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Chapter 1

Introduction

1.1 Motivation

The complexity of cyber-physical systems (CPS), the roles and responsibilities of the humans that

interact with them, and the cyber-security of these highly interconnected systems have led to a

new research paradigm known as resilient CPS. By considering the elements and disciplines that

contribute to a more effective design, resilient CPS provide interdisciplinary solutions for problems

such as how to tailor the control system to enable it to respond to disturbances quickly and effi-

ciently, how to better integrate widely distributed CPS to prevent faults that result in disruptions

to operations of critical infrastructure, and how to design cyber-security protection mechanisms so

that the system defends itself from cyber-attacks by changing its behaviors.

A resilient CPS is one that should maintain state awareness and an accepted level of operational

normalcy in response to any disturbances, including threats of unexpected and malicious nature. In

particular, a resilient CPS maintains its operational goals in the presence of:

• System Faults: Advanced control algorithms deployed in CPS are dependent upon data from mul-

tiple sensors to predict the behaviors of the system and make corrective responses. However, such

systems can become brittle to the extent that any unrecognized fault or degradation in the sensors

can lead to incorrect responses by the control algorithm and potentially compromise the desired

operation. Therefore, advanced control algorithms in resilient CPS require the implementation of

detection and diagnosis architectures to recognize sensor faults and degradations.

• Cyber-Attacks: Computer security and sensor network security have focused on prevention mech-

anisms but do not address how a CPS can continue to function under attacks. Control theory,

on the other hand, has strong results on robust and fault-tolerant algorithms against well-defined

uncertainties or faults, but there is little work accounting for attacks caused by malicious adver-

saries.

1



1.2 Challenges

A resilient CPS must be able to detect failures and cyber-attacks quickly and accurately in order to

minimize their adverse effects. While a large number of anomaly detection methods are designed in

other domains, they are often built with Information Technology (IT) systems in mind. Thus, typical

anomaly detectors do not take into account the properties of the physical components of CPS and

are merely based on the cyber components. Also, anomaly detectors designed specifically for CPS

are often faced with limitations such as inapplicability to general CPS domains and shortcomings

such as high overhead that make them undesirable solutions. Hence, a significant challenge is the

design of anomaly detectors that effectively detect failures and cyber-attacks in CPS.

To design anomaly detectors and analyze their performance, a model of the physical system is

needed. The model can be used, for example, to predict the future state of the CPS or to define

utility and loss functions. Models of the physical system are typically developed using either physical

laws or data-driven system identification methods. While models based on physical laws provide

high fidelity, they are often very hard to obtain due to the highly nonlinear and complex nature of

the system. In addition, although data-driven models are relatively simple to obtain, they often do

not provide the precision and accuracy of models based on the physical laws. Therefore, another

challenge is the design of accurate and precise models of the physical system.

In design and evaluation of anomaly detectors, realistic attack models that represent the harmful

effects of cyber-attacks on CPS are needed. However, unlike fault detection where assumptions are

made about the properties of faults, making restrictive assumptions about strategic cyber-attacks is

not permitted since it results in unrealistic models. Thus, there is a challenge in obtaining attack

models that adequately represent the attack while not being too restrictive.

In anomaly detectors, while it is desirable to simultaneously improve detection performance and

security overhead, this is often impossible due to the trade-offs between them. These trade-offs

can typically be changed through selecting different configurations for anomaly detectors, where

each configuration results in a different detection performance and security overhead. Finding the

right configuration that optimally balances the trade-off between detection performance and security

overhead is another challenge.

The final challenge is the design of resilient control algorithms that guarantee some notion of

correct behavior at a minimum level of performance even when the system is under attack. For

example, in traffic signal control, it is desirable that when traffic flow sensors are under attack, traffic

signal controllers still maintain a minimum level of performance to avoid disastrous congestions.
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1.3 Contributions

In this section, we present an overview of the contributions towards addressing the outlined chal-

lenges. In particular, the focus of our contributions is on improving resilience of CPS through design

and evaluation of anomaly detection methods that incorporate domain-specific properties of the

physical system. The contributions of this document are described below.

Chapter 3

We study the problem of finding optimal thresholds for anomaly-based detection in dynamical sys-

tems in the face of strategic attacks. Specifically, we have the following contributions:

• We formulate a two-player Stackelberg game between a defender and an adversary. The adversary

attacks the system, choosing the time and type of the attack (e.g., type of harmful chemical

introduced into a water-distribution network) to maximize the inflicted damage. On the other

hand, the defender selects detection thresholds to minimize both damage from best-response

attacks and the cost of false alarms.

• We present a dynamic-programming based algorithm to solve the game and compute optimal

time-dependent thresholds. We analyze the performance of the proposed algorithm and show that

its running time scales polynomially as the length of the time horizon of interest increases.

• We provide and study a polynomial-time algorithm for the problem of computing optimal fixed

thresholds, which do not change with time.

• We study the problem of finding optimal thresholds in the presence of random faults and attacks,

and present an algorithm that computes the optimal thresholds.

• We evaluate our results by applying it to the detection of contamination attacks in a water-

distribution system. Since expected damage to the system by an attack is time-dependent as

water demand changes throughout the day, the time-dependent threshold strategy can achieve

much lower losses than a fixed-threshold strategy. Our simulation results confirm this, showing

that time-dependent thresholds significantly outperform fixed ones.

Chapter 4

We study the problem of finding optimal thresholds for anomaly detection of faulty traffic sensors,

considering route planning as the application of interest. The objective is to select the optimal

3



thresholds of anomaly detectors in order to optimize the performance of the route planning appli-

cation in the presence of faulty sensors. In particular, we make the following contributions:

• We devise an effective anomaly detector for identifying faulty traffic sensors using a prediction

model based on Gaussian Processes.

• We present an approach for computing the optimal parameters of the detector which minimize

losses due to false-positive and false-negative errors.

• We characterize critical sensors, whose failure can have high impact on the traffic application.

• We implement our method and evaluate it numerically using a real-world dataset and the route

planning platform OpenTripPlanner [93].

Chapter 5

We propose a framework for application-aware anomaly detection in sensors measurements in CPS.

The objective is to optimally configure all anomaly detectors of a CPS such that the performance loss

in the presence of detection errors is minimized. Specifically, we make the following contributions:

• We present an approach to recover from anomalies in order to maintain operation when detection

alerts are triggered.

• We propose the application-aware anomaly detector, in which the anomaly detector is optimally

configured such that the performance loss in the presence of detection errors is minimized. In

particular, the thresholds are selected such that the performance of the system in the presence of

detection errors is as close as possible to the performance that could have been obtained if there

were no detection errors.

• We prove that the application-aware detection problem is, in general, NP-hard. We then present

an algorithm to efficiently find near-optimal solutions.

• We study two special variations of the application-aware detection problem, that is, single detector

and detectors with equal threshold. We optimally solve both special cases, which can be used in

resource-constrained environments.

• We perform experiments on a case study of real-time control of traffic signals. We evaluate our

approach numerically and show its benefits compared to standard anomaly detection practices.
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Chapter 6

We study the adversarial regression problem, in which an omniscient adversary that is capable

of perturbing the values of a subset of sensors attempts to drive a CPS to an unsafe state (e.g.,

raising the pressure of a reactor beyond its safety limit in a process control system) while remaining

undetected. We make the following contributions:

• We formulate the adversarial regression problem. In the problem, a safety-critical CPS that is

monitored by regression-based anomaly detectors is considered. Then, an omniscient adversary

that is capable of perturbing the values of a subset of sensors attempts to drive the system to

an unsafe state (e.g., raising the pressure of a reactor beyond its safety limit in a process control

system) without being detected.

• We solve the adversarial regression problem considering different types of regression-based detec-

tors. In particular, we solve the problem for detectors that use linear regression, neural network

regression, and an ensemble of the two as their regression algorithms.

• We present a resilient detector that mitigates the impact of stealthy attacks without increasing

the number of false alarms. The resilient detector achieves this by resilient selection of detection

thresholds.

• We numerically evaluate the adversarial regression problem, and demonstrate the effectiveness of

the resilient detector through applying our methods to a case study of a process control system.

1.4 Organization

The technical contributions of this thesis are in Chapters 3-6. The organization is as follows.

• Chapter 2 reviews the related work in the research of resilient CPS.

• Chapter 3 presents the problem of selecting optimal thresholds for attack detection in dynamical

environments.

• Chapter 4 presents the problem of optimal detection of faulty traffic sensors used in route planning.

• Chapter 5 proposes the application-aware anomaly detection framework.

• Chapter 6 studies the problem of adversarial regression in CPS.

• Chapter 7 concludes this thesis.
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Chapter 2

Related Work

The breadth of material in the resilient CPS literature is exorbitant since it spans several areas

including control theory, information security, game theory, and artificial intelligence. To be ger-

mane, this chapter only reviews works that are most related to the contributions of this document.

We begin with an overview of resilience in CPS in Section 2.1. Then, in Section 2.2, we discuss

attack detection in CPS, where we also provide relevant background on anomaly detection. In Sec-

tion 2.3, we review existing work on game-theoretical approaches for anomaly detection in CPS. We

discuss different research directions on anomaly detection within the scope of machine learning in

Section 2.4. Finally, in Section 2.5, we discuss how the contributions of this dissertation fit within

the scope of the literature.

2.1 Resilience in Cyber-Physical Systems (CPS)

Resilience in engineering is defined as “the intrinsic ability of a system to adjust its functioning prior

to, during, or following changes and disturbances, so that it can sustain required operations under

both expected and unexpected conditions” [59]. Similarly, resilience in CPS is defined as protecting

the operational goals (e.g., stability) as well as other non-operational goals (e.g., privacy) in the

presence of both expected events (e.g., failures) and unexpected events (e.g., cyber-attacks) [26].

Resilience in CPS must attain three goals: (1) Integrity which represents the trustworthiness

of data or resources, (2) Availability which is the ability to access and use information on demand

as specified, and (3) Confidentiality, which is the ability to keep information secret or private from

unauthorized users. To satisfy these goals, merely applying well-known IT-resilience measures to

CPS is not enough. This is because unlike IT systems, where resilience essentially involves encryption

and protection of data, resilience in CPS considers unwanted behavior that can potentially influence

the physical system’s behavior. Therefore, there exist fundamental vulnerabilities, threats and

challenges, which are a result of CPS’s complex and typically distributed architectures and the

interconnection of IT and control systems, that need to be addressed [26], [27].

Malicious attacks against CPS can be categorized into deception attacks (or integrity attacks)

and denial-of-service (DoS) attacks. Deception attacks refer to the possibility of compromising the
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integrity of control packets or measurements, and they are cast by altering the behavior of sensors

and actuators. DoS attacks, instead, compromise the availability of resources by, for instance,

jamming the communication channel. Deception attacks result in the lack of the security goal of

integrity, and DoS attacks result in the lack of the security goal of availability.

Analysis of CPS-resilience against malicious attacks and design of algorithms and architectures

to survive such attacks has received increasing attention [26], [27]. Elements from information

security, sensor network security, and control theory that can be used for solving the problem of

CPS-resilience are discussed in [26]. While existing approaches provide many useful mechanisms

for improving security of CPS, they are not sufficient when used against CPS. A detailed three-

dimensional attack space is proposed that links different types of attacks to the attacker’s resources

and knowledge of the system is presented in [128]. This attack space gives insight to both the

attacker and the defender on how an attack can be perpetuated, as well as the potential impact

of the attack on CPS. To demonstrate different attack scenarios captured by the attack space, a

testbed of a quadruple tank process under cyber-attacks is analyzed.

DoS attacks are studied for discrete-time linear dynamical systems in [6]. The attack model is

defined by generalizing traditional uncertainty classes and safety constraints are defined as security

requirements of the control system. From the defender’s perspective, the objective is to design

control laws that are robust against the attacker’s actions, whereas from the attacker’s viewpoint,

the goal is to determine the optimal attack plan that degrades the performance of the system as

much as possible. Following this scenario, an optimal attack plan for discrete-time linear dynamical

systems is proposed. DoS attacks are also studied in the context of an adversary that jams the

communication between the CPS’s plant and controller for a limited time [53]. A saddle-point

equilibrium is proven to exist between the attacker and controller. Then, for a specific instance of

the problem, an optimal policy for jamming attacks is proposed.

Considering deception attacks, the secure estimation and control of linear deterministic systems

under sensor attacks is studied in [44]. The problem is formulated as a dynamic error correction

problem with sparse vectors, and it is shown that by using state feedback, the system’s resilience can

be increased. Furthermore, replay attacks on state estimation in wireless networks are considered

in [98]. Replay attacks are cast by hijacking the sensors, recording the readings for a certain amount

of time, and repeating such readings while injecting an exogenous signal into the system. Such

attacks can be detected by injecting a signal unknown to the attacker into the system [98], [99].

Methods to design cyber-attacks that bypass bad data detectors have been proposed. False data

injection attacks against state estimators are studied in [85]. It is shown that by using the configura-
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Figure 2.1: Summary of related work on CPS security.

tion of the system, an attacker can launch successful attacks that introduce errors into certain state

variables while bypassing existing bad data detectors. Moreover, scenarios demonstrating stealthy

deception attack policies are characterized in [123]. It is assumed that the attacker has complete

model knowledge and full access to all sensor and actuator channels and is able to perform deception

attacks. The stealthy attack policies are illustrated using a water irrigation example.

In addition, stealthy attack policies for networked CPS are characterized in [108]. In particular,

it is shown that an attack is stealthy if the measurements due to the attack coincide with the

measurements due to some nominal operating condition. Experimental stealthy deception attacks on

water irrigation canals controlled by SCADA systems are presented in [7]. A set of stealthy deception

attacks for attackers compromising a subset of sensors and actuators is described in [107]. Stealthy

attacks with limited resources are considered and improved detection methods are proposed in [67],

[68]. A security metric for studying sets of vulnerable sensors is proposed in [119]. The consequences

of stealthy attacks are analyzed in [140], [129]. In particular, the work in [127] analyzes attack policies

with limited model knowledge and performs experiments showing that such attacks are stealthy and

can induce the erroneous belief that the system is in an unsafe state.

All the research described above highlights the significance of security and resilience in CPS.

Figure 2.1 provides a summary of the previous work discussed in this section.

2.2 Attack Detection in CPS

2.2.1 A Brief Introduction to Anomaly Detection

To detect attacks against CPS, anomaly-based detection methods can be employed. What distin-

guishes anomaly-based detectors used in CPS from intrusion detection systems (IDS) used in IT

systems is that the latter is based on creating models of network traffic or software behavior whereas

the former is based on a representative model of the physical system. There also exist other differ-
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Table 2.1: Differences in Attack Detection Between IT Systems and CPS [97]

IT CPS

Monitoring host- or network-level user/ma-

chine activity (e.g., an HTTP request or a web

server).

Monitoring the physical processes (and hence

laws of physics) which govern behavior of

physical devices.

Monitoring user-triggered activities, leading

to high false positive rates due to the unpre-

dictability of user behaviors

Monitoring activities which are frequently au-

tomated, providing some regularity and pre-

dictability for behavior monitoring.

Dealing with mostly non-zero-day attacks,

making knowledge-based detection effective.

Dealing with zero-day or highly sophisticated

attacks, hence making knowledge-based detec-

tion ineffective.

Rarely dealing with legacy components, mak-

ing modeling of the physical processes govern-

ing legacy components unnecessary.

Often dealing with legacy technology, mak-

ing physical model-based detection an effec-

tive technique by specifying the physical pro-

cesses governing behavior of legacy compo-

nents.

ences in attack detection between IT systems and CPS that are summarized in Table 2.1 [97]. From

this point forward, when we refer to anomaly detectors, we mean anomaly detection in the context

of CPS unless otherwise stated.

An anomaly-based detector receives as inputs the sensor measurements from the physical sys-

tem and the control commands sent to the physical system, and then uses them to identify any

suspicious sensor or control commands. Figure 2.2 illustrates a general diagram of such security

monitoring architecture. This architecture contains: (1) the physical phenomena of interest (i.e.,

plant), (2) sensors to observe the physical system and send a time series yk denoting the value of

the measurement at time k, (3) the controller that sends control commands uk to actuators based

on the sensor measurements received, (4) actuators that change the control command to an actual

physical change, and (5) a detection module that contains two subcomponents (i.e., predictor and

statistical test) as described below.

As shown in Figure 2.3, the detection module comprises two main parts: (1) A predictor which

given sensor measurements yk and control commands uk, predicts the future expected measurements

ŷk+1, and (2) An anomaly detector (or statistical test) which given a time series of residuals rk (i.e.,

the difference between the received sensor measurement yk and the predicted measurement ŷk)

determines whether to raise an alarm, denoted by H1, or not, denoted by H0. Note that in this

scheme, it is assumed that the detection module is trusted and its output cannot be attacked. But,
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the inputs provided to the detection module may be attacked. In particular, in a sensor attack, the

attacker deceives the controller about the real state of the plant, and so zk 6= yk. Further, in an

actuator attack, the control command sent to the plant is modified, i.e., uk 6= vk.

Based on the observed sensor or control signals up to time k, we can use data-driven or model-

based methods of the system to predict the expected observations ŷk+1. The difference between the

predictions ŷk+1 computed by the predictor and the measurements yk+1 received from the sensors

is called a residual rk. If the sensor measurements yk are significantly different from the predictions

(i.e., if the residual is large), a detection alarm can be generated. In a stateless test, an alarm is raised

for every single significant deviation at time k, i.e., an alarm is raised if |yk − ŷk| = rk ≥ η where

η is a threshold. In a stateful test, an additional statistic Sk is computed that keeps track of the

historical changes of rk. Then, a detection alarm is generated if the statistic exceeds a threshold,

i.e., Sk ≥ η, which can be due to either a single large deviation or a persistent deviation across

multiple timesteps.

There are many tests that can keep track of the historical behavior of the residual rk such as

taking an average over a time-window, an exponential weighted moving average (EWMA), or using

change detection statistics such as the non-parametric CUmulative SUM (CUSUM) statistic [11].

The CUSUM detector assumes a known probability model for observations, which is not suitable
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Table 2.2: Detection Methods

Features Statistical Test

Cur. In. & Prev. Out. uk, yk−1 Stateless |rk|
H1

≷
H0

η

Prev. Sensor Observ. yk−1, . . . , yk−N Stateful (Sk + |rk| − b)+
H1

≷
H0

η

Table 2.3: Errors in Anomaly Detection

H0 is true H1 is true

Accept H0 Correct decision False negative (missed detection)

Accept H1 False positive (false alarm) Correct decision

for attacks that are unknown by definition, and so non-parametric CUSUM (i.e., CUSUM without

probability likelihood models) is typically used in the CPS security literature. The non-parametric

CUSUM statistic is defined recursively as S0 = 0 and Sk+1 = (Sk+ |rk|−b)+, where (x)+ represents

max(0, x) and b is selected so that the expected value of |rk| − b is less than zero under hypothesis

H0 (i.e., b prevents Sk from increasing consistently under normal operation). An alert is generated

whenever the statistic is greater than a previously defined threshold Sk > η and the test is restarted

with Sk+1 = 0. Table 2.2 provides a summary of different detection methods.

As illustrated in Table 2.3, in anomaly detectors, there might be a false negative, which means

failing to raise an alarm when an anomaly did happen. Further, there might be a false positive, which

means raising an alarm when the system exhibits normal behavior. It is desirable to reduce the FP

and FN probabilities as much as possible. But, there exists a trade-off between them, which can

be controlled by changing the threshold η. In particular, by decreasing (increasing) the threshold

η, one can decrease (increase) the false-negative FN(η) and increase (decrease) the false-positive

probability FP (η). It is possible to plot the false-positive probability FP (η) as a function of the

false-negative probability FN(η) for various threshold values [43].

2.2.2 Model-Based Attack Detection

In this section, we review the literature on model-based attack detection in CPS. Table 2.4 provides

a summary.

Attack detection in industrial process control systems is studied in [28]. An anomaly-based

detector is designed using a predictor, which is based on an LTI model of the physical system, and

a non-parametric CUSUM test. As the attack model, an adversary that launches sensor attacks is
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Table 2.4: Summary of related work on attack detection in CPS.

Detection Attack Monitoring

Paper Stateful Stateless Sensor Actuator Active Static/Dyn.

[108] - X X X - X

[98] - X X X X -

[27] X - X - - X

[42] - X X - - X

[9], [8] - X X - - X

[133] X - X - X -

[128], [130] - X X X - X

[57] X - - X - X

[64] - X X - - X

considered. The adversary has the goal of raising the pressure of a tank beyond safety levels while

remaining undetected. The paper characterizes attacks that cannot be detected by the detector and

then evaluates their effects by running experiments. It is concluded that the considered case study

is resiliently-designed since none of the simulated stealthy attacks result in a safety violation.

Considering a linear descriptor system, fundamental monitoring limitations for CPS are charac-

terized in [108]. An attack is proven to be undetectable by static, dynamic, and active monitors if

and only if it excites only the zero dynamics of the system. Such undetectable attacks, which are also

known as zero-dynamic attacks, can be performed by only compromising the actuators. While study

of zero-dynamic attacks is useful for resilience analysis, most systems are not vulnerable to them

(for example, if states are directly measured or if there is no need for state estimation). Even for the

vulnerable systems, the attacker has restrictions on achieving its objective since specific scenarios

must be followed in launching an attack. To secure the CPS against zero-dynamic attacks, methods

which modify the structure of the system are proposed [130], [128].

In active monitoring, unpredictable control commands are sent to the CPS, and then, it is

verified whether the sensors respond as expected. If the attacker does not adapt its attack to

the unpredictable control command, it may be detected. Active monitoring is applied to state

estimation by embedding a watermark in the control signal [98], [99], [100]. It is also used in power

systems [101], [33], and other domains, [122], [133]. While active monitoring is a useful detection

strategy for systems that are in their steady state, it is not suitable to the systems with highly

variable control signal (e.g., in frequency generators in power systems). Even for systems in steady

state, if an attacker has perfect knowledge, it can design attack vectors that bypass the detector.
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In addition, active monitoring results in performance losses caused by deviating from the optimal

control signal. While there have been attempts to minimize this performance loss [100], this may

still be an undesirable behavior.

Combined cyber and physical attacks are investigated in [9], [8]. In the attack model, the

adversary launches physical attacks on a water distribution system in order to steal water, and then

performs sensor attacks to hide the effects of the physical attack. To detect such attacks, the paper

proposes using unknown input observers. Nevertheless, it is stated that if the adversary has enough

resources to attack enough pipes and sensors, it can always remain stealthy. Such covert attacks are

also characterized for linear and nonlinear systems [123], [124].

The effects of adding security measures to a control system is experimentally characterized in [54].

It is shown that adding security measures can create additional time delay that can degrade the

system’s performances. To compensate for the adverse effect of added security, methods that change

the control parameters in real-time are proposed. Further, a framework to optimize the performance

and security trade-offs in CPS is proposed in [142]. The framework is based on an extension of

evolutionary algorithms known as coevolutionary genetic algorithms, and is able to find the Nash

equilibrium for the trade-off model.

An attack detection mechanism based on the energy balance of a system is proposed in [42].

The approach uses passivity which is a property indicating that the system dissipates more energy

than it generates. To detect attacks, the supplied energy is estimated, and then it is compared to

the sum of the dissipated and stored energy in the CPS. While this approach is novel, its benefits

over observer-based methods is not clear. In addition, if the attack is passive, it always remains

undetected. Also, functions for energy dissipation, which are required for the detector to work, may

be hard or even impossible to obtain for some cases.

Unsupervised clustering has been used to detect attacks in process control systems [64], [70].

The clusters represent the relationship between variables of a process and attacks are identified as

anomalies that do not fit the clusters. The approach has the advantage of creating models of the

physical systems without a priori knowledge. However, its performance may be weak since it does

not consider the time-evolution of the system or the evolution outside of a steady state.

Model-based attack detection has also been studied in other domains such as power systems [21],

[48], [63], [114], [137], and medical systems [57], [58]. In power systems, it is shown that an attacker

can inject false sensor signal for state estimation that will not raise an alarm [85]. There has been

some follow up research on this problem [138], [32], [125], [79]. Further, in medical systems, overdoes

attacks on insulin pumps are studied in [57]. Supervised learning methods are employed to learn
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normal patient infusion patterns, and then, detection is performed using an average of the residuals.

2.3 Game Theory for Detection

In this section, we review game-theoretical approach for the problem of attack detection in CPS.

Game-theoretic principles are formally applied to intrusion detection to develop a decision and

control framework in [3], [4]. Distributed intrusion detection is studied as a game between an

IDS and an attacker using a model that represents the imperfect flow of information from the

attacker to the IDS through a network. Then, the existence of a unique Nash equilibrium and best-

response strategies is investigated, and long-term interactions are analyzed using repeated games

and a dynamic model. Further, the detection framework is extended using a stochastic and dynamic

game in which the sensors observing and reporting the attacks to the IDS are modeled as a finite-state

Markov chain [5]. Then, the game is investigated under different assumptions on the information

available to players.

The problem of detecting and classifying an attacker based on its attack type is studied in [38].

In the model, the defender strategically selects its classification policy by choosing a threshold that

balances the cost of missed detections and false alarms, while the attacker tries to maximize its payoff

based on its type. A characterization of the Nash equilibria is then presented in mixed strategies

that can be computed in polynomial time. Furthermore, randomized detection thresholds using a

general model of adversarial classification is studied in [82]. The goal of using randomized thresholds

is to prevent an attacker from launching stealthy attacks that stay just below the threshold. Both

Nash and Stackelberg equilibria are analyzed based on the true-positive to false-positive curve of

the detector. Then, it is shown that the randomized thresholds may force an attacker to design less

harmful attacks, which lowers the expected cost of the defender.

Using a zero-sum non-stationary stochastic game, the problem of finding the optimal policy

that switches between control-cost optimal and secure controllers in the presence of replay attacks

is proposed in [95]. It is proven that the optimal strategy exists, and a suboptimal algorithm is

proposed. Further, an approach for finding optimal detection thresholds for multiple IDS employed

in CPS is proposed in [74]. In the model, the attacker mounts an attack against a subset of systems

and the defender detects and mitigates the attack if the IDS of at least one targeted system raises an

alarm. It is shown that finding optimal attacks and defenses is computationally expensive, and then

polynomial-time heuristic algorithms are proposed for computing approximately optimal strategies.

The problem of strategic threshold-selection by a collection of independent self-interested users is

14



Non-cooperative
Game

Static
Game

Complete and
Perfect Information

[74],[75]

Incomplete or
Imperfect Information

[30],[38],[82]

Dynamic
Game

Complete and
Perfect Information

[104]

Incomplete or
Imperfect Information

[3], [4], [5], [95]

Figure 2.4: Summary of related work on game-theoretical approaches for anomaly detection in CPS.

considered in [75]. The Stackelberg multi-defender equilibria corresponding to short-term strategic

dynamics is characterized, and a polynomial-time algorithm for computing short-term equilibria is

presented. The Nash equilibria of the simultaneous game between all users and the attacker is also

characterized which models long-term dynamics. It is concluded that if an equilibrium exists, in

both cases, it is unique and socially optimal. Moreover, the problem of optimal signature-based IDS

configuration under resource constraints is studied in [145]. The work uses a cooperative game to

study intrusion detection according to some known attack graphs.

Signaling games are also used to study intrusion detection [40]. For instance, an intrusion

detection game based on the signaling game is proposed in order to select the optimal detection

strategy that lowers resource consumption in [121]. Intrusion detection in heterogeneous networks,

in which detectors monitor the nodes that can be targeted by attackers, is investigated in [30]. The

attackers’ actions are defined as the probabilities of attacking each of the targets, and the defender’s

actions are defined as the probabilities of defending against attacks by considering the false alarm

rate and the detection rate of the IDS. The best defense strategies are computed for the cases of

one or multiple IDS monitoring each attack target. The defender’s strategy is determined by the

amount of resources that the IDS allocate to each of the targets.

Figure 2.4 provides a taxonomy of the related work discussed in this section. The papers are

categorized based on the type of game (i.e., dynamic or static) and the information available to

players.

2.4 Machine Learning for Detection

Machine learning has been widely used to study anomaly detection [29], [131]. But, there is little

work that applies machine learning classification methods to attack detection in CPS. This may be

partially due to the lack of publicly available intrusion data for CPS. Nonetheless, if this limitation
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can be overcome through using testbeds or simulation environments, machine learning techniques

can be highly beneficial for resilient detection in CPS. For instance, machine learning methods

can be used to construct data-driven estimators to predict the future states, build supervised-

or unsupervised-learning anomaly detectors (as shown in Figure 2.5), and develop secure learning

methods for resilient detection.

2.4.1 Attack Detection

A behavior-based machine learning approach for attack detection in CPS is proposed in [61]. The

work models the physical process of CPS to detect any anomaly or attack that may try to change the

system’s behavior. Using a replicate of a real water treatment facility, different data-driven anomaly

detectors are implemented and their performances are evaluated. While this work successfully

applies machine learning algorithms for attack detection in CPS, the studied attack scenarios are

very restrictive. Thus, it is unclear whether the high detection rates reported in the paper are

due to the effectiveness of the approach or due to the restrictive attack models. Using the same

testbed, the impact of single-point cyber-attacks are experimentally investigated in [1]. Cyber-

attacks are launched through a SCADA server connected to programmable logic controllers that

govern the actuators and sensors. Several experiments are performed considering different objectives

for the attacker. Then, based on the observed experiment results, attack detection mechanisms are

proposed.

Data-driven anomaly detection is studied using a miniature industrial gas system with a few

sensors and actuators in [102]. To detect attacks, one physical process attribute (i.e., pressure in
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pipeline) and two one-class classifiers (i.e., support vector data description and kernel principal

component analysis) are used. Then, different attack scenarios are considered to evaluate the de-

tection performance. According to the results presented in the paper, while single-point attacks

have a detection rate of 99.25 percent, more complicated attacks have much lower detection rates

of approximately 65-70 percent. This shows that the detector’s performance significantly decreases

when faced by complex attacks. Further, an intrusion detection method based on neural networks

is investigated using a water testbed that contains a tank, pump, and level sensor [45]. Network

traffic, SCADA mode, water level, and pump status are used as the attributes, and then the method

is evaluated considering malicious attacks on the level sensor. Finally, using the same testbed, a

one-class approach is studied in [103].

An intrusion detection system that uses neural network-based modeling is proposed in [81].

Network data recorded from an existing critical infrastructure is used as normal behavior, and

randomly generated data is used to model intrusions. To learn the model, a combination of two

neural network learning algorithms, namely Error back propagation and Levenberg-Marquardt, is

employed. Then, the method is evaluated using network data, and it is claimed that the detection

approach achieves a perfect detection rate while generating no false positives on test data.

An unsupervised data-driven framework for system-wide anomaly detection is presented in [83].

The framework involves a spatiotemporal feature extraction scheme for discovering and representing

causal interactions among the subsystems of a CPS, and a free energy estimation of system-wide

patterns using a Restricted Boltzmann Machine (RBM). It is stated that the proposed framework can

capture multiple nominal modes with one graphical model and can be effectively used for anomaly

detection. Moreover, a formal methods approach to the problem of intrusion detection for CPS

security is discussed in [60]. The proposed algorithmic method is capable of inferring a data classifier

in the form of a signal temporal logic formula from unlabeled data. The inferred formula can be

interpreted in natural language and can be used for online monitoring.

A Bayesian network approach for learning the causal relations between cyber and physical vari-

ables as well as their temporal correlations from unlabeled data is presented in [69]. Data transfor-

mations are performed to deal with the heterogeneous characteristics of the cyber and physical data

so that the integrated dataset can be used to learn the Bayesian network structure and parameters.

Scalable algorithms are then presented to detect different anomalies and isolate their respective root-

cause using a Bayesian network. The algorithm is evaluated using an unlabeled dataset consisting

of anomalies due to faults and cyber-attacks in a commercial building system.
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2.4.2 Adversarial Learning

Adversarial learning studies secure adoption of machine learning techniques in adversarial settings.

Adversaries can be categorized based on the influence on classifier, security violation, and speci-

ficity [20]. The influence is either causative which undermines the learning algorithm to cause mis-

classifications via influencing training data and potentially test data, or exploratory which causes

misclassifications via affecting test data. The security violation can be an integrity violation which

allows the adversary to access protected resource and cause misclassification of illegitimate samples,

an availability violation which denies service to users and can cause misclassification of legitimate

and illegitimate samples, or privacy violation which allows the adversary to obtain confidential

information. The specificity of an attack can be either targeted or indiscriminate.

Adversarial classifier reverse engineering (ACRE) learning problem is introduced in [86]. In

ACRE, an adversary launches an attack to minimize a cost function, while having limited information

about the classifier. The adversary is allowed to make polynomial number of membership queries

to modify an attack instance to bypass the classifier with minimal cost. In the paper, a query

algorithm for reverse engineering of linear classifiers is presented. Furthermore, in [31], a framework

for the adversarial learning problem is presented that uses game theory. The paper formulates a

game between a classifier and an adversary, and then assuming that the adversary’s optimal strategy

is known, develops the optimal classifier. Then, experiments are performed which show that the

proposed robust classifier outperforms a standard one.

Classifiers that are optimal with respect to a worst-case scenario of feature deletion at test

time are investigated in [51]. A minmax game is formulated to formalize the interaction between

a classifier and a feature removal mechanism, and it is assumed that the players know the strategy

space of each other. The same problem is studied using a zero-sum sequential Stackelberg game

where the adversary acts as the leader and the classifier acts as the follower [84].

Optimal support vector machine (SVM) learning strategies are developed considering two attack

models, namely free-range and restrained [144]. The strategies minimize the hinge loss given that

the adversary maximizes the hinge loss by corrupting the data. Experiments are performed using

different datasets, which report improvements in resilience over standard SVM. The approach is

extended by considering the hierarchical mixtures of experts in the framework [143].

Feature reduction in adversarial settings is studied in [77]. In particular, the paper considers

a model of an adversary that performs feature cross-substitution attacks. To make learning more

robust to such attacks, a heuristic method is presented. In addition, as a general solution, a mixed-
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integer program with constraint generation is presented. The program implicitly trades off overfitting

and feature selection in an adversarial setting using a sparse regularizer along with an evasion

model. Furthermore, a general-purpose scalable retraining framework that can boost robustness of

an arbitrary learning algorithm in the face of adversarial models is proposed in [78].

The literature on adversarial learning is extensive. Previous work also studies evasion attacks [15],

[17], [19], [72]; poisoning attacks [18], [16], [118]; adversarial examples against machine learning [52],

[71], [120]; and secure learning [23], [22].

2.5 Comparison to this Dissertation

The work presented in this thesis addresses specific problems in view of the challenges highlighted

in Section 1.2. In particular, we seek to develop methods for the design, analysis, and evaluation of

resilient anomaly detectors used in CPS. As stated above, what distinguishes our work from previous

work is incorporating domain-specific properties of the underlying physical system in the detector

design. In particular, in Chapter 3, we define a notion of damage caused by attacks that depends on

the state of the physical system. This is then used to optimally configure anomaly detectors such

that they become highly sensitive in critical states. In Chapter 4 and 5, we model the adverse effects

of incorrect detection decisions on the physical system. We then optimally re-design the detector

so that such adverse effects are minimized. In Chapter 6, we study the problem of adversarial

regression in CPS. Aside from the novelty in the problem formulation, what makes this chapter

unique is that it provides practical evidence to support the benefits of resilient anomaly detectors.

Overall, exploiting the tight interaction between the anomaly detector and the physical system for

the benefit of improved resilience, is what distinguishes this work form previous works.
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Chapter 3

A Game-Theoretic Approach for Selecting Optimal Thresholds for Attack Detection in Dynamical

Environments

Adversaries may cause significant damage to smart infrastructure using malicious attacks. To detect

and mitigate these attacks before they can cause physical damage, operators can deploy anomaly

detection systems (ADS), which can alarm operators to suspicious activities. However, detection

thresholds of ADS need to be configured properly, as an oversensitive detector raises a prohibitively

large number of false alarms, while an undersensitive detector may miss actual attacksw. This is an

especially challenging problem in dynamical environments, where the impact of attacks may signif-

icantly vary over time. Using a game-theoretic approach, we formulate the problem of computing

optimal detection thresholds which minimize both the number of false alarms and the probability of

missing actual attacks as a two-player Stackelberg security game. We provide an efficient dynamic

programming-based algorithm for solving the game, thereby finding optimal detection thresholds.

We analyze the performance of the proposed algorithm and show that its running time scales poly-

nomially as the length of the time horizon of interest increases. In addition, we study the problem of

finding optimal thresholds in the presence of both random faults and attacks. Finally, we evaluate

our result using a case study of contamination attacks in water networks, and show that our optimal

thresholds significantly outperform fixed thresholds that do not consider that the environment is

dynamical.

3.1 Introduction

Smart infrastructures equipped with data-gathering devices and computational capabilities for data-

intensive analysis lead to efficient monitoring and management of cyber-physical systems including

transportation, electrical, and water distribution systems. The ability to collect diverse data at

low-cost allows for intelligent system monitoring, automation, and efficient resource management.

Continuous monitoring of modern infrastructure networks to detect anomalies and malicious intrud-

ers is a prominent requirement for smart operations. Inability to early detect a malicious attack

on some system component might not only cause disruption of services but could lead to complete

system failure, excessive physical and financial losses. For instance, in water networks, water pipes

20



are exposed to the risk of intentional contamination with toxic chemicals. If not detected early,

such malicious attack could have detrimental consequences including poisoning and propagation of

infectious diseases.

Efficient intrusion and attack detection mechanisms need to be employed to quickly and accurately

detect attacks. Attackers, on the other hand, strive to maximize the damage inflicted to the system

while remaining covert and not getting detected for an extended duration of time. An anomaly

detection system (ADS) can monitor the system for signatures of known attacks or for anomalies.

When an ADS detects suspicious activity, it raises an alarm, which can then be investigated by

system operators and experts. For instance, in the case of water networks, water quality sensors

continuously monitor parameters such as chlorine, pH, and turbidity. The collected data is then

analyzed by detection systems such as CANARY [56] to detect anomalous events and provide an

indication of potential contamination.

A well-known method that can be used for detecting anomalies is sequential change detection

[11]. This method considers a sequence of measurements that starts under the normal hypothesis

and then, at some point in time, changes to the anomaly hypothesis. In sequential change detection,

the detection delay is the time difference between when an anomaly occurs and when an alarm is

raised. Detection algorithms may induce false positives that are alarms raised for normal system

behavior. In general, it is desirable to reduce detection delay as much as possible while maintaining

an acceptable false-positive rate. There exists a trade-off between the detection delay and the rate

of false positives, which can be controlled by changing the sensitivity of the detector. A typical

way to control the sensitivity is by changing the detection threshold. By decreasing (increasing) the

detection threshold, a defender can decrease (increase) the detection delay and increase (decrease)

the false-positive rate. Consequently, the detection threshold must be carefully selected, since a

large value may result in large detection delays, while a small value may result in wasting resources

on investigating false alarms.

Finding an optimal threshold, which optimally balances the trade-off between detection delay

and rate of false positives is a challenging problem. The problem is exacerbated when detectors are

deployed in systems with dynamic behavior and when the expected damage incurred from unde-

tected attacks depends on the system state and time. For example, in water distribution networks,

contamination attacks at a high-demand time are more calamitous than attacks at a low-demand

time. Hence, defenders need to incorporate time-dependent information in computing optimal detec-

tion thresholds when facing strategic attackers. In dynamic systems, potential damage from attacks

changes over time, which implies that optimal thresholds must also change with time. However, if
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we have to select a different threshold for each time period, then the number of possible solutions

grows exponentially with the time-horizon.

An adversary can attack a system in multiple ways, and each of these may cause a different

amount of damage or may be detected with a different delay. To account for these differences, at-

tack types available to the adversary must be explicitly modeled. For instance, in water-distribution

networks, potassium ferricyanide and arsenic trioxide are both chemicals that can be used to con-

taminate water. In this case, addition of a specific toxic chemical constitutes an attack type as each

chemical affects water quality in different ways and hence may cause different damage or may be

detected with different delay [55].

Contamination events may also occur due to non-malicious incidents or equipment failures. For

instance, pipe bursts and leakages can become a source of water contamination. Therefore, it is de-

sirable to design ADS that are able to quickly and accurately detect either incidental contaminations

or malicious attacks.

We study the problem of finding optimal thresholds for anomaly-based detection in dynamical

systems in the face of strategic attacks. Our main contributions are the following:

• We formulate a two-player Stackelberg game between a defender and an adversary. We assume

that the adversary attacks the system, choosing the time and type of the attack (e.g., type of

harmful chemical introduced into a water-distribution network) to maximize the inflicted damage.

On the other hand, the defender selects detection thresholds to minimize both damage from

best-response attacks and the cost of false alarms.

• We present a dynamic-programming based algorithm to solve the game, thereby computing op-

timal time-dependent thresholds. We call this approach the time-dependent threshold strategy.

We analyze the performance of the proposed algorithm and show that its running time scales

polynomially as the length of the time horizon of interest increases, which is important in practice

from the perspective of scalability.

• We also provide and study a polynomial-time algorithm for the problem of computing optimal

fixed thresholds, which do not change with time.

• In addition, we study the problem of finding optimal thresholds in the presence of random faults

and attacks, and present an algorithm that computes the optimal thresholds. The running time

of the algorithm scales polynomially as the length of the time horizon of interest increases.

• Finally, we evaluate and apply our results to the detection of contamination attacks in a water-
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distribution system as a case study. Since expected damage to the system by an attack is time-

dependent as water demand changes throughout the day, the time-dependent threshold strategy

can achieve much lower losses than a fixed-threshold strategy. Our simulation results confirm this,

showing that time-dependent thresholds significantly outperform fixed ones.

The rest of this chapter is organized as follows. In Section 3.2, we discuss related work. In Sec-

tion 3.3, we introduce the system model. In Section 3.4, we present the game-theoretic model and

define the problem of computing optimal time-dependent detection thresholds. In Section 3.5, we

analyze the time-dependent detection strategy and present an algorithm to obtain optimal thresh-

olds. We also provide an algorithm to compute optimal fixed thresholds, which do not change with

time. In Section 3.6, we present the problem of computing optimal time-dependent thresholds in

the presence of both faults and attacks, and we present an algorithm to solve the problem. In Sec-

tion 3.7, we evaluate our algorithm using a case study of contamination attacks in water distribution

systems. Finally, we offer concluding remarks in Section 3.8.

3.2 Related Work

As discussed in Chapter 2, the problem of optimal design of anomaly detection systems has been

studied in a variety of different ways in the academic literature [132, 29]. Nevertheless, to the best of

our knowledge, prior work has not particularly addressed the optimal threshold selection problem in

the face of strategic attacks when the damage corresponding to an attack depends on time-varying

properties of the underlying system.

Change detection methods with adaptive thresholds have been previously used. An extension of

CUSUM test that can be configured at run-time is proposed in [2]. The paper discusses methods

to configure the detector’s parameters, and shows how the detector performs when the correct

configuration is not known a priori. Further, a procedure to obtain adaptive thresholds for CUSUM-

type detectors is presented that takes into account non-stationary nature of the stochastic systems

under supervision [136]. The proposed method outperforms fixed threshold in obtaining desired

rate of false alarms. Finally, an adaptive CUSUM control chart is presented that uses variable

sampling intervals [88]. The method is shown to perform better than the fixed sampling interval

approach. Nonetheless, unlike our work, these studies fail to address dependencies between the

detector’s performance and dynamic properties of a system that can be maliciously exploited by

strategic adversaries.

In a game-theoretic setting, signaling games have been used to model intrusion detection [109, 40].
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An intrusion detection game based on a signaling game is proposed in order to select the optimal

detection strategy that lowers resource consumption [121]. Further, distributed intrusion detection

is studied as a game between an IDS and an attacker using a model that represents the flow of

information from the attacker to the IDS [3, 4]. The work investigates the existence of a unique

Nash equilibrium and best-response strategies. Nevertheless, the IDS models used in these works

are significantly different from the ones used in our work (i.e., anomaly-based change detection).

Another related game-theoretic setting is FlipIt game [134, 73]. FlipIt is an attacker-defender game

that studies the problem of stealthy takeover of control over a critical resource, in which the players

receive benefits proportional to the total time that they control the resource. A framework for

the interaction between an attacker, defender, and a cloud-connected device is presented in [110].

The interactions are described using a combination of a FlipIt game and a signaling game. What

distinguishes our work from FlipIt is using an anomaly detector that has detection delay and false

alarms.

Contaminant intrusion in water distribution network has been considered in water security lit-

erature [34, 35]. In particular, data-driven water monitoring approaches have received considerable

attention due to the advances in smart monitoring technologies [94, 65]. Bayesian sequential analy-

sis is integrated with neural network models to detect possible quality threats in water distribution

systems [113]. Further, a dynamic thresholds scheme for contamination event detection is presented

by defining optimal detection thresholds as the ones that maximize detection rate [10]. While the

mentioned work also uses detection thresholds that change in time, the method of threshold selection

does not consider losses obtained by detection delay and false alarms. In addition, unlike our work,

it does not consider malicious adversaries that exploit time-varying aspects of WDS.

Sequential change detection methods such as CUSUM have been used to detect changes in water

quality. Combined Shewhart-CUSUM control charts are used for ground water monitoring in [49].

The study uses Shewhart control chart for identifying large changes at a single timestep in addition

to CUSUM chart for detecting small continuous changes. The method is evaluated by presenting

false-positive rate, false-negative rate, and detection delay. Further, CUSUM methods for water

quality monitoring are implemented in [90]. Considering six kinds of quality trends, the performance

of CUSUM is studied by measuring detection delay and false-negative error. It is concluded that

CUSUM performs well when used for monitoring water quality. While such studies effectively use

sequential change detection for water quality monitoring, they simply use fixed thresholds and do

not consider time-dependent thresholds. In this chapter, we showed that time-dependent thresholds

significantly outperform the fixed threshold in terms of minimizing the losses.
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Figure 3.1: System description.

3.3 System Model

We consider a system which may be attacked by an adversary. We assume a discrete-time system

model with a finite time horizon of interest denoted by {1, ..., T}. The system provides some utility

in its normal state and this utility is substantially reduced when the system is under attack. Further,

the system and – hence – these utilities may be be time-dependent. Instead of explicitly considering

these quantities, we take a general, security-focused approach and model the impact of attacks using

a time-dependent damage function D. Finally, we assume that the system is monitored by a set of

sensors and an operator can use anomaly detection based on sensor data for detecting attacks.

For example, consider a water distribution network that is monitored by sensors that measure

water quality using pH or choline levels. The system is subject to attacks such as intrusive contami-

nation with toxic chemicals [50]. The utility from supplying clean water for residential consumption

depends on the water demand, which fluctuates significantly over time. The damage caused by

a contamination attack depends on both the lack of clean water supply as well as the impact on

public health of the population exposed to contaminated water. Water quality sensors may be used

to detect anomalies, such as changes in chemical concentrations that could be attributed to the

introduction of harmful chemicals.

Our primary goal is to address the problem of finding optimal time-dependent configurations for

anomaly detection algorithms. Table 3.1 shows a list of symbols used in this chapter. In addition,

Figure 3.1 shows a high level overview of the system model, whose elements will be detailed in the

following subsections.

Attack Model. Adversaries may compromise the system through an attack of type λ ∈ Λ (e.g.,

type of harmful chemical introduced into a water-distribution network). The attack starts at time
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Table 3.1: List of Symbols

Symbol Description

T cardinality of time horizon of interest

η vector of time-dependent threshold η = 〈ηk〉Tk=1

Λ set of attack types

D(k, λ) expected damage caused by an attack of type λ ∈ Λ at timestep k

δ(ηk, λ) detection delay given detection threshold ηk and attack type λ

FP (ηk) false alarm probability given detection threshold ηk

Cf cost of false alarms

Cd cost of changing the detection threshold

P(η, ka, λ) attacker’s payoff for time-dependent threshold η = 〈ηk〉Tk=1 and attack (ka, λ)

L(η, ka, λ) defender’s loss for threshold η = 〈ηk〉Tk=1 and attack (ka, λ)

E set of thresholds corresponding to set of possible detection delays ∆

PF (η) defender’s loss for time-dependent threshold η = 〈ηk〉Tk=1 due to random faults

LC(η, ka, λ) defender’s loss for threshold η = 〈ηk〉Tk=1 due to random faults and attack (ka, λ)

ka and ends at ke, thus spanning the interval [ka, ke]. If an attack remains undetected, it will enable

the attacker to cause physical or financial damage. In order to represent the tight relation between

the system’s dynamic behavior and the expected loss incurred from undetected attacks, we model

the potential damage of an attack as a function of time.

Definition 1 (Expected Damage Function). The damage function of a system is a function D :

{1, ..., T} × Λ → R+ which represents the expected damage D(k, λ) incurred by the system from an

undetected attack of type λ ∈ Λ at time k ∈ {1, ..., T}.

Detector. We consider a defender whose objective is to protect the system using anomaly detection

based on the sensor measurements. The detector’s goal is to determine whether a sequence of received

measurements corresponds to normal behavior or an attack. Although the proposed approach can be

used for various detection algorithms, we consider a widely used method known as sequential change

detection [11]. This method assumes a sequence of measurements that starts under the normal

hypothesis, and then, at some point in time, changes to the attack hypothesis. Change detection

attempts to detect this change as soon as possible. Examples of change detection algorithms are

geometric moving average, generalized likelihood ratio (GLR), and cumulative sum (CUSUM) [11].

The performance of change detectors is characterized by the detection delay, which is the time

between the beginning of an attack and the time when an alarm is raised, and the false-positive

probability, which is the probability of raising an alarm when there has been no attack. In general,

it is desirable to reduce detection delay while maintaining an acceptable false-positive probability.
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However, there exists a trade-off between the detection delay and the probability of false positives,

which can be controlled by changing the detection threshold. In particular, by decreasing (increasing)

the detection threshold, a defender can decrease (increase) the detection delay and increase (decrease)

the false-positive probability. Finding the optimal trade-off and its corresponding optimal threshold

is an important problem since the damage from an attack depends on the performance of the detector.

The time-dependent threshold is denoted by η = 〈ηk〉Tk=1 and the detection delay by δ : R+ ×

Λ → N ∪ {0}, where δ(ηk, λ) is the detection delay (in timesteps) when the threshold is ηk and

the type of the attack is λ ∈ Λ. We assume that for each λ ∈ Λ, δ(ηk, λ) is a continuous function

of ηk. Further, we denote the false-positive probability (i.e., probability of raising a false alarm

during a single timestep) by FP : R+ → [0, 1], where FP (ηk) is the false-positive probability when

the detection threshold is ηk. We assume that FP is decreasing and δ is increasing with respect to

ηk, which is true for most typical detectors, including sequential change detectors. For example, in

Section 3.7, we obtain detection delay and false-positive probability for a CUSUM detector.

3.4 Problem Statement

In this section, we present the optimal threshold selection problem. We consider the case in which

the defender selects time-dependent thresholds for the anomaly detection. We model this problem

as a conflict between a defender and an attacker, which is formulated as a two-player Stackelberg

security game.

The idea of time-dependent threshold is to reduce the detector’s sensitivity during less critical

periods (via increasing the threshold) and increase the sensitivity during more critical periods (via

decreasing the threshold). As we will show, this significantly decreases the loss corresponding to

false alarms. However, the defender may not want to continuously change the threshold, since a

threshold change requires a reconfiguration of the detector that has a cost. Hence, the defender

needs to find an optimal threshold, which is a balance between continuously changing the threshold

and keeping it fixed.

3.4.1 Defender’s Loss and Attacker’s Payoff.

The defender’s strategic choice is to select the threshold η = 〈ηk〉Tk=1 for each timestep. We consider

a worst-case attacker who will not stop the attack before detection in order to maximize the damage.

Consequently, the attacker’s strategic choice becomes to select an attack type λ and a time ka to

start the attack.
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Since our work focuses on optimizing detection delay, we consider damage arising from attacks

only during the time they remain undetected. In other words, we consider the impact of an attack

from its beginning until its detection. We define the detection time σ(η, ka, λ) of an attack of type λ

that starts at ka as the first timestep in which an alarm is raised due to the attack. Since an alarm

is raised in timestep k for an attack of type λ that started at ka if and only if δ(ηk, λ) ≤ k− ka, the

detection time of an attack is

σ(η, ka, λ) = {min k | δ(ηk, λ) ≤ k − ka} .

Note that the equation above represents the timestep at which the attack is first detected, and not

the detection delay.

For the strategies (η, ka, λ), the attacker’s payoff is the total damage until the expected detection

time,

P(η, ka, λ) =

σ(η,ka,λ)∑
k=ka

D(k, λ) , (3.1)

that is, the total damage incurred by the system until the expected detection time. This payoff

function assumes a worst-case attacker that has the goal of maximizing the damage.

If an alarm is raised, the defender needs to investigate the system to determine whether an

attack has actually occurred or not, which will cost Cf . Further, let Cd be the cost associated

with each threshold change. The number of threshold changes is described by N = |Γ|, where

Γ = {k | ηk 6= ηk+1, k ∈ {1, ..., T − 1}}. When the defender selects a time-dependent threshold η,

and the attacker starts the attack at a timestep ka, the defender’s loss (i.e., inverse payoff) is

L(η, ka, λ) = N · Cd +

T∑
k=1

Cf · FP (ηk) +

σ(η,ka,λ)∑
k=ka

D(k, λ) , (3.2)

that is, the amount of resources spent on changing the threshold, operational costs of manually

investigating false alarms, and the expected amount of damage caused by the attack before its

detection.

3.4.2 Best-Response Attack and Optimal Threshold.

We assume that the attacker has complete and perfect information, and will play a best-response

attack to the defender’s strategy as defined below.

Definition 2 (Best-Response Attack). Assuming a defender’s strategy, the attacker’s strategy is a
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best-response if it maximizes the attacker’s payoff. Formally, an attack (ka, λ) is a best-response

given a defense strategy η if it maximizes P(η, ka, λ) as defined in (3.1).

Further, the defender must choose his strategy expecting that the attacker will play a best-

response or uniformly random attack. We formulate the defender’s optimal strategy as a strong

Stackelberg equilibrium (SSE), which is commonly used in the security literature for solving Stack-

elberg games [66].

Definition 3 (Optimal Thresholds). We call a defense strategy optimal if it minimizes the de-

fender’s loss given that the attacker always plays a best-response with tie-breaking in favor of the

defender. Formally, an optimal defense is

argmin
η,

(ka,λ)∈bestResponses(η)

L(η, ka, λ), (3.3)

where bestResponses(η) are the best-response attacks against η.

Our objective is to compute the optimal thresholds efficiently.

3.5 Selection of Optimal Thresholds

In this section, we present an approach for computing optimal thresholds for any instance of the

attacker-defender game, based on the SSE. The approach consists of two steps: 1) a dynamic-

programming algorithm (Algorithm 3.1) for finding minimum-cost thresholds subject to the con-

straint that the damage caused by a best-response attack is lower than or equal to a given damage

bound and 2) an exhaustive-search algorithm (Algorithm 3.2) that finds an optimal damage bound

and thereby optimal thresholds.

Let ∆ denote the set of all possible detection delay values:

∆ =
{
m ∈ {1, . . . , T}

∣∣ ∃λ ∈ Λ, η ∈ R+

[
m = δ(η, λ)

]}
.

In other words, ∆ is the set of all delay values between 1 and T that can be attained by some

threshold η for some attack type λ.

Next, let E be the set of maximal threshold values that attain the delay values ∆:

E =

{
η∗
∣∣∣∣ ∃λ ∈ Λ,m ∈ ∆

[
η∗ = max

η : δ(η,λ)≤m
η

]}
.
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Algorithm 3.1 MinimumCostThresholds(P )

1: ∀ m ∈ ∆|Λ|, η ∈ E : Cost(T + 1,m, η)← 0
2: for n = T, . . . , 1 do
3: for all m ∈ ∆|Λ| do
4: for all ηprev ∈ E do
5: if

∨
λ∈Λ

(∑n
k=n−mλ D(k, λ) > P

)
then

6: Cost(n,m, ηprev)←∞
7: else
8: for all η ∈ E do
9: if ηprev = η ∨ n = 1 then

10: S(n,m, ηprev, η)← Cost(n+ 1, 〈min{δ(η, λ),mλ + 1}〉λ∈Λ, η) + Cf · FP (η)
11: else
12: S(n,m, ηprev, η)←Cost(n+ 1, 〈min{δ(η, λ),mλ + 1}〉λ∈Λ, η)+ Cf · FP (η)+Cd
13: end if
14: end for
15: η∗(n,m, ηprev)← argminη S(n,m, ηprev, η)
16: Cost(n,m, ηprev)← minη S(n,m, ηprev, η)
17: end if
18: end for
19: end for
20: end for
21: m← 〈0, . . . , 0〉, η∗0 ← arbitrary
22: for all n = 1, . . . T do
23: η∗n ← η∗(n,m, η∗n−1)
24: m← 〈min{δ(η∗n, λ),mλ + 1}〉λ∈Λ

25: end for
26: return (Cost(1, 〈0, . . . , 0〉, arbitrary),η∗)

Algorithm 3.2 OptimalThresholds

1: SearchSpace←
{∑ka+δ

k=ka
D(k, λ)

∣∣∣∃ ka ∈ {1, . . . , T − 1}, δ ∈ ∆, λ ∈ Λ
}

2: for all P ∈ SearchSpace do
3: (TC(P ),η∗(P ))←MinimumCostThresholds(P )
4: end for
5: P ∗ ← argminP ∈SearchSpace TC(P )
6: return η∗(P ∗)

Introducing the set E enables us to restrict the strategy set of the defender to a discrete set. The

following lemma shows that the defender can always find optimal thresholds by considering only

threshold values from the set E.

Theorem 1. Given an instance of our game, there exist optimal thresholds η such that

∀k ∈ {1, . . . , T} : ηk ∈ E.

Proof. Given an instance of the Stackelberg game, let η be optimal thresholds that do not necessarily

satisfy the constraint of the lemma. Then, construct thresholds η∗ that satisfy the constraint by
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replacing each ηk with η∗k = maxη : δ(η,λ)≤ δ(ηk,λ) η. For any attack (ka, λ), the detection delay and

hence the expected damage are the same for η and η∗. Consequently, the damage caused by best-

response attacks must also be the same for η and η∗. Further, the defender’s costs for η are greater

than or equal to those for η∗ since 1) for every k, ηk ≤ η∗k and FP is decreasing, and 2) the number

of threshold changes in η is greater than or equal to that in η∗. Therefore, η∗ is optimal, which

concludes our proof.

Consequently, for the remainder of this chapter, we will consider only strategies in which every

threshold ηk is chosen from the set E.

Next, we present the algorithm for computing the optimal thresholds. The dynamic-programming

algorithm (Algorithm 3.1) finds minimum-cost thresholds subject to the constraint that the damage

caused by a best-response attack is lower than or equal to a given damage bound P . The exhaustive

search (Algorithm 3.2) computes the optimal thresholds by finding an optimal damage bound P

and using Algorithm 3.1. In the first algorithm, we use a dynamic-programming approach, iterating

backwards through the timesteps. For each timestep, we assume that the optimal thresholds for the

remaining timesteps (under certain conditions) have already been computed, and we compute the

optimal threshold for the current timestep in polynomial-time. In the second algorithm, we use an

exhaustive search but we show that the cardinality of our search space is polynomial in the size of

the input.

Lemma 1. For any given damage bound P ∈ R, Algorithm 3.1 computes thresholds η = 〈ηk〉Tk=1

that minimize

N · Cd +

T∑
k=1

Cf · FP (ηk)

subject to

∀ka ∈ {1, . . . , T}, λ ∈ Λ : P(η, ka, λ) ≤ P . (3.4)

The algorithm returns the minimum cost attained, or if no thresholds exist satisfying (3.4), it returns

infinity as the cost.

Proof. We assume that we are given a damage bound P , and we have to find thresholds that

minimize the total cost of false positives and threshold changes, subject to the constraint that any

attack against these thresholds will result in at most P damage. In order to solve this problem,

we use a dynamic-programming algorithm. We will first discuss the algorithm without a cost for

changing thresholds, and then show how to extend it to consider costly threshold changes.
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We let ∆|Λ| denote the Cartesian power ∆×∆× . . .×∆︸ ︷︷ ︸
|Λ|

of the set ∆. For any two variables

n ∈ {1, . . . , T} and m ∈ ∆|Λ| such that ∀λ ∈ Λ : 0 ≤ mλ < n, we define Cost(n,m) to be the

minimum cost of false positives from n to T subject to the damage bound P , given that attacks of

type λ can start at ka ∈ {n −mλ, . . . , T} and they are not detected prior to n. Formally, we can

define Cost(n,m) as

min
(ηn,...,ηT )

T∑
k=n

Cf · FP (ηk) (3.5)

subject to

∀λ ∈ Λ, ka ∈ {n−mλ, . . . , T} :

min
i : i≥n∧ δ(ηi,λ)≤i−ka

i∑
k=ka

D(k, λ) ≤ P.

If there are no thresholds that satisfy the damage bound P under these conditions, we let Cost(n,m)

be ∞.1

We can recursively compute Cost(n,m) as follows. Firstly, for any n and m, if there exists an

attack type λ such that
∑n
k=n−mλ D(k, λ) > P , then an attack of type λ starting at time n−mλ will

cause greater than P damage, regardless of the thresholds ηn, . . . , ηT . Consequently, in this case, we

can immediately set Cost(n,m) to ∞.

Otherwise, we iterate over all possible threshold values η ∈ E, and choose the one that minimizes

the cost Cost(n,m). For any threshold η, we can compute the resulting cost as follows. If δ(η, λ) >

mλ, then no attack of type λ would be detected at time n, so we would have to increase mλ for the

next timestep n + 1. On the other hand, if δ(η, λ) ≤ mλ, then attacks starting at time n − δ(η, λ)

or earlier would be detected at time n, so we would have to decrease mλ to δ(η, λ) for the next

timestep n+1. Hence, if we selected threshold η for timestep n, then we would have to update m to

〈min{δ(η, λ),mλ+1}〉λ∈Λ for the next timestep. Therefore, if we selected threshold η for timestep n,

then the attained cost would be the sum of the cost Cf ·FP (η) for timestep n and the best possible

cost Cost(n+1, 〈min{δ(η, λ),mλ+1}〉λ∈Λ) for the remaining timesteps. By combining this formula

with the rule for assigning infinite cost, we can compute Cost(n,m) as

Cost(n,m) =
∞ if

∨
λ∈Λ

∑n
k=n−mλ D(k, λ) > P,

minη Cost(n+ 1, 〈min{δ(η, λ),mλ + 1}〉λ∈Λ) + Cf · FP (η) otherwise.

(3.6)

1Note that in practice, ∞ can be represented by a sufficiently high natural number.
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Note that in the equation above, Cost(n,m) does not depend on η1, . . . , ηn−1, it depends only

on the feasible thresholds for the subsequent timesteps. Therefore, starting from the last timestep

T and iterating backwards, we are able to compute Cost(n,m) for all timesteps n and all values

m. Finally, for n = T and any m, computing Cost(T,m) is straightforward: if the damage from

m does not exceed the threshold P for any attack type λ, then Cost(T,m) = minη∈E Cf · FP (η);

otherwise, Cost(T,m) =∞.

Having found Cost(n,m) for all n and m, by definition, Cost(1, 〈0, . . . , 0〉) is the minimum

cost of false positives subject to the damage bound P . The minimizing threshold values can be

recovered by iterating forward from n = 1 to T and again using Equation (3.6). That is, for every

n, we select the threshold value η∗n that attains the minimum cost Cost(n,m), where m can easily

be computed from the preceding threshold values η∗1 , . . . , η
∗
n−1.2

Costly Threshold Changes. Now, we show how to extend the computation of Cost to consider

the cost Cd of changing the threshold. Let Cost(n,m, ηprev) be the minimum cost for timesteps

starting from n subject to the same constraints as before but also given that the threshold value

in timestep n − 1 (i.e., the previous timestep) is ηprev. Then, Cost(n,m, ηprev) can be computed

similarly to Cost(n,m): for any n < T , iterate over all possible threshold values η, and choose

the one that results in the lowest cost Cost(n,m, ηprev). If ηprev = η or if n = 1, then the cost is

computed the same way as in the previous case (i.e., similar to Equation (3.6)). Otherwise, the cost

also has to include the cost Cd of changing the threshold. Consequently, we first define

S(n, m, ηprev, η) =


Cost(n+ 1, 〈min{δ(η, λ) ,mλ + 1}〉λ∈Λ) + Cf · FP (η) if η ∈ {ηprev, 1},

Cost(n+ 1, 〈min{δ(η, λ),mλ+ 1}〉λ∈Λ) + Cf · FP (η) + Cd otherwise.

Then, similar to Equation (3.6), we can express the optimal cost as

Cost(n,m, ηprev) =


∞ if

∨
λ∈Λ

∑n
k=n−mλ D(k, λ) > P,

minη S(n,m, ηprev, η) otherwise.

Note that for n = 1, we do not add the cost Cd of changing the threshold. Similarly to the

previous case, Cost(1, 0, arbitrary) is the minimum cost subject to the damage bound P , and the

minimizing thresholds can be recovered by iterating forward.

2Note that in Algorithm 3.1, we store the minimizing values η∗(n,m) for every n and m when iterating backwards,
thereby decreasing running time and simplifying the presentation of our algorithm.
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Next, we show how Algorithm 3.2 finds optimal thresholds.

Theorem 2. Algorithm 3.2 computes optimal thresholds that minimize the defender’s loss (see

Definition 3).

Proof. For any damage bound P , using the algorithm MinimumCostThresholds (Algorithm 3.1),

we can find thresholds that minimize the total cost of false positives and threshold changes, which

we will denote by TC(P ), subject to the constraint that an attack can cause at most P damage.

Since the defender’s loss is the sum of its total cost and the damage resulting from a best-response

attack, we can find optimal thresholds by solving

min
P

TC(P ) + P (3.7)

and computing the optimal thresholds η∗ for the minimizing P ∗ using our dynamic-programming

algorithm.

To show that this formulation does indeed solve the problem of finding optimal thresholds, we

use indirect proof. For the sake of contradiction, suppose that there exist thresholds η′ for which

the defender’s loss L′ is lower than the loss L∗ for the solution η∗ of the above formulation. Let P ′

be the damage resulting from the attacker’s best-response against η′, and let TC ′ be the defender’s

total cost for η′. Since the best-response attack against η′ achieves at most P ′ damage, we have

from the definition of TC(P ) that TC ′ ≥ TC(P ′). It also follows from the definition of TC(P ) that

L∗ ≤ TC(P ∗) + P ∗. Combining the above with our supposition L∗ > L′, we get

TC(P ∗) + P ∗ ≥ L∗ > L′ = TC ′ + P ′ ≥ TC(P ′) + P ′.

However, this is a contradiction since P ∗ minimizes TC(P ) +P by definition. Therefore, thresholds

η∗ must be optimal.

It remains to show that Algorithm 3.2 finds an optimal damage bound P ∗. To this end, we show

that P ∗ can be found using an exhaustive search over a set, whose cardinality is polynomial in the

size of the problem instance. Consider the set of damage values resulting from all possible attack

scenarios ka ∈ T , δ ∈ ∆, λ ∈ Λ, that is, the set

{
ka+δ∑
k=ka

D(λ, k)

∣∣∣∣∣∃ ka ∈ {1, . . . , T}, δ ∈ ∆, λ ∈ Λ

}
. (3.8)

Let the elements of this set be denoted by P1, P2, . . . in increasing order. It is easy to see that for
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any i, the set of thresholds that satisfy the damage constraint is the same for every damage value

P ∈ [Pi, Pi+1). Hence, for any i, the cost TC(P ) is the same for every P ∈ [Pi, Pi+1). Therefore, the

optimal P ∗ must be a damage value Pi from the above set, which we can find by simply iterating

over the set.

Proposition 1. The running time of Algorithm 3.2 is O(T 2 · |∆||Λ|+2 · |Λ|2 · |E|).

Note that since detection delay values can be upper-bounded by T , the running time of Algo-

rithm 3.2 is also O(T |Λ|+4 · |Λ|2 · |E|).

Proof. In the dynamic-programming algorithm (Algorithm 3.1), we first compute Cost(n,m, δn−1)

for every n ∈ {1, . . . , T}, m ∈ ∆|Λ|, and ηprev ∈ E, and each computation takes O(|E| · |Λ|) time.

Then, we recover the optimal detection delay for all timesteps {1, . . . , T}, and the computation for

each timestep takes a constant time. Consequently, the running time of the dynamic-programming

algorithm is O(T · |∆||Λ|+1 · |Λ| · |E|).

In the exhaustive search, we first enumerate all possible damage values by iterating over all

possible attacks (ka, δ, λ), where ka ∈ {1, . . . , T}, δ ∈ ∆, and λ ∈ Λ. Then, for each possible damage

value, we execute the dynamic-programming algorithm, which takes O(T · |∆||Λ|+1 · |Λ| · |E|) time.

Consequently, the running time of Algorithm 3.2 is O(T 2 · |∆||Λ|+2 · |Λ|2 · |E|).

Finally, note that the running time of the algorithm can be substantially reduced in practice by

computing Cost in a lazy manner. Starting from n = 1 and m = 〈0, . . . , 0〉, we can compute and

store the value of each Cost(n,m, δprev) only when it is referenced, and then reuse it when it is

referenced again.

3.5.1 Fixed Detection Thresholds

We also present an efficient polynomial-time algorithm to compute the optimal threshold for the

special case when the threshold is fixed for the time horizon {1, . . . , T}. In this case, a detection

threshold is chosen and is kept fixed. Detectors with fixed threshold are widely used in practice and

are advantageous when it is not possible to change the threshold due to operational restrictions.

To compute an optimal fixed threshold, we present Algorithm 3.3. The algorithm iterates over all

possible threshold values η ∈ E and selects one that minimizes the defender’s loss considering a

best-response attack. Given a threshold η, to find a best-response attack (ka, λ), the algorithm

iterates over all possible pairs of (ka, λ), and selects one that maximizes the payoff.

Proposition 2. Algorithm 3.3 computes an optimal fixed threshold in O(T · |E| · |Λ|) steps.
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Algorithm 3.3 Optimal Fixed Threshold

Input: D(k, λ), T , Cf
Initialize: L∗ ←∞

1: for all η ∈ E do
2: P ′ ← 0
3: for all λ ∈ Λ do
4: for all ka ∈ {1, . . . , T} do

5: P (η, ka, λ)←
∑ka+δ(η,λ)
ka

D(k, λ)
6: if P(η, ka, λ) > P ′ then
7: P ′ ← P(η, ka, λ)
8: L′ ← P ′ + Cf · FP (η) · T
9: end if

10: end for
11: end for
12: if L′ < L∗ then
13: L∗ ← L′

14: η∗ ← η
15: end if
16: end for

Proof. The obtained threshold is optimal since the algorithm evaluates all possible solutions through

exhaustive search. Given a tuple (η, ka, λ), when computing the attacker’s payoff P(η, ka, λ), we use

the payoff computed in previous iteration, which takes constant time. We repeat these steps for

each attack type λ ∈ Λ. Therefore, the running time of the algorithm is O(T · |E| · |Λ|).

3.6 Optimal Thresholds in the Presence of Faults and Attacks

In this section, we modify our game to take into account random faults and attacks. This is motivated

by the fact that contamination may also occur due to non-malicious incidents such as pipe bursts

and leakages. Therefore, it is desirable to design anomaly detectors that are able to quickly and

accurately detect either random faults or attacks. We formally define random faults as follows.

Definition 4 (Random Fault). A random fault is represented by (ka, λ) where ka and λ are randomly

selected from uniform distributions over {1, . . . , T} and Λ.

The expected loss from random faults, denoted by PF (η) is the mean of the losses, that is

PF (η) =
1

T · |Λ|

T∑
ka=1

∑
λ∈Λ

σ(η,ka,λ)∑
k=ka

D(k, λ). (3.9)

Then, the combined loss due to faults and attacks can be represented as the average of the

loss (3.9) due to random faults and the loss (3.1) due to attacks. Therefore, the defender’s total loss
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with both random faults and best-response attacks is

LC(η, ka, λ) = N(η) · Cd +

T∑
k=1

Cf · FP (ηk) +
1

2
(PF (η) + P(η, ka, λ)) (3.10)

As before, the defender’s problem is to find the thresholds that minimize the loss, that is

argmin
η,

(ka,λ)∈bestResponses(η)

LC(η, ka, λ),

Algorithm. First, we define the following subproblem, given that P is a real number.

TCC(P ) = min
η
N(η) · Cd +

T∑
k=1

Cf · FP (ηk) +
1

2
· 1

T · |Λ|

T∑
k′a=1

∑
λ′∈Λ

σ(η,k′a,λ
′)∑

k=k′a

D(k, λ′)

subject to

∀ka, λ :
1

2

σ(η,ka,λ)∑
k=ka

D(k, λ) ≤ P,

We let TCC(P ) =∞ if there exist no ka and λ that would satisfy the constraint of TCC(P ). Then,

using the same argument presented in Theorem 2, we can find optimal thresholds by solving,

min
P

TCC(P ) + P, (3.11)

and an optimal solution η∗ to TCC(P ) for an optimal P is also an optimal solution to (3.11).

To solve TCC(P ), we define the following sub-subproblem.

Cost(P, n,m, ηn−1) = min
ηn,ηn+1,...,ηT

N(〈ηn−1, ηn, . . . , ηT 〉) · Cd +

T∑
k=n

Cf · FP (ηk)

+
1

2

1

T · |Λ|
∑
λ′∈Λ

T∑
k′a=n−mλ′

σ(η,k′a,λ
′)∑

k=n

D(k, λ′)

subject to

∀λ, ka ∈{n−mλ, . . . , T} :

min{i | i≥n∧ δ(ηi,λ)≤i−ka}∑
k=ka

1

2
D(k, λ) ≤ P,

where P is a real number, n ∈ {1, . . . , T}, m is a |Λ|-element vector of natural numbers, and

ηn−1 ∈ E.

Clearly, we have TCC(P ) = Cost(P, 1, (0, . . . , 0), ηn−1) for any ηn−1, and an optimal solution to
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Cost is also an optimal solution to TCC .

Finally, we show that we can solve Cost using dynamic programming. We let Cost(P, n,m, ηn−1) =

∞ if there exist no ηn, ηn+1, . . . , ηT that would satisfy the constraint of Cost(P, n,m, ηn−1). Then,

we can break down the computation of Cost as,

Cost(P, n,m, ηn−1) =
∞ if

∨
λ

1
2

∑n
k=n−mλ D(k, λ) > P,

minηn Cost(P, n+ 1, 〈min{δ(ηn, λ),mλ + 1}〉λ∈Λ, ηn) + 1{ηn−1 6=ηn}Cd

+Cf · FP (ηn) + 1
2

1
T ·|Λ|

∑
λ′∈Λ

∑T
k′a=n−mλ′

1{n≥σ(η,k′a,λ
′)}D(k, λ′)

otherwise.

(3.12)

where 1x is equal to 1 if x is true, and 0 otherwise. The correctness of the reduction follows from

the same argument that was presented in Lemma 1.

3.7 Evaluation

In this section, we evaluate our approach numerically using a case study of detecting contamination

attacks in water distribution systems. Ensuring the supply of clean and safe drinking water is manda-

tory for any water infrastructure. This requires continuous monitoring of water quality parameters

and assessing the sensor measurements for any intrusive (or non-intrusive) contamination.

3.7.1 System Model

We consider a water distribution system (WDS) and a malicious adversary who attempts to penetrate

the system through one of many entry points, such as hydrant and connections, and contaminate

the water with toxic chemicals [50]. To model normal behavior, we use data collected by a utility in

the United States available at [25]. The data contains water quality measurements at a resolution

of ten minutes spanning six weeks (i.e., 6048 time steps). All measurements are taken under normal

conditions and include the following water quality parameters: Total chlorine, electrical conductivity

(EC), pH, total organic carbon (TOC), and turbidity3. We divide the data into two subsets, 67%

for training and 33% for testing. The training subset is used to construct an estimator used in the

detector. The testing subset is used to imitate real-time operation and to evaluate the detector by

3Studies on the response of water quality sensors to chemical and biological loads have shown that free chlorine,
total organic carbon (TOC), electrical conductivity, and chloride are among the most reactive parameters to water
contaminants [55].
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considering contamination attacks.

3.7.1.1 Contamination Attack.

We simulate contamination attacks using the approach presented in [65, 94]. For each water quality

parameter i, the data collected from the water quality sensors is normalized by subtracting the

dataset mean µi from each water quality measurement xi(k), and dividing this difference by the

standard deviation σi of the dataset, i.e., zi(k) = xi(k)−µi
σi

. Then, contamination attacks, which are

characterized by their magnitude, are simulated and superimposed in the normal data. That is, for

an attack of magnitude λi, where λi ≥ 1, we multiply zi(k) by λi. Then, we denormalize (i.e., return

to original scale) the data via multiplying λi · zi(k) by σi and adding µi to the result. Note that

this is a typical method of generating contamination events [113]. These mentioned magnitudes can

represent the sensitivity of a quality parameter to different toxic chemicals, where a large magnitude

means the quality parameter is highly sensitive to the specific chemical. A list of toxic chemicals

and their impact on different quality parameters can be found in [55].

3.7.1.2 Damage Function.

Figure 3.2 presents a typical water demand during a day [92]. Since demand is time-dependent,

expected damage caused by contamination attacks, e.g., exposed population and volume of contam-

inated water, is also time-dependent. That is, expected disruptions at a high-demand time would

cause higher damage than disruptions at a low-demand time. To model the damage function, we

consider the finite horizon to be a single day divided into 10 min intervals (i.e., T = {1, ..., 144}).

Then, for each timestep k ∈ T , we define the expected damage as D(k, λ) = (λ − 1) · d(k), where

d(k) ∈ [0, 1] is the demand ratio at time k and λ− 1 is the added attack magnitude.

3.7.2 Detector Model

The detector comprises two parts: 1) An estimator, which estimates a relation between the water

quality parameters during normal operation, and 2) a detection algorithm, which identifies whether

an attack has occurred in the system.

3.7.2.1 Estimator.

We construct an estimator using an artificial neural network (ANN) for each water quality param-

eter [113]. For each parameter, the inputs to its corresponding ANN are the parameter’s lagged
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Figure 3.2: Hourly water demand during a day [92].

Table 3.2: Model Assessment on Test Data

Chl. EC pH Temp. TOC Turb.

R2 0.939 0.980 0.967 0.344 0.920 0.538

MSE 0.003 14.639 0.001 10.3 0.002 0.000

measurements and current measurements of all the other quality parameters. Formally, we have

ẑi(k) = f(zi(k − 1), z−i(k)), where ẑi(k) and zi(k) are, respectively, the estimated and measured

values of water parameter i at timestep k, and f is a function attained by the artificial neural net-

work. The estimated values are used to calculate the residuals, which are defined as the difference

between the measured and estimated values, denoted by ri(k) = zi(k) − ẑi(k), where ri(k) is the

residual signal for parameter i at timestep k.

Six neural networks, one for each water quality parameter, are trained. A feed-forward back-

propagation network with twenty neurons in the hidden layer is used, and the network is trained

using scikit-learn 0.18.1 library with tan-sigmoid transfer function in the hidden layer and linear

transfer function in the output layer [111]. Table 3.2 shows the estimator’s performance using mean

squared error (MSE) and coefficient of determination (R2) as performance criteria.
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3.7.2.2 Detection Algorithm.

We use the CUSUM method as the detection algorithm. CUSUM is a sequential algorithm frequently

used for change detection [105, 136]. The CUSUM statistic S(k) is described by S(k) = (S(k− 1) +

r(k) − b)+, where S(0) = 0, (a)+ = a if a ≥ 0 and zero otherwise, r(k) is a residual difference

between expected and measured sensor values generated by an estimator such that under normal

behavior it has expected value of zero, and b ∈ R+ is a small constant. Assigning ηk as the detection

threshold selected based on a desired false-alarm probability, the decision rule is defined as

d(S(k)) =

 Attack if S(k) > ηk

Normal otherwise.

As discussed in Section 3.3, for each attack type (characterized by attack magnitude in this case),

there exists a trade-off between the false-positive probability and detection delay, which depends on

the detection threshold. To obtain the trade-off curve for an attack magnitude, we simulate attacks

for various threshold values with randomly chosen start times, and then measure the detection delay

values. For each threshold value, we perform 1,000 simulations and compute the average detection

delay. Next, using the same threshold, we simulate the system under normal operation and measure

the false-positive probability. By varying the threshold and repeating these steps for all attack

magnitudes, we derive the attainable detection delays and false alarm probabilities.

We consider six attack magnitudes λ ∈ {1.5, 2, 2.5, 3, 4, 5}. We select b = 0.01 for the CUSUM

detector in order to allow small displacements to be detected quickly. Our results for a water quality

parameter (total chlorine) are demonstrated in the trade-off curve shown in Figure 3.3, which defines

the false-positive probability that can be obtained as a function of the corresponding detection delay.

The results confirm that the detection delay is proportional to the threshold, and the false positive

rate is inversely proportional to the threshold. Further, it can be observed that as the absolute value

of attack magnitude increases, the detection delay decreases.

3.7.3 Optimal Thresholds

The objective is to select the strategy that minimizes the defender’s loss while assuming that the

attacker responds using a best-response attack, which is characterized by its magnitude and start

time. We let Cf = 10 and Cd = 1, and use Algorithm 3.2 to compute the optimal time-dependent

threshold. Figure 3.4 shows the obtained thresholds for each timestep. The resulting optimal loss is
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Figure 3.3: Trade-off between detection delay and false-positive probability (total chlorine).

L∗ = 187.72 . Figure 3.4 shows the corresponding best-response attack. The best-response attack

has the magnitude λ = 5 and starts at ka = 116. The attack is detected 4 timesteps later and

attains the payoff P∗ =
∑120
k=116D(k, λ) = 120.00. The figure also demonstrates that the detection

threshold decreases as the system experiences high-demand, so that the attacks can be detected

early enough. On the other hand, as the system experiences low-demand, the threshold increases to

have fewer false alarms.

We also compute the optimal fixed threshold in order to compare with the time-dependent

thresholds. In this case, we obtain the optimal fixed threshold η∗ = 0.90 and the optimal loss

L∗ = 222.45. Figure 3.5 shows the best-response attack corresponding to this threshold. The best-

response attack has the magnitude λ = 4 and starts at k∗a = 44. The attack is detected 6 timesteps

later and attains the payoff P∗ =
∑44+6
k=44D(k, λ) = 144.00. Note that if the attacker starts the attack

at any other timestep, the damage caused before detection is less than P∗. We observe that the

optimal loss obtained by the time-dependent threshold is significantly smaller than the loss obtained

by the fixed threshold.

3.7.3.1 Simulation Results.

We test the optimal thresholds by performing simulations that imitate realistic operation. Using our

dataset, we run 42 simulations, with each of them representing a single day. We consider scenarios
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Table 3.3: Simulation Results

Loss Payoff Delay Number of FPs

Mean 195.83 110.29 3.71 5.60

STD 4.66 8.87 0.31 0.25

MSE 87.04 127.99 0.12 0.43

where the defender selects the optimal thresholds for the detector, and then the adversary attacks

the system using a best-response attack. In each simulation, we record the payoff attained by

the attacker and the loss incurred by the defender. Table 3.3 summarizes the simulation results.

The results show that the defender’s actual loss is very close to the optimal loss computed by the

algorithm. In particular, the relative error between the optimal loss and the mean loss is 4.26% for

the time-dependent threshold and 2.45% for the fixed threshold.

3.7.3.2 Sensitivity Analysis.

Figure 3.6 shows the optimal loss as a function of cost of threshold change Cd, when keeping cost

of false positive fixed at Cf = 10. For small values of Cd, the optimal losses obtained by the time-

dependent threshold strategy are significantly lower than the loss obtained by the fixed threshold

strategy. As the cost of threshold change Cd increases, the solutions of time-dependent and fixed

threshold problems become more similar. The time-dependent threshold solution converges to a

fixed threshold when Cd ≥ 13.50.

Figure 3.7 shows the optimal loss as a function of cost of false positives for fixed and time-

dependent threshold strategies when the cost of threshold change is fixed at Cd = 1. It can be seen

that in both cases, the optimal loss increases as the cost of false alarms increases. However, in the

case of time-dependent threshold, the change in loss is relatively smaller than the fixed threshold.

3.7.3.3 Running Time.

We now compare the running time of Algorithm 2 with an algorithm that finds the optimal thresholds

using an exhaustive search. Figure 3.8 plots the running times as a function of T (i.e., time horizon).

It can be seen that the exhaustive search algorithm has an exponential running time with respect to

T , and its running time becomes significantly high even for small values of T . This is expected as

the exhaustive search algorithm has the running time O(∆T+|Λ|). In contrast, Algorithm 2 performs

considerably better, and the running time is reasonable for all values of T .
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Figure 3.6: The defender’s loss as a function of cost of threshold change.

3.7.4 Random Faults

Figure 3.9 shows a comparison between thresholds chosen based on only attacks and combination

of either faults or attacks. For each set of thresholds, we compute two different losses, loss due

to only attacks (i.e., Equation (3.2)) and loss due to combination of either faults or attacks (i.e.,

Equation (3.10)). In the figure, we denote the thresholds obtained by considering faults and attacks

as η∗C and the thresholds obtained by considering only attacks as η∗A. We also let L∗C(η) be the com-

bination, i.e., (3.10), when thresholds η are selected. Similarly, we let L∗A(η) be the loss considering

only attacks, i.e., Equation(3.2), when thresholds η are selected.

We observe that L∗C(η∗C) outperforms L∗C(η∗A) and LA(η∗A) outperforms LA(η∗C). This was clearly

expected as η∗C are the optimal thresholds with respect to L∗C and η∗A are the optimal thresholds with

respect to L∗A. However, we notice that the difference between L∗C(η∗A) and L∗C(η∗C) is extremely

small, whereas the difference between L∗A(η∗A) and L∗A(η∗C) is very large. In other words, the thresh-

olds η∗C perform well only when combination of faults and attacks is considered and perform very

poorly when only attacks is considered, whereas the thresholds η∗A perform very well in both cases.
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Figure 3.7: The defender’s loss as a function of cost of false alarms.

3.8 Conclusion

In this chapter, we studied the problem of finding optimal detection thresholds for anomaly-based

detectors implemented in dynamical systems in the face of strategic attacks. We formulated the prob-

lem as an attacker-defender security game that determined thresholds for the detector to achieve an

optimal trade-off between the detection delay and the false-positive probabilities. To this end, we

presented a dynamic-programming based algorithm that computes optimal time-dependent thresh-

olds. We analyzed the performance of the time-dependent threshold strategy, showing that the

running time of our algorithm is polynomial in the time dimension. As a special case, we also stud-

ied and provided a polynomial-time algorithm for the problem of computing optimal fixed thresholds,

which do not change with time. In addition, we studied the problem of finding optimal thresholds in

the presence of random faults and attacks, and presented an efficient algorithm that computes the

optimal thresholds. Finally, we evaluated our results using a case study of detecting contamination

attacks in a water distribution system. We showed that the optimal time-dependent thresholds

found using our algorithm significantly outperform fixed thresholds.
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Chapter 4

Optimal Detection of Faulty Traffic Sensors Used in Route Planning

In a smart city, real-time traffic sensors may be deployed for various applications, such as route plan-

ning. Unfortunately, sensors are prone to failures, which result in erroneous traffic data. Erroneous

data can adversely affect applications such as route planning, and can cause increased travel time.

To minimize the impact of sensor failures, we must detect them promptly and accurately. However,

typical detection algorithms may lead to a large number of false positives (i.e., false alarms) and false

negatives (i.e., missed detections), which can result in suboptimal route planning. In this chapter,

we devise an effective detector for identifying faulty traffic sensors using a prediction model based on

Gaussian Processes. Further, we present an approach for computing the optimal parameters of the

detector which minimize losses due to false-positive and false-negative errors. We also characterize

critical sensors, whose failure can have high impact on the route planning application. Finally, we

implement our method and evaluate it numerically using a real-world dataset and the route planning

platform OpenTripPlanner.

4.1 Introduction

In smart cities, real-time traffic sensors may be deployed for various applications. However, sensors

are prone to failures, which result in erroneous traffic data. Erroneous data can adversely affect

the performance of applications. To minimize the impact of sensor failures, we must detect them

promptly and with high accuracy. However, typical detection algorithms may lead to a large number

of false positives and false negatives, which can result in suboptimal performance.

Anomaly detection of faulty traffic sensors has been studied in the literature. Typical approaches

include using data-driven methods that incorporate historical and real-time data to detect anomalies

[87], [146], [117], [139]. However, existing approaches may result in high performance-losses in traffic

applications, mainly due to false-positive (FP) and false-negative (FN) errors. In order to minimize

the losses, it is desirable to reduce the FP and FN rates as much as possible. But, there exists

a trade-off between them, which can be changed through a detection threshold. To address this,

it is necessary to take into account the traffic application when designing anomaly detectors, and

quantify the losses in the traffic application caused by the FP and FN errors. By selecting the right
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detection threshold, the performance losses caused by FPs and FNs can be minimized.

In this chapter, we study the problem of finding optimal thresholds for anomaly detection of

faulty traffic sensors, considering route planning as the application of interest. The objective is to

select the optimal thresholds of anomaly detectors in order to optimize the performance of the route

planning application in the presence of faulty sensors. We devise an effective detector for identifying

faulty traffic sensors using a prediction model based on Gaussian Processes. Further, we present an

approach for computing the optimal parameters of the detector which minimize losses due to false-

positive and false-negative errors. We also characterize critical sensors, whose failure can have high

impact on the traffic application. Finally, we implement our method and evaluate it numerically

using a real-world dataset and the route planning platform OpenTripPlanner [93]. Our evaluation

results show that the proposed strategy successfully minimizes the performance loss and identifies

the critical sensors.

The remainder of this chapter is organized as follows. In Section 2, we discuss related work.

In Section 3, we present the background for route planning and Gaussian Process regression. In

Section 4, we introduce the system model. In Section 5, we define a notion of optimal detection,

present a method to obtain near-optimal thresholds, and define critical sensors. In Section 6, we

implement our method and evaluate it numerically. Concluding remarks are presented in Section 7.

4.2 Related Work

There are many papers that study traffic prediction. The work in [80] uses multivariate kernel

regression models to predict traffic flow in a network, considering route planning as the application.

In [39], the paper provides a travel time prediction algorithm in a small scale simulated network.

The work in [126] constructs robust algorithms for short-term traffic flow prediction. Finally, in [62],

classical time series approaches are used for short-term speed prediction in a network.

The problem of anomaly detection of traffic sensors is reviewed in [87]. The paper categorizes

different methods into the three levels of macroscopic, mesoscopic, and microscopic, and provides

practical guidelines for anomaly detection. The work in [146] presents three methods to detect

faulty traffic measurements. The methods are based on Pearson’s correlation, cross-correlation, and

multivariate ARIMA. Finally, the work in [117] presents a test, which is based on the relationship

between flows at adjacent sensors to detect faulty loop detectors. Nevertheless, since previous papers

use static thresholds, their methods result in high losses due to FPs and FNs.

The problem of optimal parameter selection for anomaly detection is studied in [74]. The paper
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shows that computing optimal attacks and defenses is computationally expensive, and proposes

heuristic algorithms for computing near-optimal strategies. More details about this work can be

found in Chapter 2. Also, we discussed the problem of finding optimal thresholds for anomaly-based

detectors implemented in dynamical systems in the face of strategic attacks in the previous chapter.

4.3 Background

4.3.1 Route Planning

Let G = (V,E) be a directed graph with a set V of vertices and a set E of arcs. Each arc (u, v) ∈ E

has an associated nonnegative cost c(u, v). The cost (i.e., length) of a path is the sum of the costs

of its arcs. In the point-to-point shortest path problem, one is given as input the graph G, a query

q = (o, d), where o ∈ V is an origin and d ∈ V is a destination, and the objective is to find a

minimum-cost (i.e., shortest) path from o to d in G. In the many-to-many shortest path problem, a

set of queries Q is given, and the goal is to find the minimum-cost path for each query q = (o, d) ∈ Q.

There exist many route planning algorithms that compute optimal solutions in an efficient manner

[12]. Among these methods, the bidirectional Dijkstra’s algorithm with binary heaps computes point-

to-point shortest path in O(|E|+ |V | log |V |). Further, the Floyd-Warshall algorithm solves all pairs

shortest paths in O(|V |3). A large number of methods have been designed to improve running time of

shortest-path algorithms. For example, contraction hierarchies and arc flags have been successfully

used [36].

4.3.2 Gaussian Process Regression

GPs provide a Bayesian paradigm to learn an implicit functional relationship y = f(x) from a

training dataset {(xi, yi); i = 1, 2, ..., n}, where xi ∈ Rd represents the vector of observed input

variables (i.e., predictors), and yi is the observed target value. A comprehensive discussion of GPs

in machine learning can be found in [115].

GPs directly elicit a prior distribution on the function f(x), and assume it to be a GP a priori,

f(x) ∼ GP (µ(x), k(x,x′)) . (4.1)

For a new point x∗, the goal is to predict y∗ = f(x∗). Given that the regression function is a GP, the

distribution of the values of f at any finite number of points is a multivariate Gaussian distribution.
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Therefore, y
y∗

 ∼ N(µ(x),

K K ′∗

K∗ K∗∗

), (4.2)

where K is the covariance matrix for the labeled points, K∗ is the covariance vector between the

new point and the labeled points, and K∗∗ is the measurement noise. Then,

Pr(y∗ |y) ∼ N
(
K∗K

−1y,K∗∗ −K∗K−1K ′∗
)
. (4.3)

The prediction of a GP model depends on the choice of covariance function, which identifies

the expected correlation between the observed data. Typically, a parametric family of functions is

used, and the hyperparameters are inferred from the data. Examples of the commonly used co-

variance functions include polynomial kernel, automatic relevance determination (ARD), and radial

basis function (RBF). Methods for learning the hyperparameters are based on maximization of the

marginal likelihood, which can be performed using gradient-based optimization algorithms.

4.4 System Model

In this section, we present the system model. We first define a model of transportation network.

Then, we construct a detector for identifying faulty traffic sensors using a prediction model based

on Gaussian Processes.

4.4.1 Transportation Network

Consider a transportation network modeled as a graph G = (V,E), where edges represent road

segments and vertices represent connections between road segments (e.g., traffic junctions). We

assume that a subset S ⊆ E of the road segments are monitored by sensors that measure traffic

state (e.g., speed, occupancy, flow) at discrete timesteps k ∈ N. The measurements of these sensors

are transmitted to a navigation service, which given a set of queries Q(k) at timestep k, computes

the corresponding shortest paths. For segments without a traffic sensor, we assume the navigation

service uses either previously computed values or predicted values using measurements of adjacent

sensors.

Traffic sensors may be faulty due to miscalibration or hardware failure. If a sensor s ∈ S is

faulty, there is a discrepancy between the actual and measured values. In other words, if as(k) is

the actual value and ms(k) is the measured value of faulty sensor s, then ms(k) = as(k) + εs(k),
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where εs(k) is the fault value at time k. In this model, we do not consider faults that result in no

data being sent, since such cases can easily be filtered out by an operator.

4.4.2 Gaussian Process-Based Detector

Given the sensor measurements, we need to decide whether some sensors are faulty. We assume

that the number of sensors that simultaneously become faulty is low, which is true in practice. As

a result, for any sensor, the majority of nearby sensors that have not been marked faulty provide

reliable traffic data, and so we can use these nearby sensors to predict the value measured by the

sensor in question. To detect faults, we then compare the predictions to the measurements, and

if there is a significant difference between the predicted values and the received measurements, an

alarm indicating presence of a fault in that particular sensor is triggered.

4.4.2.1 Traffic Prediction

As our traffic predictor, we use GPs, which is a kernel-based machine learning method. Kernel-

based methods have gained special attention for traffic prediction because of their generalization

capability and superior nonlinear approximation. Among different kernel-based methods, previous

work shows that GPs outperform other methods such as ARIMA and neural networks [141]. We use

GPs because in addition to the above advantages, it allows for explicit probabilistic interpretation

of forecasting outputs.

As the kernel function, we decide for the commonly used ARD squared exponential,

K(m(k),m(k)′) = σ2
f exp

(
−1

2

d∑
i=1

(mi(k)−m′i(k))2

σ2
i

)
, (4.4)

where m(k) and m(k)′ are vectors of measurements, and σf and {σi}di=1 are hyperparameters.

We let the target variable be the predicted traffic value ps (e.g., traffic flow or occupancy) of

sensor s ∈ S at timestep k. Further, we let the predictor variables be the measured traffic values

of other sensors at the same timestep. In practice, two sensors are highly correlated if they are in

close proximity. Therefore, it is possible to select predictor variables as the measured values of d

closest sensors from the target sensor, where the choice of d depends on the network structure. This

way, the predicted traffic value is defined as ps(k) = f(mV (s)(k)), where V (s) is the set of d closest

sensors from s.
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4.4.2.2 Detection Algorithm

We can efficiently detect failures for each sensor s ∈ S, by comparing the measured traffic value

ms(k) with the predicted traffic value ps(k). We use Cumulative sum control chart (CUSUM) as the

detection algorithm, which is a sequential analysis technique typically used for monitoring change

detection [105].

Consider sensor s ∈ S, with a sequence of measurements ms(1), ...,ms(k) and corresponding traf-

fic predictions with means ps(1), ..., ps(k) and standard deviations σs(1), ..., σs(k). The standardized

residual signal is defined as

zs(k) =
ms(k)− ps(k)

σs(k)
. (4.5)

Moreover, upper and lower cumulative sums are defined as,

Us(k) = max(0, Us(k − 1) + zs(k)− bs), (4.6)

Ls(k) = min(0, Ls(k − 1) + zs(k) + bs), (4.7)

where Us(k) = Ls(k) = 0 for k = 1, and bs is a small constant.

Denoting the detection threshold at timestep k by ηs(k), a measurement sequence violates the

CUSUM criterion at the sample zs(k) if it obeys Us(k) > ηs(k) or Ls(k) < −ηs(k). Formally, letting

H0 and H1 be the null and fault hypothesis, the decision rule is described by

ds(Us(k), Ls(k)) =

 H1 if Us(k) > ηs(k) or Ls(k) < −ηs(k)

H0 otherwise
. (4.8)

4.4.2.3 False-Negative and False-Positive Trade-off

In anomaly detectors, there might be a false negative, which means failing to raise an alarm when

a fault did happen. Further, there might be a false positive, which means raising an alarm when

the sensor exhibits normal behavior. It is desirable to reduce the FP and FN probabilities as much

as possible. But, there exists a trade-off between them, which can be controlled by changing the

threshold. In particular, by decreasing (increasing) the threshold, one can decrease (increase) the

FN probability and increase (decrease) the FP probability.

We represent the FN probability for each sensor s by the function FNs : R+ → [0, 1], where
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FNs(ηs(k)) is the probability of FN when the threshold is ηs(k), given that the sensor is faulty.

Similarly, we denote the attainable FP probability for each sensor s by FPs : R+ → [0, 1], where

FPs(ηs(k)) is the FP probability when the threshold is ηs(k), given that the sensor is in normal

operation. It is possible to plot the FP probability as a function of the FN probability for various

threshold values [43] (e.g., see Figure 4.3).

4.5 Optimal Detection

In this section, we formulate the problem of finding optimal thresholds for anomaly detection of

traffic sensors, considering route planning as their primary application. The objective is to select

the optimal thresholds for anomaly detectors in order to minimize the losses caused by false positives

and false negatives. Then, we present an algorithm to find near-optimal detection thresholds. Finally,

we characterize critical sensors, whose failure can have high impact on the traffic application.

4.5.1 Optimization Problem

First, consider the set of queries Q, and a route planning algorithm that takes as inputs the set of

queries and the measured and predicted traffic values, and outputs the optimal routes. For a single

query q ∈ Q and sensor s ∈ S, we denote by Pq (ms) the optimal route computed using the measured

traffic values for all sensors, and we denote by Pq (ps) the optimal route using the predicted value

ps for sensor s and the measured values m−s for all other sensors. Finally, for a given route r and

sensor s, let T (r,ms) and T (r, ps) be the total travel time based on the measured ms and predicted

ps values for sensor s, respectively, and the measured values m−s for all other sensors.

Then, T (Pq (ps),ms) is the measured travel time of the shortest route computed using the

predicted value ps for sensor s. Similarly, T (Pq (ms),ms) is the measured travel time of the shortest

route computed using the measured value ms. We define the loss caused by a false positive as

follows:

CFPs,q (ps,ms) = T (Pq (ps),ms)− T (Pq (ms),ms) , (4.9)

that is, the difference in measured travel time between using either the predicted or the measured

value for sensor s.

The rationale behind the above expression is the following. In case of a FP, according to the

detector, the measured value ms is incorrect, but it is actually correct. Consequently, we choose

a route that is computed using our prediction ps instead of the optimal route, which would be

computed using the measurement ms. To quantify the loss, we need to compare the travel times of
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the two routes, and we must use the measured traffic value ms for this comparison since that is the

correct value in this case.

Similarly, for a FN, T (Pq (ms), ps) is the predicted travel time of the shortest route using mea-

sured value ms, and T (Pq (ps), ps) is the predicted travel time of the shortest path using predicted

value ps. The loss caused by a FN is

CFNs,q (ps,ms) = T (Pq (ms), ps)− T (Pq (ps), ps) , (4.10)

that is, the difference in predicted travel time between using either the measured or the predicted

value for sensor s. Note that in (4.9) and (4.10), the values of P and T can be computed using

existing route planning algorithms [12].

Next, let FPs(ηs(k)) and FNs(ηs(k)) be the probabilities of false-positive and false-negative

errors when detection threshold ηs(k) is selected. Further, let pf be the probability of fault, and let

pn = 1 − pf be the probability of normal operation. For a given query q, the total loss caused by

FPs and FNs is,

Ls,q(ηs(k)) =FPs(ηs(k)) · CFPs,q (ps,ms) · pn + FNs(ηs(k)) · CFNs,q (ps,ms) · pf . (4.11)

Considering the set of all queries Q, the total loss is

Ls(ηs(k), Q) =
∑
q∈Q

Ls,q(ηs(k)), (4.12)

which allows us to define the notion of optimal detection threshold for a sensor.

Definition 1 (Optimal Detection). The detection threshold η∗s (k) is optimal for sensor s if it min-

imizes the loss function (4.12). Formally, η∗s (k) is optimal for sensor s if

η∗s (k) ∈ argmin
ηs(k)

Ls(ηs(k), Q). (4.13)

Figure 4.1 shows the flow of information in our approach. At each timestep k, given measurements

m(k), the predictor computes the predicted measurements p(k). Then, given a set of queries Q(k),

and the predictions and measurements, the thresholds η(k) are computed for the detectors using

the algorithm presented next.
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Figure 4.1: Information flow in our approach.

4.5.2 Algorithm for Obtaining Thresholds

We present Algorithm 4.1 to find near-optimal detection thresholds. The algorithm implements a

random-restart hill climbing technique. If the FP to FN trade-off curve is convex, which makes (4.12)

convex, we are able to compute optimal thresholds using convex optimization methods. However,

this is not generally the case, as trade-off curves tend to be non-convex (see Figure 4.3 for an instance

of a trade-off curve).

The algorithm considers each sensor separately, and finds its corresponding detection thresh-

old. At each iteration, the algorithm selects a new starting point and finds a local minimum using

gradient-based optimization. In order to avoid unnecessary computation, we skip computing detec-

tion thresholds for sensors with very similar measured and predicted traffic values. Formally, for

sensor s ∈ E, we select detection threshold ηs = ∞, if |zs(k)| < b. This is because the detector’s

statistics Us(k) and Ls(k) are decreasing and it is unlikely that an alert would be raised if one was

not raised before.

4.5.3 Critical Sensors

Value of the optimal loss gives insight on the criticality of traffic sensors. Fault on a sensor that has

high loss value degrades the system’s performance more than fault on a sensor with low loss value.

We formally define the set of δ-critical sensors below.

Definition 2 (Critical Sensors). Set of δ-critical sensors in a time period [1, T ] is defined as the set

of sensors which have the average optimal loss values of greater than or equal to δ. That is to say,

a sensor s is critical if 1
T

∑T
k=1 Ls(η

∗
s (k), Q(k)) ≥ δ.

Identifying critical sensors is beneficial, since it allows us to locate the most vulnerable elements of

a network, which should be strengthened first to increase the robustness of a network. For example,

if we have a limited budget which permits us to replace only a subset of the sensors with more robust
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Algorithm 4.1 Algorithm for Obtaining Thresholds

1: Input Q, FP (η), FN(η), α, γ
2: Initialize: η ← η0, L∗ ←∞
3: for all s ∈ S do
4: if |z(k)| ≤ b then
5: η∗s ←∞
6: else
7: while i < N do
8: ηs,new ←↩ FP−1

s (Uniform([0, 1]))
9: ηs,old ← 0

10: while |Ls(ηs,new, Q)− Ls(ηs,old, Q)|>α do
11: ηs,old ← ηs,new
12: ηs,new ← ηs,old − γ∇ηsLs(ηs,old, Q)
13: end while
14: if Ls(Q, ηs,new) < L∗s then
15: η∗s ← ηs,new
16: L∗s ← Ls(ηs,new, Q)
17: end if
18: i← i+ 1
19: end while
20: end if
21: end for
22: return η∗

ones, then we should start with the critical sensors.

4.6 Evaluation

In this section, we implement our method and evaluate it numerically using a route planning plat-

form.

4.6.1 System Model

4.6.1.1 Traffic Data

We use a traffic dataset obtained from the Caltrans Performance Measurement System (PeMS)

database [24]. The database provides real-time and historical traffic data from over 39,000 indi-

vidual sensors, which span the freeway system across metropolitan areas of the State of California.

Figure 5.5 shows the location of sensors in our case study, in which a total of 40 sensors are con-

sidered. We use the 5-minute aggregated data collected on the weekdays of September 3, 2016 to

September 17, 2016. The dataset contains 115,200 data points. The first 7 days are used as training

data, and the remaining 7 days are used as test data.

To simulate faults, we use models for a specific set of fault types and ranges of fault magnitudes,
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Figure 4.2: A map of traffic sensors installed in Downtown Los Angeles.

which is similar to the approach presented in [139]. The fault models are: 1) Constant Relative

Overcount (caused by e.g., unsuitable sensitivity levels); range: 3% to 7% of the actual values

(i.e., εs(k) = usas(k) where 0.03 ≤ us ≤ 0.07), 2) Conditional Undercount (caused by e.g., sensor

saturation); range: 7% to 13% (i.e., εs(k) = usas(k) where −0.13 ≤ us ≤ −0.07).

Next, for each sensor, we construct a predictor using the measurements of its d closest sensors

as the predictor variables. We select d = 10 since it results in the minimum overall prediction error.

We choose bs = 0.05 for all the detectors, to make them sensitive to small shifts in the mean. We

evaluate each detector’s performance by plotting the FP probability against the FN probability at

various threshold values. Figure 4.3 shows the trade-off curve of the detector implemented for a

sensor, whose identifier in the PeMS dataset is VDS 774685.

4.6.1.2 Route Planner

We use OpenTripPlanner (OTP), which is an open source platform for multi-modal route planning

[93]. OTP relies on open data standards including OpenStreetMap for street networks. The default

routing algorithm in OTP is the A∗ algorithm with a cost-heuristic to prune the search. For improved

performance on large networks, it also uses contraction hierarchies.
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Figure 4.3: Trade-off between the false-positive and false-negative probabilities.

4.6.2 Results

We simulate a route planning scenario in OTP, where the edge costs (i.e., travel times) are updated

using our traffic data. For a source and destination as shown in Figure 4.4a, we consider 1000

queries made on September 15, from 9:00 am to 10:00 am. Figure 4.4a shows the shortest route

when a particular sensor (i.e., VDS 774685) is healthy, and Figure 4.4b shows the shortest route

when the same sensor has a conditional undercount fault. Note that if the fault remains undetected

(i.e., false negative), a suboptimal route (Figure 4.4b) will be selected instead of the optimal route

(Figure 4.4a). In another scenario, assume an alarm is triggered under normal operation (i.e., false

positive). This means that the predicted value is used for route planning instead of the accurate

measurement value, which depending on the prediction accuracy, may result in a suboptimal route

planning solution.

We use Algorithm 4.1 to find optimal thresholds that minimize losses due to FPs and FNs. We

assume that for each sensor, the probability of fault is pf = 0.05. For the previously considered

sensor, at k = 1 (i.e., from 9:00 am to 9:05 am), the loss value (4.12) as a function of the threshold

is shown in Figure 4.5. In this case, Algorithm 4.1 finds the optimal thresholds. For the Conditional

Undercount, the optimal threshold and the minimum loss are η = 0.17 and L = 16.2, whereas for

the Constant Relative Overcount, the optimal threshold and the minimum loss are η = 0.39 and

L = 30.0.
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(a)

(b)

Figure 4.4: Reroute occurs due to a conditional undercount fault false negative. (a) Normal. (b)
Fault. (Green flag is the source and red flag is the destination.)

Further, Table 4.1 shows the average optimal loss for some sensors, i.e., 1
T

∑T
k=1 Ls(η

∗
s (k), Q(k)).

As a baseline, we also compute the minimum loss when the thresholds have static values at all the

timesteps. That is, for all k, we assign ηs(k) = η∗s , where η∗s ∈ argminηs
∑
k Ls(ηs, Q). We observe

that our method achieves significantly smaller losses compared the static case. The loss values can

also be used to identify the set of δ-critical sensors. For example, 50.0-critical sensors are made bold

in the table.

4.7 Conclusions

We studied the problem of finding optimal detection parameters for anomaly detection of traffic

sensors, considering route planning as application. We constructed a predictor using Gaussian pro-
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Figure 4.5: Loss as a function of detection threshold.

Table 4.1: Average Optimal Losses

Sensor ID
Cond. Undercount Cons. Rel. Overcount

Optimal Static Optimal Static

774685 16.2 31.2 30.0 38.1
774672 18.0 27.6 22.1 36.7
772501 15.6 24.3 12.8 19.2
763453 51.8 74.3 57.5 80.9
737158 43.0 59.6 54.8 71.4

cesses, which was then used for anomaly detection. We studied how to find the optimal detection

parameters, which minimize losses due to FP and FN errors. We also characterized critical sen-

sors, whose failure can have high impact on the traffic application. We implemented our method

and evaluated it numerically using a route-planning platform. Our evaluations indicated that the

proposed detection method successfully minimizes the performance losses.
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Chapter 5

Application-Aware Anomaly Detection of Sensor Measurements in Cyber-Physical Systems

Detection errors, i.e., false alarms and missed detections, are inevitable in anomaly detection systems.

Such errors can cause highly degraded performance in CPS applications, as false alarms result in

recovery that is not needed, and missed detections result in failing to perform recovery. In this

chapter, we present a framework for application-aware anomaly detection, that is, an anomaly

detector that configures itself such that the application performance in the presence of detection

errors is as close as possible to the performance that could have been obtained if there were no

detection errors. We evaluate our result using a case study of real-time control of traffic signals, and

show that our application-aware detector significantly outperforms several baseline detectors.

5.1 Introduction

Sensors deployed in CPS applications for monitoring and control purposes are prone to anomalies

(e.g., failures and cyber-attacks). To detect anomalies and prevent their harmful effects, anomaly

detection systems (ADS) are implemented. However, ADS suffer from false positives (i.e., false

alarms) and false negatives (i.e., missed detections), which may result in high performance degra-

dation in CPS applications. In particular, false positives result in recovery that is not required, and

false negatives result in failing to perform recovery when it is indeed required. Such detection errors

can cause incorrect measurements being transmitted to the controller, and thus result in obtaining

non-optimal or even destabilizing control decisions, which may compromise the performance of the

system. For example, detection errors may result in disastrous events such as reactor explosion in

process control systems, water contamination in water distribution networks, and extremely heavy

traffic congestion in intelligent transportation systems [132, 76].

To address this, it is necessary to take into account the CPS application when designing anomaly

detectors, and to quantify the losses in the application caused by potential detection errors. In order

to minimize the losses, while it is desirable to reduce the detection errors as much as possible, there

exists a trade-off between them, which can be changed through a detection threshold. Therefore,

by selecting the right detection threshold, the performance losses caused by detection errors can be

minimized.
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Our goal is to perform these steps using a novel approach which takes into account the behavior

of the controller in the configuration of the anomaly detector. We call the framework Application-

Aware Detection. In such framework, the detector is aware of the interactions between the controller

and the application, and so it can compute how each detection decision can affect the underlying

application. Knowing this, the detector attempts to make detection decisions that will result in the

least performance loss in the underlying application if the detection decision is not accurate due to

false positives and false negatives.

Previous works have proposed different anomaly detection methods for CPS [132]. In addition,

there is a wide body of literature on machine learning-based anomaly detection [29]. However, there

is little work that takes into account the tight interaction between the detector and the controller

of a CPS, which as we show in this work, if taken into account, can result in improved performance

and robustness. To the best of our knowledge, this is the first time that such approach is used for

improved detection performance in CPS.

In this chapter, we propose the application-aware anomaly detection framework for detecting

anomalies in sensors measurements in CPS. First, we devise an effective detector for identifying

anomalies in sensor measurements using machine learning regression. Second, we propose an ap-

proach to recover from anomalies in order to maintain operation when detection alerts are triggered.

Then, we formulate the problem of application-aware detection, in which the anomaly detector is

optimally configured such that the performance loss in the presence of detection errors is minimized.

In particular, the thresholds are selected such that the performance of the system in the presence of

detection errors is as close as possible to the performance that could have been obtained if there were

no detection errors. We show that the application-aware detection problem is computationally chal-

lenging, and then we present an efficient algorithm to find near-optimal solutions. We also study two

special variations of the application-aware detection problem, that is, single detector and detectors

with equal threshold. We optimally solve both special cases, which aside from practical advantages,

can provide insights into the novelty of the approach. We then perform simulation experiments on

a case study of real-time control of traffic signals. We evaluate our approach numerically and show

its benefits in comparison to standard anomaly detection practices. Finally, we offer concluding

remarks and discuss the advantages and disadvantages of the application-aware detector, and how

it can become suitable for real-world deployment.

We believe this framework can be useful in systems where there is a significant number of sensors

with high variations in sensor values, which can potentially cause many false positives and false

negatives. A real-world example of such CPS application would be real-time control of traffic signals,
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Figure 5.1: System Model. Note that in this case w = m.

as in large cities, there are thousands of sensors that could become anomalous.

The rest of this chapter is organized as follows. In Section 5.2, we introduce the system model

and present the problems that are studied in this paper. In Section 5.3, we discuss the regression-

based anomaly detection framework. In Section 5.4, we present the application-aware detection

problem for detection error-tolerant selection of thresholds in anomaly detectors. In Section 5.5, we

analyze the application-aware detection problem and present an algorithm to obtain near-optimal

solutions. In Section 5.6, we study two special variations of the application-aware detection problem,

that is, single detector and detectors with equal threshold. In Section 5.7, we evaluate our approach

numerically using a case study of real-time control of traffic signals. Finally, we offer concluding

remarks in Section 5.8.

5.2 Problem Statement

In this section, we present the system model. We also present a running example of real-time control

of traffic signals that is used throughout the chapter to demonstrate the approach.

Notation

Vectors are denoted by bold symbols. Vector y at timestep k is described by yk. We omit the

timestep symbol when all symbols have same timestep k. However, timestep symbol is used when

there are different timesteps present or when it eases understanding. Given vector y and set of

indices I, vector yI is defined as a vector with same size as y that has the same size as y for indices

in I, and is zero otherwise. Given two vectors x and y, the union operator computes the sum of

them, that is, x ∪ y = x+ y. For a list of symbols used in this chapter, see Table 5.1.
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Table 5.1: List of Symbols

Symbol Description

S Set of sensors

as actual value for sensor s

ms Measured value for sensor s

ps Predicted value for sensor s

TPs(τ) True positive probability of the detector for sensor s given detection threshold τ

FPs(τ) False positive probability of the detector for sensor s given detection threshold τ

TNs(τ) True negative probability of the detector for sensor s given detection threshold τ

FNs(τ) False negative probability of the detector for sensor s given detection threshold τ

ws Recovered measurement transmitted to the controller for sensor s

rs Residual signal for sensor s

5.2.1 System Model

Consider a CPS, e.g., intelligent transportation system and process control system, that provides

some service or utility. At each timestep, given transmitted measurements w containing information

about the system, the controller computes a control input u that maximizes the utility function

J(w, u)1. In other words, the controller finds the optimal control input u∗ defined as

u∗ ∈ argmax
u

J(w, u) , (5.1)

where the optimal utility is denoted by J∗(w).

Anomalous Sensors. Sensors may be anomalous due to hardware failures or sensor attacks. If

sensor s ∈ S is anomalous, there is a discrepancy between the actual and observed measured values.

In other words, if as is the actual value and ms is the observed measurement at a timestep, for an

anomalous sensor we have ms = as+es, where es ∈ R is the error value at that timestep. Figure 5.1

illustrates this idea.

5.2.2 Anomaly Detection, Recovery, and Resilience

Anomalies may incur extensive damage to the system and degrade the performance significantly.

Our first problem is to construct an anomaly detection method in order to detect anomalies in sensor

measurements.

1For a minimization problem minu J ′(w, u), we can simply use J(w, u) = −J ′(w, u).
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Problem 1 (Anomaly Detection). Construct an anomaly detection method in order to detect anoma-

lies in sensor measurements.

Suppose we have constructed such anomaly detection method. Upon detection, the system must

recover from anomalies and continue operation. Therefore, our second problem is to design a recovery

method to accommodate this.

Problem 2 (Recovery). Design a recovery approach in order to continue operation in the presence

of detection alerts.

Suppose we have designed such recovery approach that computes the recovered vector of mea-

surements in the presence of detection alerts. In anomaly detectors, there are detection errors, that

is, false positives (i.e., false alarms) and false negatives (i.e., missed detections). If there are no

detection errors, the recovered vector of measurements would be close to the actual values (of course

assuming that the recovery approach works well). However, in the presence of detection errors,

false positives result in recovery that is not required, and false negatives result in failing to perform

recovery when it is indeed needed.

To see the effect of detection errors on the application, let w′ denote the recovered measurement

vector, which will result in the utility J ′ = maxu J(w′, u). However, if there were no detection

error, we could have obtained the optimal utility J∗ = maxu(a, u). Our final problem, which is

the problem of resilience and the main contribution of this chapter, is to optimally configure our

anomaly detectors through selection of detection thresholds so that the actual obtained utility in

the presence of detection errors (i.e., J ′) is as close as possible to the utility that would have been

obtained if there were no detection errors (i.e., J∗).

Problem 3 (Resilience). Find detection thresholds such that the obtained utility in the presence of

detection errors is as close as possible to the utility that would have been obtained if there were no

detection errors.

We call the detector that solves the above problem the Application-Aware Detector.

5.2.3 Example: Real-Time Control of Traffic Signals

We present a running example of real-time control of traffic signals that is used throughout the

chapter. In what follows, we describe the widely-popular max-pressure controller for optimal control

of traffic signals with minor modifications in assumptions. In the original max-pressure algorithm

presented in [135], traffic state is represented using exogenous demands that are then routed through
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the network using routing ratios. In this work, instead of using exogenous demands that are then

transformed to internal demands through using routing ratios, we assume that the internal demands

are directly provided. Note that this does not affect the max-pressure algorithm as the algorithm

effectively uses internal demands in its computations.

Max-Pressure Controller. Consider a network of intersections I with road links L. Movement

from a link i ∈ L to a link j ∈ L is denoted by a pair (i, j) ∈ E. Further, let each movement (i, j)

have a queue associated with it, and at each timestep, let x(i, j) represent the length of this queue.

The length of the queue shows how many vehicles intend to travel from i to j. For each movement

(i, j), the pressure is defined as

P (i, j) = x(i, j)−
∑
p

x(j, p) ,

which is simply the number of cars in the queue minus the total number of cars in the downstream

queues.

Each intersection n has a traffic signal with a set of admissible stages Φn. Each stage un ∈ Φn is

a set of simultaneous movements that are permitted by the traffic signal. If un permits a movement

(i, j), then un(i, j) = 1, otherwise un(i, j) = 0. Let c(i, j) be the saturation flow of movement (i, j).

Given a stage un ∈ Φn, pressure-release (i.e., utility) for intersection n is defined as

Jn(un) =
∑
i,j

c(i, j)P (i, j)un(i, j) .

Algorithm 5.1 presents the max-pressure (MP) controller in detail. At each intersection n, the

MP controller selects the stage un that results in the maximum pressure-release. In other words,

the MP controller computes

u∗n ∈ argmax
un∈Φn

∑
i,j

c(i, j)P (i, j)un(i, j) . (5.2)

Note that at each intersection, the MP control selects a stage that depends only on the queues

adjacent to the intersection. It is shown that the MP controller maximizes network throughput [135].

The overall utility for traffic network can be calculated by adding individual utilities for the inter-

sections. That is, J(x, u) =
∑
n Jn(x, un) where u = {un}n∈I . Note that using this representation,

the MP optimization problem becomes the same as (5.1).

67



Algorithm 5.1 Max-Pressure Controller [135]

Input: x(i, j) for all (i, j) ∈ E

1: for all n ∈ I do

2: for all (i, j) ∈ E do

3: P (i, j)← x(i, j)−
∑
p x(j, p)

4: end for

5: u∗n ← argmaxun∈Φn

∑
i,j c(i, j)P (i, j)un(i, j)

6: end for

7: return {u∗n}n∈I

5.3 Anomaly Detection

In this section, we construct a regression-based anomaly detector for identifying anomalous sensor

measurements. We then discuss detection errors and some metrics that are used to characterize

them.

5.3.1 Regression-Based Anomaly Detector

To protect the system against anomalies, we must detect them quickly and accurately. Many dif-

ferent anomaly detection systems have been proposed in the literature. For a comprehensive review

of anomaly detection methods, we refer the reader to [29] for machine-learning based detectors

and [132] for detectors used in CPS. In this work, we use regression-based anomaly detectors be-

cause in addition to state-of-the-art detection performance, such detectors require no knowledge of

the physical system, can take into account complex and nonlinear behaviors of the system, and are

easy to implement and can be highly scalable.

Architecture. Figure 5.2 shows the architecture of regression-based anomaly detector. The

detector consists of two main components: 1) Predictor and 2) Statistical Test. The predictor

predicts the value of a sensor given some information about the system state (e.g., current value of

other sensors, previous control inputs). Then, the statistical test compares the computed prediction

to the observed measurement and decides whether the sensor is normal or anomalous. We describe

each component in more detail considering our running example.
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Figure 5.2: Regression-Based Anomaly Detector

5.3.1.1 Predictor

Our goal is to find a function f (s) that maps spatial or temporal features to the actual value of a

sensor s (e.g., traffic flow or occupancy). In practice, two traffic sensors are highly correlated if they

are in close proximity. Thus, we let the features be the measured values of other adjacent sensors

at the same timestep, denoted by mA(s) where A(s) is a set of sensors adjacent to A(s) found using

cross-validation. Note that this approach is particularly applicable to traffic networks as there

are usually many redundant sensors in the network. The function f (s) can then be obtained using

suitable machine learning regression algorithm such as deep neural networks [89], Gaussian Processes

[47], and many others [96]. Thus, for sensor s, we obtain the prediction as ps = f (s)(mA(s)).

5.3.1.2 Statistical Test

The statistical test efficiently detects anomalies for each sensor s ∈ S by comparing the measured

value ms(k) with the predicted value ps(k). Given a set of measured values m = 〈ms〉s∈S and

predicted values p = 〈ps〉s∈S , residual signals are computed as r = |m − p|. Then, given the

residuals, the statistical test makes detection decisions d = 〈ds〉s∈S , where for each sensor s, the

decision ds is either normal or anomalous.

Different detection algorithms can be used to implement the statistical test [11]. In this work,

we consider a stateless threshold-based detector defined as follows. Given detection thresholds

τ = 〈τs〉s∈S , for each sensor s, if the residual rs is less than or equal to the threshold τs, then s is

marked normal and otherwise, s is marked anomalous. Thus

ds =


normal (s ∈ N) if rs ≤ τs

anomalous (s ∈ A) otherwise

. (5.3)
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5.3.2 Detection Error

In anomaly detectors, there might be a false negative, which means failing to raise an alarm when an

anomaly did happen. Further, there might be a false positive, which means raising an alarm when

the system exhibits normal behavior. It is desirable to reduce the false positive and false negative

probabilities as much as possible. But, there exists a trade-off between them, which can be controlled

by changing the detection threshold. In particular, by decreasing (increasing) the threshold, one can

decrease (increase) the FN probability and increase (decrease) the FP probability.

We represent the FN probability for each sensor s by the function FNs : R+ → [0, 1], where

FNs(τs) is the probability of FN when the threshold is τs, given that the sensor is anomalous.

Similarly, we denote the attainable FP probability for each sensor s by FPs : R+ → [0, 1], where

FPs(τs) is the FP probability when the threshold is τs, given that the sensor is in normal operation.

The true positive and true negative probabilities are also denoted by TPs(τs) and TNs(τs). Clearly,

we have TPs(τs) = 1− FNs(τs) and TNs(τs) = 1− FPs(τs).

5.4 Application-Aware Anomaly Detection

In this section, we present the problem of application-aware anomaly detection. First, we describe

an approach for recovery in order to continue operation in the presence of detection alerts. Then,

we quantify the utility losses in the application caused by potential detection errors. Followed by

this, we formulate the problem of application-aware anomaly detection, i.e., the problem of finding

detection thresholds so that the obtained utility in the presence of detection errors is as close as

possible to the utility that could have been obtained if there were no detection errors.

Architecture. Figure 5.3 shows the architecture of the application-aware anomaly detection

framework. If there is a detection alert, the prediction is routed to the application, instead of the

measurement. The threshold of each detector is selected such that in the presence of detection

error, the routed value (i.e., measurement or prediction) still obtains a utility close to the utility

that could have been obtained if there were no detectors. (Note that in the figure, the predictor

is not connected to the anomaly detector since this framework is applicable to any threshold-based

detector, and not only regression-based detectors.)

5.4.1 Recovery

We present a recovery approach in order to continue operation in the presence of detection alerts.

If sensor s is marked normal, then the observed measurement ms is transmitted to the controller.
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Figure 5.3: Architecture of Application-Aware Anomaly Detection.

However, if sensor s is marked anomalous, then the observed measurement is discarded and instead,

the prediction ps is transmitted to the controller. The switch in Figure 5.3 illustrates the idea.

To formally represent this, let ws denote the recovered measurement transmitted to the controller.

Then, ws can be described as

ws =


ms if s is normal

ps if s is anomalous

.

For our threshold-based detector defined by (5.3), the measurement of sensor s is marked normal

if |ps − ms| ≤ τs and anomalous otherwise. Therefore, for threshold-based detectors, the above

equation can be re-written as

ws(τs) =


ms if |ms − ps| ≤ τs

ps otherwise

. (5.4)

Note that in this case, given prediction ps and measurement ms, the value of ws depends on the

threshold τs. From now on, when we want to highlight this dependence, we use the notation ws(τs)

instead of ws. To summarize, given vectors of predictions p, measurements m, and thresholds τ ,
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using (5.4), we are able to compute the recovered measurement vector w(τ ) that is transmitted to

the controller.

Note that using this approach, we assume that when a measurement is normal, it provides the

best obtainable value for the sensor. Also, we assume that when a measurement is anomalous,

the prediction provides the best obtainable value for the sensor. Handling uncertainties in sensor

measurements and errors in predictions are beyond the scope of this chapter.

5.4.2 Worst-Case Utility Loss Due to Detection Error

The control input u (i.e., defined by (5.1)) depends on the recovered measurements w(τ ) (i.e.,

defined by (5.4)), and the recovered measurements w(τ ) depend on the detection thresholds τ .

Therefore, the value of control input depends on thresholds τ . For example, if the thresholds are

small (large), there will be many (few) detection alarms, and so predictions (measurements) will

often be transmitted to the controller. Unfortunately, this will be problematic in the presence of

detection errors.

Given threshold τ , let N be the set of sensors that are marked normal (i.e., ∀s ∈ N, rs ≤

τs) and let A be the set of sensors that are marked anomalous (i.e., ∀s ∈ A, rs > τs). Based

on the recovery method (5.4), the predictions are used for marked-anomalous sensors in A and

measurements are used for marked-normal sensors in N to create the recovered measurement vector,

i.e., w = pA ∪mN . Next, given the recovered measurements pA ∪mN , the controller computes the

control input u0 ∈ argmaxu J(pA ∪ mN , u), concisely denoted by U(pA ∪mN ). This is expected

to obtain the utility J(pA ∪mN , u0). However, the expected utility is obtained only if there is no

detection error. Unfortunately, if there is a detection error, a different and potentially much lower

utility is obtained.

Obtained Utility vs. Optimal Utility. We now quantify the actual obtained utility in

presence of detection errors. Let fp ⊆ A be the set of false positives, that is, sensors in fp are

normal but they are marked anomalous. Since these sensors are normal, the measurements mfp

should have been transmitted to the controller, but due to false positives, the predictions were

mistakenly transmitted. Similarly, let fn ⊆ N be the set of false negatives, that is, sensors in fn

are anomalous but they are marked normal. Since these sensors are anomalous, the predictions pfn

should have been transmitted to the controller but the measurements were mistakenly transmitted.

Hence, for the control input u0 = U(pA ∪mN ) computed above, the obtained utility will actually

be J(ptp ∪mfp ∪mtn ∪pfn, u0). On the other hand, if there were not detection errors, the optimal
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control input would have been u∗ ∈ argmaxu J(ptp ∪mfp ∪mtn ∪ pfn, u), concisely denoted by

U(ptp ∪mfp ∪mtn ∪ pfn).

Utility Loss. To put this all together, given decisions A and N (computed given r and τ

as (5.3)), and the detection performance sets tp, fp, tn, and fn, the probability of occurrence of

such detection error scenario is

Pr(τ , tp, fp, tn, fn) =
∏
s∈tp

TPs(τs) ·
∏
s∈fp

FPs(τs) ·
∏
s∈tn

TNs(τs) ·
∏
s∈fn

FNs(τs) . (5.5)

As discussed above, in this case, we could have obtained the optimal utility J(ptp ∪mfp ∪mtn ∪

pfn, U(ptp∪mfp∪mtn∪pfn)), but we obtained the smaller utility J(ptp∪mfp∪mtn∪pfn, U(pA∪

mN )). Thus, we incurred a utility loss of

∆J = J∗(ptp ∪mfp ∪mtn ∪ pfn)︸ ︷︷ ︸
Optimal Utility

− J(ptp ∪mfp ∪mtn ∪ pfn, U(pA ∪mN ))︸ ︷︷ ︸
Obtained Utility

. (5.6)

Hence, the expected utility loss of detection error scenario tp ⊆ A, fp = A − tp, tn ⊆ N , and

fn = N − tn is

C(τ , tp, fp, tn, fn) = Pr(τ , tp, fp, tn, fn) ·∆J . (5.7)

where Pr(τ , tp, fp, tn, fn) is obtained using (5.5) and ∆J is obtained using (5.6).

Worst-Case Analysis. Since the sets of false positives and false negatives are not know a

priori, we need to consider any possible scenario, and find the worst-cases. We define the worst-case

loss due to detection errors below.

Definition 1 (Worst-Case Detection Error Loss). Given the thresholds τ and the residuals r, the

worst-case loss due to detection errors is defined as

L(τ ) = max
tp⊆A,tn⊆N
fp=A−tp
fn=N−tn

C(τ , tp, fp, tn,fn) ,
(5.8)

where C(τ , tp, fp, tn, fn) is defined as (5.7), and A and N are found using (5.3).
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5.4.3 Formulation of Application-Aware Detector

Application-Aware Detector

To obtain resilience against the utility loss due to detection errors, the designer must choose

the thresholds that result in the best performance with respect to the worst-case loss (5.8). An

application-aware anomaly detector achieves this by finding the optimal thresholds τ ∗.

Definition 2 (Application-Aware Detector). The Application-Aware Anomaly Detector is the de-

tector that minimizes the loss (5.8) by finding the optimal thresholds τ ∗, in other words

τ ∗ ∈ argmin
τ

L(τ ) . (5.9)

If we are not able to change the thresholds at each timestep, and instead can change thresholds

every T timesteps, we define

L̄(τ ) =
1

T

T∑
k=1

Lk(τ ) , (5.10)

and then we find thresholds that minimize the above equation.

Definition 3. The Application-Aware Detector in a time period T , is the detector that minimizes

the loss (5.10) by finding the optimal thresholds τ ∗, in other words

τ ∗ ∈ argmin
τ

L̄(τ ) . (5.11)

Clearly, (5.9) is a special case of (5.11) as the latter becomes the former when T = 1.

5.5 Analysis

In this section, we analyze and solve the application-aware detection problems (5.9) and (5.11).

First, we analyze the problem of worst-case detection error loss (5.8), and we prove that solving this

problem is computationally challenging. We then present an efficient algorithm to obtain approxi-

mately optimal solutions. Second, we present Algorithm 5.3 to solve the application-aware detection

problem (5.9) and obtain near-optimal thresholds. Finally, we propose Algorithm 5.4 to solve the

problem of application-aware detection in a time period. The algorithm implements a variation of

simulated annealing algorithm and finds near-optimal detection thresholds.
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5.5.1 Algorithm for Worst-Case Detection Error Loss Problem

We begin our analysis by studying the computational complexity of finding worst-case loss due to

detection errors (5.8). To this end, we formulate the problem of finding a worst-case loss as a decision

problem.

Definition 4 (Worst-Case Detection Error Problem (Decision Version)). Given a set of sensors S,

detection thresholds τ , residuals r, and desired loss L∗, determine whether there exists a detection

error scenario that incurs the detection error loss of at least L∗.

The following theorem establishes the computational complexity of finding a worst-case detection

error.

Theorem 1. Worst-Case Detection Error Problem (WCDE) is NP-Hard.

Proof. We prove the above theorem using a reduction from a well-known NP-hard problem, the

Maximum Independent Set Problem.

Definition 5 (Maximum Independent Set Problem (Decision Version)). Given an undirected graph

G = (V,E) and a threshold cardinality k, determine whether there exists an independent set of nodes

(i.e., a set of nodes such that there is no edge between any two nodes in the set) of cardinality k.

Given an instance of the Maximum Independent Set Problem (MIS), that is, a graph G = (V,E)

and a threshold cardinality k, we construct an instance of the WCDE as follows:

• Let the set of sensors be S := V .

• Let ps = 0 and ms = 1 for every sensor s ∈ S.

• For every sensor s ∈ S, let τs = ε where ε < 1, so that A = S and N = ∅.

• Let TPs(τs) = FPs(τs) = TNs(τs) = FNs(τs) = 0.5 for every sensor s ∈ S.

• Let the dimension of the control signal be |S|. For each element i of u, let ui ∈ {0, 1}.

• Let the utility function be J(w, u) = ‖w ◦ u‖1 if the non-zero elements in w form a non-empty

independent set, and −‖u‖1 otherwise.

• Finally, let the threshold loss be L∗ :=
(

1
2

)|S|
k.

Clearly, the above reduction can be performed in polynomial time. Hence, it remains to show

that the constructed instance of WCDE has a solution if and only if the given instance of MIS does.
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MIS then WCDE. First, suppose that MIS has a solution, that is, there exists an independent

set I of k nodes. We claim that the set fp = I and tp = S − I is a solution to WCDE. We have

∆J = J∗(ptp ∪mfp)− J(ptp ∪mfp, U(pA))) = J∗(mfp)− J(mfp, <0>
|S|
i∈1) = ‖mfp‖1 − 0 = k

Since Pr(τ , tp, fp, tn, fn) =
(

1
2

)|S|
for any given sets of detection error, we obtain L(τ ) =

(
1
2

)|S| · k.

Not MIS then Not WCDE. Second, suppose that MIS has no solution, that is, every set of

at least k nodes is non-independent. Then, we have that J(w, u) < k for every w; otherwise, there

would exist a set of at least k nodes in I that are independent of each other, which would contradict

our supposition. Then, since Pr(τ , tp, fp, tn, fn) =
(

1
2

)|S|
, we conclude L(τ ) <

(
1
2

)|S| · k.

We present Algorithm 5.2 which uses a greedy approach to obtain the worst-case loss due to

detection errors. The algorithm starts considering a scenario of perfect detection, that is, tp = A,

fp = ∅, tn = N and fn = ∅. In each iteration, the algorithm moves an element from either tp or

tn to respectively fp or fn that maximally increases the utility loss. If no such element exists, the

algorithm terminates with the best solution found so far.

The runtime of Algorithm 5.2 depends on the function J , which depends on the considered

application. If there is an oracle that computes U(w) and J(w, U(w)) in constant time, the runtime

of Algorithm 5.2 is linear with respect to |S|. That is, the runtime of Algorithm 5.2 is O(|S|).

5.5.2 Algorithm for Application-Aware Detection Problem

To solve the application-aware detection problem, we first prove the following lemma. The lemma

shows that the application-aware detection problem is equal to the problem of selecting a set of

normal sensors N and a set of anomalous sensors A, which has a much smaller search space than

the original problem.

Lemma 1. For sensor s with residual rs, the optimal threshold with respect to (5.9) satisfies

τs ∈ {0, rs, r+
s ,M}.

Proof. We need to prove that for sensor s with residual rs, the optimal threshold with respect to

(5.9) is in the set {0, rs, r+
s ,M}. First, let us recall that the optimal threshold is

τ ∗ ∈ argmin
τ

max
tp⊆A,tn⊆N
fp=A−tp
fn=N−tn

Pr(τ , tp, fp, tn, fn) ·∆J ,

where ∆J = J∗(ptp ∪mfp ∪mtn ∪ pfn)− J(ptp ∪mfp ∪mtn ∪ pfn, U(pA ∪mN )).
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Algorithm 5.2 Algorithm for Computing Worst-Case Loss

1: function Worst Loss(τ ,m,p)
2: for all s ∈ S do
3: (|ms − ps| ≤ τs) ? N ← N ∪ {s} : A← A ∪ {s}
4: end for
5: tp← A, fp← ∅
6: tn← N , fn← ∅
7: L∗ ← 0
8: while tp 6= ∅ or tn 6= ∅ do
9: (Ci, i)← maxi⊆tp C(τ , tp \ i, fp ∪ {i}, tn, fn)

10: (Cj , j)← maxj⊆tn C(τ , tp, fp, tn \ j, fn ∪ {j})
11: if Ci < Lj then
12: C ← Cj
13: tn← tn \ j
14: fn← fn ∪ {j}
15: else
16: C ← Ci
17: tp← tp \ i
18: fp← fp ∪ {i}
19: end if
20: if C∗ < C then
21: C∗ ← C
22: else
23: return C∗

24: end if
25: end while
26: return C∗

27: end function

Suppose there exists a set of optimal thresholds τ ∗ such that some of its elements are not in the

set mentioned above. Let s be one such sensor, that is, τ∗s 6∈ {0, rs, r+
s ,M}. First, let 0 < τ∗s < rs.

Clearly, ∆J(τ ∗) = ∆J(τ−s∪{0}) = ∆J(τ−s∪{rs}). Then, we write Pr(τ ′,tp,fp,tn,fn)
Pr(τ∗,tp,fp,tn,fn) =

TPs(τ
′
s)

TPs(τ∗s ) > 1

if τ ′s = 0, and so τ∗s can not be the optimal threshold if s is in the set of true positives. Also,

Pr(τ ′,tp,fp,tn,fn)
Pr(τ∗,tp,fp,tn,fn) =

FPs(τ
′
s)

FPs(τ∗s ) > 1 if τ ′s = rs, and so τ∗s can not be the optimal threshold if s is in

the set of false positives either. Second, let r+
s < τ∗s < M . Again, we have ∆J(τ ∗) = ∆J(τ−s ∪

{r+
s }) = ∆J(τ−s ∪ {M}). Then, we write Pr(τ ′,tp,fp,tn,fn)

Pr(τ∗,tp,fp,tn,fn) =
TNs(τ

′
s)

TNs(τ∗s ) > 1 if τ ′s = M . Also,

Pr(τ ′,tp,fp,tn,fn)
Pr(τ∗,tp,fp,tn,fn) =

FNs(τ
′
s)

FNs(τ∗s ) > 1 if τ ′s = r+
s . This means that τ∗s can not be the optimal threshold if s

is in the set of true negatives or false negatives either. This contradicts our supposition, and thus,

τs 6∈ {0, rs, r+
s ,M} can never be correct. This concludes our proof.

Following the above lemma, we present Algorithm 5.3 to obtain application-aware detection

thresholds. The algorithm begins by initializing all sensors as normal, that is, N = S and A = ∅. In

each iteration, the algorithm moves a sensor from N to A, which maximally decreases the worst-case

loss. To compute the worst-case loss, Algorithm 5.2 is used.
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Algorithm 5.3 Algorithm for Design of Application-Aware Detector

1: function Application Aware(m,p)
2: N ← S, A← ∅
3: L∗ ←∞
4: while A 6= S do
5: (L, s)← argmins∈N Worst Loss(A ∪ {s}, N \ {s},m,p)
6: if L∗ < L then
7: L∗ ← L
8: A← A ∪ {s}
9: N ← N \ {s}

10: else
11: return L∗

12: end if
13: end while
14: return L∗

15: end function

Similar to the previous algorithm, the running time depends on the function J and the considered

application. If there is an oracle that returns U(w) and J(w, U(w)) in constant time, the runtime

of Algorithm 5.3 is O(|S|2).

5.5.3 Algorithm for Application-Aware Detection in a Time Period

We present Algorithm 5.4 which solves the problem of application-aware detection in a time period

T (2). The algorithm is based on a variation of simulated annealing algorithm, and finds near-

optimal thresholds τ . The idea is to start with an arbitrary solution τ and improving it iteratively.

In each iteration, we generate a new candidate solution τ ′ in the neighborhood of τ . If the candidate

solution τ ′ is better in minimizing the loss, then the current solution is replaced with the new one.

However, if τ ′ increases the loss, the new solution replaces the current solution with only a small

probability. This probability depends on the difference between the two solutions in terms of loss as

well as a temperature parameter which is a decreasing function of the number of iterations. These

random replacements decreases the likelihood of getting stuck in a local minimum.

In Algorithm 5.4, Perturb(τ , n) defines the neighborhood of τ in the nth iteration, from which

τ ′ is randomly sampled. More specifically, Perturb(τ , n) means that each τs in τ is replaced by

τ ′s = τs + ∆τs. Here, for each s ∈ S, ∆τs is randomly picked from the uniform distribution over[
−α

(
nmax−n
nmax

)
, α
(
nmax−n
nmax

)]
for some α ∈ R+. Moreover, since τ ′s is nonnegative, we replace it

with 0 if τ ′s < 0.
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Algorithm 5.4 Algorithm for Design of the Application-Aware in a Time Period

1: Input: m, p
2: Initialize: τ , n← 1, T0

3: L(τ )←Worst Loss(τ ,m,p)
4: while n ≤ nmax do
5: τ ′ ← Perturb(τ , n)
6: L(τ ′)←Worst Loss(τ ′,m,p)
7: c← e(L(τ ′)−L(τ ))/T

8: if (L(τ ′) < L(τ )) ∨ (rand(0, 1) ≤ c) then
9: τ ← τ ′, L(τ )← L(τ ′)

10: end if
11: T ← T0 · e−βn
12: n← n+ 1
13: end while
14: return τ

5.6 Special Cases

In this section, we consider two special cases for the application-aware detection problem (5.9). The

first special case is single detector, which means that either there is a single detector in the system or

each detector is optimized independently and irrespective of other detectors. The second special case

is detectors with equal thresholds, where there are multiple detectors that have the same thresholds..

5.6.1 Single Detector

Consider a scenario where |S| = 1. This means that either there is a single detector in the system,

or each detector is optimized independently and irrespective of other detectors. Let S = {a} be

the considered sensor, and let ra = |pa −ma| be the residual of the sensor at a timestep. First, we

consider a threshold τ ′a where ra > τ ′a for this sensor. This threshold results in a detection alert,

and so the set of marked-anomalous sensors becomes A = {a} and the set of marked-normal sensors

becomes N = ∅. Next, to find the worst-case detection error loss (5.8) for this threshold, there are

two possibilities for tp: 1) tp = {a} and fp = ∅, and 2) tp = ∅ and fp = {a}. For tp = {a}, i.e., no

detection error, we can write

C(τ ′a, {a}, ∅, ∅, ∅) = TP (τ ′a) ·
(
J(pa, U(pa))− J(pa, U(pa))

)
= 0 .
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For the second scenario, i.e., tp = ∅ and fp = {a}, we should have used the measurement ma but

we used the prediction pa, and so the expected utility loss is

C(τ ′a, ∅, {a}, ∅, ∅) = FP (τ ′a) ·
(
J(ma, U(ma))− J(ma, U(pa))

)
.

Therefore, the worst-case utility loss for the threshold τ ′a, where ra > τ ′a, is obtained using

L(τ ′a) = maxC(τ ′a, ∅, {a}, ∅, ∅) = C(r−a , ∅, {a}, ∅, ∅)

Next, we consider a threshold τ ′′a such that ra ≤ τ ′′a . This threshold results in no detection

alert, and so A = ∅ and N = {a}. To compute the worst-case detection error loss, there are two

possibilities for detection error: 1) tn = {a} and fn = ∅, and 2) tn = ∅ and fn = {a}. Similar to

the above scenario, for the first case which corresponds to no detection error, we obtain ∆J = 0 and

so C(τ ′′a , ∅, ∅, {a}, ∅) = 0. For the second case, we obtain

C(τ ′′a , ∅, ∅, ∅, {a}) = FN(τ ′′a ) ·
(
J(pa, U(pa))− J(pa, U(ma))

)
.

Therefore, the worst-case detection error loss for the threshold τ ′′a , where ra ≤ τ ′′a , is

L(τ ′′a ) = maxC(τ ′′a , ∅, ∅, ∅, {a}) = C(ra, ∅, ∅, ∅, {a}) .

The application-aware detector selects the threshold τ∗a ∈ {r−a , ra} that solves

min(C(r−a , ∅, {a}, ∅, ∅), C(ra, ∅, ∅, ∅, {a}) ) .

In other words, the optimal threshold is

τa =


r−a if C(r−a , ∅, {a}, ∅, ∅) ≤ C(ra, ∅, ∅, ∅, {a})

ra otherwise

. (5.12)

5.6.2 Detectors with Equal Thresholds

We consider a case where all detectors have equal thresholds. Let τ̄ represent this threshold value,

that is, τ̄ = τ1 = . . . = τd. Next, let r1, r2, . . . , rd be the residual values. The result below is a direct

consequence of Lemma 1.
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Algorithm 5.5 Application-Aware Detector for Equal Thresholds

Input: m, p

1: r ← |m− p|

2: for all τ̄ ∈ SolutionSpace do

3: (L(τ̄), τ̄)← Worst Loss(τ̄ ,m,p)

4: end for

5: τ̄∗ ← argmin(L(τ̄), τ̄)

6: return τ̄∗

Corollary 1. The optimal threshold τ̄ for detectors with equal thresholds belongs to the following

set

SolutionSpace = {0, r−1 , r
+
1 , r

−
2 , r

+
2 . . . , r

−
d , r

+
d ,M} .

Based on the above corollary, since the solution space is finite, we can find the optimal thresholds

by a linear-time search, as presented by Algorithm 5.5.

5.7 Experiment

In this section, we apply our approach to a case study of max-pressure control of traffic signals

in a traffic network. First, we construct regression-based anomaly detectors for traffic sensors,

and we generate the trade-off curves for their performance. Then, we implement the application-

aware detector, and evaluate its performance compared to a baseline “application-unaware” detector.

Throughout the section, we use SUMO (Simulation of Urban MObility), which is a micro simulator

for traffic applications [14].

Traffic Network

Consider a traffic network in a 3-by-3 grid with a total of 9 intersections, as show in Figure 5.4. Each

intersection connects 4 standard two-way lanes with four possible movements {EW, WE, NS, SN}.

Traffic volume of each movement is monitored by the set of sensors S = {sEW , sWE , sNS , sSN}.

The sensors send traffic measurements m = {mEW ,mWE ,mNS ,mSN} at each timestep. Each

traffic signal has two phases Φ = {φ{EW,WE}, φ{NS,SN}}. The max-pressure controller computes

the optimal stage u∗ ∈ Φ using (5.2).

The utility (i.e., pressure-release) function of the traffic network can be written as sum of the

pressure-release of each individual intersection, and for each intersection, the utility depends only
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Figure 5.4: The 3-by-3 grid.

Figure 5.5: Each intersection in the 3-by-3 grid. For illustration, a critical and a redundant sensor
are shown in the figure. For each lane, a second redundant sensor is placed with twice as much
distance as the distance between the first redundant sensor and the critical sensor. All 8 total
redundant sensors are used to predict the value of a sensor.

on its corresponding lanes. This means that maximizing the pressure-release of the traffic network

is equal to maximizing the pressure-release of individual intersections, and so the application-aware

threshold of each intersection can be designed independently of other intersections. Based on this

observation, in what follows, we discuss how the detector is designed for an intersection and then

extend it to all intersections.

Anomaly Model. Traffic measurements may be anomalous due to failures or other undesired
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events. To simulate the negative effects of anomalies on the system, we consider several realistic

anomaly models [139],

1. Overcount : Additive error equal to 3% to 7% of the actual values, i.e., es(k) = usas(k) and

0.03 ≤ us ≤ 0.07.

2. Undercount : Subtractive error equal to 7% to 13% of the actual values, i.e., es(k) = usas(k)

and −0.13 ≤ us ≤ −0.07.

3. Gaussian Noise: Error with zero mean and standard deviation σ = 15 to σ = 35, i.e., es(k) ∼

N (0, σ2) and 15 ≤ σ ≤ 35.

Regression-Based Detector and Trade-off Curves

To protect the system against anomalies, we construct anomaly detectors. We suppose there are 8 (2

on each side) redundant sensors that are adjacent to the four critical sensors mentioned above. We

use the values of these sensors to design regression-based anomaly detectors for the critical sensors.

As discussed in the preceding chapters, such detector consists of two main components: 1) Predictor

and 2) Statistical Test.

Predictor. We collect simulation data that represents the traffic behavior under normal oper-

ation. We simulate the network for 4 hours considering a Poisson distribution as the demand for

each movement. We collect sensor measurements in 10-second aggregates. The data from the first

2 hours is used to train the predictors, and the data from the remaining 2 hours is used to obtain

the trade-off curves. Following our previous discussion, for each predictor, we use the current value

of the 8 redundant sensors as the features. Then, we train the predictor using linear regression

algorithm. We obtain the performance metrics MSEtrain = 2.14 and MSEtest = 2.87. Note that

more complex regression algorithms (e.g., Gaussian Processes [47]) can be used as well, however, we

obtained satisfactory result with a simple linear regression model.

Trade-off Curve. To generate the trade-off curve, first, we simulate the anomalies on the test

data, and evaluate the performance of the detector by counting the number of true positives and false

negatives. Similarly, we simulate the system under normal operation and evaluate the performance

of the detector to obtain the number of true negatives and false positives. We repeat the steps while

varying the detection threshold in order to obtain the trade-off curve (i.e., true positive probability

as a function of false positive probability). Figure 5.6 shows the resulting trade-off curve.
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Figure 5.6: Trade-off between true positive and false positive errors for sEW .

Application-Aware Detector

Given the trade-off curve, we implement the application-aware detector by finding the detection

thresholds that minimize the worst-case expected utility loss. First, we show how the optimal

threshold can be computed at each single timestep. Then, we present the results.

Computing the Optimal Threshold. To show how the optimal threshold is computed at

each timestep, suppose mNS = pNS = 15 at a given timestep. Further, suppose there is no traffic

on SN and WE. If wEW ≥ 15, the max-pressure controller selects the stage u = φ{EW,WE}, and

otherwise, it selects u = φ{NS,SN}. Next, consider the following scenarios for mEW and pEW :

1. mEW = 30 and pEW = 10. In this case, the threshold that solves the following equation is the opti-

mal threshold: min
(
C(20−, ∅, {sEW }, ∅, ∅), C(20, ∅, ∅, ∅, {sEW })

)
, where C(20−, ∅, {sEW }, ∅, ∅) =

FP (20−)·
(
J∗(30)−J(30, U(10))

)
= 30−15 = 15 , and C(20, ∅, ∅, ∅, {sEW }) = FN(20)·

(
J∗(10))−

J(10, U(30))
)

= 15 − 10 = 5 . Thus, the optimal threshold is τ∗ = 20. To see why this is the

optimal threshold, note that if τ = 20, then there will be no detection alert and the measurement

(mEW = 30) will be used in computing the optimal control input (which is EW ). If this is incor-

rect (due to a false negative), then pSE = 10 is the actual value. In this case, the pressure-release

of φ{NS,SN} will be 10. In the perfect detection case (no detection error), we could have obtained

15 by selecting NS. Thus, the detection error loss is 15− 10 = 5. On the other hand, if τ = 20−,

the prediction will be used by the controller. This results in the movement NS being selected.

However, if there is a false positive, which means mEW = 30 is the actual value, then EW should
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Figure 5.7: Utility (i.e., pressure-release) during a 2-hour interval.

have been selected as the optimal stage, which could have obtained a utility of 30. Thus, the

utility loss in this case is 30−15 = 15, which is larger than the utility loss for the other threshold.

2. mEW = 30, pEW = 10, and aNS = 25. The application-aware detector computes the minimum

of FP−(20) ·
(
J∗(30) − J(30, U(10))

)
= 30 − 25 = 5, and FN(20) ·

(
J∗(10) − J(10, U(30))

)
=

25− 10 = 15. In this case, the threshold τ = 20− is the optimal threshold.

3. mEW = 30, pEW = 25, and aNS = 15. The application-aware detector computes FP (20−) ·(
J∗(30) − J(30, U(25))

)
= 30 − 30 = 0 and FN(20) ·

(
J∗(25) − J(25, U(30))

)
= 25 − 25 = 0,

which means that both thresholds are optimal. The same results can be obtained if aNS ≥ mEW

and aNS ≥ pEW .

Comparison. We now compare the results to a baseline detector that does not take into account

the underlying application in the detector configuration. The threshold of the baseline detector is

selected such that it obtains a false alarm probability equal to the false alarm probability of the

application-aware detector. That is, we calculate the total number of false alarms for the application-

aware detector, and then select the threshold that obtains the same false alarm probability for the

baseline. In this case, in 2 hours of evaluation time where each of the anomalies may occur with

probability of 0.05, each application-aware detector on average had a false alarm probability of 0.047.

The threshold values for the application-aware detector varied from 1.3 to 26.5 with a mean of 5.6.

The threshold for the baseline detector is selected as 3.9.
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Figure 5.7 shows the pressure-release comparison between the two cases during the 2-hour inter-

val. Each tick in the figure aggregates the results from 12 minutes (i.e., 72 timesteps). Based on

the results, the application-aware detector performs better than the baseline detector in most cases.

Baseline detector performs only slight better in the aggregated timestep 0.8 which could be due to

detection errors by the application-aware detector. However, in the rest of the period, the proposed

detector performs better.

5.8 Conclusions

We presented the application-aware anomaly detection framework for detection anomalies in sensor

measurements in cyber-physical systems. An application-aware anomaly detector configures itself

such that the application performance in the presence of detection errors is as close as possible to

the performance that could have been obtained if there were no detection errors. We evaluated our

result using a case study of real-time control of traffic signals, and showed that our application-aware

detector significantly outperforms several baseline detectors.
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Chapter 6

Adversarial Regression for Stealthy Attacks in Cyber-Physical Systems

Attacks manipulating the sensor measurements of a cyber-physical system (CPS) can be tuned by

the attacker to cause a spectrum of damages. Attackers can attempt to remain undetected and hide

their sensor manipulations by following the expected behavior of the system, while manipulating

just enough sensor information that achieves their malicious goals. In this chapter, we study the

problem of adversarial regression in CPS. We consider a safety-critical CPS that is monitored by

regression-based anomaly detectors. An adversary attempts to drive the system to an unsafe state

by perturbing the values of a subset of sensors while remaining undetected. We solve the adversarial

regression problem, considering linear regression- and neural network regression-based detectors.

Then, we present a resilient detector that mitigates the impact of stealthy attacks through resilient

configuration of detection thresholds. We numerically evaluate the adversarial regression problem,

and demonstrate the effectiveness of the resilient detector using a case study of a process control

system.

6.1 Introduction

While it is crucial to detect intrusions into safety-critical CPS, most traditional intrusion detectors

are faced with major drawbacks that make them insufficient for CPS. Specification-based detection

methods require precise and accurate definitions of system behavior that may be impossible to

obtain due to system complexity and nonlinearity. Signature-based methods are insufficient since

the system’s dynamics may preclude any succinct signatures that are needed. Further, formal

models are ineffective in real-world CPS applications since they are often simplified to be tractable.

As a solution, data-driven intrusion detectors are proposed which use machine learning models at

their core. Data-driven detectors provide many advantages such as fast and accurate detection,

applicability to complex and nonlinear systems, and relatively simple implementation, which make

them suitable for anomaly and intrusion detection in CPS. Nevertheless, there are concerns about

security vulnerabilities of such detectors. In particular, as previous work on adversarial machine

learning shows, strategic adversaries may be able to exploit vulnerabilities of machine learning

algorithms and evade being detected while achieving their malicious goals [86, 20].
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Although prior studies make significant progress toward design of anomaly detectors for CPS in

adversarial environments, several key gaps remain. First, previous work such as [28, 132] consider

simplified mathematical models of the physical system, and consequently their approach might not

generalize well in realistic environments. Second, while works such as [61, 1] consider data-driven

approaches that can generalize well, they only consider very weak and restrictive attack models (e.g.,

an attacker that can only manipulate one sensor), and thus it is unclear whether the high detection

rates reported in these works are due to the effectiveness of the approach or due to restrictive and

unrealistic attack models.

In this chapter, we study the adversarial regression problem in CPS. We consider a safety-critical

CPS that is monitored by regression-based anomaly detectors. An omniscient adversary that is

capable of perturbing the values of a subset of sensors attempts to drive the system to an unsafe

state (e.g., raising the pressure of a reactor beyond its safety limit in a process control system).

The attacker needs to remain undetected during the duration of the attack. We solve the attacker

problem, which we call the adversarial regression problem, considering different types of regression-

based detectors. In particular, we solve the problem for detectors that use linear regression, neural

network regression, and an ensemble of the two as their regression algorithms. Then, keeping in

mind that it is impossible to completely secure the system against stealthy attacks, we present a

resilient detector that mitigates the impact of stealthy attacks without increasing the number of false

alarms. The resilient detector achieves this by careful selection of detection thresholds. Finally, we

numerically evaluate the adversarial regression problem, and demonstrate the effectiveness of the

resilient detector through applying our methods to a case study of process control systems.

The rest of this chapter is organized as follows. In Section 6.2, we discuss related work. In

Section 6.3, we define sensor attacks in CPS and present a model of regression-based anomaly

detectors. In Section 6.4, we present the adversarial regression problem for finding worst-case stealthy

attacks against CPS. In Section 6.5, we analyze the adversarial regression problem for anomaly

detectors that use linear regression, neural network, and an ensemble of the two as their regressors.

In Section 6.6, we propose the resilient detector. In Section 6.7, we evaluate our contributions using

a case study of process control systems. Finally, we offer concluding remarks in Section 6.8.

6.2 Related Work

Machine learning-based anomaly detectors have been widely studied in the literature as discussed in

Chapter 2. In addition, many different anomaly detectors have been particularly designed for attack
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detection in CPS [132]. However, to the best of our knowledge, there is little work that effectively

applies regression-based detectors for attack detection in CPS, and studies their vulnerabilities to

adaptive attackers. This may be due to the lack of publicly available normal data for CPS, or due

to the safety-critical nature of such systems that makes it very challenging to collect attack data,

as doing so may be damaging to the system. Nonetheless, if such limitations in data collection are

overcome, regression-based detectors can be highly effective for anomaly detection in CPS.

Adversarial Machine Learning

Adversarial learning studies secure adoption of machine learning techniques in adversarial settings.

A categorization of different adversary models is presented in [20]. Further, the work in [15] considers

use of multiple classifiers to obtain better security performance in adversarial settings. A significant

number of recent works study the adversarial learning problem for neural networks used in computer

vision applications [41], [106], [52], [112].

Adversarial classifier reverse engineering (ACRE) learning problem was first introduced in [86]. In

ACRE, an adversary launches an attack to minimize a cost function, while having limited information

about the classifier. The adversary is allowed to make polynomial number of membership queries

to modify an attack instance to bypass the classifier with minimal cost. In the paper, a query

algorithm for reverse engineering of linear classifiers is presented. Furthermore, in [31], a framework

for the adversarial learning problem is presented that uses game theory. The paper formulates a

game between a classifier and an adversary, and then assuming that the adversary’s optimal strategy

is known, develops the optimal classifier. Then, experiments are performed which show that the

proposed robust classifier outperforms a standard one.

Machine Learning-Based Attack Detection in CPS

A behavior-based machine learning approach for attack detection in CPS is proposed in [61]. The

work models the physical process of CPS to detect any anomaly or attack that may try to change

the behavior of system. Using a replicate of a real water treatment facility, different data-driven

anomaly detectors are implemented and their performance is evaluated. While this work successfully

applies machine learning algorithms for attack detection in CPS, the considered threat models are

highly simple and restrictive (e.g., attacking only one sensor). Thus, it is unclear whether the

high detection rates reported in the paper are due to the effectiveness of the approach or due to

the restrictive and unrealistic attack models. Using the same testbed, the impact of single-point

cyber-attacks are experimentally investigated in [1]. Cyber-attacks are launched through a SCADA
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server connected to programmable logic controllers that govern the actuators and sensors. Several

experiments are performed considering different objectives for the attacker. Then, based on the

observed experiment results, attack detection mechanisms are proposed. This work also suffers from

the same limitation of considering oversimplified and unrealistic attack scenarios.

Data-driven anomaly detection is studied using a miniature industrial gas system with a few

sensors and actuators in [102]. To detect attacks, one physical process attribute (i.e., pressure in

pipeline) and two one-class classifiers (i.e., support vector data description and kernel principal com-

ponent analysis) are used. Then, different attack scenarios are considered to evaluate the detection

performance. According to the results presented in the paper, while single-point attacks have a

detection rate of 99.25 percent, more complicated attacks have much lower detection rates of ap-

proximately 65-70 percent. This shows that the performance of the detector significantly decreases

when faced by complex attacks. Further, an intrusion detection method based on neural networks

is investigated using a water testbed that contains a tank, pump, and level sensor [45]. Network

traffic, SCADA mode, water level, and pump status are used as the attributes, and then the method

is evaluated considering malicious attacks on the level sensor. Finally, using the same testbed, a

one-class approach is studied in [103].

6.3 System Model

In this section, we define sensor attacks in CPS. We then present a regression-based anomaly detector

for detecting sensor attacks.

Notation

Each element s of vector y at timestep k is denoted by yks . We omit the timestep symbol unless we

need to distinguish between several timesteps. Further, parameter x of detector s is described by

x(s). For a list of symbols used in this chapter, see Table 6.1.

6.3.1 Sensor Attacks in CPS

Consider a CPS such as an industrial process control system or an intelligent transportation system,

that is monitored by a set of sensors. Sensors may be under attack by malicious adversaries that

have penetrated into the system through exploiting zero-day security vulnerabilities. If sensor s ∈ S

is under attack, there is a discrepancy between the actual and observed measured values. In other

words, if yk is the actual value and ỹk is the observed measurement at timestep k, for an attacked
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Table 6.1: List of Symbols

Symbol Description
S Set of sensors
ys Actual value of sensor s
ỹs Observed measurement value of sensor s
ŷs Predicted value of sensor s
rs residual of sensor s ∈ S
Sc Set of critical sensors
δs Error added to sensor s ∈ S
B Budget of the attacker
D Set of sensors with detectors
f (s) Regression-based predictor of detector s ∈ D
τ (s) Threshold value of detector s ∈ D

sensor s, we have ỹ(k) = yk + δks , where δks is the added error value at timestep k.

Undetected sensor attacks may cause significant harm to the system and degrade the performance

extensively. This is because corrupted measurements transmitted to the controller may result in

control decisions which lead the system to an undesirable or unsafe state. For example, as we show

in our experiments for a process control system, undetected attacks may result in disastrous events

such as reactor explosion.

6.3.2 Regression-Based Anomaly Detection

To protect the system against sensors attacks, we must detect them quickly and accurately. Many

different anomaly detection systems have been proposed in the literature. For a comprehensive

review of anomaly detection methods, we refer the reader to [29] for data-driven detectors and [132]

for detectors used in CPS. In this work, we consider machine learning (ML) regression-based anomaly

detectors due to the many advantages that they provide. ML regression-based detectors: 1) require

no knowledge of the physical system; 2) can take into account complex and nonlinear behaviors of the

system which makes them more realistic (as opposed to detectors that use simplified mathematical

models of the system); and 3) are easy to implement and can be highly scalable depending on the

algorithm that is used.

Figure 6.1 presents the architecture of the ML regression-based anomaly detector. The detector

consists of two components: 1) Predictor and 2) Statistical Test. The predictor predicts the value

of a sensor given some information about the system state (e.g., current value of other sensors,

previous control inputs). Then, the statistical test compares the computed prediction to the observed

measurement and decides whether the sensor is normal or anomalous.
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Figure 6.1: Regression-Based Anomaly Detection

6.3.2.1 Predictor

As discussed above, the goal of the predictor is to predict the value of a sensor given some information

about the system state (e.g., value of other sensors at a previous timestep). In other words, for sensor

s, our goal is to find a function f (s) that maps features ỹ to value of sensor s, i.e., ŷs = f (s)(ỹ−s).

To do so, first, large amounts of data that correctly represent the normal system behavior are

collected. Next, for sensor s ∈ S (e.g., the pressure of a reactor), we let the target variable be its

actual value at timestep k, denoted by ỹs(k). Further, as feature variables, we can select the current

or previous values of other sensors, previous control inputs, and other information about the system.

We let ỹ denote such feature vector.

The predictor can be implemented using suitable machine learning regression algorithms. For

example, in this work, we consider linear regression and neural network models. To ensure that the

predictor can successfully generalize, we evaluate it using our hold-out test data. For example, for

the prediction result of our case study, see Figure 6.6.

6.3.2.2 Statistical Test

For each detector s ∈ D, the statistical test efficiently detects attacks or anomalies by comparing the

measured value ỹs(k) with the predicted value ŷs(k). Given a set of measured values ỹ and predicted

values ŷ, residual signals are computed as r = |ŷ − ỹ|. Then, given the residuals, the statistical test

makes detection decisions d = {ds}s∈D, where for each sensor s, the decision ds is either normal or

anomalous.

Different detection algorithms can be used to implement the statistical test [11]. In this work,

we consider a stateless threshold-based detector defined as follows. Given detection threshold

τ (s) ∈ R+, for detector of sensor s, if the residual rs is less than or equal to the threshold
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τ (s), then sensor s is marked normal and otherwise, s is marked anomalous. Thus

ds =


normal if rs ≤ τ (s)

anomalous otherwise

. (6.1)

6.4 Adversarial Regression

In this section, we present the adversarial regression problem for CPS. The idea is to find a stealthy

sensor attack that maximizes the deviation from the actual value for some critical sensor. We

describe this in more detail below. Figure 6.2 illustrates the adversarial regression problem.

Threat Model We define the attack model by describing the attacker’s capability, knowledge,

objective, and strategy [20]. Capability: The adversary may control a subset of sensors and perturb

their values. The cardinality of this subset has an upper bound B. Knowledge: We consider a

worst-case scenario where the attacker has complete knowledge of the system, anomaly detectors,

implementations, and so on. Objective: The attacker’s objective is to maximize or minimize the

observed value for some critical sensor a ∈ Sc. Strategy: The attack must remain undetected

during its entire duration.

Formally, the attacker adds bias δ to the actual measurements and transmits corrupted mea-

surements ỹ = y + δ to the controller. For a given critical sensor a ∈ Sc, the attacker’s goal is

to maximize or minimize the observed measurement ỹs. As an example, the attacker may wish

to increase the pressure of a reactor to unsafe levels. To accomplish this, (s)he would manipulate

observed sensor measurements by transmitting smaller-than-desired pressure values, which triggers

the controller to increase the pressure. Here we focus on maximization of observed values of critical

sensors; minimization can be accomplished similarly.

The main constraint faced by the attacker is to remain stealthy, as determined by the operation

of the anomaly detector, since otherwise the attack is detected and can be mitigated. Formally,

for any detector s ∈ D with threshold τ (s), the difference between the prediction f (s)(ỹ) and the

measurement ỹs must be smaller than or equal to the threshold, i.e., |ỹs − f (s)(ỹ)| ≤ τ (s). The

attacker can manipulate at most B sensors due to constrained resources. Further, the value of any

sensor i ∈ S can change at most by ηi between two consecutive observations, i.e., |ỹi − ỹprevi | ≤ ηi,

where ỹprevi is the sensor value at the previous timestep [91].

We formally define the adversarial regression problem below.
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δ

+

Figure 6.2: Attack Model

Definition 1 (Adversarial Regression). Given an anomaly detector, a set of critical sensors Sc, and

an attack budget B, the adversarial regression problem finds an optimal attack that maximizes the

observed measurement for some critical sensor, while evading the detector during the entire duration

of the attack. In other words,

argmax
a∈Sc

max
ỹ

ỹa

s.t. |ỹs − f (s)(ỹ)| ≤ τ (s),∀s ∈ D

|ỹi − ỹk−1
i | ≤ ηi,∀i ∈ S

‖ỹ − y‖0 ≤ B

(6.2)

6.5 Analysis of Adversarial Regression Problem

We begin our analysis by showing that the adversarial regression problem is, in general, NP-Hard.

Definition 2 (Adversarial Regression Problem (Decision Version)). Given an anomaly detector, a

set of critical sensors Sc, an attack budget B, and a threshold attack ỹ∗c , determine whether there

exists an attack with a value of at least ỹ∗c .

Proposition 1. The Adversarial Regression Problem is NP-Hard.

We prove this proposition using a reduction from a well-known NP-hard problem, the Maximum

Independent Set Problem.

Definition 3 (Maximum Independent Set Problem (Decision Version)). Given an undirected graph

G = (V,E) and a threshold cardinality k, determine whether there exists an independent set of nodes

(i.e., a set of nodes such that there is no edge between any two nodes in the set) of cardinality k.

Proof. Given an instance of the Maximum Independent Set Problem (MIS), that is, a graph G =

(V,E) and a threshold cardinality k, we construct an instance of the Adversarial Regression Problem
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(ARP) as follows: 1) Let the set of sensors be S := V ∪ {c}, where c is not connected to any node,

and let Sc := {c} be the only critical sensor in the system. 2) Let D := S. For each detector s ∈ D,

let τ (s) := 0. Further, let f (s)(ỹ) be the number of nonzero elements in ỹ, if ỹs 6= 0 and those

elements form an independent set, and zero otherwise. 3) Let ys := 0 for every sensor s ∈ S. 4) Let

B := k + 1. 5) Finally, let the threshold objective be y∗c := k + 1.

Clearly, the above reduction can be performed in polynomial time. Hence, it remains to show

that the constructed instance of ARP has a solution if and only if the given instance of MIS does.

First, suppose that MIS has a solution, that is, there exists an independent set A of k nodes.

We claim that the set A′ = A ∪ {c} where ỹs = k + 1 for every s ∈ A′, and ỹs = 0 otherwise,

is a solution to ARP. For nonzero sensors, since A′ is independent, the value of f (s)(ỹ) is equal

to the number of nonzero sensors in A′, which is equal to k + 1. This satisfies the stealthiness

constraint since for nonzero sensors |ỹs− f (s)(ỹ)| = |k+ 1− (k+ 1)| = 0 ≤ τ (s), and for zero sensors

|ỹs − f (s)(ỹ)| = |0− 0| = 0 ≤ τ (s). Clearly, the budget constraint is also satisfied, and so y∗c = k + 1

is obtained.

Second, suppose that MIS has no solution, that is, every set of at least k nodes is non-independent.

As a consequence, we have f (s)(ỹ) < k + 1 for every detector, since otherwise, there would exist a

set of at least k + 1 nodes (which could include c) that are independent of each other, which would

contradict our supposition. Since |ỹc − f (c)(ỹ)| < τc = 0 implies that ỹc = f (c), ARP cannot have a

solution, which concludes our proof.

Despite the hardness result, we now present algorithmic approaches for solving the adversarial

regression problem (6.2) in the context of two widely-used machine learning algorithms: linear

regression and neural networks.

6.5.1 Linear Regression

Suppose that the predictor of each ML regression-based anomaly detector implements a linear re-

gression model. In other words, for each detector s ∈ D, we let the predictor be a linear regression

model defined as f (s)(ỹ) = w(s)T ỹ + b(s), where w(s)T ∈ Rm and b(s) ∈ R are the parameters of

the linear regression model. Clearly, we also have w
(s)
s = 0. In this case, the first constraint of the

adversarial regression problem (6.2) becomes a set of linear equations. That is, for each s ∈ D, the

constraint |ỹs − f (s)(ỹ)| ≤ τ (s) will be written as |ỹs − w(s)T ỹ − b(s)| ≤ τ (s).

For all i ∈ S, we replace ỹi with ỹi = yi +αiδi, where αi = 1 implies that the sensor is attacked,

and αi = 0 implies that the sensor is not attacked. Thus, the third constraint (i.e., ‖ỹ − y‖0 ≤ B)
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can also be re-written as
∑m
i=1 αi ≤ B. Further, we remove αi from each αiδi term, and instead add

a new constraint δi ≤Mαi where M ∈ R is a large number.

Next, we let u(s) = w(s) − es, where es is a one-hot vector with value of 1 at index s and 0 at

other indices. We place all the coefficient vectors u(s) in a matrix as follows, U =

[
u(s1) . . . u(sd)

]T
.

We also let γ(s) = τ (s) − ys + w(s)T y, and then define Γ =

[
γ(s1)

...γ(sd)

]T
. The first constraint

of (6.2) then becomes Uδ ≤ Γ. Similarly, for negative operand values in the absolute operator, we

let γ(s)′ = τ (s) + ys − w(s)T y and we place them in a matrix Γ′ to obtain the constraint −Uδ ≤ Γ′.

Hence, we obtain the following mixed-integer linear programming (MILP) problem, which solves

the adversarial regression problem (6.2) for linear regression

argmax
a∈Sc

max
δ,α

δa

s.t. Uδ ≤ Γ, −Uδ ≤ Γ′

δ ≤Mα

|δi| ≤ ηi,∀i ∈ S
m∑
i=1

αi ≤ B

∀i ∈ S : δi ∈ R, αi ∈ {0, 1}.

(6.3)

6.5.2 Neural Network

Next, suppose the predictor of each ML regression-based detector implements a neural network

regression model. In other words, for each detector s ∈ D, we let the predictor f (s) be a feed-

forward neural network model defined by parameters θ(s), where the prediction ŷs = f(ỹ) is obtained

by computing a forward-propagation. Because of the neural networks, the first constraint of the

adversarial regression problem now becomes a set of highly nonlinear functions, and so we are not

able to use techniques from linear optimization as in the previous section.

To tackle this challenge and be able to approximately solve (6.2), we present Algorithm 6.1.

The algorithm solves the problem by making small steps in a direction that optimally increases

the objective function. At each iteration, the algorithm linearizes the neural networks for all the

detectors at their operating points, and replaces them with the obtained linearized instances. Then,

for each small step, it uses (6.3) to solve the adversarial regression problem. At each iteration, in

order to ensure that the obtained solution is feasible, the algorithm tests the solution in the actual

space. If it is infeasible, the iteration is repeated considering a smaller step size. Otherwise, the
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Algorithm 6.1 Adversarial Regression for Neural Network

Input: Measurements ỹ, critical sensors Sc, budget B, algorithm parameters ε0, εmin, nmax
1: ỹ0 ← ỹ, δa∗ ← 0, ε← ε0
2: for all a ∈ Sc do
3: while number of iterations ¡ nmax and ε ¿ εmin do

// Linearize the neural networks for all the detectors at ỹ
4: for all s ∈ D do
5: for all i ∈ S do

6: w
(s)
i ← ∂f(s)(ỹ)

∂ỹi
7: end for
8: end for
9: W ← [w

(s1)
1 . . . w

(s1)
n ; . . . ;w

(sd)
1 . . . w

(sd)
n ]

// Solve MILP and check feasibility

10: ỹ′ ←Solve MILP(W ,ε,a,ỹ,ỹ0)
11: if ∀s ∈ D : |ỹ′s − f (s)(ỹ′)| ≤ τ (s) then
12: ỹ ← ỹ′

13: δa ← ỹ′a
14: ε← ε0
15: else
16: ε← ε

2
17: end if
18: end while
19: if δa∗ < δa then
20: a∗ ← a, δa∗ ← δa, ỹ∗ ← ỹ
21: end if
22: end for
23: return ỹ∗

same process is repeated until a local optimum is found or we reach a desired maximum number of

iterations.

The algorithm begins with the initial uncorrupted measurement vector ỹ = y. For each neural

network f (s), it obtains a linearized model by computing the partial derivative of the output f (s)(ỹ)

with respect to the inputs at the current operating point ỹ, i.e., w̄
(s)
i = ∂f(s)(ỹ)

∂ỹi
is computed for all i ∈

S. Then, for detector s ∈ D, the linearized model can be written as f̄ (s)(ỹ+ ∆) = f (s)(ỹ) + w̄(s)T ∆,

where ∆ ∈ Rm is a small error vector. We denote the coefficients of the linearized models in matrix

form by W = [w(s1) . . . w(sd)]T .

Given matrix W , we solve the problem by converting it to the MILP (6.3) as in the previous

subsection. The difference is that there is now a new constraint that enforces taking small error steps.

In other words, we let ε ∈ R+ be the parameter representing the maximum step size. Then, we add

the constraint |δ| < ε to the MILP. In addition, we update the budget constraint as ‖δ + ∆‖0 ≤ B,

where ∆ is the error vector added at the current iteration, and δ = ỹ − y is the error added in the

previous iterations.

Let ỹ′ be the solution obtained by solving the MILP. We check whether this solution is feasible

by performing forward-propagation in all the neural networks and checking that no stealthiness

constraint is violated. If a stealthiness constraint is violated, which means that our linearized model

was not a good approximation of the neural network, we discard the candidate solution, reduce the
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Figure 6.3: Ensemble of Neural Network-Linear Regression.

maximum step size parameter ε to improve the approximation, and re-solve the MILP. We repeat

this process until a feasible solution is found, in which case the same steps are repeated for a new

operating point, or until we reach the maximum number of iterations nmax. Finally, we check

whether the solution that is found for the current target sensor a outperforms the solution for the

best target sensor found so far. The algorithm terminates after considering all the target sensors

and returns the optimal attack vector.

6.5.3 Neural Network-Linear Regression Ensemble

It has been shown in the adversarial learning literature that multiple detectors may improve ad-

versarial robustness [15]. We explore this idea for the ML regression-based detector by considering

an ensemble model for the predictor. As shown in Figure 6.3, we consider an ensemble predictor

that contains a neural network and a linear regression model. Different methods can be used for

combining the results, but we consider a bagging approach where the result is computed as the

average of the predictors’ outputs.

We can see the ensemble as a single neural network that connects a perceptron (i.e., the linear

regression model) with our initial neural network at the output layer. Thus, to solve the adversarial

regression problem, we can use the same approach as in the case of neural networks by modifying

Algorithm 6.1. That is, in line 9, we compute the linearized coefficient matrix as W = 1
2 (WNN +

WLR) where WNN is the matrix of linearized weights of the neural networks obtained by computing

the partial derivatives with respect to input, and WLR is the fixed weights of the linear regression

model.

6.6 Resilient Detector Design

In this section, we present an approach to obtain resilience against adversarial regression in CPS.

In particular, we discuss a method to select thresholds for our detectors such that a right balance
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Figure 6.4: Resilient Detector Algorithm.

between the impact of stealthy attacks and the expected time between false alarms. This approach

is inspired by the detection metric proposed in [132].

Impact of Attack and False Alarms Given thresholds τ , we define the impact of attack as

the max value of the adversarial regression problem (6.2) in a time period K = {k1, . . . , kT }, and

we define it as D(τ) = maxk∈K ỹ
k
s − yks . To evaluate false alarms, we let TE be the duration of

an experiment under normal operation. Then, for each detector s ∈ D, the number of false alarms

can be calculated using nFA(s)(τ (s)) =
∑TE
k=1 1|ỹks−f(s)(ỹk)|>τ(s) . We then calculate the expected

time between false alarms as E[T
(s)
fa (τ (s))] = TE

nFA(s)(τ(s))
, and then calculate it for all detectors as

E[Tfa(τ)] =
∑
s∈D E[T

(s)
fa (τ (s))].

We may be able to reduce the attack impact D(τ) by decreasing the detection threshold. This

can effectively force the attacker to launch attacks that follow the behavior of the physical system.

By following closer the behavior of the system, the attack impact is then reduced as the attack needs

to appear to be a normal behavior of the physical system. However, reducing the threshold will in

turn trigger a higher number of false alarms.

Maintaining a balance between the attack impact and the number of false alarms can be a

challenging problem [46, 74]. We now present a novel algorithm for resilient detector threshold

selection in the context of stealthy sensor attacks described above. Given a desired value for the

expected time between false alarms, the algorithm greedily finds thresholds that minimize the attack

impact while keeping the expected number of false alarms fixed.

Algorithm for Obtaining Resilient Detector Let τ be initialized based on a desired value

for the expected time between false alarms. At each iteration, we solve the adversarial regression
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Algorithm 6.2 Resilient Detector

Initialize: Set thresholds τ based on a desired false alarm performance
1: while number of iterations ¡ nmax do
2: for all a ∈ Sc do
3: (Da(τ), a)← Adversarial Regression(τ, a)
4: end for
5: A∗ ← argmaxA⊆Sc Da(τ)
6: Amin ← argminA⊆Sc Da(τ)
7: for all a ∈ A∗ do
8: τ (a)

′ ← τ (a) − ε
9: end for

10: ∆FP ← FP (τ ′)− FP (τ)
11: for all b ∈ Amin do
12: τ (b)

′ ← FP−1
b (FPb(τ

(b))− 1
|Amin|

∆FP )

13: end for
14: DA′ (τ

′)← maxa∈Sc Adversarial Regression(τ ′, a)
15: if DA′ (τ

′) ≤ DA∗ (τ) then
16: τ ← τ ′

17: ε← ε0
18: else
19: ε← ε

2
20: end if
21: end while
22: return τ

problem to find the largest stealthy attack impact DA∗(τ), where A∗ is the set of critical sensors

that have such stealthy attack impact (note that this can be more than one sensor). Similarly, we

let Amin be the set of sensors that have the smallest stealthy attack impact DAmin(τ). To reduce

DA∗(τ), we assign τ (a) for each a ∈ A∗ to a smaller threshold. Then, to keep the number of false

alarms unchanged, we increase the threshold τ (b) for each b ∈ Amin to compensate for the false

alarms added by detectors of sensors in A∗. These steps are repeated until there is no progress

in the solution. We formalize this in Algorithm 6.2, where we let FPs(τ
(s)) = E[T

(s)
fa (τ (s))] for

readability.

6.7 Experiments

In this section, we evaluate our contributions considering a case study of a safety-critical process

control system. In particular, we study the well-known Tennessee-Eastman process control system

(TE-PCS). First, we design regression-based anomaly detectors for the critical sensors in the system

(e.g., pressure of the reactor, level of the product stripper). Then, we consider scenarios where

an adversary launches sensor attacks using the adversarial regression problem in order to drive the

system to an unsafe state. We evaluate the resilience of the system against such attacks using

baseline detectors and the proposed resilient detector.
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6.7.1 Tennessee-Eastman Process Control System

We present a brief description of the Tennessee-Eastman Process Control System (TE-PCS). TE-PCS

involves two simultaneous gas-liquid exothermic reactions for producing two liquid products [37].

The process has five major units: reactor, condenser, vapor-liquid separator, recycle compressor,

and product stripper. The chemical process consists of an irreversible reaction which occurs in the

vapour phase inside the reactor. Two non-condensible reactants A and C react in the presence of

an inert B to form a non-volatile liquid product D. The feed stream 1 contains A, C, and trace of

B; feed stream 2 is pure A; stream 3 is the purge containing vapours of A, B, and C; and stream 4

is the exit for liquid product D.

Safety Constraints and Control Objectives There are 6 safety constraints that must not be

violated (e.g, safety limits for the pressure and temperature of reactor). These safety constraints

correspond to 5 critical sensors: pressure, level, and temperature of the reactor, level of the product

stripper, and level of the separator. Further, there are several control objectives that should be

satisfied, e.g., maintaining process variables at desired values and keeping system state within safe

operating conditions. The monitoring and control objectives are obtained using 41 measurement

outputs and 12 manipulated variables.

Simulation of Sensor Attacks We use the revised Simulink model of TE-PCS [13]. We consider

the implementation of the decentralized control law as proposed by [116]. To launch sensor attacks

against TE-PCS, we update the Simulink model to obtain an information flow similar to Figure 6.2.

That is, the adversary receives all the sensor measurements and control inputs, solves the adversarial

regression problem, and then adds the error vector to the actual measurements.

Figure 6.5 shows how a sensor attack may drive the system to an unsafe state. In this scenario,

the pressure of the reactor exceeds 3000 kPa which is beyond the safety limit and can result in

reactor explosion.

6.7.2 Regression-Based Anomaly Detector

Collection of Normal Data To protect the system against sensor attacks, we build a detector

for each critical sensor (i.e., D = Sc). To train predictors for the machine learning regression-based

detectors, we need data that correctly represent system behavior in different operation modes. To

do so, we run simulations that model the system operation for 72 hours. We collect the sensor
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Figure 6.5: Pressure of the reactor when a sensor attack starts at k = 0.5. After 2 hours the pressure
reaches an unsafe state.

measurements (i.e., xmeas) and control inputs (i.e., xmv). Each simulation consists of 7200 timesteps

and thus, for each simulation scenario, we record 7200×53 datapoints. To make sure that the dataset

represents different modes of operation, we repeat the same steps for different initial state values.

We consider a total of 20 different initial state values which gives us 20×7200×53 ≈ 7.5 million

datapoints. Three of the control inputs are always constant and so effectively we only store 50

values at each timestep.

Linear Regression-Based Detector

Using our collected data, we train linear regression models for the critical sensors. We use the

current value of the remaining 36 non-critical sensors as well as the 9 non-constant control inputs

as features of the model. Figure 6.6 shows the performance of the linear regression predictor on

training and test data. Note that since the data is sequential, the train and test data cannot be

randomly sampled and instead, we divide the data in two blocks. Also, to be able to compare the

performance of predictors trained for different variables, we compute the MSE for normalized values

instead of the actual values.

For the temperature variable, we using a ridge (l2 regularized) linear regression model with λ =

1500 selected using cross-validation. With this model we obtain MSEtrain = 0.70 and MSEtest =

0.75.
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Figure 6.6: MSE of Linear Regression, Neural Network, and Ensemble Model (computed with
normalized data).

Table 6.2: MSE of Test Data (Original Scale)

PR LR TR LP LS

LR-MSE 9.05 0.26 0.00 1.53 7.17
NN-MSE 6.28 0.25 0.00 1.41 5.90
EN-MSE 5.74 0.26 0.00 1.33 5.81

Neural Network-Based Detector

Next, we train the neural network regression models for the critical sensors. Unlike linear regression

models, neural networks require a few parameters that need to be selected (e.g., network architec-

ture, activation function, optimization algorithm, regularization technique). We considered neural

networks with 2 to 4 hidden layers and 10 to 20 neurons in each layer. All the neuron in the hidden

layers use tanh activation functions. We also experimented with ReLU activation functions but tanh

performs better. We trained the networks in Tensorflow for 5000 epochs using Adam optimizer with

β1 = 0.9, β2 = 0.999, and ε = 10−8, and a learning rate of 0.01. Figure 6.6 shows the MSE for the

training and test sets, which outperforms the scores of the linear regression model. Figure 6.6 shows

the result for the ensemble model as well.
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6.7.3 Adversarial Regression

We solve the adversarial regression problem considering linear regression-, neural network-, and

the ensemble-based detectors. Figure 6.7a shows the maximum and mean of the solution of the

adversarial regression problem as a function of the attacker’s budget for the pressure of the reactor.

As expected, a powerful attacker that has a higher budget is able to carry out larger stealthy

perturbations. Further, Figure 6.7b shows the solution of the adversarial regression for each critical

sensor considering different detectors. In the y-axis, the distance parameter is the deviation that is

needed in order to reach an unsafe state. Based on our results, level of the separator seems to be the

most critical parameter. As it can be seen, the temperature of the reactor is the least critical sensor

while the level of the stripper is the most critical. Also, Algorithm 6.1 efficiently computed worst-case

attacks, which depending on the selected hyper-parameters, took between 20-100 iterations.

Surprisingly, neural network models tend to be more vulnerable than linear regression. Further,

ensembles of linear and neural network regression do not significantly reduce this vulnerability either.

The only interesting exception is the product stripper sensor, which is indeed substantially more

vulnerable to attacks.

6.7.4 Resilient Detector

We use the resilient detector algorithm to find threshold values that reduce the stealthy attack

impact as defined in Section 6.6. We do this in the context of linear regression. Let T ∗ = 1 hour,

be the desired value for the expected time between false alarms for all detectors. As the baseline,

for each detector s ∈ D, we set threshold values τs = FP−1
s (T ∗ · |D|). This way, each detector is

expected to generate 5 alarms per day as shown in Figure 6.8b.

Then, we use Algorithm 6.2 to change thresholds in order to improve resilience. At first iteration,

stripper level is the most critical sensor, and reactor temperature is the least critical sensor, therefore,

the algorithm decreases the threshold corresponding to the stripper level, and increases the threshold

for the other detectors in order to maintain the same false alarm performance. These steps are

repeated until the algorithm converges to a local optimum (which in our implementation took about

20 iterations). As shown in Figure 6.8, the worst-case stealthy attack impact (i.e., stripper level)

is reduced compared to the baseline. This is obtained by increasing the stealthy attack impact for

sensors that were less critical. Also, note that this improvement in resilience is attained with zero

cost (i.e., no increase in false alarms).
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(a)

(b)

Figure 6.7: (a) Adversarial regression for the pressure of the reactor considering different budgets.
Surprisingly, linear regression outperforms neural networks. In the figure, δmax is the maximum
error that can be added to the measurements of a critical sensor at a timestep. (b) Criticality
analysis of the five safety-critical sensors. Criticality is defined as the maximum of δmax during a
time interval over distance, where distance is the difference between operating point and safety limit
for a critical sensor.
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(a)

(b)

Figure 6.8: Resilient Detector compared to Baseline. (a) Impact of Attack. (b) Number of False
Positives (per day).

6.8 Conclusions

In this chapter, we studied the adversarial regression problem in CPS. We considered a scenario

where the CPS is monitored by machine learning regression-based anomaly detectors. As our threat

model, we considered an omniscient adversary that is capable of perturbing the values of a subset of
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sensors. The adversary’s objective is to lead the system to an unsafe state (e.g., raising the pressure

of a reactor in a process control system beyond its safety limit) without being detected. We solved

the adversarial regression problem considering linear regression and neural network. Surprisingly,

we discovered that the neural network model is more vulnerable than the linear regression model.

Then, we presented a resilient detector that mitigates the impact of stealthy attacks through resilient

configuration of detection thresholds. We numerically evaluated the adversarial regression problem,

and demonstrated the effectiveness of the resilient detector using a case study of a process control

system.
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Chapter 7

Conclusions

The vulnerability of CPS to anomalies has resulted in many research topics in the design, evaluation,

and implementation of resilient anomaly detection methods in CPS. The goal of this thesis was to

address the various challenges facing the problem of resilient detection in CPS to ensure successful

and survivable operation. Throughout the thesis, we observed how incorporating knowledge of the

physical system in the design of anomaly detectors can lead to improved resilience. Most of our

analysis was performed considering powerful attackers as this can provide an upper bound on the

worst performance of the anomaly detection tools. Our results were supported using theoretical

results as well as practical implementations. In particular, we validated our approaches considering

real-world CPS such as water distribution systems, intelligent transportation systems, and process

control systems. We hope that our results aid the theoreticians as well as the practitioners in the

design and implementation of Resilient Cyber-Physical Systems.
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