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Chapter 1

Introduction

1.1 Motivation

Robots have had a profound influence on our society. In industry, for example, robots

are broadly used in areas of production, inspection and quality control. In public services,

robots can be applied to exploration, rescue, surveillance, medicine and health care. In the

medical area, robots are used to improve the safety and consistency of surgical procedures,

as well as the ability to minimize traumatic and disfiguring incisions to access target organs

[19]. During surgery, the role of a surgeon of course has someirreplaceable abilities such

as more initiative and flexibility. However, robots also have advantages over surgeons,

which usually cannot be gained by training due to human’s physical limitation. To make a

comparison, Taylor and Joskowicz have listed strengths andlimitations of medical robots

and humans in Table 1.1 [1]. From the table, we can see that most of the strengths and

limitations are complementary. That is to say, the robot canbe used as an assistant in a

surgery providing the surgeon with a new set of very versatile tools that extend her or his

ability to treat patients [20].

Minimally Invasive Surgery (MIS) is a surgical procedure that uses arthroscopic, la-

paroscopic or customized devices to conduct remote-control manipulation of instruments

with indirect observation through skin, body cavity or small anatomical opening [21].

Though MIS has advantages of reducing surgical trauma, shortening hospital stays, ac-

celerating patient recovery and reducing rate of complications [22], the drawbacks are sig-

nificant such as poor instrument control and ergonomics caused by rigid instrumentation

and its associated fulcrum effect [23]. That is, the rigid laparoscopic surgical tools are lim-

ited to 4 Degrees of Freedom (DOF) in MIS. However, since mostsurgical tasks, such as

suturing, knot tying, tissue separation, retraction, ablation along a path, etc, require more
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Table 1.1: Comparison of medical robots and human [1]

Strengths Limitations

Humans

Excellent judgment Prone to fatigue and inattention
Excellent hand-eye coordination Tremor limits fine motion
Excellent dexterity(at natural
”human” scale)

Limited manipulation ability and
dexterity outside natural scale

Versatile and able to improvise Cannot see through tissue
Easily trained Bulky end-effectors(hands)
Able to integrate and act on multiple
information sources

Affected by radiation and infection

Hard to keep sterile
Limited geometric accuracy

Robots

Excellent geometric accuracy Poor judgment
Untiring and stable Hard to adapt to new situations
Immune to ionizing radiation Limited dexterity
Can be operated at many different
scales of motion and payload

Limited ability to integrate and
interpret complex information

Able to integrate multiple sources of
numerical and sensor data

Limited hand-eye coordination and
limited haptic sensing

than 5 DOF, how to gain distal dexterity for manipulators is aprerequisite to being able to

reap the benefits of MIS.

Miniaturization of the manipulator requires remote actuators and usually uses wires as

actuation transmission. Current wire-actuated wrists arepredominantly designed with se-

rial architecture because they are relatively easy to design and analyze. However, compared

to serial wrists, parallel architecture can offer higher precision, stiffness and payload-to-

weight ratio. But wire actuated parallel wrists are difficult to analyze due to singularity

within the workspace and due to uni-sense wrench limitations. Moreover, previous works

for wire-actuated robots primarily focused on wrench closure workspace that contains a set

of poses such that all the wires can work in tension to balanceany external wrench [24].

And also, these projects have limited consideration of the effect of wire stiffness on the

reduction of wrench-feasible workspace. In this work, we will create kinematic and static

models for wire-actuated wrists, and investigate both the effect of wire stiffness on wrench

closure workspace and the use of actuation redundancy for enlarging the workspace.

2



Figure 1.1: Structure of Black Falcon [2]

1.2 Robotic Platforms for Surgical Assistance

We have discussed that robots can act as surgical assistantsfor MIS, and the problem

of how to gain more dexterity has attracted many scholars, surgeons and companies to

develop various robot platforms, such as the Black Falcon robot system by Madhani et al.

[2], Insertable Robotic Effectors Platform (IREP) by Simaan et al. [3], Robotic Surgical

Platform by Lee, et al. [5], anddaVinci® Surgical System from Intuitive Surgical, Inc [16],

etc.

The Black Falcon, shown in Figure 1.1, is an 8-DOF cable driven tele-operator slave

robot platform for MIS, which consists of two main subsystems. One is the base unit

containing all of the actuators and the other one is the wristunit which has a mechanical

attachment, an instrument shaft and an end-effector [2].

Insertable Robotic Effectors Platform (IREP) is designed for solving problems such as

instrument miniaturization, dexterity and collision avoidance between surgical tools oper-

ating in confined spaces for MIS, Single Port Access Surgery (SPAS) and Natural Orifice

Transluminal Endoscopic Surgery (NOTES) [4][3]. This platform consists of parallelogram

mechanism, continuum snake-like arms, wire-actuated wrist, camera module and passive

flexible components, as shown in Figure 1.2.

The Robotic Surgical Platform is developed by Jusuk Lee’s robotics group at the Sam-

3



Figure 1.2: Insertable Robotic Effectors Platform (IREP) [3][4]

Figure 1.3: Robotic Surgical Platform [5]

sung Advanced Institute of Technology (SAIT). From Figure 1.3 we can see that it com-

prises of a snake-like 6-DOF guide tube, two 7-DOF tools, a 5-DOF slave arm and a 3-DOF

stereo camera, capable of reaching various surgical sites inside the abdominal cavity from

a single incision on the body [5].

ThedaVinci® surgical system is one of the most famous surgical assistantplatforms in

the world, which is composed of a surgical arm cart that is a manipulator unit consisting of

several instrument arms, a master console where the surgeonhandles telemanipulators and

optical controls using three-dimensional vision, and a conventional monitor cart, as shown

in Figure 1.4. This surgical system is good at multi-port minimally invasive operations in

dealing with delicate and vulnerable anatomical structures [6].
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Figure 1.4:daVinci® surgical system [6]

1.3 Wrist Classification for Minimally Invasive Surgery

One of the most important components of these surgical platforms is the robot manipu-

lator which is used for procedures such as cutting tissue andsuturing trauma. Since in MIS

the target is supposed to be reached through a single incision on the body, the motions of

rigid laparoscopic surgical tools manipulating tissue areconstrained to a pivot, which has

only 4 DOF [16], namely two tilting angles about the pivot point and translation and rota-

tion about the longitudinal axis of the tools. However, mostsurgical tasks such as suturing,

knot tying, tissue separation, retraction, ablation alonga path, require more than 5 DOF.

Thus, the main concerns of dexterity improvement focus on how to restore the degrees of

freedom and provide distal dexterity for those operations.Manipulation with good distal

dexterity can shorten execution time, reduce surgical trauma and blood loss, and proper

mechanism design of the wrist can remove the limitations within surgical environment.

The current surgical wrists of manipulators have various mechanisms with regard to

different purposes or under different conditions. However, no matter how discrepant the

wrists seem from each other, they all have certain degrees offreedom and consist of three

kinds of joints: Roll, Pitch and Yaw. Based on this, wrists can be classified by their DOF,

such as 2-DOF, 3-DOF and 4-DOF wrists where the DOF of gripper/forceps is not taken

into consideration. Moreover, a sub-classification can be built according to different com-

5



Figure 1.5: Joint type of Roll, Pitch and Yaw

binations of joint types: roll (R), pitch (P) or yaw (Y) (Figure 1.5 shows the axis for each

joint type using a human hand). For example, the 2-DOF wristsmay have sub-categories

of RP wrist (rotations about Roll axis and Pitch axis), RY wrist (rotations about Roll axis

and Yaw axis) and PY wrist (rotations about Pitch axis and Yawaxis); For 3-DOF, we ba-

sically have RYP wrist (rotations about Roll axis first, thenYaw axis and finally Pitch axis)

and PYR wrist(rotations about Pitch axis first, then Yaw axisand finally Roll axis). There

is also one example of 4-DOF wrist which can realize rotations of RPPY (rotations about

Roll, Pitch, Pitch and Yaw axis sequentially). The classification is listed in Table 1.2.

One example of a 2-DOF wrist is a mechanism for dexterous end effector placement

during Minimally Invasive Surgery (MIS) [7] designed by Minor and Mukherjee, et al.,

as shown in Figure 1.6. This Dexterous Articulated Linkage for Surgical Applications

(DALSA), which is a geared serial link mechanism, provides motions of articulation and

end effector rotation about the articulated axis. It provides RY and RP rotations via 180

degrees bi-directional tip articulation and unlimited rotation about the articulated longitu-

dinal axis. Articulation is divided among several links, toprovide encircling capability and

improved reachability. Disadvantages of DALSA include that since it is a two DOF mech-

anism, it is incapable of placing sutures with arbitrary orientation at surgical sites without

rotating the port; another is due to gear backlash which inevitably degrades tip placement,

accuracy and repeatability.

Kim, et al. [8], designed a 2 DOF PY stiffness-adjustable snake-like mechanism, as
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Table 1.2: Classification of Surgical Wrists

2-DOF 3-DOF 4-DOF
RY PY RYP PYR RPPY

Minor, et al., Articulated Manipulator
for MIS [7]

X

Kim, et al., Variable neutral-line
manipulator [8]

X

Breedveld, et al., Endo-Periscope [9] X

Seow, et al., Articulated manipulator
[10]

X

Harada, et al., Micro manipulator [11] X

Merlet, et al., Parallel Micro
Manipulator [12]

X

Nakamura, et al., Multi-DOF Forceps
Manipulator [13]

X

Awtar, et al., End-effector for
FlexDexT M [14]

X

Takahashi, et al., Link driven type
multiple d.o.f. forceps [15]

X

Guthart, et al., Endoscopic
EndoWristTM Instrument [16]

X

Tadano, et al., A forceps with force
sensing using pneumatic servo system
[17]

X

Simaan, et al., Multi-backbone
bending snake-like units [18][25]

X

Lee, et al., 3-DOF wrist for SAIT
single port access surgical robot [5]

X

Madhani, et al., A 4-DOF wrist for
Black Falcon [2]

X

Figure 1.6: Structure of 2 DOF geared rolling wrist DALSA [7]
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Figure 1.7: 2 DOF stiffness-adjustable snake-like mechanism [8]

shown in Figure 1.7. Each link has two cylindrical contact surfaces oriented orthogonally

to each other. There are two wire pairs of which each is in control of Pitch or Yaw motion,

and the motion of the two pairs affects each other. Moreover,its simple, thin and hollow

structure is suitable for surgical application such as MIS or Natural Orifice Translumenal

Endoscopic Surgery (NOTES). The stiffness of this mechanism can be continuously ad-

justed by varying the wire tension. Experiments show that when wire tension varying from

20N to 59.9N, the stiffness will change from 0.242N/mm to 0.529N/mm, and the max

bending angle can reach 90o.

Another example of 2-DOF PY wrist is the Endo-Periscope designed by Breedveld, et

al. [9] in Figure 1.8. This device is to provide visual feedback during laparoscopic surgery

by attaching a camera on its tip. The wrist is a spring that combines high torsion stiffness

with a low bending stiffness. Four cables are guided throughthe ring springs. When in

straight position, the two ring springs are completely compressed. When the handgrip is

bent, part A of the cable becomes longer. However, part B of the cable cannot be shortened

since the ring spring in the tip is completely compressed. Instead, part C of the cable

becomes shorter. Thus the spring in the handgrip becomes shorter and as a result, the three

other cables are released. Then the tip will bend until it reaches the same angles as the

handgrip. This wrist can enable the camera sitting on its topto rotate about Pitch or Yaw

axis over 180 degrees [9].
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Figure 1.8: 2 DOF wire actuated bending joint [9]

Figure 1.9: 2 DOF wire actuated revolved sliding joint [10]

Figure 1.9 shows a 2-DOF PY cable driven robot arm which consists of 18 revolved

sliding joints arranged serially [10]. It is an articulatedmanipulator with multiple in-

struments for natural orifice endoscopic transluminal endoscopic surgery (NOTES), which

aims to reduce infection risk, improve surgical workflow andencourage solo surgery by

providing surgeons with all the required instruments. The sliding joints mainly refer to

the robot connecting arm. Each of the joint has dome-shaped top and matching concave

bottom of the linkage piece enabling it to rotate relativelyto its neighboring piece. From

Figure 1.9, the wrist’s PY rotations are controlled by four directional wires passing through

the linkage pieces. Each opposing pair of wires works antagonistically to provide two ro-

tational DOF in yaw and pitch. Experiments show that the manipulator can provide at least

100 degrees left angular displacement and 107 degrees rightangular displacement [10].

Another example of 2 DOF PY wrist is the micro manipulator forintrauterine fetal

surgery under Open Magnetic Resonance Imaging (MRI) conditions by Harada, et al. [11].
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Figure 1.10: 2 DOF wire actuated ball sliding joint [11]

Figure 1.11: Micro parallel wrist [12]

The wrist consists of two ball joints and is driven by four wires to bend through 90 degrees

in Pitch and Yaw directions, as shown in Figure 1.10. The diameter of the balls is 2.4mm

and the bending radius is 2.45mm. This kind of joint is easy tocontrol, but at the same

time, it is easily susceptible to spin. Moreover, there is aninner hole through all ball joints

left for future surgical application.

Merlet et al. designed a PY parallel wrist for micro-macro robot in minimally invasive

surgery [12], where the ”macro” part, referring to the classical tool of endoscope, has a

large workspace with poor accuracy while the ”micro” part, namely the wrist, has small

workspace with high accuracy. The wrist shown in Figure 1.11, which is put at the end of

the endoscope, has 3-DOF: 2 rotation DOF around Pitch and Yawaxis and one translation

along z axis. If we do not take translation into account, the wrist can be regarded as a

2-DOF PY wrist.
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Figure 1.12: 2-DOF wire-driven bending mechanism [13]

Figure 1.12 shows a 2-DOF bending mechanism designed by Nakamura, et al., for

laparoscopic surgery [13]. The upper figure is the structureof the wrist and the lower

ones show the example of forceps’ motions. The wrist, which is driven by four stainless

steel wires, provides 2 additional DOF of Pitch and Yaw bending compared with previous

forceps manipulator. The ranges of bending motion are from 0to 90 degrees.

Awtar, et al. presented a 3-DOF RYP end effector for a MIS tool[14] in Figure 1.13.

The MIS tool is designed to be attached to the surgeon’s forearm, forming an extension

for hand and arm. The end effector’s wrist is a wire actuated two-hinge output joint in

which the two rotational axes lie in a common axial plane. This wrist is designed to not

only provide a tight workspace but also eliminate output joint motion coupling in order

to meet the objective of one-to-one motion mapping between the input and output. The

mechanism’s outer ring is pivoted with respect to the tool shaft about a yaw axis and an

inner ring is pivoted with respect to the outer ring about a pitch axis. The two ends of the

yaw transmission cable are attached at two diametrically opposite points on the outer ring

along the pitch axis while the two ends of the pitch transmission cable are attached at two

diametrically opposite points on the inner ring that line upalong the yaw axis.

Figure 1.14 is also an example of 3-DOF RYP wrist by Takahashi, et al. It is a forceps
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Figure 1.13: 2-DOF wire actuated universal joint [14]

Figure 1.14: 4-DOF forceps manipulator [15]

manipulator that has a roll joint, two bending joints(Yaw and Pitch joints) and a holder.

The driving part has 4 DOF in total such as linear motions in 3 DOF and one rotation.

The linear motions are converted to bending motions in 2 DOF and the grasping motion

at the end effector by the link mechanism. Each joint in the manipulator is actuated by a

pneumatic cylinder, which generates torque using a rack andpinion [15].

The steerable grasper EndoWristTM of da Vinci system from Intuitive Surgical is a

3-DOF RYP mechanism, which was used to restore the degrees offreedom lost in la-

paroscopy by being placed inside the patient and controllednaturally [16]. The wrist itself

can be rotated along the roll axis and it also has a pair of perpendicular joints (pitch and

yaw), where the pitch joint is a belt-actuated and the yaw rotates about hinged pulley [26].
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Figure 1.15: Endoscopic EndoWristTM Instruments [16]

It can achieve 90 degrees of articulation, and can execute a broad range of surgical proce-

dures by selecting specialized tip design. Figure 1.15 shows the EndoWristTM with tips of

forceps and needle driver.

Another example of 3-DOF wrist is a RYP manipulator for teleoperated laparoscopic

surgery in Figure 1.16 designed by Tadano, et al., which use pneumatic cylinders as ac-

tuators in order to provide a force display to surgeons without a force sensor because the

cylinders can estimate the external force from the driving force and the impedance. The

manipulator has one rolling joint and two bending joints (Yaw and Pitch joints), each of

which is actuated by a pneumatic cylinder. The diameter is 10mm and the feature of the

forceps is that one bending joint and the gripper are realized at the same point, making the

tip compact [17].

Simaan, et al. designed a 3-DOF YPR snake-like manipulators[18][25], which consists

of a base disk, an end disk, several spacer disks, one primarybackbone and three secondary

backbones which are made of flexible super-elastic hollow tubes, as shown in Figure 1.17.

The primary backbone is fixed to both the base/end disks and other spacer disks while the

secondary backbones are only attached to the end disk and they can slide and bend through

holes in the base and spacer disks. The Pitch and Yaw rotations can be manipulated by
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Figure 1.16: Manipulator for laparoscopic surgery [17]

Figure 1.17: 3-DOF YPR multi-backbone snake-like manipulator [18]

actively changing the lengths of two out of the three secondary backbones. Moreover, a

detachable milli-parallel unit sitting on the end disk provides the Roll rotation and can be

equipped with various tools at the same time, which is drivenby super-elastic wires passing

through the secondary backbones.

SAIT single port access surgical robot has a 3-DOF PYR wrist,as shown in Figure

1.18. The wrist, part of the tool arm, sits at the end of the guide tube for surgical tasks such

as suturing and grasping. Each of the wrist joints (pitch joint, yaw joint and roll joint) is

actuated by a pair of wires that originate from the tool actuator pack [5].

Slisbury et al. developed a 4-DOF RPPY wrist for the Black Falcon robot system [2].

Black Falcon is a 8-DOF cable-driven teleoperator slave forMIS, which has a 3-DOF base

positioner, a 4-DOF detachable wrist and a 1-DOF gripper. The wrist has Roll-Pitch-Pitch-
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Figure 1.18: 3-DOF PYR wrist of SAIT single port access surgical robot [5]

Figure 1.19: 4 DOF wrist for Black Falcon [2]

Yaw joints that the first Roll rotation is about the instrument shaft as shown in Figure 1.19.

This wire-driven 4-DOF wrist allows positional redundancybut also has limitations that the

4-DOF structure may occupy too much space while it has essentially the same singularities

as a 3-DOF RPY wrist.
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Figure 1.20: Organization of the work

1.4 Organization and Contribution

In this project, we will model, analyze and design a hybrid serial-parallel wire-actuated

surgical wrist using universal joint for MIS. A review of research motivation begins the

design process and gives an idea about mechanical design. Here we should notice that in

the analysis process of this project, we use a scaled-up model where the friction is negli-

gible. Moreover, we will present the inverse/direct kinematic model, and give validations

using MatLab. Further, we calculate Jacobian matrix and useit as foundation to conduct

stiffness analysis, define workspace assuming joints have infinite/finite stiffness and pro-

vide a method to optimize wire tensions. In the last section,we will fabricate a prototype

of the wrist and conduct experiments to test the kinematics model and stiffness model. The

procedures are shown in Figure 1.20.

16



Chapter 2

Kinematics and Statics Modeling

2.1 Nomenclature and Mechanism Analysis

The wire actuated wrist to be designed is a 3-DOF mechanism, which consists of a

2-DOF universal joint and 1 rotational joint. Thus it is regarded as a serial-parallel hybrid

system, where the universal joint is a parallel mechanism actuated by either 3 wires or 4

wires, and the third rotational joint is serially connectedto it. The universal joint has three

parts: bottom hook, cross and top hook, and the 3rd DOF will either lie under the bottom

hook (case 1) or sit on the top hook (case 2). In this project, we will analyze both the 3-wire

and 4-wire mechanisms for each case.

In order to better illustrate the structures, let’s define the frames first. In the following

nomenclature, we will name 5 coordinate systems: world coordinate system (WCS, or

frame{0}) whose axes arêxwcs, ŷwcs andẑwcs and origin isOwcs, coordinate system{i} (or

frame{i}, i = 1,2,3,4) with originsOi and axeŝxi, ŷi and ẑi. The relationships between

each frame can be expressed using rotation matrixiR j or homogeneous transformation

matrix iT j. Herei and j are notations of frame{i} and frame{ j}. Moreover, we call the

hook height of bottom hookh1 and the hook height of top hookh2.

In case 1, namely the 3rd DOF lying under the bottom hook, the whole universal joint

rotates together with it. As shown in Figure 2.1 and Figure 2.2, we first define frame{0}

(WCS), whose axeŝxwcs, ŷwcs andẑwcs are fixed in the space and origin (Owcs) is coincident

with the center of bottom plate. Frame{1} (CS1) has its origin translated byh1 along ẑ0

and is rotated about̂z0 by angleα1. Frame{2} (CS2) has the same origin of frame 1 sitting

in the center of the cross and rotates with the cross about axis x̂2 while x̂2 remains parallel

to x̂1. The last coordinate system for case 1 is frame{3} (CS3) which is fixed on top hook.

O3 is at the center of top plate and frame 3 rotates aroundŷ2 while ŷ3 remains parallel to
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Figure 2.1: Nomenclature for case 1

x̂0
ŷ0

ẑ0

ẑ1

ŷ2

ŷ1

x̂1x̂2

ẑ2

ẑ3

x̂3

ŷ3

θ1

θ2

α2

x̂4

ŷ4

ẑ4

Figure 2.2: Nomenclature for case 2
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ŷ2.

In case 2, the third DOF is located on the top hook and frame{1} maintains the same

orientation as frame{0} at all times. Since in case 2 there is no rotation at the base ofthe

universal joint, frame{1} is fixed not only on the bottom plate but also in space. Frame

{2} and{3} remain the same with case 1, and Frame{4} (CS4) is added to capture the

3rd DOFα2 on the top plate, which coincides with frame{3} at initial position and rotates

aboutẑ3. The details of the coordinates can be seen in Figure 2.2. Unlike case 1, in case 2

the rotation of the 3rd DOF will not affect the pose of the universal joint.

We can see that the number of actuation wires does not have influence on locating

the coordinates. Moreover, in both case 1 and case 2, no matter where the 3rd DOF is

located, it keeps a serial connection to the universal joint. That is to say, it is assumed that

actuations for the universal joint and the rotation joint are not coupled. We can compute

them separately and then integrate them together in the following analysis.
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2.2 Position and Orientation Analysis

In this section, we will analyze inverse and direct kinematics for the hybrid mechanism.

For inverse kinematics problem, the input is the end effector’s position expressed in world

frame, namely the origin position of frame{3} (for case 1) or that of frame{4} (for case

2), and the outputs are wires’ lengthsl1, l2, l3 and l4 as well as the rotation angleα1 (for

case 1) orα2 (for case 2) of the 3rd DOF. For direct kinematics, the wires’ lengths,α1 and

α2 are given, and we seek to find end effector’s position. Since the input for the 3rd DOF

can be applied on either the top plate or the bottom plate, we will study these 2 cases for

each kinematics analysis. Moreover, in each case, we will analyze both 3-wire and 4-wire

joint mechanisms.

2.2.1 Inverse kinematics

2.2.1.1 Inverse kinematics analysis for case 1

In case 1 where the 3rd DOF lies under the bottom plate, frame{1} will rotate about̂z0

with angleα1. From Figure 2.3 we can see the closed-loop geometry relationships among

the vectors.0bi represents the vector that points from the origin of frame{0} to the end

of the ith wire on bottom plate. The left superscript indicates the coordinate system in

which this vector is expressed and the right subscript refers to theith wire. Similarly, 0ai

refers to the vector pointing from the origin of frame{3} to the end of theith wire on top

plate expressed in frame{0}. Moreover,0t1 and 0t2 are the vectors pointing fromOwcs

to the center of crossO2 and fromO2 to O3 respectively.0li indicates theith wire vector

connecting the tip of vector0bi to the tip of vector0ai. Here i can either bei = 1,2,3

or i = 1,2,3,4 which is based on the number of actuation wires. Thus we can write the

following loop closure equation:

0bi =
0t1+

0t2+
0ai +

0li (2.1)
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bi

li

ai

t1

t2

x̂0

ŷ0

ẑ0

x̂2 ŷ1

ẑ1

ẑ3

x̂3

ŷ3

ŷ2

ẑ2

x̂1

Figure 2.3: Vector loop closure for one actuation wire in case 1

If we use0EEpos to present end effector’s position we can rewrite equation 2.1 as:

0R1
1bi =

(0R1
1t1+

0R3
3t2
)
+ 0R3

3ai +
0li

= 0EEpos +
0R3

3ai +
0li

(2.2)

‖0li‖= ‖0R1
1bi − 0EEpos − 0R3

3ai‖ (2.3)

In equation 2.3,1bi and 3ai are fixed vectors, and0EEpos and 0R3 are known as end

effector’s position and orientation.0R1 is function of α1, which is the only unknown

parameter in 2.3. Thus we must find the value ofα1 first and then use equation 2.3 to

compute wire lengths. Let us take a look at the structure of the universal joint. If we call

the rotation angle of frame{2} relative to frame{1} θ1 and call the rotation angle of frame

{3} relative to frame{2} θ2, we can useθ1 andθ2 to represent0R3. Here we use the
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product of exponentials formula:

0R3 = eα1 ẑ∧0 eθ1 x̂∧1 eθ2 ŷ∧2

=









cα1cθ2− sα1sθ1sθ2 −sα1cθ1 cα1sθ2+ sα1cθ2sθ1

sα1cθ2+ cα1sθ1sθ2 cα1cθ1 sα1sθ2− cα1cθ2sθ1

−cθ1sθ2 sθ1 cθ1cθ2









(2.4)

In Equation 2.4, the lettersc ands represent short notation forcos andsin, respectively.

The itemeθ1 x̂∧1 , for example, represents a rotation matrix where the unit vector x̂1 is the

rotation axis andθ1 is the rotation angle. Herêx∧1 means the wedge of̂x1 = [u,v,w]T :

0x̂∧1 =









0 −w v

w 0 −u

−v u 0









(2.5)

Moreover, we can present0R3 by expressing the axes of frame{3} in frame{0}:

0R3 =

[

0x̂3,
0ŷ3,

0ẑ3

]

=









0x3x
0y3x

0z3x

0x3y
0y3y

0z3y

0x3z
0y3z

0z3z









(2.6)

Since 0R3 is given, we can list several equations to solve forθ1,θ2 andα by comparing

2.4 and 2.6:

0y3z = sinθ1 (2.7)

0x3z =−cosθ1sinθ2

0z3z = cosθ1cosθ2

(2.8)
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0y3x =−sinα1cosθ1

0y3y = cosα1cosθ1

(2.9)

Equation 2.7 presents two sets of possible solutions forθ1
1:

θ1 =







Atan2(0y3z,
√

1− 0y2
3z)+2kπ (k = 0,±1,±2, ...)

Atan2(0y3z,−
√

1− 0y2
3z)+2kπ (k = 0,±1,±2, ...)

(2.10)

However, since the joint limit forθ1 andθ2 is [−π
2 ,−π

2 ], only 1 value is a valid solution for

θ1. Then substitutingθ1 into equation 2.8 can yield a unique solution forθ2

θ2 = Atan2

( 0x3z

−cosθ1
,

0z3z

cosθ1

)

(2.11)

Furthermore, we can get values of sinα1 and cosα1 in 2.9, and the solutions forα1 are:

α1 = Atan2

( 0y3x

−cosθ1
,

0y3y

cosθ1

)

+2kπ (k = 0,±1,±2, ...) (2.12)

Moreover, because frame 1 rotates about0ẑ0, we can write the expression for0R1 directly:

0R1 =









cosα1 −sinα1 0

sinα1 cosα1 0

0 0 1









(2.13)

which contains only one variableα1. Finally all items in equation 2.3 are obtained so that

we can calculate the wire lengths.

1We use Atan2(sin(α), cos(α)) convention in this thesis.
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ŷ2
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ŷ4

ẑ4

Figure 2.4: Vector loop closure for one actuation wire in case 2

2.2.1.2 Inverse kinematics analysis for case 2

In case 2 where the 3rd DOF sits on the top plate, frame 1 is fixed in frame 0, and frame

4 rotates about̂z3 with angleα2 relative to frame 3. Namely, the value ofα2 does not affect

the end effector positionO3 = O4, but it does affect the orientation, as shown in Figure 2.4.

The vector loop closure equation becomes:

0R1
1bi =

(0t1+
0t2
)
+ 0R3

3ai +
0li

=0EEpos +
0R3

3ai +
0li

(2.14)

In case 20R1 is an identity matrix so that1bi =
0bi. The length of theith wire:

‖0li‖= ‖0bi − 0EEpos − 0R3
3ai‖ (2.15)

Here 0R3 is unknown. Again, we use the product of exponentials formula to represent the

rotation matrix:

0R3 = eα1 ẑ∧0 eθ1 x̂∧1 eθ2 ŷ∧2 (2.16)
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Sinceα1 = 0 in case 2, the expression for0R3 becomes:

0R3 = eθ1 x̂∧1 eθ2 ŷ∧2 =









cosθ2 0 sinθ2

sinθ1sinθ2 cosθ1 −cosθ2sinθ1

−cosθ1sinθ2 sinθ1 cosθ1cosθ2









(2.17)

As mentioned above,0ẑ3 and 0ẑ4 remain the same, the last column of 2.17 that represents

0ẑ3= [0z3x,
0z3y,

0z3z] is equal to0ẑ4 which is already known. Then we have three equations:









0z3x

0z3y

0z3z









=









sinθ2

−cosθ2sinθ1

cosθ1cosθ2









(2.18)

From the first equation we can list possible solutions forθ2:

θ2 =







Atan2
(

0z3x,
√

1− 0z2
3x

)

+2kπ (k = 0,±1,±2, ...)

Atan2
(

0z3x,−
√

1− 0z2
3x

)

+2kπ (k = 0,±1,±2, ...)

(2.19)

Again, considering the joint limit forθ2, only one solution ofθ2 is valid. Substituteθ2 into

equations of0z3y and0z3z and we can get a unique value forθ1.

θ1 = Atan2

( 0z3y

−cosθ2
,

0z3z

cosθ2

)

(2.20)

Substituteθ1 andθ2 into 2.17 and 2.15, and we can get the wire lengths. So far we have

already known0R4 and 0R3, and we can compute the rotation angleα2 using:

0R4 =









cα2cθ2 −sα2cθ2 sθ2

sα2cθ1+ cα2sθ1sθ2 cα2cθ1− sα2sθ1sθ2 −cθ2sθ1

sα2sθ1− cα2cθ1sθ2 cα2sθ1+ sα2cθ1sθ2 cθ1cθ2









(2.21)

25



Sinceθ1 andθ2 are both known, we can easily get the value forα2:

α2 = Atan2

( 0x4x

cosθ2
,−

0y4x

cosθ2

)

+2kπ (k = 0,±1,±2, ...) (2.22)

2.2.2 Direct kinematics

For direct kinematics, the inputs are wire lengths and the 3rd rotation angleα1 or α2,

and the question is to calculate end effector’s position andorientation. Unlike previous

analysis, in this section we will analyze the 3-wire mechanism and 4-wire mechanism

separately because the equations can be quite different.

2.2.2.1 Direct kinematics for 4-wire mechanism in case 1

The task for direct kinematics is to find the transformation matrix 0T3. Using the

product of exponentials formula to express0T3 gives:

0T3 = gst(α1,θ1,θ2) = e ξ∧
3 α1e ξ∧

1 θ1e ξ∧
2 θ2 gst(0)

=












cα1cθ2− sα1sθ1sθ2 −sα1cθ1 cα1sθ2+ sα1cθ2sθ1 hcα1sθ2+hsα1cθ2sθ1

sα1cθ2+ cα1sθ1sθ2 cα1cθ1 sα1sθ2− cα1cθ2sθ1 hsα1sθ2−hcα1cθ2sθ1

−cθ1sθ2 sθ1 cθ1cθ2 h+hcθ1cθ2

0 0 0 1












(2.23)

e ξ∧
3 α1, e ξ∧

1 θ1 ande ξ∧
2 θ2 represent homogeneous transformations from frame{1} to base,

from frame{2} to {1} and from frame{3} to {2} respectively, andgst(0) is the transfor-

mation from frame{0} to {3} in initial condition. Hereξ∧
i (i = 1,2,3) is the wedge form

of the twist ξi, where:

ξ∧
i =






ω∧
i vi

0 0




 , ξi =






vi

ωi




 (2.24)
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ωi refers to the rotation axisi. vi = −ωi × qi ( qi is a vector pointing from the origin of

frame{0} to an arbitrary point on rotation axisi) when it is a rotation joint, andvi is the

direction of translation when it is a translation joint.

In the following analysis, the anglesθ1 and θ2 are unknown. Equation 2.1 can be

rewritten as:

1bi =
1t1+

1R3
3t2+

1R3
3ai +

1li (2.25)

Here 1bi,
1t1,

3t2 and3ai are fixed vectors, and1R3 has two variablesθ1 andθ2. When the

lengths of wires are given, we can write 4 equations fori = 1,2,3,4:

‖1li‖= ‖
(1bi − 1t1

)
− 1R3

(3t2+
3ai
)
‖ (2.26)

Assume‖0li‖ = li, ‖1bi‖ = r1, ‖3ai‖ = r2, and‖1t1‖ = ‖3t2‖ = h, and number the four

equations in 2.26 aseq1,eq2,eq3 andeq4.

eq1 =− f1cosθ2− l2
1 − f2+ f4

eq2 =− f1cosθ1− l2
2 + f3+ f4

eq3 =− f1cosθ2− l2
3 + f2+ f4

eq4 =− f1cosθ1− l2
4 − f3+ f4

(2.27)

where

f1 =2r1r2

f2 =2hr1sinθ2+2hr2cosθ1sinθ2

f3 =2hr2sinθ1+2hr1cosθ2sinθ1

f4 =2h2+ r2
1+ r2

2+2h2cosθ1cosθ2

(2.28)

Calculatingeq1+ eq3− eq2− eq4 provides:

cosθ1 = cosθ2+
l2
1 + l2

3 − l2
2 − l2

4

4r1r2
(2.29)
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Moreover, calculatingeq1− eq3 yields:

−l2
1 + l2

3 −4hr1sinθ2−4hr2cosθ1sinθ2 = 0 (2.30)

Substituting Equation 2.29 into 2.30:

cosθ2 =
u

sinθ2
+ v (2.31)

where

u =
l2
3 − l2

1

4hr2

v =
l2
2 + l2

4 − l2
1 − l2

3

4r1r2
− r1

r2

(2.32)

Then substituting Equation 2.31 into sin2θ2+cos2 θ2 = 1 gives us a fourth order polyno-

mial of sinθ2:

k0sin4 θ2+ k1sin3θ2+ k2sin2θ2+ k3sinθ2+ k4 = 0 (2.33)

whereki, i = 0,1, ...4 are functions ofh,r1,r2, l1, l2, l3 andl4:

k0 =16h2r2
1r2

2

k1 =0

k2 =h2l4
1 −2h2l2

1l2
2 +2h2l2

1l2
3 −2h2l2

1l2
4 +8h2l2

1r2
1+h2l4

2 −2h2l2
2l2

3 +2h2l2
2l2

4

−8h2l2
2r2

1+h2l4
3 −2h2l2

3l2
4 +8h2l2

3r2
1+h2l4

4 −8h2l2
4r2

1+16h2r4
1−16h2r2

1r2
2

k3 =2hl4
1r1−2hl2

1l2
2r1−2hl2

1l2
4r1+8hl2

1r3
1+2hl2

2l2
3r1−2hl4

3r1+2hl2
3l2

4r1−8hl2
3r3

1

k4 =l4
1r2

1−2l2
1l2

3r2
1+ l4

3r2
1

(2.34)

Equation 2.33 has at most 4 solutions for sinθ2. For each sinθ2, there should have been 2
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sets of solutions forθ2.

θ2 =







Atan2(sinθ2,
√

1−sin2 θ2)+2kπ (k = 0,±1,±2, ...)

Atan2(sinθ2,−
√

1−sin2 θ2)+2kπ (k = 0,±1,±2, ...)

(2.35)

However, because the range ofθ1 andθ2 is within [−π
2 ,

π
2 ], only 1 solution is valid. Thus

θ2 has at most 4 solutions. Further, we can use Equation 2.29 andeq2 (in 2.36) to solve for

cosθ1 and sinθ1 respectively, and finally, get a unique value forθ1:

2h2+ r2
1+ r2

2− l2
2 −2cosθ1r1r2+2hr2sinθ1+2cosθ1cosθ2h2+2cosθ2sinθ1hr1 = 0 (2.36)

θ1 = Atan2(sinθ1,cosθ1) (2.37)

Thus the direct kinematics problem has at most 4 solutions intotal.

2.2.2.2 Direct kinematics for 4-wire mechanism in case 2

The task for direct kinematics in case 2 is to find the transformation matrix0T4. Let’s

use the product of exponentials formula to express0T4:

0T4 = gst(θ1,θ2,α2) = e ξ∧
1 θ1e ξ∧

2 θ2e ξ∧
3 α2 gst(0)

=












cα2cθ2 −sα2cθ2 sθ2 hsθ2

sα2cθ1+ cα2sθ1sθ2 cα2cθ1− sα2sθ1sθ2 −cθ2sθ1 −hcθ2sθ1

sα2sθ1− cα2cθ1sθ2 cα2sθ1+ sα2cθ1sθ2 cθ1cθ2 h+hcθ1cθ2

0 0 0 1












(2.38)

α2 is known. we need to figure out the values forθ1 andθ2 to solve the direct kinematics

problem. Equation 2.1 can be rewritten as:

0R1
1bi =

0R1
1t1+

0R3
3t2+

0R3
3ai +

0li (2.39)
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Figure 2.5: Four solutions for direct kinematics problem of4-wire mechanism in case 1

where0R1 is an identity matrix,1bi,
1t1,

3t2,
3ai are fixed vectors, and0R3 has 2 variables

θ1 andθ2. Since the lengths of wires are given, we can use it to list 4 equations fori =

1,2,3,4:

‖0li‖= ‖
(1bi − 1t1

)
− 0R3

(3t2+
3ai
)
‖ (2.40)

We can find that Equation 2.40 has the same expression in case 1, so does the proce-

dures of solving equations forθ1 and θ2. After solving these equations we substitute

θ1 and θ2 into Equation 2.38 to compute0T4. Here we are going to use an example

to demonstrate that the direct kinematics problem of 4-wirewrist may have 4 solutions.

Suppose thatl1 = 33.85mm, l2 = 20.07mm, l3 = 35.57mm, l4 = 49.34mm, andα1 = 0 in

case 1 andα2 = 0 in case 2. The results are shown in Figure 2.5 and Figure 2.6.The

end effector positions for these four poses in case 1 are[−10.73,13.10,27.62]mm with

θ1 =−56.67◦, θ2 =−34.38◦, [−5.95,13.85,30.57]mm with θ1 =−50.14◦, θ2 =−18.24◦,
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Figure 2.6: Four solutions for direct kinematics problem of4-wire mechanism in case 2

[0.9951,14.10,31.70]mm with θ1 = −48◦, θ2 = 3◦ and [−15.68,10.34,22.86]mm with

θ1 =−74.56◦, θ2 = 55.63◦.

The end effector positions for these four poses in case 2 are[−17.88,6.39,18.25]mm,

[−1.99,16.36,28.45]mm, [7.04,15.81,26.84]mm and[12.83,13.57,22.51]mm.

2.2.2.3 Direct kinematics for 3-wire mechanism in case 1

In this subsection, Equations 2.23 and 2.26 remain the same except fori= 1,2,3 instead

of i = 1,2,3,4. Since in case 1α1 is already known, we will use 2.26 to calculateθ1 and

θ2. Again, let’s assume that‖0li‖= li, ‖1bi‖= r1, ‖3ai‖= r2, and‖1t1‖= ‖3t2‖= h, and

number the three equations in 2.26 aseq1,eq2 andeq3. The difficulty for this subsection is

solving the three polynomial equations. We will use resultants method to find solutions for

θ1 andθ2. First,eq1,eq2 andeq3 can be expressed as:
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eq1 =F1+2h2cθ1cθ2−2hr2cθ1sθ2− l2
1 −2r1r2cθ2−2r1hsθ2

eq2 =F1+F2+F3− l2
2

eq3 =F1+F2−F3− l2
3

(2.41)

where:

F1 =2h2+ r2
1+ r2

2

F2 =− 3r1r2

2
cosθ1−

r1r2

2
cosθ2+hr1sinθ2+2h2cosθ1cosθ2+hr2cosθ1sinθ2

F3 =
√

3hr2sinθ1+
√

3hr1cosθ2sinθ1+

√
3

2
r1r2sinθ1sinθ2

(2.42)

In eq1 we use
√

1−sin2θ1 to replace cosθ1. The reason why we do not replace cosθ1 with

±
√

1−sin2 θ1 is that the joint limit forθ1 is [−π
2 ,

π
2 ], and in this range ofθ1, cosθ1 has

non-negative values. Thus eq1 becomes:

(2h2cθ2−2hr2sθ2)
√

1− s2θ1 = l2
1 − r2

1− r2
2−2h2+2r1r2cθ2+2r1hsθ2 (2.43)

Further, we square on both sides of 2.43 and get:

(2h2cθ2−2hr2sθ2)
2(1− s2θ1) = (l2

1 − r2
1− r2

2−2h2+2r1r2cθ2+2r1hsθ2)
2 (2.44)

Moreover we can write 2.44 as a second order polynomial:

f0(θ2)x
2+ f1(θ2)x+ f2(θ2) = 0 (2.45)
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where

x = sinθ1

f0(θ2) =−(2h2cθ2−2hr2sθ2)
2

f1(θ2) = 0

f2(θ2) = (2h2cθ2−2hr2sθ2)
2− (l2

1 − r2
2− r2

1−2h2+2r1r2cθ2+2r1hsθ2)
2

(2.46)

In 2.46, the parametersf2 and f0 are both functions ofθ2. We will do the same thing on

(eq2− eq3), which can be expressed as:

−l2
2 + l2

3 +2
√

3hr2sθ1+2
√

3hr1cθ2sθ1+
√

3r1r2sθ1sθ2 = 0 (2.47)

and further we write it as a second order polynomial:

g0(θ2)x
2+g1(θ2)x+g2(θ2) = 0 (2.48)

where

x = sinθ1

g0(θ2) = 12h2r2
1(1− s2θ2)− (

√
3r1r2sθ2+2

√
3hr2)

2

g1(θ2) = (
√

3r1r2sθ2+2
√

3hr2)(l2
2− l32)

g2(θ2) =−(l2
2 − l2

3)
2

(2.49)

Multiply x on both sides of 2.45 and 2.48, and we will get two more equations:

f0(θ2)x
3+ f1(θ2)x

2+ f2(θ2)x = 0 (2.50)

g0(θ2)x
3+g1(θ2)x

2+g2(θ2)x = 0 (2.51)
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Equations 2.45, 2.48, 2.50 and 2.51 form a homogeneous linear system:












0 f0(θ2) 0 f2(θ2)

0 g0(θ2) g1(θ2) g2(θ2)

f0(θ2) 0 f2(θ2) 0

g0(θ2) g1(θ2) g2(θ2) 0












︸ ︷︷ ︸

D












x3

x2

x

1












=












0

0

0

0












(2.52)

The necessary and sufficient condition for a non-trivial solution of Equation 2.52 isdet(D)=

0. Using this condition we can get an 8th order polynomial ofθ2:

k0sin8θ2+ k1sin7θ2+ ...+ k7sinθ2+ k8 = 0 (2.53)

Hereki, i = 0,1,2, ...,8 are functions of constantsh,r1,r2, l1, l2 andl3. 2.53 has at most 8

solutions for sinθ2. For each sinθ2, only θ2 within [−π
2 ,

π
2 ] is valid. Then substituteθ2 into

2.47 and get the unique solution forθ1.

2.2.2.4 Direct kinematics for 3-wire mechanism in case 2

In this subsection, The 3-wire mechanism’s transformationmatrix has the same expres-

sion with 2.38 containing variables ofθ1,θ2 andα2, and 2.40 remain the same except for

i = 1,2,3 instead ofi = 1,2,3,4. After listing the 3 equations we found that the expressions

for eq1 eq2 andeq3 are exact equations in 2.41. Thus, we can use the same procedures to

solve the direct kinematics problems of case 2 as we have donein case 1.

Here we will also demonstrate that the direct kinematic problem of 3-wire mechanism

may have 8 solutions for both cases. Supposingl1 = 29.68mm, l2 = 41.7mm, l3 = 40.10mm

andα1=
π
2 for case 1 andα2=

π
2 for case 2. The results are shown in Figure 2.7 and Figure

2.8.

The end effector positions for these eight poses in case 1 are[0.82,−17.71,25.83]mm,
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Figure 2.7: Eight solutions for direct kinematics problem of 3-wire mechanism in case 1

[0.98,4.22,37.50]mm, [0.95,5.84,37.06]mm, [0.92,7.15,36.58]mm, [0.92,7.18,36.57]mm,

[0.91,7.73,36.33]mm, [0.42,17.75,25.76]mm, and[0.41,17.76,25.75]mm.

2.2.3 Validation of Inverse and Direct Kinematics

In this section, we will validate the models of inverse and direct kinematics by assigning

values for variables:

h = 19mm, r1= 18mm, r2= 18mm (2.54)

Moreover, values forθ1 andθ2 are selected from−π
3 to π

3 evenly with certain step ofπ10,

while α1 = α2 =
π
2 . In the following validations, we should have 8 situations to discuss:

inverse kinematics of 4 wires/3 wires in case 1/case 2 and direct kinematics of 4 wires/3

wires in case 1/case 2. However, the validation procedures of 3-wire mechanism is almost

the same with the 4-wire’s. Thus we will only give detailed analysis for 4-wire wrist but
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Figure 2.8: Eight solutions for direct kinematics problem of 3-wire mechanism in case 2

will show final results for both 3-wire and 4-wire’s.

2.2.3.1 Validation of Inverse Kinematics in case 1

For inverse kinematics, end effector’s position0EEpos and orientation0R3 are given.

We need to compute joint values using models in previous section, and compare those

calculated values with the reference ones. The detailed procedures is shown in Figure 2.9.

First, select values forθ1, θ2 ∈ [−π
3 ,

π
3 ], andα1 =

π
2 ; then use them to calculateEEpos

and 0R4 which are regarded as kinematically consistent inputs. At the same time, compute

wire lengths as reference for comparison, written asl1, l2, l3 andl4. Then use inverse kine-

matics model,EEpos and0R4 to computeθ̃1, θ̃2 andα̃1, as well as wire lengths̃l1, l̃2, l̃3 and

l̃4; finally, compare the reference and the calculated joint values.

The result of the comparison can be shown in figure 2.10 and 2.11. From these two fig-
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Figure 2.9: Procedures of inverse kinematics validation

ures where the reference values are shown using ”O” and the calculated values are using∗,

we can see that all the∗ are almost coincident with ”O”, and the greatest error between the

reference and calculated values is 1.4211×10−14, which can demonstrate that the model

for inverse kinematics is correct.

2.2.3.2 Validation of Inverse Kinematics in case 2

The procedures of validating inverse kinematics in case 2 isalmost the same with case 1.

The only alteration is that we select value forα2 =
π
2 instead ofα1. The results are shown

in Figure 2.12 and 2.13. Again we can see from the figures that the inverse kinematics

model works well.

2.2.3.3 Validation of Direct Kinematics in case 1

For direct kinematics, the inputs are wire lengths andα1 and we need to compute end

effector’s positionEEpos. The detailed procedures are shown in Figure 2.14.

Similar to inverse kinematics, we first select values forθ1 andθ2 ∈ [−π
3 ,

π
3 ], α1 =

π
2 ; then

useθ1,θ2 andα1 to calculateEEpos as reference and compute wire lengths as inputsl1, l2, l3

andl4; what’s more, use direct kinematics model, wire lengths andα1 to obtain values of

θ̃1 andθ̃2, and again get the calculated end effector position˜EE pos; finally, compare those

reference and calculated values of end effector’s positions. Here we plot the results in
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Figure 2.10: Inverse kinematics validation of 4 wires mechanism in case 1

Figure 2.11: Inverse kinematics validation of 3 wires mechanism in case 1
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Figure 2.12: Inverse kinematics validation of 4 wires mechanism in case 2

Figure 2.13: Inverse kinematics validation of 3 wires mechanism in case 2
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Figure 2.14: Procedures of direct kinematics validation

polar coordinate system where the radius represents the tilt angle, and the azimuth angle

represents the direction of tilt. And we have the same definition for polar coordinate system

in the following analysis.

Figure 2.15 and 2.16 show the end effector’s position in polar coordinate where the

radius represents the tilt angle. Here ”O” is to indicate reference values and∗ to indicate

calculated values. We can find that all the ”O” and∗ are coincident which means the direct

kinematics model in case 1 is correct.

2.2.3.4 Validation of Direct Kinematics in case 2

Based on the procedures in case 1, we replaceα1 =
π
2 with α2 =

π
2 in case 2. Figure

2.17 and 2.18 showing the comparison results demonstrate that the direct kinematics model

is correct.
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Figure 2.15: Direct kinematics validation of 4 wires mechanism in case 1 (Unit: degree)

Figure 2.16: Direct Kinematics Validation of 3 wires mechanism in case 1 (Unit: degree)

41



Figure 2.17: Direct Kinematics Validation of 4 wires mechanism in case 2 (Unit: degree)

Figure 2.18: Direct Kinematics Validation of 3 wires mechanism in case 2 (Unit: degree)
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Chapter 3

Instantaneous Kinematics

For a robot manipulator, the Jacobian matrix, or simply Jacobian is defined as the matrix

that transforms the joint rates in the actuator space to end effector velocity [27]. In our

project, it is difficult to calculate directly the complete Jacobian for the 3-DOF hybrid

mechanism, 2-DOF universal joint with another rotational DOF either sitting on the top

plate or lying under the bottom plate. We should notice that no matter where the 3rd DOF

is placed, the expression of ”partial” JacobianJ̃ (Here we use the tilde to indicate that it

is a partial item) for the 2-DOF universal joint is unchanged, even though the ”complete”

JacobianJ expressions are different. Based on this, we split the computation into two parts.

In the first part, we compute the ”partial” JacobianJ̃ and then in the second part, we add

the ”serial” part to it to form a complete JacobianJ.

3.1 Partial Jacobian Calculation

In this section, we will use two methods, the virtual work method and loop closure

kinematics method to calculatẽJ. In the first method, we use the virtual work principle

that total work done by the applied forces of a mechanical system as it moves through a set

of infinitesimal virtual displacements is zero, to acquire the relationship between external

wrench and input actuations, namely the transpose of Jacobian. In the second method, we

use the geometric relationship to deduce the relationship of joint velocity to end effector

velocity, that is, the Jacobian. Since this 2-DOF universalmechanism has three or four

inputs, J̃ should be a 3× 2 (3 actuation wires) or 4× 2 (4 actuation wires) matrix. No

matter which method we use, the result should be the same. Moreover, because there is no

significant difference between 3-wire and 4-wire mechanismin terms of Jacobian analysis,

we assume the wrist has 4 actuation wires by default.
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Figure 3.1: Nomenclature for the virtual work method

3.1.1 Partial Jacobian Derivation Using the Virtual Work Method

This method follows the approach of Hamid et al. [28]. First we need to define some

vectors. We denote forces in the wires asτwi (i = 1,2,3,4) and the external moment acting

on the end effector as a 2-dimension vector2w̃ext = −2w̃ee = [2mex,
2mey]

T , where2mex

and2mey represent projections of2w̃ext along x̂2 and ŷ2 respectively expressed in frame

2. According to the virtual work method, for any arbitrary infinitesimal changeδθ1 and

δθ2, the sum work of all wrench applied on the mechanism should be0. Thus we have the

following equation expressed in frame{2}:

0=

(

2w̃ext +
4

∑
i=1

2r i ×τwi

)T
(
δθ1

2x̂2+δθ2
2ŷ2
)

(3.1)

where2r i is the location of theith wire anchor point in frame{2}. Substitute2w̃ext using

2mex +
2 mey and we get:
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0=
[2mex,

2mey
]T δθ1

2x̂2+
[2mex,

2mey
]T δθ2

2ŷ2

+
(2r1× 2τw1

)T (δθ1
2x̂2+δθ2

2ŷ2
)
+
(2r2× 2τw2

)T (δθ1
2x̂2+δθ2

2ŷ2
)

+
(2r3× 2τw3

)T (δθ1
2x̂2+δθ2

2ŷ2
)
+
(2r4× 2τw4

)T (δθ1
2x̂2+δθ2

2ŷ2
)

(3.2)

Using the following definition ofτwi for the tension in theith wire:

τwi = τwi l̂i, i = 1,2,3,4 (3.3)

where l̂i is the unit vector of theith wire. Rewriting 3.2 in matrix matrix gives:






−1 0

0 −1






︸ ︷︷ ︸

A2×2






2mex

2mey






︸ ︷︷ ︸

2w̃ee 2×1

=






−
(

2r1× 2l̂1
)T 2x̂2 −

(
2r2× 2l̂2

)T 2x̂2 −
(

2r3× 2l̂3
)T 2x̂2 −

(
2r4× 2l̂4

)T 2x̂2

−
(

2r1× 2l̂1
)T 2ŷ2 −

(
2r2× 2l̂2

)T 2ŷ2 −
(

2r3× 2l̂3
)T 2ŷ2 −

(
2r4× 2l̂4

)T 2ŷ2






︸ ︷︷ ︸

B2×4












τw1

τw2

τw3

τw4












︸ ︷︷ ︸

τw 4×1

(3.4)

We can see that Equation 3.4 provides us with the projection matrix from external moment

to joint forces. Combined with the parallel robot Jacobian definition in statics, we have:

AT
2×2 B2×4 τw 4×1 =

2w̃ee 2×1

2J̃T τw 4×1 =
2w̃ee 2×1

(3.5)

where2J̃ is given by:

2J̃ , (BT)4×2 A2×2 (3.6)
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Then we can get the expression of output hook’s angular velocity.

2J̃ 2ω̃3/1 = q̇w (3.7)

2ω̃3/1 =
2J̃† q̇w (3.8)

Here 2J̃† is the pseudo inverse of2J̃. q̇w = [l̇1, l̇2, l̇3, l̇4] represents a 4×1 vector represent-

ing wires’ velocities wherėli is the velocity of wire joint, andkω̃m/n means a 2×1 vector

referring to the angular velocity of framem relative to framen expressed in framek.

3.1.2 Partial Jacobian Derivation Using the Loop Closure Kinematics Method

The geometric relationship is shown in Figure 2.3. In Position Analysis, we have ob-

tained Equation 2.1 and the following analysis will be basedon this equation but expressed

in frame 2:

2bi =
2t1+

2t2+
2ai +

2li (i = 1,2,3,4) (3.9)

2R1
1bi =

2R1
1t1+

2R3
3t2+

2R3
3ai +

2li (3.10)

Taking the derivatives on both sides of 3.10 results in:

2ω1× 2bi =
2ω1× 2t1+

2ω3× 2t2+
2ω3× 2ai +

2l̂i · l̇i (3.11)

Here 2ωi is short for 2ωi/2 referring to angular velocity of frame i relative to frame 2

expressed in frame 2. Then dot-multiply both sides of 3.11 byunit vector2l̂i.

(2bi × 2l̂i
)T 2ω1 =

(2t1× 2l̂i
)T 2ω1+

(2t2× 2l̂i
)T 2ω3+

(2ai × 2l̂i
)T 2ω3+ l̇i (3.12)

Since2ω1 = [−1;0;0] · θ̇1 and 2ω3 = [0;1;0] · θ̇2 We can rewrite 3.12 into matrix form:
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










(
2b1× 2l̂1

)T 2x̂2−
(

2t̂1× 2l̂1
)T 2x̂2

(
2t2× 2l̂1

)T 2ŷ2+
(

2a1× 2l̂1
)T 2ŷ2

(
2b2× 2l̂2

)T 2x̂2−
(

2t̂1× 2l̂2
)T 2x̂2

(
2t2× 2l̂2

)T 2ŷ2+
(

2a2× 2l̂2
)T 2ŷ2

(
2b3× 2l̂3

)T 2x̂2−
(

2t̂1× 2l̂3
)T 2x̂2

(
2t2× 2l̂3

)T 2ŷ2+
(

2a3× 2l̂3
)T 2ŷ2

(
2b4× 2l̂4

)T 2x̂2−
(

2t̂1× 2l̂4
)T 2x̂2

(
2t2× 2l̂4

)T 2ŷ2+
(

2a4× 2l̂4
)T 2ŷ2












︸ ︷︷ ︸

A4×2






2θ̇1

2θ̇2






︸ ︷︷ ︸

2ω̃3/1

=












1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1












︸ ︷︷ ︸

B4×4












l̇1

l̇2

l̇3

l̇4












︸ ︷︷ ︸

q̇w 4×1

(3.13)

Namely:

BT
4×4 A4×2

2ω̃3/1 = q̇w 4×1

2J̃4×2
2ω̃3/1 = q̇w 4×1

(3.14)

Thus we get:

2J̃ = BT
4×4 · A4×2 (3.15)

After comparison we find that the two expressions are the same. The next step is to add the

”serial” part toJ̃ to form a complete Jacobian of the hybrid mechanism.

3.2 Jacobian Calculation for the Whole Mechanism

When calculating the complete Jacobian, we need to analyze case 1 and case 2 sepa-

rately because the expressions are different. In case 1, the3rd DOF lying under the bottom

plate , the end effector’s angular velocity in world frame can be expressed as:

0ω3/0 =
0ω3/1( q̇w)+

0ω1/0(q̇r) = J






q̇w

q̇r




 (3.16)
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Let’s see the details of 3.16 and get:

0ω3/0 =
0ω3/1+

0ω1/0

= 0R2






2ω̃3/1

0




+

0ẑ0q̇r

= 0R2






2J̃† q̇w

0




+

0R2
2ẑ0q̇r

(3.17)

Hereq̇r refers to the angular velocity of the 3rd DOF. Then we need to combinėqw andq̇r

together to form a completėq in world frame for the hybrid manipulator.

0ω3/0 =
0R2











2J̃† q̇w

0




+

2ẑ0q̇r






= 0R2









J̃†
11 J̃†

12 J̃†
13 J̃†

14
2z0x

J̃†
21 J̃†

22 J̃†
23 J̃†

24
2z0y

0 0 0 0 2z0z














q̇w

q̇r






(3.18)

The variables ofJ̃†
11, J̃

†
12, ..., J̃

†
23 are items in2J̃†, and[2z0x,

2z0y,
2z0z] represents the vector

of 2ẑ0, that is, ẑ0 expressed in frame{2}. So the complete expression of Jacobian is:

J = 0R2









2J̃†
2z0x

2z0y

0 2z0z









= 0R2









J̃†
11 J̃†

12 J̃†
13 J̃†

14
2z0x

J̃†
21 J̃†

22 J̃†
23 J̃†

24
2z0y

0 0 0 0 2z0z









(3.19)

In case 2,ẑ4 is coincident withẑ3. The end effector’s angular velocity in world frame can

be expressed as:
0ω4/1 =

0ω3/1( q̇w)+
0ω4/3(q̇r)

= J






q̇w

q̇r






(3.20)

48



Further we have:
0ω4/1 =

0ω3/1+
0ω4/3

= 0R2






˜2ω3/1

0




+

0ẑ3q̇r

= 0R2






2J̃† q̇w

0




+

0R2
2ẑ3q̇r

(3.21)

So the complete expression of Jacobian is:

J = 0R2









2J̃†
2z3x

2z3y

0 2z3z









= 0R2









J̃†
11 J̃†

12 J̃†
13 J̃†

14
2z3x

J̃†
21 J̃†

22 J̃†
23 J̃†

24
2z3y

0 0 0 0 2z3z









(3.22)

Here[2z3x,
2z3y,

2z3z] is the vector of2ẑ3, namelyẑ3 expressed in frame{2}. By comparing

these two expressions of Jacobian, we can see that the first four columns of these two cases

are the same. The last columns, which present the contribution of the 3rd joint to the angular

velocity of end effector, are different due to different rotation axes in these two cases. After

computing the expression ofJ, we have the following relationships:

J3×5 q̇5×1 = ẋ3×1 (3.23)

(
JT)

5×3 wee 3×1 = τ5×1 (3.24)

q̇ = [ q̇w, q̇r] contains all the input velocities, anḋx refer to end effector’s angular velocity.

τ represents actuations including wire tensions and one moment applied on the 3rd DOF,

and wee is end effector’s wrench. Moreover, in the following sections, we make use of two

sub-matrices ofJ which are associated with the wire controlled wrist. The first matrix is

defined as the first four/three (based on the number of actuations) columns ofJ. Here we
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use four wires as an example, and the matrix can be written as:

Jw , 0R2









J̃†
11 J̃†

12 J̃†
13 J̃†

14

J̃†
21 J̃†

22 J̃†
23 J̃†

24

0 0 0 0









(3.25)

The second matrix is the 4 by 3 Jacobian for parallel wrist expressed in frame{0}, which

is defined as:

Jp ,












2J̃4×2

0

0

0

0












0R2 (3.26)

3.3 Conclusion

In this part, we first use two methods, virtual work method andloop-closure kinematics

method to analyze the Jacobian expression2J̃ for parallel robot. The results of these two

methods are the same, which demonstrates the correctness ofthem. Then use the equation

of end effector’s velocity to get complete JacobianJ by partitioning items of joint space

velocity. Moreover, we also defineJw as velocity relationships between end effector and

wires, andJp as Jacobian for parallel robot expressed in frame{0} for later use.
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Chapter 4

Stiffness And Compliance Analysis

In the course of the calculation of wrist workspace for wireshaving finite stiffness we

make use of the wrist compliance. We therefore present the stiffness and compliance model

in this chapter.

4.1 Parallel Robot Stiffness

The stiffness of parallel robot is defined as:

∆ We = K∆θ (4.1)

In equation 4.1,∆θ is the alteration of position/orientation;∆ We represents the corre-

sponding change of external wrench, andK denotes the stiffness matrix. In this project,

∆θ = [∆θx,∆θy,∆θz]
T which is the deflection of end effector’s orientations in workspace;

∆ We = [Mex,Mey,Mez]
T , the change of external moments, and for each itemki j in K , we

have:

ki j ,
d Wei

dθ j
=

d
dθ j

(
JT

pτw
)

i
=

d
dθ j

[(
JT

p

)

i
τw

]

(4.2)

HereJp is the Jacobian expression for parallel robot, which is defined in Equation 3.26 in

Chapter 3. The subscriptsi or j means theith or jth row of JT
p . Let us expand equation 4.2

and get:

ki j =
d

dθ j

[(
JT

p

)

i
τw

]

=
d
(
JT

p

)

i

dθ j
τw +

(
JT

p

)

i

dτw

dθ j
(4.3)

The first item on the right side of Equation 4.3 is called active stiffness and the second

passive stiffness [29]. Let us expand the passive stiffnessfirst:

dτ
dθ j

=
∂τw

∂q1

∂q1

∂θ j
+

∂τw

∂q2

∂q2

∂θ j
+ ...+

∂τw

∂q4

∂q4

∂θ j
(4.4)
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We can see that the items∂τw
∂q1

, ..., ∂τw
∂q4

are rows of joint stiffnessK d, and∂q1
∂θ j

, ..., ∂q4
∂θ j

are just

the jth column of Jacobian matrix. Thus equation 4.3 can be written as:

ki j =
d
(
JT

p

)

i

dθ j
τw +(Jp)iKd (Jp)

j (4.5)

Referring to the active stiffness term
d(JT

p )i
dθ j

τw, the vectorτw is a 4 by 1 vector representing

wire tensions, and before we illustrate
d(JT

p)i
dθ j

, we should first define
dJT

p
dθ as a 3-dimension

matrix which consists of 3 ”layers”. On each layer is a 2-dimension matrix
∂JT

p
∂θ j

, j = x,y,z.

Thus
d(JT

p)i
dθ j

means theith row on the jth layer. Based on the analysis of active stiffness

and passive stiffness, we can write theith column ofK as:

(K) j =
∂JT

p

∂θ j
τw +JT

pKd (Jp)
j (4.6)

Moreover, since the active stiffness is relatively small compared with passive stiffness ac-

cording to Simaan, et al. [29], we neglect the active item anduse passive stiffness to

approximateK , that is:

K = JT
p K dJp =









kxx kxy kxz

kyx kyy kyz

kzx kzy kzz









(4.7)

And the external moment can be expressed as:

∆Mex = kxx∆θx + kxy∆θy + kxz∆θz

∆Mey = kyx∆θx + kyy∆θy + kyz∆θz

∆Mez = kzx∆θx + kzy∆θy + kzz∆θz

(4.8)

The coefficientki j affects the robot reaction ini for a perturbation inj direction. Figure

4.3, 4.4 and 4.5 shows the contours ofkxx, kyy andkzz for 4-wire mechanism. Figure 4.6,
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Dbottom

Dtop

Rwire β4

h

Figure 4.1: 4-wire parallel robot dimensions

Table 4.1: 4-Wire Parallel Robot Dimensions

Item Symbol Dimension
Top platform diameter Dtop 40mm

Bottom platform diameter Dbottom 40mm
Wires separation distance Rwire 18mm
Wires separation angle β4 90◦

Hook heights h 19mm

4.7 and 4.8 are stiffness contours for 3-wire wrist.

In these simulations, we assumedK di = 1N/mm for each wire and the robot dimensions

are give in Figure 4.1 and Table 4.1 for 4-wire mechanism, while for 3-wire robot the

dimensions are given in Figure 4.2 and Table 4.2.

These figures can give us a more intuitive sense of the stiffness. As we have explained,

coefficientskxx, kyy, kzz present the extent to which the robot react in directions of x, y and

z due to perturbations in x, y and z respectively. Moreover, we can also see that the 4-wire

mechanism has higher stiffness than 3-wire wrist.
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Dtop

Dbottom

Rwire
β3

h

Figure 4.2: 3-wire parallel robot dimensions

Table 4.2: 3-Wire Parallel Robot Dimensions

Item Symbol Dimension
Top platform diameter Dtop 40mm

Bottom platform diameter Dbottom 40mm
Wires separation distance Rwire 18mm
Wires separation angle β3 120◦

Hook heights h 19mm

54



Figure 4.3: Stiffness contours ofkxx from 4-wire mechanism(unit:N/mm)

Figure 4.4: Stiffness contours ofkyy from 4-wire mechanism(unit:N/mm)
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Figure 4.5: Stiffness contours ofkzz from 4-wire mechanism(unit:N/mm)

Figure 4.6: Stiffness contours ofkxx from 3-wire mechanism(unit:N/mm)
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Figure 4.7: Stiffness contours ofkyy from 3-wire mechanism(unit:N/mm)

Figure 4.8: Stiffness contours ofkzz from 3-wire mechanism(unit:N/mm)
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4.2 Hybrid robot compliance

The stiffness of the hybrid wire-actuated manipulator is contributed by both the cable

stiffness and the internal forces in the system which refer to cable tensions [30]. Because

the procedures that derive the stiffness model are the same for either 4 wires or 3 wires,

again we will only discuss the 4 wire mechanism.

In this project, the wrist is a hybrid parallel-serial mechanism so that compliance ma-

trix should be used in stiffness modeling. That is, what we want to find is the relationship

between end effector torque and displacement as:

C∆ wee 3×1 = ∆ x3×1 (4.9)

HereC is the compliance matrix for the hybrid wrist and∆ x3×1 is defined as∆ x3×1 =

[∆θx,∆θx,∆θx]
T . Since we have the relationship between joint actuationsτ and wee as:

τ = JT wee (4.10)

Taking the derivative ofwee on both sides:

δτ
δ wee

=
δJT

δ wee
wee +JT (4.11)

If we neglect pre-load, equation 4.11 can be approximately written as:

∆τ = JT∆ wee (4.12)

which, namely, is the first order approximation ofτ = JT wee. Moreover, equation 4.12 can

be expanded to:

∆τ = JT∆ wee = K d 5×5∆ q5×1 = K d 5×5 J†
5×3∆ x3×1 (4.13)
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Here K d 5×5 = diag([kw1,kw2,kw3,kw3,kr]
T ) is the hybrid joint space stiffness, in which

kwi =
EiAi

li
(i = 1,2,3,4) is the stiffness of wire andkr is the stiffness of the 3rd DOF input

joint. Then we can derive the following equation from equation 4.13:

J3×5 K−1
d 5×5 JT

5×3∆ wee 3×1 = ∆ x3×1 (4.14)

So the expression for compliance matrix is:

C3×3 = J3×5 K−1
d 5×5 JT

5×3 (4.15)

The expression forJ was given in Equation 3.19 and 3.22 depending on where the active

revolute joint is positioned.
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Chapter 5

Workspace Analysis

This chapter will analyze the workspace of wire actuated universal joint mechanism

based on the analysis of Jacobian and stiffness/compliance, based on the work of Hamid

and Simaan [28]. We will first explain how we define workspace,and then come up with

methods for computing both the workspace supposing that thewires have infinite stiffness

and finite stiffness. Second, for various dimension configurations, we calculate the maxi-

mum tilt angles for each one to give a sense of workspace comparison. At the end of this

chapter, we will give methods for wire tension optimization.

5.1 Workspace Analysis with Infinite Stiffness Wires

In Equation 3.24, not every solution forτ is feasible for an arbitrarily orientedwee.

Because wires are used, the value ofτi, i = 1,2,3,4 must be nonnegative. When no such

positiveτ exist, it is impossible to hold the robot in static equilibrium at that configuration

[31]. For equation 3.24, we need to extract a sub-equation that only contains relationships

between wire tensions and end effector wrenchwee, which is the first four lines of equation

3.24.

JT
w wee = τw (5.1)

wee =
(

JT
w

)†
τw (5.2)

JT
w means partialJT, containing only the first 4 rows of the hybrid robot Jacobian, which

was defined in Equation 3.25 in Chapter 3. The solution for equation 5.2 can be written as:

τw = τwp +λ τwh (5.3)
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Figure 5.1: Example of 4-wire wrist workspace with infinitely stiffness wires in polar co-
ordinate system (unit: degree)

where τwp is the particular solution andτwh is the homogenous solution which is in the

null space of
(

JT
w

)†
. If there is a left null vector of

(
JT

w

)†
with strictly positive components,

then the robot can achieve static equilibrium. A nonsingular configuration is kinematically

fully constrained if and only if there is a left null vector of
(

JT
w

)†
with the property that

each of its components is positive [31]. That is to say, in order to guarantee tensions in the

wires, the components ofτwh must have the same sign [28].

Figure 5.1 is an example of workspace given a certain configuration in which the di-

ameters of both top and bottom plate are 40mm and hook height is 19mm. In this polar

coordinate system, the length of radius represents the maximum magnitude of tilt angle in

that direction. Moreover, the workspace, namely the maximum tilt angle will vary when

we change the ratio of height over top diameter or the ratio ofbottom diameter over top

diameter. As a comparison, Figure 5.2 shows the workspace when the wrist actuation has

only three wires which are evenly arranged around center axis. From these two figures

we can find that 4-wire wrist can achieve greater tilt angle and have larger workspace than

3-wire wrist.

Moreover, we should also take physical collision into consideration when calculating

workspace. Basically the collision will happen when upper plate and lower plate touch
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Figure 5.2: Example of 3-wire wrist workspace with infinitely stiffness wires in polar co-
ordinate system (unit: degree)

each other. In this case, the maximum tilt angle of end effector should be:

β = π −2Atan2

(
min(Dtop,Dbottom)

2 ·height

)

(5.4)

In order to get reasonable design atlas, we use various ratios ofheight/Dbottom andDtop/Dbottom

when calculating maximum tilt angles. Then we get the superimposed result when consid-

ering both wire tensions and physical collision, as shown inFigure 5.3. Again, as a com-

parison, Figure 5.4 shows the workspace when the wrist has 3 actuation wires. We can see

that the two figures are similar.
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Figure 5.3: Superimposed workspace of 4 wires wrist when considering both wrench clo-
sure and physical collision

Figure 5.4: Superimposed workspace of 3 wires wrist when considering both wrench clo-
sure and physical collision
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5.2 Workspace Analysis with Finite Stiffness Wires

In the previous section, we compute workspace assuming wrist has infinite stiffness

joints. However, since wires have relatively higher extensibility than other actuation meth-

ods, it is critical to take finite stiffness into account whencalculating wrench closure

workspace [28]. Thus in this section, we will modify the workspace in previous section

based on the stiffness/compliance model.

We can calculate alterations in joint space when given certain external wrench using

compliance matrix. Moreover, we can also know the directionwhere the wrist has the least

stiffness by finding the greatest eigenvalue’s eigenvectorof C. According to these qualities,

we can modify the workspace obtained in the previous section.

The reason why we need to modify workspace is that when we takefinite stiffness of

wires into consideration, the location of end effector willprobably be changed to an in-

valid position where one cannot guarantee tensions in all four wires. Thus the recalculated

workspace must make up for end effector’s deflection.

However, it is not easy to get accurate modified workspace because the system stiffness

depends greatly on Jacobian and moreover, the expression ofJacobian varies according

to different configurations. But we can still get a reasonable approximate result assuming

adjacent positions have same Jacobian expressions and external wrench is small enough.

Here we use two methods to get an approximate workspace. The purpose of the two method

is the same, that is, to subtract the variation from originalworkspace for a given external

torque. In the first method, we calculate the variation for once and assume Jacobian expres-

sion is constant while in the second method, we split the variation into several steps and

recalculate the Jacobian for each step. The procedure for the first method is listed below:

1. We calculate initial workspace supposing that wire stiffness is infinite;

2. For each point in the workspace, compute the compliance matrix and the greatest

possible deflection of end effector’s position;
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Figure 5.5: Procedures of workspace calculation in method I

3. Subtract the alteration from initial workspace to get theapproximation of ”real”

workspace. We need to be careful that it is not simply just subtraction.

From the formation of compliance matrix we can know that end effector wrench∆ wee 3×1

refers to moments in X, Y and Z directions and joint space deflection ∆ x3×1 refers to a

small rotation about a fixed axis where the orientation of theaxis is the unit vector of

∆ x3×1 and the rotation angle is the norm of∆ x3×1. Thus we can use the rotation matrix in

Equation 5.5 to help revise workspace. In Equation 5.5, vector [u,v,w] is the unit vector of

rotation axis andδα is the rotation angle.

R =









u2+(v2+w2)cosδα uv(1−cosδα)−wsinδα uw(1−cosδα)+ vsinδα

uv(1−cosδα)+wsinδα v2+(u2+w2)cosδα vw(1−cosδα)−usinδα

uw(1−cosδα)− vsinδα vw(1−cosδα)+usinδα w2+(u2+ v2)cosδα









(5.5)

The first two steps are the same in method II. But for step 3, instead of supposing constant

Jacobian and computing Jacobian only once, we divide∆ x into ”small” parts and recalcu-

late Jacobian and external wrench for each step separately.Then subtract the displacement

each time until the sum of ”small” variations equals∆ x. Figure 5.6 is an example of

workspace comparison whenheight/Dtop= 0.5,Dbottom/Dtop= 1, the norm of external

force is 50N ·mm, stiffness of wires is 1N/mm. Figure 5.7 is the result of workspace using

second method with the same structure configuration as Figure 5.6.
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Figure 5.6: Comparison of 4-wire workspace with infinite stiffness wires (left) and finite
stiffness wires (right) in method I in polar coordinate system (unit: degree)

Figure 5.7: Comparison of 4-wire workspace with infinite stiffness wires (left) and finite
stiffness wires (right) in method II in polar coordinate system (unit: degree)
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Figure 5.8: Comparison of workspace boundaries using method I (left) and method II
(right) in polar coordinate system (unit: degree)

In order to see the difference clearly between these two methods, two boundaries of

workspace are plotted in Figure 5.8. For a 3-wire wrist, the results can be seen in Figure 5.9

(method I), Figure 5.10 (method II) and figure 5.11. In both 3-wire and 4-wire simulations

we can see the two methods have almost the same results.

From these comparisons we can see that it is not sufficient to consider only wrench

closure when analyzing workspace because wires must have finite stiffness which makes

actual feasible workspace areas smaller. Moreover, by comparing workspace when wires

are of different stiffness as shown in Figure 5.12, we can findthat the smaller wire stiffness

can result in greater deduction from work closure workspace.

We also scan various ratio combinations ofheight/Dbottom andDtop/Dbottom, and get

the modified maximum tilt angles when assuming finite stiffness wires, as shown in Figure

5.13 and 5.14 for 4 wires and 3 wires respectively. From thesetwo figures we can find that

when assuming finite stiffness wires for both 4-wire and 3- wire mechanism, the maximum

tilt angles that the wrist can achieve are similar.
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Figure 5.9: Comparison of 3 wires workspace with infinite stiffness wires (left) and finite
stiffness wires (right) in method I in polar coordinate system (unit: degree)

Figure 5.10: Comparison of 3 wires workspace with infinite stiffness wires (left) and finite
stiffness wires (right) in method II in polar coordinate system (unit: degree)
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Figure 5.11: Comparison of 3 wires workspace boundaries using method I (left) and
method II (right) in polar coordinate system (unit: degree)

4-wire mechanism 3-wire mechanism

Figure 5.12: Comparison of 4-wire workspace (left) and 3-wire workspace (right) for wires
of various stiffness in polar coordinate system (unit: degree)
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Figure 5.13: Superimposed workspace of 4-wire wrist assuming finite stiffness wires

Figure 5.14: Superimposed workspace of 3-wire wrist assuming finite stiffness wires
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5.3 Wire Tension Analysis

In order to provide rational design atlases, we need to make sure that wire tensions’

magnitudes are within reasonable range.

From equation 5.1 we can see that the wire tensions depend on end effector torque and

expression of Jacobian. Moreover, we can use equation 5.6 toapproximately express the

relationship of magnitudes betweenτw and wee:

wT
ee Jw JT

w wee = τT
w τw (5.6)

HereτT
w τw is actually the sum of wire tensions’ squares, but in a sense we can use this item

to represent the sum of wire tensions. In this case, the eigenvalues ofJw JT
w indicate the

scaling factor between‖wee‖ and‖τw‖. Thus when external torque is given, the maximum

eigenvalue ofJw JT
w will set an upper bound for wire tensions.

In order to choose proper scaling factors, we find out the maximum eigenvalues of

Jw JT
w for each ratio pair configuration: ratio of height over bottom plate diameter and

ratio of top plate diameter over the bottom. In every configuration, we scan the whole

workspace and take the average of maximum eigenvalues as therepresentative of that ratio

pair. Figure 5.15 and Figure 5.16 show the results of averagemaximum eigenvalues for

4 wires wrist and 3 wire wrist respectively, and smaller values mean better performance,

indicating smaller scaling factors from end effector moment to wire tensions.

However, it is not sufficient to choose smaller maximum eigenvalue to optimize wire

tensions. It is also very important to use isotropy as criteria to evaluate the performance of

static manipulability. Here we define isotropy by using inverse condition number1κ .

1
κ
=

σmin

σmax
, 0≤ 1

κ
≤ 1 (5.7)

σmin andσmax represent the minimum and maximum eigenvalue ofJw JT
w respectively. Ac-
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Figure 5.15: Maximum eigenvalue for 4-wire wrist

Figure 5.16: Maximum eigenvalue for 3-wire wrist
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Figure 5.17: Inverse Condition Number for 4-wire wrist

cording to Klein and Blaho [32], condition number indicatesthe uniformity of the Jacobian

transformation with respect to direction. That is to say, given external torquewee with

certain magnitude, the more1κ approaches 1, the lessτw’s magnitude will change due to

alteration ofwee’s direction. The value of1κ is very important to wire tensions’ optimiza-

tion because if1κ is very small, a tiny alteration of external wrench’s direction, even though

the magnitude stays the same, may cause great change in wires’ tensions. We again scan

the whole workspace for each ratio pair and get the average values of 1
κ as shown in figure

5.17 for 4-wire wrist and figure 5.18 for 3-wire wrist where higher values are preferred.

Moreover, in order to properly control the wrist within workspace, we need to find the

”smallest”λ for each point that can guarantee tensions in wires. Since external wrench is

given, I can get both specific and homogenous solutions usingequation 5.2. The purpose is

to compute ”λ ” to make the result of equation 5.3 positive. Thus if all of the first four/three

elements of ˜τp are positive,λ can be assigned 0; if not, we will figure out the values

of λ for each wire and select the one with maximum absolute value which would be the

”smallest” λ for that point within workspace. The procedure is listed in Table 5.1. An

example of wire tensions is given when external torque is 10N ·mm. Simulation results
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Figure 5.18: Inverse Condition Number for 3-wire wrist

Table 5.1: Calculation of minimum wire tensions and correspondingλ

If all 4 items of ˜τp are positive If not all τ̃p are positive
λ = 0, if τ̃p(i)< 0, if τ̃p(i)≥ 0,

τ̃ = τ̃p λ (i) = −τ̃p(i)
n j(i) λ (i) = 0

λ = max(λ (i)) (i = 1,2,3,4)

show that most tensions are within reasonable range except for several points sitting on the

workspace edges near singular position. The maximum wire tension for 4-wire mechanism

is around 600 N and for 3-wire wrist is around 800 N, as shown infigure 5.19 and 5.20.
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Figure 5.19: Example of wire tensions for 4-wire wrist within workspace when external
moment is 10N ·mm

Figure 5.20: Example of wire tensions for 3-wire wrist within workspace when external
moment is 10N ·mm
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Chapter 6

Experimental Validation

6.1 Experimental Setup

This chapter presents the design, fabrication and control of an experimental setup meant

to validate our kinematic and static models.

6.1.1 Prototype Design and Manufacture

In this section, we manufactured a prototype of wire-actuated parallel wrist with uni-

versal joint for experiment. This mechanism which has 4 actuation wires is simplified

compared with that in theory work that we did not add the 3rd rotation joint on it. The real

photo of the experiment is shown in Figure 6.1 and Creo modelsof the setup can be seen in

Figure 6.2, where the left figure is the whole setup for the wrist, including actuation parts,

the base, the wrist and NDI trackers, and the right figure is anexploded view of the wrist

mechanism. The actuation parts consist of four Velmex linear slides, Maxon motors and

linear potentiometers. The Velmex slides driven by RE16 Maxon motors convert rotary

motions into linear motions. The potentiometers can recordthe slides’ position for opera-

tions such as joint control and homing. Actuation wires are connected to the spring fixed

on Velmex slides so that the slides can control wire lengths directly. The reason why we

use springs for connection is that springs can provide preloads for the wires. Moreover, the

wires’ stiffness are thus dominated by springs ifKwire ≫ Kspring, as shown in Equation 6.1

and 6.2.

Fext = Kwire∆xw = Kspring∆xs

∆xs =
Kwire

Kspring
∆xw

(6.1)

HereFext is the force applied on the ”wire-spring” system;Kwire andKspring represent
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Figure 6.1: Experiment setup for wire-actuated wrist with universal joint

Figure 6.2: Creo Models of assembly for experiment setup (left) and exploded view of
wire-actuated wrist with universal joint (right)
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wire stiffness and spring stiffness respectively, while∆xw and∆xs are the displacements of

the wire and spring. Thus, the final stiffness of the systemK can be expressed as:

Kd =
Fext

∆xs +∆xw

=
Kwire∆xw

∆xw + Kwire
Kspring

∆xw

=
Kspring

1+ Kspring
Kwire

(6.2)

In our experiment setup,Kspring = 1.72N/mm. The Young’s Modulus of teflon wire is

E = 0.5GPa, the cross-sectional areaA = 0.0628mm2 and initial wire lengthL0 = 118mm.

Thus the stiffness of the wire is

Kwire =
EA
L0

= 2.661×105N/mm ≫ Kspring (6.3)

According to 6.2, the stiffness of ”wire-spring” connection is approximately equal toKspring:

K ≈ Kspring = 1.72N/mm (6.4)

Moreover, the wrist is fixed on the base. Four pulleys are usedto change wires’ di-

rections for convenience of control. Two NDI markers (Marker I and Marker II) and one

optical measurement camera are used to track the position and orientation of end effector.

Marker I is fixed in base as a reference marker, and Marker II which is installed on top plate

can record the relative position and rotation from itself toMarker I.

6.1.2 Real-time Control Using MatLab xPC

The setup for the experiment is borrowed from project of Large Snake developed by

Andrea Bajo and Long Wang, and the control code and stateflow in Simulink was designed

by Long Wang and Nima Sarli. The control part is executed using MatLab xPC Target,

78



Figure 6.3: Stateflow of universal joint wrist controller

which is a host-target prototyping environment provided byMatLab. The reason why we

use xPC Target is that we can implant the kinematics models into Simulink and Stateflow

to enable rapid real-time testing.

The control system consists of a host machine and a target machine. The host ma-

chine is where the controller is built in Stateflow, implant kinematics model and modify

the control parameters. The target machine is in charge of code execution and information

communication with encoders, potentiometers and servo amplifiers, etc. Figure 6.3 shows

the structure of the whole control system.

In the figure we can see the controller mainly consists of fourblocks: Trajectory Plan-

ner, Low-level Controller, Universal Joint Wrist and Scopes. We will next make a brief

illustration for each block:

• The trajectory planner is a high-level controller that process data from such as mo-

tor encodes, potentiometers and user-input desired end effector orientations, etc., to

acquire desired joint values. Then use fifth order polynomial interpolation method

to calculate real-time joint values and output them to the low-level controller. This

block has 4 modes: mode 0, mode 1, mode 2 and mode 3. When mode 0 is activated,

the robot will maintain the current joint configuration. Mode= 1 is for homing pro-

cedure that moves the robot to a pre-defined homing position.If mode 2 is selected,

we can control the joint space directly and thus it can be usedto test direct kinemat-
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Figure 6.4: Structure of trajectory planner in controller

ics model. Moreover, mode 3 is for validation of inverse kinematics that desired end

effector’s orientation is imported into the ”task space” block, and the block outputs

corresponding calculated joint values. The scheme is shownin figure 6.4.

• The low-level Controller is the PID controller, which accepts the desired joint values

and outputs the control signal.

• The Universal Joint Wrist block in Figure 6.3 acts like an interface between con-

trollers and target machine. It transfers the control signal from Low-level Controller

to D/A card. At the same time, it receives digitalized encoders and potentiometers’

signals as inputs for controllers.

• The last block ”Scopes” shows the current status of joint values, control signals,

sensors, etc. on one computer screen.

Moreover, we also make a MatLab GUI for the control part of theexperiment in figure 6.5.
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Figure 6.5: MatLab GUI for control system

6.2 Validation of Inverse Kinematics

In this section, we will test the inverse kinematics of the wrist. The input is a given

orientation of end effector in the form of quaternion as obtained from an optical tracker.

The controller will output the corresponding motor controlsignals to the amplifiers to drive

the motors. At the same time, signals from the encoders and potentiometers which record

joints’ positions and velocities will be sent back to xPC controller as feedback. Finally,

when the feedback shows that the actual joint values equal the desired ones, we compare

the Theoretical wire lengths and actual wire lengths measured by caliper. The procedures

can be shown in figure 6.6.

The results are shown in Table 6.1 and plotted in Figure 6.7.
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Figure 6.6: Procedures for experiment of inverse kinematics validation
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Table 6.1: Experiment Results of Inverse kinematics (unit:mm)

Quaternion Theoretical Wire Lens Actual Wire Lens Errors

1 [0.884, -0.268, 0.136, -0.358] [43.1, 47.33, 26.14, 22.05] [42.55, 47.57, 24.75, 20.82] [-0.55, 0.24, -1.39, -1.23]

2 [0.978, -0.208, 0.010, 0.007] [36.38, 37.80, 38.21, 36.80][36.53, 37.20, 37.25, 37.31] [0.15, -0.60, -0.96, 0.51]

3 [0.921, -0.161, 0.284, 0.215] [20.82, 39.60, 48.58, 29.80][19.82, 39.33, 48.41, 28.96][-1.00, -0.27, -0.17, -0.84]

4 [0.913, -0.234, 0.191, -0.274] [39.66, 47.89, 30.65, 22.48][39.36, 48.64, 28.68, 21.09] [-0.30, 0.75, -1.97, -1.39]

5 [0.930, -0.222, -0.045, -0.291][45.98, 41.04, 25.52, 30.48][46.15, 41.07, 25.55, 29.38] [0.17, 0.03, 0.03, -1.10]

6 [0.960, -0.183, -0.160, -0.138][44.23, 34.60, 28.90, 38.52][44.11, 32.80, 27.17, 38.68] [-0.12, -1.80, -1.73, 0.16]

7 [0.887, -0.255, 0.170, -0.346] [41.86, 48.13, 27.13, 21.00][40.97, 48.55, 26.01, 19.79] [-0.89, 0.42, -1.12, -1.21]

8 [0.941, -0.150, 0.298, 0.053] [26.63, 44.41, 44.23, 26.44][26.69, 44.93, 43.54, 24.75] [0.06, 0.52, -0.69, -1.69]

9 [0.959, -0.177, 0.222, -0.014] [31.35, 44.24, 41.16, 28.27][31.67, 45.34, 40.34, 27.10] [0.32, 1.10, -0.82, -1.17]

10 [0.967, -0.186, -0.129, -0.118][43.14, 35.43, 30.47, 38.18][43.65, 34.13, 28.90, 38.67] [0.51, -1.30, -1.57, 0.49]

Table 6.2: RMS Error of Inverse Kinematics (unit: mm)

Wire 1 Wire 2 Wire 3 Wire 4 Overall

RMSE 0.5115 0.8741 1.2093 1.0759 0.9547
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6.3 Validation of Stiffness Model

In this section, we will verify the stiffness model of the wrist. Since we cannot use

experiments to acquire stiffness/compliance matrix directly, the end effector’s displacement

will be used to evaluate the model. The inputs for this part are initial end effector’s position

and orientation, as well as external moment applied on the wrist, and the output is the end

effector’s position after deflection. The external moment is produced by a 500g weight

applied on a fixed point on top plate.

The detailed procedures are illustrated in Figure 6.8 Firstof all, before adding the

weight to the system, we record the position and orientationof end effector. Then ap-

ply the moment and get the new end effector position by processing data from NDI tracker.

At the same time, we use MatLab to compute the theoretical results according to previous

theory work. Finally, we compare the theoretical results and experiment results in Table

6.3 and in Figure 6.9.
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Figure 6.7: Comparison of wire lengths for inverse kinematics validation

Figure 6.8: Procedures for experiment of stiffness validation
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Table 6.3: Comparison of simulation and experiment resultsfor stiffness validation (unit: mm)

Initial EEpos NDI EEpos Cal EEpos EEpos Error
1 [3.6747, 9.5413, 33.0947] [3.7313, 8.4284, 33.7425] [5.0209, 9.2065, 34.1735] [1.2896, 0.7781, 0.4310]

2 [-1.7313, 7.9118, 34.7244] [-1.1563, 5.9023, 35.8445] [-1.0169, 7.2460, 35.8470] [0.1394, 1.3438, 0.0025]

3 [-7.8545, 7.5485, 3.6678] [-7.3012, 6.2523, 34.5697] [ -7.7788, 6.7711, 34.2859] [-0.4776, 0.5188, -0.2839]

4 [-8.8840, 4.6238, 34.7273] [-8.4469, 3.4470, 35.0684] [-8.7365, 3.2202, 34.8840] [-0.2896, -0.2268, -0.1844]

5 [-6.8048, -4.3606, 35.3499] [-6.9810, -2.8768, 35.6112] [-7.1549, -1.9410, 35.8068] [-0.1738, 0.9357, 0.1956]

6 [-8.8843, -6.3621, 33.6760] [-9.0284, -4.8673, 34.1410] [-8.9968, -3.9617, 34.5842] [0.0316, 0.9056, 0.4433]

7 [-9.1245, -9.1724, 32.2234] [-9.2246, -7.9415, 32.7559] [-9.0422, -6.8066, 33.5977] [0.1824, 1.1349, 0.8418]

8 [-4.0902, -12.2696, 32.3223][-4.1633, -10.9862, 33.1506][-4.5135, -10.0520, 3.8123] [-0.3501, 0.9342, 0.6617]

Table 6.4: RMS Error of Stiffness Model (unit: mm)

Position x y z Overall

RMSE 0.5222 0.9075 0.4585 0.6599
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Figure 6.9: Comparison of end effector positions for stiffness validation (Unit: degree)

6.4 Experiment Conclusion

The inverse kinematics experiment data shows that the actual wire lengths match the

theoretical values well. The mean error is 0.5mm, which is about 1.4% of average wire

length of 35.72mm. The maximum error is -1.97mm, the 3rd wire in the 4th orientation,

which is about 6.4% of its corresponding reference value 30.65mm. The main reason for

this greater error is probably the deflection during measurements using caliper because the

springs connected to wires are easy to change lengths. Moreover, some measuring positions

are difficult to be reached by caliper which may also have negative effects on the accuracy.

Last, there are still some other reasons such as manufacturing errors, measurement errors,

etc.

The data of end effector position acquired in stiffness experiment also matches the

theoretical values well. The mean error is 0.6527mm, while the maximum error is 1.56mm

in y of the 6th position. Besides the deflection that we have discussed in inverse kinematics

experiment, another main reason for the error is that there may be some error when we
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calculate the norm and direction of the applied external moment.

Generally speaking, the experiments have demonstrated theinverse kinematics model

and stiffness model, which also indirectly prove that the Jacobian calculation is correct.
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Chapter 7

Conclusion

This thesis presented an investigation into the modeling ofkinematics, statics and

wrench closure workspace for wire actuated parallel robotswith a constraint leg comprised

of a universal joint. The concept of wrench closure workspace has been known in the lit-

erature of wire actuated robots. Generally, the modeling frameworks do not account for

wrench closure workspace restrictions due to wire extension. This thesis has built on an

earlier exploration of the concept of wrench closure of wireactuated robots with elastic

actuation wires (Hamid and Simaan [28]). The thesis has presented instantaneous kinemat-

ics modeling frameworks using virtual work principle and using loop closure constraint

method. Both inverse and direct kinematics of wire actuateduniversal joint wrists with a

revolute joint at the base or at the moving platform have beenmodeled and validated by

simulation. The inverse kinematics method has been validated also by experiments. A

model of the stiffness of these wrists has been presented based on prior art in the literature

of parallel robots [29]. This model has been used to define thewrench closed workspace

while accounting for maximal deflections subject to a norm-bounded load on the wrist. The

method relied on the use of the compliance matrix of the hybrid robot comprised of a paral-

lel two degrees of freedom wrist attached in series to a revolute joint. Using singular value

decomposition of a sub-matrix of the overall Jacobian of thehybrid robot we were able to

define the safe workspace boundaries of the wrench closure workspace such that even when

the wrist deflects due to external norm-bounded force the requirement of wrench closure

is still maintained. The analysis also compared the effect of using three or four actuation

wires on the kinematics, statics, wrench closure workspaceand stiffness. Results suggest

that using four wires provide one degree of actuation redundancy that can be explored for

enhancing stiffness and for enlarging the wrench closure workspace. These results can help
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guide the design of wire actuated parallel robots and surgical parallel wrists.
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Chapter 8

Appendix

8.1 MATLAB Code for Inverse Kinematics

8.1.1 Inverse Kinematics for 3-Wire Mechanism

% This code is to verify inverse kinematics 3 wires case 1

% Inputs: EEpos and R03

% Outputs: l1 l2 l3 and alpha1

% 20160127 Zhangshi Liu

clc;

clear;

close all;

initialization_3wires_case1_inverse; %initialization

n1 = length(theta1);

n2 = length(theta2);

n3 = length(alpha1);

theta1_cal_set = []; %set for storing calculated values for theta1

theta2_cal_set = []; %set for storing calculated values for theta2

alpha1_cal_set = []; %set for storing calculated values for alpha1

wire_lengths = []; %set for storing reference values for wire lengths

wire_lengths_cal = []; %set for storing calculated values for wire lengths

for i1 = 1: n1

for i2 = 1: n2

for i3 = 1: n3
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% Use configuration Direct kinematics to calculate R03

R03 = [cos(alpha1(i3)) * cos(theta2(i2)) - sin(alpha1(i3)) ...

* sin(theta1(i1)) * sin(theta2(i2)), ...

-sin(alpha1(i3)) * cos(theta1(i1)), ...

cos(alpha1(i3)) * sin(theta2(i2)) ...

+ sin(alpha1(i3)) * cos(theta2(i2)) * sin(theta1(i1));

sin(alpha1(i3)) * cos(theta2(i2)) ...

+ cos(alpha1(i3)) * sin(theta1(i1)) * sin(theta2(i2)), ...

cos(alpha1(i3)) * cos(theta1(i1)), ...

sin(alpha1(i3)) * sin(theta2(i2)) ...

- cos(alpha1(i3)) * cos(theta2(i2)) * sin(theta1(i1));

-cos(theta1(i1)) * sin(theta2(i2)), ...

sin(theta1(i1)), cos(theta1(i1)) * cos(theta2(i2))];

R01 = rotr([0;0;1],alpha1(i3));

% vectors of the wires

l1_in0 = R01 * t1_in1 + R03 * t2_in3 + R03 * a1_in3 - R01 * b1_in1;

l2_in0 = R01 * t1_in1 + R03 * t2_in3 + R03 * a2_in3 - R01 * b2_in1;

l3_in0 = R01 * t1_in1 + R03 * t2_in3 + R03 * a3_in3 - R01 * b3_in1;

% norms of wires

l1 = norm(l1_in0);

l2 = norm(l2_in0);

l3 = norm(l3_in0);

wire_lengths = [wire_lengths, [l1, l2, l3]'];

% Use Inverse kinematics Model to calculate theta1_cal,

% theta2_cal and alpha1_cal

theta1_cal = asin(R03(3,2));

theta1_cal_set = [theta1_cal_set, theta1_cal];

theta2_cal = asin(-R03(3,1)/cos(theta1_cal));

theta2_cal_set = [theta2_cal_set, theta2_cal];

sin_alpha1 = -R03(1,2)/cos(theta1_cal);
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cos_alpha1 = R03(2,2)/cos(theta1_cal);

alpha1_cal = atan2(sin_alpha1, cos_alpha1);

alpha1_cal_set = [alpha1_cal_set, alpha1_cal];

end

end

end

%store all the calculated angle in one set

angles_cal_set = [theta1_cal_set; theta2_cal_set; alpha 1_cal_set];

[m,n] = size(angles_cal_set);

for i = 1: n

% use configuration inverse kinematics to calculate wire le ngths

R01_cal = rotr([0;0;1],angles_cal_set(3,i));

R12_cal = rotr([1;0;0],angles_cal_set(1,i));

R23_cal = rotr([0;1;0],angles_cal_set(2,i));

R03_cal = R01_cal * R12_cal * R23_cal;

l1_in0_cal = R01_cal * t1_in1 + R03_cal * t2_in3 + R03_cal * a1_in3 ...

- R01_cal * b1_in1;

l2_in0_cal = R01_cal * t1_in1 + R03_cal * t2_in3 + R03_cal * a2_in3 ...

- R01_cal * b2_in1;

l3_in0_cal = R01_cal * t1_in1 + R03_cal * t2_in3 + R03_cal * a3_in3 ...

- R01_cal * b3_in1;

l1_cal = norm(l1_in0_cal);

l2_cal = norm(l2_in0_cal);

l3_cal = norm(l3_in0_cal);

% store calculated wire lengths in a set

wire_lengths_cal = [wire_lengths_cal, [l1_cal, l2_cal, l 3_cal]'];

end

fig = 1;

% draw comparison result of reference wire lengths and calcu lated wire lengths

drawwirelengths_3wires(wire_lengths, wire_lengths_ca l,fig)
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% Initialization for verification 3 wire case 1 inverse kine matics

% Zhangshi 20160115

% set limits for angles

angle_max = pi/3;

angle_min = -angle_max;

% set steps within angle limits

step1 = pi/10;

step2 = pi/10;

theta1 = angle_min:step1:angle_max;

theta2 = angle_min:step2:angle_max;

alpha1 = pi/2;

alpha2 = pi/2;

angle = 120/180 * pi; %wire distribution on plates.

h = 19; %hook height

r1 = 18; %bottom radius

r2 = 18; %top radius

t1_in1 = [0;0;h]; % vector t1

t2_in3 = [0;0;h]; % vector t2

a1_in3 = [r2;0;0]; % position of wire 1 on top plate

a2_in3 = [r2 * cos(angle);r2 * sin(angle);0]; %position of wire 2 on top plate

a3_in3 = [r2 * cos(-angle);r2 * sin(-angle);0]; %position of wire 3 on top plate

b1_in1 = [r1;0;0]; % position of wire 1 on bottom plate

b2_in1 = [r1 * cos(angle);r1 * sin(angle);0]; % position of wire 2 on bottom plate

b3_in1 = [r1 * cos(-angle);r1 * sin(-angle);0]; % position of wire 3 on bottom plate
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function drawwirelengths_3wires(wire_lengths, wire_lengths_ca l, fig)

[m,n] = size(wire_lengths);

figure(fig)

% first wire

subplot(3,1,1);

x = 1:n ;

plot(x, wire_lengths(1,:), 'O' ); % use O to present reference values

hold on

plot(x, wire_lengths_cal(1,:), ' * ' ); % use * to present calculated values

ylim([0,60])

ylabel( 'Wire 1 Len' )

title( 'Comparison of reference and calculated wire lengths (mm)' )

% second wire

subplot(3,1,2);

plot(x, wire_lengths(2,:), 'O' );

hold on

plot(x, wire_lengths_cal(2,:), ' * ' );

ylabel( 'Wire 2 Len' )

% third wire

subplot(3,1,3);

plot(x, wire_lengths(3,:), 'O' );

hold on

plot(x, wire_lengths_cal(3,:), ' * ' );

ylabel( 'Wire 3 Len' )

legend( 'Reference' , 'Calculated' );

xlabel( 'Number of times for validation' )

end

8.1.2 Inverse Kinematics for 4-Wire Mechanism
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% This code is to verify inverse kinematics 4 wires case 1

% Inputs: EEpos and R03

% Outputs: l1 l2 l3 l4 and alpha1

% 20160127 Zhangshi Liu

clc;

clear;

close all;

initialization_4wires_case1_inverse; %initialization

n1 = length(theta1);

n2 = length(theta2);

n3 = length(alpha1);

theta1_cal_set = []; % set for storing calculated values for theta1

theta2_cal_set = []; % set for storing calculated values for theta2

alpha1_cal_set = []; % set for storing calculated values for alpha1

wire_lengths = []; % set for storing reference values for wire lengths

wire_lengths_cal = []; % set for storing calculated values for wire lengths

for i1 = 1: n1

for i2 = 1: n2

for i3 = 1: n3

% Use configuration Direct kinematics to calculate R03

R03 = [cos(alpha1(i3)) * cos(theta2(i2)) ...

- sin(alpha1(i3)) * sin(theta1(i1)) * sin(theta2(i2)), ...

-sin(alpha1(i3)) * cos(theta1(i1)), ...

cos(alpha1(i3)) * sin(theta2(i2)) ...

+ sin(alpha1(i3)) * cos(theta2(i2)) * sin(theta1(i1));

sin(alpha1(i3)) * cos(theta2(i2)) ...

+ cos(alpha1(i3)) * sin(theta1(i1)) * sin(theta2(i2)), ...

cos(alpha1(i3)) * cos(theta1(i1)), ...

sin(alpha1(i3)) * sin(theta2(i2)) ...
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- cos(alpha1(i3)) * cos(theta2(i2)) * sin(theta1(i1));

-cos(theta1(i1)) * sin(theta2(i2)), ...

sin(theta1(i1)), cos(theta1(i1)) * cos(theta2(i2))];

R01 = rotr([0;0;1],alpha1(i3));

% vectors of the wires

l1_in0 = R01 * t1_in1 + R03 * t2_in3 + R03 * a1_in3 - R01 * b1_in1;

l2_in0 = R01 * t1_in1 + R03 * t2_in3 + R03 * a2_in3 - R01 * b2_in1;

l3_in0 = R01 * t1_in1 + R03 * t2_in3 + R03 * a3_in3 - R01 * b3_in1;

l4_in0 = R01 * t1_in1 + R03 * t2_in3 + R03 * a4_in3 - R01 * b4_in1;

% norms of wires

l1 = norm(l1_in0);

l2 = norm(l2_in0);

l3 = norm(l3_in0);

l4 = norm(l4_in0);

wire_lengths = [wire_lengths, [l1, l2, l3, l4]'];

% Use Inverse kinematics Model to calculate theta1_cal,

% theta2_cal and alpha1_cal

theta1_cal = asin(R03(3,2));

theta1_cal_set = [theta1_cal_set, theta1_cal];

theta2_cal = asin(-R03(3,1)/cos(theta1_cal));

theta2_cal_set = [theta2_cal_set, theta2_cal];

sin_alpha1 = -R03(1,2)/cos(theta1_cal);

cos_alpha1 = R03(2,2)/cos(theta1_cal);

alpha1_cal = atan2(sin_alpha1, cos_alpha1);

alpha1_cal_set = [alpha1_cal_set, alpha1_cal];

end

end

end

%store all the calculated angle in one set

angles_cal_set = [theta1_cal_set; theta2_cal_set; alpha 1_cal_set];
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[m,n] = size(angles_cal_set);

for i = 1: n

% use configuration inverse kinematics to calculate wire le ngths

R01_cal = rotr([0;0;1],angles_cal_set(3,i));

R12_cal = rotr([1;0;0],angles_cal_set(1,i));

R23_cal = rotr([0;1;0],angles_cal_set(2,i));

R03_cal = R01_cal * R12_cal * R23_cal;

l1_in0_cal = R01_cal * t1_in1 + R03_cal * t2_in3 + R03_cal * a1_in3 ...

- R01_cal * b1_in1;

l2_in0_cal = R01_cal * t1_in1 + R03_cal * t2_in3 + R03_cal * a2_in3 ...

- R01_cal * b2_in1;

l3_in0_cal = R01_cal * t1_in1 + R03_cal * t2_in3 + R03_cal * a3_in3 ...

- R01_cal * b3_in1;

l4_in0_cal = R01_cal * t1_in1 + R03_cal * t2_in3 + R03_cal * a4_in3 ...

- R01_cal * b4_in1;

l1_cal = norm(l1_in0_cal);

l2_cal = norm(l2_in0_cal);

l3_cal = norm(l3_in0_cal);

l4_cal = norm(l4_in0_cal);

% store calculated wire lengths in a set

wire_lengths_cal = [wire_lengths_cal, [l1_cal, l2_cal, l 3_cal, l4_cal]'];

end

fig = 1;

% draw comparison result of reference wire lengths and calcu lated wire lengths

drawwirelengths(wire_lengths, wire_lengths_cal,fig)

% Initialization for verification 4 wire case 1 direct kinem atics

% Zhangshi 20160115

angle_max = pi/3;

angle_min = -angle_max;

step1 = pi/10;

step2 = pi/10;
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theta1 = angle_min:step1:angle_max;

theta2 = angle_min:step2:angle_max;

% alpha1 = 0:pi/2:pi;

alpha1 = pi/2;

alpha2 = 0;

h = 19;

r1 = 18;

r2 = 18;

t1_in1 = [0;0;h];

t2_in3 = [0;0;h];

a1_in3 = [r2;0;0];

a2_in3 = [0;r2;0];

a3_in3 = [-r2;0;0];

a4_in3 = [0;-r2;0];

b1_in1 = [r1;0;0];

b2_in1 = [0;r1;0];

b3_in1 = [-r1;0;0];

b4_in1 = [0;-r1;0];

function drawwirelengths(wire_lengths, wire_lengths_cal, fig)

[m,n] = size(wire_lengths);

fig = fig + 1;

figure(fig)

subplot(4,1,1);

x = 1:n ;
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plot(x, wire_lengths(1,:), 'O' );

hold on

plot(x, wire_lengths_cal(1,:), ' * ' );

ylim([0,60])

ylabel( 'Wire 1 Len' )

title( 'Comparison of reference and calculated wire lengths (mm)' )

subplot(4,1,2);

plot(x, wire_lengths(2,:), 'O' );

hold on

plot(x, wire_lengths_cal(2,:), ' * ' );

ylim([0,60])

ylabel( 'Wire 2 Len' )

subplot(4,1,3);

plot(x, wire_lengths(3,:), 'O' );

hold on

plot(x, wire_lengths_cal(3,:), ' * ' );

ylim([0,60])

ylabel( 'Wire 3 Len' )

subplot(4,1,4);

plot(x, wire_lengths(4,:), 'O' );

hold on

plot(x, wire_lengths_cal(4,:), ' * ' );

ylim([0,60])

ylabel( 'Wire 4 Len' )

legend( 'Reference' , 'Calculated' );

xlabel( 'Number of times for validation' )

end
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8.2 MATLAB Code for Direct Kinematics

8.2.1 Direct Kinematics for 3-Wire Mechanism

% verify 3-wire case 1 (bottom) direct kinematics

% Zhangshi 20160115

clc;

clear all;

syms x real % variable for redundant method

theta2_cal_set = []; % set storing calculated theta2

theta1_cal_set = []; % set storing calculated theta1

alpha1_set = []; % set storing alpha1

ee_pos_cal_set = []; % set storing calculated ee pos

ee_pos_set = []; % set stroing referene ee pos

initialization_3wires_case1_direct; %initialization

n1 = length(theta1);

n2 = length(theta2);

n3 = length(alpha1);

% start calculation

for i = 1:n1

for j = 1:n2

for m = 1:n3

% Use configuration direct kinematics to calculate R03

R01 = rotr([0;0;1],alpha1(m));

R12 = rotr([1;0;0],theta1(i));

R23 = rotr([0;1;0],theta2(j));

R03 = R01* R12* R23;

% vectors of the wires

l1_in0 = R01 * t1_in1 + R03 * t2_in3 + R03 * a1_in3 - R01 * b1_in1;

l2_in0 = R01 * t1_in1 + R03 * t2_in3 + R03 * a2_in3 - R01 * b2_in1;
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l3_in0 = R01 * t1_in1 + R03 * t2_in3 + R03 * a3_in3 - R01 * b3_in1;

% get wire lengths as input

l1 = norm(l1_in0);

l2 = norm(l2_in0);

l3 = norm(l3_in0);

% redundant method to solve equations, x= sin(theta2)

f0 = -(2 * hˆ2 * (1 - xˆ2)ˆ0.5 - 2 * h* r2 * x)ˆ2;

f2 = (2 * hˆ2 * (1 - xˆ2)ˆ0.5 - 2 * h* r2 * x)ˆ2 - ...

(l1ˆ2 - r2ˆ2 - r1ˆ2 - 2 * hˆ2 + 2 * r1 * r2 * (1 - xˆ2)ˆ0.5 + 2 * r1 * h* x)ˆ2;

g0 = (12 * hˆ2 * r1ˆ2) * (1-xˆ2) - (3ˆ0.5 * r1 * r2 * x + 2 * 3ˆ0.5 * h* r2)ˆ2;

g1 = 2 * (3ˆ0.5 * r1 * r2 * x + 2 * 3ˆ0.5 * h* r2) * (l2ˆ2 - l3ˆ2);

g2 = -(l2ˆ2 - l3ˆ2)ˆ2;

D = [0 f0 0 f2;

0 g0 g1 g2;

f0 0 f2 0;

g0 g1 g2 0];

eq = det(D); % use det(D) == 0 to solve for x

sol2 = solve(vpa(eq),x);

sol = double(sol2);

sol(sol > 1) = [];

sol(sol < -1) = [];

k1 = length(sol);

theta2_poss = asin(double(sol)); % possible solutions for theta2

for k = 1:k1

if abs(theta2_poss(k) - theta2(j)) <= 0.001

theta2_cal_set = [theta2_cal_set, theta2_poss(k)];

sin_theta1 = (l2ˆ2 - l3ˆ2)/(2 * 3ˆ0.5 * h* r2 + ...

2* 3ˆ0.5 * h* r1 * cos(theta2_poss(k)) + 3ˆ0.5 * r1 * r2 * sin(theta2_poss(k)));
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theta1_poss = asin(sin_theta1);

theta1_cal_set = [theta1_cal_set, theta1_poss];

alpha1_set = [alpha1_set, alpha1(m)];

% Reference end effector positions

T03 = [

cos(alpha1(m)) * cos(theta2(j)) - ...

sin(alpha1(m)) * sin(theta1(i)) * sin(theta2(j)), ...

-sin(alpha1(m)) * cos(theta1(i)), ...

cos(alpha1(m)) * sin(theta2(j)) + ...

sin(alpha1(m)) * cos(theta2(j)) * sin(theta1(i)), ...

h* cos(alpha1(m)) * sin(theta2(j)) + ...

h* sin(alpha1(m)) * cos(theta2(j)) * sin(theta1(i));

sin(alpha1(m)) * cos(theta2(j)) + ...

cos(alpha1(m)) * sin(theta1(i)) * sin(theta2(j)), ...

cos(alpha1(m)) * cos(theta1(i)), ...

sin(alpha1(m)) * sin(theta2(j)) - ...

cos(alpha1(m)) * cos(theta2(j)) * sin(theta1(i)), ...

h* sin(alpha1(m)) * sin(theta2(j)) - ...

h* cos(alpha1(m)) * cos(theta2(j)) * sin(theta1(i));

-cos(theta1(i)) * sin(theta2(j)), ...

sin(theta1(i)), ...

cos(theta1(i)) * cos(theta2(j)), ...

h* (cos(theta1(i)) * cos(theta2(j)) + 1);

0,0,0,1];

ee_pos = T03(1:3,4); % get reference ee pos

ee_pos_set = [ee_pos_set, ee_pos];

break ;

end

end

end

end

end

angles_set = [theta1_cal_set;theta2_cal_set;alpha1_se t];
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[size1, size2] = size(angles_set);

for i = 1 : size2

theta1_cal = angles_set(1,i);

theta2_cal = angles_set(2,i);

alpha1 = angles_set(3,i);

% Using direct kinematics to calculate end effector's posit ions

T03_cal = [

cos(alpha1) * cos(theta2_cal) - ...

sin(alpha1) * sin(theta1_cal) * sin(theta2_cal), ...

-sin(alpha1) * cos(theta1_cal), ...

cos(alpha1) * sin(theta2_cal) + ...

sin(alpha1) * cos(theta2_cal) * sin(theta1_cal), ...

h* cos(alpha1) * sin(theta2_cal) + ...

h* sin(alpha1) * cos(theta2_cal) * sin(theta1_cal);

sin(alpha1) * cos(theta2_cal) + ...

cos(alpha1) * sin(theta1_cal) * sin(theta2_cal), ...

cos(alpha1) * cos(theta1_cal), ...

sin(alpha1) * sin(theta2_cal) - ...

cos(alpha1) * cos(theta2_cal) * sin(theta1_cal), ...

h* sin(alpha1) * sin(theta2_cal) - ...

h* cos(alpha1) * cos(theta2_cal) * sin(theta1_cal);

-cos(theta1_cal) * sin(theta2_cal), ...

sin(theta1_cal), ...

cos(theta1_cal) * cos(theta2_cal), ...

h* (cos(theta1_cal) * cos(theta2_cal) + 1);

0,0,0,1];

ee_pos_cal = T03_cal(1:3,4); % get calculated ee pos

ee_pos_cal_set = [ee_pos_cal_set, ee_pos_cal];

end

% draw errors

drawEEerrors(ee_pos_set, ee_pos_cal_set, t1_in1)
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% Initialization for verification 3 wire case 1 direct kinem atics

% Zhangshi 20160115

angle_max = pi/3;

angle_min = -angle_max;

step1 = pi/20;

step2 = pi/20;

theta1 = angle_min:step1:angle_max;

theta2 = angle_min:step2:angle_max;

alpha1 = pi/2;

alpha2 = 0;

% theta1 = pi/3; %Define other two rotational angles

% theta2 = pi/10;

% alpha1 = 0;

% alpha2 = pi/6;

angle = 120/180 * pi;

h = 19;

r1 = 18;

r2 = 18;

t1_in1 = [0;0;h];

t2_in3 = [0;0;h];

a1_in3 = [r2;0;0];

a2_in3 = [r2 * cos(angle);r2 * sin(angle);0];

a3_in3 = [r2 * cos(-angle);r2 * sin(-angle);0];

b1_in1 = [r1;0;0];

b2_in1 = [r1 * cos(angle);r1 * sin(angle);0];

b3_in1 = [r1 * cos(-angle);r1 * sin(-angle);0];
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% draw figures for ee errors

function drawEEerrors(EE_pos_set, EE_pos_cal_set, t1)

tilt_angle_set = [];

tilt_angle_cal_set = [];

% angle of each actual point expressed in a row

polar_angle = atan2(EE_pos_set(2,:),EE_pos_set(1,:));

% angle of each calculated point

polar_angle_cal = atan2(EE_pos_cal_set(2,:),EE_pos_ca l_set(1,:));

[m,n] = size(EE_pos_set);

for i = 1:n

cos_tilt_angle = [0, 0, 1] * uvec(EE_pos_set(:,i) - t1);

tilt_angle = acos(cos_tilt_angle);

tilt_angle_set = [tilt_angle_set, tilt_angle];

end

for i = 1:n

cos_tilt_angle_cal = [0, 0, 1] * uvec(EE_pos_cal_set(:,i) - t1);

tilt_angle_cal = acos(cos_tilt_angle_cal);

tilt_angle_cal_set = [tilt_angle_cal_set, tilt_angle_c al];

end

polar_r = (tilt_angle_set) * 180/pi; % r of each point referring to tilt angle

polar_r_cal = (tilt_angle_cal_set) * 180/pi;

polar(polar_angle,polar_r, 'O' ); % use O to present reference values

hold on

polar(polar_angle_cal, polar_r_cal, ' * ' ); % use * to present calcualted values

legend( 'reference values' , 'calculated values' )

title( 'End effector position in polar coordinate system' )

end

8.2.2 Inverse Kinematics for 4-Wire Mechanism
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% verify 4-wire case 1 (bottom) direct kinematics

% Zhangshi 20160115

clc;

clear all;

syms x real % variable for redundant method

theta2_cal_set = []; % set storing calculated theta2

theta1_cal_set = []; % set storing calculated theta1

alpha1_set = []; % set storing alpha1

ee_pos_cal_set = []; % set storing calculated ee pos

ee_pos_set = []; % set stroing referene ee pos

initialization_4wires_case1_direct; %initialization

n1 = length(theta1);

n2 = length(theta2);

n3 = length(alpha1);

% start calculation

for i = 1:n1

for j = 1:n2

for m = 1:n3

% Use configuration direct kinematics to calculate R03

R01 = rotr([0;0;1],alpha1(m));

R12 = rotr([1;0;0],theta1(i));

R23 = rotr([0;1;0],theta2(j));

R03 = R01* R12* R23;

% vectors of the wires

l1_in0 = R01 * t1_in1 + R03 * t2_in3 + R03 * a1_in3 - R01 * b1_in1;

l2_in0 = R01 * t1_in1 + R03 * t2_in3 + R03 * a2_in3 - R01 * b2_in1;

l3_in0 = R01 * t1_in1 + R03 * t2_in3 + R03 * a3_in3 - R01 * b3_in1;

l4_in0 = R01 * t1_in1 + R03 * t2_in3 + R03 * a4_in3 - R01 * b4_in1;

% get wire lengths as input

l1 = norm(l1_in0);

l2 = norm(l2_in0);

l3 = norm(l3_in0);
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l4 = norm(l4_in0);

% solve for sin(theta2)

u = (l3ˆ2 - l1ˆ2)/(4 * h* r2);

v = (l2ˆ2 + l4ˆ2 - l1ˆ2 - l3ˆ2)/(4 * r1 * r2)- r1/r2;

eq = xˆ4 + (vˆ2 - 1) * xˆ2 + 2 * u* v* x + uˆ2 == 0;

sol = solve(vpa(eq),x);

sol = double(sol)

sol(sol > 1) = [];

sol(sol < -1) = [];

k1 = length(sol);

theta2_poss = asin(double(sol)); % possible solutions for theta2

for k = 1:k1

if abs(theta2_poss(k) - theta2(j)) <= 0.001

theta2_cal_set = [theta2_cal_set, theta2_poss(k)];

cos_theta1 = cos(theta2_poss(k)) ...

+ (l1ˆ2 + l3ˆ2 - l2ˆ2 - l4ˆ2)/(4 * r1 * r2);

sin_theta1 = -(2 * hˆ2 + r1ˆ2 + r2ˆ2 - l2ˆ2 - ...

2* cos_theta1 * r1 * r2 + ...

2* cos_theta1 * cos(theta2_poss(k)) * hˆ2)/(2 * h* r2 + 2 * cos(theta2_poss(k)) * h* r1);

theta1_poss = atan2(sin_theta1, cos_theta1);

theta1_cal_set = [theta1_cal_set, theta1_poss];

alpha1_set = [alpha1_set, alpha1(m)];

% Reference end effector positions

T03 = [

cos(alpha1(m)) * cos(theta2(j)) ...

- sin(alpha1(m)) * sin(theta1(i)) * sin(theta2(j)), ...

-sin(alpha1(m)) * cos(theta1(i)), ...

cos(alpha1(m)) * sin(theta2(j)) ...

+ sin(alpha1(m)) * cos(theta2(j)) * sin(theta1(i)), ...

h* cos(alpha1(m)) * sin(theta2(j)) ...

+ h* sin(alpha1(m)) * cos(theta2(j)) * sin(theta1(i)); ...

sin(alpha1(m)) * cos(theta2(j)) ...
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+ cos(alpha1(m)) * sin(theta1(i)) * sin(theta2(j)), ...

cos(alpha1(m)) * cos(theta1(i)), ...

sin(alpha1(m)) * sin(theta2(j)) ...

- cos(alpha1(m)) * cos(theta2(j)) * sin(theta1(i)), ...

h* sin(alpha1(m)) * sin(theta2(j)) ...

- h * cos(alpha1(m)) * cos(theta2(j)) * sin(theta1(i)); ...

-cos(theta1(i)) * sin(theta2(j)), ...

sin(theta1(i)), ...

cos(theta1(i)) * cos(theta2(j)), ...

h* (cos(theta1(i)) * cos(theta2(j)) + 1); ...

0,0,0,1];

ee_pos = T03(1:3,4);

ee_pos_set = [ee_pos_set, ee_pos];

break ;

end

end

end

end

end

angles_set = [theta1_cal_set;theta2_cal_set;alpha1_se t];

[size1, size2] = size(angles_set);

for i = 1 : size2

theta1_cal = angles_set(1,i);

theta2_cal = angles_set(2,i);

alpha1 = angles_set(3,i);

T03_cal = [

cos(alpha1) * cos(theta2_cal) ...

- sin(alpha1) * sin(theta1_cal) * sin(theta2_cal), ...

-sin(alpha1) * cos(theta1_cal), ...

cos(alpha1) * sin(theta2_cal) ...

+ sin(alpha1) * cos(theta2_cal) * sin(theta1_cal), ...

h* cos(alpha1) * sin(theta2_cal) ...
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+ h* sin(alpha1) * cos(theta2_cal) * sin(theta1_cal);

sin(alpha1) * cos(theta2_cal) ...

+ cos(alpha1) * sin(theta1_cal) * sin(theta2_cal), ...

cos(alpha1) * cos(theta1_cal), ...

sin(alpha1) * sin(theta2_cal) ...

- cos(alpha1) * cos(theta2_cal) * sin(theta1_cal), ...

h* sin(alpha1) * sin(theta2_cal) ...

- h * cos(alpha1) * cos(theta2_cal) * sin(theta1_cal);

-cos(theta1_cal) * sin(theta2_cal), ...

sin(theta1_cal), ...

cos(theta1_cal) * cos(theta2_cal), ...

h* (cos(theta1_cal) * cos(theta2_cal) + 1);

0,0,0,1];

ee_pos_cal = T03_cal(1:3,4); % get calculated ee pos

ee_pos_cal_set = [ee_pos_cal_set, ee_pos_cal];

end

% draw errors

drawEEerrors(ee_pos_set, ee_pos_cal_set, t1_in1)

% Initialization for verification 4 wire case 1 direct kinem atics

% Zhangshi 20160115

angle_max = pi/3;

angle_min = -angle_max;

step1 = pi/20;

step2 = pi/20;

theta1 = angle_min:step1:angle_max;

theta2 = angle_min:step2:angle_max;

alpha1 = pi/2;

alpha2 = pi/2;
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h = 19;

r1 = 18;

r2 = 18;

t1_in1 = [0;0;h];

t2_in3 = [0;0;h];

a1_in3 = [r2;0;0];

a2_in3 = [0;r2;0];

a3_in3 = [-r2;0;0];

a4_in3 = [0;-r2;0];

b1_in1 = [r1;0;0];

b2_in1 = [0;r1;0];

b3_in1 = [-r1;0;0];

b4_in1 = [0;-r1;0];

% draw figures for ee errors

function drawEEerrors(EE_pos_set, EE_pos_cal_set, t1)

tilt_angle_set = [];

tilt_angle_cal_set = [];

% angle of each actual point expressed in a row

polar_angle = atan2(EE_pos_set(2,:),EE_pos_set(1,:));

% angle of each calculated point

polar_angle_cal = atan2(EE_pos_cal_set(2,:),EE_pos_ca l_set(1,:));

[m,n] = size(EE_pos_set);

for i = 1:n

cos_tilt_angle = [0, 0, 1] * uvec(EE_pos_set(:,i) - t1);

tilt_angle = acos(cos_tilt_angle);

tilt_angle_set = [tilt_angle_set, tilt_angle];

end
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for i = 1:n

cos_tilt_angle_cal = [0, 0, 1] * uvec(EE_pos_cal_set(:,i) - t1);

tilt_angle_cal = acos(cos_tilt_angle_cal);

tilt_angle_cal_set = [tilt_angle_cal_set, tilt_angle_c al];

end

polar_r = (tilt_angle_set) * 180/pi; % r of each point referring to tilt angle

polar_r_cal = (tilt_angle_cal_set) * 180/pi;

polar(polar_angle,polar_r, 'O' ); % use O to present reference values

hold on

polar(polar_angle_cal, polar_r_cal, ' * ' ); % use * to present calcualted values

legend( 'reference values' , 'calculated values' )

title( 'End effector position in polar coordinate system' )

end

8.3 MATLAB Code for Jacobian Calculation

8.3.1 Partial Jacobian Using Virtual Work Method for 3-WireMechanism

% This function is to use virtual work to calculate Jacobian.

% When using static method to get

% Jacobian, the end effector forces is the force applied BY en d

% effector TO the environment.

% This code does not consider the 3rd dof input torque applied on either

% the base or the upper plate. In this case,

% it is a 2 DOF univeral joint and the Jacobian(3 by 2) is in fram e 2.

% The input are wire positions on top and bottom plate

% Zhangshi Liu, 20150629

function J = CalVW_Jac(input_hook_AR,cross_c,output_hook_AR)

%Remember, the last three columns of input/output_hook is t he wire points'
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%positions coordinates in frame 2

wirepos_out_1=output_hook_AR(1:3,7);

wirepos_out_2=output_hook_AR(1:3,8);

wirepos_out_3=output_hook_AR(1:3,9);

wirepos_in_1=input_hook_AR(1:3,7);

wirepos_in_2=input_hook_AR(1:3,8);

wirepos_in_3=input_hook_AR(1:3,9);

% li represents the vector of wire expressed in frame 2.

l1 = wirepos_in_1 - wirepos_out_1;

l2 = wirepos_in_2 - wirepos_out_2;

l3 = wirepos_in_3 - wirepos_out_3;

% ri represents the vector pointing from cross_c's origin to

% output_hook's wire point expressed in frame 2.

r1 = output_hook_AR(1:3,7) - cross_c(1:3,5);

r2 = output_hook_AR(1:3,8) - cross_c(1:3,5);

r3 = output_hook_AR(1:3,9) - cross_c(1:3,5);

x2_in2 = [1;0;0];

y2_in2 = [0;1;0];

A = -eye(2);

B11 = (cross(r1,uvec(l1)))' * uvec(x2_in2);

B12 = (cross(r2,uvec(l2)))' * uvec(x2_in2);

B13 = (cross(r3,uvec(l3)))' * uvec(x2_in2);
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B21 = (cross(r1,uvec(l1)))' * uvec(y2_in2);

B22 = (cross(r2,uvec(l2)))' * uvec(y2_in2);

B23 = (cross(r3,uvec(l3)))' * uvec(y2_in2);

B = [-B11,-B12,-B13;

-B21,-B22,-B23];

J_trans = A' * B; % J_trans a is 2 by 3 matrix

J = J_trans';

end

8.3.2 Partial Jacobian Using Closed Loop Method for 3-Wire Mechanism

% This function is to use closed loop kinematics method to cal culate

% partial Jacobian

% it is a 2 DOF univeral joint and the Jacobian is a 3 by 2 matrix i n frame 2.

% Zhangshi Liu, 20150629

function J = CalCL_Jac(input_hook_AR,output_hook_AR,T03,R20,h)

% l1, l2 and l3 expressed in frame 2

l1 = -output_hook_AR(1:3,7)+input_hook_AR(1:3,7);

l2 = -output_hook_AR(1:3,8)+input_hook_AR(1:3,8);

l3 = -output_hook_AR(1:3,9)+input_hook_AR(1:3,9);

% unit vector of l1, l2 and l3 in frame 2

l1_uvec = uvec(l1);

l2_uvec = uvec(l2);

l3_uvec = uvec(l3);

% b1, b2 and b3 expressed in frame 2

b1 = input_hook_AR(1:3,7)-input_hook_AR(1:3,3);

b2 = input_hook_AR(1:3,8)-input_hook_AR(1:3,3);

b3 = input_hook_AR(1:3,9)-input_hook_AR(1:3,3);
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% a1, a2 and a3 expressed in frame 2

a1 = output_hook_AR(1:3,7)-output_hook_AR(1:3,6);

a2 = output_hook_AR(1:3,8)-output_hook_AR(1:3,6);

a3 = output_hook_AR(1:3,9)-output_hook_AR(1:3,6);

x2_in2 = [1;0;0];

y2_in2 = [0;1;0];

t = T03 * [0,0,0,1]'; %end effector's position in frame 0

t1 = R20 * [0;0;h]; %The first link vector in frame 2

t2 = R20 * t(1:3) - t1; %The second link vector in frame 2

% Formation of A and B: Ax=Bq

% A is a 3 by 2 matrix, B is 3 by 3

A_kin=[(dot(cross(b1,l1_uvec),x2_in2)-dot(cross(t1, l1_uvec),x2_in2)), (dot(cross(t2,l1_uvec

(dot(cross(b2,l2_uvec),x2_in2)-dot(cross(t1,l2_uvec ),x2_in2)), (dot(cross(t2,l2_uvec

(dot(cross(b3,l3_uvec),x2_in2)-dot(cross(t1,l3_uvec ),x2_in2)), (dot(cross(t2,l3_uvec

B_kin=eye(3);

J = B_kin' * A_kin;

end

8.3.3 Calculate Complete Jacobian

% This code is to calculate the complete Jacobian for the hybr id wrist in

% case 1.

% The universal joint can be regarded as a 2-DOF parallel robo t, and it

% sits on a base which rotates about z=[0;0;1] in world frame.

% 1. The parallel jacobian, Jp, which is a 3X2 matrix: Jp * x_dot = q_dot,

% can be get from any of the two methods.

% 2. Since Jp is tall, we can left-multiply pinv_Jp to express x_dot (2 by 1 matrix).
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% 3. Use x_dot3/0_in0 = x_dot3/1_in0 + x_dot1/0_in0 to expre ss x_dot3/0_in0.

% 4. Get the compelet Jacobian for the hybrid manipulator.

% 20150702, Nabil and Zhangshi

function J_in0 = CalCompleteJac_rotin(input_hook_AR,cross_c, ...

output_hook_AR,T02)

R02 = T02(1:3,1:3);

R20 = R02';

Jp_in2 = CalVW_Jac(input_hook_AR,cross_c,output_hook_ AR);

z0_in2 = R20 * [0;0;1];

pinv_Jp_in2 = pinv(Jp_in2);

J_in0 = R02 * [[pinv_Jp_in2;0,0,0],z0_in2];

end

8.4 Workspace Calculation

8.4.1 MATLAB code for Workspace of Infinite Stiffness Wires

% This code is to calculate workspace of infinite stiffness w ires given

% certain theta by scanning all the phi and beta

% inputs are: configuration angles, wire positions on top/b ottom plate,

% hook heights.

% outputs are: workspace points and corresponding configur ation angles as

% well as tilt angles.

% Zhangshi Liu, 2015/05/27, based on Saleem's code.

function [phi_point,beta_point,locations,tilt_angle] = CalWS_V WJac(theta, ...

phi, beta, theta_out, Diameter,wire_top_diameter, ...

wire_bottom_diameter,hook_heights)

locations = []; % End effector's positions are stored here

n_phi = length(phi); % number of phi

n_beta = length(beta); % number of beta
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tilt_angle = [];

phi_point = [];

beta_point = [];

% outputs are hooks' and cross' coordinates (expressed in fr ame 2)

% when theta, phi and beta are all 0.

[input_hook,cross_c,output_hook]=setrobot(Diameter, hook_heights, ...

wire_top_diameter,wire_bottom_diameter);

for i=1:1:n_phi

phi_test=phi(i);

for j = 1:1:n_beta

beta_test = beta(j);

% get transformation matrices. Configuration Direct kinem atics

% The outputs are T01, T02 and T03.

[input_hook_cs, cross_cs, output_hook_cs, T04]= ...

Dir_Seri_Kin(theta, phi_test, beta_test, theta_out, hoo k_heights);

% Define transform and rotation matrices

T01=input_hook_cs;

T02=cross_cs;

T03=output_hook_cs;

T23=T02\T03;

T21=T02\T01;

R23 = T23(1:3,1:3);

R21 = T21(1:3,1:3);

R02 = T02(1:3,1:3);

% input_hook and output_hook's coordinates after

% rotation expressed in frame 2

input_hook_AR=R21 * input_hook(1:3,:);

output_hook_AR=R23 * output_hook(1:3,:);

% End effector's vector expressed in world frame
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EE_pos_vec = R02 * (R23 * output_hook(1:3,6)-cross_c(1:3,5));

% cos(angle), angle is between end effector's vector

% and [0;0;1], namely the tilt angle.

angle_cos = [0 0 1] * uvec(EE_pos_vec);

% case1 Jacobian

Jacobian = CalCompleteJac_rotin(input_hook_AR,cross_c , ...

output_hook_AR,T02);

% case2 Jacobian

% Jacobian = CalCompleteJac_rotout(input_hook_AR,cross _c,...

% output_hook_AR,R02,R23);

if (rank(Jacobian) == 3)

JT = Jacobian';

% Modified code that Jacobian only considers FOUR wires

JT_wave = JT(1:3,1:3);

pinvJT_wave = pinv(JT_wave);

nj = null(pinvJT_wave);

% Here the 'if' statement is used to make sure that the null

% space's values are all positive or all negative.

% And if so, the values of theta_test and phi_test can be

% assigned to theta_point and phi_point, which means that po int

% satisfies the tension requirement.

if ( (sum(nj(1:3) > 0) == 3) || (sum(nj(1:3) < 0) == 3))

tilt = acos(angle_cos);

if (tilt < (90 * pi/180))

phi_point = [phi_point,phi_test];

beta_point = [beta_point,beta_test];

location = T03 * [0;0;0;1];

locations = [locations,location(1:3)];

tilt_angle = [tilt_angle;tilt];

end

end

end
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end

end

end

8.4.2 MATLAB code for Workspace of Finite Stiffness Wires

% This code is to calculate workspace of finite stiffness wir es

% inputs are: configuration angles, external wrench, joint stiffness, wire

% positions on top/bottom plate,hook heights

% outputs are: points in workspace, wire tension, correspon ding

% configuration angles, and tilt angles

% Zhangshi Liu, 20150721, based on Saleem's code

function [locations,lamda_set,tau_set,phi_set,beta_set,tilt_ angle] = ...

CalWSGivenExtWrench(wrench,kd,theta, phi, beta, theta_ out, Diameter, ...

D_top,D_bottom,wire_top_diameter,wire_bottom_diamet er,hook_heights)

kapa = diag(kd); %Transfer stiffness vector into matrix

locations = []; % positions of end effector's center

n_phi = length(phi); %num of phi

n_beta = length(beta); %num of beta

tilt_angle = []; % EE center's tilt angle

phi_set = []; % set containing effective phi values

beta_set = []; % set containing effective beta values

% set containing lamda that is least needed to be multiplied

% with null vectors to make wire tensions positive

lamda_set = [];

tau_set = []; % set containing wire tensions corresponding with lamda

h = hook_heights(1);

% outputs are hooks' and cross' coordinates

% (expressed in frame 2) when theta, phi and beta are all 0.

[input_hook,cross_c,output_hook]=setrobot(Diameter, ...

hook_heights,wire_top_diameter,wire_bottom_diameter );
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% The following two for loops scan each point corresponding t o phi and beta

for i=1:1:n_phi

phi_test=phi(i);

for j = 1:1:n_beta

beta_test = beta(j);

% get transformation matrices. The outputs are T01, T02 and T 03.

% T04 is the transformation matrix that is used when the

% 4th input is applied on top plate.

[input_hook_cs, cross_cs, output_hook_cs, T04]= ...

Dir_Seri_Kin(theta, phi_test, beta_test, theta_out, hoo k_heights);

% The input parameters are expressed in frame 2,

% output is Jacobian in world frame.

% Here the coordinates of input and output hooks which are

% acquired when theta,phi and beta are 0

% need to be transformed using T.

% Jacobian = Cal_Jacobian_inEEFrame(T21 * input_hook,cross_c,

% T23* output_hook,theta_test, phi_test,beta); %Jacobian is 4 b y 3

T01=input_hook_cs;

T02=cross_cs;

T03=output_hook_cs;

T23=T02\T03;

T21=T02\T01;

R23 = T23(1:3,1:3);

R21 = T21(1:3,1:3);

R02 = T02(1:3,1:3);

% input_hook and output_hook after rotation expressed in fr ame 2

input_hook_AR=R21 * input_hook(1:3,:);

output_hook_AR=R23 * output_hook(1:3,:);

J = CalCompleteJac_rotin(input_hook_AR,cross_c,output _hook_AR,T02);

% yita = 0.5 % step size for delta_x in the second method
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if (rank(J) == 3)

JT = J';

JT_wave = JT(1:3,1:3);

pinvJT_wave = pinv(JT_wave);

nj=null(pinvJT_wave);

% Here the two if statement is used to make sure that the null

% space's values are all positive or all negative.

% And if so, the values of theta_test and phi_test can be

% assigned to theta_point and phi_point, which means that po int

% satisfies the tension requirement.

if ( (sum(nj(1:3) > 0) == 3) || (sum(nj(1:3) < 0) == 3))

% one point in workspace with infinite stiffness

location_temp1 = T03 * [0;0;0;1];

angle_cos = [0 0 1] * uvec(location_temp1(1:3)-[0;0;h]);

tilt = acos(angle_cos);

if (tilt < (90 * pi/180))

location_temp = location_temp1;

C = J* (kapa\J'); %C is the compliance matrix

% V columns are eig vectors and D's diag are eig values

[V,D] = eig(C);

D_vec = diag(D); % Transfer matrix D into vector D_vec

% select the max eig value. Here use abs to make all eig values p ositive.

[val,num] = max(abs(D_vec));

% Define the external wrench in the direction of

% eig vector corresponding to max eig value

wrench_ext = wrench * uvec(V(:,num));

% Given certain external moment, compute delta_x--represe nting

% the alteration of ANGLE.

delta_x = C * (wrench_ext);

%% First method to calculate workspace

location = CalStiffnessWorkspace1(location_temp, ...

delta_x,theta,hook_heights);
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%% Second method to calculate workspace

% Here use "CalStiffnessWorkspace2" function to get

% new workspace with finite stiffness, outputs are

% EE center's position and corresponding phi and beta

%[location,phi_val,beta_val] = CalStiffnessWorkspace2 (location_temp,theta,...

% theta_out,delta_x,yita,hook_heights,input_hook,cro ss_c,...

% output_hook,kapa,wrench);

%% Record results either 1st or 2nd method

center_c = T02 * cross_c(:,5);

EE = location - center_c(1:3);

EE_uvec = uvec(EE(1:3));

tilt_angle_temp = acos(EE_uvec' * [0;0;1]);

[lamda, tau] = CalLamdaTau(J,nj,wrench_ext);

lamda_set = [lamda_set,lamda];

tau_set = [tau_set,tau];

locations = real([locations,location]);

tilt_angle = real([tilt_angle;acos(EE_uvec' * [0;0;1])]);

end

end

end

end

end

end

% This function is to set the cross, input_hook and output_ho ok's points' coordinates

% Zhangshi Liu, 2015/05/26, based on Saleem's code

function [input_hook,cross_c,output_hook]=setrobot(Diameter, hook_heights, ...

wire_top_diameter,wire_bottom_diameter)

%rename the parameters

d=Diameter;
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D_top=wire_top_diameter;

D_bottom=wire_bottom_diameter;

h1=hook_heights(1);

%% Initialize input_hook, cross and output_hook

% columns correspond to xyz coordinates of each hook point an d three top

% wire connection points. origin at 3 with positive x towards 4(input hook)

% positive z

% towards 1 and 5 (input hook). input hook's wires are at varia ble diameter

%The last three colunms(7,8,9,10) refer to xyz coordinates of the wire points.

%The 6th point is the origin of input_hook, used to calculate rf

% Remember, all the coordinates should be expressed in frame 2, the cross_c

% frame.

input_hook=[-d/2, -d/2, 0, d/2, d/2, 0, D_bottom/2, ...

-sin(pi/6) * D_bottom/2, -sin(pi/6) * D_bottom/2; ...

0, 0, 0, 0, 0, 0, 0, ...

cos(pi/6) * D_bottom/2, -cos(pi/6) * D_bottom/2; ...

0, -h1, -h1, -h1, 0, 0, -h1, -h1, -h1; ...

1, 1, 1, 1, 1, 1, 1, 1, 1];

h2=hook_heights(2);

%The last three colunms(7,8,9) refer to xyz coordinates of t he wire points.

%The 6th point is the origin of output_hook

output_hook=[0, 0, 0, 0, 0, 0, D_top/2, -sin(pi/6) * D_top/2, ...

-sin(pi/6) * D_top/2; ...

d/2, d/2, 0, -d/2, -d/2, 0, 0, cos(pi/6) * D_top/2, ...

-cos(pi/6) * D_top/2; ...

h1, 0, 0, 0, h1, h1, h1, h1, h1; ...
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1, 1, 1, 1, 1, 1, 1, 1, 1];

cross_c=[d/2, 0, -d/2, 0, 0; ...

0, d/2, 0, -d/2, 0; ...

0, 0, 0, 0, 0; ...

1, 1, 1, 1, 1];

% This code, regarded as serial robot in this case, is to calcu late direct

% kinematics. Namely, calculate the cross, input and

% output hooks' coordinates' homogeneous transposes with r egard to world

% frame given three rotation angles: theta, phi and beta, as w ell as

% hook_heights and shaft_lengths.

% Zhangshi Liu, 2015/05/26, ARMA Lab, Vanderbilt Universit y

function [input_hook_cs, cross_cs, output_hook_cs, T04]=Dir_Ser i_Kin(theta, ...

phi, beta, theta_out, hook_heights)

%% Calculate Rotation matrices

%theta is the rotation angle of input hook,

%phi is the rotation angle about x02 and beta y02

R01=rotr([0;0;1],theta);

R12=rotr([1;0;0],phi);

R02=R01* R12;

R23=rotr([0;1;0],beta);

R03=R02* R23;

R34=rotr([0;0;1],theta_out);

R04 = R03* R34;

%% Calculate homogenous transposes

h1 = hook_heights(1);

h2 = hook_heights(2);

T01=[R01,[0;0;h1];0 0 0 1];
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T02=[[R02;[0 0 0]], T01 * [0 0 0 1]'];

T03=[[R03;[0 0 0]], T02 * [h2 * sin(beta) 0 h2 * cos(beta) 1]'];

T04=[[R04;[0 0 0]], T03 * [0 0 0 1]'];

%% Here the input_hook_cs' origin is coincident with cross_ cs' origin.

% the output_hook_cs' origin is on the surface of output hook .

input_hook_cs=T01;

cross_cs=T02;

output_hook_cs=T03;

end

function location = CalStiffnessWorkspace1(location_temp,delta _x,theta,hook_heights)

h = hook_heights(1);

delta_angle = -norm(delta_x);

delta_axis = delta_x/delta_angle;

u = delta_axis(1);

v = delta_axis(2);

w = delta_axis(3);

delta_R = [uˆ2+(vˆ2+wˆ2) * cos(delta_angle), ...

u* v* (1-cos(delta_angle))-w * sin(delta_angle), ...

u* w* (1-cos(delta_angle))+v * sin(delta_angle);

u* v* (1-cos(delta_angle))+w * sin(delta_angle), ...

vˆ2+(uˆ2+wˆ2) * cos(delta_angle), ...

v* w* (1-cos(delta_angle))-u * sin(delta_angle);

u* w* (1-cos(delta_angle))-v * sin(delta_angle), ...

v* w* (1-cos(delta_angle))+u * sin(delta_angle), ...

wˆ2+(uˆ2+vˆ2) * cos(delta_angle)];

delta_angle_2 = norm(delta_x);

delta_axis_2 = delta_x/delta_angle;

u_2 = delta_axis_2(1);

v_2 = delta_axis_2(2);
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w_2 = delta_axis_2(3);

delta_R_2 = [u_2ˆ2+(v_2ˆ2+w_2ˆ2) * cos(delta_angle_2), ...

u_2* v_2 * (1-cos(delta_angle_2))-w_2 * sin(delta_angle_2), ...

u_2* w_2* (1-cos(delta_angle_2))+v_2 * sin(delta_angle_2);

u_2* v_2 * (1-cos(delta_angle_2))+w_2 * sin(delta_angle_2), ...

v_2ˆ2+(u_2ˆ2+w_2ˆ2) * cos(delta_angle_2), ...

v_2 * w_2* (1-cos(delta_angle_2))-u_2 * sin(delta_angle_2);

u_2* w_2* (1-cos(delta_angle_2))-v_2 * sin(delta_angle_2), ...

v_2 * w_2* (1-cos(delta_angle_2))+u_2 * sin(delta_angle_2), ...

w_2ˆ2+(u_2ˆ2+v_2ˆ2) * cos(delta_angle_2)];

angle_cos = [0 0 1] * uvec(location_temp(1:3)-[0;0;h]);

location_1 = delta_R * (location_temp(1:3)-[0;0;h]);

angle_cos_1 = [0 0 1] * uvec(location_1);

location_2 = delta_R_2 * (location_temp(1:3)-[0;0;h]);

angle_cos_2 = [0 0 1] * uvec(location_2);

[value,index] = max([angle_cos,angle_cos_1,angle_cos_ 2]);

if (index == 1)

location = location_temp(1:3);

elseif (index == 2)

location = location_1 + [0;0;h];

elseif (index == 3)

location = location_2 + [0;0;h];

end

end

% This function is to calculate workspace with finite stiffn ess step by step

function [location,phi,beta] = CalStiffnessWorkspace2(location _temp,theta,theta_out,delta_x

h = hook_heights(1);

EE_pos = location_temp(1:3);
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% This variable is used to accumulate yita * delta of each step and the while loop will

sum = 0;

while (sum <= norm(delta_x))

%% We have to calculate new Jacobian and phi/beta for each loo p.

% Get new Jacobian based on new phi and beta

%use inverse kinematics to find current phi and beta corresp onding to current

[phi,beta] = InvKin2DOF(EE_pos,hook_heights);

[input_hook_cs, cross_cs, output_hook_cs, T04] = ...

Dir_Seri_Kin(theta, phi, beta, theta_out, hook_heights) ;

T01=input_hook_cs;

T02=cross_cs;

T03=output_hook_cs;

T23=T02\T03;

T21=T02\T01;

R23 = T23(1:3,1:3);

R21 = T21(1:3,1:3);

R02 = T02(1:3,1:3);

% input_hook and output_hook after rotation expressed in fr ame 2

input_hook_AR=R21 * input_hook(1:3,:);

output_hook_AR=R23 * output_hook(1:3,:);

J = CalCompleteJac_rotin(input_hook_AR,cross_c,output _hook_AR,T02);

%% Use new Jacobin to update sum

C = J* (kapa\J'); % C is the compliance matrix of current config

[V,D] = eig(C); % Calculate eigenvalues

D_vec = diag(D); % Transform the eigenvalue matrix into a vector

[val,num] = max(abs(D_vec)); % Find the greatest eigenvalue

wrench_ext = wrench * uvec(V(:,num)); % Find the eigenvector

delta_x_new = C * (wrench_ext); % Get new delta_x

delta_step = delta_x_new * yita;

delta_step_angle = -norm(delta_step)

delta_step_axis = delta_step/delta_step_angle;

u = delta_step_axis(1);

v = delta_step_axis(2);
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w = delta_step_axis(3);

% This is the rotation matrix about an axis in space, the angle

% refers to the norm of delta_step, and the direction [u,v,w] is

% the unit vector of delta_step

delta_step_R = [uˆ2+(vˆ2+wˆ2) * cos(delta_step_angle), ...

u* v* (1-cos(delta_step_angle))-w * sin(delta_step_angle), ...

u* w* (1-cos(delta_step_angle))+v * sin(delta_step_angle);

u* v* (1-cos(delta_step_angle))+w * sin(delta_step_angle), ...

vˆ2+(uˆ2+wˆ2) * cos(delta_step_angle), ...

v* w* (1-cos(delta_step_angle))-u * sin(delta_step_angle);

u* w* (1-cos(delta_step_angle))-v * sin(delta_step_angle), ...

v* w* (1-cos(delta_step_angle))+u * sin(delta_step_angle), ...

wˆ2+(uˆ2+vˆ2) * cos(delta_step_angle)];

delta_step_angle_2 = norm(delta_step);

delta_step_axis_2 = delta_step/delta_step_angle;

u_2 = delta_step_axis_2(1);

v_2 = delta_step_axis_2(2);

w_2 = delta_step_axis_2(3);

% This is the rotation matrix about an axis in space, the angle

% refers to the norm of delta_step, and the direction [u,v,w] is

% the unit vector of delta_step

delta_step_R_2 = [u_2ˆ2+(v_2ˆ2+w_2ˆ2) * cos(delta_step_angle_2), ...

u_2* v_2 * (1-cos(delta_step_angle_2))-w_2 * sin(delta_step_angle_2), ...

u_2* w_2* (1-cos(delta_step_angle_2))+v_2 * sin(delta_step_angle_2);

u_2* v_2 * (1-cos(delta_step_angle_2))+w_2 * sin(delta_step_angle_2), ...

v_2ˆ2+(u_2ˆ2+w_2ˆ2) * cos(delta_step_angle_2), ...

v_2 * w_2* (1-cos(delta_step_angle_2))-u_2 * sin(delta_step_angle_2);

u_2* w_2* (1-cos(delta_step_angle_2))-v_2 * sin(delta_step_angle_2), ...

v_2 * w_2* (1-cos(delta_step_angle_2))+u_2 * sin(delta_step_angle_2), ...

w_2ˆ2+(u_2ˆ2+v_2ˆ2) * cos(delta_step_angle_2)];
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angle_step_cos = [0 0 1] * uvec(EE_pos-[0;0;h]);

location_step_1 = delta_step_R * (EE_pos-[0;0;h]);

angle_cos_1 = [0 0 1] * uvec(location_step_1);

location_step_2 = delta_step_R_2 * (EE_pos-[0;0;h]);

angle_cos_2 = [0 0 1] * uvec(location_step_2);

[value,index] = max([angle_cos_1,angle_cos_2]);

if (index == 1)

EE_pos = location_step_1 + [0;0;h];

elseif (index == 2)

EE_pos = location_step_2 + [0;0;h];

end

sum = sum + norm(delta_x_new * yita);

end

location = EE_pos;

end
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