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Chapter 1

Introduction

1.1 Motivation

Robots have had a profound influence on our society. In ingust example, robots
are broadly used in areas of production, inspection andtgualntrol. In public services,
robots can be applied to exploration, rescue, surveillameglicine and health care. In the
medical area, robots are used to improve the safety andstensy of surgical procedures,
as well as the ability to minimize traumatic and disfiguringisions to access target organs
[19]. During surgery, the role of a surgeon of course has somglaceable abilities such
as more initiative and flexibility. However, robots also Baadvantages over surgeons,
which usually cannot be gained by training due to human’sjaay limitation. To make a
comparison, Taylor and Joskowicz have listed strengthdiamthtions of medical robots
and humans in Table 1.1 [1]. From the table, we can see that ofidse strengths and
limitations are complementary. That is to say, the robotloarused as an assistant in a
surgery providing the surgeon with a new set of very vermsatibls that extend her or his
ability to treat patients [20].

Minimally Invasive Surgery (MIS) is a surgical proceduratiuses arthroscopic, la-
paroscopic or customized devices to conduct remote-domt@aipulation of instruments
with indirect observation through skin, body cavity or shetatomical opening [21].
Though MIS has advantages of reducing surgical traumajteshiog hospital stays, ac-
celerating patient recovery and reducing rate of compboat[22], the drawbacks are sig-
nificant such as poor instrument control and ergonomicsethby rigid instrumentation
and its associated fulcrum effect [23]. That is, the rigjpHisoscopic surgical tools are lim-
ited to 4 Degrees of Freedom (DOF) in MIS. However, since rsaggical tasks, such as

suturing, knot tying, tissue separation, retraction, tnealong a path, etc, require more

1



Table 1.1: Comparison of medical robots and human [1]

Strengths Limitations
Excellent judgment Prone to fatigue and inattention
Excellent hand-eye coordination Tremor limits fine motion
Excellent dexterity(at natural Limited manipulation ability and
Humans ”huma_n” scale) _ _ dexterity outside natu_ral scale
Versatile and able to improvise Cannot see through tissue
Easily trained Bulky end-effectors(hands)
Able to integrate and act on multiple Affected by radiation and infection
information sources
Hard to keep sterile
Limited geometric accuracy
Excellent geometric accuracy Poor judgment
Untiring and stable Hard to adapt to new situations
Robots Immune to ionizing radiation Limited dexterity
Can be operated at many different | Limited ability to integrate and
scales of motion and payload interpret complex information
Able to integrate multiple sources of Limited hand-eye coordination and
numerical and sensor data limited haptic sensing

than 5 DOF, how to gain distal dexterity for manipulators merequisite to being able to

reap the benefits of MIS.

Miniaturization of the manipulator requires remote aatusiand usually uses wires as
actuation transmission. Current wire-actuated wristpaeelominantly designed with se-
rial architecture because they are relatively easy to desid analyze. However, compared
to serial wrists, parallel architecture can offer highezgmion, stiffness and payload-to-
weight ratio. But wire actuated parallel wrists are difficid analyze due to singularity
within the workspace and due to uni-sense wrench limitatidvioreover, previous works
for wire-actuated robots primarily focused on wrench ctessorkspace that contains a set
of poses such that all the wires can work in tension to balamgeexternal wrench [24].
And also, these projects have limited consideration of ffeceof wire stiffness on the
reduction of wrench-feasible workspace. In this work, w# gveate kinematic and static
models for wire-actuated wrists, and investigate both ffeeeof wire stiffness on wrench

closure workspace and the use of actuation redundancy liamgamg the workspace.

2
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Figure 1.1: Structure of Black Falcon [2]

1.2 Robotic Platforms for Surgical Assistance

We have discussed that robots can act as surgical assikiaM$S, and the problem
of how to gain more dexterity has attracted many scholangesms and companies to
develop various robot platforms, such as the Black Falcbntreystem by Madhani et al.
[2], Insertable Robotic Effectors Platform (IREP) by Simaat al. [3], Robotic Surgical
Platform by Lee, et al. [5], andaVinci® Surgical System from Intuitive Surgical, Inc [16],

etc.

The Black Falcon, shown in Figure 1.1, is an 8-DOF cable driete-operator slave
robot platform for MIS, which consists of two main subsystenOne is the base unit
containing all of the actuators and the other one is the wngtwhich has a mechanical

attachment, an instrument shaft and an end-effector [2].

Insertable Robotic Effectors Platform (IREP) is desigradsblving problems such as
instrument miniaturization, dexterity and collision adance between surgical tools oper-
ating in confined spaces for MIS, Single Port Access Surg@BAS) and Natural Orifice
Transluminal Endoscopic Surgery (NOTES) [4][3]. This fdatn consists of parallelogram
mechanism, continuum snake-like arms, wire-actuated wa@nera module and passive

flexible components, as shown in Figure 1.2.
The Robotic Surgical Platform is developed by Jusuk Led®tios group at the Sam-

3
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Figure 1.3: Robotic Surgical Platform [5]

sung Advanced Institute of Technology (SAIT). From Figur® we can see that it com-
prises of a snake-like 6-DOF guide tube, two 7-DOF toolsa#- slave arm and a 3-DOF
stereo camera, capable of reaching various surgical sis&del the abdominal cavity from
a single incision on the body [5].

ThedaVinci® surgical system is one of the most famous surgical assistatfiorms in
the world, which is composed of a surgical arm cart that is aipudator unit consisting of
several instrument arms, a master console where the sungealtes telemanipulators and
optical controls using three-dimensional vision, and azeational monitor cart, as shown
in Figure 1.4. This surgical system is good at multi-port imially invasive operations in

dealing with delicate and vulnerable anatomical struct{6¢



Figure 1.4:daVinci® surgical system [6]

1.3 Wrist Classification for Minimally Invasive Surgery

One of the most important components of these surgicalqehatf is the robot manipu-
lator which is used for procedures such as cutting tissuesanuding trauma. Since in MIS
the target is supposed to be reached through a single inasidhe body, the motions of
rigid laparoscopic surgical tools manipulating tissue@estrained to a pivot, which has
only 4 DOF [16], namely two tilting angles about the pivot poand translation and rota-
tion about the longitudinal axis of the tools. However, ngsgical tasks such as suturing,
knot tying, tissue separation, retraction, ablation alangath, require more than 5 DOF.
Thus, the main concerns of dexterity improvement focus om toorestore the degrees of
freedom and provide distal dexterity for those operatidvianipulation with good distal
dexterity can shorten execution time, reduce surgicaieand blood loss, and proper

mechanism design of the wrist can remove the limitationkiwisurgical environment.

The current surgical wrists of manipulators have variougshaaisms with regard to
different purposes or under different conditions. Howewer matter how discrepant the
wrists seem from each other, they all have certain degrefsseddom and consist of three
kinds of joints: Roll, Pitch and Yaw. Based on this, wrista te classified by their DOF,
such as 2-DOF, 3-DOF and 4-DOF wrists where the DOF of grifgreeps is not taken

into consideration. Moreover, a sub-classification canuk &ccording to different com-
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Figure 1.5: Joint type of Roll, Pitch and Yaw

binations of joint types: roll (R), pitch (P) or yaw (Y) (Figai1.5 shows the axis for each
joint type using a human hand). For example, the 2-DOF wnstg have sub-categories
of RP wrist (rotations about Roll axis and Pitch axis), RYs#(rotations about Roll axis
and Yaw axis) and PY wrist (rotations about Pitch axis and ¥ais); For 3-DOF, we ba-
sically have RYP wrist (rotations about Roll axis first, théaw axis and finally Pitch axis)
and PYR wrist(rotations about Pitch axis first, then Yaw axid finally Roll axis). There
is also one example of 4-DOF wrist which can realize rotaiohRPPY (rotations about

Roll, Pitch, Pitch and Yaw axis sequentially). The clasatfn is listed in Table 1.2.

One example of a 2-DOF wrist is a mechanism for dexterous #adter placement
during Minimally Invasive Surgery (MIS) [7] designed by Minand Mukherjee, et al.,
as shown in Figure 1.6. This Dexterous Articulated Linkage Surgical Applications
(DALSA), which is a geared serial link mechanism, providestions of articulation and
end effector rotation about the articulated axis. It pregidRY and RP rotations via 180
degrees bi-directional tip articulation and unlimitedatain about the articulated longitu-
dinal axis. Articulation is divided among several linkspr@vide encircling capability and
improved reachability. Disadvantages of DALSA includettsiace it is a two DOF mech-
anism, it is incapable of placing sutures with arbitraryeatation at surgical sites without
rotating the port; another is due to gear backlash whichitalely degrades tip placement,

accuracy and repeatability.
Kim, et al. [8], designed a 2 DOF PY stiffness-adjustableked&e mechanism, as

6



Table 1.2: Classification of Surgical Wrists

2-DOF

3-DOF

4-DOF

RY PY

RYP | PYR

RPPY

Minor, et al., Articulated Manipulator
for MIS [7]

v

Kim, et al., Variable neutral-line
manipulator [8]

Breedveld, et al., Endo-Periscope [9]

Seow, et al., Articulated manipulator
[10]

Harada, et al., Micro manipulator [11

Merlet, et al., Parallel Micro
Manipulator [12]

SEEENENEEENENEEEN

Nakamura, et al., Multi-DOF Forceps
Manipulator [13]

Awtar, et al., End-effector for
FlexDex™ [14]

Takahashi, et al., Link driven type
multiple d.o.f. forceps [15]

Guthart, et al., Endoscopic
EndowWrist™ Instrument [16]

Tadano, et al., A forceps with force
sensing using pneumatic servo system
[17]

Simaan, et al., Multi-backbone
bending snake-like units [18][25]

Lee, et al., 3-DOF wrist for SAIT
single port access surgical robot [5]

Madhani, et al., A 4-DOF wrist for
Black Falcon [2]

ot Ltk S Geer 10

! . g
£ endy  gGerd

Figure 1.6: Structure of 2 DOF geared rolling wrist DALSA [7]




Figure 1.7: 2 DOF stiffness-adjustable snake-like medrang]

shown in Figure 1.7. Each link has two cylindrical contaafates oriented orthogonally
to each other. There are two wire pairs of which each is inrobof Pitch or Yaw motion,
and the motion of the two pairs affects each other. Moreatgesimple, thin and hollow
structure is suitable for surgical application such as MiSlatural Orifice Translumenal
Endoscopic Surgery (NOTES). The stiffness of this mecimaraan be continuously ad-
justed by varying the wire tension. Experiments show thagmihire tension varying from
20N to 599N, the stiffness will change from.BP42N/mm to 0.529N/mm, and the max
bending angle can reach@0

Another example of 2-DOF PY wrist is the Endo-Periscopegtexi by Breedveld, et
al. [9] in Figure 1.8. This device is to provide visual feedkauring laparoscopic surgery
by attaching a camera on its tip. The wrist is a spring thatlmoes high torsion stiffness
with a low bending stiffness. Four cables are guided thraighring springs. When in
straight position, the two ring springs are completely caesped. When the handgrip is
bent, part A of the cable becomes longer. However, part Bet#ble cannot be shortened
since the ring spring in the tip is completely compressedstelad, part C of the cable
becomes shorter. Thus the spring in the handgrip become®shad as a result, the three
other cables are released. Then the tip will bend until itlhea the same angles as the
handgrip. This wrist can enable the camera sitting on itda@aptate about Pitch or Yaw

axis over 180 degrees [9].
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Figure 1.9: 2 DOF wire actuated revolved sliding joint [10]

Figure 1.9 shows a 2-DOF PY cable driven robot arm which ctegf 18 revolved
sliding joints arranged serially [10]. It is an articulatethnipulator with multiple in-
struments for natural orifice endoscopic transluminal endpic surgery (NOTES), which
aims to reduce infection risk, improve surgical workflow arttourage solo surgery by
providing surgeons with all the required instruments. Thdirgy joints mainly refer to
the robot connecting arm. Each of the joint has dome-shagednd matching concave
bottom of the linkage piece enabling it to rotate relativielyts neighboring piece. From
Figure 1.9, the wrist’s PY rotations are controlled by foiredtional wires passing through
the linkage pieces. Each opposing pair of wires works amtiaggoally to provide two ro-
tational DOF in yaw and pitch. Experiments show that the mmalator can provide at least
100 degrees left angular displacement and 107 degreesanghtar displacement [10].

Another example of 2 DOF PY wrist is the micro manipulator fisirauterine fetal

surgery under Open Magnetic Resonance Imaging (MRI) ciomdiby Harada, et al. [11].
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Figure 1.10: 2 DOF wire actuated ball sliding joint [11]

Figure 1.11: Micro parallel wrist [12]

The wrist consists of two ball joints and is driven by four @grto bend through 90 degrees
in Pitch and Yaw directions, as shown in Figure 1.10. The @t@amof the balls is 2.4mm
and the bending radius is 2.45mm. This kind of joint is easgdwtrol, but at the same
time, it is easily susceptible to spin. Moreover, there isnaxer hole through all ball joints
left for future surgical application.

Merlet et al. designed a PY parallel wrist for micro-macrbabin minimally invasive
surgery [12], where the "macro” part, referring to the cieaktool of endoscope, has a
large workspace with poor accuracy while the "micro” padntely the wrist, has small
workspace with high accuracy. The wrist shown in Figure Ividich is put at the end of
the endoscope, has 3-DOF: 2 rotation DOF around Pitch andaX&nand one translation
along z axis. If we do not take translation into account, thistwcan be regarded as a

2-DOF PY wrist.
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&
P = Teflon tube

Figure 1.12: 2-DOF wire-driven bending mechanism [13]

Figure 1.12 shows a 2-DOF bending mechanism designed byrNaka et al., for
laparoscopic surgery [13]. The upper figure is the structirthe wrist and the lower
ones show the example of forceps’ motions. The wrist, whictiriven by four stainless
steel wires, provides 2 additional DOF of Pitch and Yaw begdiompared with previous

forceps manipulator. The ranges of bending motion are frandD degrees.

Awtar, et al. presented a 3-DOF RYP end effector for a MIS {@d] in Figure 1.13.
The MIS tool is designed to be attached to the surgeon’s fioreforming an extension
for hand and arm. The end effector’'s wrist is a wire actuatesthinge output joint in
which the two rotational axes lie in a common axial plane.sMairist is designed to not
only provide a tight workspace but also eliminate outpunfenotion coupling in order
to meet the objective of one-to-one motion mapping betwaenriput and output. The
mechanism’s outer ring is pivoted with respect to the toalfsabout a yaw axis and an
inner ring is pivoted with respect to the outer ring abouttalpaxis. The two ends of the
yaw transmission cable are attached at two diametricalbppsipe points on the outer ring
along the pitch axis while the two ends of the pitch transirssable are attached at two

diametrically opposite points on the inner ring that linealgng the yaw axis.

Figure 1.14 is also an example of 3-DOF RYP wrist by Takahagttal. It is a forceps

11



End-Effector

Tool Shaft

Figure 1.13: 2-DOF wire actuated universal joint [14]

Figure 1.14: 4-DOF forceps manipulator [15]

manipulator that has a roll joint, two bending joints(Yawdaritch joints) and a holder.
The driving part has 4 DOF in total such as linear motions in@F2and one rotation.
The linear motions are converted to bending motions in 2 D@dthe grasping motion
at the end effector by the link mechanism. Each joint in th@ima#ator is actuated by a

pneumatic cylinder, which generates torque using a rackpanadn [15].

The steerable grasper EndoWH$tof da Vinci system from Intuitive Surgical is a
3-DOF RYP mechanism, which was used to restore the degrefreaafom lost in la-
paroscopy by being placed inside the patient and controledrally [16]. The wrist itself
can be rotated along the roll axis and it also has a pair ofgueligular joints (pitch and

yaw), where the pitch joint is a belt-actuated and the yaatestabout hinged pulley [26].

12



Figure 1.15: Endoscopic EndoWnri$t Instruments [16]

It can achieve 90 degrees of articulation, and can executeaalvange of surgical proce-
dures by selecting specialized tip design. Figure 1.15 stibesEndoWrist" with tips of

forceps and needle driver.

Another example of 3-DOF wrist is a RYP manipulator for t@emted laparoscopic
surgery in Figure 1.16 designed by Tadano, et al., which aseipatic cylinders as ac-
tuators in order to provide a force display to surgeons witteoforce sensor because the
cylinders can estimate the external force from the drivimigé and the impedance. The
manipulator has one rolling joint and two bending joints¥and Pitch joints), each of
which is actuated by a pneumatic cylinder. The diameter mriGand the feature of the
forceps is that one bending joint and the gripper are redli#ehe same point, making the

tip compact [17].

Simaan, et al. designed a 3-DOF YPR snake-like manipul it8t25], which consists
of a base disk, an end disk, several spacer disks, one privaakjpone and three secondary
backbones which are made of flexible super-elastic holldgsuas shown in Figure 1.17.
The primary backbone is fixed to both the base/end disks dret epacer disks while the
secondary backbones are only attached to the end disk andaheslide and bend through

holes in the base and spacer disks. The Pitch and Yaw rosat@m be manipulated by
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Jio (Bending and Gripper)

Figure 1.16: Manipulator for laparoscopic surgery [17]

Figure 1.17: 3-DOF YPR multi-backbone snake-like manifmulfl 8]

actively changing the lengths of two out of the three secondackbones. Moreover, a
detachable milli-parallel unit sitting on the end disk poms the Roll rotation and can be
equipped with various tools at the same time, which is driwesuper-elastic wires passing

through the secondary backbones.

SAIT single port access surgical robot has a 3-DOF PYR wastshown in Figure
1.18. The wrist, part of the tool arm, sits at the end of thelgtiibe for surgical tasks such
as suturing and grasping. Each of the wrist joints (pitchtjoyaw joint and roll joint) is

actuated by a pair of wires that originate from the tool aictiupack [5].

Slisbury et al. developed a 4-DOF RPPY wrist for the BlackcBalrobot system [2].
Black Falcon is a 8-DOF cable-driven teleoperator slavéit$, which has a 3-DOF base

positioner, a 4-DOF detachable wrist and a 1-DOF grippee Wiist has Roll-Pitch-Pitch-
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Figure 1.19: 4 DOF wrist for Black Falcon [2]

Yaw joints that the first Roll rotation is about the instrurhgimaft as shown in Figure 1.19.
This wire-driven 4-DOF wrist allows positional redundareyt also has limitations that the
4-DOF structure may occupy too much space while it has dsdlgithe same singularities

as a 3-DOF RPY wrist.
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Figure 1.20: Organization of the work

1.4 Organization and Contribution

In this project, we will model, analyze and design a hybridedgparallel wire-actuated
surgical wrist using universal joint for MIS. A review of e@rch motivation begins the
design process and gives an idea about mechanical desiga.wdeshould notice that in
the analysis process of this project, we use a scaled-uplmdaee the friction is negli-
gible. Moreover, we will present the inverse/direct kinéimanodel, and give validations
using MatLab. Further, we calculate Jacobian matrix andituse foundation to conduct
stiffness analysis, define workspace assuming joints hdugte/finite stiffness and pro-
vide a method to optimize wire tensions. In the last sectiamwill fabricate a prototype
of the wrist and conduct experiments to test the kinematmdahand stiffness model. The

procedures are shown in Figure 1.20.

16



Chapter 2

Kinematics and Statics Modeling

2.1 Nomenclature and Mechanism Analysis

The wire actuated wrist to be designed is a 3-DOF mechanidmghweonsists of a
2-DOF universal joint and 1 rotational joint. Thus it is reded as a serial-parallel hybrid
system, where the universal joint is a parallel mechanistuaded by either 3 wires or 4
wires, and the third rotational joint is serially connectedt. The universal joint has three
parts: bottom hook, cross and top hook, and tel80F will either lie under the bottom
hook (case 1) or sit on the top hook (case 2). In this projeetwll analyze both the 3-wire

and 4-wire mechanisms for each case.

In order to better illustrate the structures, let’'s defineftlames first. In the following
nomenclature, we will name 5 coordinate systems: world dioate systemWCS, or
frame{0}) whose axes arcs, Ywes aNdZycs and origin isOycs, coordinate systerfi} (or
frame{i}, i = 1,2,3,4) with originsO; and axes;,y; andz;. The relationships between
each frame can be expressed using rotation mém'xor homogeneous transformation
matrix 'Tj. Herei and j are notations of framé¢i} and frame{j}. Moreover, we call the
hook height of bottom hook; and the hook height of top hodis.

In case 1, namely the 8DOF lying under the bottom hook, the whole universal joint
rotates together with it. As shown in Figure 2.1 and Figug& @e first define framg0}
(WCS), whose axe&cs, Ywes andzy,cs are fixed in the space and origi@(cs) is coincident
with the center of bottom plate. Framé} (CS;) has its origin translated by, along 2
and is rotated about, by anglea:. Frame{2} (CS;) has the same origin of frame 1 sitting
in the center of the cross and rotates with the cross abosikaxvhile X, remains parallel
to X;. The last coordinate system for case 1 is frgf@k (CS3) which is fixed on top hook.

Og3 is at the center of top plate and frame 3 rotates argynahile y3 remains parallel to
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Unexploded View Exploded View

Figure 2.1: Nomenclature for case 1

Figure 2.2: Nomenclature for case 2

18



A

ya.
In case 2, the third DOF is located on the top hook and fréfrjemaintains the same

orientation as fram¢0} at all times. Since in case 2 there is no rotation at the bateeof
universal joint, frame{1} is fixed not only on the bottom plate but also in space. Frame
{2} and {3} remain the same with case 1, and Frafd¢ (CS) is added to capture the
39 DOF a on the top plate, which coincides with franig} at initial position and rotates
aboutzz. The details of the coordinates can be seen in Figure 2.2kéJohse 1, in case 2
the rotation of the 8 DOF will not affect the pose of the universal joint.

We can see that the number of actuation wires does not havemei on locating
the coordinates. Moreover, in both case 1 and case 2, nomditre the ¥ DOF is
located, it keeps a serial connection to the universal jdihat is to say, it is assumed that
actuations for the universal joint and the rotation joirg aot coupled. We can compute

them separately and then integrate them together in th@afimlfy analysis.
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2.2 Position and Orientation Analysis

In this section, we will analyze inverse and direct kinewstor the hybrid mechanism.
For inverse kinematics problem, the input is the end effécfmosition expressed in world
frame, namely the origin position of fran{@} (for case 1) or that of framé4} (for case
2), and the outputs are wires’ lengthsl,, |3 andl4 as well as the rotation angte, (for
case 1) om, (for case 2) of the8 DOF. For direct kinematics, the wires’ lengtlus, and
a, are given, and we seek to find end effector’s position. Sihedrtput for the ¥ DOF
can be applied on either the top plate or the bottom plate, iWestwdy these 2 cases for
each kinematics analysis. Moreover, in each case, we vallyaa both 3-wire and 4-wire

joint mechanisms.

2.2.1 Inverse kinematics
2.2.1.1 Inverse kinematics analysis for case 1

In case 1 where thé 8DOF lies under the bottom plate, frarfi2} will rotate about
with anglea;. From Figure 2.3 we can see the closed-loop geometry rakitips among
the vectors.b; represents the vector that points from the origin of fraf@ig to the end
of the ith wire on bottom plate. The left superscript indicates therdimate system in
which this vector is expressed and the right subscript sefetheit" wire. Similarly, %a;
refers to the vector pointing from the origin of frafig} to the end of théth wire on top
plate expressed in fram@}. Moreover,%t; and °t, are the vectors pointing froy,cs
to the center of cros®, and fromO, to Oz respectively.%; indicates théth wire vector
connecting the tip of vectofb; to the tip of vector®a;. Herei can either bé = 1,2,3
ori =123 4 which is based on the number of actuation wires. Thus we ¢én the

following loop closure equation:

Obj = %ty + O, + % + 9, (2.1)
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Figure 2.3: Vector loop closure for one actuation wire inechs

If we useOEEpos to present end effector’s position we can rewrite equati@rag:

OR; b = (0R11t1—|— 0R33t2) + OR33%a + I, 2.2)

= %EEpos + *Rs%ai + i

1%l = || °R1*bi — °EEpos — R334 (2.3)

In equation 2.3,Yb; and 3 are fixed vectors, andEE s and °R3 are known as end
effector’'s position and orientation®R; is function of a1, which is the only unknown
parameter in 2.3. Thus we must find the valueaeffirst and then use equation 2.3 to
compute wire lengths. Let us take a look at the structure eittiversal joint. If we call
the rotation angle of framg2} relative to frameg{1} 6; and call the rotation angle of frame

{3} relative to frame{2} 6,, we can used; and 6 to represen®R3. Here we use the

21



product of exponentials formula:
OR3 — eC!]_ 26\ e91 >A(1\ eez S\/é\

caich, —sa186186, —saicB; caySH, + sa1c6,50; (2.4)
= | sai1cB+ca1s6186, caichy  sa1S6; — ca1c6,80,

— 091 892 891 091 092

In Equation 2.4, the letters ands represent short notation faos andsin, respectively.
The iteme® 1, for example, represents a rotation matrix where the umitorex; is the

rotation axis and is the rotation angle. Herg} means the wedge o&; = [u,v,w]":

0O —w v
%=l w 0 -u (2.5)
-v u 0

Moreover, we can presefiR3 by expressing the axes of fran§a} in frame {0}

0 _ ~ N ~
Rs=| %3, Oy3, 0Oz

O Oyax “zax (2.6)

= 0 0

Yy "y

0 0
Y3z 23

0
X3z

Since °R3 is given, we can list several equations to solve@pr8, anda by comparing

2.4 and 2.6:
Oy, = sinG; (2.7)

Oxs, = — cOSB; Sin6,

(2.8)

025, = cosB; costs
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Oy = — sina; cosh;

(2.9)
Oy3, = cosay cosb;
Equation 2.7 presents two sets of possible solution§{dr
Atan2%ys,, /1 — Oy2 ) 4 2kmr (k= 0,+1,42,...)
0 — ’ 3 (2.10)

Atan2(%ys,, —/1— Oy3 )+ 2km (k= 0,£1,42,...)

However, since the joint limit fof; and6; is [-7, — 7], only 1 value is a valid solution for

6,. Then substitutin@; into equation 2.8 can yield a unique solution &r

0

0
X3z Z3;
6, = Atan2 2.11

2 an (—cos@l’ cos@l) (2.11)

Furthermore, we can get values of ginand cosxr1 in 2.9, and the solutions far; are:

0 0
Y3x Y3y
= Atan2 2k (k=0,+1,+2, ... 2.12
a an (—cos@l’cosel)+ m(k=0,+1,42,..) ( )

Moreover, because frame 1 rotates abtigt we can write the expression f8R; directly:

cosa; —sina; O
°Ri=| sina; cosa; O (2.13)

0 0 1

which contains only one variabte;. Finally all items in equation 2.3 are obtained so that

we can calculate the wire lengths.

lwe use Atan2sin(a), coga)) convention in this thesis.
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Figure 2.4: Vector loop closure for one actuation wire inecas

2.2.1.2 Inverse kinematics analysis for case 2

In case 2 where thé 8DOF sits on the top plate, frame 1 is fixed in frame 0, and frame
4 rotates abolitz with anglea; relative to frame 3. Namely, the value @ does not affect
the end effector positio®3 = Oy, but it does affect the orientation, as shown in Figure 2.4.

The vector loop closure equation becomes:

ORllbi = (Otl-l- Otz) + °R33a; + O|i

(2.14)
:OEEpos+ OR33a + 9
In case 2°R; is an identity matrix so thatb; = %b;. The length of thé!" wire:
||O|i | = ||Obi - OEEpos— ORssaiH (2.15)

Here °R3 is unknown. Again, we use the product of exponentials foemalrepresent the
rotation matrix:

0R3 — g1 28e912f39299 (2.16)
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Sincea; = 0 in case 2, the expression fBR3 becomes:

cosB, 0 sinBy
Op. _ 015 B9 _ . . _
R =e""1¢ = | sinB;sin@ cosB; —cosH,sinb; (2.17)

—cosB;sinf, sinB; cosb;cosb,

As mentioned aboveé’2; and %24 remain the same, the last column of 2.17 that represents

025 = [025,2 73,0 73,] is equal td°24 which is already known. Then we have three equations:

0zs sin6,
Ozsy | = | —cosBzsing; (2.18)
Ozs, cosB; cos6,

From the first equation we can list possible solutionsgor

Atan2<023x, 1— Ozgx) 4ok (k= 0,+1,42,...)

Atan2<023x, _J1- Ozgx) 42k (k= 0,41, 42, ..)

Again, considering the joint limit fof,, only one solution 0B, is valid. Substituté, into

6, = (2.19)

equations 01923y and®z;, and we can get a unique value .

0

0
Z3y 232
6, = Atan2 2.20

1 an (—cos@z’ cos@z) ( )

Substituted; and 6, into 2.17 and 2.15, and we can get the wire lengths. So far we ha

already knowr’R,4 and °R3, and we can compute the rotation angleusing:

caLch, —Sa»cHs s6,
ORs = | so0COy +CarsHiSBr COnCO; — SA2S0,50) —CBrS6; (2.21)

Sa»SO1 — ca2cO1S6> casby +saxc0:56,  cO1ch-
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Sinceb;, and 6, are both known, we can easily get the valueder

OX4x o)/4x

cos6,’ cosH

ay = Atan2< ) +2km(k=0,£1,£2,...) (2.22)

2.2.2 Direct kinematics

For direct kinematics, the inputs are wire lengths and tRe@ation anglen; or oy,
and the question is to calculate end effector’s position @amehtation. Unlike previous
analysis, in this section we will analyze the 3-wire meckaniand 4-wire mechanism

separately because the equations can be quite different.

2.2.2.1 Direct kinematics for 4-wire mechanism in case 1

The task for direct kinematics is to find the transformatioatnx °T3. Using the

product of exponentials formula to expre¥s gives:

0T = ge(01,61,6) = ef Ml fgd & 0s(0)

ca1CO, — sa1861S6, —sa1c6;  ca1S8 +sa1€6,56,  hca186, + hsac6,50;
sa1€6, +cay80:86,  caich,  saysB, —caichrs6; hsayisH, — hca1¢6,50; (2.23)
- —cbO1s6> s61 c6,cH, h 4 hc6,c6,
i 0 0 0 1 |

efsd1 eii0 anded? ® represent homogeneous transformations from frafjeto base,

from frame{2} to {1} and from frame{3} to {2} respectively, andy«(0) is the transfor-

mation from frame{0} to {3} in initial condition. Here&/ (i = 1,2,3) is the wedge form

of the twist &, where:

W Vi

& = ;&=

0O O
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w refers to the rotation axis vi = — «wy x Qi (Q; is a vector pointing from the origin of
frame {0} to an arbitrary point on rotation axiy when it is a rotation joint, and; is the

direction of translation when it is a translation joint.

In the following analysis, the angle® and 6, are unknown. Equation 2.1 can be

rewritten as:
i = 1+ 'R3%,+ 'Rsa + 1l (2.25)
Here1b;, 1t1, 3t, and 3a; are fixed vectors, antR3 has two variable$; and6,. When the

lengths of wires are given, we can write 4 equations ferl, 2,3, 4:

1Ml = || (*bi — 1) — 'Ra (3t2+ 3a) | (2.26)

Assumel||%li|| = I, || *bi|| = r1, ||3&]| = ro, and|| 1ty = ||3t2|| = h, and number the four

equations in 2.26 axj;, ed», ez andeqa.

eqy = —f1cos0, — 12 — fo 4 14

e = —f1c0s0; — |§—|— f3+ fa
(2.27)

€0z = —fi1cos6, — |§—|— fo+ fa
eqy = —f1cos0 — 12— f3+ 14
where
fl =2r1iro
fo =2hr1sin6, 4 2hr, cosO; sinds
(2.28)
f3 =2hr,sin6; + 2hr1 cosB, sin6;
f4 =2h?+r2 4+ r2 4 2h? cosB cosb,
Calculatingeq; + eqz — egp — eqs provides:

2 2 2 2

2.29
4r1r2 ( )

cosf, = cosb, +

27



Moreover, calculatingg; — eqs yields:

—12 12— 4hry sin@, — 4hrcosB; sinfs = 0 (2.30)

Substituting Equation 2.29 into 2.30:

u
cosfp = —— +v 2.31
b Sm92+ (2.31)
where
1313
N 4hl’2
2.32
Z2+12-2-1Z 1y (2.32)
V= - =
4rqrp ro

Then substituting Equation 2.31 into $# + cos’ 6, = 1 gives us a fourth order polyno-
mial of sinB,:

kosin® 6 + Ky Sin® 6, + ko Sin? 6 + k3 sinB; + kg = 0 (2.33)

wherek;, i = 0,1, ...4 are functions oh,rq,r2,11,12, 13 andl4:

ko =16n%rir3

ky =0

ko =h21T — 2n?1215 + 2h21215 — 2h?1513 + 8h?12r2 + h?13 — 2h2I515 4 2h?1213 » s
—8h213r2 + h?I3 — 2h?1217 4 8h?13r2 + 21 — 8h213r3 + 16h%r] — 16h%r2r3 (239

ks =2hlfry — 2h1213r; — 2h1212r + 8hl2r3 + 2hi313r, — 2hi3ry 4 2hi312r, — 8hi3r3

kg =19r2 — 20212r2 - 15r2

Equation 2.33 has at most 4 solutions for&inFor each si, there should have been 2
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sets of solutions fo6s.

Atan2(sinB, /1 —sir? 6,) + 2kt (k=0,+1,+2, ...)
6, = (2.35)

Atan2(sinBz, —/1—sir? 6;) + 2kt (k= 0,+1,+2, ...)

However, because the range@fand 6, is within [—Z, Z], only 1 solution is valid. Thus
6, has at most 4 solutions. Further, we can use Equation 2.26c2n(h 2.36) to solve for

cosB; and sird; respectively, and finally, get a unique value &r
2h? 12415 —12 — 2coshyrara + 2hrosind; + 2 coshy costh? + 2coshy sinfihry =0 (2.36)

6, = Atan2(sin6y,cosd;) (2.37)

Thus the direct kinematics problem has at most 4 solutiotstai.

2.2.2.2 Direct kinematics for 4-wire mechanism in case 2

The task for direct kinematics in case 2 is to find the tramsédion matrix°T,4. Let's

use the product of exponentials formula to expréEs

OTa = ga(61, 02, 0p) = &% Bre¥2 el 2 g4 (0)

caschr —sa2c6, s6, hs6,
Sa2CO1 +Cca2s01S0>  carch — saxs61s6, —cBs6; —hchrsh; (2.38)

Sa»S6; — cach186, casby +sarch:86, c6,c6, h+hcbichb

0 0 0 1

o> is known. we need to figure out the values #arand 6, to solve the direct kinematics

problem. Equation 2.1 can be rewritten as:

ORllbi = ORlltl-l- 0R33t2+ 0R33a; + O|i (2.39)
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Figure 2.5: Four solutions for direct kinematics problendafire mechanism in case 1

where®R; is an identity matrix,1b;, 1t1, 3t,, 3a; are fixed vectors, anfR3 has 2 variables
6, and 6,. Since the lengths of wires are given, we can use it to list¥aggns fori =

1,2,3,4:

190l = 11 (*bi — *t2) — °Rs (Ct2+ %ay) | (2.40)

We can find that Equation 2.40 has the same expression in ¢as® does the proce-
dures of solving equations fd#; and 6,. After solving these equations we substitute
6, and 6, into Equation 2.38 to computfT,4. Here we are going to use an example
to demonstrate that the direct kinematics problem of 4-wirist may have 4 solutions.
Suppose thdt = 33.85mm, I, = 20.07mm, I3 = 35.57mm, |4, = 49.34mm, anda; =0 in
case 1 andxr, = 0 in case 2. The results are shown in Figure 2.5 and Figure The.
end effector positions for these four poses in case 1/-ai®.73,13.10,27.62 mm with

61 = —56.67, 6, = —34.38°, [-5.95,13.85,30.57)mmwith 6; = —50.14°, 6, = —18.24°,
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Figure 2.6: Four solutions for direct kinematics problendafire mechanism in case 2

[0.9951,14.10,31.70)mm with 6; = —48°, 6, = 3° and [—15.68,10.34,22.86] mm with
6, = —-7456°, 6, = 55.63.
The end effector positions for these four poses in case 2-&ré88 6.39,18.25 mm,

[—1.99,16.36,28.45 mm, [7.04,15.81,26.84 mmand[12.83,13.57,22.51]mm.

2.2.2.3 Direct kinematics for 3-wire mechanism in case 1

In this subsection, Equations 2.23 and 2.26 remain the sacepefori = 1, 2, 3 instead
of i = 1,2,3,4. Since in case i1 is already known, we will use 2.26 to calcul@gand
B,. Again, let's assume thgli|| =1, || *bi|| = r1, || 3a|| =2, and| *t1|| = || 32| = h, and
number the three equations in 2.26egs, e, andeqs. The difficulty for this subsection is
solving the three polynomial equations. We will use resutanethod to find solutions for

6, and6,. First,eq;, eqe andegs can be expressed as:
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eqr =F1 + 2h%c61c05 — 2hr cO156, — 12 — 2r1roch, — 2r1hsh,
et =F1+Fo+F3—13 (2.41)
etg =F1+F2—F3—13

where:

Fi=2h"+ri+r13

F=— % cosf; — % cost, + hr1 sin6, + 2h? cosd; cosb, + hr, cosb; siné, (2.42)

F3 =Vv/3hr,sinf; + v/3hr1 cosB, sinb; + ?rlrzsinel sinB,

In eg; we usey/1— sir? 6; to replace co8;. The reason why we do not replace Ggsvith
++/1—sir? 6; is that the joint limit for; is [—Z, %], and in this range 061, cosf; has

non-negative values. Thus eql becomes:
(2h%cO; — 2hrosBa) /1 — 2601 = 12 — 13 — 15— 2h2 4 2rarpcly + 2r1hsl,  (2.43)
Further, we square on both sides of 2.43 and get:
(2h?cB, — 2hrps0,)%(1— §201) = (12 —r2 — 3 — 2h% 4 2r1rcB, 4 2r1hshy)?  (2.44)
Moreover we can write 2.44 as a second order polynomial:

f0(62)%% + f1(62)x+ f2(6:) =0 (2.45)
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where

X =Ssin6y
fo(8,) = —(2h?cH, — 2hr,s6,)?

(2.46)
f1(62) =0

fo(62) = (2h%cO, — 2hrs0,) — (12 — 15 — 12 — 2h? + 2r1r,c0, + 2r1hsBs)?

In 2.46, the parameters and fy are both functions 06,. We will do the same thing on

(eqp — eqgs), which can be expressed as:

—12 413+ 21/3Nrps60; + 2v/3hr1C6,5601 + v/3r1r2s6;56, = 0 (2.47)
and further we write it as a second order polynomial:
00(62)X° +g1(62)X+g2(62) = 0 (2.48)
where

X =Sin6y

90(92) = 1212@(1— 5292) — (\/§r1r2362+ 2\/§hr2)2

(2.49)
01(62) = (V3rarzs8, +2v/3hr) (122 - 13?)
92(62) = —(15—15)?
Multiply x on both sides of 2.45 and 2.48, and we will get two more eqosatio
fo(62)%3 + f1(82)X% 4 f2(82)x =0 (2.50)
00(62)%° + 1(62)X° + g2(62)x = 0 (2.51)
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Equations 2.45, 2.48, 2.50 and 2.51 form a homogeneous kystem:

0 fo(62) 0 f2(62) x3 0
0 go(62) Gi(62) Ga(B2) | || |0
fo(B) 0  f(8) O X 0 (2.52)
| 90(62) 01(62) Q2(62) O || 1] |O]
D

The necessary and sufficient condition for a non-trivialiioh of Equation 2.52 idet (D) =

0. Using this condition we can get ath®rder polynomial 0i.:

kosin® 6, + ky sin” @ + ... + kysinB, + kg = 0 (2.53)

Herek;,i = 0,1,2,...,8 are functions of constanksrq,ro,l1,l2 andlz. 2.53 has at most 8
solutions for sirB,. For each sifk, only 6, within [—g, g] is valid. Then substituté, into

2.47 and get the unique solution féy.

2.2.2.4 Direct kinematics for 3-wire mechanism in case 2

In this subsection, The 3-wire mechanism'’s transformatiaitrix has the same expres-
sion with 2.38 containing variables 6f, 6, anda,, and 2.40 remain the same except for
i=1,2 3instead of =1, 2,3, 4. After listing the 3 equations we found that the expression
for eq; eqy andegs are exact equations in 2.41. Thus, we can use the same presddu
solve the direct kinematics problems of case 2 as we haveidaase 1.

Here we will also demonstrate that the direct kinematic fgnwbof 3-wire mechanism
may have 8 solutions for both cases. Suppokirg29.68mm, [, = 41.7mm, I3 = 40.10mm
anday = 5 for case 1 andr, = 7 for case 2. The results are shown in Figure 2.7 and Figure
2.8.

The end effector positions for these eight poses in case 082 —17.71,25.83 mm,
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Figure 2.7: Eight solutions for direct kinematics probleh3avire mechanism in case 1

0.98,4.22,37.50/mm, [0.95, 5.84, 37.06] mm, [0.92, 7.15, 36.58) mm, [0.92, 7.18, 36.57]mm,
0.91,7.73,36.33mm, [0.42,17.75,25.76]mm, and[0.41, 17.76, 25.75/ mm.

2.2.3 \Validation of Inverse and Direct Kinematics

In this section, we will validate the models of inverse anecli kinematics by assigning
values for variables:

h=19mm, r1 = 18mm, r2 = 18mm (2.54)

Moreover, values fof; and 6, are selected from-Z to § evenly with certain step off,
while a1 = a; = g In the following validations, we should have 8 situatioosliscuss:
inverse kinematics of 4 wires/3 wires in case 1/case 2 argtdkinematics of 4 wires/3
wires in case 1/case 2. However, the validation procedur8sare mechanism is almost

the same with the 4-wire’s. Thus we will only give detailedbysis for 4-wire wrist but
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Figure 2.8: Eight solutions for direct kinematics probleh3avire mechanism in case 2

will show final results for both 3-wire and 4-wire’s.

2.2.3.1 \Validation of Inverse Kinematics in case 1

For inverse kinematics, end effector’s positi@:‘aEpos and orientatior’R3 are given.

We need to compute joint values using models in previousasecand compare those

calculated values with the reference ones. The detailezkproes is shown in Figure 2.9.

First, select values fo#,, 6, € [—g, g], anda; = g; then use them to calculabeE pos

and %R, which are regarded as kinematically consistent inputshésame time, compute

wire lengths as reference for comparison, writtetyds, 13 andl4. Then use inverse kine-

matics modelEEpos and °R4 to computedy, 6, anddy, as well as wire length, I, (3 and

I4; finally, compare the reference and the calculated jointesl

The result of the comparison can be shown in figure 2.10 arid Erbm these two fig-
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ures where the reference values are shown using "O” and tbelated values are using
we can see that all theare almost coincident with "O”, and the greatest error betwhe
reference and calculated values i4211x 10~14, which can demonstrate that the model

for inverse kinematics is correct.

2.2.3.2 Validation of Inverse Kinematics in case 2

The procedures of validating inverse kinematics in casalrnigst the same with case 1.
The only alteration is that we select value tor= g instead ofa;. The results are shown
in Figure 2.12 and 2.13. Again we can see from the figures tretriverse kinematics

model works well.

2.2.3.3 \Validation of Direct Kinematics in case 1

For direct kinematics, the inputs are wire lengths ancnd we need to compute end
effector’s positiorEEqs. The detailed procedures are shown in Figure 2.14.

Similar to inverse kinematics, we first select values@pand 6, ¢ [—’g, g], a;= g; then
usefdy, 6> anday to calculateEE s as reference and compute wire lengths as inuits |3
andls; what's more, use direct kinematics model, wire lengths @ntb obtain values of
6, and 8, and again get the calculated end effector posiEEm,os; finally, compare those

reference and calculated values of end effector's postiddere we plot the results in
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Figure 2.12:
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Figure 2.14: Procedures of direct kinematics validation

polar coordinate system where the radius represents thangle, and the azimuth angle
represents the direction of tilt. And we have the same dafmfor polar coordinate system
in the following analysis.

Figure 2.15 and 2.16 show the end effector’s position in potordinate where the
radius represents the tilt angle. Here "O” is to indicaterefice values andto indicate
calculated values. We can find that all the "O” andre coincident which means the direct

kinematics model in case 1 is correct.

2.2.3.4 Validation of Direct Kinematics in case 2

Based on the procedures in case 1, we repéace 7 with a> = 7 in case 2. Figure
2.17 and 2.18 showing the comparison results demonstatéhidirect kinematics model

is correct.
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Figure 2.17: Direct Kinematics Validation of 4 wires mecisamin case 2 (Unit: degree)
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Chapter 3

Instantaneous Kinematics

For a robot manipulator, the Jacobian matrix, or simply Baoois defined as the matrix
that transforms the joint rates in the actuator space to #edter velocity [27]. In our
project, it is difficult to calculate directly the completacbbian for the 3-DOF hybrid
mechanism, 2-DOF universal joint with another rotation@mMeither sitting on the top
plate or lying under the bottom plate. We should notice tiatatter where the'8 DOF
is placed, the expression of "partial” JacobihHere we use the tilde to indicate that it
is a partial item) for the 2-DOF universal joint is unchangeeen though the "complete”
Jacobian) expressions are different. Based on this, we split the caatipn into two parts.

In the first part, we compute the "partial” Jacobidand then in the second part, we add

the "serial” part to it to form a complete Jacobian

3.1 Partial Jacobian Calculation

In this section, we will use two methods, the virtual work hoet and loop closure
kinematics method to calculate In the first method, we use the virtual work principle
that total work done by the applied forces of a mechanicdksyss it moves through a set
of infinitesimal virtual displacements is zero, to acquhre telationship between external
wrench and input actuations, namely the transpose of Jatoli the second method, we
use the geometric relationship to deduce the relationshjpirt velocity to end effector
velocity, that is, the Jacobian. Since this 2-DOF universathanism has three or four
inputs, J should be a % 2 (3 actuation wires) or 4 2 (4 actuation wires) matrix. No
matter which method we use, the result should be the same=dver, because there is no
significant difference between 3-wire and 4-wire mechanistarms of Jacobian analysis,

we assume the wrist has 4 actuation wires by default.
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Figure 3.1: Nomenclature for the virtual work method

3.1.1 Partial Jacobian Derivation Using the Virtual Workthtzd

This method follows the approach of Hamid et al. [28]. Firgt meed to define some
vectors. We denote forces in the wiresras (i = 1,2, 3,4) and the external moment acting
on the end effector as a 2-dimension vechleg = — 2Wee = [PMex, Mgy T, Where?mey
and2mey represent projections diWes along X2 and ¥, respectively expressed in frame
2. According to the virtual work method, for any arbitranfimitesimal chang&6, and
06, the sum work of all wrench applied on the mechanism shouldl @éus we have the

following equation expressed in frarg@}:
4 T
0= (2\7Vext+ eri ><7'vvi> (861%%2+ 66,%9>) 3.1)
i=

where?r; is the location of thé'™" wire anchor point in framég2}. Substitute?Weq USINg

?Mex -2 Mgy and we get:
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0= "M, 2mey}T 56170+ [PMex, 2mey}T 56,79,
+ (zrl X 2TW1)T (591 2§(2+ 06, 2)72) + (2r2 X ZTWQ)T (5912;(24- 06, 2)72) (3.2)

+ (2r3 X 27‘w3)T (661 2%+ 562 2)72) + (2f4 X 27‘w4)T (5912>A<2+ 06> 2)72)
Using the following definition ofri for the tension in thé" wire:
Twi = TWi Ti, I - 17 27 374 (33)

wherel; is the unit vector of thé" wire. Rewriting 3.2 in matrix matrix gives:

Aoy 2ee 251
Twa (3.4)
— (Zrl X Zil)T Zf(z — (2I’2 X Z[z)T 2)’22 — (2r3 X 2T3)T 25\(2 — (2r4 X 2T4>T 25\(2 Tw2
—(%rix ZT1)T 29, —(Prox 212)T 29, —(°rax 2T3)T 29, —(Prax 2|A4)T %9, Twe
T
BZ><4 N e )
Tw 4x1

We can see that Equation 3.4 provides us with the project@tnixfrom external moment

to joint forces. Combined with the parallel robot Jacobiafirdtion in statics, we have:

T 2%
A2 BoxaTivax1t = “Wee 2x1
(3.5)

25T 2%
J' Twax1 = “Wee 2x1

where?J is given by:

2J 2 (BT )4x2A2:2 (3.6)
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Then we can get the expression of output hook’s angular igloc
23 25,3/1 = Ow (3.7)

231 = 23" Gu (3.8)

Here 23" is the pseudo inverse 8. & = [I1,l2,13,14] represents a4 1 vector represent-
ing wires’ velocities wherd is the velocity of wire joint, and‘cbm/n means a X 1 vector

referring to the angular velocity of frammarelative to framen expressed in framie

3.1.2 Partial Jacobian Derivation Using the Loop Closunegfatics Method

The geometric relationship is shown in Figure 2.3. In PositAnalysis, we have ob-
tained Equation 2.1 and the following analysis will be basedhis equation but expressed

in frame 2:

%y = 2ty + %o+ %8+ % (i=1,2,3,4) (3.9)
2R1'bi = 2Ry 't1 + 2R3>tz + ?Ra3a + 2l (3.10)

Taking the derivatives on both sides of 3.10 results in:

2(4)1 X zbi = 2(,01 X 2t1 + 2w3 X 2t2 + 2(4)3 X Zai + ZTi . |.i (3.11)

Here %w; is short for zwi/z referring to angular velocity of frame i relative to frame 2

expressed in frame 2. Then dot-multiply both sides of 3.1mm'yvector2Ti.
AT ~\T ~\T T -
(2bi X 2|i) zwlz (2t1 X 2|i) 2w1—|— (2t2 X 2|i) zwg—i— (zai X 2|i) 2w3—|—|i (3.12)

SinceZw; = [—1;0;(0 - 6, and 2w3 = [0;1;0 - 6, We can rewrite 3.12 into matrix form:
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(Pbyx A1) ZRo— (A1 x A1) e (Pox A1) 2+ (Parx 21) %
(%2 x Ziz)T 2% — (%1 x ZAz)T %% (P2 ZTZ)T 29, + (%ag x ZTZ)T 2 20,
(?b3 x 2T3)T 2% — (%1 x 273)T % (P2 x 273)T 29, + (2ag x ZTB)T 2 20,
i (%by x 2@4)T 28, (2{1X 2‘4)T 2, (%2 2‘4)T 29+ (24 x 2‘4)T 29, | _2&"3/1
Asxz
] S : (3.13)
1 000 I
0100 I
- |loo0o10 I3
0001 lq
Byys Gw 4x1
Namely:
T 2~ -
BxaA4x2"w3/1 = Qwax1
(3.14)
24x2%@3)1 = Gwax1
Thus we get:
23 = Blua- Aaxz (3.15)

After comparison we find that the two expressions are the s@ilmenext step is to add the

"serial” part toJ to form a complete Jacobian of the hybrid mechanism.

3.2 Jacobian Calculation for the Whole Mechanism

When calculating the complete Jacobian, we need to anabs® T and case 2 sepa-
rately because the expressions are different. In case 3'¥OF lying under the bottom
plate , the end effector’s angular velocity in world frame te& expressed as:

0 0 . 0 . QW
wz/o= w31 (Gw) + wio(d)=J | (3.16)
O
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Let's see the details of 3.16 and get:

0 0 0
wg/p = w31+ Wi1/0

2..
w3/1 .
=Ry | | 4 Ozt
0 (3.17)
23t ¢
J'q ..
=R, e R, 2200
0

Hereq refers to the angular velocity of thé¥3DOF. Then we need to combirig, andqj;

together to form a completg in world frame for the hybrid manipulator.

23t ¢
J' Quw .
Ows0 = Rz + 2200y
0
R 3.18
Ji1 Jip diz Jig “20x 4 ( )
_0 gt 3t gt o2 "
="Ra| 3 3 I3 Iy ‘2o g
.

0 0 0 0 ?z

The variables ofi],,J.,, ..., 3}, are items in?3", and[?zo,? 20,2 20) represents the vector

of 22, that is, 2o expressed in framg2}. So the complete expression of Jacobian is:

Y I Y
23t 220 VRPN PR
_0 _0 S L L
J="Rz oy | = R | 3y Jpp 333 33y P29y (3.19)
0 2z 0 0 0 0 2z,

In case 2,24 is coincident withzz. The end effector’s angular velocity in world frame can
be expressed as:
o‘-b’4/1 = o‘-b’:s/l (Qw) + o‘-04/3 (ar)

| & (3.20)
o
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Further we have:
0 _0 0
Wyl = "W3z/1t+ W43

20;31 .
=R, / + 0230,
0 (3.21)
23t ¢
J' qw a
=Ry + °R2 %230
0
So the complete expression of Jacobian is:
2 1 3 1t 2
23t Z3x Jin Jip iz iy 2
1="R, 2y | =°Re| 3, 3, 3y 3, %z (3.22)
0 2z 0 0 0 0 2z

Here [zzsx,zzsy,zz;;z] is the vector of23, namelyzs expressed in framg2}. By comparing
these two expressions of Jacobian, we can see that the @irstdtumns of these two cases
are the same. The last columns, which present the conwibatithe 39 joint to the angular

velocity of end effector, are different due to differentatodn axes in these two cases. After

computing the expression df we have the following relationships:

J3x505x1 = X3x1 (3.23)

(JT)5><3 Wee 3x1 = T5x1 (3.24)

g = [ 9w, gr] contains all the input velocities, andrefer to end effector’s angular velocity.
T represents actuations including wire tensions and one mbapplied on the 'S DOF,
and wee is end effector's wrench. Moreover, in the following senspwe make use of two
sub-matrices of] which are associated with the wire controlled wrist. Thet fingitrix is

defined as the first four/three (based on the number of achgtcolumns of]. Here we
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use four wires as an example, and the matrix can be written as:

gt 5t 5t
Jin Ji2 iz i
o= Re | 3y 5, Ty 3 (3:25)

O 0 O O

The second matrix is the 4 by 3 Jacobian for parallel wristesged in framg0}, which

is defined as:

~

242 °R, (3.26)

(]
°
(>

o O O O

3.3 Conclusion

In this part, we first use two methods, virtual work method kagh-closure kinematics

method to analyze the Jacobian expresdfor parallel robot. The results of these two

methods are the same, which demonstrates the correctnéesaf Then use the equation

of end effector’s velocity to get complete Jacobiay partitioning items of joint space

velocity. Moreover, we also defind,, as velocity relationships between end effector and

wires, andJp as Jacobian for parallel robot expressed in frg@gefor later use.
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Chapter 4
Stiffness And Compliance Analysis

In the course of the calculation of wrist workspace for wineging finite stiffness we
make use of the wrist compliance. We therefore present iffreests and compliance model

in this chapter.

4.1 Parallel Robot Stiffness

The stiffness of parallel robot is defined as:

AW, =KAB (4.1)

In equation 4.1 A0 is the alteration of position/orientatiody W, represents the corre-
sponding change of external wrench, dtdlenotes the stiffness matrix. In this project,
AB = [ABX,AQ,,AGZ]T which is the deflection of end effector’s orientations in kspace;
AWe = [Mgy, Mgy, Mez]T, the change of external moments, and for each kgrn K, we
have:

i 2 G = g O3, = g |90 @2
HereJ, is the Jacobian expression for parallel robot, which is @efim Equation 3.26 in

Chapter 3. The subscripter j means thé" or ' row of J]. Let us expand equation 4.2

and get:
_d
~ do;

(D] = 2 0], S

— 4.3
d@j I d@j (4.3)

kij
The first item on the right side of Equation 4.3 is called attiffness and the second

passive stiffness [29]. Let us expand the passive stifffiests

dr _omda  Omd%  0mudm
do; - 0qy 00, 09206; 0 06

(4.4)
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We can see that the iten% ,‘;EW are rows of joint stiffnesk g, andgg]%, ,gg“ are just

the jt" column of Jacobian matrix. Thus equation 4.3 can be writgen a

d(3}),

dé; "t (Jp); Ka (Jp)! (4.5)

kij =

d(J}).

Referring to the active stiffness ter B L 1w, the vectorry is a 4 by 1 vector representing
wire tensions, and before we iIIustrai%J;"j—)‘, we should first defint‘ajd%E as a 3-dimension
matrix which consists of 3 "layers”. On each layer is a 2-dusien matrix%‘T?,j =XY,Z
Thus ( T)' means theth row on thejth layer. Based on the analysis of active stiffness

and passive stiffness, we can write thiecolumn ofK as:

. dJT
(K)) = ﬁTW—i—JTKd Ip)] (4.6)
J

Moreover, since the active stiffness is relatively smathpared with passive stiffness ac-
cording to Simaan, et al. [29], we neglect the active item asd passive stiffness to

approximatek, that is:

koo Kxy Kz
K=31Kadp=| kx ky kg (4.7)
kxx Kzy Kz
And the external moment can be expressed as:

The coefficientk; affects the robot reaction infor a perturbation inj direction. Figure

4.3, 4.4 and 4.5 shows the contourskgf, kyy andkz for 4-wire mechanism. Figure 4.6,
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Figure 4.1: 4-wire parallel robot dimensions

Table 4.1: 4-Wire Parallel Robot Dimensions

Item Symbol| Dimension
Top platform diameter Dtop 40mm
Bottom platform diametef Dpgttom 40mm
Wires separation distance Ryire 18mm
Wires separation angle| f34 o9
Hook heights h 19mm

4.7 and 4.8 are stiffness contours for 3-wire wrist.

In these simulations, we assuntégl = IN/mmfor each wire and the robot dimensions
are give in Figure 4.1 and Table 4.1 for 4-wire mechanism,levfar 3-wire robot the
dimensions are given in Figure 4.2 and Table 4.2.

These figures can give us a more intuitive sense of the stgtn&s we have explained,
coefficientsky, kyy, kz present the extent to which the robot react in directions gfand
z due to perturbations in x, y and z respectively. Moreovercan also see that the 4-wire

mechanism has higher stiffness than 3-wire wrist.
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Figure 4.2: 3-wire parallel robot dimensions

Table 4.2: 3-Wire Parallel Robot Dimensions

Item Symbol| Dimension
Top platform diameter Dtop 40mm
Bottom platform diametel Dpottom 40mm
Wires separation distance Ryire 18mm
Wires separation angle| 33 120
Hook heights h 19mm
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Figure 4.3: Stiffness contours kf from 4-wire mechanism(unit:N/mm)
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Figure 4.4: Stiffness contours kf, from 4-wire mechanism(unit:N/mm)
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Figure 4.6: Stiffness contours kf from 3-wire mechanism(unit:N/mm)
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4.2 Hybrid robot compliance

The stiffness of the hybrid wire-actuated manipulator istdbuted by both the cable
stiffness and the internal forces in the system which referable tensions [30]. Because
the procedures that derive the stiffness model are the sarather 4 wires or 3 wires,

again we will only discuss the 4 wire mechanism.

In this project, the wrist is a hybrid parallel-serial meeisan so that compliance ma-
trix should be used in stiffness modeling. That is, what watwa find is the relationship

between end effector torque and displacement as:

CAWee3x1 = AX3x1 (4.9)

Here C is the compliance matrix for the hybrid wrist aldks, 1 is defined afdxX3.1 =

[ABX,ABX,ABX]T. Since we have the relationship between joint actuatiossd wee as:

S L (4.10)

Taking the derivative ofve on both sides:

;
or O tdT (4.11)
OWee OWee

If we neglect pre-load, equation 4.11 can be approximateityem as:

AT =3 TAWee (4.12)

which, namely, is the first order approximationof= JT wee. Moreover, equation 4.12 can

be expanded to:

AT = J"AWee = Ky 54500541 = Kg 5><5‘er;><3AX3x1 (4.13)
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Here Kq 5«5 = diag([kwi, sz,km,km,kr]T) is the hybrid joint space stiffness, in which
kni = Eil—iA"(i = 1,2,3,4) is the stiffness of wire ank is the stiffness of the' DOF input

joint. Then we can derive the following equation from eqoa#.13:
J3x5 K g, 590, A Wee 3x1 = AXax1 (4.14)
So the expression for compliance matrix is:
Caxsz = JaxsKgt, 58,3 (4.15)

The expression fod was given in Equation 3.19 and 3.22 depending on where thesact

revolute joint is positioned.

59



Chapter 5
Workspace Analysis

This chapter will analyze the workspace of wire actuatedensial joint mechanism
based on the analysis of Jacobian and stiffness/complibwased on the work of Hamid
and Simaan [28]. We will first explain how we define workspaa@] then come up with
methods for computing both the workspace supposing thavittes have infinite stiffness
and finite stiffness. Second, for various dimension conétjans, we calculate the maxi-
mum tilt angles for each one to give a sense of workspace casopa At the end of this

chapter, we will give methods for wire tension optimization

5.1 Workspace Analysis with Infinite Stiffness Wires

In Equation 3.24, not every solution far is feasible for an arbitrarily oriented/ee.
Because wires are used, the valuerpi = 1,2,3,4 must be nonnegative. When no such
positiveT exist, it is impossible to hold the robot in static equilibri at that configuration
[31]. For equation 3.24, we need to extract a sub-equatianathly contains relationships
between wire tensions and end effector wremgh, which is the first four lines of equation
3.24.

JI, means partial, containing only the first 4 rows of the hybrid robot Jacobiahich

was defined in Equation 3.25 in Chapter 3. The solution foeéqn 5.2 can be written as:

Tw= Twp+A Tuh (5:3)
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Figure 5.1: Example of 4-wire wrist workspace with infinytettiffness wires in polar co-
ordinate system (unit: degree)

where 1y,p is the particular solution ane, is the homogenous solution which is in the
null space of Jy,) " Ifthere is a left null vector of JVT\,)T with strictly positive components,
then the robot can achieve static equilibrium. A nonsingadefiguration is kinematically
fully constrained if and only if there is a left null vector ()ﬂ\,T\,)T with the property that
each of its components is positive [31]. That is to say, ireotd guarantee tensions in the

wires, the components af,, must have the same sign [28].

Figure 5.1 is an example of workspace given a certain cordigur in which the di-
ameters of both top and bottom plate are 40mm and hook heigtrmm. In this polar
coordinate system, the length of radius represents thermamimagnitude of tilt angle in
that direction. Moreover, the workspace, namely the marintilt angle will vary when
we change the ratio of height over top diameter or the ratibatfom diameter over top
diameter. As a comparison, Figure 5.2 shows the workspaea Wte wrist actuation has
only three wires which are evenly arranged around centey. axiom these two figures
we can find that 4-wire wrist can achieve greater tilt angle laawve larger workspace than

3-wire wrist.

Moreover, we should also take physical collision into cdesition when calculating

workspace. Basically the collision will happen when upplateand lower plate touch
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Figure 5.2: Example of 3-wire wrist workspace with infinjtettiffness wires in polar co-
ordinate system (unit: degree)

each other. In this case, the maximum tilt angle of end edfesttould be:

(5.4)

— min(DIOpa Dbottom)
B= n—2Atan2< 2 height

In order to get reasonable design atlas, we use various iftiei ght / Dpottom @ndDiop/Diottom
when calculating maximum tilt angles. Then we get the sapeosed result when consid-
ering both wire tensions and physical collision, as showRigure 5.3. Again, as a com-
parison, Figure 5.4 shows the workspace when the wrist hatiatioon wires. We can see

that the two figures are similar.
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Figure 5.3: Superimposed workspace of 4 wires wrist whesidening both wrench clo-
sure and physical collision
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Figure 5.4: Superimposed workspace of 3 wires wrist whesidening both wrench clo-
sure and physical collision
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5.2 Workspace Analysis with Finite Stiffness Wires

In the previous section, we compute workspace assuming hais infinite stiffness
joints. However, since wires have relatively higher exieitisy than other actuation meth-
ods, it is critical to take finite stiffness into account whealculating wrench closure
workspace [28]. Thus in this section, we will modify the wsplace in previous section
based on the stiffness/compliance model.

We can calculate alterations in joint space when given iceggternal wrench using
compliance matrix. Moreover, we can also know the directwbiere the wrist has the least
stiffness by finding the greatest eigenvalue’s eigenveaftGr According to these qualities,
we can modify the workspace obtained in the previous section

The reason why we need to modify workspace is that when wefiaike stiffness of
wires into consideration, the location of end effector wilbbably be changed to an in-
valid position where one cannot guarantee tensions in atlidres. Thus the recalculated
workspace must make up for end effector’s deflection.

However, it is not easy to get accurate modified workspacaussthe system stiffness
depends greatly on Jacobian and moreover, the expressidecobian varies according
to different configurations. But we can still get a reasoaagproximate result assuming
adjacent positions have same Jacobian expressions amdaxteench is small enough.
Here we use two methods to get an approximate workspace.urpese of the two method
is the same, that is, to subtract the variation from origmatkspace for a given external
torque. In the first method, we calculate the variation faxeoand assume Jacobian expres-
sion is constant while in the second method, we split theatian into several steps and

recalculate the Jacobian for each step. The procedureddirsh method is listed below:

1. We calculate initial workspace supposing that wire iséiffs is infinite;

2. For each point in the workspace, compute the compliandexvand the greatest

possible deflection of end effector’s position;

64



Workspace Compliance Maximum
Infinite Stiffness Wires Matrix Deflection

+ N\ -

» <

finite Stiffness Wires

[ Modified Workspace ]

Figure 5.5: Procedures of workspace calculation in method |

3. Subtract the alteration from initial workspace to get #pproximation of "real

workspace. We need to be careful that it is not simply justraghion.

From the formation of compliance matrix we can know that effecéor wrenchA Wee 351
refers to moments in X, Y and Z directions and joint space defle Axs.; refers to a
small rotation about a fixed axis where the orientation ofdkis is the unit vector of
AX3y1 and the rotation angle is the norm®&ks. 1. Thus we can use the rotation matrix in
Equation 5.5 to help revise workspace. In Equation 5.5,0réatv, w| is the unit vector of

rotation axis anda is the rotation angle.

W+ (V+w?)cosda  uv(1—cosda)—wsinda uw(1l—cosda)+vsinda
R=| uv(1-cosda)+wsinda  V?+(uP+w?)cosda  w(1—cosda)—usinda (5.5)
uw(1—cosda) —vsinda w(1—cosda)+usinda W2+ (U2 +V?) cosda

The first two steps are the same in method Il. But for step 3¢ausof supposing constant
Jacobian and computing Jacobian only once, we diigénto "small” parts and recalcu-
late Jacobian and external wrench for each step separaben subtract the displacement
each time until the sum of "small” variations equéix. Figure 5.6 is an example of
workspace comparison whéeight /Dtop = 0.5, Dbottom/Dtop= 1, the norm of external
force is 5N - mm, stiffness of wires is il /mm. Figure 5.7 is the result of workspace using

second method with the same structure configuration as &6t
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Figure 5.6: Comparison of 4-wire workspace with infinitdfess wires (left) and finite
stiffness wires (right) in method | in polar coordinate gyst(unit: degree)
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Figure 5.7: Comparison of 4-wire workspace with infinitdfeiss wires (left) and finite
stiffness wires (right) in method Il in polar coordinate &y (unit: degree)
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Figure 5.8: Comparison of workspace boundaries using ndethgeft) and method Il
(right) in polar coordinate system (unit: degree)

In order to see the difference clearly between these two adsthtwo boundaries of
workspace are plotted in Figure 5.8. For a 3-wire wrist, #eilts can be seen in Figure 5.9
(method I), Figure 5.10 (method II) and figure 5.11. In botwi8 and 4-wire simulations
we can see the two methods have almost the same results.

From these comparisons we can see that it is not sufficienbisider only wrench
closure when analyzing workspace because wires must hatee dtiifness which makes
actual feasible workspace areas smaller. Moreover, by aompworkspace when wires
are of different stiffness as shown in Figure 5.12, we cantfiadithe smaller wire stiffness
can result in greater deduction from work closure workspace

We also scan various ratio combinationshefght /Dyottom @nd Dop/Dpattom, and get
the modified maximum tilt angles when assuming finite stégwires, as shown in Figure
5.13 and 5.14 for 4 wires and 3 wires respectively. From th&sdigures we can find that
when assuming finite stiffness wires for both 4-wire and 3ewmechanism, the maximum

tilt angles that the wrist can achieve are similar.
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Figure 5.9: Comparison of 3 wires workspace with infinitéfiséiss wires (left) and finite
stiffness wires (right) in method | in polar coordinate gyst(unit: degree)
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Figure 5.10: Comparison of 3 wires workspace with infinitérstss wires (left) and finite
stiffness wires (right) in method Il in polar coordinate &ya (unit: degree)
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Figure 5.11: Comparison of 3 wires workspace boundariesgusiethod | (left) and
method Il (right) in polar coordinate system (unit: degree)
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Figure 5.12: Comparison of 4-wire workspace (left) and 8wrorkspace (right) for wires
of various stiffness in polar coordinate system (unit: éeyr

69



100

40

maximum tilt angles

80

B0

Workspace analysis

Hei ghUDmm

/|
Dlop' Dbotton‘

Figure 5.13: Superimposed workspace of 4-wire wrist assginite stiffness wires

100

80

60

40

maximum tilt angles

20

Workspace analysis

s
i
B
=
o A e T
2 S
:‘:-:--‘- S

R s
:':’::’.’-'5‘3:3" i
e

S
e
TR

S

Figure 5.14:

0.5

HeighUDmm 0 o

70

/|
D[op' Dbo[[on‘

Superimposed workspace of 3-wire wrist assgiinite stiffness wires



5.3 Wire Tension Analysis

In order to provide rational design atlases, we need to make that wire tensions’

magnitudes are within reasonable range.

From equation 5.1 we can see that the wire tensions depenadogffector torque and
expression of Jacobian. Moreover, we can use equation @ppmximately express the

relationship of magnitudes betweety and wee:

W;JWJ\TVWee: Tv-\l; Tw (5.6)

Here 1) T is actually the sum of wire tensions’ squares, but in a sersean use this item
to represent the sum of wire tensions. In this case, the esiees of J,, J, indicate the
scaling factor betweejhwee|| and|| 7w||. Thus when external torque is given, the maximum

eigenvalue ofl,, J], will set an upper bound for wire tensions.

In order to choose proper scaling factors, we find out the mam eigenvalues of
JwJy, for each ratio pair configuration: ratio of height over baitplate diameter and
ratio of top plate diameter over the bottom. In every confijon, we scan the whole
workspace and take the average of maximum eigenvalues espitesentative of that ratio
pair. Figure 5.15 and Figure 5.16 show the results of avenagemum eigenvalues for
4 wires wrist and 3 wire wrist respectively, and smaller eslimean better performance,

indicating smaller scaling factors from end effector motrierwire tensions.

However, it is not sufficient to choose smaller maximum eigdure to optimize wire
tensions. It is also very important to use isotropy as gater evaluate the performance of

static manipulability. Here we define isotropy by using mseecondition numbeﬂg.

=

1_amn

K Omax

P

Omin andomax represent the minimum and maximum eigenvalué\,(,)ﬁ\Tv respectively. Ac-
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Figure 5.15: Maximum eigenvalue for 4-wire wrist
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cording to Klein and Blaho [32], condition number indicaties uniformity of the Jacobian
transformation with respect to direction. That is to sayegiexternal torquevee with
certain magnitude, the mog"g approaches 1, the less,’s magnitude will change due to
alteration ofwee’s direction. The value o,% is very important to wire tensions’ optimiza-
tion because iﬁ is very small, a tiny alteration of external wrench'’s dirent even though
the magnitude stays the same, may cause great change intemsiens. We again scan
the whole workspace for each ratio pair and get the averdgesvaf% as shown in figure

5.17 for 4-wire wrist and figure 5.18 for 3-wire wrist whergher values are preferred.

Moreover, in order to properly control the wrist within wepgace, we need to find the
"smallest”A for each point that can guarantee tensions in wires. Siniegred wrench is
given, | can get both specific and homogenous solutions &gjogtion 5.2. The purpose is
to compute A” to make the result of equation 5.3 positive. Thus if all o fivst four/three
elements ofry are positive, A can be assigned O; if not, we will figure out the values
of A for each wire and select the one with maximum absolute valienwould be the
"smallest” A for that point within workspace. The procedure is listed ablé 5.1. An

example of wire tensions is given when external torque ¥ I@m. Simulation results
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Figure 5.18: Inverse Condition Number for 3-wire wrist

Table 5.1: Calculation of minimum wire tensions and coroggpngA

If all 4 items of 7, are positive

If not all 7, are positive

A =0,

%:p

it 7p(1) <O, | if 7p(1) > O,
Aiy==2L | A@)=0

A =max(A()) (i = 1,2,3,4)

show that most tensions are within reasonable range exaepé¥eral points sitting on the

workspace edges near singular position. The maximum wiseda for 4-wire mechanism

is around 600 N and for 3-wire wrist is around 800 N, as showfigire 5.19 and 5.20.
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Figure 5.19: Example of wire tensions for 4-wire wrist wittworkspace when external
moment is 1N - mm
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Chapter 6

Experimental Validation

6.1 Experimental Setup

This chapter presents the design, fabrication and conitesl experimental setup meant

to validate our kinematic and static models.

6.1.1 Prototype Design and Manufacture

In this section, we manufactured a prototype of wire-aedgtarallel wrist with uni-
versal joint for experiment. This mechanism which has 4 @aa wires is simplified
compared with that in theory work that we did not add the 3tdtron joint on it. The real
photo of the experiment is shown in Figure 6.1 and Creo maxfdéle setup can be seenin
Figure 6.2, where the left figure is the whole setup for thestyicluding actuation parts,
the base, the wrist and NDI trackers, and the right figure iexgatoded view of the wrist
mechanism. The actuation parts consist of four Velmex tiséides, Maxon motors and
linear potentiometers. The Velmex slides driven by RE16 dfamotors convert rotary
motions into linear motions. The potentiometers can retloedslides’ position for opera-
tions such as joint control and homing. Actuation wires amenected to the spring fixed
on Velmex slides so that the slides can control wire lengtrectly. The reason why we
use springs for connection is that springs can provide pdsdor the wires. Moreover, the
wires’ stiffness are thus dominated by spring&ifre > Kspring, @s shown in Equation 6.1

and 6.2.

Fex = Kuire&X%w = Kspring&Xs
(6.1)

K .
AXs = wire AXy
Kspr ing

HereFey is the force applied on the "wire-spring” systeKire andKspring represent
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Figure 6.1: Experiment setup for wire-actuated wrist witliversal joint

Maxon Linear Velmex linear
motors potentiometers slides

‘ Wrist ‘ ‘ Base ‘ ‘ NDI markers‘ ‘ NDI tracker |

Figure 6.2: Creo Models of assembly for experiment setuip) (fend exploded view of
wire-actuated wrist with universal joint (right)
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wire stiffness and spring stiffness respectively, wiilg, andAxs are the displacements of

the wire and spring. Thus, the final stiffness of the systeoan be expressed as:

 Axg+ DXy
KuwireAXw

" B+ = 62)

Kd

Kspri ng

Kspri ng
1 Kwire

In our experiment setuKspring = 1.72N/mm. The Young’s Modulus of teflon wire is
E = 0.5GPa, the cross-sectional arda= 0.0628nn? and initial wire length_g = 118mm.

Thus the stiffness of the wire is

EA
0

According to 6.2, the stiffness of "wire-spring” connectis approximately equal tspring:

Moreover, the wrist is fixed on the base. Four pulleys are ssaedhange wires’ di-
rections for convenience of control. Two NDI markers (Markand Marker 11) and one
optical measurement camera are used to track the positiboréantation of end effector.
Marker I is fixed in base as a reference marker, and Markeriidkvis installed on top plate

can record the relative position and rotation from itselftarker I.

6.1.2 Real-time Control Using MatLab xPC

The setup for the experiment is borrowed from project of kaBmake developed by
Andrea Bajo and Long Wang, and the control code and statefi&innulink was designed

by Long Wang and Nima Sarli. The control part is executedgiditatLab xPC Target,
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|Universal Wrist Control- © 2016 Nima Sarli, Long Wang, Zhangshi Liu & Nabil Simaanl
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Figure 6.3: Stateflow of universal joint wrist controller

which is a host-target prototyping environment providedigtLab. The reason why we
use xPC Target is that we can implant the kinematics mod&lsSmmulink and Stateflow
to enable rapid real-time testing.

The control system consists of a host machine and a targetingac The host ma-
chine is where the controller is built in Stateflow, implaimdématics model and modify
the control parameters. The target machine is in charged# egecution and information
communication with encoders, potentiometers and servditeng, etc. Figure 6.3 shows
the structure of the whole control system.

In the figure we can see the controller mainly consists of fuacks: Trajectory Plan-
ner, Low-level Controller, Universal Joint Wrist and ScepéVe will next make a brief

illustration for each block:

» The trajectory planner is a high-level controller thatgess data from such as mo-
tor encodes, potentiometers and user-input desired eect@fforientations, etc., to
acquire desired joint values. Then use fifth order polynbmiarpolation method
to calculate real-time joint values and output them to thve-llevel controller. This
block has 4 modes: mode 0, mode 1, mode 2 and mode 3. When medetivated,
the robot will maintain the current joint configuration. M®oé 1 is for homing pro-
cedure that moves the robot to a pre-defined homing positiomode 2 is selected,

we can control the joint space directly and thus it can be tséekt direct kinemat-
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Figure 6.4: Structure of trajectory planner in controller

ics model. Moreover, mode 3 is for validation of inverse kiratics that desired end
effector’s orientation is imported into the "task spaceddi, and the block outputs

corresponding calculated joint values. The scheme is slioWgure 6.4.

The low-level Controller is the PID controller, which apte the desired joint values

and outputs the control signal.

The Universal Joint Wrist block in Figure 6.3 acts like ateiface between con-
trollers and target machine. It transfers the control di§ean Low-level Controller
to D/A card. Atthe same time, it receives digitalized encedmd potentiometers’

signals as inputs for controllers.

The last block "Scopes” shows the current status of jointies control signals,

sensors, etc. on one computer screen.

Moreover, we also make a MatLab GUI for the control part ofégkperiment in figure 6.5.
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Figure 6.5: MatLab GUI for control system

6.2 Validation of Inverse Kinematics

In this section, we will test the inverse kinematics of thestvr The input is a given
orientation of end effector in the form of quaternion as ot#d from an optical tracker.
The controller will output the corresponding motor consiginals to the amplifiers to drive
the motors. At the same time, signals from the encoders arehfpometers which record
joints’ positions and velocities will be sent back to xPC ttoher as feedback. Finally,
when the feedback shows that the actual joint values eqealdkired ones, we compare
the Theoretical wire lengths and actual wire lengths meakhy caliper. The procedures
can be shown in figure 6.6.

The results are shown in Table 6.1 and plotted in Figure 6.7.
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Figure 6.6: Procedures for experiment of inverse kineraatididation
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Table 6.1: Experiment Results of Inverse kinematics (unit)

Quaternion

Theoretical Wire Lens

Actual Wire Lens

Errors

© 00 N oo 0o b~ w N P

[EEN
o

[0.884, -0.268, 0.136, -0.358
[0.978, -0.208, 0.010, 0.007
[0.921,-0.161, 0.284, 0.215
[0.913, -0.234, 0.191, -0.274
[0.930, -0.222, -0.045, -0.291
[0.960, -0.183, -0.160, -0.13§
[0.887, -0.255, 0.170, -0.346
[0.941, -0.150, 0.298, 0.053
[0.959, -0.177, 0.222, -0.014
[0.967,-0.186, -0.129, -0.118§

] [43.1, 47.33, 26.14, 22.05
[36.38, 37.80, 38.21, 36.8(
[20.82, 39.60, 48.58, 29.8(

1139.66, 47.89, 30.65, 22.4§

1[45.98, 41.04, 25.52, 30.44

1[44.23, 34.60, 28.90, 38.51

1[41.86, 48.13, 27.13, 21.0(
[26.63, 44.41, 44.23, 26.44

1[31.35, 44.24, 41.16, 28.27

1][43.14, 35.43, 30.47, 38.1§

[42.55, 47.57, 24.75, 20.82
1[36.53, 37.20, 37.25, 37.31
1[19.82, 39.33, 48.41, 28.9¢
1[39.36, 48.64, 28.68, 21.0¢
3][46.15, 41.07, 25.55, 29.3§
][44.11, 32.80, 27.17, 38.68
1[40.97, 48.55, 26.01, 19.7¢
11[26.69, 44.93, 43.54, 24.75
11[31.67, 45.34, 40.34, 27.1(
4][43.65, 34.13, 28.90, 38.67

1[-0.55, 0.24, -1.39, -1.23]
] [0.15, -0.60, -0.96, 0.51]

][-1.00, -0.27, -0.17, -0.84]
)][-0.30, 0.75, -1.97, -1.39]
] [0.17,0.03, 0.03, -1.10]

][-0.12, -1.80, -1.73, 0.16]
)][-0.89, 0.42, -1.12, -1.21]
] [0.06, 0.52, -0.69, -1.69]
][0.32,1.10, -0.82, -1.17]
'] [0.51, -1.30, -1.57, 0.49]

Table 6.2: RMS Error of Inverse Kinematics (unit: mm)

Wire 1 | Wire 2

Wire 3

Wire 4 | Overall

RMSE

0.5115] 0.8741

1.2093

1.0759| 0.9547




6.3 Validation of Stiffness Model

In this section, we will verify the stiffness model of the stti Since we cannot use
experiments to acquire stiffness/compliance matrix diyethe end effector’s displacement
will be used to evaluate the model. The inputs for this paimitial end effector’s position
and orientation, as well as external moment applied on the&t vand the output is the end
effector’'s position after deflection. The external momenpioduced by a 500g weight
applied on a fixed point on top plate.

The detailed procedures are illustrated in Figure 6.8 kKifstll, before adding the
weight to the system, we record the position and orientadioand effector. Then ap-
ply the moment and get the new end effector position by psicgsiata from NDI tracker.
At the same time, we use MatLab to compute the theoreticalteeaccording to previous
theory work. Finally, we compare the theoretical resultd arperiment results in Table

6.3 and in Figure 6.9.
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Comparison of theoretical and measured wire lengths (mm)
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Figure 6.7: Comparison of wire lengths for inverse kinegsatialidation
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Figure 6.8: Procedures for experiment of stiffness vailat
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Table 6.3: Comparison of simulation and experiment resattstiffness validation (unit: mm)

Initial EEpos

NDI EEpos

Cal EE pos

EEpos Error

0o N o o b~ W N R

[3.6747,9.5413, 33.0947]
[-1.7313, 7.9118, 34.7244]
[-7.8545, 7.5485, 3.6678]
[-8.8840, 4.6238, 34.7273]
[-6.8048, -4.3606, 35.3499
[-8.8843, -6.3621, 33.6760
[-9.1245, -9.1724, 32.2234
[-4.0902, -12.2696, 32.3223

[3.7313, 8.4284, 33.7425]
[-1.1563, 5.9023, 35.8445]
[-7.3012, 6.2523, 34.5697]
[-8.4469, 3.4470, 35.0684]
[-6.9810, -2.8768, 35.6112
[-9.0284, -4.8673, 34.1410
[-9.2246, -7.9415, 32.7559
}][-4.1633, -10.9862, 33.1506

[5.0209, 9.2065, 34.1735]
[-1.0169, 7.2460, 35.8470
[-7.7788, 6.7711, 34.2859
[-8.7365, 3.2202, 34.8840
[-7.1549, -1.9410, 35.8068
[-8.9968, -3.9617, 34.5842
[-9.0422, -6.8066, 33.5977
][-4.5135, -10.0520, 3.8123

[1.2896, 0.7781, 0.4310]
| [0.1394, 1.3438, 0.0025]
][-0.4776, 0.5188, -0.2839]
| [-0.2896, -0.2268, -0.1844]
] [-0.1738, 0.9357, 0.1956]
] [0.0316, 0.9056, 0.4433]
] [0.1824, 1.1349, 0.8418]

] [-0.3501, 0.9342, 0.6617]

Table 6.4: RMS Error of Stiffness Model (unit: mm)

Position X y

z Overall

RMSE | 0.5222

0.9075

0.4585| 0.6599




End effector position in polar coordinate system
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Figure 6.9: Comparison of end effector positions for s&éffa validation (Unit: degree)

6.4 Experiment Conclusion

The inverse kinematics experiment data shows that the lasttealengths match the
theoretical values well. The mean error is 0.5mm, which iBuald.4% of average wire
length of 35.72mm. The maximum error is -1.97mm, th&8ire in the 4" orientation,
which is about 84% of its corresponding reference value 30.65mm. The maisare for
this greater error is probably the deflection during measerdgs using caliper because the
springs connected to wires are easy to change lengths. Memesmme measuring positions
are difficult to be reached by caliper which may also have tngaffects on the accuracy.
Last, there are still some other reasons such as manufagtemiors, measurement errors,
etc.

The data of end effector position acquired in stiffness d@rpent also matches the
theoretical values well. The mean error is 0.6527mm, whigerhaximum error is 1.56mm
iny of the 6" position. Besides the deflection that we have discussedénse kinematics

experiment, another main reason for the error is that thexg Ine some error when we
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calculate the norm and direction of the applied external emm
Generally speaking, the experiments have demonstratddweese kinematics model

and stiffness model, which also indirectly prove that theolb&an calculation is correct.
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Chapter 7

Conclusion

This thesis presented an investigation into the modelingioématics, statics and
wrench closure workspace for wire actuated parallel roldtsa constraint leg comprised
of a universal joint. The concept of wrench closure workspaas been known in the lit-
erature of wire actuated robots. Generally, the modelinghéworks do not account for
wrench closure workspace restrictions due to wire extensidis thesis has built on an
earlier exploration of the concept of wrench closure of wactuated robots with elastic
actuation wires (Hamid and Simaan [28]). The thesis haspted instantaneous kinemat-
ics modeling frameworks using virtual work principle andngsloop closure constraint
method. Both inverse and direct kinematics of wire actuat@dersal joint wrists with a
revolute joint at the base or at the moving platform have beedeled and validated by
simulation. The inverse kinematics method has been validatso by experiments. A
model of the stiffness of these wrists has been presentexd lmasprior art in the literature
of parallel robots [29]. This model has been used to definevileech closed workspace
while accounting for maximal deflections subject to a nomtided load on the wrist. The
method relied on the use of the compliance matrix of the lipfmibot comprised of a paral-
lel two degrees of freedom wrist attached in series to a megbint. Using singular value
decomposition of a sub-matrix of the overall Jacobian oftylerid robot we were able to
define the safe workspace boundaries of the wrench closukespace such that even when
the wrist deflects due to external norm-bounded force theireapent of wrench closure
is still maintained. The analysis also compared the efféasing three or four actuation
wires on the kinematics, statics, wrench closure workspackstiffness. Results suggest
that using four wires provide one degree of actuation rednog that can be explored for

enhancing stiffness and for enlarging the wrench closurkspace. These results can help
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guide the design of wire actuated parallel robots and salrgirallel wrists.
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Chapter 8

Appendix

8.1 MATLAB Code for Inverse Kinematics

8.1.1 Inverse Kinematics for 3-Wire Mechanism

% This code is to verify inverse kinematics 3 wires case 1

% Inputs: EEpos and R03

% Outputs: 11 12 I3 and alphal

% 20160127 Zhangshi Liu

clc;
clear;

close all;

initialization_3wires_casel_inverse,

nl = length(thetal);
n2 = length(theta2);
n3 = length(alphal);

thetal_cal_set = [];
theta2_cal_set = [;
alphal_cal_set = [;
wire_lengths = [];

wire_lengths_cal = [];

for i1 =1: nl
for 2 = 1: n2

%set for
%set for
%set for
%set for

%set for

for i3 = 1. n3

storing
storing
storing
storing

storing

97

%initialization

calculated values for thetal
calculated values for theta2
calculated values for alphal
reference values for wire lengths

calculated values for wire lengths



% Use configuration Direct kinematics to calculate RO3
RO3 = [cos(alphal(i3)) * cos(theta2(i2)) - sin(alphal(i3))
* sin(thetal(il)) * sin(theta2(i2)),
-sin(alphal(i3d)) * cos(thetal(il)),
cos(alphal(i3)) * sin(theta2(i2))
+ sin(alphal(i3)) * cos(theta2(i2)) * sin(thetal(il));
sin(alphal(i3)) * cos(theta2(i2))
+ cos(alphal(i3)) *sin(thetal(il)) * sin(theta2(i2)),
cos(alphal(i3d)) * cos(thetal(il)),
sin(alphal(i3)) * sin(theta2(i2))
- cos(alphal(i3d)) * cos(theta2(i2)) * sin(thetal(il));
-cos(thetal(il)) * sin(theta2(i2)),
sin(thetal(il)), cos(thetal(il)) * cos(theta2(i2))];
RO1 = rotr([0;0;1],alphal(i3));

% vectors of the wires

11 in0

RO1 «tl_inl1 + RO3 =t2_in3 + RO3 =al_in3 - ROl bl inl;
I2.in0 = RO1 =#tl1_inl + RO3 «t2_in3 + RO3 =a2_in3 - RO1 =b2_inl;

I3 in0 = RO1 =*tl in1 + RO3 *t2_in3 + RO3 *a3 in3 - RO1 =*b3 inl;

% norms of wires

1 = norm(I1_in0);
2 = norm(I12_in0);
I3 = norm(I3_in0);

wire_lengths = [wire_lengths, [I1, 12, I3]7;

% Use Inverse kinematics Model to calculate thetal cal,
% theta2_cal and alphal_cal

thetal cal = asin(R03(3,2));

thetal cal set = [thetal cal_set, thetal cal];

theta2_cal = asin(-R03(3,1)/cos(thetal_cal));
theta2_cal _set = [theta2_ cal_set, theta2_ cal;

sin_alphal = -R03(1,2)/cos(thetal_cal);
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end

cos_alphal = R03(2,2)/cos(thetal_cal);

alphal_cal = atan2(sin_alphal, cos_alphal);

alphal_cal_set = [alphal_cal_set, alphal_call;
end

end

%store all the calculated angle in one set

angles_cal_set = [thetal cal_set; theta2_cal_set; alpha 1 cal_set];
[m,n] = size(angles_cal_set);
for i =1:n

% use configuration inverse kinematics to calculate wire le ngths

end

fig =

RO1 _cal = rotr([0;0;1],angles_cal_set(3,));

R12 cal = rotr([1;0;0],angles_cal_set(1,));
R23 cal = rotr([0;1;0],angles_cal_set(2,i));
RO3 cal = R0O1 cal *R12 cal *R23 cal;

11 in0_cal = RO1_cal *tl inl + RO3 _cal +t2 in3 + RO3_cal
- RO1 _cal *bl inil,;

I2_in0_cal = RO1_cal *t1 inl + RO3 _cal *t2 in3 + R0O3 cal
- RO1 _cal *b2 ini;

I3 _in0_cal = RO1_cal *t1 inl + RO3 _cal *t2 in3 + R0O3 cal
- RO1 _cal *b3 ini;

11 _cal = norm(l1_in0O_cal);

12_cal norm(l2_in0_cal);

norm(I3_in0_cal);

I3 _cal
% store calculated wire lengths in a set

wire_lengths_cal = [wire_lengths cal, [I1_cal, 12_cal, |

1

% draw comparison result of reference wire lengths and calcu

drawwirelengths_3wires(wire_lengths, wire lengths ca I,fig)

99
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*a2 in3 ...
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3 calll;
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% Initialization for verification 3 wire case 1 inverse kine matics

% Zhangshi 20160115

% set limits for angles
angle_max = pi/3;

angle_min = -angle_max;

% set steps within angle limits

stepl = pi/10;

step2 = pi/10;

thetal = angle_min:stepl:angle_max;

theta2 = angle_min:step2:angle_max;

alphal = pi/2;

alpha2 = pi/2;

angle = 120/180 =pi; %wire distribution on plates.
h = 19; %hook height

ri = 18; %Dbottom radius

r2 = 18; %top radius

t1_in1 = [0;0;h]; % vector t1

t2_in3 = [0;0;h]; % vector t2

al_in3 = [r2;0;0]; % position of wire 1 on top plate

a2_in3 = [r2 =*cos(angle);r2 * sin(angle);0]; %position of wire 2 on top plate
a3_in3 = [r2 =*cos(-angle);r2 * sin(-angle);0]; %position of wire 3 on top plate

bl in1 = [r1;0;0]; % position of wire 1 on bottom plate

b2_in1 = [r1 =cos(angle);rl * sin(angle);0]; % position of wire 2 on bottom plate
b3_in1 = [r1 =*cos(-angle);rl * sin(-angle);0]; % position of wire 3 on bottom plate
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function drawwirelengths_3wires(wire_lengths, wire lengths ca I, fig)
[m,n] = size(wire_lengths);

figure(fig)

% first wire

subplot(3,1,1);

x = 1n ;

plot(x, wire_lengths(1,:), 'O ); % use O to present reference values
hold on

plot(x, wire_lengths_cal(1,:), "x'); % use * to present calculated values
ylim([0,60])

ylabel(  'Wire 1 Len' )

title(  'Comparison of reference and calculated wire lengths (mm)' )
% second wire

subplot(3,1,2);

plot(x, wire_lengths(2,:), ‘0" ),
hold on

plot(x, wire_lengths_cal(2,:), ")
ylabel(  'Wire 2 Len' )

% third wire

subplot(3,1,3);

plot(x, wire_lengths(3,:), ‘0" ),
hold on

plot(x, wire_lengths_cal(3,:), ")
ylabel(  'Wire 3 Len' )

legend( 'Reference'’ , 'Calculated' );

xlabel( 'Number of times for validation' )

end

8.1.2 Inverse Kinematics for 4-Wire Mechanism
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% This code is to verify inverse kinematics 4 wires case 1

% Inputs: EEpos and R03

% Outputs: 11 12 13 14 and alphal

% 20160127 Zhangshi Liu

clc;
clear;

close all;

initialization_4wires_casel_inverse,

nl = length(thetal);
n2 = length(theta2);
n3 = length(alphal);

thetal_cal_set = [];
theta2_cal_set = [;
alphal_cal_set = [;
wire_lengths = [];

wire_lengths_cal = [];

for i1 =1: nl
for 2 = 1: n2

%
%
%
%
%

for i3 = 1. n3

set for
set for
set for
set for

set for

%initialization

storing calculated values for thetal
storing calculated values for theta2
storing calculated values for alphal
storing reference values for wire lengths

storing calculated values for wire lengths

% Use configuration Direct kinematics to calculate RO3

RO3 = [cos(alphal(i3))
- sin(alphal(i3))

-sin(alphal(i3d))

cos(alphal(i3)) *

+ sin(alphal(i3))

sin(alphal(i3))

+ cos(alphal(i3))

cos(alphal(i3d))

sin(alphal(i3))

* cos(theta2(i2))
* sin(thetal(il)) * sin(theta2(i2)),
* cos(thetal(il)),
sin(theta2(i2))
* cos(theta2(i2)) * sin(thetal(il));
* cos(theta2(i2))
*sin(thetal(il)) * sin(theta2(i2)),
* cos(thetal(il)),
*sin(theta2(i2))
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- cos(alphal(i3d)) * cos(theta2(i2)) * sin(thetal(il));

-cos(thetal(il)) * sin(theta2(i2)),

sin(thetal(il)), cos(thetal(il)) * cos(theta2(i2))];
RO1 = rotr([0;0;1],alphal(i3));

% vectors of the wires

1 in0 = RO1 =*tl in1 + RO3 *t2 in3 + RO3 +xal in3 - RO1 =*bl inl;

I2.in0 = RO1 =#tl_inl + RO3 «t2_in3 + RO3 =a2_in3 - RO1 =b2_inl;

I3.in0 = RO1 =tl_inl + RO3 «t2_in3 + RO3 =a3_in3 - ROl =b3_inl;

[4 in0 = RO1 =*tl in1 + RO3 *t2_in3 + RO3 *a4 in3 - RO1 =*b4 inl;
% norms of wires
1 = norm(I1_in0);
2 = norm(I12_in0);
I3 = norm(I3_in0);
[4 = norm(l4_in0);
wire_lengths = [wire_lengths, [I1, 12, I3, 14]];
% Use Inverse kinematics Model to calculate thetal cal,
% theta2 cal and alphal_cal
thetal cal = asin(R03(3,2));
thetal cal _set = [thetal cal set, thetal cal];
theta2_cal = asin(-R03(3,1)/cos(thetal cal));
theta?_cal_set = [theta2_cal_set, theta2_cal];
sin_alphal = -R03(1,2)/cos(thetal_cal);
cos_alphal = R03(2,2)/cos(thetal_cal);
alphal_cal = atan2(sin_alphal, cos_alphal);
alphal_cal_set = [alphal_cal_set, alphal_call;
end
end

end

%store all the calculated angle in one set

angles_cal_set = [thetal cal_set; theta2_cal_set; alpha 1 cal_set];
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[m,n] = size(angles_cal_set);

for i = 1:n

% use configuration inverse kinematics to calculate wire le

RO1 cal
R12 cal
R23 cal
RO3 cal

rotr([0;0;1],angles_cal_set(3,));
rotr([1;0;0],angles_cal_set(1,i));

rotr([0;1;0],angles_cal_set(2,));
= R0O1_cal *R12 cal *R23 cal;

11 in0_cal = RO1_cal *tl inl + RO3 _cal +t2 in3 + RO3_cal

- RO1 _cal *bl inil;

I2_in0_cal = RO1_cal *t1 inl + RO3 cal *t2 in3 + R0O3 cal

- RO1 _cal *b2 ini;

I3 _in0_cal = RO1_cal *t1 inl + RO3 _cal *t2 in3 + R0O3 cal

- RO1 _cal *b3 ini;

4 in0_cal = RO1_cal *t1 inl + RO3 _cal *t2 in3 + R0O3 cal

- RO1 _cal *b4 ini,;

11 cal =
12 _cal =
I3 cal =
14 cal =

% store

norm(l1_in0_cal);
norm(l2_in0_cal);
norm(I3_in0_cal);
norm(l4_in0_cal);

calculated wire lengths in a set

wire_lengths_cal = [wire_lengths cal, [I1_cal, 12_cal, |

end

fig = 1;

% draw comparison result of reference wire lengths and calcu

drawwirelengths(wire_lengths, wire_lengths_cal,fig)

% Initialization for verification 4 wire case 1 direct kinem

% Zhangshi 20160115

angle_max =

angle_min =

stepl = pi/10;

step2

pi/10;

pi/3;

-angle_max;
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thetal = angle_min:stepl:angle_max;

theta2

angle_min:step2:angle_max;

% alphal = O:pi/2:pi;

alphal = pi/2;
alpha2 = 0;

h = 19;

ri = 18;

r2 = 18;

t1_in1 = [0;0;h];
t2_in3 = [0;0;h];
al in3 = [r2;0;0];
a2_in3 = [0;r2;0];
a3_in3 = [-r2;0;0];
a4_in3 = [0;-r2;0];
bl inl = [r1;0;0];
b2_in1 = [0;r1;0];
b3 inl = [-r1;0;0];
b4 _in1 = [0;-r1;0];

function drawwirelengths(wire_lengths, wire_lengths_cal, fig)
[m,n] = size(wire_lengths);
fig = fig + 1;
figure(fig)

subplot(4,1,1);

X = 1.n ;
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end

plot(x, wire_lengths(1,:), ‘0" );
hold on

plot(x, wire_lengths_cal(1,:), T,
ylim([0,60])

ylabel(  'Wire 1 Len' )

title(  'Comparison of reference and calculated wire lengths (mm)'

subplot(4,1,2);

plot(x, wire_lengths(2,:), ‘o),
hold on

plot(x, wire_lengths_cal(2,:), tw);
ylim([0,60])

ylabel( 'Wire 2 Len' )

subplot(4,1,3);

plot(x, wire_lengths(3,:), ‘o),
hold on

plot(x, wire_lengths_cal(3,:), T,
ylim([0,60])

ylabel(  'Wire 3 Len' )

subplot(4,1,4);

plot(x, wire_lengths(4,:), ‘0" );
hold on

plot(x, wire_lengths_cal(4,:), tw);
ylim([0,60])

ylabel( 'Wire 4 Len' )

legend( 'Reference'’ , 'Calculated' );

xlabel( 'Number of times for validation' )
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8.2 MATLAB Code for Direct Kinematics

8.2.1 Direct Kinematics for 3-Wire Mechanism

% verify 3-wire case 1 (bottom) direct kinematics
% Zhangshi 20160115

clc;

clear all;

syms x real % variable for redundant method

theta2_cal_set = []; % set storing calculated theta2

thetal cal_set = []; % set storing calculated thetal

alphal_set = [; % set storing alphal
ee_pos_cal_set = []; % set storing calculated ee pos
ee_pos_set = []; % set stroing referene ee pos
initialization_3wires_casel direct; %initialization

nl = length(thetal);
n2 = length(theta2);
n3 = length(alphal);
% start calculation
for i = 1nnl
for j = 1in2
for m = 1:n3

% Use configuration direct kinematics to calculate R0O3

RO1 = rotr([0;0;1],alphal(m));
R12 = rotr([1;0;0],thetal(i));
R23 = rotr([0;1;0],theta2(j));
R0O3 = RO1* R12x R23;

% vectors of the wires

1 in0 = RO1 =*tl in1 + RO3 *t2 in3 + RO3 +xal in3 - RO1 =*bl inl;

I2.in0 = RO1 =tl_inl + RO3 «t2_in3 + RO3 =a2_in3 - RO1 =b2_inl;
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I3 in0 = RO1 =*tl in1 + RO3 *t2 in3 + RO3 *a3 in3 - RO1 =*b3 inl;

% get wire lengths as input

1 = norm(I1_in0);
2 = norm(I12_in0);
I3 = norm(I3_in0);

% redundant method to solve equations, x= sin(theta2)

fO

-2 *h"2+(1 - x2)°05 - 2 *h*r2 = x)"2;
f2 =2 *h2*(1 - x2)05 - 2 *h*r2 «x)°2 -

(1172 - r2°2 - 112 - 2 *h2 + 2%rl*r2%(1 - X205 + 2 *rl+hxx)'2;
g0 = (12 *h"2*r1°2) *(1-X'2) - (3705  *rl*r2+x + 2x3°0.5 *h«r2)2;
gl = 2%(3°0.5 #rl*r2«x + 2+3°0.5 «hxr2) «(12°2 - 13°2);

92 = (122 - 13°2)°2;

D =1[0f0 O f2
0 g0 g1 gz2;
fo 0 f2 0O;
g0 g1 g2 0];

eq = det(D); % use det(D) == 0 to solve for x

sol2 = solve(vpa(eq),x);

sol = double(sol2);

sol(sol > 1) = [];

sol(sol < -1) = [];

k1 = length(sol);
theta2_poss = asin(double(sol)); % possible solutions for theta2
for k = 1:k1
if abs(theta2_poss(k) - theta2(j)) <= 0.001
theta?_cal_set = [theta2_cal_set, theta2_ poss(K)];
sin_thetal = (1272 - 1372)/(2 *3°0.5 *h*r2 + ..
2+x370.5 +h=*rl = cos(theta2_poss(k)) + 370.5 *rl xr2 = sin(theta2_poss(k)));
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thetal poss = asin(sin_thetal);

thetal cal set = [thetal cal_set, thetal poss];

alphal_set = [alphal_set, alphal(m)];

% Reference end effector positions

TO3 = |
cos(alphal(m))  =*cos(theta2(j)) -
sin(alphal(m)) * sin(thetal(i)) * sin(theta2(})),
-sin(alphal(m)) * cos(thetal(i)),
cos(alphal(m)) =+sin(theta2(j)) +
sin(alphal(m)) * cos(theta2(j)) * sin(thetal(i)),
hxcos(alphal(m))  =sin(theta2(j)) +
h* sin(alphal(m)) * cos(theta2(j)) * sin(thetal(i));
sin(alphal(m)) * cos(theta2(j)) +
cos(alphal(m))  =*sin(thetal(i)) * sin(theta2(})),
cos(alphal(m)) *cos(thetal(i)),
sin(alphal(m)) *sin(theta2(j)) -
cos(alphal(m))  =*cos(theta2(j)) * sin(thetal(i)),
h* sin(alphal(m)) *sin(theta2(j)) -
hx cos(alphal(m))  *cos(theta2(j)) * sin(thetal(i));
-cos(thetal(i)) * sin(theta2(j)),
sin(thetal(i)),
cos(thetal(i)) * cos(theta2())),
h* (cos(thetal(i)) * cos(theta2(j)) + 1);
0,0,0,1];

ee_pos = T03(1:3,4); % get reference ee pos

ee_pos_set = [ee_pos_set, ee_pos];

break ;

end
end
end
end
end

angles_set = [thetal cal_setitheta?_ cal_setalphal_se t];
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[sizel, size2] = size(angles_set);
for i =1: size2

thetal cal = angles_set(1,i);

theta2_cal = angles_set(2,i);

alphal = angles_set(3,i);

% Using direct kinematics to calculate end effector's posit ions

TO3 cal = |
cos(alphal) =*cos(theta2_cal) -
sin(alphal) =*sin(thetal_cal) * sin(theta2_cal),
-sin(alphal) * cos(thetal cal),
cos(alphal) =*sin(theta2_cal) +
sin(alphal) =*cos(theta2_cal) * sin(thetal_cal),
hxcos(alphal) =sin(theta2_cal) +
hxsin(alphal) *cos(theta2_cal) *sin(thetal_cal);
sin(alphal) *cos(theta2_cal) +
cos(alphal) =*sin(thetal_cal) * sin(theta2_cal),
cos(alphal) =*cos(thetal_cal),
sin(alphal) =*sin(theta2_cal) -
cos(alphal) =*cos(theta2_cal) * sin(thetal_cal),
h*sin(alphal) =sin(theta2_cal) -
hxcos(alphal) *cos(theta2_cal) *sin(thetal_cal);
-cos(thetal_cal) * sin(theta2_cal),

sin(thetal_cal),

cos(thetal_cal) * cos(theta2_cal),
h* (cos(thetal_cal) *cos(theta2_cal) + 1);
0,0,0,1];

ee_pos_cal = T03 cal(1:3,4); % get calculated ee pos

ee_pos_cal_set = [ee_pos_cal_set, ee_pos_call;
end
% draw errors

drawEEerrors(ee_pos_set, ee_pos_cal_set, t1_inl)
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% Initialization for verification 3 wire case 1 direct kinem atics

% Zhangshi 20160115

angle_max = pi/3;
angle_min = -angle_max;
stepl = pi/20;

step2 = pi/20;

thetal = angle_min:stepl:angle_max;

theta2 = angle_min:step2:angle_max;

alphal = pi/2;
alpha2 = 0;
% thetal = pi/3; %Define other two rotational angles

% theta2 = pi/l0;
% alphal = O;
% alpha2 = pi/6;

angle = 120/180 =+ pi;

h = 19;

ri = 18;

r2 = 18;

t1_in1 = [0;0;h];

t2_in3 = [0;0;h];

al in3 = [r2;0;0];

a2_in3 = [r2 =+cos(angle);r2 * sin(angle);0];
a3_in3 = [r2 =*cos(-angle);r2 * sin(-angle);0];
bl inl = [r1;0;0];

b2 in1 = [r1 =*cos(angle);rl * sin(angle);0];
b3_in1 = [r1 =*cos(-angle);rl * sin(-angle);0];

111



% draw figures for ee errors

function drawEEerrors(EE_pos_set, EE_pos_cal_set, t1)

tilt_angle_set = [];
tilt_angle _cal_set = [];
% angle of each actual point expressed in a row
polar_angle = atan2(EE_pos_set(2,:),EE_pos_set(1,:));
% angle of each calculated point
polar_angle_cal = atan2(EE_pos_cal_set(2,:),EE_pos_ca |_set(1,:));
[m,n] = size(EE_pos_set);
for i = 1in
cos_tilt_angle = [0, 0, 1] +*uvec(EE_pos_set(;,i) - t1);
tilt_angle = acos(cos_tilt_angle);

tilt_angle_set = [tilt_angle_set, tilt_angle];

end
for i = 1in
cos_tilt_angle_cal = [0, 0, 1] *Uvec(EE_pos_cal_set(:,i) - tl);
tilt_angle cal = acos(cos_tilt_angle_cal);
tilt_angle_cal_set = [tilt_angle_cal_set, tilt_angle c all;
end
polar_r = (tilt_angle_set) +*180/pi; % r of each point referring to tilt angle
polar_r_cal = (tilt_angle_cal_set) * 180/pi;
polar(polar_angle,polar_r, 'O ); % use O to present reference values
hold on
polar(polar_angle_cal, polar_r_cal, "+'); % use * to present calcualted values
legend( ‘reference values' , 'calculated values' )
titte( 'End effector position in polar coordinate system' )
end

8.2.2 Inverse Kinematics for 4-Wire Mechanism
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% verify 4-wire case 1 (bottom) direct kinematics

% Zhangshi 20160115
clc;
clear all;

syms x real

theta2_cal_set

IE
IE

thetal cal set
alphal_set = [];
ee_pos_cal_set = [];

ee_pos_set = [];

%
%
%
%
%

initialization_4wires_casel_direct;

nl = length(thetal);
n2 = length(theta?);
n3 = length(alphal);
% start calculation
for i = 1.n1

for j = 1in2

for m = 1:n3

% variable for redundant method
set storing calculated theta2

set storing calculated thetal

set storing alphal

set storing calculated ee pos

set stroing referene ee pos

%initialization

% Use configuration direct kinematics to calculate R0O3

RO1

R12
R23

RO3

rotr([0;0;1],alphal(m));
rotr([1;0;0],thetal(i));
rotr([0;1;0],theta2(j));
RO1x R12+ R23,;

% vectors of the wires

1 in0 =
2 _in0 =
I3 in0 =
4 in0 =

RO1
RO1
RO1
RO1

*t1 inl + RO3 +*t2_in3

«tl_in1 + RO3 =t2_in3

*t1 inl + RO3 +*t2_in3

«tl_in1 + RO3 =t2_in3

% get wire lengths as input

1 = norm(I1_in0);
2 = norm(I2_in0);
I3 = norm(I3_in0);
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4 = norm(l4_in0);

% solve for sin(theta2)

u= (32 - 1172)/(4 * h*r2);

v=(»22 + 142 - 112 - 1372)/(4 *rl *r2)- rl/r2;
eq = X4 + (V2 - 1) *X2 + 2=*uxvxx + U2 == 0;
sol = solve(vpa(eq),x);

sol = double(sol)

sol(sol > 1) = [];

sol(sol < -1) = [];

k1 = length(sol);
theta2_poss = asin(double(sol)); % possible solutions for theta2
for k = 1:k1
if abs(theta2_poss(k) - theta2(j)) <= 0.001
theta?_cal_set = [theta2_cal_set, theta2_ poss(K)];
cos_thetal = cos(theta2_poss(k))
+ (1172 + 1372 - 1272 - 14°2)/(4 11 *r2);
sin_thetal = -(2 *h"2 + r1"2 + r2°2 - 1272 -
2xcos_thetal =*rl*r2 +
2xcos_thetal =*cos(theta2_poss(k)) *h"2)/(2 +h*r2 + 2 xcos(theta2_poss(k)) *h+*rl);
thetal poss = atan2(sin_thetal, cos_thetal);
thetal cal set = [thetal cal_set, thetal poss];
alphal_set = [alphal_set, alphal(m)];
% Reference end effector positions
TO3 = |
cos(alphal(m))  =*cos(theta2(j))
- sin(alphal(m)) * sin(thetal(i)) * sin(theta2(j)),
-sin(alphal(m)) * cos(thetal(i)),
cos(alphal(m))  =*sin(theta2(j))
+ sin(alphal(m)) * cos(theta2(j)) * sin(thetal(i)),
hxcos(alphal(m)) = sin(theta2(j))
+ h=*sin(alphal(m)) * cos(theta2(j)) * sin(thetal(i));
sin(alphal(m)) * cos(theta2(j))
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end

end
end

end

angles_set = [thetal cal_set;theta2 cal_setalphal_se

+ cos(alphal(m))

cos(alphal(m))
sin(alphal(m))

- cos(alphal(m))
h* sin(alphal(m))
- h xcos(alphal(m))

-cos(thetal(i))
sin(thetal(i)),
cos(thetal(i))

h* (cos(thetal(i))
0,0,0,1];

ee_pos = T03(1:3,4);

* sin(thetal(i))

* cos(thetal(i)),
* sin(theta2(j))

* cos(theta2(j))
* sin(theta2(j))
* cos(theta2(j))

* sin(theta2(j)),

* cos(theta2())),
* cos(theta2(j)) +

ee_pos_set = [ee_pos_set, ee_pos];

break ;

end

[sizel, size2?] = size(angles_set);

for i =1 : size2

t];

thetal cal = angles_set(1,i);
theta2_cal = angles_set(2,i);

alphal = angles_set(3,i);

TO3 cal = |
cos(alphal) =*cos(theta2_cal)
- sin(alphal) * sin(thetal_cal)
-sin(alphal) * cos(thetal cal),
cos(alphal) =*sin(theta2_cal)

+ sin(alphal)  *cos(theta2_cal)

hxcos(alphal) =sin(theta2_cal)
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+ hxsin(alphal) *cos(theta2_cal)

sin(alphal) *cos(theta2_cal)

+ cos(alphal) =sin(thetal cal) * sin(theta2_cal),

cos(alphal) =*cos(thetal_cal),

sin(alphal) =*sin(theta2_cal)

- cos(alphal)  =*cos(theta2_cal) *sin(thetal_cal),

h*xsin(alphal) *sin(theta2_cal)
- h xcos(alphal) =cos(theta2_cal)
-cos(thetal_cal) * sin(theta2_cal),

sin(thetal_cal),

cos(thetal_cal) * cos(theta2_cal),
h* (cos(thetal_cal) * cos(theta2_cal) + 1);
0,0,0,1];

ee pos_cal = T03_cal(1:3,4); % get calculated ee pos

ee_pos_cal_set = [ee_pos_cal_set, ee_pos_call;
end
% draw errors

drawEEerrors(ee_pos_set, ee_pos_cal_set, t1_inl)

% Initialization for verification 4 wire case 1 direct kinem
% Zhangshi 20160115

angle_max = pi/3;

angle_min = -angle_max;

stepl = pi/20;

step2 = pi/20;

thetal = angle_min:stepl:angle_max;

theta?2 = angle_min:step2:angle_max;

alphal = pi/2;

alpha2 = pi/2;
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h = 19;

rl = 18;

r2 = 18;

tl inl = [0;0;h];
t2_in3 = [0;0;h];
al in3 = [r2;0;0];
a2_in3 = [0;r2;0];
a3 _in3 = [-r2;0;0];
a4_in3 = [0;-r2;0];
bl inl = [r1;0;0];
b2_in1 = [0;r1;0];
b3 inl = [-r1;0;0];
b4 in1 = [0;-r1;0];

% draw figures for ee errors

function drawEEerrors(EE_pos_set, EE_pos_cal_set, t1)

tilt_angle_set = [];
tilt_angle _cal_set = [];
% angle of each actual point expressed in a row
polar_angle = atan2(EE_pos_set(2,:),EE_pos_set(1,:));
% angle of each calculated point
polar_angle _cal = atan2(EE_pos_cal_set(2,:),EE_pos_ca |_set(1,:));
[m,n] = size(EE_pos_set);
for i = 1nn
cos_tilt_angle = [0, 0, 1] *uvec(EE_pos_set(;,i) - t1);
tilt_angle = acos(cos_tilt_angle);
tilt_angle_set = [tilt_angle_set, tilt_angle];

end
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for i = 1in
cos_tilt_angle_cal = [0, 0, 1] *uvec(EE_pos_cal_set(:,i) - tl);

tilt_angle_cal = acos(cos_tilt_angle_cal);

tilt_angle cal_set = [tilt_angle_cal_set, tilt_angle c all;
end
polar_r = (tilt_angle_set) *180/pi; % r of each point referring to tilt angle
polar_r_cal = (tilt_angle_cal_set) * 180/pi;
polar(polar_angle,polar_r, 'O ); % use O to present reference values
hold on
polar(polar_angle_cal, polar_r_cal, "x'); % use * to present calcualted values
legend( 'reference values' , 'calculated values' )
titte( 'End effector position in polar coordinate system' )
end

8.3 MATLAB Code for Jacobian Calculation

8.3.1 Partial Jacobian Using Virtual Work Method for 3-Wilechanism

% This function is to use virtual work to calculate Jacobian.

% When using static method to get

% Jacobian, the end effector forces is the force applied BY en d

% effector TO the environment.

% This code does not consider the 3rd dof input torque applied on either
% the base or the upper plate. In this case,

% it is a 2 DOF univeral joint and the Jacobian(3 by 2) is in fram e 2.
% The input are wire positions on top and bottom plate

% Zhangshi Liu, 20150629

function J = CalVW_Jac(input_hook_AR,cross_c,output_hook_ AR)

%Remember, the last three columns of input/output_hook is t he wire points'
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%positions coordinates in frame 2

wirepos_out_1=output_hook AR(1:3,7);
wirepos_out_2=output_hook AR(1:3,8);
wirepos_out_3=output_hook AR(1:3,9);

wirepos_in_1=input_hook AR(1:3,7);
wirepos_in_2=input_hook_ AR(1:3,8);
wirepos_in_3=input_hook_ AR(1:3,9);

X

i represents the vector of wire expressed in frame 2.

1 = wirepos_in_1 - wirepos_out_1;
2 = wirepos_in_2 - wirepos_out_2;
I3 = wirepos_in_3 - wirepos_out_3;

% ri represents the vector pointing from cross_c's origin to
% output_hook's wire point expressed in frame 2.

rl = output_hook_AR(1:3,7) - cross_c(1:3,5);

r2 = output_hook_ AR(1:3,8) - cross_c(1:3,5);

r3 = output_hook_AR(1:3,9) - cross_c(1:3,5);
x2_in2 = [1;0;0];

y2_in2 = [0;1;0];

A = -eye(2);

B11l = (cross(rl,uvec(l1)))’ * uvec(x2_in2);
B12 = (cross(r2,uvec(l2)))’ * uvec(x2_in2);
B13 = (cross(r3,uvec(l3)))’ * uvec(x2_in2);
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B21 = (cross(rl,uvec(l1)))’ *uvec(y2_in2);
B22 = (cross(r2,uvec(l2)))’ *uvec(y2_in2);
B23 = (cross(r3,uvec(l3)))’ *uvec(y2_in2);

B = [-B11,-B12,-B13;
-B21,-B22,-B23];

J trans = A" =*B; % J trans a is 2 by 3 matrix
J = J_trans’
end

8.3.2 Partial Jacobian Using Closed Loop Method for 3-Wikexhhnism

% This function is to use closed loop kinematics method to cal culate

% partial Jacobian

% it is a 2 DOF univeral joint and the Jacobian is a 3 by 2 matrix i n frame 2.
% Zhangshi Liu, 20150629

function J = CalCL_Jac(input_hook AR,output_hook AR,T03,R20,h)

% 11, 12 and I3 expressed in frame 2

1 = -output_hook AR(1:3,7)+input_hook AR(1:3,7);
2 = -output_hook AR(1:3,8)+input_hook AR(1:3,8);
I3 = -output_hook AR(1:3,9)+input_hook AR(1:3,9);

% unit vector of 11, 12 and I3 in frame 2

[1_uvec = uvec(ll);

I2_uvec = uvec(l2);

I3_uvec = uvec(l3);

% bl, b2 and b3 expressed in frame 2

bl = input_hook_ AR(1:3,7)-input_hook AR(1:3,3);
b2 = input_hook AR(1:3,8)-input_hook AR(1:3,3);
b3 = input_hook_ AR(1:3,9)-input_hook_ AR(1:3,3);
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% al, a2 and a3 expressed in frame 2

al = output_hook AR(1:3,7)-output_hook AR(1:3,6);
a2 = output_hook AR(1:3,8)-output_hook AR(1:3,6);
a3 = output_hook AR(1:3,9)-output_hook AR(1:3,6);

x2_in2 = [1;0;0];

y2_in2 = [0;1;0];

t = T03 %[0,0,0,1]; %end effector's position in frame 0
t1 = R20 *[0;0;h]; %The first link vector in frame 2

t2 = R20 *t(1:3) - t1; %The second link vector in frame 2

% Formation of A and B: Ax=Bq
% Ais a 3 by 2 matrix, B is 3 by 3

A_kin=[(dot(cross(b1,l1_uvec),x2_in2)-dot(cross(t1, I1_uvec),x2_in2)), (dot(cross(t2,l1_uvec

(dot(cross(b2,l12_uvec),x2_in2)-dot(cross(t1,12_uvec

(dot(cross(b3,13_uvec),x2_in2)-dot(cross(t1,13_uvec

B_kin=eye(3);
J = B_kin" *A Kkin;

end

8.3.3 Calculate Complete Jacobian

% This code is to calculate the complete Jacobian for the hybr

% case 1.

% The universal joint can be regarded as a 2-DOF parallel robo
% sits on a base which rotates about z=[0;0;1] in world frame.

% 1. The parallel jacobian, Jp, which is a 3X2 matrix: Jp

% can be get from any of the two methods.

% 2. Since Jp is tall, we can left-multiply pinv_Jp to express
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%
%
%

3. Use x_dot3/0_in0 = x_dot3/1_in0 + x_dotl/0_in0 to expre ss x_dot3/0_in0.
4. Get the compelet Jacobian for the hybrid manipulator.

20150702, Nabil and Zhangshi

function J_in0 = CalCompleteJac_rotin(input_hook_ AR,cross_c,

output_hook_AR,T02)

R0O2 = T02(1:3,1:3);

R20 = RO02;
Jp_in2 = CalvVW_Jac(input_hook_AR,cross_c,output_hook_ AR);
z0_in2 = R20 *[0;0;1];

pinv_Jp_in2 = pinv(Jp_in2);

J_ in0 = RO2 =*[[pinv_Jp_in2;0,0,0],z0_in2];

end

8.4 Workspace Calculation

8.4.1 MATLAB code for Workspace of Infinite Stiffness Wires

%
%
%
%
%
%
%

This code is to calculate workspace of infinite stiffness w ires given
certain theta by scanning all the phi and beta

inputs are: configuration angles, wire positions on top/b ottom plate,
hook heights.

outputs are: workspace points and corresponding configur ation angles as
well as tilt angles.

Zhangshi Liu, 2015/05/27, based on Saleem's code.

function [phi_point,beta_point,locations,tilt_angle] = CalwsS_V WJac(theta,

phi, beta, theta out, Diameter,wire_top_diameter,

wire_bottom_diameter,hook_heights)

locations = []; % End effector's positions are stored here
n_phi = length(phi); % number of phi
n_beta = length(beta); % number of beta
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tilt_angle

[
;
beta_point = [];

phi_point

% outputs are hooks' and cross' coordinates (expressed in fr ame 2)
% when theta, phi and beta are all 0.
[input_hook,cross_c,output_hook]=setrobot(Diameter, hook_heights,

wire_top_diameter,wire_bottom_diameter);

for i=1:1:n_phi
phi_test=phi(i);

for j = 1.1:n_beta

beta_test = beta(j);

% get transformation matrices. Configuration Direct kinem atics
% The outputs are TO1, TO2 and TO3.
[input_hook_cs, cross_cs, output hook cs, T04]=
Dir_Seri_Kin(theta, phi_test, beta_test, theta_out, hoo k_heights);
% Define transform and rotation matrices
TO1=input_hook_cs;
TO2=cross_cs;
T03=output_hook_cs;
T23=T02\T03;
T21=TO02\T01;

R23 = T23(1:3,1:3);
R21 = T21(1:3,1:3);
R02 = T02(1:3,1:3);

% input_hook and output_hook's coordinates after
% rotation expressed in frame 2
input_hook_AR=R21 =*input_hook(1:3,:);
output_hook_AR=R23 *output_hook(1:3,:);

% End effector's vector expressed in world frame
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%

EE_pos_vec = R02 *(R23 * output_hook(1:3,6)-cross_c(1:3,5));

%
%

cos(angle), angle is between end effector's vector

and [0;0;1], namely the tilt angle.

angle cos = [0 0 1] =*uvec(EE_pos_vec);

%

casel Jacobian

Jacobian = CalCompleteJac_rotin(input_hook_AR,cross_c¢

%

%
if

%
%
%
%
%

output_hook_AR,T02);
case2 Jacobian
Jacobian = CalCompleteJac_rotout(input_hook_AR,cross
output_hook_AR,R02,R23);
(rank(Jacobian) == 3)

JT = Jacobian’;

% Modified code that Jacobian only considers FOUR wires

JT_wave = JT(1:3,1:3);
pinvJT_wave = pinv(JT_wave);
nj = null(pinvJT_wave);
Here the 'if statement is used to make sure that the null
space's values are all positive or all negative.
And if so, the values of theta test and phi_test can be
assigned to theta point and phi_point, which means that po
satisfies the tension requirement.
if ( (sum(nj(1:3) > 0) == 3) || (sum(nj(1:3) < 0) == 3))
tit = acos(angle_cos);
if (tilt < (90 * Di/180))
phi_point = [phi_point,phi_test];
beta_point = [beta_point,beta_test];
location = TO3  *[0;0;0;1];

locations = [locations,location(1:3)];

tilt_angle = [tilt_angle;tilt];
end

end

end
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end
end

end

8.4.2 MATLAB code for Workspace of Finite Stiffness Wires

% This code is to calculate workspace of finite stiffness wir
% inputs are: configuration angles, external wrench, joint

% positions on top/bottom plate,hook heights

% outputs are: points in workspace, wire tension, correspon
% configuration angles, and tilt angles

% Zhangshi Liu, 20150721, based on Saleem's code

function [locations,lamda_set,tau_set,phi_set,beta_set,tilt_
CalWSGivenExtWrench(wrench,kd,theta, phi, beta, theta_

D_top,D_bottom,wire_top_diameter,wire_bottom_diamet

kapa = diag(kd); %Transfer stiffness vector into matrix
locations = []; % positions of end effector's center
n_phi = length(phi); %num of phi

n_beta = length(beta); %num of beta

tilt_angle = [J; % EE center's tilt angle

phi_set = []; % set containing effective phi values
beta_set = []; % set containing effective beta values

% set containing lamda that is least needed to be multiplied

% with null vectors to make wire tensions positive

lamda_set = [];

es

stiffness, wire

ding

angle] =
out, Diameter,

er,hook_heights)

tau_set = [J; % set containing wire tensions corresponding with lamda

h = hook_heights(1);

% outputs are hooks' and cross' coordinates

% (expressed in frame 2) when theta, phi and beta are all 0.

[input_hook,cross_c,output_hook]=setrobot(Diameter,

hook_heights,wire_top_diameter,wire_bottom_diameter );
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% The following two for loops scan each point corresponding t
for i=1:1:n_phi
phi_test=phi(i);
for j = 1:1:n_beta
beta_test = beta(j);

o phi and beta

% get transformation matrices. The outputs are T01, TO2 and T

% TO04 is the transformation matrix that is used when the
% 4th input is applied on top plate.
[input_hook_cs, cross_cs, output hook cs, T04]=

Dir_Seri_Kin(theta, phi_test, beta_test, theta_out, hoo

% The input parameters are expressed in frame 2,

% output is Jacobian in world frame.

k_heights);

% Here the coordinates of input and output hooks which are

% acquired when theta,phi and beta are 0
% need to be transformed using T.
% Jacobian = Cal_Jacobian_inEEFrame(T21 * input_hook,cross_c,

% T23 output_hook,theta_test, phi_test,beta); %Jacobian is 4 b

TOl=input_hook_cs;
T02=cross_cs;
TO3=output_hook_cs;
T23=T02\TO03;
T21=TO2\T01,;

R23 = T23(1:3,1:3);

R21

T21(1:3,1:3);

R02 = T02(1:3,1:3);

% input_hook and output_hook after rotation expressed in fr
input_hook AR=R21 =*input_hook(1:3,:);
output_hook_AR=R23 =*output_hook(1:3,:);

y 3

ame 2

J = CalCompleteJac_rotin(input_hook_AR,cross_c,output _hook_AR,T02);

% yita = 0.5 % step size for delta_x in the second method
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%
%
%
%
%

(rank(J) == 3)
JT = J;
JT _wave = JT(1:3,1:3);
pinvJT_wave = pinv(JT_wave);
nj=null(pinvJT_wave);
Here the two if statement is used to make sure that the null
space's values are all positive or all negative.
And if so, the values of theta test and phi_test can be
assigned to theta point and phi_point, which means that po
satisfies the tension requirement.
if ( (sum(nj(1:3) > 0) == 3) || (sum(nj(1:3) < 0) == 3))
% one point in workspace with infinite stiffness
location_templ = TO3  *[0;0;0;1];
angle cos = [0 0 1] *uvec(location_temp1(1:3)-[0;0;h]);
tit = acos(angle_cos);
if (tilt < (90 *Di/180))
location_temp = location_templ,;

C = Jx(kapa\J); %C is the compliance matrix

% V columns are eig vectors and D's diag are eig values

[V.D] = eig(C);

D _vec = diag(D); % Transfer matrix D into vector D_vec

% select the max eig value. Here use abs to make all eig values p

[val,num] = max(abs(D_vec));

% Define the external wrench in the direction of

% eig vector corresponding to max eig value

wrench_ext = wrench *uvec(V(;,num));

% Given certain external moment, compute delta_x--represe nting

% the alteration of ANGLE.

delta_x = C = (wrench_ext);
%% First method to calculate workspace
location = CalStiffnessWorkspacel(location_temp,

delta_x,theta,hook_heights);
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%% Second method to calculate workspace

% Here use "CalStiffnessWorkspace2" function to get

% new workspace with finite stiffness, outputs are

% EE center's position and corresponding phi and beta
%][location,phi_val,beta val] = CalStiffnessWorkspace2 (location_temp,theta,...
% theta_out,delta_x,yita,hook_heights,input_hook,cro SS_C,...

% output_hook,kapa,wrench);

%% Record results either 1st or 2nd method
center ¢ = T02 =cross_c(:;,5);

EE = location - center_c(1:3);

EE_uvec = uvec(EE(1:3));

tilt_angle_temp = acos(EE_uvec' *[0;0;1]);
[lamda, tau] = CalLamdaTau(J,nj,wrench_ext);
lamda_set = [lamda_set,lamda];

tau_set = [tau_set,tau];

locations = real([locations,location]);

tilt_angle = real(Jtilt_angle;acos(EE_uvec' *[0;0;1D)D);
end
end
end
end
end
end
% This function is to set the cross, input_hook and output ho ok's points' coordinates

% Zhangshi Liu, 2015/05/26, based on Saleem's code
function [input_hook,cross_c,output_hook]=setrobot(Diameter, hook_heights,

wire_top_diameter,wire_bottom_diameter)

%rename the parameters

d=Diameter;
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D_top=wire_top_diameter;
D_bottom=wire_bottom_diameter;

hil=hook_heights(1);

%% Initialize input_hook, cross and output_hook

% columns correspond to xyz coordinates of each

hook point an

% wire connection points. origin at 3 with positive x towards

% positive z

% towards 1 and 5 (input hook). input hook's wires are at varia

%The last three colunms(7,8,9,10) refer to xyz coordinates

%The 6th point is the origin of input_hook, used to calculate

% Remember, all the coordinates should be expressed in frame

% frame.

input_hook=[-d/2, -d/2, 0, d/2, d/2, 0, D_bottom/2,

-sin(pi/6) *D_bottom/2, -sin(pi/6) *D_bottom/2;

0, 0o, 0, 0, 0 0O, O

cos(pi/6)  +D_bottom/2, -cos(pi/6)

0, -hi, -h1, -h1, 0, O, -hi,
1, 1, 1, 1, 1, 1, 1,
h2=hook_heights(2);

d three top
4(input hook)

ble diameter

of the wire points.

rf

2, the cross_c

*D_bottom/2;

-h1,
11

%The last three colunms(7,8,9) refer to xyz coordinates of t

%The 6th point is the origin of output_hook

output_hook=[0, 0O, 0, O, 0, 0, D_top/2, -sin(pi/6)

-sin(pi/6) *D_top/2;

di2, di2, 0, -d/2, -di2, 0, 0, cos(pi/6)

-cos(pi/6) *D_top/2;
hi, 0, 0, O, hl, hi, hi,
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cross_c=[d/2,

%
%
%
%
%
%

function

Ol
Ol
1|

This code,

kinematics.

1,1, 1,1, 1,1, 1, 1, 1]

0, -d/2, 0O, 0;
dr2, 0, -d/2, 0;
0, 0, 0, 0;
1, 1, 1, 1];

regarded as serial robot in this case, is to calcu

Namely, calculate the cross, input and

output hooks' coordinates' homogeneous transposes with r

frame given three rotation angles: theta, phi and beta, as w

hook_heights and shaft_lengths.

Zhangshi Liu, 2015/05/26, ARMA Lab, Vanderbilt Universit

[input_hook _cs, cross_cs, output _hook cs, T04]=Dir_Ser

phi, beta, theta out, hook_heights)

%% Calculate Rotation matrices

%theta is the rotation angle of input hook,

%phi is the rotation angle about x02 and beta y02
RO1=rotr([0;0;1],theta);
R12=rotr([1;0;0],phi);

R02=R01* R12;

R23=rotr([0;1;0],beta);

R03=R02* R23;

R34=rotr([0;0;1],theta_out);

R04 = RO03+R34;

%% Calculate homogenous transposes

hi
h2

hook_heights(1);
hook_heights(2);

T01=[R01,[0;0;h1];0 0 O 1];
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T02=[[R02;[0 0 0], TO1  *[0 0 0 1]];

TO3=[[RO3;[0 O Q]], TO2 *[h2 =sin(beta) 0 h2  *cos(beta) 1]7;

TO4=[[RO4;[0 0 O], TO3  =[0 0 O 1]J;

%% Here the input_hook_cs' origin is coincident with cross_
% the output_hook_cs' origin is on the surface of output hook
input_hook _cs=T01;

cross_cs=T02;

output_hook_cs=T03;

end

function location = CalStiffnessWorkspacel(location_temp,delta

h = hook_heights(1);
delta_angle = -norm(delta_x);
delta_axis = delta_x/delta_angle;
u = delta_axis(1);
v = delta_axis(2);
w = delta_axis(3);
delta R = [u"2+(Vv'2+W"2) * cos(delta_angle),

u* v+ (1-cos(delta_angle))-w *sin(delta_angle),

u* w« (1-cos(delta_angle))+v *sin(delta_angle);

u* v=* (1-cos(delta_angle))+w *sin(delta_angle),

V2+(Uu"2+w'2)  *cos(delta_angle),

v*Wr (1-cos(delta_angle))-u *sin(delta_angle);
u* w« (1-cos(delta_angle))-v *sin(delta_angle),
v*Wx (1-cos(delta_angle))+u *sin(delta_angle),

w2+(Uu"2+v'2)  *cos(delta_angle)];
delta_angle_2 = norm(delta_x);
delta_axis_2 = delta_x/delta_angle;

u_2 = delta_axis_2(1);

v 2 delta_axis_2(2);
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w_2 = delta_axis_2(3);
delta_ R_2 = [u_2"2+(v_2"2+w_2"2) * cos(delta_angle_2),
u_2+*v_2=*(1-cos(delta_angle 2))-w_2 *sin(delta_angle_2),
u_2+*w_2*(1-cos(delta_angle_2))+v_2 *sin(delta_angle_2);
u_2*v_2=*(1-cos(delta_angle 2))+w_2 *sin(delta_angle_2),

v_2°2+(u_2"2+w_2"2)  xcos(delta_angle_2),

v_2+*w_2*(1l-cos(delta_angle 2))-u_2 *sin(delta_angle_2);
u_2+w_2*(1-cos(delta_angle_2))-v_2 *sin(delta_angle_2),
v_2*w_2*(1l-cos(delta_angle_2))+u_2 *sin(delta_angle_2),

w_272+(u_272+v_2°2)  xcos(delta_angle 2)];

[0 0 1] *uvec(location_temp(1:3)-[0;0;h]);

angle_cos

location_1 = delta_R * (location_temp(1:3)-[0;0;h]);
angle cos_ 1 = [0 0 1] =*uvec(location_1);

location_2 = delta_ R_2 * (location_temp(1:3)-[0;0;h]);

angle cos 2 = [0 0 1] =*uvec(location_2);

[value,index] max([angle_cos,angle_cos_1,angle_cos_ 2));
if (index == 1)
location = location_temp(1:3);
elseif (index == 2)
location = location_1 + [0;0;h];
elseif (index == 3)

location = location_2 + [0;0;h];

end
end
% This function is to calculate workspace with finite stiffn ess step by step
function [location,phi,beta] = CalStiffnessWorkspace2(location _temp,theta,theta_out,delta_x

h = hook_heights(1);

EE_pos = location_temp(1:3);
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% This variable is used to accumulate yita *delta of each step and the while loop will
sum = 0;
while (sum <= norm(delta_x))
%% We have to calculate new Jacobian and phi/beta for each loo p.
% Get new Jacobian based on new phi and beta
%use inverse kinematics to find current phi and beta corresp onding to current
[phi,beta] = InvKin2DOF(EE_pos,hook_heights);
[input_hook_cs, cross_cs, output_hook cs, T04] =
Dir_Seri_Kin(theta, phi, beta, theta_out, hook_heights)

TOl=input_hook cs;
TO02=cross_cs;
TO3=output_hook_cs;
T23=TO2\T03;
T21=TO02\T01,;

R23 = T23(1:3,1:3);
R21 = T21(1:3,1:3);
R02 = T02(1:3,1:3);
% input_hook and output _hook after rotation expressed in fr ame 2

input_hook AR=R21 =*input_hook(1:3,:);
output_hook_AR=R23 *output_hook(1:3,:);
J = CalCompleteJac_rotin(input_hook_AR,cross_c,output _hook_AR,T02);

%% Use new Jacobin to update sum

C = Jx(kapa\J); % C is the compliance matrix of current config
[V,D] = eig(C); % Calculate eigenvalues

D_vec = diag(D); % Transform the eigenvalue matrix into a vector
[val,num] = max(abs(D_vec)); % Find the greatest eigenvalue
wrench_ext = wrench *uvec(V(:;,num)); % Find the eigenvector
delta_ x_new = C =*(wrench_ext); % Get new delta x

delta_step = delta_x_new *yita;

delta_step_angle = -norm(delta_step)
delta_step_axis = delta_step/delta_step_angle;

delta_step_axis(1);

u

v = delta_step_axis(2);
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w = delta_step_axis(3);

% This is the rotation matrix about an axis in space, the angle

% refers to the norm of delta_step, and the direction [u,v,w]

% the unit vector of delta step

delta_step_ R = [u™2+(V2+W"2) * cos(delta_step_angle),

u*Vv= (1-cos(delta_step_angle))-w * sin(delta_step_angle),

u*wsx (1-cos(delta_step_angle))+v *sin(delta_step_angle);

u* v+ (1-cos(delta_step_angle))+w *sin(delta_step_angle),

V2+(u"2+w'2)  *cos(delta_step_angle),

v*wr (1-cos(delta_step_angle))-u * sin(delta_step_angle);
u*w« (1-cos(delta_step_angle))-v *sin(delta_step_angle),
v*wr (1-cos(delta_step_angle))+u *sin(delta_step_angle),

w2+(u"2+v'2)  *cos(delta_step_angle)];

delta_step_angle_2 = norm(delta_step);

delta_step_axis 2 = delta_step/delta_step_angle;

u?

delta_step_axis_2(1);

v_2 = delta_step_axis_2(2);

w_2 = delta_step_axis_2(3);

% This is the rotation matrix about an axis in space, the angle

% refers to the norm of delta_step, and the direction [u,v,w]

% the unit vector of delta_step

delta_step_ R_2 = [u_272+(v_2"2+w_2"2) * cos(delta_step_angle_2),

u_2+*v_2=*(1-cos(delta_:
u_2*w_2*(1-cos(delta_:

u_2+*v_2=*(1-cos(delta_:

v_272+(u_2°2+w_272)

step_angle_2))-w_2 *sin(delta_step_angle_2),
step_angle_2))+v_2 * sin(delta_step_angle_2);
step_angle_2))+w_2 *sin(delta_step_angle_2),

* cos(delta_step_angle 2),

v_2+*w_2*(1-cos(delta_step_angle_2))-u_2 * sin(delta_step_angle_2);
u_2*w_2*(1-cos(delta_step_angle_2))-v_2 *sin(delta_step_angle_2),
v_2+w_2*(1-cos(delta_step_angle_2))+u_2 *sin(delta_step_angle_2),

w_272+(u_272+v_272)

* cos(delta_step_angle 2)];
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[0 0 1] * uvec(EE_pos-[0;0;h]);

angle_step_cos

location_step_1 = delta_step_R * (EE_pos-[0;0;h]);

angle cos_ 1 = [0 0 1] +*uvec(location_step_1);

location_step_2 = delta_step_R_2 * (EE_pos-[0;0;h]);

angle_cos 2

I
S

0 1] +uvec(location_step_2);

max([angle_cos_1,angle_cos_2]);

[value,index]
if (index == 1)

EE_pos = location_step_1 + [0;0;h];
elseif (index == 2)

EE_pos = location_step_2 + [0;0;h];

end

sum = sum + norm(delta_x_new =*yita);
end
location = EE_pos;

end
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