the anatomy 

of the sample to be studied along with the pathophysiology of the disease to be 

measured so that appropriate sampling may be achieved.79 For example, when 

studying the inner lining of the colon, where the epithelial lining has a variable 

layer thickness based on disease status, it is important that the probe be 

designed to sample only the superficial layers of the tissue and not into the 

deeper tissue.80 A number of different sampling probes have been developed in 

order to meet specific design criteria, such as rapid acquisition time, depth 

selectivity, or the collection of data sets from complementary modalities.81-85 

Some of the most common probe designs and associated vendors are listed in 

Table 2.1. 

 
Table 2.1. Summary of typical components used to build a clinically useable 

portable dispersive Raman system. 
Laser Fiber probe Spectrograph CCD 
B&W Tek Visionex* Kaiser f/1.8i, f/2,2i Princeton Instruments 

BRDD# 
Sacher 
Lasertechnik 

InPhotonics Andor Technology 
Shamrock SR-303i 

Andor Technology BRDD 

Process 
Instruments 

Emvision Princeton Instrument 
LS 785 

Horiba Synapse 

SDL  In-house Horiba Labram, HE-785 Kodak KAF 1001E 
Innovative 
Photonics 
Solutions 

  Ocean Optics QE65000 Ocean Optics QE65000 

* These companies do not exist anymore. # Back-reflected Deep Depletion 
(BRDD) CCD chip technology 
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2.6.2.c Spectrographs and Detectors 

A typical dispersive Raman detection system used for potential clinical 

applications consists of a short focal length imaging spectrograph attached to a 

cooled charge-coupled device (CCD) camera. Clinical implementation of 

Raman spectroscopy requires spectral acquisition of no more than a few 

seconds. This fast acquisition in turn needs a fast spectrograph and a highly 

sensitive detector, particularly given the weak nature of the Raman signal. A 

typical CCD camera used in spectroscopy consists of a rectangular chip wherein 

the horizontal axis corresponds to the wavelength/wavenumber axis and the 

vertical axis is used to stack multiple fibers for increased throughput, which can 

subsequently be binned for improved signal to noise ratio (SNR). 

Technological advances have led to CCD chips with quantum efficiencies on 

the order of 90% in the NIR (this information can be found on any of the CCD 

vendors’ (Table 2.1) websites). While different types of chips are commercially 

available for different applications, a back-illuminated, deep-depletion CCD is 

highly recommended for NIR Raman spectroscopy. These chips are however 

known to be susceptible to the so-called etaloning effect86-88, wherein the thin 

silicon chip acts as an etalon resulting in the introduction of sharp peaks in the 

sample signal that are hard to resolve from the narrowband Raman signal. 

However, CCD cameras are now available commercially that effectively 

eliminate this effect.86-88 Most CCDs in Raman use a thermoelectric (TE) 

multistage Peltier system to actively cool the camera down to at least −70°C in 
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order to realize excellent dark noise performance. In fact, current Raman 

systems for most biomedical applications are only limited by shot noise. 

Tissue background signal is the bane of dispersive Raman spectroscopy, 

swamping the detector and hindering evaluation of sample Raman spectra. This 

background, especially in complex tissue samples, can arise from both the 

broadband emission of autofluorescence and elastic scattering of both stray 

excitation light and the Raman bands themselves. Non-collimated light and 

angular dependent filter performance can add substantial background to a 

spectrum, as can the scattering and spectral broadening of Raman peaks 

themselves; these phenomena are continuously variable with wavelength.89 The 

presence of fluorophores in samples also contribute broad background signal to 

the collected Raman spectrum and are mediated by the wavelength dependent 

excitation for the comprising chromophores. However, most tissue 

fluorophores, with the exception of porphyrins and melanin,90 have their 

excitation and emission maxima at UV and visible (UV/VIS) wavelengths.91 

Therefore, longer visible and NIR sources at wavelengths such as 633, 785, and 

830 nm are preferred over those in the UV/VIS to reduce the amount of both 

fluorescence interfering with the detectable Raman signal. Selection of 

appropriate NIR wavelengths for excitation is often governed by competing 

factors. The longer the wavelength, the lower is the fluorescence and scattering 

background to be rejected; however, the Raman scattering also decreases. 

Again as demonstrated in Figure 2.6, where 785 nm excitation was plagued by 
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autofluorescence and scattering in kidney tissue (B) that was mitigated by 1064 

nm excitation. Further, while silicon CCD detectors are capable of excellent 

performance over most of the NIR, the quantum efficiency decreases rapidly 

with wavelength, falling to below 15% at 1000 nm. Therefore, competing 

parameters of Raman scattering intensity, tissue background, and detector 

efficiency need to be assessed relative to the tissue under study to determine 

the wavelength range to be used. Overall, researchers in this field tend to prefer 

785 nm excitation as a reasonable compromise for most tissues (as surveyed 

from the publications reviewed in Table 2.2). It should be noted that when 

acquiring Raman spectra in the high-wavenumber region (2400–3800 cm−1 in 

tissues) which is about 967–1118 nm for 785 nm excitation, obtaining high 

SNR Raman signals can be difficult using silicon-based detectors due to the 

decreasing quantum efficiencies. For detection of wavelengths above 950 nm, 

other types of detectors such as indium gallium arsenide (InGaAs), germanium, 

and indium phosphide (InP) detectors need to be used. However, these detectors 

suffer from lower quantum efficiency and increased noise in comparison to 

silicon detectors.92 Nevertheless, instrument configurations utilizing Nd:YAG 

sources and multichannel InP/InGaAsP detectors have recently reported the 

feasibility of Raman spectroscopy in tissues such as the lung and gastric tissue 

at 1064 nm excitation with acquisition times on the order of hundreds of 

seconds.93,94 Ex vivo reports by the authors have also recently demonstrated the 

potential for clinically relevant applications of dispersive 1064 nm Raman 
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instruments, particularly for in tissue type with a high fluorescence background 

at 785 nm (Figure 2.6).58,95 
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Table 2.2. Overview of large clinical studies (n>50) performed with Raman spectroscopy in vivo in humans. 

Disease type Raman method Group 
Publication 
year 

Patient 
number Sensitivity Specificity 

Barrett's esophagus Probe Raman Wilson et al. 2005 65 
86% (Dysplastic),  
88% (High grade) 

88% (non-dysplastic),  
89% (non-high grade) 

Barrett's esophagus Confocal Raman Huang et al. 2014 373 87% (High grade) 84.7% 
Cervical cancer Probe Raman Murali Krishna et al. 2014 63 100% 96.7% 
Cervical cancer Probe Raman Murali Krishna et al. 2014 93 100% 93% 

Cervical precancer Probe Raman Mahadevan-Jansen et al. 2009 145 
86% (all – multiclass),  
96% (premenopausal only) 

97% (all),  
90% (premenopausal only) 

Cervical precancer Probe Raman Mahadevan-Jansen et al. 2011 172 96.5% (Dysplasia) 97.8% 
Cervical precancer Confocal Raman Huang et al. 2013 84 81% (Dysplasia) 87.1% 
Cervical precancer Probe Raman Mahadevan-Jansen et al. 2007 79 89% (High grade) 81% (benign) 
Colon cancer Probe Raman (HF) Huang et al. 2015 50 90.9% 83.3% 

GI cancer Probe Raman Huang et al. 2011 107 
92.6% (gastric) and 90.9% 
(esophagus) 

88.6% (gastric) and 93.9% 
(esophagus) 

GI cancer Probe Raman Huang et al. 2011 81 97.9% (gastric) 91.5% 

GI cancer Probe Raman (HF) Huang et al. 2015 164 
92.5% (beveled probe) 
85.8% (volumetric probe) 

93.1% (beveled probe) 
88.6% (volumetric probe) 

GI cancer Probe Raman Huang et al. 2012 83 
83.33% (Dysplasia) 
84.91 (adenocarcinoma) 

 95.8% 
95.6%  

GI cancer Probe Raman Huang et al. 2010 67 94% (gastric) 93.4% (gastric) 

GI cancer Probe Raman Huang et al. 2011 67 

94.6% (gastric) 
89.3% (independent 
validation) 

94.6% 
97.8% 

GI cancer Probe Raman Huang et al. 2010 62 80% (overall) 85.7% (overall) 
GI cancer Probe Raman Huang et al. 2014 450 81.3% (prospective) 88.3 

GI ulcers Probe Raman Huang et al. 2010 71 
82.1% (malignant ulcers) 
84.7% (benign ulcers) 90.8% 

Oral cancer Probe Raman Murali Krishna et al. 2012 104 
86% (tumors) 
72% (pre-malignant) 74% 

Oral cancer Probe Raman Gupta et al. 2013 199 

96% (malignant) 
88% (premalignant), 84% 
(malignant) (multiclass) 

99% (normal) 
77% (multiclass) 
 

Oral cancer Probe Raman Murali Krishna et al. 2013 84 92.7% (tumor) 98.7% (healthy control) 
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84% (contralateral normal)  

Skin cancer 
Probe Raman + 
Fluorescence Tunnell et al. 2014 76 

100% (malignant melanoma) 
90% (non-melanoma cancer) 

100% (pigmented lesion) 
85% (normal) 

Skin cancer 
Probe Raman + 
Fluorescence Moryatov et al. 2014 50 89% (malignant melanoma) 87% 

Skin cancer Probe Raman Meinke et al. 2015 104 74% (basal +squamous cell)  82% 
Skin cancer Probe Raman Zeng et al. 2012 453 90% (cancer vs benign) 64% 

Skin cancer Probe Raman Zeng et al. 2008 289 
91% (cancer vs benign) 
97% (malignant melanoma) 

75% 
78% (pigmented lesion) 

Dermatitis 
Raman 
microscopy Irvine et al. 2010 132 98.7% 86.9% 

Skin carotenoids Resonance Raman Mayne et al. 2012 381     
Macular pigment Resonance Raman Stevenson et al. 2006 97     
Macular 
Degeneration Resonance Raman Stevenson et al. 2013 433     
Macular 
Degeneration Resonance Raman Gellerman et al. 2002 201     
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A Raman-sensitive detection system capable of clinical measurements 

requires an appropriate imaging spectrograph that couples to the sample 

interface (such as a fiber probe) on one end and the CCD of choice at the other 

end. Compact, rugged, spectrographs optimized for Raman use are now 

commercially available with f-number matching to the numerical aperture (NA) 

of optical fibers and high throughput for rapid acquisition (See Table 2.1). In 

order to resolve details of the biological Raman bands, the Raman detection 

system should have a spectral resolution of at most 8 cm−1. Since spectral 

resolution depends on coupling optics, slit size (or fiber size if no slit is used), 

and CCD pixel size, each of these plays a crucial role in the design and selection 

of the detection system.96 It is common to use 200-400 micron core diameter 

fibers in the fiber optic probe for maximum signal collection at the sample. 

However, this stack of fibers placed at the entrance port of the spectrograph will 

significantly reduce the spectral resolution of the system. If one assumes 1:1 

matching of fiber-spectrograph optics, 200 µm core collection fibers stacked at 

the entrance port of the spectrograph, no slit (or a 200 µm slit) and 25x25 µm 

CCD pixel size, the resulting spectral resolution is 15.14 cm-1 for a 6.13 nm/mm 

dispersion of the grating (typical for holographic gratings).97 One can reduce 

the entrance slit to 100 µm and/or reduce the collection fibers used to 100 µm 

core diameter and achieve a spectral resolution of 7.6 cm-1 which is close to 

what is needed to resolve tissue Raman peaks. Since the beams out of the fibers 

are Gaussian, one can speculate that when using a smaller slit size with larger 



38 
 

fibers, the loss of Raman photons is not as significant since one is only cutting 

out the tail of the beam. Further, larger fibers are easier to work with when 

building a filtered probe than smaller diameter fibers. Thus making these 

spectral calculations when designing the Raman system, particularly with 

respect to dispersion and therefore spectral resolution needs to be tracked during 

the selection of each of the components needed for the Raman detection system. 

Additional components of the detection system include rejection filters 

that remove any laser light as well as the elastically scattered light from the 

detected signal. Holographic notch filters can block the laser wavelength with 

an optical density of six with steep edges and provide 90% transmission 

elsewhere with a relatively flat curve.98 For dispersion, holographic 

transmissive gratings generally have the highest throughput performance99, 

however, most of these are implemented in fixed positions, enabling 

measurement of only part of the Raman spectrum at a time. Furthermore, the 

performance of these components can drift over long periods of time (years), 

potentially due to environmental degradation (humidity, temperature). There 

has recently been renewed interest in reflective and prism-based approaches to 

dispersion.100,101 Reflective gratings can usually cover a larger range of the 

spectrum at high spectral resolution, but often result in a longer integration time 

due to lower efficiency and movement of the grating position. Some devices 

circumvent this issue by including versatile options for either static or full-range 

spectral measurements, or include gratings with different dispersion elements 
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to achieve high resolution. In general, instruments with multiple gratings also 

have a larger footprint than those with fixed gratings. Size is an important 

consideration when designing a clinical device as the space available in most 

clinical procedure rooms is at a premium. The needed small footprint is also 

directly at odds with spectrograph designs that reduce performance-limiting 

aberrations based on long focal lengths. Some groups have attempted to account 

for field curvature distortions in transmissive systems by carefully designing 

the detector end of the fiber probe to have a parabolic shape that will 

appropriately map to a vertical line on the detector, limiting signal overlap and 

improving spectral resolution.102 Newer instrument designs have been 

implemented using corrective optics or beam shaping techniques to reduce the 

impact of aberrations, however, these instruments have yet to be reported for 

clinical investigation. Another technique available for use in the benchtop 

setting is hyperspectral Raman imaging, collecting high resolution global 

mapping via monochromatic images.103 This snapshot technique provides 

spatial information for samples rapidly however has not been implemented in 

clinical investigation to this point. Increased research studying the high-

wavenumber band has also resulted in the commercial availability of 

spectrometers with extended spectral coverage at the expense of either 

resolution, integration time or overall size. However it should be noted that 

several spectrographs that meet the needs of a portable Raman system are 
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available; these spectrograph are compact in design and rugged for portable use 

(see Table 2.1). 

Most Raman measurements in medical applications today rely on state-

of-the-art, high-cost, high-performance Raman systems that are compact and 

highly sensitive to the weak biological Raman signals.104,105 While each 

researcher has his or her preferences on the specifics of the different 

components in the system, the design is ultimately driven by the tissue/organ 

under study and the pathophysiology of the process to be monitored. Table 2.1 

presents the most common lasers, fiber probes, spectrographs and CCD cameras 

used to build clinical Raman systems as described in the papers listed in Table 

2.2.  

In describing and guiding the selection of each of the components 

described above, it is presumed that Raman spectroscopy is the only modality 

under consideration, and the Raman configuration to be used is dispersive 

Raman spectroscopy, to assess biochemical signatures associated with the 

biomedical problem under study in the fingerprint or high wavenumber region. 

These components can be obtained from any number of vendors or developed 

within a laboratory to assemble a system suitable for the specific study under 

consideration. It is vital for any clinical application that the individual 

components integrate into the most efficient instrument configuration possible 

and all spurious sources of confounding signals be minimized through design 
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2.6.2.d Data processing and Analysis 

2.6.2.d.i  Instrument Calibration 

Based on the previous section, it becomes readily apparent that to 

compare Raman spectra acquired from different tissues requires some 

standardized methods of calibration and processing that enable transferability 

of these spectra. Figure 2.7 presents a flowchart of the major procedural steps 

and their order for converting raw measurement data from the detector to 

signals ready for comparison and analysis. Source compensation is a standard 

process that can be applied to control for variability in the source from 

measurement to measurement. This step is critical only when absolute 

intensities are necessary for analysis. Instrument response variations require 

two types of calibration: spectral calibration and intensity calibration. Spectral 

calibration is used to convert the horizontal axis from CCD pixel number to 

relative wavenumber. The emission spectrum of a known calibrated light 

source, such as a neon lamp with numerous and narrow bands in the NIR, is 

typically used to calibrate the horizontal axis into absolute wavenumbers 

(cm−1). Relative wavenumber calibration is performed using the spectral 

position of the laser line and then validated using standards with well 

characterized Raman features and strong Raman scatter, such as naphthalene 

and acetaminophen. Spectral standards such as the fluorophore rhodamine 6G 

and a weak Raman scatterer such as methylene blue or vitamin E can be used 

as additional intensity standards to account for day-to-day variations in the 
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spectral intensity.106 Calibration of the intensity axis (spectral response 

correction) is necessary to account for the wavelength-dependent response of 

the various components in the detection leg of the system including the grating, 

the filters, optics as well as the quantum efficiency of the CCD chip. This is 

typically performed using a calibrated source such as a tungsten lamp certified 

by the National Institute of Standards and Testing (NIST) to generate intensity 

correction factors for variations in instrument throughput.107 This calibration 

process is essential for comparison of spectra measured across different Raman 

instruments for the same or similar sample. This calibration is typically 

performed early in a study and then on a regular basis to validate the accuracy 

of the correction factors over time. However, perturbation of any of the optical 

components including those induced by moving the system from the laboratory 

to the clinic can affect the calibration and therefore an additional method that 

accounts for day-to-day calibration of the system performance must also be 

developed. Collection of a NIST lamp intensity spectrum is often impractical 

in a clinical situation due to the experimental controls necessary to ensure that 

the bright, diffuse emission of the lamp traverses only its intended path through 

the Raman instrument to the detector, along with the safety concerns that 

correspond to the spectral intensity in the UV portion of the spectrum. More 

recently, spectral intensity standards consisting of green-colored Schott glass 

have been explored by NIST108 and other groups109 as more practical 
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alternatives for daily calibration, but no consensus has yet to be reached on their 

applicability as a Raman standard. 

 
Figure 2.7. Flowchart for typical system calibration and signal processing 
procedures for clinical Raman spectroscopy systems. The darker shaded boxes 
indicate steps that require collection of reference spectra prior to data 
acquisition while the other steps can be implemented in-line per spectrum for 
system automation. 

 

As indicated in Table 2.1, it is possible to configure a Raman system 

using different combinations of a laser, spectrograph, probe and detector. In a 

parametric study of laser, probe, and CCD detector combinations for a single 

spectrograph, the influence of each component in an instrument configuration 

on reliability and reproducibility of Raman spectra was investigated 

(unpublished). The various combinations of these components can be seen in 

Figure 2.8. By isolating the impact of each instrument, this work identified that 
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the most significant impact on the obtained signal was driven by the fiber optic 

probe. When a single probe was maintained across different lasers, 

spectrographs, and CCDs, the total variance of the detected signals decreased 

significantly relative to signals obtained when spectra were combined across 

probes. This data highlights the importance of using a single probe design for 

data collection for a given clinical application. 

 

 
Figure 2.8. Diagram for a comparison study of clinical Raman spectroscopy 
system components. By varying combinations of instruments, variability 
studies have investigated the impact of unique components on the acquired 
spectral signatures. Results show that the collection leg of the system and the 
design of the fiber probe have the most significant contribution to the 
instrument variance observed in the spectra. 
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Even when a single probe design is selected for a given clinical Raman 

instrument, it is important to precisely account for instrument-induced 

variability. The aforementioned variability study indicates the importance of 

using a single probe design for clinical data collection (Figure 2.9A). However, 

it is not feasible to conduct a large clinical study or manufacture a potential 

medical device that relies on a single probe for the lifetime of the instrument. 

As multiple probes built from a single design are used, it should be noted that 

each optical component can have a similar but ultimately unique wavelength-

dependent response. As depicted in Figure 2.9 for different in vivo tissue 

measurements with unique probes of the same design, differences in filtering 

and throughput can impact not only raw signals (Figure 2.9B) but also impact 

the resulting, processed spectra (Figure 2.9B, inset). However, current 

calibration methods do not provide adequate calibration to minimize probe 

response which in turn affects data analysis when spectra across multiple probes 

are combined.106 Practically, this data indicates the necessity of adequately 

calibrating probe-specific signals thoroughly for successful implementation of 

Raman techniques and the community needs to work together to develop such 

methods. In the meantime, it is recommended that investigators acquire 

multiple probes based from a single design and built at the same time, to 

minimize this variability. 
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Figure 2.9. Representative Raman spectral differences that can be obtained 
from a single sample acquired using two different probes. (A) A conventional 
filtered Raman probe (green) and a beam-steered Raman probe (blue) on skin 
in vivo demonstrate unique line shapes. (B) Two iterations of the same probe 
design used to measure an albumin sample demonstrate the effect of slightly 
different inline filters on the raw and resulting processed (inset) Raman 
spectrum. 

 

2.6.2.d.ii Data processing 

2.6.2.d.ii.1 Fluorescence elimination 

The increased investigation of Raman spectroscopy for biological and 

clinical purposes is largely due to its high sensitivity to subtle biochemical 

changes and its capability for nonintrusive application. One challenge faced in 

these investigations is that biological applications involve turbid, chemically 

complex, and widely varying targets. Therefore, significant challenges exist for 

both acquiring viable Raman signatures and suppressing the noise sources 

inherent to the target medium. The greatest challenge for obtaining Raman 

spectra from biological materials is the intrinsic fluorescence and elastic 

scattering of many organic molecules. Often several orders of magnitude more 

intense than the modest Raman signals, this background, if left untreated, will 
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likely dominate the Raman spectrum and hinder analysis and interpretation of 

tissue biochemistry. To extract Raman signal from the raw spectra acquired, 

elimination of fluorescence signal is necessary. While most biological 

fluorescence occurs in the UV/VIS and intensity decreases as a function of 

wavelength, the fluorescence and scattering background observed for NIR still 

interferes with the measured Raman spectrum (Figure 2.6B). The intensity of 

this background is generally dependent upon tissue but is ubiquitously present 

in almost all tissues studied, meriting attention prior to spectral analysis. 

Both hardware and software techniques have been proposed for 

background subtraction from raw Raman signals. Wavelength shifting and time 

gating are hardware-based techniques that have been shown to effectively 

minimize fluorescence interference in Raman spectra but require specific 

design considerations for the spectroscopic system to achieve their results.110,111 

Several software-based mathematical methods can be implemented without 

system modification and are generally preferred for fluorescence removal. Such 

techniques have included first- and second-order differentiation112,113, 

frequency domain filtering110, wavelet transformation114,115, multistage 

smoothing116, and polynomial fitting53,117,118. Each of these methods has been 

shown to be useful in certain situations, however all have their advantages and 

limitations that must be evaluated before selecting a method for application with 

a given system. 
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First and second order differentiation relies on invariant wavelength-

dependent fluorescence emission compared with the relative shifts measured in 

Raman spectra. One way to accomplish this differentiation is by measuring the 

spectra at two (or more) slightly shifted excitation wavelengths (within a few 

nanometers) and taking their difference.119 Integrating the difference spectrum 

results in the original Raman signal. Similar results can be achieved with a 

single excitation wavelength by taking the first derivative of the spectrum and 

integrating the noise-smoothed derivative spectrum following baseline 

correction.110,113 The derivative method for fluorescence subtraction is efficient 

and unbiased, but distorts Raman line shapes and relies on complex 

mathematical fitting algorithms to reproduce a traditional spectral form.110 

While many of these methods were developed and tested in the early 1990s, 

shifted excitation methods for removing this undesirable fluorescent signal, 

coined as modulated wavelength Raman spectroscopy, are coming back into 

vogue, utilizing multiple closely spaced excitation sources and signal 

processing algorithms to remove fluorescence signal.120 Newer sources allow 

the use of multiple excitation wavelengths to improve the accuracy of the 

method; however, removal of the DC offset remains an issue.  

Frequency filtering and polynomial fitting are other common methods 

for fluorescence elimination. Frequency filtering can be achieved with fast 

Fourier transform (FFT), transforming the spectrum to the frequency domain 

by taking the FFT which is then be multiplied with a linear digital filter to 
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eliminate the fluorescence. The inverse FFT yields the Raman spectrum free of 

fluorescence.110 If the frequency elements of the Raman and noise features are 

not well separated, this method can generate artifacts in the processed spectra. 

A more direct method to subtract fluorescence that is both simple and accurate 

is to fit the measured spectrum containing both Raman and fluorescence 

information to a polynomial of sufficient order to describe the fluorescence line 

shape without capitulating the higher-frequency Raman lineshape.53 

Polynomial curve fitting has an advantage over other fluorescence reduction 

techniques due to its inherent ability to retain the spectral contours and 

intensities of the input Raman spectra and can be easily implemented in 

MATLAB® or other computing platforms for automated performance. 

Individual techniques have advantages and disadvantages; the method 

used should be selected based on the specific application and best matched to 

measurement technique. Mosier-Boss et al. tested the use of the shifted 

excitation, first derivative, and FFT techniques for fluorescence subtraction and 

indicated a preference for using the FFT based on its ability to filter random 

noise from the spectrum.110 In an analysis of the different techniques by the 

author for in vivo tissue applications, the use of a polynomial fit was found to 

be the optimal technique for both experimental and computational 

considerations. More recently, a modified polynomial fitting algorithm that 

accounts for noise levels has been proposed118,121 which has been shown to 

minimize the presence of artificial peaks in low SNR spectra that are common 
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in measurements of tissues with high autofluorescence. It should be noted that 

order of the polynomial used is specific to the sample fluorescence line shape 

and as such should be determined before utilizing this technique (Figure 2.10). 

 
Figure 2.10. Impact of background elimination varies based on the sample or 
tissue measured. Fluorescence subtraction using (A) 5th order polynomial in 
skin and cervix yield unique shapes due to compositional differences. (B) Using 
a 5th versus 7th order polynomial in colon (processed spectra inset) 
demonstrates that a single polynomial fitting order may not be appropriate for 
all samples; higher order polynomials are used to simulate background 
fluorescence and subtracted to enhance the underlying Raman signal from the 
sample. 
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Other methods have utilized advanced signal processing techniques to separate 

underlying autofluorescence from the desired Raman signals. Wavelet decomposition, 

penalized least-squares fitting techniques122 and principal component analysis (PCA) 

have been described for suppression of the confounding signal components.123 Wavelet 

transformation is dependent on the decomposition method used and the shape of the 

fluorescence background, whereas PCA assumes that the highest signal variance is due 

to the fluorescence background, which may be invalid for some applications. Thus, 

there are tradeoffs for each method and the choice may be governed both by the 

application at hand and the preference of the investigator. 

2.6.2.d.ii.2 Noise Smoothing and Binning 

Since Raman scattering is such a weak phenomenon, the SNR of most 

measured Raman spectra require significant noise smoothing in order to extract 

the underlying Raman bands. Various types of noise smoothing filters have 

been effectively used. These include the median filter, the moving average 

window filter, the Gaussian filter whose full width at half maximum is typically 

set equal to half the spectral resolution of the system, and the Savitzky–Golay 

filter of various orders.105,124-127 Other methods include using PCA, genetic 

algorithms, and other multivariate statistical approaches to remove the higher 

order components and effectively removing noise128,129. In using any of these 

or other methods of noise smoothing, care should be taken to retain the integrity 

of the spectral line shape especially when dealing with samples with multiple 

peaks that are close to each other. Validating the method using spectra from 
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weak Raman samples (with low SNR) should be an essential step in the 

development process.  

Other preprocessing methods typically applied include binning of the 

spectral data set due to the large number of variables (which is dependent of 

CCD chip size) for computational ease. Depending on the variability in the 

acquired data and the needs of the analysis methods used, various normalization 

methods may also be applied to allow comparison of the spectra. Normalization 

methods include normalization to intensity standards, normalization to a 

spectrum’s own maximum intensity or area under the curve, and mean scaling 

to the average spectrum acquired from a given patient. Some researchers prefer 

to use difference spectra to achieve the same normalization effect to account for 

intra- and interpatient variability observed. 

2.6.2.d.ii.3 Data Analysis 

One of the advantages of spectroscopic diagnosis is automation, which 

allows objective and real-time diagnosis of pathologies. Spectral differences 

observed as a function of tissue physiology or pathology can be incorporated 

into diagnostic algorithms that can in turn be implemented in real-time to yield 

classification using univariate and multivariate statistical methods; several 

statistical approaches have been identified and applied for feature extraction 

and classification of tissues towards automated, clinical diagnosis. Since 

Raman spectroscopy is a biochemically specific technique, chromophore and 

scattering molecule contributions can be extracted from the measured spectra. 
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These can then be used in diagnostic algorithms as well as in understanding of 

the spectral signature as it pertains to the disease process. For example, the 

extracted contributions can be used to quantify blood analytes for applications 

such as glucose sensing.130  

Original analyses for Raman signals were based on differences in 

intensity, shape, and location of the various Raman bands between normal and 

abnormal cells and tissues. Observed differences between the different tissue 

types under study were selected for classification algorithms based on empirical 

methods using changes in intensity or ratios of intensities or number and 

location of peaks. For example, the intensity ratio of the CH2 bending 

vibrational mode at 1440 cm−1 to the Amide I vibrational mode at 1655 cm−1 

has been observed to vary with disease in several applications including breast 

cancers and gynecologic cancers and precancers.131,132 The limitation to this 

approach however, is that diagnostically useful information may be contained 

in more than just the peaks or valleys observed in tissue; a method of analysis 

and classification that includes all the available spectral information may be 

important for the accuracy of detection. Further, empirical methods tend to be 

biased in favor of the spectral differences specific to the data set used for the 

analysis and these methods do not hold under validation. To obtain an unbiased 

estimate of the performance of algorithms for Raman data, multivariate 

statistical techniques have become the accepted practice for the development of 

discrimination and classification algorithms for diagnostic applications.  
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In the past few years, great strides have been made in the application of 

multivariate techniques for spectroscopic data analysis in disease detection.107 

Discrimination techniques such as linear and non-linear regression as well as 

classification techniques such as neural networks have been employed.107,133 

Data compression tools such as PCA are still commonly used to reduce the 

dimensionality of the data matrix and have been used to account for the 

variability in the data.134 Linear and nonlinear methods have also been used for 

feature extraction. Subsequently, methods such as hierarchical cluster analysis 

(HCA)135 and linear discriminant analysis (LDA)133 have been used to yield 

classification algorithms for disease differentiation. Partial least squares, a 

regression-based technique, as well as hybrid linear analysis, have been used to 

model tissue based on component spectra, finding component contributions for 

disease detection and extracting accurate concentrations of analytes such as 

glucose using NIR Raman spectra for transcutaneous blood analysis.136,137 More 

complex multivariate and machine learning methods have also been utilized, 

including support vector machines138, logistic regression models95,139, genetic 

algorithms128, neural networks140, decision trees141, optimization techniques137, 

and generalized linear models. These methods allow the integration of non-

Gaussian constraints and variable weights to optimize classification 

performance. However it should be noted that these complex methods may not 

necessarily provide a significant improvement in the diagnostic performance of 
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Raman spectroscopy and as such most studies tend to rely on simpler (and often 

linear) albeit multivariate methods of discrimination. 

In small sample sets, one often relies on the leave-one-out or K-fold 

methods of cross validation, as well as nested methods for multiple optimization 

steps. Rigorous, unbiased estimates may be obtained by developing robust 

discrimination algorithms using a test set and its performance quantified in a 

validation set. Ideally, these two sets are formed by random distribution of the 

subject population into two equal data sets. The true measure of success of 

Raman spectroscopy for tissue diagnosis requires validation of the tested 

algorithm in an extensive unbiased (and independent) validation set.142 

Analyzing Raman signals for spectral differences and developing 

diagnostic algorithms for the purpose of disease classification are one facet of 

the clinical application of Raman spectroscopy for tissue diagnostics. However, 

the wealth of information provided in Raman spectra especially with respect to 

molecular composition enables identification of the nature and biochemical 

processes responsible for these changes. This information can be used to 

enhance fundamental understanding of various biological processes as well as 

inform the improvement of diagnostic performance. 

Several researchers have harnessed the benefit of extracting 

physiologically relevant markers from Raman spectra of tissues. Puppels et al. 

obtained quantitative information about skin hydration based on Raman 

spectra.143 Feld et al. developed comprehensive models for biochemical 
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component extraction that were used for disease classification.144 More 

recently, Huang et al. performed semi-quantitative biomolecular least-squares 

modeling based on representative basis spectra in order to distinguish spectral 

sources for neoplastic lesions in multiple patients.145 Each of these methods is 

based on the acquisition of Raman spectra from individually identified 

chromophores either as morphological tissue components, as extracted 

biochemical constituents, or commercially available pure chemicals. Pixelated 

Raman microspectroscopy has been used (with or without confocality) to 

measure Raman spectra from individual morphologic tissue components using 

tissue sections. A Raman spectrometer is coupled to a microscope and is 

scanned across the tissue section to obtain Raman images that can then be 

correlated with serial hematoxylin- and eosin (H&E) stained sections to identify 

relevant morphologic components and their Raman signature. Alternatively, 

tissue scatterers can be extracted from biochemical assays and Raman spectra 

can be acquired from each of these extracted chromophores using the same 

instrument as used to measure the biological specimen. Using mathematical 

models such as those developed by the Feld group, contributions of each of the 

extracted or morphologic components can be calculated for the intact tissue.  

Thus, a portable, clinically viable instrument with a fiber-optic probe 

can be used to acquire Raman spectra in vivo. The ability of Raman 

spectroscopy in a particular tissue can be tested in animals in vivo or in vitro 

and subsequently applied for in vivo human detection. The acquired spectra can 



57 
 

then be processed and analyzed and information extracted about the 

performance of the technique as well as about the biochemical components that 

contribute to the signals obtained by the method. 

2.6.2.d.ii.4 Technology interface, control, and automation 

A major feature that is paramount for translation of Raman spectroscopy 

or any other laboratory technology to a medical clinic is the constraint of an 

intuitive, automated interface. Given the inherent weakness of Raman 

scattering and the complexity of the generated signals, great care and effort 

must be spent in developing the instrument interface prior to deployment for a 

medical application. Thankfully, the instrument components discussed above 

can be combined in a manner appropriate for a detection target so that signals 

can be detected quickly. Once detected, the speed of modern computing 

technology can be utilized for real-time processing for background removal, 

component extraction, and class prediction. Optimizing algorithms for each 

step is vital for an intuitive interface along with practical considerations 

including how to best display feedback to the end-user. The first step towards 

successful integration is to implement a clinically-relevant user control. Hands-

free enabled data collection with foot pedals or buttons at the probe interface 

are features that will enable clinical use, along with instruments that operate in 

real-time and provide continuous feedback. Zeng et al. and Huang et al. have 

reported systems that integrate data collection, processing, and analysis in times 

as low as 100ms.52,102,146,147 Even with the integration of rapid processing, the 
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information provided by a complicated tool based on Raman spectra could be 

overwhelming. Combining this information into an easily interpreted display or 

audible feedback are vital steps for the clinical integration so that with minimal 

training, these devices can be deployed to benefit clinical medicine. 

2.6.3 Raman configurations 

Several different modalities of Raman scattering have been used to 

analyze the structure of various biological molecules.148,149 Some of these 

techniques include ultraviolet (UV), visible or NIR dispersive Raman, Fourier 

transform Raman (FT-Raman), surface-enhanced Raman (SERS), and 

ultraviolet resonance Raman (UVRR) spectroscopy48,150. More recently 

developed techniques include stimulation Raman (SRS), tip-enhanced Raman 

(TERS), and coherent anti-Stokes Raman scattering (CARS).151-153 Early 

adoption of Raman spectroscopy for biological applications with minimal 

interference from fluorescence relied on FT-Raman spectroscopy, where the 

Fourier transform of the scattered signal is detected, and subsequently inverse-

transformed to give the actual Raman signature. This technique yields improved 

signal-to-noise ratio of hard to detect events but requires long collection 

times143 that are not practical for clinical and in vivo implementation. With the 

recent developments in laser and detector technology, FT-Raman methods have 

become more or less obsolete at least as it pertains to clinical diagnosis and as 

such are not discussed here. Pursued extensively as a viable technique for in 
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vivo human application, NIR dispersive Raman scattering is typically excited 

in the range of 780–1100 nm where minimal fluorescence is produced making 

detection of the weak Raman signal easier, particularly in biological materials. 

However, several other configurations of Raman spectroscopy have been 

implemented in vivo and a summary of some of these as they pertain to potential 

clinical application are described below. 

2.6.3.a  UV/VIS  

While most implementations for clinical Raman spectroscopy rely on 

NIR excitation (785 or 830nm), some researchers continue to use visible 

wavelengths for biomedical applications. The tradeoff between high Raman 

scattering cross-sections at lower excitation wavelengths and decreased 

penetration depth, higher absorption, autofluorescence, and heat generation 

usually limit the potential of in vivo clinical application with visible techniques. 

However, some studies continue to apply these more readily available 

excitation sources for various studies, particularly where direct interaction with 

the patient is not required.154-156 Especially in applications of Raman 

spectroscopy for pathology analysis for which clinical protocols for ex vivo 

cytology and histology commonly employ conventional glass slides as the 

substrate, visible sources, such as 532nm, demonstrate significant 

improvements in background signal relative to NIR excitation.157 Other ex vivo 

work continues for several malignancies, including skin and oral neoplasia, with 

visible wavelengths that show promising results.158-161 
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Resonance Raman activation may be achieved when the excitation 

wavelength approaches electronic absorption of a molecule.162 Resonance 

Raman excitation increases scattering signal intensity by several orders of 

magnitude. However, typical absorption frequencies of biological molecules 

such as proteins and nucleic acids occur at ultraviolet wavelengths where these 

wavelengths may cause photolysis of the sample and destroy it over time.163 

Further, the mutagenicity of UV radiation makes this technique inviable for 

clinical in vivo use.164,165 As such, few researchers have pursued this approach 

for potential clinical applications in recent years.  

2.6.3.b Raman Imaging 

The weak nature of Raman scattering hinders the imaging of Raman 

features in biological materials such as cells and tissues with dispersive Raman 

spectroscopy in clinically feasible integration times. Intrinsic Raman imaging 

has been performed using the intensity of a specific Raman band or ratio of 

bands to build an image from cells and tissues.166 As mentioned above, one 

method acquires a hyperspectral stack of monochromatic images over relatively 

large spatial areas. Another approach involves compiling a three dimensional 

data cube by measuring Raman spectra through point or line scanning of the 

excitation and collection beams.167 The voxel size may be governed by the 

spatial resolution needed for the study and can be as small as the confocal 

pinhole up to ~100s of micrometers. Both methods of imaging are performed 

on a Raman microscope and may require several minutes to hours to acquire an 
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image depending on the spatial resolution thus making it infeasible for real-time 

clinical applications. Most studies with point or line scanned Raman imaging 

have been used to improve our understanding of biological processes in cells 

and tissues in vitro as well as in animal models.65,168,169 Other methods of 

Raman imaging include nonlinear Raman techniques such as coherent anti-

Stokes Raman spectroscopy (CARS) and stimulated Raman scattering that take 

advantage of nonlinear processes for increased and selective signals. Both of 

nonlinear methods have been applied to study biochemical interactions in cells 

and tissues in vitro and in vivo applications have been confined to mouse 

models.153,170-173 However, all these imaging techniques are restricted by the 

limited number of available Raman photons and therefore the long integration 

times necessary to acquire a Raman image successfully. As such none of these 

approaches have successfully been applied in vivo in humans and are not 

directly practical for clinical use. 

2.6.3.c Fingerprint versus High wavenumber 

While the majority of researchers applying Raman spectroscopy for 

clinical applications have primarily been focused on spectral differences in the 

fingerprint range (up to about 1800 cm-1), some studies have investigated the 

diagnostic utility of spectral features in the high-wavenumber, generally 2200 

– 4500 cm-1 where distinct and strong features of lipids, proteins and water may 

be observed (Figure 2.11). The fewer but broader features that occur in the high 

wavenumber region can be much higher in intensity relative to competing 
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optical signals. Several studies have demonstrated the potential of high 

wavenumber Raman spectroscopy alone or in combination with fingerprint 

Raman methods to discriminate and classify disease in vivo.174 Detecting high 

wavenumber Raman features pose different requirements on the Raman system 

design. Because the high wavenumber signal is inherently at a higher 

wavelength than the fingerprint, different gratings, filters and more importantly 

detectors may be necessary in order to efficiently collect signals especially 

when using common NIR Raman excitation sources (described in the detector 

section above). Alternatively, because the separation between the Rayleigh line 

and the detected Raman bands is so large, inline filtering can be mitigated, 

which has the potential to simplify probe designs and reduce cost, thus 

increasing the potential for clinical translation. 
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Figure 2.11. Fingerprint and high-wavenumber Raman spectrum of ex vivo 
breast tissue depicts the broad, strong features characteristic of lipid 
components in the tissue. Both segments of the Raman spectrum can provide 
valuable information for evaluation of complex sample composition. 

 

2.6.3.d SORS 

Perhaps the most impactful configuration of Raman spectroscopy in 

recent years has been the discovery of spatially offset Raman spectroscopy 

(SORS). Photon migration theory dictates that photons incident on the tissue 

surface that reemerge after only a few scattering events are likely to undergo 

minimal transverse shift and travel through the most superficial depths. Photons 

that undergo many scattering events are more likely to undergo a larger 

transverse shift and also travel deeper within the tissue, due to the fact that the 

scattering phase function of tissue is primarily in the forward direction. The 

combination of spatial offset with the Raman effect introduces depth selectivity 

in the spectral measurements expanding the ability of Raman spectroscopy to 
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sub-surface phenomenon in biomedical applications.175 The intensity of the 

Raman-scattered light at zero spatial offset includes contributions from both the 

superficial and underlying layers. However, as the spatial offset increases, the 

signal intensity from the superficial layers falls off more rapidly than the 

intensity of the signal from the underlying layers, which increases the relative 

proportion of signal from the deeper layers. The SORS signal can be collected 

through a range of spatial offsets, and computational techniques such as least-

squares regression can be applied to separate the spectral signatures from 

individual layers.176,177 It is important to note that while SORS can yield Raman 

spectra from deep within the tissue, it does so in a probabilistic fashion that 

relies on the layered architecture of tissues in which the spectral signatures of 

the layers are distinct. This is in contrast to confocal Raman spectroscopy, 

which explicitly rejects out-of-focus light and collects spectra from a well-

defined depth. This makes SORS better suited for low-resolution depth-

dependent measurement of features and at greater depths (~centimeters) than 

confocal Raman spectroscopy (~100s µm). Several researchers have applied 

SORS towards clinical applications in the bone and breast.176,178,179 This 

approach has been extended to other configurations such as inverse SORS 

where the source and detection fibers are switched180 and Raman 

tomography169, where SORS is combined with computed tomography and 

modeling of optical properties to obtain three dimensional Raman maps. 
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2.6.3.e  SERS 

Surface enhanced Raman spectroscopy (SERS) is used to investigate the 

vibrational properties of single adsorbed molecules.48,150,181 It was discovered 

that the rather weak Raman effect can be greatly strengthened (by a factor of up 

to 14 orders of magnitude) if single molecules are attached to metal 

nanoparticles of a suitable material and roughness to capitalize on both 

electromagnetic (surface plasmon resonance) and chemical enhancement.182-184 

Many groups have used SERS to detect single molecules attached to colloidal 

silver particles that are either adhered to a glass slide or in an aqueous solution. 

Single-molecule detection is of great practical interest in chemistry, biology, 

medicine, and pollution monitoring; examples include DNA sequencing and the 

tracing of interesting molecules such as those used in bioterrorism. In medicine, 

the feasibility of SERS to track targeted molecules in vivo in a mouse model 

was successfully demonstrated by Gambhir et al.185 Since that report, numerous 

groups have applied targeted SERS-activated nanoparticles to track various 

cancer biomarkers in vivo in animal models.186-190 However, the biggest 

limitation of SERS is the need to introduce a tag with related toxicity issues 

which makes this approach infeasible for human clinical applications at this 

time. Vo-Dinh et al. developed a single fiber SERS sensor that has the potential 

to extend SERS for in vivo human use without the need for a targeted particle.191 

However, no reports of in vivo testing of this sensor were found.  Another 

configuration is a combination of the surface enhancement with deep Raman 
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spectroscopy, known as SESORS. First reported by Stone et al., this technique 

has demonstrated the potential for detecting molecule-specific SERS particles 

buried deeply within layers of tissues.192,193 While this technology has not yet 

been implemented clinically, research for nanoparticle confinement in 

substrates may reduce the potential for toxicity issues. 

Despite the various configurations described above, the most common 

configuration used in the application of Raman spectroscopy in a clinical setting 

is based on dispersive Raman spectroscopy in the fingerprint and/or high 

wavenumber region of spectrum. Spatial offset and confocal are modifications 

to this approach that have also been implemented and tested in a clinical setting. 

All the other approaches have been mostly applied to develop an improved 

understanding of a biological and biochemical processes rather than clinical 

diagnosis. Combining dispersive Raman spectroscopy with other optical (and 

non-optical) methods has been researched in an effort to improve performance 

of Raman spectroscopy alone in solving a clinical problem. Raman 

spectroscopy has been combined with optical coherence tomography194-196, 

optical tomography197, confocal reflectance microscopy198,199, fluorescence and 

diffuse reflectance spectroscopy200,201 to provide complementary information 

that can be used to further enhance the diagnostic capability of any one of these 

methods alone. The instrumentation considerations for making such multi-

modal approaches feasible are usually challenged by the need to combine a 

narrow bandwidth laser and sensitive detector, essential for the very weak 
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Raman signals with the source and detector considerations of a much brighter 

signal acquired using these other modalities. The resulting combinations yield 

a much more complicated instrument design accompanied with a higher cost 

device. Nevertheless, various researchers have successfully demonstrated the 

diagnostic advantage of these multi-modal approaches. 

2.6.4 Clinical applications of Raman spectroscopy 

Numerous research groups have investigated the potential of Raman 

spectroscopy for clinical use over the past decades and continue to find 

interesting medical problems for which the noted sensitivity of Raman 

scattering holds great promise. Various implementations of the instruments 

described above have been utilized in clinical studies that demonstrate the 

potential of Raman spectroscopy to impact medical care. In this section, we 

present a review of large (n > 50), clinical in vivo studies that are focused on 

the application of Raman spectroscopy for disease detection and sensing.  These 

studies provide a snapshot of the current state of the field in the clinical 

implementation of this technique (Table 2.2). By far, the most common clinical 

target under investigation with Raman spectroscopy is cancer. Large clinical 

studies have seen ongoing work in several organ systems, all of which have 

traits in common: a need for improved early detection with high sensitivity and 

specificity, well-characterized disease processes, and relative ease of access to 

the organ under study. The specific instruments utilized in these studies differ 
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slightly but all of the designs are driven by the anatomical target of interest. It 

is also of interest to note that all published studies of large clinical studies have 

been performed by the same few research groups pointing to the need for more 

research to translate the scope of Raman spectroscopy to in vivo human studies 

(Table 2.2).  

2.6.4.a  Cervix 

Cervical cancer is a highly preventable disease, as progression from 

precancer (or dysplasia) to cancer takes many years, providing a wide detection 

and treatment window. Developed countries have implemented vigorous 

screening programs that have dramatically reduced cervical cancer rates. 

Unfortunately, in developing nations where limited resources prevent large-

scale screening, cervical cancer is one of the most common causes of cancer-

related death among women comprising approximately 90% of 265,000 

cervical cancer deaths worldwide.202 Raman spectroscopy has been evaluated 

as an early diagnostic tool for cervical cancers and precancers over the past two 

decades. Our group demonstrated that Raman scattering was sensitive to 

normal, benign, low grade, and high grade dysplastic tissues in vivo.203 By 

integrating analytical algorithms with data collection, diagnostic accuracies as 

high as 88% were achieved. Further investigation found that by incorporating 

hormonal/menopausal status, the predictive performance improved to 94%.204 

Continuing work has identified cervical inflammation, parity status, and body 

mass index as additional variables to be considered but identified limited 
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influence of other patient variables including race/ethnicity and socio-economic 

status on Raman scattering based disease discrimination.139,205  

 The well-defined nature of the disease and easy accessibility of 

the cervix have allowed many researchers to pursue diagnostic research in this 

organ in vivo. Several different groups have used fiber based Raman systems 

for diagnosis and correlated their findings with colposcopy. These have used a 

variety of fiber probe designs and different multivariate statistical methods to 

achieve a range of performance estimates as shown in Table 2.2.139,203,206-209 In 

other cervical cancer studies, Huang et al. developed a simultaneous fingerprint 

and high-wavenumber confocal Raman system for cervical precancer detection 

and demonstrated the performance of this combined approach in 84 patients 

with sensitivity of 81% and specificity of 87%.209 Zeng et al tested the 

feasibility of a label free blood test based on blood plasma SERS on samples 

from 60 cervical cancer patients and obtained a sensitivity and specificity of 

96% and 92% respectively when using multivariate diagnostic algorithms.210 

Other results have demonstrated the potential of Raman spectroscopy to 

differentiate between responders and non-responders to radiotherapy on 

biopsies from  patients with cervical cancer211 and to detect high risk strains of 

the human papilloma virus in cervical cells.212 However these results need to be 

independently validated in a large study cohort. A recent review article on the 

application of Raman spectroscopy for cervical cancer presents an excellent 

summary of all relevant studies in a table.213 Beyond the realm of cancer 
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detection, our group has demonstrated the potential of Raman spectroscopy to 

track biochemical changes in the cervix during pregnancy and develop an 

understanding of cervical remodeling that occurs throughout pregnancy and 

parturition.214,215 

2.6.4.b Skin 

As the major organ in the integumentary system, the skin is both the 

outer barrier of the body to the external world as well as the tissue that is easiest 

to interrogate with light. Melanocytic and non-melanocytic cancers have 

different cellular origins, but collectively comprise the most common cancers 

in the world.216 As a surface organ malignancy, skin cancers are among the 

easiest to study with optical techniques; however, the complex, turbid nature of 

the skin makes it one of the most challenging clinical targets for optical 

diagnostics and monitoring. Early studies used Raman spectroscopy to extract 

water concentration profiles in human skin while demonstrating the feasibility 

of in vivo Raman spectroscopy for clinical monitoring.217 Since then, much of 

skin Raman research has focused on the investigation of Raman based 

diagnostics. These studies also resulted in developing portable systems that 

were directly applicable to the clinical workflow, with instruments that can 

make measurements with integration times under 1 second.52,54,102 A number of 

groups have invested significant effort in studying skin cancers in order to 

improve patient care and as a result, skin cancer studies have some of the 

highest recruitment of any Raman studies published, as related in Table 
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2.2.52,200,218-220 Zeng et al. utilized a Raman instrument to study melanocytic 

and non-melanocytic as well as malignant and premalignant melanocytic 

lesions from 453 patients: discrimination of cancer and precancer versus benign 

lesions demonstrated a 90-99% sensitivity, with a related specificity of 15-

54%.52 This work suggests that Raman techniques can be used to reduce the 

need for unnecessary biopsies to a significant degree, potentially by 50-100%. 

Other groups have utilized multimodal approaches, leveraging the strengths of 

Raman spectroscopy with a combination of fluorescence and diffuse reflectance 

techniques in order to improve diagnostic outcomes. In one such report of 76 

patients, Raman spectroscopy alone was demonstrated to achieve 100% 

sensitivity and specificity for discriminating melanoma from benign pigmented 

lesions, but only 72 % sensitivity and 64% specificity in separating non-

melanoma skin cancers from precancers and 68% sensitivity and 55% 

specificity for distinguishing non-melanoma cancers and precancers from 

normal tissues. However, when combined with fluorescence and diffuse 

reflectance features, those same comparisons achieved 100/100%, 95/71%, and 

90/85% sensitivities/specificities, respectively.200 In other Raman skin research 

not related to cancer, Irvine et al. studied atopic dermatitis in 132 children, 

correlating natural moisturizing factor signals obtained via Raman scattering 

with genetic screening for filaggrin mutations common in atopic dermatitis.221 

The results of this study found that Raman signals achieved 98.7% sensitivity 

and 86.8% specificity in identifying atopic dermatitis associated with these 
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mutations. Raman spectral signatures of skin carotenoids have also been 

investigated using a 488 nm based resonance approach to profile the intake of 

fruits and vegetables in preschool aged children.161 This study demonstrated a 

correlation of Raman signatures with parent-reported family participation in a 

nutritional-education and -quality program, further demonstrating the exquisite 

sensitivity of Raman scattering to biochemical components. 

2.6.4.c Gastrointestinal tract 

The gastrointestinal tract encompasses the digestive system from the 

mouth, through the esophagus, stomach, intestines, colon to the rectum. The 

entire organ system, with the exception of parts of the small intestine, is 

accessible directly (to the mouth) or via an endoscope. In developing Raman 

spectroscopy as a diagnostic tool for the GI tract, the challenge is in the 

development of a fiber probe that can be inserted through the endoscope and 

placed in contact with the tissue of interest in a stable manner for the duration 

of data acquisition. Numerous groups have focused their attention on various 

parts of this organ for Raman based detection. 

2.6.4.c.i Mouth 

Oral tissue is particularly easy to access since endoscopy is not required, 

mitigating the size constraints of the probe for in vivo Raman measurements. 

Oral cancer incidence has been increasing over the last 40 years in the US and 

is a larger problem globally, For example, it accounts for 10% of all cancers in 
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India.202 This cancer can rapidly spread, which emphasizes the need for early 

detection and monitoring. Murali Krishna et al. report the discrimination of 

normal control, premalignant, and cancerous sites from 104 patients with 

prediction accuracies ranging from 72-96%.222 In a more recent study, the same 

group investigated the potential for Raman spectroscopy to detect malignancy 

associated changes/cancer field effects in a cohort of 84 oral cancer and age-

matched control patients.223 Comparison of non-cancer locations in a smoking 

and non-smoking population demonstrated prediction accuracies from 75-98% 

with most of the misclassifications occurring between control locations in 

cancer patients and locations in smoking healthy controls. This work further 

demonstrates the sensitivity of Raman scattering to subtle biochemical changes 

which may precede macroscopic disease.224,225 Another group reported the 

discrimination of normal oral tissue from three separate lesion categories with 

per-class accuracies ranging from 82-89% in 199 patients and 96% sensitivity 

and 99% specificities for normal versus malignant and 99% and 98% 

respectively, for normal versus potentially malignant.226 One variability study 

of age and tobacco-related pathological change for oral cancer and precancer 

demonstrated sensitivity to age-related changes in Raman spectra, however the 

inclusion of this diverse control population had no impact on classification of 

normal and abnormal conditions.227 Given the critical need for oral cancer 

detection particularly in low resource settings and the excellent performance 

that can be achieved in its detection with Raman spectroscopy, this area of 
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research is ripe for clinical translation but needs a low cost instrument for its 

success. The optical device market has seen a recent increase in the number of 

handheld Raman devices available commercially; these are sold mostly for the 

identification of pure chemicals and trace elements. However, these devices 

indicate that the technology exists for the miniaturization of current clinical 

Raman systems which could in turn make the prospect of commercial 

translation of Raman systems in low resource settings a reality.  

2.6.4.c.ii Esophagus 

Barrett’s esophagus is a consequence of gastroesophageal reflux that 

has been associated with an increased risk of esophageal adenocarcinoma. By 

adapting Raman fiber optic probe designs for endoscopic compatibility, in situ 

measurements of this disease target have been enabled by many groups. Wilson 

et al demonstrated the potential for in vivo spectral acquisition in a cohort of 65 

Barrett’s esophagus patients, with sensitivities and specificities of 86-88% and 

88-89%, respectively for discriminating dysplastic and high-risk lesions from 

non-dysplastic and low-risk cases.128 This demonstration of a clinically-useful 

Raman instrument with endoscopic compatibility and 5 second integration 

times was an early indication of the ability of in vivo Raman spectroscopy to 

access an internal organ. More recent work by another group has demonstrated 

real-time performance of Raman spectroscopy during endoscopy in 373 

patients with integration times of 0.2 seconds per acquisition and could 

discriminate high-grade dysplastic Barrett’s esophagus from normal and non-
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dysplastic tissue with 87% sensitivity and 84.7% sensitivity.147 Other work has 

demonstrated the importance of considering the anatomical location of a Raman 

measurement; in a study of 107 patients, inter-organ variability (between the 

esophagus and stomach) was significant compared to intra-organ variability and 

neoplastic change.145 These results support the need for comprehensive libraries 

of disease spectra and a thorough understanding of healthy and diseased tissues. 

2.6.4.c.iii Stomach 

As a leading cause of cancer-related death worldwide202, stomach 

cancer has been another popular detection target for Raman spectroscopy.228-230 

As with the esophagus, integrating Raman fiber probes with standard 

endoscopes has enabled in vivo evaluation of gastric malignancies. Utilizing an 

endoscope compatible probe, linear component tissue model, and classification 

and regression trees, Huang et al. reported 94% sensitivity and 93.4% 

specificity for discriminating normal gastric tissue from cancer in 67 patients 

undergoing endoscopy with biopsy.231 Huang et al. have also reported a 

statistically robust study where 450 patients undergoing upper endoscopy were 

measured with Raman spectroscopy to train a discrimination algorithm.232 This 

work was one of the first reports to prospectively discriminate gastric precancer 

in real-time using Raman spectroscopy, achieving a sensitivity of 81% and a 

specificity of 88%. In another study by the same group, researchers investigated 

stomach ulcers in 71 patients and found that Raman endoscopic measurements 

could differentiate normal mucosa, benign and malignant ulcers with 82-90% 
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sensitivity and 93-95% specificity.233 A related report by this group investigated 

the ability of Raman techniques to perform multi-class discrimination of 

normal, precancer, and early stage gastric cancer in a cohort of 83 patients, and 

demonstrated sensitivity to early stages of the carcinogenic process.234 Finally, 

a report combining Raman techniques with near-infrared autofluorescence 

signatures (n=81, 97.9% sensitivity & 91.5% specificity)235 demonstrated 

similar results for in vivo detection for cohorts gastric cancer patients. 

2.6.4.c.iv Colon/Intestine 

Colorectal cancer is a major disease entity, ranking among the top three 

cancers worldwide for estimated new cases and cancer-related deaths.202 

Colonoscopy is the most sensitive technique available for screening and early 

detection of cancer or precancerous polyps and routine colonoscopy screening 

for adults over 50 has become the standard in countries like the United States. 

However, benign polyps often develop, which can limit its sensitivity and 

potentially complicate intervention. Preliminary Raman studies based on ex 

vivo samples and small in vivo cohorts have been reported, discriminating 

benign and malignant polyps. One in vivo study has investigated the impact of 

the colon segment on the acquired Raman signal from 50 colonoscopy patients, 

but found that the between-segment variability was less influential than 

malignant status.236 The same group has since reported an in vivo study 

combining both fingerprint and high-wavenumber Raman spectroscopy during 

endoscopy in order to achieve 90% sensitivity and 83% specificity for 
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separating adenomatous and hyperplastic polyps in real-time.174 In other 

studies, our group has demonstrated the potential for endoscopic Raman 

spectroscopy to discriminate inflammatory bowel diseases in a 53 patient 

cohort, demonstrating the potential of Raman spectroscopy to detect subtle 

changes in tissues related to inflammatory diseases,80 another significant 

clinical problem that has seen a rise in incidence in recent years. 

2.6.4.d Other diagnostic targets 

While the majority of reports published on large clinical in vivo Raman 

studies have been focused on the above tissues, other diseases have also been 

studied with Raman spectroscopy. Lung cancer is one of the most common 

causes of cancer related death impacting millions of people annually.202 Similar 

to other endoscopic studies with Raman scattering, investigation of this disease 

has been conducted in ex vivo samples with near 100% accuracy. A 

bronchoscope compatible Raman fiber probe has been used to study the 

potential of Raman spectroscopy for the detection of pre-neoplastic lesions in 

the bronchial tree in 26 patients.237 However, no reports on the performance of 

this technique for a large cohort of lung cancers in vivo were found. 

Surgical guidance is another areas of active research for clinical Raman 

spectroscopy, where researchers have developed biopsy-needle compatible 

fiber probes to detect micro-calcifications for breast cancer diagnosis as well as 

SORS techniques to determine breast cancer margin status during surgical 

resection with excellent results. Raman spectra of core needle biopsies could 
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successfully be used to identify the presence of micro-calcification in these 

specimens with 82% accuracy.238 Depth-resolved SORS was used to assess the 

ability of this technique to detect the presence of cancer cells in excised breast 

specimens for margin assessment with 95% sensitivity and 100% specificity.178 

A large clinical study is currently in progress to validate these findings intra-

operatively. Another study has focused on the ability of Raman spectroscopy to 

assess axillary lymph nodes during breast surgery.239 Preliminary reports for 

this study utilized frozen tissue section of lymph nodes from 58 patients 

immediately after excision from the body and reported 81% sensitivity and 97% 

specificity. However, the authors indicate that freshly excised samples could be 

analyzed for intra-operative evaluation. Another application for Raman 

spectroscopy in surgical guidance is for brain surgery. While restricted to small 

cohort studies at this point, researchers have characterized a surgery compatible 

Raman probe based system240 and demonstrated discrimination of normal brain 

from dense cancer and normal brain invaded by cancer cells with up to 93% 

sensitivity and 91% specificity for grade 2 to grade 4 gliomas in 17 patients.241 

This work shows continued promise for surgical guidance based on Raman 

scattering techniques however, it also requires expanded recruitment for 

validation. 

A majority of the research for Raman spectroscopy techniques has 

focused on disease diagnosis of tissues in situ. However, clinically relevant 

diagnostics have also been investigated for samples removed from the body, 
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especially pertaining to blood analytes. Puppels et al. published work utilizing 

a spectral library to prospectively and rapidly evaluate blood cultures for 

bacterial and fungal pathogens, achieving 92% classification accuracy from 121 

patient samples.242 More commonly, researchers introduce SERS particles into 

ex vivo specimens in order to improve sensitivities. These have been applied for 

numerous detection endpoints including a recent publication for 

nasopharyngeal cancer detection243 where blood plasma samples from 156 

patients were analyzed with SERS. The study demonstrated 95% sensitivity and 

91% specificity for discriminating healthy volunteers from cancer patients. Liu 

et al. used SERS particles with serum from healthy and bladder cancer patients 

in order to improve early stage detection. By combining the sensitivity of SERS 

with advanced machine learning genetic algorithms, the researchers were able 

to achieve 94% diagnostic accuracy in a cohort of 91 patients.244 Zeng et al. 

have likewise investigate SERS techniques for blood plasma analysis aimed at 

improved gastric cancer detection.245 Samples from 65 patients were analyzed 

with polarized illumination of SERS particles and multivariate techniques. The 

study indicated great promise for specific circularly-polarization regimes with 

100% sensitivity and 97% specificity for non-invasive gastric cancer detection. 

Another long-standing non-invasive target includes blood glucose monitoring. 

Feld et al. developed compound hyper- and parabolic concentrators for 

transdermal blood glucose measurements, however, there have been no large 

cohort studies reported with this device.84,130 Other reports have utilized Raman 
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scattering to look at cerebral spinal fluid samples from 61 patients ex vivo to 

diagnoses tuberculous meningitis and achieved 91% sensitivity and 82% 

specificity.246 This is just a glimpse of the numerous ex vivo applications of 

Raman spectroscopic techniques that are relevant for clinical detection and 

diagnostics. 

Raman spectroscopy has been used in the eye to study such conditions 

as macular degeneration. Gellerman et al. developed a resonance Raman 

approach at 488 nm to study the impact of carotenoids in the skin and eye.159 In 

one application of this approach, Chakaravarthy et al., measured macular 

pigment from 107 patients and correlated with heterochromatic flicker 

photometry to evaluate antioxidant pigment of the retina, however, the 

correlations were low and further investigation was merited.160 Using the same 

approach, Stevenson et al. demonstrated the improved effect of antioxidant 

supplementation in age related macular degeneration patients in a study of 433 

patients in vivo.158 

2.6.5 Summary 

Despite the impressive work presented here in a selection of clinical 

fields, there remain a number of challenges that stand in the way of clinical 

translation for Raman based technologies for widespread human use. 

Demonstrating the safety of these devices to regulatory agencies is a vital step 

that must be undertaken for translation. Practically speaking, there is a need for 
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robust system design with consistent internal calibration, such that with little 

training, a user can setup a system and collect repeatable data. For this to be 

realized, low-cost or long-lasting, durable, high-performance fiber optic probes 

(or an equivalent light delivery device) are required. Having reliable and 

consistent performance for interfacing the sample and system is pivotal for the 

transition from research instrument to clinical relevance. To this end, there is 

also a need for inter-system calibration and large libraries of spectral data that 

can be transferred and compared between instruments, to expand the utility of 

the devices for multiple medical targets. Standardized and reliable methods for 

data analysis are necessary to condense the feature-rich Raman spectra obtained 

by these instruments into not only the salient features used for a clinical 

evaluation, but also communicated to the user in a simple, easily interpretable 

format, including clinically relevant metrics for evaluation (ROC, 

sensitivity/specificity). Preliminary work on many of these aspects for clinical 

translation are ongoing, but continued effort is needed to facilitate the transition 

from benchtop to bedside. Of course, it is of the utmost importance that the 

technologies developed provide new and meaningful information about a 

clinical target; therefore, seeking collaboration and input from the medical 

community is paramount to ensure that research efforts of Raman techniques 

are directed at relevant needs in medicine and surgery. Finally, the largest 

obstacle at this point to clinical translation is the need to demonstrate the added 

value of these optical technologies over or in parallel with existing medical 
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devices in large cohorts studies based on patient outcomes and relative to 

meaningful and accepted gold standards.  

The various applications described above demonstrate the potential of 

Raman spectroscopy to affect patient care. And yet few systems based on 

Raman spectroscopy have been processed through regulatory approval and 

commercialized successfully. The external barriers towards the adoption of this 

technology lies in the limited size of the target market revenue which tends to 

hold back potential industrial partners and investors. Regardless, there have 

been some successes including the system by River Diagnostics which has 

successfully sold Raman instruments for the assessment of skin in the cosmetic 

industry (albeit not for a clinical application) and Verisante Technology which 

has most recently released Raman based devices for oral and skin cancer 

diagnosis. These commercial devices indicate that the barriers to the clinical 

implementation of Raman spectroscopy are not insurmountable and widespread 

acceptance of this technology can be achieved. 
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CHAPTER 3 

 

APPLICATION DRIVEN ASSESSMENT OF PROBE DESIGNS FOR 

RAMAN SPECTROSCOPY 

 

3.1 Abstract 

In vivo Raman spectroscopy has been utilized for non-invasive, non-

destructive assessment of tissue pathology or physiological state in a variety of 

applications largely through the continued development of fiber optic probes to 

interface with samples of interest. Fiber optic probes can be designed to 

optimize collection of Raman-scattered photons from application-dependent 

depths, and this critical consideration should be addressed when planning a 

study. Herein we investigate four unique probe geometries for sensitivity to 

superficial and deep signals through a Monte Carlo model that incorporates 

Raman scattering and fluorescence for the first time. Experimental validation 

was conducted using biological tissues and TiO2 and polytetrafluoroethylene 

(PTFE) phantoms, with the intention of more accurately recapitulating in vivo 

performance scenarios. The behavior of each probe design evaluated 

(unmodified collection, Gaser, superficially focused micro lens, and deep 

focused micro lens) was modeled and demonstrated strong correlation with 

experimental results obtained through biological tissue and phantom testing. 
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Testing in biological tissues revealed that superficially focused micro lens and 

Gaser designs had superior performance at shallow depths (< 1 mm), whereas 

the deep focused design yielded the highest signals deep within tissue. The 

probes demonstrated similar performance for TiO2 and PTFE experiments at all 

depths investigated. The contrast in results between the TiO2/PTFE and 

biological tissues underscores the importance of incorporating the optical 

properties of a given application when designing a fiber optic probe, as the high 

reduced scattering coefficients of the synthetic phantoms negated the benefits 

of beveling and lenses that were originally optimized for use in air. The model 

presented here can be easily extended for optimization of entirely novel probe 

designs prior to fabrication, reducing time and cost while improving data 

quality. 

 

3.2 Introduction 

In vivo Raman spectroscopy has been utilized for non-invasive, non-

destructive assessment of tissue pathology or physiological state in a variety of 

applications.1 The majority of such applications are enabled by use of fiber optic 

probes to interface with samples of interest. Almost all fiber optic probe designs 

collect and integrate the signal obtained from a small volume of the sample 

beneath the probe tip. Due to the weak nature of the Raman Effect, it is 

important to maximize the signal to noise ratio obtained from the tissue of 
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interest at the particular depth of interest. Fiber optic probes can be designed to 

optimize collection of Raman-scattered photons from application-dependent 

depths, and this critical consideration should be addressed when planning a 

study. The desired depth alone does not provide sufficient information to 

optimize the design for a specific application. There is a need for a platform 

that allows investigators to 1) predict Raman scattered photon distribution in 

the sample of interest and 2) optimize fiber optic probe excitation and collection 

geometries to ensure maximum signal to noise at the desired depth. Such a tool 

must take into consideration Raman scattering, fluorescence, elastic scattering, 

and absorption in order to accurately predict how a probe design will perform 

for a given application.    

The clinical applications driving innovative probe designs are vast, and 

have been recently reviewed by Pence et al.1 Broadly, these applications can be 

grouped into three depth ranges: superficial (10-200 μm),2-13 subsurface (200-

2000 μm),14-18 and deep (greater than 2000 μm);19-22 examples of such 

applications are provided in Table 3.1. Raman probe designs have been 

developed within each of these depth categories to optimize data collection for 

specific applications as reviewed by Stevens et al.23 Two distinct probe designs 

have been demonstrated for superficial as well as multiple millimeter depths. 

For increased performance at shallow depths, a confocal detection design was 

implemented by Wang et al.24 This probe design combined beveled fibers and 

a spherical ball lens to achieve increased signal performance in the first 300 μm 
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of tissue relative to unmodified fiber probe designs. At the other extreme, the 

standard for detecting signals buried deep in scattering tissues is based on 

principles of random walk and multiple scattering. Spatially offset Raman 

spectroscopy (SORS) probes have been designed and constructed for specific 

applications such as bone in order to take advantage of the probabilistic paths 

for photons to travel deeper into the sample when the source and detector 

elements of the probe have a greater separation.17, 25 Between these two 

extremes lies a spectrum of probe designs that incorporate various strategies to 

steer both the excitation and collection fibers to measure relatively shallow or 

deep layers.23 Each of these probe designs collects a volume-averaged signal 

from the sample beneath the probe tip; however, properly considering the 

application can enable dramatically improved signal detection from the targeted 

sample depth.  

 
Table 3.1. Depth-sensitive pathologies from Raman spectroscopy literature. 

Superficial 
(10-200 μm) 

-Epithelial precancers and cancers  
(cervix,26 esophagus,27 stomach,28 colon,29 skin,30,31 lung,32 
oral cavity,33 and bladder34) 
-Dermatitis35 
-Inflammatory bowel disease36 
-Barrett’s esophagus37 

Subsurface 
(200-2000 μm) 

-Cervical remodeling during pregnancy (stroma)38,39 
-Vulnerable plaque assessment in arteries40 
-Tumor margin assessment (breast,41 brain42) 

Deep  
(greater than 2 
mm) 

-Transcutaneous assessment of bone43,44 
-Detection of malignant breast calcifications45 
-Detection of urologic stones46 

 

Probe designers generally use ray tracing to determine optimal light 

delivery and collection geometries for probe performance in air. Ray tracing 
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software allows for determination of the excitation and collection cone angles 

and their overlap. However, optimizing designs for use in non-scattering media 

does not fully predict performance in biological tissue where optical scattering 

can be substantial. Accounting for the interactions between light and tissue is 

vital to accurately determine probe behavior. Prediction of light transport in 

tissue can be modeled using Monte Carlo (MC) simulations, in which the 

radiative transport equation can be solved for complex scenarios with an 

accuracy that depends upon the computational burden. MC models were 

originally developed to track photon distribution and absorption in turbid media 

and have been extended for numerous and varied optical applications including 

fluorescence and Raman scattering.10, 25-30 Application-driven probe design 

must bridge these two approaches, ray tracing and laser-tissue interaction 

models, to truly optimize fiber optic probes for biological targets. 

Specifically for Raman scattering, a few groups have implemented these 

MC models. Matousek et al. developed an MC model for layered media for 

investigation of chemical powders.25 Enejder et al. investigated system 

geometry effects on blood spectra31 and Shih et al. used an MC model to correct 

Raman spectra for tissue scattering and absorption artifacts.29 Two separate MC 

models have been developed for evaluating superficial fiber optic probe 

collection geometries for epithelial detection applications.10, 30 Furthermore, 

Keller et al. developed an MC model for investigating SORS approaches in 

turbid media.28 Reble et al. implemented a Raman MC model to systematically 
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investigate the impact of tissue absorption and scattering properties on the 

performance of probes with different collection geometries.32 Each of these 

models has proven valuable for investigating detection of Raman signals in 

complex turbid media; however all have investigated Raman scattering effects 

in isolation. As a Raman fiber optic probe detects competing signals from 

tissue, especially fluorescent and diffusely scattered photons, it is vital for a 

model to consider each of these competing phenomena while identifying the 

optimal probe design for a target application.  

Herein, we investigate the impact of incorporating application-specific 

parameters when choosing or developing a Raman probe to measure depth 

dependent signals using a MC model that tracks Raman and fluorescent photons 

paired with experimental validation in both common optical phantoms and 

biological tissues. This approach allows researchers to more accurately 

recapitulate and/or predict in vivo performance scenarios. 

 

3.3 Methods 

3.3.1 Fiber optic probes 

Four unique fiber optic probes were experimentally tested and their 

performance was modeled using the MC simulation explained below. All of the 

fiber optic probes investigated in this study were designed for excitation at 785 

nm and have seven collection fibers (300 μm diameter) surrounding one 
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excitation fiber which total 2.1 mm in outer diameter. All of the probes have 

filters on the excitation fiber such that only 785 nm light passes to the sample 

and all of the collection fibers have filters that block the 785 nm laser light. 

Each probe that was evaluated has a unique configuration, which are all drawn 

to scale based upon results from ray tracing software (Radiant Zemax, Bellevue, 

WA) shown in Figure 3.1. The four probes include 1) a conventional design 

that has no lenses or beveling with standard 0.22 NA fibers (±12.7° acceptance 

angles, 400 μm diameter excitation fiber, EmVision LLC) (Figure 3.1A); 2) a 

beveled collection fiber design that has superficial overlap of the excitation and 

collection cone angles (35-55.3° acceptance angles, 400 μm diameter excitation 

fiber, Gaser probe by Visionex Inc.) (Figure 3.1B); 3) a micro lens design with 

a polished 3 mm diameter sapphire plano convex lens coupled to a 1 mm thick 

MgF2 window that yields excitation and collection cone overlap deep within a 

sample (5-33.8° acceptance angles, 200 μm diameter excitation fiber, EmVision 

LLC) (Figure 3.1C); and 4) a micro lens design with a polished 2 mm diameter 

sapphire plano convex lens coupled to a 1 mm thick MgF2 window that results 

in excitation and collection cone overlap at the surface of the sample (21.2-

35.8° acceptance angles, 200 μm diameter excitation fiber, EmVision LLC) 

(Figure 3.1D). Probe-specific acceptance angles and collection fiber surface 

cross-sectional areas are listed in Table 3.2.  
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Figure 3.1. Probe collection geometries. Probe geometry cross section based on 
ray tracing: (A) unmodified, (B) beveled, (C) deep micro lens, and (D) 
superficial micro lens. Overlap between excitation and collection cones denote 
theoretic probe performance in air. 
 

 

Table 3.2. Probe specifications.  
Unmodified Beveled Micro lens deep Micro lens shallow 

Collection surface 
cross-sectional area 

0.753 mm2 0.487 mm2 1.359 mm2 0.372 mm2 

Acceptance angle ± 12.7° -12.7° to 38.0° 4.9° to 33.8° 21.2° to 35.8° 
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3.3.2 Monte Carlo model 

A multimodal MC model, incorporating diffuse reflectance, 

fluorescence, and Raman scattering was developed in MATLAB (The 

Mathworks, Inc., Natick, MA) by incorporating a previously existing multilayer 

model for diffuse reflectance.26 Fluorescence generation and photon 

propagation were incorporated as previously described.27,28 Raman scattering 

and photon propagation were also incorporated based on prior work.29 Finally, 

angular dependent photon injection and collection was included to investigate 

the influence of probe geometry at the sample interface. The general algorithm 

for the multimodal MC model can be seen in Figure 3.2. Briefly, 100,000 seed 

photons are injected from the excitation fiber (Gaussian profile) into the top 

layer of the sample and propagate in the presence of absorption and elastic 

scattering. After a photon migrates and deposits a discrete photon weight (based 

on Beer’s law), Raman scattering can occur (probability check: 𝜉𝜉 <

 𝑘𝑘𝑅𝑅𝑅𝑅
𝜇𝜇𝑠𝑠,𝐸𝐸𝐸𝐸

𝜇𝜇𝑠𝑠,𝐸𝐸𝐸𝐸+ 𝜇𝜇𝑎𝑎,𝐸𝐸𝐸𝐸
), where ξ is a random number [0,1].29 If no Raman event occurs, 

then fluorescence absorption and emission is possible (probability check: 𝜉𝜉 <

1 −  𝑒𝑒−𝜇𝜇𝑎𝑎,𝐹𝐹𝐹𝐹𝛿𝛿), where δ is the calculated photon step size.30 For any of these 

events (elastic scattering, Raman scattering, or fluorescence), a new photon 

trajectory is calculated and the photon propagates (based on appropriate layer 

optical parameters) until either the photon weight is decremented and ended as 

per standard MC roulette routines or the photon escapes the model layers. If a 
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photon is scattered through the surface of the topmost layer and within the 

detection diameter and acceptance angle for the collection fiber, the remaining 

photon weight is considered detected. For this model, Raman scattering and 

fluorescence generation are considered competing processes with respect to 

excitation photons. A few assumptions have been made for the implementation 

of this code: 1) photon weight is deposited in the voxel at the end of the photon 

step, 2) Raman scattering determination happens prior to fluorescence 

absorption (Raman scattering is an instantaneous process whereas fluorescence 

occurs between 10-7 to 10-9 seconds), 3) secondary Raman scattering and 

fluorescence generation are neglected, 4) all Raman and fluorescence photons 

are modeled at a single wavelength for simplicity, 5) Raman scattering and 

fluorescence events are isotropic, and 6) the model is implemented as a plane 

bisecting the center of the excitation fiber and a single collection fiber, and 

could be extended via rotational symmetry. Due to the relatively low 

concentrations and cross-sections of Raman scatterers in biological tissue, the 

likelihood of a Raman event was scaled by 104 to reduce computational burden. 

This scaling factor of 104 was chosen such that the model had roughly equal 

probability for Raman scattering and fluorescence without the computational 

burden of modeling 106 fluorescence photons per single Raman scattering 

event. All modeling sets were run at least 3 times to ensure consistent 

performance.  
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Figure 3.2. Flowchart for tracing photons in multi-layered media with 
multimodal Monte Carlo simulation. Model parameters: 𝜆𝜆𝐸𝐸𝐸𝐸= wavelength, 
excitation photon; 𝑠𝑠 = photon step size; 𝑑𝑑𝑏𝑏 = distance to layer boundary; 𝜇𝜇𝑡𝑡,𝜆𝜆 = 
total attenuation coefficient at 𝜆𝜆; 𝜆𝜆𝐸𝐸𝐸𝐸 = wavelength, emission photon; 𝜉𝜉 = 
random number [0,1]; 𝑘𝑘𝑅𝑅𝑅𝑅 = Raman scattering cross section; 𝜇𝜇𝑠𝑠,𝐸𝐸𝐸𝐸 = scattering 
coefficient at 𝜆𝜆𝐸𝐸𝐸𝐸; 𝜇𝜇𝑠𝑠,𝐸𝐸𝐸𝐸 = scattering coefficient at 𝜆𝜆𝐸𝐸𝐸𝐸; 𝜇𝜇𝑎𝑎,𝐹𝐹𝐹𝐹 = fluorescence 
absorption coefficient; 𝑊𝑊𝐸𝐸𝐸𝐸 = photon weight at 𝜆𝜆𝐸𝐸𝐸𝐸; 𝑊𝑊𝐸𝐸𝐸𝐸 = photon weight at 
𝜆𝜆𝐸𝐸𝐸𝐸; 𝑊𝑊𝐹𝐹𝐹𝐹 = photon weight of fluorescence at 𝜆𝜆𝐸𝐸𝐸𝐸; 𝑄𝑄𝑄𝑄 = fluorescence quantum 
yield. 
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The optical properties used as inputs in this model (Table 3.3) were 

based on both published values26 (absorption and scattering coefficients, index 

of refraction, and anisotropy factors) as well as experimentally derived values 

(Raman cross section and fluorescence quantum yield). To mitigate the impact 

of experimental setup on model parameters, experimental results were averaged 

across all four probe designs prior to simulation.  

 
Table 3.3. Input parameters of the Monte Carlo simulation. 

Optical Properties Muscle Adipose 
μa,Ex at 800 nm (1/cm) 0.54* 1.08* 
μs,Ex at 800 nm (1/cm) 66.70* 202.00* 
μa,Em at 900 nm (1/cm) 0.32* 1.25* 
μs,Em at 900 nm (1/cm) 88.70* 108.00* 
Scattering anisotropy (g) 0.93* 0.90* 
Raman cross-section (kRS)  0.92 7.43 
μa,Fl fluorescence (1/cm) 7.20 3.60 
Fluorescence quantum yield 1.34 0.34 
Index of refraction (n) 1.37* 1.45* 
*Denotes values reported in 26 

 

3.3.3 Raman spectroscopy system 

All Raman measurements were acquired using a cart-based clinical 

Raman spectroscopy system which used a 785 nm diode laser (Innovative 

Photonics Solutions, Monmouth Junction, NJ) coupled to an imaging 

spectrograph (Holospec f/1.8i, Kaiser Optical Systems, Ann Arbor, MI) and a 

thermoelectrically cooled charge-coupled device camera (Pixis 256BR, 

Princeton Instruments, Princeton, NJ), all operated by a laptop computer. The 

system was wavelength calibrated using a neon-argon lamp, and the Raman 
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shifts were calculated using acetaminophen and naphthalene standards. Spectral 

response correction was determined using a National Institutes of Standards and 

Technology (NIST)-calibrated tungsten lamp. All measurements were 

background subtracted, noise smoothed, and fluorescence subtracted as 

described previously.27 

3.3.4 Adipose and muscle tissue experiments 

Raman signals were acquired from semi-infinite porcine muscle and 

adipose tissues to simulate biological samples. The porcine tissues were 

commercially acquired and refrigerated until use, and were kept on ice 

throughout the experiment. Three hundred μm thick slices of muscle tissue were 

obtained via cryosection and were layered over the semi-infinite slab of adipose 

tissue in 300 μm steps until a total muscle tissue thickness of 1800 μm was 

achieved (Figure 3.3A-B). Raman spectra were acquired at all thicknesses with 

each probe, and their ability to detect the superficial (muscle) and deep 

(adipose) tissues was assessed using two methods: the first method calculated 

the ratio of a peak intensity specific to muscle (1003 cm-1 peak corresponding 

to symmetric aromatic ring breathing in phenylalanine27) and a peak intensity 

specific to adipose tissue (1066 cm-1 peak corresponding to C-C stretch28) 

(Figure 3.3 C). These peaks were chosen due to the similar intensities exhibited 

in pure measurements so that stable peak ratios could be calculated.  The second 

method used non-negatively constrained partial least squares (PLS) to 
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determine the contributions made by the muscle and the adipose tissue as a 

function of muscle thickness using the full spectrum.27  

 

 
Figure 3.3. Experiment setup: (A) Schematic of experimental setup and (B) 
image for depth response characterization with probe contacting the surface of 
the superficial layers (porcine muscle or TiO2) above a semi-infinite base 
(porcine adipose or PTFE, figure not to scale). (C) Pure spectral components 
measured from porcine adipose and muscle tissue samples of semi-infinite 
thickness (beveled probe design). (D) Representative signal tradeoff between 
pure components with increasing thickness of superficial TiO2 layer (100 μm 
steps, beveled probe design). Arrows in (C) and (D) indicate peak positions 
used in ratiometric analyses. 
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3.3.5 Synthetic phantom experiments 

Raman spectra were acquired separately from a polytetrafluoroethylene 

(PTFE) puck and sheets of titanium dioxide (TiO2) particles27 in a silicone-

elastomer base to determine their “pure” Raman signals. Next, 100 μm thick 

sheets of the TiO2 phantom were serially placed over a semi-infinite PTFE puck 

(1 cm thick) until a TiO2 thickness of 1800 μm was achieved (Figure 3.3A). 

The spectral tradeoff as a function of TiO2 layer thickness is displayed in Figure 

3.3D. Pure PTFE is shown in black, which transitions down to an 1800 μm thick 

TiO2 layer shown in light gray, with steps in 100 μm increments. As the TiO2 

layer thickness increased, the signal changed from a dominant PTFE signature 

to a primarily TiO2 spectral shape. Raman spectra were collected at each 

thickness using all four probes to assess the efficacy of each probe in measuring 

superficial (TiO2) and deep (PTFE) Raman signals obtained as a function of 

superficial thickness. Again, the ratio of the TiO2 to PTFE signal was assessed 

using two methods: the first method calculated the ratio of the TiO2 layer peak 

(1412 cm-1 corresponding to CH3 bending28) to the PTFE layer peak (1300 cm-

1 corresponding to CF2 asymmetric stretching29) (Figure 3.3D). The second 

method used non-negatively constrained PLS to determine the respective 

contributions made by the TiO2 phantom and the PTFE puck.30  
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3.4 Results and discussion 

3.4.1 MC simulations 

The mean results ± standard deviation of triplicate runs from the MC 

model simulation for porcine adipose and muscle tissue are depicted in Figure 

3.4. A ratio of muscle tissue signal to adipose tissue signal was calculated by 

integrating the Raman photons detected from the muscle and adipose tissue 

layers respectively, as shown in Figure 3.4A. An increase in muscle to adipose 

tissue signal ratio as the muscle thickness increases is observed in all probe 

designs, and the modified probe designs have higher muscle to adipose ratios 

at muscle thicknesses ≥ 600 μm. The total Raman photons detected in the MC 

model from each probe at each muscle tissue thickness are shown in Figure 

3.4B. The deep focused micro lens probe detected the most photons at all 

muscle tissue thicknesses, which has the highest cross-sectional area (Table 

3.2), has the largest excitation and collection cone overlap (Figure 3.1), as well 

as wide acceptance angles (Table 3.2). The shallow focused micro lens and the 

beveled design detected about half the number of photons compared to the deep 

focused micro lens. The unmodified design detected by far the fewest photons 

of all of the designs at all depths simulated, which has the lowest volumetric 

overlap of excitation and collection cones (Figure 3.1) and narrow acceptance 

angles (Table 3.2).  
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Figure 3.4. MC simulation results for probe designs as a function of superficial 
muscle layer thickness. (A) Modeled ratio of Raman muscle to adipose tissue. 
(B) Total Raman photons detected. (C) Raman photons detected from 
superficial layer. (D) Raman photons detected from deep layer. (E) 
Fluorescence photons detected from superficial layer. (F) Fluorescence photons 
detected from deep layer. 

 

Detected photons originating in the superficial muscle tissue and the 

underlying adipose tissue were separately analyzed to evaluate depth sensitivity 

for each probe. For the detected superficial layer Raman photons, the signal 

intensity between 100 μm to 300 μm thick muscle tissue remained 
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approximately equal for all probe designs (Figure 3.4C). Beyond 300 μm thick 

muscle tissue, detected Raman signal from the superficial layer decreased with 

muscle thickness. Similarly for deep layers, detected Raman photons decreased 

monotonically from 100 μm to 1800 μm of muscle layer thickness for all probe 

designs (Figure 3.4D). It is also worth noting that as expected, the total number 

of Raman photons generated in the superficial layer did increase with the 

thickness of the muscle layer, despite the decreasing detection of these photons 

in the model. 

In addition to tracking Raman photons, detected fluorescent photons 

were plotted based on the layer of tissue in which they originated. All probe 

designs detected higher fluorescence signal from the superficial muscle layer as 

the layer thickness increased (Figure 3.4E), whereas fluorescence from the deep 

layer decreased with muscle thickness in all probe designs (Figure 3.4F). The 

highest signals for both layers were detected by the deep focused micro lens 

probe design while almost equal values for both superficial and deep layers 

were collected by beveled and shallow focused micro lens designs. The muscle 

tissue has higher fluorescence absorption and quantum yield coefficients 

compared to the adipose tissue (Table 3.3). The higher fluorescence and 

increasing thickness of the muscle layer account for the increase in fluorescence 

detection from the superficial muscle layer (Figure 3.4E) and the decrease in 

fluorescence detection from the deep adipose tissue (Figure 3.4F) as the muscle 

tissue thickness increases. Probe designs that more efficiently collect Raman 
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scattered photons are also more efficient at detecting the broad spectrum 

autofluorescence from the samples. 

With the exception of detected superficial Raman photons (Figure 

3.4C), these simulation results all agree with theoretical understanding of bulk 

material properties for photon distribution. Since nearly 90% of the excitation 

photons are converted into these optical endpoints, it is likely that the decreased 

detection of Raman photons observed in Figure 3.4C is due to the complex 

interaction of superficial layer thickness and the probabilities for Raman 

scattering and fluorescence events in that top layer. While the superficial layer 

remains thin, appreciable excitation photons are Raman scattered prior to the 

overwhelming fluorescence generation that is evident at thicker superficial 

layers. To verify this result, non-competing simulations were conducted for the 

same layers (either only Raman scattering in modeled layers or only 

fluorescence). In each of these simulations, the trends for detected Raman 

scattering and fluorescence phenomena in superficial and deep layers matched 

the curves in Figure 3.4E-F, which agree with photon distribution theory for 

turbid media. This result indicates the importance of accounting for not only 

relative changes in scattering and absorption within a tissue of interest, but also 

the relative strength of competing optical processes for a target application. 

While implementing a numerical simulation may be simpler than 

precisely controlling tissue phantoms and biological samples, models rely on 

assumptions with associated limitations. Like all probabilistic or stochastic 
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models, this simulation requires many photons to develop an accurate result. To 

exacerbate this requirement, the competing optical phenomena integrated in this 

simulation would require the use of extremely large numbers of photons if 

scaling factors were not utilized in order to obtain consistent and reliable results. 

To circumvent this requirement, the probability of a Raman scattering event 

was scaled by 104 times for layer properties relative to the probability of 

fluorescence generation. Furthermore, for every scattering step of an excitation 

photon, a discretely weighted computational fluorescence sub-photon could be 

generated that propagates based on layer parameters. As this model was 

implemented in a MATLAB environment and the inclusion of multiple optical 

phenomena add additional calculations for independent tracking, relatively 

small simulations (100,000 photons) were implemented for model comparison. 

Due to the high probabilities of both Raman scattering and fluorescence, each 

simulation resulted in roughly 108 – 109 photons that were tracked through 

extinction or detection.  To verify model stability, models with 106 seed photons 

were also run for multiple depths and probe designs (data not shown). These 

model outputs fell well within the standard deviations indicated for the smaller 

model runs. Like many MC models for Raman scattering and fluorescence, this 

model neglects secondary Raman and fluorescence events. Inclusion of these 

events would likely be incremental, but could more accurately represent optical 

interactions, especially due to the relatively high frequency of fluorescence that 

has the potential to cause secondary fluorescence and Raman scattering. These 
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secondary events could also be included as model noise for a more direct SNR 

comparison with experimental values.  

Despite these limitations, this model provides valuable insight into the 

complex interaction of multiple optical processes detected by fiber optic probes. 

These simulation results afford a probabilistic basis for comparison with 

experimental data as a means to evaluate the performance of these unique probe 

designs, including collection angle and surface area for photon collection. By 

evaluating Raman probe designs in scenarios that resemble tissue studies rather 

than ray-tracings in air, accurate selection of optimized configurations can be 

enabled for a specific application such as those listed in Table 3.1. 

3.4.2 Biological tissue experimental results 

Results from muscle tissue to adipose tissue specific peak ratio analysis 

(1003/1066 cm-1) and partial least squares analysis both reveal an overall 

increase in the muscle tissue signal as muscle tissue layer thickness increases, 

as well as a decrease in adipose tissue signal as muscle tissue thickness 

increased (Figure 3.5A-D). The signal to noise ratio (SNR) obtained from peak 

ratio analysis of muscle tissue signal and adipose tissue signal are plotted in 

Figure 3.5A and Figure 3.5B respectively. The shallow focused micro lens 

design collected the highest SNR from muscle tissue at all of the layer 

thicknesses measured, which is due to the selectively superficial overlap of the 

excitation and collection cone angles based on ray tracing results modeled in 
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air (Figure 3.1D). The highest SNR of adipose tissue was measured by the deep 

focused probe, which is explained by the deep overlap of excitation and 

collection cone angles from ray tracing models in air (Figure 3.1C), and by the 

highest cross-sectional area for photon collection of all of the probes tested 

(Table 3.2). In the PLS analysis results, the beveled probe design yields the 

most muscle tissue signal, followed by the superficial micro lens design (Figure 

3.5C). The modified probe designs appear to detect more signal from the deep 

layer than the unmodified design, especially at small muscle tissue thicknesses 

(Figure 3.5D). However, adipose tissue signal overwhelms the muscle tissue 

signal generated at small muscle tissue thicknesses and results in large variances 

and in some cases artificially low coefficients for muscle tissue signal. This is 

an inherent limitation of using the non-negative PLS analysis, which performs 

best when pure components have uncorrelated spectra,27 enabling easy 

separation of components even when a small amount of a substance is present 

in the sample. This is the main reason that peak ratio analysis was the preferred 

method for assessing deep versus superficial signal collection, as tissue-type 

specific peak ratios were more sensitive to small changes in muscle tissue 

thickness compared to the PLS analysis.  
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Figure 3.5. Biological optical phantom probe characterization. Adipose and 
muscle tissue experiments: (A) Mean ± standard deviation signal to noise ratio 
of superficial muscle layer peak signal (1003 cm-1, arrow in (3C)) as a function 
of increasing superficial layer thickness. (B) Mean ± standard deviation signal 
to noise ration of deep adipose layer peak signal (1066 cm-1, arrow in (3C)) as 
a function of increasing superficial layer thickness. (C) Nonnegative partial 
least squares for muscle tissue signal contribution versus superficial layer 
thickness. (D) Nonnegative partial least squares for adipose tissue signal 
contribution versus superficial layer thickness. (E) Ratio of superficial layer 
peak signal (1003 cm-1 muscle tissue peak) to deep layer peak signal (1066 cm-

1 adipose tissue peak) as a function of increasing superficial layer thickness. (F) 
Integrated signal intensity of peaks (arrows, Figure 3.3C) as a function of 
superficial layer thickness. 

 

A ratio of the experimentally measured peak signals from muscle tissue 

to adipose tissue was calculated for each probe (Figure 3.5E) and reveals a 

general linear rise with increase in muscle tissue thickness. This is expected due 

to the increasing thickness of muscle tissue that contributes to the overall signal. 

The shallow focused micro lens design had the highest values across muscle 

tissue thicknesses, which is in large part due to having the highest muscle SNR 
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of all four probes. The deep focused micro lens design has the lowest ratio 

beyond 1200 μm thicknesses which likely results from the more efficient 

collection of adipose tissue signal at these depths. This plot shows similar 

results as the MC simulation, with an increase in the signal ratio of muscle tissue 

to adipose tissue as the muscle tissue thickness increases observed across all of 

the probes.  

The total integrated Raman signal measured with each probe as a 

function of depth is plotted in Figure 3.5F. The deep focused design has the 

highest collection efficiency at all depths, followed by the shallow focused 

micro lens design. The unmodified design has the lowest integrated signal 

intensity at all tissue thicknesses. The MC results also show the deep focused 

micro lens design as collecting the most Raman photons, and the unmodified 

design collecting the least.  

Overall, the experimental results agree with the MC model for 

determining probe performance as a function of muscle tissue thickness when 

using optical properties that are realistic for biological tissue. The spread of 

results between the probes evaluated demonstrates how small changes in probe 

design can significantly alter their performance. This validation is an important 

first step in developing a tool for optimizing the choice or design of a fiber optic 

probe when beginning a study. In addition, the modified Raman probe designs 

demonstrate significant improvement in collection efficiency through 

experimental testing and MC models. Regardless of application, such 
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modifications can increase the excitation-collection cone overlap and collection 

fiber surface area so that maximum Raman photons can be detected.  

3.4.3 Synthetic phantom experiments 

The peak SNR obtained from analysis of the superficial material (TiO2) 

from each probe (1412 cm-1) design is shown in Figure 3.6A as a function of 

TiO2 thickness. TiO2 SNR increases as the TiO2 thickness increases up to 1000 

μm, after which the SNRs plateau. This plateau likely occurs because the 

transport mean free path (1/μs’) for TiO2 is small due to low scattering 

anisotropy (Table 3.3) and thus it takes a shorter absolute depth to be considered 

semi-infinite, resulting in a plateau in SNR.27 The shallow focused micro lens 

probe yields the highest SNR at TiO2 thicknesses between 100 - 1000 μm, with 

the highest separation observed in 100 - 400 μm thicknesses. This SNR 

improvement at small TiO2 thicknesses is in agreement with results published 

by Agenant et al.,28 and correspond to superficial overlap of excitation and 

collection cone angles determined via Zemax ray tracing (Figure 3.1D).    
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Figure 3.6. Synthetic phantom probe characterization. Controlled optical 
phantom experiments: (A) Mean ± standard deviation signal to noise ratio of 
superficial layer peak signal (1412 cm-1 TiO2 peak, arrow in (3D)) as a function 
of increasing superficial layer thickness. (B) Mean ± standard deviation signal 
to noise ratio of deep layer peak signal (1300 cm-1 PTFE peak, arrow in (3D)) 
as a function of increasing superficial layer thickness. (C) Mean ± standard 
deviation nonnegative partial least squares for TiO2 signal contribution versus 
superficial layer thickness. (D) Mean ± standard deviation nonnegative partial 
least squares for PTFE signal contribution versus superficial layer thickness. 
(E) Mean ± standard deviation ratio of superficial layer peak signal (1412 cm-1 
peak) to deep layer peak signal (1300 cm-1 peak) as a function of increasing 
superficial layer thickness. (F) Mean ± standard deviation integrated signal 
intensity of peaks (arrows indicated in Figure 3.3D) as a function of superficial 
layer thickness. 

 

The SNR of the deep layer (PTFE, peak at 1300 cm-1) is plotted as a 

function of TiO2 thickness up to 1800 μm in Figure 3.6B. As the TiO2 thickness 

increases, the SNR from the PTFE exponentially decreases in all probe designs. 

The unmodified probe design demonstrates the highest deep layer SNR in 

samples with 100 – 500 μm thick TiO2 layers. This may be explained by the 

overlap of the excitation and collection cone angles deep in the sample seen in 
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the unmodified design ray tracing results (Figure 3.1A). This result differs from 

biological testing in which the deep focused micro lens design has the highest 

SNR for the deep adipose tissue. In addition, the decay in SNR for deep layers 

is exponential in the synthetic phantom compared to a linear decrease in the 

biological tissues, highlighting the influence of optical properties on probe 

performance.  

In addition to SNR results based on TiO2 and PTFE-specific peaks, 

results from the non-negative partial least squares analyses are provided in 

Figure 3.6C-D. Similar to results in Figure 3.6A, the shallow focused micro 

lens design demonstrates the highest TiO2 component score up to 1800 μm thick 

layers of TiO2 sheets. The unmodified probe design also displays high PTFE 

component scores; however, the deep focused probe design does not appear to 

bring any advantage for enhancing detection of PTFE signal as would be 

expected based on its deep overlap range of the excitation and collection fibers 

(Figure 3.1C). It is likely that the extremely high reduced scattering coefficients 

of the synthetic phantoms help to improve the detection of PTFE in the other 

Raman probes, negating the benefits that would otherwise be seen with the deep 

focused micro lens design. It logically follows that as the transport mean free 

path decreases due to higher reduced scattering coefficients, the theoretical 

collection-excitation cone overlap volume (calculated in air) becomes 

increasingly irrelevant for highly scattering media. This finding underscores the 

large influence that application-specific optical properties have on fiber optic 
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probe performance, and provides an example in which the specialized fiber 

optic probes provide little to no advantages at probing specific depths. In this 

work we chose biologically relevant absorption and scattering coefficients for 

the MC model, but these may not be representative of all biological tissue types. 

While beyond the scope of this work, a systematic modeling evaluation of probe 

design performance with respect to scattering and absorption coefficients, 

similar to the approach reported by Reble et al., may provide more insight into 

attenuation thresholds for which tailored probe designs are beneficial.27  

The ratio of superficial (TiO2) versus deep (PTFE) signal is plotted in 

Figure 3.6E, and reveals a linear increase in TiO2 to PTFE signal with 

increasing thickness of TiO2 scatter sheets. The performance of the probes was 

similar across the TiO2 thicknesses, with a slightly higher ratio generally seen 

in the shallow focused micro lens design. Biological tissue testing similarly 

reveals a linear increase in superficial (muscle tissue) to deep (adipose tissue) 

signals, and consistent with the synthetic phantom results, the shallow focused 

micro lens design generally yields the highest ratio as a function of muscle 

tissue thickness. 

The total signal measured by each probe was determined by integrating 

the area under the curve of the peaks used for SNR calculation at each thickness, 

and these results are plotted in Figure 3.6F. Similar to results from MC 

simulations and biological tissue experiments, the deep focused micro lens 

design collects the highest overall signal. This design has wide acceptance 



133 
 

angles (4.9°-33.8°) paired with a high cross-sectional area through which 

photons can be coupled (Table 3.2) and large excitation and collection cone 

overlap (Figure 3.1C), which together results in the highest integrated Raman 

signal. The second highest signal was recorded with the shallow focused micro 

lens design, which has narrower acceptance angles (21.2°-35.8°) and low cross-

sectional area (Table 3.2), but has a superficial overlap of excitation and 

collection cone angles that appears to increase signal collection efficiency 

(Figure 3.1D). Wide cone angles, large surface areas through which photons 

can be effectively coupled per collection fiber, and high volumetric overlap 

between the excitation and collection fibers logically explain the overall 

increased collection efficiency observed with the micro lens designs. Although 

the beveled design has the widest acceptance angles, the collection efficiency 

is limited due to lower cross sectional area through which photons can be 

coupled and reduced overlap of the excitation and collection cones (Figure 

3.1B). The unmodified design has the lowest overall signal at all depths, the 

smallest acceptance angles (0°-12.7°), and the lowest degree of excitation and 

collection cone overlap, and therefore has the lowest collection efficiency for 

all four probe designs. The interplay of these three factors (collection fiber 

acceptance angles, collection fiber surface area, and excitation-collection cone 

overlap) ultimately dictates the collection efficiency of this class of fiber optic 

probes. These factors should be maximized to improve probe throughput for 

tissue applications.  
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As evidenced in Table 3.1, important biological investigations span 

many depth regimes. Work by Wang et al. which designed and evaluated a 

confocal ball lens probe remains the optimal design reported for detecting 

superficial (<100 um) signals of biological tissues with limited contribution 

from deeper layers.28 At the other extreme, spatially offset designs 

demonstrated by numerous investigators have proven most effective at 

interrogating deep layers of highly scattering media.29,30 Within these extremes 

of the spectrum of optical detection, volume integrating fiber probes can be 

tailored for preferential detection and increased SNR for an application of 

interest. This work demonstrates improved signal collection efficiency obtained 

when integrating micro lens components into a probe tip design that can expand 

the overlap in excitation and collection cone angles as well as increase the 

surface area for light detection compared with conventional fiber probe designs. 

Beyond high collection efficiencies, micro lens designs can be optimized to 

superficial and deep targets based on the choice of lens as demonstrated in the 

biological experiments and MC simulations. Beveled and superficially focused 

micro lens designs have superior performance in shallow samples whereas the 

deep focused micro lens design had highest collection efficiency and SNR in 

deep tissue layers. The conventional design has overall the lowest collection 

efficiencies and SNR at all tissue layer thicknesses. All of these evaluations 

have utilized muscle and adipose-mimicking phantoms paired with MC 

simulation results, and thus conclusions across these studies are 
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straightforward.28,29 The volume-integrating probes evaluated here demonstrate 

variable performance with depth as a function of sample optical properties 

(synthetic versus biological phantoms), most notably the reduced scattering 

coefficient. At larger scattering values, the improvements of a particular 

configuration are diminished. These results further support the need for 

instrument development within the context of tissue properties for a targeted 

application, which may perform differently from theoretical models commonly 

employed for optical design. 

 

3.5 Conclusions 

A platform for optimizing selection and/or design of a Raman fiber optic 

probe that incorporates application specific optical properties for prediction of 

probe performance has been developed and evaluated. The expanded Monte 

Carlo model includes Raman scattering, fluorescence, elastic scattering, and 

absorption, and shows strong agreement with experimental results from 

biological tissue including prediction of collection efficiency and SNR at 

superficial and deep layers. Fluorescence tracking also agrees with 

experimental results for biological samples.  As a competing optical 

phenomenon with a likelihood of generation over 1000 times higher than 

Raman photons in biological tissues, this important feature cannot be 
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overlooked when optimizing fiber optic probes for Raman spectroscopy 

applications. 

Fiber optic probe based Raman spectroscopy has been applied to many 

biological targets. Modeling and experimental testing demonstrate variations in 

performance based on probe design but also target sample properties; the depth 

of the desired signal source and the optical parameters of the sample are 

necessary considerations prior to the start of a fiber based probe study. 

Experimental results in highly scattering TiO2 and PTFE samples (μs’>50 cm-1) 

did not vary based on probe design, whereas results from muscle and adipose 

issues more closely resembled predictions made for air but with large 

variability, particularly in extremely shallow or deep samples. This underscores 

the importance of incorporating application-specific optical properties during 

probe design optimization.  

Although this investigation focused on four particular probe geometries, 

a robust Monte Carlo model allows extension to other probe designs for any 

application with known optical properties. The model presented here can be 

easily extended to both confocal and spatially offset geometries, and can be 

used to optimize entirely novel probe designs prior to fabrication, reducing time 

and cost while improving data quality. 
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CHAPTER 4 

 

CLINICAL CHARACTERIZATION OF IN VIVO INFLAMMATORY 

BOWEL DISEASE WITH RAMAN SPECTROSCOPY 

 

4.1 Abstract  

Inflammatory bowel disease (IBD), including ulcerative colitis (UC) 

and Crohn’s disease (CD), affects over 1 million Americans and 2 million 

Europeans, and the incidence is increasing worldwide. While these diseases 

require unique medical care, the differentiation between UC and CD lacks a 

gold standard, and therefore relies on long term follow up, success or failure of 

existing treatment, and recurrence of the disease. Here, we present 

colonoscopy-coupled fiber optic probe-based Raman spectroscopy as a 

minimally-invasive diagnostic tool for IBD of the colon (UC and Crohn’s 

colitis). This pilot in vivo study of subjects with existing IBD diagnoses of UC 

(n=8), CD (n=15), and normal control (n=8) aimed to characterize spectral 

signatures of UC and CD. Samples were correlated with tissue pathology 

markers and endoscopic evaluation. The collected spectra were processed and 

analyzed using multivariate statistical techniques to identify spectral markers 

and discriminate IBD and disease classes. Confounding factors including the 

presence of active inflammation and the particular colon segment measured 
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were investigated and integrated into the devised prediction algorithm, reaching 

90% sensitivity and 75% specificity to CD from this in vivo dataset. These 

results represent significant progress towards improved real-time classification 

for accurate and automated in vivo detection and discrimination of IBD during 

colonoscopy procedures. 

 

4.2  Introduction 

Inflammatory bowel disease (IBD), which includes ulcerative colitis 

(UC) and Crohn’s disease (CD), affects nearly one million Americans and two 

million Europeans, and the incidence is increasing worldwide.1 This complex 

illness is characterized by both chronic and acute disease states, with periods of 

inflammatory flare, quiescence, and relapse. Ulcerative colitis is almost always 

confined to the colon and Crohn’s disease may occur in any part of the 

gastrointestinal tract from the mouth to the rectum. Numerous overlapping risk 

factors including ethnic origin, lifestyle, geographic region, and susceptibility 

regions on at least 12 chromosomes confound physiological understanding of 

this disease.2, 3 Patients with IBD have an elevated risk of gastrointestinal cancer 

and experience dramatic decreases in quality of life. Despite advances in 

therapy, hospitalization rates for IBD, particularly CD, have shown significant 

increase, incurring a substantial rise in inflation-adjusted economic burden. 

With the high drug costs and rates of surgery (up to 75% of CD and 25-33% of 
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UC patients), IBD is one of the costliest conditions on a per year basis in the 

US, with expenses for CD surpassing diabetes, coronary artery disease, and 

chronic obstructive pulmonary disease.4, 5 

Despite the overlap in presentation, symptoms, and progression of CD 

and UC, discriminating IBD subtype is vital for selection of the most 

appropriate therapeutic or surgical intervention and patient prognosis, a 

determination often made by assessing the severity of active inflammation 

during evaluation. For instance, UC can be cured in many patients by surgical 

removal of the colon, however, CD surgeries are rarely curative and often 

require further procedures. The goal of IBD treatment is to rapidly induce 

remission and prevent disease complications. Currently, the distinction between 

UC and CD is made based on inexact clinical, radiologic, endoscopic, and 

pathologic features6-9; in up to 15% of IBD cases indeterminate colitis (IC, or 

IBD unspecified) is diagnosed because of the difficulty in distinguishing 

between UC and CD. In these patients, diagnosis ultimately relies on long term 

follow up based on success or failure of existing treatment and recurrence of 

disease. A further challenge is that another 5-14% of cases are reclassified 

within IBD based on long-term follow up.10, 11 All of these determinations are 

complicated by the lack of a definitive, recognized gold standard for diagnosis. 

Therefore, accurate differential diagnosis of IBD is critically needed for 

appropriate medical and surgical care, intervention, and prognosis. The 
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development of new technologies that can improve understanding of IBD and 

aid objective diagnosis may help meet this need.  

Clinically, diagnosis is made primarily based upon symptom 

presentation (abdominal pain, number and consistency of stools, etc.) and 

biopsy informed video endoscopy (White Light Reflectance, WLR). While the 

disease may manifest in a typical and easily characterized fashion in some 

patients, expert endoscopists often face non-differentiating disease appearance 

and histopathologists can only identify  features of chronic or acute colon 

inflammation that are consistent with both IBD subtypes. The lack of a 

definitive, biochemically specific characterization tool that can investigate IBD 

subtypes directly hinders delivery of appropriate care. Numerous investigations 

have been pursued to develop tools to improve diagnosis, including computed 

tomography, magnetic resonance imaging, optical coherence tomography, laser 

endomicroscopy, wireless capsule endoscopy, and elastic scattering 

spectroscopy.12-16 All of these techniques are based on structure either at the 

macroscopic (appearance under widefield imaging) or microscopic scale (cell 

morphology and optical scattering properties of tissues). However, structural 

changes in tissue are a downstream effect of underlying disease presentation 

and have not proven effective for IBD differentiation. Raman scattering, on the 

other hand, is sensitive to the constituent biomolecular makeup of a sample, and 

can be utilized to capture a fingerprint of the vibrational modes of chemical 

bonds present within tissue. It is expected that unique biochemical alterations 
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associated with inflammatory response pathways will precede macroscopic 

tissue changes.17, 18 These disease specific changes in tissues that are associated 

with disease status, on both the macro- and microscopic scales should provide 

valuable information to differentiate IBD in the colon.  

Raman spectroscopic techniques have been investigated for numerous 

clinical diagnostic applications to aid in real-time objective disease 

evaluation.19 Specifically addressing IBD, Raman techniques have been applied 

for ex vivo tissues to develop preliminary biomarkers and identify spectral 

signatures consistent with disease subtype. The goal of this study is to 

demonstrate the potential for Raman spectroscopy to detect tissue changes 

consistent with inflammatory bowel disease in the colon as a potential 

diagnostic adjunct. This report presents results from an endoscopic study using 

Raman spectroscopy to characterize IBD from human subjects in vivo. This 

work characterizes the disease presentation from a diverse patient population 

and demonstrates disease discrimination based on spectral changes measured 

across subjects in vivo. Furthermore, this work sought to elucidate confounding 

factors that limit predictive performance and incorporate these factors to 

improve rates of disease classification. Overall, results demonstrate the 

potential for endoscopic Raman spectroscopy as a diagnostic adjunct for IBD. 
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4.3 Methods 

4.3.1 Subject recruitment and measurement protocol 

Following written informed consent, 23 patients with IBD diagnoses 

(Table 4.1) that were scheduled for a routine surveillance and evaluation 

colonoscopy at the Vanderbilt GI Endoscopy lab were recruited according to 

IRB protocol (IRB #111609). Furthermore, healthy control subjects with no 

history of inflammatory disease were recruited from the population of colon 

cancer screening patients at the endoscopy lab. Following standard colonoscopy 

protocol but prior to biopsy as indicated, spectra were obtained from normal 

and/or inflamed sites within the colon, making measurements at two distinct 

sites in each segment: right (cecum or ascending), transverse, and left 

(descending or sigmoid) colon, as well as two sites in the rectum. The surface 

of the colon at each measurement site was flushed with saline to clear mucus, 

blood, or debris prior to spectral acquisition. The probe was introduced through 

the endoscope accessory channel once the measurement location was reached. 

With the probe touching the mucosal surface with sufficient pressure to ensure 

gentle contact while maintaining position during each measurement, spectra 

were collected and averaged per site while the endoscope’s white light was 

disabled. The probed site was then biopsied and the tissue samples were fixed 

in formalin for routine histopathology. Spectra were compared with the 

combined physician evaluation based on endoscopy, histopathology, and 
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patient history (consistent with standard of care) for the respective gold standard 

patient diagnosis. Between subjects, the probe was detached from the system 

for cleaning, soaked in ortho-Phthalaldehyde (Cidex OPA, Johnson & Johnson, 

Arlington, TX) and rinsed thoroughly with water, in accordance with clinical 

protocols for high-level disinfection. 

 
Table 4.1. Description of study participants. 

 

 

4.3.2 Raman instrumentation, calibration and processing 

In vivo Raman spectra were collected using a portable clinical Raman 

spectroscopy system coupled to a standard clinical endoscope (Fig. 4.1). A 785 

nm diode laser (Innovative Photonics Solutions, Monmouth Junction, NJ) was 

coupled to a custom-fabricated superficially focused fiber-optic probe 

(EmVision LLC, Loxahatchee, FL) which delivered 80 mW to the surface of 

the colon. Briefly, the endoscope compatible fiber optic probe contains a 200 

μm core diameter excitation fiber with bandpass filtering surrounded by seven 

300 μm collection fibers with long pass filters. A shallow focusing micro lens 

composed of a plano-convex sapphire lens and MgF2 optical window is placed 

Normal control (NC) n=8 
Age (years) 56.6 ± 9.3 
BMI 31.3 ± 6.9 
Gender  6F, 2M 
Crohn’s disease (CD) n=15 
Age 39.7 ± 7.6 
BMI 26.1 ± 4.3 
Gender 12F, 3M 
Ulcerative colitis (UC) n=8 
Age 44.8 ± 12.2 
BMI 27.0 ± 5.8 
Gender 3F, 5M 
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in front of the filters to maximize collection efficiency at the probe tip.20 The 

probe tip is physically packaged in a 2.1 mm diameter rigid metal tube that is 

approximately 6 mm in length to couple with standard endoscope technology. 

Each measurement utilized three integrated spectra of 250 ms acquisitions to 

achieve a sufficient signal to noise ratio (SNR ≥15).21 Longer integration times 

could not be utilized due to the substantial background and autofluorescence 

signals generated by the tissue. The Raman scattered light was collected in 

reflectance mode and coupled into an f ∕1.8 spectrograph (Kaiser Optical 

Systems, Inc.) with a fixed volume phase holographic grating resulting in 

spectral coverage from 450 to 1950 cm−1 and a spectral resolution of 7 cm−1. 

The detector was a back-illuminated deep-depletion CCD which was 

thermoelectrically cooled to −70°C (Pixis 256BR, Princeton Instruments). 

Spectral calibration was performed using a neon–argon lamp with naphthalene 

and acetaminophen standards to correct for day-to-day variations. A National 

Institute of Standards and Technology-certified quartz-tungsten halogen lamp 

was used to account for the wavelength-dependent response of the instrument. 

The spectra were processed for fluorescence subtraction and noise smoothing 

using the modified polynomial fit and Savitzky–Golay methods, and 

subsequently normalized to the spectrum mean as described previously.22 All 

calibration steps were performed in the procedure room prior to the beginning 

of each case, and post-processing steps were completed within 1-2 seconds after 

each measurement. The collection parameters were optimized during the first 
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two procedures based upon sensitivity of the probe design and system. 

Statistical differences for integrated spectral intensity and colons segment were 

performed independently using ANOVA with α = 0.05. 

 

 
Figure 4.1. Schematic of integrated Raman and endoscope instrumentation for 
in vivo subject measurement. Components are not drawn to scale. 

 

4.3.3 Classification algorithm: sparse multinomial logistic regression 

The resulting spectra were classified with a Bayesian machine learning 

algorithm, sparse multinomial logistic regression (SMLR), to quantitatively 

determine the potential for Raman spectra to separate healthy and diseased 

colon tissues. SMLR is a versatile multiclass iterative algorithm that reduces 

the high dimensionality of Raman data to only those spectral basis features 
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needed for discrimination.23, 24 SMLR reduces the dataset by creating a 

transformation of the original data in which distinguishing spectral basis 

features were weighted based on their ability to successfully separate classes of 

training data. The training and classification procedure implemented here used 

a Laplacian prior, a direct kernel, no bias, z-scored spectral normalization, 

component–wise updates, and leave-one-subject-out cross validation. A 

posterior probability of membership in each class was then calculated for each 

individual spectrum using a classifier trained only with spectra from other 

subjects. The final sensitivity and specificity for each classification test is 

reported either in relation to detecting disease (control versus IBD), or for 

differential discrimination (CD versus UC), to detecting Crohn’s disease. 

Stratified classification based on variable disease presentation is achieved 

through using the appropriate subset of data prior to model training and cross 

validation. 

 

4.4 Results 

A comparison between mean spectra obtained from subjects within each 

disease category is depicted in Fig. 4.2. All signatures comprised lipid-rich 

features, with strong, narrow bands at 1300 cm-1, 1440 cm-1, and 1658 cm-1. 

These average signals exhibit subtle interclass variations that indicate 

separation across the Raman fingerprint region (450-1800 cm-1). Multivariate 
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analysis techniques can be employed for pattern recognition and feature 

selection to take advantage of the feature rich signals for Raman spectra and 

IBD.24-26 Fig. 4.3 depicts the performance of SMLR, where the separation of 

spectra measured from normal control subjects and from those with IBD is 

displayed for leave-one-subject-out cross validation along with several of the 

salient spectral features utilized for discrimination. The SMLR algorithm 

selects peaks and shoulders that significantly contribute to discrimination and 

is not limited to only prominent features. Tentative peak assignments for these 

discriminating features include 425 cm-1 (δ (CCC) skeletal backbone), 610 cm-

1 (ρ(CH) wagging in proteins), 1080 cm-1 (ν(C−C) of lipids), 1440 cm-1 shoulder 

(δ(CH2) deformation of proteins and lipids), 1160 cm-1 and 1525 cm-1 (β-

carotene), and 1741 cm-1 (ν(C=O) in lipids).27, 28  

 

 
Figure 4.2. Normalized mean in vivo Raman spectra obtained from subjects 
within each disease class. 
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Figure 4.3. (Left) Prediction performance describing the probability of group 
membership for in vivo spectra obtained from normal control and IBD subjects. 
(Right) Mean ± standard deviation spectra and 26 features utilized for 
discrimination are depicted. 

 

This in vivo dataset spans a diverse population of subjects and disease 

presentations; as such, multiple discrimination comparisons were of interest for 

this dataset as indicated in the first column of Table 4.2. Independent training 

and cross validation sets were conducted to gauge unbiased classification 

performance for each comparison of interest. Table 4.2 comprises the results 

for several of these analyses including discrimination between disease and 

control as well as differential discrimination of IBD subtype. In general, test 

sensitivity was high when discriminating IBD from normal controls, but 

specificity was poor, achieving 86% and 39%, respectively. When 

discriminating spectra from control subjects and spectra measured from IBD 

subjects with active inflammation (determined during WLR endoscopy), 

specificity increased to 57%. For comparisons of normal control and inactive 

disease, specificity was lower, indicating that active inflammation is a factor 
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that requires further attention. In discriminating between IBD subtypes, 

substantial differences in performance occur when considering subjects with 

active inflammation (83% sensitivity and 55% specificity) compared with 

quiescent disease (62% sensitivity and 22% specificity). Subsequent analysis 

addresses the impact of potential confounding factors through data stratification 

to evaluate classification performance. 

 
Table 4.2. Classification performance for in vivo comparisons. 

Comparison Sensitivity (%) Specificity (%) 
Control v. IBD 86.2 39.7 
Control v. Inactive IBD 81.1 44.4 
Control v. Active IBD 78 57.1 
Inactive IBD v. Active IBD 67.1 74.5 
Inactive CD v. Inactive UC 62 22.9 
Active CD v. Active UC 83.3 55.9 

 

As demonstrated by the results comprising Table 4.2, the impact of 

active inflammation requires investigation and can be readily visualized in Fig. 

4.4. In spectra measured from normal and quiescent IBD subjects (all inactive), 

mean spectral lineshapes exhibit strong and narrow lipid features and vary 

consistently across the majority of the fingerprint range regardless of disease 

class. By comparison, the mean spectra from actively inflamed colon segments 

are broader and less intense, resembling protein-based signatures rather than 

those of lipids. Furthermore, as visualized in Fig. 4.4 (right), there is a 

statistically significant decrease in spectral intensity as active inflammation 

occurs, and a decreasing trend as inflammation progresses in severity. These 

changes in spectral response due to severity of inflammation indicates a need 
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to account for this factor in the discrimination algorithm. However, for all of 

the analyses presented in Table 4.2 disease subtype (CD and UC) and/or levels 

of inflammation activity (inactive – severe) were combined. Likewise, these 

comparisons did not address the impact caused by the segment of the colon 

from which the spectrum was acquired. Fig. 4.5 depicts the mean and standard 

deviation of spectral variations present when in vivo measurements from 

normal control subjects are isolated to particular segments of the colon. Several 

prominent and subtle features differ in intensity between colon segment spectra: 

potential band assignments include 873 cm-1 (ρ(CH2) in proteins), 1160 cm-1 

(β-carotene), 1265 cm-1 (ν(C-N) of Amide III), 1300 cm-1 (δ(CH2) deformation 

of proteins and lipids), 1372 cm-1 (lipid), and 1658 cm-1 (ν(C=O), Amide I and 

lipids).18, 27-29 These differences indicate the potential influence of colon 

segment on measured spectra and may impact to classification performance. 

 

 
Figure 4.4. Impact of active inflammation: Mean Raman spectra from all 
disease classes when no activity is present (left) and from IBD subtypes when 
active disease is present (center). Integrated Raman spectra for all data by level 
of activity (right) indicates significant differences between disease presentation 
and the potential for the development of an objective metric to characterize 
inflammatory disease activity. 
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Figure 4.5. Mean spectra from colon segments obtained from normal control 
subjects. Shaded regions along spectra indicate standard deviations. Variations 
can be seen across the spectral lineshapes between segment and significant 
features have been identified as a function of wavenumber (vertical gray bands). 

 

Stratified classifiers were implemented by appropriately selecting 

spectra from a subset of the recruitment population in order to control for factors 

of disease location and severity. Based on the spectral changes imparted by both 

colon segment measured and the presence of active inflammation, these factors 

were incorporated into stratified classifiers, each resulting in a different number 

of patients (n, Table 4.3) that were considered for the evaluation. Table 4.3 

comprises the results of leave-one-subject-out cross validation for 2-class IBD 

discrimination. The stratified classifier improves sensitivity and specificity 

compared with the prior performance for differentiating CD and UC when 

location and disease presentation are averaged (Table 4.2, Active CD versus 

Active UC). Once the measurement location and the severity of disease are 

incorporated, sensitivity to CD increases, for example from 83% to 90% and 
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specificity from 56% to 75% in the right colon. While the performance varies 

between colon segments, in general, inclusion of inflammation and location 

factors caused an increase in a combination of sensitivity and specificity for 

spectra acquired during colonoscopy. These results support further 

investigation of influential variables for IBD discrimination, yet demonstrate 

the potential to improve classification accuracy for these complex, 

heterogeneous diseases. 

 
Table 4.3. Classification performance for in vivo spectra from subjects with 

active IBD stratified by colon segment. 
Colon Segment Sensitivity (to 

CD) % 
Specificity (to 
CD) % 

Right (n=9) 90 75 
Transverse (n=5) 75 67 
Left (n=12) 85 45 
Rectum (n=11) 71 56 

 

4.5 Discussion 

Here, we report our recently developed endoscopy-coupled Raman 

spectroscopy technique that enables real-time measurements of tissue 

biomolecular constituents for in vivo differentiation and characterization of 

IBD in the colon. Prior work has demonstrated that Raman spectroscopy is 

sensitive to IBD subtype specific signatures in ex vivo tissue sample 

evaluations. In this work, we have applied this technique to probe the specific 

biochemical composition of the colon in real-time to provide an objective 

characterization of the colon tissue and disease status, discerning more 
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information which could serve as a valuable adjunct for differential diagnosis 

of UC and CD and minimize the need for random sample biopsy protocols. 

While classic clinical parameters associated with a diagnosis of CD (lack of 

rectal disease, patchy colitis, and the presence of granulomas (found unusually) 

in histology) may all be indicators of a CD diagnosis, currently there is in 

general no universal feature that serves as a gold standard for differential 

diagnosis for IBD. As such, the results of this study were evaluated relative to 

the established diagnoses for the recruited patients that were made based upon 

patient history, clinical presentation, therapeutic response, histopathologic 

findings, and video endoscopy findings. The Vanderbilt Inflammatory Bowel 

Disease Center is a regional referral center, with extensive expertise following 

over 1,000 patients annually. For this study, no patients exhibiting IBD 

unspecified presentation were included in the analysis. These patients with 

indeterminate colitis are of particular interest as they could most benefit from 

new tools for disease differentiation. 

Our endoscopy compatible Raman spectroscopy system has enabled 

rapid in vivo biochemically specific measurements from a diverse patient 

population with representative disease presentations (Table 4.1). The fiber optic 

probe design utilized herein enabled rapid, high SNR (≥15) contact 

measurements of the colon constituent biochemistry (Fig. 4.2) and coupled with 

standard endoscope accessory channel (Fig. 4.1). Prior work has demonstrated 

that excess pressure can alter spectral signatures, and thus attempts were made 
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to minimize this factor.30 Preliminary distinction of the study sample based on 

disease diagnosis generally indicates high sensitivity and low specificity, with 

a wide margin of performance depending upon the classification target (Table 

4.2). When considering all study subjects together without controlling for 

disease presentation or subtype, discriminating disease from control has 86% 

sensitivity but only 39% specificity. This low specificity is further 

demonstrated in Figure 4.3 (left), where a majority of spectra from IBD patients 

are correctly classified but few spectra from control subjects were correct. This 

classification was based on the selection of 26 features from the Raman 

spectrum, however in a separate classification step using a higher sparsity 

promoting factor yielded identical performance based on only 13 features. In 

considering the differential discrimination tests, sensitivity and specificity to 

Crohn’s disease is drastically lower for quiescent (inactive) disease (62% and 

22%, respectively; Table 4.2) compared with spectra acquired from patients 

with active disease (83% sensitivity and 55% specificity). These variations in 

prediction performance based on different classification targets reinforce the 

impact of disease variables on the acquired spectra and the need to properly 

control for disease variables. 

The distinction between spectra from control subjects and those with 

quiescent disease in Table 4.2 (81% sensitivity, 41% specificity) indicates that 

colitis imparts a detectible change even when no active inflammation is present, 

a finding supported by changes to the vascular appearance of the tissue noted 
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during WLR endoscopy.6  When separating controls from IBD, combining 

spectra from subjects with and without active disease causes significant blurring 

of spectral distinct lineshapes (Fig. 4.4) and confounds the classifier. This result 

prompted further investigation of the influential sources of variance within the 

dataset that, if accounted for, may allow improved performance. Active disease 

in the colon presents in a gradient of severity that has been discretized by the 

endoscopists in this study. However, when considering signals measured from 

subjects without active disease (including the normal control population), 

spectra are significantly stronger and exhibit intense lipid features (Fig. 4.4). 

However, when considering only spectra from active locations from IBD 

subjects, regardless of disease, the spectra are much weaker, and exhibit peak 

broadening consistent with increased protein content, potentially from fibrin 

and collagen and consistent with ulceration and edema.14, 17 While these 

features themselves do not provide discrimination between CD and UC, there 

remains the potential that an objective metric for disease activity could be 

developed; such a metric could be used to evaluate therapeutic response after 

initiation of medication, for which a relative measure of active inflammation 

over time could be critical. 

The differences in tissue for both disease presentation and healthy 

colon, which is functionally and biologically varied, require a thorough 

evaluation of inter-anatomical sites in order to characterize the impact on 

performance for disease separation. Based on the low sensitivity displayed for 
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several tests in Table 4.2, including differential discrimination of active CD and 

UC, we hypothesized that other factors were confounding disease prediction. 

This in vivo study represents a pilot evaluation of some of these native factors 

that cannot be investigated with ex vivo tissue sections and indicates the 

potential for in vivo characterization and discrimination. Studies by other 

groups investigating ex vivo discrimination of IBD or the influence of colon 

segment and disease activity have produced outcomes that support our findings 

and may lead to an improved understanding of the factors that belie the detected 

spectral differences.17, 25, 26 While the report of spectral differences between 

anatomical sites (Fig. 4.5) is corroborated by other investigations in the stomach 

and colon31, 32, the exact cause of the spectral changes is thus far uncertain. 

Potential differences include bowel thickness and mucosal morphology, 

vascular density, proximity to mesentery, gland content and microbe 

distribution, among others.33-35 The complexity of these in vivo measurements, 

impacted by both biomolecular and morphological changes in the tissue, require 

further characterization that is beyond the scope of this study. However, 

classification performance improved when colon segment was integrated into 

the algorithm, further supporting the need of improved characterization. 

Disease severity and colon segment are only a few of the potential 

influences on the performance for IBD evaluation and discrimination based on 

in vivo Raman spectra. Other factors not yet considered based on subject 

recruitment for this pilot study include gender, age, BMI, diet, and prior 
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therapeutic treatments, among others. While such factors likely impact 

classification, incorporation of both colon segment and disease severity factors 

into the IBD discrimination algorithm achieved increases to 90% sensitivity and 

75% specificity to IBD subtype in the right colon (Table 4.3). The variation in 

prediction performance appears to be linked to the relative distribution of IBD 

subtypes for patients included in the classification but with expanded 

recruitment, these values will approach the true prediction rate. These results 

demonstrate that by properly assessing disease related variables and including 

them in the analysis, prediction performance can be improved for in vivo Raman 

spectroscopy applications. This also implies the need for a priori knowledge for 

inclusion in distinct classifiers; however, colon segment and disease activity 

can be determined during video endoscopy in real-time. Furthermore, the 

duration of data acquisition, processing, and prediction are short enough that 

such information could be incorporated into the real-time interface providing 

immediate feedback to the clinicians during routine evaluations. The results of 

this work demonstrate the potential for in vivo Raman spectroscopy to impact 

IBD evaluation and the prospect for staging and discrimination. Continued 

development of this sensitive technique could also provide new information to 

better understand and categorize disease for patients with indeterminate colitis 

diagnoses. 

In summary, this study indicates that in vivo Raman spectra for IBD can 

be acquired non-destructively and in real-time in human subjects from the colon 
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during routine surveillance endoscopy with high SNR. The resultant spectra 

have a wealth of information content that can discriminate between IBD and 

normal colon, as well as indicate the level of disease activity present. 

Furthermore, preliminary investigation of influential factors for discrimination 

indicate that disease severity and colon segment measured should be accounted 

for during evaluation. In combination with standard endoscopic evaluation, 

Raman spectroscopy has the potential for providing previously unobtainable 

biochemical information that may be useful as a diagnostic adjunct for IBD. 
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CHAPTER 5 

 

CHARACTERIZING THE INFLUENCE OF DISEASE VARIABLES ON 

RAMAN SPECTRA ACQUIRED FROM COLECTOMY SAMPLES OF 

INFLAMMATORY BOWEL DISEASE 

 

5.1 Abstract 

 
 Inflammatory bowel disease (IBD), including Crohn’s disease and 

ulcerative colitis, is a complex condition that affects millions of people around 

the world. These diseases are both caused by autoimmune responses to gut flora 

but medical management can differ greatly. To aid the provision of optimal 

treatment, new tools for in vivo characterization and discrimination of IBD are 

under investigation. One such tool is Raman spectroscopy, an optical technique 

that is sensitive to subtle biochemical constituents in tissues related to disease 

and physiological processes. Raman techniques have shown great promise for 

disease detection and differentiation, however several groups have reported that 

measured spectra are sensitive to variations between patients, anatomy, and 

disease presentation. To investigate the complex interactions that disease and 

patient variables impose on Raman spectra in IBD cases, this study utilized 

resected colon tissues from colon resection (colectomy) patients. Raman 
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measurements were made in many locations across the excised specimens, and 

each measurement location was marked, biopsied, and independently 

processed. Tissue biopsies were assessed by a trained gastrointestinal 

histopathologist for evaluation of disease metrics related to anatomical changes, 

chronic disease, and acute inflammation. Multivariate statistical models based 

on generalized estimating equations and generalized linear models of Raman 

peak ratios and histolopathological markers were implemented to decouple the 

influence of individual disease metrics and colon segment. Patient BMI was a 

significant predictor for Raman peak ratio response while age had no effect. 

The IBD diagnosis was highly correlated with multiple peak ratios and indicate 

large interclass differences between ulcerative colitis and Crohn’s disease 

tissues. Raman peak ratios were significantly associated by chronic changes to 

the colon tissue architecture and acute inflammation severity, along with 

differences between anatomical segments of the bowel. Finally, Raman peak 

ratios were modeled by the presence of submucosal fat deposition, a reported 

physiologic occurrence with potential associations to IBD, in combination with 

disease severity. The results reported here agree with prior work indicating the 

influence of both anatomic location and disease severity, and identify patient 

and disease specific factors that should be included in algorithms for improved 

IBD discrimination. 
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5.2 Introduction 

Inflammatory bowel disease (IBD) is a complex autoimmune condition 

that affects more than one million Americans and more than two million 

Europeans, with incidences increasing around the world. IBD is characterized 

by disease flares separated by periods of remission and significant patient 

morbidity.1 Both ulcerative colitis (UC) and Crohn’s disease (CD) are forms of 

IBD with overlapping symptoms and often have large variations in patient 

presentation. These complex diseases arise due to dysregulated immune 

responses to commensal bacteria in a genetically susceptible host.1 As 

autoimmune diseases with differing treatments and gaps in understanding 

pertaining to etiology, new tools are needed to help quantify disease 

presentation and provide objective diagnosis. One such tool that has seen 

increased interest in the past two decades is Raman spectroscopy, an optical 

technique that can be applied in vivo and is sensitive to the vibrational bonds in 

a sample or tissue. While prior work has demonstrated that Raman spectroscopy 

has the potential to discriminate IBD type and stage disease severity based on 

differences detected in the biochemical profiles of disease, there is a wide range 

of sensitivity and specificity values.2,3 Bi et al. was the first to report 

discrimination of IBD tissues based on ex vivo Raman spectra with 100% 

sensitivity and specificity, however the sample set for this pilot evaluation was 

relatively small.2 Subsequently, Bielecki et al. performed high resolution 

Raman microspectroscopic mapping of IBD tissues.3 This work found that after 
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isolating signals detected from the epithelial cell layers, a statistical algorithm 

was able to separate measurements from CD, UC, and healthy controls with 

over 98% classification accuracy. Our research group has used a portable probe-

based Raman spectroscopy system with colonoscopy to evaluate the 

performance of these techniques in vivo for the first time.4,5 The sensitivity and 

specificity rates of this work have ranged between 62-90% and 22-75% 

respectively, depending upon which patient and measurement variables were 

accounted for during analysis. Based on the previous reports of the sensitivity 

of Raman spectroscopy to both normal patient variations and disease processes, 

there is a demonstrated need for a thorough assessment of which of these factors 

significantly impact Raman spectra acquired from colon tissues. 

Developers of Raman spectroscopy techniques must overcome 

variations in classification rates for disease detection for this technology to 

benefit clinical medicine.6 Significant sources of variation, attributable only to 

the inherent variability in healthy physiology, establish a minimum threshold 

for any detection technique: if the differences between disease classes (or other 

discrimination targets) are smaller than those found within natural, healthy 

variation, there is little chance for successful separation of target classes. Such 

variations have been reported for colon tissue measurements, as noted above. 

Fortunately, several groups are advancing Raman spectroscopy for 

colonoscopy applications and have shown that by accounting for patient 

variations, sensitivity and specificity for Raman discrimination increase. 
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Similar work on innate patient variability has been demonstrated in the breast7, 

upper gastrointestinal (GI) tract8, cervix9, and skin10. In most cases, accounting 

for the variations in tissue has resulted in increased sensitivity and specificity 

rates for classifying disease spectra relative to healthy controls. 

In each of the previous reports of using Raman spectroscopy in the 

colon, significant variability has been noted throughout the organ.11 Similar to 

the other organs of the GI system, the anatomy of the colon and rectum vary 

along the length of the tissue. The distributions of cellular content and 

composition of the bowel wall, as well as the anatomical connections each differ 

between the separate right, transverse, and left colon segments and the rectum. 

12,13 Several major factors have been implicated as impacting in vivo 

discrimination performance of Raman spectra for IBD including bowel segment 

and severity of disease presentation. The proximal colon is primarily 

responsible for absorbing water and electrolytes as well as promoting 

fermentation of undigested sugars in the chime, while the distal colon is 

responsible for storing and evacuating stool. These functional differences 

correlate with distributions of epithelial cells that vary according to anatomical 

location within the colon and rectum; it is likely that these cellular differences 

also impart molecular changes along the colon that are detected by Raman 

spectroscopy.12,13 The influence of these and other factors on measured Raman 

spectra remains to be fully understood. The need exists to characterize the both 

extent of variability in Raman spectra acquired from different locations of 
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colorectum and the interaction of disease severity and inter-anatomical 

variation. Bergholt et al. has investigated the impact of these different 

anatomical locations with respect to changes associated with colorectal cancers 

and noted that inter-anatomical variability was a non-significant factor for 

discrimination between healthy and cancerous tissues.11 Similar findings have 

also been reported for in vivo Raman spectra for skin cancer discrimination.14 

However, it is possible that the biochemical differences relied upon to 

discriminate between normal and dysplasia are more pronounced than those 

present between two related inflammatory processes. In fact, most Raman 

spectroscopy studies that have included inflammation classes in the analyses do 

so as a transition grouping between normal and low grade dysplasia.15,16 Hence, 

this study aims to characterize the variability in Raman spectra acquired from 

different anatomical locations and disease presentations for excised colorectal 

tissue associated with IBD. 

In this work we seek to characterize the influence and interactions of 

variable anatomy and heterogeneity of disease presentation on Raman spectra 

acquired from ex vivo human colon tissues. By comparing Raman spectra 

acquired from numerous anatomical locations along the colon and rectum with 

histopathological evaluation of the measurements, and also with global patient 

variables that may correlate with underlying patient markers for disease, we 

will determine which variables need to be accounted for due to their imposed 

influence on optical measurements. To this end, we have applied clinical Raman 
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spectroscopy and multivariate statistical analysis to measurements of various 

healthy and diseased colorectal specimens (i.e., ascending colon, transverse 

colon, descending colon, sigmoid, and rectum) following colectomy. The goal 

of this work is to characterize the impact of disease variation on Raman spectra 

obtained from human colon tissues. 

 

5.3 Materials and methods 

5.3.1 Patient recruitment 

Colorectal specimens for this study were collected from patients 

following standard partial or total (procto-) colectomy procedures (surgical 

removal of the colon). Potential study subjects were identified based on 

diagnosis (UC, CD, or diverticulosis) and planned procedure at Vanderbilt 

University Medical Center (VUMC). Patients with expected dysplasia were 

excluded to mitigate potential confounding factors. Following written informed 

consent (IRB #150157) specimens were excised and immediately transported 

to a surgical pathology suite according to standard clinical practice for optical 

measurements. The specimen was opened lengthwise to expose the entire 

lumen of the colorectum. Excess blood and debris was rinsed with saline and 

blotted prior to measurement. All measurements were acquired within two 

hours of resection and prior to formalin fixation in an interior pathology room 

with no lights. Patient specific variables including gender, age, body mass index 
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(BMI, kg/m2), relevant diagnosis, and the procedure performed where recorded 

for subsequent analysis (Table 5.1). For this analysis, diverticulosis colon 

tissues were utilized as non-IBD controls. 

Table 5.1. Study subject description. 
Case ID Gender Age BMI Diagnosis Procedure* 
1 F 66 23.3 Ulcerative colitis Proctocolectomy (R,T,L,M) 
2 M 78 19.7 Diverticulosis Partial colectomy (L) 
3 F 46 27.4 Ulcerative colitis Proctocolectomy (R,T,L,M) 
4 F 46 25.0 Ulcerative colitis Proctocolectomy (R,T,L,M) 
5 M 54 24.6 Crohn’s disease Total colectomy (R,T,L) 
6 M 36 22.8 Crohn’s disease Partial colectomy (R,T) 
7 M 44 21.7 Diverticulosis Partial colectomy (L) 
8 F 29 20.5 Crohn’s disease Partial colectomy (R) 
9 M 54 16.2 Crohn’s disease Partial colectomy (R) 
* Indicates segments resected/measured: R – right colon, T – transverse colon,  
L – left colon, M – rectum. 
 

5.3.2 Raman instrumentation and measurement 

The spectroscopic system utilized for this study as depicted in Figure 

5.1, is identical to that used for the previously reported in vivo IBD study.4,5 

Briefly, the excitation leg of the Raman system consisted of a 785 nm diode 

laser (Innovative Photonics Solutions, Monmouth Junction, NJ), a 7-around-1 

superficially focused micro lens fiber optic probe with tip filtering (EmVision 

LLC, Loxahatchee, FL) to deliver 80 mW of power at the sample. Light 

collected by the probe was delivered to a holographic imaging spectrograph 

(Holospec f/1.8i, Kaiser Optical Systems, Inc. Ann Arbor, MI) and detected by 

a thermoelectrically cooled, deep-depletion charge couple device (Pixis 256BR, 

Princeton Instruments Acton, MA). With the probe touching the mucosal 

surface in gentle contact, 5 spectra were acquired from each tissue location with 
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250 ms acquisition times and 3 summed accumulations. The measured sites 

were immediately marked with medical marking dye (Davison marking system, 

Bradley Products, Inc. Bloomington, MN) for histopathology and subsequent 

comparison with the measured spectra. Each site was initially categorized for 

disease presence by the surgeon using visual inspection. After pathology 

sections were collected from the specimen according to standard of care, 

separate sections were collected from measured locations. All marked sites on 

the specimen were separately processed and read by a fellowship trained 

gastrointestinal (GI) histopathologist at VUMC for several markers of acute and 

chronic disease as well as physiological differences (Table 5.2). The 

histopathological identities of these sites formed the gold standard for spectral 

analyses. Other patient specific variables including age, gender, and BMI were 

recorded for correlation with the spectral data. Between patients, the probe was 

detached from the system for cleaning, soaked in ortho-Phthalaldehyde (Cidex 

OPA, Johnson & Johnson, Arlington, TX) and rinsed thoroughly with water, 

following protocols for high-level disinfection. 
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Figure 5.1. Schematic of Raman spectroscopy system and colon specimen for 
experimental setup. Black dots on colon indicate locations of Raman 
measurement. 

 

Table 5.2. Histopathology scoring metrics for colectomy specimen sections. 
Acute Inflammation  
Severity Absent (0) – Severe (3) 
Extent of coverage Minimal (0), Patchy (1), or Diffuse (2) 
Depth Absent (0), Mucosal (0), Submucosal (2), Transmural (3) 
Basal plasmacytosis Absent (0) or Present (1) 
Surface ulceration Absent (0), 25% ≤ x < 50% (1), x ≥ 50% (2) 
Chronic disease  
Architectural distortion Absent (0) – Severe (3) 
Extent of distortion Minimal (0), Patchy (1), or Diffuse (2) 
Lymphoid hyperplasia Absent (0) – Severe (3) 
Gross changes  
Submucosal fat deposition Absent (0) – Severe (3) 
Submucosal vascular prominence Absent (0) or Present (1) 
Bowel layer thickness  
mucosa Percentage of section thickness 
submucosa  Percentage of section thickness 
muscularis mucosa Percentage of section thickness 

 

5.3.3 Multivariate statistical analysis 

Raman spectra were analyzed using ordinary least squares regression 

based on generalized linear models (GLM) in the statistical software R, using 

the rms package. The rate of change of various Raman peak ratios was modeled 
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as the dependent variable and regression coefficients were calculated for 

independent variables such as patient descriptors and histopathological scoring 

metrics (listed in Table 5.1 and Table 5.2, respectively). To make comparisons 

as these independent variables changed with disease presentation, generalized 

estimating equations (GEE) were employed (as previously described) to enable 

clustering of measurements obtained from a single specimen.17,18 The generated 

regression curves for different segments (right, transverse, left, rectum) and 

disease variables were compared. Raman peak ratios were used as a way to 

normalize comparisons across many data sets that have varying levels of signal 

intensity and signal to noise ratios. Specifically for this analysis, the Raman 

peak ratio of interest was the dependent variable and the disease severity 

(continuous), colon segment measured (categorical), or other patient descriptors 

were included as independent variables. Peak ratios of interest were identified 

based on Pearson’s correlation (r ≥ 0.7) with histopathological scoring values 

evaluated for the corresponding tissue section (Table 5.2). Due to the highly 

variable signal strength that can be detected during Raman spectral 

measurements of biological tissue, the spectral intensity (measured as the 

intensity of the 1440 cm-1 peak) was utilized as another dependent variable 

(continuous) in every model to control for these intensity fluctuations. 

Heteroscedasticity in the dataset was addressed by using the robust covariance 

function created in the rms package (‘robcov’) to adjust the standard errors. 

Finally, to look at interactions between specific disease and anatomic variables, 
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an ANOVA was performed on the generated GLM regression curves from the 

developed regression model.  

 

5.4 Results 

Mean Raman spectra from each colon segment without acute 

inflammation are presented in Figure 5.2 and represent averages of colon 

segments measured across the nine tissue specimens. The spectra depict several 

regions that differ between segments despite the similarities in overall line 

shape. Of particular interest are the changes seen in the protein and lipid 

features (indicated by gray bands at 1006, 1265, 1300, and 1658 cm-1) between 

segments. The visually apparent differences between these few spectral features 

indicate the significant changes imparted by the colon segment measured, 

especially in the tissue that is free of disease. Prior studies have demonstrated 

that disease presentation and colon segment should be decoupled. A thorough 

evaluation of several patient and disease variables are investigated herein to 

address this need. 
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Figure 5.2. Mean spectra from colon segments without histopathological 
markers of acute inflammation. Spectral line shapes agree with previously 
reported differences between colon segments. Gray bands indicate protein and 
lipid spectral features that dramatically vary between segments. 

 

5.4.1 Patient variables 

An initial comparison of spectral features in relation to patient specific 

variables was conducted for patient age and BMI. Overall, the GEE models for 

patient age had low robustness (R2 = 0.15) and therefore no relationships were 

considered. Alternatively, patient BMI strongly correlated with several peak 

ratios that are assigned to collagen and tryptophan (1209 to 1559 cm-1, r = -

0.71; 1335 to 1559 cm-1, r = -0.73). Figure 5.3 depicts a representative GEE 

regression curve where the peak ratio (1335 to 1559 cm-1) is modeled versus 

BMI as a continuous variable, as an example of the consistent trends 

demonstrated by both ratios. These ratios were robust models across the dataset 

(Table 5.3), however because each patient has only one BMI value for all 

spectral measurements, it is not appropriate to investigate interactions for either 
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colon segment or disease presentation. A larger data set may enable further 

clarification regarding the impact of these patient specific variables on the 

variability of detected Raman spectra. 

 

 
Figure 5.3. GEE for peak ratio of 1335 cm-1 to 1559 cm-1 versus patient BMI 
demonstrate high correlations and robust model performance across the entire 
data set. 
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Table 5.3. Multivariate statistical model results for associations between 
Raman spectral data and histological scores of colectomy specimens. 

Comparison Peak 
Ratio Coefficient p-values Model 

R2 
Tentative band 
assignments 

Patient and tissue variables 
Age All ratios Age: p > 0.05 NS  

Body Mass Index 
(BMI) 

1209 to 
1559 cm-1 BMI: p < 0.0001 0.58 Collagen19 to 

Tryptophan19 1335 to 
1559 cm-1 BMI: p < 0.0001 0.55 

Disease Diagnosis 

754 to 
1209 cm-1 Disease type: p < 0.0001 0.85 Lipid20 to 

Collagen19 
1125 to 
1160 cm-1 Disease type: p < 0.0001 0.75 Lipid20 to 

Carotenoid21 
Thickness ratio 
(mucosa/submucosa) All ratios Thickness ratio: p > 0.05 NS  

Chronic disease 
Chronic disease and 
colon segment 

1006 to 
1209 cm-1 

Architectural distortion: p < 0.0001 
Segment: p < 0.0001 0.55 Phenylalanine19 

to Collagen19 
Lymphoid 
hyperplasia All ratios Lymphoid hyperplasia: p > 0.05 NS  

Acute disease 

Active disease and 
colon segment 

1265 to 
1304 cm-1 

Inflammation: p < 0.0001 
Segment: p < 0.0001 0.56 Protein19 to  

Lipid20 
859 to 
1524 cm-1 

Inflammation: p > 0.05 
Segment: p < 0.0001 0.53 Collagen19 to 

Carotenoid21 
1335 to 
1332 cm-1 

Inflammation: p < 0.0001 
Segment: p < 0.0001 0.49 Collagen 

content 19 
Submucosal fat and 
active inflammation 

1265 to 
1304 cm-1 

Inflammation: p < 0.0001 
Fat deposition: p > 0.05 0.55 Protein19 to  

Lipid20 
 

5.4.2 IBD type differentiation 

Analyses comparing peak ratios modeling inflammatory bowel disease 

type (CD, UC, or non-IBD/normal) are presented in Table 5.3 and Figure 5.4. 

The first ratio (754 to 1209 cm-1) represents lipid to collagen content while the 

second represents lipids to carotenoids (1125 to 1160 cm-1). Both ratios are 

robust predictors across patients/specimens (R2 ≥ 0.75) and have significant 

coefficients for disease diagnosis (p < 0.0001). For both of these ratios, the 

difference between ulcerative colitis and the other diagnoses exhibits a large 

separation, while Crohn’s disease and non-IBD/normal colon are not 
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significantly different. A histologic feature related to disease type is the relative 

thickness of mucosa to submucosa. As scored by the GI histopathologist, 

relative mucosal thickness did not strongly correlate with any other markers of 

disease, including diagnosis. In agreement with the global correlations for 

histological metrics, all of the peak ratios modeled by GEEs had non-significant 

coefficient values for the ratio of thickness for mucosa to submucosa (p > 0.05). 

Based on this dataset, the relative thickness of the bowel wall layers did not 

significantly alter the Raman spectra obtained from the colon. These trends 

represent the average signals for disease types while combining all levels of 

either acute or chronic disease severity. It is likely that these factors could 

significantly alter the ratios obtained from CD or UC specimens, however, 

further patient recruitment/specimen collection is warranted prior to drawing 

conclusions.  

 
Figure 5.4. Results for GEE models of peak ratio versus patient disease 
diagnosis (mean & 95% confidence interval). 



185 
 

5.4.3 Chronic disease 

Having isolated Raman peak ratios that correlated with patient variables 

and inflammatory bowel disease type, GEE models were developed for markers 

of chronic inflammation and colon segment. Some of the markers for the 

presence of chronic disease (severity of architectural distortion and extent of 

distortion, Table 5.2) were highly correlated in histopathological evaluation (r 

= 0.79), but lymphoid hyperplasia was not strongly correlated with any other 

inflammatory metrics. As listed in Table 5.3, a similar result was obtained for 

correlations between lymphoid hyperplasia and Raman peak ratios. As before 

with patient age and mucosal thickness ratio, all models of lymphoid 

hyperplasia demonstrated low scores for robustness and non-significant 

coefficients. On the other hand, one GEE model of chronic disease severity and 

colon segment displayed significant differences for both coefficients (p < 

0.0001). The Raman features that contribute to this ratio are tentatively assigned 

to phenylalanine and collagen. However, regression curves for individual 

segments displayed different slopes as severity increased, limiting the utility of 

this feature. Despite the differences in regression curves between segments, 

mean values from segments without chronic disease were significantly lower 

than those with markers of severe chronic disease (p < 0.05). 
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5.4.4 Acute inflammation 

The complex presentation of active disease and colon segment have 

been confounding factors in previous investigations of Raman spectroscopy for 

IBD. To evaluate the impact of colon segment and acute severity, GEE models 

were implemented that allow for modeling the peak ratios of interest with each 

dependent variable. For the GEE models, acute severity score (Table 5.2) was 

utilized to evaluate acute disease. This was determined after all markers for 

acute inflammation were verified as highly correlated (r ≥ 0.73). Results for the 

three most robust GEE models are reported in Table 5.3. As depicted in Figure 

5.5, the 1265 to 1304 cm-1 ratio reveals monotonic decreases in protein to fat 

across all colon segments as acute disease severity increases. The curves for 

mean peak ratio values and 95% confidence intervals indicate that for this ratio, 

there are no differences between segments at a fixed level of active disease. 

However, the mean value for each segment in the absence of active disease is 

significantly higher than the mean value for each segment in the presence of 

severe activity, supporting the interplay between disease severity and colon 

segment in this pilot data set. All colon segments demonstrate a similar 

monotonic increase in collagen to carotenoid with increasing acute severity 

(859 to 1524 cm-1, Table 5.3). However, for the latter ratio, there is not a 

significant difference between the mean values of different colon segments with 

inflammation.  
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Figure 5.5. GEE for peak ratio mean and 95% confidence interval for 1265 to 
1304 cm-1 modeled by severity of acute inflammation and colon segment. 

 

The GEE regression curves in Figure 5.6 reveal that in the proximal 

colon (right and transverse segments), the collagen content (1335 to 1332 cm-

1) increases with severity while in the distal colon (left and rectum) this same 

ratio decreases. In the absences of acute disease (severity 0), these curves show 

that the mean values for collagen content in the proximal colon segments are 

not significantly different from one another. However, at moderate and severe 

acute disease levels (severity 2-3), the mean ratio for the right colon is 

significantly lower than that of the transverse colon (p < 0.05). The GEE 

regression curves for the distal colon (left colon and rectum) show that if the 

severity of acute disease is held constant, there are no significant differences 

between the collagen content. This ratio is significantly different for inactive 

disease in both of these segments compared with severe disease (p < 0.05). 

Furthermore, the transitions in collagen content are more pronounced in the 
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rectum than the left colon as acute disease severity increases. Table 5.3 also 

shows that the GEE model results for the global comparisons of acute 

inflammation and colon segment for each of these ratios have significant 

coefficients (p < 0.0001) for colon segment (all three models) or acute 

inflammation severity (protein to lipid ration and collagen content). These 

significant p-values indicate that there are differences detected in the Raman 

spectra between colon segments and disease states. As both of these factors are 

significant, it follows that an algorithm based on Raman spectra must account 

for the influence of colon segment as you measure IBD severity. 

 
Figure 5.6. GEE for peak ratio mean and 95% confidence interval for 1335 to 
1332 cm-1 modeled by severity of acute inflammation and colon segment. 

 

5.4.5 Submucosal fat deposition 

When modeling peak ratios as a function of acute disease and 

submucosal fat deposition, the most robust ratio (R2 = 0.55), representing 

protein to lipid content, slightly decreases with increasing fat deposition (Table 
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5.3). Interestingly, this ratio indicates a significant coefficient value for acute 

disease severity (p < 0.0001) but a non-significant coefficient for submucosal 

fat. As these factors may not be truly independent, it is interesting to note that 

the peak ratio for moderate or severe submucosal fat deposition (2-3) is 

significantly lower than the ratio for samples absent of this fat deposition, 

regardless of inflammation severity. The GEE model of this spectral feature 

supports the relationship between IBD severity and submucosal fat deposition 

as detected by Raman spectroscopy. 

 

5.5 Discussion 

Raman spectroscopy is an optical technique that is sensitive to subtle 

biochemical changes associated with disease processes and physiological 

variation. However, as a sensitive technique, Raman spectroscopy can also be 

influenced by patient variables not associated with disease processes. The 

healthy human colon is a large organ with diverse and complex functions that 

differ along the extent of the tissue. As depicted in Figure 5.2, segmental 

variations exist in the complex Raman spectra measured from healthy colon. 

The variation in organization of this tissue enables the unique functions 

performed by different parts of the organ. However, these variations also 

complicate detection based on light-tissue interactions. The movement of fecal 

matter through this organ is accomplished by unique formations of musculature 
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across the length of the colon. In the rectum, motility is enabled by the 

continuous sheet of muscle that lines the outside of the tissue as compared to 

the tenia coli which are three equidistantly spaced longitudinal muscles that run 

the length of the colon.22 This increased muscularity of the rectum may account 

for the increase in protein signatures (1247-1265 cm-1 Amide III, 1006 cm-1 

phenylalanine, 1658 cm-1 Amide I) and decreased lipid peaks in the rectum 

compared with the colon (Figure 5.2). Another difference between colon 

segments is the connection to peritoneum in the abdominal cavity. Both the 

ascending (right) and descending (left) colon are retroperitoneal, and not 

directly connected to the sheet of adipose tissue that stabilizes the colon in the 

abdomen. Conversely, the transverse and sigmoid (left) colon segments are 

suspended by the fat-rich mesocolons. The low absorption of near infrared light 

coupled with the high scattering coefficients and the forward dominated 

scattering of tissues allow for 785 nm light to travel deep within biological 

tissues (>5 mm) to generate detectable Raman scattering signals. The increased 

lipid signals in the left colon (Figure 5.2, 1265 cm-1 and 1300 cm-1) may be 

caused in part by the excess mesocolon attached to the outside of this tissue 

after resection relative to other colon segments. Similar to the added mesocolon, 

the distal colon has larger and more prevalent appendices epiploicae (fat 

protrusions on the serosa) that may contribute to the added adipose signatures 

detected in these colon segments.22 These natural variations in the anatomy of 
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the healthy colon support the need for careful consideration of latent effects that 

confound ex vivo and in vivo Raman spectral measurements. 

While diverticulosis specimens were included in this study as non-

inflammatory controls, a more appropriate analysis of healthy colon might be 

obtained from cadaver tissues with no indications of GI pathology. For this 

work, these diverticulosis patient specimens were confirmed through 

histopathologic evaluation to lack all markers of inflammatory processes and 

were thus utilized as controls. 

5.5.1 Patient variables 

Numerous patient variables associated with the specimens could impart 

significant influences on the measured Raman spectra. Due to the limited size 

of this pilot investigation, and the disease conditions indicating surgical 

resection of the colon, many of these factors are not addressed in this analysis. 

Specifically, no effort was made to control of duration of patient disease nor 

prior therapeutic/surgical interventions. Both of these features, as well as other 

variables not related to IBD such as patient age, gender, or BMI could have 

significant impacts on the measured Raman spectra.9 The interpretation of such 

variables is therefore limited. Age related effects did not exhibit robust 

correlations across the recruited patients. However, the peak ratios that 

significantly correlated with patient BMI indicated that with increased BMI 

there may be more reserves of tryptophan in the tissue that can act as part of a 
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small labile reserve of protein. Alternatively, this signal ratio could be related 

to the remodeling of the colon tissue as a result of disease, and requires both a 

larger data set and greater investigation to elucidate the relationship. 

5.5.2 IBD type differentiation 

One of the goals for utilizing Raman spectroscopy in vivo for IBD is to 

help enable discrimination of the disease type. Preliminary work has 

demonstrated the potential for this discrimination through Raman fiber optic 

probe and microspectroscopic investigations. Accurate distinction for these 

diseases is essential for optimal medical management. Treatment options, 

especially surgical interventions, are dramatically different between these 

diseases, and the difference in disease response indicates the need for improved 

evaluation and discrimination of IBD types. To this end, GEE models were 

implemented for peak ratios that were strongly correlated with disease 

diagnosis in this colectomy specimen dataset. The regression models depicted 

in Figure 5.4 reveal that disease specific trends support discrimination of IBD 

type based on differences in the Raman spectroscopic signals from excised 

tissues. The ratio of lipid to collagen content (Figure 5.4A) shows no difference 

between CD and control specimens but a significant increase (p < 0.05) for UC 

specimens. This is likely a combination of the decreased collagen content 

associated with superficial UC disease. Similarly, for the ratio of lipids to 

carotenoids (Figure 5.4B), no significant differences were found between 



193 
 

control and CD specimens, however there was a significant decrease for UC 

specimens (p <0.05). This may be attributed to the increased oxidative stress 

seen in the UC specimens that would reduce the prevalence of reactive oxygen 

species scavenging carotenoids in the tissue.23,24 One confounding factor in this 

analysis is the impact of disease severity on Raman spectra and the distribution 

of severity in each colon segment as a function of disease type. This analysis is 

not adequately powered to consider the impact of activity in combination with 

IBD type and thus other latent factors may be impacting the separation (as seen 

for other comparisons in Table 5.3). Despite this limitation, the differences in 

peak ratios here further support the potential for disease discrimination based 

on Raman spectroscopy. 

The impact of IBD on the colon wall differs between disease types. CD 

is generally a deep disease with inflammation extending into the submucosa 

and muscularis layers of the bowel wall, often resulting in thickening of the 

colon with fibrotic changes, fissuring ulcers, and transmural inflammation. 

Conversely, UC is generally a superficial disease that is characterized by 

erosion and sloughing of the epithelium and mucosal ulceration with severe 

disease.22 Bowel layer thicknesses were expected to significantly differ between 

disease severity and IBD type based on the differential presentation of these 

diseases (superficial versus deep effects). However, none of the model 

relationships pertaining to bowel wall thickness were robust or significantly 

correlated with spectral features for this histological score (Table 5.3). A 
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challenge for the scoring of this metric during histopathological review is the 

effect of tissue orientation in the cassette, which can create artefactual 

differences in the relative thickness of these layers on a per sample basis. In 

many tissue sections, layers were absent from a section or the thickness of a 

particular layer was highly variable across the extent of the section. 

Furthermore, due to handling of the specimens, it is not possible to say that 

every sample represented a full-thickness section of the colon tissue. However, 

it is possible that with more control and an objective metric, this ratio could 

provide information about the Raman spectral differences observed. 

5.5.3 Chronic disease 

Analysis of markers of chronic disease and colon segment revealed a 

general increase in the ratio of phenylalanine to collagen as severity of chronic 

disease increased (Table 5.3). Amino acid content (peak ratio numerator) is 

considered to be a marker of cellularity in the colon wall.25 In the healthy colon, 

the mucosal crypts are generally 400 μm – 700 μm deep and rich with mucous 

secreting goblet cells. During severe disease activity, there is an influx of 

inflammatory cells (PMN leukocytes) that can form abscesses at the crypt bases 

in the mucosa. The crypt architecture can be completely obliterated by wound 

healing and epithelial recovery mechanisms.24,26 This remodeling of the 

mucosal layer of the colon wall has implications on nutrient and water 

absorption and is likely accompanied by changes in the molecular profile that 
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Raman spectroscopy detects. The influx of inflammatory cells and the higher 

density of cellular components in the absence of healthy crypt architecture 

accounts for the increased cellularity measured by Raman spectra with 

increasing chronic severity. Interestingly, there were no strong correlations 

between lymphoid hyperplasia and other global markers of chronic 

inflammation in these tissue sections. Lymphoid hyperplasia refers to a 

proliferation of lymphocytes in the lamina propria or submucosa, sometimes 

forming organized germinal centers as seen in a lymph node. In the context of 

IBD, lymphoid hyperplasia can be considered a marker of chronic disease. 

However, in the proximal colon there is normally a natural abundance of 

lymphoid hyperplasia that is highly organized in contrast to the rather 

disordered proliferation in IBD.27 It is likely that as volume integrating fiber 

optic Raman probes are more sensitive to concentrations of biomolecules than 

the organization of these molecules in tissue, that no differences in lymphoid 

presence were detected based on natural variations in content. 

5.5.4 Acute inflammation markers 

To decouple the complex interplay of the effects of inflammation and 

colon segment, GEEs were implemented for Raman features that were highly 

correlated with disease activity as a function intra-specimen variations. Figures 

5.5 and 5.6 depict curves for two peak ratios modeled by both disease activity 

and colon segment measured. An initial comparison of these curves indicates 
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that disease severity causes different responses between segments when 

comparing Raman spectra. For example, Figure 5.5 indicates a consistent 

decrease in protein to lipid content for increasing inflammation severity across 

all segments of the colon. The protein to carotenoid ratio (Table 5.3) increases 

for all segments and could be a combined effect of increasing collagen as 

inflammation damages the tissue as well as decreased carotenoids present in the 

tissue based on the cellular protection mechanism of scavenging reactive 

oxygen species.23 The discrepancy between these GEE modeled peak ratios 

indicate that not all features of a Raman spectrum are sensitive to the same 

sources of variability. The greatest differences between segment responses to 

worsening disease are seen in Figure 5.6 where the prevalence of collagen has 

opposite trends between the proximal and distal colon segments. This is likely 

a function of the different disease presentations of CD and UC. Nearly 70% of 

CD involves a combination of the colon and small bowel. Many cases of severe 

disease will have pancolitis (inflammation in colon spreading proximally to the 

splenic flexure) with rectal sparing; however 30% of CD patients will have 

segmental disease, with the majority of the inflammation confined to a single 

segment of the tissue. Conversely, 97% of UC involves inflammation in the 

rectum and 80% of mild UC is confined to the rectum and sigmoid colon 

segments.22 Since severe CD exhibits fibro-collagenous changes in colon 

tissues, it is likely that the increase in the collagen signatures in the proximal 

colon (Figure 5.6) is likely due to the higher percentage of the measurements of 
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severe disease in those segments coming from patients with CD while in the 

distal colon, most of the severe disease was measured from UC specimens. This 

differences in severe CD and UC disease presentation and disease processes 

further emphasize the importance of decoupling disease severity and colon 

segment effects on the obtained Raman spectra. 

5.5.5 Submucosal fat deposition 

Each biomolecule has an associated Raman cross-section that is related 

to the likelihood of causing a Raman scattering event. Raman scattering cross 

sections for lipids are larger than many other biomolecules encountered in soft 

tissues.20 Therefore, sensitivity to signals related to adipose content in the 

sample is a strength of this non-invasive Raman technique. Submucosal fat 

deposition is a clinical feature that has been reported in potential association 

with IBD in the past. While this aspect of disease presentation does not indicate 

discrimination of IBD, submucosal fat deposition has been observed in 

radiological studies. Called the “halo effect,” this deposition of fat in the bowel 

wall that may represent a response to diffuse injury in the context of IBD and 

commonly manifests as a ring of fatty attenuation in cross sectional computed 

tomography evaluations of the abdomen.28,29 The large Raman scattering cross-

section of fat and the use of NIR excitation wavelengths enable the interrogation 

of submucosal changes between 400 microns and 1 mm deep in tissue. The 

histological scoring of submucosal fat deposition and markers of active and 
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chronic disease were significant (r > 0.5). The GEE regression coefficients 

(Table 5.3) indicate that, when accounting for the severity of disease, the ratio 

of protein to lipid content decreases as submucosal fat deposition increases. 

Furthermore, there is a more pronounced effect of submucosal fat deposition on 

Raman spectra when active disease is more severe, which is consistent with 

reports of the halo effect in IBD. 

This analysis is based upon a large number of spectra collected across 

the extent of excised colon specimens. It should be noted that the GEEs used in 

the analysis of these relationships do not fully account for complex correlation 

structures that may be present in the data obtained in this study with spatial 

relationships. It is likely that measurements made closer to one another in space 

are more correlated, both histopathologically and spectrally, than measurements 

collected with greater distance. Future investigations could incorporate 

spatiotemporal models30,31 that more fully define the correlation structure 

relationship of these interacting variables, which could more precisely evaluate 

these complex interactions. However, fully defining the correlation structure of 

these variables could be extremely difficult. Thus, GEEs were selected such 

that the importance of the specific correlation structure is minimized and 

comparisons are made by grouping measurements from a single subject. The 

results reported here support the individual and combined influence imposed by 

both patient and disease-based sources of variation. Analysis and discrimination 

techniques may be able to achieve higher sensitivity and specificity rates by 
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accounting for these influential variables, as has been demonstrated in other 

investigations using Raman spectroscopy for disease evaluation. 

 

5.6 Conclusions 

 Inflammatory bowel disease is a complex entity with diverse. This 

complexity continues to present challenges for medical management and 

indicates the need for better understanding of the association between tissue 

changes and disease pathways. While Raman spectroscopy has demonstrated 

potential for ex vivo and in vivo discrimination and characterization of IBD type 

and severity, numerous sources of variability have been implicated as 

confounding factors. This work has utilized tissue specimens from excisional 

procedures of the colon to investigate the complex interactions of several 

variables with respect to disease presentation: active and chronic disease 

markers, gross tissue changes, and patient specific factors such as age, BMI and 

diagnosis. Variables whose interaction had previously been considered 

confounding have now been decoupled using regression modeling of spectral 

feature combinations against histological scoring. Significant differences were 

identified between colon segments in the presence of active and chronic disease 

that strongly correlate with spectral features related to the disease process and 

anatomy of the colon. Age and BMI demonstrated weaker effects, while disease 

specific variables including IBD type and submucosal fat deposition were 
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significantly predictive of Raman spectral signatures. These complex 

interactions between disease and anatomy support the need for thorough 

investigation of the latent factors that can impact measured Raman spectra from 

tissues, either ex vivo or in vivo, and to account for these variables when 

developing algorithms for discrimination. Despite these disease interactions, 

the results presented further support the sensitivity of Raman spectra to disease 

and physiological variations in colon tissues and the potential for disease 

discrimination for complex conditions like inflammatory bowel disease. 
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CHAPTER 6 

 

CHARACTERIZING THE IMPACT OF ACTIVE INFLAMMATION ON 

RAMAN SPECTRA IN EXPERIMENTAL COLITIS 

 

6.1 Abstract 

Inflammatory bowel disease (IBD), comprising Crohn’s disease and 

ulcerative colitis (UC), causes appreciable morbidity for patients and poses a 

challenge to medical management. Raman spectroscopy, a biochemically 

specific optical technique, has demonstrated potential as an adjunct tool to 

improve in vivo discrimination and objective characterization of disease 

severity. Prior in vivo and ex vivo investigations of colon tissues for IBD and 

cancer have implicated patient and disease variations as significant influences 

on measured Raman spectra. One potential factor that has been uncontrolled in 

studies thus far is the influence of acute disease severity. Using a dextran sulfate 

sodium (DSS) as a murine colonic injury model with similarities to human UC, 

we assessed the impact of mucosal injury on the Raman microspectroscopic 

biochemical profile of tissues relative to clinical parameters and histological 

scores of disease severity. Tissue maps were acquired with a 785 nm Raman 

microscope from the rectum and areas of most severe disease presentation from 

17 mouse colon specimens and spectral features that significantly correlate with 



205 
 

mucosal injury metrics were identified for further analysis. Spectral profiles for 

carotenoids and amino acids related to oxidative stress significantly decreased 

with increasing disease severity, while lipid signatures that may be linked to 

prostaglandin regulation increased. Furthermore, several features demonstrated 

linear changes in Raman spectral features as a function of disease while others 

demonstrated a binary response, indicating that some Raman features are 

sensitive to the biochemical processes associated with mucosal injury prior to 

the manifestation of microscopic histological changes of disease. These spectral 

changes in a controlled model for colon inflammation and mucosal injury 

support the need to account for disease severity in differential analysis of 

inflammatory bowel disease with Raman spectroscopy techniques. 

 

6.2 Introduction 

Inflammatory bowel disease (IBD) is a complex condition that is 

characterized by cycles of disease flare and quiescence. Depending upon the 

type of IBD a patient has, disease may affect the entire gastrointestinal tract. 

IBD is commonly first diagnosed in 15-30 year old patients, and generally 

requires life-long treatment.1,2 Millions of Americans and Europeans suffer 

from the serious detriments to quality of life associated with IBD and incidence 

is increasing worldwide, including emergence in Asian, eastern European, 

Indian populations.3,4 As a continuing challenge to the medical community, the 
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exact etiology of IBD is unknown, but the disease is characterized by 

dysregulated immune responses to commensal flora in genetically susceptible 

individuals. 

Crohn’s disease (CD) and ulcerative colitis (UC) represent two distinct 

forms of IBD, and have different causes and discrete mechanisms of tissue 

damage.2,5 Different immune responses to microbial antigens of commensal 

microorganisms have been proposed for UC and CD. In CD, the T-cell response 

is T-helper (Th)1 dominant, while in UC, the response is either Th2 [interleukin 

(IL) -4, IL-13] or is mediated by specialized cells such as natural killer (NK) T 

cells.6,7 The activation of central immune-cell populations is eventually 

accompanied by the production of a wide variety of nonspecific mediators of 

inflammation, such as cytokines, chemokines, and growth factors.8-10 These 

mediators enhance the inflammatory process itself and tissue destruction, which 

eventuate in the clinical manifestations of disease.11 The alterations in the 

micro-environment and macro-morphology of the inflammatory tissue are 

evident, and ultimately result in clinical manifestation of IBD. Key features of 

UC include diffuse mucosal inflammation that is restricted to the colon. In 

conjunction with severe inflammation and the coincident production of a 

complex mixture of inflammatory mediators, extensive superficial mucosal 

ulceration develops. Histopathological features include the presence of a 

significant number of neutrophils within the lamina propria and the crypts, 
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where they form micro-abscesses.12 CD is characterized by aggregation of 

macrophages that frequently form noncaseating granulomas.12 

A tool that has seen recent investigation for translational medicine is 

Raman spectroscopy. This non-destructive optical technique can be applied in 

vivo for disease detection and physiological monitoring.13 The strength of 

Raman spectroscopic techniques is its inherent sensitivity to vibrational bonds 

that comprise a tissue or sample of interest. The interaction of the excitation 

light with the vibrational bonds result in biochemical specific peaks and valleys 

that can be used to distinguish changes within a sample.13 

A majority of previous Raman spectroscopy studies in colon research 

have focused on cancer and pre-cancer detection. Early work on colon cancer 

using near infrared Raman spectroscopy found differences between normal 

tissue and adenocarcinoma corresponding to nucleic acid changes.14 More 

recently Wilson et al. reported the study of this technique in the colon for 

classifying colon polyps and obtained an accuracy of 93-95% in distinguishing 

between adenomatous and hyperplastic polyps both in vitro and in vivo.15 A 

higher diagnostic accuracy (> 99%) was reported in following ex vivo 

studies.16,17 Stone et al. has developed a database cataloging the intrinsic Raman 

signatures of various gastrointestinal cancers including those of the colon and 

showed that colon tissues can be classified with near 90% efficiency.18 Finally, 

Bergholt et al. have reported clinical evaluation of colorectal cancers in vivo 

using Raman spectroscopy in combination with colonoscopy procedures with 
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high diagnostic accuracy compared with histology.19 These reported successes 

demonstrated the capability and efficacy of Raman spectroscopy in detecting 

subtle changes in diseased tissue.  

Several research groups, including ours, have investigated IBD in 

humans with Raman spectroscopy. Raman scattering is sensitive to subtle 

changes in diseased tissues and to the physiological environment in the body. 

Hormone status, disease, and treatment history have an impact on the optical 

properties of tissues, and thus result in subtle changes in Raman spectra.20 Bi et 

al. was the first to demonstrate that Raman spectra are sensitive to the subtle 

changes between CD and UC in a small set of ex vivo patient biopsy samples.21 

Bielecki et al. has previously investigated the potential for IBD classification 

based on high resolution Raman microspectroscopic imaging of ex vivo colon 

specimens.22 Subsequent work by our group has demonstrated for the first time 

sensitivity of Raman spectra obtained in vivo during colonoscopy to changes in 

tissue that correlate with IBD type, severity, and anatomical location of 

disease.23,24 The success of these studies demonstrate the need for further 

refinement of Raman spectroscopic techniques prior to clinical utility. 

Prior work has indicated that there are variations in detected Raman 

spectra that are dependent upon severity of disease presentation.23,24 As specific 

disease presentation cannot be controlled in vivo in a patient population, many 

studies of IBD rely on ex vivo human tissues and animal models with 

similarities to human IBD. Such studies also enable the evaluation of new 
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strategies for adjunct therapeutic options for this complex disease.25-27 The 

preliminary in vivo work for IBD demonstrates the need to understand the effect 

of active inflammation on the spectral characteristics of IBD. To objectively 

quantify inflammation in the colon, this study will use an animal model. Mouse 

models are an imperfect replicate of human IBD; however, it will enable a 

systematic study of the course of disease development for colitis (colon 

inflammation) in a shortened time frame (7-10 days depending on protocol), 

and thoroughly analyze the colon tissue of an epithelial injury model with 

immune dysregulation. The goal of this work is to compare normal mouse colon 

tissue with induced inflammatory injury tissues at points of disease progression 

to investigate which underlying biochemical and structural properties correlate 

with Raman spectral features. 

Dextran sulfate sodium (DSS) is a heparin-like polysaccharide that has 

been successfully utilized to induce colonic mucosal injury in mice.25,26,28 This 

model was selected for the current research due to the similarities that the DSS-

induced colitis model exhibits with respect to the characteristics of UC disease 

in humans. Manifestations of injury include weight loss, diarrhea, rectal 

bleeding, and loss of epithelium followed by ulceration and leukocyte 

infiltration.27,29 

Here, we report the use of the DSS-induced colitis model to assess the 

effects of active inflammation on Raman spectra obtained from colon tissues 

during acute colitis. Results from Raman microspectroscopic mapping are 
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correlated with clinical parameters of mucosal injury and effects are decoupled 

from the bowel wall layer measured. Specific Raman features are identified that 

are sensitive to tissue changes consistent with acute inflammatory responses 

and provide a basis for comparisons between different levels of disease severity. 

The results of this pilot study demonstrate that Raman spectral changes from 

the mouse colon are sensitive to biomolecular processes of colitis as a function 

of injury severity. 

 

6.3 Materials and methods 

6.3.1 Animals 

Seven week-old female house-bred WT C57BL/6 mice were used for 

this study. All procedures using mice were reviewed and approved by the 

Institutional Animal Care and Use Committee of the Vanderbilt University 

Medical Center and the Research and Development Committee of the Veterans 

Affairs Tennessee Valley Healthcare System. 

6.3.2 Induction of DSS colitis 

DSS (mol wt 36,000 –50,000; TdB Consultance, AB, Uppsala, Sweden) 

was added to the drinking water as a 4% (wt/vol) solution for the time periods 

indicated. The animals were allowed free access to the DSS-containing water 

during the experiment. On the day the animals were euthanized, the colons were 

removed and colon length was measured; then the colon was cut longitudinally, 
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cleaned, and Swiss-rolled for histology, with two proximal and two distal 2-

mm pieces preserved for RNA and protein analysis. 

6.3.3 Body weight measurement 

For assessment of the effects of DSS treatment on changes in mouse 

body weight, the animals were monitored daily over the course of colitis 

development.  

6.3.4 Assessment of histological injury scores 

Swiss-rolled colons were snap frozen (Super Friendly Freeze’It media, 

Fisher Scientific) and embedded in OCT mounting media (Fisher Healthcare 

Tissue-Plus O.C.T Compound, Fisher Scientific). Serial sections of 20 μm and 

8 μm were cut; 8 μm sections were placed on standard microscope slides and 

stained with hematoxylin and eosin (H&E), while 20 μm sections were placed 

on 75 mm x 20 mm × 1 mm Raman-grade CaF2 microscope slides (Crystran, 

Poole, UK), fixed in 100% ethanol and allowed to air dry in a sterile hood under 

laminar flow for 24 hours. H&E slides were examined in a blinded manner by 

a gastrointestinal pathologist; the summation of inflammation severity (0 –3) 

and inflammation extent (0 –3) was multiplied by the percent involvement (1 = 

0–25%, 2 = 25–50%, 3 = 50–75%, and 4 = 75–100%) to yield the inflammation 

score (0 –24). The parameter of crypt damage (0–4) was multiplied by the 

percent involvement to yield an epithelial injury score (0 –16). These scores 

were then added together to yield the histological injury score (0–40), as 
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described previously.25,30,31 H&E stained slides were then imaged at 40X 

magnification by the Digital Pathology Shared Resource (VUMC) for further 

section comparison and analysis. Reviewing the images for each colon, an area 

of the swiss-rolled colon that is consistent with the mouse rectum as well as an 

area consistent with worst disease severity were identified for subsequent 

Raman imaging. 

6.3.5 Raman imaging analysis 

Raman spectra were acquired using a confocal Raman microscope 

(inVia Raman Microscope, Renishaw PLC, Gloucestershire, UK) with a 785 

nm laser diode (Renishaw PLC, Gloucestershire, UK). Illumination and epi-

detection of Raman scattered light were accomplished through a 50X (N PLAN 

EPI, NA=0.75, Leica, Weltzlar, Germany) objective, with a ~1 µm laser spot 

focused onto the tissue surface. Collected light passed through a 35 µm slit and 

was dispersed by a holographic grating (1200 lines/mm) onto a 

thermoelectrically cooled (-70 ˚C) deep-depleted, CCD providing 1 cm-1 

spectral resolution. The theoretical spatial resolution of the confocal Raman 

microscope system is ~0.6 µm. Laser power was measured daily at the sample 

before and after measurements to ensure consistent exposure to 35-mW laser 

power. System Raman shift calibration was accomplished using a neon lamp 

and a silicon standard with Renishaw software to account for grating motion. 

The calibration measurements before and after data collection ensured 
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consistency of wavenumber calibration and collection arm throughput. Samples 

were held on a motorized XYZ stage and spectral collection was controlled by 

WiRE 4.2 software (Renishaw PLC). Raman maps were collected from 

identified tissue regions at an acquisition time of 20 s per pixel at 5-μm spatial 

resolution. A total of 127 661 spectra from 18 tissue maps were analyzed. All 

spectra were background subtracted with EMSC and linear baseline 

subtraction.32 

6.3.6 Multivariate analysis 

White light reflectance images of unstained sections were compared 

with the digital bright field images of serial H&E sections to identify sample 

regions that correspond to lamina propria, muscularis mucosa, submucosa, and 

muscularis externae. Regions of interest for each bowel layer were selected and 

average spectra were utilized to identify Raman peaks that differ between layers 

and severity of inflammation. Peak ratios were correlated (Pearson’s |r| > 0.8) 

with indicators of disease severity: colon length; inflammation severity score; 

inflammation severity, depth and extent; architectural distortion and extent. 

Identified peak ratios were then compared across disease groups with one-way 

ANOVA with multiple comparisons tests performed based on Tukey's honestly 

significant difference criterion. Peak ratios were used to recreate image 

projections from the detected spectral data for visualization of maps. 
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6.4 Results 

Clinical indicators of DSS-induced colitis are presented in Figure 6.1. 

Body weights of the 17 mice (control, n=6; DSS 3 days, n=5; DSS 6 days, n=6) 

were measured daily and presented as a percentage of their initial body weight. 

No significant differences in mouse body weight were seen during the acute 

phase of DSS injury (Figure 6.1A). At sacrifice, colons were removed, 

measured, cleaned, and swiss-rolled for further analysis. Colon length is 

presented in Figure 6.1B and displays significant difference between the DSS 

day 6 treatment group and both control and day 3 treatment groups. The 

decrease in colon length is consistent with DSS injury and correlates with DSS 

injury score (Figure 6.1C). The injury scores for 3 days of DSS administration, 

similar to the results from colon length do not display significant differences in 

disease presentation; however, there is marked increase in histologic score at 

peak inflammation for 6 days of DSS administration in agreement with prior 

work.25,26 The histologic scoring, as previously reported and utilized, along with 

the other clinical features of disease serve as the basis of comparison for spectral 

analysis. 
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Figure 6.1. Clinical parameters and histologic scoring of DSS-induced colitis. 

 

Raman imaging was performed on 17 swiss-rolled colon specimens, 10 

of which are used in this analysis (control, n=2; DSS 3 day, n=4; DSS 6 day, 

n=4). For each sample, comparison of digitally imaged H&E slides and bright 

field microscopy images of the unstained serial sections enabled the co-
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localization of Raman mapping with regions of interest indicated by a 

collaborating histopathologist with extensive expertise in DSS-induced colitis. 

Once the region of interest was matched in an unstained slide, a grid-based 

Raman map was initialized to acquire spectra from the tissue surface at high 

spatial (5 μm) and spectral (1 cm-1) resolution. A representative Raman 

spectrum from a control mouse is depicted in Figure 6.2 including tentative 

labels for peaks based on literature. The tissue mapping enables acquisition of 

high SNR spectra (>15) from identified spatial locations of the swiss-rolled 

colon.33 These spectra provide a fingerprint of the biomolecules comprising the 

tissue. Strong bands from amino acids, lipids, proteins, and DNA/RNA bases 

are consistent across colons.  

 

 
Figure 6.2. Representative spectrum from rectum of control mouse with 
tentative peak assignments listed. Assignments are based on reported reference 
libraries.34-36 

 

To investigate the impact of inflammation severity on the Raman 

spectra from the colon, several steps were taken to minimize the influence of 
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potential confounding factors. Previous Raman studies of human colon tissues 

have indicated that inter-anatomical variability from colon segment and bowel 

wall layer can significantly influence acquired data.22,23,37,38 To verify that 

Raman microspectroscopic imaging of mouse colons were also sensitive to 

these inter-anatomical variations, regions of interest from the mucosa (lamina 

propria), submucosa, and muscularis externae were identified in each digital 

image of H&E section with corresponding Raman maps. Figure 6.3 contains 

the average spectra obtained from the regions of each bowel wall layer of a 

control mouse colon. The spectral line shapes differ as a function of bowel layer 

measured, especially in wavenumber regions indicated by vertical gray bands. 

This comparison was performed in control mice to avoid confounding influence 

of disease severity and indicated the need to consider spectral changes in bowel 

layers individually. 

 
Figure 6.3. Mean spectra obtained from Raman maps corresponding to different 
layers of bowel wall in control mice. Gray bands indicate peaks and regions that 
qualitatively differ between layers and justify stratification of analysis. 
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After selection of regions of interest in the Raman maps that correspond 

with mucosal and submucosal bowel layers, correlation analysis was performed 

between Raman peak ratios and clinical and histological indicators of DSS-

induced colitis injury. All separate clinical and histopathological parameters 

highly correlated with duration of DSS administration (|r| > 0.7). Peak ratios 

were individually correlated with each disease metric (DSS duration, colon 

length, histological injury score, and individual parameters (described in 

Assessment of histological injury scores). Peak ratios that correlated with 

disease metrics (|r| > 0.8) were selected for subsequent analysis. The individual 

peaks from the identified ratios are listed in Table 6.1 along with tentative peak 

assignments based on reported library values for Raman active biomolecules. 

Separate comparisons between Raman maps were evaluated: (1) comparison of 

map data acquired from the rectum area of each swiss-roll, and (2) comparison 

of map data acquired from the area of greatest injury in each DSS swiss-roll. 
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Table 6.1. Raman spectral features that significantly correlated with DSS-
induced colitis.34-36 

Raman feature (cm-1) Tentative Peak Assignment 
642 Tyrosine 
670 Fatty acids, Glycoprotein ν(C-S) 
697 Cholesterol 
747 Thymine, Tryptophan 
757 Membrane lipids, Tryptophan  
828 Tyrosine 
854 Serine, Tyrosine 
879 Membrane lipids, Tryptophan 
901 Fatty acids, Proline 
935 Arginine, Collagen ν(C-C) 
958 Fatty acids 
991 Thymine 
1004 Phenylalanine 
1043 Fatty acids 
1063 Arginine, Cholesterol, Fatty acids, Triglycerols 
1099 Cholesterol, Fatty acids, Triglycerols 
1156 β-carotene, Fatty acids, Thymine 
1207 Amide III (β-sheet), Thymine 
1265 Amide III (α-helix) 

Cholesterol, Fatty acids, Triglycerols 
1301 Amide III δ(N-H), ν(N-C) 

Cholesterol, Fatty acids, Membrane lipids, Triglycerols 
1317 Histidine 
1339 δ(C-H), Threonine, Tryptophan 
1421 Adenine, Guanine, Thymine, Tryptophan, Uracil, 

Fatty acids 
1616 Tryptophan 

 

Based on the identified peak ratios that correlate with DSS-induced 

colitis, analysis was performed to investigate what Raman signatures are 

significantly changing with mucosal injury. Significant peak ratios from the 

mucosal and submucosal layers measured in the rectum of each swiss-rolled 

colon are depicted in Figure 6.4 and Table 6.2. In general, ratios with lipid 

signals that are associated primarily with cholesterol, fatty acids, or triglycerols 

(denominators of 747/1043 cm-1, 991/1063 cm-1, 642/1156 cm-1) indicate that 

the concentrations of these lipids decrease in rectal tissues with increasing 

severity of DSS-injury. Membrane lipid signatures (757/828 cm-1, 757/854 cm-
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1) increase while independent of other lipid signatures, although when all lipid 

signatures are present in a ratio, the influences conflict (879/958 cm-1 versus 

757/1043 cm-1). Amino acid peaks are ubiquitous across the ratios that 

significantly vary and indicate complicated fluctuations in the proteomic profile 

of the tissues during the mucosal injury and epithelial recovery process. Of note 

is the decreasing ratio of 757/854 cm-1 which may correlate with decreases in 

serine content in the mucosa, and the increase of 642/1156 cm-1 which may 

indicate that β-carotene content is decreasing relative to amino acids in the 

submucosa. The trends for some Raman peak ratios indicate linear trends with 

increasing severity of disease (Figure 6.4, 879/958 cm-1) while others appear 

more as a binary function between mild or no disease and severe injury.  

 
Figure 6.4. Peak ratios from spectral regions of interest in the mucosal layer of 
maps acquired from the rectum area of the swiss-rolled colon tissue. Significant 
differences were calculated based on the Tukey's criterion for multiple 
correction of one-way ANOVA. 
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Table 6.2. Mean Raman peak ratios significantly correlated with parameters of 
DSS injury. 

Mapped regions in the rectum 

Mucosa 

Peak Ratio (cm-1) Control DSS day 3 DSS day 6 P-value 

747/1043 0.43 0.48 0.51 0.047 

757/828 0.65 0.73 0.75 0.017 

757/854 0.56 0.62 0.65 0.035 

757/1043 0.58 0.60 0.66 0.017 

757/1099 0.51 0.52 0.58 0.008 

879/901 1.06 1.05 1.02 0.011 

879/958 0.96 0.93 0.91 0.040 

879/991 1.06 1.05 0.98 0.009 

991/1063 0.80 0.81 0.89 0.002 

Submucosa 

642/1156 0.29 0.32 0.34 0.008 

697/747 0.50 0.44 0.40 0.023 

757/854 0.43 0.48 0.52 0.003 

Mapped regions of worst mucosal injury 

Mucosa 

Peak Ratio (cm-1)  DSS day 3 DSS day 6 P-value 

670/854  0.20 0.23 0.007 

670/879  0.25 0.28 0.018 

670/935  0.21 0.24 0.006 

828/1004  0.43 0.38 0.014 

901/1004  0.40 0.35 0.005 

935/1004  0.49 0.44 0.003 

1265/1616  2.67 2.62 0.033 

1339/1421  1.70 1.76 <0.001 

Submucosa 

1004/1043  2.13 2.84 0.009 

1156/1207  0.66 0.62 0.024 

1301/1317  0.90 0.88 0.007 

1317/1421  1.64 1.69 0.010 

1339/1421  1.65 1.72 0.009 

Blue = Upregulated, Red = Downregulated 
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Investigating the changes is DSS-induced colitis tissues that have the 

greatest insult are likely to most completely capture the influence of active 

inflammation on Raman spectra. Figure 6.5 displays scores for colon tissue 

maps for some of the peak ratio comparisons listed in Table 6.2. Significant 

changes in peak ratios again indicate that disease severity impacts the 

biomolecular profile that Raman scattering detects. Consistent features that 

correlate with disease severity in the most damaged areas of tissue are related 

to amino acids, carotenoids, DNA/RNA bases, glycoprotiens, and lipids (Table 

6.2). Significant increases are observed in ratios associated with fatty acids, 

glycoproteins (collagen), and certain amino acids like threonine and 

phenylalanine; decreases occur for ratios associated with collagen, carotenoid, 

and histidine signatures. The total change in ratio value between groups is 

minimal, but despite a small sample set, the differences are singificant. The 

changes in amino acid, DNA base, and lipid proiles between different regions 

of the colon tissue further suggest that visualizing peak ratios of interest in a 

two-dimensional format that allows co-localization of histologic features with 

spectral markers of disease severity could be informative. Figure 6.6 depicts the 

comparison of bright field images from H&E and unstained slides with the 

corresponding Raman spectral maps. As a demonstration of this technique, the 

1004/1339 cm-1 ratio is presented, showing the treadeoff of phenylalanine to 

threonine and tryptophan. The increasing disorder of the crypt architecture that 

coincides with increasing mucosal injury is well captured by this map. 
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Furtehrmore, the submucosa can be more readily visualized at severe disease 

relative to control and minimal injury indicating layer specific interactions with 

inflammaiton. 

 
Figure 6.5. Peak ratios from spectral regions of interest in the mucosal layer of 
maps acquired from the swiss-rolled colon tissue area of most severe injury. 
Significant differences were calculated based on a one-way ANOVA. 
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Figure 6.6. Example bright field and Raman images of tissue sections from 
DSS-induced colitis. Top row: Bright field images of H & E stained sections. 
Middle: Bright field images of unstained serial sections on CaF2 slides of 
identified regions. Bottom: Raman image projection of 1004/1339cm-1 peak 
ratio after mapping protocol. Control mouse in A, D and G; DSS Day 3 mouse 
in B, E, and H; DSS Day 6 mouse in C, F, and I. Colors are consistent across 
all panels. 
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6.5 Discussion 

Raman spectroscopy is a biochemically specific technique that has 

potential to aid in the medical management of complex conditions like 

inflammatory bowel disease. Previous work has demonstrated the sensitivity of 

Raman spectra to IBD class for differentiation, and our group has begun to 

investigate potential latent factors that decrease classification performance.23 In 

prior work based on in vivo and ex vivo measurements from patients, numerous 

factors have been outside the control of researchers: the anatomical location of 

disease, the level of disease severity, the duration/chronicity of disease, the 

prior therapeutic or surgical interventions, and the lifestyle or dietary habits of 

study subjects. In this work, we have employed a model of experimental colitis 

that exhibits similarities to the mucosal injury process of ulcerative colitis in 

order to target the impact of inflammation severity on Raman spectra, 

independent of these other latent factors. 

The DSS-induced colitis model for mucosal injury has been 

demonstrated and established by several research groups to investigate mucosal 

injury and potential adjunct therapies for bowel inflammation.25,26,28 The DSS 

concentration utilized in this study is expected to reach peak inflammation 

damage at day 7 of administration. As seen in Figure 6.1, the clinical markers 

of disease and histological scores indicate that DSS administration causes 

dramatic alterations in colon tissues in a time course that can readily be initiated 

and controlled for thorough comparison of injury effects. Measurements of 
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control mice, and mice at days 3 and 6 of DSS injury were selected to represent 

different stages of inflammatory disease, including a baseline for comparison 

with mild and severe acute response and the initial stages of wound healing and 

epithelial recovery.39,40 By inducing different levels of colon epithelial injury, 

we are now able to investigate the impact of disease severity in a controlled 

manner. 

The results presented in Figure 6.2 and Figure 6.3 support previous 

reports of the sensitivity of Raman spectra to subtle changes in tissues. As 

demonstrated by these results, the Raman spectra obtained from the mouse 

colons were highly sensitive to amino acid, lipid, and protein features.34-36 

However, despite the level of control afforded to research by moving from 

human populations to animal models, there is concern that experimental colitis 

models do not completely recapitulate the human IBD process. By comparing 

the results reported by Bielecki et al. who performed similar Raman spectral 

mapping of human IBD tissues towards disease discrimination, the spectral 

shapes from mouse colons presented in Figure 6.2 and Figure 6.3 are nearly 

identical to those obtained from human colon sections.22 Furthermore, in the 

previous analysis, the authors indicated the influence bowel layer specific 

signals and used multivariate statistical algorithms to isolate only one layer for 

comparison. While the approach utilized herein is simpler, the results in Figure 

6.3 indicate the importance of making comparisons between consistent layers 

of tissue when using Raman microspectroscopy. 
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When comparing Raman spectra from mucosa and submucosa tissues 

across the levels of DSS administration, several peak ratios were found to 

strongly correlate with colitis. Presented in Table 6.2, only features that were 

strongly correlated with inflammatory severity (|r| > 0.8) were considered for 

further analysis. This threshold was selected due to the high-dimensionality of 

the Raman data from the mapping procedure (each spectrum has over 1000 

variables) and the high correspondence between parameters of experimental 

colitis (|r| > 0.7). A few peak ratios that significantly differ between regions of 

the mucosa and submucosa in the rectum are presented in Figure 6.4 and Figure 

6.5. Numerous biomolecules contribute to the differences between disease 

severities (Table 6.2). The contribution of lipid signatures present interesting 

trends. In these samples, there are increases in cholesterol, fatty acid, and 

triglycerol signals with increasing disease severity. The increase in lipid 

constituents may be the result of prostaglandin production. Prostaglandins are 

fatty acid based molecules that are upregulated at the onset of an inflammatory 

response prior to leukocyte recruitment.41 Other biomolecules, such as arginine 

have demonstrated decreases in concentration with immune response. Arginine 

is a semi-essential amino acid that in important for protein synthesis. Oxidative 

stress can deplete arginine in the body and supplementation of this amino acid 

in the diet of DSS colitis mice improves responses to injury and 

inflammation.25,31,42 In agreement with these reports, arginine signals decrease 

as inflammation worsens in the spectra obtained from colon sections. A similar 
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trend is apparent for β-carotene, which acts as an antioxidant scavenger of free 

radicals associated with oxidative stress pathways, such as those activated 

during inflammation.43,44 

Similar to the results depicted in the rectum, for spectra acquired from 

tissues with the most severe presentation of inflammation and mucosal injury, 

numerous biomolecular components demonstrate significant differences with 

disease. Again, consistent increases are demonstrated for fatty acid content that 

likely correlates with prostaglandin upregulation. Also, β-carotene and histidine 

are significantly decreased in colon tissues with higher levels of inflammation. 

Histidine is an efficient scavenger of both hydroxyl radicals and singlet oxygen 

species and has been shown to inhibit oxidative stress and secretion of cytokines 

including interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-α).45 Both 

IL-8 and TNF-α are dysregulated in the immune response of intestinal 

epithelium associated with IBD. The depletion of histidine in the colon tissue 

is likely the result of increased reactive oxygen species in the colon tissue 

during inflammatory response. 

A few of the features implicated in these significant peak ratios 

demonstrate conflicting signatures. Serine/threonine are strongly correlated 

with the Raf family of kinases that are essential for the activation of tissue 

protective nuclear factor (NF)-κB pathway in colon epithelium.46 In the ratios 

identified, serine content in the rectum appears to decrease with severity as 

expected while in the areas of worst disease, threonine content increases. 
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Conversely, in human UC and DSS colitis alike, mucus secreting Goblet cells 

that usually reside in the mucosa become depleted. The resulting decrease in 

mucin production with disease would likely cause decreases in serine and 

threonine which comprise nearly half of a large central region of the mature 

mucin glycoprotein structure.47 The conflicting signatures for these amino acids 

are also demonstrated for collagen signatures. Amide III complexes and 

collagen peak ratios identified in this analysis generally decrease with disease 

severity. This is counterintuitive with respect to the formation of granulation 

tissue in epithelial would healing. As part of the mucosal healing process, a 

dense population of macrophages, fibroblasts, and neovasculature is embedded 

in a loose collagen, fibronectin, and hyaluronic acid matrix known as 

granulation tissue. As this tissue is predominated by types I and III collagen, 

these features are expected to increase with disease severity based on the 

acquired Raman spectra.39,40,42 However, as this is an acute model of disease, 

granulation tissue formation may still be in an early stage. Potential 

investigation of these granulation tissue changes may be more evident in a 

cyclic DSS-injury and recovery model as previously reported.25,26,28 

Similar to other microscopic techniques that enable the projection of 

hyperspectral information onto an image (like overlaying multiple images from 

immunohistochemical staining), Raman peaks and ratios from mapping can be 

converted into images. Figure 6.6 demonstrates the relationship of images 

acquired in this study for bright field imaging of the H&E and unstained tissues 
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with Raman map data. The ratiometric presentation of Raman data here 

represents only two data points per image pixel; over 1000 such wavenumbers 

exist for each image pixel and indicate the need for more complex analysis 

techniques. Potential avenues for combining this high-dimensional data include 

principal component analysis, vertex component analysis, or k-means 

clustering.32 While such steps are currently beyond the scope of this preliminary 

study, further investigations of the complex interactions of subtle Raman 

features may be possible. Despite the algorithmically simple analysis performed 

here, the Raman map images displayed in Figure 6.6 reveal that phenylalanine 

to DNA and lipid features recapitulate the crypt architecture from H & E 

staining. Furthermore, the relative intensity of this ratio is maintained in the 

mucosa of these samples as disease severity increases, again likely correlated 

with consistent metabolism of both phenylalanine, tryptophan, and threonine 

with increase disease. However, the expansion and appearance of submucosal 

layers becomes more appreciable as colitis injury occurs. This Raman imaging 

analysis and the significant biochemical changes that occur in the submucosa 

as a function of inflammatory disease may help to elucidate the underlying 

changes that occur in the bowel wall’s potential space that is not significant 

prior to disease onset. 

Some limitations exist for this study that require further attention in 

moving forward. Some features identified in the correlation analysis appear to 

have binary responses to disease, while others are more linear relative to 
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severity. A potential explanation is that for features that do not exhibit a 

gradient with disease, the tissue changes are too subtle to be detected by Raman 

scattering at the mild inflammation present with 3 days of DSS administration 

while other features are significantly different between day 3 and control 

specimens. Further including Raman mapping data from the remaining 7 mouse 

colons, will increase the statistical power for these analysis and aid inferences 

between group differences. A final challenge in this analysis is that several of 

the features of interest demonstrate correlations with numerous biomolecules 

of interest, potentially adding to the conflicting signatures indicated for amino 

acids and collagen. Building a descriptive model of inflammation based on 

Raman spectral measurements of pure components would be both cumbersome 

and likely ineffective based on these feature correlations. It is likely that to 

isolate the exact influence of competing biomolecules, alternate strategies 

including imaging mass spectrometry or proteomic analysis are necessary 

complementary techniques to fully evaluate the complex processes occurring 

within these tissues. 

 

6.6 Conclusion 

The results presented in this study show that Raman spectroscopy is 

sensitive to subtle biochemical changes that coincide with the severity of acute 

inflammation in the colon. In detail, 18 Raman maps of mouse colon tissues 



232 
 

from 10 control and DSS-induced colitis animals were generated and evaluated 

relative to clinical and histopathological parameters of disease severity. Raman 

peak ratios that significantly differ between treatment groups were isolated for 

mucosal and submucosal layers of the tissues and linked with biologically 

relevant contributors in colon tissue and mucosal injury of inflammatory 

disease, including lipid, carotenoid, amino acid, and collagen related features. 

Furthermore, Raman peak ratios were found that depicted significant 

differences between control and DSS administration for 3 days, time points that 

did not demonstrate significant differences based on traditional DSS disease 

metrics. Contrary to the arguments that this experimental colitis model does not 

recapitulate human IBD, the spectra presented here from mouse colon tissues 

were consistent with previously reported human tissue biopsies for IBD 

patients. This work demonstrates the influence of active inflammation on 

Raman spectra acquired from the colon and the potential for objective staging 

of inflammatory disease severity based on Raman spectroscopy. 
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CHAPTER 7 

 

CONCLUSIONS 

 

7.1 Summary and integration 

This dissertation represents the ongoing development of Raman 

spectroscopy for detecting changes in the colon associated with inflammatory 

bowel disease. Despite the continued advances by the medical community for 

managing IBD, a universally definitive gold standard for differential diagnosis 

is elusive.1 This project has demonstrated the potential for a new diagnostic 

method to accurately differentiate Crohn’s disease and ulcerative colitis, 

regardless of patient differences. With continued development, the resulting 

tool may provide doctors with another indicator of a patient’s disease in a matter 

of seconds during standard colonoscopy procedures. Furthermore, this tool has 

demonstrated feasibility for objective scoring of disease severity, with the 

potential to aid in evaluating relative therapeutic response. These advancements 

could significantly improve the management of inflammatory bowel disease 

with respect to both time and cost. 

The first part of this work established a platform for evaluating fiber 

optic Raman spectroscopy probe designs in regards to specific applications for 

translational medicine. These probes are the primary tool used to interface with 
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patients and tissue samples, yet have largely been designed based on theoretical 

performance in non-scattering situations that do not represent most biomedical 

applications. The modeling and experimental validation results indicate the 

improved superficial performance of probe designs with maximized overlap for 

excitation and collection cones at the sample surface. Conversely, the probe 

design to interrogate deep signal sources becomes less important depending 

upon the optical properties of the sample of interest. These findings suggest that 

probe designs should be selected in the context of the specific optical properties 

of the target application rather than informed only by the theoretical depth 

interrogated. 

The second segment of work reported here utilized an optimized fiber 

optic Raman spectroscopy probe for the first in vivo study applied to IBD during 

colonoscopy. Preliminary discrimination performance was poor, but upon 

subsequent investigations accounting for the impact of the disease process and 

other patient variables, classification based on measured Raman spectra was 

improved to rates as high as 90% sensitivity and 75% specificity. This 

demonstration of the success of Raman techniques for detection of IBD in a 

diverse, relevant clinical population establishes the potential for Raman 

spectroscopy as a clinical adjunct in objective disease discrimination and 

staging of disease severity. 

The final pair of investigations comprised in this dissertation work 

investigated the influence of patient and disease variables from excised human 
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tissues and the influence of disease severity in a controlled animal model of 

experimental colitis. These studies underscored the influence of disease 

severity, patient variables, and colon segments on the measured Raman spectra 

and provided support for implementing stratified classification schemes 

incorporating these factors. 

Current protocols for clinical discrimination of IBD cannot provide 

definitive information for every patient and underline the need for further 

development of adjunct technologies.1,2 Previous work in the field of 

biophotonics has demonstrated the potential of Raman spectroscopy techniques 

for differentiating IBD types.3,4 This work, applied to ex vivo tissue biopsy 

samples, merited extension to a clinical population with measurements 

performed during colonoscopy procedures.  

The preliminary studies, referenced in Chapter 2 laid the foundation for 

work presented in this dissertation. Work spanning the past two decades 

demonstrate the technological and application developments for Raman 

spectroscopy for clinical and translational medicine.5 The studies we conducted 

in this dissertation evaluated the fiber optic probe technology used for data 

collection from colon mucosal tissues during colonoscopy, measured a patient 

population with IBD for discrimination, and investigated ex vivo and 

experimental colitis tissues to understand the contributions of disease and 

patient variables on measured spectral data. The previous reports applying 

Raman spectroscopy for IBD achieved promising classification performance 
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based on small sample sizes of ex vivo tissues and multivariate classification 

algorithms.3,4 However, studies utilizing Raman spectroscopy for the colon and 

other tissue in vivo demonstrated potential confounding factors that were not 

investigated in the initial IBD studies.6-9 A major challenge for translationing 

applications of biophotonics to clinical medicine is extending of findings from 

a controlled and often simplified ex vivo model of pathology to the native 

presentation of disease in the body. With this transition to in vivo studies, care 

mus be taken to consider alterantive sources of signals that were previously 

controlled. This PhD dissertation has sought to not only implement Raman 

spectroscopy in vivo for IBD detection but also to characterize the sources of 

confounding signals and develop a tool that is broadly applicable to clinical 

colonoscopy prodecures. This challenge required that this tool work not only in 

a controlled laboratory setting but in a clinical setting without ideal conditions. 

To enable this translation, care was required to thoroughly characterize 

equipment, diease, and physiological variations to identify the features relevant 

to disase presentation. 

The first step of this PhD dissertation, as presented in Chapter 3, 

addresses Aim 1 and the evaluation of fiber optic probe designs utilized for in 

vivo Raman spectroscopy studies. As the target application for this dissertation 

required integration of Raman instrumentation with standard colonoscopy 

systems and the disease processes for these inflammatory disease differed from 

many prior clinical applications, a thorough evaluation of the tools utilized for 
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data collection was necessary. To this end, a probabilistic model was developed 

and experimentally validated with biological tissue phantoms. The model 

reported here is novel as it explicitly incorporates multiple distinct and 

independent optical phenomena all of which are simultaneously detected during 

Raman spectroscopic measurements. By evaluating the performance of Raman 

probes for detecting Raman signals with respect to the competing light-tissue 

interactions for biologically relevant optical properties, more realistic 

estimation of in vivo performance may be obtained. This work highlights the 

importance of proper selection of fiber optic probe designs for interfacing with 

tissue targets based on the intended biomedical application. The developed 

model also has the potential to improve the way fiber optic probes are tailored 

for biomedical applications by providing a platform for assessment that is 

relevant to most fiber optic probe based detection modalities. Considering the 

superficial disease target and reported tissue properties, this work supported the 

selection of a micro lens probe design for undertaking in vivo investigation of 

clinical IBD. 

In Chapter 4, a clinical Raman spectroscopy system with a superficially 

focused probe design was implemented to address Aim 2. By recruiting a 

sample population of IBD and control patients undergoing surveillance 

colonoscopy procedures at the Vanderbilt University Medical Center (VUMC), 

we were able to demonstrate in vivo Raman spectroscopy the potential for 

disease discrimination. Initially, the heterogeneity of disease presentation 
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proved challenging for differentiation of spectral signatures based multivariate 

statistical analysis, achieving 62-83% sensitivity and 22-55% specificity for 

separating Crohn’s disease and ulcerative colitis. This performance, while 

providing an early benchmark for in vivo detection, is not as promising as the 

previous ex vivo studies of IBD samples. However, by integrating patient and 

disease variables into the classification algorithm, improved performance was 

attained, reaching values as high as 90% sensitivity and 75% specificity. This 

improvement in disease discrimination indicated promise for in vivo Raman 

techniques for IBD applications. Unlike in the previous reports where small, ex 

vivo samples were utilized and controlled for measurement locations and tissue 

condition, this in vivo assessment provides a more realistic indication of the 

performance of Raman spectroscopy as a clinical tool. These results also 

confirmed prior reports of the potential influence of patient and disease 

variables on classification performance. Due to the lack of control over patient 

tissues and limited access to patients during colonoscopy procedures, it was not 

feasible to assess most patient variables from the data obtained during 

endoscopy. The questions of which factors were most influential on Raman 

spectra of colitis required ex vivo human and animal tissues for more thorough 

investigation and control. 

To evaluate variables that impact IBD differentiation based on in vivo 

Raman spectroscopy tissue measurements, the research reported in Chapter 5 

and Chapter 6 was conducted. For this part of the research, different methods 
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of evaluating colon tissues relating to IBD were investigate to characterize the 

influence of patient and disease variables. The first of these studies utilized 

tissue specimens from patients recruited at VUMC scheduled to undergo partial 

or total resection of the colon in relation to inflammatory diseases. Exploring 

the interplay of the anatomical position in the colon from which a measurement 

was made and the histological markers of inflammatory disease, Chapter 5 

demonstrated that several patient and disease variables significantly impact 

Raman spectra. To decouple these effects, generalized linear models were 

implemented to model Raman peak ratios as a function of patient and 

histological disease scores. Generalized estimating equations were utilized to 

group measurements from a single specimen to account for complex 

correlations within the dataset. Patient BMI and IBD type significantly 

impacted Raman spectra acquired while patient age was a non-significant 

parameter. Colon segment, chronic disease, and acute inflammation were all 

significant factors predictive of Raman peak ratios confirming the importance 

of these variables reported in Chapter 4. Other factors of chronic and acute IBD 

that had not been previously explored with Raman techniques were identified 

based on histopathological evaluation and may provide further avenues for 

investigation. 

While the work reported in Chapter 5 took steps to control for several 

patient (age, BMI, colon segment) and disease variables (active & chronic 

inflammation, lymphoid hyperplasia, submucosal fat deposition) while 
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investigating IBD presentation, measurements from a patient population are 

often rife with latent variables. To avoid unintended influence of patient 

variables such as the gender, diet, smoking status, duration of disease, and prior 

surgical and therapeutic interventions, Chapter 6 reports work that utilized a 

well characterized mouse model of experimental colitis. In this model, chemical 

induction of mucosal injury enables a graded response of disease severity that 

can be controlled on a relatively short time scale and has established metrics for 

scoring independent parameters of inflammation and damage.10-12 Utilizing 

high-resolution Raman microspectroscopy of mouse colon tissue after mucosal 

injury, spectral maps of tissue were acquired that provide spatial context to the 

biochemical changes that occur as a function of disease severity. The results of 

this pilot evaluation of DSS-induced experimental colitis reveal several Raman 

features that are highly correlated with clinical and histological scores of 

disease severity. Furthermore, specific Raman peak ratios could be tied to 

biological processes associated with inflammation, oxidative stress, epithelial 

recovery, and wound healing.13-15 A concern for utilizing animal models to 

study human disease stems from the uncertainty regarding the extent to which 

mouse models are representative of the human disease process for IBD. The 

Raman spectra obtained from this model of mucosal injury in mice were nearly 

perfect replicates of spectra collected from ex vivo human biopsy tissues from 

IBD patients previously reported in literature.4 From this finding, we can assert 

that the DSS-induced colitis model in mice is relevant for human UC in multiple 
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aspects including clinical presentation of symptoms, histological features of 

disease presentation, and biomolecular composition of control and diseased 

tissues. The results of this study further indicate the sensitivity of Raman 

scattering to subtle biochemical changes associated with acute inflammatory 

processes and the need to account for disease severity in discrimination of IBD 

type. 

In Appendix I, results from an in vivo assessment of numerous sources 

of variability that influence Raman spectra are reported. While the 

demonstration for some of these variables is conducted in skin due to the ease 

of access, the impacts of users, instruments, and the inherent physiological 

changes present across an organ are all support our findings relevant to the in 

vivo application of Raman spectroscopy during colonoscopy for IBD. The 

Raman data reported herein relates that physiologically induced variability is 

highly influential relative to other sources when instruments are properly 

designed and calibrated and the users of those instruments are adequately 

trained. These results have clear and significant implications for the future 

application of Raman spectroscopic tools with respect to clinical and 

translational medicine, extending far beyond the specific applications presented 

as part of this dissertation. 

A number of significant challenges were overcome during the course of 

this PhD. While our group had conducted a number of other in vivo studies 

utilizing Raman spectroscopy, none had previously been integrated with 
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endoscopic procedures prior to this work. Based on demonstrations of 

endoscope compatible probe designs from other research groups and the 

physical constraints of the instruments used by our clinical collaborators, new 

endoscope compatible instrument designs and data collection and processing 

software were created and implemented for real-time feedback for in vivo 

evaluation of IBD during brief colonoscopy procedures. However while the 

fiber optic probes utilized for Raman studies are made with materials and 

methods that allow for clinical implementation, they are not rugged and durable 

devices. Over the course of the patients recruited during this dissertation, five 

separate Raman probes of identical design were utilized for data collection, four 

of which were broken during clinical measurement or disinfection. As alluded 

to in Chapter 2, strict calibration procedures are not standardized across the 

global Raman spectroscopy community at large and inter-device calibration is 

an ongoing challenge. To that end, nearly 70% of the patients recruited for this 

work have not been included in the analysis, yet stand as a potential independent 

validation set pending further developments in the field for instrument 

comparison. Another obstacle in this work is the challenge of controlling 

disease presentation for a human population. A broad range of patient 

backgrounds, BMIs, ages, disease durations, and prior therapeutic interventions 

are represented in the data reported, most of which could not be controlled in 

the analyses. Despite this latent and potentially confounding factors for in vivo 

investigation, the performance of disease classification was improved by 
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accounting for disease and patient variables. By more thorough investigation of 

influential factors that impact in vivo Raman spectra from colon tissues, such 

as both those listed above and those considered in Chapter 5 and Chapter 6, we 

can develop a comprehensive understanding of the variables that must be 

integrated into the prediction algorithms to further improve IBD discrimination. 

 

7.2 Recommendations 

Based on the conclusions from the work presented here, there are a 

number of recommendations for immediate research avenues as well as long-

term studies. With the multimodal Monte Carlo model for evaluating 

fluorescence and Raman scattering for differing fiber optic probe designs, the 

immediate need is to implement the code in a parallelized and efficient 

language, such as C++. The results from this improvement would enable the 

use of significantly higher numbers of photons in models for more powerful 

conclusions. This combined model has the potential to facilitate further 

investigation of optimized probe designs for specific applications relevant to 

translational medicine for any instrument based on fiber optic detection, 

including spectroscopic techniques for Raman scattering, fluorescence, elastic 

scattering, and diffuse reflectance. A direct next step would be to systematically 

evaluate the impact of reduced scattering coefficient on detected signals for 

Raman fiber optic probe designs. The results from investigation would have 
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direct implications for the entire field of Raman spectroscopy for clinical 

applications. As a majority of the probe designs utilized for detection have not 

been optimized in reference to specific tissue optical properties, this model 

based evaluation could improve the designs of instruments utilized for 

applications in almost every human tissue or disease target.  

The in vivo investigation of Raman spectroscopy for discrimination of 

IBD type should be expanded to include a larger patient population and perform 

independent validation of the results reported here. To this end, a primary need 

is to establish methods for instrument standardization that is capable of 

accounting for fiber optic probe specific signals as a result of fabrication. By 

improving the procedures and algorithms for inter-instrument standardization, 

it would be possible to conduct multi-center trials and combine data collected 

by multiple independent groups for maximized statistical power. The obstacle 

of correcting for fiber optic probe dependent responses is the direct limitation 

to utilizing the total combined dataset for analysis and evaluation the 

performance of Raman spectroscopy for IBD discrimination. A directed 

investigation utilizing multiple probes fabricated from the same batch of 

materials and utilized to collect spectra from identical standard and biological 

tissue samples is a necessary step to establish the between instrument 

standardization needed. This obstacle remains a challenge facing the entire field 

of Raman spectroscopy for clinical biomedical applications, and merits 

concerted effort. 
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As this work represents the first in vivo study utilizing Raman 

spectroscopy for IBD applications, there is a direct need to independently 

substantiate the results presented here. Further studies, ideally conducted in 

clinical IBD populations of different regions or demographics, are needed to 

demonstrate that the performance reported for discrimination extends to a larger 

patient population. Furthermore, as the classification performance for IBD 

discrimination improved based on the stratification of measurements by disease 

and measurement location, a larger more robust dataset is essential to establish 

realistic estimates of the prediction performance after incorporating the 

appropriate factors. A powered study with a complete block design for age 

matched patients with consistent prior therapies would provide a controlled 

comparison of the performance while minimizing the influence of some 

previously uncontrolled factors. 

A limit to the practical adoption of Raman spectroscopy for IBD 

differentiation is the requirement for endoscopic evaluation. Based on the 

differences between the common disease presentations of ulcerative colitis and 

Crohn’s disease, an interesting approach would be to utilize only measurements 

obtained from the rectum to investigate minimally-invasive disease 

discrimination. While sigmoidoscopy procedures are less commonly performed 

for clinical IBD evaluation, successful demonstration of this evaluation may 

reduce the need for colonoscopy procedures with anesthesia and the associated 

preparation protocols, benefitting both patients and medical providers. 
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Another interesting, if long term, investigation is the extension of 

Raman spectroscopy for disease discrimination in the patient population of 

greatest need: indeterminate colitis or IBD unspecified. A longitudinal study of 

IC patients to evaluate disease classification based on Raman spectra relative to 

eventual differential diagnosis would demonstrate the potential value of this 

clinically relevant optical technique as an adjunct for IBD evaluation during 

colonoscopy. A primary difficulty in such a study is the unknown timeline 

associated with the determination of a differential diagnosis; as such, this study 

may require a set time frame for recruitment and evaluation prior to analysis 

and subsequent follow-up. By investigating the biochemical signatures of this 

challenging disease entity, the potential for disease discrimination and 

assessment by Raman spectroscopy may prove to be of greater utility to 

clinicians. A similarly informative investigation, utilizing this technique to 

objectively score active inflammation prior to and at a set time point after 

initiating a new therapeutic intervention, such as anti-TNF-α medication, would 

provide another indicator of the value of Raman techniques for IBD evaluation. 

Based on the in vivo study that showed sensitivity to the severity of active 

inflammation, and the confirming data from the ex vivo studies of sources of 

influential variation, Raman scattering may provide a valuable tool for unbiased 

characterization of disease severity. By investigating the sensitivity of Raman 

scattering relative to outcome based interventions for therapeutic response, this 

tool could aid in the clinical care of IBD patients. 
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Finally, with respect to the studies characterizing the impact of patient 

and disease variables on Raman spectra of inflammatory disease, there are a 

number other studies that should be pursued. One investigation should target 

true control colon specimens for anatomical heterogeneity and spatial 

variability. As healthy colon tissue is not generally removed from the body, 

these investigations may be best performed with cadaver tissues that are truly 

independent of inflammatory disease effects. A promising continuation of the 

studies of experimental colitis would be to correlate the acquired Raman 

signatures obtained from mouse colon tissues with proteomic analysis of the 

frozen colon collected as part of the protocol for tissue removal. This study 

could further establish the sensitivity of confocal Raman mapping to 

biochemical changes associated with inflammatory disease presentation. 

Exploring the Raman profiles of colon tissues from mice after the 

administration of supplements that inhibit inflammation, such as L-arginine, 

may provide interesting insights into the biomolecular changes that are 

employed for tissue protection and broaden our understanding of anti-

inflammatory pathways. The final suggestion for integrating the disease 

characterization studies would be to compare human and experimental colitis 

specimens under the same conditions for clinical, histological, and spectral 

similarities. Such a study, combining the information content obtained from 

patient samples and the controlled model of mucosal injury would confirm the 

appropriateness of this experimental colitis model for studying the human 
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disease process and enable stronger conclusions to be made from experimental 

investigations about the potential application to patients. 

 

7.3 Contributions to the field and societal impact 

The work detailed in this dissertation comprises contributions to the 

field of biophotonics and gastroenterology, but more broadly to the clinical 

translation of optical technologies for unmet medical needs. To that end, 

combined data collection and real-time processing software was written for 

clinical implementation. The in vivo study performed here is the first report of 

colonoscopy coupled Raman spectroscopy in patients for IBD. Furthermore, 

while Raman scattering techniques have often been applied to cancer 

applications, this work is, to our knowledge, the first set of Raman spectroscopy 

studies focused on differentiating the biochemical changes that occur between 

two inflammatory processes in vivo. This demonstration of the potential of 

vibrational spectroscopy represents a new area of research for biophotonics 

with numerous research targets for clinical medicine such as Eosinophilic 

esophagitis or gastroesophageal reflux disorder. 

The probabilistic Monte Carlo model reported in this dissertation 

represents a novel combination of models for the competing optical phenomena 

that are detected during probe based Raman spectroscopy measurements. Based 

on the model predictions and experimental validation that enable direct 
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comparison of multiple probe designs, these results demonstrate the 

fundamental need for instrument designs based on tissue applications with 

respect to the optical properties of the targets. Subsequent investigations may 

reveal optimized instrument designs and clarify the tissues and optical 

properties for which certain probe designs are of greatest benefit.  

The development of data collection and processing algorithms for 

clinical implementation and the design of the instrumentation to meet the 

constraints for integration in a clinical workflow mark essential developments 

that are paramount for the translation of Raman spectroscopy, and other fiber 

optic probe based optical techniques, to clinical use. By combining the 

optimized instrumentation and algorithms developed, real-time data collection, 

processing, and multivariate analysis can be performed such that immediate 

feedback is available without disrupting clinical workflow. This work has also 

extensively characterized the biochemical changes that occur in in vivo, ex vivo, 

and animal model tissues as a function of inflammatory disease. These 

combined evaluations of variability sources associated with IBD represent the 

most extensive investigations of colon heterogeneity for clinical deployment of 

Raman spectroscopic techniques. 
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APPENDIX 1  

 

ASSESSING VARIABILITY OF IN VIVO TISSUE RAMAN SPECTRA 

 

A1.1 Abstract 

Raman spectroscopy (RS) has received increasing attention as a 

potential tool for clinical diagnostics. However, the unknown comparability of 

multiple tissue RS systems remains a major issue for technique standardization 

and future multi-system trials. In this study, we evaluated potential factors 

affecting data collection and interpretation utilizing the skin as an example 

tissue. The effects of contact pressure and probe angle were characterized as 

potential user-induced variability sources. Similarly, instrumentation-induced 

variability sources of system stability and system-dependent response were also 

analyzed on skin and a non-volatile biological tissue analog. Physiologically-

induced variations were studied on multiple tissue locations and patients. The 

effect of variability sources on spectral line shape and dispersion was analyzed 

using analysis of variance methods and a new metric for comparing spectral 

dispersion was defined. In this study, in vivo measurements were made on 

multiple sites of skin from five healthy volunteers with four stand-alone fiber 

optic probe-based tissue RS systems. System stability and controlled user-

induced variables had no effects on obtained spectra. By contrast, 
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instrumentation and anatomical-location of measurement were significant 

sources of variability. These findings establish the comparability of tissue 

Raman spectra obtained by unique systems. Furthermore, we suggest steps for 

further procedural and instrumentation standardization prior to broad clinical 

applications of the technique.  

 

A1.2 Introduction 

Numerous research groups have capitalized on the sensitivity of Raman 

spectroscopy (RS) to subtle changes in biochemistry to study tissues in vivo 

without exogenous dyes, contrast agents, or extensive sample preparation. 

Raman scattering has been utilized for decades to identify substances, detect 

changes in chemical bonding, and monitor the quality of chemicals by probing 

inherent vibrational modes. Publications using RS to study disease markers 

associated with several organs are available, including the cervix,1-4 bladder and 

prostate,5 lung,6 skin,7-12 bone,13, 14 breast,15, 16 and GI tract.17-20 Providing 

information regarding healthy tissues, disease progression, and the effects of 

treatment, RS has been noted as a potential tool for medical screening, 

diagnosis, and guidance. Due to the underlying weak optical phenomenon, the 

technology for in vivo measurement has only become available in the last 2 

decades with NIR sources and detectors to minimize competing 

autofluorescence signals and avoid tissue scattering and absorption peaks. A 

typical tissue RS system consists of an NIR excitation source, fiber optic probe 
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to interrogate the tissue and collect the scattered photons, a high-throughput 

spectrograph, and a NIR-optimized, back-illuminated, deep-depletion charge 

coupled device (CCD) detector.21 Several excitation wavelengths have been 

investigated, including 785 and 830nm, but reports suggest tissue-dependent 

responses and indicate advantages for using 785nm for epithelial applications.22 

In general for in vivo implementation, the parameters for generating Raman 

signal are optimized to provide the best SNR in a short measurement time with 

minimal laser power. Since the initial reports of human tissue spectra in 1992,23 

technological development and technique refinement have enabled in vivo 

Raman measurements. Spectra can now be collected, corrected for undesirable 

signal components, and processed to rapidly provide feedback for users.12, 24, 25 

Previous work has identified criteria required for adopting a novel biomedical 

diagnostic technique, which is a primary goal for many tissue spectroscopists.26 

In medical applications, many of these requirements are satisfied by RS for in 

vivo use: sensitivity to changes in tissue, application to in vivo studies, and 

novelty of information obtained non-invasively.27 However, standard Raman 

spectral databases are not available for tissue, limiting RS’s role in influencing 

clinical decisions and patient prognoses. Both research lab and private industry 

studies using RS to diagnose disease or understand tissue are becoming more 

common, but the RS community lacks standardization and a thorough 

understanding of the comparability of measurements made across multiple 

systems, tissue locations, and collection times. 
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Epithelial tissues such as the cervix, skin, oral mucosa, esophagus, and 

GI tract have been common targets of study with RS. Because of several 

characteristics, including ease of access, the skin is a convenient organ for 

conducting the necessary standardization studies. Skin is a complex and turbid 

tissue, with a layered structure, multiple functions, and inhomogeneous 

composition that can vary widely between patients and among various locations 

on a single patient. Thus, as a challenging organ, standardization findings 

should translate to other tissues. Beyond studying the tissue itself, the skin also 

acts as a good model for other epithelial tissues that are common targets for 

optical detection. Most importantly, all sources of potential variability 

identified for the skin are generalizable to other tissues as well. 

Several research groups have reported using RS for a variety of 

applications including the detection of subtle changes in the skin related to 

wound healing,28 disease progression10, 29, natural moisturizing factor levels30, 

protective antioxidants such as carotenoids β-carotene and lycopene,8, 31 and 

cosmetics.32 The non-destructive nature of RS is ideal as an analytical or clinical 

tool for non-invasively monitoring the skin for changes associated with 

damage, disease, or treatment. Several groups have demonstrated the feasibility 

of using RS to differentiate between skin malignancies and healthy tissues in 

vitro.11, 12, 33 These studies also showed that different spectra correlate with 

specific skin disease types. Tissue components and structural conformations for 

several biomolecules related to skin function, including proteins, lipids, and 
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carotenoids, have been determined based on Raman vibrations. These results 

have yielded new information about skin aging and structural properties that 

may differentiate disease types from normal tissues.8, 9, 31 Furthermore, the 

healing of acute and chronic skin wounds has been monitored non-invasively 

with RS to provide new information on the biochemistry and progression of this 

complex process.28, 34, 35 Benign conditions like psoriasis and atopic dermatitis, 

hydration differences, and the effect of topical treatments have also been 

studied using RS.29, 30, 36-38 

Before RS can be effectively applied to a clinical problem, technique 

standardization is necessary to account for confounding sources of variability. 

Current reports suggest that RS can be translated into the clinical setting with 

portable systems and fiber optic probes. However, as a clinical tool, RS 

measurements must be repeatable and free of confounding factors introduced 

by the system operator. With the probe-tissue interface of these systems, both 

contact pressure and probe angle can change, so the effects of user-induced 

variability must be understood and controlled. Other research groups have 

reported the effects of probe contact pressure on measurements of diffuse 

optical spectroscopy and fluorescence spectroscopy in soft tissues.39-42 Shim et 

al. reported no specific major spectral artifacts from contact pressure and probe 

angle on in vivo RS measurements during clinical gastrointestinal endoscopy.20 

To ensure that user perception of contact pressure and probe angle will not 
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confound spectral measurements of tissue, the effect of each user-induced 

variability source will be isolated in this study.  

Recent studies have demonstrated the effectiveness of RS for in vivo 

detection.10 To our knowledge, previous reports include measurements made 

with a single instrument, thereby eliminating factors of instrumentation-

induced variability.  When limited to one instrument, however, multi-system 

studies or simultaneous data collection from multiple patients are impractical. 

Unlike other established medical tools, RS lacks standardized methods for 

system calibration, measurement, processing, data analysis, and reporting. 

Many Raman systems used in research are assembled from several vendors’ 

components, and while core components remain the same, system response may 

vary. Even for multi-system studies where investigators will likely have 

identical or nearly-identical instruments at each collection site, there are 

currently no reports indicating how measurements from the instruments would 

compare for tissue spectroscopy applications. Reports on inter-device 

comparison and cross-validation studies of multiple medical instruments are 

available for other optical techniques such as confocal spectral imaging, dual 

energy x-ray absorptiometry, functional magnetic resonance imaging, and 

fluorescence spectroscopy.43-47 The only report using RS, by Rodriguez et al. 

addresses chemical analysis.48 The consistency of pharmaceutical spectra 

measured across multiple devices suggests that reliable spectral libraries can be 

generated from Raman spectra of homogeneous samples. Measurements of 
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tissues, like the skin, pose more rigorous challenges for cross-validation, as the 

tissue characteristics may vary between location and time of measurement. If 

system variation is accounted for, RS offers diagnostic potential because it can 

discriminate between subtle changes in normal, benign, and malignant tissues. 

Using multiple RS systems during data collection will likely add instrument-

dependent variables. If these variables are ignored, changes in the data may be 

incorrectly attributed to the samples measured and limit diagnostic accuracy. 

The resulting potential decrease in sensitivity and specificity indicate the need 

for standardizing RS systems, regardless of the application. This manuscript is 

concerned with parameters that most likely affect the signals obtained during 

data collection once the study and research instrument have been developed. To 

evaluate the influence of utilizing multiple systems on the comparability of 

Raman spectra, system stability and measurement repeatability will be 

validated and the effects of instrumentation-induced variability sources will be 

isolated. 

For tissue, physiological variations may exist due to age, gender, race, 

measurement location, tissue type, thickness, and hydration. Any of these 

patient variables could be used to distinguish or characterize measurements. 

Previous in vivo Raman studies have demonstrated depth-dependent changes in 

tissue composition and anatomical location-dependent changes in obtained 

spectral shape and intensity.32, 49, 50 Knudsen et al. investigated variations in 

skin Raman spectra between persons, spots on the same body region, repeated 
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measurements on a single spot, diurnal, day-to-day, and different levels of 

pigment.51 In these reports, however, the authors utilized either Raman 

microspectroscopy, which has different instrumentation considerations than 

probe-based techniques, or Fourier-Transform Raman Spectroscopy, which has 

practical limitations for clinical efficacy. Along with the differences between 

techniques, the reports do not consider the influence of multiple instruments. In 

this study, the effects of physiologically-induced variability sources will be 

examined including multiple patients and anatomical locations. 

The goal of this study is to examine potential sources of variability for 

in vivo tissue RS, specifically for the skin, and to suggest steps for limiting the 

influence of confounding factors to standardize Raman for clinical applications. 

The effects of contact pressure and probe angle were characterized as potential 

user-induced variability sources. Similarly, the instrumentation-induced 

variability sources of system stability and system dependent response were also 

analyzed on skin and a non-volatile biological tissue analog. Physiologically-

induced variations were studied on multiple tissue locations and patients. The 

effect of variability sources on spectral line shape and dispersion was analyzed 

using statistical methods. In this study, in vivo measurements were made on 

healthy human skin with four stand-alone fiber optic probe-based RS systems. 

This manuscript reports the results from this study of influential variability 

sources when comparing Raman spectral measurements of tissue. 

 



265 
 

A1.3 Methods 

A1.3.1 Instrumentation, data processing, & statistical analysis 

Raman spectra were acquired using RS systems with similar optical 

components. Based on what is widely accepted as a standard tissue system, 4 

unique instruments were used as described in Table A1.1.21 Each instrument 

was controlled by a laptop computer. A custom fiber optic probe consisting of 

7 collection fibers (300 μm), without beam-steering modifications, surrounding 

a central excitation fiber (400 μm) was used to deliver 80mW of power to the 

sample surface. The tissue was cleaned with an alcohol swab prior to the initial 

spectral measurement. Spectra were collected with a 3 second acquisition time 

with the room lights and computer monitor turned off. 

 
Table A1.1.  Instrumentation components for standard tissue Raman 

spectroscopy systems utilized for multiple system comparison. 
System Fiber Optic Probe Excitation Source Spectrograph Detector 
1 7x1 fiber optic probe 

(EmVision LLC, 
Loxahatchee, 
Florida) 

785nm laser (Process 
Instruments, Inc., Salt 
Lake City, Utah, # PI-
ECL-785-300) 

Holospec f/1.8i 
imaging 
spectrograph (Kaiser 
Optical systems, 
Ann Arbor, 
Michigan) 

Pixis 256BR CCD 
camera (Princeton 
Instruments, 
Princeton, New 
Jersey) 

2 7x1 fiber optic probe 
(EmVision LLC) 

785nm laser (Innovative 
Photonics Solutions 
(IPS), Monmouth 
Junction, New Jersey, # 
I0785MM0350MS) 

Acton LS 785 
imaging 
spectrograph 
(Princeton 
Instruments) 

Pixis 400BR CCD 
camera (Princeton 
Instruments) 

3 7x1 fiber optic probe 
(EmVision LLC) 

785nm laser (IPS, # 
I0785MU0350MS) 

Holospec f/1.8i 
imaging 
spectrograph 
(Kaiser) 

Newton DU920-
DR-BB CCD 
camera (Andor 
Technologies, 
Belfast, Northern 
Ireland) 

4 7x1 fiber optic probe 
(EmVision LLC) 

785nm laser (IPS, # 
I0785MM0350MS) 

Holospec f/1.8i 
imaging 
spectrograph 
(Kaiser) 

Pixis 256BR CCD 
camera (Princeton 
Instruments) 
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Spectral calibration was performed for each system independently using 

a neon-argon lamp with naphthalene and acetaminophen standards to correct 

for day to day variations. A National Institute of Standards and Technology-

calibrated tungsten lamp was also used to account for the wavelength-

dependent response of the instrument. The spectra were processed for 

fluorescence subtraction and noise smoothing using the modified polynomial 

fit and Savitzky–Golay methods, as described previously.24 

Data analysis was performed on the spectral range 900-1800 cm-1, a 

spectral region rich with information from proteins, lipids, and other tissue 

constituents. Following data processing, each spectrum was normalized to its 

mean spectral intensity across all Raman bands to account for intensity 

variability. This normalization method was chosen to ensure that all 

wavenumbers retained statistical independence, which is required for statistical 

analysis and is compromised when spectra are normalized to the intensity of a 

single peak. Statistical analysis was performed on the data at each relative 

wavenumber. An Analysis of Variance (ANOVA) model was used at each 

wavenumber to separate groups and calculate appropriate confidence intervals. 

To quantify the changes in spectral dispersion between groups of 

measurements, a metric was defined: total spectral variability (𝑇𝑇𝑇𝑇𝑇𝑇 =  ∑ 𝜎𝜎𝑖𝑖𝑛𝑛
𝑖𝑖=1 ), 

or the sum of calculated standard deviation (σ) at each relative wavenumber i 

across the entire spectrum. A common measure of relative dispersion, the 

coefficient of variation (CV = σi/μi) was also used to compare spectral spread. 
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The minimum and maximum values of CV for major Raman bands were 

reported to provide a consistent indicator of variability. The TSV is an absolute 

measure, indicating the combined dispersion in the measured data, while the 

CV indicates the variability as a percentage of the spectral mean. Samples with 

low variability would have TSV values approaching zero and a low range of 

CV, indicating reproducible and consistent spectral measurements. 

 

A1.3.2 Patients and samples 

Since inter-patient differences have been previously addressed by 

Knudsen et al., volunteers were of similar age and phototype with no history of 

skin disease; measurements were obtained from multiple, visibly-normal 

locations avoiding hair follicles, nevi, and other dark spots. Skin is a potentially 

variable standard that undergoes continuous changes in hydration; therefore, a 

non-volatile biological tissue analog was also measured in each study to 

standardize spectral measurement and comparison. In this manuscript, generic 

intact vitamin E gel capsules were chosen as a homogeneous sample to isolate 

the impact of each variable, independent of tissue changes. Vitamin E gel 

capsules were chosen because they have several Raman scattering bands of 

varying intensity within the fingerprint region. Its peaks are broader than other 

drug formulations and measurements exhibit broad fluorescence signal likely 

due to the capsule composition (gelatin and glycerol). The layered composition 

and spectral traits of the capsules mimic the structure of skin and detected 
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signals; accordingly, identical collection, processing, and analysis procedures 

were used to draw comparisons. 

 

A1.3.3 User-induced variability 

Contact pressure and probe angle were the user-induced sources 

investigated. To isolate the impact of probe pressure, force values were 

quantified while five instrument operators applied probe pressures at three 

different levels. Raw chicken breast, used as a tissue phantom, was placed on a 

calibrated scale, and the force applied by each operator was recorded as the 

operator held the probe in contact with the tissue for 3 seconds. The contact 

pressure tests were repeated at arbitrarily defined low, medium, and high levels, 

as perceived by the user. For these tests, operators were instructed that low 

pressure should minimally indent the skin surface while maintaining contact for 

the duration of the simulated measurement. Similarly, high pressure should 

simulate firm, stable contact with tissue that deforms. Subsequent RS 

measurements were made with calibrated weights attached to a fiber optic probe 

mounted in a uni-axial stage, as previously described.42 Spectra were acquired 

while applying different pressures at levels encompassing the range of values 

observed during the probe operator tests. The effect of the angle between the 

tip of the probe and the tissue surface was examined by incorporating a 

rotational stage into the previous setup. Replicate measurements were acquired 

in 2° increments up to ±10° from normal and the order randomized to remove 
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bias. For consistency, all measurements of the skin were obtained from the volar 

surface (palm side) of the forearm. 

A1.3.4 Instrumentation-induced variability 

System stability was investigated for drift between collections and 

measurement repeatability after probe replacement. For measurement 

repeatability across time, measurements were made from vitamin E and a 1 cm2 

region of skin on the inner surface of the forearm. Measurements were made 

over the course of 1-1.5 hours at 10 minute intervals in 2 sets over the course 

of a single day. A uni-axial translation stage held the probe in gentle contact 

with the sample controlling for pressure and angle. Six time points were 

collected in the morning and 9 more in the afternoon. For probe replacement, 

the uni-axial translation stage was used to measure skin and vitamin E 

controlling for contact pressure and angle of incidence. Repeated collections 

were acquired with the probe in contact with the sample. Subsequent 

measurements were made after the probe was translated away from and back 

into contact with the sample to mimic a controlled replacement of the probe and 

limit any photobleaching effects. 

The performance of the 4 different systems was assessed through 

measurements of both the skin and vitamin E. Measurements were made of the 

skin using the systems listed in Table A1.1. All measurements were obtained in 

a single room on a single afternoon to control for temporal or environmental 
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effects. Contact pressure, probe angle, and the presence of visible superficial 

blood vessels were controlled during probe placement. 

A1.3.5 Physiologically-induced variability 

The measurements obtained with each of the 4 systems were repeated 

on 5 volunteers (3M, 2F, age 24-28) at multiple anatomical locations. The 5 

skin sites measured were: 1) crease in index finger, 2) base of palm, 3) inner 

surface of forearm, 4) outer surface of forearm, and 5) cheek. In addition, 

measurements were also made on the inner surface of the forearm above and 

adjacent to a visibly-appearing large superficial blood vessel to probe the effect 

of subsurface blood vessels on the acquired spectrum. All measurements were 

controlled for temporal and environmental variables, as well as for contact 

pressure, probe angle, and the presence of visible superficial blood vessels. The 

biological analog was measured with each RS system for reliability analysis. 

Data was processed as described above. 

 

A1.4 Results 

A1.4.1 User-induced variability 

Figure A1.1 illustrates the influence of low, medium, and high pressure 

levels on RS of the skin. Significant differences were found between forces 

applied by probe operators and between pressure levels applied (p<0.05) using 

a 2-way ANOVA, as indicated by Figure A1.1A. However, significant 
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differences were not detected between low and moderate pressure levels. The 

applied pressures, which were subjectively determined by each probe operator, 

exhibit large standard deviations for each of the three levels. As a result of the 

bimodal distribution of high pressures applied by probe operators during 

simulation, an extreme level, which is beyond what is expected for clinical 

application is included. Raman spectra (n=120) were acquired from normal skin 

at 22 different force values spanning the 4 pressure levels listed in Table A1.2. 

The resulting spectra exhibit many visual similarities (Figure A1.1B) as peak 

positions remained constant across test parameters, but intensities varied. 

Statistical analysis determined that over 56% of wavenumbers significantly 

differed between extreme pressure versus high, medium, and low pressure 

levels at the 95% confidence level, indicated by asterisks in Figure A1.1. By 

comparison, fewer than 2% of wavenumbers were significantly different 

between high, medium and low pressures and fewer that 1% of wavenumbers 

differed between medium and low pressures at the same confidence level. 

 



272 
 

 
Figure A1.1. (A) Averaged forces applied by probe operators during RS 
collection simulation. Values were obtained from blinded tests performed on 
raw chicken breast. (B) Raman spectra acquired from healthy normal skin 
(volar forearm) during application of probe pressure. Asterisks indicate 
statistical difference between extreme pressure and other measures. 
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Raman measurements (n=150) were compared at 11 different angles on 

the inner surface of the forearm accounting for normal (n=50), counter-

clockwise (n=50) and clockwise (n=50) changes in the probe angle. The 

differences in probe angle had minimal impact on the obtained Raman spectra 

and resulted in no systematic change in fluorescence or background signal. 

Mean spectra from each group displayed minor changes in peak intensity. 

Significant differences between groups occurred in fewer than 5% of 

wavenumbers (data not shown). 

 
Table A1.2. Contact force (μ ± σ) applied by multiple probe operators during 

simulated RS collection experiment. 
Low 4.4±2.9 mN 
Medium 33.8±9.4 mN 
High 122.5±39.7 mN 
Extreme 645.9±382.3 mN 

 

A1.4.2 Instrumentation-induced variability 

In this study, Raman spectra (n=15 for each) of vitamin E and the five 

anatomical locations on five healthy volunteers were obtained on the four 

different RS systems. Mean results from the biological analog and one location 

(cheek) from a single patient are presented for each RS system in Figure A1.2A 

and B, respectively. The skin spectra obtained were visibly similar and 

reproducible with minor variations in peak intensities. Significant differences 

(p<0.05) were found among systems at over 50% of the wavenumbers after 



274 
 

system calibration and spectral processing, which was observed across all tissue 

locations measured. 

 
Figure A1.2. (A) Raman spectra of Vitamin E as a biological analog measured 
by 4 RS systems. Identical signals were obtained after uniform collection and 
processing algorithms were used. (B) Mean Raman spectra (n=15) of one skin 
site measured by 4 RS systems. 
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To test for system stability between measurements, Raman spectra 

(n=15 for each) were acquired from skin and vitamin E at 15 times over the 

course of a day. Spectral shape and intensities were reproducible and consistent 

with the results obtained from 4 different systems. However, changes in spectral 

intensity of the skin resulted in significant differences (p<0.05) for over 50% of 

wavenumbers after calibration and processing. Measurements for probe 

placement were compared with measurements after the probe was replaced at 

nearly the same location via the uni-axial translation stage, to more accurately 

replicate probe position than replacement by a human operator. After 

replacement, 5% of wavenumbers significantly differed between the groups for 

skin (data not shown). 

To confirm that the observed variations between spectra were associated 

with the skin sample, vitamin E was measured during each study protocol. 

Vitamin E was included to represent a best case scenario as a completely 

repeatable biological sample, and serves as the benchmark for performance. For 

all variables considered, including contact pressure, angle, repeatability, probe 

replacement, and measurements made across systems, there were no systematic 

differences between vitamin E spectra. For example, as depicted in Figure 

A1.2A and quantified in Table A1.3, vitamin E spectra acquired across systems 

after data processing were completely reproducible. Measurements by a single 

system are expected to have a low total spectral variability (TSV) and CV range. 

When the data collected from multiple systems are pooled prior to calculation, 
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the TSV indicates the absolute dispersion induced by data collection with 

multiple systems, assuming no changes in the sample. A single system had a 

maximum TSV of 2.84 for vitamin E and 17.44 for a single skin location. 

Similar trends were demonstrated by the CV for vitamin E peaks, ranging from 

0.2-2.73%, while for skin the CV ranged from 1.44-12.06%. The pooled data 

across all systems for vitamin E had a TSV of 10.92 and maximum CV of 

5.47%, while the pooled measurements on a single skin location resulted in a 

TSV of 36.58 and maximum CV of 26.38%. For both individual system and 

pooled calculations, the values for a single skin location are higher than for 

vitamin E. The greater values for skin compared with vitamin E suggests that 

detected changes are primarily the result of the sample and not the system. 

Comparison of a single system and pooled data for vitamin E suggests a high 

level of overlap in the measurements obtained by different RS systems, while 

more complex interactions are associated with the skin. 

Table A1.3. Quantified spectral variability for skin and biological analog for 
individual RS systems and pooled data. CV range represents the minimum and 
maximum percentage values obtained at peak maxima for meaningful Raman 

bands. 
Sample System TSV (AU) CV Range 

Vitamin E 

1 1.79 (0.20% - 1.31%) 
2 2.84 (0.38% - 1.89%) 
3 2.23 (0.26% - 1.79%) 
4 2.69 (0.39% - 2.73%) 

Single Skin 
Site 

1 15.34 (1.75% - 10.64%) 
2 17.44 (2.02% - 12.06%) 
3 13.58 (2.05% - 7.39%) 
4 13.04 (1.44% - 9.61%) 

Vitamin E All 10.92 (0.86% - 5.47%) 
Skin Site All 36.58 (5.81% - 26.38%) 
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A1.4.3 Physiological-induced variability 

Raman spectra (n=15) were obtained from each of 5 anatomical 

locations on the upper extremity and face from 5 healthy volunteers. Based on 

the results, substantial intra-patient differences are present between unique 

anatomical locations (Figure A1.3A). Measurements were repeatable across 

days and patients for each location. The peaks with intensity variations have 

previously been correlated with tissue protein and lipid content (1440 cm-1 and 

1750 cm-1) and Amides I (1645-1680 cm-1) and III (1230-1300 cm-1).52, 53 The 

spectra group together into spectral families, each having a unique line shape. 

For example, there are few variations between the spectra acquired from family 

1, the finger and palm, but these variations are not consistent with the few 

variations between family 2, the face and both sides of the arm. As quantified 

in Table A1.4, when all the data from the 5 sites across a single system are 

pooled, the TSV is 59.06 and maximum CV is 38.39%. When separated into 

the two families described above, the values decrease. Combined spectra from 

the arm and cheek result in a TSV and maximum CV of 35.67 and 28.67%, 

respectively. The finger and palm spectra have a TSV of 34.36 and maximum 

CV of 23.26% when combined. When a single location was considered the 

values were lower still, with a maximum TSV and CV of 18.26 and 7.38%, 

respectively. The decrease in TSV indicates consistent spectral families when 

the data is grouped. The CV ranges suggest that the relative dispersion is highly 

variable for even the most uniform comparison and can increase for a peak as 



278 
 

groups are combined. The families differ in peak intensities at 1440 cm-1, the 

presence of defined peaks at 1300cm-1 and 1750cm-1, and the full width at half 

maximum (FWHM) intensity of the Amide I band centered at 1658cm-1. 

 
Figure A1.3. (A) Intra-patient location based differences in Raman spectra. (B) 
Raman spectra acquired from healthy skin above and adjacent to a large 
superficial blood vessel. 
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Table A1.4. Quantified RS single system variability for skin sites grouped into 
spectral families and pooled data. Intra-patient variability is representative and 

consistent with data obtained from all systems analyzed. 
Grouping TSV (AU) CV Range 
Single Skin Site 18.26 (2.57% - 7.38%) 
Family 1 34.36 (5.66% - 23.26%) 
Family 2 35.67 (4.76% - 28.67%) 
All skin sites 59.06 (5.36% - 38.39%) 

 

To evaluate the effect of superficial blood vessels beneath the sampling 

volume of a normal measurement, Raman measurements (n=15) were obtained 

from normal tissue directly above a visible vein and adjacent to the same vein. 

As Figure A1.3B shows, there are changes in spectral signatures including 

notable spectral disintegration from 1200-1300 cm-1, decreased intensity at 

1440 cm-1, and a broader 1658 cm-1 peak, which are all reproducible for 

measurements above a vessel. When comparing the normal measurements 

obtained from skin over the vessel in Figure A1.3B to the spectra in Figure 

A1.3A, the measurements over a vessel on the forearm more strongly resemble 

the spectral family from the finger than the forearm itself. Grouping spectra 

from above the vein with those from the adjacent forearm resulted in a TSV of 

62.5, compared to 50.6 when grouping above the vein and finger spectra. 

Representative mean spectra from multiple systems for 2 locations on a 

single patient are presented in Figure A1.4. Each location retains the unique 

spectral signature measured and presented in Figure A1.3A for the finger (site 

1) and the cheek (site 2), but measurements from individual systems contribute 

characteristic variations to the data. With differences in filtering and tissue 



280 
 

fluorescence, the spectral response calibration and signal processing for 

background removal was unequal between systems and anatomical locations. 

Despite the systematic effects on data collection by each instrument, the data 

still group consistently into spectral families with similar line shape. 

 
Figure A1.4. Raman spectra from 2 anatomical locations on a single patient 
measured on 4 RS systems. 

 

Figure A1.5 extends the previous analysis to include multiple patients 

and depicts spectral changes associated with locations on multiple patients 

measured with different systems. The results mirror those of multiple locations 

on a single patient, where strong location-specific signals are present and 

repeatable between patients and system-based changes impact each 

measurement similarly. Measurements from a single location resulted in a 

consistent spectral line shape between patients and systems. However, the 

intensity of acquired spectra differed between patients and between systems. 

This is most clearly depicted in Figure A1.5 by grouping site 2 measurements. 
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Also, the intensities for spectra from patient 1 exhibit low dispersion compared 

to the spread of patient 2 spectra. This effect is most obvious at the peak 

intensities for 1440 cm-1 (CH2 bending) and 1300 cm-1 (Amide III CH stretch). 

 
Figure A1.5. Representative Raman spectra of 2 anatomical locations 
reproduced for 2 patients measured on 2 RS systems. 

 

Based on the ANOVA analysis presented in Figure A1.6 for the 

complete block design of measurements made from 5 locations on 5 people with 

4 instruments, the intra-patient variation (“Location”) is the most influential 

factor. The inter-patient differences in the spectra account for less than 7% of 

the variance from the entire dataset. This value was minimized by controlling 

for inter-patient variables prior to the study. The inter-patient differences were 

insignificant compared to 29.7% contribution from system and 48.9% from 

location. The interaction between inter-patient and intra-patient differences is 

consistent with the patient-specific changes presented in Figure A1.5. These 

results are in agreement with both the TSV and CV range values from Table 
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A1.3 and Table A1.4, such that, by controlling parameters, the intra-patient 

variation (location) is more influential than system-induced variation. 

 
Figure A1.6. Percent contribution by source and interaction terms to the 
variance of RS data. The presence of the “Location on Patient” interaction term 
indicates that a location may take a unique intensity level for each patient 
measured. Non-significant interaction terms are combined in “Other” and 
represent less than 4% of total variance. 

 

A1.5 Discussion 

Previous studies have investigated the use of RS to detect changes in 

tissue for numerous applications, but few have addressed the latent sources for 

variability during measurement or the potential issues when comparing 

biological measurements between systems. The initial goal of this study was to 

understand how different sources of variability impact the measured Raman 

spectra of tissue. While this study has focused on skin as the tissue of interest, 

subsequent investigations should consider the influence of variability sources 

on other clinical applications and targets of RS. An obstacle to testing these 

variables in tissue is the inherent inconsistency and sample inhomogeneity. To 
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avoid this innate biological variation, a biological tissue analog, vitamin E, was 

introduced as an ideal tissue that is not subject to variation and presents the 

best-case for measurement reproducibility. In this paper, Raman spectra 

acquired from both normal tissue and vitamin E are evaluated for the effects of 

three broad categories: user-induced, instrumentation-induced, and 

physiologically-based sources of variability. 

A1.5.1 User-induced variability 

As a new and increasingly-used clinical tool, RS users need to 

understand the impact of contact pressure and fiber probe angle on obtaining 

consistent and accurate results regardless of the user. Analysis in this study 

found no significant differences or increased variability introduced when user-

induced factors were properly controlled. Even with high variability in the 

subjectively determined pressure exerted by different probe operators, 

demonstrated in Figure A1.1A, spectra with low variability were obtained. The 

results of applying varying pressure during spectral measurement suggest that 

a range of applied pressures are acceptable for collecting reproducible and 

reliable Raman spectra (Figure A1.1B and Table A1.2). Spectral change was 

observed only in measurements made under extreme pressure, in this case over 

55kPa. Previous studies have shown that increasing pressure can change the 

interactions between light and tissue, for example by decreasing fluorescence 

and increasing optical penetration depth.21-23, 34 Increased probe pressure will 

compress the tissue and more densely pack Raman active molecules, potentially 
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leading to more frequent Raman scattering events. Likewise, increased pressure 

could lead to occlusion under the tip of the probe, altering perfusion and blood 

content within the sample. The acceptable range of applied pressures may 

depend on variable thickness, hydration, elasticity, or other patient, location, or 

age related changes. In general, however, the probe should minimally or 

reversibly displace the tissue surface and remain in contact during the 

measurement. The increased variability introduced by high contact pressure can 

be avoided if users are trained to operate under low pressures. 

By changing the angle of contact between the probe and sample, the 

volume of tissue being measured will change as the light scatters. Despite this 

subtle change in interrogated tissue, few significant spectral differences were 

collected between signals over the range of measured angles. The sampling 

volumes of fiber-optic probes are relatively large compared with tissue 

structures, yielding a low probability that a slight variation in probe angle will 

cause dramatic changes in the spectrum. However, because probe collection 

geometries have many designs, slight variations in probe angle may collect 

signal from a different location than intended. Probe operators should 

understand the importance of using consistent angles between measurements. 

 

A1.5.2 Instrumentation-induced variability 

The common practice of using a single instrument during data collection 

has had both positive and negative consequences for RS. While it has simplified 
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data interpretation for researchers by removing a significant variable, it has also 

hindered both data comparison and spectral database development, which are 

prerequisites for generating reliable diagnostic algorithms. In this study, the 

contribution of instrumentation-induced variability to the acquired spectra was 

validated and quantified for several potential sources. Variability between 

repeated measurements for time points and probe placement was found to be 

insignificant, confirming previous reports.51 During Raman measurements, 

instrumentation-induced variability was considered a system dependent 

response. This is demonstrated in Figure A1.2B, where minimal intensity 

differences between systems were detected within a single location of the skin. 

These small differences were obtained after spectral response calibration, 

processing, and normalization, which are important steps in reducing 

differences between instruments. However, these steps alone may not be 

sufficient to remove the effects of multiple instruments and probes. Spectral 

response calibration accounts for only the detection arm of an RS system and 

requires system isolation for calibration, which is impractical in a clinical 

setting. Other data processing options are currently under investigation. 

Because probe-based RS systems can have variable components, calibration 

methods need to account for the specific and collective responses of the system. 

Several research groups, including ours, have proposed the use of reflective 

standards or other similar calibration techniques that account for both excitation 

and collection branches of the system to address and potentially minimize these 
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responses. When comparing spectra from a single location measured by 

multiple systems, as presented in Figure A1.2, there are no significant 

differences. However, comparing spectra from a different tissue location or 

patient (Figure A1.4 and Figure A1.5), these signals are complicated by other 

factors. 

Isolating system-dependent responses with vitamin E also generated 

negligible differences in spectra acquired by different instruments after 

processing. The narrow range of detected Raman signal for the biological 

analog, depicted in Figure A1.2A, confirm the instrument stability and 

reliability which is needed for cross-validation and spectral library generation. 

As the interrogated sample becomes more heterogeneous, the complex 

interactions of inherent scattering and system-dependent response increase 

spectral variability. This result is demonstrated in Table A1.3, where the sum 

of TSV for vitamin E of individual systems is approximately equal to the pooled 

value for all systems. In contrast, the TSV for skin of separate systems are 

individually half the value for the data pooled for all systems, demonstrating 

that the complexity of skin results in increased variability that differs between 

RS systems. For measurements made with separate RS systems, users must 

understand the implications for cross-system comparison and determine how 

spectral changes introduced by separate instruments will influence the 

diagnostic capability of an algorithm. Using a biological analog can aid in 
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evaluating multiple RS instruments for consistent measurement and comparison 

of tissue spectra. 

A1.5.3 Physiologically-induced variability 

Variability sources based on characteristic tissue differences between 

multiple locations on a single patient and between patients were identified as 

important factors for RS of the skin. The anatomical location analysis yielded 

spectra with visibly and statistically significant differences (Figure A1.3A). 

This result is consistent with knowledge of the heterogeneity of skin anatomy. 

Multiple studies have documented the anatomical location-based changes in 

many skin properties including thickness, presence of hair, tissue hydration, 

pigmentation, sun exposure/damage, subsurface structures, and compositional 

differences of lipids and proteins.9, 54-56 Raman scattering signals from different 

anatomical locations are distinct, so tracking where such measurements are 

made is critical when comparing across locations. Separating the anatomical 

locations into distinct spectral families, based on intensity and line shape as in 

Table A1.4, may be a more thorough comparison of physiologically-induced 

changes that are not directly caused by variations in the measurement location. 

Statistical analysis reveals that the spectral variance and primary source 

of variability depends on peak intensity. TSV is dominated by fluctuations in 

peak intensity of major Raman active bands, with 1440 cm-1 (CH2 bending) 

accounting for nearly 30% of total variability in the data and 1300 cm-1 (Amide 

III CH stretch) for another 10%. Despite accounting for intensity, the maximum 
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CV reported for each group is mediated by fluctuations in peak intensity and 

can be amplified for low peaks and shoulders. Physiologically-induced 

variability, due to measurement location, dominates the dispersion sources 

when comparing multiple anatomical locations for a single system and appears 

at strong Raman peaks. Instrumentation-induced variability dominates regions 

of peak shoulders and background subtraction when comparing a single 

measurement location across different systems. 

Significant spectral differences were also observed between patients 

(Figure A1.5). Studies from our lab and others have reported the sensitivity of 

RS to patient-based variables.51, 57 Some of the potential variables that may 

contribute to the observed inter-patient changes in spectral signature for normal 

healthy skin include hormonal variations, BMI, gender, race/ethnicity, age, 

accumulated photodamage/UV exposure, and skin type. Knudsen et al. reported 

significant peak intensity ratio differences between patients, which agree with 

findings presented here. In that report, a single location across 13 patients 

yielded mean values ranging from 0.94-1.15 for the intensity ratio of Amide I 

(1660 cm-1)/CH2 bending (1440 cm-1). The mean values measured between 

patients here ranged from 0.70-0.76 for this ratio. The differences between the 

reported peak ratios are likely the result of variations in study equipment and 

processing procedures. However, the variation in values is consistent between 

reports, indicating inter-patient changes detected in the skin. Further analysis of 

our data suggests that these ratios are dependent upon location of the 
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measurement. The mean values obtained here range from 0.86 on the hand to 

0.56 on the cheek of a single patient. 

To simplify comparisons between patients, age and skin type were 

controlled. The inter-patient differences detected here demonstrate minor 

spectral changes when controlling for other variability sources. Physiological 

variability between locations within a single patient has been reported in the 

literature and suggests the need to account for anatomical site prior to 

comparison.49 A potential method to overcome these variations would utilize 

paired spectral measures, or the collection of adjacent and contralateral normal 

measurements for each measurement of interest. Difference spectra between the 

variable and paired normal locations would normalize a measurement to its 

inherent location-based signal, which could remove influences of intra-patient 

variation. Selection of the location for a paired measurement is critical due to 

the location-based variability in signal. A further complication is introduced by 

the presence of superficial blood vessels beneath the measurement location. The 

obtained spectrum from atop the vessel neither replicates skin measurements 

nor the reported spectra of blood, suggesting that signal changes are not derived 

from the blood alone.7, 32 While the source of the altered spectrum is currently 

unclear, some potential physiological explanations include the components of 

the vessel wall, muscles lining vessels, increased collagen content and 

microvasculature surrounding these vessels, as well as the blood cells and 

serum proteins in the measurement area. The results in Figure A1.3B suggest 
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that paired measurements should come from adjacent or contralateral locations 

of normal tissue, avoiding hair and visible superficial blood vessels. Adjacent 

measurements from the same small area of tissue were found to be reproducible, 

but the total size of this area is unknown. In general, the closer the paired 

measurement to the original measurement location, the more likely a 

measurement will account for normal variations.  

Statistical comparison indicated that anatomical location most 

significantly impacts collected data, followed by instrumentation-induced 

variability and inter-patient changes (Figure A1.6). These findings mirror 

conclusions drawn from the TSV and CV range values and suggest that when 

patient variables are controlled, the detected inter-patient differences exert less 

influence on the data than alternate sources. The significant interaction term 

(“Location on patient”) is likely the result of inter-patient variation that affects 

intra-patient changes. Each patient will have unique effects on the spectra that 

will cause individual anatomical location to vary in intensity. The presence of 

this interaction complicates the interpretation and impact of multiple patients. 

As all other interaction terms combined have little influence, it is logical to 

conclude that the primary concerns for spectral variability will be the effects 

from anatomical location, system, and patient based differences. These patient 

specific differences may become the dominant source as a more diverse 

population of normal tissues is analyzed. This result further emphasizes the 

need to control for the measurement location. 
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Because the influence of a particular source of variation is not uniform 

across the spectrum, understanding and minimizing variability sources is 

important. Through ANOVA of spectra at each wavenumber, the relative 

impact of each source of variability can be discerned. Spectral libraries and 

algorithms for diagnosis or tissue classification need to perform independently 

of these confounding variability sources. Algorithms may need to account for 

the variances introduced by multiple instruments or compare spectral regions 

that are dominated by a common variability source. For example, the intensity 

of CH2 bending (1440 cm-1) is dominated by physiologically-induced 

variability, while the FWHM of the 1070 cm-1 feature, which is linked in-part 

to silica fiber signal, is dominated by instrumentation-induced variability. A 

ratio of these features would give inconsistent and instrument-dependent 

results. The dispersions of strong Raman active bands are associated with 

differences in anatomical location and should be used for intra- and inter-patient 

comparison. Comparing regions of background subtraction will represent 

variations between multiple instruments.  

The purpose of this paper is to examine different sources of variability 

that can impact in vivo RS measurements of tissue and to suggest steps for 

limiting the influence of these confounding factors. Table A1.5 briefly outlines 

the sources examined and the influences detected. These results indicate that, 

when properly used, contact pressure, probe angle, and probe replacement have 

no significant contribution to spectral variance. The use of multiple RS 



292 
 

instruments will undoubtedly introduce some variation into the collected data, 

but options to limit these influences are under investigation. Despite these 

findings, thorough analysis of the potential sources of measurement error 

should be conducted with any system to understand the obtained results, ideally 

prior to the beginning of the study. We suggest that several steps be taken during 

the design and execution of in vivo RS tissue measurements to address potential 

sources of variability. These steps are as a follows: 1) Standardized tissue 

cleaning protocols, such as cleaning with an alcohol swab, should be used to 

minimize error contribution (especially for measurements of the skin due to 

cosmetics and lotions); 2) Measurements with the probe should use low but 

consistent pressure during collection, keeping the probe approximately normal 

to the surface (user should be trained); 3) For normal measurements, a single 

collection per location is sufficient; 4) Paired measurements may provide 

normalization of a spectrum to the inherent signal based on anatomical location 

and person specific signals; 5) The selection of the location for a normal paired 

measurement should be carefully determined, avoiding hair follicles and major 

superficial blood vessels. Furthermore, adjacent and contralateral normal 

measurements at a single location should be investigated for consistency. 

 

  



293 
 

 
Table A1.5. Variability sources investigated and determined effects. 

Variable Effect 

Contact pressure 
For low or medium pressure, no detected effect 
High pressure, significant effect detected 

Probe angle No detected effect 
Probe replacement No detected effect 

Instrument stability 
No detected effect for biological analog 
Significant effect detected between tissue measurements 

Multiple instruments 
No detected effect for biological analog 
Significant effect detected for biological samples 

Anatomical location Significant effect detected 
Presence of blood vessel Significant effect detected 

Inter-patient 
Significant effect; 
Minimized by controlling patient variables 

 

A1.6 Conclusions 

In general, these findings apply to probe-based measurements for all 

optical modalities; other collection configurations, such as confocal 

microspectroscopy, will likely contain alternate variability sources to address. 

Practically, normal tissues are not often studied, as they are not the focus of a 

novel diagnosis or treatment. The default assumption is that all normal samples 

are similar; however, complex interrelationships and differences between 

separate normal tissues exist. By expanding our understanding of normal tissues 

and the influence of data collection and instrumentation, the potential exists for 

more accurate and effective analyses to differentiate unique variables of 

interest. The analytic methods for RS should consider the major sources of 

variance contribution prior to the development of classification algorithms. 

Thorough analysis of instrument response, stability, and calibration are 

important to standardize RS as a clinically viable tool. Measurements by 
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separate instruments will likely exhibit unique responses. If these variations are 

understood and accounted for, measurements can be compared across systems 

and spectral libraries can be compiled. Here, practical considerations and results 

are presented that suggest how RS can and should be used in vivo to minimize 

sources of variation prior to processing, comparison, and classification, leading 

to an application that can be used to accurately differentiate disease classes. 
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