
RARE CODING VARIANTS in GWAS identified loci with BREAST CANCER RISK 

By 

 

Mi-Ryung Han 

 

Dissertation 

Submitted to the Faculty of the Graduate School of Vanderbilt University 

in partial fulfillment of the requirements  for the degree of 

 

DOCTOR OF PHILOSOPHY 

in 

Epidemiology 

May, 2016 

Nashville, Tennessee 

Approved: 

Professor Jirong Long 

Professor Wei Zheng 

Professor Todd L. Edwards 

Professor Bingshan Li 

 

 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ETD - Electronic Theses & Dissertations

https://core.ac.uk/display/216055842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 ii 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2016 by Mi-Ryung Han 

All Rights Reserved  

 

 

 

 

 

 

 

 

 

 



 iii 

 

 

 

 

 

 

 

 

To my parents, Hyung-Suk Han and Suk-Hee Yu, for being a great example, giving me 

unconditional support and love, and unwavering faith to pursue my dreams 

To my sister Shin-Young Han for believing in me and supporting me through this journey.  

and 

To God, for everything  



 iv 

ACKNOWLEDGEMENTS 

 

I would like to thank my committee chair and mentor, Dr. Jirong Long, and the members 

of my committee, Dr. Wei Zheng, Dr. Todd L. Edwards, and Dr. Bingshan Li for their invaluable 

guidance, and thoughtful comments and suggestions throughout this process. I am especially 

grateful to Dr. Long and Dr. Zheng for their support of my research at Vanderbilt University and 

their professional guidance and teaching about both scientific research and life in general. I also 

want to thank Dr. Edwards and Dr. Li for sharing their knowledge, providing guidance and 

helping me to learn in-depth scientific methods. I also thank the members of our lab, especially 

Dr. Guo, Dr. Wen and Jing He who taught me a great deal about scientific research and provided 

thoughtful feedback throughout this work. 

I would like to thank study participants, staff and funding agencies involved in current 

project, without whom this dissertation would not have been possible. I also want to 

acknowledge my father, Hyung-Suk Han, and my mother, Suk-Hee Yu for always supporting 

and believing in me. Without their love and encouragement, none of my accomplishments would 

be possible. Thank you both for giving me strength to pursue my dreams. My sister, Shin-Young 

Han deserves my wholehearted thanks as well.   

Thank you God for the light I have been able to see and for being there for me all the time.



 v 

TABLE OF CONTENTS 

 

Page 

 
DEDICATION ............................................................................................................................... iii 

ACKNOWLEDGEMENTS .......................................................................................................... IV 

LIST OF TABLES ....................................................................................................................... VII 

LIST OF FIGURES ...................................................................................................................... IX 

LIST OF ABBREVIATIONS ........................................................................................................ X 

Chapter 

I. INTRODUCTION AND SPECIFIC AIMS ................................................................................ 1 

II. BACKGROUND ........................................................................................................................ 5 

 A. Current Status of Genetic Research on Breast Cancer ....................................................... 5 

 B. Breast Cancer Susceptibility: The Role of Rare Variants .................................................. 7 

 B1. Missing Heritability.................................................................................................. 7 
 B2. Rare Variants Associated with Breast Cancer and Other Diseases .......................... 8 

 B3. eQTL analysis ........................................................................................................ 10 

 

III. RESEARCH GAP ................................................................................................................... 12 

IV. METHODS ............................................................................................................................. 14 

          A. Methods for Specific Aim 1: To identify potential functional genes underlying the    

          associations in breast cancer GWAS loci ........................................................................... 14 

 A1. GWAS loci for breast cancer ................................................................................. 15 

 A2. eQTL analysis ........................................................................................................ 15 

           B. Methods for Specific Aim 2: To investigate rare variants associated with breast cancer 

           risk...................................................................................................................................... 18 

 B1. Sub-Aim 1: Functional prediction of rare coding variants ..................................... 18 
 B2. Sub-Aim 2: Investigating associations of rare-variants with breast cancer ........... 21 

 

V. FINDINGS FOR SPECIFIC AIM 1: IDENTIFY POTENTIAL FUNCTIONAL GENES IN 

THE PREVIOUSLY REPORTED GWAS LOCI ASSOCIATED WITH BREAST CANCER 

RISK. ............................................................................................................................................ 39 

  A. Results ............................................................................................................................. 39 



 vi 

  B. Discussion ....................................................................................................................... 43 

 

VI. FINDINGS FOR SPECIFIC AIM 2: INVESTIGATE RARE VARIANTS ASSOCIATED 

WITH BREAST CANCER RISK. ............................................................................................... 45 

          A. Sub-Aim 1: Functional prediction of rare coding variants neighboring common GWAS 

          loci....................................................................................................................................... 45 
 A1. Results .................................................................................................................... 45 

 A2. Discussion .............................................................................................................. 47 

          B. Sub-Aim 2: Associations between rare-variants and breast cancer risk in Chinese, 

          European American, and African American populations. .................................................. 49 
 B1. Results .................................................................................................................... 49 
 B2. Discussion .............................................................................................................. 78 

 

VII. SYNOPSIS AND FUTURE DIRECTIONS ......................................................................... 82 

   A. Conclusions .................................................................................................................... 82 

   B. Considerations ................................................................................................................ 83 
   C. Future directions ............................................................................................................. 84 

 

APPENDIX ................................................................................................................................... 86 

          Appendix 1 .......................................................................................................................... 86 

REFERENCES ............................................................................................................................. 90 

 

 

 



 vii 

LIST OF TABLES 

 

Table                                                                                                                                          Page  

1. Participants included in current study ....................................................................................... 26 

2. Number of genes identified from eQTL analysis using three datasets ..................................... 42 

3. Summary of annotation from ANNOVAR and LOFTEE (Number of Nonsynonymous, 

Synonymous, LOF variants) in 1Mb flanking the 109 GWAS loci
a
 ............................................ 46 

4. Number of LOF variants per individual in 1Mb flanking the 109 GWAS loci ........................ 47 

 

5. Associations of breast cancer with SNPs with MAF<0.01 and P-value<0.01 among Asian 

population (SBCGS)
a
 .................................................................................................................... 51 

6. Associations of breast cancer with SNPs with MAF<0.01 and P-value<0.01 among European 

American population (NBHS)
a
 ..................................................................................................... 52 

7. Associations of breast cancer with SNPs with MAF<0.01 and P-value<0.01 among African 

American population (NBHS/SCCS)
a
 .......................................................................................... 54 

8. Associations of breast cancer with SNPs with MAF<0.01 and P-value<0.01 among European 

American population (BioVU)
a
 .................................................................................................... 55 

9. Meta-analysis result: Associations of breast cancer with SNPs with MAF<0.01 and meta P-

value<0.01
a
 ................................................................................................................................... 59 

10-1. LOF Variants: Gene-based analysis result among Asian population (MAF≤0.01)
a
 ........... 63 

10-2. LOF Variants: Gene-based analysis result among Asian population (MAF≤0.005)
a
 ......... 63 

11-1. Nonsynonymous Variants: Gene-based analysis result among Asian population 

(MAF≤0.01)
a
 ................................................................................................................................. 63 

11-2. Nonsynonymous Variants: Gene-based analysis result among Asian population 

(MAF≤0.005)
a
 ............................................................................................................................... 64 

12-1. LOF Variants: Gene-based analysis result among European American population (NBHS) 

(MAF≤0.01)
a
 ................................................................................................................................. 64 

12-2. LOF Variants: Gene-based analysis result among European American  population (NBHS) 

(MAF≤0.005)
a
 ............................................................................................................................... 65 



 viii 

13-1. Nonsynonymous Variants: Gene-based analysis result among European American 

population
 
(NBHS) (MAF≤0.01)

a
 ................................................................................................. 65 

13-2. Nonsynonymous Variants: Gene-based analysis result among European American 

population
 
(NBHS) (MAF≤0.005)

a
 ............................................................................................... 66 

14. LOF Variants: Gene-based analysis result among African American population (MAF≤0.01)
a

....................................................................................................................................................... 67 

15-1. Nonsynonymous Variants: Gene-based analysis result among African American population 

(MAF≤0.01)
a
 ................................................................................................................................. 67 

15-2. Nonsynonymous Variants: Gene-based analysis result among African American population 

(MAF≤0.005)
a
 ............................................................................................................................... 68 

16-1. LOF Variants: Gene-based analysis result among European American population (BioVU) 

(MAF≤0.01)
a
 ................................................................................................................................. 69 

16-2. LOF Variants: Gene-based analysis result among European American population
 
(BioVU) 

(MAF≤0.005)
a
 ............................................................................................................................... 69 

17-1. Nonsynonymous Variants: Gene-based analysis result among European American 

population
 
(BioVU) (MAF≤0.01)

a
 ................................................................................................ 70 

17-2. Nonsynonymous Variants: Gene-based analysis result among European American 

population
 
(BioVU) (MAF≤0.005)

a
 .............................................................................................. 71 

18-1. LOF Variants: Gene-based Meta-analysis result from all four datasets (MAF≤0.01)
a
 ....... 73 

18-2. LOF Variants: Gene-based Meta-analysis result from all four datasets (MAF≤0.005)
a
 ..... 73 

19-1. Nonsynonymous Variants: Gene-based Meta-analysis result from all four datasets 

(MAF≤0.01)
a
 ................................................................................................................................. 74 

19-2. Nonsynonymous Variants: Gene-based Meta-analysis result from all four datasets 

(MAF≤0.005)
a
 ............................................................................................................................... 75 

20. Nonsynonymous Variants: CH-analysis result among Asian population
a
 .............................. 77 

21. Nonsynonymous Variants: CH-analysis result among African American population
a
 .......... 77 

22. Nonsynonymous Variants: CH-analysis result among European American population 

(BioVU)
a
 ....................................................................................................................................... 77 

 

 

 



 ix 

LIST OF FIGURES 

 

Figure                                                                                                                                        Page  

1. Rare Alleles More Likely Population-Specific (One hundred people were sampled from each 

population). ................................................................................................................................... 30 

2. Plot showing relationship between adjusted and unadjusted TCGA data for CNV and DNA 

methylation (eQTL P-value < 0.05, RSQR > 0.8, MAF > 0.05) .................................................. 40 

3. Venn diagrams showing number of breast cancer candidate genes from TCGA, METABRIC, 

and GTEx
a
 ..................................................................................................................................... 41 

4. Venn diagrams showing number of breast cancer candidate genes from TCGA, METABRIC, 

and GTEx
a
 ..................................................................................................................................... 42 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 x 

LIST OF ABBREVIATIONS 

 

AA 

 

African Americans  

AKAP12 
 

A Kinase (PRKA) Anchor Protein 12 

AKR1C2 

 

Aldo-Keto Reductase Family 1, Member C2 

ANKRD35 
 

Ankyrin Repeat Domain 35 

ANNOVAR 

 

Annotate Variation 

ANO1 
 

Anoctamin 1, Calcium Activated Chloride Channel 

BPIFA2 
 

BPI Fold Containing Family A, Member 2 

BPIFB6 
 

BPI Fold Containing Family B, Member 6 

BRCA2 
 

Breast Cancer 2, Early Onset 

CCDC38 
 

Coiled-Coil Domain Containing 38 

CENPW 
 

Centromere Protein W 

CMC 

 

Combined Multivariate and Collapsing  

CPA1 

 

Carboxypeptidase A1 

DCLRE1A 
 

DNA Cross-Link Repair 1A  

DFFA 

 

DNA Fragmentation Factor, 45kDa, Alpha Polypeptide  

EA 

 

European Americans  

ELK3 
 

ETS-Domain Protein (SRF Accessory Protein 2) 

eQTL 

 

Expression Quantitative Trait Loci 

FGF10 
 

Fibroblast Growth Factor 10 

FKBP8 
 

FK506 Binding Protein 8, 38kDa 

GPR98 
 

G Protein-Coupled Receptor 98 

gTDT 

 

group-wise Transmission/Disequilibrium Tests   

GTEx 

 

Genotype-Tissue Expression  

GWAS 

 

Genome-Wide Association Studies  

IBD 

 

Identity-By-Descent  

ITGA10 

 

Integrin, Alpha 1 

LAPTM4A 
 

Lysosomal Protein Transmembrane 4 Alpha 

LD  Linkage Disequilibrium 



 xi 

LOC100294362 RNA Gene 

LOF 

 

Loss-of-function variants  

LOFTEE 

 

Loss Of Function Transcript Effect Estimator 

MAF 

 

Minor Allele Frequency  

MB 

 

Madsen-Browning test  

METABRIC 

 

Molecular Taxonomy of Breast Cancer International Consortium 

MPP4  

 

Membrane Protein, Palmitoylated 4 

mRNA 

 

messenger Ribonucleic Acid 

MTMR11  

 

Myotubularin Related Protein 11 

MUS81 
 

MUS81 Structure-Specific Endonuclease Subunit 

NBHS 

 

Nashville Breast Health Study  

OR2J2 

 

Olfactory Receptor, Family 2, Subfamily J, Member 2 

PCs 

 

Principal Components  

PLBD1 
 

Phospholipase B Domain Containing 1 

PLEKHS1 
 

Pleckstrin Homology Domain Containing, Family S Member 1 

PSG5 
 

Pregnancy Specific Beta-1-Glycoprotein 5 

PSG6 
 

Pregnancy Specific Beta-1-Glycoprotein 6 

QC 

 

Quality Control 

RefSeq 

 

NCBI Reference Sequence Database 

SBCGS 

 

Shanghai Breast Cancer Genetics Study  

SBCS 

 

Shanghai Breast Cancer Study  

SBCSS 

 

Shanghai Breast Cancer Survival Study  

SCCS 

 

Southern Community Cohort Study  

SECS 

 

Shanghai Endometrial Cancer Study  

SHAPEIT 

 

Segmented HAPlotype Estimation and Imputation Tool 

SKAT 

 

Sequence Kernel Association Test  

SLC25A42 

 

Solute Carrier Family 25, Member 42 

SLC25A45 
 

Solute Carrier Family 25, Member 45 

SLC6A18 
 

Solute Carrier Family 6 (Neutral Amino Acid Transporter), Member 18 

SNPs 

 

Single Nucleotide Polymorphisms  

SWHS 

 

Shanghai Women‟s Health Study  



 xii 

SYT8 
 

Synaptotagmin VIII 

TCF7L2  

 

Transcription Factor 7-Like 2 

TCGA 

 

The Cancer Genome Atlas 

THEMIS 
 

Thymocyte Selection Associated 

TRPS1 
 

Trichorhinophalangeal Syndrome I 

UBR7 

 

Ubiquitin Protein Ligase E3 Component N-Recognin 7 

VANGARD 

 

Vanderbilt Technologies for Advanced Genomics Analysis and Research Design 

VANTAGE 

 

Vanderbilt Technologies for Advanced Genomics 

VEP 

 

Ensembl Variant Effect Predictor 

VT 

 

Variable Threshold 

ZFYVE26 
 

Zinc Finger, FYVE Domain Containing 26 



 1 

CHAPTER I 

 

INTRODUCTION AND SPECIFIC AIMS 

 

Breast cancer is the most common invasive cancer in females worldwide and in East 

Asian countries (1). To date, common genetic variants in ~ 109 loci have been identified for 

breast cancer risk via genome-wide association studies (GWAS), which primarily focus on 

evaluating common single nucleotide polymorphisms (SNPs) (2–12). Collectively, these 

common variants only explain approximately 16% of the heritability of breast cancer, so it is 

suspected that rare/low-frequency variants in these loci may also contribute to breast cancer risk 

(13). Currently, many studies are investigating low-frequency (MAF 0.01-0.05) and rare (MAF < 

0.01) variants. Studies showed that genetic variants with lower allele frequency are more likely 

to be functional than common variants (14). So far, several genes have been shown to harbor rare 

coding variants associated with breast cancer risk such as BRCA2, EDEM1, EFEMP2, FBXO18, 

ERBB2, CHEK2, ATM, BRIP1, PALB2, RAD51C, RAD51D, and PPM1D genes (15–23).  

In this dissertation, we describe approaches for genetic analyses of breast cancer risk 

associated with rare coding variants using whole-exome chip data. Exome-based genotyping has 

the capacity to discover rare/low-frequency variants in exon regions associated with complex 

diseases in a large population (24, 25). Exome-based genotyping arrays, such as the Illumina 

HumanExome BeadChip and the Affymetrix Axiom exome array, are cost effective and have 

recently been used as alternative platforms to whole-exome sequencing (26, 27). We focused on 

109 loci identified from previous GWAS in order to investigate rare nonsense/missense variants 

and their corresponding genes in different ethnic groups, including Chinese, European 
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Americans (EA), and African Americans (AA). Only functional variants within protein-coding 

regions (e.g., missense, nonsense, and loss-of-function variants) are included since they result in 

alteration in the encoded amino acid and they can help pinpoint causative genes. We did not 

include synonymous variants since they do not result in a change of amino acid in the protein.   

The list of 109 GWAS identified SNPs is provided in Appendix 1. A total of 9,004 cases 

and 11,996 controls from three ethnic groups were examined. Included in this study were 5,766 

cases and 5,703 controls of Chinese women from the Shanghai Breast Cancer Genetics Study 

(28), 1,509 cases and 1,456 controls of EA women and 500 cases and 272 controls of AA women 

from the Nashville Breast Health Study (NBHS) (29, 30), 534 cases and 781 controls of AA 

women from the Southern Community Cohort Study (SCCS) (31), and 695 cases and 3,784 

controls of EA women from the Vanderbilt electronic medical record-linked DNA repository, 

BioVU (32).  

The following aims are developed to carefully investigate the relationship between rare 

coding variants and breast cancer risk. 

Specific Aim 1: To identify candidate genes in the previously reported GWAS loci for breast 

cancer. Most breast cancer-associated GWAS loci are located in noncoding regions and are 

therefore thought to be regulatory in nature. The mechanistic basis for the association between 

breast cancer and most of the common variants discovered in GWAS is still largely unknown. 

Rare variant in GWAS identified genes may in part explain this limitation and contribute 

significantly to breast cancer risk. Candidate genes were identified through expression 

quantitative trait loci (eQTL) analyses: expression level of which genes were affected by the 

GWAS identified SNPs. Data generated from breast tissues in three major sources were used for 

eQTL analyses: the Cancer Genome Atlas (TCGA) (33), the Genotype-Tissue Expression 
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(GTEx) (34), and Molecular Taxonomy of Breast Cancer International Consortium 

(METABRIC) (35). Cis-based eQTL analyses for all genes 1Mb flanking the GWAS index SNPs 

were performed. Genes were selected with expression level associated with breast cancer risk-

associated SNPs. 

Hypothesis: Most common variants found in GWAS are located in non-coding region, thus 

impeding the direct interpretation of their functional effects. They may be involved in regulation 

of gene expression, and rare functional variants in the coding region of these genes may change 

gene structure and function. Therefore, we hypothesize that these rare variants may contribute to 

breast cancer. 

 

Specific Aim 2: To investigate rare variants in the eQTL genes identified in Aim 1 in association 

with breast cancer risk. 

Sub-aim 1: Functional prediction of rare coding variants. We investigated rare variants using 

ANNOVAR (Annotate Variation) in order to annotate nonsynonymous variants that result in a 

change of amino acid in the protein. Loss-of-function variants (LOF) were predicted using 

LOFTEE (Loss Of Function Transcript Effect Estimator) in order to categorize stop_gain, splice 

site disrupting, and frameshift variants. 

Hypothesis of Sub-aim 1: We hypothesize that rare coding variants in the eQTL genes will alter 

translation or protein function that impact breast cancer with potentially deleterious outcome. 

Sub-aim 2: Investigating associations of rare variants with breast cancer. Whole-exome chip 

data from Chinese (5,766 cases and 5,703 controls), EA (2,204 cases and 5,240 controls), and 

AA populations (1,034 cases and 1,053 controls) were used for association analysis of rare 
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variants. Associations of rare variants with breast cancer risk were evaluated using single-variant 

and gene-based aggregation tests. We used two sets of variants (nonsynonymous and LOF 

variants) prioritized from Sub-aim 1, in order to conduct gene-based aggregation tests. Single-

variant tests including score test, firth test, and fisher‟s exact test, and gene-based tests including 

burden and non-burden tests were conducted. All of these tests assume additive models. In order 

to detect rare variants that confer significant risk in a recessive manner, we performed compound 

heterozygous (CH) analysis. Both single-variant and gene-based meta-analyses within Chinese, 

EA, and AA were conducted to establish association between rare variants and breast cancer risk. 

Using these meta-analyses, we could have more power to detect true associations between rare 

variants and breast cancer risk. After investigating associations, we predicted function of 

identified variants using SIFT algorithm (Sorting Intolerant From Tolerant), PolyPhen-2 

(Polymorphism Phenotyping v2), and PROVEAN (Protein Variation Effect Analyzer). 

Hypothesis of Sub-aim 2: We hypothesize that a significant proportion of the inherited 

susceptibility to breast cancer disease may be due to the summation of the effects of rare variants 

of a variety of different genes, each conferring a moderate but detectable increase in relative risk. 

We expect to find several rare coding variants associated with breast cancer risk in Chinese, EA, 

and AA populations. 
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CHAPTER II 

 

BACKGROUND 

 

A. Current Status of Genetic Research on Breast Cancer 

Breast cancer is the most common malignancy among women in the United States and 

many other countries around the world (36). It is a complex disease in which genetic factors play 

an important role (10, 37). In the 1990s, the two major susceptibility genes for breast cancer, 

BRCA1 (38) and BRCA2 (39), were identified through family-based linkage studies. Due to the 

limitation of linkage studies which aimed at identifying rare and high-risk disease-associated 

mutations based on multiple individuals in a family, a large number of candidate gene studies 

were conducted over the following decade. Candidate gene approaches have focused on selecting 

genes based on their known biological function and aimed at identifying moderate and low 

penetrance alleles believed to be responsible for the remaining familial risk. Several DNA repair 

genes including ATM (40), CHEK2 (41), BRIP1 (42) and PALB2 (43) and an apoptosis gene, 

CASP8 (44, 45), have been implicated in susceptibility to breast cancer. However, the majority 

of reported SNP associations in candidate genes could not be replicated. 

 Since 2005, GWAS have made an important contribution to find many novel variants for 

human diseases that were not found by the candidate gene approach. GWAS are designed to 

detect associations through linkage disequilibrium (LD) between genotyped (or imputed) 

common SNP markers and unknown causal variants. Approximately 109 common genetic 

susceptibility loci for breast cancer risk have been found, including those identified in our own 

study among Asian women (4, 6, 24, 33). 
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 Extensive genetic studies have identified high-penetrance genes (BRCA1, BRCA2, PTEN 

and TP53), moderate-penetrance genes (CHEK2, ATM, BRIP1, PALB2, RAD51C, STK11, 

CDH1, RAD50, and NBN), and more than 109 low-penetrance loci that contribute to the risk of 

breast cancer over the past 20 years (4–6, 13, 28, 37, 46–51). It has been shown that pathogenic 

mutations in the BRCA1 and BRCA2 genes are associated with a 10- to 20-fold increased risk of 

breast cancer which corresponds to a cumulative risk of breast cancer by age 70 years of 55%-

65% for BRCA1 mutation carriers and 45-47% for BRCA2 mutation carriers (52, 53). Recently, it 

has been reported that female PTEN mutation carriers have an 85% lifetime risk of developing 

breast cancer with 50% penetrance by 50 years of age (54). These findings were subsequently 

confirmed by two other studies (55, 56). Mutations in the TP53 gene are associated with at least 

a 10-fold increased risk of breast cancer and account for 2-7% of early-onset breast cancer (57, 

58). It is estimated that the cumulative risk of breast cancer by 70 years old is approximately 

14% for women who carry CHEK2 1100delC, and a subsequent meta-analysis based on 29,154 

cases and 37,064 controls from 25 case-control studies reported a significant association between 

CHEK2 1100delC heterozygotes and breast cancer risk with OR (95% CI) of 2.75 (2.25-3.36) 

(59, 60). Similarly, the approximate risk of breast cancer is 15% for those who carry ATM 

mutations (61). It is estimated that the eight confirmed high and moderate-penetrance genes 

(BRCA1, BRCA2, PTEN, TP53, CHEK2, ATM, BRIP1, and PALP2), explain approximately 20% 

of the familial risk of breast cancer (46). 

 Despite the recent success of GWAS, the majority of the genetic component of many 

complex traits remains unexplained. In addition, although the statistical evidence for an 

association between SNP and breast cancer risk is overwhelming, the biologically relevant 

variants and the mechanism by which they lead to increased risk are unknown and require further 



 7 

genetic and functional characterization. As rare variants have been comparatively less well-

studied than common variants, attention has shifted to exome-chip, exome or genome sequencing 

approaches to identifying additional risk factors. We used exome-chip data since it is cost-

effective and feasible for large studies to identify rare genetic variants in thousands of 

individuals.  

B. Breast Cancer Susceptibility: The Role of Rare Variants    

GWAS are designed to evaluate common genetic variants, typically with a MAF > 0.05, 

therefore examining only a portion of the genomic landscape of complex traits. GWAS identified 

more than 100 common genetic susceptibility loci associated with breast cancer so far; however, 

these loci collectively explain approximately 16% of the heritability of breast cancer (13). It is 

reasonable to assume that most common and highly penetrant susceptibility genes have already 

been discovered for breast cancer. Currently, many studies are investigating rare (MAF < 0.01) 

variants which have been more challenging to assess. 

B1. Missing Heritability 

 More than 20 years ago, the identification of the two high-penetrance genes in breast 

cancer, BRCA1 and BRCA2, launched a sustained effort to uncover new genes explaining the 

“missing heritability” in the disease. The best known high or moderate penetrance genes include 

BRCA1, BRCA2, TP53, PTEN, STK11, PALB2, and ATM, and these genes globally account for 

around 35% of the familial breast cancer cases (62). Many explanations, such as rare variants, 

epistatic interactions, gene-environment interactions, structural variants, heritable epigenetic 

factors, parent-of-origin effects, or inflated heritability estimates have been proposed to illustrate 

the “missing heritability” that the GWAS loci and high-penetrance genes could not explain (63–
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66). The major debates over the nature of the genetic contribution to individual susceptibility to 

common complex diseases are common disease common variant (CDCV) and common disease 

rare variant (CDRV) hypotheses. The CDCV hypothesis argues that genetic variations with 

appreciable frequencies in the population at large, but relatively low penetrance (or the 

probability that a carrier of the relevant variants will express the disease), are the major 

contributors to genetic susceptibility to common diseases (67). CDRV argues that multiple rare 

DNA sequence variants, each with relatively high penetrance, could account for the genetic 

variance in disease susceptibility (67). 

Many investigators have tried the alternative CDRV hypothesis. Pritchard argued that the 

notion that multiple, very recent rare variations contributing to disease arising in the last two 

centuries is more consistent with human population pathobiology than the notion that older, 

common variations are contributing to disease (68). This is because rare variants are often 

evolved from more recent mutations and subjected to less natural selection. Leal pointed out that 

rare variants, although individually rare, are collectively frequent, and even though their effect 

sizes are greater than those observed for common variants, they are not large enough to produce 

familial aggregation (66). In this light, reports on the frequency of human alleles and their likely 

„functional‟ or phenotypic effects suggest that rare coding variants are enriched for functional 

importance (14). We are in the era to investigate rare variants that might play an important role 

in explaining the “missing heritability” of complex traits including breast cancer. 

B2. Rare Variants Associated with Breast Cancer and Other Diseases 

It has been increasingly recognized that the “missing heritability” for breast cancer could 

be partially explained by low-frequency (MAF 0.01-0.05) and rare (MAF < 0.01) variants. There 

is strong evidence that rare genetic variation is important in breast cancer predisposition (69). In 
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the 1990s, genome-wide linkage analysis and positional cloning led to the identification of the 

DNA repair genes BRCA1 and BRCA2, and rare mutations of those genes in noncoding region 

confer substantial risks to breast cancer (69). More recently, through case-control resequencing 

studies of candidate genes, several rare coding variants have been shown to be associated with 

breast cancer risk such as ERBB2, CHEK2, ATM, BRIP1, PALB2, RAD51C, RAD51D, and 

PPM1D genes (16–23). Rare protein truncating variants (PTV) mutations in the p53 inducible 

protein phosphatase gene PPM1D are associated with predisposition to breast cancer (18).  

In addition, recently, a known moderate susceptibility indel variant (CHEK2 1100delC) 

and a catalogue of 11 rare variants in other genes (FANCM, WNT8A, MAPKAP1, TNFSF8, 

PTPRF, UBA3, AXIN1, TIMP3, SLBP, CNTROB, and S1PR3), presenting signs of association 

with breast cancer, were identified through whole-exome sequencing (62). 

 Zhang et al. recently investigated rare missense/nonsense variants with MAF ≤ 0.05 

located in flanking 1Mb of each of the index SNP in 67 GWAS loci from the Shanghai Breast 

Cancer Study including 3,472 cases and 3,595 controls (15). Notably, 5 rare variants in different 

genes (BRCA2, EDEM1, EFEMP2, and FBXO18) were associated with breast cancer risk at P-

value < 0.01 (15). Compared to Zhang‟s study, the current study included an increased number 

of Chinese (5,766 cases and 5,703 controls) and investigated other ethnic groups, EA (2,204 

cases and 5,240 controls) and AA (1,034 cases and 1,053 controls) as well. We performed more 

comprehensive functional and eQTL analyses to prioritize candidate genes in the 1Mb regions 

flanking the breast cancer 109 GWAS loci using three major databases, and we assessed rare 

recessive variants in addition to additive models. With increased number of populations and 

improved statistical methods, we had more power to detect rare variants associated with breast 

cancer risk compared with Zhang‟s study.  
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 Recently, multiple papers reported that low frequency or rare variants in GWAS loci have 

been identified for other diseases through target sequencing or fine-mapping (70–72). Beaudoin 

et al. have used a targeted sequencing approach in 200 ulcerative colitis cases and 150 healthy 

controls, all of French Canadian descent, to study 55 genes in regions associated with ulcerative 

colitis (70). They found significant association with rare non-synonymous variants in both IL23R 

and CARD9, previously identified from sequencing of Crohn's disease loci, as well as a novel 

association in RNF186 (70). Fine mapping of GWAS loci associated with low-density 

lipoprotein cholesterol also discovered several low frequency or rare variants (71). In addition, 

Johansen et al. reported that an accumulation of rare variants is present in GWAS identified 

genes, and that these contribute to the heritability of complex traits among individuals at the 

extreme of a lipid phenotype (72). These studies support our hypothesis that rare coding variants 

in GWAS loci may contribute to breast cancer risk.  

B3. eQTL analysis 

GWAS have identified thousands of variants that are associated with complex traits and 

diseases. However, because most variants are noncoding and located in intronic or intergenic 

regions, it is difficult to identify causal genes. Polymorphisms associated with messenger RNA 

(mRNA) levels are typically referred to as eQTLs (50). eQTLs have provided key insights into 

genes and pathways as well as the genetic architecture of gene expression (73). Several eQTL-

mapping studies have shown that disease-predisposing variants often affect the gene expression 

levels of nearby genes (cis-eQTLs) (74–76). Cis-acting regulation is due to DNA variation that 

directly influences the transcription process in an allele-specific manner. Alternatively, trans-

acting regulation affects the gene expression by modifying the activity (or abundance) of the 

factors that regulate the gene (77). Regarding rare variants studies, Cheng et al. discovered rare 
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variants associated with autism spectrum disorders in the GWAS candidate gene (SEMA5A) 

using cis-eQTL mapping (78). Recently, eQTL analyses of 15 previously reported breast cancer 

risk loci resulted in the discovery of three variants (at 2q35 (IGFBP5), 5q11 (C5orf35), and 

16q12 (TOX3)) that are significantly associated with transcript levels (73). 

 The eQTL approach is valuable when causal variants exert remote regulatory effects on 

genes whose coding regions lie outside the region of association, and this approach has potential 

to find candidate genes and their functional variants. To investigate rare variants in the eQTL 

genes might be particularly informative since the associated rare variants for complex diseases 

will be more facile to evaluate for functional impact. Therefore, in current study, we have 

examined genes within breast cancer-associated GWAS loci using eQTL mapping. Using our 

approach, we would be able to find rare variants that may contribute to breast cancer. 
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CHAPTER III 

 

RESEARCH GAP 

 

 To the best of our knowledge, this is the first study to systemically examine the 

associations between rare variants in potential functional genes in breast cancer risk loci. Few 

studies have identified rare recessive variants associated with breast cancer risk. He et al. 

identified a recessive missense variant of XRCC4 in non-BRCA1/2 breast cancer patients in the 

Chinese population (68). Kuligina et al. recently found rare recessive homozygous variant in 

GEN1 that has been associated with bilateral breast cancer (79). We investigated rare recessive 

variants in GWAS loci that have been found to predispose people to breast cancer. Unlike other 

studies, this study provides a strong basis for the rare recessive variant in GWAS loci through 

comprehensive analysis strategy that might reveal the important mechanism and biology 

underlying breast cancer. 

As far as we know, this is the largest study to date investigating rare coding variants for 

association with breast cancer risk in the East and Southeast Asian populations. Our research 

group has recruited a large number of subjects and collected adequate biological samples and 

clinical data for genetic epidemiology study in the Eastern and South-eastern Asian population. 

In addition, data from European American and African American populations from the NBHS, 

SCCS, and BioVU were also available. These data were used to compare the results from Asians 

to investigate the generalizability. Therefore, with a large number of subjects from these three 

ethnic groups (a total of 9,004 cases and 11,996 controls), we would be able to comprehensively 

evaluate rare genetic variants for breast cancer risk. 
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 This study capitalizes on the most recent resources of three major datasets for breast 

tissue (TCGA, GTEx, and METABRIC) in order to idnetify genes that may cause the disease. 

We are not aware of any study that evaluates eQTLs using all three databases. We have more 

power to conduct eQTL analyses to identify genes associated with breast cancer risk in GWAS 

identified loci by integrating three databases (4, 6, 10, 11). In addition, currently identified 

GWAS loci included 12 novel genetic variants discovered in our own GWAS from Chinese 

population (6, 28, 49–51, 80–82).   
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CHAPTER IV 

 

METHODS 

 

A. Methods for Specific Aim 1: To identify potential functional genes underlying the 

associations in breast cancer GWAS loci 

Hypothesis: The mechanistic basis for the association between breast cancer and most of the 

common variants discovered in GWAS is still largely unknown. Common variants found in 

GWAS studies can regulate gene expression level. Functional variants in the coding region of 

these genes may change gene expression level, structure and function. Therefore, we hypothesize 

that these variants may contribute to breast cancer. 

GWAS have identified novel and known loci associated with breast cancer risk. Although 

GWAS continue to reveal new associations, each newly associated variant has a smaller effect 

size and contributes only marginally to the cumulative variation of complex diseases. This 

suggests that GWAS of population-based subjects may be reaching the limits of their ability to 

reveal genetic variation underlying complex traits. Then, a question has arisen whether additional 

forms of genetic variation, such as rare variants with large individual effects, could contribute to 

the heritability of complex traits such as breast cancer. Due to many successful results from 

GWAS, we are able to use resources of GWAS identified loci associated with breast cancer. It 

remains possible that rare variants in GWAS identified genes may contribute significantly to 

breast cancer risk (70–72, 83, 84). In this study, our exposure is defined as SNPs which are 

investigated in this study, and outcome of interest is breast cancer cases. 
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A1. GWAS loci for breast cancer 

We systemically investigated all GWAS loci associated with breast cancer risk using 

publicly available databases. A Catalog of Published Genome-Wide Association Studies 

(http://www.genome.gov/gwastudies/) and MEDLINE were used to find GWAS loci related to 

breast cancer risk. From the search results, we extracted information including SNP ID, GWAS 

identified loci, risk allele, effect size (odds ratio), and P-value. In order to check the direction of 

the association, risk alleles were carefully selected. We included SNPs identified from GWAS 

among Asian populations and other ethnic groups including European and African. For each 

population, SNPs were excluded if they were in strong LD (r
2
 > 0.8) using HaploReg V3 

(http://www.broadinstitute.org/mammals/haploreg/haploreg_v3.php). Finally, we included all 

GWAS loci associated with breast cancer risk including two loci recently identified from our 

group (Han et al. submitted manuscript, 2016). 

A2. eQTL analysis 

A2.1.  Data sources 

There are three major sources that provide data generated in breast tissues; The Cancer 

Genome Atlas (TCGA), The Genotype-Tissue Expression (GTEx), and The Molecular 

Taxonomy of Breast Cancer International Consortium (METABRIC).  

The Cancer Genome Atlas (TCGA), is a comprehensive database which focuses on 

genomic alterations in diverse cell types at different sites in the body that give rise to hundreds of 

different forms of cancer (33). We downloaded RNA-Seq V2 data (level 3), DNA methylation 

data and somatic copy number alterations (CNA) data using the CGDS-R package from the 

cBioPortal (http://www.cbioportal.org/public-portal/), which provided a basic set of functions for 
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extracting data from the Cancer Genomic Data Server (CGDS). We also downloaded level 2 

SNP data genotyped using Affymetrix SNP 6.0 array from TCGA data portal (The Cancer 

Genome Atlas, http://cancergenome.nih.gov/). Genotype data from the flanking 1Mb region for 

the 109 GWAS loci were extracted. We analyzed a total of 709 breast tumor tissues (653 

European population and 56 Asian population), including matched CNV, genotype, and 

expression data.  

In addition to TCGA, we conducted eQTL analyses using the GTEx database 

(http://www.ncbi.nlm.nih.gov/gtex/GTEX2/gtex.cgi) and data from the METABRIC project 

(35). The GTEx project of the NIH Common Fund aims to establish a resource database and 

associated tissue bank in which to study the relationship between genetic variation and gene 

expression and other molecular phenotypes in multiple reference tissues (34). The GTEx Portal 

has been updated to data release V6 in October, 2015. We accessed cis-eQTL results of 183 

breast normal tissues from the most recent GTEx database which were calculated from linear 

regression analysis using Matrix eQTL (85). The Molecular Taxonomy of Breast Cancer 

International Consortium (METABRIC) is a Canada-UK project that aims to classify breast 

tumors into further subcategories, based on molecular signatures that will help determine the 

optimal course of treatment (35). We extracted matched genotypes and gene expression levels in 

a total of 1,981 breast cancer tumor tissues from the METABRIC project. Gene expression 

profiling was generated on the Illumina HT12 arrays and downloaded from the Synapse 

(syn1757063, https://www.synapse.org/). A total of 49,576 transcripts are included in gene 

expression profiling and have been normalized as described previously (35). Genotype data 

using the Affymetrix SNP 6.0 array was downloaded from EBI (EGAD00010000164, 

https://www.ebi.ac.uk/). We used R package CRLMM 
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(http://bioconductor.org/packages/crlmm/) to generate genotype calls from the original image 

array-based data for METABRIC (86). Only probes of high quality with intensity more than 

3,000 at a 95% calling rate were included. A total of 1,981 tumor tissue samples with matched 

gene expression and genotype data were included. 

A2.2. Imputation 

Genotype data from the flanking 1Mb region for the 109 GWAS loci were imputed for 

the TCGA and METABRIC data. Imputation was performed using SHAPEIT to derive phased 

genotypes and Minimac2 to perform imputation on the phased data (87, 88). Minimac2 is a low 

memory, computationally efficient implementation of the MaCH algorithm for genotype 

imputation. The 1000 Genome Project phase 3 was used as the reference data for imputation 

(http://www.1000genomes.org/). A total of 2,504 subjects and 84.7 million SNPs are included in 

the 1000 Genome Project phase 3. SNPs with high imputation quality (RSQR > 0.3) and MAF > 

0.05 within the 1Mb regions flanking the 109 GWAS loci were included in the analysis.  

A2.3. Data analysis   

The eQTL analysis was performed in TCGA tumor tissues as previously described (75, 

89). Briefly, the RSEM (RNA-Seq by Expectation-Maximization) value of each gene was log2 

transformed and those genes with a median expression level of 0 across tissues were removed. 

We then performed principal component correction on gene expression data to remove potential 

batch effects. To make the data better conform to the linear model for the eQTL analysis, we 

further transformed the gene expression level to fit a quantile of N(0,1) distributions based on the 

rank of the expression values to their respective quantiles. 
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A full linear regression analysis was then used to detect eQTLs while adjusting for 

methylation, CNV, and ethnicity. For a given gene i and a SNP locus j, three factors of transcript 

abundance (T) were considered; the germline genotypes as the genetic determinants (G), the 

somatic copy number alterations (Sc), the CpG methylation levels (M), and ethnicity (E): 

 Ti = Gi + Sci + Mi + Ei + ɛi 

Using this model, we evaluated the association between genotypes and genes located within the 

1Mb regions flanking the 109 GWAS loci to identify cis-eQTLs. 

In the METABRIC dataset, eQTL analysis was performed using Matrix eQTL to evaluate 

the association between genotypes and gene expression levels using linear regression model (85). 

We were not able to adjust methylation and CNV since data were not available for METABRIC. 

The eQTL results of GTEx were also calculated using Matrix eQTL, and available on GTEx 

Portal. For all datasets (TCGA, METABRIC and GTEx), a significance threshold P-value of < 

0.05 was used to determine candidate cis-eQTLs. 

B. Methods for Specific Aim 2: To investigate rare variants associated with breast cancer 

risk  

B1. Sub-Aim 1: Functional prediction of rare coding variants  

Hypothesis: We hypothesize that rare coding variants in the eQTL genes will alter translation or 

protein function that impact breast cancer with potentially deleterious outcome. 

B1.1. Rare Variants 

Most genetic variation is considered neutral but single base changes in and around a gene 

can affect its expression or the function of its protein products (90, 91). Among the sequence 

variants currently known to be directly linked with human Mendelian disease, 57% are due to 
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nonsynonymous mutations. An additional 23% of disease variants are due to small insertions and 

deletions (indels) in genes. Because nonsynonymous SNPs can affect protein function, they are 

believed to have the largest impact on human health compared with SNPs in other regions of the 

genome. Therefore, it is important to distinguish those nonsynonymous SNPs that affect protein 

function from those that are functionally neutral.  

 Nonsynonymous mutations are further classified into missense and nonsense mutations. 

For protein-coding regions, there are three classes of mutations: silent, missense, and disruptive 

(defined as nonsense, splice site, and frameshift mutations). In genetics, silent mutations are 

DNA mutations that do not significantly alter the phenotype of the organism in which they occur. 

A missense mutation is a point mutation in which a single nucleotide change results in a codon 

that codes for a different amino acid. A nonsense mutation is a point mutation in a sequence of 

DNA that results in a premature stop codon (stop_gain), and ultimately resulting in the 

production of a truncated protein. A sequence variant whereby at least one base of a codon is 

changed, resulting in a premature stop codon, leading to a shortened transcript. A splice site 

mutation is a genetic mutation that inserts, deletes or changes nucleotides in the specific site at 

which splicing of an intron takes place during the processing of precursor messenger RNA into 

mature messenger RNA. A frameshift mutation is a genetic mutation caused by a disruption of 

the translational reading frame because the number of nucleotides inserted or deleted is not a 

multiple of three.  

 According to the common disease-rare variant hypothesis, low-frequency variants with 

strong effects at a locus can contribute to disease (68). In this study, we focused on studying 

missense and nonsense variants (nonsynonymous) as well as splice site and frameshift variants 

for rare variant analysis.  
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B1.2. Assessing protein function prediction  

We investigated rare variants using ANNOVAR (Annotate Variation) in order to 

annotate nonsynonymous variants that result in a change of amino acid in the protein. 

ANNOVAR is a program for functional annotation of genetic variants from high-throughput 

sequencing data such as RefSeq (NCBI Reference Sequence Database) (92). We included all 

missense and nonsense variants located flanking 1Mb of the indexed SNP of 109 GWAS loci, 

and ANNOVAR program was used to annotate all SNPs (92). Then, LOF variants were 

annotated using LOFTEE (https://github.com/konradjk/loftee) since every human carries at least 

a hundred loss-of-function variants predicted to severely disrupt the function of protein-coding 

genes. LOFTEE has recently been developed using pipeline inspired by MacArthur et al (93). It 

removes variants within short distance (less than 15bp) intronic regions, non-canonical (e.g., 

intron does not start with GT and end with AG) splice regions, LOF variants in the last 5% of the 

transcript, and variants where the LOF allele is the ancestral allele for that position.  

Current methods for predicting the LOF variants are insensitive to many important 

classes of LOF variant such as splice-disrupting variants outside canonical splice sites. In 

addition, LOFTEE has been systematically validated their results using large-scale functional 

data sets to assess their accuracy in the detection of LOF variants. Therefore, each of their 

decisions on assessing LOF variants help to improve our confidence to predict variants. Using 

LOFTEE which can be run through the Ensembl Variant Effect Predictor (VEP) plugin, we were 

able to categorize stop_gain, splice site disrupting, and frameshift variants. 
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B2. Sub-Aim 2: Investigating associations of rare-variants with breast cancer         

Hypothesis: In Aim 1, we hypothesized that common variants found in GWAS studies regulate 

gene expression, and rare coding variants of these genes may contribute to breast cancer. In order 

to investigate whether these rare coding variants contribute to breast cancer, we hypothesize that a 

significant proportion of the inherited susceptibility to breast cancer may be due to the summation of 

the effects of rare variants of a variety of different genes, each conferring a moderate but detectable 

increase in relative risk.  

B2.1 Study populations 

Shanghai Breast Cancer Genetics Study (SBCGS) 

 The Chinese participants were drawn from Shanghai Breast Cancer Genetics Study 

(SBCGS), which consists of the Shanghai Breast Cancer Study (SBCS), Shanghai Breast Cancer 

Survival Study (SBCSS), Shanghai Endometrial Cancer Study (SECS, contributed control data 

only), and the Shanghai Women‟s Health Study (SWHS), four large population-based studies in 

urban Shanghai. The SBCS is a two-phase (SBCS-I and SBCS-II) population-based case-control 

study that recruited incident patients with breast cancer and controls in urban Shanghai, the 

largest commercial center in China (49). In the initial phase (SBCS-I), subjects were recruited 

between August 1996 and March 1998. Two senior pathologists reviewed and confirmed cancer 

diagnoses for all patients. Controls were randomly selected from the general population using the 

Shanghai Resident Registry, a population registry containing demographic information for all 

residents of urban Shanghai. The inclusion criteria for controls were identical to those for cases 

with the exception of a breast cancer diagnosis. Our study used a structured questionnaire to 

elicit detailed information on demographic factors, and known/suspected risk factors for breast 
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cancer. All participants were measured for their current weight, height, and circumference of the 

waist and hips. All interviews were tape-recorded and reviewed by the field supervisor and 

quality control staff to monitor the quality of interview data. For both cases and controls, blood 

samples (10 ml from each woman) were obtained who completed the in-person interview. Using 

cotton swabs, a sample of exfoliated buccal cells was obtained from virtually all study 

participants who did not provide a blood sample. The second round of subject recruitment 

(SBCS-II) occurred between April 2002 and February 2005 using a protocol similar to the one 

used in the initial phase. Similar to the SBCS-I subjects, the majority of newly-recruited cases 

and controls provided a blood sample or an exfoliated buccal cell sample to the study. Our study 

used modified mouthwash method from initially reported by Lum et al. and provided, on 

average, approximately 34 µg of DNA per sample (94). Eligibility criteria for study participation 

were identical for SBCS-I and SBCS-II except age. The age ranged from 25 to 65 years for 

SBCS-I, and from 25 to 70 years in SBCS-II. 

 The SBCSS included newly diagnosed breast cancer cases ascertained via the population-

based Shanghai Cancer Registry between April 2002 and December 2006 (49). In-person 

interviews were conducted to collect information on known breast cancer risk factors as well as 

anthropometrics using a protocol and questionnaire similar to that used in the SBCS. Patient 

medical charts were also reviewed to obtain detailed information on disease related 

characteristics and cancer treatment. Using the modified mouthwash method, buccal cell samples 

were collected from 96% of study participants.  

 The SECS is a population-based, case-control study of endometrial cancer conducted 

between January 1997 and December 2003 using a protocol similar to the SBCS; only 

community controls from the SECS were included in the present study (49). Except a few 
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questionnaires related specifically to breast or endometrial cancer risk, the questionnaires used in 

the SECS and the SBCS were virtually identical. Eligible cases were identified through the 

population-based Shanghai Cancer Registry and controls were randomly selected from the 

general population of Shanghai using the Shanghai Resident Registry and were age frequency 

matched to cases. Women with a history of cancer or hysterectomy were not eligible. Trained 

interviewers conducted in-person interviews to collect detailed information on demographic 

factors, menstrual and reproductive history, hormone use, prior disease history, physical activity, 

tobacco and alcohol use, weight, and family history of cancer. Anthropometrics measurements 

were taken. 

 The SWHS is a population-based cohort study that were recruited from urban Shanghai 

between 1997 and 2000 (95). The cohort has been followed by a combination of record linkage 

and active follow-ups (49). All these SBCGS studies are conducted among Chinese women in 

Shanghai, a genetically homogenous population, using virtually identical protocols in data and 

sample collection. Genomic DNA for all included participants was extracted using commercial 

DNA purification kits. All participants provided written informed consent prior to interview, and 

institutional review boards of all institutes in both China and the United States approved the 

study. Included in this study are 610 cases and 697 controls of SBCS-I, 1,651 cases and 1,539 

controls of SBCS-II, 2,919 cases of SBCSS, 855 controls of SECS, and 586 cases and 2,612 

controls of SWHS. A total of 11,469 (5,766 cases and 5,703 controls) participants from SBCGS 

were included in this study. Descriptive characteristics for study participants are presented in 

Table 1.   
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Nashville Breast Health Study (NBHS)  

 The Nashville Breast Health Study (NBHS) is a population based case-control study 

conducted between February 1, 2001 and December 31, 2008, in Nashville, Tennessee. Through 

a rapid case ascertainment system, we identified newly-diagnosed breast cancer cases through 

the Tennessee State Cancer Registry and five major hospitals in the city that provide medical 

care for breast cancer patients. Eligible cases were women who were newly diagnosed with 

primary breast cancer (invasive ductal or ductal carcinoma in situ) between the ages of 25 and 75 

years old. They had no prior history of cancer other than non-melanoma skin cancer. The 

majority of participants (92%) were residents of the Nashville eight-county metropolitan area. 

Eligibility criteria for study participation included a resident telephone, English speaking, and 

capable of providing informed consent. Control subjects had virtually identical criteria to cases 

with the exception that they had no prior breast cancer diagnosis. Controls were identified mostly 

via random-digit dialing of households in the same geographic area as cases. Controls were 

frequency matched to cases on 5-year age group, race, and county of residence. Information on 

demographic factors, as well as known and suspected risk factors for breast cancer, was 

ascertained through a structured questionnaire administered via telephone interview. Two 

methods were used to collect buccal cell samples: Oragene saliva collection kits (DNA GenoteK, 

Ottawa, Canada) and mouthwash samples. This study was approved from the institutional review 

boards of Vanderbilt University Medical Center and of the individual collaborating institutions. 

All participants provided informed consent prior to enrollment in this study. A total of 2,965 

(1,509 cases and 1,456 controls) European and 772 (500 cases and 272 controls) African 

American ancestry participants from NBHS were included in this study. Descriptive 

characteristics for European women are presented in Table 1.   
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Southern Community Cohort Study (SCCS) 

 The Southern Community Cohort Study (SCCS) is a prospective cohort study initiated in 

2002 investigating racial disparities in the risk of cancer and other various chronic diseases (31). 

SCCS includes approximately 86,000 participants with two-thirds African American recruited in 

12 southern states. Participants completed a comprehensive, in-person, baseline interview or 

completed a study questionnaire asking various aspects of health conditions, behavioral factors, 

personal and family medical history, and other lifestyle factors. Once these participants return a 

completed questionnaire and signed consent form, they were asked to self-collect a buccal cell 

using the swishing method and mail it back to the lab at Vanderbilt. In the SCCS, 534 breast 

cancer cases of African American women were included in this study who were diagnosed with 

breast cancer. In addition, 534 controls of AA women were selected randomly from those who 

were cancer-free and frequency-matched to cases in a 1:1 ratio on age at enrollment (±1 year), 

recruitment method, and sample type (blood/buccal cell). Additional AA controls (n = 247) were 

selected from cancer-free SCCS participants and frequency-matched to NBHS cases by age (±1 

y), family income, and education in order to increase the statistical power. A total of 1,034 cases 

and 1,053 controls of African American participants from the SCCS and NBHS were included in 

the current study. 
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BioVU (the Vanderbilt DNA Databank) 

 The Vanderbilt's biorepository, BioVU, is composed of electronic medical records 

scrubbed of personal identifiers, linked to coded DNA samples. BioVU accrues DNA samples 

extracted from blood remaining from routine clinical testing after the samples have been retained 

for three days and are scheduled to be discarded. A full description of BioVU including its 

design, collection methods, and ethical considerations have been published elsewhere (32). 

Biological samples from BioVU are linked through an anonymous research unique identifiers to 

the Synthetic Derivative, a de-identified version of Vanderbilt‟s electronic medical record. Using 

the Synthetic Derivative, candidates were identified using informatics methods, cancer registry 

data and ICD-9 code. In the BioVU Breast Cancer Study, 695 cases and 3,784 controls of 

European women were included in this study. 

Table 1. Participants included in current study 

Study (N = sample size) Cases Controls Ethnicity Age (year, mean ± sd) 

SBCGS (N = 11,469) 5,766 5,703 Chinese 53.08 ± 9.46 

NBHS (N = 2,965) 1,509 1,456 European American 52.73 ± 9.19 

NBHS/SCCS (N = 2,087) 1,034 1,053 African American 54.59 ± 9.79 

BioVU (N = 4,479) 695 3,784 European American 57.55 ± 20.40 

     

Total (N = 21,000) 9,004 11,996     
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B2.2. Genotyping Method  

All Chinese women from SBCGS were genotyped using the Asian Exomechip, an 

expanded Illumina HumanExome-12v1_A Beadchip. In order to improve the coverage for the 

low frequency variants in Asian population, we added additional customer content variants onto 

the Illumina HumanExome-12v1_A Beadchip. The original Exome array includes 247,870 

markers focused on protein-altering variants selected from sequencing data in >12,000 subjects, 

mostly from European ancestry populations. In the Asian Exomechip, the additional variants 

were primarily selected from exome sequencing in 581 Chinese women from SBCS, exome 

sequencing in 496 Singapore Chinese, and Asian data in the 1000 Genomes Project. We added 

nonsynonymous, splicing and stop-altering variants observed two or more times in any of these 

datasets or once in any two of the three datasets.  

All EA and AA women from NBHS and SCCS data were genotyped using the Illumina 

HumanExome-12v1_A Beadchip, which includes 247,870 markers focused on protein-altering 

variants selected from sequencing data in >12,000 subjects. Details about SNP content and 

selection strategies were described at http://genome.sph.umich.edu/wiki/Exome_Chip_Design. In 

brief, the Illumina HumanExome BeadChip is enriched for rare and low frequency coding 

variations previously identified from the sequenced exomes of approximately 12,000 individuals 

of diverse populations for variations seen in more than two individuals and in more than two 

sequencing projects. Nonsynonymous variants had to be observed three or more times in at least 

two studies, and splicing and stop-altering variants had to be observed two or more times in at 

least two studies. 

 All samples included in SBCGS, NBHS, and SCCS were genotyped at the Genome 

Quebec Innovation Centre (Montreal, Quebec, Canada) following Illumina‟s protocol. On each 
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96-well plate, blind duplicate samples and two HapMap samples were included as quality control 

(QC). Genotype calling was carried out using Illumina's GenTrain version 2.0 clustering 

algorithm in GenomeStudio version 2011.1. We used study samples to determine cluster 

boundaries. After clustering, ~80,000 variants were manually reviewed and clusters were edited 

for 27,506 variants.  

For BioVU data, all EA women were genotyped using the Illumina HumanExome 

Beadchip. Genotyping was performed at the Vanderbilt Technologies for Advanced Genomics 

(VANTAGE) Core, and genomic data were processed by the Vanderbilt Technologies for 

Advanced Genomics Analysis and Research Design (VANGARD) Core. GenomeStudio's 

GenTrain and GenCall were used for clustering and genotype calling. The details have been 

previously described (https://victr.vanderbilt.edu/pub/biovu). 

B2.3. Quality control (QC) for genotype data 

After calling genotypes using GenomeStudio version 2011.1, further QC procedures are 

conducted using plink (http://pngu.mgh.harvard.edu/~purcell/plink/). Concordance rates are 

evaluated for HapMap samples genotyped in our study and sequenced by the 1,000 Genomes 

Project (http://www.1000genomes.org/). Pair-wise proportion of identity-by-descent (IBD) is 

estimated to identify potentially genetically identical, unexpected duplicated samples or close 

relatives.  

 The samples were excluded in the following criteria. First, samples with genotype call 

rates of < 98% were removed from analysis. The genotype call rate is defined as the fraction of 

called SNPs per sample over the total number of SNPs in the dataset. Second, samples were 

excluded if consistence rates between the HapMap samples with 1000 Genomes data is < 99%.  

Additionally, samples with wrong sex, heterozygosity outlier, ethnic outliers, or consistence rates 
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among duplicated samples < 99% were removed. Due to the assumption of independent 

sampling in our dataset, individuals who have familial relations with each other need to be 

removed. Thus, samples with close relationship were excluded by IBD analyses. 

 The SNPs were excluded in the following criteria. First, SNPs with MAF of 0, or SNP 

call rates of < 98%, or genotyping concordance rate < 98% in QC samples were removed. 

Additionally SNPs that violate the Hardy Weinberg Equilibrium at a P-value threshold of < 

1×10
-5

, or redundant SNPs were excluded from the dataset. We also excluded cautious SNPs 

discovered by the exome-chip design group 

(http://genome.sph.umich.edu/wiki/Exome_Chip_Design#Cautious_Sites).  

B2.4. Treatment of Confounding 

Population stratification refers to differences in allele frequencies between cases and 

controls due to systematic differences in ancestry rather than association of genes with disease. 

In GWAS, population stratification is a major confounding factor for case-control association 

studies and can result in false positive associations since the association found could be due to 

the underlying structure of the population and not a disease associated locus (96, 97). Therefore, 

population stratification can be confounders depending on which data people used in their 

GWAS.  

 When analyzing rare variants, it is especially important to adequately control for 

population substructure since rare variants tend to have occurred more recently and therefore 

have greater population diversity than common variants. Figure 1 shows that the rarer a genetic 

variant is within a population, the less likely it is to be found in all ethnic groups (98). If a 

GWAS identified genetic marker is linked to a mixture of common and rare causal alleles, some 
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of the rare ones are likely to differ in frequency in different populations, or even be completely 

absent in some populations (98).  

Figure 1. Rare Alleles More Likely Population-Specific (One hundred people were sampled 

from each population). 

 

Figure reprinted from Bustamante et al. Genomics for the world. Nature 2011;475(7355):163-5 (98) 

In GWAS, principal-component analysis (PCA) and linear mixed models are commonly 

used to adjust for population stratification (99). In this study, principal components analyses 

(PCA) were conducted using EIGENSTRAT 

(http://genepath.med.harvard.edu/~reich/EIGENSTRAT.htm) to identify population outliers with 

the 1,000 Genomes Project data as reference. 
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B2.5. Data analysis 

B2.5.1. Single-variant tests 

The association between each genetic variant and a disease trait is typically evaluated by 

logistic regression for binary traits. The standard approach in GWAS to testing for association 

between genetic variants and complex traits is a single-variant test under an additive genetic 

model. Single-variant tests can also identify association with rare, low-frequency variants if 

sample sizes are large enough. However, single-variant test of rare variants has very low power 

for detecting association than common variants with identical effect sizes, due to extremely low 

frequency (usually < 0.01) (100).  

 Single-variant tests are still a useful tool for rare-variant analysis if the sample sizes and 

the effects are large enough. It should be considered that single-variant-based P-value estimates 

based on standard regression methods might not be accurate if the number of subjects with the 

variant is small since the requisite multiple test corrections are poorly understood. This issue will 

require more methodological development. Due to the large sample size of SBCGS Chinese 

population, we first conducted single-variant analysis adjusted for the five first principal 

components (PCs). Studies have shown that firth test is best for joint analysis in both balanced 

and unbalanced studies, and the score test is best for meta-analysis in balanced studies only (101, 

102). Firth logistic regression introduces a more effective score function by adding a term that 

counteracts the first-order term from the asymptotic expansion of the bias of the maximum 

likelihood estimation (102, 103). We used score and firth test for logistic regression implemented 

in Rvtests (http://genome.sph.umich.edu/wiki/Rvtests). First five principal components were 

adjusted for both score and firth tests. In addition to logistic regression, Fisher‟s exact test is 

another commonly used case-control test for rare variants since it guarantees type I error control 
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for small sample sizes or low variant frequency. It is a conservative test and thus has its power 

diminished to some extent. However, due to the very low allele frequency (usually < 0.01) for 

rare variant, the expected number in any cell of the contingency table might be small. Therefore, 

we conducted Fisher‟s exact test as a secondary test to confirm the association signal from 

logistic regression. Further conditional analyses were conducted by adjusting the index SNP in 

each locus (SNPs within 1Mb flanking regions of the index SNP) in order to recognize 

independent association signals. 

B2.5.2. Gene-Based Aggregation Tests 

Rare variants are more abundant than common variants in the human genome, and 

controlling for multiple testing problems becomes a severe issue for any single-variant-based 

analysis. To address these questions, researchers have recently developed statistical methods 

specifically configured for rare-variant association analysis to increase power. These methods 

evaluate cumulative effects of multiple variants in a biologically relevant region, such as a gene, 

instead of testing the effects of single variants which is commonly done in GWAS. Power will be 

increased when multiple variants in the group are associated with a given disease or trait. 

 Numerous methods have been developed to aggregate information across several variant 

sites within a gene to enrich association signals and to reduce the penalty of multiple testing. The 

methods we are using are all regression-based methods. The simplest approach is the burden test, 

which creates a burden score for each subject by taking a weighted linear combination of the 

mutation counts within a gene or indicating whether there is any mutation within a gene (104, 

105). The summary genetic score, is  (weighted sum test) is then: 

  ij

m

j

ji gws 



1
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where jw  is a threshold indicator or weight for variant  j, i is subject, and ijg is allele counts for 

m variants of interest. For the Combined Multivariate and Collapsing (CMC) method, the genetic 

variables contain the genotypes of common variants and the burden scores of rare variants (105). 

CMC method provides the ability to easily adjust for covariates. The Madsen-Browning burden 

test calculates is  based on allele frequency in control group (104). These simple methods are 

powerful when a large proportion of variants are causal and effects are in the same direction 

(106). However, they might lose power in the presence of both trait-increasing and trait-

decreasing variants or a small fraction of causal variants (106). A second approach is the variable 

threshold (VT) test, which performs a burden test for variants with MAFs below a certain 

threshold and minimizes the P-value over the observed MAF thresholds (107, 108). This 

adaptive burden test is generally more robust than the original burden methods since they use 

fixed weights or thresholds (106). However, adaptive burden tests are often computationally 

intensive due to the required permutation to estimate P-values. A third approach is the variance-

component test, which is designed to detect variants with opposite effects within a gene using a 

variance-component test within a random-effects model (109–111). The sequence kernel 

association test (SKAT) is one of the variance-component tests in which regions can be defined 

by genes (in candidate-gene or whole-exome studies) or moving windows across the genome (in 

whole-genome studies) (111). For each region, SKAT analytically calculates a P-value for 

association while adjusting for covariates (111). Because SKAT evaluates significance via a 

score test, which operates under the null hypothesis, the type I error is protected irrespective of 

the kernel and the weights used (111). The SKAT method is powerful in the presence of both 

trait-increasing and trait-decreasing variants, but less powerful when most variants are causal and 

effects are in the same direction (106). Also, all three approaches are based on varying 
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assumptions about the underlying genetic model, and power for each test depends on the true 

disease model. For these reasons, we applied all three approaches in this study. We conducted 

gene-based tests including Madsen-Browning burden test, CMC, variable threshold burden test, 

and SKAT for the Chinese, EA, and AA populations. All methods are implemented in Rvtests 

(http://genome.sph.umich.edu/wiki/Rvtests). Rare variants with MAF ≤ 0.01 or MAF ≤ 0.05 

within each gene were aggregated for nonsynonymous and LOF variants separately based on the 

functional prediction results from Sub-Aim 1. Because covariates can be incorporated in CMC 

and SKAT tests, we adjusted for the five first principal components (PCs) in order to control for 

potential confounders. In addition, we carried out conditional analyses to recognize independent 

association signals by adjusting the index SNP in each locus (SNPs within 1Mb flanking regions 

of the index SNP). 

B2.5.3. Rare-variant Meta-Analysis   

Meta-analysis of GWAS has led to the discoveries of common genetic variants for many 

complex human diseases by providing an effective way to combine data from multiple studies 

(112–114). Rare-variant meta-analysis can be performed efficiently with simple study-specific 

summary statistics for the construction of rare-variant test statistics across large numbers of 

samples. Meta-analysis is especially important in rare-variant association studies since detecting 

rare-variant associations requires large sample sizes. The traditional meta-analysis method is to 

combine P-values across studies by using Fisher‟s or Stouffer‟s Z score methods (112, 115). 

However, this approach has been known that it is less powerful than joint analysis of individual-

level data and fixed-effects meta-analysis (112). Fixed-effects meta-analysis can use individual-

level data to achieve power essentially identical to that of joint analysis (116, 117). 



 35 

 In the current study, meta-analyses of single-variant results from both score and firth tests 

were conducted using the fixed-effect inverse variance method to combine the β estimates and 

standard errors from each dataset (SBCGS, NBHS, SCCS and BioVU). This method is 

implemented in METAL software (118). This approach weights the effect size estimates, or β-

coefficients using the inverse of the corresponding standard errors, and it also requires effect size 

estimates and their standard errors to be in consistent units across studies (118). For meta-

analyses of single-variant results from Fisher‟s exact test, a P-value based combined method 

proposed by Michael et al.(119) was used. Similar to the approach used by METAL software, P-

value based combined method used the z-statistic which summarizes the direction of effect 

relative to the reference allele, and then an overall z-statistic and p-value are calculated from a 

weighted sum of the individual statistics. Weights are proportional to the square-root of the 

number of samples in each study. For a study with unequal numbers of cases and controls, we 

used the effective sample size, where Neff = 4/(1/Ncases+1/Nctrls) (118). 

For meta-analysis of gene-based results, first, summary statistics and covariance matrices 

of score statistics for each study were generated by RAREMETALWORKER (120). Compared 

to the traditional meta-analysis, combined score statistics improve computational efficiency 

(given that only a null model shared between markers needs to be fit) and provide numerical 

stability (since one does not need to estimate regression coefficients and their standard errors, 

which is difficult for rare variants) (106). Then, RAREMETAL was used to conduct gene-based 

meta-analysis using Madsen-Browning burden test, CMC, variable threshold burden test, and 

SKAT (120). The main idea for RAREMETAL is that gene-level test statistics can be 

reconstructed from single variant score statistics and their covariance matrix, and that, when LD 
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relationships between variants are known, the distribution of gene-level statistics can be derived 

to evaluate significance (120). 

Using these meta-analyses, we have more power to detect true associations between rare 

variants and breast cancer risk by combining the Chinese, EA, and AA populations. 

B2.5.4. Compound Heterozygous analysis  

Common variants in GWAS loci were detected by the additive approaches since there are 

many homozygotes observed for these common variants, and therefore strong signal exists even 

under the additive model (121).  However, the power of the additive model to detect recessive 

alleles could reduce dramatically at lower frequencies since the numbers of homozygotes 

observed are far fewer. Therefore, it is very important to detect rare recessive variants that confer 

significant risk in a recessive manner. Several studies have reported the importance of rare 

recessive variants associated with complex diseases including autism and schizophrenia (122, 

123).  

The compound heterozygous (CH) is a recessive model in which the two haplotypes have 

to carry at least one rare allele each (124). For Autism Spectrum Disorders (ASD), Lim et al. 

found and confirmed the inheritance of two previously unreported compound heterozygous 

nonsense mutations in USH2A gene from both parents (125). Recently, Chen et al. developed a 

general framework for group-wise TDT (gTDT) which is haplotype-based and models the 

transmission of rare variant carrying haplotypes (124). Their study focused on 

Transmission/Disequilibrium Tests (TDT) based on family designs, and evaluated the power of 

gTDT using CH analysis (124). Although CH is commonly observed in Mendelian diseases, it 

may also play a role in complex disease (122, 126).  
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In the current study, we conducted CH analysis in order to investigate recessive models 

within each gene that are associated with breast cancer risk (124). To our knowledge, there is no 

study to conduct CH analysis in breast cancer using whole-exome chip data. First, genotypes had 

been phased using SHAPEIT v2 (segmented haplotype estimation and imputation tool) in order 

to identify CH (127). After phasing, we designed coding schemes to see which sample is CH for 

a particular gene: i) we identified the haplotypes for each gene and each sample, ii) if both 

haplotypes carry rare variants, then it is selected as a CH (coded as 1), and non-CH (coded as 0) 

otherwise. After identifying CHs, we constructed a 2x2 table for each gene by counting number 

of samples with CH and without CH in cases and controls. Fisher‟s exact test has been used to 

test statistically significant associations between CH and case/control status for each gene. All 

analyses have been conducted using R statistical language (http://www.r-project.org/) and Perl 

programming language (http://www.perl.org/). For meta-analyses of CH results from each study, 

a P-value based combined method proposed by Michael et al.(119) was used. 

B2.5.5. Functional prediction of identified variants 

For the identified variants from association results of Sub-Aim 2, we predicted potential 

damaging effects using three different algorithms; SIFT algorithm (Sorting Intolerant From 

Tolerant), PolyPhen-2 (Polymorphism Phenotyping v2), and PROVEAN (Protein Variation 

Effect Analyzer). All three algorithms use alignment-based score in order to predict the 

damaging effects of variants. 

 The SIFT algorithm was developed to predict whether an amino acid substitution affects 

protein function (128). SIFT prediction is based on the degree of conservation of amino acid 

residues in sequence alignments derived from closely related sequences, collected through PSI-

BLAST (128). If the SIFT score is equal to or below a predefined threshold (0.05), the variant is 
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predicted to have a "deleterious" effect, and if the score is above the threshold, the variant is 

predicted to have a "tolerated" effect. PolyPhen-2 predictions are calculated for all resulting 

amino acid residue substitutions in human UniProtKB proteins with the maximum coding 

sequences (CDS) sequence overlap and identity (129). If the PolyPhen-2 score is greater or equal 

to 0.957, the variant is predicted to have a "probably damaging" effect, if the score is in between 

0.453 and 0.956, then the variant is predicted to have a "possibly damaging" effect, otherwise it 

is predicted as benign (≤ 0.452). Choi et al. have developed a novel prediction algorithm with 

expanded functions, PROVEAN, which supports functional predictions for SNPs as well as 

insertions, deletions, and replacements of amino acids at the protein level (130, 131). If the 

PROVEAN score is equal to or below a predefined threshold (e.g. -2.5), the protein variant is 

predicted to have a "deleterious" effect. If the PROVEAN score is above the threshold, the 

variant is predicted to have a "neutral" effect. 

 Those algorithms provided us computational predictions of whether identified variants 

are likely to be damaging (whether missense alleles are null or neutral).  
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CHAPTER V 

 

    FINDINGS FOR SPECIFIC AIM 1: IDENTIFY POTENTIAL FUNCTIONAL GENES 

IN THE PREVIOUSLY REPORTED GWAS LOCI ASSOCIATED WITH BREAST 

CANCER RISK. 

 

A. Results 

We selected 109 GWAS loci associated with breast cancer risk using publicly available 

databases. There were 3,851 genes in 1 Mb flanking regions of 109 GWAS loci. For eQTL 

analysis using TCGA data, we adjusted CNV and DNA methylation since tumors acquire 

frequent genetic and epigenetic alterations, which can affect gene expression (89). Although 

CNV and DNA methylation are related to somatic mutation and gene expression, there is still 

lack of correlation between CNV and DNA methylation, and genetic variants. Heyn et al. 

showed that one-third of the DNA methylation differences were not associated with any genetic 

variation (132). Wagner et al. recently reported significant correlation between gene expression 

and DNA methylation in developmentally significant regions having little or no discernible 

involvement of DNA sequence variation (133). By definition of confounding in epidemiology 

area, confounding variable has to be causally associated with the outcome (gene expression) and 

non-causally or causally associated with the exposure (genetic variants). By definition, CNV and 

DNA methylation are not strong confounders, but they still have potential minimal confounding 

effect.  

We checked the relationship between adjusted and unadjusted TCGA data for CNV and 

DNA methylation. In total, 27,831 SNPs were overlapped between adjusted and unadjusted 

TCGA data after using certain criteria (eQTL P-value < 0.05, RSQR > 0.8, MAF > 0.05). We 
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found potential confounding effect of CNV and DNA methylation between adjusted and 

unadjusted TCGA data (Figure 2). Plot showed the -log10 P-values (y-axis and x-axis) for each 

SNP.  

Figure 2. Plot showing relationship between adjusted and unadjusted TCGA data for CNV 

and DNA methylation (eQTL P-value < 0.05, RSQR > 0.8, MAF > 0.05) 

 

For eQTL analysis using METABRIC data, we were not able to adjust CNV and DNA 

methylation because they were not provided. We might have a reduced power to conduct eQTL 

analysis using METABRIC since CNV and DNA methylation have potential minimal 

confounding effect, but we would not have an inflated type I error. Finally, we compared eQTL 

results using all three datasets (TCGA, METABRIC, GTEx) with and without adjusting CNV 

and DNA methylation for TCGA data (Figure 3 and Figure 4 respectively). Total 1,050 genes 

were overlapped among all three datasets after adjusting CNV and DNA methylation for TCGA 
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data (1,198 genes from TCGA, 1,235 genes from METABRIC, and 1,640 genes from GTEx) 

(Figure 3). Total 1,046 genes were overlapped among all three datasets without adjusting CNV 

and DNA methylation for TCGA data (1,253 genes from TCGA, 1,235 genes from METABRIC, 

and 1,640 genes from GTEx) (Figure 4). We also checked the number of genes identified from 

eQTL analyses with different thresholds (Table 2). 

Figure 3. Venn diagrams showing number of breast cancer candidate genes from TCGA, 

METABRIC, and GTEx
a
 

 

a
 TCGA breast cancer tumor tissue was adjusted for CNV and DNA methylation. 
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Figure 4. Venn diagrams showing number of breast cancer candidate genes from TCGA, 

METABRIC, and GTEx
a
 

 

a
 TCGA breast cancer tumor tissue was not adjusted for CNV and DNA methylation. 

 

Table 2. Number of genes identified from eQTL analysis using three datasets. 

    Number of Genes 

    A B 

P < 0.01 TCGA 41 886 

 

METABRIC 54 544 

 

GTEx 72 913 

  Union of 3 datasets 133 1,343 

P < 0.05 TCGA 101 1,198 

 

METABRIC 133 1,235 

 

GTEx 150 1,640 

  Union of 3 datasets 329 1,799 

FDR < 0.05 TCGA 14 539 

 

METABRIC 28 813 

 

GTEx 34 731 

  Union of 3 datasets 60 860 
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A: eQTL results using 109 GWAS index SNPs (adjusting CNV and DNA methylation for 

TCGA) 

B: eQTL results using flanking 1Mb of 109 GWAS index SNPs (adjusting CNV and DNA 

methylation for TCGA) 
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B. Discussion 

We performed cis-based eQTL analyses for all genes 1Mb flanking the 109 GWAS loci 

which have been identified from breast cancer GWAS. Since we have CNV and DNA 

methylation data for TCGA, but not for METABRIC, we compared the differences between 

adjusted and unadjusted TCGA data for CNV and DNA methylation. Results showed that there 

is potential minimal confounding effect of CNV and DNA methylation on gene expression. 

From all three datasets (TCGA, METABRIC, GTEx), a total of 1,799 genes (union of 

three datasets) 1Mb flanking the 109 GWAS loci at a P-value of 0.05 were selected with 

expression level associated with breast cancer risk-associated SNPs after adjusting CNV and 

DNA methylation for TCGA. With the 109 GWAS index SNPs, a total of 329 genes (union of 

three datasets) at a P-value of 0.05 were selected from eQTL analysis. We did not consider 

association directions for genes because underlying biological mechanisms have not been 

characterized for genetic variants that are involved in gene pathways. Even though a gene is 

known to be associated with increased risk of breast cancer, we are not sure whether genetic 

variants in this gene are associated with increased risk of breast cancer or decreased risk of breast 

cancer.  

Human gene regulation is often mediated by distal enhancer elements. Also, including 

more genes 1Mb flanking the 109 GWAS loci could give us strong signal due to the many 

multiple comparisons. Therefore, we decided to use 1,799 genes 1Mb flanking the 109 GWAS 

loci (P-value < 0.05) for further analysis in the following aims. We are not aware of any study 

that evaluates eQTLs using all three major databases. We have used the most updated datasets 

for all three databases, and no study has yet reported eQTL results using all 109 GWAS loci that 

have been found to be associated with breast cancer risk so far. The mechanistic basis for the 
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association between breast cancer and most of the common variants discovered in GWAS is still 

largely unknown. Common variants found in GWAS studies can affect gene expression level, 

and missense/nonsense variants in these genes may change expression level, structure and 

function. Therefore, our comprehensive eQTL analysis would help to find these rare variants 

which may contribute to breast cancer. 
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CHAPTER VI 

 

FINDINGS FOR SPECIFIC AIM 2: INVESTIGATE RARE VARIANTS ASSOCIATED 

WITH BREAST CANCER RISK. 

 

A. Sub-Aim 1: Functional prediction of rare coding variants neighboring common GWAS 

loci 

A1. Results 

We predicted nonsynonymous variants located flanking 1Mb of the indexed SNP of 109 

GWAS loci using ANNOVAR. As shown in Table 3, we predicted 7,161 variants from SBCGS, 

7,233 variants from NBHS, 8,192 variants from NBHS/SCCS, and 7,681 variants from BioVU. 

Then, we compared total number of LOF variants predicted from ANNOVAR and LOFTEE 

since there are no classically defined LOF variants. ANNOVAR includes frameshift, stop_gain, 

and stop_loss as LOF category, and LOFTEE includes frameshift, stop_gain, 

splice_donor_variant, and splice_acceptor_variant as LOF category. In total, 130 (160) 

(ANNOVAR (LOFTEE)) variants from SBCGS, 121 (152) variants from NBHS, 128 (159) 

variants from NBHS/SCCS, and 143 (176) variants from BioVU were predicted as LOF variants. 

There were no frameshift variants predicted by either ANNOVAR or LOFTEE. Most of the LOF 

variants were predicted from stop_gain variants category which are sequence variants whereby at 

least one base of a codon is changed, resulting in a premature stop codon or leading to a 

shortened transcript.  
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Table 3. Summary of annotation from ANNOVAR and LOFTEE (Number of Nonsynonymous, Synonymous, LOF variants) in 

1Mb flanking the 109 GWAS loci
a 

  Per study 

  SBCGS (Asian) NBHS (EA) NBHS/SCCS (AA) BioVU (EA) 

Nonsynonymous 

(ANNOVAR) 
7,161 7,233 8,192 7,681 

Synonymous (ANNOVAR) 376 334 404 357 

LOF from ANNOVAR 130 121 128 143 

frameshift 0 0 0 0 

stop_gain 129 114 119 135 

stop_loss 1 7 9 8 

     
LOF from LOFTEE 160 152 159 176 

frameshift_variant 0 0 0 0 

stop_gain 121 104 110 126 

splice_donor_variant 20 24 30 25 

splice_acceptor_variant 19 24 19 25 
 

a
Shown are the total number of Nonsynonymous, Synonymous, LOF variants observed. 

 

 

 

 

 



 47 

We checked the number of candidate LOF variants in 1Mb flanking the 109 GWAS loci 

per individual in each study using LOFTEE. The average number of candidate LOF variants was 

1.5 for Asian from SBCGS, 1.9 for EA from NBHS, 2.9 for AA from NBHS/SCCS, and 1.6 for 

EA from BioVU (Table 4). On average, AA woman has the largest number of candidate LOF 

variants. The mean number of candidate LOF variants was similar in both Asian and EA women. 

Table 4. Number of LOF variants per individual in 1Mb flanking the 109 GWAS loci 

  Average per individual  

  Mean SD Min Max 

SBCGS (Asian) 1.5 1.0 0.0 7.0 

NBHS (EA) 1.9 1.2 0.0 8.0 

NBHS/SCCS (AA) 2.9 1.6 0.0 10.0 

BioVU (EA) 1.6 1.1 0.0 7.0 

 

A2. Discussion 

The most recognized deleterious variants are those that disrupt a protein-coding gene 

either by leading to loss of function or by altering an amino acid. Among the analysis steps for 

rare variant study, functional prediction (of being deleterious) plays an important role in filtering 

or prioritizing nonsynonymous and LOF variants for further analysis. Thus, we prioritized those 

variants separately using ANNOVAR and LOFTEE for further rare variant association analysis.  

  Every human carries at least a hundred LOF variants predicted to severely disrupt the 

function of protein-coding genes. Discovering LOF variants in the human population remains a 

significant challenge since these variants can be annotated inaccurately. In order to overcome 

this issue, LOFTEE has been introduced for predicting many important classes of LOF variant, 

such as splice-disrupting variants outside canonical splice sites which are not captured by other 

methods such as ANNOVAR. LOFTEE removes variants within short distance (less than 15bp) 

intronic regions, and non-canonical splice region (i.e. intron does not start with GT and end with 
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AG). They have been systematically validated their software using large-scale functional data 

sets to assess their accuracy in the detection of LOF variants. They did not include stop_loss and 

start_gain variants since they found that those variants may or may not truncate or remove any 

sequence. They had also considered adding start_loss variant since this could ablate transcript, 

but they found that these variants are not too deleterious based on allele frequency and functional 

data information (they will be publishing these data soon). Therefore, using LOFTEE, we were 

able to predict more LOF variants than ANNOVAR.  

As shown in Table 3, we found that most candidate LOF variants are predicted from 

stop_gain variants category from both ANNOVAR and LOFTEE. Stop_gain variants are 

prevalent, having an estimated number of 100 to 200 occurrences per human genome (134, 135). 

As discussed previously, different LOF prediction algorithms (ANNOVAR and LOFTEE) use 

different information to prioritize LOF variants. We used LOF variants predicted from LOFTEE 

since they have improved variant annotations. Our functional prediction approaches provided us 

meaningful candidate nonsynonymous and LOF variants which we used for further analysis. 
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B. Sub-Aim 2: Associations between rare-variants and breast cancer risk in Chinese, 

European American, and African American populations. 

B1. Results 

Single-variant analysis results 

Total 15,033 SNPs from SBCGS, 7,729 SNPs from NBHS (EA population), 8,686 SNPs 

from NBHS/SCCS (AA population), and 8,160 SNPs from BioVU were included in analyses. 

All analyses were adjusted for index SNPs. We found several rare variants with MAF < 0.01 that 

were associated with breast cancer risk at P-value < 0.01 (unless otherwise stated, “P-value” 

refers to the P-value obtained from logistic regression (score test)); 7 SNPs from the Asian 

population (Table 5), 12 SNPs from the EA population (NBHS) (Table 6), 7 SNPs from the AA 

population (Table 7), and 38 SNPs from the EA population (BioVU) (Table 8). For BioVU, 6 

missense variants were associated with breast cancer risk at P-value < 0.001 (MAF < 0.01) 

among 38 rare variants. For Asian, 6 missense variants (chr4:107181660, rs190673256, 

rs114365673, rs201444816, chr11:68530105, and chr22:29656346) were associated with breast 

cancer risk at P-value < 0.01 (Table 5). Among them, 4 SNPs were predicted to be “damaging” 

based on three functional prediction algorithms (chr4:107181660 (Ile->Asn), rs114365673 (Arg-

>His), rs201444816 (Asp->Glu), and chr11:68530105 (Pro->Leu)). 

For EA and AA populations (NBHS), all rare variants (MAF < 0.01) were identified as 

missense variants at a P-value of < 0.01. Ten of the 12 missense variants, and 5 of the 7 missense 

variants were predicted to be “damaging” in EA (NBHS) and AA (NBHS) populations, 

respectively. For BioVU, a total of 36 missense variants and 2 stop_gain variants were associated 

with breast cancer risk at P-value < 0.01 (MAF < 0.01) (Table 8). Among 36 missense variants, 

26 missense variants were predicted to be “damaging” from at least one of the three functional 
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prediction algorithms. We also compared P-values obtained from logistic regression analyses of 

score test and firth test with fisher‟s exact test since it controls type I error for low variant 

frequency. We found consistent results from three test statistics in our datasets. Results from 

conditional analysis adjusted for index SNPs were consistent with the results without adjustment 

for index SNPs. 
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Table 5. Associations of breast cancer with SNPs with MAF<0.01 and P-value<0.01 among Asian population (SBCGS)
a
 

Gene SNP (Alleles)
b
 Chr:Pos

c
 Annotation 

Amino acid change 

(Polyphen-2 

score/SIFT 

score/PROVEAN 

score) 

No. of Samples 

(case/control)
d
 

OR (95%CI) 
e
 

P-

value
f
 

P-

value
g
 

P-

value
h
 

ATP2B4 
chr1:203671173 

(C/T) 
chr1:203671173 Synonymous 

 
21/6 3.46 (1.62-7.36) 0.004 0.006 0.009 

TBCK 
chr4:107181660 

(T/A) 
chr4:107181660 Missense 

Ile->Asn 

(0.547/0.001/-5.07) 
4/16 0.25 (0.10-0.59) 0.007 0.007 0.015 

SYNE1 rs190673256 (T/C) chr6:152560708 Missense 
Arg->Gln 

(0.002/0.76/0.41) 
28/8 2.57 (1.38-4.79) 0.007 0.003 0.015 

CPA1 rs114365673 (A/G) chr7:130023254 Missense 
Arg->His 

(0.915/0.077/-3.93) 
5/17 0.29 (0.12-0.66) 0.009 0.010 0.017 

DMRTA1 rs201444816 (G/C) chr9:22447094 Missense 
Asp->Glu        

(0.888/0/-0.54) 
35/14 2.35 (1.34-4.13) 0.006 0.004 0.008 

CPT1A 
chr11:68530105 

(A/G) 
chr11:68530105 Missense 

Pro->Leu 

(0.996/0.035/-5.24) 
13/2 6.4 (2.32-17.64) 0.005 0.007 0.015 

RHBDD3 
chr22:29656346 

(G/A) 
chr22:29656346 Missense 

Trp->Arg 

(0.003/0.842/-0.13) 
11/29 0.37 (0.20-0.69) 0.004 0.0041 0.007 

a
 All SNPs with MAF < 0.01. All SNPs with P-value < 0.01 in at least two of the test statistics. 

b 
Effect allele/reference allele. 

c
 Chromosome position (bp) based on NCBI Human Genome Build 37. 

d 
Number of samples carrying heterozygous variant. 

e 
OR (95% CI) was adjusted for first five principal components. 

f 
P-value obtained from logistic regression analysis (score test).. 

g 
P-value obtained from fisher's exact test. 

h 
P-value obtained from firth logistic regression analysis. 
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Table 6. Associations of breast cancer with SNPs with MAF<0.01 and P-value<0.01 among European American population 

(NBHS)
a
 

Gene SNP (Alleles)
b
 Chr:Pos

c
 Annotation 

Amino acid change 

(Polyphen-2 

score/SIFT 

score/PROVEAN 

score) 

No. of Samples 

(case/control)
d
 

OR (95%CI) 
e
 

P-

value
f
 

P-

value
g
 

P-

value
h
 

DFFA 
rs138842024 

(G/A) 
chr1:10529326 Missense 

Ile->Thr (1/0.121/-

2.32) 
30/12 2.42 (1.32-4.46) 0.008 0.008 0.012 

CLCA2 
rs55736627 

(T/C) 
chr1:86894231 Missense 

Thr->Ile 

(0.003/0.250/-0.57) 
38/15 2.49 (1.45-4.30) 0.002 0.002 0.004 

MTMR11 
rs145659444 

(T/C) 
chr1:149902342 Missense 

Arg->His 

(0.999/0.003/-1.33) 
9/24 0.36 (0.18-0.72) 0.007 0.008 0.012 

CA14 
rs140320147 

(T/G) 
chr1:150230578 Missense 

Gly->Cys 

(0.998/0.002/-3.08) 
2/11 0.17 (0.06-0.50) 0.009 0.011 0.025 

IGFN1 
rs143014998 

(A/G) 
chr1:201186501 Missense 

Gly->Ser (1/0.001/-

5.42) 
19/5 3.64 (1.63-8.14) 0.006 0.007 0.013 

LPCAT1 
rs144081179 

(C/G) 
chr5:1463932 Missense 

Ala->Gly 

(0.049/0.03/-3.07) 
1/10 0.09 (0.03-0.31) 0.005 0.005 0.022 

ZSCAN12 
rs2232432 

(G/A) 
chr6:28359073 Missense 

Cys->Arg (1/0/-

10.79) 
20/6 3.22 (1.49-7.00) 0.008 0.009 0.015 

BRF2 
rs138763430 

(T/C) 
chr8:37707277 Missense 

Asp->Asn 

(0.026/0.029/-0.17) 
3/14 0.21 (0.08-0.54) 0.007 0.007 0.017 

ELK3 
rs118124881 

(T/C) 
chr12:96641121 Missense 

Thr->Met 

(0.988/0.012/-1.38) 
4/19 0.21 (0.09-0.47) 0.002 0.001 0.005 

PVR 
rs35959395 

(C/G) 
chr19:45153113 Missense 

Val->Leu 

(0.986/0.509/0.80) 
2/12 0.15 (0.05-0.44) 0.005 0.006 0.016 

BPIFA3 
rs142257117 

(A/G) 
chr20:31813013 Missense 

Asp->Asn (0/0.121/-

2.32) 
1/10 0.10 (0.03-0.32) 0.006 0.005 0.023 

ASCC2 
rs1894473 

(A/G) 
chr22:30221201 Missense 

Arg->Cys 

(0.013/0.02/-4.47) 
5/19 0.25 (0.11-0.55) 0.003 0.003 0.007 

a
 All SNPs with MAF < 0.01. All SNPs with P-value < 0.01 in at least two of the test statistics. 

b 
Effect allele/reference allele. 

c
 Chromosome position (bp) based on NCBI Human Genome Build 37. 



 53 

d 
Number of samples carrying heterozygous variant. 

e 
OR (95% CI) was adjusted for first five principal components. 

f 
P-value obtained from logistic regression analysis (score test). 

g 
P-value obtained from fisher's exact test. 

h 
P-value obtained from firth logistic regression analysis. 

 

 

 

 

 

 

 

 

 

 

 



 54 

Table 7. Associations of breast cancer with SNPs with MAF<0.01 and P-value<0.01 among African American population 

(NBHS/SCCS)
a
 

Gene SNP (Alleles)
b
 Chr:Pos

c
 Annotation 

Amino acid change 

(Polyphen-2 

score/SIFT 

score/PROVEAN 

score) 

No. of Samples 

(case/control)
d
 

OR (95%CI) 
e
 

P-

value
f
 

P-

value
g
 

P-

value
h
 

TMIE, 

PRSS50 

rs146386127 

(T/C) 
chr3:46754539 Missense 

Arg->Gln 

(0.836/0.397/-0.88) 
11/1 11.54 (3.70-35.97) 0.003 0.003 0.015 

GINM1 
rs1137086 

(G/A) 
chr6:149903597 Missense 

Lys->Glu (0.228/0.4/-

0.24) 
24/8 3.06 (1.51-6.21) 0.005 0.004 0.008 

INTS9 
rs141707027 

(T/C) 
chr8:28695158 Missense 

Gly->Ser (0.999/0.004/-

5.15) 
3/14 0.22 (0.08-0.56) 0.008 0.012 0.020 

SFTPD 
rs150968324 

(A/G) 
chr10:81706274 Missense 

Pro->Ser (0.992/0.013/-

3.82) 
9/1 9.43 (2.72-32.73) 0.009 0.011 0.029 

BLM 
rs142551229 

(G/A) 
chr15:91310209 Missense 

Lys->Glu 

(0.153/0.075/-3.13) 
7/22 0.32 (0.15-0.67) 0.006 0.008 0.012 

NSRP1 
rs117582579 

(A/G) 
chr17:28512405 Missense 

Asp->Asn 

(0.007/0.051/-0.98) 
2/13 0.15 (0.05-0.42) 0.004 0.007 0.014 

TBC1D16 
rs143618029 

(A/G) 
chr17:77984172 Missense 

Thr->Met 

(0.798/0.024/-1.86) 
1/10 0.10 (0.03-0.33) 0.007 0.012 0.026 

a
 All SNPs with MAF < 0.01. All SNPs with P-value < 0.01 in at least two of the test statistics. 

b 
Effect allele/reference allele. 

c
 Chromosome position (bp) based on NCBI Human Genome Build 37. 

d 
Number of samples carrying heterozygous variant. 

e 
OR (95% CI) was adjusted for first five principal components. 

f 
P-value obtained from logistic regression analysis (score test). 

g 
P-value obtained from fisher's exact test. 

h 
P-value obtained from firth logistic regression analysis. 
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Table 8. Associations of breast cancer with SNPs with MAF<0.01 and P-value<0.01 among European American population 

(BioVU)
a
 

Gene 
SNP 

(Alleles)
b
 

Chr:Pos
c
 Annotation 

Amino acid change 

(Polyphen-2 

score/SIFT 

score/PROVEAN 

score) 

No. of Samples 

(case/control)
d
 

OR (95%CI) 
e
 

P-

value
f
 

P-

value
g
 

P-

value
h
 

CASZ1 
rs143629495 

(C/T) 
chr1:10725188 Missense 

Gly->Arg 

(0.019/0.048/-1.13) 
3/1 16.57 (1.10-248.92) 0.001 0.013 0.022 

RSBN1 
rs41283514 

(C/T) 
chr1:114340502 Missense 

Arg->His 

(0.999/0.009/-1.74) 
8/11 4.05 (1.16-14.14) 0.001 0.005 0.004 

ADAM30 
rs147294252 

(G/A) 
chr1:120438577 Missense 

Thr->Ile 

(0.989/0.024/-4.84) 
12/25 2.60 (1.07-6.34) 0.005 0.010 0.007 

ITGA10 
rs35515885 

(G/A) 
chr1:145536012 Missense 

Ala->Thr 

(0.999/0.074/-1.48) 
10/17 3.01 (1.08-8.37) 0.004 0.005 0.007 

ANKRD35 
rs139709279 

(C/T) 
chr1:145561330 Stop_gain 

 
3/1 15.93 (1.10-230.40) 0.001 0.013 0.024 

LMOD1 
rs202184893 

(G/T) 
chr1:201868510 Missense Pro->His (1/0/-5.02) 4/3 7.25 (0.94-55.86) 0.002 0.014 0.013 

NFASC 
rs139099286 

(G/A) 
chr1:204978777 Missense 

Val->Ile 

(0.944/0.048/-0.66) 
4/4 5.43 (0.80-36.70) 0.007 0.024 0.021 

CASP10 
rs143882052 

(C/T) 
chr2:202060670 Missense 

Pro->Leu 

(0.049/0.017/-3.38) 
3/2 8.73 (0.74-103.24) 0.004 0.029 0.025 

SMARCAL1 
rs190386780 

(A/C) 
chr2:217347476 Missense 

Lys->Gln 

(0.607/0.123/-0.86) 
4/3 6.61 (0.92-47.67) 0.005 0.014 0.018 

LTF 
rs61739313 

(C/T) 
chr3:46487937 Missense 

Val->Met 

(0.995/0.034/-0.78) 
2/64 0.16 (0.08-0.31) 0.004 0.002 0.004 

CEP44 
rs146429616 

(G/A) 
chr4:175224861 Missense 

Arg->His 

(0.76/0.002/-4.62) 
6/8 4.13 (0.97-17.64) 0.005 0.013 0.010 

SLC12A7 
rs141825245 

(G/A) 
chr5:1081844 Missense 

Thr->Met 

(0.008/0.137/-1.54) 
3/2 9.13 (0.74-112.44) 0.003 0.029 0.022 

SLC6A18 
rs200802505 

(C/T) 
chr5:1239577 Stop_gain 

 
3/2 8.69 (0.74-102.04) 0.005 0.029 0.025 

GPR98 
rs200541858 

(A/G) 
chr5:89923041 Missense 

Asp->Gly (1/0.006/-

3.68) 
3/2 8.96 (0.74-108.85) 0.004 0.029 0.023 
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GPR98 
rs200816323 

(G/T) 
chr5:90059182 Missense 

Val->Phe 

(0.934/0.015/-1.77) 
6/6 5.80 (1.18-28.53) 0.0006 0.005 0.003 

GPR98 
rs201890097 

(A/G) 
chr5:90119357 Missense 

Thr->Ala 

(0.037/0.339/-1.72) 
5/3 9.04 (1.34-60.84) 0.0003 0.003 0.004 

THEMIS 
rs139859697 

(A/T) 
chr6:128134314 Missense 

Leu->His (1/0.001/-

4.49) 
4/2 10.72 (1.20-95.95) 0.0007 0.007 0.009 

AKAP12 
rs200662204 

(G/A) 
chr6:151672950 Missense 

Glu->Lys 

(0.778/0.064/-2.28) 
4/3 7.59 (0.96-60.23) 0.002 0.014 0.012 

SYNE1 
rs138745849 

(C/T) 
chr6:152639250 Missense 

Ala->Val 

(0.003/0.506/-1.64) 
2/1 11.97 (0.48-300.81) 0.010 0.065 0.045 

RAB11FIP1 
rs146427711 

(G/A) 
chr8:37732819 Missense 

Val->Met 

(0.01/0.017/-1.36) 
2/1 12.81 (0.47-346.90) 0.007 0.065 0.054 

ANO1 
rs201870990 

(G/A) 
chr11:70007354 Missense 

Gln->Pro 

(0.993/0.046/-0.53) 
16/35 2.58 (1.20-5.55) 0.001 0.005 0.002 

PRDM10 
rs141740226 

(T/G) 
chr11:129780436 Missense 

Phe->Ser (0.001/0/-

6.75) 
8/14 3.04 (0.97-9.55) 0.009 0.014 0.014 

ART4 
rs150640567 

(A/G) 
chr12:14994047 Missense 

Glu->Gly (1/0.062/-

3.11) 
4/4 5.64 (0.82-39.09) 0.006 0.024 0.018 

BRCA2 
rs56403624 

(A/G) 
chr13:32907000 Missense 

Ile->Thr 

(0.993/0.002/-1.89) 
2/1 12.15 (0.48-309.60) 0.009 0.065 0.020 

ZFYVE26 
rs139163400 

(A/G) 
chr14:68229462 Missense 

Ile->Thr (1/0.002/-

1.89) 
10/14 3.93 (1.30-11.91) 0.0004 0.002 0.001 

IQGAP1 
rs147346534 

(G/A) 
chr15:90997745 Missense 

Val->Met 

(0.497/0.002/-2) 
2/1 12.62 (0.47-335.46) 0.008 0.065 0.056 

BLM 
rs149754073 

(C/A) 
chr15:91312417 Missense 

Leu->Ile 

(0.982/0.012/-1.80) 
3/1 17.94 (1.10-291.89) 0.0006 0.013 0.019 

DYNLRB2 
rs149421698 

(G/A) 
chr16:80577179 Missense 

Val->Met 

(0.139/0.001/-2.78) 
2/1 12.78 (0.47-345.95) 0.007 0.065 0.054 

EFCAB5 
rs185083328 

(C/T) 
chr17:28270598 Missense 

Pro->Ser (0.003/0/-

0.21) 
5/2 13.97 (1.78-109.48) 0.00004 0.001 0.003 

RNF213 
rs141301945 

(C/T) 
chr17:78355462 Missense 

Thr->Ile 

(0.994/0.005/-3.68) 
5/6 4.52 (0.89-23.05) 0.007 0.018 0.015 

NWD1 
rs142852841 

(C/G) 
chr19:16918562 Missense 

Ala->Gly 

(0.958/0.611/-0.29) 
4/3 7.21 (0.94-55.31) 0.003 0.014 0.013 

ARRDC2 
rs201831893 

(G/A) 
chr19:18121104 Missense 

Val->Met (1/0.44/-

0.48) 
6/8 4.32 (0.99-18.85) 0.003 0.013 0.007 

FKBP8 
rs113307565 

(G/C) 
chr19:18649227 Missense 

Pro->Ala 

(0.157/0.133/-4.54) 
7/9 4.42 (1.12-17.38) 0.001 0.007 0.004 



 57 

SLC25A42 
rs144256360 

(C/T) 
chr19:19218779 Missense 

Pro->Ser 

(0.999/0.009/-5.04) 
3/2 9.33 (0.75-115.87) 0.003 0.029 0.022 

ZNF235 
rs141976678 

(A/G) 
chr19:44793278 Missense 

Se->Pro 

(0.001/0.142/-1.47) 
6/6 5.52 (1.16-26.40) 0.001 0.005 0.004 

NRIP1 
rs61755059 

(G/A) 
chr21:16338139 Missense 

Ala->Val 

(0.031/0.027/-2.31) 
4/4 5.77 (0.82-40.54) 0.005 0.024 0.017 

NRIP1 
rs2228507 

(T/A) 
chr21:16339570 Missense Val->Phe (0/1/2.02) 3/2 8.78 (0.74-103.99) 0.004 0.029 0.025 

USP25 
rs142929561 

(G/C) 
chr21:17236674 Missense 

Val->Leu 

(0.214/0.006/-2.04) 
7/8 4.70 (1.17-18.83) 0.001 0.004 0.004 

a
 All SNPs with MAF < 0.01. All SNPs with P-value < 0.01 in at least two of the test statistics. 

b 
Effect allele/reference allele. 

c
 Chromosome position (bp) based on NCBI Human Genome Build 37. 

d 
Number of samples carrying heterozygous variant. 

e 
OR (95% CI) was adjusted for first five principal components. 

f 
P-value obtained from logistic regression analysis (score test). 

g 
P-value obtained from fisher's exact test. 

h 
P-value obtained from firth logistic regression analysis. 
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Single-variant Meta-Analysis results 

For rare variants with MAF < 0.01 in the combined SBCGS, NBHS, SCCS and BioVU 

datasets, we found 7 missense variants that were associated with breast cancer risk at P-value < 

0.01 (Table 9). Out of 7, 5 SNPs were not available in Asian (SBCGS) due to allele with zero 

MAF. A total of 3 missense variants were predicted to be “damaging” from at least one of the 

three functional prediction algorithms (rs145659444 (Arg->His) in the MTMR11 gene, 

rs201870990 (Val->Met) in the ANO1 gene, and rs139163400 (Ile->Thr) in the ZFYVE26 gene). 

All of those 3 missense variants showed same association directions across all studies included in 

meta-analysis. 
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Table 9. Meta-analysis result: Associations of breast cancer with SNPs with MAF<0.01 and meta P-value<0.01
a
 

Gene 
SNP (Alleles) 

Annotationb 
Chr:Positionc 

Amino acid change 

(Polyphen-2 

score/SIFT 

score/PROVEAN 

score) 

Study 
No. of Samples 

(case/control)d 
OR (95%CI) e 

P-

valuef 

P-

valueg 

P-

valueh 

DFFA 
rs138842024 

(A/G) 
chr1:10529326 Ile->Thr Asian 3/0 - - - - 

 
Missense 

 
(0.999/0.121/-2.32) European 30/12 2.42 (1.32-4.46) 0.008 0.008 0.012 

    
African American 1/4 0.25 (0.04-1.47) 0.186 0.375 0.294 

    
BioVU_European 9/23 2.00 (0.78-5.12) 0.075 0.080 0.076 

        Meta-analysis   2.05 (1.24-3.38) 0.037 0.023 0.033 

ITGA10 rs35515885 (G/A) chr1:145536012 Ala->Pro European 16/6 2.63 (1.14-6.25) 0.036 0.052 0.052 

 
Missense 

 
(0.999/0.074/-1.48) African American 12/13 1.07 (0.48-2.35) 0.871 1.000 0.878 

    
BioVU_European 10/17 3.01 (1.08-8.37) 0.004 0.005 0.007 

        Meta-analysis   2.04 (1.06-3.92)  0.002 0.003 0.004 

MTMR11 rs145659444 (C/T) chr1:149902342 Arg->His European 9/24 0.36 (0.18-0.72) 0.007 0.008 0.012 

 
Missense 

 
(0.999/0.002/-1.33) African American 1/2 0.51 (0.05-5.00) 0.574 1.000 0.679 

    
BioVU_European 4/43 0.51 (0.23-1.15) 0.196 0.226 0.248 

        Meta-analysis   0.41 (0.21-0.77)  0.008 0.021 0.017 

LAPTM4A 
rs145912850 

(C/A) 
chr2:20234122 Val->Leu Asian 41/23 1.82 (1.11-2.94) 0.020 0.032 0.024 

 
Missense 

 
(0.001/0.704/-0.14) European 12/10 1.16 (0.50-2.70) 0.732 0.832 0.747 

    
African American 3/3 1.03 (0.21-5.15) 0.973 1.000 0.974 

    
BioVU_European 11/30 2.08 (0.88-5.00) 0.033 0.052 0.038 

        Meta-analysis   1.71 (1.18-2.47)  0.005 0.010 0.006 

AKAP12 rs142810400 (T/C) chr6:151670656 Val->Ala European 34/21 1.60 (0.94-2.73) 0.091 0.105 0.119 

 
Missense 

 
(0.013/0.092/-1.54) African American 5/1 4.92 (0.99-24.55) 0.108 0.121 0.186 

    
BioVU_European 17/63 1.50 (0.81-2.76) 0.143 0.160 0.141 

        Meta-analysis   1.60 (1.08-2.36)  0.007 0.010 0.012 

ANO1 
rs201870990 

(G/A) 
chr11:70007354 Val->Met European 29/20 1.45 (0.82-2.56) 0.210 0.253 0.225 

 
Missense 

 
(0.972/0.017/-1.36) African American 5/2 2.50 (0.57-11.11) 0.252 0.284 0.330 
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BioVU_European 16/35 2.58 (1.2-5.55) 0.001 0.005 0.002 

        Meta-analysis   1.97 (1.20-3.24) 0.001 0.002 0.001 

ZFYVE26 
rs139163400 

(A/G) 
chr14:68229462 Ile->Thr European 12/5 2.32 (0.89-6.03) 0.105 0.143 0.136 

 
Missense 

 
(1/0.002/-1.89) African American 2/1 1.96 (0.20-18.95) 0.577 0.621 0.682 

    
BioVU_European 10/14 3.93 (1.30-11.91) 0.0004 0.002 0.001 

        Meta-analysis   3.20 (1.68-6.09) 0.0003 0.001 0.001 

a All SNPs with MAF < 0.01. All SNPs with P-value < 0.01 in at least two of the test statistics. Analysis has been adjusted for index SNPs. 

b Effect allele/reference allele. 

c Chromosome position (bp) based on NCBI Human Genome Build 37. 

d Number of samples carrying heterozygous variant. 

e OR (95% CI) was adjusted for first five principal components. 

f P-value in each study obtained from logistic regression analysis (score test). Meta-analysis p-value derived from a weighted z statistic-based meta-analysis. 

g P-value in each study obtained from Fisher's exact test. Meta-analysis p-value derived from a P-value based combined method. 

h P-value obtained from firth logistic regression analysis. Meta-analysis p-value derived from a weighted z statistic-based meta-analysis. 

If the number of samples carrying heterozygous variant are zero, then they are indicated as '-'. 
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Gene-Based Aggregation analysis results 

We conducted gene-based analysis on LOF and nonsynonymous variants separately 

based on the functional prediction in Sub-Aim 1. Rare variants with MAF ≤ 0.01 or MAF ≤ 

0.005 within each gene were aggregated. At MAF ≤ 0.01, total 152 genes were tested for LOF, 

and 1,140 genes were tested for nonsynonymous variants. At MAF ≤ 0.005, total 147 genes were 

tested for LOF, and 1,133 genes were tested for nonsynonymous variants. Analysis has been 

adjusted for index SNPs. Results are shown in Table 10-1 ~ Table 17-2 (P-values were obtained 

from Madsen-Browning test (MB), Combined Multivariate and Collapsing (CMC), variable 

threshold (VT), and sequence kernel association test (SKAT)). Since MB test uses permutations, 

it is possible that permutation statistics are more extreme than the observed statistic, and thus the 

permuted P-value can be zero. For CMC and SKAT tests, we adjusted for the five first principal 

components (PCs) for all datasets (SBCGS, NBHS, SCCS, and BioVU).  

For LOF variants, when collapsing variants with MAF ≤ 0.01 within each gene, SYT8 

gene was found to be associated with breast cancer risk at P-value < 0.01 in EA population 

(NBHS) (Table 12-1); PSG5 gene was found to be associated with breast cancer risk at P-value < 

0.01 in AA population (Table 14); and SLC6A18 gene was found to be associated with breast 

cancer risk at P-value < 0.01 in EA population (BioVU) (Table 16-1). Similar results have been 

found when collapsing variants with MAF ≤ 0.005 within each gene except AA population 

(Table 10-2, Table 12-2 and Table 16-2). No genes were selected when collapsing variants with 

MAF ≤ 0.005 for AA population. 

For nonsynonymous variants, when collapsing variants with MAF ≤  0.01 within each 

gene, ELK3 and TRPS1 genes were found to be associated with breast cancer risk at P-value < 

0.001 in EA population (NBHS) (Table 13-1); CCDC38 genes was found to be associated with 
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breast cancer risk at P-value < 0.001 in AA population (Table 15-1); and FKBP8, THEMIS, and 

MUS81 genes were found to be associated with breast cancer risk at P-value < 0.001 in EA 

population (BioVU) (Table 17-1). Similar results have been found when collapsing variants with 

MAF ≤ 0.005 within each gene except AA population (Table 13-2, Table 15-2, and Table 17-2). 

No genes were selected at a P-value < 0.001 in Asian population (Table 11-1 and Table 11-2). 

Results from conditional analysis adjusted for index SNPs were consistent with the results 

without adjustment for index SNPs. 
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Table 10-1. LOF Variants: Gene-based analysis result among Asian population 

(MAF≤0.01)
a
 

Gene 

MAF≤0.01 

No. of 

variants 
P_CMC P_MB P_VT P_SKAT 

SLC25A21 3 0.037 0.010 0.041 0.065 

IGF2 2 0.045 0.154 0.046 0.029 
a
 Gene-based analysis P-value < 0.05 in at least one of the test statistics. 

 

Table 10-2. LOF Variants: Gene-based analysis result among Asian population 

(MAF≤0.005)
a
 

Gene 

MAF≤0.005 

No. of 

variants 
P_CMC P_MB P_VT P_SKAT 

IGF2 2 0.045 0.145 0.043 0.036 
a
 Gene-based analysis P-value < 0.05 in at least one of the test statistics. 

 

Table 11-1. Nonsynonymous Variants: Gene-based analysis result among Asian population 

(MAF≤0.01)
a
 

Gene 

MAF≤0.01 

No. of 

variants 
P_CMC P_MB P_VT P_SKAT 

TCF7L2 5 0.003 0.016 0.003 0.009 

UBR7 3 0.004 0.003 0.006 0.014 

CPA1 8 0.008 0.052 0.027 0.039 

IL12B 5 0.009 0.023 0.004 0.008 

RBM4 5 0.027 0.003 0.015 0.175 

EXOC2 12 0.028 0.003 0.009 0.235 

RBM14 5 0.027 0.004 0.015 0.167 

TNS1 29 0.013 0.004 0.023 0.131 

ZNF225 7 0.048 0.005 0.018 0.377 

NBEAL2 33 0.048 0.006 0.058 0.613 

LGR6 13 0.013 0.006 0.029 0.043 

PLEK2 2 0.251 0 0.239 0.003 

RHBDD3 2 0.048 0.383 0.086 0.003 

FGF19 3 0.481 0.641 0.441 0.008 

DMRTA1 3 0.223 0.210 0.397 0.009 

MPP4 6 0.019 0.014 0.033 0.036 
a
 Gene-based analysis P-value < 0.05 in at least one of the test statistics. 
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Table 11-2. Nonsynonymous Variants: Gene-based analysis result among Asian population 

(MAF≤0.005)
a  

 

Gene 

MAF≤0.005 

No. of 

variants 
P_CMC P_MB P_VT P_SKAT 

TCF7L2 5 0.003 0.014 0.004 0.008 

UBR7 3 0.004 0.003 0.006 0.013 

CPA1 8 0.008 0.051 0.027 0.037 

IL12B 5 0.009 0.023 0.005 0.009 

TNS1 27 0.010 0.009 0.062 0.067 

MUS81 4 0.010 0.008 0.020 0.055 

RBM4 5 0.027 0.003 0.015 0.173 

EXOC2 12 0.028 0.004 0.009 0.223 

RBM14 5 0.027 0.004 0.015 0.173 

GPAM 5 0.023 0.006 0.026 0.223 

ZNF225 6 0.109 0.006 0.014 0.424 

NBEAL2 32 0.055 0.007 0.056 0.582 

COMMD3 2 0.036 0.008 0.060 0.102 

PLEK2 2 0.251 0 0.252 0.003 

RHBDD3 2 0.048 0.364 0.089 0.004 

DMRTA1 3 0.223 0.195 0.399 0.007 

FGF19 3 0.481 0.612 0.456 0.008 

MPP4 6 0.019 0.014 0.033 0.036 
a
 Gene-based analysis P-value < 0.05 in at least one of the test statistics. 

 

Table 12-1. LOF Variants: Gene-based analysis result among European American 

population (NBHS) (MAF≤0.01)
a
 

Gene 

MAF≤0.01 

No. of 

variants 
P_CMC P_MB P_VT P_SKAT 

SYT8 2 0.006 0.008 0.003 0.004 

SCTR 2 0.050 0.090 0.089 0.197 

a
 Gene-based analysis P-value < 0.05 in at least one of the test statistics. 
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Table 12-2. LOF Variants: Gene-based analysis result among European American  

population (NBHS) (MAF≤0.005)
a
 

Gene 

MAF≤0.005 

No. of 

variants 
P_CMC P_MB P_VT P_SKAT 

SYT8 2 0.006 0.009 0.004 0.004 

SCTR 2 0.050 0.093 0.092 0.187 
a
 Gene-based analysis P-value < 0.05 in at least one of the test statistics. 

 

Table 13-1. Nonsynonymous Variants: Gene-based analysis result among European 

American population
 
(NBHS) (MAF≤0.01)

a
 

Gene 
MAF≤0.01 

No. of 

variants 
P_CMC P_MB P_VT P_SKAT 

ELK3 4 0.0006 0.012 0.0002 0.001 

TMCC3 8 0.003 0.002 0.008 0.110 

RNF135 3 0.004 0.010 0.004 0.002 

CLCA2 9 0.004 0.021 0.012 0.003 

SGOL2 15 0.004 0.079 0.005 0.010 

CA14 2 0.005 0.004 0.004 0.004 

EXD2 4 0.005 0.003 0.005 0.061 

PKP1 10 0.006 0.010 0.016 0.140 

ZC3HC1 6 0.007 0.048 0.015 0.011 

BPIFB4 10 0.008 0.023 0.030 0.111 

CBFA2T2 3 0.008 0.003 0.007 0.022 

SLC25A42 2 0.021 0.005 0.025 0.013 

UNC13A 6 0.017 0.006 0.026 0.046 

SCAP 10 0.045 0.010 0.004 0.181 

TRPS1 6 0.047 0.237 0.045 0.0006 

KIAA0408 4 0.015 0.141 0.011 0.002 

CEP44 8 0.895 0.230 0.086 0.003 

LPCAT1 5 0.015 0.282 0.013 0.003 

CHID1 2 0.012 0.049 0.011 0.004 

RP11-15A1.2 3 0.539 0.762 0.551 0.004 

BRF2 4 0.279 0.822 0.479 0.004 

ZNF45 3 0.539 0.758 0.555 0.005 

MTMR11 9 0.089 0.972 0.261 0.006 

FES 6 0.188 0.604 0.639 0.007 

UTP23 3 0.163 0.369 0.548 0.010 

PLEKHS1 5 0.013 0.026 0.019 0.024 
a
 Gene-based analysis P-value < 0.05 in at least one of the test statistics. 
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Table 13-2. Nonsynonymous Variants: Gene-based analysis result among European 

American population
 
(NBHS) (MAF≤0.005)

a
 

Gene 

MAF≤0.005 

No. of 

variants 
P_CMC P_MB P_VT P_SKAT 

ELK3 4 0.0006 0.009 0.0003 0.001 

TMCC3 7 0.004 0.004 0.008 0.112 

SGOL2 15 0.004 0.079 0.004 0.013 

CA14 2 0.005 0.006 0.004 0.005 

EXD2 4 0.005 0.004 0.005 0.057 

ZC3HC1 6 0.007 0.051 0.012 0.013 

BPIFB4 10 0.008 0.021 0.032 0.120 

ITGA10 20 0.008 0.016 0.023 0.050 

SOGA3 5 0.008 0.086 0.006 0.002 

PKP1 9 0.009 0.022 0.023 0.108 

SLC25A42 2 0.021 0.005 0.028 0.017 

DMBT1 14 0.059 0.008 0.017 0.634 

SCAP 10 0.045 0.010 0.002 0.178 

CHID1 2 0.012 0.046 0.009 0.005 

TRPS1 6 0.047 0.243 0.052 0.0009 

ASCC2 3 0.023 0.260 0.027 0.002 

TSSC4 5 0.516 0.488 0.378 0.002 

LPCAT1 5 0.015 0.278 0.013 0.003 

KIAA0408 4 0.015 0.145 0.014 0.003 

CEP44 8 0.895 0.232 0.086 0.003 

RP11-15A1.2 3 0.539 0.752 0.560 0.003 

BRF2 4 0.279 0.812 0.473 0.004 

ZNF45 3 0.539 0.738 0.567 0.004 

FES 6 0.188 0.584 0.641 0.007 

UTP23 3 0.163 0.368 0.535 0.008 

IGFN1 24 0.078 0.296 0.135 0.009 

PLEKHS1 5 0.013 0.028 0.019 0.024 

CCRL2 4 0.017 0.017 0.059 0.053 

ZC3H11A 5 0.021 0.019 0.027 0.060 
a
 Gene-based analysis P-value < 0.05 in at least one of the test statistics. 
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Table 14. LOF Variants: Gene-based analysis result among African American population 

(MAF≤0.01)
a
 

Gene 

MAF≤0.01 

No. of 

variants 
P_CMC P_MB P_VT P_SKAT 

PSG5 2 0.006 0.004 0.011 0.018 
a
 Gene-based analysis P-value < 0.05 in at least one of the test statistics. 

 

Table 15-1. Nonsynonymous Variants: Gene-based analysis result among African 

American population (MAF≤0.01)
a
 

Gene 

MAF≤0.01 

No. of 

variants 
P_CMC P_MB P_VT P_SKAT 

CCDC38 11 0.0003 0.003 0.002 0.010 

ATAD5 8 0.001 0.008 0.002 0.030 

SNRPF 9 0.001 0.005 0.006 0.017 

CCDC170 11 0.003 0.006 0.009 0.134 

ISYNA1 3 0.004 0.013 0.014 0.019 

ZNF404 3 0.005 0.003 0.006 0.031 

SIRT5 6 0.006 0.005 0.009 0.117 

CTD-2349P21.11 6 0.007 0.040 0.015 0.038 

FBXL7 3 0.007 0.004 0.004 0.015 

CDCA7 2 0.008 0.007 0.010 0.015 

GINM1 2 0.009 0.020 0.004 0.006 

SLC29A2 4 0.010 0.074 0.016 0.015 

RXFP2 9 0.061 0.006 0.006 0.492 

PRSS50 4 0.108 0.078 0.308 0.003 

MUC6 27 0.339 0.079 0.402 0.005 

MAGI3 8 0.014 0.031 0.046 0.026 
a
 Gene-based analysis P-value < 0.05 in at least one of the test statistics. 
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Table 15-2. Nonsynonymous Variants: Gene-based analysis result among African 

American population (MAF≤0.005)
a
 

Gene 

MAF≤0.005 

No. of 

variants 
P_CMC P_MB P_VT P_SKAT 

ATAD5 8 0.001 0.007 0.002 0.027 

RP3-508I15.14 3 0.002 0.009 0.009 0.017 

RIN1 8 0.003 0.040 0.007 0.036 

RXFP2 8 0.003 0.002 0.004 0.226 

ZNF404 3 0.005 0.004 0.005 0.033 

FYCO1 18 0.007 0.105 0.029 0.460 

CTD-2349P21.11 6 0.007 0.040 0.017 0.034 

FBXL7 3 0.007 0.004 0.004 0.015 

SIRT5 5 0.008 0.009 0.008 0.084 

CDCA7 2 0.008 0.009 0.013 0.016 

AP1B1 5 0.013 0.003 0.007 0.082 

MATN3 8 0.012 0.009 0.027 0.042 

PRSS50 4 0.108 0.077 0.295 0.003 

MBL1P 3 0.224 0.086 0.437 0.004 

SFTPD 3 0.224 0.091 0.439 0.004 

SIPA1 7 0.057 0.013 0.136 0.006 

TBC1D16 7 0.668 0.873 0.883 0.009 

CCDC170 10 0.011 0.014 0.024 0.155 

ZC3H11A 5 0.071 0.056 0.149 0.021 
a
 Gene-based analysis P-value < 0.05 in at least one of the test statistics. 
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Table 16-1. LOF Variants: Gene-based analysis result among European American 

population (BioVU) (MAF≤0.01)
a
 

Gene 

MAF≤0.01 

No. of 

variants 
P_CMC P_MB P_VT P_SKAT 

SLC6A18 2 0.002 0.014 0.029 0.006 

ANKRD35 3 0.029 0.057 0.181 0.011 

PSG9 2 0.063 0.063 0.034 0.064 
a
 Gene-based analysis P-value < 0.05 in at least one of the test statistics. 

 

Table 16-2. LOF Variants: Gene-based analysis result among European American 

population
 
(BioVU) (MAF≤0.005)

a
 

Gene 

MAF≤0.005 

No. of 

variants 
P_CMC P_MB P_VT P_SKAT 

SLC6A18 2 0.002 0.014 0.029 0.006 

ANKRD35 3 0.029 0.057 0.181 0.011 

PSG9 2 0.063 0.058 0.035 0.065 
a
 Gene-based analysis P-value < 0.05 in at least one of the test statistics. 
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Table 17-1. Nonsynonymous Variants: Gene-based analysis result among European 

American population
 
(BioVU) (MAF≤0.01)

a
 

Gene 

MAF≤0.01 

No. of 

variants 
P_CMC P_MB P_VT P_SKAT 

FKBP8 2 0.0002 0.0004 0.0007 0.002 

THEMIS 6 0.0006 0.004 0.003 0.004 

ANO1 6 0.001 0.006 0.019 0.002 

RSBN1 2 0.002 0.013 0.005 0.002 

GDF15 2 0.002 0.006 0.008 0.006 

MUS81 2 0.002 0.009 0.006 0.0009 

SCYL1 8 0.004 0.023 0.026 0.046 

SPDYC 3 0.005 0.010 0.018 0.014 

GPR98 84 0.007 0.011 0.007 0.030 

SLC6A4 2 0.009 0.019 0.024 0.031 

CDC42BPG 20 0.009 0.057 0.056 0.099 

MGP 3 0.009 0.022 0.018 0.023 

PIGU 5 0.039 0.002 0.003 0.184 

GPAM 3 0.045 0.004 0.002 0.053 

ATP5O 3 0.051 0.004 0.014 0.146 

ANP32E 2 0.055 0.005 0.014 0.127 

RP11-867G23.12 4 0.010 0.007 0.020 0.050 

XRCC4 7 0.377 0.110 0.001 0.135 

ADAM29 4 0.429 0.026 0.002 0.043 

GAPT 2 0.249 0.023 0.005 0.106 

SEMA4B 13 0.291 0.030 0.005 0.490 

NRIP1 17 0.237 0.011 0.007 0.168 

MAN2A2 16 0.013 0.011 0.009 0.025 

LTF 13 0.105 0.498 0.459 0.004 

MUC2 41 0.335 0.916 0.289 0.008 

SLC25A42 2 0.029 0.090 0.053 0.009 

ANKRD55 10 0.022 0.452 0.102 0.010 

AC098820.3 2 0.011 0.024 0.013 0.011 

RP11-307B6.3 3 0.026 0.081 0.181 0.011 
a
 Gene-based analysis P-value < 0.05 in at least one of the test statistics. 
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Table 17-2. Nonsynonymous Variants: Gene-based analysis result among European 

American population
 
(BioVU) (MAF≤0.005)

a
 

Gene 

MAF≤0.005 

No. of 

variants 
P_CMC P_MB P_VT P_SKAT 

FKBP8 2 0.0002 0.0002 0.0009 0.001 

THEMIS 6 0.0006 0.005 0.004 0.004 

ATP5O 2 0.002 0.022 0.011 0.021 

RSBN1 2 0.002 0.012 0.005 0.002 

GDF15 2 0.002 0.005 0.008 0.008 

MUS81 2 0.002 0.012 0.004 0.0006 

SPDYC 3 0.005 0.010 0.019 0.016 

EFCAB5 12 0.007 0.012 0.040 0.031 

GPR98 77 0.008 0.016 0.021 0.006 

SLC6A4 2 0.009 0.016 0.025 0.031 

ANP32E 2 0.055 0.003 0.014 0.135 

PIGU 4 0.014 0.005 0.003 0.053 

GPAM 3 0.045 0.005 0.002 0.054 

RP11-867G23.12 4 0.010 0.007 0.021 0.047 

MAN2A2 16 0.013 0.010 0.007 0.027 

USP25 7 0.031 0.010 0.032 0.037 

XRCC4 6 0.948 0.037 0.002 0.064 

ADAM29 4 0.429 0.027 0.002 0.045 

NRIP1 16 0.136 0.015 0.005 0.051 

SEMA4B 13 0.291 0.031 0.007 0.473 

SLC25A42 2 0.029 0.096 0.052 0.007 
a
 Gene-based analysis P-value < 0.05 in at least one of the test statistics. 
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Gene-Based Meta-Analysis results 

We also conducted gene-based meta-analysis on LOF and nonsynonymous variants 

separately at two MAF thresholds (MAF ≤ 0.01 or MAF ≤ 0.005) in the combined SBCGS, 

NBHS, SCCS and BioVU datasets. Results are shown in Table 18-1 ~ Table 19-2 (P-values were 

obtained from MB, CMC, VT, and SKAT). For CMC and SKAT tests, we adjusted for the five 

first PCs for all datasets (SBCGS, NBHS, SCCS, BioVU). 

For LOF variants, collapsing variants with MAF ≤ 0.01 within each gene suggested two 

genes (PSG5 and ANKRD35) associated with breast cancer at P < 0.01 (Table 18-1). At the 

19q13.2, the PSG5 (consisting of 2 variants with MAF ≤  0.01) was significantly associated with 

breast cancer risk (P-values = 7.0×10
-3 

and 6.0×10
-3

) from CMC and MB tests. At the 1q21.1, the 

ANKRD35 (consisting of 5 variants with MAF ≤  0.01) was significantly associated with breast 

cancer risk (P-value = 5.0×10
-3

) from SKAT test. This gene was also significantly associated 

with breast cancer risk from VT test (P-value = 7.0×10
-3

) based on 3 variants (MAF ≤  0.01). 

These associations did not change when collapsing variants with MAF ≤  0.005 within each gene 

(Table 18-2). 

For nonsynonymous variants, collapsing variants with MAF ≤  0.01 within each gene 

suggested two genes (FKBP8 and ANO1) associated with breast cancer at P < 0.001 (Table 19-

1). At the 19p12, the FKBP8 (consisting of 2 variants with MAF ≤  0.01) was significantly 

associated with breast cancer risk (P-values = 3.0×10
-4

, 3.0×10
-4

, and 5.0×10
-4

) from CMC, MB, 

and VT tests. At the 11q13.3, the ANO1 (consisting of 14 variants with MAF ≤  0.01) was 

significantly associated with breast cancer risk (P-values = 4.0×10
-4

, 9.0×10
-4

, and 6.0×10
-4

) 

from CMC, MB, and SKAT tests. In addition to these two genes, the PLEKHS1 was significantly 
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associated with breast cancer risk (P-value = 3.0×10
-4 

from CMC test) at the 10q25.3 when 

collapsing variants with MAF ≤  0.005 (consisting of 9 variants) (Table 19-2). 

Table 18-1. LOF Variants: Gene-based Meta-analysis result from all four datasets 

(MAF≤0.01)
a
 

Gene 

MAF≤0.01 

No. of 

variants 
P_CMC P_MB P_SKAT 

No. of 

variants 
P_VT 

PSG5 2 0.007 0.006 0.031 2 0.013 

OR2J2 2 0.012 0.011 0.037 2 0.022 

SLC6A18 3 0.033 0.033 0.045 3 0.076 

CCR5 2 0.053 0.038 0.108 2 0.100 

ALS2CR11 2 0.056 0.049 0.085 2 0.107 

ANKRD35 5 0.237 0.190 0.005 3 0.007 
a
 Gene-based Meta-analysis P-value < 0.05 in at least one of the test statistics. 

 

Table 18-2. LOF Variants: Gene-based Meta-analysis result from all four datasets 

(MAF≤0.005)
a
 

Gene 

MAF≤0.005 

No. of 

variants 
P_CMC P_MB P_SKAT 

No. of 

variants 
P_VT 

PSG5 2 0.007 0.006 0.031 2 0.013 

OR2J2 2 0.012 0.011 0.037 2 0.022 

SLC6A18 3 0.033 0.033 0.045 3 0.076 

CCR5 2 0.053 0.038 0.108 2 0.100 

ALS2CR11 2 0.056 0.049 0.085 2 0.107 

ANKRD35 5 0.237 0.190 0.005 3 0.008 
a
 Gene-based Meta-analysis P-value < 0.05 in at least one of the test statistics. 
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Table 19-1. Nonsynonymous Variants: Gene-based Meta-analysis result from all four 

datasets (MAF≤0.01)
a
 

Gene 

MAF≤0.01 

No. of 

variants 
P_CMC P_MB P_SKAT 

No. of 

variants 
P_VT 

FKBP8 2 0.0003 0.0003 0.0011 2 0.0005 

ANO1 14 0.0004 0.0009 0.0006 14 0.0038 

PLEK2 5 0.0011 0.1526 0.0010 5 0.0053 

SCYL1 16 0.0019 0.0113 0.1423 16 0.0165 

CPA1 6 0.0028 0.0045 0.0448 6 0.0127 

UBR7 3 0.0032 0.0108 0.0133 3 0.0087 

LAPTM4A 2 0.0033 0.0143 0.0045 2 0.0066 

NKD2 17 0.0069 0.0940 0.0431 17 0.0598 

AKR1C2 4 0.0079 0.0101 0.0073 4 0.0263 

ALS2CL 11 0.0097 0.8760 0.0053 11 0.0699 

SUN2 27 0.0099 0.0284 0.1976 24 0.0300 

CARD14 11 0.0168 0.0028 0.1393 7 0.0704 

ZSCAN12 4 0.0101 0.0035 0.0608 4 0.0368 

LIPI 7 0.0387 0.0084 0.1822 3 0.0669 

PLEKHS1 11 0.0127 0.0095 0.0137 9 0.0024 

CAPN1 3 0.4175 0.0119 0.2207 2 0.0020 

GLT25D1 16 0.2271 0.0243 0.6331 11 0.0038 

NT5C1B|NT5C1B-

RDH14 
18 0.6124 0.1473 0.2859 5 0.0045 

SLC25A42 4 0.0323 0.0192 0.0069 3 0.0051 

PIGU 9 0.3347 0.0309 0.5441 4 0.0051 

ZFYVE26 13 0.0274 0.0278 0.0560 11 0.0083 

CCDC38 3 0.4579 0.1128 0.0441 2 0.0089 

SIPA1 16 0.6173 0.0341 0.5455 11 0.0098 

FTO 9 0.0847 0.0135 0.6913 5 0.0099 

PLEKHH1 27 0.0614 0.4895 0.0020 27 0.4121 

RSBN1 4 0.0121 0.1122 0.0034 4 0.0429 

BRCA2 89 0.0459 0.2049 0.0087 22 0.3392 
a
 Gene-based Meta-analysis P-value < 0.01 in at least one of the test statistics. 
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Table 19-2. Nonsynonymous Variants: Gene-based Meta-analysis result from all four 

datasets (MAF≤0.005)
a
 

Gene 

MAF≤0.005 

No. of 

variants 
P_CMC P_MB P_SKAT 

No. of 

variants 
P_VT 

FKBP8 2 0.0003 0.0003 0.0011 2 0.0005 

PLEKHS1 9 0.0003 0.0058 0.0025 9 0.0019 

ANO1 14 0.0004 0.0009 0.0006 14 0.0038 

SCYL1 16 0.0019 0.0113 0.1423 16 0.0166 

CPA1 6 0.0028 0.0045 0.0448 6 0.0132 

UBR7 3 0.0032 0.0108 0.0133 3 0.0089 

LAPTM4A 2 0.0033 0.0143 0.0045 2 0.0066 

RUNX1 2 0.0045 0.0046 0.0180 2 0.0083 

ZFYVE26 12 0.0059 0.0272 0.0021 11 0.0074 

NKD2 17 0.0069 0.0940 0.0431 17 0.0596 

AKR1C2 4 0.0079 0.0101 0.0073 4 0.0268 

SUN2 27 0.0099 0.0284 0.1976 24 0.0291 

ZSCAN12 4 0.0101 0.0035 0.0608 4 0.0366 

LIPI 7 0.0387 0.0084 0.1822 3 0.0670 

BARX2 4 0.0140 0.0095 0.1028 4 0.0466 

CARD14 10 0.0763 0.0095 0.4001 7 0.0630 

CAPN1 3 0.4175 0.0119 0.2207 2 0.0020 

GLT25D1 16 0.2271 0.0243 0.6331 11 0.0038 

NT5C1B|NT5C1B-

RDH14 
18 0.6124 0.1473 0.2859 5 0.0044 

PIGU 9 0.3347 0.0309 0.5441 4 0.0049 

SLC25A42 4 0.0323 0.0192 0.0069 3 0.0057 

CCDC38 3 0.4579 0.1128 0.0441 2 0.0084 

SIPA1 14 0.3726 0.0210 0.2487 11 0.0085 

FTO 9 0.0847 0.0135 0.6913 5 0.0098 

RSBN1 4 0.0121 0.1122 0.0034 4 0.0425 

ANKRD55 15 0.0598 0.1657 0.0096 15 0.3578 
a
 Gene-based Meta-analysis P-value < 0.01 in at least one of the test statistics. 
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Compound Heterozygous (CH) analysis results  

We performed compound heterozygous analysis on LOF and nonsynonymous variants 

separately at two MAF thresholds (MAF ≤ 0.01 or MAF ≤ 0.005). Results are shown in Table 20 

~ Table 22. For LOF variant, no significant results have been found in any of the four datasets 

(SBCGS, NBHS, SCCS and BioVU). For nonsynonymous variants, when collapsing variants 

with MAF ≤ 0.01 within each gene, LOC100294362 gene from Asian population, AKAP12 and 

GPR98 genes from AA population, and BRCA2 and GPR98 genes from EA population (BioVU) 

were found to be associated with breast cancer risk at P-value < 0.05 (Table 20, Table 21, and 

Table 22). At the 17q25.3, the LOC100294362 (consisting of 28 variants with MAF ≤  0.01) was 

significantly associated with breast cancer risk (P-value = 3.9×10
-2

) with 8 CH in breast cancer 

cases and 1 CH in control from Asian population at P-value < 0.05. At the 6q25.1, the AKAP12 

(consisting of 31 variants with MAF ≤  0.01) was significantly associated with breast cancer risk 

(P-value = 2.0×10
-2

) with 8 CH in breast cancer cases and 1 CH in control from AA population 

at P-value < 0.05. At the 5q14.3, the GPR98 was significantly associated with breast cancer risk 

(at P-value < 0.05) in both AA (6 CH in cases/17 CH in controls) and EA (BioVU) (14 CH in 

cases/39 CH in controls) populations with P-values of 3.4×10
-2 

and 3.5×10
-2

, respectively. One 

of the most well-known breast cancer related genes, BRCA2 gene at the 13q12.3, showed 

significant association with breast cancer risk (P-value = 1.1×10
-2

) in EA population (BioVU) (5 

CH in cases/5 CH in controls) at P-value < 0.05. No significant results have been found when 

collapsing variants with MAF ≤ 0.005 within each gene, and from combined analysis of all four 

datasets (SBCGS, NBHS, SCCS and BioVU). 
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Table 20. Nonsynonymous Variants: CH-analysis result among Asian population
a
 

Gene 

MAF≤0.01 

No. of 

variants 

No. of CH 

(case/control) 
OR

b
 

Lower 

95% CI 

Upper 

95% CI 
P-value

b
 

LOC100294362 28 8/1 0.126 0.003 0.942 0.039 

a
 Genes with CH-analysis P-value < 0.05. 

b 
Obtained from Fisher's exact test. 

 

Table 21. Nonsynonymous Variants: CH-analysis result among African American 

population
a
 

Gene 

MAF≤0.01 

No. of 

variants 

No. of CH 

(case/control) 
OR

b
 

Lower 

95% CI 

Upper 

95% CI 
P-value

b
 

AKAP12 31 8/1 0.122 0.003 0.915 0.020 

GPR98 70 6/17 2.818 1.055 8.765 0.034 

a
 Genes with CH-analysis P-value < 0.05. 

b 
Obtained from Fisher's exact test. 

 

Table 22. Nonsynonymous Variants: CH-analysis result among European American 

population (BioVU)
a
 

Gene 

MAF≤0.01 

No. of 

variants 

No. of CH 

(case/control) 
OR

b
 

Lower 

95% CI 

Upper 

95% CI 
P-value

b
 

BRCA2 42 5/5 0.183 0.042 0.796 0.011 

GPR98 84 14/39 0.507 0.267 1.016 0.035 

a
 Genes with CH-analysis P-value < 0.05. 

b 
Obtained from Fisher's exact test. 
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B2. Discussion  

We investigated all LOF and nonsynonymous variants located in flanking 1Mb of all 

index SNPs in 109 GWAS loci using two MAF thresholds (MAF ≤ 0.01 or MAF ≤ 0.005). From 

single-variant analysis, we identified several novel missense variants predicted to be damaging 

that were associated with breast cancer risk at P-value < 0.01: 4 from Asian; 10 from EA 

(NBHS), 5 from AA, and 26 from EA (BioVU). When combined all datasets together, we 

identified total 3 novel missense variants that were predicted to be damaging; rs145659444 (Arg-

>His) in the MTMR11 gene, rs201870990 (Val->Met) in the ANO1 gene, and rs139163400 (Ile-

>Thr) in the ZFYVE26 gene. 

Interestingly, 3 genes (LAPTM4A, ANO1, and ZFYVE26) were identified from both gene-

based meta-analysis and single-variant meta-analysis (MAF < 0.01 and meta P-value < 0.01).   

At the 2p24.1, the LAPTM4A (consisting of 2 variants with MAF ≤  0.01) was 

significantly associated with breast cancer risk from CMC, VT, and SKAT tests (P-values = 

3.3×10
-3

, 6.6×10
-3

, and 4.5×10
-3

, respectively). Li et al. reported LAPTM4B (lysosomal protein 

transmembrane 4 beta) as a novel cancer-associated gene including breast cancer (136). They 

revealed a new role of LAPTM4B-35 in promoting multidrug resistance of cancer cells (136). It 

has been known that the putative protein of LAPTM4B is highly conserved, with 46% 

homologous at the amino-acid level to a LAPTM4A gene (human lysosome-associated 

transmembrane-4 protein) (137). Also, LAPTM4A gene is thought to function as a transporter 

protein that transfers nucleosides (and/or nucleoside metabolites) between the cytosol and 

intracellular organelles (138). Therefore, although the underlying biological mechanism is still 

not known, it might be possible that LAPTM4B-35 functions as multidrug transporter through the 
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help of LAPTM4A (136, 138). Here we provide evidence that rare variants in the LAPTM4A gene 

may also contribute to the risk of breast cancer. 

At the 11q13.3, the ANO1 (consisting of 14 variants with MAF ≤  0.01) was significantly 

associated with breast cancer risk from CMC, MB, and SKAT tests (P-values = 4.0×10
-4

, 9.0×10
-

4
, 6.0×10

-4
, respectively). Britschgi et al. have found that the ANO1 gene is amplified in breast 

cancer, and amplification of the ANO1  gene is associated with poor prognosis of breast cancer 

patients (139). Subsequently, Wu et al. revealed that ANO1 overexpression was associated with 

good prognosis in PR-positive, or HER2-negative patients following tamoxifen treatment (140). 

The gene-based results in our study provide further evidence that the ANO1 gene is significantly 

associated with breast cancer risk.   

At the 14q24.1, the ZFYVE26 (consisting of 11 variants with MAF ≤  0.01) was 

significantly associated with breast cancer risk from VT test (P-values = 8.3×10
-3

). Recently, 

Sagona et al. found that both Beclin 1 (Autophagy Related) and ZFYVE26 (Zinc Finger, FYVE 

Domain Containing 26) were down-regulated in advanced breast cancers (141). Their findings 

suggest a novel potential tumor suppressor mechanism for Beclin 1 through a positive feedback 

loop for recruitment of ZFYVE26 and Beclin 1 to the intercellular bridge during cytokinesis 

(141). Here, we provide evidence that rare variants in the ZFYVE26 gene may contribute to the 

risk of breast cancer. 

Our CH analysis identified LOC100294362 at the 17q25.3 from Asian population, 

AKAP12 (6q25.1) and GPR98 (5q14.3) from AA population, and BRCA2 (13q12.3) and GPR98 

(5q14.3) from EA population (BioVU) (MAF ≤ 0.01 and P-value < 0.05). The less significant P-

values for CH models are due to the rarity of compound heterozygotes of rare variants. Among 

our findings, GPR98 gene was identified from both AA (6 CH in cases/17 CH in controls) and 
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EA (BioVU) (14 CH in cases/39 CH in controls) populations. In GPR98 gene, two missense 

variants, rs200541858 (Asp->Gly) and rs200816323 (Val->Phe), were significantly associated 

with breast cancer risk (P-values = 4.0×10
-3

 and 6.0×10
-4

) in EA (BioVU) population. Both 

variants were predicted to be “damaging”. GPR98 mutations are known to cause familial febrile 

seizures and one form of Usher syndrome, which is the most common genetic cause of combined 

blindness and deafness (142). Hilgert et al. found a large GPR98 deletion of 136,017 bp 

segregates with USH2C in an Iranian family (143). The function of GPR98 is still unknown. 

Also, missense variant rs142810400 in AKAP12 was significantly associated with breast cancer 

risk from single-marker meta-analysis (meta P-value = 7.0×10
-3

). In humans, AKAP12 maps to 

6q25.1, a deletion hotspot in advanced breast cancer, implicating a role for the loss of AKAP12 

in cancer progression (144). The CH results in current study provide further evidence that the 

GPR98 and AKAP12 genes are significantly associated with breast cancer risk. 

Importantly, SLC25A42 gene at the 19p13.1, one of the top genes from eQTL result using 

TCGA (P-value = 0.04), was significantly associated with breast cancer risk from SKAT and VT 

tests (P-values = 6.9×10
-3 

and 5.7×10
-3

, respectively). The SLC25A42 gene is located 603 kb 

downstream of GWAS SNP rs4808801. We found that risk allele of SNP rs4808801 was 

associated with lower gene expression (P-value = 0.04) which indicates increased risk of breast 

cancer. Total 3 out of 4 rare variants (MAF ≤ 0.005) in this gene were predicted as “damaging”. 

Therefore, although the function of SLC25A42 remains unexplored, this gene would be important 

to further investigate in larger populations.  

Our findings from CH analysis can be used as valuable genetic information since CH is 

hard to be found in a large, randomly mating population due to its‟ recessive manner. This is the 

first study to specifically examine the associations between rare recessive variants and breast 
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cancer risk using CH analysis. Most CH studies had been conducted in Mendelian-disease genes 

in family-based sequencing studies. We used large dataset in order to investigate rare coding 

variants and breast cancer risk through systematic analyses of cis-eQTLs, functional predictions, 

and comprehensive association tests. Therefore, our study provides additional insights into the 

genetics and biology of breast cancer. 
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CHAPTER VII 

 

SYNOPSIS AND FUTURE DIRECTIONS 

 

A. Conclusions 

As the first study to examine rare coding variants associated with breast cancer risk using 

CH analysis, three major databases for cis-eQTLs, and the largest breast cancer datasets for 

Asian population, our results identified multiple rare coding variants associated with breast 

cancer in GWAS identified loci. We found 3 novel missense variants that were predicted to be 

“damaging” in the combined data; rs145659444 (Arg->His) in the MTMR11 gene, rs201870990 

(Val->Met) in the ANO1 gene, and rs139163400 (Ile->Thr) in the ZFYVE26 gene. Especially, 

three genes at 2p24.1 (LAPTM4A), 11q13.3 (ANO1), and 14q24.1 (ZFYVE26) from single-

variant meta-analysis were consistently found to be significantly associated with breast cancer 

risk in gene-based meta-analysis. Importantly, we found that SLC25A42 gene, one of the top 

genes from eQTL result, was significantly associated with breast cancer risk from gene-based 

meta-analysis with evidence of GWAS SNP rs4808801 and 3 rare variants (predicted as 

damaging). Based on previous genetic studies, we provided evidence that rare variants in these 

genes may also contribute to the risk of breast cancer (136, 140, 141). 

Results from CH analysis indicated an important role of GPR98 and AKAP12 genes in 

breast cancer, and missense variants included in these genes were significantly associated with 

breast cancer risk from our single-variant analyses. For CH, the most significant gene was 

BRCA2 in EA (BioVU) population with a P-value of 0.011. We expected to observe less 

significant P-values for CH models since there are a few compound heterozygotes for rare 
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variants (105, 145). Due to the study design limitation (no family-based sequencing studies) and 

the rarity of compound heterozygotes of rare variants, our CH findings from the large 

population-based studies are more valuable in breast cancer genetics. For example, in the case of 

a family where some members express a rare phenotype trait, we could easily examine the 

family‟s genomic pedigree for rare alleles being inherited in a recessive manner in accordance 

with the trait. And this is not the case for a large, randomly mating population-based studies. As 

we might expect, two copies of the same rare allele are unlikely to be inherited together in a 

large, randomly mating population. Due to the rarity of CH findings, especially in a large 

population-based study, our CH results provide new genetic clues for breast cancer risk inherited 

in a recessive manner, and further experimental validation are warranted. 

In conclusion, results from our study provide additional insights into the genetics and 

biology of breast cancer. Further studies are required to explain the underlying biological 

mechanisms of our findings. 

B. Considerations 

Studies previously evaluating rare coding variants associated with breast cancer have 

been limited to their sample sizes. We used large sample size to examine rare coding variants, 

and our functional prediction approaches provided us meaningful candidate nonsynonymous and 

LOF variants which we used for further analysis. For gene-based meta-analysis, RAREMETAL 

might not be an optimal method for binary model, but it is close to optimal. There would be little 

power loss. The developers of this method compared single variants test using binary and 

quantitative models, and they found that the results were almost similar. Therefore, our gene-

based meta-analysis results are reliable based on gene-level test statistics implemented in 
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RAREMETAL which are reconstructed from single variant score statistics and their covariance 

matrix (120). 

Our cis-eQTL analysis to select genes in 109 GWAS loci associated with breast cancer 

risk used three major databases with the most updated genotype and gene expression 

information. We are not aware of any study that evaluates eQTLs using all three major 

databases. We also examined the potential differences between adjusted and unadjusted CNV 

and DNA methylation for TCGA in eQTL studies. We found potential minimal confounding 

effect of CNV and DNA methylation on gene expression. Thus, we might have a reduced power 

to conduct eQTL analysis using METABRIC since they do not provide CNV and DNA 

methylation information. Although we would not have an inflated type I error since those are not 

strong confounders, further consideration need to be taken in eQTL studies.  

C. Future directions 

In this study, we found several novel missense variants and significant genes associated 

with breast cancer risk from comprehensive association analyses. If a rare variant is predicted to 

have a functional effect according to several functional prediction algorithms, further biological 

validation is required to prove any suspected functional effect. Specifically, LOF variants are 

expected to be found at lower frequencies in the genome due to evolutionary pressure which 

results in an enrichment for false positives among such variants (93, 135). Therefore, proper 

biological validation of these variants is especially important. 

Although classic dominant inheritance model is still useful for rare variant evaluation, 

recessive patterns of compound heterozygotes of rare variants can also expose the function 

altering effects of rare variants. For validation of our CH findings and explanation of the 

functional effect of rare variants, family-based sequencing studies will serve as valuable 
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resources. Therefore, further studies including experimental validations are necessary to explain 

our findings in the genetics of breast cancer. 
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APPENDIX 

Appendix 1. Previously identified GWAS loci associated with Breast Cancer risk. 

SNP Chr 
Position 

(hg19) 
Alleles

a
 Reported Gene OR (95% CI) P-value

b
 Ethnicity Study (reference) 

rs616488 1 10566215 G/A PEX14 0.94 (0.92-0.96) 2.0 x 10
-10

 European Michailidou et al. (11) 

rs12118297 1 87779217 T/G LMO4 0.91 (0.88-0.94) 4.5 x 10
-8

 East Asian Han et al. (Under review) 

rs11552449 1 114448389 T/C 
PTPN22-BCL2L15-AP4B1-

DCLRE1B-HIPK1 
1.07 (1.04-1.09) 1.8 x 10

-8
 European Michailidou et al. (11) 

rs11249433 1 121280613 G/A None 1.09 (1.07-1.11) 2.0 x 10
-26

 European Michailidou et al. (11) 

rs12405132 1 145644984 T/C LOC10028814,NBPF10,RNF115 0.95 (0.93-0.97) 7.9 x 10
-9

 European Michailidou et al. (13) 

rs12048493 1 149927034 C/A None 1.07 (1.05-1.10) 1.1 x 10
-9

 European Michailidou et al. (13) 

rs6678914 1 202187176 ?/? LGR6,UBE2T,PTPN7 1.10 (1.06-1.13) 1.4 x 10
-8

 European Garcia-Closas et al. (7) 

rs4951011 1 203766331 G/A ZC3H11A 1.09 (1.06-1.12) 8.8 x 10
-9

 East Asian Cai et al. (6) 

rs4245739 1 204518842 ?/? LRRN2,PIK3C2B,MDM4 1.14 (1.10-1.18) 2.1 x 10
-12

 European Garcia-Closas et al. (7) 

rs72755295 1 242034263 G/A EXO1 1.15 (1.09-1.22) 1.8 x 10
-8

 European Michailidou et al. (13) 

rs12710696 2 19320803 ?/? None 1.10 (1.06-1.13) 4.6 x 10
-8

 European Garcia-Closas et al. (7) 

rs4849887 2 121245122 T/C None 0.91 (0.88-0.94) 3.7 x 10
-11

 European Michailidou et al. (11) 

rs2016394 2 172972971 A/G METAP1D-DLX1-DLX2 0.95 (0.93-0.97) 1.2 x 10
-8

 European Michailidou et al. (11) 

rs1550623 2 174212894 G/A CDCA7 0.94 (0.92-0.97) 3.0 x 10
-8

 European Michailidou et al. (11) 

rs10931936 2 202143928 C/T CASP8 0.88 (0.82-0.94) 1.5 x 10
-4

 European Turnbull et al. (8) 

rs1045485 2 202149589 C/G CASP8 0.88 (0.84-0.92) 5.7 x 10
-7

 European Cox et al. (45) 

rs13387042 2 217905832 G/A None 0.88 (0.86-0.90) 2.2 x 10
-57

 European Michailidou et al. (11) 

rs16857609 2 218296508 T/C DIRC3 1.08 (1.06-1.10) 1.1 x 10
-15

 European Michailidou et al. (11) 

rs6762644 3 4742276 G/A ITPR1-EGOT 1.07 (1.04-1.09) 2.2 x 10
-12

 European Michailidou et al. (11) 

rs4973768 3 27416013 T/C SLC4A7 1.10 (1.08-1.12) 2.3 x 10
-30

 European Michailidou et al. (11) 

rs12493607 3 30682939 C/G TGFBR2 1.06 (1.03-1.08) 2.3 x 10
-8

 European Michailidou et al. (11) 

rs6796502 3 46866866 A/G None 0.92 (0.89-0.95) 1.8 x 10
-8

 European Michailidou et al. (13) 

rs9790517 4 106084778 T/C TET2 1.05 (1.03-1.08) 4.2 x 10
-8

 European Michailidou et al. (11) 

rs6828523 4 175846426 A/C ADAM29 0.90 (0.87-0.92) 3.5 x 10
-16

 European Michailidou et al. (11) 

rs10069690 5 1279790 T/C TERT 1.06 (1.04-1.09) 7.2 x 10
-9

 European Michailidou et al. (11) 

rs13162653 5 16187528 T/G None 0.95 (0.93-0.97) 1.1 x 10
-10

 European Michailidou et al. (13) 
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rs2012709 5 32567732 T/C None 1.05 (1.03-1.08) 6.4 x 10
-9

 European Michailidou et al. (13) 

rs10941679 5 44706498 G/A None 1.13 (1.10-1.15) 1.7 x 10
-37

 European Michailidou et al. (11) 

rs9790879 5 44899885 C/T None 1.10 (1.03-1.17) 3.2 x 10
-3

 European Turnbull et al. (8) 

rs889312 5 56031884 C/A MAP3K1 1.12 (1.10-1.15) 2.7 x 10
-36

 European Michailidou et al. (11) 

rs10472076 5 58184061 C/T RAB3C 1.05 (1.03-1.07) 2.9 x 10
-8

 European Michailidou et al. (11) 

rs1353747 5 58337481 G/T PDE4D 0.92 (0.89-0.95) 2.5 x 10
-8

 European Michailidou et al. (11) 

rs7707921 5 81538046 T/A ATG10 0.93 (0.91-0.95) 5.0 x 10
-11

 European Michailidou et al. (13) 

rs10474352 5 90732225 C/T ARRDC3 1.09 (1.06-1.12) 1.7 x 10
-9

 East Asian Cai et al. (6) 

rs1432679 5 158244083 C/T EBF1 1.07 (1.05-1.09) 2.0 x 10
-14

 European Michailidou et al. (11) 

rs11242675 6 1318878 C/T FOXQ1 0.94 (0.92-0.96) 7.1 x 10
-9

 European Michailidou et al. (11) 

rs204247 6 13722523 G/A RANBP9 1.05 (1.03-1.07) 8.3 x 10
-9

 European Michailidou et al. (11) 

rs9257408 6 28926220 C/G None 1.05 (1.03-1.08) 4.8 x 10
-8

 European Michailidou et al. (13) 

rs17529111 6 82128386 G/A None 1.06 (1.04-1.09) 3.2 x 10
-7

 Caucasian Purrington et al. (146) 

rs17530068 6 82193109 G/A None 1.05 (1.03-1.08) 8.2 x 10
-9

 European Michailidou et al. (11) 

rs2180341 6 127600630 G/A ECHDC1 1.41 (1.25-1.59) 2.9 x 10
-8

 
Ashkenazi 

Jews 
Gold et al. (9) 

rs9485372 6 149608874 A/G TAB2 0.90 (0.87-0.92) 3.8 x 10
-12

 East Asian Long et al. (50) 

rs3757318 6 151914113 A/G ESR1 1.16 (1.12-1.21) 2.2 x 10
-21

 European Michailidou et al. (11) 

rs2046210 6 151948366 A/G ESR1 1.08 (1.06-1.10) 2.0 x 10
-19

 European Michailidou et al. (11) 

rs4593472 7 130667121 T/C FLJ43663 0.95 (0.94-0.97) 1.8 x 10
-9

 European Michailidou et al. (13) 

rs720475 7 144074929 A/G ARHGEF5-NOBOX 0.94 (0.92-0.96) 7.0 x 10
-11

 European Michailidou et al. (11) 

rs9693444 8 29509616 A/C None 1.07 (1.05-1.09) 9.2 x 10
-14

 European Michailidou et al. (11) 

rs13365225 8 36858483 G/A None 0.95 (0.93-0.98) 1.1 x 10
-8

 European Michailidou et al. (13) 

rs6472903 8 76230301 G/T None 0.91 (0.89-0.93) 1.7 x 10
-17

 European Michailidou et al. (11) 

rs2943559 8 76417937 G/A HNF4G 1.13 (1.09-1.17) 5.7 x 10
-15

 European Michailidou et al. (11) 

rs13267382 8 117209548 A/G LINC00536 1.05 (1.03-1.07) 1.7 x 10
-8

 European Michailidou et al. (13) 

rs13281615 8 128355618 G/A None 1.09 (1.07-1.12) 9.6 x 10
-28

 European Michailidou et al. (11) 

rs1562430 8 128387852 T/C None 1.17 (1.10-1.25) 5.8 x 10
-7

 European Turnbull et al. (8) 

rs11780156 8 129194641 T/C MIR1208 1.07 (1.04-1.10) 3.4 x 10
-11

 European Michailidou et al. (11) 

rs1011970 9 22062134 T/G CDKN2A/B 1.06 (1.03-1.08) 5.5 x 10
-8

 European Michailidou et al. (11) 

rs10759243 9 110306115 A/C None 1.06 (1.03-1.08) 1.2 x 10
-8

 European Michailidou et al. (11) 

rs865686 9 110888478 G/T None 0.89 (0.88-0.91) 9.5 x 10
-35

 European Michailidou et al. (11) 

rs2380205 10 5886734 T/C ANKRD16,FBXO18 0.94 (0.91-0.98) 4.6 x 10
-7

 European Turnbull et al. (8) 

rs7072776 10 22032942 A/G MLLT10-DNAJC1 1.07 (1.05-1.09) 4.3 x 10
-14

 European Michailidou et al. (11) 
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rs11814448 10 22315843 C/A DNAJC1 1.26 (1.18-1.35) 9.3 x 10
-16

 European Michailidou et al. (11) 

rs10822013 10 64251977 T/C ZNF365 1.12 (1.06-1.18) 5.9 x 10
-9

 East Asian Cai et al. (28) 

rs10995190 10 64278682 A/G ZNF365 0.86 (0.84-0.88) 1.3 x 10
-36

 European Michailidou et al. (11) 

rs704010 10 80841148 T/C ZMIZ1 1.08 (1.06-1.10) 7.4 x 10
-22

 European Michailidou et al. (11) 

rs7904519 10 114773927 G/A TCF7L2 1.06 (1.04-1.08) 3.1 x 10
-8

 European Michailidou et al. (11) 

rs11199914 10 123093901 T/C None 0.95 (0.93-0.97) 1.9 x 10
-8

 European Michailidou et al. (11) 

rs2981579 10 123337335 A/G FGFR2 1.27 (1.24-1.29) 1.9 x 10
-170

 European Michailidou et al. (11) 

rs1219648 10 123346190 G/A FGFR2 1.20 (1.07-1.42) 1.1 x 10
-10

 European Hunter et al. (147) 

rs2981582 10 123352317 A/G FGFR2 1.26(1.23-1.30) 2.0 x 10
-76

 European Easton et al. (148) 

rs3817198 11 1909006 C/T LSP1 1.07 (1.05-1.09) 1.5 x 10
-11

 European Michailidou et al. (11) 

rs909116 11 1941946 T/C LSP1 1.17 (1.10-1.24) 7.3 x 10
-7

 European Turnbull et al. (8) 

rs12575663 11 65574535 A/G OVOL1 0.95 (0.93-0.96) 8.6 x 10
-12

 
Asian and 

European 
Shi et al. (82) 

rs3903072 11 65583066 T/G 
DKFZp761E198-OVOL1-

SNX32-CFL1-MUS81 
0.95 (0.93-0.96) 8.6 x 10

-12
 European Michailidou et al. (11) 

rs614367 11 69328764 T/C None 1.21 (1.18-1.24) 2.2 x 10
-63

 European Michailidou et al. (11) 

rs11820646 11 129461171 T/C None 0.95 (0.93-0.97) 1.1 x 10
-9

 European Michailidou et al. (11) 

rs7107217 11 129473690 C/A TMEM45B,BARX2 1.08(1.05-1.11) 4.6 x 10
-7

 East Asian Long et al. (50) 

rs12422552 12 14413931 C/G None 1.05 (1.03-1.07) 3.7 x 10
-8

 European Michailidou et al. (11) 

rs10771399 12 28155080 G/A PTHLH 0.86 (0.83-0.88) 8.1 x 10
-31

 European Michailidou et al. (11) 

rs17356907 12 96027759 G/A NTN4 0.91 (0.89-0.93) 1.8 x 10
-22

 European Michailidou et al. (11) 

rs1292011 12 115836522 G/A None 0.92 (0.90-0.94) 8.9 x 10
-22

 European Michailidou et al. (11) 

rs11571833 13 32972626 T/A BRCA2-N4BP2L1-N4BP2L2 1.26 (1.14-1.39) 4.9 x 10
-8

 European Michailidou et al. (11) 

rs2236007 14 37132769 A/G PAX9-SLC25A21 0.93 (0.91-0.95) 1.7 x 10
-13

 European Michailidou et al. (11) 

rs2588809 14 68660428 T/C RAD51L1 1.08 (1.05-1.11) 1.4 x 10
-10

 European Michailidou et al. (11) 

rs999737 14 69034682 T/C RAD51L1 0.92 (0.90-0.94) 2.5 x 10
-19

 European Michailidou et al. (11) 

rs8009944 14 69039588 A/C RAD51L1 0.88 (0.82-0.95) 4.0 x 10
-4

 European Turnbull et al. (8) 

rs941764 14 91841069 G/A CCDC88C 1.06 (1.04-1.09) 3.7 x 10
-10

 European Michailidou et al. (11) 

rs11627032 14 93104072 C/T RIN3 0.94 (0.92-0.96) 4.5 x 10
-9

 European Michailidou et al. (13) 

rs2290203 15 91512067 G/A PRC1 1.08 (1.05-1.11) 4.3 x 10
-8

 East Asian Cai et al. (6) 

rs12443621 16 52548037 G/A TNRC9/LOC643714 1.11(1.08-1.14) 2.0 x 10
-19

 European Easton et al. (148) 

rs3803662 16 52586341 A/G TOX3 1.24 (1.21-1.27) 2.1 x 10
-114

 European Michailidou et al. (11) 
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rs4784227 16 52599188 T/C TOX3 1.24 (1.20-1.29) 1.3 x 10
-28

 

Combined 

(Asian and 

European 

American) 

Long et al. (80) 

rs17817449 16 53813367 G/T MIR1972-2-FTO 0.93 (0.91-0.95) 6.4 x 10
-14

 European Michailidou et al. (11) 

rs11075995 16 53855291 ?/? FTO,KIAA1752 1.11 (1.07-1.15) 4.0 x 10
-8

 European Garcia-Closas et al. (7) 

rs13329835 16 80650805 G/A CDYL2 1.08 (1.05-1.10) 2.1 x 10
-16

 European Michailidou et al. (11) 

chr17:29230520:D 17 29230520 G/GGT ATAD5 0.93 (0.91-0.96) 3.3 x 10
-8

 European Michailidou et al. (13) 

rs6504950 17 53056471 A/G COX11 0.94 (0.92-0.96) 2.3 x 10
-13

 European Michailidou et al. (11) 

rs745570 17 77781725 G/A None 0.95 (0.93-0.97) 1.4 x 10
-9

 European Michailidou et al. (13) 

rs527616 18 24337424 C/G None 0.95 (0.93-0.97) 1.6 x 10
-10

 European Michailidou et al. (11) 

rs1436904 18 24570667 G/T CHST9 0.96 (0.94-0.98) 3.2 x 10
-8

 European Michailidou et al. (11) 

rs6507583 18 42399590 G/A SETBP1 0.91 (0.88-0.95) 3.2 x 10
-8

 European Michailidou et al. (13) 

rs8170 19 17389704 A/G ANKLE1,C19orf62,ABHD8 1.26 (1.17-1.35) 2.3 x 10
-9

 European Antoniou et al. (149) 

rs2363956 19 17394124 A/C None 0.82 (0.77-0.88) 2.3 x 10
-8

 Caucasian Purrington et al. (146) 

rs4808801 19 18571141 G/A SSBP4-ISYNA1-ELL 0.93 (0.91-0.95) 4.6 x 10
-15

 European Michailidou et al. (11) 

rs3760982 19 44286513 A/G 
C19orf61-KCNN4-LYPD5-

ZNF283 
1.06 (1.04-1.08) 2.1 x 10

-10
 European Michailidou et al. (11) 

rs2284378 20 32588095 T/C RALY,EIF2S2,ASIP 1.16 (1.10-1.22) 1.1 x 10
-8

 European Siddiq et al. (3) 

rs2823093 21 16520832 A/G NRIP1 0.92 (0.90-0.94) 6.8 x 10
-16

 European Michailidou et al. (11) 

rs16992204 21 36111201 C/T LINC00160 1.13 (1.07-1.18) 4.6 x 10
-8

 East Asian Han et al. (Under review) 

rs132390 22 29621477 C/T EMID1-RHBDD3-EWSR1 1.12 (1.07-1.18) 3.1 x 10
-9

 European Michailidou et al. (11) 

rs12628403 22 39358037 A/C APOBEC3 1.18 (1.12-1.25) 2.9 x 10
-9

 East Asian Long et al. (51) 

rs6001930 22 40876234 C/T MKL1 1.12 (1.09-1.16) 8.8 x 10
-19

 European Michailidou et al. (11) 
a 
Effect/reference alleles. 

      
b 
Obtained from the meta-analyses for each study. 
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