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CHAPTER 1 

Introduction 

 1.1 Motivation 

It is estimated that over 50% of a projected 135,260 cases of colorectal cancer in the United 

States for the next year will develop hepatic metastases.1 Twenty percent of those cases will 

develop metastases solely in the liver.2-3 The median survival window for untreated disease is 6-

12 months and patients rarely survive beyond 3 years.4-5 Furthermore, with a highly variable 5-

year survival rate of 25-58%6-11, an additional 35,660 cases of primary liver cancer are projected.12 

Multiple treatment options exist, including resection, ablation, and chemotherapy. Surgical 

resection is the preferred mode of treatment and has been particularly effective in conjunction with 

other methods. However only 15-30% of patients are eligible for resection based on factors such 

as tumor size, frequency, or proximity to delicate or vital structures.13-14 Ablative techniques have 

provided a promising alternative, however both ablation and resection are highly reliant on 

accuracy and physician expertise.15-17 The ability of a physician to localize treatment with a high 

degree of accuracy could potentially lead to a higher rate of negative margins, a better ability to 

treat difficult disease presentations, and improved patient outcome. Image-guided surgical 

methods have been proposed, and investigated, as techniques to increase the localization accuracy, 

and therefore utility, of hepatic cancer treatments such as resection and ablation. 

Registration serves as the fundamental method to image-guided surgical techniques and is 

a mathematical technique which is used to map the intraoperative organ state to preoperative organ 

images. This mapping allows for real-time display of the position of surgical tools or intraoperative 

imaging, such as ultrasound, in reference to the preoperative diagnostic image data. The 

determination of an accurate image-to-physical-space registration provides crucial navigational 
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information in targeting subsurface locations or avoiding vital healthy anatomy. A proper 

registration serves to increase the amount and fidelity of information available to the physician. 

Surface-based registration techniques are currently used to determine an image-to-

physical-space mapping. One example that is commercially used within the context of image-

guided liver surgery is the salient-feature weighted iterative closest point (ICP) algorithm 

presented by Clements et al.18 In this example, intraoperative data is collected by a passive 

optically tracked stylus. Alternative strategies using an optically tracked laser range scanner and 

conoscopic holography range finders have also been utilized to acquire 3D surface digitizations.19-

20 Additionally, multiple groups have investigated the use of tracked ultrasound for sparse surface 

data acquisition.21-22 While interesting, we will limit our discussion to Clements et al. approach as 

it is part of an FDA approved soft-tissue guidance system.   In this approach, the current clinical 

protocol for image-to-physical registration in hepatic cases begins with the image-space 

designation of anatomical regions such as the falciform ligament and inferior ridges. 

Intraoperatively, the corresponding physical-space location of the features are digitized. The 

salient-feature ICP method provides a robust rigid alignment which utilizes the anatomical features 

to provide an initial alignment and a digitized representation of the organ surface to further hone 

the registration. 

As part of this procedure, the organ is typically prepared for surgical presentation by 

mobilizing it from surrounding anatomy which may be followed by stabilization with surgical 

packing. These techniques inherently impart deformation, altering the intraoperative organ state 

from preoperative imaging. If an accurate solution to correcting for this deformation could be 

achieved, there is little doubt that the utility of image guided liver surgery (IGLS) would be 

enhanced.  Deformations have been documented with signed closest point distances varying as +/- 
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2 cm [REF]. Various methods of deformation correction have been presented in the literature. In 

recent work, a mechanics-based nonrigid registration method proposed by Rucker et al. has shown 

a distinct ability to further reduce target error following rigid alignment using sparse data.23 This 

approach centers on a biomechanical model mechanically deforming the preoperative organ model 

(based on the preoperative images) to match a sparse digitization of the intraoperative anterior 

organ surface. A particular benefit of this method is that it requires no additional information to 

that routinely acquired for the rigid registration. 

An ongoing study at Memorial Sloan Kettering Cancer Center is underway that has 

demonstrated in a series of clinical data sets promising results for the protocol outlined above. 

Interestingly, in the process of analyzing that data, it was observed that in each case a different 

acquisition pattern, or strategy, was used to digitize the intraoperative organ surface by the 

surgeon, i.e. a different modus operandi.  A selection of data highlighting this observation is 

presented in Figure 1. This observation raises the question: how robust are current clinical IGLS 

methods to variations in clinical surface digitization? 
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Figure 1: Each panel presents a unique set of clinical surface data represented in 2D. Each 

panel is oriented such that the inferior ridges run horizontally across the lower section of the 

image. The color value at each point represents the relative density of neighboring points within 

a 2 cm radius. A white asterisk in each panel represents the center of the geometric extent of 

the data in 2D. A red asterisk represents the true centroid of the collected data. It is important 

to note that each case has a unique distribution of points in relation to the salient-features. 
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1.2 Previous Work 

A number of studies have investigated IGLS registration in open surgical cases. This 

alignment is often determined by using point-based or surface-based methods. In point-based 

registration, corresponding points are acquired in both data spaces. These points may consist of 

anatomical landmarks or artificial fiducial markers. Point-based registration methods then 

determine an optimal transformation to minimize the error between corresponding points. Point-

based methods are highly influenced by fiducial localization error (FLE), or the ability to 

accurately delineate a point. This method is not readily applicable to the hepatic domain, as the 

liver surface is poor for localizing a rigid anatomic landmark. Other methods of rigid registration 

seek to align corresponding surfaces rather than points. Iterative in nature, these algorithms search 

to minimize some error function, such as residual surface ‘fit’ error. For example, the iterative 

closest point (ICP) algorithm conducts a series of point-based registrations, determining a new 

point correspondence at each iteration by a closest point operator.24 These types of methods are 

limited in their ability to determine true correspondence and are therefore dependent upon a 

reasonable initial orientation. Cash et al. described a method of rigid registration for IGLS that 

determines an initial organ alignment through a point-based fiducial registration which is then 

followed by an ICP registration. However this method was still influenced by FLE.19,25 The current 

protocol for surface-based rigid registration was introduced by Clements et al.18 Their salient-

feature based weighted ICP method performs an initial alignment by first weighting reliable 

anatomical surface features and in later iterations equally weights the full organ surface. 

A review by Hawkes et al. identified limitations of rigid-based registrations in soft tissue 

environments.26 Organ mobilization from the surrounding abdominal supporting ligamenture  

often introduce nonrigid deformations that alter the intraoperative organ state from its preoperative 
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image counterpart. A number of groups have investigated model-based deformation correction 

techniques. Lange et al. published an algorithm using b-splines to deform preoperatively acquired 

vessels to intraoperative vessels acquired from tracked ultrasound.22 Miga et al. proposed a 

mechanical model driven by laser range scan (LRS) surface acquisition which was validated with 

residual surface error.27 Cash et al. introduced an incremental finite element model (FEM) 

approach.28 Following rigid registration, the model was deformed to fit intraoperative surface data. 

Dumpuri et al. introduced a surface Laplacian based filter to determine boundary conditions in an 

extrapolative manner that drove a fit between the preoperative model and intraoperative surface.29 

Most recently, Rucker et al. describes an algorithm which uses a posterior displacement surface to 

iteratively solve deformations to optimally minimize partial surface fit between surfaces.23 Both 

Dumpuri and Rucker methods were validated using phantom subsurface targets as well as residual 

surface error in clinical cases. The realization of a dataset which incorporates clinical-quality 

surface characterization in addition to a wealth of subsurface targets, as seen in phantom, would 

be largely beneficial to the problem of characterizing uncertainty within IGLS. 

1.3 Contributions 

Rigid and nonrigid registration methods are currently used to align intraoperative physical 

space with preoperative image space, providing more utility from preoperative imaging in the 

surgical setting. Both methods of registration rely upon accurate digitization of the intraoperative 

organ surface. Across the data collection of a series of clinical cases, we observed a high variability 

in the pattern and density of acquired surfaces. The goal of this work is to characterize the extent 

to which variation of input data affects the output of clinically relevant image-to-physical 

registration methods. In order to do so, a data set consisting of multiple realistic surface 

acquisitions of the same intraoperative organ was required. This data was realized by virtually 
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projecting the collection pattern of 14 clinically acquired hepatic surfaces onto an 

anthropomorphic liver phantom that was created with the specification that it reproduce clinically 

similar deformation patterns seen in the operating room. With this simulated set of data, we were 

able to observe the effect that varying surface collection has on target error and repeatability 

following rigid and nonrigid registrations. In addition, a strategy for normalizing, or resampling, 

collected surface data was developed and applied to the simulated data sets. Results of this work 

suggest (1) the technique of surface acquisition has downstream effects on registration error and 

(2) a surface resampling strategy may be used to normalize data acquisition across cases, and users, 

to further increase the accuracy of current clinical methods. 

 



 8 

CHAPTER 2 

Methodology 

2.1 Data Collection and Registration 

Clinical Data Collection 

A selection of clinical data representing 14 patients undergoing open liver resection at 

Memorial Sloan Kettering Cancer Center is presented within this study. Patients were consented 

and enrolled in an ongoing study approved by the Memorial Sloan Kettering Cancer Center 

Institutional Review Board. Prior to surgery, contrast enhanced computed tomography (CT) 

images were acquired from each patient to generate 3D anatomical organ models using surgical 

planning software (Scout™ Liver, Analogic Corporation, Peabody, MA). Following this 

processing, the preoperative organ model was loaded into a surgical navigation system (Explorer™ 

Liver, Analogic Corporation, Peabody, MA). During surgery, after organ mobilization, a series of 

anatomical features were digitized by manual swabbing with an optically tracked stylus. This 

digitization creates a sparse 3D point cloud representing the physical surface of anatomical features 

such as the falciform ligament and inferior ridges. The anterior organ surface was then 

characterized in the same fashion. A visualization of intraoperative surface collection is presented 

in Figure 2.  

 

  



 9 

 

Figure 3: The red surface is the preoperative phantom. The blue surface represents the phantom after it has 

undergone deformation. Both phantom models were acquired from CT. 

Figure 2: The manual surface digitization interface within the 

Explorer™  Liver navigation system highlighting a surface alignment 

generated with the salient-feature wICP method. 
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Phantom Data Collection 

Phantom data utilized in this study was previously reported by Rucker et al.23 A compliant 

hepatic phantom was created to mimic clinical observations of organ deformation gathered from a 

75 patient multi-center clinical trial.30 The phantom consisted of a cryogel of water, Polyvinyl 

alcohol, and glycerin31 and incorporated 47 subsurface plastic beads which served as ground truth 

target locations. Similarly to clinical cases, a “preoperative” CT scan of the phantom in 

undeformed state was acquired to generate an organ model and to identify initial target locations. 

Next, as seen in Figure 3, the phantom was deformed by altering the posterior organ support 

surface, simulating the clinical organ mobilization procedure. Salient feature data were collected 

using optical swabbing in this deformed state. An “intraoperative” CT scan of the deformed 

phantom was then captured to acquire (1) the true deformed organ volume, (2) the deformed target 

locations, and (3) a full extent and highly dense digitization of the deformed phantom surface. 

Rigid Registration 

A robust rigid alignment of image and physical space was determined with a weighted 

anatomical feature iterative closest point algorithm (ICP).18 The traditional ICP algorithm 

iteratively estimates a transformation needed to minimize the closest point distance between source 

and target surface data. The employed weighted ICP method utilizes homologous anatomical 

features to bias point correspondence estimation at each iteration. The biased weighting scheme is 

dynamic through iterations of the algorithm allowing the anatomical features to produce a robust 

initial alignment while providing support to the digitized organ surface in later iterations. The 

algorithm provides a transformation which minimizes residual error between preoperative and 

intraoperative organ surface data. 
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Biomechanical Model 

A linear elastic model of the preoperative organ is precomputed. The patient-specific model 

assumes that the liver is an isotropic solid. 3D Navier-Cauchy equations are used to describe the 

tissue mechanics in the following form: 

𝐸

2(1 + 𝑣)(1 − 2𝑣)
∇(∇ ∙ 𝑢) +  

𝐸

2(1 + 𝑣)
∇2𝑢 = 0 (1) 

E is Young’s modulus, v is Poisson’s ratio, and u is the displacement vector. The system of partial 

differential equations (PDE) may be solved by applying the Galerkin weighted residual method 

using linear basis functions. Using this method, the set of PDEs defining nodal displacement 

vectors, u, are compiled into the following standard linear system of equations in matrix form: 

[𝐾]{𝑢} =  {𝑓} (2) 

where 𝐾 is the 3𝑛 𝑥 3𝑛 global stiffness matrix, u is the vector of nodal displacements, and 𝑓 

contains the applied body forces and boundary conditions.  With respect to the correction 

methodology, displacement boundary conditions are assumed to be present on organ posterior 

support surfaces and where the majority of deformation is present.  As a result, the model system 

shown in equation (2) can be pre-computed to ensure fast intraoperative registrations.   

Deformation Correction 

Nonrigid registration techniques are used to further improve the alignment between image 

and physical space in an array of applications. In the surgical setting, the organ is first mobilized 

from abdominal parenchyma and ligamenture. Surgical packing may also be placed beneath the 

organ to improve presentation. These changes in support manifest as deformations in comparison 

to the preoperative organ configuration. This study utilizes the nonrigid registration method 
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introduced by Rucker et al.23 The method assumes that the significant amount of organ deformation 

observed intraoperatively is caused by changes to the support surface, i.e. the organ posterior. A 

parameterized posterior displacement field is iteratively deformed to minimize residual error 

between the intraoperatively collected surface digitization and the model surface. The result is a 

prediction of the deformed organ based on the preoperative biomechanical model and sparse 

intraoperative organ surface data. 

The organ support surface is defined as a smoothly varying bivariate 3rd degree polynomial 

as follows:  

𝑑𝑠 =  �̂�𝑠 ∑ 𝑐𝑖𝑗𝑡1
𝑖 𝑡2

𝑗

1 ≤𝑖+𝑗 ≤𝑛

 (4) 

where 𝑑𝑠 is the displacement vector for a point on the control surface, �̂�𝑠 is the average unit normal 

vector over the specified support region, and t1 and t2 are the tangential coordinates of the point on 

the support surface. The polynomial constants 𝑐𝑖𝑗 define the displacement field over the support 

region. The sum 1 ≤ 𝑖 + 𝑗 ≤ 𝑛 enforces the polynomial degree and also avoids redundancy in 

optimization by excluding solely rigid solutions. The principle of superposition allows for rapid 

determination of model solutions given a linear combination of polynomial coefficients 𝑐𝑖𝑗. The 

displacement field solution for each of the coefficients 𝑐𝑖𝑗 is precomputed and stored in a matrix, 

M, where each column is the displacement 𝑑𝑖𝑗 obtained by solving (4) with the right hand side 

vector computed with 𝑐𝑖𝑗 = 1 and all other coefficients set to zero, resulting in the following 

equation for rapid model solving: 

{𝑑} =  [𝑀]{𝑐} (5) 
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where 𝑐 is the vector of coefficients. The solved displacement field is then applied to the 

biomechanical model as a set of Dirchlet boundary conditions. 

After computing a model solution for a given 𝑐, the rigid alignment may be updated to 

improve the fit between deformed model and intraoperative surface. A six degree of freedom rigid 

body transformation is applied to the deformed model using a traditional ICP registration. Thus, 

the set of parameters used to generate the model displacement is: 

𝑃 =  {𝑐, 𝑡𝑥, 𝑡𝑦, 𝑡𝑧 , 𝜃𝑥 , 𝜃𝑦 , 𝜃𝑧} (6) 

The Levenberg-Marquardt algorithm is employed to evaluate the optimal parameter set by 

minimizing the following function: 

𝐹 =  
1

𝑁
 ∑(�̂�𝑐𝑖

𝑇 (𝑝𝑑𝑖 −  𝑝𝑐𝑖)
2) +  𝛼𝐸2

𝑁

𝑖=1

 (7) 

where N is the number of intraoperatively collected surface points, 𝑝𝑑𝑖 are the Cartesian 

coordinates of the 𝑖𝑡ℎ collected surface point, 𝑝𝑐𝑖 are the Cartesian coordinates of the 

corresponding 𝑖𝑡ℎ point on the deformed model surface (point correspondence is estimated using 

closest Euclidean distance), and �̂�𝑐𝑖
𝑇  is a unit vector normal to the model surface at 𝑝𝑐𝑖. 𝐸 is an 

energy constraint representing total strain energy in the displacement field and is solved by 𝐸 =

 𝑑𝑡𝐾𝑑. The term 𝛼𝐸2 serves to regularize distortion across the deformation field. The method is 

initialized via rigid registration using the salient feature weighted ICP method. Optimization is 

executed a set number of iterations or until a convergence threshold is met. 
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Creation of Simulated Data 

To observe the effect that intraoperative organ surface digitization techniques have on 

registration results we required a set of data that consisted of multiple distinct acquisitions of the 

same deformed organ surface. Additionally, known target locations are required to quantify 

registration results. To achieve this data, the surface data patterns of 14 clinical data collections 

were used to generate new surface acquisitions of a well-characterized hepatic phantom. As an 

overview, the clinical surface data was rigidly aligned to the phantom, scaled to account for 

differences in organ size, and projected onto the intraoperative phantom surface. To begin, the 

clinical surface and feature data were rigidly registered to the analogous phantom data using the 

previously described salient-feature weighted ICP algorithm. This method ensured that the source 

and target data were physically aligned in accordance to the salient features but did not account 

for differences in (1) organ size or (2) the extent of collected surface data. An affine registration 

method was then employed to scale the clinical surface data to the same bounds as the true 

deformed anterior phantom surface. The applied affine method was the finite ICP method by 

Kroon which allowed for the inclusion of scale, s, and shear, 𝜏, in the optimization of the 

transformation matrix.32 The method works by optimizing the following parameter set to best 

minimize the error between source and target points.  

𝑃 =  {𝑡𝑥, 𝑡𝑦, 𝑡𝑧 , 𝜃𝑥, 𝜃𝑦, 𝜃𝑧 , 𝑠𝑥, 𝑠𝑦, 𝑠𝑧 , 𝜏𝑥𝑦, 𝜏𝑥𝑧, 𝜏𝑦𝑥, 𝜏𝑦𝑧 , 𝜏𝑧𝑥, 𝜏𝑧𝑦} (8) 

Following the transformation of intraoperative clinical organ surface swabs to our mock 

“intraoperative” phantom surface, the clinical data points could be projected to their closest point 

on the mock “intraoperative” phantom CT, producing a set of 14 independent, clinically-relevant 

patterns of realistic “intraoperative” data acquisition on the phantom surface. 
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2.2 Proposed Data Resampling Method 

The goal of our proposed approach is to better approximate the underlying intraoperative 

organ surface from the collected sparse surface digitization. The basic structure of the method is 

depicted by the flowchart in Figure 4. In overview, a surface is fit to the sparsely collected data. 

That surface is then discretized to produce a consistent surface characterization for registration 

input. 

An assumption was made that the anterior organ surface, from which the sparse surface 

data was collected, may be treated as a bounded, continuous, and unique surface of the form: 

 𝑧 = 𝑓(𝑥, 𝑦) (9) 

To robustly treat this data with this form, a rigid-body transformation is determined which 

optimally projects the surface data onto the 𝑥 − 𝑦 plane. A 3D least squares plane is fit to the 

sparse surface data. The normal to that plane, which intersects the centroid of the data, is 

considered the mean surface normal. By transforming the mean surface normal to the 𝑧 − axis, the 

3D least squares plane that best fits the surface data is aligned with the  𝑥 − 𝑦 plane. The required 

axis of rotation is the vector orthogonal to the surface normal and 𝑧 − axis. An angle of rotation, 

is calculated between the two vectors about this axis. Rodrigues’ rotation formula is then used to 

determine the rotation which transforms the input surface to the optimal projection on the 𝑥 − 𝑦 

plane:  

𝑣𝑟𝑜𝑡 = 𝑣𝑐𝑜𝑠𝜃 + (𝐾 × 𝑣)𝑠𝑖𝑛𝜃 + 𝐾(𝐾 ∙ 𝑣)(1 − 𝑐𝑜𝑠𝜃) (10) 

where v is a vector in ℝ3, K is a unit vector describing an axis of rotation, and 𝜃 is an angle 

of rotation. 
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A surface is then fit to the transformed data using the surface modeling tool gridfit.33 Gridfit 

approximates a surface by fitting a rectangular grid to sparse data and then approximating values 

across the grid. Interpolation at a point within the grid is a linear combination of values in the local 

region. Thus the interpolation problem is generalized as a system of linear equations: 

[𝐴]{𝑥} =  {𝑦} (11) 

where x is a vector representing each grid node and A is a matrix with a number of rows equal to 

the number of input points and a number of columns equal to the number of grid points. At this 

stage, the system is highly underdetermined. The solution is to attempt to force the first partial 

derivative of the surface in cells neighboring each grid node to be equal. This results in a second 

linear system of equations in the form: 

[𝐵]{𝑥} = 0 (12) 

where the derivatives are estimated using finite differences at neighboring nodes. The system is 

then solved for x such that the following equation is minimized. 

|[𝐴]{𝑥} − {𝑦}|2 +  𝜆|[𝐵]{𝑥}|2 (13) 

In essence, 𝐴 represents the pull of input data on the grid and 𝐵 depicts the resistance of the grid. 

The weighting parameter 𝜆 may be altered to control the relative “smoothness” of the resulting 

surface. 

The resulting surface exists as a discretized rectangle on the 𝑥 − 𝑦 plane with surface height 

values of 𝑧 at each node and 1 mm spacing between nodes. At this point a weighting scheme is 

applied to the new surface. The surface fitting method approximates data equally in regions of 

high and low certainty. A weighting strategy was explored to sample more densely in areas of the 

surface which correspond to collected data. Table 1 depicts all weighting schemes which were 
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investigated. First, the fitted surface was thinned to achieve a desired minimum spacing between 

points. Minimum spacing values, presented in the “sparse” column of Table 1, ranging from 1 to 

5 mm were evaluated. Next, the true surface data was projected to corresponding closest points on 

the fitted surface. A square kernel of a specified side length s, and presented as the “dense” column 

of Table 1, consisting of s2 points with 1 mm spacing was centered at each projected point. This 

scheme created dense regions near collected data while ensuring data coverage across the full 

surface extent. Varying density patterns were investigated to determine viability, including equal 

sampling across the entire surface. 

Next, the fitted surface is trimmed such that it represents a single region which is more 

accurately bounded by the outer contour of the input data. To accomplish this, the 𝑥 − 𝑦 surface 

is treated as a binary image. The “pixels” that correspond to the collected surface data are given a 

value of 1. A mask is then created by dilating those “pixels” until they enclose a single, contiguous 

region which is then filled. Applying the mask to the fit surface creates a set of data more accurately 

bounded by the input data. The inverse transformation is then applied, returning the newly sampled 

surface to the original physical space. 
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Table 1: Summation of resampling weighting scheme results. 
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Acquire digitization of organ 

surface. 

Determine vector which is the 

mean surface normal to the 

digitized points. 

Calculate a rotation matrix 

which aligns the mean surface 

normal with the z-axis and 

rotate points. 

Fit a surface to the digitized 

points. The surface is assumed 

to be unique, continuous, and of 

the form z(x,y). 

Trim the fit surface to the extent 

of the original data using dilate 

and fill procedures. 

Apply inverse rotation to return 

data to the original space. 

Figure 4: Overview of data resampling methods. 
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2.3 Validation 

Target Registration Error and Reproducibility 

The subsurface beads embedded within the phantom provide a representation of true targets 

for our registration methods. The true initial and final target locations were extracted from the 

mock “preoperative” and “intraoperative” CTs respectively. The displacement fields provided by 

rigid registration and nonrigid deformation correction were applied to the preoperative targets in 

order to predict the final target locations. The Euclidean closest point distance was then calculated 

between the predicted and true target locations to determine target registration error (TRE), which 

serves as a true measurement of accuracy. 

Due to the wealth of repeated target predictions within the simulated phantom data set, a 

measurement of precision may be determined. Each of the simulated surface collections produces 

its own predicted target locations. The variation of predictions at a certain target may be evaluated 

in order to ascertain method reproducibility. We use mean absolute deviation to quantify precision 

in this experiment. First, the average prediction at each target is calculated. Mean absolute 

deviation is the average distance from each prediction to the average prediction. This measurement 

provides a quantification of each registration method’s precision at each target location. 

Statistical Testing 

Due to the large number of target positions resulting from the simulated data (47 targets 

each in 14 cases across 4 registration scenarios – rigid collected, nonrigid collected, rigid sampled, 

nonrigid sampled), a Z-test was used to determine differences in registrations.  A Z-test is a 

statistical test used when the distribution for the test statistic can be approximated by a normal 

distribution and the sample size is large. A two-tailed test was used with α = 0.05. 
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CHAPTER 3 

Results 

3.1 Phantom Suitability 

Figure 5 depicts four cases of simulated phantom surface data. Each panel represents an 

independent collection of the deformed phantom surface displayed with the “preoperative” 

phantom model in red. Each case contains the same set of digitized anatomical features, 

highlighted in blue. Regional point density within the surface data is observed to vary across cases 

in a similar manner to what was observed in the original clinical data.  

Figure 5: Each panel presents a unique set of collected surface data rigidly registered to the “preoperative” organ 

model in red. Independent surface digitization of the deformed organ state are shown in white and identical 

demarcations of the deformed salient features are in blue. It is important to note that each case has a unique 

distribution of points in relation to the salient features. 
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Figure 6 displays a qualitative analysis of the suitability of the simulated phantom data. 

The figure presents rigid registration results for (a) a clinical case and (b) the phantom case utilized 

in this study. The registered model surface is colored by the signed closest point distance to the 

surface data. Qualitatively, the phantom model depicts a similar deformation to what is observed 

clinically. In general, a flattening of the organ is observed which occurs by raising the outer 

segments of the organ while the center is lowered.   

3.2 Surface Resampling 

 Figure 7 represents four cases of resampled phantom surface data. The resampled cloud 

enforces a minimum point spacing of 1 mm, in dense regions, and a maximum spacing of 3 mm, 

in sparse regions. The higher point density was achieved in areas representing the original collected 

surface. The resampled data and original data are similar in overall extent. Qualitatively, the 

resampled surface achieves a suitable approximation of the collected surface. This qualitative 

result is supported by a residual error of 0.91 mm between the collected and resampled surfaces. 

Figure 6: Results from (A) a clinical case following rigid registration and (B) the phantom case following rigid 

registration. The registered model surface is colored by the signed closest point distance to the intraoperative 

surface data. The phantom presents a similar deformation pattern to the clinical case. 

(A) (B) 
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The current resampling method produces an accurate approximation of the underlying organ 

surface as it is identified by intraoperative digitization. 

 The weighting schemes investigated in this experiment are presented in Table 1. The full 

set of data, 14 cases with 47 targets each, was evaluated with each weighting strategy. The TRE 

mean and standard deviation for each scheme are presented in comparison to the nonrigid TRE 

results from using collected data. The sparse value represents an underlying minimum point 

distance that is enforced across the full extent of the surface. The dense value for each scenario 

represents the side dimensions of the square kernel centered at each true data point projected on 

the resampled surface where 1 mm spacing is enforced. The scheme of 3 (dense) and 5 (sparse) 

Figure 7: Each panel presents a unique set of resampled surface data rigidly registered to the “preoperative” organ 

model in red. Resampled surface digitizations of the deformed organ state are shown in white and identical 

demarcations of the deformed salient features are in blue. It is important to note that while each case has a unique 

distribution of points in relation to the salient features, they all share a more uniform extent of coverage. 
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presented the lowest mean TRE and is therefore presented as the sampled result throughout this 

paper. 

3.3 Quantitative Registration Results 

 Rigid and nonrigid registration methods were employed on 14 cases of both collected and 

resampled data sets. With 47 targets per case, a total of 658 target locations were predicted using 

each of the four registration scenarios: (1) rigid registration with raw collected data, (2) nonrigid 

registration with raw data, (3) rigid registration driven with resampled surface data, and (4) 

nonrigid registration driven with resampled data. Figure 8 displays 7 true target locations in white 

with the associated 14 predictions from nonrigid registration using collected data in pink and 

nonrigid registration using resampled data in blue.  
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Figure 8: Locations of 7 fiducial targets are shown in the deformed phantom volume from two perspectives. The 

white square indicates the true target location. The pink and blue squares represent the 14 predictions of each target 

generated using the collected and resampled data, respectively, as the input surface data for the nonrigid registration 

method. The resampled predictions provide a more reproducible result, indicated by their tighter clustering (p < 

.001). The resampled data also provides a more accurate prediction for the displayed points, however this trend is 

not significant across the full set of targets (p > .05). 
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Registration Accuracy 

TRE is a measurement of prediction accuracy and represents the distance from each 

predicted target to the true target. Figure 9 presents a box plot of the average TRE for each case of 

surface data evaluated with each registration scenario. Nonrigid registration, with both collected 

and resampled data, produced a more accurate average target prediction.  Additionally, resampling 

surface data provided a more accurate rigid registration. Figure 10 presents a statistical histogram 

of the full distribution of TRE for each case of surface data evaluated with each registration 

scenario. A Z-test was used to test for statistical significance between the TRE distributions 

resulting from each of the registration scenarios. Nonrigid registration using collected data (p < 

.001), nonrigid registration using resampled data (p < .001), and rigid registration using resampled 

data (p < .05) were each found to have significantly lower TRE than rigid registration using 

collected data. Additionally, both nonrigid registration methods (p < .001) were found to produce 

TRE significantly lower than rigid registration using resampled data. However, no statistical 

difference was determined to lie between the collected nonrigid registration, average TRE of 5.15 

mm, and resampled nonrigid registration, average TRE of 5.39 mm (p > .05). Nonrigid registration 

using collected data resulted in TRE ranging from 0.9 mm to 17.1 mm while nonrigid registration 

using resampled data resulted in TRE ranging from 0.7 mm to 14.8 mm. 
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Figure 9: Box plot representing the distribution of average TRE for each case of surface 

data (14 data points) and each method of registration. TRE is a measurement of 

prediction accuracy and represents the distance from each predicted target to the true 

target. Statistical significance exists between each interaction (p < .05) except when 

comparing the Collected and Sampled NonRigid results (p > .05).  
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Figure 10: Statistical histogram of the 658 target errors resulting from four different registration 

scenarios. Yellow and Cyan – The results of a rigid registration using the weighted patch ICP method 

of [18], using “collected” data and resampled data respectively. Red and Blue – The results of a nonrigid 

registration using the method of [23] using “collected” and resampled data respectively. Statistical 

significance exists between each interaction (p < .05) except when comparing the Collected and 

Sampled NonRigid results (p > .05). 
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Registration Reproducibility 

 Reproducibility is a measurement of the ability of a particular study to be replicated and is 

determined by calculating the distance from each predicted target to the average prediction of that 

particular target across all cases. In this study, reproducibility amounts to the ability of the 

registration method to replicate target predictions given different input data.  Figure 11 presents a 

box plot of the average reproducibility for each case of surface data evaluated with each 

registration scenario. Rigid registration with both collected and resampled data presents more 

reproducible target predictions than either nonrigid method. Nonrigid registration using resampled 

data provides a more reproducible target prediction than nonrigid registration with collected data. 

Figure 12 presents a histogram of the full distribution of target prediction reproducibility for each 

case of surface data evaluated with each registration scenario. A Z-test was used to test for 

statistical significance between the resulting distributions. Nonrigid registration using resampled 

data was found to be statistically more reproducible than nonrigid registration using collected data 

(p < .001). Additionally, all other reproducibility distributions resulting from the different 

registration methods were determined to be significantly different from one another (p < .001).  
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Figure 11: Box plot representing the distribution of average reproducibility for each 

case of surface data (14 data points) and each method of registration. Reproducibility 

is a measurement of precision and represents the distance from each predicted target 

(658) to the set of average targets (47). Statistical significance exists between each 

interaction (p < .001. 
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Figure 12: Statistical histogram of the 658 target precisions resulting from four different registration 

scenarios. Yellow and Cyan – The results of a rigid registration using the weighted patch ICP method 

of [18], using “collected” data and resampled data respectively. Red and Blue – The results of a nonrigid 

registration using the method of [23] using “collected” and resampled data respectively. Statistical 

significance exists between each interaction (p < .001). 
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CHAPTER 4 

Discussion 

 The distribution of TRE illustrated by the histogram in Figure 9 shows an average 

improvement in TRE from 9.6 mm to 5.2 mm over the 14 phantom cases when employing the 

nonrigid registration approach of Rucker et al.23 However, while the average TRE was 5.2 mm, 

individual TRE values ranged from 0.9 mm to 17 mm. Nonrigid registration using resampled data 

presented a statistically similar average TRE of 5.4 mm with a tighter range of individual errors 

(0.7 mm to 14.8 mm). The difference in methods is better described by their reproducibility, or 

precision, in making target predictions. Nonrigid registration using the preprocessed resampled 

data produced a statistically tighter clustering of target predictions than nonrigid registration using 

the original collected data. The 14 case study suggests that the resampling of sparse surface data 

results in a nonrigid registration that is more robust to variations in input data. While future work 

is still required to better understand the technique of surface data resampling, to our knowledge 

the results of this study are the first to investigate surgical modus operandi with respect to impact 

on rigid and nonrigid image-to-physical registration methods for soft-tissue image guided surgery.  

The results suggest considerable variability and that resampling strategies may be a good way to 

provide more reproducible nonrigid registrations. 
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CHAPTER 5 

Conclusions 

The goal of this study was to characterize the effect that variations in digitization of the 

intraoperative organ surface have on downstream image-to-physical registration methods in IGLS. 

To observe this effect, a set of data was manufactured which consisted of multiple clinically 

relevant acquisitions of the same deformed organ surface. We conclude from our study that 

uncertainty is introduced into nonrigid registration results by variations in the initial surface 

digitization, creating a clinical method with suboptimal reproducibility. A method for 

preprocessing clinical surface data was introduced which significantly improved the 

reproducibility, or precision, of our nonrigid registration method without negatively impacting 

accuracy. Additionally, the surface data resampling method is realized for a sparse data 

environment which creates the potential for its adaptation into any surface-based soft tissue 

guidance setting. Future work will entail further study and refinement of the method of data 

resampling. 
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