
Skill Transfer between Humans and Robots Based on Dynamic Movement Primitives and

Sparse Autoencoder

By

Mingqi Li

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Electrical Engineering

May, 2017

Nashville, Tennessee

Approved:

Richard Alan Peters, Ph.D.

Kazuhiko Kawamura, Ph.D.

To my advisor, partners and my family.

Thanks for your helps.

ii

ACKNOWLEDGMENTS

The data used in this thesis was obtained from mocap.cs.cmu.edu.

The database was created with funding from NSF EIA-0196217.

iii

TABLE OF CONTENTS

Page

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF TABLES . vi

LIST OF FIGURES . vii

Chapter

1 INTRODUCTION . 1

1.1 Related Work . 2

1.2 Problem & Solution . 3

2 PLATFORM DESCRIPTION . 5

2.1 Robot Platform . 5

2.1.1 Yaskawa Motoman HP3JC . 5

2.1.2 Rethink Robotics Baxter . 6

2.2 Robot Operating System . 6

2.3 Kinect & Kinect SDK . 8

2.4 CMU Graph Lab Motion Capture Database & ASF/AMC File System 10

3 ROBOTIC KINEMATICS . 12

3.1 Forward Kinematics . 12

3.1.1 DH-Parameters . 12

3.2 Inverse Kinematics . 17

3.2.1 Cyclic Coordinate Descent Method . 18

3.2.2 Jacobian Pseudoinverse Method . 20

4 ROBOTIC SKILL TRANSFER . 25

4.1 Dynamic Movement Primitives . 25

iv

5 DICTIONARY GENERATION & TRAJECTORY SYNTHESIS 30

5.1 Sparse Autoencoder . 30

5.2 Process of Dictionary Generation & Trajectory Synthesis 32

6 EXPERIMENTAL RESULTS & ANALYSIS . 33

6.1 Experiments for Inverse Kinematics . 33

6.2 Experiments of DMP . 35

6.3 Experiments for Dictionary Creation & Skill Transfer 37

7 CONCLUSIONS . 43

BIBLIOGRAPHY . 45

v

LIST OF TABLES

Table Page

2.1 Baxter joints constraints . 8

3.1 Motoman DH-parameters . 14

3.2 Baxter DH-parameters . 15

6.1 CCD and Jacobian Pseudo-inverse accuracy 33

6.2 CCD and Jacobian Pseudo-inverse time in calculating 35

vi

LIST OF FIGURES

Figure Page

2.1 Yaskawa Motoman HP3JC . 6

2.2 Rethink Robotics Baxter . 7

2.3 Baxter Hardware Specifications . 7

2.4 Baxter Simulator in ROS . 9

2.5 Two sample positions collected by Kinect 9

2.6 Two postures defined by ASF and AMC file 11

2.7 Sample frames of boxing and washing window 11

3.1 The CCD problem in 3D application . 20

4.1 A sample of DMP . 26

4.2 Invariance of DMP . 28

4.3 Performances for different kernel numbers 29

5.1 Structure of Sparse Autoencoder structure 31

6.1 5 and 100 points in Baxter’s working space 34

6.2 CCD’s problem in practice . 34

6.3 Reproduced trajectory of 3 dimensions with DMP in 10, 30, 50 kernels . . . 36

6.4 Reproduced trajectory of 3 dimensions and 3D plot with DMP in 100 kernels 37

6.5 Reproduced trajectory of 3 dimensions and 3D plot with DMP in 100 kernels

(different goals) . 38

6.6 Time in calculating DMP with different kernels number 38

6.7 25 bases generated by Sparse Autoencoder 40

6.8 The reproduced trajectory by DMP and Sparse Autoencoder and original

trajectory . 41

vii

6.9 Results of trajectory transfer . 41

viii

Chapter 1

INTRODUCTION

With the rapid development in industry, robots are not only applied in manufacturing.

Robotics companies are increasingly concentrating on the service business [10, 23]. Many

of the robots have humanoid characteristics and have features of human behaviours [21, 8].

For a simple example, the behaviors of picking up a cup on the desk then putting it on

the ground and taking a bowl in the cabinet then placing it on the table will look differ-

ent. However, we can classify these two series behaviours as picking & placing. Dynamic

Movement Primitive (DMP) are mathematical models that can be used to generalize such

tasks.

Nowadays, robots are not same as personal computers whose operating systems are

limited to a few such as Windows, Mac OS and Linux. There are thousands of different

robots on the market. Many of them need to complete the same set of tasks [27]. How

to transfer behaviours between robots efficiently is the primary objective of this thesis.

The idea is to decompose a task into a sequence of behaviors – simple sensory coupled

actions – that can be defined for each robot. Different robots can perform the same task by

sequencing the same behaviors. Firstly, we can calibrate robot actions with human actions

through a series calibration behaviours. We can also calibrate two arbitrary robots with

this method. Then, a sparse autoencoder is used to produce the library of basis behaviours

which can be maintained easily. The behavior library can be implemented on different

robots so that the DMP algorithm can transfer skills between them

The behavior library for each robot depends on its kinematics. Part of our work was to

use kinematics to decide whether the robot can achieve the target we expect.

1

1.1 Related Work

This work used the Microsoft Kinect. In [16, 34], the Kinect SDK and programming

skills were described. Programmers at Microsoft wrote a program to detect human skele-

tons which are the base of our code to detect joints. Livingston, Mark A et al. [22] prove

the good performance of Kinect in skeleton detecting.

In the section on forward kinematics, we use DH-parameters invented by Jaques De-

navit and Richard Hartenburg [12], which model a robot’s links and joints. Khalil, Wisama

et al. [18], Siciliano, Bruno et al. [28] and Craig, John J [6] used a modified DH-

parameters, but the core idea is same [35].

Inverse kinematics (IK) algorithms can be characterised as analytical and numerical.

The analytical method can be used only with robots that have 6 or fewer degrees of free-

dom (DOF) [30]. Moreover, analytical IK is specific to a given robot model. So it cannot

be generalised to an arbitrary robot. The numerical method is more straightforward and is

more easily generalized. There are three kinds of numerical algorithms which have been

proved to solve the inverse kinematics problem. The first type is based on the Newton-

Raphson method [3, 7]. The primary problem of this method is when the Jacobian matrix

is singular, the algorithm will be unstable. Some modified algorithms have been developed

to overcome this disadvantage [4, 31, 32]. The second type is based on optimization tech-

niques. The core idea is to solve an equivalent minimization problem [9, 4, 11]. The biggest

problem for algorithms of this type is the computational complexity of optimisation [33].

The last type is based on heuristic direct search techniques, but has higher computational

than the second type.

Ijspeert, Nakanishi, & Schaal describe DMP in [14, 15]. In [13], Ijspeert et al. add an

online learning model to DMP, which can make a robot avoid obstacles when reproducing

behaviours. Pastor et al. illustrate in detail how to extend DMP into multiple DOF robots

[26]. Petar Kormushev et al. control a robot’s end effector’s direction with DMP combined

with EM-based reinforcement learning [19].

2

Sparse Autoencoder is a technique based on an artificial neural network for unsuper-

vised learning [37]. It calculates a set of bases to represent the original data. Andrew Ng

describes the structure and use of the algorithm in his lecture notes [25].

In entire process of generating behaviours, Huan Tan and Kazuhiko Kawamura pro-

posed a framework to enable robots systematically learn how to integrate perception, tasks

and behavior from experience in social settings [29].

1.2 Problem & Solution

The problem we need to solve can be described into 3 parts:

1. What robots were used and how were they to be controlled? In this thesis, we mainly

operate Yaskawa Motoman HP3JC and Rethink Robotics Baxter. The Robot Operating

System was used to build the connection between computer and robots. Scripts can be

executed through ROS to operate robots. Within ROS, robotic kinematics were used to

achieve the movement of robots. Forward kinematics solve the problem how to control

robots with every joint’s angle. Inverse kinematic solve the inverse problem which is how

to compute every joint’s angle to move the end effector to a specific pose (position and

orientation). In forward kinematics, DH-parameters were used to build the robot model.

For inverse kinematics, both the CCD method and the Jacobian method were used.

2. How to record human behaviours and transfer them to robots? Two ways were used

to acquire human motion behaviours. The Kinect system was used to record a researcher’s

hand trajectory. And we used data from the CMU graph lab motion capture database. Be-

fore transferring behaviours, applied Scaling Iteritive Closet Point (SICP) to calibrate robot

and human to make the behaviours correspond. After that we used the DMP algorithm to

transfer the skill. DMP can calculate a similar trajectory to a different target.

3. How to increase the efficiency of DMP? DMP is a time-consuming process, espe-

cially complex trajectory, because it computes parametric kernels to make the trajectory

match the details of the original trajectory as close as possible. We use Sparse Autoen-

3

coder to construct a dictionary of behaviors and use DMP to calculate every segment of the

dictionary. Behaviors in the dictionary are simpler than the entire trajectory we need to im-

itate. They form a basis set of DMP trajectories from which more complicated tasks can be

constructed. So, we can use fewer kernels to fit the basis and achieve better performance.

After that, we can combine the DMP trajectories of the bases in the dictionary to rebuild

the trajectory. That is a linear superimposed process and cost less time than directly apply-

ing DMP to the original trajectory. Rather than full trajectories, we just need to maintain

the DMP of the set of bases. Moreover, this method can smooth behaviours and filter out

unwanted jitter from the original observed trajectories, which are from human or electronic

sample process.

4

Chapter 2

PLATFORM DESCRIPTION

In this chapter, three main aspects will be introduced. At first, we illustrate two robots

we used in this research. Then a system which helps us operate robot will be discussed.

After that, two methods are applied to collect experimental data. The first method is using

Kinect to sample behaviours. The second method is to use data from the CMU human

motion capture database.

2.1 Robot Platform

In this thesis research, two robot systems were used. HP3JC has fewer DOFs. So it

imitates human behaviour stiffly. Baxter has higher DOFs; its arms are designed more like

people.

2.1.1 Yaskawa Motoman HP3JC

Yaskawa Motoman is a Japanese robotics company well known for its industrial ma-

nipulators [36]. HP3JC is a compact, high speed and high accuracy 6 DOFs robotic arm

[20], which is shown in Figure 2.11. HP3JC can be controlled by its teach pendant. There

is one switch to adjust mode to control the robotic arm. Three modes can be chosen:

“remote” mode allows operators to control it with ROS through the network.

“play” mode can execute scripts which is stored in the pendant. The robotic arm can

redo motions according to every joint’s velocities, movement time and angles. Scripts can

be created by ROS or by the third mode “teach”.

In “teach” mode, we can use the button to control the velocity, direction and processing

time for robot’s every joint.

1https://www.codeproject.com/Articles/317974/KinectDepthSmoothing

5

Figure 2.1: Yaskawa Motoman HP3JC

2.1.2 Rethink Robotics Baxter

Baxter is an industrial robot built by Rethink Robotics [17]. Baxter is a two-armed

robot with an animated face, which is shown in Figure 2.22. Both arms are 7 DOFs which

can be operated to control arm’s position. In this thesis research, the only right arm will be

used.

In Figure 2.33, lengths between every joint are illustrated in (b); joint names are showed

in (c) and (d).

Every joint’s constraints are showed in Table 2.14.

2.2 Robot Operating System

ROS (Robot Operating system) which was originally developed by the Stanford Artifi-

cial Intelligence Laboratory in 2007 is a software system for robot programming, simula-

tion, and control [39]. ROS provides services like low-level communication and distributed

control.
2http://www.hizook.com/blog/2012/09/18/baxter-robot-rethink-robotics-finally-unveiled
3http://sdk.rethinkrobotics.com/wiki/Hardware Specifications
4http://sdk.rethinkrobotics.com/wiki/Hardware Specifications

6

Figure 2.2: Rethink Robotics Baxter

Figure 2.3: Baxter Hardware Specifications

7

Table 2.1: Baxter joints constraints

Joint Name Min limit (rad) Max limit (rad)
S0 -1.7016 +1.7016
S1 -2.147 +1.047
E0 -3.0541 +3.0541
E1 -0.05 +2.618
W0 -3.059 +3.059
W1 -1.5707 +2.094
W2 -3.059 +3.059

The core of ROS comprises four parts [2]:

1. Node. Nodes are executable files, which can be compiled with many advanced

languages. A ROS system typically combines a number of different nodes. This method of

construction makes the entire system easier to observe.

2. Message. Communications between different nodes are based on transfer messages.

3. Topic. A topic is a named bus or communications channel. Messages are transferred

through topics using a “Publish & Subscribe” protocol. A node can publish messages to a

topic. Other nodes can subscribe to specific messages from topics. In addition, publishers

and subscribers don’t notice the existence of each other, which makes the entire system

easier to maintain.

4. Service. A service is another means of communication. Services allow nodes to send

a request and receive a response.

In this thesis, ROS is used to operate the Motoman robot arm and Baxter. Figure 2.4

shows the simulator of Baxter.

2.3 Kinect & Kinect SDK

The kinect is a motion sensing input device developed by Microsoft for the Xbox 360,

Xbox One video game system and Windows PCs. Two cameras are combined in Kinect;

one is a RGB color camera. The other is a depth sensor capture system which uses an

infrared emitter and an infrared CMOS camera [38].

8

Figure 2.4: Baxter Simulator in ROS

Figure 2.5: Two sample positions collected by Kinect

The Kinect SDK includes code samples and a help document for developers.

Skeleton Basics which can track and display skeletons for up to two players is one

sample from the Developer Toolkit. This sample was modified by us to record the right

arm’s joints. In Figure 2.5, white points represent the joints’ positions. The posture in this

figure is upper raise (a) and lateral raise (b). Shoulder, elbow, wrist and hand coordinates

are saved as ASCII files.

9

2.4 CMU Graph Lab Motion Capture Database & ASF/AMC File System

In this thesis, we also used the Motion Capture Database from CMU [1]. In this

database researcher use markers to mark 31 different joints and bones of human bodies.

Relationships between every bone and joint are defined in an ASF file. The motion data is

stored in an AMC file.

The ASF file is a skeleton definition file for humans’ body. In an ASF file, important

data is root, bonedata and hierarchy[1].

The “root” section defines a specific segment to be the root of the skeleton hierarchy of

whole skeleton system. The key word “position” and “orientation” define the start position

and the local coordinate system’s orientation of the root.

The “bonedata” section contains data for every joint and bone. Keywords “direction”

and “length” define the position of segment with respect to a parent segment. The “axis”

defines a local coordinate system for the specific segment, which is rotated from its parent’s

coordinate system. “dof ” and “limits” introduce a segment’s degrees of freedom and every

degree’s constraints.

The “hierarchy” section defines every segment’s parent and children.

The AMC file contains motion data which is defined by rotation angle except for the

“root” segment. In the “root” section, the first three values define the coordinate system’s

origin. The other three values define the coordinate system’s orientation. In other segments,

every value represents the rotation angle for different DOFs. Figure 2.6 shows the original

posture (a) and walk posture (b) which is one frame of the walking process. The display

software we used is Motion Builder.

In this thesis, we used the HDM05 database toolkit [24] to extract every joint’s coor-

dinate based on a global system. We choose some motion files including wash windows

and boxing behaviours from CMU Motion Capture database. Sample frames of these two

behaviours are shown in Figure 2.7. Because our robotic arm can imitate one human arm’s

behaviour, we just use the right arm data.

10

Figure 2.6: Two postures defined by ASF and AMC file

Figure 2.7: Sample frames of boxing and washing window

11

Chapter 3

ROBOTIC KINEMATICS

In this chapter, forward and inverse kinematics are described. Forward kinematics is

using every joint’s rotation angle to control robotic arm movement. Inverse kinematics

determine the joint angles necessary for the robot’s end effector to remove to a specific

pose.

3.1 Forward Kinematics

Forward kinematics are used to describe the end effector coordinate of the robotic arm.

We use DH-parameters to find the translation and rotation matrix that describe the relation-

ship between end effector and base.

3.1.1 DH-Parameters

DH-parameters were introduced by Jaques Denavit and Richard Hartenburg [12, 35],

as a simple method to model a robot’s links and joints. The idea is to assign and rotation a

coordinate system to every joint, then connect adjacent joints with a translation vector. By

combining each transformation from base to end effector, the entire transformation can be

derived.

The first step to calculate the robot’s transform matrix is to assign X axis and a Z axis

to every joint. The base coordinate system’s Z0 axis is perpendicular to the ground. The

X0 axis and Y0 axis can be set arbitrarily, but all of the coordinate systems must be right-

handed system. For every joint, the Zi axis is in the direction of the joint rotation axis. The

Xi axis is parallel to the common normal of Zi and Zi−1. The direction is from Zi−1 to Zi.

The Yi axis is defined by the directions of Xi and Zi.

The second step is to assign four parameters of every joint. The first parameter is θi

which defines the angle between Xi and Xi−1. When Xi−1 rotates θi around Zi−1, Xi−1 can

12

be paralleled with Xi. The rotation matrix of this step is

Rotzi−1(θi) =



cosθi −sinθi 0 0

sinθi cosθi 0 0

0 0 1 0

0 0 0 1


The second parameter is di which defines the distance between Xi−1 and Xi. After the

first step’s rotation, the Xi−1 and Xi axes are parallel. After translation along the Zi−1, Xi−1

and Xi will be in the same line. The translation matrix is

Transzn−1(dn) =



1 0 0 0

0 1 0 0

0 0 1 dn

0 0 0 1


The third parameter is ai which defines the distance between the origin of Xi−1 and Xi.

The translation matrix is

Transxn(an) =



1 0 0 an

0 1 0 0

0 0 1 0

0 0 0 1


The fourth parameter is αi which defines the angle between Zi−1 and Zi. The rotation

matrix is

Rotxn(αn) =



1 0 0 0

0 cosαn −sinαn 0

0 sinαn cosαn 0

0 0 0 1


13

So, the transfer matrix from the i−1th joint to the ith joint is

i−1Ti = Rotzi−1(θi) ·Transzi−1(di) ·Transxi(ai) ·Rotxi(αi)

i−1 Ti =



cosθn −sinθn cosαn sinθn sinαn rn cosθn

sinθn cosθn cosαn −cosθn sinαn rn sinθn

0 sinαn cosαn dn

0 0 0 1


The entire transform matrix is

0Ti =
0T1 · 1T2 · 2T3 · · · i−1Ti (3.1)

For Motoman robot, the DH-parameters are showed in Table 3.1.

Table 3.1: Motoman DH-parameters [20]

Joint Number θ(rad) d(mm) a(mm) α(rad)
1 θ1 157 0 −π

2
2 θ2− π

2 0 260 π

2
3 θ3 0 30 −π

2
4 θ4 -270 0 π

2
5 θ5 0 0 −π

2
6 θ6 -135 0 0

For Baxter, the DH-parameters are shown in Table 3.2.

After we assign the DH-parameters to the two robots, the end effector’s coordinates

based on every joint’s angle can be calculated. The Motoman’s end effector coordinates

14

Table 3.2: Baxter DH-parameters [20]

Joint Name θ (rad) d (mm) a (mm) α (rad)
S0 θ1 270.35 69 −π

2
S1 θ2 +

π

2 0 0 π

2
E0 θ3 364.35 69 −π

2
E1 θ4 0 0 π

2
W0 θ5 374.29 10 −π

2
W1 θ6 0 0 π

2
W2 θ7 280 0 0

are shown as Equation 3.2, 3.3 and 3.4.

Ex =30cos(θ1)sin(θ2)sin(θ3)−260cos(θ1)sin(θ2)−135sin(θ1)sin(θ4)sin(θ5)−30·

cos(θ1)cos(θ2)cos(θ3)−270cos(θ1)cos(θ2)sin(θ3)−270cos(θ1)cos(θ3)sin(θ2)−

135cos(θ1)cos(θ2)cos(θ5)sin(θ3)−135cos(θ1)cos(θ3)cos(θ5)sin(θ2)+135cos(θ1)

cos(θ2)cos(θ3)cos(θ4)sin(θ5)−135cos(θ1)cos(θ4)sin(θ2)sin(θ3)sin(θ5)

(3.2)

Ey =135cos(θ1)sin(θ4)sin(θ5)−270cos(θ2)sin(θ1)sin(θ3)−270cos(θ3)sin(θ1)sin(θ2)−

260sin(θ1)sin(θ2)+30sin(θ1)sin(θ2)sin(θ3)−30cos(θ2)cos(θ3)sin(θ1)−

135cos(θ2)cos(θ5)sin(θ1)sin(θ3)−135cos(θ3)cos(θ5)sin(θ1)sin(θ2)+

135cos(θ2)cos(θ3)cos(θ4)sin(θ1)sin(θ5)−135cos(θ4)sin(θ1)sin(θ2)sin(θ3)sin(θ5)

(3.3)

Ez =260cos(θ2)+270cos(θ2)cos(θ3)−30cos(θ2)sin(θ3)−30cos(θ3)sin(θ2)−

270sin(θ2)sin(θ3)−135cos(θ5)sin(θ2)sin(θ3)+135cos(θ2)cos(θ3)cos(θ5)+

135cos(θ2)cos(θ4)sin(θ3)sin(θ5)+135cos(θ3)cos(θ4)sin(θ2)sin(θ5)+157

(3.4)

15

The Baxter’s end effector coordinate is showed as Equation 3.5, 3.6 and 3.7

Ex =69cos(θ1)+(1822cos(θ1)cos(θ2))/5−69sin(θ1)sin(θ3)−10cos(θ5)(cos(θ4)

sin(θ1)sin(θ3)+ cos(θ1)cos(θ2)sin(θ4)+ cos(θ1)cos(θ3)cos(θ4)sin(θ2))−

(459cos(θ6)(sin(θ1)sin(θ3)sin(θ4)− cos(θ1)cos(θ2)cos(θ4)+ cos(θ1)cos(θ3)

sin(θ2)sin(θ4)))/2− (3743sin(θ4)(sin(θ1)sin(θ3))+ cos(θ1)cos(θ3)sin(θ2)))/10−

10sin(θ5)(cos(θ3)sin(θ1)− cos(θ1)sin(θ2)sin(θ3))− (459sin(θ6)(cos(θ5)(cos(θ4)

sin(θ1)sin(θ3)+ cos(θ1)cos(θ2)sin(θ4)+ cos(θ1)cos(θ3)cos(θ4)sin(θ2))+ sin(θ5)

(cos(θ3)sin(θ1)− cos(θ1)sin(θ2)sin(θ3))))/2+(3743cos(θ1)cos(θ2)cos(θ4))/10−

69cos(θ1)cos(θ3)sin(θ2)

(3.5)

Ey =69sin(θ1)+(1822cos(θ2)sin(θ1))/5+69cos(θ1)sin(θ3)−10cos(θ5)(cos(θ2)sin(θ1)

sin(θ4)− cos(θ1)cos(θ4)sin(θ3)+ cos(θ3)cos(θ4)sin(θ1)sin(θ2))+(459cos(θ6)

(cos(θ1)sin(θ3)sin(θ4)+ cos(θ2)cos(θ4))sin(θ1)− cos(θ3)sin(θ1)sin(θ2)sin(θ4)))

/2+(3743sin(θ4)(cos(θ1)sin(θ3)− cos(θ3)sin(θ1)sin(θ2)))/10+10sin(θ5)

(cos(θ1)cos(θ3)+ sin(θ1)sin(θ2)sin(θ3))− (459sin(θ6)(cos(θ5)(cos(θ2)sin(θ1)

sin(θ4)− cos(θ1)cos(θ4)sin(θ3)+ cos(θ3)cos(θ4)sin(θ1)sin(θ2))− sin(θ5)(cos(θ1)

cos(θ3)+ sin(θ1)sin(θ2)sin(θ3))))/2−69cos(θ3)sin(θ1)sin(θ2)+(3743cos(θ2)

cos(θ4)sin(θ1))/10

(3.6)

16

Ez =10cos(θ2)sin(θ3)sin(θ5)−69cos(θ2)cos(θ3)− (3743cos(θ4)sin(θ2))/10− (1822·

sin(θ2))/5+10cos(θ5)sin(θ2)sin(θ4)− (3743cos(θ2)cos(θ3)sin(θ4))/10− (459·

cos(θ4)cos(θ6)sin(θ2))/2−10cos(θ2)cos(θ3)cos(θ4)cos(θ5)− (459cos(θ2)cos(θ3)

cos(θ6)sin(θ4))/2+(459cos(θ2)sin(θ3)sin(θ5)sin(θ6))/2+(459cos(θ5)sin(θ2)

sin(θ4)sin(θ6))/2− (459cos(θ2)cos(θ3)cos(θ4)cos(θ5)sin(θ6))/2+2703/10

(3.7)

With the DH-parameters, forward kinematics build a model of the robotic arm.

3.2 Inverse Kinematics

In the forward kinematics, we have joint values:

θ =

[
θ1 θ2 θ3 · · · θn

]

The end effector coordinates can be calculated as:

e =
[

e1 e2 e3

]

So, forward kinematics give us a function as:

e = f (θ) (3.8)

To control the robot’s end effector to a specified target, we use e to calculate θ. The

function can be represented as:

θ = f−1(e) (3.9)

To solve the inverse kinematics function, we can obtain analytical solutions and nu-

17

merical solutions. But in a high DOF robotic arm, it will be too complex for an analytical

solution. In this thesis research, two iterative methods are used to solve the f−1.

The first algorithm is named as Cyclic Coordinate Descent, which is easy to understand

and implement. The second algorithm is named as Jacobian Pseudo-Inverse method which

is based on Jacobian matrix and Newton-Raphson method.

3.2.1 Cyclic Coordinate Descent Method

The CCD method is a directional search method. At first, we define the end effector

joint as No.1 joint and the base joint as the No.N joint. We can define the No.1 joint as the

child and the No.2 joint as the parent, the No.3 joint is the No.2’s parent, and so on. The

common step of this method can be showed as follow:

1. Calculate the angle ANG between the vector of the current end effector’s and it’s

parent joint (which is named as A) and the vector of the target end effector’s and A. Then,

rotating the A joint through angle ANG

2. If after the first step rotation the end effector cannot reach the target, redo the first

step for A’s parent joint.

3. If after applying first and second step for the base joint the end effector still doesn’t

reach the target, stop this iteration and start the next iteration (repeat the first and second

step).

The Pseudo code of CCD follows as Algorithm 1.

This algorithm which is based on a 2D environment has two problems. In the 2D

situation, all joints’ rotation axes are parallel. crossVecs which is calculated with curVecs

and tarVecs are also parallel to the joints’ rotation axes. However, in the 3D situation, the

rotation axis which is calculated by cross(curVec, tarVec) is different with the joints’ axis

under many situations. So the degree we need to rotate is different with the turnDeg. This

is illustrated in Figure 3.1. Assume curVec is (1,0,1) and tarVec is (0,1,1), so the angle

between these two vectors are α which is 60◦, corss(curVec, tarVec) is (−1,1,1) which is

18

Algorithm 1 Cyclic Coordinate Descent Pseudo code
// Variables
vector jointPos, curEnd, desiredEnd, tarVec, curVec, crossVec, nowTheta, nowQuater-
nion
double turnDeg
int curJointNum, triesCounter

// End variables
while triesCounter < triesT hreshold & distantance(curEnd, desiredEnd) >
distanceT hreshold do

// The condition of ending loop is the number of trying is bigger than the threshold or
the distance of current end effector is smaller than the threshold.
jointPos = f unJointPos(curJointNum,nowT heta)
// f unJointPos can calculate coordinates of current joint we want to operate. This
function use the result of DH-parameters introduced by last section.
curVec = curEnd− jointPos
tarVec = desiredEnd− jointPos
turnDeg = acos(dot(curVec, tarVec))
// Calculating the desired degree need to rotate.
if turnDeg > threshold then

crossVec = cross(curVec, tarVec)
// Calculating the rotation axis
Ensuring the rotation direction
Updating nowT heta

end if
end while

19

Figure 3.1: The CCD problem in 3D application

default axis of rotation. However, when the joint whose axis is (0,0,1), we cannot rotate

θ to make curVec and tarVec, because of the existence an angle between joint axis with

default axis.

To solve this problem, the main idea is that when we need to rotate the joint i, curVec

and tarVec can be both projected to the plane whose normal is the rotation axis of joint i

as Figure 3.1. The angle θ of these two projection vectors is the degree that joint i need to

rotate.

The second problem is that this algorithm doesn’t consider the joint’s limit. After few

steps rotation, joints’ angle may bigger or smaller than their limits. So, after every loop,

nowT heta must be checked to see if it is beyond the limitation. The angle of the joint must

be set to the edge of limitation.

So, CCD method is improved as Algorithm 2.

3.2.2 Jacobian Pseudoinverse Method

Since Equation 3.9 is a non-linear equation, the Jacobian Pseudoinverse method is lin-

early approximated to reach the solution. The Jacobian matrix J is combined with deriva-

tives of end effector’s coordinates with respect to joint’s angles. The Baxter’s Jacobian

20

Algorithm 2 modified Cyclic Coordinate Descent Pseudo code
// Variables
vector jointPos, curEnd, desiredEnd, tarVec, curVec, crossVec, nowTheta, nowQuater-
nion
double turnDeg
int curJointNum, triesCounter

// End variables
while triesCounter < triesT hreshold & distantance(curEnd, desiredEnd) >
distanceT hreshold do
[jointPos, jointAxis] = f unJointPos(curJointNum,nowT heta)
curVec = curEnd− jointPos
tarVec = desiredEnd− jointPos
pro jcurVec = pro jection(curVec, jointAxis)
pro jtarVec = pro jection(tarVec, jointAxis)
turnDeg = acos(dot(pro jcurVec, pro jtarVec))
if turnDeg > threshold then

crossVec = cross(curVec, tarVec)
if dot(crossVec, jointAxis)> 0 then

// crossVec and jointAxis are in same direction
if nowT heta+ turnDeg > limitation then

nowT heta = limitation
else

nowT heta = nowT heta+ turnDeg
end if

else
if nowT heta− turnDeg < limitation then

nowT heta = limitation
else

nowT heta = nowT heta− turnDeg
end if

end if
end if

end while

21

matrix can be presented as

JBaxtor =


∂ex
∂θ1

∂ex
∂θ2

∂ex
∂θ3

∂ex
∂θ4

∂ex
∂θ5

∂ex
∂θ6

∂ex
∂θ7

∂ey
∂θ1

∂ey
∂θ2

∂ey
∂θ3

∂ey
∂θ4

∂ey
∂θ5

∂ey
∂θ6

∂ey
∂θ7

∂ez
∂θ1

∂ez
∂θ2

∂ez
∂θ3

∂ez
∂θ4

∂ez
∂θ5

∂ez
∂θ6

∂ez
∂θ7


where ex, ey, ez are the coordinates of end effector; θ1 to θ7 are joint’s angles.

Because we calculate Baxtor and Motoman’s DH-parameters, the coordinates of the

end effector can be presented as a polynomial. We can directly take the first order deriva-

tive of the coordinate derivative joint angle. Another way to calculate the jacobian matrix

numerically is as follow. One column of the Jacobian matrix can be presented as [5]:

∂e

∂θ
=

[
∂ex
∂θ

∂ey
∂θ

∂ez
∂θ

]T

We can add a small ∆θ to θ , which is named as θ ′. Therefore, the end effector’s

coordinate of θ′ is e′, so

∆e= e′−e

Now, we have:
∂e

∂θ
≈ ∆e

∆θ
=

[
∆ex
∆θ

∆ey
∆θ

∆ez
∆θ

]T

The velocities of the end effector are:

ė= J(θ)θ̇

When we add the ∆θ to the θ , the change in the end effector positions can be estimated

as

∆e= J∆θ (3.10)

In order to determine the value of ∆θ, we need to solve Equation 3.10 [5]. However,

in many cases, this equation cannot be solved uniquely because it is rank deficient. Even if

22

it is invertible, in many cases, J is nearly singular. Therefore, when J is invertible we can

temporarily set

∆θ = J−1∆e (3.11)

Many methods can be applied to solve Equation 3.10 such as the transpose method.

The idea is to replace the inverse of J with the transpose of J. In this method:

∆θ = αJTe (3.12)

where α is a scalar value. α needs to be set appropriately. In the case where α is sufficiently

small and bigger than zero, the result of this method can be approximated with the original

result.

The other method is named the Pseudoinverse method, which uses the pseudoinverse

of J to replace the J−1. This method is most approximate with the original equation. The

pseudoinverse is also called the Moore-Penrose inverse which exists for all matrices even if

they are rank deficient or not squared. A simple and accurate way to calculate the Moore-

Penrose inverse is to use the Singular Value Decomposition (SVD). The Moore-Penrose

inverse is shown as Algorithm 3 [5].

Algorithm 3 SVD method to solve Moore-Penrose inverse

[U,S,V T] = svd(J)
newS = 1

S
Jinv =V T newSTUT

Because the function of inverse kinematics is non-linear. The Jacobian matrix with

specific θ can be only applied near θ . So, the ∆e should be as small as possible. If the

target is too far from the current end effector, we need to subdivide the distance between

the current coordinate and the target into small steps. After every update, θ may be outside

the joint limits. So, if one specific joint’s angle is out of the limits, it will be set to a neutral

value which is equal to half of the sum of positive constraint and the negative constraint.

The algorithm of Jacobian-Pseudoinverse method is illustrated as Algorithm 4.

23

Algorithm 4 Core of Jacobian-Pseudoinverse method to solve inverse kinematic
Output thetaR
Input intTheta, tarPos, conP, conN // conP and conN present positive and negative con-
straints of every joint.
tries = 1
curT heta = intT heta
curPos = calPos(curT heta)
// Calculating current position of specific θ
err = tarPos− curPos
while abs(err)> threshold&tries < tryT hreshold do

J = jacobian(curT heta)
invJ = INV J(J)
dT heta = invJ ∗ err
if dT heta+ curT heta > conP||dtheta+ curT heta < conN then

curT heta = (conP+ conN)/2
else

curT heta = curT heta+dT heta
end if
curPos = calPos(curT heta)
err = tarPos− curPos
tries++

end while

24

Chapter 4

ROBOTIC SKILL TRANSFER

With the development of anthropomorphic robots, demand to the robot is not only

recording the action but also reproducing behaviours according to the actual environment.

The Dynamic Movement Primitive algorithm is designed to solve this problem, which can

find a set of environmental parameters to adjust a complex behaviour automatically without

intervention from operators. The stability of this algorithm is proved by its inventor [13].

4.1 Dynamic Movement Primitives

The basic idea of DMP is using a dynamical system to simulate the original stable

behaviour and add another force to achieve some specific goals such as reach different

targets or to avoid obstacles. Specifically, the dynamical system which Ijispeert used in

[13] is a spring system which is simple and effective. The equation is showed as:

τ ż = αz(βz(g− y)− ẏ)+ f (4.1)

τ ẏ = z (4.2)

In these two differential equations, τ is considered as time-scaling parameters. αz and

βz are constants. y and g represent the current position and the goal position. f is the exter-

nal force which results the desired behaviours. How to define f is an important question.

In order to achieve more complex behaviour trajectories, f can be defined as the kernel

function:

f (x) =
ΣN

i=1ψi(x)wi

ΣN
i=1ψi(x)

x(g− y0) (4.3)

ψi(x) = exp(− 1
2σ2

i
(x− ci)

2) (4.4)

25

Figure 4.1: A sample of DMP

where w is the weight of ψ , y0 is the initial position, σi and ci are constants depended on

the variance and center of the kernel function. In Function 4.4, ψ is a radial basis function

(RBF) but it can be replaced by other kernels. The gaussian RBF kernel which we used in

DMP is simple and effective.

In the original equation, external force f is time dependent. In order to allow straight-

forward coupling of multiple dynamical systems and the coordination of multiple DOF in

one dynamical system, the canonical system is introduced. This solves the problem of time

dependence in the dynamic system. In Figure 4.1, 3 plots in the first line show the posi-

tion, velocity and acceleration of a specific trajectory which is generated by sin(5 · step).

The red line is the original trajectory and the blue line represents the trajectory which is

reproduced. In this figure, we just test its ability to recover the original trajectory. In the

second line of this figure, the first and second plots show how the canonical system evolves

over time. The third plot indicates the activation of the kernel which is a combination of 30

Gaussian kernels comprising the force term.

Another problem is to prove this algorithm can be effective in every application. In the

[13], authors use BIBO (Bounded-Input, Bounded Output) stable theory and contraction

26

theory to prove the system is stable. The stability of this dynamic system means that when

the external force f decays to zero, the system will, after a period of time, converge the

goal position. Therefore, this property can ensure that the dynamic system will be able to

move to the goal with certainty.

The final problem is to prove that original trajectory and reproduced trajectory are cor-

responding when the actual goal is different. This property is called invariance. To prove

the invariance property of the dynamic system, we first classify its parameters. The first

kind of parameters are the constants αz, βz and wi which do not change when we reproduce

behaviours. The second kind of parameters’ τ and g, do change. To have the invariance

we require, when we modify the value of τ and g, the trajectory should not be changed

qualitatively. In [13], authors prove that after scaling τ and g, the behaviour of trajectory

reproduction is topologically equivalent to the original one.

In Figure 4.2, we can easily observe the invariance of the dynamic system through

the experimental results. The original trajectory is generated by sin(5 · step), which is

represented by the light blue line. Its goal is -1. When we set goals to 1, 0.67, 0.33, -0.33

and -0.67 respectively, the reproduced result is as shown as this figure. It’s easy to observe

that all of these trajectories are similar. We can also find that when the goal is mirrored,

entire reproduced trajectory will be mirrored to keep the invariance property.

We apply DMP to control a robotic arm. Three methods to embed DMP into multiple

DOF systems are introduced in [13].

1. Every DOF has its own canonical system. The disadvantage is that every joint has

no constraint the from other joints. Therefore, when the robotic arm attempts a complex

behaviour, the joints may disturb each other.

2. Constructing coupling terms in canonical systems between each DOF. However, this

method will lead to complex calculation in tuning coupling terms.

3. All joints share one canonical system and use their own transformation system. The

advantage of this method is that it is easy to maintain and is simple in approach.

27

Figure 4.2: Invariance of DMP

The third method. In the implementation of DMP, the key step is to fit wi. A supervised

learning framework was introduced as follows:

1. Constructing the canonical system. The differential equation is:

τ ẋ =−αxx

where αx and τ will be 1 in practice.

2. Extracting the goal g and initial state y0. g and y0 can be extracted from the desired

trajectory position vector. The first and last element correspond to y0 and g.

3. Obtaining velocity ẏ and acceleration ÿ. These can be obtained by the first order and

the second order derivatives of position.

4. Ensuring the value of τ . In practice, τ = 1.05 ·2% ·Vmax, where Vmax represents the

maximum velocity.

5. Accessing the value of ftarget . After rearranging the equation, we obtain:

ftarget = τ
2ÿ−αz(βz(g− y)− τ ẏ)

28

Figure 4.3: Performances for different kernel numbers

where αz and βz will be 25 and 6.25

6. Fitting weights wi. The solution is calculated using the Locally Weighted Regression,

which is represented as:

wi =
sTΓiftarget

sTΓis

where

s=



x(1)(g− y0)

x(2)(g− y0)

...

x(P)(g− y0)


,Γi =



Ψi(1) 0 · · · 0

0 Ψi(2) · · · 0
...

...

0 0 · · · Ψi(P)


,ftarget =



ftarget(1)

ftarget(2)
...

ftarget(2)


After calculating the wi, we can reproduce the behaviour with the dynamic system.

The performance of behaviour reproduction will be better if more kernels are used to

calculate wi. Figure 4.3 shows the performance between different kernels. In this figure,

the behaviour of reproduction with 1000 kernels is much better than 10 kernels. The use of

more kernels in the calculations will consume more time; the performance and the time of

calculating are inversely proportional.

29

Chapter 5

DICTIONARY GENERATION & TRAJECTORY SYNTHESIS

To achieve good performance and better efficiency, we introduce the Sparse Autoen-

coder [25] into the dynamic system.

It is an artificial neural network that can decompose complex behaviour into a set of

simple basis functions. The original behaviour can be recovered by linear superposition

of the bases. The error of the reproduced behaviour is within acceptable limits. The set

of basis function can be designed as a dictionary which can supply the elements which to

combine into an arbitrary behaviour.

Two necessary conditions for constructing the dictionary are over-complete and unre-

lated. Sparse autoencoder builds a dictionary meets that these two conditions.

5.1 Sparse Autoencoder

Sparse Autoencoder is an unsupervised algorithm. Its most specific feature is that out-

puts and inputs are same in this network. The task of this network is to use linear combi-

nation of elements to represent the original data.

In general, the error of this task can be defined as:

J(w,b) =
1
m

m

∑
j=1

∥∥∥∥∥x(j)− (
k

∑
i=1

w(j)
i φi +b)

∥∥∥∥∥
2

(5.1)

where x is the set of original data vectors; φ represent the set of bases; w and b denote the

weight vectors and constants of the combinations. Our target is to find a set of φ to make

J(w,b) minimum.

To avoid overfitting and to reduce weight decay amplitude, a weight decay term is added

30

Figure 5.1: Structure of Sparse Autoencoder structure [25]

in to equation 5.1. The modified J(w,b) is:

J(w,b) =
1
m

m

∑
j=1

∥∥∥∥∥1
2
(x(j)− (

k

∑
i=1

w(j)
i φi +b))

∥∥∥∥∥
2

+
λ

2

nl−1

∑
l=1

sl

∑
i=1

sl+1

∑
j=1

(w(l)
ji)

2 (5.2)

where w(l)
ji represents the weight parameter between unit i in layer l, and unit j in layer l+1;

sl is the number of units in layer l; nl represents total number of layers in this network.

Another problem is how to prove the sparsity of our dictionary. In order to solve this

problem, a sparse term is designed to modify the original error function.

KL(ρ||ρ̂ j) = ρlog
ρ

ρ̂ j
+(1−ρ)log

1−ρ

1− ρ̂ j
(5.3)

where ρ is the desired level of sparsity; ρ̂ j represents the average activation of hidden unit

j.

31

When this sparsity is combined with the regularization term and the error defined above,

the cost function is defined as:

Jsparse(w,b) = J(w,b)+β

m

∑
j=1

KL(ρ||ρ̂ j) (5.4)

where β is the weight of the sparsity penalty term. To find the minimum solution of the

cost function, a Back-propagation method [25] is used to learn the basis functions.

5.2 Process of Dictionary Generation & Trajectory Synthesis

After introducing the technique we used in dictionary generation and trajectory synthe-

sis. Steps of this process will be described as followed.

The first step is applying random joint’s angles to the robot models and human’s model,

aims to access numerous random trajectories which can cover almost all of behaviours in

daily life.

Secondly, employing Back-propagation method to extract a set of over-complete bases

from numerous data which is described in step one, which is showed as all segments in

LayerL2 in Figure 5.1. This step is called Dictionary Generation.

After generated dictionary, LASSO (Least Absolute Shrinkage and Selection Operator)

[41] can be employed to solve the problem of calculating w(j)
i and b.

32

Chapter 6

EXPERIMENTAL RESULTS & ANALYSIS

6.1 Experiments for Inverse Kinematics

In this section, we test the performance of two methods for calculating each joint’s

angular position trajectory. The performance test is divided into two parts.

At first, we test whether these two methods can calculate the correct joints’ angles to

achieve specific targets. The platform we used was Baxter. We derive 5 points in Baxter’s

end effector working space randomly, which is showed as Figure 6.1 (a). Then we inter-

polate 95 points into these 5 points to make them smooth. So now we have 100 points in

this trajectory which is shown in Figure 6.1 (b). 10,000 trajectories are prepared this way

to form a test database. Our test strategy is to use the two methods to calculate the set

of joint’s corresponding to positions. So in one trajectory, we can obtain 100 sets of joint

angles. Then we use forward kinematics to compute the end effector’s position. If the av-

erage position error (distance between the original position and the calculated position) is

less than 0.001 mm, we claim that the method is effective. Both methods’ iteration number

is set to 10000. The number of successful trials and the average error is showed as Table

6.1

Table 6.1: CCD and Jacobian Pseudo-inverse accuracy

Method Effective Number Average Error (mm)
CCD 9986 0.001087

Jacobian Pseudo-inverse 10000 0.000856

We can find that CCD method is not 100% effective. The CCD method may, under some

circumstances, try to put the arm into an impossible position. A simple example in the 2D

environment can explain this problem, which is also applicable in the 3D environment.

At first, given a 2-DOFs chain model where both DOFs are started with no rotation, we

33

Figure 6.1: 5 and 100 points in Baxter’s working space

Figure 6.2: CCD’s problem in practice

place the target at the position shown in Figure 6.2 (a). If it were to perform correctly, a

valid solution would be as shown in Figure 6.2 (b). However, as we described in the CCD

section, at first, joint 2 would be rotated 180◦ to the position which is shown in (c) where

link 2 is on top of link 1. Note that both, curVec and tarVec are in line with the arm. Then,

the algorithm, tries to rotate joint 1 to keep curVec and tarVec in one line. However, these

two vectors were already in one line. So, joint 1 stays in its position (rotates 0 degrees).

In sequence, joint 2 tries to rotate 180 degrees. Then, the end effector would be stacked in

the position shown in (c). The end effector is not only not at the goal position but also the

algorithm has tried to put the arm into an impossible configuration. That is the reason why

CCD has a small possibility of failing when calculating the inverse kinematics.

34

After the accuracy test, we compute the average time, which represents the computa-

tional efficiency. Because the CCD method will fail in some specific situations, we took

the average time over those trials which CCD should calculate successfully. The average

computation time is shown in Table 6.2

Table 6.2: CCD and Jacobian Pseudo-inverse time in calculating

Method Time in Calculation (s)
CCD 0.002754

Jacobian Pseudo-inverse 0.014950

We found that the time required by the Jacobian method was 5 times that of CCD’s.

In the Jacobian method, the step of solving the pseudoinverse of the jacobian matrix cost

more than 80% of the total time. So, we have to notice that applying pseudoinverse to solve

Equation 3.10 decreases efficient of the Jacobian method.

6.2 Experiments of DMP

In this section, we test the performance of the DMP algorithm. 200 frames of hand

positions were sampled from the CMU database. These 200 frames included the hand

positions of a person washing a window as shown in Figure 2.7 (a). At first, we reproduced

this trajectory with the DMP algorithm. Figure 6.3, 3 plots in every line show the original

trajectory (red line) and the reproduced trajectory (blue line) with different numbers of

kernels. The reproduced trajectory was a better fit to the original trajectory when applying

more kernels in DMP.

Figure 6.4 displays the original trajectory (red line) and the reproduced trajectory (blue

line) with 100 kernels. After reproduced by DMP, the trajectory. Glitches in the sampling

process were ignored by DMP to produce a smooth curve.

The next step was to test the performance of DMP when the goal was changed. Three

values were added to the goal in the X, Y and Z directions. The reproduced 3-dimensional

trajectory generated by DMP with 100 kernels is shown in Figure 6.5. The synthesized

35

Figure 6.3: Reproduced trajectory of 3 dimensions with DMP in 10, 30, 50 kernels

36

Figure 6.4: Reproduced trajectory of 3 dimensions and 3D plot with DMP in 100 kernels

trajectory kept attributes of the original while reaching different goal positions.

The DMP algorithm requires complex calculations, so it’s a time-consuming process.

Figure 6.6 shows the times required to calculate DMP with different numbers of kernels.

The time has some randomness. However, the trend shows a linear increase in computation

time as more kernels are used. In practice, more complex trajectories will need more ker-

nels to calculate. Maintaining a high number of kernels to match a complicated trajectory

is a very time-consuming process. That is why we introduced sparse autoencoder to build

base for trajectory.

6.3 Experiments for Dictionary Creation & Skill Transfer

In this section, we describe transfer the human motion behaviour to the Motoman robot.

At first, we need to build the data bases which describe the human behaviour trajectory.

The human behaviour database is built based on the ASF and AMC file systems which the

human motion capture information. Since we only need one arm. All joints except the

37

Figure 6.5: Reproduced trajectory of 3 dimensions and 3D plot with DMP in 100 kernels
(different goals)

Figure 6.6: Time in calculating DMP with different kernels number

38

humerus, radius, wrist and hand were set to zero in position and orientation. Initially, we

generated 5 sets of random angles as the joints’ constraints for four motion segments. Then

95 sets of angles were interpolated between these 5 sets to ensure smoothness of motion

10000 samples we so prepared to build the data base of human trajectories.

Then the robot’s behavior must be calibrated to the human motion so that their trajecto-

ries coincide. The method we used was the SICP (Scaled Iterative closest point) algorithm

[40]. We designed a group of behaviour to calculate scale, rotation matrix and translation

vector from human to Baxter. The scale is

s = 1.02

The rotation matrix is

R =


−0.9980 −0.0450 −0.0430

0.0450 0.0451 −0.9980

−0.0430 −0.9980 −0.0470


The translation matrix is

T =


7.8653

15.3739

166.4076


Then, the Motoman’s trajectory was calculated as:

PBaxter = s ·R ·Phuman +T (6.1)

After the calibration process, the set of human data with 10000 groups of random mo-

tions is used to generate 25 bases which are shown in Figure 6.7. Then DMP is applied to

these bases to reproduce the trajectories. For this experiment, a boxing motion behaviour

was selected from the GMU database. By solving the optimisation problem with cost

39

Figure 6.7: 25 bases generated by Sparse Autoencoder

function 5.4, the weighting vector w was generated. Combining w and the bases, we can

reproduce the trajectories using DMP and sparse autoencoder. A reproduced trajectory and

an original trajectory are shown in Figure 6.8.

Applying this reproduced trajectory with Equation 6.1, it can be transferred to the Mo-

toman’s workspace. The new trajectory after translation is shown in Figure 6.9 (a).

Similarly, we can construct a set of bases for the Motoman and transfer skills from

Motoman to Baxter. Parameters of SICP from Motoman to Baxter are:

s = 1.4815

R =


−0.9683 0.0159 −0.2493

0.0159 −0.9920 −0.1252

−0.2493 −0.1252 0.9603



T =


−187.8291

−387.4445

403.7670



40

Figure 6.8: The reproduced trajectory by DMP and Sparse Autoencoder and original tra-
jectory

Figure 6.9: Results of trajectory transfer

41

The trajectory of Baxter transferred from Motoman is shown in Figure 6.9 (b).

42

Chapter 7

CONCLUSIONS

In this thesis, we achieved three goals. The first one was to implement robot kinematics

both forward and inverse. In forward kinematics, the DH-parameters were applied to build

the robot model. The end effector’s coordinates could be calculated from the robot’s joint

angles. On the contrary, inverse kinematics was used to calculate every joint’s angle from

the end effector position. Both approaches were used in the work. CCD is a method based

on gradient-descent method. The Jacobian method is based on Newton-Raphson method.

In theory, CCD should be more robust than the Jacobian method, because of the instability

in calculating the Jacobian matrix inverse. However, we found that the Jacobian method

was more stable than the CCD method which was unable to reach some poses. It appears

that the pseudoinverse of the Jacobian matrix increased the stability of this method. Even

though the Jacobian matrix could be very close to the singular edge, the pseudoinverse

could be calculated correctly. On the other hand, CCD could fail in some positions, which

was a process locked in the local minimum. This problem was also the most serious prob-

lem in optimisation. To improve the performance, moving out of the local minimum would

be necessary. A simple idea is to add a small angle to the specific joint to move it out of the

bad position.

The second result, was using DMP to transfer a motion trajectory from an original goal

to an arbitrary goal while keeping the two trajectories topological similar. Moreover if the

data recorded from sensors or camera had jitter. DMP smoothed out the trajectory.

The third goal was to transfer skills from a human or a robot to arbitrary robots. First we

constructed a behaviour database from example human or robot motion and decomposed

this library to generate a behavior basis, then used DMP to generate new trajectories from

the basis set. A different robot could reproduce an equivalent trajectory through linear

43

superposition of basis functions refined by the ICP process.

We used ASF and AMC file systems to describe human skeleton structures and motion

behaviours. There was a significant difference between DH-parameters with the ASF/AMC

approach. With DH-parameters, every joint just had one DOF; however, in ASF/AMC

system, joints could have up to three DOFs. That was why we could not use DH-parameters

to build human arm’s model. But, we could use this method to construct models for robotic

arms. So, if we use the same approach to build model between human and robots. A new

area of research may be opened.

44

BIBLIOGRAPHY

[1] Asf-amc description. http://research.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/

ASF-AMC.html. [Online; accessed 13-Mar.-2017].

[2] Ros tutorial. http://wiki.ros.org/ROS/Tutorials. [Online; accessed 13-Mar.-2017].

[3] Jorge Angeles. On the numerical solution of the inverse kinematic problem. The

International Journal of Robotics Research, 4(2):21–37, 1985.

[4] JA Apkarian and HW Smith. A new approach to kinematic control of robot manipu-

lators. Journal of dynamic systems, measurement, and control, 109:97, 1987.

[5] Samuel R Buss. Introduction to inverse kinematics with jacobian transpose, pseudoin-

verse and damped least squares methods. IEEE Journal of Robotics and Automation,

17(1-19):16, 2004.

[6] John J Craig. Introduction to robotics: mechanics and control, volume 3. Pearson

Prentice Hall Upper Saddle River, 2005.

[7] J Denavit and RS Hartenberg. An iterative method for tie displacement analysis of

spatial mechanisms. 1964.

[8] Masahiro Fujita. Digital creatures for future entertainment robotics. In Robotics

and Automation, 2000. Proceedings. ICRA’00. IEEE International Conference on,

volume 1, pages 801–806. IEEE, 2000.

[9] AA Goldenberg and DL Lawrence. A generalized solution to the inverse kinemat-

ics of robotic manipulators. Journal of dynamic systems, measurement, and control,

107(1):103–106, 1985.

45

[10] Georg Graetz, Guy Michaels, et al. Robots at work: the impact on productivity and

jobs. Technical report, Centre for Economic Performance, LSE, 2015.

[11] Allen Strickland Hall, Ronald Robert Root, and E Sandgren. A dependable method for

solving matrix loop equations for the general three-dimensional mechanism. Journal

of Engineering for industry, 99(3):547–550, 1977.

[12] Richard S Hartenberg and Jacques Denavit. A kinematic notation for lower pair mech-

anisms based on matrices. Journal of applied mechanics, 77(2):215–221, 1955.

[13] Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan Schaal.

Dynamical movement primitives: learning attractor models for motor behaviors. Neu-

ral computation, 25(2):328–373, 2013.

[14] Auke Jan Ijspeert, Jun Nakanishi, and Stefan Schaal. Movement imitation with non-

linear dynamical systems in humanoid robots. In Robotics and Automation, 2002.

Proceedings. ICRA’02. IEEE International Conference on, volume 2, pages 1398–

1403. IEEE, 2002.

[15] Auke Jan Ijspeert, Jun Nakanishi, and Stefan Schaal. Learning attractor landscapes

for learning motor primitives. Advances in neural information processing systems,

pages 1547–1554, 2003.

[16] Abhijit Jana. Kinect for windows SDK programming guide. Packt Publishing Ltd,

2012.

[17] Zhangfeng Ju, Chenguang Yang, and Hongbin Ma. Kinematics modeling and experi-

mental verification of baxter robot. In Control Conference (CCC), 2014 33rd Chinese,

pages 8518–8523. IEEE, 2014.

[18] Wisama Khalil and Etienne Dombre. Modeling, identification and control of robots.

Butterworth-Heinemann, 2004.

46

[19] Petar Kormushev, Sylvain Calinon, and Darwin G Caldwell. Robot motor skill co-

ordination with em-based reinforcement learning. In Intelligent Robots and Systems

(IROS), 2010 IEEE/RSJ International Conference on, pages 3232–3237. IEEE, 2010.

[20] Mengtang Li. Skill Transfer between Industrial Robots by Learning from Demonstra-

tion. PhD thesis, Vanderbilt University, 2016.

[21] Patrick Lin, Keith Abney, and George A Bekey. Robot ethics: the ethical and social

implications of robotics. MIT press, 2011.

[22] Mark A Livingston, Jay Sebastian, Zhuming Ai, and Jonathan W Decker. Perfor-

mance measurements for the microsoft kinect skeleton. In Virtual Reality Short Pa-

pers and Posters (VRW), 2012 IEEE, pages 119–120. IEEE, 2012.

[23] Dalia Marin. Globalisation and the rise of the robots. VoxEU. org, 15, 2014.

[24] M. Müller, T. Röder, M. Clausen, B. Eberhardt, B. Krüger, and A. Weber. Documen-

tation mocap database hdm05. Technical Report CG-2007-2, Universität Bonn, June

2007.

[25] Andrew Ng. Sparse autoencoder. CS294A Lecture notes, 72(2011):1–19, 2011.

[26] Peter Pastor, Heiko Hoffmann, Tamim Asfour, and Stefan Schaal. Learning and gener-

alization of motor skills by learning from demonstration. In Robotics and Automation,

2009. ICRA’09. IEEE International Conference on, pages 763–768. IEEE, 2009.

[27] Christian Schlegel, Andreas Steck, Davide Brugali, and Alois Knoll. Design abstrac-

tion and processes in robotics: From code-driven to model-driven engineering. In In-

ternational Conference on Simulation, Modeling, and Programming for Autonomous

Robots, pages 324–335. Springer, 2010.

[28] Bruno Siciliano and Oussama Khatib. Springer handbook of robotics. Springer, 2016.

47

[29] Huan Tan and Kazuhiko Kawamura. Generation of acceptable actions using imitation

learning, intention recognition, and cognitive control. In Robot and Human Interac-

tive Communication (RO-MAN), 2015 24th IEEE International Symposium on, pages

389–393. IEEE, 2015.

[30] Deepak Tolani, Ambarish Goswami, and Norman I Badler. Real-time inverse kine-

matics techniques for anthropomorphic limbs. Graphical models, 62(5):353–388,

2000.

[31] Yusheng T Tsai and David E Orin. A strictly convergent real-time solution for inverse

kinematics of robot manipulators. Journal of Field Robotics, 4(4):477–501, 1987.

[32] Michael Tucker and N Duke Perreira. Generalized inverses for robotic manipulators.

Mechanism and machine theory, 22(6):507–514, 1987.

[33] L-CT Wang and Chih-Cheng Chen. A combined optimization method for solving

the inverse kinematics problems of mechanical manipulators. IEEE Transactions on

Robotics and Automation, 7(4):489–499, 1991.

[34] Jarrett Webb and James Ashley. Beginning Kinect Programming with the Microsoft

Kinect SDK. Apress, 2012.

[35] Wikipedia. Denavithartenberg parameters — wikipedia, the free encyclopedia, 2016.

[Online; accessed 13-March-2017].

[36] Wikipedia. Motoman — wikipedia, the free encyclopedia, 2016. [Online; accessed

14-March-2017].

[37] Wikipedia. Autoencoder — wikipedia, the free encyclopedia, 2017. [Online; accessed

14-March-2017].

[38] Wikipedia. Kinect — wikipedia, the free encyclopedia, 2017. [Online; accessed

14-March-2017].

48

[39] Wikipedia. Robot operating system — wikipedia, the free encyclopedia, 2017. [On-

line; accessed 14-March-2017].

[40] JH Zhu, NN Zheng, ZJ Yuan, SY Du, and L Ma. Robust scaling iterative closest point

algorithm with bidirectional distance measurement. Electronics letters, 46(24):1604–

1605, 2010.

[41] Hui Zou. The adaptive lasso and its oracle properties. Journal of the American

statistical association, 101(476):1418–1429, 2006.

49

