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CHAPTER I

INTRODUCTION

I.1 Emerging Trends

The elastic properties and cost benefits of the cloud has made it an attractive hosting

platform for a variety of soft real-time Cyber Physical Systems (CPS)/Internet of Things

(IoT) applications, such as cloud gaming, cognitive assistance, patient health monitoring

and industrial automation. The stringent quality of service (QoS) considerations of these

applications mandate both predictable performance from the cloud and lower end-to-end

network latencies between the end user and the cloud. To date, security and performance

assurance continues to be a hard problem to resolve in cloud platforms due to their virtu-

alized and multi-tenant nature [52]. Although recent advances in fog and edge computing

have enabled cloud resources to move closer to the CPS/IoT devices thereby mitigating the

network latency concerns to some extent [30], there is still a general lack of scientific ap-

proaches that can dynamically manage resources across the cloud-edge spectrum. This is a

hard problem to resolve due to the highly dynamic behaviors of the edge and cloud. Con-

sequently, any pre-defined and fixed set of resource management policies will be rendered

useless for hosting CPS/IoT applications across the cloud to edge spectrum.

A promising approach for resolving these challenges is to apply the dynamic data driven

application systems (DDDAS) paradigm [47]. DDDAS prescribes an approach where

the applications being controlled are instrumented adaptively so that their models can be

learned and enhanced continuously, and in turn these models can be analyzed and used in

a feedback loop to steer the target applications along their intended trajectories. Previous

works that have leveraged the DDDAS paradigm have focused on either a domain-specific

application instead of the infrastructure, or applied DDDAS for resilience and security [16].

In our case, we treat the distributed infrastructure ranging from the edge to the cloud as the
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target application that is to be managed and controlled. To that end, we propose to apply

the DDDAS principles to the pool of resources spanning the cloud-edge spectrum for en-

abling and enforcing dynamic resource management decisions that deliver the required QoS

properties to cloud-hosted domain-specific applications. Specifically, we propose Dynamic

Data Driven Cloud and Edge Systems (D3CES), which uses performance data collected

from instrumented cloud and edge resources to learn and enhance models of the distributed

resource pool. It then uses these models in a feedback loop to make effective and dynamic

resource management decisions to host CPS/IoT applications and deliver their QoS proper-

ties. We now give an overview of the key research challenges and our solutions to address

them.

I.2 Key Research Challenges and Solution Needs

Dynamic resource management across the cloud-edge resource spectrum is a hard prob-

lem for a variety of reasons stemming from having to address (a) the applications’ func-

tional and QoS requirements, (b) the cloud providers’ ability to satisfy the service level

objectives (SLOs) of all its customers while maintaining healthy revenues and keeping en-

ergy costs low, and (c) dynamically instrumenting the resources to collect measurements

needed to learn the models of the distributed resource pool. These challenges span the cen-

tralized data center (CDC) hosted as the public or private cloud [118], micro data centers

(MDCs) that reside at the edge of the network, also known as fog or cloudlet [143], and the

mobile edge devices themselves [78]. Our research calls for an effective use of resources

across this spectrum. In this context, we have identified a number of challenges that we

address in this doctoral research and organized these challenges along three dimensions as

described below:
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I.2.1 Application-imposed Challenges

1. Workload variations: The workload generated by CPS/IoT applications may illus-

trate both transient and sustained variability, which cannot be known ahead-of-time

and hence needs to be predicted and addressed. With the stringent SLO requirements

for these applications, the resources need to be scaled rapidly.

2. Stochastic execution semantics: For some CPS/IoT applications, their uncertain

and dynamic nature may require several instances of the same tasks to be executed to

reach specified confidence levels. Each execution may take different execution times

but impose certain QoS needs.

3. Application structure: Increasingly, cloud-based applications are realized as a

collection of communicating micro-services, which can be deployed independently

across the spectrum of resources. This gives rise to challenges where part or entire

service must be migrated closer to the edge.

4. High degree of user mobility: CPS/IoT systems, such as autonomous transport

vehicles, unmanned aerial vehicles, and mobile devices, operate in highly uncertain

environments with dynamic movement profiles. Thus, a designated edge resource

cannot serve such users for long durations of time.

5. Distributed user base: Collaborative applications such as online games may often

involve a distributed set of users. Consequently, determining the appropriate MDC

to migrate the application to and whether to migrate it to multiple MDCs remains an

open question.

I.2.2 Cloud Provider-imposed Challenges

1. Virtualization and multi-tenancy: Although exploiting edge resources is an in-

tuitive solution to addressing the network latency issues, the MDCs will also face

the same challenges as a CDC, which stem from virtualization and multi-tenancy.
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In a cloud setup, it is common to overbook resources [35, 162] resulting in perfor-

mance deterioration of the application. Even if the resources are not overbooked,

performance suffers due to interference from co-located workload and sharing of

non-partitionable resources [116].

2. Workload consolidation and migration: Applications running in virtualized con-

tainers need to be migrated from one server to the other in order to minimize the

number of physical servers used while facilitating better performance across edge

and cloud resources.

3. Hardware Heterogeneity: Cloud data center servers and edge resources will often

have different architectures, speed and count of processors. They also exhibit vari-

ability in memory speed and size, storage type and size and network connectivity. In

addition, recent advances in newer hardware features such as non-uniform memory

access (NUMA), cache monitoring technology (CMT) and cache allocation technol-

ogy (CAT) raises the management complexity. This leads to challenges in application

migration, performance metric collection and performance estimation.

I.2.3 Measurement-related Challenges

1. Data Collection: The plethora of deployed hardware configurations with differ-

ent architectures and versions makes it hard to collect various performance metrics.

Modern architectures are making it easier to collect more finer-grained performance

metrics, however, much more research is needed in identifying effective approaches

to control the hardware and derive the best performance out of them.

2. Lack of benchmarks: There is a general lack of open source and effective bench-

marking suites that researchers can use to conduct studies and build models of the

cloud-edge spectrum of resources that subsequently can be used in resource manage-

ment.
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I.3 Doctoral Research Contributions: Dynamic Resource Management across the

Cloud to Edge Spectrum

To resolve the range of challenges described in Section I.2 by applying the DDDAS

paradigm in a novel way, this doctoral research proposes the D3CES framework. At the

onset of this research, we realized that designing and validating novel ideas for any sys-

tems research such as ours will require a solid framework to conduct empirical studies

(Challenges I.2.3-1 and I.2.3-2). Consequently, we have developed a data collection and

benchmarking framework that is available in open source at https://github.com/

docvu/indices. The benchmark gathers both system and micro-architectural perfor-

mance metrics while varying application workload and collocation patterns. We have uti-

lized this framework in the following dissertation contributions, and continue to improve

its capabilities:

Contribution 1: Algorithms for elastic and scalable scheduling of CPS/IoT tasks in

the cloud: To address Challenges I.2.1-2 and I.2.2-1, where the CPS/IoT applications may

need to execute a large number of task instances (e.g., stochastic simulations) in the cloud

environment with QoS requirements, we need feedback-based algorithms that provide the

desired QoS guarantees while scaling across multiple servers. With that goal, we designed

the Simulation as a Service (SIMaaS) cloud middleware-based approach that leverages the

Linux container-based infrastructure. The key research contributions include an admission

control and a resource management algorithm that reduces the cost to the service provider

while enhancing the parallelization of the simulation jobs by fanning out increasing number

of instances as needed until the deadline of the tasks is met while simultaneously auto-

tuning itself based on the feedback. Chapter II provides the research details.

Contribution 2: Exploiting fog resources to move applications closer to the users

and the data sources: To address Challenge I.2.2-2, the cloud-based service must move

(partially or entirely) closer to the users and data sources. This approach needs distributed

coordination, synchronization and resource allocation challenges to be investigated in the
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context of CDCs and MDCs, and even utilizing spare capacity of other edge resources. This

task also entails discovery and orchestration of those resources not provided out-of-the-box

by the traditional cloud. Thus, we also need to address the Challenges I.2.2-1 and I.2.2-3.

Our contributions have addressed the needs of applications such as augmented reality

that offload computer vision algorithms including SIFT [111] for processing at the cloud.

For this work, we have assumed near constant workload and low mobility of the users,

which is the case for image processing performed by a stationary camera. The user con-

tinuously sends data in the form of images to the cloud for processing and in turn receives

responses within a specified time bound. However, due to geographical distance and net-

work variabilities, a central cloud may be unable to meet the QoS needs, requiring MDCs

closer to the user to be leveraged opportunistically. As highlighted in Challenges I.2.2-1,

performance interference caused by co-located applications extends itself from the central

cloud to edge and leads to delayed response times at the edge resources too. Our initial

work [36] in this regard was targeted at the centralized cloud alone and did not address

hardware heterogeneity related challenges I.2.2-3.

To address these challenges, we have formulated an optimization problem to minimize

the cost to the cloud provider while meeting the QoS constraints imposed by the appli-

cation. As part of our framework called INDICES, we perform the optimization at two

different layers, local, i.e. at a MDC, and global, i.e. at a CDC. Chapter III details this

research.

Contribution 3: Optimizing resources across edge, fog and cloud while accounting

for recent hardware enhancements: In the research described in Chapter III, we con-

sidered applications whose users remain in the same network latency and bandwidth zone

throughout the execution duration. However, this is often not the case with mobile users as

they move through zones of varying network connectivity and latency. Chapter IV caters

to the mobility Challenge I.2.1-4. Furthermore, advances in hardware architecture such
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as NUMA and Cache Monitoring Technology (CMT) requires advancing existing micro-

benchmarking and performance prediction techniques, which we address in this chapter as

part of Challenge I.2.2-3 and propose our solution known as URMILA.

Contribution 4: Rapid scaling of latency-sensitive applications for workload vari-

ations: All the above contributions address resource needs by either migrating the appli-

cation (Chapters III and IV) or by instantiating newer instances of the application (Chap-

ter II). However, these mechanisms can be too costly for scenarios where the resource

requirement is transient and immediate. This could occur due to workload variability as

stated in Challenge I.2.1-1, or due to performance interference from co-located workload

described in Challenge I.2.2-1. Hence, in Chapter V we propose a mechanism to forecast

the workload and rapidly adjust the resources in order to meet the latency requirements

while optimally trading-off resources.

I.4 Organization

Th rest of the dissertation is organized as follows. Chapter II describes the Simulation-

as-a-Service (SIMaaS) research contributions; and Chapter III describes the INDICES re-

search contributions; Chapter IV builds upon the INDICES approach by relaxing a number

of assumptions we made including the ones regarding mobility and incorporating hard-

ware advances such as NUMA and CMT to propose our solution URMILA; and Chapter V

caters to vertical elasticity of latency-sensitive applications and thus completes the D3CES

framework. Finally, Chapter VI summarizes the research.

7



CHAPTER II

A SIMULATION AS A SERVICE CLOUD MIDDLEWARE

II.1 Motivation

With the advent of the Internet of Things (IoT) paradigm [15], which involves the ubiq-

uitous presence of sensors, there is no dearth of collected data. When coupled with tech-

nology advances in mobile computing and edge devices, users are expecting newer and

different kinds of services that will help them in their daily lives. For example, users may

want to determine appropriate temperature settings for their homes such that their energy

consumption and energy bills are kept low yet they have comfortable conditions in their

homes. Other examples include estimating traffic congestion in a specific part of a city

on a special events day. Any service meant to find answers to these questions will very

likely require substantial number of computing resources. Moreover, users will expect a

sufficiently low response time from the services.

Deploying these services in-house is unrealistic for the users since the models of these

systems are quite complex to develop. Some models may be stochastic in nature, which

require a large number of compute-intensive executions of the models to obtain outcomes

that are within a desired statistical confidence interval. Other kinds of simulation models re-

quire running a large number of simulation instances with different parameters. Irrespective

of the simulation model, individual users and even small businesses cannot be expected to

acquire the needed resources in-house. Cloud computing then becomes an attractive option

to host such services particularly because hosting high performance and real-time applica-

tions in the cloud is gaining traction [12, 117]. Examples include soft real-time applications

such as online video streaming (e.g., Netflix hosted in Amazon EC2), gaming (Microsoft’s

Xbox One and Sony’s Playstation Now) and telecommunication management [65].
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Given these trends, it is important to understand the challenges in hosting such simula-

tions in the cloud. To that end we surveyed prior efforts [62, 100, 105, 107] that focused on

deploying parallel discrete event simulations (PDES) [61] in the cloud, which reveal that

the performance of the simulation deteriorates as the size of the cluster distributed across

the cloud increases. This occurs due primarily to the limited bandwidth and overhead of

the time synchronization protocols needed in the cloud [165]. Thus, cloud deployment for

this category of simulations is still limited.

Despite these insights, we surmise that there is another category of simulations that can

still benefit from cloud computing. For example, complex system simulations that require

statistical validation or those that compare simulation results under different constraints and

parameter values often need to run repeatedly are suited to cloud hosting. Running these

simulations sequentially is not a viable option as user expectations in terms of response

times have to be met. Hence there is a need for a simulation platform where a large number

of independent simulation instances can be executed in parallel and the number of such

simulations can vary elastically to satisfy specified confidence intervals for the results.

Cloud computing becomes an attractive platform to host such capabilities [161]. To that end

we have architected a cloud-based solution comprising resource management algorithms

and middleware called Simulation-as-a-Service (SIMaaS).

It is possible to realize SIMaaS on top of traditional cloud infrastructure, which uti-

lize a virtual machine (VM)-based data center to provide resource sharing. However, in

a scenario where real-time decisions have to be made based on running a large number

of multiple, short-duration simulations in parallel, the considerable setup and tear down

overhead imposed by VMs, as demonstrated in Section II.5.2, is unacceptable. Likewise, a

solution based on maintaining a VM pool that is used by many cloud resource management

frameworks such as [39, 64, 89, 190] is not suitable either since it can lead to resource

wastage and may not be able to cater to sudden increases in service demand. Thus, a

lightweight solution is desired.
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To address these challenges, we make the following key contributions in this chapter:

• We propose a cloud middleware for SIMaaS that leverages Linux container [112]-

based infrastructure, which has low runtime overhead, higher level of resource shar-

ing, and very low setup and tear down costs.

• We present a resource management algorithm, that reduces the cost to the service

provider and enhances the parallelization of the simulation jobs by fanning out more

instances until the deadline is met while simultaneously auto-tuning itself based on

the feedback.

• We show how the middleware intelligently generates different configurations for ex-

perimentation, and intelligently schedules the simulations on the Linux container-

based cloud to minimize cost while enforcing the deadlines.

• Using two case studies, we show the viability of a Linux container-based SIMaaS

solution, and illustrate the performance gains of a Linux container-based approach

over hypervisor-based traditional virtualization techniques used in the cloud.

The rest of this chapter is organized as follows: Section II.2 deals with relevant re-

lated work comparing them with our contributions; Section II.3 provides two use cases that

drive the key requirements that are met by our solution; Section II.4 presents the system

architecture in detail; Section II.5 validates the effectiveness of our middleware; and finally

Section II.6 presents concluding remarks alluding to lessons learned and opportunities for

future work.

II.2 Related Work

This section presents relevant related work and compares them with our contributions.

We provide related work along three dimensions: simulations hosted in the cloud, cloud
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frameworks that provide resource management with deadlines, and container-based ap-

proaches. These dimensions of related work are important because realizing SIMaaS re-

quires effective resource management at the cloud infrastructure-level to manage the life-

cycle of containers that host and execute the simulation logic such that user-specified dead-

lines are met.

II.2.1 Related Work on Cloud-based Simulations

The mJADES [134] effort is closest to our approach in terms of its objective of sup-

porting simulations in the cloud. It is founded on a Java-based architecture and is designed

to run multiple concurrent simulations while automatically acquiring resources from an ad

hoc federation of cloud providers. DEXSim [42] is a distributed execution framework for

replicated simulations that provides two-level parallelism, i.e., at CPU core-level and at

system-level. This organization delivers better performance to their system. In contrast,

SIMaaS does not provide any such scheme; rather it relies on the OS to make effective

use of the multiple cores on the physical server by pinning container processes to cores.

The RESTful interoperability simulation environment (RISE) [11] is a cloud middleware

that applies RESTful APIs to interface with the simulators and allows remote management

through Android-based handheld devices. Like RISE, SIMaaS also uses RESTful APIs

for clients to interact with our service and for the internal interaction between the con-

tainers and the management solution. PADS [23, 24] provides an environment focused on

teaching distributed systems algorithms, and supports running cloud hosted simulations in

a Docker based execution environment. Another similar work presents running distributed

co-simulations in the cloud [22].

In contrast to these works, SIMaaS applies an adaptive resource scheduling policy to

meet the deadlines based on the current system performance. Also, our solution uses Linux

containers that are more efficient and more suitable to the kinds of simulations hosted by

SIMaaS than the VM-based approaches used by these solutions.
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CloudSim [38] is a toolkit for modeling and simulating VMs, data centers and resource

allocation policies without incurring any cost, which in turn helps to measure the feasibility

and tune the performance bottlenecks. EMUSIM [37] enhances CloudSim by integrating

an emulator to achieve the same purpose. SimGrid [40] is another distributed systems sim-

ulator used to improve the algorithms for data management infrastructure. We believe that

the contributions of SIMaaS are orthogonal to these work. These related projects provide

the platforms to evaluate resource allocation algorithms in the cloud while SIMaaS is a con-

crete realization of infrastructure middleware that supports different resource allocations.

SIMaaS can benefit from these related work where resource management algorithms can

first be evaluated in these platforms, and then deployed in the SIMaaS middleware. Addi-

tionally, we believe these related work do not yet support support Linux container based

simulation of the cloud.

II.2.2 Related Work on Cloud Resource Management

There has been some work in cloud resource management to meet deadlines. Aneka [39]

is a cloud platform that supports quality of service (QoS)-aware provisioning and execu-

tion of applications in the cloud. It supports different programming models, such as bag

of tasks, distributed threads, MapReduce, actors and workflows. Our work on SIMaaS ap-

plies an advanced version of a resource management algorithm that is used by Aneka in

the context of our Linux container-based lightweight virtualization solution. Aneka also

provides algorithms to provision hybrid clouds to minimize the cost and meet deadlines.

Although SIMaaS does not use hybrid clouds, our future work will consider some of the

functionalities from Aneka.

Another work close to our resource allocation policy is [164] that employs a cost-

efficient scheduling heuristics to meet the deadline. However, this work is sensitive to

execution time estimation error, whereas our work self-tunes based on feedback.

CometCloud [89] is a cloud framework that provides autonomic workflow management
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by addressing changing computational and QoS requirements. It adapts both application

and infrastructure to fulfill its purpose. CLOUDRB [155] is a cloud resource broker that

integrates deadline-based job scheduling policy with particle swarm optimization-based

resource scheduling mechanism to minimize both cost and execution time to meet a user-

specified deadline. Zhu et al. [190] employed a rolling-horizon optimization policy to

develop an energy-aware cloud data center for real-time task scheduling. All these efforts

provide scheduling algorithms to meet deadlines on virtual machine-based cloud platforms

where they maintain a VM pool and scale up or down based on constraints. In contrast to

these efforts, our work uses a lightweight virtualization technology based on Linux contain-

ers which provides significant performance improvement and mitigates the need to keep a

pool of VMs or containers. We also apply a heuristic based feedback mechanism to ensure

deadlines are met with minimum resources.

In prior work [99, 145], we have designed and deployed multi-layered resource man-

agement algorithms integrated with higher-level task (re-)planning mechanisms to provide

performance assurances to distributed real-time and embedded applications. These algo-

rithms were integrated within middleware solutions that were deployed on a distributed

cluster of machines, which can be viewed as small-scale data centers. These prior works

focused primarily on affecting the application, such as migrating application components,

load balancing, fault tolerance, deployment planning and to some extent scheduling. We

view these prior works of ours as complementary to the current work. In the present work,

we are more concerned with allocating resources on-demand. A more significant point of

distinction is that the prior works focused on distributed applications that are long running

while in current work we are focusing on applications that have a short running time but

where we need to execute a large number of copies of the same application.
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II.2.3 Related Work using Linux Containers

The Docker [120] open source project that we utilize in our framework automates

the deployment of applications via software containers utilizing operating system (OS)-

level virtualization. Docker is not an OS-level virtualization solution; rather it uses inter-

changable execution enviroments such as Linux Containers (LXC) and its own libcontainer

library to provide Container access and control.

Previous work exists on the creation [119] and benchmark testing [154] of generic

Linux-based containers. Similarly, there exists work that use containers as a means to

provide isolation and a lightweight replacement to hypervisors in use cases such as high

performance computing (HPC) [175], reproducible network experiments [72], and peer-

to-peer testing environments [19]. The demands and goals of each of these three efforts

focus on a different aspect of the benefit stemming from the use of containers. For HPC,

the effort focused more on the lightweight nature of containers versus hypervisors. The

peer-to-peer testing work focused on the isolation capabilities of containers whereas the

reproducible network experiments paper focused more on the isolation features and the

ability to distribute containers as deliverables for others to use in their own testing. Our

work leverages or can leverage all these benefits.

II.3 Motivating Use Cases and Key Requirements for SIMaaS

We now present two use cases belonging to systems modeling that we have used in

this chapter to bring out the challenges that SIMaaS should address, and to evaluate its

capabilities.

II.3.1 System Modeling Use Cases

System modeling for simulations is a rich area that has been used in a wide range

of different engineering disciplines. The type of system modeling depends on the nature

of the system to be modeled and the level of abstraction needed to be achieved through
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the simulation. We use two use cases to highlight the different types of simulations that

SIMaaS is geared to support.

II.3.1.1 Use Case 1: The Multi-room Heating System

In use case 1, we target complex engineering systems which exhibit continuous, dis-

crete, and probabilistic behaviors, known as stochastic hybrid systems (SHS). The com-

puter model we use to construct a formal representation of a SHS system and to mathe-

matically analyze and verify it in a computer system is the discrete time stochastic hybrid

system (DTSHS) model [6].

We discuss here a DTSHS model of a multi-room heating system [13] with its dis-

cretized model developed by [5]. The multi-room heating system consists of h rooms and

a limited number of heaters n where n < h. Each room has at most one heater at a time.

Moreover, each room has its own user setting (i.e., constraints) for temperature. However,

the rooms have an exchangeable effect with their adjacent rooms and with the ambient

temperature.

Each room heater switches independently of the heater status of other rooms and their

temperatures. The system has a hybrid state where the discrete component is the state of

the individual heater, which can be in ON or OFF state, and the continuous state is the room

temperature. A discrete transition function switches the heater’s status in each room based

on using a typical controller which switches the heater on if the room temperature gets

below a certain threshold xl and switches the heater off if the room temperature exceeds a

certain threshold xu.

The main challenge for our use case is the limited number of heaters and the need for a

control strategy to move a heater between the rooms. Typical system requirements that can

be evaluated using simulations are:

• The temperature in each room must always remain above a certain threshold (i.e.,

user comfort level).
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• All rooms share heaters with other rooms (i.e., acquire and relinquish a heater).

In our model of the system, we have used one of many possible strategies where room

i can acquire a heater with a probability pi if:

• pi ∝ geti− xi when xi < geti.

• pi = 0 when xi ≥ geti.

where geti is control threshold used to determine when room i needs to acquire a heater.

The simulation model for this use case uses statistical model checking by Bayesian Interval

Estimates [191].

II.3.1.2 Use Case 2: Traffic Simulation for Varying Traffic Density

Use case 2 targets transportation researchers and traffic application providers, such as

Transit Now ( http://transitnownashville.org/), who want to model and sim-

ulate different traffic scenarios within a relevant time window but do not have sufficient

resources to do it in-house. We motivate this use case with a microscopic traffic simulator

called SUMO [26] that can simulate city level traffic. The simulator can import a city map

in OpenStreetMap [71] format to its own custom format. The user can supply various input

parameters such as number of vehicles, traffic signal logic, turning probability, maximum

lane speed and study their impact on traffic congestion.

One such “what if” scenario involves the user changing the number of vehicles moving

in a particular area of the city and studying its impact. In contrast to use case 1 where all

the stochastic simulation instances had nearly the same execution time in ideal conditions,

in this use case, the simulation execution time varies with the input number of vehicles.

Figure 1 illustrates how the execution time varies with the number of vehicles for a duration

of 1000 seconds.
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Figure 1: Simulation Execution Time

II.3.2 Problem Statement and Key Requirements for SIMaaS

Based on the two use cases described above, we now bring out the key requirements that

must be satisfied by SIMaaS. Addressing these requirements forms the problem statement

for our research presented in this chapter.

• Requirement 1: Ability to Elastically Execute Multiple Simulations – Recall that

the simulation model for use case 1 is stochastic, which means that every simulation ex-

ecution instance may yield a different simulation trajectory and results. To overcome this

problem, we have to use the statistical model checking (SMC) approach based on Bayesian

statistics [190, 191]. SMC is a verification method that provides statistical evidence to

check whether a stochastic system satisfies a wide range of temporal properties with a

certain probability and confidence level or not. The probability that the model satisfies a
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property can be estimated by running several different simulation trajectories of the model

and dividing the number of satisfied trajectories (i.e., true properties) over the total number

of simulations. Thus, SMC requires execution of a large number of simulation tasks.

On the other hand, although the simulation models for use case 2 are not stochastic, the

result of the simulation will often be quite different depending on the parameters supplied

to the model. For example, varying the number of vehicles on the road, number of traffic

lights, number of lanes, and speed limits will all generate different results. A user may be

interested in knowing the results for various scenarios, which in turn requires a number of

simulations to be executed seeded with different parameter values. In addition, the service

will be used by multiple users who need to execute different number of simulations, which

is not known to the system a priori. This requirement suggests the need to elastically scale

the number of simulation instances to be executed.

In summary, the two use cases require that SIMaaS be able to elastically scale the

number of simulations that must be executed.

• Requirement 2: Bounded Response Time – In both our use cases, the user expects

that the system respond to their requests within a reasonable amount of time. Thus, the

execution of a large number of simulations that are elastically scheduled on the cloud plat-

form, and result aggregation must be accomplished within a bounded amount of time so

that it is of any utility to the user. Moreover, use case 2 illustrates an additional challenge

that requires estimating the expected execution time for previously unknown parameters

and ensuring that the system can still respond to user request in a timely manner.

In summary, SIMaaS must ensure bounded response times to user requests.

• Requirement 3: Result Aggregation – Both our use cases highlight the need for

result aggregation. In use case 1, there is a need to aggregate the results from the large

number of model executions to illustrate the confidence intervals for the results. In use

case 2, the user will need a way to aggregate results of each run corresponding to the
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parameter values. Since SIMaaS is meant to be a broadly applicable service, it will require

the user to supply the appropriate aggregation logic corresponding to their needs.

In summary, SIMaaS needs an ability to accept user-supplied result aggregation logic,

apply it to the results of the simulations, and present the results to the user.

• Requirement 4: Web-based Interface – Since SIMaaS is envisioned as a broadly

applicable cloud-based, simulation-as-a-service, it will not know the details of the user’s

simulation model. Instead, it will require the user to supply a simulation model of their

system and various parameters to indicate how SIMaaS should run their models. For ex-

ample, since use case 1 requires stochastic model checking, it will require a large number

of simulation trajectories to be executed. Thus, SIMaaS will require the user to supply the

simulation image and specify how many such simulations should be executed, the build-

ing layout, the number of heaters, the strategy used and so on. Similarly, for use case 2,

SIMaaS will need to know how the model should be seeded with different parameter values

and how they should be varied, which in turn will dictate the number of simulations to ex-

ecute and their execution time. Finally, the aggregated results must somehow be displayed

to the user.

In summary, SIMaaS should provide a web-based user interface to the users so they can

supply both the simulation model and the parameters as well as receive the results using

the interface.

II.4 SIMaaS Cloud Middleware Architecture

A cloud platform is an attractive choice to address the requirements highlighted in Sec-

tion II.3.2 because it can elastically and on-demand execute the multiple different simu-

lation trajectories of the simulation models in parallel, and perform aggregation such as

SMC to obtain results within a desired confidence interval. The challenge stems from pro-

visioning these simulation trajectories in the cloud in real-time so that the response times
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perceived by the user are acceptable. To that end we have architected the SIMaaS cloud-

based simulation-as-a-service and its associated middleware as shown in Figure 2. The

remainder of this section describes the architecture and shows how it addresses all the re-

quirements outlined earlier.
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Figure 2: System Architecture

II.4.1 Dynamic Resource Provisioning Algorithm: Addressing Requirements 1 and

2

Requirement 1 calls for elastic deployment of a large number of simulation executions

depending on the use case category, which needs dynamic resource management. Require-

ment 2 calls for timely response to user requests. Thus, the dynamic resource management

algorithm should be geared towards meeting the user needs.

For this chapter, we define a QoS-based resource allocation policy that allocates con-

tainers for each requested simulation model such that its deadline is met and its cost, i.e.
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the number of assigned containers is minimized. We assume that the user provides the

following inputs to our allocation algorithm: simulation model, number of simulations and

their corresponding simulation parameters, and the estimated execution time using some of

the simulation parameters.

Formally, we define the requested execution of the simulation model as a job. Each job

is made up of several different tasks representing an execution instance of that simulation

job. At any instant in time k, J(k) is the set of jobs which our allocation algorithm handles.

Furthermore, for the jth job, J j(k) ∈ J(k), we define its deadline as DL j, the number of

containers it uses as B j(k), its ith simulation task as Ti j(k), the simulation parameter of its

ith task as θi j and finally, the expected execution time of its ith task with its corresponding

parameter θi j as Eθi j(Ti j(k)).

The primary objective of our allocation algorithm is to minimize the resource usage

cost considered in terms of the number of containers used to serve the user simulation

request, while maintaining the user constraint stated as meeting the deadline. To formalize

this objective, we define it as the following optimization problem:

min
B j

c(K) = ∑
j
∑
k

B j(k) = c(K−1)+∑
j

B j(K)

subject to ∀ j ∈ J(k),
R j(k)
B j(k)

=
∑i Eθi j(Ti j(k))

B j(k)
≤ DL j

where, c(k) is the cost function at time instant k, and R j(k) is the jth job’s total execution

time which is equal to the summation of the execution time Eθi j(Ti j(k)) for all the unserved

tasks Ti j(k). This constraint equation calculates the total time a job would take to finish

if its simulations’ executions have been parallelized using B j(k) containers. Therefore, it

bounds the selection of B j(k) such that each job finishes before or by the deadline. To

tackle this problem, we developed a simple heuristic shown in Algorithm 1 for efficiently

selecting the minimum B j(k) such that each job finishes its required simulation tasks by

their deadline.
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Algorithm 1 QoS-based Resource Allocation Policy
Require: J, α;

1: while TRUE do
2: Wait for(max(feedback_event, minimum_period));
3: for all J j ∈ J do
4: . Update only jobs with new feedback data;
5: if (HasFeedback(J j)) then
6: . Update the estimated error factor;
7: Fj←− UpdateErrorFactor(E∗

θi j
(Ti j));

8: . Update the estimated execution time function;
9: UpdateExecutionTimeFunction(Fj);

10: . Update the number of containers with their scheduling;
11: extraContainersNeeded←−BestFitDecreasing(DL j) - B j;
12: if extraContainersNeeded > 0 then
13: Reserve(extraContainerNeeded, J j);
14: . Avoid frequent resource allocation and de-allocation;
15: else if extraContainersNeeded < threshold then
16: Release(extraContainerNeeded, J j);

Formally, we calculate B j using the following formula. To simplify the notation, we

will omit the time index k throughout the remainder of this section:

B j =
R j

DL j

Two major challenges arise when calculating B j based on the above formula. First, it

is difficult to calculate analytically R j in a mathematically closed form because a task’s

execution time varies based on many dynamic factors such as performance interference,

overbooking ratio, etc. Second, the execution times of a job’s tasks are not necessarily

identical when they have different simulation parameter θi j, as demonstrated in Figure 1.

Therefore, the above formula is not accurate and we may need to increase the value of B j

calculated above in order to meet the deadline. Moreover, scheduling the job’s tasks Ti j in

the reserved containers B j is a non-trivial task.

To overcome the first challenge, we make our heuristic calculation of B j based on an es-

timated execution time E ′
θi j
(Ti j) of each task Ti j and periodically update this estimation and
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consequently the B j calculation based on the feedback of the actual executed time E∗
θi j
(Ti j).

This simple feedback mechanism allows us to maintain our algorithm objective mentioned

above while tolerating the effect of estimation errors, and handling the dynamic change of

our system environment (e.g. performance interference). Furthermore, our algorithm has

to wait for at least a minimum period of time even if there is a new feedback, in order to

enhance the algorithm’s performance by avoiding high frequent recalculation. In addition

to this, we recalculate Fj and E ′
θi j
(Ti j) in every iteration and the algorithm is executed only

for jobs that have new feedback data.

In order to estimate the execution time R j of the jth job, we use an initial execution

time function Eθi j(Ti j) as an initial function to our estimator. Since the user provides the

estimated execution time for only a few parameters, we use a regression algorithm based on

sequential exponential kernel [138] to build the initial function of Eθi j(Ti j) using the data

point provided by the user. Then, we update this function by an error factor Fj calculated

using the feedback data. The calculation of the error factor Fj and the estimated execution

time function E ′
θi j
(Ti j) are shown in the following equation:

E ′θi j
(Ti j) = Eθi j(Ti j)× (1+Fj)

such that:

Fj = E[∆Eθi j(Ti j)/Eθi j(Ti j)]+α×
√

Var
[
∆Eθi j(Ti j)/Eθi j(Ti j)

]
∆Eθi j(Ti j) = Eθi j(Ti j)−E∗θi j

(Ti j)

where α ≥ 0 is an estimator parameter that determines how pessimistic is our estima-

tor because Fj covers more errors as α increases. For example, when α = 1,2,3,Fj will

approximately estimate the worst-case scenario of 68%,95%, and 99.7% of the feedback

error values, respectively. For a real-time implementation of error factor calculation, we

use an online algorithm developed by Knuth [91] to calculate E[.] and Var[.] incrementally,
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in order to avoid saving and inspecting the entire feedback data every time a new feedback

entry has arrived.

To overcome the second challenge, we used best fit decreasing bin packing algorithm [88],

where, we pass DL j to this bin packing algorithm as its bin’s size input, and the estimated

task execution times E ′
θi j
(Ti j) as its items’ size input. Therefore, the number of slots pro-

duced by the bin packing algorithm represents the required containers B j and the distribu-

tion of the tasks Ti j in each slot represents the tasks’ schedule over the containers.

Note that the system resources constraints limit the number of jobs in J that can be

serviced at the same time. Therefore, we use an admission control algorithm shown in

Algorithm 2 to maintain a reliable service. The admission control algorithm is used to

accept any new incoming user request which can be handled using the remaining available

resources without missing its and other running jobs deadline. It basically estimates the

number of containers needed to serve the new request such that it finishes by its deadline.

Then, it checks whether there are idle containers available to serve it or not. The algorithm

has two administrator configurable parameters (β ≥ 1) and (γ ≥ 0) which add a margin of

resources to overcome the estimation error and to maintain another margin of resources for

other running jobs to be used by the above allocation algorithm.

Algorithm 2 Admission Control Algorithm
Require: availableCapacity, newJob
Ensure: Accepted/Rejected

1: containersNeeded←−BestFitDecreasing(DLnewJob);
2: if containersNeeded ×β < availableCapacity −γ then
3: Accept newJob;
4: else
5: Reject newJob;
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II.4.2 Dynamic Resource Provisioning Middleware: Addressing Requirements 1 and

2

The second aspect of dynamic resource management is the middleware infrastructure

that encodes the algorithm and provides the service capabilities. The middleware aspect is

described here.

II.4.2.1 Architectural Elements of the SIMaaS Middleware

The central component of the SIMaaS middleware shown in Figure 2 that is responsible

for resource provisioning and handling user requests is the SIMaaS Manager (SM). All the

coordination and decision making responsibilities are controlled by this component. It

employs the strategy design pattern; thus it has a pluggable design that is used to strategize

the virtualization approach to be used by the hosted system. The strategy pattern also allows

the SM to swap the scheduling policy if needed, however, we use a single scheduling policy

during the life-cycle of SIMaaS to avoid conflicts.

A cloud platform typically uses virtualized resources to host user applications. Differ-

ent types of virtualization include full virtualization (e.g., KVM), paravirtualization (e.g.,

Xen) and lightweight containers (e.g., LXC Linux containers). Since full and para virtu-

alization require the entire OS to be booted from scratch whenever a new virtual machine

(VM) is scheduled, this boot up time incurs a delay in availability of new VMs, not to men-

tion the cost of the application’s initialization time. All of these impact the user response

time. Since Requirement 2 calls for bounded response time, SIMaaS uses the lightweight

containers, which suffice for our purpose.

The life cycle of these containers is managed by the Container Manager (CM) shown in

the Figure 2. The pluggable architecture of SM allows CM to switch between various con-

tainer providers, which can be Linux container or hypervisor-based VM cloud. The Linux

container is the default container provider of CM. Specifically, we use the Docker [120]
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container virtualization technology since it provides portable deployment of Linux con-

tainers and provides a registry for images to be shared across the hosts with significant

performance gains over hypervisor-based approaches. Thus, the CM is responsible for

keeping track of the hosts in the cluster and provision the running and tearing down of the

Docker containers. It downloads and deploys different images from the Docker registry for

instantiating different simulations on the cluster hosts.

Our earlier design of the CM leveraged Shipyard [152] for communicating with the

Docker hosts, however, due to sluggish performance we observed, we had to implement a

custom solution with a reduced role for Shipyard. Overcoming the reasons for the sluggish

performance and reusing existing artifacts maximally is part of our future investigations

when we also evaluate other container managers such as Apache Mesos, Google Kuber-

netes and Docker Swarm.

II.4.2.2 Resource Instrumentation and Monitoring

Recall that meeting user-specified deadlines is an important goal for SIMaaS (Require-

ment 2). These deadlines must be met in the context of either the stochastic model checking

that requires multiple simultaneous runs of the stochastic simulation models or simulations

executed under a range of parameter values. Thus, SIMaaS must be cognizant of overall

system performance so that our resource allocation algorithm can make effective dynamic

resource management decisions. To support these system requirements, effective system

instrumentation is necessary.

Since SIMaaS uses Linux containers, we leveraged the Performance Monitor (Perf-

Mon) package from the JMeter Plugins group of packages on Linux. PerfMon is an open-

source Java application which runs as a service on the hosts to be monitored. Since the

monitored statistics are required by the Performance Manager (PM) component instead of

a visual rendition, we implemented a custom software to tap into PerfMon via its TCP/UDP
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connection capabilities. PerfMon is by no means the only option available but it sufficed

our needs.

PerfMon depends on the SIGAR API and uses it for gathering system metrics. The

metrics available are classified into eight broad catagories. These catagories include: CPU,

Memory, Disk I/O, Network I/O, JMX (Java Management Extensions), TCP, Swap, and

Custom executions. We are currently not using the JMX, TCP, or Swap metrics, but they

are available for use if needed. Each of these catagories have parameters to allow cus-

tomization of the desired returned metrics, e.g., Custom allows for the returning of any

custom command line execution. We use this to execute a custom script that returns the

process id and container id pairs of each running Docker container. This allows us to mon-

itor each individual container’s performance precisely.

II.4.3 Result Aggregation: Addressing Requirement 3

Stochastic model checking as in use case 1 requires that results of the multiple simu-

lation runs be aggregated to ascertain if the specified probabilistic property is met or not.

Similarly, as in use case 2, multiple simulation runs for different simulation parameters

result in different outcomes, which must be aggregated and presented to the user. To ac-

complish this and thereby satisfy Requirement 3, a key component of our middleware is the

Result Aggregator (RA). RA receives the simulation results from the Docker containers. It

uses ZeroMQ messaging queue service for reliable result delivery. It has two roles: first,

it sends feedback to the SM about the completion of task for decision making. Second, it

performs the actual result aggregation.

Since the aggregation logic is application-dependent, it is supplied by the user when the

service is hosted, and is activated when the simulation job completes. For use case 1, the

aggregation logic is a Bayesian statistical model checking which produces a single string

result. On the other hand, use case 2 aggregation logic parses and collates the XML files

produced as the result of simulation runs.
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II.4.4 Web Interface to SIMaaS - SIMaaS Workflow and User Interaction: Address-

ing Requirement 4

Finally, we discuss how the user interacts with SIMaaS, which is a web-based interface,

and the workflow triggered by a typical user action. The interface to the Simulation Man-

ager of SIMaaS is hosted on a lightweight web server, CherryPy [74] to interact with the

user and also to receive feedback from other SIMaaS components. The interaction involves

two phases. In the design phase a user interacts with the SIMaaS interface and provides the

initial configuration which includes the simulation executables and the aggregation logic.

A container image is generated after including hooks to send the temporary results. This

image is then uploaded to a private cloud registry accessible to the container hosts. The

aggregation logic is deployed in the Result Aggregator component that can collect the tem-

porary simulation results and generate the final response.

The execution phase is depicted in Figure 3, wherein, time bounded, on-demand sim-

ulation jobs are performed. The user can use a RESTful API (or a web-form if deadline

is not immediate) to supply name-value pairs of parameters. The following parameters are

supplied by all the users:

• Simulation Model Name: A simulation model name is required to identify the con-

tainer image and aggregation logic.

• Number of Simulations: The number of simulation instances to run.

• Deadline: The deadline for the job

• Required Resources: Number of CPUs to be allocated for each container. Other

types of resources will be added in future.

• Simulation Command: The command to initiate the simulation.

• List of (Execution Time Parameter, Estimated Execution Time): This is a small set

of the execution time parameter values and the corresponding execution times that is
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used to generate the regression curve for estimating the unknown execution time for

remaining parameters.

The following parameters are specific to the use case:

• Use Case 1 - Number of Heaters: The number of heaters active in the building (ex-

plained in section II.3.1.1)

• Use Case 1 - Sampling Rate: The rate at which data is sampled for temperature

simulation.

• Use Case 1 - Strategy: The model strategy to be used.
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• Use Case 1 - Confidence Level: A confidence value for the Bayesian Aggregator

(explained in section II.3.1.1).

• Use Case 2 - SUMO Configuration File: A configuration file used by SUMO simu-

lation for selecting the inputs and deciding the output details.

• Use Case 2 - List of Vehicle Counts: Different vehicle counts to be simulated.

We note that the simulation execution time is also a user input, however, this value can

be determined in a sandbox environment, wherein executing a single simulation instance

gives the value for a constant time simulation (such as use case 1) or by executing a subset

of simulation instances from a different range of parameters (such as use case 2) and using

a regression curve to estimate the execution time for others.

The request is then forwarded and processed by the SM. It validates the input and

applies admission control as explained in Algorithm 2 using a resource allocation and

scheduling policy, and checks if sufficient resources are available. If not, then it imme-

diately responds to the user with a failure message. In future, based on the criticality of

the request, some jobs may be swapped for a higher priority job. If the job can be sched-

uled, then it allocates the resources and contacts the CM to run the simulation containers.

The containers log the result to RA that keeps sending feedback to the SM and performs

the aggregation when the desired number of simulation results are received. The SM also

runs a service, applying Algorithm 1 at a configurable interval, to determine if the dead-

line will be met based on the current performance data, and accordingly contacts the CM

to acquire additional resources and run the containers. Once the simulation completes,

the RA responds to the user with the result. Currently it uses a shared folder. However,

going forward we plan to implement either an interface that can send the response as an

asynchronous callback or send a notification to the user about the availability of the result.
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II.5 Experimental Validation

This section evaluates the performance properties of the SIMaaS middleware and vali-

dates our claims in the context of hosting the use cases described in Section II.3.1.

II.5.1 Experimental Setup

Our setup consists of ten physical hosts each with the configuration defined in Table 12.

The same set of machines were used for experimenting with both Linux containers and

virtual machines. Docker version 1.6.0 was used for Linux container virtualization and

QEMU-KVM was used for hypervisor virtualization with QEMU version 2.0.0 and Linux

kernel 3.13.0-24.

Table 1: Hardware & Software Specification of Physical Servers

Processor 2.1 GHz Opteron
Number of CPU cores 12

Memory 32 GB
Disk Space 500 GB

Operating System Ubuntu 14.04 64-bit

Even though our solution is designed to leverage the Linux containers instead of virtual

machines, since we did not have access to large number of physical machines yet had to

measure the scalability of our approach, we tested our solution over a homogeneous cluster

of 60 virtual machines deployed as docker hosts for running the simulation tasks, i.e., the

docker containers were spawned inside the VMs. The same set of physical machines were

used to host the VMs with configuration as defined in Table 2.

Note that the SM, CM, RA and PM components of the SIMaaS middleware reside in

individual virtual machines deployed on a separate set of hosts, each with 4 virtual CPUs,

8 GB memory and running Ubuntu 14.04 64-bit operating system in our private cloud

managed by OpenNebula 4.6.2. The Simulation Manager was deployed on CherryPy 3.6.0
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Table 2: Configuration of VM Cluster Nodes

Kernel Linux 3.13.0-24
Hypervisor Qemu-KVM

Number of Virtual Machines 6
Overbooking Ratio 2.0

Guest CPUs 4
Guest Memory 4 GB

Guest OS Ubuntu 14.04 64-bit

web server. The container manager used Shipyard version v2 for managing the docker

hosts. The performance monitor relied on a customized Perfmon Server Agent 2.2.3.RC1

residing in each docker host to collect performance data. The Result Aggregator utilized

ZeroMQ version 4.0.4 for receiving simulation results from the docker containers.

II.5.2 Validating the Choice of Linux Container-based SIMaaS Solution

We first show why we used the container-based approach in the SIMaaS solution in-

stead of traditional virtual machines. This set of experiments affirm the large difference

in startup times for containers in Linux container-based cloud and virtual machines in

hypervisor-based traditional cloud. In [115], the authors showed that there is a high start

up time required on different popular public clouds. We tested similar configurations in our

private cloud, managed by OpenNebula and running QEMU-KVM hypervisor. We used

overbooking ratios of 1, 2 and 4 with a minimal image from use case 1. While the startup

time were in the order of sub-seconds for our Linux container host, they were 176, 300 and

599 seconds, respectively, for the hypervisor host. The large start up time can be ascribed

to the time taken in cloning the image as the VM file system and booting up of the operating

system.

Another set of experiments were performed to compare the performance of a host run-

ning simulations using Linux container versus virtual machines. Table 3 shows that the

32



Linux container host performs better in most of the cases as it does not incur the overhead

of running another operating system as a VM does.

Table 3: Comparison of Simulation Execution Time

Overbooking
Ratio 1

Overbooking
Ratio 2

Overbooking
Ratio 4

Linux Container
(Physical Server - 4s)

4.74s 7.19s 13.32s

Virtual Machine
(Physical Server - 4s)

5.17s 9.71s 19.05s

Linux Container
(Physical Server - 50s)

50.5s 98.29s 180.45s

Virtual Machine
(Physical Server - 50s)

52.4s 97.56s 202.5s

II.5.3 Workload for Container-based Experimentation

The workload we used in our experiments consists of several jobs corresponding to user

requests, each having a number of simulation instances as a bag of independent tasks. The

simulations are containerized as docker images on Ubuntu 14.04 64-bit operating system.

The jobs are based on both the use cases described in section II.3.1, however, we created

several variations of these use cases by changing the execution parameters. The building

heating stochastic simulation jobs have near constant execution time, but we used three

variations of it by using different sampling rates of 10, 5, and 2 milliseconds. The smaller

the sampling rate, better is the accuracy of the simulation results at the expense of longer

execution times. The traffic simulations jobs also had several variations based on the range

of the vehicle count.

The simulations for each job may have different resource requirements that will be

provided by the user. For these experiments, we have considered CPU-intensive workloads

and modeled the user input as three resource types with 1, 2 or 4 CPUs per container, which
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is an indication of how much CPU share that container gets. Thus, we convert these values

to CPU share per host as the docker container input.

We generated a synthetic workload to measure the system performance. We conducted

two sets of experiments. The first set of experiments were conducted to measure the effi-

cacy of our algorithm using a single type of job on a ten physical host cluster, whereas the

second set of experiments were performed to demonstrate the scalability of our algorithm

using a 60 virtual-host cluster with different types of jobs arriving at different points in

time. We applied the Poisson distribution with λ of 1 for a duration of two hours to find the

job arrival distribution. The number of tasks per job was uniformly distributed from 100 to

500. The deadline per job was also varied as a uniform distribution from 5 minutes to 20

minutes.

II.5.4 Evaluating SIMaaS for Meeting Deadlines and Resource Consumption

We evaluate the ability of the SIMaaS middleware to meet the user-specified deadline

and its effectiveness in minimizing the resources consumed. In use case 1 described in sec-

tion II.3.1.1, the user provides the approximate number of simulations needed for stochastic

model checking as an input to attain the desired confidence level for the output [191]. For

the second use case describe in II.3.1.2, the number of simulations is a user input. These

studies were conducted for different resource overbooking ratios, simulation count, dead-

lines, simulation duration, and execution times. Overbooking refers to the number of times

the capacity of a physical resource is exceeded. For example, suppose each container is

assigned a single CPU; thus for a 12-core system, an overbooking ratio of 2 translates to 24

containers running on the host. This strategy is cost effective when the guests do not con-

sume all the assigned resources all at the same time. We run the scheduling policy defined

in Algorithm 1 at an interval of 2 secs that dynamically allocates extra hosts if the deadline

cannot be met with the assigned hosts.
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Test 1 – Determining the Error Estimation Parameter (α): These experiments were

performed on the ten physical host cluster with use case 1 as the simulation model with

the following parameters: a deadline of 2 minutes, 500 simulation tasks, one CPU per

container and overbooking ratio of 2 per host. The purpose of these tests was to determine

the error estimation parameter – α for our system. This value is used to calculate the error

factor, explained in Section II.4.1, that plays a crucial role in meeting the deadline and

allocating container slots. Recall also that our algorithm attempts to minimize the number

of containers while meeting deadlines on a per simulation job basis.
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Figure 4: Container Count and Deadline Variation with α

Figure 4 depicts the simulation results for α values 0, 1, 1.5, 2 and 3. We observe that

values of 0 and 1 were too low and the system missed the deadline. A value of 1.5 was
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found to meet the deadline as well as causing less peak resource usage. This value can be

made dynamic based on the user urgency and strictness of the deadline.

Test 2 – Studying Variations in Container Count (B j) with Error Factor (Fj): These

tests were conducted to study the impact of changing the feedback based error factor (Fj)

on the container count (B j) as well as the input simulation execution time. From Figure 5,

we observe that initially, the resource consumption varies according to the error factor.

Later, the resource consumption stays constant after the error estimate reaches a steady

state. We conclude that the error estimate becomes accurate and close to the real value we

get from the feedback. However, as the simulation moves towards completion, resources

get released as lesser number of simulations remain to be executed.

Another observation we make from the results is that a pessimistic execution time esti-

mate (here 20s) results in more initial resource allocation. Resource allocation has its own

cost. For example, we measured the cost of deployment of simulation from the private

registry to the docker hosts for both of our use cases. For the image deployment of heater

simulation of use case 1, it took 135.1 sec and for the SUMO simulation deployment of use

case 2, it took 34.6 sec. These values are network-dependent but are incurred one-time per

host which can be done as a setup process.

Since resource allocation incurs cost, an optimistic estimate is better because the system

can adjust itself. However, if the estimate is too optimistic, the system may not be able to

finish the job within the user-defined deadline.

Test 3 – Validating the Applicability of the Feedback-based Approach: The goal of

applying Algorithm 1 is to spread the load per job over the deadline period so that multiple

jobs can run in parallel while meeting their deadlines. In other words, the system does not

schedule a job (and its tasks) immediately upon a request but delays it such that the load is

balanced yet ensuring that the deadline will be met.

Figure 6 compares a scenario where we do not apply the feedback-based approach and

instead allocate resources based on a fixed expected execution time. Estimating an accurate
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Figure 5: Variation in Error Factor (Fj) and Container Count (B j)

execution time is not a trivial task and may not even be realistically feasible. The execution

time does not just depend on the input parameter and hardware; it is also dependent on the

performance interference due to other processes running on the shared resource. Too little

a value, and we miss the deadline while too high value will result in wastage of resources.

We observe from the results that the feedback based approach meets the deadline in all the

cases while minimizing the resource consumption by releasing the containers if not needed.

Test 4 – Varying Host Overbooking Ratios: This set of experiments were performed to

measure the capabilities of the system to handle multiple parallel requests made to the

hosts with varying overbooking ratios, and study their performance while executing the
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Figure 6: Comparison of Feedback vs No Feedback Approaches

containers. Table 4 shows the results of the experiments where we varied the overbooking

ratio from 0.5 to 6. The specified deadline was 4 minutes and expected simulation time was

10 seconds.

We measure the container count and the actual number of hosts acquired by the system

to meet the deadline. The system’s goal is to minimize this number to keep the economic

cost within the bounds. We also measure the simulation duration observed by the system

user after the system finds the desired solution, the average turnaround time per simulation

from the instant it gets requested till the results get logged, the actual simulation execution

time per simulation and the corresponding system overhead. This overhead includes the
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Table 4: System Performance with Varying Host Overbooking Ratios

Overbook-

ing Ratio

Max
Con-
tainer
Count

Max
Hosts
Ac-

quired

Simulation
Duration
(in sec)

Measured
Execution
Time per

Sim(in sec)

Turnaround
Time per
Sim (in

sec)

Measured
Over-

head(%)

0.5 29 5 239.4 9.31 10.48 12.57
1 41 4 233.6 9.53 11.52 20.88
2 59 3 231.3 15.62 18.59 19.01
4 114 3 213.3 28.72 32.76 14.07
6 160 3 Deadline

Missed
41.62 46.9 12.67

performance interference overhead, resource contention and the time consumed in data

transfer at different components of the SIMaaS workflow as shown in Figure 3.

From the results we can conclude that for CPU-intensive applications – simulations

tend to fall in this category – the non-overbooked system provides the best results, how-

ever, the number of hosts needed is also high, which in turn increases the economic cost.

A highly overbooked system too has high cost and will be unable to meet the deadlines

due to performance overhead and should be avoided. Based on empirical results, a lower

overbooked scenario provides ideal trade-off as it needs less number of hosts and is able to

meet the deadlines. We also note that the system overhead remains at a reasonable level of

less than 21% during the experiments.

Based on the experiments, we illustrate in Figures 7, the CPU utilization and memory

utilization for use case 1. The simulations have a low memory footprint but the CPU uti-

lization is quite high. This conforms to our earlier result that having no or low overbooking

for the host will provide better performance. The results were similar for use case 2.

Test 5 – Varying Number of Simulations: The purpose of these tests is to demonstrate the

scalability of SIMaaS middleware with increasing number of simulations that are needed as

the fidelity of statistical model checking increases. The tests were executed with a deadline

39



0

20

40

60

80

100

120

1 25 49 73 97 121 145 169 193 217 241 265

U
n

it
s

Time (sec)

Simulation Count CPU Usage (%)

(a) CPU Utilization Variations with Simulation
Count

0

2

4

6

8

10

12

14

1 25 49 73 97 121 145 169 193 217 241 265

U
n

it
s

Time (sec)

Simulation Count Memory Usage (GB)

(b) Memory Utilization Variations with Simu-
lation Count

Figure 7: Use Case 1: CPU Utilization Variations with Simulation Count

of 600 seconds while other parameters were kept the same as in previous experiments. Ta-

ble 5 shows the results, which illustrates that the system is able to scale to 5,000 simulations

for a job without significant overhead.

Table 5: System Performance with Varying Number of Simulations

Number
of Simu-
lations

Max
Con-
tainer
Count

Max
Hosts
Ac-

quired

Simulation
Duration
(in secs)

Measured
Execution
Time per

Sim (in sec)

Turnaround
Time per

Sim (in ms)

Measured
Over-

head(%)

500 18 1 513.8 4.81 7.79 61.95
1000 33 2 547.1 5.26 11.45 117.68
2500 71 3 588.5 5.52 11.02 99.64
5000 137 6 591.4 5.49 10.72 95.26

Test 6 - Varying Simulation Execution Time: For these experiments, we vary the sam-

pling rate parameter of use case 1 and use a deadline of 10 minutes to increase the simula-

tion execution time of our simulation model. Table 6 measures and presents the simulation
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performance for varying execution time. We observe that the overhead reduces signifi-

cantly as the duration of the container execution increases, which is attributed mainly to

less percentage of time spent in scheduling and start up of containers.

Table 6: System Performance with Varying Simulation Duration

Sampling
Rate (in

ms)

Max
Con-
tainer
Count

Max
Hosts
Ac-

quired

Simulation
Duration
(in secs)

Measured
Execution
Time per

Sim (in sec)

Turnaround
Time per

Sim (in ms)

Measured
Over-

head(%)

10 6 1 526.3 4.69 5.87 25.91
5 11 1 533.0 9.35 10.48 12.09
1 108 9 526.0 63.91 66.81 4.53

Test 7 – Scalability Test and Admission Control with Incoming Workload: These are

scalability experiments with the workload described in Section II.5.3 with 60 docker hosts

and an incoming request flow generated using Poisson distribution. The system applied

admission control and informed the users about the decision to accept the request. Table 7

summarizes the results for the tests.

Table 7: Scalability Test Summary

Number of Jobs 103
Test Duration 1h:47min:57s

Number of Simulations Performed 15873
Hosts Utilized 54 / 60
Jobs Rejected 1

Number of Jobs that Missed Deadline 1

We observed that one job with deadline of 618 seconds missed it by 1.39 seconds.

This failure can be eliminated with stricter error estimation parameter (α), explained in

Section II.4.1. SIMaaS scaled to 54 virtualized hosts during the experiments. In future, we

would like to experiment with a larger cluster to test the system’s scalability limit.
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II.6 Concluding Remarks

This chapter described the design and empirical validation of a cloud middleware so-

lution to support the notion of simulation-as-a-service. Our solution is applicable to those

systems whose models are stochastic and require a potentially large number of simula-

tion runs to arrive at outcomes that are within statistically relevant confidence intervals, or

systems whose models result in different outcomes for different parameters.

Many insights were gained during this research as follows and resolving these form the

dimensions of our future investigations:

• Several competing alternatives are available to realize different aspects of cloud host-

ing. Effective application of software engineering design patterns is necessary to

realize the architecture for cloud-based middleware solutions so that individual tech-

nologies can be swapped with alternate choices.

• Our empirical results suggest that an overbooking ratio of 2 and α value of 1.5 pro-

vided the best configuration to execute the simulations. However, these conclusions

were based on the existing use cases and the small size of our private data center.

Moreover, no background traffic was considered. Our future work will explore this

dimension of the work as well as determine a mathematical bound for the optimal

configuration.

• In our approach the number of simulations to execute for stochastic model checking

were based on published results for the use case. In future there will be a need to

determine these quantities through modeling and empirical means.

• We have handled basic failures in our system where a container is scheduled again

if it does not start, however we need advanced fault tolerance mechanism to handle

failure of hosts and various SIMaaS components. Our prior work [14] has explored

the use of VM-based fault tolerance, however, for the current work we will need

container-based fault tolerance mechanisms.
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• We did not consider a billing model for the end users in our work but such a consid-

eration should be given to generate revenues for such a service and also so that the

user does not abuse the system. In addition, security and vulnerabilities [103, 178]

remain open challenges.

• As most of the cloud providers are rolling out Linux container-based application

deployment, we need to design a hybrid cloud to leverage it.

• Currently our middleware architecture is realized as a centralized deployment in our

small-scale private data center. In large data centers, we will require a distributed

realization of the various entities of our middleware. This will give rise to a number

of distributed systems issues, and addressing these form the dimensions of our future

work.

All the scripts and source code, and experimental results of SIMaaS are available for

download from http://www.dre.vanderbilt.edu/~sshekhar/download/

SIMaaS.
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CHAPTER III

INDICES: EXPLOITING EDGE RESOURCES FOR PERFORMANCE-AWARE
CLOUD-HOSTED SERVICES

III.1 Motivation

The cloud has become an attractive hosting platform for a variety of interactive and

soft real-time applications, such as cloud gaming, cognitive assistance, health monitoring

systems and collaborative learning due to its elastic properties and cost benefits. Despite

these substantial advantages, the response time considerations of users mandate lower la-

tencies for the applications. Prior works [82, 93] have shown that in highly interactive

applications, latencies exceeding 100 milliseconds (ms) may be too high for acceptable

user experience. However, real-world experiments have shown that the latencies experi-

enced by geographically distributed users of an interactive service may tend to be on the

order of several hundreds of milliseconds [169]. Consequently, there is a need to bound the

resulting response times within acceptable limits.

To better understand the key contributing factors for end-to-end latencies experience by

cloud-hosted interactive applications, consider Equation III.1:

ttotal = tclient + taccess + ttransit + tdatacenter + tserver (III.1)

where,

• ttotal is the end to end latency experienced by the user.

• tclient is the processing delay at the client endpoint.

• taccess is the sum of inbound and outbound message transmission delays between the

client and its nearest network access point.
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• ttransit is the sum of inbound and outbound communication delays between the net-

work access point and the cloud data center.

• tdatacenter is the communication delay from the data center front end (e.g., a web

server and load balancer) to the target server in the data center that actually handle

the request in both directions.

• tserver is the processing delay at the target server.

Both tclient and taccess cannot be controlled and managed by the cloud service provider.

Moreover, since tdatacenter is usually less than 1 ms [43], it can be ignored. On the other

hand, a cloud provider can control and manage ttransit and tserver, both of which are key

factors in meeting the response time requirements of the interactive applications. Note that

ttransit is governed by the number of hops incurred by application messages to traverse the

wide area network to reach the cloud data center and for responses to traverse back to the

user.

In recent years, edge computing, cloudlets [142] or Micro Data Centers (MDCs) [17]

have emerged as one of the key mechanisms to manage and bound the transit latency ttransit

by supporting cloud-based services closer to the clients. MDCs can be viewed as “a data

center in a box,” which act as the middle tier in the emerging “mobile device–MDC–cloud”

hierarchy [142]. MDCs possess key attributes of soft states, sufficient compute power and

connectivity, and proximity to clients, and conform to standard cloud technologies.

Recent efforts [44, 46, 94, 189] have leveraged the cloud, MDCs and mobile ad-hoc

networks by focusing primarily on cyber foraging, where tasks are offloaded from mobile

devices to the cloud/MDCs for faster execution and conserve resources on the mobile client

endpoints. Nonetheless, less efforts have focused on moving tasks from the central clouds

to the MDCs. Those that do, however, have seldom considered the resulting application

performance because these efforts tend to overlook the fact that servers within the MDC

may themselves get overloaded, thereby worsening the user experience as compared to
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that of a traditional cloud-hosted interactive service. Efforts that consider performance of

MDCs, however, make very simplistic assumptions regarding their performance models.

In this chapter, our focus is on performance of MDCs, specifically the key contributing

factors in performance degradation of MDCs and data centers in general. A fundamen-

tal system property that is often overlooked is performance interference, which is caused

by co-located applications in virtualized data centers [35, 49, 84, 92]. Performance inter-

ference being an inherent property of any virtualized system, it manifests itself in MDCs

also and therefore must be factored in any approach that is performance-aware. Thus, we

focus on a “just-in-time and performance-aware” service migration approach for moving

cloud-based interactive services hosted in the centralized cloud data center to a MDC.

A number of challenges are incurred in supporting such a vision as follows:

• Hardware heterogeneity: Differences in the hardware configurations of the servers in

a traditional data center versus a MDC will necessarily provide different performance

profiles, and hence should be accounted for in any analyses.

• Performance Interference: Noisy neighbors cause performance issues, which is an

issue that must be considered in both the traditional data centers as well as MDCs.

However, since a MDC is orders of magnitude smaller than a traditional data center,

the performance interference may be more pronounced and manifest more rapidly in

MDCs than in traditional data centers.

• Network performance measurements: Accurate latency and bandwidth measurement

techniques are required that can reliably work over Wide Area Networks (WANs).

This dimension of the challenge is important since estimating an accurate value for

ttransit is important in our problem formulation and its solution.

• System performance measurements: Accurate application and server performance

measurement and logging techniques are required to accurately measure the service

execution (i.e., tserver) on the hardware of the data centers or MDCs.
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We address these challenges in the context of providing a ubiquitous deployment ap-

proach that spans the cloud-edge spectrum and make the following contributions:

• We present a technique to estimate the performance of a cloud application on differ-

ent hardware platforms subjected to performance interference stemming from various

co-located applications.

• We formulate server selection as an optimization problem that finds an apt server

among micro data centers to migrate an application to, so it can meet its performance

needs while minimizing the deployment cost to the service provider.

• We describe the INDICES (INtelligent Deployment for ubIquitous Cloud and Edge

Services) framework that codifies our algorithms for online performance monitoring,

performance prediction, network performance measurements, server selection and

application migration.

• We show experimental results to validate our claims and evaluate the efficacy of the

INDICES framework.

The rest of the chapter is organized as follows: Section III.2 presents the system model

and assumptions; Section III.3 describes the problem formulation we address in this re-

search; Section III.4 delves into details of our solution including the design and implemen-

tation; Section III.5 presents empirical proof that validates our claims; Section III.6 com-

pares related work with our work; and finally Section III.7 presents concluding remarks

alluding to lessons learned and future work.

III.2 System Model and Assumptions

This research is geared towards platform-as-a-service (PaaS) cloud providers, who seek

to meet service level objectives (SLOs) of soft real-time applications such as online gam-

ing, augmented reality, virtual desktop etc. by improving application response times. To
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that end they exploit micro data centers. In doing so, however, cost considerations and

energy savings for the PaaS provider in operating and managing the resources beyond the

traditional data centers are critical issues while ensuring that such an approach provides

an additional source of revenue to the PaaS provider. In this chapter, however, we do not

discuss revenue generation issues.

III.2.1 Architectural Model

Figure 8 depicts our architectural model that consists of a centralized data center CDC,

owned by a PaaS cloud provider. The CDC is connected to a group of micro data cen-

ters (MDCs), M = {m1,m2, ..,mn}. These MDCs are deployed at the edge, and are either

owned by the CDC provider or leased from an edge-based third party MDC provider. A

leased MDC is assumed to be exclusively under the control of the that CDC provider. Once

a MDC is leased, all its resources are considered to be the part of CDC provider and hence

customers of the CDC can be transparently diverted to MDCs using their CDC-based se-

curity credentials.

The CDC contains a global manager gm, which is responsible for detecting and miti-

gating global SLO violations. We assume that for all m ∈M, there exist links to the CDC

with a backhaul bandwidth of bm. Each MDC m comprises a set of compute servers, Hm,

that can be allocated to the CDC for its operations at a specified cost. One of the hosts

from Hm or a specially designated MDC host acts as the local manager (lmm) for that MDC

and is responsible for data collection, performance estimation, latency measurements and

MDC-level decision making. This decision-making logic is deployed at the MDC by the

CDC provider.

III.2.2 Application Model

For this work, we consider a set Apps of latency-sensitive applications that can be col-

laborative or single user and interactive or streaming in nature. Each application a ∈ Apps
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is initially deployed in a CDC, with Ua number of users and is assumed to be container-

ized inside a virtual machine (VM). We assume that for a collaborative application a, its

users are located in proximity of each other where they incur similar round trip latencies.

These scenarios are common when we consider collaborative educational applications such

as [34] where the users are a group of students working from a school library or a coffee

shop, or could be a single user system, such as augmented reality [69], where image pro-

cessing operations are performed in the cloud.

Each application a can be hosted on any active host in CDC, η ∈ H, where H is the set

of all active hosts that provide virtualization using a hypervisor or virtual machine monitor

(VMM), such as KVM [90] and Xen [7]. We let eeda represent the expected execution

duration for which the application will be used by the end-user clients. An interactive or
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streaming application comprises multiple individual interactions between the user and the

application. Each interactive or streaming step of a is assumed to take an estimated execu-

tion time eeta,η on host η ; for collaborative applications, it indicates the time needed for

all users to have completed that step. Section III.4.2 discusses in detail a systematic way of

estimating these per-step execution times. Finally, for all users u ∈Ua, let ela,η ,u represent

the estimated round-trip network latency and φa be the application-defined bounds on ac-

ceptable response time for each interactive step of the application. Formally, the SLO for

each application a hosted on host η can be characterized by:

eeta,η +max
u∈Ua

(ela,η ,u)≤ φa (III.2)

Over time, a subset PA from the set of applications Apps are identified by the system

as suffering from performance degradation such that each application p ∈ PA has a subset

of one or more users, U ′p ⊆Up experiencing SLO violations. These impacted applications

can be identified reactively either by the end-user client, which notices missed deadlines

using special instrumentation features supplied in the client-side “app” that is installed by

the end-user as part of the PaaS platform and notified to the CDC service. Alternately,

such applications can be be identified proactively via a predictive decision based on the

existing user profiles, where the system predicts that the users are likely to experience SLO

violations if they had connected from their profiled location during a certain time period.

Our objective is thus to minimize the SLO violations, which is achieved by identifying

and migrating application p to a MDC host h∈Hm that will provide significantly improved

performance. Since any application migration will involve state transfer, we assume that

application p has the snapshot of current state which has to be transferred as part of the mi-

gration over the backhaul network from CDC to MDC m. Moreover, cip,h is the initializa-

tion cost of the migrated application p on host hm before the application can start processing

requests on the MDC host. However, once the user-specific state has been transferred, there

50



is minimal interaction between the CDC-based server and the MDC-based server for the

remainder of the functioning of application p. For this chapter we do not consider further

consolidation of resources where applications migrate back to the CDC. The transfer cost

trans f erp,h incurred while transferring application p from CDC to host h of a MDC, and

associated constraint are defined in the following equations:

trans f erp,h =
sp

bm
+ cip,h (III.3)

trans f erp,h� eedp (III.4)

where, bm is the backhaul bandwidth, sp is the size of the snapshot of the application’s

state, and eedp is the remaining expected execution duration of application p’s usage by the

client. Equation III.4 is a necessary condition for the motivation to use the edge and our

solution to be relevant. To ensure that Equation III.4 holds, we do not require transferring

entire images of the VM and its containers. Instead, we use a layered file system architec-

ture at the MDC that is pre-populated with base images used at the CDC as described in

Section III.4.4. This assumption is realistic because we surmise that a MDC is either owned

entirely or leased exclusively by a CDC provider. We also ensure Equation III.4 holds by

considering δp as a tolerance percentage value for the application user before (s)he starts

to observe the improved response time:

trans f erp,h/eedp ≤ δp (III.5)

Finally, another critical issue we must account for is that any migration of a new ap-

plication from CDC to a MDC should not violate the SLOs of existing applications in that

MDC. To capture this aspect, let Jh represent the set of all applications currently running

on a MDC host h, eet j,h be the estimated execution time for each application j ∈ Jh, which

must be updated when we make a decision to migrate p to the same host, and el j,h,u be their

corresponding measured round-trip network latency. These quantities must satisfy:
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∀ j ∈ Jh,eet j,h +max
u∈U j

(el j,h,u)≤ φ j (III.6)

III.3 Problem Statement and its Formulation

We now formally present the problem statement. Recall that our objective is to improve

response times for cloud-hosted interactive applications that are experiencing performance

degradation by migrating the application to the edge-based MDC. To that end, we must

address two key problems. First, we must have a systematic approach to understand the

causes of performance degradation and determine if an application is being impacted. Sec-

ond, we must find an effective approach by which an application can be migrated from a

CDC to a MDC without impacting existing MDC-based applications while also minimizing

the cost incurred by the cloud provider.

III.3.1 Performance Estimation Problem and Challenges

The performance of an application depends on several factors including the workload,

the hardware hosting platform, and co-located applications that cause performance inter-

ference [35, 49, 84]. It is thus important for any solution to account for all these dimensions

for accurately estimating performance for both CDCs and MDCs. Below we describe their

role in the performance estimation problem:

III.3.1.1 Workload Estimation

For the cloud-hosted interactive applications of interest to us, we assume that the work-

load variation is not significant within a single user session with the service. However,

different sessions may have different workloads, for example, in an image processing ap-

plication, the quality and hence the size of the captured and relayed image may vary for

different client mobile devices. Thus, we consider each workload as a different application

setting, which is reflected in the application response time.
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III.3.1.2 Heterogeneity

Our CDC and MDCs consist of heterogeneous hardware and hence each application’s

performance can vary significantly from one hardware platform to another [49]. Therefore,

we need an accurate benchmark of performance for each hardware platform.

III.3.1.3 Performance Interference

Server virtualization platforms such as KVM [90] and Xen [7] provide high degree of

security, fault and environment isolations for applications running in virtualized containers,

i.e. virtual machines (VMs). However, the level of isolation is inadequate when it comes to

performance isolation even though the cloud providers have well-defined resource sharing

mechanisms. This happens due to to two primary reasons:

• Presence of non-partitionable shared resources: VMMs can provide isolation guar-

antees by applying strict CPU reservations and static partitioning of disk and memory

spaces. There are solutions available to limit the storage and network bandwidth too.

Yet, on-chip resources including cache spaces, cache and DRAM bandwidths, and

interconnect networks are difficult to partition [66]. Recently, Intel has introduced

Cache Allocation Technology [32] to partition the last level cache (LLC), however,

it is still not widely used and cannot be applied to older generation servers. The load

imposed on these shared resources by one application is detrimental to all the cache-

and memory-sensitive applications [116].

• Resource overbooking: The average server utilization in a data center is usually low

ranging from 10% to 50% [110]. Thus, to maximize the server utilization, cloud

providers tend to overbook resources such as CPU cores. This precludes strict CPU

reservations and leads to even the lower level caches (L1 and L2) getting shared.

In addition, if the overbooked workload goes beyond the server capacity, contention

takes place and the applications suffer from performance issues.
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III.3.2 Cost Estimation and Objective Formulation

The objective of the framework is to assure the SLOs for all the identified applications

p ∈ PA while minimizing the overall deployment cost. Each MDC host h involves a mon-

etary allocation cost as it is either leased or could be leased to other providers if owned by

the centralized cloud. In addition, the running servers have operational costs, such as need

for power and cooling. Thus, the provider wants to use as few MDC servers as possible

and hence the deployment cost depends on the duration for which the MDC server is on.

This cost T̃h for deploying p ∈ PAh applications on host h is the extra duration for which

the server has to be turned on and can be represented as:

T̃h =


0, if max

p∈PAh
(eedp)< max

j∈Jh
(eed j),

max
p∈PAh

(eedp)−max
j∈Jh

(eed j), otherwise
(III.7)

We define a constant αh denoting the cost of powering on the MDC server, and constant

βh denoting the cost for transferring the state to host h. Their values depend on the host h

and its corresponding MDC. The cost for deployment on host h is thus defined as:

C(h) = αh ∗ T̃h +βh ∗ ∑
p∈PAh

trans f erp,h (III.8)

The optimization problem we solve for this research can then be formulated as:

minimize
h∈H

∑C(h)

subject to eetp,h +max
u∈Up

(elp,h,u)≤ φp,

∀ j ∈ Jh,eet j,h +max
u∈U j

(el j,h,u),

trans f erp,h/eedp ≤ δp

(III.9)
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III.4 Design of INDICES

We now present the design of our INDICES framework, which solves the optimization

problem from Equation III.9. To that end our solution depends on accurately and reliably

estimating (a) the execution time of the impacted application and network latencies suffered

by its clients, (b) similar parameters for the already running applications on the different

hosts of the different MDCs, which is then used in selecting the appropriate host to migrate

an impacted application to, and (c) the transfer time for migrating the state of the impacted

application. The remainder of this section describes our framework architecture and the

details of the techniques used to solve the optimization problem.

III.4.1 INDICES Architecture and Implementation

Before delving into the details of the techniques used to solve the optimization problem,

we first present a high-level architecture of INDICES. Given the scale of the system, a

centralized approach to performance prediction and cost estimation for every application

hosted in the CDC/MDC and its clients is infeasible. Thus, we take a hierarchical approach

where individual MDCs with their local managers and the global manager of the CDC

participate in a two-level decision making as shown in Figure 8.

Figure 9 shows the local decision making part of INDICES. Each MDC is composed

of a management node and several servers on which the applications residing on virtual

machines execute. Each individual host in the system has a performance monitoring com-

ponent that logs the data at the local manager lmm. The local manager consists of a data

collector, latency estimator, performance predictor and cost estimator.

The performance monitor instruments the host and collects system level metrics such

as CPU, memory and network utilizations, as well as micro architectural metrics such as

retired instructions per second (IPS) and cache misses. This information is periodically

logged to the local manager for processing. The performance monitoring framework is

based on the collectd [59] system performance statistics collection tool. To collect micro
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architectural performance metrics, we developed a python plugin for collectd using Linux

perf. This plugin detects if the hardware platform is known, and accordingly executes

code that collects hardware specific performance counter statistics. The information is

then forwarded to the lmm using AMQP [167] message queuing protocol. The lmm runs a

server developed in the Go programming language, which persists the data in the InfluxDB

database, which is designed specifically for time series data.

III.4.2 Estimating Execution Time

The constraints in Equation III.9 require an accurate understanding of the predicted

execution time duration of an application if it were to execute at a MDC, as well as the

execution times of the existing applications executing on the hosts of the MDCs. Hence,

56



we build an application’s expected performance profile and in turn its interference pro-

file [81] when co-located with other applications on different hardware platforms given the

hardware heterogeneity across the CDC and MDCs. Although prior efforts [116, 180, 187]

have used retired instructions per cycle (IPC) or last-level cache (LLC) miss rate as the

performance indicators, Lo et. al [110] have shown the limitations of these metrics for

latency-sensitive applications. Thus, we consider execution time as the primary indicator

of performance.

The Interference profile of an application [95, 116, 176, 188] is a property that identifies

the degree to which that application will (a) degrade the performance of other running ap-

plications on the host – known as pressure – and (b) how much its own performance suffers

due to interference from other applications – known as sensitivity. The performance degra-

dation of an application depends, to varying degrees, on different system components and

architectures, and other collocated applications. Several prior efforts have used pairwise

application execution to estimate their sensitivity and pressure [95, 116, 176, 188], how-

ever, these solutions are not viable for a data center given the significantly large number

of hosted applications. Some other efforts [180] pause non-critical applications to measure

pressure and sensitivity of live applications, which may not be a realistic solution.

Thus, for a given application p, its performance on a host with hardware configuration

w is modeled by Equation III.10, where Y is the execution time, X is a vector of system-

level metrics that quantify the state of the host, and the function f 1
p() models the relation

between the state of the host machine and performance of the application p. Moreover, the

information needed by the second constraint of Equation III.9 is obtained through Equa-

tion III.11, which depicts the change in the state of the host with hardware configuration w

if application p were to be hosted on it. Equation III.11 is an indirect measure of perfor-

mance interference since its output can be used to calculate the change in execution time of

an already running application by plugging the new state vector Xnew into Equation III.10

and solving it for each running application.
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Y = f 1
p(Xw) (III.10)

Xnew
w = f 2

p(X
old
w ) (III.11)

Table 8: Server Architectures

Config Hardware
Model

sockets/cores/
threads/GHz

L1/L2/L3
Cache (KB)

Mem Type/
MHz/GB Memory Bandwidth Count

A i7 870 1/4/2/2.93 32/256/8192 DDR3/
1333/16

(UNC_IMC_NORMAL_READS.ANY +
UNC_IMC_WRITES.FULL.ANY) * 64 /
time in sec

2

B Xeon
W3530 1/4/2/2.8 32/256/8192 DDR3/

1333/6

(UNC_IMC_NORMAL_READS.ANY +
UNC_IMC_WRITES.FULL.ANY) * 64 /
time in sec

1

C Core2Duo
Q9550 1/4/1/2.83 32/6144/- DDR2/

800/8

BUS_TRANS_MEM.ALL_AGENTS
* 64 *1e9 * CPUFrequency /
CPU_CLK_UNHALTED.CORE

1

D Opteron
4170HE 2/6/1/2.1 64/512/5118 DDR3/

1333/32

SamplingPeriod *
DRAM_ACCESSES_PAGE.ALL *
64 / time in sec

9

Another required step is to identify the right system level metrics to use. Previous

works [48, 49, 81] have identified several sources of interference including caches, prefetch-

ers, memory, network, disk, translation lookaside buffers (TLBs), and integer and floating

point processing units. Both Intel and AMD architectures provide hardware counters to

monitor the performance of micro-architectural components. However, not all the sub-

components can always be monitored. Moreover, the list of available counters is signif-

icantly smaller for older generation servers. Due to these constraints and driven by the

need to support a broadly applicable solution, we selected the following host metrics for

performance monitoring:

• System Metrics: CPU utilization, memory utilization, network I/O, disk I/O, context

switches, page faults.

• Hardware Counters: Retired instructions per second (IPS), cache utilization, cache
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misses, last-level cache (LLC) bandwidth and memory bandwidth. The bandwidth

metrics are not directly available and the counters are vary from one hardware to

other. In our analysis described later, we found that the LLC bandwidth and memory

bandwidth were highly correlated and hence we selected the memory bandwidth and

not LLC bandwidth due to its easier availability on different architectures and ver-

sions. Table 10 lists the hardware counter-based equations for memory bandwidth,

which are derived from [1, 55].

• Hypervisor metrics: Scheduler wait time, Scheduler I/O wait time, scheduler VM

exits. These metrics are the summation for all the executing virtual machines for the

KVM hypervisor.

By applying standard supervised machine learning techniques on the collected metrics,

we estimate the functions in Equations III.10 and III.11 using the following sequence of

steps:

1. Feature Selection: Feature selection is the process of finding relevant features in

order to shorten the training times and reduce errors due to over-fitting. We have

adopted the Recursive Feature Elimination (RFE) approach using Gradient Boosted

Regression Trees [56]. We performed RFE in a cross-validation loop to find the

optimal number of features that minimizes a loss function (mean squared in our case).

2. Correlation Analysis: To remove the linearly dependent features, correlation anal-

ysis is required. This step further reduces the training time by decreasing the di-

mensions of the feature vector. We used the Pearson Coefficient to eliminate highly

dependent metrics with a threshold of ±0.8.

3. Regression Analysis: In this step curve fitting is performed using ensemble meth-

ods. We have used standard off-the-shelf Gradient Tree Boosting method, which is

widely used in the areas of web page ranking and ecology. The primary advantage
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of this method lies in its ability to handle heterogeneous features and its robustness

to outliers.

The performance estimation of applications consists of two phases: (1) Offline Phase

and (2) Online Phase. The offline phase occurs at CDC and concerns with finding estima-

tors whereas the online phase is performed by the local manager (lmm) of MDCs to estimate

the performance of the target application and also to estimate the performance degradation

of the running application. The two phases are described next.

III.4.2.1 Offline Phase

Whenever the data center receives a request for migrating an as yet un-profiled appli-

cation, it is benchmarked on a single host with a given hardware configuration and then

co-located with other applications to develop its interference profile. However, since the

number of profiling configurations can be huge, we select a uniformly distributed subset

of possible co-location combinations for profiling. The estimators can be found either by

following the above listed three steps or choosing an existing estimator of some application

based on similarity between the projected performance and the actual performance. We

use a hybrid approach, which first predicts the performance of the new application and its

interference profile using estimators of an existing application for the same hardware spec-

ifications. If the measured performance and the estimated performance are within a pre-

defined threshold, then we consider the new application to be similar in performance to the

existing application. Among all such similar applications, the estimator of the application

with least error is selected for all MDC hardware configurations. This saves profiling time

and cost. However, if there is no match, the application profile is developed by performing

feature pruning followed by model fitting on each unique hardware platform maintained by

the data center.
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III.4.2.2 Online Phase

The learned models are then exported and forwarded to the MDC local manager lmm

for the available hardware platforms in the MDC for estimating the performance of any

application to be deployed in the MDC. Since each MDC is small in size and typically

illustrates limited heterogeneity in the supported hardware, the number of estimation mod-

els will be small. On receiving a request from the global manager gm, the local manager

lmm estimates the performance of an application by feeding the estimator with presently

logged data set using estimation function III.10. The pressure on existing applications Jh

on the host h is calculated by first applying Equation III.11 on the target application and

then Equation III.10 for existing applications.

III.4.3 Network Latency Estimation

The constraints of the optimization problem of Equation III.9 require an accurate un-

derstanding of the network latencies incurred by the clients, specifically the worst among

all the clients of each application. This information is needed in identifying the appropriate

host of the appropriate MDC to which an impacted application can be migrated to such

that it satisfies the SLOs for the worst suffering client while not unduly affecting existing

applications of the MDC hosts.

Thus, estimating the latency to different MDC servers is another key component for

achieving the targeted SLOs. To that end we must determine the clients who suffer SLO

violations from Equation III.2. In each client, the instrumented “app” that is installed by

the user as part of the client application periodically reports to gm the application response

time it is observing. To not overwhelm the gm, such data logging need not occur directly on

the gm; instead it can be logged on an ensemble of servers that then report to the gm or the

application server can itself gather data and forward the information when SLO violations

occur.

Since there could be multiple MDC choices to migrate an impacted application to, the
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first step in our algorithm for server selection requires reducing the target set of MDCs for

latency estimation to decrease the load and amount of time for server selection. To that

end, we use the logged performance data from the clients to extract its IP address in order

to determine the closest MDCs to that client. The extracted client IP address may not be

accurate since often internet users have private addresses and the reported external address

is that of the network router or one from the pool of network provider’s addresses in case

the connection is via a cellular network. However, this information is still sufficient for us

as we use the client location to reduce the set of MDCs that we need to query. The client’s

geolocation and consequently its region is derived from the IP address.

The next step is measuring latencies to the nearby MDCs. To obtain a reliable latency

estimate, we use HTTP-based and TCP socket-based latency measurement techniques for

HTTP-based and plain TCP-based cloud applications, respectively. We can easily add addi-

tional protocols to this list based on the protocol used. Subject to the collected information,

the gm forwards to the client app a list of “nearby” MDC gateway servers that are also the

local managers lmm, each hosting a server for the purpose of latency measurement. The

client then posts n requests to each lmm with a file that it typically posts to the cloud for

processing (e.g. an image for image processing application) and also the average size of

the response it receives from the application. The server responds with a response for the

same number of bytes. For each of the n interactions, the client records the elapsed time

and thus measures tclient + taccess+ ttransit . The client app selects the SLO latency (e.g., usu-

ally 95th percentile) from the n latencies for each lmm and reports it to gm. This approach

also accounts for the delay due to bandwidth size as we transfer the actual request data

instead of a ping. This step can be considered as similar to the speed test done to measure

download/upload speeds to an internet provider.
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III.4.4 State Transfer

The final constraint of Equation III.9 requires estimating the cost of state transfer. The

local managers calculate the state transfer cost using Equation IV.5 and use it in local de-

cision making. Once the gm selects the hm for migrating an application p, the application

state has to be transferred before the clients can be switched to the new server location. In

this regard, there exist several solutions available for WAN-scale virtual machine migra-

tion [31, 142, 163, 174]. We leverage the cloud virtual disk format such as qcow2 features

for WAN migration. The VM disk is composed of a base image and can contain several

overlays on top of it for change sets. The VM overlay when combined with the base image

constructs the VM that needs to run for serving the clients.

This base image can contain just an operating system such as Ubuntu or an entire soft-

ware stack such OpenCV for image processing. The base image is assumed to be present

on MDC hosts to save on migration costs and can be shared by multiple VMs. For the target

application, overlays are created using external snapshots. The VM overlay is the state that

gets transferred to hm and is synthesized with the base image for execution. Equation IV.5

displays the cost.

Once the application starts running, it informs the gm and all the application clients

are redirected to the new application URL. This happens for a custom client by forwarding

the new location to the clients which can then use the new URL for processing. However,

for browser-based clients, the communication with the gm occurs via application server

due to cross-domain restriction and the existing application issues HTTP-redirect to the

new location. In future, we will enhance our solution to support live migration of VMs

using solutions, such as Elijah cloudlet [68] or the recently introduced Docker Linux con-

tainer’s [121] live migration feature.
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III.4.5 Solving the Optimization Problem at Runtime

The final piece of the puzzle is solving the optimization problem in Equation III.9.

The optimization problem described in III.3.2 cannot be solved offline due to the changing

dynamics of the system, and being an NP-Hard problem when we consider multiple appli-

cations violating SLOs and need to be migrated. We employ a heuristics-based algorithm

described in Algorithm 3 that selects aptly suited servers in a MDC while minimizing the

overall deployment cost for the entire system.

Algorithm 3 Deployment Server Selection Algorithm
Require: Apps

1: for all a ∈ Apps do
2: ta,CDC←max(Ua) . t is response time
3: if ta,CDC > φa then PA.insert(a)

4: if PA = /0 then return . Do nothing
5: for all p ∈ PA do
6: eedp← GetExpectedExecutionDuration(p)
7: clientLoc← GetLocation(max(U ′p))
8: nearbyMDCs← FindNearbyMDCs(clientLoc)
9: for all m ∈ nearbyMDCs do

10: lmm← LocalManager(m)
11: elp,lmTransit ← GetLatency(lmm,clientLoc)
12: Hm← GetServerList(m)
13: for all hm ∈ Hm do
14: if trans f erp,hm > δp then
15: skip hm . Constraint Violated
16: per fp,hm ← PredictPer f Inter f (hm, p)
17: for all j ∈ Jhm do
18: eet j,hm ← EstExecTime(per fp,hm , j)
19: if el j,hm + eet j,hm > φ j then
20: skip hm . Constraint Violated
21: eetp,hm ← EstExecTime(per fhm , p)
22: if elp,lmTransit + eetp,hm > φp then
23: skip hm . Constraint Violated
24: trans f erp,hm ← EstTransDur(hm, p)
25: Cp,Hm .insert(EstCost(trans f erp,hm ,eedp))

26: Cp,m.insert(min(Cp,Hm))

27: minCp,h← min(Cp,m)
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The algorithm consists of two phases. First, we identify the applications suffering SLO

violations (Line 3). In the second phase we select the suitable server. For the identified

applications in PA, we find the location and address of the client that suffers the worst

latency (Line 7). There are standard APIs such as the one in Android, getLastKnownLo-

cation that allows to get the last location [104]. That location is used to perform a lookup

for nearby MDCs (Line 8). We then identify the server within the identified MDCs that

provide the best performance. This step is carried out in parallel across all the identified

MDCs (Loop starting at Line 9). The client measures the latency to the local manager lmm

of each nearby MDC and if it is within the acceptable application response time threshold

φp, then we select that MDC and fetch the corresponding list of servers (Line 12).

For each such server, we predict the performance interference and estimate the exe-

cution time of the application p were it to execute on that host (Line 16), and update the

estimated execution time of existing applications J on that host (Loop starting at Line 17).

We then calculate the cost according to Equation III.8 if the constraints defined in Equa-

tion III.9 can be met (Line 25). The minimum cost server is identified for each MDC

(Line 26). Finally the minimum cost server is selected across all identified MDCs (Line 27)

and the application is migrated and clients are redirected to the migrated application. Due

to the distributed nature of our framework, the algorithm can be solved in O(Hm ∗ Jh) for

each application p.

III.5 Experimental Validation

We now present results of evaluating INDICES in the context of a latency senstive

application use case.
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III.5.1 Experimental Setup

Table 10 illustrates the hardware platforms and their counts used in our experiments.

The CDC uses Openstack cloud OS version 12.0.2 where the guests receive their own pub-

lic IP addresses. The MDC servers are managed directly by libvirt virtualization APIs

and the guests communicate via port forwarding on the host. Each machine has Ubuntu

14.04.03 64-bit OS, QEMU-KVM hypervisor version 2.3.0 and libvirt version 1.2.16.

Guests are configured with 2 GB memory, 10 GB disk, Ubuntu 14.04.03 64-bit OS and

either 1 or 2 VCPUs. Since we are not concerned with VM migration within a CDC, we do

not depict the CDC heterogeneity.

We use PARSEC and Splash-2 benchmarks [28] to generate the training data. As de-

scribed in section III.4.2, to preclude profiling every new application on all the hardware,

we need some training data. PARSEC targets Chip-Multiprocessors composing virtualized

data centers, and provides a rich set of applications with different instruction mix, cache

and memory utilization, needed for stressing different system subcomponents. We selected

20 tests from the benchmarks for data generation and validation. Due to lack of access

to servers in different geographical regions, we used the network emulation tool, netem,

and hierarchy token bucket based traffic control, tc-htb, for emulating the desired network

latencies and bandwidth among the client, CDC and different MDCs.

III.5.2 Application Use Case

We use an image processing application to validate the efficacy of our framework. The

application performs feature detection, which is a critical and expensive part of any of the

computer vision problem such as object detection, facial recognition [60] etc. We use the

well-known Scale Invariant Feature Transform (SIFT) [111] to find the scale and rotation

independent features. The client-side interface of the application continuously streams

frames from a video or a web camera at a fixed rate of a frame per 200 milliseconds. The

video resolution is 640x360 pixels and average frame size is 56 KB. The server comprises a
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Python-based application that receives frames over a TCP socket, processes it, and responds

with the identified features along with the processing time. The client expects to receive

a response within this duration, implying that 200 ms is the deadline for the application.

Although our use case considers the performance for a single client connected to the cloud-

hosted application, it can easily be extended to multiple clients residing in a similar latency

region.

When the image processing application is submitted for hosting in our cloud, we ex-

ecute it on different hardware platforms in isolation to find its base execution times. For

hardware platforms A,B,C,D defined in Table 10, the base execution times, eeta, were

measured to be 86, 91, 146, 157 ms, respectively. Table 9 displays the emulated ping la-

tency ela from this client to CDC or different MDCs in the same region as the client. The

table also lists their server composition, and the measured 95th percentile network latency

while sending TCP/IP and HTTP post requests of 56 KB size and receiving a response of

size less than 1 KB. The expected duration for which the client needs to perform the image

processing, eeda, was set as 1 hour and the SLO was set to 95%.

Table 9: CDC and MDC set up for use case (Section III.5.2)

Conf Distance Ping Latency
(±20%) ms

TCP Latency
(ms)

HTTP Latency
(ms) Servers

1 1 hop <1 2 6 1C + 1D
2 2 hops 5 14 28 1A + 2D
3 Multi hops 20 54 96 1B + 2D
4 Multi hops 30 76 142 1A + 3D
5 Central 50 127 220 1D

III.5.3 Evaluating the Performance Estimation Model

We first benchmarked our use case application on hardware platform D in order to

develop its performance estimators. The threshold to discern applications with similar
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interference performance profile, as described in Section III.4.2.1, was set to 10% error.

However, as illustrated in Figure 10, none of the existing applications met the criteria.

Thus, we decided not to use any of the existing estimators for the use case application

and benchmarked the application on all hardware configurations to develop its estimators.

Figure 10 confirms that the estimation errors were high for all the hardware types requiring

us to develop its estimators. We also found that the mean estimation error for our use case

application to be less than 4% on all the platforms with low standard deviations as depicted

in Figure 11. We can also account for this estimation error in our response time constraint

(Equation III.2) for stricter SLO adherence.
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Figure 10: Estimation of SIFT Profile Similarity with Parsec Benchmark

III.5.4 Evaluating the Server Selection Algorithm

We compare our server selection algorithm results against two approaches: server se-

lection algorithms based on minimum number of hops and least loaded server (among
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Figure 11: SIFT Application Performance Estimation Error

reachable MDCs). From Table 9 we observe that the minimum hop is 1. There are 2

servers in the minimum hop MDC 1 with hardware configuration types C and D. We create

interference load on both the servers but ensured that the total load on the server does not

exceed its capacity in terms of memory and vCPUs to eliminate unrealistic performance

deteriorations. For the least-loaded server algorithm, we considered the server with least

existing allocated resources, i.e. containing only a single VM. We did not consider a server

with no existing load as it results in acquiring a new server and thus causes additional cost

to the service provider. We found the server of hardware type D with MDC configuration

4 to be least loaded.

Applying SLO from Equation III.2, INDICES found 2 servers of type A and D from

MDC 2 and one server of type B from MDC 3 to be suitable for which we plot their

response times for eeda of one hour. Figure 12 displays the comparison of each of the

suitable servers found by INDICES against the least loaded server. We observe that in

this scenario, the least loaded server had 100% SLO violation because of network latency.

However, the servers found by INDICES met their deadline 100%, 99.38% and 98.94%,

respectively, which was well over the target SLO of 95%. Also, the minimum hop servers
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met the deadline only 66.64% and 60.64% of times due to performance interference shown

in Figure 13.
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Applying Algorithm 3 further, INDICES found the server of type B from MDC 3 to be

most suitable since our objective is to select the minimum cost server to the service provider

if it can meet the SLO. Thus, it preferred a server which already had an application that was

going to run longer and had better bandwidth from the CDC server for migration. Figure 14

compares 3 migration scenarios (a) an overlay with the software stack already present on

the target server and the bandwidth is 10 Mbps, (b) same as previous but with bandwidth

1 Mbps, (c) overlay is not present on the target server and the compressed file of size 938

MB has to transferred over 10 Mbps bandwidth. In all the scenarios, the application overlay

and configuration files have to be transferred and the application has to be initialized. We

observe that the server selection takes ≈ 1 sec, however, the migration and initialization

takes 32s, 56s and 190s respectively for a, b and c scenarios. Thus, the overlay based

image transfer should be the preferred methodology wherever applicable.
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III.6 Related Work

In this section we compare and contrast our work with related work along three di-

mensions: network latency-based server selection, performance interference-based server

selection and performance-aware edge computing. Unlike our work, our survey has found

that existing works seldom consider all dimensions holistically.
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III.6.1 Network Latency-based Server Selection

DONAR [172] addresses the global replica selection problem using a decentralized,

selection algorithm where the underlying protocol solves an optimization problem that

takes into account client performance and server load. CloudGPS [53] is a server selec-

tion scheme that considers network performance, inter-domain transit traffic and server

workload for decision making. This work also reduces the network distance measurement

costs. Dealer [70] targets geo-distributed, multi-tier and interactive applications to meet

their stringent deadline constraints by monitoring individual component replicas and their

communication latencies, and selects the combination that provides the best performance.

Kwon et al. [96] applied network latency profiling and redundancy for cloud server selec-

tion while suggesting using cloudlets. We contend that these efforts consider simplistic

models of server workload and their impact on performance, and do not cater to edge re-

source management.

III.6.2 Performance Interference-aware Server Selection

Paragon [49] identified the sources of interference that impact application performance

and developed micro benchmarks for heterogeneous hardware. The system benchmarks

applications and classifies them to find collocation patterns for scheduling. SMiTe [188]

designed rulers for estimating sensitivity and degree of contention between applications

when they are collocated. Bubble-Flux [180] assures QoS for latency-sensitive appli-

cations by dynamic interference profiling of shared hardware resources and collocating

latency-sensitive applications with batch applications. These works, however, do not apply

to virtualized data centers where the hypervisor places its own overhead on the resources

and impacts performance. Moreover, our framework requires virtualized environments to

support migration of applications on heterogeneous platforms.

DeepDive [129] first identifies an abnormal behavior using a warning system and em-

ploys an interference analyzer by cloning the target VM and running synthetic benchmarks.

72



Such an approach can be a costly runtime operation. Our prior work [35] designed a perfor-

mance interference-aware resource management framework that benchmarks applications

residing in virtual machines and applies a neural network-based regression mechanism that

estimates a server’s performance interference level. However, hardware heterogeneity and

per application performance were not considered.

Heracles [110] mitigates performance interference issues for latency-sensitive applica-

tions by partitioning different shared resources. However, partitioning for resources, such

as memory bandwidth is still not available, and moreover, cache partitioning is only avail-

able on newer hardware which cannot be applied to existing hardware.

III.6.3 Performance-aware Edge Computing

Zhou et al. [189] described a multi attribute decision analysis algorithm to offload tasks

amongst mobile ad-hoc network, cloudlet and public cloud. Their work performs cost

estimation considering execution time, power consumption, bandwidth and channel con-

junction level which is utilized by the decision making algorithm. The approach utilizes

ThinkAir [94] for offloading the tasks. However, they target only Java-based tasks and the

solution is not catered to latency-sensitive applications such as those targeted by us.

Fesehaye et al. [58] described a design to select between cloudlets and central cloud

server for interactive mobile cloud applications based on the number of hops, mobility and

latency. SEGUE [186] is an edge cloud migration decision system that applies state-based

Markov Decision Process (MDP) model incorporating network and server states. Both the

approaches have not been evaluated on real systems and the results are only simulation-

based.

SmartRank. [153] is a tool for offloading facial recognition from mobiles to cloudlets,

and the scheduling is performed based on the round trip time and CPU utilization. In our

approach, we optimize the cost to the cloud provider while maintaining the end user SLOs.
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MobiQoR [102] is an optimization framework that trade-offs quality of result with re-

sponse time and energy efficiency on mobile platforms. The approach provides significant

improvement over the existing strategies, however, the solution is entirely edge centric and

does not focus on offloading tasks to cloud/fog which we do in INDICES.

III.7 Concluding Remarks

This chapter presents an approach for dynamic cloud resource management that ex-

ploits the available edge/fog resources in the form of micro data centers, which are used

to migrate cloud-hosted applications closer to the clients so that their response times are

improved. In doing so, our algorithm ensures that existing edge-deployed services are not

unduly impacted in terms of their performance nor are the operational and management

costs for the cloud provider overly affected. These objectives are met using an online

optimization problem, which is solved using a two-level cooperative and online process

between system-level artifacts we have developed and deployed at both the micro data cen-

ters and centralized cloud data center. Our experimental results evaluating our framework

called INDICES support our claims.

This work has opened up many new challenges and directions, which forms our future

work. These insights are presented below:

• Lack of benchmarks: There is a general lack of open source and effective bench-

marking suites that researchers can use to conduct edge/fog computing studies.

• Collecting metrics under hardware heterogeneity: The plethora of deloyed hard-

ware configurations with different architectures and versions makes it hard to collect

various performance metrics. Modern architectures are making it easier to collect

more finer grained performance metrics, however, much more research is needed in

identifying effective approaches to control the hardware and derive the best perfor-

mance out of them.
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• Workload consolidation and migration across MDCs: In the current work once

an application is migrated to a MDC, it will complete its operation until termination.

Our future work will consider dynamic server consolidation across MDCs and CDCs.

• Reconciling application state: In current work we have assumed that once the ap-

plication state is transferred to the MDC, there is no additional state that accumulates

at the CDC. However, for a broader set of applications, not all application state may

be transferrable to the MDC and may have to be reconciled periodically with the

CDC, which gives rise to interesting consistency versus availability tradeoffs.

• Distributed user base: In current work we have assumed that all distributed users of

an interactive applications are located in close proximity to each other. However, for

applications such as online games, this assumption may not hold for which additional

research will be necessary.

• Energy savings and revenue generation: In current work we did not discuss rev-

enue issues stemming from the use of edge resources. Moreover, energy savings is

only indirectly referred to through our experimental results. Addressing these limi-

tations forms dimensions of our future work.

• Shared micro data centers: In current work we have assumed that a MDC is ex-

clusively controlled by a CDC provider. In future it is likely that MDC providers

may lease their resources to multiple different CDCs. Additional research is needed

to address situations where MDCs are shared including those that address security

and isolation guarantees. Also, we need to ensure that the deployed code is free of

vulnerabilities [182].

All scripts, source code, and experimental results for INDICES are available for down-

load from https://github.com/shekharshank/indices.
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CHAPTER IV

URMILA: UBIQUITOUS RESOURCE MANAGEMENT FOR INTERFERENCE
AND LATENCY-AWARE SERVICES

IV.1 Motivation

The fog/edge computing paradigm [144] has evolved in recent years as a means to

significantly alleviate the unpredictable and long round-trip latencies experienced by in-

teractions between latency-sensitive cloud-based services and their clients over wide area

networks. Yet, several issues that arise in cloud computing remain unresolved in fog/edge

computing while new problems arise. For instance, hardware heterogeneity and perfor-

mance interference [35, 49, 116, 129], which stems from resource sharing on multi-tenant

hosts thereby degrading service performance, are issues that are even harder to resolve for

fog/edge computing.

Mobility of the clients of latency-sensitive applications brings its own challenges. Con-

sider the use cases of human, bike or vehicle to infrastructure communication commonly

found in mobility assistance/optimization projects. In these scenarios, a user can move

through regions with varying received wireless signal strength and intermittent connec-

tivity. Frequent migration of service-related tasks and their data between the cloud and

fog/edge can have an adverse impact on the overall user experience and lead to violations

of service level objectives (SLOs). Finally, from the perspective of the service provider,

there is a larger cost involved in running and maintaining the servers across the cloud-edge

spectrum, which needs to be minimized. Thus, we need an approach that takes a holistic

view of the edge, fog and cloud resources and provides a solution that not only performs an

initial selection of appropriate fog/edge resources that can satisfy latency guarantees while

minimizing the cost to the provider but also ensures that SLOs are not violated through-

out the lifetime of the service which includes mobility of its users. This assurance must

76



be provided while minimizing energy consumption of the users’ mobile devices as well

as minimizing cost to the cloud provider. There is increasing interest in addressing these

problems as evidenced by recent research efforts [86, 148, 149, 156, 168]. However, these

solutions do not holistically solve all the dimensions of the problems that we have outlined,

namely, (a) initial server selection for application deployment from the cloud to the fog, (b)

minimizing co-hosted application interference, and (c) minimizing battery consumption on

edge devices.

To that end, we present URMILA (Ubiquitous Resource Management for Interference

and Latency-Aware services), which is a middleware solution to manage the cloud, fog

and edge resource spectrum and to ensure that SLO violations are minimized for latency-

sensitive applications, particularly those that are utilized in mobile environments. Specifi-

cally, we make the following contributions:

• We provide a wireless signal strength estimation mechanism to a priori estimate

the energy consumption and network latency in mobile environment, which aids in

resource selection for mobile users.

• We formulate an optimization problem that minimizes the cost to the cloud provider

and energy consumption on mobile devices while adhering to SLO requirements.

• We propose a server selection algorithm that accounts for performance interference

due to co-location of services on multi-tenant servers and performs NUMA-aware

performance prediction in cloud/fog environment. We also deliver a runtime control

algorithm for task execution that ensures SLOs are met in real time.

• We evaluate our solution in realistic environments using two types of client applica-

tions.

The rest of this chapter is organized as the following. Section IV.2 discusses the ap-

plication and the system models; Section IV.3 formulates the optimization problem and
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describes the challenges we address; Section IV.4 explains the system architecture and the

solutions for the problem; Section IV.5 provides empirical validations of our work; Sec-

tion IV.6 provides a discussion of the work alluding to future work; Section IV.7 describes

related work comparing it to URMILA; and finally Section IV.8 provides the concluding

remarks.

IV.2 System Model and Assumptions

We formally present the different aspects of our system model and assumptions we

made in this chapter including a motivational use case that fits this model.

IV.2.1 Application Model and Motivational Use Case

We target latency-sensitive services that are interactive or streaming in nature, such as

augmented reality, online gaming, navigational applications and cognitive assistance. Indi-

vidual tasks of these services can run on both mobile devices and on cloud-hosted servers

that cater to the Software-as-a-Service (SaaS) or Platform-as-a-Service (PaaS) model. Users

of these services are assumed to be mobile within a region that has a high density of wire-

less access points (WAPs), such as a university campus or wireless hotspots owned by in-

ternet service providers that can host fog resources. As a motivational use case we consider

a real-time object detection cognitive assistance application targeted towards the visually

impaired. Advances in wearable devices and computer vision algorithms have enabled cog-

nitive assistance and augmented reality applications to be realized. Examples of such work

include Microsoft and PivotHead’s SeeingAI [4] and Gabriel [144] that leverages Google

Glass and cloudlets. However, either because these solutions are still not available to the

users or use discontinued technologies such as Google Glass, we have developed our own

applications for the experimental purposes.

To that end, we developed two applications. First is an Android application interoper-

ating with a Sony SmartEyeGlass that captures video frames as the user moves in a region
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and provides audio feedback after processing the frame. The second is a Python application

running on Linux-based board devices such as MinnowBoard with a web camera. We use

MobileNet [76] and Inception V3 [160] real-time object detection algorithms from Tensor-

flow for image processing. The application’s execution is considered to be streaming in

nature having multiple independent time steps of approximately equal length. Each step

provides a complete cycle of service to the user, e.g., a cycle in the cognitive assistance

application involves capturing a video frame on the mobile device, sending it to the image

processing unit for processing, and responding to the user.

Since the user needs feedback in real-time, we have tight deadlines with predefined

SLOs that need to be guaranteed. Moreover, since the image processing is a compute and

memory intensive application, it consumes the already scarce battery resources on a mobile

device. To address this second issue, although cyberforaging enables a mobile application

to be offloaded from the edge device to a fog/cloud node where it gets deployed and pro-

cessed [18], this process itself is energy consuming and is platform dependent because of

application executable gets transferred. Hence, in this work we take an approach where one

version of the application is deployed in containerized form at the cloud/fog node and an-

other instance runs on the client device. This also helps in fault tolerance and guaranteeing

SLOs.

At each time step, the application can execute either locally on the mobile device or

remotely in the fog or cloud. If it executes locally, there is no network delay, but the execu-

tion time and power consumed by the device is high. On the other hand, if the application

executes remotely, the mobile device’s power consumption is low, but the network latency

becomes non-negligible, which will depend on the location of the user and his/her prox-

imity to the fog node where the application is deployed. The timing requirements of the

application, resource scarcity and trade-offs in local/remote execution impose certain SLOs

and energy costs for the application and service hosting costs for the provider, which we

capture in our model that is described next.
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For each user (or application1), u, let φu denote the user-specific bound on the accept-

able response time in each service cycle, which also defines the length of a time step. For

our consideration, the total response time experienced by the user at any time step ` can be

expressed as:

ttotal(u, `) = tprocess(u)+ texecute(u, `)+ tnetwork(u, `) (IV.1)

where tprocess(u) denotes the required local pre/post-processing time of the application

(which is fixed and independent of the execution mode and time step), texecute(u, `) de-

notes the actual execution time for the service at step ` (which depends on whether the

execution is on-device or remote), and tnetwork(u, `) denotes the network latency for step `

(only if remote execution is involved).

The goal is to meet the SLO for the user, i.e., ttotal(u, `)≤ φu, while minimizing the total

cost (which includes both the server deployment cost and the user energy cost as formulated

in Section IV.3). Note that the SLO needs to be guaranteed for each time step ` in the user’s

anticipated duration of application usage. Since we consider user mobility, this duration is

typically from the start to the end of the user’s trip. Nonetheless, there is nothing to prevent

us from applying the model even in the stationary state or after the user has reached his/her

destination.

Let tlocal(u) denote the execution time when application u is run locally, which is fixed

regardless of the time step and no network latency will be incurred in this case. Ad-

ditionally, we assume that the SLO can always be satisfied with local executions, i.e.,

tprocess(u) + tlocal(u) ≤ φu for all u and `. This could be achieved by a lightweight mo-

bile version of the application, such as MobileNet for real time object detection on the

mobile device, which is less compute-intensive and time-consuming, thereby ensuring the

SLO albeit with a low detection accuracy.

1In this work, we assume that the considered applications are all single-user applications and that each
user runs only one such application. Hence, we will use the terms “user” and “application” interchangeably.
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IV.2.2 Architectural Model

We now describe the architectural model in order to assure the SLOs for the applications

modeled in Section IV.2.1 while minimizing the energy consumption of the mobile device

and the cost to the service provider.

The architectural model shown in Figure 15 that we consider in this work consists

of wireless access points (WAPs) that leverage fog resources, which comprise compute

servers. The mobile devices have standard 2.4 GHz WiFi adapters to connect to the WAPs

and they implement well-established mechanisms to hand-off from one WAP to another.

We assume that mobile clients are not using cellular network for the application’s data

transmission needs due to higher monetory cost for cellular services as well as higher en-

ergy consumption for cellular over wireless networks [51, 67, 79].

Edge Device

Micro Data Center 
m1

Micro Data Center 
mk

Local 
Manager (lm)

Wireless Access 
Point apn

Link to Global Manager gm 
at Centralized Data Center

Local 
Manager (lm)

Figure 15: Architectural Model
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In our model, the applications and the fog resources are managed by a centralized au-

thority known as the global manager (gm) hosted at a centralized data center (CDC). We

denote the set AP = {ap1,ap2, . . . ,apn} of n WAPs with a subset of them also hosting fog

resources in the form of micro data centers (MDCs) or cloudlets. Such capabilities could

be offered by college campuses. We assume that the gm owns or has exclusive lease to

a set M = {m1,m2, . . . ,mk} of k MDCs. Note that M is a subset of AP since only some

WAPs have an associated MDC. Each MDC mi ∈M contains a set Si = {si,1,si,2, . . . ,si,hi}

of hi compute servers (possibly heterogeneous) that are connected to their MDC’s associ-

ated WAP api. From a traditional cloud computing perspective, since an application can

be deployed and executed on the CDC, we model the CDC as a special MDC that is also

contained in the set M, and correspondingly, the set AP contains the access point that hosts

the CDC as well.

The network latency between api and any server si,h ∈ Si in mi is assumed to be negli-

gible, i.e., tapi,si,h ≈ 0, as they are connected via fast local area network (LAN). Different

WAPs are connected to each other over a wide area network (WAN) and may incur signifi-

cant latency. Let tapi,ap j denote the round trip latency between api and ap j, and this latency

can vary depending on the distance, connection type and number of hops between the two

WAPs.

In this architecture, if a mobile user is connected to a nearby WAP, say api, which

also has an MDC mi that hosts the user’s application on one of its servers, then there is

no additional access point involved, hence the latency between access points, i.e., tapi,api =

0. However, if the application is deployed on another MDC, say m j, then the round trip

latency tapi,ap j > 0 can be significant since the request/response will be forwarded from

the connected access point api to the access point ap j associated MDC server hosting

the application. Moreover, due to mobility of the user, the user could at times have no

connection to any access point (e.g., out of range). In this case, we assume the presence
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of a virtual access point ap0 to which the user is connected and define tap0,api = ∞ for any

api ∈ AP. Obviously, the application will have to run locally to avoid SLO violations.

In addition to the round trip latency, the selection of MDC and server to deploy the ap-

plication can also significantly impact the application execution time, since the MDCs can

have heterogeneous configurations and each server can host multiple virtualized services,

which do not have perfect isolation and hence could interfere with each other’s perfor-

mance [35, 49, 116, 129]. Each MDC mi, also contains a local manager lmi which is re-

sponsible for maintaining a database of applications it can host, their network latencies for

the typical load, and server type and load-specific application execution time models. Note

that there could be a varying number of co-located applications and hence a varying load

on each server over time but we assume that individual application’s workload does not

experience significant variation throughout its lifetime, which is a reasonable assumption

for many interactive applications, such as processing image frames with constant size.

IV.2.3 User Mobility Model

Since our focus is on assuring SLOs for mobile users by intelligently executing service

tasks either locally or on fog resources, it is important to estimate user mobility patterns

with reasonable accuracy. The observed latencies depend heavily on the route taken by the

user for a given configuration of WAPs in a region.

Estimating mobility patterns can broadly be classified into two categories: 1) Proba-

bilistic; and 2) Deterministic. The probabilistic approach uses data driven AI techniques [54,

128, 171] to calculate the most probable route that a user would take at a given time

of the day. However, this approach can be substantially data intensive and also lack

generality. The second approach relies on user’s input and a navigation service such

as Open Street Maps (http://www.openstreetmap.org), Here APIs (https:

//developer.here.com/) and the one used in our current implementation, Google

Maps APIs (https://cloud.google.com/maps-platform/) to determine a fixed
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route for a given pair of start and end locations. URMILA uses the deterministic approach

while we assume a constant velocity model, i.e., the user moves at a constant speed through-

out the route.

Despite knowing the route, estimating latencies along the route is challenging due to

dynamic nature of the WiFi channels and changing traffic patterns throughout the day.

URMILA employs a data driven model that maps every route point on the path to expected

latency to be observed at that point. One of the salient features of this estimation model is

its adaptability, i.e., the model is refined continuously in accordance to the actual observed

latencies. Latency estimation is described in detail in Section IV.4.

For our mobility model, we divide the travel duration for each user u into a sequence

I(u) = {1(u),2(u), . . . ,L(u)} of time steps that cover the user’s path. The length of each

time step ` ∈ I(u) is the same and sufficiently small so that the user is considered to be

constantly and stably connected to a particular WAP ap(u, `) ∈ AP
⋃
{ap0} (including the

virtual access point). Moreover, the round trip latency tu,ap(u,`) between the user and this

access point can be estimated based on the user’s position, channel utilization, and number

of active users connected to that access point [158].

IV.2.4 Request Flow Summary

We now summarize the runtime interactions using our cognitive assistance use case.

The client-side application is assumed to be aware of the gm and communicates with it

to provide the start time, source and destination for the trip, as well as the route the user

is going to take. Based on this information, and the a priori knowledge of the application

behavior and its load information communicated by the lmi, the gm decides a suitable server

in an MDC for the application, informs the client application about the server location and

deploys the application on the selected MDC server. Using this deployment information

and the network condition at that instant, at each time step the client application decides
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whether to process the request locally or remoted. The process continues till the user

reaches the destination and stops using the service.

IV.3 Problem Formulation

The problem we solve in this chapter is to determine for each user as to which cloud or

fog server should the user’s application be deployed on and which execution mode (local

or remote) should be invoked at each step of its execution in a way that will assure the

SLO for the user and also minimize the overall cost that includes both the deployment cost

for the service provider and the energy cost on the user’s mobile device. To formalize

this optimization problem, we define two binary variables that indicate the decisions for

application deployment and execution mode selection, respectively:

xu,si,h =


1 if user u is deployed on server si,h

0 otherwise

yu,si,h,` =


1 if user u executes on server si,h at step `

0 otherwise

Using these two variables and our system model, we now express the total response time

of an application and the total cost, and then present the complete formulation of the opti-

mization problem.

IV.3.1 Total Response Time

Recall from Equation (IV.1) that the total response time for a user u at a time step `

consists of three parts, and among them the pre/post-processing time tprocess(u) is fixed. To

express the execution time, let tremote(u,si,h, `) denote user u’s execution time if it is run
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remotely on server si,h at time step `. Note that, due to the hardware heterogeneity and

co-location of multiple applications on the server which can result in performance interfer-

ence [116, 180, 187], this execution time will depend on the set of existing applications

that are running on the server at the same time. This property is known as sensitivity

[95, 116, 176, 188]. Similarly, the execution times for these users may in turn be affected

by the application execution of user u were it to execute on this server – a property known

as pressure [95, 116, 176, 188]. Techniques to estimate tremote(u,si,h, `) appear in Sec-

tion IV.4.1.3.

For the network latency, let tnetwork(u,si,h, `) denote the total latency incurred by running

the application remotely on server si,h at time step `. We can express it as:

tnetwork(u,si,h, `) = tu,ap(u,`)+ tap(u,`),api + tapi,si,h (IV.2)

In particular, the total includes the latency from the user to the connected access point

tu,ap(u,`), which we refer to as the last-hop latency; the latency from the connected access

point to the serving access point tap(u,`),api , which we refer to as the WAN latency; and the

latency from the serving access point to the server that deploys the user’s application tapi,si,h ,

which we refer to as the server latency. Among these, the server latency is negligible, and

the first two depend on the user’s location at time step `. Latency estimation is discussed

in Section IV.4.1.2.

Now, the total response time of user u at time step ` can be expressed as follows:

ttotal(u, `) = tprocess(u)+
(

1−∑
i,h

yu,si,h,`

)
tlocal(u)

+∑
i,h

yu,si,h,`

(
tremote(u,si,h, `)+ tnetwork(u,si,h, `)

)
(IV.3)

In the above expression, the first line includes the constant pre/post-processing time as well
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as the execution time when the application runs locally, and the second line includes the

execution time when it is run remotely as well as the incurred total network latency.

IV.3.2 Total Cost

The total cost consists of two parts: the server deployment cost and the user energy cost.

On the server side, a monetary allocation cost is involved. In addition, running a server

incurs operational costs, such as need for power and cooling. Thus, the provider must use

as few server-seconds as possible and hence the deployment cost depends on the duration

for which a server remains on. For a server si,h, let U(si,h) denote the set of existing users

whose applications are deployed on the server, and define Lmax(si,h) to be the maximum

duration for which these existing applications will run, i.e., Lmax(si,h) = maxv∈U(si,h)L(v).

The cost for deploying a new application u on server si,h is proportional to the extra duration

for which the server has to remain on and can be expressed as:

Tdeploy(u,si,h) = max
(
0,L(u)−Lmax(si,h)

)
(IV.4)

In addition to the operational cost, deploying a service on an MDC server requires trans-

ferring its state over the backhaul network from the application repository in the CDC to

the MDC. The time to transfer the state of an application u to a server si,h can be expressed

as:

Ttrans f er(u,si,h) =
stateu

bi
+ ciu,si,h (IV.5)

where stateu is the size of application u’s state, bi is the backhaul bandwidth from CDC to

MDC mi, and ciu,si,h is the initialization time of the application before it can start processing

requests on the MDC server. Hence, the earliest time step at which the application can be

executed remotely on the server is:

`′(u,si,h) = 1(u)+
⌈

Ttrans f er(u,si,h)

φu

⌉
(IV.6)
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On the user side, recall that executing the application locally incurs higher power con-

sumption than executing it remotely. Hence, the cost for user u can be measured in terms of

the total number of time steps when the application is being run locally, which is directly

proportional to the additional energy expended by the mobile device had the application

been run remotely throughout the user’s travel. The number of local time steps by deploy-

ing application u on server si,h can be expressed as:

Tuser(u,si,h) = min
(
`′(u,si,h),L(u)

)
−1(u)

+
L(u)

∑
`=`′(u,si,h)

(
1− yu,si,h,`

)
(IV.7)

To combine the costs from different sources above, we define αi,h and βi,h to be the unit-

time costs of powering on the server si,h and transferring the state to server si,h, respectively.

Both these values depend on the server and its corresponding MDC. In addition, we define

κu to be the per-step energy cost of local execution for user u (relative to remote executions),

and its value depends on the user’s application and mobile device. Thus, for a given solution

that specifies the application deployment (i.e., xu,si,h) and its execution mode at each time

step (i.e., yu,si,h,`), the total cost can be expressed as:

C(u) = ∑
i,h

xu,si,h

(
αi,h ·Tdeploy(u,si,h)

+βi,h ·Ttrans f er(u,si,h)

+κu ·Tuser(u,si,h)
)

(IV.8)

IV.3.3 Optimization Problem

Given the expressions for total response time (Equation (IV.3)) and total cost (Equation

(IV.8)), the optimization problem needs to decide, for each new user or application u, where

to deploy the application and which execution mode to run the application in order to
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minimize the total cost subject to the response time constraints. Let V denote the set of

all existing applications at the time of deploying application u, i.e., V = ∑i,hU(si,h). The

problem can then be formulated as:

minimize C(u)

subject to ttotal(u, `)≤ φu, ∀` (IV.9)

ttotal(v, `)≤ φv, ∀`,v ∈V (IV.10)

xu,si,h,yu,si,h,` ∈ {0,1}, ∀si,h, ` (IV.11)

∑i,h xu,si,h ≤ 1 (IV.12)

yu,si,h,` ≤ xu,si,h, ∀si,h, ` (IV.13)

yu,si,h,` = 0, ∀si,h, ` < `′(u,si,h) (IV.14)

In particular, Constraints (IV.9) and (IV.10) require meeting the SLOs for user u as well as

for all existing users at all times. Constraint (IV.11) requires the decision variables to be

binary. Constraint (IV.12) requires the application to be deployed on at most one server.

We enforce this constraint because there is a high cost in transferring the application state

from the CDC to an MDC server, initializing and running it. Note that an application need

not be deployed on any server, in which case it will be executed locally throughout the

user’s travel duration. Constraint (IV.13) allows the application to run remotely only on the

server it is deployed at each step and Constraint (IV.14) restricts the remote executions to

start only after the application state has been transferred.

IV.4 Design and Implementation

We now describe our URMILA solution to solve the optimization problem formulated

in Section IV.3.3 focusing on its deployment and runtime phase responsibilities.

For the considered problem, the client initially connects to the global manager (gm)

and informs it about the application being accessed as well as the route information. The
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service then gets initialized on the client device and the gm. This section describes the

initial deployment phase (Section IV.4.1), which is triggered by the gm, and the runtime

phase (Section IV.4.2), which occurs predominantly on the client device.

IV.4.1 Deployment Phase

The initial deployment phase consists of three components, Route Calculation, Latency

Estimation and Fog Node Selection, connected in sequence as shown in Figure 16. These

stages are repeated when new users/jobs are added to the system. The first component

calculates the route taken by the user, the second provides quantitative estimates about

the observed latency along the route and the third determines the fog node for application

deployment by solving the optimization problem defined in Section IV.3.3. These compo-

nents are functional in nature and are discussed next.

Latency
Estimation

Route
Calculation

Fog Node
Selection

Service
 Deployment

Deployment EngineRequest
<Src, Dest>

Figure 16: Components in Initial Deployment

IV.4.1.1 Route Calculation

This component is responsible for determining the user’s mobility pattern based on the

deterministic methodology described in Section IV.2.3. We leverage Google Maps APIs for

finding the shortest route between the user’s specified start and destination locations. This

component takes a tuple comprising the start and destination GPS coordinates as input, and

produces a list of GPS coordinates for the various steps along the route. The raw list of
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route points returned by the navigation service are re-sampled as per a constant velocity

model (1.4 meters/sec) with an interval equal to the response time deadline enforced by the

SLO.

IV.4.1.2 Latency Estimation

This component gives a quantitative estimate about the latency tnetwork(u,si,h, `) ob-

served by user u at any step ` ∈ I(u) along the route for any given server si,h. As shown in

Equation (IV.2), this latency is the sum of the last-hop latency, WAN latency, and server la-

tency (which is negligible). The rest of this subsection describes how the first two latencies

are estimated when the application is deployed in MDC mi.

Last-hop latency tu,ap(u,`): A number of factors affect the last-hop latency, but predom-

inantly channel utilization, number of active users, received signal strength, as identified

in [158]. In URMILA, initially, we assume that channel utilization and number of active

users are within bounds and thus does not impact latency significantly. Later, as the routes

get profiled, URMILA maintains a database that stores network latency for different co-

ordinates and time of the day. Whenever a request arrives for known route segments, the

latency estimator can lookup this database.

The other key component for network connectivity and latency is received signal strength.

Beyond a threshold (-67 for streaming applications) of received signal strength, network la-

tency becomes unreliable and connection should not be used [158]. Thus, we need to find

the signal strength, and it is obtained using Equation (IV.15), where p̂ (resp. p̂0) is the

mean received power at a distance d (resp. d0) from the access point, and γ is the path loss

exponent.

p̂(d) = p̂0(d0)−10γ log
d
d0

(IV.15)
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Among these parameters, p̂0 and d0 depend on the access point and are known a priori

for typical access points. The path loss exponent γ depends on the environment, and its

typical values for free space, urban area, sub urban area and indoor (line of sight) are 2, 2.7

to 3.5, 3 to 5 and 1.6 to 1.8 respectively [137]. We obtain an estimate of the exponent, γ̂ ,

using the equation IV.16 as described in [114], where Pi is the receiving power at distance

di, P0 is the received power at reference distance and N are the number of observations.

γ̂ =−1
N

∑
i=1

(Pi[dBm]−P0[dBm]) log10 di

10(log10 di)2 (IV.16)

The last-hop latency also depends on the access point selection and switching policy

employed by the mobile device. There are many policies for access point selection [41, 45,

87, 126, 177]. In URMILA, we make access point selection based upon the received signal

strength, i.e., the client device will select an access point with the highest signal strength

and sticks to the same access point till the signal strength drops to some threshold. Thus,

using this policy, the calculated route, and the access points data, the latency estimator is

able to calculate the last-hop latency for each step of the route.

WAN latency tap(u,`),api: The WAN latency between two access points depends upon the

link capacity connecting the nodes and the number of hops between them. In URMILA, we

use another database to keep track of the latencies between different access points. Based

on this data and the estimated last-hop latency described previously, a map of the total

network latency can now be generated for every step along a user’s route.

IV.4.1.3 Fog Node Selection

The objective of the deployment phase is to select a server from all servers in the system

to deploy the application such that the SLOs are met, the energy consumptions on the client

devices are minimized, and the lowest cost to the service provider is incurred. There are

two approaches to server selection. One approach could keep deploying/undeploying the
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application at a selected server as the user moves from the coverage of one MDC to another.

This will provide lower latencies when the user is at the access point that hosts an MDC.

However, there is a high cost involved in transferring the image from CDC to MDC and

initializing it. Moreover, if there is a deviation from the ideal user behavior i.e., moving at

variable speed, we will have a even higher cost for new server selection and deployment

based on current conditions.

Thus, URMILA performs a one time initial deployment on a single cloud/fog server,

and reserves the resource for the entire trip duration plus a margin to account for the devi-

ation from ideal behavior. For the server selection, in addition to having accurate estimates

of latency, we also need to have an accurate estimate for the remote execution time of an

application when deployed on a particular server. Therefore, we need to model the appli-

cation behavior and measure the server load. For this we need a distributed performance

monitoring framework, which not only collects metrics at the system level but also at the

micro-architectural level as it is required to quantify the performance interference.

To accomplish this, we leverage the INDICES [149] performance metric collection

and interference modeling framework. However, the INDICES framework has a few lim-

itations. In particular, it was designed for virtual machines (VMs). In this work, in or-

der to have lower initialization cost compared to VMs [150], we rely on Docker contain-

ers. Hence, as a part of URMIL, we integrated INDICES while extending the framework

for interference-aware Docker container deployment. In addition, modern hardwares are

equipped with non uniform memory access (NUMA) architecture which forces the perfor-

mance estimation and scheduling techniques to consider memory locality. Different ap-

plications have different levels of performance sensitivity on NUMA architectures [136].

Thus, we need a mechanism that is able to benchmark applications on different NUMA

nodes and predict their performance and schedule them accordingly. Moreover, recent ad-

vancement in Cache Monitoring Technology (CMT) [125] provides further insights about

system resource consumption, such as memory bandwidth and last-level cache utilization,
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which can be leveraged for better performance estimation. We account for all of these

factors in URMILA.

Performance
Monitoring

Performance
Model Learning

(Offline)

Performance 
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Network Latency 
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Algorithm 
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Figure 17: Fog Node Selection Process

We now describe the different components of the server selection process as illustrated

in Figure 17.

Offline Stage: In the offline stage, we develop a performance model for each applica-

tion. Such a model depends on two factors. The first factor is the server architecture and

configuration, which is a leading cause of performance variability [49]. The second factor

is the application’s sensitivity in the presence of co-located applications and its pressure

on those applications [95, 116, 176, 188], which exist because there is no perfect isolation

in shared multi-tenant environments. Although hypervisors or virtual machine monitors

allocate a separate virtual CPU, memory and network space for each virtual machine (VM)

or container, there still exist a number of interference sources [116, 180, 187], e.g., shared

last-level cache, interconnect network, disk and memory bandwidth.

To obtain a performance interference model, we first benchmark the execution time

tisolation(u,w) of each application u on a particular hardware type w in isolation. Then, we

execute the application with different co-located workload patterns and learn its impact gu
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on the system-level and micro-architectural metrics as follows:

Xnew
w = gu(Xcur

w ) (IV.17)

where Xcur
w and Xnew

w denote the vectors of the selected metrics before and after running

application u on hardware w, respectively. Lastly, we learn the performance deterioration

fu(Xw) (compared to isolated performance) for application u under any metric vector Xw on

hardware w, which allows us to predict its remote execution time under the same condition

as follows:

tremote(u,w) = tisolation(u,w) · fu(Xw) (IV.18)

We apply supervised machine learning based on Gradient Tree Boosting curve fitting [56]

to learn both functions gu and fu. This stage also involves feature selection, correlation

analysis and regression technique selection among other steps, , but we do not describe

them and refer to the INDICES framework [149] for more details.

Note that Equations (IV.17) and (IV.18) can be applied together to model both sensitiv-

ity and pressure for application deployment on each server in order to accurately estimate

remote execution times.

The use of Linux container-based deployment allows us to reduce the state transfer cost

(i.e., Ttrans f er(u,si,h) in Equation (IV.5)). In case of VM-based deployment, the CPU re-

sources are assigned as virtual CPUs (vCPUs), which share the physical cores. For Docker

containers, virtual-to-physical core mapping does not exist and there are two mechanisms

available for resource isolation. We can either specify the share of CPU cores available to

the containers or we can pin the containers to dedicated CPU cores. In our resource allo-

cation policy, we opt for the latter as it provides better resource isolation and results in less

performance interference, although interference still exists due to the non-partitionability

of shared resources as described before.
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When using CPU pinning, one of the key consideration is NUMA-aware scheduling.

On modern multi-chip servers, the memory is divided and configured locally for each pro-

cessor. The memory access time is lower when accessed from local NUMA node compared

to when accessed from remote NUMA node. Hence, it is desirable to model the perfor-

mance per NUMA node and schedule the Docker containers accordingly. We achieve this

by collecting the performance metrics per NUMA node and then developing sensitivity and

pressure profiles at the NUMA node level instead of at the system level. The benefit of this

approach is validated in Figure 18. We observe from the figure that CPU core pinning re-

duces the performance variability, however, if NUMA node is not accounted for, it could

lead worse performance due to data locality issues.
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Figure 18: Execution Time Comparison

Once we develop the performance models for the different applications, we distribute

them to the different MDC locations for each of the hardware type w they contain. Typ-

ically, MDCs contain 10-20 servers with just a few heterogeneous types; thus we do not

anticipate a large amount of performance model dissipation.

Online Stage: The online server selection operates in a hierarchical fashion. The global

manager gm residing at the CDC initiates the server selection process as soon as it receives

a request from the client application. It first calculates the route of the user as described
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in Section IV.4.1.1. Once it knows the route and the access points that the user will be

connected to, the gm then queries the local managers lm of each MDC, which in turn

queries each of their servers to find the expected execution time of the target application

using the performance model developed in the offline stage such that the SLOs for the

existing applications can still be met. Finally, the gm combines this information with the

latency estimates from Section IV.4.1.2 to determine the execution mode of the application

to satisfy the response time constraints at each step of the route. This allows us to estimate

the cost incurred by the user (i.e., Tuser in Equation (IV.7)).

We still need to estimate the deployment cost (i.e., Tdeploy in Equation (IV.4)) and the

transfer cost (i.e, Ttrans f er in Equation (IV.5)) to solve the optimization problem. The de-

ployment cost is based on the trip duration, which we can again obtain from the user mo-

bility as described in Section IV.4.1.1. As mentioned before, we use Docker technology

to minimize state transfer and initialization cost. The Docker container images consist of

layers. Each layer other than the last one is read only and is made of a set of differences

from the layer below it. Thus, to construct a container, different layers are combined. For

this purpose, we ensure that a base image (such as Ubuntu 16.04) is already present on the

server and only the delta layers (that dictate stateu in Equation (IV.5)) need to be transferred

for the application to be reconstructed at the fog location.

IV.4.1.4 Server Selection Algorithm

Algorithm 4 shows the pseudocode for the server selection. Besides deciding on the

server to deploy the target application, the algorithm also suggests a tentative execution-

mode plan at each step of the application execution. This execution plan will be used for

cost estimation by the global manager and is subject to dynamic adjustment at runtime as

explained in Section IV.4.2.

The algorithm first goes through each MDC and each server (Lines 2 and 3), and checks
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whether deploying the target application u will result in SLO violations for the existing ap-

plications on that server (Lines 4-13). For each existing application v, since it may have a

variable network latency and execution times depending on the user’s location and choice

of execution mode, we should ideally check for v’s SLO at each step of its execution. How-

ever, doing so may incur unnecessary overhead on the global manager since the execution-

mode plan for v is also tentative. Instead, the algorithm considers the overall SLO by using

the estimated network SLO percentile latency (90th, 95th,99th, etc.) while assuming that the

application always executes remotely. This approach provides a more robust performance

guarantee for the existing applications in case of unexpected user mobility behaviors.

Subsequently, for each feasible server, the algorithm evaluates the overall cost of de-

ploying the application on that server (Lines 14-27) and chooses the one that results in the

least cost (Lines 28-30). Note that, for each feasible server, the deployment cost and state

transfer cost are fixed, so the only variable cost to consider is the user’s energy cost, which

depends on the execution mode vector y. Hence, to minimize the overall cost, the algorithm

offloads the execution to the remote server as much as possible subject to the satisfaction

of the application’s SLO.

IV.4.2 RunTime Phase

The deployment phase outputs the network address of the fog node where the applica-

tion will be deployed and a list of execution modes as shown in Algorithm 4. This infor-

mation is relayed to the client device, which then starts forwarding the application data to

the fog node as per the execution mode list at every step. However, the execution mode list

is based on the expected values of the network latencies, and hence can be different from

the actual value.

The runtime phase minimizes the SLO violations caused due to inaccurate predictions

by employing a robust mode selection strategy that updates the decision at any step based

on feedback from previous steps. As shown in Figure 19, the Controller obtains sensor data
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Algorithm 4 Server Selection
Require: User u and its set of time steps I(u) = {1(u),2(u), . . . ,L(u)} defining the travel path; other infor-

mation regarding the networks, the servers and their loads
Ensure: Server s∗ to deploy u and a tentative execution mode vector y∗[`]∈ {0,1} for each time step `∈ I(u)

during the travel
1: Initialize Cmin← ∞, s∗← /0, y∗[`]← 0 ∀` ∈ I(u);
2: for i = 1 to k do
3: for h = 1 to hi do
4: Xcur← GetCurrentSystemMetrics(si,h);
5: Xnew← gu(Xcur);
6: U ← GetListO f Applications(si,h);
7: for each v ∈U do
8: tprocess← GetProcessingTime(v);
9: tisolation← GetIsolatedExecTime(v,si,h);

10: tremote← tisolation · fv(Xnew);
11: tSLO

network← GetPercentileLatency(v,si,h);
12: if tprocess + tremote + tSLO

network > φv then
13: skip si,h;

14: Initialize y[`]← 0 ∀` ∈ I(u);
15: tprocess← GetProcessingTime(u);
16: tisolation← GetIsolatedExecTime(u,si,h);
17: tremote← tisolation · fu(Xnew);
18: Lmax←maxv∈U L(v);
19: Tdeploy←max

(
0,L(u)−Lmax

)
;

20: Ttrans f er← stateu/bi + ciu,si,h ;
21: `′← 1(u)+

⌈
Ttrans f er/φu

⌉
;

22: for `= `′ to L(u) do
23: tSLO

network← GetPercentileLatency(u,si,h, `);
24: if tprocess + tremote + tSLO

network ≤ φu then
25: y[`]← 1 // execute remotely ;
26: Tuser← Sum(y);
27: C← αi,h ·Tdeploy +βi,h ·Ttrans f er +κu ·Tuser;
28: if C ≤Cmin then
29: Cmin←C;
30: s∗← si,h and y∗← y;

and selects appropriate mode for processing the data. The processed data is transformed

and fed back to actuators. The Controller consists of a process, Mode Selector which

is responsible for gathering sensor data, selecting appropriate mode and monitoring the

timing deadline violations.

Mode Selector is modeled using Mealy machine, Msel as shown in Figure 20. Msel con-

sists of 7 symbolic states with Idle being the initial state as shown in Figure 20. From

Idle state, the state machine transitions to SyncWithSLO state after receiving Start

event. The transition from SyncWithSLO is forced by the activation of TimeOut(t2)
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event that pushes the state machine into GatheringSensorData while emitting Get-

SensorData event. This event activates a system level process to pull data from various

sensors. If this task is not completed in t3 secs, the TimeOut(t3) event forces the state ma-

chine back to SyncWithSLO. If the task of acquiring sensor data finishes before deadline,

the state machine transitions to SelectingMode while producing EvaluateConn event.

EvaluateConn starts another asynchronous process, p, to acquire signal strength level

and check the estimated execution mode in the list. If the execution mode is remote and

signal strength is above the threshold, only then remote mode is selected at run time,

which is signaled by this asynchronous task by emitting SwitchToRemote event, that en-

ables Msel to jump to SendingData. However, in the past if for the same access point,

both the conditions were met and yet timing deadline had failed, then local mode will

be selected as long as client device is connected to the same access point. After getting

SwitchToRemote event, Mseltriggers data sending service by producing SendData event

and moves to SendingData. The state machine waits for t0 to receive the acknowl-

edgment for the transmitted data by the server. If the acknowledgment does not arrive, it

jumps to ExecutingLocal, whereas in the other case, the state machine transitions to

ExecutingRemote and waits for the final response. If the response comes within t4 secs,

state machine jumps to SyncWithSLO and waits for the next cycle. However, if the re-

sponse does not come within the deadline, an SLO violation is noted. If the asynchronous

process, p, produces SwitchToLocal or does not emit any signal within time interval t5

then Msel jumps to ExecutingLocal from SelectingMode. While transitioning to

ExecutingLocal, the state machine generates an event, ProcessDataLocal to trigger lo-

cal data processing service. If the data is not processed with in t1 secs, TimeOut(t1) forces

the state machine to move to SyncWithSLO and SLO violation is noted again. On the

other hand if t1 deadline is not violated, state machine also moves to back SyncWithSLO

and waits till the next cycle starts.
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IV.5 Experimental Validation

We evaluate URMIL to answer the following questions:

• How effective is URMIL’s execution time estimation on heterogeneous hardware

including NUMA platforms? §IV.5.2.1

• How effective is URMIL’s connectivity and network latency estimation considering

user mobility? §IV.5.2.2

• How effective is URMIL in assuring SLOs? §IV.5.2.3

• How much energy can URMIL save for mobile user? §IV.5.2.3
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• How does URMIL compare to other algorithms? §IV.5.2.3

IV.5.1 Experimental Setup

The goal of this chapter is to evaluate URMIL on real systems. However, we did not

have access to geographically distributed wireless access points that also act as micro data

centers. We overcome this limitation using two techniques.

First, we experimented over the limited area available within our lab. We created a

Wireless Access Point using OpenWRT 15.05.1 with Raspberry Pi 2B. These WAPs were

placed over different locations and operate at a channel frequency of 2.4 GHz. We then

used the Android-based client described in Section IV.2.1. The Android client includes a

Motorola Moto G4 Play phone having Qualcomm Snapdragon 410 processor with a Quad-

core CPU and 2 GB of memory. The battery capacity is 2800 mAh and Android version is

6.0.1. It acts as both sensor for capturing frames and actuator for providing detected object

as voice feedback. The device can be set to capture the video frames at variable frames

per second (fps). We capture the frames at 2 fps as this is our SLO where the user expects

an update within 500 ms if the detected object changes. The user walks at a brisk walking

speed (expected to be close to 1.4 mps) in the region with the wireless access points while

carrying the phone We apply URMIL during the duration and evaluate its performance.

Second, we emulate a large area containing 18 WAPs and 4 of which are MDCs. We

experiment with different source and destination scenarios. We apply the technique in

Section IV.4.1.2 to estimate the signal strength at different segments of the entire route.

We then use three OpenWRT-RaspberryPi routers to emulate the signal strengths over the

route by varying the transmit power of the WAPs at the handover points, i.e. where the

signal strength is exceeds or drops below the threshold of -67 dBm. We achieve this by

experimentally creating a mapping of received signal strength on the client device at the

current location and varying transmit power of the WAP (0 to 30 dBm).

For the client device, we use Minnowboard Turbot which has a Quad-Core Intel Atom

102



E3845 processor with 2GB memory. The device runs Ubuntu 16.04.3 64-bit operating sys-

tem and is connected to Creative VF0770 webcam and Panda Wireless PAU06 WiFi adapter

on the available USB ports. In this case too, we capture the frames at 2 fps with a frame size

of 224X224. In order to measure the energy consumption, we connect the Minnowboard

power adapter to Watts Up Pro power meter. We measure the energy consumption when

our application is not running and on an average the power is 3.37 Watts. We then run our

application, and measure the power every second. By considering power difference in both

the scenarios, we derive the energy consumption per step of size 500 ms.

Table 10: Server Architectures

Conf sockets/cores/
threads/ GHz

L1/L2/L3
Cache(KB)

Mem Type/
MHz/ GB

Count

A 1/4/2/2.8 32/256/8192 DDR3/1066/6 1
B 1/4/2/2.93 32/256/8192 DDR3/1333/16 2
C 1/4/2/3.40 32/256/8192 DDR3/1600/8 1
D 1/4/2/2.8 32/256/8192 DDR3/1333/6 1
E 2/6/1/2.1 64/512/5118 DDR3/1333/32 6
F 2/6/1/2.4 32/256/15360 DDR4/2400/64 1
G 2/8/1/2.1 32/256/20480 DDR4/2400/32 2
H 2/10/1/2.4 32/256/25600 DDR4/2400/64 1

For the server application, we use real time object detection algorithms MobileNet and

Inception V3. For the local mode execution, these algorithms run on the client device. The

Android device runs Tensorflow Light 1.7.1. The Linux-based client device runs Docker

and the server application is containerized. We use this model so that we can easily port

the application across the platforms and Docker provides near native performance [57]. We

use Ubuntu 16.04.3 containers with Keras 2.1.2 and Tensorflow 1.4.1.

For the deployment, we use heterogeneous hardware configurations shown in Table 10.

The servers have different number of processors, cores and threads. Configurations G,H

and I also support hyper-threads but we disabled them in our cloud. We randomly select
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from a uniform distribution of the 16 servers specified in Table 10 and assign 4 of them

to each MDC. In addition, for each server, the interference load and their profiles are se-

lected randomly such that the servers have medium to high load without any resource over-

commitment which is the usual load in data centers [21]. Since the MDCs are connected

to each other on LAN in our experimental setup, but we need WAN latencies in order to

experiment with multi-hop latencies. We experimented with http://www.speedtest.net/ on

intra-city servers for ping latencies and found 32.6 ms as the average latencies. So, we

added 32.6 ms ping latency with a 3 ms deviation between WAP using netem network

emulator on the WAP to WAP ethernet communication links.

The Docker guest application has been assigned 2 GB memory and 4 pinned cores.

For our experimentations, we use server application that listen on TCP ports for receiv-

ing the images and sending the response. Please note, our framework is independent of

communication mechanism as long as we have an accurate measure of network latency for

the size of data transferred. Thus, we could also support UDP (not reliable) and HTTP

(higher latency). The size of a typical frame in our experiment is 30 KB. For the co-located

workload that cause performance interference, we use 6 different test applications from the

Phoronix test suite (http://www.phoronix-test-suite.com/) which were either CPU, mem-

ory or disk intensive and Tensorflow prediction algorithms which represent other latency

sensitive applications.

IV.5.2 Evaluations

IV.5.2.1 Evaluating the Performance Estimation Model

In Equation (IV.3), there are three main components, tlocal(u), tremote(u,si,h) and tnetwork(u,si,h, `)

and we need accurate estimates of all three at deployment time such that we could adhere

to SLO requirements. tlocal(u) has negligible variations as long as the client device is run-

ning only the target application u which is a fair assumption for the mobile devices. For

the Linux client device the execution time for processing a 224X224 frame, the measured
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Figure 21: Performance Estimation Model Evaluations

execution time for MobileNet and Inception V3 were 434 ms mean with 8.6 ms standard

deviation and 698.6 ms mean with 12.9 ms standard deviations respectively.

For tremote(u,si,h), in addition to hardware type w, we also consider the server load. We

first measured tisolation(u,w) for each hardware type w as shown in Figure 21a. We observe

that the CPU speed, memory and cache bandwidth and use of hyper-threads instead of

physical cores play significant role among other factors in application performance. Thus,

the use of per hardware configuration performance model is a key requirement. In addition,

we developed the performance interference profile using gradient tree boosting regression

model from the enhanced version of the tool we used [149] and Figure 21b shows the
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estimation error on different hardwares, the hardware configurations E-H have NUMA-

enabled and F-H support Intel CMT. We observe that the execution time estimation error is

well within 10% and thus can be used in our response time estimations.
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Figure 22: Signal Strength and Network Latency Variations with Distances

IV.5.2.2 Evaluating Network Connectivity and Latency Estimation

Next, we evaluate URMILA’s network latency estimation module in order to calculate

tnetwork(u,si,h, `). From equation (IV.2), there are two main components to it last-hop la-

tency, tu,ap(u,`) and WAN latency, tap(u,`),api . tap(u,`),api remains stable over a duration of
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time [20, 159] sufficient for URMILA scenarios and we emulate those as described in Sec-

tion IV.5.1. Thus, we are left with tu,ap(u,`). As received signal strength is a key factor for

last hop latency, we determine γ for Equation (IV.15) for a typical access point described in

section IV.5.1 for indoor environment of our lab. We used the Android device to measure

signal strength and network latency for the used data transfer size. Figure 22a shows the

results where we found the γ to be 1.74, inline with indoor estimates as described in Sec-

tion IV.4.1.2. In Figure 22b, affirms our assertion that network latency remains constant

within a range of varying received signal strength.

Next, we measure network latency for five different routes on our selected campus area

with 18 emulated access points. We chose γ = 2 for outdoors and generated signal strengths

for the entire routes. Based on these values, we setup the WAPs such that the client device

experiences access point handovers and regions with no connectivity. Figure 23 shows the

results for different routes. The shaded areas on the plots show the regions with no network

connectivity and regions with different colors show connectivity to different WAPs. There

are gaps in latency values which indicate the client device is performing handover to the

access point. We observer from these plots that even though the mean value are low for

latencies when connected to wireless network, there are large deviations. Hence, for ensur-

ing SLOs, we need to use the required SLO percentile value from our database of network

latency on user’s route as we described in Algorithm 4.

IV.5.2.3 Evaluating URMILA’s Server Selection

In this section, we evaluate how effective is URMILA’s server selection technique in

ensuring that the SLOs are met and costs are minimized. We evaluate the system for the five

routes described above and set 4 of the 18 available access points as MDCs and assigned

servers as described in IV.5.1. We compare URMILA against different mechanisms. The

first approach is when we perform everything locally (Local). Next, we compare URMILA
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Figure 23: Observed mean, standard deviation, 95th and 99th percentile network
latencies and expected received signal strengths on different emulated routes

against two commonly used techniques, namely maximum network coverage (Max Cover-

age) and least loaded server selection (Least Loaded). As we have already measured the

efficacy of NUMA-aware deployment in figure 18, we employ NUMA-awareness in all the

experimental scenarios.

For this set of experiments, we keep the deployment (Equation IV.4) and transfer (Equa-

tion IV.5) costs constant in our Algorithm 4 for all the scenarios. We also set the required

SLO at 95th of desired response time of 500 ms (2 fps). We then optimize for energy

consumption (Equation IV.7) while meeting the constraints (Equations IV.9-IV.14). From

Figures 24 and 25 , we observe that if we run higher accuracy Inception algorithm as target
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Figure 24: Response time for different techniques on the routes.

application, Local mode always misses the deadline of 2 fps, on the other hand for lower

accuracy MobileNet always meets the deadline but wastes energy. Rest of the experiments

were all done with Inception V3. The Max Coverage algorithm performed worse than

URMILA for energy consumption and on 4 out of 5 routes for response time. For these ex-

periments Least loaded performs at par with URMILA. Please note as URMILA considers

both the server load and and network coverage, it will perform at least at par to the other

two techniques for assuring SLOs.

We now demonstrate the scenario when URMILA performs better that Least loaded. In
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Figure 25: Energy Consumption Comparison

our current experimental setup, we considered there is similar latencies between the access

points tap(u,`),api and for the last hop, tu,ap(u,`) channel utilization and connected users are

less. However, this is not usually the case. Thus, we introduce use a latency value of 100.0

ms with 10% deviation for some of the access points. In real deployments, URMILA will

be aware of this latency by WAP to WAP measurements. Thus, as depicted in Figure 26, for

Least Loaded, SLOs will be violated even for best performing server due to the ignorance

about the network communication delay. However, URMILA’s robust runtime component

is aware of the deployment plan and performs execution locally for the WAPs that cannot

meet the constraints.

Least Loaded URMILA

300
400
500
600
700

Re
sp

on
se

 T
im

e 
(m

s)

Figure 26: Response time comparison for route R5 when one of the WAP is experi-
encing larger latency
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In the above experiments, we considered that there is sufficient gap between when the

user requests the service and when she actually needs it. However, this may not be true and

we need to consider the transfer and initialization costs of Equation IV.5. We setup Docker

private registry and shaped the network bandwidth such that we could do the measurements

for image overlays being transferred of different sizes. Table 11 depicts the same.

Table 11: Transfer and Initialization Cost Measurements

Instance
Type

Size
(MB)

Duration at
10 Mbps

Duration at
1 Mbps

Cached - 13.2s 13.46s
Overlay 1 111 31.6s 127.08s
Overlay 2 440 50.26s 261.87s

IV.6 Discussion

We discuss unresolved problems and additional research opportunities in this section.

Last Hop latency: In our current approach, for un-profiled routes, we only considered

received signal strength for wireless network latency estimation. However, channel uti-

lization and connected users play a significant role in latency variations. To overcome this

potential inaccuracy, we can collect these metrics from WAPs, but this will require access

to their data. Other option is to use a predictive approach based on data collected for other

profiled routes. We plan to explore this dimension in future.

Constant speed mobility: For the user mobility, we considered constant speed mo-

bility, however, the user can deviate from the ideal route and stop in between. This will

jeopardize our initial plan. We account for this in our server allocation, but, the runtime

algorithm can further be improved to intelligently adjust the route plan based on current

dynamics.

Overhead: URMILA has cost for both client device and the service provider. The

service provider has to collectd metrics on each server. With monitoring tools that we
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used [149] this overhead is <1%. We also need to maintain a database of performance

metrics at each MDC and the gm needs to perform learning. In addition, the cost of profiling

each new application can be significant, ≈ 30 mins. However, this is a one time cost and

is required for overcoming performance interference estimation. On the client device, we

made a conscience effort to not to use GPS coordinates while the user is mobile. This is

because GPS has significant energy overhead and we did not want our application to be

limited to navigational applications. In addition, turning on wireless and handovers are

expensive. However, most mobile devices have their wireless service turned on these days,

so we do not consider it as additional cost.

Applicability: Other than the image processing applications like cognitive assistance

evaluated in this work, we could apply URMILA in cloud gaming (such as Pokemon GO),

3D modeling, graphics rendering etc. We could apply URMILA for energy efficient route

selection and navigation. For that, we can easily modify Algorithm 4 to add another loop at

line number 3 to loop through routes and find the most energy efficient route. Also, instead

of using standard wireless handover policy we could design our own policy which will be

more energy efficient.

Serverless Computing: Since we target containerized stateless applications, portable

across the resource layers, we could potentially make our solution apt for serverless com-

puting, wherein the same containers are shared by multiple users and the application scale

as the workload varies, and are highly available.

Future Direction: Apart from what we discussed, our solution can be enhanced by

controlling frame rates based on the user needs and location. We considered monolithic

applications, we could allocate services with multiple components that are deployed across

the spectrum optimally. Also, we could apply advanced energy optimization techniques

such as [170] which consider tail state energy consumption on mobile devices to further

improve our results. In future, we could address concerns related to trust, privacy, billing,

fault tolerance and workload variations.
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IV.7 Related Work

IV.7.1 Mobility-aware Resource Management

MOBaaS [86] is a mobile and bandwidth prediction service by leveraging dynamic

Bayesian network. Sousa et al. [156] applied MOBaaS to enhance the follow-me cloud

(FMC) model First, they perform mobility and bandwidth prediction with MoBaaS and

then apply multiple attribute decision algorithm to place services at a suitable mobile ser-

vice provider location However, the service needs a history of mobility pattern build by

monitoring the users.

MuSIC defines applications as location-time workflows and optimizes their quality of

service expressed as power of the mobile device, network delay and price. Nonetheless, the

technique has not been validated on an actual system as the results are from simulations.

In addition, the variations in network pattern are assumed without applying any prediction/

estimation methodology.

Luiz et al. [29] consider different classes of mobile applications and apply three schedul-

ing strategies on fog resources. Wang et al. [168] account for user mobility and provide

both offline and online solution for deploying service instances considering a look-ahead

time-window. Both the approach do not consider edge resource for optimization which we

do. ME-VoLTE [25] is an approach to offload video encoding from mobile devices to cloud

for reducing energy consumption. However, the approach does not consider latency issues

when offloading.

IV.7.2 Performance Interference and NUMA-aware Resource Optimization

There has been several works that account for performance interference during server

selection. Bubble-Flux [180] is dynamic interference measurement framework that per-

forms online QoS management for providing guarantees while maximizing server utiliza-

tion. It uses a dynamic memory bubble to profile the sensitivity and contentiousness of
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the target application by pausing other co-located applications. Freeze’nSense [85] is an-

other approach that performs a short duration freezing of interfering co-located tasks. The

advantage of an online solution is that a priori knowledge of the target application is not

required and it does not need additional hardware resources for benchmarking. However,

pausing of co-located application is not desirable and in several cases not even possible.

DeepDive [129] identifies the performance interference profile by cloning the target VM

and benchmarking it when QoS violations are encountered. This is an expensive operation

to be employed in a production data center.

Paragon is a heterogeneity and interference-aware data center scheduler applies ana-

lytical techniques to reduce the benchmarking workload. The paper identifies sources of

interferences from a number of hardware sub-systems and micro-benchmarks them for the

interference profile. SMiTe [188] considers a wide array of metrics and uses hardware per-

formance monitoring units (PMUs) for developing interference profiling. However, these

approaches do not account for virtualization based metrics that we consider. In addition,

these approaches do not account for complexities arising due to NUMA architecture.

Rao et al. [136] proposed a framework that estimates the performance of applications

running inside virtual machines on NUMA nodes. They modified the Xen hypervisor for

NUMA awareness such that threads are dynamically migrated for minimizing the uncore

penalty. We believe the frequent migration of threads is detrimental to the performance of

the whole system. Besides, the approach does not consider other shared resources such

as network and disk. The modification required for guest domain to communicate with

the scheduler may not be a feasible solution. Liu et al. [106] identify four sources of

contention on NUMA systems and presented two performance optimization strategies that

involves VM memory allocation and page fault handling. Nonetheless, the metrics used for

interference measurement do not provide precise performance degradation predictions, in

addition to the need to modify the guest OS.
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IV.8 Concluding Remarks

Although fog/edge computing have enabled low latency edge-centric applications by

eliminating the need to reach the centralized cloud, solving the performance interference

problem for fog resources is even harder than traditional cloud data centers. User mobility

amplifies the problem further since choosing the right fog device becomes critical. Exe-

cuting the applications at all times on the edge devices is not an alternative either due to

their severe battery constraints. This chapter presents URMILA which is a resource man-

agement middleware to address these issues and adaptively uses edge and fog resources

making trade-offs while satisfying SLOs for applications.
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CHAPTER V

PERFORMANCE INTERFERENCE-AWARE VERTICAL ELASTICITY FOR
CLOUD-HOSTED LATENCY-SENSITIVE APPLICATIONS

V.1 Motivation

Elastic auto-scaling is a hallmark resource management property of cloud computing

which to date has focused mostly on horizontal scaling of resources wherein applications

are designed to exploit distributed resources by scaling them across multiple servers us-

ing multiple instances of the application. However, spawning new virtual machines on-

demand for horizontal scaling requires initialization periods that can last several minutes

and the spawned instances must adhere to the cloud provider-defined instance types. This

may lead to quality of service (QoS) violations (and hence violation of service level ob-

jectives – SLOs) in applications. To avoid QoS violations and to account for workload

variations, cloud-hosted latency-sensitive applications, such as online gaming, cognitive

assistance, and online video streaming, are often assigned more horizontal resources than

they need [108]. Unfortunately, maintaining a pool of pre-spawned resources and applica-

tion instances often will waste resources.

Considering the recent and emerging advances in hardware including the ever grow-

ing capacity of servers and the advent of rack-scale computing [3], vertical elasticity has

become a promising area for dynamic scaling of applications and also a first choice for

elastic scaling before horizontal scaling is attempted [97]. Vertical elasticity is the ability

to dynamically resize applications residing in containers or virtual machines [10, 83, 157].

It not only allows fine-grained assignment of resources to the application but also enables

traditional applications that were not designed for purposes of horizontal scaling, to scale

vertically according to its changing resource demands stemming from workload changes.

Vertical elasticity for latency-sensitive applications is often realized by co-locating

116



them with batch applications such that they have some slack available to scale up or down

on-demand and the resources are not wasted because the batch applications can utilize

the remaining resources. Cloud service providers use virtual machine or container tech-

nologies to host multiple applications on a single physical server. Each latency-sensitive

application has its own configuration and dynamically allocated resources that fulfill its

application-specific demands and requirements.

Despite these trends, performance interference [35, 49] between the co-located ap-

plications is known to adversely impact QoS properties and SLOs of applications [124].

Dynamic service demands and workload profiles further amplify the challenges for cloud

service providers in (de)allocating resources on demand to satisfy SLOs while minimizing

the cost [185]. This problem becomes even harder to address for latency-sensitive, cloud-

hosted applications, which we focus on in our work. Therefore, any solution to address

these challenges necessitates an approach that accounts for the workload variability and

the performance interference due to co-location of applications.

To that end, we present a data-driven and predictive vertical auto-scaling framework

which models the runtime behavior and characteristics of the cloud infrastructure, and con-

trols the resource allocation adaptively at runtime for different classes of co-located work-

loads. Concretely, our approach uses a multi-step process where we first apply Gaussian

Processes (GP) [139]-based machine learning algorithm to learn the application workload

pattern which is used to forecast the dynamic workload. Next, we use K-Means [73] to

cluster the system level metrics that reflect different performance interference levels of co-

located workloads. Finally, we apply another GP model to learn the online performance of

the latency-sensitive application using the measured data, which in turn provides real-time

predictive analysis of the application performance. Our framework uses Docker container-

based application deployment and control infrastructure that leverages the online predictive

model in order to overcome run-time variations in workload and account for performance
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interference. We also periodically update the models in online fashion such that the dy-

namics of the target application workload and co-located applications are reflected in our

predictions. Compared to our approach, prior work including ours [36] that have used

machine learning-based models to address performance interference related resource man-

agement issues have either focused on horizontal elasticity or developed offline models

but we have not seen prior work that provides both an online predictive model and which

addresses vertical elasticity.

In summary, we make the following contributions in this chapter:

• We present an approach using K-Means clustering and Gaussian Processes-based

performance modeling framework that predicts the latency sensitive application’s

performance under varying workload and performance interference from co-located

applications.

• We describe the architecture of a resource control framework for vertical elasticity

built upon the Docker container engine and Docker Swarm cluster management plat-

form that allows resource scaling and checkpointing of applications.

• We present experimental results to validate our system.

The rest of the chapter is organized as follows: Section V.2 compares our work with

related research; Section V.3 presents details of our approach; Section V.4 presents experi-

mental evaluations; and finally Section V.5 provides concluding remarks alluding to future

work.

V.2 Related Work

We surveyed literature that focus on resource allocation strategies in cloud computing

along the dimensions of workload prediction, performance interference, and vertical elas-

ticity, all of which are key pillars of our research. We provide a sampling of prior work

along these dimensions and compare and contrast our work with them.

118



Related research based on Workload Prediction:

To model different classes of workloads and applications, the Dejavu [166] framework

computes and maps the workload signature to resource allocation decisions, and then peri-

odically clusters the workload signature using K-means algorithm storing known workload

patterns in the cache for rapid resource allocation. A proactive online model for resource

demand estimation techniques is proposed in K-scope [184] that utilizes a Kalman filter

to estimate the queuing-network model parameter in an online fashion. K-scope has been

extended for the dependable compute cloud (DC2) framework [63], which automatically

uses the learned queuing-network model to predict the system performance. Likewise,

[77, 98], propose an adaptive controller using Kalman filtering for dynamic allocation of

CPU resources based on the fluctuating workloads without any prior information. In our

prior work [141], we proposed a workload prediction model using autoregressive mov-

ing average method (ARMA). These works are based on linear models for QoS modeling;

in contrast, cloud dynamics often illustrate nonlinear characteristics and incur significant

uncertainty.

In [123], a non-linear, predictive controller is proposed to forecast workload using a

support vector machine regression model. In [157], the authors propose a proactive online

model based on monitoring application- and hypervisor-level performance metrics and a

layer performance queuing model. The parameters of the performance models are updated

online in a regular interval using resource demand estimation techniques. Ali et al. [127]

developed an autonomic prediction suite that decides the time-series prediction model (us-

ing Neural Network or Support Vector Machine) based on incoming workload pattern. In

contrast, our work uses a Gaussian Process (GP)-based model because it has relatively

small number of hyper parameters so that the learning process can be achieved efficiently

in an online fashion. Although some efforts [8, 147] use Gaussian processes to model and

predict the query or workload performance for database appliances, they do not incorpo-

rate performance interference in their model. While most of the strategies for performance

119



and resource management are rule-based and have static or dynamic threshold-based trig-

gers [10], our system uses a proactive approach using GPs to learn parameters dynamically

and perform timely resource adjustments for latency-sensitive applications.

Related research based on Vertical Elasticity:

Vertical elasticity adds more flexibility since it eliminates the overhead in booting up a

new machine while guaranteeing that the state of the application will not be lost [10]. Sev-

eral approaches are proposed to scale the CPU resources [97, 151]. Kalyvianaki et al. [83]

proposed a Kalman filter-based feedback controller to dynamically adjust the CPU alloca-

tions of multi-tier virtualized servers based on past utilization. A vertical auto-scaler [183]

is proposed to allocate CPU cores dynamically for CPU-intensive applications to meet their

SLOs in the context of varying workloads. The authors offer a linear prediction model on

top of the Xen Hypervisor to plug more CPU cores (hot-plugging) and tune virtual CPU

power to provide the vertical scaling control. Controlling of CPU shares of a container

based on the Completely Fair Scheduler is proposed in [122]. Vertical autoscaling tech-

niques based on a discrete-time feedback controller for Containerized Cloud Applications

are proposed in ELASTICDOCKER [10] that uses an approach to scale up and down both

CPU and memory of Docker container based on resource demand. However, their deci-

sion triggering approach is reactive. In contrast, we use a more efficient Gaussian-based

proactive method to trigger the scaling of resources.

Related research based on Performance Interference:

Prior research shows that model-based strategies are a promising approach which al-

low the cloud providers to predict the performance of running VMs or containers and to

make efficient optimization decisions. DeepDive [130] is proposed to identify and man-

age performance interference between co-located VMs on the same physical environment.

Q-Clouds [124] is a QoS framework which utilizes a feedback mechanism to model the

interference interaction.
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DejaVu [166] creates an interference index by comparing the estimated and actual per-

formance. Based on matching the trained profile, it then provisions resources to meet

application SLOs. Paragon [49] also classifies applications for interference and predicts

which application will probably interfere co-located application performance for hetero-

geneous hardware based on collaborative filtering techniques. Quasar [50] extends the

Paragon framework by tailoring the classification types with different workload types to

improve their model. Unlike our approach, these efforts do not prioritize latency-sensitive

applications due to interference from their co-located applications.

Stay-Away [135] framework mitigates the effects of performance interference on high

priority applications when co-located with batch applications. If QoS of the high priority

task is predicted to suffer, they throttle the batch application based on results of estimation.

Bubble-flux [180] produces interference estimation by considering co-located applications

on servers by continuously monitoring the QoS of latency-sensitive application and con-

trolling the execution of batch jobs accordingly based on profiling. Heracles [109], which

is a feedback controller, reduces performance interference by enabling the safe co-location

of latency-sensitive applications and best-effort tasks while guaranteeing the QoS for the

latency-critical application. Unlike these efforts, our GP-based model predicts the future

latency in online fashion, and tunes the parameters on each iteration.

Our prior work [36] designed a performance interference-aware resource management

framework that benchmarks the applications hosted on VMs. The server’s performance in-

terference level is then estimated using neural network-based regression techniques. How-

ever, hardware heterogeneity and every application’s performance is not considered in the

model. In another prior work [149], we benchmarked a latency-sensitive application with

co-located applications on different hardware and develop its interference profile. The

performance of the new application is predicted based on its interference profile which is

obtained using estimators of an existing application for the same hardware specifications.
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A safe co-location strategy is decided by looking up the profile, however, we did not con-

sider dynamic vertical scaling. The the current paper, we determine the vertical scaling

strategy based on our online GP prediction model.

V.3 System Design for Proactive Vertical Elasticity

This section provides details of our solution for interference-aware vertical elasticity to

support SLOs of latency-sensitive applications that are co-located with batch applications.

V.3.1 System Model

We target cloud data centers comprising multiple servers that host both latency-sensitive

and batch-processing applications. The latency-sensitive applications have higher priority

and need assurance of their SLOs while the provider also needs to ensure the remaining

resources are utilized by the co-located batch processing applications such that there is

minimal to no resource wastage. Docker is a container platform for application hosting

with a growing user base with cloud service providers providing their own Docker de-

ployment services, such as Amazon EC2 Container Service, Azure Container Service and

Google Container Engine. We target cloud platforms hosting Docker containers natively.

However, our solution can apply to any virtualized platform that allows rapid resource re-

configurability that is needed for vertical elasticity.

V.3.2 Problem Statement and Solution Approach

Cloud providers support multi tenancy by deploying applications in virtual machines

or containers in order to provide a certain level of isolation. Moreover, to assure bounded

latencies, cloud-hosted latency-sensitive applications are often assigned dedicated cores

with the use of CPU core pinning [132, 133] which is the ability to run a specific vir-

tual CPU on a specific physical core, thereby increasing cache utilization and reducing

processor switches. Despite all these strategies, multi tenancy still leads to performance
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interference causing degradation in performance for latency-sensitive applications which

can be particularly severe in the case of tail latency [101], i.e., 90th, 95th, 99th or similar

percentile latency values. This is due to the presence of non-partitionable or difficult-to-

partition resources such as caches, prefetchers, memory controllers, translation look-aside

buffers (TLBs), and disks among others. The workloads for each such resource are re-

ferred to as sources of interference (SoIs) [49]. A SoI helps in identifying the interference

that an application can tolerate for that resource before SLO violation occurs. Exacerbat-

ing the problem is the fact that different applications incur different levels of sensitivity

to co-located workloads [95, 188]. Figure 27 depicts an exemplar where the performance

of a web search application is shown deteriorating significantly because of the presence of

varying interference workload, even when they do not share the CPU cores. We observe

that the 90th percentile latency is more than 51% worse when performance interference is

present.
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Figure 27: CDF of Response Time for CloudSuite WebSearch with 6 Cores

123



Addressing these concerns warrants a solution that accounts for performance degrada-

tion due to interference and the workload variations so that SLO violations can be mini-

mized while also minimizing cost to the cloud provider. Advances in container technolo-

gies such as Docker offer promise in allowing us the control and allocation of resources

to rapidly adapt to workload variations and co-location interference. Prior efforts, such as

Heracles [109], account for performance interference while also rapidly scaling the appli-

cation for workload variations. They use feedback controllers where the best effort batch

jobs are disabled if the demand from the latency-sensitive applications increases. How-

ever, the disabled jobs are still kept in memory thereby limiting the available resources for

latency sensitive applications. To overcome this limitation, one can either checkpoint or

migrate the co-located batch applications and restore them once the demand from latency

sensitive application reduces. Solutions such as [146, 179, 181] take the checkpointing

approach. However, checkpointing and migration can take long durations, especially for

memory-intensive applications where a large amount of state needs to be saved. Moreover,

during this phase any additional resource allocation will not result in better performance.

Reactive approaches also require very high rate of performance metric collection in order

to react quickly to workload variations.

Consequently, an approach that can forecast the workload to proactively perform verti-

cal scaling while accounting for interference imposed by co-located workloads is needed.

Further, as the workload and interference level can vary dynamically, the solution should

be able to forecast the required resources in an online fashion. Hence, we propose a model-

predictive approach for vertical scaling which predicts the needed resources while account-

ing for workload variations at different levels of performance interference due to co-located

workload. We use Gaussian Processes (GPs) to model the latency variations due to varying

workloads forecasted using GPs We chose GPs over other learning techniques because they

have relatively small number of hyper parameters. So the learning process can be achieved

efficiently in online fashion. In addition, they are probabilistic models thus allowing us to
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model the uncertainty in the system while also being able to model nonlinear behavior of

the underlying system.

V.3.3 Technique for Model-based Prediction

To optimize the resource utilization while maintaining the SLO guarantees for latency-

sensitive applications, we need an accurate and online performance model of the latency-

sensitive applications. There is also a need for an online model since the latency-sensitive

application workload can vary dynamically. Moreover, the batch applications co-hosted

on the same server can vary in their amount and nature of resource utilization. Finally,

each application also incurs its own performance interference sensitivity to the co-located

workload [95, 116, 176, 188]. Thus, the core component of our framework is the model

predictor for which we have developed a per-application performance model in an online

fashion that helps to rapidly adapt to changing levels of workload and co-location patterns.

We use Gaussian Processes (GPs) to model the performance of the latency-sensitive

applications. GPs are non-parametric probabilistic models that utilize the observed data

to represent the behavior of the underlying system [139]. A function y = f (x) : x ∈ Rd

modeled by a GP can be expressed as: f (x) ∼ G P(m(x),k(x,x)) where m(x), k(x,x) is

the mean function and the covariance functions of the GP model. Typically, a zero mean

function and squared exponential (SE) covariance kernel are used for their expressiveness.

Given the training data with n data points (D = {(xi,yi)|i = 1,n}) where xi is the

training inputs and yi is the training outputs, we train the GP model to identify their

hyperparameters Θ so that they best represent the training data. In other words, we op-

timize the hyperparameters (Θ̂) of the GP model to maximize the log likelihood, i.e.,

Θ̂ = argmaxΘ log p(y|Θ,D) using conjugate gradients [113, 139] optimization algorithm.

We define the test input at which we want to predict the model output as x∗. Hence, the

predicted output of the GP model (y∗) can be achieved by evaluating the GP posterior
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distribution p(y∗|x∗,X,y) which is a conditional Gaussian distribution with a mean and a

variance evaluated by:

E[y∗|y,X,x∗] = KT
∗ β

Var[y∗|y,X,x∗] = k∗∗−kT
∗ (K+σ

2
ωI)−1k∗

(V.1)

where k∗ := k(X,x∗), k∗∗ := k(x∗,x∗), K := k(X,X) and β := (K+σ2
ωI)−1y.

In this work, we initialize the model with previously benchmarked metrics and then

re-learn the model in an online fashion based on a moving window technique whenever

new measurements are received. Since we emphasize online learning, we reduce the input

features to our model to make the learning faster. First, we reduce the application level fea-

tures using Pearson correlation [27] analysis, and filtering out features with low correlation.

Second, we cluster the system level metrics using K-Means, so that each cluster reflects a

performance interference level caused by the co-located workloads. For each cluster, we

segment its corresponding workload measurements and the container-level metrics to learn

a distinct performance model of the latency-sensitive application. The cluster-based learn-

ing is very beneficial because it allows us to estimate the performance interference level

caused by the co-located workloads. Moreover, it allows us to reduce the features dimen-

sion of the performance model (i.e., model input size) for fast online learning, since we

learn independent models for each cluster using their corresponding workload measure-

ments and container-level metrics as opposite to learning one model with all measurements

including host-level measurements as inputs.

Figure 28 depicts the online performance model learning steps from our framework.

The dashed lines indicate the learning steps and the solid lines map to prediction steps.

In the first phase, we start by clustering the system-level metrics to estimate performance

interference levels and use the associated workload measurements and the container-level

metrics to learn a performance model, i.e., latency model using a distinct GP model for

each estimated performance interference level. Furthermore, we learn a time-series GP
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model of the application workload, i.e., online users, so we can forecast the workload for

the next time-step.
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Figure 28: Performance Model Learning and Prediction Steps

After learning the model, in the prediction phase, we use the current measurement as the

model input to predict the application performance in terms of latency. Note that once we

learn the initial model, the performance prediction happens first and the learned model is

updated next. This ensures that performance prediction does not get delayed due to model

update. We start with estimating the current performance interference level by classifying

the current host-level metrics. In this step, the clusters’ centroid that we obtain in the model

learning step are used as the classifier centroid. Then, we use the corresponding GP model

to predict the latency of the system. In addition, we forecast the application workload using

the workload time-series model and pass it as one of the inputs to predict the latency using

the GP model associated with the estimated performance interference level as described

above.
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V.3.4 System Architecture and Implementation
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Figure 29: System Architecture

Figure 29 shows the system architecture. Our implementation comprises compute

servers which host multiple containers or virtual machines. For our experiments, we used

Docker as the virtualization mechanism, however, our architecture is generic enough to

also include KVM or Xen-based hypervisors. The latency-sensitive application containers

have dedicated cores assigned using CPU core pinning. The batch applications share the

cores according to a defined overbooking ratio [33, 162]. The CPU and memory allocation

are controlled using the Cgroups features supported by Docker.

The performance of the entire system is monitored using a resource usage and perfor-

mance interference statistics collection framework that we have developed called FECBench [149].

The measurements include both macro and micro architectural metrics, such as CPU uti-

lization, memory utilization, network I/O, disk I/O, context switches, page faults, cache

utilization, retired instructions per second (IPS), memory bandwidth, scheduler wait time

and scheduler I/O wait time. Additionally, each latency-sensitive application reports its

observed workload and response time to the Application Performance Monitor residing on

the framework’s Manager that is deployed on a separate virtual machine. Figure 29 illus-

trates the monitoring agent from FECBench residing on each of the host which periodically

reports metrics to the Manager.
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The system performance metrics are aggregated with the latency-sensitive applica-

tion workload and latency data, and passed on to the model predictor (described in Sec-

tion V.3.3). The model predictor predicts the performance of the latency-sensitive appli-

cation and forwards the information to a decision engine. The decision engine then de-

cides the action which can be add/remove cores to the latency-sensitive application and

remove/add cores or checkpoint/restore for batch applications. Our control action is based

on the fact that adding more cores not only provides more resources to process additional

workload, but also alleviates performance interference due to larger share of resources such

as LLC and memory bandwidth [109]. The batch applications are checkpointed once they

reach the overbooking ratio and the latency-sensitive applications need more resources.

On the other hand, they are restored when it is found that restoring will still ensure that

the latency-sensitive applications get their required resources and the overbooking ratio

will not be exceeded. We leveraged Checkpoint/Restore In Userspace (CRIU) feature for

Docker to achieve checkpoint and restore of the containers.

V.4 Experimental Validation

We present an experimental validation of our framework.

V.4.1 Evaluation Use Case

We consider a deployment scenario where latency-sensitive applications are co-located

with batch applications whose workloads arrive in accordance to a distribution, emulated

using real-world traces. Some of the popular cloud hosted latency-sensitive applications

include web servers, search engines, media streaming among others.1 For our system

under test (SUT), i.e., the latency-sensitive application, we chose the CloudSuite Web-

Search [131] benchmark since it fits our use case of varying workloads with low response

1Latency-sensitive does not imply hard real-time applications but rather applications that have soft bounds
on response times beyond which users will find the application behavior unacceptable. For instance, users
expect a web search to complete within a specific amount of time.
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time needs. The default version of this benchmark, however, can log only the runtime

statistics to a file. Since we needed the runtime statistics to be published to a remote loca-

tion to make adaptive resource allocation decisions, we modified the benchmark to publish

the results using RESTful APIs for our data collection and decision making.

Since the CloudSuite WebSearch benchmark also does not provide workloads for ex-

perimentation, to emulate a real web search engine workload, we used the workload pattern

for Wikimedia projects from the Wikipedia traces [173]. Specifically, we collected the page

view statistics for the main page in English language for the month of September 2017 and

scaled the first two weeks of data to our experimental duration. We used the scaled first

week data for model training and the next week data for testing.

We used two batch applications to co-locate with the SUT: the first one is the Stream

benchmark from the Phoronix test suite (http://www.phoronix-test-suite.

com/), which is a cache and memory-intensive application, and the second one is a memory-

intensive custom Java application.

V.4.2 Experimental Setup

Our experimental setup consists of a compute server with the configuration as defined

in Table 12. The server has Linux kernel 4.4.0-98, Docker version 17.05.0-CE and CRIU

version 2.6 for checkpointing and restoring Linux containers.

Table 12: Hardware & Software Specification of Compute Server

Processor 2.1 GHz Opteron
Number of CPU cores 12

Memory 32 GB
Disk Space 500 GB

Operating System Ubuntu 16.04.3 64-bit

We used the containerized version v3.0 of the Cloudsuite Web Search Benchmark as our

SUT. The SUT is deployed on a server where it receives varying workloads over a period
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of time. The SUT is initially assigned 2 cores and 12 GB of memory. We vertically scale

the number of assigned cores based on the output from the decision engine. The number

of cores can vary from 2 to 10. One container is used to emulate the clients by varying

their count as per the defined workload. This container also collects response times and

throughput metrics. We deployed the client container on a separate host such that it does

not have any effect on the experimental results similar to production deployment where the

clients are located outside of the system. We aggregated and scaled the traces so that the

number of users to the SUT change every 40 seconds.

The CloudSuite Web Search Benchmark relies on Faban [2] for time varying work-

load generation and statistics collection. We modified the Faban core used by CloudSuite

benchmark so that it reports runtime metrics to the manager VM for model prediction and

decision making. The metrics provided by CloudSuite include the throughput of the ap-

plication, average latency which we use for the decision making and the 90th percentile

latency which we consider as the tail latency used for measuring the efficacy of our system.

Another key component of our experimentation is the FECBench framework that collects

the application performance and system utilization metrics at an interval of 5 seconds and

reports them to the Manager.

The manager VM is located on a separate machine which is responsible for each host’s

resource allocation decision making. The decision making and model update occurs every

15 sec which was chosen in order to avoid too frequent resource allocation modifications.

Before deploying the system for online model prediction, we first perform offline analysis

of the measured data set for the first week of the scaled Wikipedia traces. We applied the

Silhouette [140] technique that determined two cluster centroids for performance interfer-

ence level, which we used as the number of clusters in our online K-Means learning. For

the online learning, we used 350 points as the K-Means window size and 200 points as the

GP window size. We used the second week scaled data set for the experimental validation.

For the batch applications, the custom Java application is initially assigned 2 shared
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cores and 4GB of memory while the Stream test application is assigned 2 shared cores

and 2.5 GB memory. We used Grid computing workload traces [80] to vary the batch

application workload, which arrives according to a distribution to the same server as the

SUT.

Our objective is to ensure that the latency-sensitive application adheres to the defined

SLO guarantees while also allowing the batch applications to utilize the remaining resource

slack. In order to achieve this, we need to appropriately assign resources to the latency-

sensitive application and allocate the remaining resources to batch applications. While

doing this, as the workload on the SUT increases, the resources allocated to batch appli-

cation need to be reduced. However, this reduction in resources for batch applications

will increase the overbooking ratio (i.e., degree of contention for a specified number of

resources). In our experiments, when the overbooking ratio reaches 2, the batch applica-

tions must be checkpointed in a way that does not incur the limitations of prior work where

memory continues to be held by these batch applications. Later, when the workload on the

latency-sensitive application reduces, the checkpointed applications are restored.

V.4.3 Experimental Results

The standard practice for cloud data center resource management involves threshold-

based resource allocation. Approaches such as the ones defined in [9, 75] are reactive

in nature and usually have thresholds based on request rate, response time or resource

utilization. Thus, we compare our model predictive framework against two threshold-based

reactive approaches. In the first approach, we set the threshold based on CPU utilization of

the SUT container. The objective of the approach is to keep the CPU utilization within a

target range.

We chose CPU utilization range of 50-70%, named as ReactiveUtililization. We make

this choice as we do not want the server to be either under-utilized or become saturated.

Whenever the utilization grows/reduces from the target range, we add or remove a core,
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respectively. In addition, if there is a sudden gain or drop of more than 20% utilization,

we add or remove two cores. In the second approach, we put the threshold on average

latency, which was chosen over tail latency because the latter characterizes transient and

higher fluctuations, which is not needed for control actions. The target range was set to

70-100 ms. We also had higher bounds for adding/removing two cores of 50/150 ms. The

configuration is called ReactiveLatency. We used the same bound as ReactiveLatency for our

proactive approach experiments, which is called Proactive.

Figure 30 compares the response time of the three scenarios listed above. We observe

that the tail latency (90 percentile) of our proactive approach is lowest at 270 ms. We also

found the average latency to be 118, 102, 88 ms for ReactiveUtililization, ReactiveLatency and

Proactive, respectively. Figure 31 compares the average resource utilization for the dura-

tion of the experiment. Since our approach is a trade-off between resource utilization and

the obtained latency, we observe that our proactive approach has higher resource utiliza-

tion of 4.96 cores compared to 4.01 and 4.28 for the ReactiveUtililization and ReactiveLatency
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approaches, respectively. Thus, compared to the two approaches, at the cost of 19.15% and

13.7% extra resources, we achieve 39.46% and 31.29% better tail latency, respectively.

We also measured the efficacy of our model prediction. Figure 32 shows the model

prediction results. We achieved a mean absolute percent error of 7.56%. For interference

level, we found 2 clusters for our workload. The Co-located Workload Clusters part of

Figure 32 displays different regions of co-located workloads. The other two subfigures

compare our prediction against observed latency and request rate.
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Figure 32: Model Prediction
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V.5 Concluding Remarks

Dynamic vertical elasticity solutions are increasingly becoming attractive in cloud plat-

forms as a first choice before employing horizontal elasticity strategies. To that end, this

chapter presented a data-driven, machine learning techniques based on Gaussian Processes

to build a runtime predictive model of the performance of the system, which can adapt itself

to the variability in workload changes. This model is then used to make runtime decisions

in terms of vertically scaling resources such that performance interference is minimized

and QoS properties of latency-sensitive applications are met. Empirical validation of our

technology on a representative latency-sensitive application reveals up to 39.46% lower tail

latency than reactive approaches.

Our work provided us with the following insights and unresolved problems, which form

the dimensions for our future work.

• Our work lacks finer-grained resource control such as managing CPU shares and

memory, last-level cache and network allocation. To that end we are exploring the

use of modern hardware advances, such as Intel’s cache allocation technology and

software-defined networking approaches to control network resource allocations.

• In this chapter, we viewed latency-sensitive applications to be designed as a mono-

lithic application that can be containerized. However, with applications increasingly

being designed as distributed interacting microservices, it becomes necessary to pro-

vide a distributed and coordinated vertical elasticity solutions.

• The thresholds for reactive approaches were chosen based on available literature.

More experimentation is needed to compare against different thresholds. Likewise,

additional experimentation is needed for different kinds of latency-sensitive applica-

tions.

• Presently, each of the clustered GP model executes inside the same VM. For future,

we will perform distributed machine learning to reduce our online learning duration.
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• Our future work will consider combining vertical scaling with horizontal scaling

trading off along the different dimensions based on application needs and incom-

ing workloads. Our future work will also include different categories of workloads,

which can be both predictable and unpredictable.

The source code and experimental apparatus is available in open source at https:

//github.com/doc-vu/verticalelasticity.
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CHAPTER VI

CONCLUDING REMARKS

The research conducted for this doctoral dissertation stemmed from having to satisfy

the QoS needs of cloud data center-hosted applications. Specifically, we targeted latency-

sensitive applications that reside on virtualized and multi-tenant servers but face perfor-

mance interference issues due to resource contention from co-located applications and

higher network latencies experienced by users due to the multiple network hops needed

to reach cloud-based services. To that end, fog/edge resources offer a promising alternative

to address the longer network latency issues. Specifically, we targeted latency-sensitive

applications such as cognitive assistance, patient monitoring systems and online collabo-

rations which are suitable for fog deployment because they incur strain on resources such

as battery if deployed solely on the mobile edge device, or incur unacceptable network

latency-imposed delays when deployed solely on the centralized cloud.

However, we found that the same cloud data center issues of performance interference

extend themselves to fog and edge resources. In this context, we identified several re-

source management challenges across the edge-cloud spectrum and classified them under

three broad categories, namely, application imposed, cloud provider related and measure-

ment related challenges. To address these challenges, this dissertation developed several

algorithms for dynamic resource management across the cloud-edge spectrum, which are

codified within a common framework called Dynamic Data Driven Cloud and Edge Sys-

tems (D3CES). The framework is composed of several components each of which provides

a systematic and scientific approach to address different dimensions of challenges prevalent

in the cloud-edge spectrum.
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VI.1 Summary of Research Contributions

This doctoral research provided four major contributions while addressing latency re-

lated challenges in the realm of cloud-edge computing. We summarize them as follows:

• SIMaaS: Many seemingly simple questions that individual users face in their daily

lives may actually require substantial number of computing resources to identify the

right answers. For example, a user may want to determine the right thermostat set-

tings for different rooms of a house based on a tolerance range such that the energy

consumption and costs can be maximally reduced while still offering comfortable

temperatures in the house. Such answers can be determined through simulations.

However, some simulation models as in this example are stochastic, which require

the execution of a large number of simulation tasks and aggregation of results to

ascertain if the outcomes lie within specified confidence intervals. Some other simu-

lation models, such as the study of traffic conditions using simulations may need mul-

tiple instances to be executed for a number of different parameters. Cloud computing

has opened up new avenues for individuals and organizations with limited resources

to obtain answers to problems that hitherto required expensive and computationally-

intensive resources. We presented SIMaaS, which is a cloud-based Simulation-as-a-

Service to address these challenges. We demonstrate how lightweight solutions using

Linux containers (e.g., Docker) are better suited to support such services instead of

heavyweight hypervisor-based solutions, which are shown to incur substantial over-

head in provisioning virtual machines on-demand. Empirical results validating our

claims are presented in the context of two case studies.

• INDICES: An increasing number of interactive applications and services, such as

online gaming and cognitive assistance, are being hosted in the cloud because of its

elastic properties and cost benefits. Despite these benefits, the longer and often un-

predictable end-to-end network latencies between the end user and the cloud can be
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detrimental to the response time requirements of the applications. Although tech-

nology enablers, such as Cloudlets or Micro Data Centers (MDCs), are increasingly

being leveraged by cloud infrastructure providers to address the network latency con-

cerns, existing efforts in re-provisioning services from the cloud to the MDCs seldom

focus on ensuring that the performance properties of the migrated services are met.

We presented INDICES that makes three contributions to address these limitations:

(a) determining when to reprovision, (b) identifying the appropriate MDC and its

host from among multiple choices such that the performance considerations of the

applications are met, and (c) ensuring that the cloud service provider continues to

meet customer service level objectives while keeping its operational and energy costs

low. Empirical results validating the claims are presented using a setup comprising a

cloud data center and multiple MDCs composed of heterogeneous hardware.

• URMILA: The fog/edge computing paradigm is increasingly being adopted for cloud-

hosted latency-sensitive services in order to reduce the uncertainties and network

delays incurred while transferring messages between client device and cloud over

wide area networks. Emerging research in this realm has focused mostly on offload-

ing computation from the edge devices to the fog and cloud, but there is a dearth

of solutions that take into account performance interference due to the co-location

of multiple applications on the same fog server. The problem becomes even more

challenging when the user’s mobility is considered. We presented, URMILA, a mid-

dleware solution that takes a holistic view of the edge, fog and cloud resources with

an aim of reducing the Service Level Objective (SLO) violations, while minimizing

the cost to the cloud provider as well as energy consumption of the client’s mobile

device. The solution not only performs initial resource selection, but also assures

SLOs at run-time for the mobile users. We evaluate URMILA’s capabilities in the

context of a real-world use case.
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• Vertical Elasticity: Elastic auto-scaling in cloud platforms has primarily used hor-

izontal scaling by assigning application instances to distributed resources. Owing

to rapid advances in hardware, cloud providers are now seeking vertical elasticity

before attempting horizontal scaling to provide elastic auto-scaling for applications.

Vertical elasticity solutions must, however, be cognizant of performance interference

that stems from multi-tenant collocated applications since interference significantly

impacts application quality-of-service (QoS) properties, such as latency. The prob-

lem becomes more pronounced for latency-sensitive applications that demand strict

QoS properties. Further exacerbating the problem are variations in workloads, which

make it hard to determine the right kinds of timely resource adaptations for latency-

sensitive applications. To address these challenges and overcome limitations in ex-

isting offline approaches, we present an online, data-driven approach which utilizes

Gaussian Processes-based machine learning techniques to build runtime predictive

models of the performance of the system under different levels of interference. The

predictive online models are then used in dynamically adapting to the workload vari-

ability by vertically auto-scaling co-located applications such that performance inter-

ference is minimized and QoS properties of latency-sensitive applications are met.

VI.2 List of Publications

I have published a total of 22 peer-reviewed articles to date and two articles are in
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