
QUANTIFYING PHENOTYPIC HETEROGENEITY IN SMALL-CELL LUNG CANCER: 

IMPLICATIONS FOR SUBTYPE CLASSIFICATION AND TREATMENT

By

Akshata Ramrao Udyavar

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Chemical and Physical Biology

May 2015

Nashville, Tennessee

Approved by:

Dr. Vito Quaranta

Dr. Pierre Massion

Dr. Alissa Weaver 

Dr. Jonathan Irish

Dr. David Cortez

Dr. Bing Zhang



Copyright © 2015 by Akshata Ramrao Udyavar

All Rights Reserved

ii



ORIGINAL PUBLICATIONS

1. Ocak S, Yamashita H, Udyavar AR, Miller AN, Gonzalez AL, Zou Y, Jiang A, Yi Y, 

Shyr Y, Estrada L, Quaranta V, Massion PP. DNA copy number aberrations in small-

cell lung cancer reveal activation of the focal adhesion pathway. Oncogene. 2010 

Dec 2; 29(48):6331-42.

2. Udyavar AR, Hoeksema MD, Clark JE, Zou Y, Tang Z, Li Z, Li M, Chen H, Statnikov 

A, Shyr Y, Liebler DC, Field J, Eisenberg R, Estrada L, Massion PP, Quaranta V. Co-

expression network analysis identifies Spleen Tyrosine Kinase (SYK) as a candidate 

oncogenic driver in a subset of small-cell lung cancer. BMC Syst Biol. 2013; 7 Suppl 

5:S1.

3. Franco OE, Tyson DR, Udyavar AR, Konvinse K, Estrada L, Hayward SW, Quaranta 

V. Cooperative interactions between heterogeneous tumor cells promotes cancer 

progression (under review). 

4. Udyavar AR, Wooten DJ, Hoeksema M, Bansal M, Califano A, Estrada L, Irish J, 

Massion PP, Quaranta V. Distinct transcriptional programs drive phenotypic 

heterogeneity in Small-Cell Lung Cancer (manuscript in preparation).

PATENTS

1. Udyavar A, Estrada L, Quaranta V, Massion PP. SYK as a target in Small-cell lung 

cancer (SCLC). U.S. Patent 61/829,789, filed May 31, 2013.

iii



To my beloved family and the most supportive husband one could ever ask for, Aniket 

Borwankar: 

Thank so much for being my pillars of support throughout this journey.

iv



ACKNOWLEDGEMENTS

There are many people who have made significant contributions to getting me 

where I am today. First and foremost, I would like to sincerely thank Dr. Vito Quaranta 

for being an amazing mentor, and so patient and kind with me. He has been an amazing 

role model and father figure to me when I joined Vanderbilt in 2008 as a research 

assistant in his lab, in only  my second year in the United States. He took a chance with 

hiring me then and in 2010, he supported my transition from a RA to a graduate student 

in his lab.   

I would like to thank Dr. Pierre Massion, who has been a wonderful PhD co-

mentor and a clinical mentor while pursuing the diploma in the Certificate Program in 

Molecular Medicine (CPMM). It is his undying passion to diagnose and treat lung 

disease and cancer patients, that has truly  made me appreciate and respect the work I 

do even more. Shadowing him in the clinic was an eye-opening experience for me and 

made me realize the gaps that exist in bench science and translational medicine. 

Working with his lab has motivated me to make my research more translationally 

relevant. Thank you for incorporating me in your lab  and making invaluable patient 

samples available to my research. 

My deepest gratitude to Dr. Lourdes Estrada who was the first person I met at 

Vanderbilt and has been an amazing role model, mentor and a friend to me. Thanks so 

much for always having your office door open for me, to listen to my problems, calming 

me down and providing solutions. I have always appreciated you being my go-to person 

and sounding board in the lab. 

v



It has been an amazing journey for me in both the Quaranta and Massion 

laboratories. The senior people in the lab  including Dr. Darren Tyson, Shawn Garbett, 

Dr. Katherine Jameson, Dr. Mohamed Hassanein, Dr. Jun Qian and Dr. Jonathan 

Lehman have always been there for advice, support and prompt help  whenever I 

needed it, be it learning a programming language or a new experimental protocol, or 

just bouncing off crazy ideas.  I have learnt so much from each and everyone of you. I 

have made some life-long friends and had fun interacting with each and everyone in 

both labs. I would especially  like to thank Megan Hoeksema, Bradford Harris, Keisha 

Hardeman and David Wooten for making significant contributions to this thesis. David 

Wooten and Dr. Leonard Harris have been awesome resources for learning concepts 

about attractor landscapes and network modeling. Jing Hao and Yong Zou have been 

great pleasures to work with and been very helpful throughout this journey. 

I have also learnt a great deal of statistics and R programming from the 

Biostaticians in the group - Dr. Ming Li, Pencheng Lu, Dr. Heidi Chen and Dr. Yu Shyr. 

Dr. Josh Fessell has been a wonderful resource of exciting ideas and help with the 

metabolism aspects of the project. I would like to thank Dr. Hal Moses and Dr. Yu Shyr 

for making time for me and being such great resources for career advice. 

I would like to also thank the awe-inspiring and talented faculty members that are 

part of my thesis committee. Dr. Bing Zhang and Dr. Alissa Weaver have been my first 

sources of inspiration to start learning bioinformatics and studying network biology in 

2010 as I watched them conceptualize the Program Project Grant (PPG) on systems 

biology of lung cancer together with our lab members. Dr. Jonathan Irish and his 

laboratory members (Deon Doxie, Nalin Leelathian, Hannah Polinsky, Kirsten Diggins, 

vi



Cara Woogsland) have just been an absolute pleasure to work with and introduced me 

to the idea of high-throughput quantitate flow cytometry. Dr. Dave Cortez has inspired 

me to think about the big picture ideas of my project and helped in bouncing off ideas. 

This work would not have come this far if it had not been for a great group of 

collaborators established during this journey. Dr. Steve Horvath at UCLA, the developer 

of co-expression network analysis package (WGCNA), has been instrumental in me 

learning R programming and application of co-expression network analysis in my thesis. 

Dr. Julien Sage (Stanford University), Dr. Kwok-Kin Wong (Dana Farber Cancer 

Institute) and Dr. Charles Rudin (MSKCC) have been impressive resources for patient 

and mouse tumor samples. I would like to thank Dr. Kimberly  Stegmaier and her lab 

members for their advice and sharing the SYK constructs and inhibitors with me. I would 

also like to thank Dr. Dana Pe’er and lab  members (Columbia University) for advice and 

help on flow cytometry  data analysis tools. I would sincerely  like to thank Dr. Mukesh 

Bansal and Dr. Andrea Califano (Columbia University) for the assistance and advice on 

using the network analysis tools developed by their lab. 

 My journey wouldn’t have been as fun-filled and exciting if it hadn’t been for my 

life outside of the lab. I have been extremely lucky to gain a family of friends during my 

time in Nashville. These folks have been the coolest friends and always been there for 

me in my happy and tough times. Finally, I would like to thank my mother Sangeeta and 

father Ramrao who have been my role models in life, and have taught me to be 

perseverant, persistent and a perfectionist. Their pain-staking efforts and undying 

support has helped me come to the United States and be where I am today. My 

brothers Amit and Ameya, brother-in-law Kedar and sisters-in-laws Usha, Akshata and 

vii



Sital, have always been there for me and encouraged me throughout my life. I would 

also like to thank my mother-in-law Sulochana and father-in-law Dilip for supporting my 

career goals throughout the past 8 years, and for being here every year to help  me in 

whatever way they could. Last but the most important, my first friend in the United 

States and soul mate, Aniket Borwankar, has been my rock ever since we got married. I 

have been very fortunate to have him around me, always giving his 100% to our 

relationship  and the well-being of our family. The sacrifices he has made in this journey 

together have been simply astounding. He has taught me the importance of 

relationships and unconditional love, and that it is OK to take breaks from work once in 

a while and enjoy the simple joys of life. I could not have done any of this without his 

presence in my life. And of course, I could not have made it through long nights of work 

or writing without the unconditional love and joyful company I received every day by my 

beloved furry babies Buddy and Casper. 

viii



TABLE OF CONTENTS

...................................................................................................ORIGINAL PUBLICATIONS.! iii

...............................................................................................................................PATENTS.! iii

.........................................................................................................................DEDICATION.! iv

.......................................................................................................ACKNOWLEDGEMENTS.! v

.................................................................................................................LIST OF FIGURES! xii

..................................................................................................................LIST OF TABLES! xvi

..................................................................................................LIST OF ABBREVIATIONS! xvii

I. .............................................................................................................INTRODUCTION! 1

.....................................................Lung cancer: An ensemble of multiple phenotypes! 1
........................................................Histology-based classification of lung cancer! 2

Genomics-based classification of lung cancer: advent of personalized medicine
.............................................................................................................................! 11

...................................................Untamed biology of Small-cell lung cancer (SCLC)! 17
.........................................Cell of origin of lung neuroendocrine tumors: PNECs! 20

....................................................................Current treatment options for SCLC ! 21
..........................................................................................Inter-tumor heterogeneity ! 26
..........................................................................................Intra-tumor heterogeneity ! 27
.........................................................................................Genetic heterogeneity ! 27

..........................Non-genetic heterogeneity : the theory of attractor landscapes! 27
.........................................Phenotypic state transitions in lung injury and cancer! 30

..........................Tools to study tumor heterogeneity : a systems-level approach! 33
.............Impact of tumor heterogeneity on therapeutic response and resistance! 35

........................................................................Summary and Dissertation Overview ! 38
II. .......................................................................................MATERIALS AND METHODS! 41

....................................................................................Microarray data normalization! 41
..................................................................................WGCNA and Network analysis! 41

.......................................................................................................Pathway analysis! 44
.......................................................................RNAseq data generation and analysis! 45

..................................................................................................Shotgun Proteomics ! 46
........................................................Transcriptional regulatory network construction! 47
.......................................................Boolean network model simulation and analysis! 49

...................................................................................Consensus clustering analysis! 50
...........................................................................................Antibodies and Reagents! 51

.................................................................................................................Cell culture! 51
...........................................................................................Xenograft mouse studies! 52

ix



.........................................................................................................Western blotting! 52
.......................................................Tissue microarray immunostaining and analysis! 53

.....................................................................................................Bright field imaging! 54
............................................................................................Cellavista viability assay ! 54

......................................................................................Oxygen consumption assay ! 55
............................................................Flow cytometry data generation and analysis! 57

......................................................Fluorescent barcoding for signaling experiments! 62
III. GENE CO-EXPRESSION NETWORK ANALYSIS IDENTIFIES SPLEEN TYROSINE 

KINASE (SYK) AS A CANDIDATE ONCOGENIC DRIVER IN A SUBSET OF SMALL-CELL 
.............................................................................................................LUNG CANCER! 67

......................................................................................................................Abstract! 67
................................................................................................................Introduction! 68

.......................................................................................................................Results! 71
......................................Identification of a SCLC-specific co-expression module! 71

Identification and validation of a SCLC-specific hub network (SSHN) of co-
...............................expressed genes across genomic and proteomic platforms.! 75

Biological insights from the SSHN: Network enrichment analysis and target 
.........................................................................................................identification! 81

.Preservation of SSHN and differential SYK/FYN expression in SCLC cell lines! 85
.........................................Inhibiting SCLC cell line viability by SYK knock-down! 89

..................................................................................................................Discussion! 93
....................................................................................................Acknowledgements! 99

IV. DISTINCT TRANSCRIPTIONAL PROGRAMS DRIVE PHENOTYPIC HETEROGENEITY 
...............................................................................IN SMALL-CELL LUNG CANCER! 100

....................................................................................................................Abstract! 100
..............................................................................................................Introduction! 101

.....................................................................................................................Results! 102
Anti-correlated gene co-expression networks suggest a heterogeneous 

...........................................................phenotypic state space in human SCLC.! 102
State-space analysis (Boolean model simulations) of transcription factor network 

.....................................dynamics predict phenotypic attractor states in SCLC.! 106
Consensus clustering analysis orthogonally/independently validates two distinct 

...................................transcriptional subtypes in SCLC cell lines and patients.! 122
...Experimental validation of heterogeneous phenotypic state space of SCLC.! 123

Multidimensional flow cytometry analysis captures the existence of 
.................................................heterogeneous phenotypic attractors in SCLC.! 133

................................................................................................................Discussion! 137
..................................................................................................Acknowledgements! 141

V. DECIPHERING ROLE OF PHENOTYPIC HETEROGENEITY IN TREATMENT 
.................................................................................................RESPONSE IN SCLC ! 142

..............................................................................................................Introduction! 142

x



.....................................................................................................................Results! 144
Differential sensitivity of phenotypic states to chemotherapy and epigenetic 

............................................................................................................modifiers! 144
Multidimensional flow cytometry data reduction algorithms validate inter- and 

.....................................................intra-tumor heterogeneity in SCLC cell lines.! 146
..Drug treatment induces transitions between stable SCLC phenotypic states.! 151

....................Epigenetic plasticity reverses state transitions upon drug removal! 165
................................................................................................................Discussion! 168

..................................................................................................Acknowledgements! 173
VI. ...........................................................CONCLUSIONS AND FUTURE DIRECTIONS ! 174

.............................................Identification of a robust network signature for SCLC ! 174
....................................................SYK as a targeted therapy for a subset of SCLC! 175

....Transcriptional regulation of a heterogeneous phenotypic state space of SCLC! 178
.............................................Proposed attractor landscape model for Lung cancer! 183

......................................Identification of drug-sensitive phenotypic attractor states! 191
.............................................Monitoring dynamics of therapeutic response ex vivo! 192

.....................................................Signaling and metabolic heterogeneity in SCLC ! 193
..................................................................................................Acknowledgements! 202

....................................................................................................................REFERENCES! 203

xi



LIST OF FIGURES

................................................Figure 1.1: Histology based classification of lung cancer.! 3

.............................................Figure 1.2: Genomics based classification of lung cancer.! 12

............................................................Figure 1.3: Histology based diagnosis of SCLC.! 18

.........................Figure 1.4: Current status of therapeutic strategies for SCLC patients.! 22

Figure 1.5: Attractor landscape view of non-genetic heterogeneity in normal tissue and 

.....................................................................................................................cancer.! 29

.............Figure 1.6: Heterogeneity of phenotypic states in normal and neoplastic lung.! 31

Figure 1.7: Impact of genetic and non-genetic heterogeneity on therapeutic resistance in 

....................................................................................................................cancer .! 36

Figure 1.8: Theoretical model depicting impact of drug treatment on attractor states in 

.....................................................................................................................cancer.! 37

.......Figure 2.1: Weighted Gene-Coexpression Network Analysis (WGCNA) overview .! 42

.........Figure 2.2: Gating scheme for viable singlet cells in flow cytometry experiments.! 59

...........................................................................Figure 2.3: SPADE method summary .! 61

..........................................Figure 2.4: Barcoding signaling experiment gating scheme.! 66

.............................Figure 3.1: Identification of SCLC-specific modules using WGCNA.! 73

Figure 3.2: Absence of modules/clusters in a control WGCNA analysis of a simulated 

.......................................................................................................random dataset.! 74

Figure 3.3: Validation of SSHN as a robust classifier for SCLC in two independent 

datasets from (A) high-throughput gene expression and (B) shotgun proteomic 

...................................................................................................................analysis.! 77

xii



Figure 3.4: SSHN as a reproducible classifier in GSE11969 and in-house Agilent 

..................................................................................................................datasets.! 79

Figure 3.5: mRNA expression of SSHN genes for the top  representative canonical 

..........................................................pathways from network enrichment analysis.! 82

..........Figure 3.6: Co-expression of 2 SSHN kinases FYN and SYK in SCLC patients.! 86

.....................Figure 3.7: Co-expression of SYK and FYN in a subset of SCLC tumors.! 87

.........................................................Figure 3.8: SSHN is preserved in SCLC cell lines.! 88

....................Figure 3.9: Effect of Syk knock-down in Syk/Fyn positive SCLC cell lines.! 90

................Figure 3.10: Fyn KD has no effect on Fyn and Syk positive SCLC cell lines.! 91

Figure 3.11: Viability assay measurements using Cellavista high-throughput imaging 

.............................................................................................................microscope.! 92

Figure 4.1: Identification of anti-correlated gene co-expression networks that delineate a 

..............................................................phenotypic state space in human SCLC.! 104

Figure 4.2: Differentiation pathway differences between the Blue and Turquoise 

..............................modules given by comparative pathway enrichment analysis.! 107

Figure 4.3: Pathway expression of the Blue and Turquoise modules given by 

...........................................................comparative pathway enrichment analysis.! 109

Figure 4.4: Blue and Turquoise module network topology given by WGCNA...............! 111

Figure 4.5: Identification of transcription factors that regulate SCLC  phenotypic states.

...............................................................................................................................! 115

.................Figure 4.6: Boolean network model of SCLC-specific transcription factors.! 118

Figure 4.7:  Establishment of dynamic transcription factor network attractor states 

...........................................corresponding to distinct SCLC differentiation states.! 119

xiii



Figure 4.8: Validation of the SCLC  phenotypic states in cell lines using independent 

..............................................................................................consensus analysis.! 124

Figure 4.9: Patient dataset verification of SCLC phenotypic states using unsupervised 

..............................................................................consensus clustering analysis.! 126

Figure 4.10:  Experimental validation of TF network states in human SCLC. ..............! 128

Figure 4.11:  Phenotypic characterization of distinct attractor states in human SCLC  cell 

lines and patients...................................................................................................! 131

Figure 4.12:  Multidimensional single-cell level analysis of attractor state space in SCLC 

...........................................................................................cell lines and patients.! 135

Figure 5.1. Differential sensitivity  of neuroendocrine and mesenchymal cell lines to 

...............................................................chemotherapy - cisplatin and etoposide.! 145

...........Figure 5.2. Response of NE and ML cell lines to epigenetic modifying agents.! 147

Figure 5.3. Establishment of a 2D view of phenotypic attractor states in SCLC  using flow 

......................................................................................................cytometry data.! 148

Figure 5.4. SPADE analysis of NE and ML subpopulations based on co-expression of 

...........................................................................................................NE markers.! 152

Figure 5.5. SPADE analysis of NE and ML subpopulations based on co-expression of 

...........................................................................................................ML markers.! 154

.....................Figure 5.6. Independent validation of k-means clusters on SPADE tree.! 156

...............Figure 5.7. Density distribution of NE and ML cell lines on the SPADE tree.! 158

.................Figure 5.8. Basal and drug-induced cell death analysis in SCLC cell lines.! 161

..........Figure 5.9. 2D view of phenotypic plasticity upon treatment in SCLC cell lines.! 163

xiv



Figure 5.10. SPADE analysis based assessment of phenotypic state transitions upon 

.........................................................................drug treatment in SCLC cell lines.! 166

Figure 5.11 : SPADE analysis of long-term drug treatment and rebound in NE and ML 

................................................................................................................cell lines.! 169

..............Figure 6.1. Variability of BRCA1 expression in SCLC patients and cell lines.! 176

............Figure 6.2. SYK expression and activation status in mouse models of SCLC.! 179

Figure 6.3. A heterogeneous phenotypic state space for SCLC defined as two stable 

.............................attractors - neuroendocrine (NE) and mesenchymal-like (ML).! 180

..........................Figure 6.4. Attractor landscape model for lung cancer heterogeneity.! 184

Figure 6.5. Preliminary analysis of NE and ML phenotypic state markers on NSCLC and 

....................................................................................................normal cell lines.! 186

Figure 6.6. Anti-correlated pattern of expression of ASCL1 and NOTCH1 in NE and ML 

........................................................................................transcriptional subtypes.! 190

Figure 6.7. Pathway enrichment analysis of Blue and Turquoise modules with focus on 

.............................................................................................metabolism in SCLC.! 194

...................................Figure 6.8: Metabolic variability in NE and ML SCLC cell lines.! 197

Figure 6.9 : Global changes in signaling response dynamics to various mitogenic stimuli 

..............................................................................in NE and ML SCLC cell lines.! 200

xv



LIST OF TABLES

.................................................Table 1.1: Histology-based classification of lung cancer.! 4

..Table 1.2: Histology-based classification of neuroendocrine tumors of the lung (NET).! 7

Table 2.1: Surface marker panel for quantifying phenotypic heterogeneity in SCLC cell 

............................................................................................lines and PDX models.! 58

......................Table 2.2: Signaling stimuli conditions and fluorescent barcoding panel.! 64

......................Table 2.3: Signaling antibody marker panels for barcoding experiments.! 65

..................................................................................Table 3.1: Kinase hubs of SSHN..! 84

xvi



LIST OF ABBREVIATIONS

AC ! !  Atypical carcinoids
ADC ! ! Adenocarcinoma
ADS ! ! Adenosquamous
ALK ! ! Anaplastic lymphoma receptor tyrosine kinase
ASCL1! Achaete-scute complex homolog 1
AT2! Alveolar type II epithelial cell
BAC ! ! Bronchioalveolar carcinoma
BASCs! Bronchioalveolar stem cells
BC ! ! Basaloid carcinoma
BCR! ! B-cell antigen receptor
BRAF  ! v-raf murine sarcoma viral oncogene homolog B
CA ! ! Carcinoids
CCCP!! Carbonyl cyanide m-chlorophenylhydrazone
CCLE!! Cancer cell line encyclopedia
CCND1! Cyclin D1
CD! ! Cluster of differentiation
CDF! ! Cumulative distribution function
CGA! Chromogranin A
CGRP! Calcitonin Gene-related peptides
CI! ! Confidence interval
CT! ! Computed tomography
CTCs! ! Circulating tumor cells
CYB5A! Cytochrome B5
DDC ! Dopa decarboxylase
DDR2!! Discoidin domain receptor tyrosine kinase 2
DIPNECH! Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia
DPI! ! Data processing inequality
EGFR ! Epidermal growth factor receptor
EML4!! Echinoderm microtubule associated protein like 4

xvii



EMT! ! Epithelial-to-mesenchymal transition
ERBB2 !  v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2
ES! Embryonic stem
ES! Extensive stage
FDR! ! False discovery rate
FFPE! ! Formalin-fixed paraffin embedded
FGFR1! Fibroblast growth factor receptor 1
FPKM!! Fragments per kilobase of exon per million
GEMM! Genetically engineered mouse models
GO! ! Gene Ontology
GRP! ! Gastrin releasing peptide
GS! ! Gene significance
GSEA!! Gene-set enrichment analysis
HDAC!! Histone deacetylase
H&E! ! Hematoxylin-eosin
HGNT!! High-grade neuroendocrine tumors
ITAM ! ! immunoreceptor tyrosine based activation motif
IVL! ! Involvulin
KEAP1  ! kelch-like ECH-associated protein 1
KEGG!! Kyoto Encyclopedia of Genes and Genomes
kME! ! Intramodular connectivity
KRAS !! Kirsten rat sarcoma viral oncogene homolog
KRT14! Cytokeratin 14
KRT7! ! Keratin 7
LC ! ! Large-Cell Carcinoma
LCNEC ! Large-Cell Neuroendocrine Carcinoma
LGALS7! Galectin-7
LS ! Limited stage
MEs! ! Module eigengenes
MET! ! Mesenchymal-to-epithelial transition
c-MET ! Hepatocyte Growth Factor Receptor, MET photo-oncogene

xviii



ML! ! Mesenchymal-like
MRI! ! Magnetic resonance imaging
MYCL! v-myc avian myelocytomatosis viral oncogene lung carcinoma derived 

homolog
NCAM1! Neural cell adhesion molecule 1, also known as CD56
NE! ! Neuroendocrine
NEBs! ! Neuroepithelial bodies
NET! ! Neuroendocrine tumors
NF1  !  ! neurofibromin 1
NSCLC ! Non-small-cell lung cancer
NSE/ENO2! Neuron-specific enolase
PTEN!! Phosphatase and tensin homolog
PDX! ! Patient derived xenograft
PET! ! Positive emission tomography
PI3K! ! Phosphatidylinositol 3-kinase
PIK3CA ! Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha
PNECs! Pulmonary neuroendocrine cells
RET  ! ! Ret proto-oncogene
ROS1  ! c-ros oncogene 1 , receptor tyrosine kinase
RTK ! ! Receptor tyrosine kinase
SCC/SQ ! Squamous cell carcinoma
SCLC !! Small-cell lung cancer
SFTPB ! Surfactant protein B
SFTPC ! Surfactant protein C
SFTPD! Surfactant protein D
SHH! Sonic hedgehog
SOX2!! SRY (sex determining region Y)-box 2
SRS ! ! Somatostatin receptor scintigraphy
SSHN!! SCLC specific hub network
STK11  ! Serine threonine kinase 11
SYK! ! Spleen tyrosine kinase

xix



TC ! ! Typical carcinoids
TMAs! ! Tissue microarrays
TNM ! ! Tumor-Node-Metastasis
TT! ! Targeted therapies
TTF-1!! Thyroid transcription factor 1
VPA! ! Valproic acid
WGCNA ! Weighted gene co-expression network analysis
WHO! ! World Health Organization

xx



CHAPTER I

INTRODUCTION

Lung cancer: An ensemble of multiple phenotypes

Lung cancer is the second most common cancer type (14% of all cancers), and 

is the leading cause of cancer-related deaths (26-29%) in both men and women each 

year across the United States (Siegel et al., 2012). Cigarette smoking remains the 

leading risk factor for this disease, in addition to asbestos exposure. Lung cancer is 

diagnosed usually  via physical examination, a chest X-ray or computed tomography 

(CT) scan. The Tumor-Node-Metastasis (TNM) staging is used for lung cancer 

prognosis, where higher stage presents worse prognosis. Early  diagnosis is key in lung 

cancer as early  stage (IA) patient survival rates are close to 70% (Wardwell et al., 2005; 

Hassanein et al., 2012). Recent lung cancer screening trials suggest that early 

diagnosis of high-risk patients result in a significant decrease in mortality rates 

(Humphrey et al., 2013). Once a lung nodule is detected, a tissue biopsy is used for 

pathology-based assessment of the cancer type and stage. Although 96% of the 

diagnosed lung nodules are generally  benign, additional noninvasive methods such as 

diagnostic and prognostic biomarkers in high-risk individuals are warranted for detection 

of malignant lung tumors (Hassanein et al., 2012; Massion et al., 2014). 
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Histology-based classification of lung cancer

Based on histology, lung cancer is broadly  classified as non-small-cell lung 

cancer (NSCLC), small-cell lung cancer (SCLC) or Carcinoids (CA). NSCLC  have worse 

survival rates than carcinoids but better than neuroendocrine tumors (NET) (Figure 

1.1B, details in next section).

Non-small cell lung cancer (NSCLC)
NSCLC, 80-85% of all lung cancers, is further classified as Adenocarcinoma 

(ADC), Squamous Cell Carcinoma (SCC/SQ) and Large-Cell carcinoma (LC) (including 

Large-Cell Neuroendocrine Carcinoma LCNEC) (Figure 1.1A).  5-year survival rate of 

NSCLC is less than 15%, primarily  attributed to late diagnosis in advanced stages 

(Clinical Lung Cancer Genome Project (CLCGP)Network Genomic Medicine NGM, 

2013).  Surgical resection via lobectomy and adjuvant platinum-based chemotherapy is 

the standard of care in early-stage (stages I-II) NSCLC patients. Advanced stage 

NSCLC (III-IV) get treated with combination of chemotherapy and radiation 

(Zarogoulidis et al., 2013).

ADC, the most common lung cancer (40%), present as peripherally  located 

lesions with ductal/glandular morphology and prominent nucleoli (Figure 1.1C). It is 

strongly associated with smoking, although a significant number of non-smokers also 

develop ADC. These tumors show strong expression of thyroid transcription factor 1 

(TTF-1), surfactant proteins, napsin A and keratin 7 (KRT7) (Table 1.1). 
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Figure 1.1: Histology based classification of lung cancer. 
(A) Prevalence of the different subtypes of lung cancer (percentages obtained from cancer.gov). 

(B) 5-year survival statistics of lung cancer subtypes (Clinical Lung Cancer Genome Project 

(CLCGP)Network Genomic Medicine NGM, 2013). 

(C) Hematoxylin-eosin (H&E) sections of various lung cancer subtypes. Top  panel shows non-

neuroendocrine and bottom panel comprises of neuroendocrine lung tumors.
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Table 1.1: Histology-based classification of lung cancer. 
Markers used for identification of various histological subtypes of lung cancer (Popper et al., 2011).
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ADC is a highly heterogenous disease, simply  by histology  itself, ranging from well 

differentiated, non-invasive, non-mucinous bronchioalveolar carcinoma (BAC) with 

lepidic pattern and ~93% 5-year survival, to poorly differentiated micropapillary and 

mucinous ADC with poor 5-year survival (38-39%)  (Brambilla et al., 2001; Chen et al., 

2014, Russell et al., 2011). 

SCC, the second most common lung cancer (25%), is more strongly associated 

with smoking than ADC. These tumors exhibit a squamous differentiation pattern (‘flat 

scale-like’) with keratinization, express cytokeratin 5 and 6, p63 and SOX2 and are 

TTF-1 negative (Figure 1.1C, Table 1.1). SCC  are subclassified as (1) basaloid (BC), (2) 

papillary, (3) clear cell and (4) small-cell variants (Perez-Moreno et al., 2012; Chen et 

al., 2014). 

LC, 10% of all lung cancers, are composed of large-cells and diagnosed as 

having low expression of ADC, SCC or SCLC markers (Figure 1.1C, Table 1.1). It is very 

difficult to diagnose LC as there are no specific biomarkers for this disease. 

Futhermore,ADC/SCC protein biomarkers (Table 1.1) tend to reassign LC  (~60%) into 

ADC or SCC  subtypes. Also, depending on the number of sections investigated, higher 

is the probability of ADC/SCC differentiation patterns (Barbareschi et al., 2011; Popper, 

2011).

Adenosquamous (ADS) tumors, a rare lung cancer (0.4-4%), are a mixture of 

ADC and SCC in a minimum of 10% of the tumor field, classified as a separate entity by 

2004 World Health Organization (WHO) criteria. These tumors express both above 

mentioned ADC and SCC markers (Table 1.1). Stage I disease has worse survival than 

either ADC and SCC (Filosso et al., 2011).  
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Due to high level of variability  in marker expression and histological features, 

there is a dire need for better ways to  classify lung cancer subtypes.

Neuroendocrine tumors (NET)
Neuroendocrine tumors (NET) are a distinct histological subgroup of lung cancer 

comprising of low-grade typical carcinoids (TC), intermediate-grade atypical carcinoids 

(AC), high-grade NET - large-cell neuroendocrine cancer (LCNEC), and small-cell lung 

cancer (SCLC) (Figure 1.1C). These comprise of 2%, 0.2%, 3% and 15-20% of all lung 

cancers respectively  (Table 1.2). These tumors present with common features such as 

(1) neuroendocrine morphology  defined by organoid nesting, palisades, rosettes, or a 

trabecular pattern of cellular organization, (2) faint cytoplasm and nucleoli, ‘salt-and-

pepper’ pattern of chromatin, and (3) expression of neuropeptides and neuronal 

markers such as chromogranin A, synaptophysin, neuron-specific enolase (NSE/ENO2), 

gastrin releasing peptide (GRP) and NCAM1/CD56 (Gustafsson et al., 2008; Rekhtman 

et al., 2010; Travis et al., 2010). Most NET also express TTF-1, an ADC-specific marker 

(Sturm et al., 2002) (Table 1.1). In general, ADC and SCC are considered non-

neuroendocrine tumors due to the lack of expression of neuroendocrine markers. 

95-100% of SCLC and LCNEC patients have a smoking history, while 50% carcinoid 

patients are smokers. Stage I-II TC  and AC  have a 5-year survival of 75-98% and 

75-100% respectively, while early stage SCLC and LCNEC still have a poor prognosis 

(Table 1.2) (Asamura et al.,2006).
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Table 1.2: Histology-based classification of neuroendocrine tumors of the lung (NET). 

7

Features Typical carcinoid 

TC

Atypical carcinoid 

AC

Large-cell neuroendocrine 

carcinoma 

LCNEC 

Small-cell lung cancer 

SCLC

Incidence *

5-year survival rate**,#

Percent smokers #

Average age at 

diagnosis #

Mitosis**

Proliferation rate**

Necrosis ++ ,**

Tumor grade ++ 

Morphology ++ 

Lymph node 

metastasis #

Distant metastasis#

3p locus alterations ++ 

p53 alteration++ 

Telomerase activity ++ 

Symptoms ++ ,**

Paraneoplastic 

syndrome ++ ,**

2% 0.2% 3% 15-20%

92-100% 61-88% 15-57% 5%

33% 64% 98% 97%

40-50 50-60 68 50-70

<2 mitosis per 2 

mm2

2-10 mitosis per 2 

mm2

≥ 11 mitosis 

(High rate of mitosis)

60-80 mitosis

(High rate of mitosis)

≤ 5% 5-20% 50-100% 80-100%

No necrosis Punctate necrosis High levels of necrosis High levels of necrosis

Low Intermediate High High

Well differentiated Well differentiated Poorly differentiated Poorly differentiated

4-14% 35-64% 40% 90%

1.5% 

Liver, bone

10% 65% 60-70%

< 25% > 50% > 50% > 75%

4% 29% 80% 75%

< 10% - ~ 90% ~ 90%

Shortness of 

breath, 

hemoptysis,  

cough, pneumonia

Shortness of breath, 

hemoptysis,  cough, 

pneumonia

Chest pain, Shortness of 

breath, hemoptysis,  cough, 

pneumonia, weight loss

Fatigue, cough, pain, 

Shortness of breath, 

hemoptysis, weight loss

Cushing’s 

syndrome; 

Carcinoid 

syndrome

Cushing’s 

syndrome; Carcinoid 

syndrome

- Cushing’s syndrome; 

autoimmune 

encephalomyelitis 



+ - Carcinoid morphology : 
    Neuroendocrine morphology :
* - from (Rekhtman et al., 2010)
** - from (Travis et al., 2010)
++  - from (Gustafsson et al., 2008)
# - from (Swarts et al., 2012)

Table 1.2: Histology-based classification of neuroendocrine tumors of the lung (NET). 
Table and facts adapted from  (Gustafsson et al., 2008; Travis et al., 2010; Rekhtman et al., 2010; Swarts 
et al., 2012)
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Pulmonary neuroendocrine cells (PNECs), distributed as single cells throughout 

the lung or form clusters (termed neuroepithelial bodies, NEBs), are postulated to be the 

putative cell of origin of NET. Several conditions such as fibrosis, interstitial lung 

disease, and obliterative broncheolitis, induce hyper-proliferation of these PNECs 

leading to a condition termed Diffuse idiopathic pulmonary neuroendocrine cell 

hyperplasia (DIPNECH), a rare precancerous state. These generate lesions < 5mm in 

size are referred to as ‘carcinoid tumorlets’. Carcinoids are typical stage I tumors, well 

differentiated with a low mitotic index and lesion size >5mm, exhibiting benign behavior 

and have the best survival amongst all lung cancers (Figure 1.1B, Table 1.2). TC  and 

AC differ in presence of necrosis, mitotic index and tumor metastasis, whereby TC, 

being a localized mass, are mostly treated via surgical resection (lobectomy) (Table 

1.2). Being resistant to chemotherapy and radiation, AC with lymph node metastasis are 

difficult to treat and primarily managed with surgery. Unfortunately, no treatment  

regimen other than surgery exists for these patients (Gustafsson et al., 2008; Travis et 

al., 2010; Rekhtman et al., 2010; Gallego et al., 2012).

SCLC and large-cell neuroendocrine carcinoma (LCNEC), a variant of LC, are 

considered less differentiated, high-grade neuroendocrine tumors of the lung (HGNT) 

due to their aggressive nature and have the worst prognosis among all lung cancers 

(Figure 1.1B and C, Table 1.2) (Gustafsson et al., 2008). These tumors present with 

high mitotic index and loss of p53 and Rb, major nodal and distant metastatic spread, 

substantial necrosis. Unlike carcinoids, surgical approaches are not an option for 

patients with these these tumors. LCNEC exhibits a similar neuroendocrine phenotype 

as SCLC, but can be distinguished by its NSCLC features such as visible nucleoli, 
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larger size and cytoplasm, and clumpy chromatin (Rekhtman et al., 2010). High-grade 

NET are treated with chemotherapy and thoracic radiation (in early stage disease), 

although treatment regimens for LCNEC are not well studied (Travis et al., 2010). SCLC 

patients present with brain metastasis, hence prophylactic cranial irradiation is 

recommended for delaying recurrence (Rekhtman et al., 2010).

Once a pulmonary nodule is identified, computed tomography (CT) of the chest 

are useful to diagnose NET. Analog-based imaging such as somatostatin receptor 

scintigraphy (SRS) and 68Ga-DOTA-TOC positive emission tomography (PET) are 

useful to distinguish NET from other lung cancers since majority of NET express 

somatostatin receptors. For high-grade NETs, bone and brain magnetic resonance 

imaging (MRI) are performed for detection of distant metastasis (Gustafsson et al., 

2008). 

Based on histology of fine-needle biopsies or surgical resections, it is difficult to 

distinguish SCLC from carcinoids, and SCLC from LCNEC, especially  due to crush 

artifact of SCLC and difficulty in assessment of mitotic index/necrosis in small sections 

of the tumor. Furthermore, 10-20% NSCLC tumors also exhibit expression of 

neuroendocrine markers, which complicates the distinction of NET from NSCLC 

(Gustafsson et al., 2008; Travis et al., 2010). The presented evidence further highlights 

the need for continuing efforts towards identification of specific biomarkers and 

signatures to guide disease classification and management. 
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Genomics-based classification of lung cancer: advent of personalized medicine

For most of the lung cancer patients, both NSCLC and SCLC, the standard of 

care is either surgery  for early-stage disease and chemotherapy coupled with thoracic 

radiation in late-stage disease. The response rates for chemotherapy (cisplatin-

etoposide) in NSCLC patients are less than 30% leading to a median 5-year survival of 

less than 10% (Demedts et al., 2009).

The concept of ‘oncogene addiction’ was coined a decade ago by Bernard 

Weinstein (Weinstein, 2002), where tumor maintenance is dependent on the mutated or 

overexpressed form of the oncogene such that targeted inhibition of this ‘addiction’ 

resulted in diminished proliferation and tumor growth. Several examples of oncogene 

addiction were reported in genetically  engineered mouse models of leukemia, 

lymphoma, and melanoma (Felsher et al., 1999; Tran et al., 2008; Chin et al., 1999). 

This led to a sudden increase in studies in lung cancer for the identification of targetable 

oncogenes.

With the advent of novel genetic screening strategies including mutation screens, 

exome and RNA sequencing, significant strides have been made in genomics-based 

classification of lung cancer. Global and subtype-specific alterations can be found in 

patients (Figure 1.2A), validating the observed histological differential characteristics 

(Figure 1.1C).  All lung cancers carried chromosomal gains in 5p, and p53 was the most 

commonly mutated gene (53%) (Clinical Lung Cancer Genome Project 

(CLCGP)Network Genomic Medicine NGM, 2013). 
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Figure 1.2: Genomics based classification of lung cancer. 
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Figure 1.2: Genomics based classification of lung cancer. 
(A) Frequency of chromosomal amplifications (red), losses (blue) and mutations (black) in tumor 

suppressors and addicting oncogenes in histological subsets of lung cancer (Clinical Lung Cancer 

Genome Project (CLCGP)Network Genomic Medicine NGM, 2013). Significantly altered targetable 

pathways  in lung (B) ADC (Network, 2014), (C) SCC  (Hammerman et al., 2012) and (D) SCLC (Peifer et 

al., 2012).
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! On the other hand, specific alterations in kinases such as EGFR, KRAS, ERBB2, 

ALK, STK11 were observed only in ADC, but not in other lung cancers (Figure 1.2A) 

(Clinical Lung Cancer Genome Project (CLCGP)Network Genomic Medicine NGM, 

2013). Interestingly, ADC patients exhibited non-overlapping alterations (activating 

mutations, amplifications) in KRAS (32.2 %), EGFR (11.3%), BRAF (7%), ROS1/ALK/

RET (4-5%), c-MET (2.2%), RIT1 (2.2%) and ERBB2 (0.9%) (Figure 1.2B, left panel). 

Newly discovered alterations included ERBB2 and loss-of-function mutations in KEAP1 

and NF1 in previously oncogene-negative patients. Together with exome sequencing 

and reverse-phase protein array (RPPA), 76%, 25%, 63%, 64%, 22% and 49% 

exhibited RTK/RAS/RAF, PI3K-mTOR, p53, cell cycle regulation, oxidative stress, and 

chromatin-RNA splicing factors pathway alterations respectively  have been discovered 

(Figure 1.2B, right panel) (Network, 2014). 

Although majority of late stage ADC are still treated with chemotherapy as 

standard-of-care, patients with EGFR and EML4-ALK fusions have been successfully 

treated with EGFR (gefitinib, erlotinib)(Pao et al., 2004) and EML4-ALK (crizotinib) 

(Gaughan and Costa, 2011; Pao et al., 2010) specific inhibitors as first-line treatment, 

resulting in significant improvements in survival. However, currently, 24.4% of ADC still 

lack a targetable oncogenic driver (Network, 2014); KRAS subset still remains non-

targetable (Riely et al., 2009), and most other newly discovered mutations such as 

BRAF, ERBB2, and ROS1/RET fusions, are still in the experimental stage (Chen et al., 

2014; Pao et al., 2010). Furthermore, the response to targeted therapies is short-lived 

and several resistance mechanisms to EGFR TKI (Chong and Jänne, 2013; Engelman 
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et al., 2007; Guix et al., 2008) and EML-ALK TKI (Lovly and Pao, 2012) have been 

discovered. 

SCC has lacked any targetable oncogenic drivers, until recently  when specific 

alterations have been discovered including (1) amplifications in several chromosomal 

regions including SOX2, MYCL1, EGFR, FGFR1 and CCND1, (2) mutations in NFE2L2, 

DDR2 and FGFR3, and (3) deletions in PTEN, FOXP1, and NF1 (Clinical Lung Cancer 

Genome Project (CLCGP)Network Genomic Medicine NGM, 2013) (Figure 1.2A). 

Others have also reported 3q amplification in SCC, which contains SOX2, a lineage-

specific oncogene for SCC, P63, a well-accepted marker for SCC (Table 1.1), and 

PIK3CA, a key component of the PI3kinase pathway  (Bass et al., 2009; Yamamoto et 

al., 2008). Serine-threonine kinase STK11/LKB1 inactivation has also been found in 

19% of SCC  patients, and when combined with PTEN deletion gives rise to murine SCC 

lung tumors (Ji et al., 2007; Xu et al., 2014). In addition, oxidative stress response 

(34%), squamous differentiation (44%) and PI3K-AKT (47%, regulated by LKB1, PTEN) 

pathways were altered in a significant subset of SCC  patients, suggesting the potential 

importance of targeting these pathways (Figure 1.2C)(Hammerman et al., 2012). 

However, these findings have not yet translated into clinical trials catered to SCC 

patients. FGFR1 inhibitors (PD173074) have proven to be efficacious in NSCLC cell 

lines with FGFR1 amplifications (Weiss et al., 2010).  TKIs developed for ADC have 

been futile in this disease since it lacks ADC-specific alterations (Figure 1.2A). Mutation 

rate in SCC is much higher than that of ADC (Scagliotti et al., 2013). EGFR mutations 

distinct from those of ADC  are seen in SCC  patients, that are potentially targetable 

(Hammerman et al., 2012). 
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SCLC lacks all of these above ADC- and SCC-specific alterations but harbors 

specific deletions of p53, FHIT and Rb1 (Figure 1.2A). Oncogenes such as MYCL1, 

MYCN, Cyclin E1 (CCNE1) and FGFR1 can also be amplified. Separately, Peifer et.al 

described 100% of SCLC patients exhibited mutation and loss of both tumor 

suppressors p53 and Rb, underscoring the relevance of genetically engineered mouse 

models (GEMM) of SCLC with Cre-mediated knockout of these 2 tumor suppressors 

that also exhibit amplifications in MYCL1 and MYCN (Park et al., 2011a; Peifer et al., 

2012; Sutherland et al., 2011). In addition, loss-of-function mutations in PTEN, 

CREBBP/EP300, MLL, FHIT EPHA7 and SLIT2 have been identified (Figure 1.2D) 

(Peifer et al., 2012).  Interestingly, p53-Rb-PTEN Cre-knockout GEMM suggests PTEN 

loss to be a late event in tumor evolution, thereby promoting progression (McFadden et 

al., 2014). Twenty-six percent (26%) of SCLC  patients display SOX2 amplification 

(Rudin et al., 2012). 

In terms of targetable RTK altered pathways, FGFR1 amplification was the only 

significantly altered receptor tyrosine kinase (RTK) in ~6% SCLC patients (Peifer et al., 

2012; Schultheis et al., 2013). Unfortunately, the majority of SCLC patients remain 

unsuitable for currently available targeted therapies due to lack of single targetable 

oncogenic drivers. 

LCNEC shares several genomic features with SCLC such as mutations in p53, 

Rb1 and EP300, including the worst survival amongst all lung cancers (Clinical Lung 

Cancer Genome Project (CLCGP)Network Genomic Medicine NGM, 2013). 

Interestingly, carcinoids carried no significant oncogenic alterations, while LC shared 

common alterations with both NSCLC (ADC, SCC) and SCLC, exhibiting high level of 
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diversity (Figure 1.2A) (Clinical Lung Cancer Genome Project (CLCGP)Network 

Genomic Medicine NGM, 2013).

In summary, lung cancer subtypes (especially well-differentiated early stage 

tumors) can be distinguished via histology, biomarkers via immunohistochemistry and 

genetic alterations. Some tumor types have significantly benefited from targeted 

therapies. However, most lung tumors present as late-stage, invasive and poorly 

differentiated disease, and mixed phenotypes (SCLC-NSCLC or ADC-SCC) are difficult 

to distinguish from one another. Thus, better biomarkers and targeted therapies are 

urgently needed in effective personalized medicine in lung cancer.

Untamed biology of Small-cell lung cancer (SCLC)

SCLC comprise  15-20% of all lung cancers and its is found almost exclusively in 

heavy smokers. Patients with SCLC face an unfortunate prognosis of less that 5% 5-

year survival rate (Figure 1.1B, Table 1.1). SCLC  is classified by histology from NSCLC 

by its small nuclei, crush artifact and palisade-fusiform cellular patterns, and 

neuroendocrine marker expression (Figure 1.3). It is staged as limited stage (LS) and 

extensive stage (ES) disease. LS-SCLC (Stage I-III of TNM, 30% of SCLC) is confined 

to one-side of the lung (i.e. hemithorax), lacks malignant pleural effusion and can be 

covered in one radiation therapy port. ES-SCLC (Stage IV  of TNM, 70% of SCLC) does 

not satisfy  these specifications and exhibits highly metastatic behavior (Rosti et al., 

2006). 

Prior to 1999 World Health Organization (WHO) guidelines, SCLC was classified 

as pure, mixed (with LC or LCNEC) and combined (with ADC or SCC). Currently, it is 
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Figure 1.3: Histology based diagnosis of SCLC. 
Modified from (Nicholson et al., 2002). 
(A) Pure SCLC - patterns observed in tumor sections. 
(B) Combined SCLC - SCLC mixed with NSCLC phenotypes.
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classified as either pure SCLC  and combined SCLC containing atleast 10% NSCLC 

cells that includes LC, ADC and SCC (Figure 1.3) (Hirsch et al., 1988; Nicholson et al., 

2002). Other than histopathology, to date no genetic biomarkers specific to SCLC or 

molecular subtypes have been identified in SCLC as it is the case for NSCLC (Figure 

1.2B). In addition, other than tumor stage, no other histopathological features are 

predictive of prognosis. Since most SCLC are usually  diagnosed based on a small 

biopsy or fine-needle biopsy, it may be difficult to accurately  quantify amount and extent 

of mitosis and necrosis, the key  features that distinguish between the various NETs. 

Furthermore, due to the mixed histologies of SCLC, one of the major issues in the clinic 

today is distinction of SCLC from both NSCLC and low-grade NET (Travis, 2012). 

Gene-expression profiling based approaches have led to successful subtype 

predictions in leukemia (Yeoh et al., 2002), breast (Lehmann et al., 2011; Sørlie et al., 

2001), prostate (Lapointe et al., 2004) and colorectal (Sadanandam et al., 2013) 

cancers that have given rise to subtype-specific therapeutic strategies. These 

unsupervised analyses have been also recently applied to identify molecular subtypes 

in NSCLC such as ADC  and SCC that match the mutational subtypes (Hammerman et 

al., 2012; Network, 2014; Wilkerson et al., 2010; 2012). Gene expression profiling 

studies for SCLC, based on differential expression, have yielded highly independent 

signatures with minimal overlap of 5-10 genes. Hence, no reproducible signature exists 

for SCLC in the clinic.
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Cell of origin of lung neuroendocrine tumors: PNECs

! Neuroendocrine tumors of the lung are thought to arise from pulmonary 

neuroendocrine cells (PNECs) that are sparsely  distributed throughout the lung and also 

form small clusters termed neuroepithelial bodies (NEBs). PNECs (and NEBs) are 

specialized epithelial cells that are part of the parasympathetic nervous system, which 

sense oxygen via NADPH oxidase (NOX) receptors, secrete neuropeptides, namely, 

bombesin, serotonin (5-hydroxytryptophan, 5-HT), Calcitonin Gene-related peptides 

(CGRP), Dopa decarboxylase (DDC), and express neuronal markers such as 

Chromogranin A (CGA), Neuron specific enolase (NSE/ENO2), Neural cell adhesion 

molecule (NCAM1/CD56). These neuropeptides are secreted in response to hypoxia or 

oxidative stress, and act in an autocrine and paracrine fashion to regulate breathing 

reflexes (Buttigieg et al., 2012; Gustafsson et al., 2008). 

Two hallmark tumor suppressors p53 and Rb1 are mutated and lost in 75-90% 

and close to 100% SCLC patients respectively. Other genetic alterations that have been 

described in several reports are amplifications in the Myc family  of oncogenes (c-Myc, 

N-Myc, L-Myc) and loss of PTEN (Byers and Rudin, 2014; Peifer et al., 2012; Rudin et 

al., 2012). Mouse models designed by Cre-mediated knockout of p53 and Rb, generate 

tumors (in about 273 days) that resemble SCLC in terms of histology, neuroendocrine 

marker expression, L-Myc and N-MYC amplification and propensity for liver metastasis 

(Sutherland et al., 2011). In addition, p53/Rb/p130 and p53/Rb/PTEN triple knockout 

mouse models have yielded SCLC  tumors that have reduced latency (McFadden et al., 

2014; Park et al., 2011a).
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Current treatment options for SCLC

Standard of care treatment
Effective translational discoveries in SCLC  have been slow and disappointing 

partly explained by: (1) our lack of understanding of early events due to unavailability of 

early-stage disease tissue; (2) drug toxicity-related issues; (3) paucity of tissue for 

genomic studies since these patients are diagnosed by fine-needle biopsies and rarely 

surgically resected; and (4) no re-biopsy protocols in place for insight into the rapid 

recurrence developed with standard-of-care treatment. Chemotherapy remains the 

standard of care for most, if not all, SCLC patients. 

Strikingly, median survival of untreated disease is 11-14 weeks (LS-SCLC) and 

5-7 weeks (ES-SCLC) respectively  (WM et al., 2006). Standard of care first-line 

treatment for LS-SCLC consists of combination chemotherapy (cisplatin-etoposide) and 

thoracic/cranial irradiation for prevention of local and distant metastases, while ES-

SCLC are treated with combination chemotherapy alone due to widespread systemic 

disease. Despite initial overall response rates are >80% in LS-SCLC and >60% in ES-

SCLC, the median survival of these patients is 14-20 and 8-13 months respectively 

(Figure 1.4A) (Demedts et al., 2009; Rosti et al., 2006). 

The initial response rates are dampened by early recurrence and widespread 

metastasis leading to an overall survival rate of 5-10% and 2-5% in LS-SCLC and ES-

SCLC, respectively (Rosti et al., 2006). Second-line treatment with temozolomide (TMZ) 

has recently shown 38% complete/partial responses in SCLC patients with brain 

metastatic lesions (Pietanza et al., 2012). 

21



Figure 1.4: Current status of therapeutic strategies for SCLC patients. 
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Figure 1.4: Current status of therapeutic strategies for SCLC patients. 
(A) Response rates and median survival of SCLC patients to standard of care combination chemotherapy 

(cisplatin-etoposide) (Demedts et al., 2009). 

(B) Overview of signaling pathway alterations studied in SCLC. Overexpressed targets (including 

receptors) and tumor suppressors (loss in SCLC) are indicated in red and grey respectively. Amplified/

mutated targets are indicated by the blue star. Targeted therapies failed in clinical trials are shown in 

yellow, while new therapies entering clinical trials are indicated in green. Promising targets in Phase II 

trials are indicated in turquoise (Byers et al., 2012; Jahchan et al., 2013; Ocak et al., 2010; Sato et al., 

2013; Sos et al., 2012; Zhang and He, 2013).
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Targeted therapies in SCLC : failures and hope for the future
Several attempts have been made to target cell signaling and angiogenesis 

pathways in SCLC, but these have failed in clinical trials as summarized in Figure 1.4B. 

Inhibitors of invasion/metastasis and angiogenesis (MMPs, VEGFR) therapeutics have 

failed in SCLC due to high toxic profiles and no added survival advantage. However, 

Bevacuzimab, an anti-VEGF antibody, shows some promise in phase II clinical trials. 

Despite overexpression of c-Kit in  in 28-73% SCLC, clinical trials conducted to date 

with Imatinib, a c-Kit/BCR-Abl/PDGFR inhibitor, have not shown  therapeutic benefits. 

EGFR mutations, found in NSCLC, are not found in SCLC. Dasatinib, a Src-family 

kinase inhibitor and mTOR inhibitors have also failed to show any improvements in 

survival. Gastrin-releasing peptide (GRP), a neuropeptide and its receptor GRPR are 

overexpressed in a large percentage SCLC. However, targeting GRP via 2A11 only 

showed response in 1 out of 13 patients (Hann and Rudin, 2007; Hohla and Schally, 

2010; Zhang and He, 2013). 

Being associated with heavy  smoking, SCLC has an extremely high mutation 

rate and genomic instability. Thus alterations are found in many passenger oncogenes, 

but very few are targetable driver oncogenes. Thus far, FGFR1 amplifications have 

been found in 6% SCLC, and some FGFR1-amplified SCLC  cell lines are responsive to 

FGFR1-targeted inhibition (Figure 1.4B). Amplification of MYC-family transcription 

factors, seen in 20% SCLC patients, sensitizes SCLC cell lines to Aurora kinase 

inhibitors (Sos et al., 2012). 8% and 16.8% of SCLC cell lines and patients, respectively, 

show mutations in PIK3CA, which predicts response to PIK3CA inhibitor PF-4989216, 

and induces apoptosis in vitro and in vivo (Walls et al., 2014). 
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c-MET is expressed in a subset of SCLC  cell lines triggering ongoing clinical 

trails with its inhibitors  (Hann and Rudin, 2007; Wang et al., 2011b; Zhang and He, 

2013). Proteomic profiling using reverse-phase protein arrays (RPPA) demonstrated 

that DNA-damage response, LKB1-AMPK, and cell-cycle pathways are elevated in 

SCLC identifying novel therapeutic targets such as PARP1, Chk1 and EZH2 (Figure 

1.4B) (Byers et al., 2012). SCLC  cell lines expressing PARP1 and low PI3K pathway 

activity  were shown sensitive to drug/siRNA-mediated inhibition in vitro and in vivo 

(Cardnell et al., 2013). EZH2 also seems to be promising target in SCLC (Byers et al., 

2012; Hubaux et al., 2013). Drug repositioning approaches using SCLC gene 

expression data have led to identification of pathway-based class of drugs such as 

tricyclic antidepressants (imipramine) that were validated in cell line and patient-derived 

xenografts (PDX) models (Figure 1.4B)(Jahchan et al., 2013).

‘Transcriptional addiction’ targeting is slowly  entering SCLC  field with the 

discovery of Sonic hedgehog (Shh), a developmental pathway important in lung 

development and injury response (Velcheti and Govindan, 2007). Shh was found to be 

constitutively  active in SCLC tumor initiation and pathway inhibition prevented tumor 

initiation and delayed resistance to cisplatin-etoposide (Park et al., 2011b). ASCL1, a 

lineage survival TF important for PNEC development and differentiation, was found to 

be overexpressed in ~72% of SCLC, 13-85% in other NET and a subset of NSCLC with 

neuroendocrine features (NSCLC-NE, 10%) (Jiang et al., 2003). ASCL1 was co-

expressed with stem-cell markers CD133 and ALDH1A1 in subpopulations in SCLC 

PDX, and its knockdown in SCLC cell lines inhibited colony formation in soft agar (Jiang 

et al., 2009). Also, inhibition of BCL2, a downstream target of ASCL1, was effective in 
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NSCLC cell lines with NET features (Augustyn et al., 2014). SOX2 amplification was 

identified in a subset of SCLC  patients (27%) that might be potentially sensitive to SOX2 

inhibition (Rudin et al., 2012).  Recently, CDK7 inhibitor THZ1, identified through a drug 

screen in mSCLC cell lines, suppressed growth of SCLC cell lines in vitro and in vivo, 

via downregulation of key neuroendocrine transcription factors like SOX2, SOX4, 

INSM1, NeuroD1 and ASCL1 (Christensen et al., 2014). 

These findings highlight the role of transcriptional networks in SCLC, and 

suggest that the TF itself or inhibition of druggable targets downstream of the TF could 

offer viable options for treatment of SCLC. 

 Inter-tumor heterogeneity

Inter-tumor heterogeneity is defined by patient-to-patient variability driven by 

different intrinsic factors such as genetic and racial predispositions, sex and extrinsic 

factors like environment and exposure to carcinogens (asbestos, radiation, UV, 

smoking). This type of heterogeneity is typically  described as genetic alteration- or gene 

expression-based classification as observed in breast cancer (Her2, luminal ER/PR+, 

triple negative/basal-like), leukemia and NSCLC  (Burrell et al., 2013; Network, 2014; 

Sørlie et al., 2001; Yeoh et al., 2002). These subtypes are the basis to identify  subsets 

of patients that would be more likely to respond to a particular targeted therapy (Pao et 

al., 2010), an approach that has made significant impact on patient outcomes. Genetic 

heterogeneity  is only recently coming into light with SCLC, as subsets of patients with 

distinct genomic alterations (FGFR1, MYC, PTEN, SOX2) are being identified (Pietanza 

and Ladanyi, 2012).
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Intra-tumor heterogeneity

Intra-tumor heterogeneity can arise from both genetic and non-genetic 

mechanisms that ultimately constitute the cellular makeup or “phenotype”, a.k.a the 

hallmarks of cancer (Almendro et al., 2013). 

Genetic heterogeneity 

Genetic variability arises from high genomic instability  in cancer leading to clonal 

diversity explained by a “linear evolution” where genetic events occur in a single 

dominant clone, or “branched evolution” where several clones arise and survive 

simultaneously (Swanton, 2012). Clonal evolution is spatially (due to differences in 

angiogenesis, hypoxia, microenvironment in primary and metastatic niches) and 

temporally regulated, evident by multiple sampling of the tumor at various locations 

within the primary and metastatic sites (Almendro et al., 2013; Marusyk et al., 2012), 

recently described in NSCLC patients (de Bruin et al., 2014; Zhang et al., 2014b) and in 

mouse models of SCLC (McFadden et al., 2014). Even in the same location, 

neighboring cells exhibit genetic alterations of distinct receptors (EGFR, PDGFRa) in 

glioma (Szerlip et al., 2012). 

Non-genetic heterogeneity : the theory of attractor landscapes

Non-genetic heterogeneity can arise from dynamics in the gene regulatory  

networks (GRN) even within genetically  similar cancer cells. Genetically distinct cell 

types such as KRas mutant or EGFR mutant generate the same ADC  phenotype, 
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suggesting that they might posses the same underlying GRN. A GRN enforces (or at 

least can enforce) the existence of multiple distinct states which are stable over time. In 

dynamical systems theoretical framework, these states can be thought of as existing at 

the bottom of some "basin", such that all cells within the basin have a natural tendency 

to fall toward the bottom, stable state. This stable GRN state is referred to as an 

‘attractor’ a.k.a phenotype of a cell that is at the bottom of the basin, which is heritable 

over multiple cell generations/divisions (Figure 1.5A).  For a 2-node  (A and B genes) 

GRN, 4 possible network states can be achieved, the 2 stable attractors can be found 

where A>>B or B<<A (Figure 1.5A). Thus, for an n-node GRN, there are 2^n possible 

states. However, in many cases, most of these states will be transient - only visited as 

the system moves toward a small subset of states which are stable. In the specific 

example shown in Figure 1.5A, which has 2 nodes, and therefore 2^n = 2^2 = 4 

possible states,  only 2 of which are stable.

Non-genetic heterogeneity can be deterministic or stochastic depending on the 

‘noise’ in the system. In normal cells which are genetically  identical and the 

microenvironment is relatively homogeneous, the gene regulatory networks (GRN) 

driving a certain phenotype are stable due to low ‘noise’ (Figure 1.5B). In cancer, ‘noise’ 

is driven by  genetic clonal variation and disorganized microenvironmental conditions 

(hypoxia, aberrant angiogenesis, stroma and tumor-infiltrating immune cells), which 

promotes a noisy GRN leading to a more plastic phenotype where state transitions are 

more easily achieved (Figure 1.5B)(Marusyk et al., 2012). 
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Figure 1.5: Attractor landscape view of non-genetic heterogeneity in normal tissue and cancer.
2-node gene regulatory network giving rise to stable attractor states 1 and 2. Modified from (Brock et al., 

2009; Huang, 2009).

Noise in GRN and state transitions in normal and tumor. From (Marusyk et al., 2012).
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! Normal development of the human body starts from 1 single cell (1 attractor 

state) and differentiates into several distinct cell types over time simply by fluctuations in 

the network without acquisition of any mutations, and may involve chromatin-mediated 

(epigenetic) genome-level transitions. This phenomena of normal cellular differentiation 

is explained by Waddington’s epigenetic landscape as a hierarchical process where an 

embryonic stem (ES) cell rolls down a mountain full of valleys signifying different 

degrees of differentiated cell phenotypes (Brock et al., 2009). However, these stable 

differentiated states, which are endpoints in this hierarchical process, a.k.a basins (e.g. 

fibroblasts) can be kicked out of their stable state or ‘basin’ into a dedifferentiated 

induced pluripotent stem cell-like state (iPS) (Wernig et al., 2007) or transdifferentiated 

state (e.g. neurons) (Chanda et al., 2014) by manipulation of the GRN via expression 

(or ‘activation’) of a cocktail of transcription factors, underlining the plasticity of these 

states given a strong push. These changes in stable phenotypes such as 

dedifferentiation or transdifferentiation are referred to as state transitions in an attractor 

landscape. 

Phenotypic state transitions in lung injury and cancer 

Normal lung is extremely heterogenous with several distinct differentiated cell 

types which upon injury can enter cell cycle and be reprogrammed (Kotton and 

Morrisey, 2014) (Figure 1.6A). Upon lung injury, normal PNECs, cell of origin of murine 

SCLC, can transdifferentiate and repopulate the other cell types such as Clara and 

ciliated epithelia (Figure 1.6A).  Interestingly PNEC hyperplasia is also induced during 

lung development and via smoking (Lommel, 2001; Song et al., 2012). Similarly, 
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Figure 1.6: Heterogeneity of phenotypic states in normal and neoplastic lung. 
(A) Normal lung consists of various cell types in different regions of the lung. Types of lung cancer are 

indicated along with the associated genetic murine models. Phenotypic state transitions 

(transdifferentiation) in normal lung or during lung injury are indicated by the red arrows. Modified from 

(Chen et al., 2014) and (Kotton and Morrisey, 2014). (B) shows distinct tumor histologies arising from 

pairing various combinations of KRas mutation, and loss of LKB1, p53 and PTEN. Each genetic lesion 

generated distinct types of NSCLC tumors. Adapted from (Xu et al., 2014). (C) shows percentage of mice 

that developed different types of tumors, specifically NE tumors resembling SCLC by Cre-mediated 

knockout of p53 and Rb  in different cell types. CGRP, SPC and CC10 promoters target PNECs, AT2 and 

Clara cells respectively. Adapted from (Sutherland et al., 2011).
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mature, functional alveolar type 2 (AT2) cells (cell of origin of lung ADC), in the lung 

maintain a ‘bifunctional stem-cell’ state (both differentiated and regenerative function) 

whereby they transdifferentiate into alveolar type 1 (AT1) over time, especially after AT1 

injury  (Desai et al., 2014) (Figure 1.6A). In addition, p63+KRT5+ basal cells can 

differentiate into ciliated, AT1 and AT2 cells upon injury (Kotton and Morrisey, 2014; 

Rock et al., 2011). Similar pathways and mechanisms participate during lung injury and 

potentially in cancer development (Chen et al., 2014), which might explain the 

heterogeneous phenotypic states. 

! Oncogenic KRasG12D induction combined with targeted deletion of either LKB1 

(mutated in SCC  patients), PTEN or TGFBR2 specifically in basal cells generated 

tumors exhibiting both SCC and ADC tumors, while LKB1-PTEN combined knockout 

yielded SCC  (Figure 1.6B) (Chen et al., 2014; Malkoski et al., 2013; Xu et al., 2014). In 

addition, a unique subpopulation of stem-like alveolar epithelial cells (similar to AT2), 

upon KRasG12D induction, could generate ADC, SCC or sarcomatoid carcinoma, 

depending on the cross-talk between SOX2 and TGFbeta pathway components 

(Ischenko et al., 2014). Also, SOX2, a lineage-specific oncogene for SCC, 

overexpression in ADC  cell lines promotes squamous-like differentiation including 

expression of SCC-specific markers such as P63 and KRT6 (Bass et al., 2009). Cre-

mediated knockout of p53 and Rb in Clara cells (CC10-Cre), AT2 cells (SPC-Cre) and 

PNEC (CGRP-Cre), each yielded NET tumors resembling SCLC  with ~20% , 50% and 

90% incidence rate. This strongly  suggests that each cell type is capable of producing 

SCLC, although PNECs were the most efficient (Figure 1.6C) (Sutherland et al., 2011). 

Interestingly, SCLC mouse models generated by Cre-mediated knockout of p53 and Rb 
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in PNECs, exhibit phenotypic heterogeneity  where each mSCLC tumor contains 

neuroendocrine (NE) and non-NE states, which co-operatively, not singly, promote liver 

metastasis. Mutant KRas induction converts NE to non-NE differentiated states (Calbo 

et al., 2011). However, KRas mutation is very rare in human SCLC, so if these non-NE 

cells are in fact ADC or a novel state in human SCLC remains to be seen. Combined 

SCLC with NSCLC (30% of SCLC tumors) and NSCLC with NE features (10% of 

NSCLC), are seen commonly in the clinic (Nicholson et al., 2002; Travis, 2010), 

indicating that the above described phenomena might be taking place in human tumors 

leading to increased intra-tumor heterogeneity.

This phenotypic heterogeneity and plasticity  is evident in other cancers as well. 

In breast cancer, luminal, basal and stem-like states (sorted via flow cytometry based on 

surface markers EpCAM, CD24 and CD44) can stochastically transition between states 

to re-equilibrate to the original heterogeneous population over time (Gupta et al., 2011). 

Glioblastoma cells can be reprogrammed into cancer stem cell-like phenotype can be 

achieved via induction of a set of 4 TFs (Suvà et al., 2014). 

Tools to study tumor heterogeneity : a systems-level approach 

The extent of intra-tumor/phenotypic heterogeneity is typically measured by 

genetic alterations, gene expression, surface markers, proliferation, signaling and 

transcription factors.  Gene expression, RNAseq whole genome/exome sequencing and 

proteomics have been used to delineate inter-tumor heterogeneity and identify 

classifications in various cancers including lung cancer. With evolving technologies, 

there is an increasing need for data analysis pipelines to decipher relationships between 
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gene expression and genetic alterations. Consensus clustering and unsupervised co-

expression network based methods are a few examples (Horváth et al., 2006; Shi et al., 

2010; Wilkerson et al., 2010; Zhang et al., 2014a; Zhu et al., 2013). A network-based 

understanding of the impact of genetic alterations on gene-regulatory  networks will 

further our understanding for identifying network-level targets (Creixell et al., 2012). One 

such example is sensitization of triple-negative breast cancer cell lines to DNA 

damaging agents by dynamic inhibition of the EGFR network (Lee et al., 2012). 

Only  recently, techniques such as RNA-seq are now being applied at a single-cell 

level to study intra-tumor heterogeneity in normal differentiation hierarchies (Desai et 

al., 2014; Treutlein et al., 2014) and cancer evolution (Patel et al., 2014). Quantitative 

imaging of genomic aberrations using immunoFISH coupled with surface markers have 

been used to elucidate genomic and phenotypic diversity in breast cancer patients at a 

single-cell level (Almendro et al., 2014b). High-throughput fluorescent flow cytometry, 

and more recently mass-cytometry/CyTOF have been applied for extensive phenotypic 

characterization and study of signaling network-level differences in cancer 

subpopulations to identify  novel therapeutic strategies (Bodenmiller et al., 2012; Irish et 

al., 2010). Imaging-based techniques also help study drug sensitivities in distinct 

subpopulations. 

These above methods provide a snapshot of the tumor heterogeneity at a given 

point in time. As we now know that tumor evolution and drug response is a highly 

dynamic process, quantitative techniques are warranted to follow the tumor cells over 

time and study time-dependent drug responses. Time-lapse quantitative imaging 

techniques such as live-cell reporters of signaling, transcription factor activity and cell 
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cycle, and analysis tools are currently  being developed (Albeck et al., 2013; Loo et al., 

2007; Miwa et al., 2014; Singh et al., 2010; Spencer et al., 2009; Tyson et al., 2012).

 

Impact of tumor heterogeneity on therapeutic response and resistance

Treatment decisions are generally  based on the initial histology- and genetics-

based assessment of a small biopsy, which might overlook some of the spatially 

separated genetic and non-genetic alterations at the primary and metastatic sites. Drug 

treatment significantly influences intra-tumor heterogeneity by shifting the balance 

between sensitive and resistant genetic clones (Figure 1.7A). Recurrent tumors exhibit 

some similar but also distinct genetic alterations (Johnson et al., 2014). EGFR T790M 

mutant or c-MET amplified clones are present in the initial tumor at low levels, which 

expand and lead to acquired resistance to EGFR TKIs (Bean et al., 2007; Engelman et 

al., 2007; Inukai et al., 2006).

Non-genetic mechanisms can also modify drug response dynamics to generate  

drug resistant and phenotypically  distinct subpopulation, i.e. an alternate attractor state 

(Figure 1.7A and 1.8). The goal of treatment regimens should be to identify  drug-

sensitive attractor states which would induce growth-arrest and/or apoptosis, and use 

drugs to ‘push’ cells towards these alternative states (Huang, 2013) (Figure 1.8). 

EGFR-TKI drug response and resistance could be dynamically altered in a 

reversible manner by  modifying chromatin states (HDAC inhibitors) or via IGF-1R 

inhibition (Sharma et al., 2010). One patient with surgically resected ADC recurred with 

SCLC and Rb mutation suggesting transdifferentiation of ADC promoted by Rb loss 

(Peifer et al., 2012). In addition, 14% of NSCLC patients acquired EGFR TKI resistance 
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Figure 1.7: Impact of genetic and non-genetic heterogeneity on therapeutic resistance in cancer .
From (Brock et al., 2009).

36



Figure 1.8: Theoretical model depicting impact of drug treatment on attractor states in cancer.
From (Huang, 2013).
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by switching to SCLC phenotype while maintaining the TKI-sensitizing EGFR mutation 

(Sequist et al., 2011). Epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-

epithelial transition (MET) are other examples of non-genetic heterogeneity that regulate 

invasion/metastasis and drug resistance, mediated by network-level changes in gene 

expression (Polyak and Weinberg, 2009; Tam and Weinberg, 2013). A drug-resistant 

mesenchymal phenotype was discovered in both ADC and SCC exhibiting phenotypic 

plasticity (Basu et al., 2010; Byers et al., 2013). Subtype-specific state-transitions were 

also induced chemotherapy treated breast cancer patients (Almendro et al., 2014a).

Summary and Dissertation Overview

NSCLC is a heterogeneous disease by histology and molecular features. 

Genomics-based studies has yielded a new level of classification of NSCLC with the 

identification of several overexpressed or mutated addicting oncogenes that can be 

successfully  targeted in “molecular subtyped” NSCLC patients. On the other hand, 

SCLC suffers from several pitfalls in diagnosis and treatment with the mixed histologies 

with NSCLC and low-grade NET. There is no reproducible signature for SCLC diagnosis 

in the clinic. With increasing availability of high throughput cancer genomic datasets, 

several key issues are progressively becoming evident: 1) differential gene expression 

analysis yields a list of genes pertinent to a phenotype or outcome, however, the 

function of these genes is difficult to interpret since many might not be functionally 

related; 2) the gene expression signatures based on differential expression analysis, as 

a whole, are difficult to reproduce across datasets; 3) the number of potential 
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therapeutic targets (ranked according to differential expression scores) is ever growing, 

making target prioritization challenging due to the lack of functional insight. 

Moreover, SCLC is still considered a monolithic disease with respect to its 

phenotype and treatment, where every patient is treated with a one-size-fits-all 

combination chemotherapy regimen. These patients die within a year after treatment 

due to widespread fatal metastasis. A better understanding of SCLC biology is needed 

on a global scale to better treat and manage this disease. Unlike NSCLC, single RTK 

targeted therapies (TT) haven’t been clinically successful in SCLC patients, and it 

doesn’t seem to be not driven by genetically altered oncogenic drivers, except for a 

couple such as FGFR1, MYC, which are currently being tested in clinical trials.

There is also a lack of understanding of global network-level changes that lead to 

rapid recurrence and disease progression with chemotherapy in SCLC. Also, one gene 

target approach might not be sufficient to attain sustained outcomes to a single RTK TT 

and resistance is inevitable as seen in NSCLC. It is important to realize that cellular 

signaling occurs in the form of networks, not a single gene or pathway. GRN involving 

transcription factors and their dynamics, regulate non-genetic heterogeneity. Thus, 

multiple genetic and non-genetic mechanisms allow cancer cells to evade treatment 

such as mutations in parallel signaling pathways, branched evolution and non-genetic 

phenotypic state transitions. Hence, combination therapies that study the response 

dynamics of cancer cells need to be the future of cancer treatment. A similar integrative 

systems biology approach is warranted in the study of SCLC etiology  and discovery of 

novel targeted therapeutics.
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I hypothesize that network-level changes in gene and protein expression might 

be playing a role in SCLC biology, which need to be studied in more detail. The primary 

goal of my thesis is to obtain a global understanding of SCLC biology  using quantitative 

systems-biology approaches in order to identify and prioritize deregulated hubs in SCLC 

network that can serve as biomarkers and potentially novel therapeutic targets. Within 

this goal, I propose to identify network-based signatures for SCLC that would potentially 

delineate heterogeneity in SCLC using a combination of high-throughput genomic and 

proteomic datasets and identify  potential subsets that would be sensitive to novel 

network-level targeted inhibition. Furthermore, I aim to understand the dynamics of the 

gene regulatory networks that drive SCLC biology in the context of stable attractor 

states using a experimental-bioinformatic-computational modeling framework. The 

ultimate goal is to understand the role of transcriptional networks in regulating SCLC 

phenotype, and use network-based biomarkers for quantitative monitoring of treatment 

response and resistance.
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CHAPTER II

MATERIALS AND METHODS

Microarray data normalization

! Public datasets on the Affymetrix platform GSE6044 (Rohrbeck et al., 2008), 

GSE4824 (Lockwood et al., 2008) were downloaded from GEO (Barrett et al., 2010) as 

CEL files. Cancer cell line encylopoedia (CCLE) dataset (Barretina et al., 2013) was 

downloaded from Broad Institute (http://www.broadinstitute.org/software/cprg/?q=node/

11). Data were normalized and median centered using quantile RMA normalization 

using Affy Bioconductor package (Gautier et al., 2004) in R (Team, 2012). Agilent 

datasets, GSE11969 (Takeuchi et al., 2006) and our own Agilent dataset, were Lowess-

normalized and median centered using GeneSpring (Chu et al., 2001). Probe-level data 

for all the datasets was converted to gene-level data by probe merging using the 

collapseRows function (Miller et al., 2011). Probes with no known gene symbols were 

removed from further analyses to reduce the dimensionality of the dataset. 

WGCNA and Network analysis

! The co-expression network analysis was performed in R using the WGCNA 

package as previously described and summarized in Figure 2.1 (Horváth et al., 2006; 

Winden et al., 2009). Briefly, all genes in the training dataset (GSE6044) or the Cancer 

cell line encyclopedia dataset (CCLE) were used to build an unsupervised co-

expression based similarity matrix via Pearson’s correlation coefficient. 
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Figure 2.1: Weighted Gene-Coexpression Network Analysis (WGCNA) overview. 
Adapted from (Langfelder and Horvath, 2008).
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The similarity matrix was converted to a weighted adjacency matrix by raising it to a 

power β (β  = 6) to amplify  the strong connections and penalize the weaker connections 

(Langfelder and Horvath, 2008). Modules were generated using unsupervised average-

linked hierarchical clustering with a cut-off of 0.9. This cut-off was chosen to minimize a 

large number of modules with very few genes, that is, less than 20 modules containing 

at least 100 genes. Each module is a hierarchical gene network. 

Gene significance (GS): defined as GSi = |cor(xi, T)|, indicates correlation of a xi node 

expression profile  to a phenotypic trait T, a binary trait variable across m samples 

(Langfelder and Horvath, 2008). In this case, phenotypic trait is lung tissue type - ADC, 

SCC, SCLC, and NL. Network hubs are defined as highly connected genes within a 

network, having high intramodular connectivity. 

Intramodular connectivity is a measure of module eigengene-based connectivity  (kME) 

(or module membership), defined as Kcor,i(q) = cor(xi, E(q)), where E(q) is the module 

eigengene or 1st principal component of module q . Module hubs that have high GS are 

hubs that are significantly correlated to a phenotypic trait (Langfelder and Horvath, 

2008), in our case, SCLC phenotype. 

! To filter hubs significantly correlated to SCLC phenotype and identify a SCLC 

specific hub network (SSHN), we used high values of GS, kME and differential 

expression (SCLC  vs normal lung NL). To classify SCLC from other lung cancer types, 

unsupervised clustering of the SSHN genes was performed by bootstrapping analysis 

using pvclust package (Suzuki and Shimodaira, 2006). Bootstrapping analysis provides 

confidence values for the stability of each cluster derived by hierarchical clustering, via 
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resampling of the data. Heatmaps were generated using the gplots package (Ben 

Bolker et al., 2012). 

! For classification performance estimation, we used nested repeated 5-fold cross-

validation procedure (Statnikov et al., 2005). The inner loop  of cross-validation was 

used to determine the best parameters of the classifier (i.e., values of parameters 

yielding the best classification performance for the validation dataset). The outer loop  of 

cross-validation was used for estimating the classification performance of the model that 

was built using the previously found best parameters by testing with an independent set 

of samples. To account for variance in performance estimation, we repeated this entire 

process (nested 5-fold cross-validation) for 10 different splits of the data into 5 cross-

validation testing sets and averaged the results. Linear support vector machine is used 

as the classifier in our analysis, and the error penalty parameter was selected based on 

the nested cross-validation procedure.

!

Pathway analysis

! Functional enrichment analysis of the SCLC hub  network (SSHN) was performed 

using Webgestalt (Zhang et al., 2005) in Chapter III. This tool statistically compares the 

enrichment of SSHN genes with pathways contained in various databases such as 

Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG). Functional 

category enrichment in Webgestalt was tested by the hypergeometric test and multiple 

comparison corrections were made using Benjamini & Hochberg method (Benjamini 

and Y, 1995; Zhang et al., 2005).
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! Comparative Pathway enrichment analysis of the Blue and Turquoise modules 

was performed using BINGO and Enrichment map  (Merico et al., 2010) and network 

visualization was conducted using Cytoscape (www.cytoscape.org) (Chapter IV). To 

summarize the expression data at the pathway level, we first transformed the data using 

a Z-score by subtracting the mean and dividing by the standard deviation of each gene 

across all samples. Next, in each sample we took the average expression of all genes 

that are simultaneously represented in a given pathway and a module (blue or 

turquoise) as the represented score for that module pathway combination.

RNAseq data generation and analysis

! Tissue samples (20 samples: 10 with SCLC, 5 with SCC, and 5 normal bronchial 

brushings) were collected from the Vanderbilt University  Medical Center and the 

University  of Liverpool Hospital. Research protocols were approved by both institutions’ 

Institutional Review Board.   Total RNA was extracted from fresh frozen tumors and 

bronchial brushings by the RNeasy  Kit (Qiagen, CA USA) according to the 

manufacturer's protocol.   Whole transcriptome analysis (RNA-seq) was carried out by 

next-generation sequencing using Illumina platform in the lab  of Vanderbilt Genome 

Sciences Resource.  Next-generation sequencing methodology has been applied to 

sequence RNA from 20 tissue samples. Due to staged sequencing of samples, two 

technologies have been utilized: Illumina GAIIX and Illumina Hi-Seq. Sequencing runs 

from Illumina GAIIX (for 11 samples) were produced with 43bp reads and data was 

preprocessed using CASAVA 1.7 software. Sequencing runs from Illumina Hi-Seq (for 9 

samples) were produced with 51bp  reads and data was preprocessed with CASAVA 1.8 
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software. To make data from two platforms comparable, we have trimmed the last 8bp 

on each Illumina Hi-Seq read. Using 20 FASTQ data files (after Illumina Pass Filtering) 

with 43bp  reads, we performed alignment using TopHat (v1.4.1), Bowtie (v0.12.7.0), and 

Samtools (v0.1.18) software. We experimented with two alignment approaches: with 

two seeds of 21bp  and with one seed of 25bp. Since both alignment approaches led to 

very  similar results (in terms of number and percentage of pass filter aligned reads and 

gene correlations with phenotypes in Fragments Per Kilobase of transcript per Million 

(FPKM) mapped reads data), we decided to use alignment with one seed of 25bp. 

Given aligned data, we computed gene expression FPKM (fragments per kilobase of 

exon per million fragments mapped) values using Cufflinks (v1.3.0) software and 

performed additional upper quintile normalization of Cufflinks. Using the resulting 

normalized gene expression dataset, we have assessed whether 287 SSHN genes are 

associated with SCLC  vs. normal OR SCLC  vs. SCC brushings by  a two-sample t-test 

at 5% alpha level adjusted for multiple comparisons using the method (Byers et al., 

2012). 

Shotgun Proteomics

! Shotgun proteomic analysis was performed from archival formalin fixed paraffin 

embedded tissues for pools of 5 ADC, 5 SCC, 5 SCLC as well as 5 non-cancerous 

alveolar lung and 5 bronchial epithelium tissue using our previously  published methods 

(Sprung et al., 2009). Briefly, following deparaffinization with Sub-X, rehydration with 

ethanol-water, and protein solubilization in ammonium bicarbonate and trifluoroethanol, 

proteins were reduced, alkylated and digested overnight with trypsin.  Tryptic peptides 

46



were separated by isoelectric focusing using ZOOM IPGRunner IEF strips (Invitrogen) 

with an immobilized pH gradient of 3.5-4.7 (Slebos et al., 2008).  LC-MS/MS analyses 

were performed on an LTQ-XL mass spectrometer (Thermo Fisher Scientific, San Jose, 

CA) equipped with an Eksigent nanoLC  1D plus pump  and Eksigent autosampler 

(Dublin, CA) as described previously (Sprung et al., 2009). MS/MS spectra were 

processed for protein identifications using a data analysis pipeline described previously 

(Ma et al., 2009; Tabb et al., 2007; 2011).  False positive peptide-spectrum matches 

were estimated by reversed database search (Peifer et al., 2012) and held at 5%.  

Further filtering to require at least one identified spectrum per sample across all 

analyses maintained a protein false discovery rate (FDR) (Benjamini and Y, 1995) below 

5%. To compare protein expression differences between different histology groups (for 

example, SCLC  vs. Normal), we applied our quasi-likelihood model and analysis 

software QuasiTel to analyze spectral count data (Li et al., 2010). The quasi-likelihood 

model, with no restriction on the distribution assumptions, is appropriate for modeling 

count data with overdispersion and/or underdispersion issue that is frequently observed 

in spectral count data.  Multiple comparison adjusted p  values (quasi-FDR) were 

calculated by  incorporating the FDR method described previously (Benjamini and Y, 

1995).

Transcriptional regulatory network construction 

! ARACNe is an information theoretic algorithm for the inference of gene 

regulatory networks using a large compendium of gene expression profiles. It identifies 

statistically significant gene-gene co-regulation by mutual information and then it 
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eliminates any indirect regulation where two genes are co-regulated through one or 

more intermediate genes using a well-established data transmission theory called data 

processing inequality  (DPI) (Margolin et al., 2006). To generate a SCLC-specific 

transcriptional network, we used gene expression profiles from 53 SCLC cell lines from 

the CCLE resulting in 27224 interactions among 8706 nodes comprising TFs and non-

TF genes. This SCLC-specific network was generated with the bootstrap  version of 

ARACNe (1) algorithm, which helps reduce false negative connections in the network 

using the following parameters: pvalue = 10-7, dpi = 0 and 100 bootstraps. To evaluate if 

genes in Blue and Turquoise module are enriched for targets of any specific TF, we 

checked for independent overlap between TF targets from the ARACNe inferred SCLC 

gene regulatory network and the 1179 and 3471 genes in Blue and Turquoise module, 

respectively, using Fisher’s Exact Test (FET) (Carro et al., 2010). We selected all TFs to 

be candidate master regulators if the FET p-value was ≤ 0.05, leaving 96 and 207 TFs 

for Blue and Turquoise module, respectively. Of these, 23 TFs were common to both 

modules (Figure 3.5). 

! Furthermore, we independently  validated the ARACNe predicted regulatory TFs 

with CHIP-Seq and TF-target binding site prediction databases such as CHEA 

(Lachmann et al., 2010), ENCODE (Landt et al., 2012), TRANSFAC (Matys et al., 

2003), JASPAR (Mathelier et al., 2014) using the EnrichR tool (http://

amp.pharm.mssm.edu/Enrichr/) and literature databases such as Pubmed (http://

www.ncbi.nlm.nih.gov/pubmed/) and Glad4U (http://bioinfo.vanderbilt.edu/glad4u/). With 

these filtration steps, we identified a list of 76 likely TF regulators of NE and/or ML 

differentiation. Finally, to identify TFs which play an active role in maintaining the 
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phenotypic differences between the SCLC cell lines, we considered only 

heterogeneously expressed TFs (median absolute deviation above the 50th percentile) 

yielding a final list of 38 TFs that we used to build a boolean network model for SCLC. 

We then extracted interactions between these TFs from manual curation of literature, 

ChIP-X databases (ChEA (Lachmann et al., 2010), ENCODE (Landt et al., 2012)) and 

TF-binding motif predictions (TRANSFAC (Matys et al., 2003), JASPAR (Mathelier et al., 

2014)). 

Boolean network model simulation and analysis  

! To infer a directed network of interactions, transcriptional regulation was 

determined using Enrichr (Chen et al., 2013) which queries TRANSFAC (Matys et al., 

2003), JASPAR (Mathelier et al., 2014), ChEA (Lachmann et al., 2010), and ENCODE 

(Maher, 2012) to produce a directed interaction network.  Estimates of regulatory edge 

weights were inferred from the literature where possible; otherwise they were assigned 

as +/-1 if the nodes were positively or negatively correlated, respectively. The TFs that 

do not have incoming edges (5) were eliminated. 

! The TF network was simulated as a Boolean network where each node was 

either ON (active) or OFF (inactive). Nodes were updated with a random order 

asynchronous scheme, such that the list of TFs was randomly shuffled and each node 

updated exactly once, in order, before the whole list was shuffled again. If the total 

weight of active regulators (where activators have positive weight and repressors have 

negative weight) was positive, the node was switched on; if the total weight was 

negative, the node was switched off; if the total weight was zero, the node did not 
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change.  A state transition network was constructed where each of the 2^33 possible 

states was updated 30 times to sample the possible asynchronous update orders, and 

an edge was drawn from the initial state to the updated state. The attracting 

components algorithm from NetworkX (http://networkx.github.io/documentation/latest/

reference/index.html) was used to identify attractors from the directed state transition 

graph. Once the 33 core transcription factors were simulated, the 5 leaf TFs (those 

without dynamic feedback loops) were then assigned based on the current network 

state.

! A correlation score was calculated for each attractor against each cell line.  Using 

the CCLE expression data for a given cell line, expression of the transcription factors 

were linearly  scaled to be between 0 and 1, and Pearson’s r was calculated between 

the attractor vector and the cell line vector.

Consensus clustering analysis

! Unsupervised consensus clustering analysis was performed using 

ConsensusClusterPlus package in R (Wilkerson and Hayes, 2010) on either 53 SCLC 

cell line dataset (Barretina et al., 2013) or 28 SCLC patients  (Clinical Lung Cancer 

Genome Project (CLCGP)Network Genomic Medicine NGM, 2013), with 80% sub-

sampling of both genes and samples with a N=1000. The distance metric used was 1 - 

Spearman correlation with k-means distance function. Genes used were 1179 and 3471 

of the Blue and Turquoise modules respectively identified in 53 SCLC cell lines from the 

CCLE dataset.  This method is typically  used for unsupervised class/subset discovery in 

a large group  of patients. It uses the cumulative distribution function (CDF) plots to 
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denote the confidence of class prediction where the best-fit line is defined as one that is 

flat and linear between consensus score 0 and 1. The consensus matrix heatmaps are 

plotted as samples versus themselves (Wilkerson and Hayes, 2010). 

Antibodies and Reagents

! Antibodies used for western blotting include GAD1/2, EphA2, PDGFR 

(Cellsignal®), E-cadherin (BD Biosciences), Vimentin (SantaCruz), OVOL2, CBFA2T2, 

SOX2, ASCL1, POU5F1, GAPDH, SOX2, FYN, beta-actin (Sigma®). Fluorophore-

conjugated primary antibodies were used for flow cytometry – CD56 BV605, CD151 PE, 

CD24 BUV395 (BD Biosciences), CD44 Pacific blue, E-cadherin Pacific blue 

(Cellsignal®), CADM1 A647 (MBL), EPHA2 A488 (R&D Systems), CD133 PE-Cy7 

(Biolegend), Vimentin (Santacruz). 

! Drugs used for viability and flow cytometry studies were procured from Sigma 

(Cisplatin, Etoposide) and Selleck-Chem (Valproic acid, Trichostatin A, 5-azacitidine) 

and all high concentration stocks were made in Dimethyl sulfoxide (DMSO - Sigma®) 

and stored at -80. 

Cell culture

! All SCLC  cell lines were purchased from ATCC (www.atcc.org) and grown in 

company recommended media conditions. NCI-H146, NCI-H209, NCI-H69, NCI-H524, 

NCI-H526, NCI-H211, NCI-H82, NCI-H196, NCI-H446 were grown in RPMI 1640 

(GIBCO®) and 10% FBS. NCI-H2141, NCI-H1184, NCI-H2171, NCI-H1048, NCI-H841, 

SW1271 were grown in ATCC recommended HITES media (DMEM-F12 supplemented 
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with insulin, transferrin, selenium, 5% FBS, 2.5 mM Glutamine, beta-estradiol, 

hydrocortisone) while DMS153, DMS53, DMS114 were grown in Waymouth media 

(GIBCO®) supplemented with 10% FBS. HBECKT was grown in ATCC recommended 

Keratinocyte serum free media. 

Xenograft mouse studies

! Patient derived xenograft (PDX) are human tumors that never touch 

plastic and are only propagated in athymic nude-Foxn1nu/nu mice (Jackson laboratories). 

The PDXs LX-22 and NJ-H29 were obtained from Charles Rudin laboratory (Memorial 

Sloan Kettering Center) and Julien Sage lab  (Stanford University) respectively. These 

were obtained as frozen vials of cells that were thawed at 37 degrees and injected at 

1:1 ratio in nude mice (Jackson labs) with matrigel (BD). For subsequent analysis of 

tissue, the tumor was dissected for (1) immunohistochemistry by formalin fixation, (2) 

protein by snap freezing in liquid nitrogen. For propagation and flow cytometry  analysis, 

tumor tissue was minced with sterile razor blade, filtered through 70um mesh filter, 

washed several times in serum-free RPMI media and spun down at 1000rpm for 5 

minutes at room temperature. Red blood cells were lysed using ACK lysis buffer 

(GIBCO). Cells were either frozen in RPMI media with 10% FBS and 5%DMSO (Sigma) 

or used for flow cytometry analysis immediately. 

 Western blotting 

! All cell lines were plated for 2 days in complete medium to achieve equilibrium in 

signaling states. For siRNA experiments, 400,000 cells were transfected using 
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Dharmafect 4 transfection reagent and siRNA (Dharmacon®) in 6-well plates. Cells 

were incubated for either 3 or 7 days followed by lysate preparation and western blotting 

process as detailed below.!Lysates were prepared by spinning cells down at 4˚C, 

aspirating the media, and adding M-PER lysis buffer (Pierce®) containing 1X 

phosphatase inhibitors 2 and 3 and protease inhibitor (Sigma-Aldrich®). Lysates were 

incubated for five minutes at room temperature, vortexed for 30secs and centrifuged at 

15000 rpm for 15mins (at 4˚C). The protein concentration was quantified using BCA 

assay (Pierce®). Lysates were boiled for 10minutes at 100 degrees with 1X NuPage 

sample buffer (Molecular Probes®) and run on 8% or 4-12% Tris-glycine gels 

(Molecular Probes®). Semi-dry transfer was performed followed by blocking with 1X 

Casein-TBS. Blots were imaged using chemiluminescence or Odyssey. The band 

intensities were quantified using ImageJ and plotted in R (www.r-project.org).

Tissue microarray immunostaining and analysis

! Two TMAs of SCLC specimens were prepared from formalin-fixed paraffin-

embedded (FFPE) tissue blocks following previously reported methods (Renshaw et al., 

2005). Pathology  blocks were retrieved from the archives of the Department of 

Pathology at Vanderbilt University Medical Center, Nashville VA Medical Center and St-

Thomas Hospital in Nashville, Tennessee. They  were obtained between 1996 and 2008 

from 85 patients who had surgery or bronchoscopy prior to medical treatment. SCLC 

diagnosis was confirmed on hematoxylin and eosin-stained sections by an experienced 

lung cancer pathologist (RE). The study was approved by Institutional Review Boards at 

each medical center. The Syk/Fyn/BRCA1 IHC was examined in two to five spots for 
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each TMA. The intensity of staining was scored as 0-no staining, 1-weak, 2-moderate, 

and 3-strong and the percentage of area stained was also measured. The IHC score 

was determined by multiplying intensity score to the percentage area stained. The 

highest score among the spots was used for the unsupervised clustering analysis of 

protein expression. Tumor images were captured by brighfield microscopy using the 

Leica SCN400 system (Leica Biosystems®) at 20X magnification. Kaplan-Maier survival 

analysis was performed using survival package (Therneau and Grambsch, 2000) in R. 

 

Bright field imaging

! Cells were plated overnight in 10cm dishes and imaged the next day. High 

resolution brightfield images of SCLC cell lines were captured using Leica microscope 

using 20X magnification lens.

Cellavista viability assay 

! 10000 cells were plated in 100ul of complete medium (RPMI 1640 containing 

10% Fetal bovine serum) in each well of a 96-well plate with Dharmafect 4 and siRNA 

mixture (Thermo-Scientific). The reagent dilutions and transfection procedures were 

performed as per the manufacturer’s protocol. Cells were incubated at 37˚C  until each 

timepoint. At each timepoint, cells were transferred to a BD Falcon 96-well black clear 

bottom imaging plate and live-dead viability dyes (calcein – live cells; ethidium 

homodimer – dead cells) and hoescht 33342 for total nuclei (Invitrogen®) were added in 

complete medium. The cells were incubated with the dyes for 15mins at 37˚C followed 

by imaging using the Cellavista high-throughput imaging microscope (SynenTec, 
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Elmshorn, Germany). The Roche cell viability protocol was used to image and quantify 

the cells in 3 colors as per manufacturer’s instructions. The output generated from this 

algorithm included total cell number, viable cell count, percent live/dead cells, etc. The 

data plotting and statistics were done using R (Team, 2012). The viability growth curves 

statistics were generated using a linear regression growth model (Kutner, 2005). 

Multiple comparison of treatments were derived using ANOVA and Tukey's method 

(Kuehl, 2000; Kutner, 2005). The p-values for percent dead at day 5 were generated 

using a paired t-test, pairing across, N=4, experimental replicates. IC50 values were 

calculated by fitting nonlinear regression models using drc package in R. 

Oxygen consumption assay 

! 1-2 million cells were plated in T75 flasks and allowed to grow exponentially in 

complete media for 2 days. On day 2, the cells were collected in 15ml conical tubes, 

washed with  serum-free glucose-free RPMI media 1-2 times and spun down for 5 

minutes at 1000rpm. Cells (approximately  1 million) were then added into each of the 

two chambers of the O2k Oxygraph (O2k Oxygraph, Oroboros Instruments, Innsbruck, 

Dr. Josh  Fessel’s lab).   The oxygraph uses a closed system polarographic oxygen 

electrode to measure real-time changes in oxygen concentrations and oxygen 

consumption rates with extremely  high sensitivity.  Oxygen flux rates are calculated in 

real time as the negative derivative with respect to time of the oxygen concentration 

curve, so that decreases in oxygen concentration are expressed as positive flux rates.  

Additionally, fluxes are normalized to cell number so that the readout is a specific flux of 

oxygen expressed as pmol O2 consumed/sec/million cells.  To probe specific aspects of 
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mitochondrial function, specific combinations of substrates and inhibitors were added 

sequentially, and oxygen fluxes as well as changes in flux rates in response to these 

stimuli were quantified.  Substrates and inhibitors added were as described below: 

Digitonin (typical working concentration 4μM) – Selectively permeabilizes the plasma 

membrane to allow for efficient diffusion of substrates into and out of the cells, while 

leaving the mitochondrial membrane intact.  This removes the effects of transporters, 

diffusion barriers from plasma membrane, etc.  It also allows endogenous substrates to 

leak out of the cell, so that we can see the true effect of addition of the substrates and 

inhibitors of interest.

Glucose (5.5mM) and glutamine (Gln, 2mM) - Cells were in glucose-free media, so first 

glucose was added as a substrate, followed by glutamine.

Glutamate (G, 10mM) and malate (M, 0.5mM) – Fuels for Complex I in the 

mitochondria.

ADP (2.5mM)- Induces state 3 respiration, maximizing oxygen consumption linked to 

ATP synthesis.  

Succinate (Suc, 10mM)- Fuel for succinate dehydrogenase, which is Complex II in the 

electron transport system and also part of the TCA cycle.  In the presence of glucose, 

glutamine, glutamate, malate, ADP, and succinate, the electron transport system is 

essentially fully engaged, and oxygen consumption linked to ATP production (OXPHOS-

linked O2 flux) is maximal.

Carbonyl cyanide m-chlorophenylhydrazone (CCCP, 0.5-1μM) – A protonophore that 

destroys the proton gradient across the inner mitochondrial membrane.  This uncouples 
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ATP synthesis from oxygen consumption and effectively pushes the oxygen flux rate to 

the maximum possible for the cell. 

 

Flow cytometry data generation and analysis

! For steady-state expression of surface markers, 1-2million cells were plated in 

T75 or T150 flasks the previous day and collected for flow experiment the next day as 

described below. For drug treatment experiments, cells were plated same as above the 

previous day, followed by drug addition the next day. Cells were incubated with drugs at 

37 degrees for the indicated time points  and then collected for flow experiments. 

! Cells were dissociated using TryplE (GIBCO®) for 10-15 minutes followed by 

staining with Alexa 700 dye (Molecular Probes®) for 5 minutes at 37 degrees. Cells 

were then washed and fixed with 2% paraformaldehyde (10 minutes at room 

temperature), followed by surface marker staining (Table 2.1) or permeabilization with 

ice-cold 100% methanol at -20 for 30 minutes. Cells were then stained with fluorescent 

conjugated antibodies for 30 minutes in dark at room temperature. Samples were 

washed with PBS and run on BD 5-laser cytometer instrument at the Vanderbilt Flow 

cytometry shared resource core. First fluorescent channels were compensated using 

anti-mouse IgK beads (BD Biosciences) that were tagged with fluorescent antibodies. 

This compensation was applied to all the samples to eliminate spectral overlap  of 

fluorescent channels. 

! First intact cells were gated on the Forward Scatter Area (FSC-A) and Side-

Scatter Area (SSC-A) plot, where debris has a low FSC-SSC ratio (Figure 2.2A). This 

was followed by gating for Alexa700 negative viable cells, where A700 positive 
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Table 2.1: Surface marker panel for quantifying phenotypic heterogeneity in SCLC cell lines and 
PDX models.
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Marker Fluorophore Type Catalog

CD24 BUV395 Neuroendocrine BD biosciences

CD56 BV605 Neuroendocrine BD biosciences

CADM1 A647 Neuroendocrine MBL

CD151 PE Mesenchymal BD biosciences

CD44 Pacific Blue Mesenchymal Cellsignal

EPHA2 A488 Mesenchymal R&D Biosystems

CD133 PE-Cy7 Stem-cell Biolegend

Viability A700 Viability Molecular Probes



Figure 2.2: Gating scheme for viable singlet cells in flow cytometry experiments. 
Analysis generated in Cytobank (https://irishlab.cytobank.org). (A) Gating of intact cells based on FSC-A 

and SCC-A. (B) Biaxial plot of A700 (viability) on X-axis and FSC-A on Y-axis where low A700 staining 

(left gate) denotes viable cells (A700-) and A700 positive staining (right gate) indicates dead/dying cells. 

(C) shows gating of singlet cells based on FSC-A and FSC-width plot where singlets and doublets (cells 

stuck together/dividing cells) can be detected via their separate density distributions. (D) shows a 

population sunburst plot where all subsequent gates of fluorescent markers are created on intact-viable 

singlet cell populations.
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populations are dead/dying cells (Figure 2.2B). Finally the A700 negative viable cells 

are further gated to include only singlet populations (Figure 2.2C). At least 20000-30000 

viable singlet cells were collected per sample. All subsequent gates on fluorescent 

markers are made on viable singlet cells depicted in the sunburst plot (Figure 2.2D).

 The raw cytometer intensity readouts for fluorescent channels were first converted to 

log scale by using the asinh() function in Cytobank® (https://irishlab.cytobank.org/

cytobank) or R (www.rproject.org) by dividing by a co-factor of 150. Data analysis 

(gating and plots) and visualization were conducted in Cytobank and cyt tool in Matlab 

(http://www.c2b2.columbia.edu/danapeerlab/html/cyt.html). Box-and-whisker plots and 

its statistics (Kruskal-Wallis test) were conducted using WGCNA package in R (Horváth 

et al., 2006). 

! NbClust package was used for estimation of the optimal number of clusters 

based on 30 indices that provide confidence in the cluster number estimation to be used 

for k-means clustering analysis in R (Charrad et al., 2014). k-means clustering analysis 

and overlay visualization plots (on CD56 and CD151 in Figure 4.12) were performed 

using the cyt tool in Matlab. These FCS files that now contained k-means cluster 

assignment for each cell were used for SPADE analysis. 

! High-dimensional data reduction techniques using clustering algorithms such as 

SPADE was conducted in the web  interface of Cytobank®. SPADE algorithm uses 

density-based downsampling the high-dimensional flow cytometry data to include rare 

events, followed by agglomerative clustering to generate a minimum spanning tree by 

clustering the data into a large set of nodes (typically 200) (Figure 2.3).  
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Figure 2.3: SPADE method summary.
Adapted from (Simonds et al., 2011).
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We used 6 markers - 3 NE and 3 ML (Table 2.1) to run SPADE with the default setting of 

k=200 and singlet gated viable cells (10000 randomly sampled events per sample) 22 

SCLC cell lines, including 2 PDXs. The same settings were used for drug treatment 

samples as well. Manual gating or ‘bubbles’ of NE and ML phenotypic states was 

performed in Cytobank itself via co-expression of either NE or ML markers respectively 

within each cell line. The nodes labeled as NE had high co-overexpression of NE 

markers CD56, CD24 and CADM1 and low expression of ML markers CD44, CD151, 

and EPHA2, and vice versa for ML nodes. These manually  added NE and ML bubbles 

were further validated by  overlay of the k-means predicted NE and ML clusters on the 

SPADE plots.

Fluorescent barcoding for signaling experiments

Cells were stimulated with 24 distinct stimuli shown in Table 2.2, each for 

15minutes, followed by fixation with 2% PFA and permeabilization with 1ml 100% ice-

cold methanol as described above. Cells were then washed with 1ml PBS and spun 

down for 5 minutes at 2000rpm and room temperature. Cells were then resuspended 

into 190ul PBS and added to each of the barcoding wells containing 10ul total of 

barcoding mix (Pacific blue PB and Pacific orange PO) dyes (Molecular Probes), thus 

assigning a specific sample a fluorescent barcode (ratio of PB and PO dyes) (Table 

2.2). Cells were incubated with barcoding mix for 30 minutes in the dark, followed by 

washing with PBS containing 1% Bovine serum albumin (BSA). The cells from all 12 

wells were mixed into 1 tube and then washed followed by  spinning down at 2000rpm 

for 5 minutes. So cells from the 2 tubes, each now containing 12 samples, and each 
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with a specific barcode, were distributed into 3 staining panels shown in Table 2.3. Cells 

were stained with fluorescent conjugated antibodies for 30 minutes in dark at room 

temperature. Samples were washed with PBS and run on BD Fortessa cytometer 

instrument at the Vanderbilt Flow cytometry  shared resource core. First fluorescent 

channels were compensated using anti-mouse IgK beads (BD Biosciences) that were 

tagged with fluorescent antibodies. This compensation was applied to all the samples to 

eliminate spectral overlap of fluorescent channels. First intact cells were gated on the 

Forward Scatter Area (FSC-A) and Side-Scatter Area (SSC-A) plot, where debris has a 

low FSC-SSC ratio (Figure 2.4A). This was followed by gating for viable cells to include 

only singlet populations (Figure 2.4B). At least 500,000 viable singlet cells were 

collected per sample. All subsequent gates on fluorescent markers are made on viable 

singlet cells. A barcoded sample containing 12 distinct populations (stimulation 

conditions) is shown in Figure 2.4C. These data were analyzed in Cytobank (https://

irishlab.cytobank.org/cytobank).
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Barcode*  : defined by levels of Pacific orange (PO) and Pacific blue (PB) as given 

below.

Table 2.2: Signaling stimuli conditions and fluorescent barcoding panel.
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Samples Barcode* Barcoding panel 1 Barcoding panel 2

1 PO L1 : PB L1 Unstimulated 1 Unstimulated 2

2 PO L1 : PB L2 IL-2 20ng/ml INFalpha 20ng/ml

3 PO L1 : PB L3 IL-3 20ng/ml INFgamma 20ng/ml

4 PO L1 : PB L4 IL-4 20ng/ml EGF 100ng/ml

5 PO L2 : PB L1 IL-6 20ng/ml HGF 20ng/ml

6 PO L2 : PB L2 IL-7 20ng/ml IGF 20ng/ml

7 PO L2 : PB L3 IL-8 20ng/ml NGF 20ng/ml

8 PO L2 : PB L4 IL-9 20ng/ml SCF 50ng/ml

9 PO L3 : PB L1 IL-10 20ng/ml G-SCF 20ng/ml

10 PO L3 : PB L2 IL-13 20ng/ml PDGF-BB 25ng/ml

11 PO L3 : PB L3 IL-15 20ng/ml NRG-1 20ng/ml

12 PO L3 : PB L4 IL-21 20ng/ml H2O2 3.3mM

Levels Pacific orange concentration 

(ug/ml)

Pacific Blue concentration 

(ug/ml)

L1 0.34859 0.03115

L2 3.48592 0.24924

L3 20.91556 1.49704

L4 - 7.48922



Table 2.3: Signaling antibody marker panels for barcoding experiments.  
P- denotes Phosphorylated form of the protein. All antibodies were purchased from BD Biosciences.
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Channel Staining Panel 1 Staining Panel 2 Staining Panel 3

Alexa 488 P-LCK P-EGFR P-4EBP1

PE P-AKT1/2 P-SRC P-STAT3

Alexa 647 P-SHP2 P-PLCg P-S6

Per-CP Cy5.5 P-ERK1/2 P-STAT6 P-STAT1

PE-Cy7 P-P38 P-NFKB P-STAT5



Figure 2.4: Barcoding signaling experiment gating scheme.
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CHAPTER III

GENE CO-EXPRESSION NETWORK ANALYSIS IDENTIFIES SPLEEN TYROSINE 

KINASE (SYK) AS A CANDIDATE ONCOGENIC DRIVER IN A SUBSET OF SMALL-

CELL LUNG CANCER1

Abstract

Background: Oncogenic mechanisms in small-cell lung cancer (SCLC) remain poorly 

understood leaving this tumor with the worst prognosis among all lung cancers. Unlike 

other cancer types, sequencing genomic approaches have been of limited success in 

small-cell lung cancer, i.e., no mutated oncogenes with potential driver characteristics 

have emerged, as it is the case for activating mutations of epidermal growth factor 

receptor in non-small-cell lung cancer. Differential gene expression analysis has also 

produced SCLC  signatures with limited application, since they are generally not robust 

across datasets. Nonetheless, additional genomic approaches are warranted, due to the 

increasing availability of suitable small-cell lung cancer datasets. Gene co-expression 

network approaches are a recent and promising avenue, since they have been 

successful in identifying gene modules that drive phenotypic traits in several biological 

systems, including other cancer types.

Results: We derived an SCLC-specific classifier from weighted gene co-expression 

network analysis (WGCNA) of a lung cancer dataset. The classifier, termed SCLC-
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specific hub network (SSHN), robustly separates SCLC from other lung cancer types 

across multiple datasets and multiple platforms, including RNA-seq and shotgun 

proteomics. The classifier was also conserved in SCLC cell lines. SSHN is enriched for 

co-expressed signaling network hubs strongly associated with the SCLC phenotype. 

Twenty of these hubs are actionable kinases with oncogenic potential, among which 

spleen tyrosine kinase (SYK) exhibits one of the highest overall statistical associations 

to SCLC. In patient tissue microarrays and cell lines, SCLC  can be separated into SYK-

positive and -negative. SYK siRNA decreases proliferation rate and increases cell death 

of SYK-positive SCLC cell lines, suggesting a role for SYK as an oncogenic driver in a 

subset of SCLC.

Conclusions: SCLC treatment has thus far been limited to chemotherapy and 

radiation. Our WGCNA analysis identifies SYK both as a candidate biomarker to stratify 

SCLC patients and as a potential therapeutic target. In summary, WGCNA represents 

an alternative strategy  to large scale sequencing for the identification of potential 

oncogenic drivers, based on a systems view of signaling networks. This strategy is 

especially useful in cancer types where no actionable mutations have emerged.

Introduction

! Small-cell lung cancer (SCLC) represent up to 15 % of lung cancers and pose a 

major challenge as we are unable to diagnose it early, its most aggressive clinical 

behavior and the lack of lasting benefit from therapy. Patients presenting with this 

neuroendocrine tumor of the lung have a dismal 5% 5-year survival rate. Although 

SCLC is highly sensitive to chemotherapy and radiation, it invariably  recurs with fatal 
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widespread metastasis (Rosti et al., 2006). In contrast to non-small cell lung cancer 

(NSCLC), to date no specific genetic biomarkers or molecular subtypes have been 

identified in SCLC (Ettinger, 2006). Gene expression profiling has had limited success in 

SCLC stratification for the purpose of personalized treatment. Although recent advances 

in genomic analysis of SCLC have identified potential driver mutations in SCLC (Peifer 

et al., 2012; Sos et al., 2012; Staaf et al., 2012), there remains an unmet need for 

approaches that can stratify SCLC patients and/or uncover viable molecular targets in 

SCLC.

! To meet this challenge, we turned to weighted gene co-expression gene network 

analysis (WGCNA), a recently introduced bioinformatics method that captures complex 

relationships between genes and phenotypes. The distinct advantage over other 

methods, such as differential gene expression, is that WGCNA transforms gene 

expression data into functional modules of co-expressed genes without any  prior 

assumptions about genes/phenotypes, providing insights into signaling networks that 

may be responsible for phenotypic traits of interest (Horváth et al., 2006; Shi et al., 

2010; Winden et al., 2009). In lung cancer, its potential remains unexplored.

! Our WGCNA analysis of a public lung tumor dataset (Rohrbeck et al., 2008) 

revealed a module of co-expressed genes specific to SCLC. After filtering, the SCLC-

specific module was reduced to a SCLC-specific hub network (SSHN) signature that 

classified SCLC from other lung cancer types in several public and in-house tumor 

datasets (including independent high-throughput screening techniques such as RNAseq 

and shotgun proteomics), and in lung cancer cell lines. SSHN was enriched for hubs in 

signaling networks known to be associated with SCLC pathogenesis, including cell 
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cycle, oxidative stress response and DNA damage response. As a proof of concept, we 

chose to validate oncogenic kinase hubs (20 kinase genes) within SSHN, as they 

provide special translational relevance as potential candidates for targeted therapy and 

also play key roles in various hallmarks of cancer. Among the twenty, spleen tyrosine 

kinase (SYK), a previously undescribed target in SCLC, exhibited one of the highest 

overall statistical associations with the SCLC phenotype, based on WGCNA gene 

significance (GS, see Methods) and overexpression in shotgun proteomics, and was 

therefore selected for further validation as a target.

! SYK has been previously investigated most extensively in the context of 

lymphocyte development and as a therapeutic target in hematologic malignancies. SYK 

activation leads to several downstream events that promote cell survival, including 

activation of phosphatidylinositol 3-kinase (PI3K) and AKT, and the phosphorylation of 

multiple signaling proteins (Buchner et al., 2009; Hahn et al., 2009; Prinos et al., 2011). 

In B-cells, it transduces tonic signaling by physical interaction with the immunoreceptor 

tyrosine-based activation motif (ITAM) of the B-cell antigen receptor (BCR) complex 

(Woyach et al., 2012), positively regulating survival and proliferation during 

development and immune response. SYK is also associated with the Fc receptor in B-

cells, which instead has opposite effects to the BCR (Chen et al., 2008; Mócsai et al., 

2010). The balance of regulation on survival and proliferation downstream of SYK is 

influenced by redox signaling: NADPH oxidase, in close proximity to BCR, can produce 

peroxide that inhibits phosphatase action on BCR-activated SYK, reinforcing tonic 

signaling (Reth, 2002). Another important function of SYK is response to oxidative 

stress where SYK gets activated and promotes pro-survival pathways (Takano et al., 
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2002). B-cells die in response to SYK knock-down and fail to develop  in SYK-deficient 

mice (Mócsai et al., 2010). Together, these observations have formed a rationale for 

SYK-targeted therapy in hematological malignancies with small molecule kinase 

inhibitors (Cheng et al., 2011; Friedberg et al., 2010; Hahn et al., 2009). SYK has not 

been studied in the context of lung neuroendocrine (NE) cells, the SCLC cells of origin, 

whose oxygen sensing functions, in analogy with BCR, rely  on redox signaling 

(Buttigieg et al., 2012).

! To our knowledge, SYK has not been proposed before as an oncogenic driver or 

candidate target in SCLC. Based on our WGCNA results, we investigated this 

possibility. We determined that 11 out of 33 SCLCs were SYK-positive by 

immunostaining in patient tissue microarrays (TMAs). Moreover, SYK knock-down 

reduced proliferation and survival in SYK-positive SCLC lines. We propose that SYK is 

an oncogenic driver in SCLC and that SYK expression may be developed as a 

companion biomarker for SYK targeted therapy.  

Results 

Identification of a SCLC-specific co-expression module

! To identify a hierarchical network view of co-expressed genes across lung cancer 

subtypes, we applied WGCNA to a public dataset (GEO ID: GSE6044 – 33 untreated 

patients) comprised of 5 normal, 9 adenocarcinoma (ADC), 9 squamous cell carcinoma 

(SCC) and 9 SCLC lung cancer tissue specimens (Rohrbeck et al., 2008). An 

unsupervised correlation similarity  matrix was built based on pairwise correlations 

between genes. 
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! Unsupervised average linkage hierarchical clustering of all genes in this dataset 

resulted into 13 modules (Figure 3.1A) labeled by color and each comprised of mutually 

exclusive co-expressed genes. Genes with no distinct module assignment are grouped 

in a grey module by  WGCNA. None of these modules were identified using any pre-

assigned phenotype or gene bias. To ensure that modules were not being detected by 

chance, we simulated a random dataset containing same number of samples and genes 

as our test dataset. Only two modules were generated from the random dataset, 

turquoise and grey (with the grey  module containing the vast majority  of genes), 

indicating that WGCNA module identification in our test dataset is in fact driven by 

meaningful gene co-expression patterns (Figure 3.2).

! Following the unsupervised module generation, individual gene correlations to a 

specific phenotype (normal lung, ADC, SCLC, SCC) were quantified by gene 

significance (GS). The average GS of all genes within each module is summarized in 

Figure 3.1B. This analysis unveiled positive or negative correlation of certain modules 

with specific lung cancer subtypes, or normal lung. The brown and purple modules 

appeared to be ADC specific, and included previously  identified ADC markers 

cytochrome B5 (CYB5A) or surfactant protein B, C and D (SFTPB, SFTPC, SFTPD), 

respectively(Meyerson et al., 2004). Yellow, pink, orange and light cyan modules were 

SCC specific and included involvulin (IVL), cytokeratin 14 (KRT14), and galectin-7 

(LGALS7) (Dakir et al., 2008; Levitt et al., 1990; Meyerson et al., 2004) (Appendix A -

Download file). 
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Figure 3.1: Identification of SCLC-specific modules using WGCNA. 

(A) In the hierarchical dendrogram, lower branches correspond to higher co-expression (height = 

Euclidean distance). The 13 identified modules were coded by the colors indicated below the 

dendrogram. Below, red and green lines indicate positive or negative correlations, respectively, with lung 

tumor types on the left. (B) Average ‘gene significance’ (GS) of genes within a specific module 

summarized in the barplot for each lung tissue type (left to right: SCLC, SCC, ADC, and NL). The blue 

module is associated solely with SCLC.
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Figure 3.2: Absence of modules/clusters in a control WGCNA analysis of a simulated random 
dataset. 
1000 random datasets were simulated in R to mirror the test dataset GSE6044 (8500 genes, 33 samples)

(Rohrbeck et al., 2008), and was subjected to the exact analysis. (A) A representative dendrogram is 

shown (each line is a gene). Essentially all genes merged into the grey module, which is reserved by 

WGCNA to genes not assigned to any module. (B) Shows the number of random simulated datasets from 

the N=1000 that detected a certain number of modules. The overall p-value for this simulation analysis is 

less than 0.001, which is highly significant, indicating that our 13 modules detected in GSE6044 are 

meaningful and relevant to the biology of these tumors.
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The green module contained genes positively  correlated to the normal lung phenotype 

and negatively correlated with all tumor subtypes (SCLC, ADC, and SCC), making it a 

“normal lung module” (Appendix A -Download file). The blue module was specific to 

SCLC (Figure 3.1). Accordingly, it contained genes that have already been associated 

with SCLC progression such as Achaete-scute complex homolog 1 (ASCL1), Neural cell 

adhesion molecule 1 (NCAM1/CD56), Thyroid transcription factor-1 (TTF-1) and 

Insulinoma associated-1 (INSM1) (Arriola et al., 2008; Hiroshima et al., 2006) (Appendix 

A -Download file). 

Identification and validation of a SCLC-specific hub network (SSHN) of co-

expressed genes across genomic and proteomic platforms. 

! To identify and validate a network of co-expressed genes that is specific to 

SCLC, we focused on the blue module. The SCLC-specific blue module (1696 genes; 

Figure 3.1) is comprised of co-expressed up-regulated genes across SCLC tumors. 

Each module is arranged in the form of a hierarchical network (due to hierarchical 

clustering used to obtain the modules, Figure 3.1A dendrogram). Therefore, each 

module consists of a few highly connected “hubs” (genes that have high intramodular 

connectivity  kME) as well as many genes with fewer connections. The rationale behind 

building hub-based networks is to narrow down the list of relevant candidates, based on 

the assumption that highly  connected hubs are more vulnerable targets to alter network 

performance. This assumption has been successful in several examples from biological 

networks in yeast (He and Zhang, 2006; Jeong et al., 2001) and mammalian cells, 

including cancer (Dutta et al., 2012; Horváth et al., 2006).
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! Each module can be further filtered to identify the top  hubs relative to desired 

criteria using measures such as intramodular connectivity (kME) and gene significance 

(GS) (Langfelder and Horvath, 2008). We filtered the blue module genes to obtain hubs 

that ranked high in each of the following criteria: a) high positive correlation with SCLC 

phenotype given by gene significance (GS.SCLC >0.5); b) high intramodular 

connectivity  (blue module kME >0.5); and c) high T-test statistic (overexpression in 

SCLC versus normal lung > 5) and a p-value less than 0.01. This filtering approach 

produced 287 hub genes, which are not only overexpressed in SCLC, but also highly 

connected within SCLC. We refer to this network of 287 hubs as SCLC-specific hub 

network (SSHN) (Appendix B-Download file). 

! To validate the robustness of SSHN as a SCLC-specific classifier, it was first 

applied by unsupervised hierarchical clustering bootstrap analysis to patient samples in 

a test public dataset (GSE6044) from which the blue module was derived. The SSHN 

classified SCLC away from every other lung tumor subtype (ADC and SCC) and normal 

lung, the area under ROC curve (AUC) was 0.87 with 95% confidence interval (CI) of 

[0.72, 1] (Figure 3.3A). The performance of the SSHN classifier was reproducible in 

both an independent validation patient dataset of 163 tumors (GSE11969) (Takeuchi et 

al., 2006) generated in a different array platform (Agilent) (AUC  of 1) (Figure 3.4A), as 

well as in our own microarray dataset containing 23 SCC  and 10 SCLC samples (AUC 

of 0.94 with 95% CI of [0.85, 1])(Figure 3.4B). In the GSE11969 dataset, the SSHN also 

proved to be an excellent classifier for distinguishing SCLC from large cell carcinoma 

(LCC) subtype (Figure 3.4A). Interestingly, large cell neuroendocrine carcinomas 
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Figure 3.3: Validation of SSHN as a robust classifier for SCLC in two independent datasets from 
(A) high-throughput gene expression and (B) shotgun proteomic analysis.
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Figure 3.3: Validation of SSHN as a robust classifier for SCLC in two independent datasets from 
(A) high-throughput gene expression and (B) shotgun proteomic analysis. 
(A) Unsupervised clustering heatmap based on 287 SSHN genes (rows) of lung cancer patients 

(columns) in GSE6044 dataset. Red and green indicate high and low expression, respectively. The 

majority of SCLCs cluster by themselves on the far left of the dendrogram. Two SCLC specimens are 

excluded from this cluster, a trend to be investigated in more depth if confirmed in larger datasets (see 

Discussion). (B) SSHN-based unsupervised clustering heatmap  of an in-house generated shotgun 

proteomic dataset comprised of control alveolar and bronchial epithelium, ADC, SCC and SCLC tissue 

specimens (for each tissue type, specimens from multiple patients, five in this case, were pooled as it is 

customary for shotgun proteomic analysis). Red and green as denoted in (A). Analysis is limited to 141 

out of 287 SSHN proteins (rows), since the remainder proteins were not detect by shotgun proteomics. 

The 3 tumor specimens segregate together from normal tissue. Within the 3 tumor specimens, ADC and 

SCC are more similar to each other than to SCLC.
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Figure 3.4: SSHN as a reproducible classifier in GSE11969 and in-house Agilent datasets. 
 Unsupervised clustering heatmap  based on SSHN genes (rows) of (A) 163 lung cancer patients 

(columns) in GSE11969 dataset (Takeuchi et al., 2006), and (B) our own Agilent microarray dataset  

containing 23 SCC and 10 SCLC samples. Red and green colors in rows of the heatmap indicate high 

and low expression respectively. LCC- large cell lung carcinoma, LCNEC- large cell neuroendocrine 

carcinoma.
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(LCNC), another high-grade neuroendocrine tumor (NET) of the lung, co-clustered with 

SCLC, confirming similarities between the 2 tumor types as reported previously (Jones 

et al., 2004). On all the three patient datasets, the SSHN genes are highly predictive of 

SCLC against other tissue types with statistically significant p-values less than 0.0001. 

! To further validate the SSHN as a classifier, we used next-generation sequencing 

to produce genome-wide RNA-seq data on an independent set of tissues including 10 

SCLCs, 5 SCCs, and 5 normal lung tissue specimens. We detected overexpression of 

206 genes out of 287 SSHN genes that differentiate SCLC (71.8%) from normal lung 

alone (at 5% FDR) while 106 genes out of 287 SSHN genes differentiate SCLC (71.8%) 

from normal lung and SQCC (at 5% FDR) (Appendix B-Download file), indicating that 

SSHN is a robust classifier in another data type (RNA-seq).

! Finally, the SSHN gene expression classifier was further validated at the protein 

level in yet another in-house, independent set of formalin fixed paraffin embedded 

patient tissue samples analyzed by  shotgun proteomics and comprised of 5 samples 

each of SCLC, SCC, ADC  and age- and smoking history-matched normal lung tissues 

specimens, pooled by histologic type. Out of 287 SSHN genes, 141 gene products were 

detected at the proteomic level and also classified the SCLCs apart from the other 

tissues (Figure 3.3B). To our knowledge, this is a first report of an entire SCLC genomic 

signature validated at the proteomic level.

In each of the 4 datasets, there were 1-2 specimens that did not segregate with the 

SSHN-defined SCLC cluster, but were clinically diagnosed as SCLC (Figure 3.3A; 

Figure 3.4). This could be due to mis-diagnosis as is fairly  common in SCLC due to 

mixed SCLC-NSCLC histology (Nicholson et al., 2002), or possibly  a small subset of 
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patients whose tumors have different biology. Overall, we conclude that the SSHN is a 

robust molecular classifier to distinguish SCLC from other lung tumor types and normal 

lung across multiple gene and protein expression platforms.

Biological insights from the SSHN: Network enrichment analysis and target 

identification

! To gain biological insights in SCLC biology, the SSHN component genes were 

further categorized into functional pathways based on the assumption that they are co-

upregulated because of shared cellular functions. Analysis of SSHN by Webgestalt 

(Zhang et al., 2005) revealed that SSHN is enriched for functional pathways 

summarized in Appendix C  (Download file) and D (Download file) and Figure 3.5, and 

include cell cycle and checkpoint response (total of 25 genes), cellular stress response 

(41 genes of which 21 genes related to oxidative stress), and DNA damage response 

and repair pathways. All p-values were adjusted for multiple comparisons in Webgestalt 

and therefore effectively rank the significance of these functional pathways in SCLC 

phenotype. 

! As a proof-of-concept that connected hubs identified by WGCNA are of biological 

relevance, we further refined the pathway analysis by focusing on kinases, since these 

tend to be of the greatest translational value. There were 20 kinases contained in the 

SSHN (Table 3.1), all worth investigating in the context of SCLC. However, shotgun 

proteomics data (available for 4 kinases, Table 3.1) indicated that SYK is strongly 

overexpressed within the SCLC  phenotype compared to normal tissue (high “SCLC vs. 

Bronchial epithelium Rate ratio” and “SCLC vs. Alveolar epithelium Rate ratio”).
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Figure 3.5: mRNA expression of SSHN genes for the top representative canonical pathways from 
network enrichment analysis.
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Figure 3.5 continued: mRNA expression of SSHN genes for the top representative canonical 
pathways from network enrichment analysis. 
Functional enrichment analysis was carried out using Webgestalt [33]. Boxplots of mRNA expression of 

representative SSHN hubs functioning in various pathways (A) Cell cycle checkpoint control and DNA 

replication; (B) DNA damage response and repair; (C) Wnt and Notch signaling pathways (D) Amino acid 

metabolism pathways. The outliers are denoted by dots. P-value shows statistical significance by Kruskal-

Wallis nonparametric test (Kruskal and Wallis, 1952).
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SYK is an oncogenic non-receptor tyrosine kinase involved in hematologic malignancies 

(Hahn et al., 2009; Cheng et al., 2011; Friedberg et al., 2010). Another oncogene, the 

SRC-family  kinase FYN, was also part of this SSHN kinase set. SYK is an intracellular 

signal transducer downstream of growth factor/T-cell/B-cell receptors well known to 

work in concert with SRC-family  kinases (Mócsai et al., 2010). Specific overexpression 

of SYK and FYN in SCLC, compared to other lung tumor types, has not been previously 

reported, to the best of our knowledge (Figure 3.6). Together, these clues prompted us 

to select SYK and FYN for further investigation in the context of SCLC tumors. 

! To verify co-expression at the protein level, we immunostained for SYK and FYN 

in a panel of SCLCs assembled in tissue microarrays (TMAs). All specimens were 

tested in duplicate, and the expression of SYK and FYN consistently co-varied (Figure 

3.7A), with a correlation of 0.28 across SCLC specimens. Clustering analysis of the 

staining scores of SYK/FYN expression separated the TMA specimens into 2 groups, 

SYK/FYN-positive and -negative tumors (Figure 3.7B).

Preservation of SSHN and differential SYK/FYN expression in SCLC cell lines

! SYK and FYN are attractive candidates for targeted therapy (Riccaboni et al., 

2010; Saito et al., 2010). To test their functional relevance in SCLC, we turned to SCLC 

cultured cell lines. The SSHN classifier was conserved in a large panel of lung cell lines 

(Lockwood et al., 2008).  As indicated by clustering analysis (Figure 3.8A), 21 out of 23 

SCLC cell lines separated nicely from the other 36 lung cancer cell lines tested (AUC of 

0.97 with 95% CI of [0.94, 1]). Note that 2 SCLC cell lines did not follow this pattern, an 
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Figure 3.6: Co-expression of 2 SSHN kinases FYN and SYK in SCLC patients. 
Log2 expression values are indicated in the boxplots for each individual hub  within SSHN across various 

patient lung tissues from the GSE6044 test dataset (Rohrbeck et al., 2008). The outliers are denoted by 

dots. P-value shows statistical significance by Kruskal-Wallis nonparametric test (Kruskal and Wallis, 

1952). FYN and SYK are co-overexpressed in SCLC patients versus NSCLC (ADC, SCC) and normal 

lung.
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Figure 3.7: Co-expression of SYK and FYN in a subset of SCLC tumors.
Contiguous sections of TMAs from 39 SCLC patient specimens were stained with antibodies to SYK and 

FYN, respectively. Stained sections were scored by a pathologist as described in Methods. (A) 

Representative stained sections showing positive (upper) or negative (lower) results. See text for 

additional details. Tumor spot images were captured by brightfield microscopy at 20X magnification. (B) 

Unsupervised hierarchical clustering heatmap of SYK and FYN immunostaining intensity scores across 

SCLC patients distinguished positive from negative tumors as described in Methods. Red and green 

indicate high and low expression, respectively. Specimens that are positive for both SYK and FYN 

segregate in one cluster, on the right. Patient ID shown below the heatmap. 
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Figure 3.8: SSHN is preserved in SCLC cell lines.
(A) Unsupervised clustering heatmap  based on SSHN genes (rows) of lung cancer cell lines (columns) in 

GSE4824 dataset [36]. Red and green colors in rows of the heatmap  indicate high and low expression 

respectively. This analysis shows SSHN conservation across SCLC cell lines. (B) Representative western 

blot of SYK and FYN in various lung cancer cell lines. FYN and SYK are selectively overexpressed in 

SCLC cell lines.  Within the SCLC cell lines, the red and green bars indicate FYN/SYK-positive and -

negative SCLC cell lines, respectively. Arrows point to bands corresponding to the expected molecular 

weight for SYK and FYN. The dotted arrow indicate the position of a shorter form of SYK protein (SYKB 

or S) that lacks 23 amino acids (Sada et al., 2001).
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observation mirrored in tumor specimens (Figure 3.3; Figure 3.4) that warrants further 

studies.

! We investigated co-expression of SYK and FYN in SCLC cell lines by western 

blotting of whole-cell lysates with appropriate antibodies (Figure 3.8B). Similar to our 

protein expression shown by immunostaining of our TMAs, SYK and FYN exhibited a 

trend to co-vary in SCLC cell lines (Figure 3.8B), opening an avenue to biochemical 

analyses of the functional value of this differential expression. Note that SYK has two 

splice-variant isoforms - long (L or p72SYK) and short (S or B) that lacks 23 amino acids 

(Sada et al., 2001). The SYK positive cell lines overexpress SYK (L) form while other 

cell lines express low or no SYK (S) (Figure 3.8B).  

Inhibiting SCLC cell line viability by SYK knock-down

! To assess the validity  of SYK and/or FYN as targets in SCLC, we down-regulated 

the expression of these proteins using siRNA in the H69 and H146 cell lines (Figure 

3.8B). siRNA induced 80-90 percent reduction in total protein expression for each of 

these molecules in both H69 and H146 (Figure 3.9A and D; Figure 3.10A and D). We 

assessed viability with automated microscopy, imaging-based methods (Live-dead 

assay, see Methods; images and segmentation for obtaining cell counts shown in  

Figure 3.11). SYK knock-down caused a significant decrease in proliferation rates 

compared to scrambled control in both H69 and H146 (Figure 3.9B and E), while FYN 

knock-down showed little effect (Figure 3.10B and E). The decrease in proliferation was 

in part due to a loss of cell viability, as indicated by increased cell death by Day 5 in 

SYK knock-down cells assessed by ethidium homodimer positivity (Figure 3.9C and F; 
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Figure 3.9: Effect of Syk knock-down in Syk/Fyn positive SCLC cell lines. 
 The SCLC cell lines H146 (A-C) and H69 (D-F) were treated with Syk-specific and control siRNA as 

described in Materials and Methods section. (A, D) The efficiency of inhibition was measured by Western 

blotting on day 3 and 7 post transfection. Syk resolves as two bands, of which the lower is a less-

functional splice variant that lacks 23 amino acids [37]. Band intensity (lower panels) was quantified by 

densitometry in ImageJ. (B, E) Cell proliferation, measured by cell counts as described in Materials and 

Methods section, shows that Syk-siRNA treatment induces statistically significant growth inhibition 

compared to untreated cells and to scrambled siRNA treatment. Asterisks denote overall statistical 

significance of slope as compared to control across the siRNA conditions, as follows: <0.0005 ‘***’ 0.001 

‘**’ 0.01 ‘*’ 0.05 ‘.’. The viability growth curves (from N=4 experiments) statistics were generated from 

slopes of a linear regression model. Multiple comparison of treatments were derived using ANOVA and 

Tukey's method [80]. (C and F) Percentage of dead cells (percent of ethidium homodimer positive cells 

normalized to total cell counts, see Materials and Methods) is significantly higher (H69 p-value < 2.2e-16; 

H146 p-value < 2.2e-16) in Syk siRNA treated cells at day 5, compared to controls. Asterisks denote 

statistical significance measured by paired t-test as compared to control across the siRNA conditions, as 

follows: <0.0005 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’.
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Figure 3.10: Fyn KD has no effect on Fyn and Syk positive SCLC cell lines. 
The SCLC cell lines H146 (A-C) and H69 (D-F) were treated with Syk-specific and control siRNA as 

described in Materials and Methods section. (A, D) The efficiency of Fyn siRNA inhibition was measured 

by Western blotting on day 3 and 7 post transfection. Band intensity (lower panels) was quantified by 

densitometry in ImageJ. (B, E) Cell proliferation, measured by cell counts as described in Materials and 

Methods section, shows that Fyn-siRNA treatment shows no growth inhibition compared to untreated 

cells and to scrambled siRNA treatment. Asterisks denote overall statistical significance of the slope as 

compared to control across the siRNA conditions, as follows: <0.0005 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’. The 

viability growth curves (from N=4 experiments) statistics were generated from slopes of a linear 

regression model. Multiple comparison of treatments were derived using ANOVA and Tukey's method 

(Kuehl, 2000). (C and F) Percentage of dead cells (percent of ethidium homodimer positive cells 

normalized to total cell counts, see Materials and Methods) in Fyn siRNA treated cells at day 5, compared 

to controls. Asterisks denote statistical significance measured by paired t-test as compared to control 

across the siRNA conditions, as follows: <0.0005 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’.
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Figure 3.11: Viability assay measurements using Cellavista high-throughput imaging microscope.
(A) Individual cell populations and segmentation performed by Cellavista Roche viability kit algorithm. The 

colors denote the different dyes used for measurement of total cell count (blue, Hoescht 33342 – left 

image), viable cell count (green, calcein AM – center) and dead cell count (red, ethidium homodimer - 

right). Representative viability assay images of H146 (top panel) and H69 (bottom panel) - (B) No 

treatment, (C) Scrambled and (D) SYK siRNA. SYK knock-down decreases cellular viability via increased 

death in both H69 and H146.
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Figure 3.10C and F).  Together, these data suggest that SYK is a candidate therapeutic 

in SYK/FYN-expressing SCLCs.

Discussion

! We report several findings of immediate translational value for SCLC: 1) 

derivation of an SCLC-specific hub network (SSHN) that classifies SCLC from other 

lung cancers, including the closely related neuroendocrine tumors; 2) validation of the 

SSHN classifier across many data types, including expression microarrays from multiple 

platforms, RNAseq and shotgun proteomics; 3) co-varied expression of 2 oncogenes, 

SYK and FYN, in a subset of SCLC tumors and cell lines; and 4) identification of SYK 

as a candidate biomarker and therapeutic target for SCLC.

! The increasing availability of large gene expression cancer datasets presents 

unprecedented opportunities for translational advances. Challenges in data analytics, 

however, must be met. For instance, the predominant metric of differential gene 

expression is silent on disease relevance of identified gene products, since it provides 

no measure of their functional relatedness (Khatri et al., 2012), and its resulting 

signatures do not replicate well across datasets (Shi et al., 2010; Subramanian and 

Simon, 2010). The number of potential therapeutic targets (e.g., ranked by differential 

expression scores) is large and expanding, but target prioritization is hampered by lack 

of functional insight. In contrast, analyses based on gene co-expression algorithms 

perform well across data types (Shi et al., 2010) and inspire working hypotheses since 

their results resemble hierarchical signaling networks. Accordingly, the SCLC-specific 

co-expressed gene classifier network SSHN we report here is robust across datasets 
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encompassing different types of lung cancer (Figure 3.3 and 3.4). In particular, despite 

being derived from gene expression microarray data, the SSHN performed well on 

proteomic lung cancer specimens. Note that each of the datasets tested were obtained 

from independent SCLC patient cohorts. To our knowledge, this is the first report of 

signature preservation on a shotgun proteomic SCLC dataset. Other co-expression 

based approaches have also been successfully applied in other cancers such as breast 

cancer (Shi et al., 2010).

! Neuroendocrine lung tumors, to which SCLC belong, are sometimes difficult to 

sort out based solely on the current World Health Organization (WHO) criteria of 

morphology and mitotic rate, warranting searches for additional biomarkers (Nicholson 

et al., 2002; Rekhtman, 2010; Renshaw et al., 2005). The SSHN signature begins to 

address this need, e.g., distinguishing SCLC that stain negative for neuroendocrine 

markers such as synaptophysin and chromogranin A (~25%) (Hiroshima et al., 2006; 

Nicholson et al., 2002) from NSCLC, and mixed SCLC-NSCLC from NSCLC. However, 

because of the very small number of LCNEC samples studied by gene expression 

analysis, we cannot exclude the possibility  that other LCNEC tumors would co-cluster 

with SCLC.  In addition, due to the lack of larger SCLC datasets and the limited clinical 

information on the available SCLC datasets, careful validation of our results, including 

outcome associations, is definitely warranted.

! While SSHN as a whole is an effective SCLC classifier, its individual component 

genes (or gene products) may or may not be expressed in a particular tumor. This is not 

at all surprising, due to the expected inter-tumor heterogeneity within a particular 

histological type (Nicholson et al., 2002). Our data suggest that within the SCLC cluster 
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defined by SSHN, a further subdivision between SYK/FYN-positive and –negative may 

be informative. A few specimens classified as SCLC by pathological and clinical criteria, 

did not cluster with SSHN-defined SCLC (Figure 3.3 and 3.4A). Whether these are 

misdiagnosed or represent disease heterogeneity or different stage of tumor 

progression remains to be tested.

! Receptor and non-receptor tyrosine and serine-threonine kinases are effective 

actionable targets in cancer. SSHN contains twenty  kinases and growth factor 

receptors, including TTK, TLK2, NEK2, CDK4, FYN, PLCG1, SYK (Table 3.1). None of 

these were previously reported in SCLC; thus, prioritization strategies are called for. The 

kinases SYK and FYN stand out as potential SCLC targets for several reasons. Besides 

being tightly associated with the SCLC phenotype, they  are already proven as 

candidate targets in other cancers, such as CML (Ban et al., 2008; Buchner et al., 

2009), AML (Hahn et al., 2009), retinoblastoma (Zhang et al., 2012), glioblastoma (Lu et 

al., 2009) and prostate cancer (Cai et al., 2011; Posadas et al., 2009). They also 

activate Focal adhesion kinase (FAK) (Parsons and Parsons, 2004; SADA et al., 1997), 

previously shown by our group to be amplified, overexpressed and constitutively 

activated in SCLC (Ocak et al., 2010; 2011). They play key roles in anchorage 

independence, survival and oxidative stress response by activating multiple 

downstream pathways including AKT and ERK kinases (Mócsai et al., 2010; Saito et al., 

2010). 

! We found that SYK knock-down significantly decreased viability and growth rates 

in SYK/FYN-positive SCLC via increased cell death (Figure 3.9), suggesting that SYK 

plays an oncogenic driver role and that inhibitors could potentially be used in SYK-
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positive SCLC, alone or in combination with chemotherapy. Increased cell death was 

also observed in AML via knock-down of SYK (Hahn et al., 2009). Further studies are 

needed to discriminate between overexpression versus activation of SYK in SCLC. 

! Our findings unveil an unsuspected link between SCLC and the biology of B-cell 

leukemias/lymphomas that is worth exploring. The role of SYK in B-cell receptor (BCR) 

initiated tonic signaling both in normal B-cells and lymphomas is well established (Chen 

et al., 2008; Mócsai et al., 2010). Tonic signaling promotes proliferation and survival of 

B-cells. Mice lacking SYK exhibit profound B-cell development deficits, and die 

embryonically from severe hemorrhages, also pointing to indispensable SYK signaling 

in cell types other than B-cells (Cheng et al., 1995). Targeted SYK therapy has been 

advocated in various types of B-cell lymphomas, and specific inhibitors for its kinase 

activity  are already approved such as R406, fostamatinib (Chen et al., 2008; Cheng et 

al., 2011; Friedberg et al., 2010; Riccaboni et al., 2010), opening avenues for testing 

targeted treatment in SCLC. SYK signaling in NE (and possibly SCLC) may be 

associated with oxygen sensing (Buttigieg et al., 2012), but SYK-associated receptor(s) 

in NE or SCLC cells remain to be defined.

! There are several reports of tumor suppressor functions for SYK in several solid 

tumor types, including breast cancer (Coopman et al., 2000), gastric cancer, and 

melanoma (Coopman and Mueller, 2006). Additional data are needed to reconcile these 

seemingly conflicting roles of SYK as oncogene or tumor suppressor. In this regard, it is 

worth noting that in B-cells effects of SYK on survival and proliferation are modulated by 

associated SRC-family kinase members (Woyach et al., 2012). Differential interactions 

of SYK with such kinases in a tumor-specific manner are a possible explanation for the 

96



dual role of SYK as a tumor suppressor in some cancers (Coopman et al., 2000; 

Coopman and Mueller, 2006), and an oncogene in hematologic malignancies (Buchner 

et al., 2009; Hahn et al., 2009) and SCLC. Therefore, an immediate priority is to 

determine the type of receptor SYK is associated with in SCLC, and its possible 

regulation by SRC-family kinases such as FYN.

! In agreement with our results, in the Cancer Cell Line Encyclopedia (Barretina et 

al., 2013), 35 out of 49 SCLC  cell lines tested overexpress SYK (> 2 fold of the median 

centered intensity values). In another recent large dataset 33 of 53 SCLC cell lines 

overexpress SYK (Garnett et al., 2012). We confined our experimentation to SCLC 

cultured cell lines and knock-down of SYK expression. While our data are encouraging, 

future studies should address applicability  to spontaneous (Sutherland et al., 2011) or 

human xenotransplant mouse models of SCLC (Daniel et al., 2009). Furthermore, it 

remains to be seen whether inhibition of SYK-kinase activity, in addition to expression, 

elicits a death response in SCLC.

! It is worth noting that to date no SYK mutations have been reported in any tumor 

type. SYK gene fusions or translocations have been reported in hematologic 

malignancies, in which a driver function for overexpressed SYK has also been 

postulated (Kuno, 2001; Mócsai et al., 2010; Rigby et al., 2009). On the other hand, 

SYK negative tumors have hypermethylation and loss of function of the SYK gene 

(Yuan et al., 2001). Thus, the biology of SYK-positive SCLC tumors may be potentially 

distinct from SYK-negative SCLC tumors, with differences due to stages of progression, 

or divergence of transforming mechanisms. 
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! SYK signaling functions are mediated in concert with SRC-family kinases 

(Mócsai et al., 2010). This subject is not fully understood and, in particular it is not clear 

to what extent various SRC-family kinases are interchangeable in this role within a 

given cell type. It is perhaps not coincidental that a SRC-family kinase, FYN, was 

identified in the blue module by WGCNA and that a strong co-expression correlation 

was found in SCLC TMAs and cell lines (Figure 3.7 and 3.8). Byers.et.al also reported 

activation of SRC-family  kinases in SCLC assessed via reverse phase protein arrays 

(RPPA) (Byers et al., 2012). On the other hand, FYN kinase inhibition had no effect on 

SCLC cell line survival (Figure 3.10). Clarifying the SYK-FYN signaling connection in 

SCLC, and the possible redundancy of SRC-family kinases may open avenues to 

productively deploy inhibitory combination of SYK and FYN targeted therapy.

! In the TMA patient dataset, we detected 2 groups of SCLC  based on SYK/FYN 

expression alone (Figure 3.7). Admittedly, this dataset is too small to reach conclusions, 

highlighting the need for larger patient populations. Nonetheless, our observations raise 

the possibility  of distinct treatment strategies in SYK-positive SCLC tumors, by analogy 

to lung tumors overexpressing EGFR, or HER2+ breast cancers, whose response to 

targeted therapy dramatically improves the outcome (Hirsch, 2003; Hirsch et al., 2006).  

! Here we have implemented an alternative strategy  to large scale sequencing, 

based on a systems view of signaling networks provided by gene co-expression 

analysis. We respectfully submit that this approach can provide useful translational 

insights in the biology of specific cancer types.
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CHAPTER IV

DISTINCT TRANSCRIPTIONAL PROGRAMS DRIVE PHENOTYPIC 

HETEROGENEITY IN SMALL-CELL LUNG CANCER

Abstract

! While small-cell lung cancer (SCLC) is the most lethal amongst lung cancers, it 

lacks targetable single mutant/amplified oncogenic drivers, and is monolithically  treated 

with standard combination chemotherapy (cisplatin-etoposide). Here, we have identified 

two anti-correlated modules of co-expressed genes that together provide a framework 

for a heterogeneous phenotypic state space in SCLC. Mathematical modeling of a 

common transcriptional network regulating these modules predicts a discretization of 

the seemingly continuous phenotypic state space of SCLC into two distinct attractor 

basin clusters – neuroendocrine and mesenchymal. Each cluster of attractors is defined 

by specific stable activation states of neuroendocrine, epithelial and mesenchymal 

transcription factors (TFs). These attractor states were experimentally  validated via 

differences in protein expression of TFs, surface markers, kinases, and signaling in 

SCLC cell lines and patient samples. At a single-cell level, multidimensional flow 

cytometry analysis reconfirms phenotypic heterogeneity in SCLC as two discrete stable 

attractors. Collectively, a mixed bioinformatic-modeling-experimental approach defines 

heterogeneity  in human SCLC as distinct phenotypic attractor states - neuroendocrine 

and mesenchymal, and provides a foundation for guiding personalized treatment 

strategies for SCLC patients in the future. 
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Introduction

! Small-cell lung cancer (SCLC) comprises 15-20% of all lung cancers, but exhibits 

the worst survival statistic (less than 5% at 5 years). SCLC occurs almost exclusively in 

heavy smokers and close to 100% of patients present inactivation or chromosomal loss 

of tumor suppressors p53 and Rb  (Peifer et al., 2012). Genetic mouse models of SCLC 

have been generated by Cre-mediated knockout of p53 and Rb in the Pulmonary 

NeuroEndocrine Cells (PNEC), supporting the hypothesis that PNEC is the cell of origin 

for SCLC (Calbo et al., 2011; Park et al., 2011a; Sutherland et al., 2011). Standard of 

care of SCLC  has remained unchanged for decades and consists of combination 

chemotherapy comprising of cisplatin and etoposide and prophylactic cranial irradiation, 

which increases overall survival from 6 weeks to 6-8 months (Fischer et al., 2007; Hann 

and Rudin, 2007). Typically, SCLC patients do not undergo surgical resection leading to 

a lack of availability of tissue specimens for ‘omics’ studies. Nonetheless, based on 

available datasets, several attempts have been made to make inroads into actionable 

molecular drivers of SCLC such as PARP1 (Byers et al., 2012), SOX2 (Rudin et al., 

2012), FAK (Ocak et al., 2010) and SYK (Udyavar et al., 2013). However, thus far, 

clinical trials of single oncogenic driver targeted therapeutics in SCLC  have been 

disappointing (Rossi et al., 2008). Clearly  there is an urgent need for fundamental 

insights into the biology of this disease that would lead to novel treatment strategies. 

! We previously used a gene co-expression network-based approach to begin 

identifying subsets of SCLC with the hope of uncovering personalized targeting 

strategies (Udyavar et al., 2013).  Here we define these subsets in terms of transcription 

factor networks that regulate them and then build a theoretical framework that describes 
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a phenotypic landscape for SCLC. This landscape is characterized by stable attractors, 

each defined by alternative steady states of a SCLC-specific core transcriptional 

regulatory network. This approach is inspired by recently proposed concepts in 

theoretical systems biology  (Huang et al., 2012; Huang et al., 2013; Wang et al., 2010; 

Wang et al., 2011; Bhattacharya et al., 2011) that merge dynamical systems theory of 

attractors (whose origin can be traced to Poincaré and Lyapunov), with Waddington’s 

epigenetic landscape whereby differentiating cells roll down an energy landscape into 

distinct basins. Here we show that the attractor theory can usefully describe phenotypic 

heterogeneity  in human SCLC, in ways that may lead to actionable strategies for 

treatment. 

Results

Anti-correlated gene co-expression networks suggest a heterogeneous 

phenotypic state space in human SCLC.

! Weighted gene co-expression network analysis (WGCNA) identifies networks of 

co-expressed genes (termed modules by WGCNA) specific to a phenotype of interest 

from a gene expression dataset (Langfelder and Horvath, 2008; Parikshak et al., 2013; 

Voineagu et al., 2012; Wang et al., 2011a). Using WGCNA, we previously defined a 

SCLC-specific network signature conserved at the genomic and proteomic level in both 

cell lines and patients (Udyavar et al., 2013). This SCLC-specific signature 

unequivocally  distinguishes SCLC from all other lung cancer types and normal lung. 

However, it also provided indications of SCLC inter-tumor heterogeneity as judged by 

graded expression of signature genes from specimen-to-specimen. Since available 
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SCLC patient specimens are too limited to support a statistically significant clustering 

analysis, to further investigate SCLC heterogeneity we applied WGCNA to a well 

characterized collection of 53 SCLC cell lines from the Cancer Cell Line Encyclopedia 

(CCLE) database (Barretina et al., 2013). WGCNA identified 14 modules, each labeled 

by color and containing an exclusive set of co-expressed genes (Figure 4.1A). The Blue 

module contains genes that overlap  by 58% with the SCLC-specific modules previously 

established from tumor specimens  (Chapter III) (Udyavar et al., 2013), supporting its 

translational relevance. 

! A heat-map (Figure 4.1B, left panel) of the Blue module genes shows differential 

expression across the panel of 53 SCLC cell lines, suggesting phenotypic 

heterogeneity. Furthermore, expression of genes from the Turquoise module appears to 

be anti-correlated (Figure 4.1B, right panel). The anti-correlated pattern of Blue and 

Turquoise modules was quantified by comparing their first principal components, or 

module eigengenes (MEs) shown as barplots (cor: -0.86, p-value: 1.6e-16) (Figure 

4.1B).

! Gene co-expression networks are derived from WGCNA using correlations 

between genes, agnostic of the underlying biology. Co-expressed genes are highly 

correlated with one another, possibly participate in similar pathways. EnrichmentMap 

and Gene Ontology (Merico et al., 2010) analysis on the Blue and Turquoise module 

(See Chapter II) revealed that the Blue module is enriched in neuroendocrine and 

epithelial differentiation processes (namely, neuronal differentiation/development, 

synaptic assembly, neurotransmission), while the Turquoise module contains pathways 
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 Figure 4.1: Identification of anti-correlated gene co-expression networks that delineate a 
phenotypic state space in human SCLC. 
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Figure 4.1: Identification of anti-correlated gene co-expression networks that delineate a 
phenotypic state space in human SCLC.  
(A) Unsupervised hierarchical clustering analysis of the 53 SCLC cell lines from CCLE dataset identifies 

14 modules of co-expressed genes (indicated by the black lines), given by the various colors below the 

dendrogram as defined by WGCNA method. (B) Heatmap view of the Blue and Turquoise module genes 

(rows) across 53 SCLC cell lines (columns). Eigengenes of the two modules (ME-Blue and ME-

Turquoise) effectively summarize the expression of the modules as a whole in each SCLC cell line shown 

as a barplot below the heatmaps for the respective modules. Linear projection of the modules given by 

ME-Blue and ME-Turquoise shows high expression of ME-Blue on 1 end and ME-Turquoise on the other 

indicating anti-correlation in each sample (cor: -0.86, p-value: 1.6e-16).
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involved in mesenchymal phenotype and epithelial-mesenchymal transition (TGFbeta, 

NFKB, cytokine signaling, cell-matrix adhesion) (Figure 4.2 and 4.3A). To compare the 

Blue and Turquoise module pathways to published signatures of established neuronal 

and mesenchymal tumor subsets, we performed gene-set enrichment analysis (GSEA) 

with published signatures of proneural, proliferative and mesenchymal subtypes of 

gliomas (Verhaak et al., 2010). The proneural and mesenchymal glioma subtype 

signatures were enriched in the ME-Blue high cell lines and the ME-Turquoise high 

SCLC  cell lines respectively, thus validating the neuroendocrine (NE) and 

mesenchymal-like (ML) phenotypic state enrichment in the 2 networks (Figure 4.3B). 

Interestingly  the proliferative glioma subtype signature was not significantly enriched in 

either of the 2 modules (p-value >0.1, data not shown). Network view of Blue (Figure 

4.4A) and Turquoise (Figure 4.4B) networks also highlights the well-known 

neuroendocrine/epithelial and mesenchymal/EMT phenotype hubs (highly connected 

genes) respectively  enriched in these networks. Based on these results, we 

hypothesized that the Blue-Turquoise module anti-correlated gene expression is 

reflective of a heterogeneous SCLC phenotypic state space composed of NE and ML 

states, and set out to test this possibility  by a combined theoretical and experimental 

approach.

State-space analysis (Boolean model simulations) of transcription factor network 

dynamics predict phenotypic attractor states in SCLC.

! Differentiated phenotypic states are generally  controlled by regulatory networks 

of transcription factors (TFs) that drive expression of co-regulated target genes (Huang,
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Figure 4.2: Differentiation pathway differences between the Blue and Turquoise modules given by 
comparative pathway enrichment analysis. 
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Figure 4.2: Differentiation pathway differences between the Blue and Turquoise modules given by 
comparative pathway enrichment analysis.  
This figure describes comparative enrichment analysis of Gene Ontology (GO) pathways enriched in Blue 

versus Turquoise networks using BINGO  and EnrichmentMap in Cytoscape®. Blue and turquoise 

modules show statistically significant differences in metabolism, signaling, stress response, adhesion, 

differentiation, transcription, proliferation and apoptosis. Nodes denote the enriched GO  categories. 

Edges denote the connections between the pathways, Blue and Turquoise colors of the edges indicate 

pathway groups enriched specifically in Blue or Turquoise modules respectively. (A) and (B) show 

differences in differentiation and signaling pathways respectively in the 2 modules. Blue module shows 

enrichment for epithelial and neuronal development and differentiation, neuronal signaling, axon 

guidance, neurotransmitter secretion and cell-cell signaling. Turquoise module shows enrichment for 

myeloid and neural crest differentiation, MAPKK, JAK-STAT, NFKappaB, TGFBeta, cytokine signaling 

cascades (TNF, VEGF, IL-6, IL-8) that are known to be associated with a mesenchymal/EMT phenotype.
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Figure 4.3: Pathway expression of the Blue and Turquoise modules given by comparative pathway 
enrichment analysis. 
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Figure 4.3: Pathway expression of the Blue and Turquoise modules given by comparative pathway 
enrichment analysis.  
(A) Summarized gene expression of statistically significant differentiation and signaling pathways 

(obtained by mean of the expression values of the genes within a pathway, in columns) across the 53 

SCLC cell lines (ordered by ME-Blue, in rows) in the 2 modules that were identified in Figure 4.2. Blue 

module shows enrichment for neuronal signaling, axon guidance, neurotransmitter secretion and cell-cell 

signaling. Turquoise module shows enrichment for MAPKK, JAK-STAT, NFKappaB, TGFBeta, cytokine 

signaling cascades (TNF, VEGF, IL-6, IL-8) that are known to be associated with a mesenchymal/EMT 

phenotype.  (B) GSEA enrichment analysis of gene signatures of proneural and mesenchymal subtypes  

of glioma in ME-Blue high vs ME-Turquoise high SCLC cell lines.
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Figure 4.4: Blue and Turquoise module network topology given by WGCNA. 
This figure shows nodes within the (A) Blue and (B) Turquoise modules defined via WGCNA while edges 

denote a topological overlap  measure (TOM). TOM is a metric for the degree of co-expression/correlation 

between a pair of genes (Langfelder and Horvath, 2008). If the TOM is significant, an edge is drawn 

between a pair of genes. The thickness of the edges denotes high TOM (> 0.1). The size of the node and 

its font denotes module eigengene values for the respective modules, higher the value – larger the size of 

the node and its font.  The nodes in red denote well known and novel hub  biomarkers of neuroendocrine, 

epithelial and mesenchymal differentiation.
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2011). An appealing theoretical framework is that a differentiated phenotypic state may 

be a stable ‘attractor’ arising from TF network dynamics (Huang, 2012). Specifically, 

within this framework the SCLC phenotypic states would arise as stable attractors from 

the dynamics of a network comprised of TFs that are hubs of the Blue and Turquoise 

networks. 

! Therefore, we used the ARACNe algorithm to predict the TFs that correlate with 

genes expressed in the Blue and Turquoise modules, respectively. We first generated a 

SCLC-specific TF regulatory  network using ARACNe where TFs-nonTF interactions are 

inferred using a mutual-information based method (Figure 4.5A). Overlap  of this 

transcriptional regulatory network with the previously established SCLC NE and ML 

signatures (Figures 4.2, 4.3 and 4.4) was tested using global master regulator analysis 

or Fischer’s exact test (Lefebvre et al., 2012) of the Blue and Turquoise genes, 

revealing 73 significant (FDR < 0.05) master regulators of the Blue network, 184 TFs 

(FDR < 0.05) of the Turquoise network and 23 common regulators (FDR < 0.05) of the 2 

networks (Figure 4.5B). Interestingly, most of the master regulators of the Blue aka NE 

network showed positive and negative correlation with its target genes from the Blue/NE 

and Turquoise/ML modules respectively, while the opposite trend was observed in the 

Turquoise module master regulators (Figure 4.5B and C). This suggested that the 

master regulators differentially regulate the NE and ML networks, underscoring the anti-

correlation between these 2 networks.

! Furthermore, we independently  validated the ARACNe predicted regulatory TFs 

with CHIP-Seq and TF-target binding site prediction and literature databases (Chapter 

II). With these filtration steps, we identified a list of 76 
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Figure 4.5: Identification of transcription factors that regulate SCLC phenotypic states.
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Figure 4.5: Identification of transcription factors that regulate SCLC phenotypic states.
(A) Overview of ARACNe analysis. To identify a global SCLC transcriptional regulatory network, ARACNE 

analysis (based on mutual information between genes) was performed on 53 SCLC cell lines and 18990 

genes in the CCLE dataset. The analysis yielded a network of 8706 nodes (genes) and 27224 edges (see 

Supplementary section). This core SCLC network was analyzed using master regulator analysis to 

identify top  transcription factors (TF) that act as master regulators of either the neuroendocrine or 

mesenchymal networks (identified via WGCNA). These TFs were independently validated using literature 

and transcription factor ChIP-Seq and TF-binding site prediction databases, leading to a final list of 76 

TFs. Only the most variant TFs across the SCLC cell lines were selected for building the boolean model 

network. (B) Correlation heatmap plot of individual 73 Blue and 184 Turquoise module and 23 common  

TF regulators (columns) with 1179 Blue and 3471 Turquoise module genes (rows). Yellow-orange-red 

indicates positive correlation suggesting positive target gene regulation while green-blue indicates 

negative correlation suggesting negative target gene regulation. (C) Density histogram of the Blue/

Turquoise TF regulators and correlation with its targets in the Blue or Turquoise modules. This suggests 

that a particular TF differentially regulates the 2 modules. (D) ARACNE network view of the top  TFs 

shown in B  and C (identified via master regulator analysis) that regulate the Blue, Turquoise or both 

modules. The node connectivity of a TF is given by its bigger size indicative of the number of targets 

regulated by the TF. Edges are derived from ARACNE mutual information between the nodes given its co-

expression. 
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likely  TF regulators of NE and/or ML differentiation. Finally, to identify TFs which play an 

active role in maintaining the phenotypic differences between the SCLC  cell lines, we 

considered only heterogeneously  expressed TFs (median absolute deviation above the 

50th percentile) yielding a final list of 38 TFs that we used to build a boolean network 

model for SCLC (Figure 4.6). We then extracted interactions between these TFs from 

manual curation of literature, ChIP-X databases (ChEA (Lachmann et al., 2010), 

ENCODE (Landt et al., 2012) and TF-binding motif predictions (TRANSFAC (Matys et 

al., 2003), JASPAR (Mathelier et al., 2014)). 

! With this information, we constructed a directed network (see methods) 

consisting of 38 SCLC TFs (Figure 4.6), 33 of which contribute to a complex feedback 

structure, while the remaining 5 serve as sink nodes (only  incoming and no outgoing 

interactions) . Because the 5 sinks are incapable of contributing to dynamic regulation of 

the network, they are excluded from remaining analyses. Direct positive and negative 

feedback loops may be visualized by splitting the network into two subsets of nodes 

such that each side has a minimum number of negative feedback loops within it, and a 

maximum number between the two sides (Figure 4.7A). The left subset was enriched for 

TFs known to control neuroendocrine and epithelial phenotype, the other for 

mesenchymal/EMT TFs. The dynamics of this TF network can be simulated using 

Boolean logic (Saadatpour et al., 2010; Wang et al., 2012), which represents a coarse-

grained approximation wherein TFs are in one of 2 discrete states – ON or OFF. This 

approach has been successfully applied to study TF network dynamics and identifies 

stable attractors (Choi et al., 2012; Davidich and Bornholdt, 2008; Krumsiek et al., 2011; 

Villani et al., 2011). 
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Figure 4.6: Boolean network model of SCLC-specific transcription factors.
After ARACNE analysis and filtration with databases, there were 76 TF regulators of the Blue and 

Turquoise modules. Selection of the most variant genes across the 53 SCLC cell lines using the median 

absolute deviation metric, the final list of TFs used for Boolean modeling was 38 TFs shown in this figure. 

Positive and negative interactions between the 38 TFs are indicated by the green and red colored lines 

respectively, derived from literature and publicly available TF-TF interaction databases (see Materials and 

Methods).
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Figure 4.7:  Establishment of dynamic transcription factor network attractor states corresponding 
to distinct SCLC differentiation states. 
(A) Shows a Boolean network containing feedback loops between 28 core transcription factor (TF) 

regulators identified via TF enrichment analysis of the Blue and Turquoise modules as described in text 

and methods. Edges denote a TF binding to the promoter region of its target TF. Green edges denote 

activation while red edges denote inhibition. (B) Boolean TF network dynamics simulations identified 56 

stable phenotypic attractor states (columns). At these states, the network has reached a balance point 

where none of the transcription factors are being induced switch on or off, given the active set of TFs. 

Hierarchical clustering suggests there are 4 distinct groups of attractor states indicated by the purple 

squares along the diagonal and numbers 1-4. (C) A score is computed to quantify how well each attractor 

(column) correlates with each cell line (row). High correlation of the left- and right-most attractor clusters 

with the mesenchymal (ML) and neuroendocrine (NE) cell lines suggests that these theoretically 

predicted attractors may represent these distinct phenotypic states. (D) Correlation between attractors 

and SCLC patient samples, (E) TF status (ON/OFF) for each of the 56 stable attractor states. Grey 

denotes TF is ON (1), while white denotes OFF (0) in a particular attractor state. (F) Conceptual 

illustration diagram of attractor state landscape in human SCLC. 
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! Using a random order asynchronous update scheme (see methods section), we 

found 56 stable fixed-point but no oscillating attractors (Figure 4.7B and E), consistent 

with the expectation that cell phenotypic states should be steady. Unsupervised 

hierarchical clustering segregates the 56 attractors into four distinct clusters (Figure 

4.7B), each characterized by  a common ON-OFF configuration of the 33 TFs (Figure 

4.7E). The leftmost (attractors 27 to 49) and rightmost (attractors 8 to 43) clusters are 

distinguished by mutually  exclusive expression of mesenchymal/EMT (MYC, NFKB1, 

SMAD3), and neuroendocrine (INSM1, POU3F2, SOX2, SOX11) and epithelial (FOXA2, 

OVOL2) TFs respectively. This suggests that the left and right clusters might represent 

neuroendocrine (NE) and mesenchymal (ML) attractors, respectively. Interestingly, we 

also identified novel TFs such as MITF, TEAD4, and TCF12, MYB, LEF1, ETS2 to be 

specifically associated with the left and right clusters respectively. 

! To score how well these predicted attractors describe the experimentally 

measured cell line TF expression we calculated Pearson's r correlation coefficient for 

each attractor with each cell line. Because the model prediction limits TF expression 

values to 0 or 1, the expression data was linearly  scaled such that each transcription 

factor ranged from 0 in the cell line with minimum expression to 1 in the cell line with 

maximum expression. Similar results were obtained when we performed this scaling 

across only  the SCLC datasets (which we report here) and across all of the CCLE cell 

lines (data not shown). The high correlation of the left cluster of attractors with the 

mesenchymal cell lines, and the right cluster with the neuroendocrine cell lines confirms 

that the simulated attractors accurately reflect the biological data (Figure 4.7C). Similar 
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results were obtained by comparing attractors with SCLC patient data, suggesting that 

the insights generated by the model may have clinical significance (Figure 4.7D).

! The Boolean model simulations effectively  distributes SCLC  cell lines and 

patients into two discrete phenotypic states, schematically  visualized in a conceptual 

attractor landscape (Figure 4.7F). These two phenotypic states are driven by the 

dynamic feedback regulation of a key TF network existing in distinct network states 

summarized in Figure 4.6E. 

Consensus clustering analysis orthogonally/independently validates two distinct 

transcriptional subtypes in SCLC cell lines and patients.

! Using WGCNA, we identified clusters of genes whose anti-correlated expression 

described a spectrum across SCLC cell lines that spanned from high neuroendocrine 

(ME-Blue high) to high mesenchymal-like (ME-Turquoise high) expression patterns. 

Boolean network analysis identified two discrete clusters of phenotypic attractor states 

in SCLC, distinct from the continuous spectrum of the WGCNA module eigengenes. To 

further verify the existence of these SCLC phenotypic states by an orthogonal 

approach, we performed consensus clustering analysis (Perez-Moreno et al., 2012; Zhu 

et al., 2013) on the 53 SCLC cell lines (Barretina et al., 2013). to test the continuous/

discrete nature of these phenotypic states. We limited the analysis to genes from the 

Blue and Turquoise modules to reduce noise unrelated to the phenotypic heterogeneity.

! Unsupervised consensus clustering revealed that the SCLC cell lines can be 

naturally subdivided into two clusters based on the cumulative distribution function 

!
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(CDF) curves (Figure 4.8A). This is also illustrated by the heatmaps (Figure 4.8B) where 

k=2 shows the least amount of inter-cluster instability. To verify that these results were 

present in patient samples as well, the analysis was repeated for an independent 

dataset of SCLC patients (Clinical Lung Cancer Genome Project (CLCGP)Network 

Genomic Medicine NGM, 2013) where two clusters were robustly  identified given by the 

CDF and heatmaps (Figure 4.9).

! These data strongly suggest the presence of two distinct NE and ML 

transcriptional subtypes in human SCLC. To our knowledge, this is the first report of 

phenotypically distinct transcriptional subtypes in human SCLC. We next proceeded to 

seek experimental validation for these theoretical and bioinformatic predictions that 

SCLC is comprised of two phenotypic states, NE and ML.

Experimental validation of heterogeneous phenotypic state space of SCLC.

! To validate the boolean model-predicted TF ON/OFF configurations characteristic 

of the two discrete phenotypic states (Figure 4.10A), we first compared the gene 

expression status of each TF in the NE and ML transcriptional subtypes defined by 

consensus clustering (Figure 4.10B and C). As predicted by the model, the NE TFs 

were expressed at a higher level in NE cell lines than ML cell lines and vice versa 

(Figure 4.10B and C). Next we experimentally measured expression of 10 out of 33 TFs 

in SCLC cell lines (Figure 4.10D and E) that were representative of the network state 

configurations driving the two attractor states (Figure 4.10A). Patterns of TF protein 

expression were consistent with the model predictions in cell lines (Figure 4.7C and E). 

That is, all of the cell lines that correlated with the NE cluster, did in fact express the TFs 
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Figure 4.8: Validation of the SCLC phenotypic states in cell lines using independent consensus 
analysis.



Figure 4.8: Validation of the SCLC phenotypic states in cell lines using independent consensus 
analysis. 
Consensus clustering analysis of the 53 SCLC cell lines using the Blue and Turquoise module genes. 

Clustering was performed using k-means with 1 - spearman correlation as the distance metric. 

Consensus clustering was computed using 80% sample and feature resampling. (A) shows the 

cumulative distribution curves for various values of k (k=2 to k=15). A good fit is identified by having a 

highly horizontal CDF. (B) Consensus cluster matrix heatmaps are shown for k=2 to k=15. Across 1000 

iterations, the frequency that any pair of two cell lines are allocated to the same cluster is calculated and 

scaled from 0 (white) if they never cluster together, to 1 (blue) if they always cluster together. Since higher 

numbers of clusters will trivially produce a horizontal CDF, these data most strongly support 2 subtypes in 

SCLC.
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Figure 4.9: Patient dataset verification of SCLC phenotypic states using unsupervised consensus 
clustering analysis.



Figure 4.9: Patient dataset verification of SCLC phenotypic states using unsupervised consensus 
clustering analysis.
Consensus clustering analysis of the 53 SCLC cell lines using the Blue and Turquoise module genes. 

Clustering was performed sampling 80% of the samples and genes using k-means and (1-spearman 

correlation) as the distance metric. (A) shows the cumulative distance function curves at various k values 

(k=2 to k=15). (B) Consensus cluster matrix heatmaps identified at k=2 to k=15. During 1000 iterations of 

this algorithm, prediction of the patients allocated to various clusters is calculated. Each consensus 

cluster indicates the frequency of samples being in the same group at a particular k value. Blue indicates 

that the cell lines were always in the same cluster in every iteration, while white denotes that the cell lines 

were never in the same clusters. These data suggest that 2 subtypes exist in SCLC patients as observed 

in cell lines.  
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Figure 4.10:  Experimental validation of TF network states in human SCLC.  
(A) shows the network states that drive NE (top) or ML (bottom) differentiation. The TFs are labeled grey if 

they are active in the boolean model attractor state or white if inactive. (B) and (C) show heatmap  and 

boxplots denoting gene expression of the TFs that are part of the boolean network model and in the NE 

and ML cell lines as defined by the consensus clustering and WGCNA. The top  and bottom panels denote 

NE and ML TFs respectively in Panel C. (D) and (E) Protein validation of the TF network states in SCLC 

cell lines using western blots and the quantification of the chemiluminescence bands using ImageJ where 

NE cell lines are characterized by expression of ASCL1, OVOL2, SOX2, LEF1 and FOXA2 while the ML 

cell lines are characterized by c-MYC, NFKB1, MITF and ZEB1. This validates the network state model 

predictions of the 2 attractor states. (F) Validation of TF expression in 10 SCLC patient samples and 2 

normal samples using western blot, indicating that these TFs are also expressed in SCLC patients. 
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that were used to define this cluster by Boolean simulations (Figure 4.7C) and not 

mesenchymal TFs. Likewise, the cell lines correlating with the mesenchymal attractor 

cluster expressed mesenchymal, but not neuroendocrine TFs. Similar patterns of 

expression of the NE and ML TFs were observed in SCLC patients at gene expression 

level from the 28 SCLC  patient subtypes defined by consensus clustering and modeling 

(Figure 4.10F). Independent validation of TF protein expression in 10 SCLC patient 

whole-tumor lysates were predictive of NE or ML phenotypic states (Figure 4.10G). 

! We further tested the existence of these phenotypic states experimentally by 

several independent orthogonal approaches. Since the Turquoise module is enriched 

for cell-matrix adhesion and migration pathways (Figure 4.2 and 4.3A), it raised the 

possibility of differential adhesion among the 2 SCLC phenotypes. Accordingly, 

neuroendocrine (NE) SCLC cell lines grow in culture as multicellular suspension 

aggregates (CORL51, NCI-H2141, NCI-H146), while the ML cell lines (ME-Turquoise 

high) grow as adherent monolayers (SW1271, DMS114, NCI-H841) (Figure 4.11A). 

! We then characterized the cell lines by expression of well-established biomarkers 

using flow cytometry, focusing on surface receptors, kinases/enzymes and adhesion 

molecules that are known biomarkers of neuroendocrine, epithelial and mesenchymal/

EMT differentiated states in other cancers. As expected, NE cell lines exhibited high 

expression of several neuronal markers, including NCAM1/CD56 (Marro et al., 2011), 

CADM1 (Thomas et al., 2008) and CD24 (Pruszak et al., 2009) (Figure 4.11B). 
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Figure 4.11:  Phenotypic characterization of distinct attractor states in human SCLC cell lines and 
patients.



Figure 4.11:  Phenotypic characterization of distinct attractor states in human SCLC cell lines and 
patients.
(A) shows brightfield images (20X magnification) of SCLC cell lines in in vitro cultures. The NE cell lines 

show classical SCLC suspension aggregates morphology while ML cell lines grow in adherent 

monolayers. (B) Proteomic validation of NE differentiation markers and kinases (NCAM1/CD56, CADM1, 

L1CAM, CD24, E-cadherin, SYK) and ML differentiation markers (CD44, CD151, CD97, Ephrin A2 

(EPHA2), Zyxin (ZYX) and Vimentin), measured via flow cytometry displayed as heatmap  and boxplots 

across the NE and ML subtypes defined by consensus clustering (Figure 4.8). Flow cytometry values are 

transformed ratios of median fluorescence intensities normalized to the minimum of each column (marker) 

to obtain the color scale. TGFbeta, PI3K and NFKB  pathway activity is high in MC cell lines given by 

constitutive activity of pSMAD2/3, pAKT, and pNFKB p65. (C) Boxplot of representative surface marker 

gene expression in the consensus clustering-defined patient subsets from (Clinical Lung Cancer Genome 

Project (CLCGP)Network Genomic Medicine NGM, 2013). (D) Protein expression of representative NE 

and ML markers across an independent in-house set of 10 SCLC patients, 2 matched normal and 2 

representative NE (NCI-H146) and ML (SW1271) cell lines. Based on the expression of NE vs ML 

markers, the 10 patient tumors can be classified as NE or ML.
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In contrast, ML cell lines were characterized by high expression of mesenchymal 

differentiation markers including CD44 (Park et al., 2010; Ponta et al., 2003), CD151 

(Ke et al., 2011), vimentin (Micalizzi et al., 2010) , vimentin (Polyak and Weinberg, 

2009) and zyxin (Mori et al., 2009; Sperry et al., 2010). Expression of these markers is 

summarized in Figure 4.11B. Interestingly, Spleen Tyrosine Kinase (SYK), previously 

shown to be a functional target in a subset of SCLC (Udyavar et al., 2013), and Ephrin 

A2, a  receptor tyrosine kinase important in glioblastoma stem-cells and EMT (Binda et 

al., 2012; Huang et al., 2013), were expressed in NE and ML SCLC cell line subsets 

respectively (Figure 4.11B).  Expression of CD56 and CD151 was also measured by 

western blot in human SCLC specimens. Of these, 5 were NE, 4 were ML (Figure 

4.11D). Interestingly, two tumors (indicated by asterisks) showed a mixed phenotype 

with expression of both NE and ML markers. 

! Next we measured the activation of signaling pathways that have been 

associated with mesenchymal differentiation and found that TGFbeta, and NFKappa 

beta pathways were constitutively active in the ML cell lines but not the NE cell lines. 

PI3Kinase pathway was constitutively  active in NM and ML cell lines, not NE (Figure 

4.11B). In summary, these orthogonal assays validate the existence of three distinct 

attractors in SCLC. 

Multidimensional flow cytometry analysis captures the existence of 

heterogeneous phenotypic attractors in SCLC.                    

! Attractor states are generally described as phenotypic state space that can be 

occupied by a single cell. To investigate if these phenotypic states can define 
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heterogeneity  at a single cell level within SCLC cell lines, we investigated the 

expression of NE and ML markers at a single-cell level using flow cytometry. Biaxial 

plots of CD56 and CD151, neuroendocrine and mesenchymal markers, respectively, 

capture NE and ML heterogeneity  at the single-cell level within 6 representative cell 

lines (Figure 4.12A). In 3 ML cell lines, CD56-CD151+ cells represented 85, 83 and 72% 

of the population respectively whereas CD56+CD151- cells were less than 1%. In 

contrast, 3 NE cell lines contained 86, 62 and 74% of CD56+CD151- cells and less than 

2% of CD56-CD151+. These results confirm the NE and ML nature of the predicted 

respective attractors.The single cell analyses were then extended to 22 SCLC cell lines  

and 2 SCLC PDXs tested with 3 NE – CD56, CD24 and CADM1, and 3 ML surface 

markers – CD44, CD151 and EPHA2. To perform unsupervised clustering of this high 

dimensional flow cytometry dataset, we applied NbClust algorithm to predict the number 

of k-means clusters that would best capture the heterogeneity  in this dataset. Out of 30 

metrics given by NbClust for optimal cluster prediction, 12 metrics predicted 2 clusters 

and 6 metrics predicted 4 clusters (Figure 4.12B). Unsupervised k-means clustering 

analysis (with k=2) of the 24 SCLC samples showed a high degree of overlap with 

CD56high cells and k-means cluster 2 while cells with CD151high expression 

overlapped with k-means cluster 1 (Figure 4.12C, top  panel). Cells in cluster 1 showed 

co-expression of mesenchymal markers CD151, CD44 and EPHA2 while cells in cluster 

2 exhibited co-expression of neuroendocrine markers CD56, CD24 and CADM1 (Figure 

4.12C and D). Each SCLC cell line and patient derived xenograft (PDX) exhibits 

presence of both NE and ML phenotypic states at various levels (Figure 4.12E), 

although the two PDX NJ-H29 and LX-22 display more heterogeneity than cell lines. 
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Figure 4.12:  Multidimensional single-cell level analysis of attractor state space in SCLC cell lines 
and patients. 



Figure 4.12:  Multidimensional single-cell level analysis of attractor state space in SCLC cell lines 
and patients. 
(A) Biaxial plots of neuroendocrine marker CD56 and mesenchymal marker CD151 measured via flow 

cytometry. Stars indicate the quadrant of the gate where majority of the cells fall. Each of the NE, NM and 

MC cell lines fall in a discrete phenotypic attractor state given by expression of the 2 markers. (B) To 

assess heterogeneity and co-expression of multiple markers at a single cell level, NbClust analysis to 

obtain the optimal number of clusters in the multidimensional flow cytometry data comprising of 3 NE 

markers (CD56, CD24, CADM1) and 3 ML markers (CD44, CD151, EPHA2) was conducted on 22 SCLC 

cell lines and 2 PDX. This analysis based on 30 metrics for optimal cluster determination predicted 2 k-

means clusters in the dataset. Based on this k-means clustering was performed on this data to identify 

the 2 clusters of cell subpopulations. (C) and (D) denote the level of co-expression of NE and ML markers 

in the 2 k-means clusters, where the NE markers CD56, CD24 and CADM1 are co-overexpressed in 

Cluster 2 and the ML markers CD44, CD151 and EPHA2 are co-overexpressed in Cluster 1. 

Representative NE and ML cell lines NCI-H146 and SW1271 cell line plots overlaid on the CD56-CD151 

biaxial plot as heat for different surface markers are shown in panel C. (E) shows the relative distribution 

of the NE (Cluster 2) and ML (Cluster 1) subpopulations in various SCLC cell lines including two PDX 

models LX-22 (1 and 304 - two independent mice) and NJ-H29. 
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Interestingly, the same PDX LX-22 grown two independent mice (#302 and #1) show 

differences in the presence of the NE and ML clusters, underscoring the impact of in 

vivo tumor microenvironment in regulation of heterogeneity. 

! These data strongly suggest that a single cell within a SCLC  cell line and PDX 

can exist in distinct NE or ML attractors where cells in the NE attractor co-express NE 

surface markers and low expression of ML markers, and vice versa for cells in the ML 

attractor. 

Discussion

! Understanding the origins and roles of both inter- and intra-tumor heterogeneity 

remains a significant challenge facing cancer researchers. Molecular and genetic 

subtyping has introduced the promise of personalized therapies, however success has 

been limited in practice by a lack of well classified subtypes and the emergence of 

treatment resistant tumors. Intra-tumor heterogeneity  has been shown in many studies  

to play a significant role in the emergence of resistance in many cancers (Almendro et 

al., 2014b; Chong and Jänne, 2013; Sharma et al., 2010), and developing strategies to 

abrogate these effects will be critical to the future development of more effective 

therapies.

! Our work links statistical and bioinformatic analyses with the theoretical 

framework of epigenetic attractor landscapes in order to provide a unified picture of 

inter- and intra-tumor heterogeneity in human SCLC. It should be stressed that in this 

context, the term “epigenetic” does not necessarily equate with histone modifications 

and chromatin structure, but rather refers more generally to how the regulatory structure 
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imposed by genome can give rise to distinct, stable configuration. This combined 

approach leverages the vast amount of information in public databases to not only 

identify the presence of phenotypic subtypes, but provide mechanistic insights into how 

transcriptional regulatory networks maintain the stability of these distinct states.

! Chemotherapy has remained the standard of care for SCLC patients and 

mechanisms of therapeutic resistance have been well documented. Adhesion to matrix 

elements such as laminin is one of the mechanisms of resistance in SCLC to 

chemotherapy (Hodkinson et al., 2006; Tsurutani, 2005). In 2011 Calbo et.al described 

distinct neuroendocrine and mesenchymal-like phenotypes in mouse p53-Rb null Cre-

transgenic SCLC tumors (Calbo et al., 2011) strongly  suggesting that intra-tumor 

heterogeneity  was a phenomenon seen in SCLC even in genetically  identical mice. We 

further explored this heterogeneity in human derived SCLC cell lines and clinical patient 

samples and identified a set of anti-correlated genes organized into the Blue and 

Turquoise modules. Increased expression of EMT markers such as CD44, NFKB,  

Vimentin, CD151, Zyxin,, and others potentially promote adhesion in the mesenchymal-

like cells, suggesting a clinical significance for these findings.

! SCLC has one of the highest mutation rates amongst all cancers (McFadden et 

al., 2014) and this genomic instability might contribute to the plasticity and diversity of 

cellular phenotypes. However, we find that a modeling approach including only 

epigenetic factors such as changes in transcription factor and marker expression is 

sufficient to capture the observed phenotypic states. We propose that this approach 

describes at a broad level the stable phenotypic states available to a cell, and that 

genomic heterogeneity affects the predilection an individual cell has for one state over 
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another. This interpretation is consistent with previous work describing non-genetic 

heterogeneity  in murine SCLC (Calbo et al., 2011), and our current findings showing the 

existence of subpopulations of neuroendocrine and mesenchymal-like cells within cell 

lines which are overall classified with the opposite phenotype, and in which 

“neuroendocrine” cell lines had mostly neuroendocrine cells, but some mesenchymal, in 

contrast with “mesenchymal” cell lines which contained predominantly mesenchymal 

cells, but subpopulations of neuroendocrine.

! Developing dynamical models of gene regulatory networks and signal 

transduction pathways promises to lead to new insights in systems level biological 

control and intervention. However such models often suffer from a dearth of 

experimental data with which to calibrate precise trajectories, partly due to the 

requirement of time course information for all relevant molecular species in order to 

determine kinetic parameters. Our work uses abundant “snapshot” data such as 

microarray or RNASeq along with protein interaction databases to build a coarse grain 

model, thereby sacrificing information on transient dynamics and focusing instead on 

steady state attractors. This method relies on the assumption that transcription factors 

function as binary units which are ON or OFF and act over similar timescales, as 

opposed to pathway signaling dynamics where the rate of each reaction is intimately 

dependent on the relative concentrations of the reactants. Since we were interested in 

identifying the transcriptional programs stabilizing these phenotypes, and not 

necessarily how cells process information through signaling pathways, we were able to 

safely omit signaling dynamics. Future work should unite signaling pathway models with 
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epigenetic regulatory models to build a more comprehensive understanding of how 

external cell signals can influence the internal phenotype.

! One of the exciting predictions of the attractor landscape theory is that it permits 

cells to transition from one phenotypic attractor to another in the presence of noise or 

external perturbations. Because SCLC  is believed to have a PNEC origin, one might 

ask how the mesenchymal tumor cells emerge from a neuroendocrine population. Calbo 

et.al were able to induce a phenotypic transition between neuroendocrine and 

mesenchymal states through KRAS mutation (Calbo et al., 2011), however this mutation 

is generally unobserved in human SCLC (Peifer et al., 2012; Rudin et al., 2012). Our 

model, in contrast, suggests that noise or differentiation signals could promote the 

transition from neuroendocrine to mesenchymal. The relatively recent work of Takahashi 

and Yamanaka (Takahashi and Yamanaka, 2006) has revealed the general possibility of 

reprogramming cell fates against the natural differentiation gradient. Many recent 

studies have advocated the use of attractor based models to uncover reprogramming 

strategies (Choi et al., 2012; Lang et al., 2014). Though we built this model in the 

context of SCLC, we believe that the framework is sufficiently  general that similar 

models may be built to understand many types of heterogeneity  in many different 

cancers. Future work should validate the ability of such models to inspire successful 

reprogramming strategies, ultimately paving a path for model based control of cell fate 

heterogeneity in cancer.
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CHAPTER V

DECIPHERING ROLE OF PHENOTYPIC HETEROGENEITY IN TREATMENT 

RESPONSE IN SCLC

 Introduction

Genetic and non-genetic heterogeneity in cancer generates cells with a variety of 

differences in phenotypic traits such as signaling pathways, proliferation rates, invasive 

and metastatic ability, metabolism, drug sensitivity and resistance (Almendro et al., 

2013). Mutations/amplifications in alternative signaling pathways in oncogene-addicted 

tumors such as c-MET amplification in EGFR-TKI resistant tumors or N-RAS mutations 

in TKI-resistant B-Raf mutant melanomas, lead to clonal selection and expansion of 

drug resistant clones. Non-genetic mechanisms of drug resistance include epithelial-to-

mesenchymal transitions (EMT), mesenchymal-to-epithelial transition (MET) and cancer 

stem cells, mediated by large transcriptional changes in gene networks (Polyak and 

Weinberg, 2009). Phenotypic heterogeneity by itself measured via expression of certain 

phenotypic markers determines drug sensitivity (Almendro et al., 2014a). Furthermore, 

dynamic and reversible epigenetic changes can mediate drug resistance (Sharma et al., 

2010). 

We have previously uncovered two anti-correlated co-expression networks that 

define a heterogeneous phenotypic state space for SCLC. Within this framework, we 

identified a transcription factor (TF) network that dynamically  regulates phenotypic 

heterogeneity  in SCLC (Chapter IV). Briefly, the network is comprised of TF highly 
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represented in SCLC cell lines and patient specimens. Boolean modeling of the SCLC 

TF network gives rise to distinct attractor states that map  to either a neuroendocrine 

(NE) or a mesenchymal-like (ML) differentiated phenotype that can be measured via 

expression of phenotypic biomarkers. TFs are known to act as master regulators of the 

differentiated state of a cell, especially in response to extrinsic factors in the context of 

tissue formation and homeostasis. The significance of our findings with the Boolean 

modeling of the SCLC TF network is that it defines combinations of active/inactive TFs 

that underlie the state of unconstrained proliferation characteristic of SCLC. Moreover, 

multiple SCLC proliferative states suggest the idea of phenotypic plasticity  that may be 

responsible for escape from treatment. SCLC patients respond to combination 

chemotherapy (cisplatin-etoposide) but quickly develop  resistance leading to fatal 

recurrent metastatic disease. We hypothesize that phenotypic state transitions in SCLC 

(mediated by changes in transcriptional regulatory networks) can be induced via drug 

treatment, potentially mediating drug resistance. 

In this work, we aim to identify  phenotypic states that might be more sensitive to 

drug treatment and understand phenotypic plasticity. Phenotypic plasticity in response 

to drug treatment can occur in two scenarios: (1) individual SCLC  cells switch back and 

forth from NE to ML, or (2) there is a progenitor that goes in either direction with no way 

back. 
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Results

Differential sensitivity of phenotypic states to chemotherapy and epigenetic 

modifiers

We previously identified 2 phenotypic states or transcriptional subtypes in SCLC 

cell lines and patients - neuroendocrine (NE) and mesenchymal-like (ML). To test if the 

2 phenotypic states are differentially  sensitive to cisplatin and etoposide, we compared 

the response of 8 SCLC  cell lines to increasing doses of the 2 chemotherapy agents for 

5 days. At 5 days, viability was measured using hoescht-calcein-ethidium homodimer 

dyes (which label total nuclei, viable and dead cells respectively) and imaged on the 

Cellavista imager. Some of the cell lines proliferate at doubling times up to 40 hours, so 

earlier time points did not show an effect of the drug (data not shown). To account for 

differences in proliferation rates, we normalized the Day 5 viable cell counts to Day 0 

counts, which also helps us distinguish between cytostasis (cell count above 0) versus 

cell death (cell count below 0). We found that NE cell lines exhibit more cell death at 

higher doses of cisplatin and etoposide while the ML cell lines show a cytostatic effect at 

higher doses of the drug (Figure 5.1A and B). The NE cell lines are more sensitive to 

cisplatin (lower IC50s) than ML lines, but both have similar high sensitivity to etoposide 

(Figure 5.1C and D). These results corroborate with the fact that most SCLC  patients 

are initially highly sensitive  to cisplatin-etoposide combination. 

Epigenetic modifying drugs play an important role in non-genetic heterogeneity 

and modification of transcriptional network states, and also are important in eradication 

of drug-resistant clones (Sharma et al., 2010). So we tested if the SCLC cell lines would 

be sensitive to epigenetic modifiers. The NE and ML cell lines were very sensitive to 
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Figure 5.1. Differential sensitivity of neuroendocrine and mesenchymal cell lines to chemotherapy 
- cisplatin and etoposide. 
(A) and (B) show growth inhibition curves of 8 SCLC cell lines to increasing concentrations of cisplatin 

and etoposide respectively, five days post treatment. Log2 normalized viable cell counts (X-axis) are 

calculated by normalizing the data to initial Day 0 cell counts to account for differences in proliferation 

rates of cell lines. Points below zero indicate that cells are dying in response to the drug. (C) and (D) are 

barplots of IC50 values calculated by fitting nonlinear regression models in R.
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histone deacetylase HDAC inhibitors Valproic acid (VPA) and Trichostatin A  (TSA) 

exhibiting high cell death (Figure 5.2A and B), while showing no response to 

demethylating agent Decitabine (5-azadeoxycytidine, DEC) (Figure 5.2C). 

Multidimensional flow cytometry data reduction algorithms validate inter- and 

intra-tumor heterogeneity in SCLC cell lines.

We previously  identified surface markers, kinases and adhesion molecules that 

would be representative of neuroendocrine/epithelial and mesenchymal-like 

differentiation. CD56/NCAM1, CD24 and CADM1/SynCAM1 are key markers of 

neuronal/neuroendocrine differentiation while CD44, CD151, EPHA2 and Zyxin are 

mesenchymal-like phenotype markers (Figure 4.11). A 2D view of NE and ML 

subpopulations is provided by a CD56 (NE marker) versus a CD151 (ML marker) 

(Figure 4.12 and 5.3). The quadrant gate was drawn based on unstained controls . 

Here, NE subpopulation is  defined as CD56+CD151-, while ML population is  defined by 

CD56-CD151+ (Figure 5.3A and B - top panels). The NE and ML cell lines did show the 

presence of a CD56+CD151+ double positive (DP) subpopulation, at varying 

proportions. Particularly some ML cell lines (defined by consensus clustering) showed a 

strong enrichment for CD56+CD151+ ‘intermediate’ subpopulations, but if this  is a truly 

intermediate or a stem-cell like state remains to be seen. In terms of long-term stability 

of these states i.e. NE (CD56+CD151-), ML (CD56-CD151+) and intermediate 

(CD56+CD151-) subpopulations, we found that the relative proportions  of these 

subpopulations remained the same in SCLC cell lines  over time, indicating that these 

are in fact stable states in exponential growth culture conditions. We did not find any 

markers that were specific for the intermediate subpopulations. 
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Figure 5.2. Response of NE and ML cell lines to epigenetic modifying agents. 
(A) - (C) Growth inhibition curves of 8 SCLC cell lines to increasing concentrations of HDAC inhibitors 

(VPA and TSA respectively) and demethylating agent 5-azacytidine, five days post treatment. Log2 

normalized viable cell counts (X-axis) are calculated by normalizing the data to initial Day 0 cell counts to 

account for differences in proliferation rates of cell lines. Points below zero indicate that cells are dying in 

response to the drug.
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Figure 5.3. Establishment of a 2D view of phenotypic attractor states in SCLC using flow 
cytometry data. 
Biaxial contour plots of (A) NE marker CD56 versus ML marker CD151 (B) CD56 versus stem cell marker 

CD133  and (C) CD56 versus stem cell marker CD133, across 7 NE and ML cell lines. Percentages 

denote the the density of cells present in each quadrant of the gate. NE cell lines mainly consist of 

CD56+CD151- and a small percentage of CD56+CD151+ DP subpopulations. ML cell lines were more 

heterogeneous where some cell lines contained majority CD56-CD151+ subpopulations while others 

contained CD56+CD151+ DP subpopulations.
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CD133, a cancer stem-cell marker, was highly expressed in both CD56+ and CD151+ 

populations in SCLC cell lines, suggesting that every subpopulation potentially 

possessed stem-like properties (Figure 4.12C, Figure 5.3A and B - bottom panels). 

 Using these markers, we determined the percentage of NE and ML 

subpopulations within each SCLC cell line (Figure 4.12) using k-means clustering 

analysis. Recently, several methods (k-means clustering, viSNE and SPADE) are used 

to study  multidimensional flow cytometry datasets to understand the heterogeneity 

within a sample as well as to study relationships across samples at a single cell 

resolution. These are useful tools to study common and distinct subpopulations 

between samples and track phenotype of drug resistant/relapsed and rare populations 

over time (Amir et al., 2013; Simonds et al., 2011). 

With the idea of using these methods to study and track subpopulations and 

plasticity upon treatment, we applied SPADE analysis to our multidimensional flow 

cytometry dataset consisting of 3 NE (CD56, CD24, CADM1) and 3 ML (CD151, CD44, 

EPHA2) markers of 22 SCLC cell lines and 2 PDX. SPADE analysis performs 

unsupervised clustering analysis of a multidimensional flow cytometry  dataset and 

builds a minimum spanning tree (as nodes and branches) where nodes represent 

clusters of cells and the distance between the nodes is given by  the branches (Figure 

2.3). Clusters of nodes that are near one another represent cells that would be co-

expressing various markers at a certain level. By assessment of the co-expression of 

NE markers versus ML markers in each cell line, we manually gated the tree as 

containing NE defined by high co-expression of NE markers, and low ML markers and 

vice versa for ML subpopulations. Representative examples of a NE (NCI-H146) and 
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ML (SW1271) cell line shown in Figure 5.4 and 5.5 respectively for co-expression of NE 

and ML markers. Thus these markers serve to define the features of NE and ML 

attractor states. To further verify the overlap  of our manual gating of NE and ML 

subpopulations with previously established k-means clusters (Figure 4.12), we overlaid 

the NE and ML cluster information of individual cells from the k-means clustering 

analysis on the SPADE tree (Figure 5.6). 3 representative NE and 3 ML cell lines are 

shown in Figure 5.6 and the k-means cluster overlay confirmed that our manual gating 

was valid. Based on the SPADE analysis, we find distinct distributions of NE and ML 

subpopulations in various SCLC cell lines (Figure 5.7). The SPADE data suggest that 

there is further heterogeneity in the cells within a NE or ML cluster (given by  k-means 

clustering). This analysis will help  better track subpopulation ‘movement’ in response to 

treatment. These above described manual gates on the SPADE plots will be used for all 

future drug treatment analysis. 

!

Drug treatment induces transitions between stable SCLC phenotypic states. 

Attractor state landscapes define basins  within which a phenotype will remain 

stable, however, extrinsic factors may lower transition barriers between basins or 

destabilize them entirely. To explore the plasticity of NE and ML states, we compared 

the response of a panel of 11 SCLC cell lines to 5-day treatment of cisplatin, etoposide, 

demethylating agent azacitidine, or HDAC inhibitor valproic acid (VPA) ordered from 

ME-Blue high (CORL51) to ME-Turquoise high (SW1271) expression. 
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Figure 5.4. SPADE analysis of NE and ML subpopulations based on co-expression of NE markers. 



Figure 5.4. SPADE analysis of NE and ML subpopulations based on co-expression of NE markers.
This figure shows a minimum spanning tree given by SPADE analysis of a multidimensional flow 

cytometry dataset, composed of 22 SCLC cell lines spanning the 2 subtypes. 3 NE (CD56, CD24, 

CADM1) and 3 ML (CD44, CD151, EPHA2) markers were included in the analysis. Nodes denote clusters 

of cells grouped by unsupervised clustering and the branches denote the similarity between the nodes. 

Size of the node denotes the density of cells present in each cluster. Manual gating of NE and ML 

phenotypic states  was done in Cytobank using the co-expression of NE or ML markers across the 22 cell 

lines. Log2 median intensity of expression (denoted by color - high given by red, low by blue) overlaid on 

2 representative cell lines NCI-H146 (NE) and SW1271 (ML) are shown for 3 NE markers (A) CD56 , (B) 

CD24 and (C) CADM1. 

153



154

Figure 5.5. SPADE analysis of NE and ML subpopulations based on co-expression of ML 
markers.



Figure 5.5. SPADE analysis of NE and ML subpopulations based on co-expression of ML markers.
This figure shows a minimum spanning tree given by SPADE analysis of a multidimensional flow 

cytometry dataset, composed of 22 SCLC cell lines spanning the 2 subtypes. 3 NE (CD56, CD24, 

CADM1) and 3 ML (CD44, CD151, EPHA2) markers were included in the analysis. Nodes denote clusters 

of cells grouped by unsupervised clustering and the branches denote the similarity between the nodes. 

Size of the node denotes the density of cells present in each cluster. Manual gating of NE and ML 

phenotypic states  was done in Cytobank using the co-expression of NE or ML markers across the 22 cell 

lines. Log2 median intensity of expression (denoted by color - high given by red, low by blue) overlaid on 

2 representative cell lines NCI-H146 (NE) and SW1271 (ML) are shown for 3 ML markers (A) CD151 , (B) 

CD44 and (C) EPHA2. 
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Figure 5.6. Independent validation of k-means clusters on SPADE tree. 



Figure 5.6. Independent validation of k-means clusters on SPADE tree. 
This figure shows a minimum spanning tree given by SPADE analysis of a multidimensional flow 

cytometry dataset, composed of 22 SCLC cell lines spanning the 2 subtypes. 3 NE (CD56, CD24, 

CADM1) and 3 ML (CD44, CD151, EPHA2) markers were included in the analysis. Nodes denote clusters 

of cells grouped by unsupervised clustering and the branches denote the similarity between the nodes. 

Manual gating of NE and ML phenotypic states was done in Cytobank using the co-expression of NE or 

ML markers across the 22 cell lines. The k-means clusters (k=2) established in Chapter IV (Figure 4.12) 

are overlaid here on the SPADE plots to verify the manual gating of NE and ML clusters. The cellular 

distribution of 3 representative NE and ML cell lines (denoted by the size of the nodes) are shown in (A) 

and (B) respectively with overlay of their respective k-means clusters (denoted by colors - red cluster 2/

NE and blue - cluster 1/ML). 
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Figure 5.7. Density distribution of NE and ML cell lines on the SPADE tree. 



Figure 5.7. Density distribution of NE and ML cell lines on the SPADE tree. 
This figure shows a minimum spanning tree given by SPADE analysis of a multidimensional flow 

cytometry dataset, composed of 22 SCLC cell lines spanning the 2 subtypes. 3 NE (CD56, CD24, 

CADM1) and 3 ML (CD44, CD151, EPHA2) markers were included in the analysis. Nodes denote clusters 

of cells grouped by unsupervised clustering and the branches denote the similarity between the nodes. 

Manual gating of NE and ML phenotypic states was done in Cytobank using the co-expression of NE or 

ML markers across the 22 cell lines. The k-means clusters (k=2) established in Chapter IV (Figure 4.12) 

are overlaid here on the SPADE plots to verify the manual gating of NE and ML clusters. The cellular 

distribution of 3 representative NE and ML cell lines is denoted by the size of the nodes and the color. 
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Firstly, we observed that NE cell lines exhibited a much higher basal rate of cell 

death (measured by increase in A700 staining) than ML cell lines in normal cell culture 

conditions (Figure 5.8A). This was further increased upon drug treatment with either 

cisplatin, etoposide or VPA (Figure 5.8B). Azacitidine had a only modest increase in 

death in some cell lines. Interestingly, all SCLC cell lines were very sensitive to 5mM 

valproic acid with 75-90% cell death in 5 days. It is important to note that IC50s of SCLC 

cell lines upon 5-day VPA treatment (Figure 5.2) ranged from 2-8mM, so 5mM was 

within the range of dose sensitivity. VPA might potentially be an important target for 

SCLC to be pursued in the future via in vivo drug treatment. 

Flow cytometry 2D plots  can be used to visualize stable attractor states with a 

specific configuration of phenotypic markers (Figure 4.12) as well as to assess state 

transitions (Ho et al., 2012). State transitions in NE and ML cell lines can be described 

as gaining expression (>5%) of ML or NE markers respectively upon treatment, 

indicated by the red arrows (Figure 5.9). NE and ML cell lines showed differential 

susceptibility to death and state transitions in response to 5 days of drug treatment. NE 

and ML cell lines both showed an a significant increase in CD56+CD151+ DP 

subpopulations via gaining expression of CD151 and CD56 respectively. VPA induced a 

drastic change in ML phenotype with almost 75-85% increase in CD56+CD151+ DP 

subpopulations. Similarly, cisplatin and etoposide induced a drastic 25-50% increase in 

CD56+CD151+ DP in NE cell lines while VPA only showed a 15% increment in DP 

subpopulation but also increased CD56-CD151- and CD56-CD151+ subpopulations 

(particularly in NCI-H146) (Figure 5.9). 
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Figure 5.8. Basal and drug-induced cell death analysis in SCLC cell lines.  



Figure 5.8. Basal and drug-induced cell death analysis in SCLC cell lines. 
(A) Biaxial plot of Alexa700 (viability dye) versus Forward scatter area (FSC-A) for 4 NE and ML cell lines. 

Left and right gates denote percentage of viable and dead/dying cell populations respectively in basal i.e. 

no treatment conditions. NE cell lines display higher percentage of dead cells than ML cell lines in normal 

culture conditions suggesting spontaneous apoptosis. 

(B) Barplot of percent dead (A700 positive) populations in each cell line with no treatment or upon 5-day 

treatment with either cisplatin (1uM), etoposide (1uM), valproic acid (VPA) 5mM and 5-azacytidine (1uM). 

These drug concentrations were chosen based on the range of IC50s (Figure 5.1 and 5.2). VPA and 

etoposide cause pronounced cell death in all SCLC cell lines. !
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Figure 5.9: 2D view of phenotypic state transitions upon treatment in SCLC
This figure shows biaxial plots of NE marker CD56 and ML marker CD151 for representative NE, NM and 

ML cell lines under no treatment or 5-day treatment with either cisplatin, etoposide, 5-azacitidine or 

valproic acid. State transitions are denoted by the arrows showing > 5-10% shift from no treatment 

condition. 

164



To assess global changes in phenotypic states upon treatment, we performed 

SPADE analysis of the 11 SCLC cell lines under various drug treatment conditions with 

the same 6 phenotypic markers (3 NE – CD56, CD24 and CADM1, and 3 ML surface 

markers – CD44, CD151 and EPHA2). Figure 5.10 shows SPADE plots  for various drug 

treatments for 1 representative NE and ML cell line. These data indicate that changes 

are induced in other 4 markers as well for the cells to be different enough to be now part 

of a different gate. Percentages below each plot denote the percent of cells in the NE 

and ML gates within the SPADE plots. In the no treatment condition, the majority of NE, 

ML, and NM cells fall into their respective cluster (Figure 5.10A and B), however after 

treatment, cell lines exhibited a drug/phenotype dependent plasticity. Cisplatin had an 

effect on NE cell line NCI-H146, transitioning cells into the ML clusters, but no effect on 

ML (Figure 5.10A, top  middle panels). Etoposide had a major effect on the NE cell line, 

but none on ML (Figure 5.10A and B, top right panels). VPA had a major impact on all 

cell lines, causing NE cell lines  to enter the ML state, while making the ML transition to a 

more NE state, suggesting that broad epigenetic modifications may be able to upset the 

regulatory balance maintaining cells in attractor basins (Figure 5.10A and B, lower left 

panels). Conversely Azacitidine, a histone demethylating agent, has little or no effect on 

any of the cell lines (Figure 5.10A and B, lower right panels). 

Epigenetic plasticity reverses state transitions upon drug removal

 SCLC plasticity could potentially  be induced via reversible phenotypic state 

transitions or permanent changes in phenotypic states. To test if the state transitions 
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NCI-H146 (NE subtype)

SW1271 (ML subtype)

A

B

Figure 5.10. SPADE analysis based assessment of phenotypic state transitions upon drug 
treatment in SCLC cell lines. 



Figure 5.10. SPADE analysis based assessment  of phenotypic state transitions upon drug 
treatment in SCLC cell lines. 
This figure shows a minimum spanning tree given by SPADE analysis of a multidimensional flow 

cytometry dataset, composed of 11 SCLC cell lines (Figure 5.9) spanning the 2 subtypes under various 

drug conditions (no treatment, cisplatin 1uM, etoposide 1uM VPA 5mM, and 5-azacytidine 1uM) treated 

for 5 days. 3 NE (CD56, CD24, CADM1) and 3 ML (CD44, CD151, EPHA2) markers were included in the 

analysis. Nodes denote clusters of cells grouped by unsupervised clustering and the branches denote the 

similarity between the nodes. Manual gating of NE and ML phenotypic states was done in Cytobank using 

the co-expression of NE or ML markers across the 12 cell lines (as shown in Figure 5.4 and 5.5). The 

cellular distribution of 1 representative NE and ML cell lines is denoted by the size of the nodes and the 

color. Percentages denote the number of cells within each gate given the total number of cells in each 

sample.
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were reversible (implying dynamic epigenetic changes) or permanent (selection of a 

drug resistant subpopulation), we treated 6 SCLC cell lines with 0.5uM etoposide and 

1.25mM VPA for either (1) 14 days with addition of fresh drug on day 7 or (2) 7 days 

with drug and allowed to rebound for 7 days without drug. The concentration was 

reduced from previous experiment so as to obtain sufficient number of cells for flow 

experiments since even 5-day treatment of the cells was inducing massive cell death 

(Figure 5.8B). We observed similar state transitions upon drug treatment as seen in 

Figure 5.9 and 5.10, although at a lower efficiency possibly due to lower drug dosage 

(Figures 5.11). In the 3 NE cell lines tested, drug-induced state transition upon 

withdrawal was not reversible, at least not in the timeframe of measurement (7 days 

without drug) (Figures 5.11A). In fact, the percentage of cells in the ML state further 

increased in rebound than treated samples. 

In contrast, ML cell lines showed partial to almost complete reversal of the ML--> 

NE state transitions upon drug withdrawal (Figures 5.11B). These data suggest that 

NE-->ML transition might be relatively permanent while ML-->NE transition is temporary, 

implying differential stabilities of the 2 states in these SCLC subtypes. 

Discussion

SCLC patients are treated with standard of care chemotherapy – cisplatin and 

etoposide combination, where initial response rates are upto 80% but invariably tumor 

recurrence leads to fatal metastasis (Demedts et al., 2009; Rosti et al., 2006). 
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Figure 5.11 : SPADE analysis of long-term drug treatment and rebound in NE and ML cell lines. 
This figure shows a minimum spanning tree given by SPADE analysis of a multidimensional flow 

cytometry dataset, composed of 6 SCLC cell lines spanning the 2 subtypes under various drug conditions 

(no treatment, 0.5uM etoposide or 1.25mM VPA) treated for (1) 14 days with fresh drug addition at day 7 

or (2) 7 days treatment followed by rebound (without drugs) for additional 7 days. 3 NE (CD56, CD24, 

CADM1) and 3 ML (CD44, CD151, EPHA2) markers were included in the analysis. Nodes denote clusters 

of cells grouped by unsupervised clustering and the branches denote the similarity between the nodes. 

Manual gating of NE and ML phenotypic states was done in Cytobank using the co-expression of NE or 

ML markers across the 8 cell lines (as shown in Figure 5.4 and 5.5). The cellular distribution of 1 

representative NE and ML cell lines is denoted by the size of the nodes and the color. Percentages 

denote the number of cells within each gate given the total number of cells in each sample. (A) and (B) 

show SPADE plots for 3 NE and ML cell lines respectively. 
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Cellular phenotypic state dynamics is potentially an important factor determining 

drug response and resistance. Hence, studying the population dynamics at a single cell 

level is essential to follow the tumor response over time. 

Our work strongly  suggests that SCLC cell lines, specifically the NE subtype, 

exhibits phenotypic plasticity in response to standard of care chemotherapy  (cisplatin 

and etoposide) and has relatively permanent transition from NE--> ML even after 

withdrawal of the drug. On the other hand, ML cell lines are relatively resistant to 

cisplatin, and don’t exhibit state transitions to NE with chemotherapy. Valproic acid, a 

HDAC inhibitor, induced significant cell death in most, if not all, SCLC cell lines and 

drastic phenotypic state transitions from NE-->ML and ML--> NE. If the drug-induced 

transition was due to selection of resistant clones, there would be two possibilities : (1) 

the resistant clones possess high proliferation rates to be able to increase in cell density 

(2) the resistant clones remain unchanged upon treatment withdrawal. Based on our 

current knowledge of proliferation rates of SCLC cell lines (doubling time 28-50 hours), 

we couldn’t possibly obtain such a large increase in drug-resistant clones at the end of 5 

days. In addition, we observe that drug-induced state transitions are reversible, 

particularly in ML cell lines. NE cell lines did exhibit a relatively  permanent state 

transition, but it might be possible that these cell lines transition back into their original 

states given more time. This possibility remains to be tested in the future.  

It is important to first identify phenotypic state defining markers that would 

hopefully also change upon drug treatment. To our surprise, the phenotypic markers we 

identified in Chapter IV were capable of broadly  assessing drug-induced state 

transitions. But currently we have only assessed the role of these biomarkers in drugs 
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that induce broad changes in DNA damage or epigenetics. It remains to be seen if these 

markers would also work for specific targeted therapies. 

No surgical resection is performed on SCLC patients due to early metastatic 

disease. However, several reports indicate that serum from SCLC  patients contains 

circulating tumor cells (CTCs) that can be captured efficiently and studied for drug 

treatment studies (Hodgkinson et al., 2014). Our single-cell based flow cytometry 

approach could potentially  be applied during SCLC treatment in the clinic to follow the 

phenotypic state dynamics of the tumor over time, which would be useful in tracking 

tumor evolution.
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CHAPTER VI

CONCLUSIONS AND FUTURE DIRECTIONS

Identification of a robust network signature for SCLC 

SCLC have been considered a monolithic disease with respect to its diagnosis 

and treatment over the past several decades. Robust signatures for SCLC have thus far 

been lacking as well as targeted therapies that are effective in the clinic. Not being a 

mutated oncogenic driver addicted cancer like NSCLC, a novel approach and outlook 

towards SCLC biology is warranted. Overall, our work defines a combined bioinformatic-

experimental-theoretical approach to delineating heterogeneity in lung cancer, 

specifically in SCLC. 

We have identified a robust co-expression network based signature (SSHN) for 

SCLC tumors on three independent platforms (microarrays, RNAseq and shotgun 

proteomics). This signature was also conserved in SCLC cell lines. Future evaluation of 

this signature as a diagnostic tool requires a larger set of patients for independent 

validation. SSHN is composed of 287 genes, which is clinically  not practical for use in 

diagnostic testing, so further reduction of this signature to a 25-50 gene set would prove 

to be useful in the future.  

SSHN was composed of several well known players in cell cycle checkpoints 

(CDK4, CDC2, CDK2, CDC7, CDK5R1, BUB1) and DNA repair pathways (BRCA1). 

BRCA1 mutations significantly increases risk of breast and ovarian cancer (Antoniou et 

al., 2003) and reduced expression of BRCA1 is associated with EMT in breast cancer 

174



(Wu et al., 2012). We found that BRCA1 was expressed at different levels in SCLC 

patients (Figure 6.1A). Also BRCA1 was co-expressed with other SSHN genes FYN and 

SYK (Figure 6.1B), and high expression of these 3 genes together suggests a better 

survival in this small cohort of SCLC patients (Figure 6.1C). Currently  PARP1 inhibitors 

are being tried in patients with BRCA1 mutations providing some clinical benefit (Fong 

et al., 2009). PARP1 being a newly  discovered target in SCLC (Byers et al., 2012), 

further analysis of BRCA1 mutations are warranted to identify patients sensitive to 

PARP1 inhibition, given our evidence of its varying levels of expression in SCLC. 

SYK as a targeted therapy for a subset of SCLC

Within this SSHN network, we found twenty targetable kinases that were 

overexpressed in most, if not all of these platforms (Table 3.1). In Chapter 2, we 

validated 2 of the tyrosine kinases - SYK and FYN. SYK and FYN were overexpressed 

significantly in SCLC  patients and cell lines by  several independent bioinformatics and 

experimental methods, and distinguished between two potential groups of patients – 

SYK/FYN positive and negative. The SYK/FYN positive SCLC cell lines exhibited 

significant loss of viability and increased cell death in response to SYK siRNA, providing 

evidence for SYK as a novel oncogenic driver for SCLC (Udyavar et al., 2013). All 

SCLC patients get treated with combination chemotherapy (cisplatin, etoposide) without 

distinction. Our work suggests that stratifying patients with respect to SYK/FYN 

expression may open avenues to personalized medicine in SCLC, given that SYK 

small-molecule inhibitors are already in clinical trials for other disease conditions. 
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Figure 6.1. Variability of BRCA1 expression in SCLC patients and cell lines. 
 (A) Immunohistochemistry of BRCA1 protein in SCLC patient TMAs where patients exhibit high, medium 

and low expression. (B) Representative images of 2 patient subsets of patients with high and low FYN-

SYK-BRCA1 co-expression identified. (C) Kaplan-Maier survival analysis of high and low FYN-SYK-

BRCA1 patient subsets, indicating higher expression of these markers provides better survival with lower 

recurrence. (D) FYN, SYK and BRCA1 gene expression in SCLC patients from GSE6044 dataset 

Rohrbeck:2008em}. The outliers are denoted by dots. P-value shows statistical significance by Kruskal-

Wallis nonparametric test (Kruskal and Wallis, 1952). FYN,SYK and BRCA1 are co-overexpressed in 

SCLC patients versus NSCLC (ADC, SCC) and normal lung. (E) Western blot of FYN, SYK and BRCA1 

in SCLC cell lines where high and low expression is denoted by the red and green bars respectively. 

These high and low expressing cell lines are further defined as NE and ML phenotypic states aka 

transcriptional subytpes in Chapter IV. 
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SYK expression was maintained in vivo in xenografts tumors where H69 and 

H146 still exhibited high SYK expression, while NCI-H82 and NCI-H524 had low 

expression (Figure 6.2A). However, we were unable to detect any basal activation of 

SYK (i.e. phospho-SYK) in SCLC cell lines, unless treated via hydrogen peroxide 

(oxidative stress induction) and SYK inhibitors did not show any selective growth 

inhibition of SYK-expressing cell lines (data not shown). We also found variable 

expression of SYK in syngeneic p53/Rb  knockout SCLC mouse models (Figure 6.2A). 

LX-22, a patient derived xenograft (PDX), also exhibited high SYK expression in both 

western blots and IHC, and displayed SYK activation in vivo (Figure 6.2B). Future work 

will have to determine whether in fact SYK may represent a potential actionable target 

in SCLC, by itself or in combination with chemo or radiation therapy.

Transcriptional regulation of a heterogeneous phenotypic state space of SCLC

Lung cancer heterogeneity today, is largely defined by genetic mutations, 

especially  in NSCLC (Pao and Hutchinson, 2012). Attempts are currently being made to 

identify genetic heterogeneity in SCLC, however given the high mutation rate, not many 

novel oncogenic drivers have been discovered (Peifer et al., 2012; Rudin et al., 2012). 

With our current studies, we have defined a phenotypic state space that describes 

heterogeneity  in human SCLC via two anti-correlated gene co-expression networks. 

This state space can be described as a landscape of stable phenotypic attractors - 

neuroendocrine (NE) and mesenchymal-like (ML) - driven by alternating dynamics of a 

transcriptional regulatory network that drive these anti-correlated co-expression 

modules using a boolean network model (Figure 6.2). 
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Figure 6.2. SYK expression and activation status in mouse models of SCLC. 
(A) Western blot showing SYK expression of xenograft tumors of SCLC cell lines, genetically engineered 

p53/Rb  knockout SCLC mouse models and PDX LX-22. (B) Immunohistochemistry staining for 

hematoxylin-eosin (H&E), SYK and phosphoSYK expression in PDX LX-22.
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In addition, we validated the model predictions with several orthogonal 

approaches such as (1) consensus clustering, which also identified phenotypic states as 

transcriptional subtypes in both SCLC cell lines and patients; (2) transcription factor 

network ON/OFF “status” in the two subtypes; and (3) surface markers and signaling 

differences in SCLC (Figure 6.3). Furthermore, we verified the stability of the NE and 

ML attractor states via co-expression of NE and ML markers respectively at a single cell 

level using multidimensional flow cytometry analysis. Inter-tumor heterogeneity in SCLC 

can be described by the intra-tumor heterogeneity by percentage of NE and ML 

subpopulations.

 To our knowledge, this is  the first time that phenotypic heterogeneity has been 

defined in human SCLC patients with the identification of transcriptional subtypes 

(Figure 4.9). Previously the theoretical framework of attractor states has been proposed 

to be applied to explain cancer plasticity and heterogeneity (Creixell et al., 2012; Huang, 

2011), but our work is the one of the first few attempts at applying this  theoretical 

framework to cancer using boolean network modeling and validating it with a series  of 

experiments in cell lines and patient samples. 

 Inter-tumor heterogeneity in SCLC can potentially arise from (1) distinct cells of 

origin i.e. there are distinct hits of p53/Rb loss in 2 phenotypically distinct cells; (2) 

cancer stem cell hypothesis - the 2 phenotypes occur from one common cancer stem 

cell population that gives rise to heterogeneity; (3) a balanced mix of cell types  (or 

phenotypic states) exist in SCLC that generate intra-tumor heterogeneity, the majority of 

the ‘dominant’ population drives inter-tumor heterogeneity and maintains  an equilibrium 

of phenotypic states. Our data suggest that the third possibility might be true, although 
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Figure 6.3. A heterogeneous phenotypic state space for SCLC defined as two stable attractors - 
neuroendocrine (NE) and mesenchymal-like (ML).



Figure 6.3. A heterogeneous phenotypic state space for SCLC defined as two stable attractors - 
neuroendocrine (NE) and mesenchymal-like (ML).
This figure summarizes the findings from Chapter IV where we identified two distinct phenotypic states 

NE and ML driven by specific ON/OFF configurations of a transcriptional regulatory network. These states 

also show differences in phenotypic surface markers, basal signaling and kinases. 
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the distinct cells of origin possibility cant be entirely ruled out. GEMM of SCLC also 

suggest that the individual phenotypes (NE and non-NE) are stable and together co-

operate in some yet to be discovered manner to drive metastasis  (Calbo et al., 2011). 

This  also goes along with the idea of greater initial tumor diversity might correlate with 

worse clinical outcome with increased propensity of tumor metastasis.

 

 Proposed attractor landscape model for Lung cancer

 Based on our mixed experimental-bioinformatic-theoretical foundation, we 

propose an attractor state landscape model for SCLC and lung cancer in general  

whereby in normal lung development, cells exist in stable attractor states such as AT2, 

Clara, Basal cells, PNEC, etc each dictated by a distinct TF network state. During lung 

injury, several cell types such as PNEC, AT2, Clara cells exhibit the capacity to 

“transdifferentiate” into neighboring cell types in order to repopulate the lung (Desai et 

al., 2014; Li and Linnoila, 2012; Song et al., 2012) (Figure 6.4, top panel - ‘normal 

phenotypic landscape’).  

 In cancer, after loss of p53 (and RB in case of SCLC) and amplification/mutation 

of oncogenic drivers, this  barrier is  crossed over to cancer due to changes in genomic 

stability and epigenetics. Similar types of plasticity as seen during lung injury are 

observed in cancer cells where a particular cell type can give rise to SCLC or NSCLC 

(or different types of NSCLC) depending on the mutation hit (Figure 6.4- ‘epigenetic 

barrier’). For example, Sutherland et.al generated several mouse models  with Cre-

recombination mediated knockout of p53 and Rb in PNEC, Clara and AT2 cells. Even 

though the majority of tumors arising from PNECs were neuroendocrine tumors 
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Figure 6.4. Attractor landscape model for lung cancer heterogeneity. 
Normal cell types and lung cancer phenotypic landscapes are shown as attractor basins where cells at 

the bottom of the basin denote a stable attractor. State transitions are denoted by the arrows in normal 

phenotypic landscape and phenotypic plasticity. Genetically engineered mouse model studies predict the 

cell of origin for various lung cancer subtypes, where multiple cell types can give rise to a particular 

cancer subtype. These transitions are possible in a dynamical system via global changes in 

transcriptional regulatory networks without acquisition of new mutations. Literature-based evidence for 

ADC<-> SCC, and NSCLC --> SCLC state transitions are denoted by solid lines with mechanisms. Our 

drug treatment analysis suggests NE-->ML state transitions can be made via etoposide or valproic acid, 

while ML--> NE state transitions can be possible via Valproic acid (denoted by dotted orange lines).
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resembling human SCLC, other cell types were also capable of generating 

neuroendocrine tumors  admittedly at a lower efficiency (Sutherland et al., 2011). Such 

examples were also seen in NSCLC where LKB1;PTEN knockout specifically gave rise 

to SCC, while LKB1;PTEN;p53 combined knockout generated adeno-squamous tumors, 

and KRAS mutation;LKB1;p53 loss generated both murine lung ADC and SCC tumors 

(Xu et al., 2014). Over the past few years, several cell types  have been shown to yield 

ADC tumors such as AT2, Clara cells and Bronchioalveolar stem cells (BASCs) (Kim et 

al., 2005; Sutherland et al., 2014). Such time-course progression studies are impossible 

to validate in patients, since early stage disease detection is not common in lung 

cancer. Nevertheless, clinically patients do exhibit mixed SCLC phenotype (with NSCLC 

or LCNEC) (Nicholson et al., 2002), ADC-SCC (Filosso et al., 2011), as well as NSCLC 

with neuroendocrine features (Walker et al., 2005) suggesting that this attractor state 

view of lung cancer might be useful to consider while treating these patients. Based on 

our preliminary analysis with SCLC NE and ML surface markers, we do find similarities 

between SCLC and NSCLC with a few NSCLC cell lines (specifically K-Ras mutant) 

expressing NE marker CD56 (Figure 6.5). Further comparative analysis with ADC and 

SCC specific markers (Table 1.1), kinases (EGFR, KRAS) and TFs might provide a 

global view of the phenotypic heterogeneity of lung cancer. Building a TF-network 

dynamic model composed of ADC, SCC and SCLC-specific TFs would provide potential 

insights into the regulatory control of these distinct phenotypic states. 
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Figure 6.5. Preliminary analysis of NE and ML phenotypic state markers on NSCLC and normal 
cell lines. 
Flow cytometry analysis of NE marker CD56 and ML marker CD151 on NE and ML SCLC, ADC (EGFR 

mutant PC9, K-Ras mutant A549, NCI-H1435), LCC (KRas mutant NCI-H460) and normal cell lines. NE 

cell lines show high percentages of CD56+CD151- cells and some CD56+CD151+ populations. On the 

other hand, ML cell lines are more heterogeneous where some cell lines show almost exclusive 

expression of CD56-CD151+ subpopulations while others show a high percentage of CD56+CD151+ 

subopulations. These double positive cell lines also exhibit somewhat mixed adherent and suspension 

cells in culture. Interestingly, K-Ras mutant A549 and H1435, but not EGFR mutant PC9, ADC cell lines 

express CD151, while NCI-H460 a K-Ras mutant LCC, exhibits both CD56+CD151+ and CD56-CD151+ 

subpopulations. Most transformed normal cell lines except BEAS2B (SV40 transformed) exhibit low 

expression of both markers. This suggests that NE and ML subpopulations are present in NSCLC cell 

lines, especially ones with KRas mutations. Further analysis with NSCLC specific markers are warranted 

to test the extent of NSCLC differentiation in SCLC cell lines. 
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 Reversible reprogramming due to changes in epigenetics (i.e. transcriptional 

networks) has  been observed in cancers such as melanoma (Quintana et al., 2010), 

breast (Gupta et al., 2011) and gastrointestinal cancers (Schwitalla et al., 2013). 

Alveolar epithelial subpopulations are capable of generating both lung ADC and SCC, 

that can switch between ADC and SCC phenotypes depending on the TGFbeta 

pathway activity (Figure 6.4- ‘phenotypic plasticity’)(Ischenko et al., 2014). Calbo et.al 

showed that NE subpopulations within murine SCLC models can be switched to non-NE 

phenotypes via induced expression of mutant K-Ras (Calbo et al., 2011). However, K-

Ras mutations are not found in SCLC patients, leading to the speculation if the NE--

>non-NE transition was in fact a SCLC-->NSCLC transition, which remains to be seen. 

Treatment-induced plasticity leading to drug resistance is also observed in cancer. 14% 

of EGFR-mutant NSCLC patients that develop acquired resistance to EGFR TKI do so 

by switching to a SCLC phenotype which are then sensitive to SCLC standard of care 

combination chemotherapy (Sequist et al., 2011). EGFR-mutant lung cancer also show 

reversible sensitivity to EGFR TKI maintained by altered epigenetic state  (Sharma et 

al., 2010).

 Transcriptional networks largely govern the phenotypic state space and cellular 

heterogeneity in normal lung during development and injury, and potentially also cancer 

(Warburton et al., 1998). ASCL1 expressing progenitor cells differentiate into PNEC and 

other airway cell types such as Clara and AT2 during development (Li and Linnoila, 

2012). Expression of ASCL1 also governs NE differentiation in NSCLC tumors  and is 

prognostic indicator of poorer survival (Osada, 2005). Notch1 via Hes1 downregulates 
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ASCL1 expression in development and prevents PNEC differentiation in normal lung 

and SCLC (Ito et al., 2000; Shan et al., 2007). Interestingly we also found that ASCL1 

and Notch1, both at gene and protein level, are anti-correlated in SCLC cell lines 

(protein data cor: -0.585, p-value: 0.006702), where ASCL1 is highly expressed in NE 

cell lines, but not ML, and vice versa for Notch1 expression (Figure 6.6). This  reinforces 

the fact that distinct differentiation programs regulated via differential network states 

operate in these two transcriptional subtypes of SCLC. Similarly, SOX2 expression in 

ADC promotes conversion to SCC (Ischenko et al., 2014). 

 In summary, understanding the dynamics of the TF networks that result in distinct 

states can be useful for treatment, in terms of identifying vulnerable TF ‘nodes’ or its 

targets. The idea of attractor states naturally permits  plasticity since the dynamics of the 

TF network drive the stability of a particular attractor state, which can be noisy given the 

varying tumor microenvironment. Under drug treatment, this  TF network state might 

change dramatically, leading to a phenotypic ‘switch’ from one attractor state to another. 

This  is in contrast to a hierarchical view of heterogeneity where a few cancer stem cells 

are typically the drug resistant cells, that repopulate the majority tumorigenic population. 

Identification of attractor states most vulnerable to a drug will be critical for therapeutic 

targeting as  well as strategies to push the drug-resistant attractor states into drug-

sensitive ones, suggesting the strong need for rational and effective therapeutic 

combinations.   
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Figure 6.6. Anti-correlated pattern of expression of ASCL1 and NOTCH1 in NE and ML 
transcriptional subtypes. 
(A) Boxplots comparing ASCL1 and NOTCH1 gene expression in 53 SCLC cell lines in the CCLE 

dataset divided into the NE and ML phenotypic states.  (B) Western blot of ASCL1 and NOTCH1 across 

20 SCLC cell lines ordered from high ME-Blue (CORL51) to high ME-Turquoise (SW1271). Protein band 

intensity quantification boxplots are shown below in the 2 phenotypic states. P-values are given by 

Kruskal-Wallis test.



Identification of drug-sensitive phenotypic attractor states 

 Resistance to chemotherapy is a major reason for SCLC treatment failure. Study 

of phenotypic states that arise during course of treatment in SCLC might be helpful to 

determine mechanisms of drug resistance. The stable phenotypes might remain in 

equilibrium until a change occurs in tumor microenvironment or drug treatment. This 

might explain initial high response rates of SCLC patients to chemotherapy but rapid 

development of recurrent disease. Thus following the tumor evolution over the course of 

treatment might be key in SCLC patients. 

 As we now know SCLC is  phenotypically heterogeneous, the goal would be to 

first identify which subpopulations  are most sensitive to a particular therapy, use drugs 

that would reduce the heterogeneity and transition the phenotypic state to a more 

vulnerable one, and then co-target a specific target that could potentially abolish the 

drug-sensitive populations.  Pathway-based approaches such as described in Chapters 

III and IV are warranted for identification of novel targets. We showed SYK is an 

important target in the NE subset of SCLC (Udyavar et al., 2013). EPHA2, a RTK, 

important in KRAS mutant NSCLC (Amato et al., 2014), could also be a potential 

therapeutic target of ML subtype of SCLC. We also observed high TGFbeta, phospho-

SMAD2/3 expression in ML subtype, which could be potentially targeted via TGFBR2 

inhibitors. We have also identified a transcriptional regulatory network driving the 

distinct NE and ML phenotypic states in SCLC. This  network could be simulated in silico 

for assessment of critical TF nodes that could be important for NE and ML differentiation 

and survival (singly or in combination) and potentially promote a state transition to a 

more drug-sensitive state. TFs are currently not targetable in the clinic, but targets of 
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TFs or synthetic lethal combinations  (given a particular TF overexpression such as 

Aurora kinase inhibitors for MYC amplified SCLC (Sos et al., 2012)) could be of 

therapeutic relevance in SCLC. We also identified valproic acid (VPA), a HDAC inhibitor, 

that was effective in both NE and ML cell lines and induced massive cell death. It also 

induced state transitions (NE-->ML and vice versa), which were relatively permanent in 

NE and reversible in ML cell lines. VPA supports the idea that the drugs can be pushed 

into a drug-sensitive or resistant state upon treatment. Since ML cell lines are in general 

more resistant to treatment, it might be a useful tool to push ML states  into NE which 

might be more amenable to treatment. However, its effect on tumor growth and state 

transitions in in vivo setting remains to be seen. 

Monitoring dynamics of therapeutic response ex vivo

 Tumor heterogeneity is  a major concern in cancer biology and most likely also an 

issue in SCLC. Tumor evolution is currently being studied by either single-cell 

sequencing of tumors in the hope to find clonal lineage trees, or studying tumors  at 

various stages of progression (de Bruin et al., 2014; Polyak, 2011; Zhang et al., 2014b). 

It is difficult to study tumor evolution or identify cell of origin in SCLC by single-cell 

sequencing attempts since most patients  usually present with metastatic widespread 

disease. This has recently been attempted in mouse models of SCLC (McFadden et al., 

2014).

 Studying tumor dynamics over time would be ideal using biopsies, but that may 

be impossible since surgical resections are rare in SCLC. SCLC patients  do exhibit a lot 

of circulating tumor cells  (CTCs) in their blood circulation which are prognostic 
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biomarkers of survival and response to chemotherapy (Hiltermann et al., 2012). CTCs 

have also been used to generate patient derived xenografts and study course of 

treatment ex vivo in mice (Hodgkinson et al., 2014). One potential idea would be to 

study if this phenotypic heterogeneity (Chapter IV) exists in vivo and how it is impacted 

during treatment. Ultimate goal would be to chase the tumor over time and follow its 

course using fine-needle biopsy and circulating tumor cells (CTC) in vivo. Change in 

diagnosis  and therapeutic monitoring needs to take place in SCLC, for example, fine 

needle biopsy over course of treatment and flow cytometry-based tracking analysis of 

cellular phenotypic states. 

Signaling and metabolic heterogeneity in SCLC

! Blue and Turquoise modules were composed of 1179 and 3450 genes. 

Comparative Pathway enrichment analysis using BINGO and Enrichment map in 

Cytoscape and Ingenuity Pathway analysis® (www.ingenuity.com) showed common 

pathways and some key differences in the biological function of these modules such as 

differentiation, signaling, adhesion, metabolism and stress response (Figure 6.7A). The 

differentiation and signaling pathway differences are described in Chapter IV  (Figure 

4.2). 

! Interestingly, both modules showed an enrichment of metabolic pathways (Figure 

6.7B). Blue module was enriched for cholesterol/sterol biosynthesis while the turquoise 

module was enriched for fatty  acid catabolic processes namely, beta-oxidation. In 

addition, the turquoise module was particularly enriched for glucose and glutamine 
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Figure 6.7. Pathway enrichment analysis of Blue and Turquoise modules with focus on 
metabolism in SCLC.



Figure 6.7. Pathway enrichment analysis of Blue and Turquoise modules with focus on 
metabolism in SCLC.
This figure describes comparative enrichment analysis of Gene Ontology (GO) pathways enriched in Blue 

versus Turquoise networks using BINGO and EnrichmentMap in Cytoscape®. (A) Blue and turquoise 

modules show statistically significant differences in metabolism, signaling, stress response, adhesion, 

differentiation, transcription, proliferation and apoptosis. Nodes denote the enriched GO  categories. 

Edges denote the connections between the pathways, Blue and Turquoise colors of the edges indicate 

pathway groups enriched specifically in Blue or Turquoise modules respectively. (B) Zoom-in figure of the 

metabolic pathway differences. Blue module is enriched in cholesterol and steroid biosynthetic process 

while Turquoise module is enriched in amine/glucose/fatty acid catabolic processes. 
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catabolic pathways including oxidative phosphorylation, electron transport chain, 

aerobic glycolysis. This suggests a fundamental difference in the metabolic 

programming of cell lines enriched in these respective networks where one is more 

proficient in utilizing resources for building blocks while the other is proficient in 

catabolic processes using glucose, glutamine and fatty acids for generation of ATP.  

! Metabolic reprogramming goes hand-in-hand with increased proliferation and 

tumor progression, and inhibition of cancer metabolism can serve as useful therapeutic 

targets (Hanahan and Weinberg, 2011; Zhao et al., 2013). Preliminary analysis of 

oxygen consumption with various metabolic substrates and inhibitors (see Chapter 2 for 

details) showed that ML cell lines (NCI-H82, NCI-H524) are more glutamine-avid and 

consume more oxygen to utilize it while NE cell lines (NCI-H146, NCI-H69) are more 

reliant on oxidative phosphorylation (Figure 6.8A and B). In addition, SLC1A5, a 

glutamine-avid transporter, shown to be an important regulator of glutamine uptake in 

NSCLC (Hassanein et al., 2013), is also overexpressed specifically in the ML cell lines 

(NCI-H82, NCI-H524), reinforcing the fact that the ML cell lines might be more 

glutamine-dependent for their growth than NE cell lines (Figure 6.8C). More detailed 

analysis with specific inhibitors of OXPHOS and glutamine metabolism are warranted, 

thus providing a novel metabolic reprogramming-based treatment strategy, currently  an 

unexplored area of research in SCLC. 

! In terms of signaling differences, the blue module was enriched for neuronal 

signaling pathways such as neurotransmitter release, reelin, Her3, IGF-1, cell-to-cell 

signaling while the turquoise module was enriched for TGFβ, Jak-STAT, Ephrin, MAPK, 

cytokine (IL-6, IL-10), and NFKB signaling pathways, suggesting a more EMT-like 

196



197

Range [h:min]: 0:45
2:001:521:451:371:301:221:15

O
2 

C
on

ce
nt

ra
tio

n 
 (A

) [
nm

ol
/m

l]

250

200

150

100

50

0

O
2 

Fl
ow

 p
er

 c
el

ls
  (

A
) [

pm
ol

/(s
*M

ill
)]

130

104

78

52

26

0

Dig Glucose Gln G+M ADP Suc CCCP CCCP Sample Dig Gluc Gln G+M ADP Suc CCCP CCCP

Range [h:min]: 0:45
2:001:521:451:371:301:221:15

O
2 

C
on

ce
nt

ra
tio

n 
 (B

) [
nm

ol
/m

l]

250

200

150

100

50

0

O
2 

Fl
ow

 p
er

 c
el

ls
  (

B
) [

pm
ol

/(s
*M

ill
)]

130

104

78

52

26

0

Dig Glucose Gln G+M ADP Suc CCCP CCCP O-ring Sample Dig Gluc Gln G+M ADP Suc CCCP CCCP

Avg$O2$
Flux$=$10.4$

Avg$O2$
Flux$=$22.6$

Avg$O2$
Flux$=$2.4$

Avg$O2$
Flux$=$3.4$

Avg$O2$
Flux$=$40.5$

Avg$O2$
Flux$=$23.7$

Avg$O2$
Flux$=$29.0$ Avg$O2$

Flux$=$27.0$

H82$

H69$

A

B

Delta O2 Flux with Gln

Gln Avid OXPHOS
0

5

10

15

Δ
O

xy
ge

n 
Fl

ux

Delta O2 Flux with CCCP

Gln Avid OXPHOS
-20

-15

-10

-5

0

5

10

Δ
O

xy
ge

n 
Fl

ux

C

Figure 6.8: Metabolic variability in NE and ML SCLC cell lines. 



Figure 6.8: Metabolic variability in NE and ML SCLC cell lines. 
(A) is an Oxygraph trace of NE SCLC line NCI-H69 and ML cell line NCI-H82.  X-axis is time.  Left Y-axis 

is oxygen concentration.  Right Y-axis is specific oxygen flux, which is the negative derivative of the O2 

concentration with respect to time, normalized to cell number.  Along the x-axis are denoted a number of 

events.  Here they are in order:

Digitonin - This was addition of digitonin to permeabilize the plasma membrane to allow for efficient 

diffusion of substrates into and out of the cells.  This removes the effects of transporters, diffusion barriers 

from plasma membrane, etc.  It also allows endogenous substrates to leak out of the cell, so that you can 

see the true effect of addition of the substrates and inhibitors of interest.

Glucose - Cells were in glucose-free media, so first glucose was added as a substrate.

Glutamine - Glutamine was then added.  The idea here was that we would see an increase in O2 flux with 

a glutamine-avid (turquoise high) cell line, but not with an OXPHOS reliant (blue high) line.  Recall that 

cells are permeabilized, so there is no differential effect of glutamine transporters here.

G + M - Glutamate and malate, to fuel Complex I (assuming intact TCA function).

ADP - This is to induce state 3 respiration.  

Suc - Succinate addition.  This usually gives a fairly impressive increase in O2 flux, but it's fairly blunted in 

these cells.  One of the other lines gave a more robust succinate response.  With addition of this 

substrate, the electron transport system is more or less fully engaged (no fatty acid substrate, but 

wouldn't expect these cells to metabolize a lot of fat).

CCCP - An uncoupler, works by dissipating the proton gradient.   In these cells, we either saw a puny 

response or outright inhibition.

(B) There's a measurable and reproducible increase in O2 flux with addition of glutamine for glutamine-

avid lines (n = 2 lines tested thus far), but not for OXPHOS reliant lines (n = 2 lines tested).  With addition 

of CCCP, glutamine-avid lines show a fairly pronounced decrease in O2 flux, but the OXPHOS reliant 

lines don't. 

(C) Western blot of SLC1A5, a glutamine avid transporter, expression in SCLC cell lines and PDX. 

Normal lung lysate is used as negative control. SLC1A5 is overexpressed in ML cell lines NCI-H82 and 

NCI-H524, with low/no expression in NE cell lines NCI-H146 and NCI-H69. 

These data together suggest that ML cell lines are Glutamine-avid while NE cell lines are more OXPHOS-

dependent. 
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phenotype. Interestingly, reelin signaling is a negative regulator of TGFβ1 induced EMT 

and migration in other cancers (Yuan et al., 2012). EMT transition is accompanied by 

increased glucose catabolic pathways such as glycolysis that promote faster 

proliferation, and reduce Reactive oxygen species (ROS) in cells via increased NADPH 

and GSH (ROS scavengers) (Dong et al., 2013). Redox signaling or response to 

oxidative stress (particulary hydrogen peroxide) was enriched in both the modules, a 

key PNEC function (Buttigieg et al., 2012; Cutz and Jackson, 1999; Domnik and Cutz, 

2011) as well as in important mechanism in EMT (Tobar et al., 2010), suggesting that 

redox sensing and signaling might be a key mechanism in SCLC tumors.

! To obtain a global idea of the signaling response in SCLC NE and ML subtypes, 

we performed a preliminary analysis of fluorescent barcoding signaling experiments 

(see Chapter 2- Materials and Methods for details) by stimulating NE and ML cell lines 

with 22 different mitogens.  ML cell lines in general were more responsive to RTK stimuli 

such as EGF, IGF-1 and HGF (Figure 6.9B-D), while NE cell line was more responsive 

to Interleukins (Figure 6.9A). All cell lines were responsive to H2O2. ML cell lines 

exhibited a high phospho-S6 signal upon stimulation via various RTK stimuli, while NE 

cell line had reduced phospho-S6. NE cell line NCI-H146 showed high phospho-

PLCgamma (Figure 6.9A), which is also downstream of SYK signaling cascade. 

Particularly, in ML cell lines NCI-H82, NCI-H1048 and SW1271, high phospho-AKT 

signal was detected upon EGF, IGF, SCF, Neuregulin (NRG) stimulation, consistent with 

the fact that RTK signaling is more important in ML cell lines than NE (Chapter IV). We 

also observed high basal phospho-AKT in ML cell lines, but not in NE (Figure 4.11). G-

protein coupled receptor signaling mediated via neuropeptides is important in NE 
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Figure 6.9 : Global changes in signaling response dynamics to various mitogenic stimuli in NE 
and ML SCLC cell lines.
(A) NE SCLC cell line (NCI-H146) and (B-D) 3 ML cell lines (NCI-H82, NCI-H1048 and SW1271) were 

stimulated with 22 mitogens for 15minutes followed by measurement of 15 signaling readouts using 

fluorescent barcoding technique (see Chapter II - fluorescent barcoding section for details). This was a 

broad screen intended to capture signaling differences in NE and ML cell lines to cytokines and RTK 

mitogens. H2O2, a oxidative stress inducer as well as inhibitor of phosphatases, is used as positive 

control. The signaling readouts are summarized as signaling vs readout matrix heatmap  for each cell line, 

where increased signal induction than basal (unstimulated) is given by yellow and decrease in signal 

upon stimulation is denoted by blue. 
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subtype. These stimuli were not present in this current mitogen panel. In future, other 

NE specific stimuli such as reelin, GRP/bombesin, somatostatin, glutamate/GABA, and 

ML-specific stimuli such as TGFbeta and Ephrins could be added to this panel to better 

distinguish between NE and ML signaling and identify  signaling pathway-based 

therapeutic targets for the SCLC subsets.
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