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Chapter 1 

 

Introduction 

 

Signaling networks in cells enable them to respond to a wide variety of external stimuli, 

from chemical gradients to mechanical strain.  These networks are dense (facilitated 

through interactions among multiple protein species and small molecules) and 

redundant (frequently one signal can act through multiple networks); the molecular 

species within the cell are frequently used in multiple signaling pathways and there are 

parallel and serial steps triggered by a single stimulus.  Some stimuli change the rate of 

synthesis for proteins within these signaling networks as well as other cell components.  

A collection of external stimuli can drive a cell to change enough of its components to 

be considered a different type of cell, processes called differentiation.  These processes 

enable a cell to optimize itself within a dynamic environment and undergo organized 

multistep transitions to become highly specialized, such as development of pluripotent 

stem cells into organ specific tissues.   

When examined from a pure number of interacting components, signaling 

networks and developmental processes are overwhelmingly complex.  The current 

challenge at this biology / physics interface is to find theoretical frameworks that reduce 

the complexity and illuminate the fundamental design and operating principles used by 

life.  Frequently, these operating principles have analogues in non-living dynamical 

systems.  For instance, entropy within the environment is part and parcel to 

developmental transitions; more variables and fluctuations can elicit more complex 
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response, but only if a cell has the capacity to measure such variation.  Cells can 

additionally control some environmental parameters through, for example, chemical 

secretion.  The relationship between the environment and the cell determines the 

instantiation and dynamics of both.  Here we study this relationship in two projects.  The 

first is a model developmental organism, in which the cells sense the nutrient content in 

the environment, secrete a chemical when the food is sparse, sense the chemical to 

drive phenotypic and behavioral changes, and develop into a multicellular organism 

from its unicellular constituents.  We address the efficiency with which the cells 

transduce environmental chemical entropy into ordered migration during this transition.  

In the second project, we focus on a repurposed transduction networks response to a 

single controlled environmental variable, the effect of shear stress on autophagic flux in 

gut epithelial cells.  We quantify fluid trafficking in response to mechanical stress.  Both 

of these projects belong to the general class of emergence problems frequently found at 

the interface of biology and physics.   
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Chapter 2  

 

Literature Review: Dictyostelium discoideum 

 

2.1 Dictyostelium discoideum 

The social amoeba D. discoideum has long attracted the attention of physicists.  Cells of 

this species are eukaryotic, and hence have frequent overlap with mammalian cell 

systems, but are easier to grow and manipulate in laboratory settings and amenable to 

quantitative study.  Physicists and mathematicians have been essential to 

understanding aspects of the Dictyostelium life cycle through analogy to non-living 

dynamical systems, such as crystal growth and oscillating chemical reactions.  

Quantitative studies of D. discoideum frequently reveal surprises that push the bounds 

of expectation for a single cell.  For instance, D. discoideum has an incredible ability to 

transduce external chemical cues into directed migration with only a 1-2% change in 

concentration across its body.  In our study, we extend a theoretical model of this signal 

transduction through time and compare the results to our experimental measures.  To 

contextualize this work, the following section reviews the extensive literature on 

Dictyostelium’s development and chemotactic transduction network and the models 

created to describe it.  We start with an overview of Dictyostelium as a model organism 

and its life cycle, and then focus on the life stage that we study, the transition from a 

unicellular to a multicellular state.  We broadly describe the morphological and migratory 

changes that define this transition, and discuss the particulars of the chemotactic 

signaling network that the cells utilize to aggregate into the multicellular state.  We then 
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describe the spatial and temporal patterns created through intercellular communication 

that accompanies aggregation.  We briefly describe the relevant models of signaling 

networks that are used to describe migration at either early or late stages development, 

then cover the information theoretic concepts that we use in our analysis.  We then 

cover at length the models of migration that have integrated information theory and their 

experimental counterparts, which our work extends through this developmental 

transition.   

 

2.2 D. discoideum as a Model Organism 

D. discoideum has proven to be a useful model organism.  It contains genes 

homologous to those in higher eukaryotes, including many that simpler model 

organisms lack1–3 and its entire genome was sequenced relatively early in 20054.  Soon 

after sequencing, methods for genetic manipulation of D. discoideum were developed5, 

enabling rapid mapping of genes to phenotypes6–8 and pathway discovery9–11.  Built on 

these genes are common signal transduction networks that are conserved, including the 

phagocytosis, migration, and chemical sensing pathways12–14.  These pathways are 

often used to infer functions in the human immune system, such as the migratory 

strategies of neutrophils and leukocytes15,16.  Defects in transcriptional regulation 

controlled by signaling networks often result in disease states17,18, and direct probing of 

these networks is difficult in more complex organisms.  Studies of these defects in D. 

discoideum generate hypotheses for disease mechanisms as well as enable discovery 

and early testing of potential drug targets.  The life cycle of D. discoideum features 

several differentiation processes19–22, making it an ideal candidate for abstract studies 
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on developmental requirements such as pattern formation, cell sorting and signal-

regulated gene expression.   

 

2.3 Life Cycle of D. discoideum  

D. discoideum undergoes several differentiation steps throughout its lifecycle.  When 

nutrient are plentiful (Figure 2.1, state A), D. discoideum cells are unicellular eukaryotes 

and move in an amoeboid fashion up increasing concentration gradients of the bacterial 

metabolic bi-product, folic acid.  In this state, the cells are frequently referred to as 

vegetative, and this condition lasts as long as food is sufficient.  In the vegetative state, 

cells reproduce by asexual cell division roughly every 4 to 12 hours.  Starvation 

conditions initiate a developmental transition, that is characterized by directed cell 

migration (state B) to form a cellular aggregate (state C) frequently termed the mound23.  

By state C the cells, initially monoclonal, can be separated into two differentiated cell 

types, and the population behaves more as a multicellular organism.  Within this mound, 

the cells sort the two cell types into pre-stalk and pre-spore regions24.  With time, the 

mound  morphologically changes so that the front is clearly defined with a tip that 

continues to elongate, forming a migrating slug25 (state D).  The slug migrates towards 

heat and light and, after sufficient time, uses the stalk cells to begin growing vertically 

(state E).  The spore cells are carried along, forming a culminant and finally a fruiting 

body (state F).  Once all of the spore cells have travelled to the top, the fruiting body 

bursts and throws the cells, which distributes the spores (state G) and begins the cycle 

anew26.  This entire process occurs in about twenty four hours in laboratory conditions. 
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Figure 2.1 Life cycle of D. discoideum27.  A) Cells start in the vegetative state where 
they hunt bacteria by sensing gradients of bacterial metabolic byproducts, primarily 
Folic Acid.  The cells at this stage proliferate, represented by the arrow pointing from 
state A back to state A.  B) Once the bacteria food source has been depleted, the cells 
begin signaling to each other by secreting cAMP and synchronize their signals.  They 
use this signal to regulate a developmental process in which they elongate and migrate 
up gradients of cAMP, resulting in aggregation.  C) Once the cells have aggregated, 
they form a mound and begin to sort themselves into pre-stalk and pre-spore regions.  
D) Once the cells have been sorted, the aggregate moves as a multicellular slug and 
looks for more food.  If none is found the cells precede to state E.  E) The stalk cells 
organize into a vertical structure while the spore cells lend support.  F)  The stalk cells 
form a solid base and vertical structure to raise the spore cells and move them to the 
top of the structure.  G) The spores are shot from the top of the stalk to another region 
to begin the life cycle again.  We focus on transition from state A to state B in our work. 
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In this work, we focus on the early stages of the life cycle (3-7 hours) – the 

transition from vegetative cells to cells aggregating into mounds.  The multicellular mass 

is formed by aggregation migration of individual amoeba up a gradient of cyclic-AMP 

(cAMP), which is released in a synchronized pulsatile fashion by the starving cells.  This 

extracellular cAMP binds to a transmembrane receptor, cAR1, which activates a 

network of signaling pathways that lead to the generation of more cAMP secreted to 

propagate the signal. 

This transition is alternatively phrased as a transition from a unicellular 

population to a multicellular organism.  Because of the great interest in how 

multicellularity evolved, this process in D. discoideum has been well studied both at the 

single cell and collective level.  Here we briefly describe observations of morphological 

and migratory changes during development, and discuss at length discovery of the 

chemotaxis signal transduction network that the cells use to aggregate.  We follow this 

with the studies of the spatial and temporal patterns that emerge during this transition.  

These together set up background for the development of the models of single cells and 

populations that are connected later. 
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Figure 2.2 Morphological and cAMP regulation changes during development.  A) Bright 
field image of a D. discoideum cell immediately after removal from its food source.  The 
cells are round and feature protrusions at many locations on the cell membrane.  B) At 
one hour post starvation, the cells begin to produce cAMP receptors.  They maintain 
their rounded shape.  C) At two hours post starvation, cAMP secretion begins and the 
cells elongate slightly.  D) At three hours post starvation, the cAMP receptors begin to 
phosphorylate in response to cAMP binding, changing their affinity such that the signal 
at a frequency a factor three slower than in their non-phosphorylated state.  The cells 
rapidly elongate.  E) At four hours post starvation the cells stop elongating.  F) Bright 
field image of a cell at five hours post starvation.  The cells are more than twice as long 
as wide and feature protrusions almost exclusively at the front of the cell.  Receptor 
phosphorylation reached its maximum with approximately 75% of the cAMP receptors in 
the slow state.  We study how the receptor phosphorylation and number affect the 
ability of the cells to migrate up gradients of cAMP during aggregation. 
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2.4 Discovery of cAMP as the Regulator of Aggregation 

The transition from the unicellular state A where the D. discoideum cells act 

independently to states C and D where they have joined into a multicellular organism 

has captured the interest of cell biologists and physicist for many years.  An early 

question to be answered was ‘what do the cells use to communicate? It was initially 

proposed that a chemical aggregation signal, first named Acrasin, was created at the 

center of the aggregate, and diffused outward to attract nearby cells28,29.  This was 

tested experimentally by separating the centers from other amoeba by a semi 

permeable membrane through which only small chemicals could diffuse.  The isolated 

amoeba could still orient themselves towards the centers, so it was concluded that a 

small molecule must mediate aggregation.  The identity of Acrasin was found by 

removing media from aggregating cells and measuring the compounds within for 

approximate molecular weight, charge, and absorption.  Molecular candidates with 

similar attributes, particularly those already known to have a biological purpose, were 

screened for generation of a cellular response.  The common intracellular chemical 

messenger cAMP was the only molecule identified in the screen that attracted cells30,31.   

The next question addressed was whether cAMP was generated by all or just a 

fraction of the cells.  Key to this discovery was direct observation of cell behavior during 

the transition from states A and B.  Cells, initially uniformly dispersed in a monolayer, 

migrated towards the aggregation centers in a periodic fashion, suggestive of a 

chemical wave in a reaction diffusion system.  During the rising part of the wave, the 

cells would move forward up the cAMP gradient then stop moving as cAMP decreased.  

The absence of migration towards the gradient in the opposite direction hinted that the 
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cells adapted to cAMP or became incapable of detecting lower concentrations.  After 

the wave had passed and cAMP concentrations were low in the region, the cells paused 

migration and became rounded.  The neighboring regions “behind” would move forward, 

continuing the wave of migration.  Studies revealed that these migration waves 

propagated from aggregation centers as either concentric circles or spiral waves28,32.  

The  aggregation centers recruited cells as far as 350μm away33, which is farther than 

diffusion alone should allow, and cells oriented themselves towards an aggregate within 

5-10 minutes throughout the field34.  This led to the hypothesis that all cells are able to 

secrete cAMP and that they relay the signal to each other to increase the range and 

create the wave like motion.  Indeed, while vegetative cells were found to be insensitive 

to increases in cAMP concentration, all wild type cells in the population aggregating to 

the mound were found capable of synthesizing and secreting cAMP.   

Interestingly, the  population became sensitive stochastic fashion35 as the cells 

move out of the vegetative state36.  The next major focal point of study was the creation 

of the large spatial structures from uniform cell populations using only stochastic 

processes, and the connection between cAMP signaling and cell motion. 

To address the connection between cAMP and cell motion, Tomchik and 

Devreotes used a dilution - isotope fluorography method to record snapshots of the 

cAMP wave32.  Briefly this technique involved aggregating cells on a filter that absorbs 

cAMP, then rapid placement on another filter with H3+ labeled cAMP.  Areas on the first 

filter with high concentrations of cell secreted cAMP would be locally well mixed with the 

H3+ labeled cAMP on the second filter over about a minute.  Placement on a third filter 

with a protein kinase that binds cAMP stopped all diffusion and effectively created a 
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snapshot of the concentration of cell secreted cAMP.  Areas with cAMP from cells would 

have less labeled cAMP in the third filter.  The labeled cAMP radiates detectable beta 

particles, thus dark regions would be high cell secreted cAMP regions.  From these 

static snapshots, Tomchik and Devreotes could determine that cAMP concentration 

waves strongly correlated with the motion waves.  The regions with high cAMP 

contained elongated cells while the low regions contained randomly oriented cells32.  In 

addition, measurements of the snapshots produced a quantitative description of the 

motion.  The width of the cAMP bands were between .3 and 1mm, increasing with 

distance from the aggregate center, and travelled at 300um/min32.  Cells in a region 

signal between 1 and 3 minutes32.  The correlation between cAMP field and motion 

allowed others to further quantify cAMP through migratory observations as follows.  A 

single cell relay can propagate for 12 seconds travelling at 4.75um/s, covering 57um, 

and the population can relay a signal as far as 10mm.  Waves of cAMP occur every 3-

10 minutes, decreasing during aggregation37,38.These discoveries raised additional 

questions, such as what is the significance of the pulsatile motion, and how is the 

observed motion controlled by the cAMP wave and how do the cells control the wave.   
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Figure 2.3 Aggregating D. discoideum cells.  Scale bar 20um.  The cells are shown in a 
bright field image at six hours post starvation when they have completed this early 
developmental cycle.  The cells now stream towards aggregates, following each other in 
a head to tail fashion.  Once the cells reach the aggregate there movement slows and 
they become round.   
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2.5 Adaptation and Relay 

After the spatial characterization of the cAMP wave outlined above, investigation turned 

to quantifying the concentrations and timing of the secretions of cAMP to find the 

amplitude of the wave determine if there were additional regulators that modulate cAMP 

concentration.  To measure the secreted concentrations, cells were stimulated with 

cAMP that exactly saturates their receptors so that all cAMP present in solution would 

be secreted by the cells.  The intensity of isotope fluorography of the secreted cAMP 

was compared to intensities from known concentrations to calibrate the measurement.  

The cells increase their cAMP secretion from 0.2pmol (per 106 cells) at 0.5 hours to 

5pmol at 7 hours39.  Using optical density measurements in swirling culture at 290nm, 

which cAMP absorbs, the temporal characteristics were surveyed.  Spikes were 

observed every 7 minutes, meaning that the cells secreted cAMP every 7 minutes and 

that it was degraded through some unknown mechanism.  When the media was passed 

through a Millipore filter however, the solution was considerably more stable, leading to 

the conclusion that relatively large entities were responsible for cAMP degradation, 

namely enzymes34.  This enzyme was later shown to be controlled by pdsA, a 

phosphodiesterase that dephosphorlyates cAMP into AMP which the cells do not sense.  

The spikes that result from secretion and degradation were further quantified and 

Independent fast and slow peaks that changed over development were observed.  The 

delay between fast and slow peaks decreases from 2 minutes to 0.8 minutes, and the 

ratio of the fast and slow amplitudes increases 10 fold between pre-aggregate and 

aggregate competent development stages40.  The regular peaks of cAMP seen in the 

system led to the hypothesis that the cAMP secretion system is oscillatory and that the 
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dynamics change over development.  To test if the system was oscillatory, cAMP pulses 

were imposed on the system at periods different than the observed peaks and caused 

the characteristic phase shifts of the spikes for a perturbed oscillator.  To understand 

how this internal oscillator coupled to the external field, the role of internal and external 

pdsA was further explored.  Mutant cells that either did not have the ability to produce 

pdsA or over produced the enzyme were used to probe how signal relay would function 

if internal and external control over cAMP was modulated, and showed that degradation 

within the relay mechanism increased the communication range of the cells and that the 

cells are able to relay directional information over long ranges only with precise control 

over pdsA, as both over and under production hampered relay41.  The degradation of 

cAMP by pdsA coupled with the oscillatory behavior of cAMP both internal and external 

to the cell opened the question of whether signal relay was an excitable phenomenon, 

which seemed reasonable as the concentric and spiral waves seen in the migration are 

characteristic of excitable media.  In order for this to be true, the cells would additionally 

have to adapt to signals.  Adaptation refers to the process through which cells acclimate 

themselves to a background concentration of cAMP and set a new zero, becoming 

unresponsive to lower concentrations.  Adaptation additionally causes cells to have a 

refractory period, to be unresponsive to a stimulus that occurs too rapidly after a 

previous stimulus.  Cells were treated with artificial stimuli of cAMP at different intervals 

and was shown that the cells will not secrete cAMP in response to a stimulus within 7 

minutes42 of secretion during the early stages of aggregation, a period which drops to 2 

minutes during the later stages43.  Additionally, if the stimulus is never removed, the 

secretion rate rises geometrically but falls off to 30% after 5 minutes and is back to the 



15 
 

basal rate after 20 minutes37.  By comparison the refractory period for movement is 

much shorter, with cells chemotaxing to signals as close as 12 seconds apart38, and in 

constant stimuli the movement stops over 80 seconds44.  This suggests that secretion 

and migration control networks diverge downstream of the receptor, but adapt to signals 

so they may play a role in the excitable dynamics of signal relay.  In the following 

sections we will outline the cascade that leads to secretion and describe the signaling 

network that governs chemotaxis, and then connect them with population pattern 

formation in excitable media.   

 

2.6 Secretion of cAMP 

 Over the course of development, some cells stochastically begin to secrete cAMP45,46 

and others begin in response.  After cAMP binds to the receptor it releases proteins 

internally to trigger cAMP production; Adenylyl cylase A (ACA), which catalyses the 

reaction of ATP into cAMP, is activated and causes internal cAMP37 concentrations to 

rise 10-fold47; ACA activation is critical; cells without ACA did not produce cAMP37.  

cAMP production increases over 1-2 minutes then drops to basal levels after 3-4 

minutes; the kinetics of ACA activation and the time course of cAMP production are 

consistent37.  These results imply that ACA is the lone protein responsible for control of 

internal cAMP production.  The measured dynamics of ATP, ACA, and cAMP within a 

cell allowed the relationship between the three to be described by coupled differential 

equations.  The resulting simulations showed that the regulation of ATP and ACA are 

sufficient to create oscillations in cAMP with a period of 3-5 minutes48, which is similar to 
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the measured period of secretion of 7 minutes.  Additional measurements of the internal 

and external cAMP concentrations showed that the internal cAMP drops more rapidly 

than it is secreted, which led to the conclusion that it is degraded by internal 

phosphodiesterase (pdsA)37.  Addition of degradation of internal cAMP and secretion 

terms to these coupled differential equations gave insight into the possible form of 

secretion49, and further quantification of the secretion in shaking culture via optical 

density measurements would allow internal and external kinetics to be connected.  The 

dynamics of secretion are also crucial to understand how the cells are modulating the 

chemical field so investigation turned towards this quantification to accomplish both 

tasks.  In shaking culture, the optical density measurements after a stimulus provided 

the secretion curve shape, the secretion has a half width of 1.5 minutes and lasts 2.5 

minutes50, which was consistent with the duration of spontaneous pulses when the cells 

are causing the stimulus rather than it being imposed38,43.  To find the amplitude of 

response, experiments involving isotope fluorography showed that the cells secrete at 

rates that are an order of magnitude greater than the amplitude of the stimulus.  For 

example, extracellular camp increases by 5E-7M 90seconds after 5E-8M pulse50, and 

the secretion rate increases proportionally as the applied cAMP concentration 

increases37,42.  These two sets of experiments together give the secretion curves in 

response to a variety of stimuli, which were used to build more complete models of the 

internal/external regulation of cAMP that leads to spatial pattern formation.  In addition 

to secreting cAMP after sensing it, the cells also migrate towards higher concentrations.  

The motion of the cAMP sources and sinks also plays a role in pattern formation, so we 

now turn our attention to chemotaxis. 
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2.7 Reduction of Chemotaxis 

The movement of the population of cells in the aggregation phase was characterized as 

outlined earlier and showed wave of motion.  These observations open question about 

individual cells within the population and how they together form the response of the 

group.  In order to understand the motion of single cells, the focus of investigation 

shifted to identification of critical pieces in the signal transduction network that controls 

chemotaxis, a vein of research that continues today.  This study started with the most 

upstream signaling element, the cAR receptors.  The cAR1 receptors have occupation 

probabilities that depend on local cAMP concentrations and their inherent dissociation 

constants.  Binding of cAR1 causes proteins to be released internally, which feed into 

transduction pathways that regulate internal protein concentrations and propagate the 

signal.  These downstream protein concentrations dictate the binding and bundling 

kinetics of actin, a polymer that gives the cell structure and shape.  The binding kinetics 

in turn regulates the probability of creating a pseudopod, an actin rich protrusion, by 

modulating the stiffness of regions near the membrane.  These pseudopodia reach out 

and stick to the surface in the direction of migration, so the distribution and timing of 

pseudopodia on the cell boundary determine the direction and speed of migration.  In a 

chemical gradient the cell receptors on the high side will have higher binding 

probabilities and release more proteins.  The transduction machinery will thus create 

spatially organized distributions of proteins and enzymes that control pseudopodia 

production51–53, which results in preferential migration up the chemical gradient.  These 

steps work together to control the migration of individual cells, which can be connected 

through signal relay to the population chemotaxis dynamics54.   
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2.7.1 CAR Binding and Phosphorylation 

In order to signal to downstream protein networks, binding of cAR1 must release some 

agent that targets them.  The search for this agent in D. discoideum signaling led to a 

discover of G-protein coupled receptors, which are transmembrane proteins with an 

external chemical binding site and an internal tail that comprised of several protein 

subunits that are disassociated when the binding site is filled.  This tail also contains 

modification sites where phosphates can be attached following binding events, which 

control the re-association kinetics for the subunits and, consequently, the dissociation 

rate of the binding site.  G-protein coupled receptors have since been found in the 

majority of mammals and a variety of conserved signaling pathways, and are the most 

common known transmembrane chemical receptor class; G-protein coupled receptors 

are ubiquitous in chemical signaling.  In D. discoideum, there are four G-protein coupled 

cAMP receptors, named as cAR1 through cAR455.  CAR1 is receptor that controls 

chemotaxis during aggregation56.  The G-protein in this receptor is contains several 

subunits, Gα2 Gβ and Gγ
57, which feed into downstream signaling networks once 

released.  Upon ligand binding, cAR1 is phosphorylated at cytoplasmic residues, which 

changes the frequency at which the receptor can activate downstream pathways58. 

Despite the correlations between cAR1 phosphorylation and adaptive kinetics of 

downstream pathways, some studies have suggested that receptor phosphorylation in 

D. discoideum might not attenuate G-protein signaling59,60, and that these effects are 

actually caused by an unknown mechanism.  The connections between cAR1 

phosphorylation and chemotaxis remains understudied, but the receptor state does 

modulate affinity and binding rates58,61. 
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Recently, it has been shown that a lack of phosphorylation negatively impacts 

persistent directional migration in late development cells58, so regardless of the explicit 

form of modulation, phosphorylation clearly plays a role in chemotactic ability.  In our 

study we quantify the effects of receptor phosphorylation on the efficiency of chemotaxis 

throughout development and show that receptor phosphorylation is low in early 

development so that the receptors can signal frequently, which makes up for the 

relatively low receptor number to keep the environmental sampling high.  

Phosphorylation increases as development progresses and receptor number increases 

to time average signals and increase its accuracy in the transduction of stable chemical 

fields.  These effects change the frequency of the cAR1 signaling to the protein 

networks downstream, but these networks remain constant throughout development 

and connect the receptor binding to the migratory dynamics.  Here we outline a minimal 

set of interactions within this protein signaling network to elucidate this connection. 
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Figure 2.4 Cartoon of CAR1 receptor phosphorylation.  A) The transmembrane cAMP 
receptor is shown in orange.  The lipid bilayer membrane is represented by two sets of 
circles and double lines, symbolizing the hydrophilic and hydrophobic regions of the 
phospholipids that compose it respectively.  The receptor features a cAMP binding cite 
on the exterior (upper) side of the membrane and a long tail on the interior.  The tails 
feature binding sites for phosphate groups.  B) A cAMP molecule is shown occupying 
the binding site on the receptor.  This promotes phosphorylation at the interior binding 
sites, represented by the purple circles on the tail.  Phosphorylation causes the affinity 
of the receptor to become lower, decreasing the rate at which the receptor will bind 
cAMP afterwards.  We study the effects of phosphorylation on gradient sensing using 
wild type cells and a mutant whose CAR receptors are always phosphorylated. 
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 2.7.2 Minimal Transduction Machinery 

The released subunit Gβγ binds to and activates RasG and RasC, which are small g-

proteins with structure similar to the Gα subunit that the released Gβγ subunit was 

previously bound to.  In their active form, RasG and RasC have high affinity for PI3-

kinases, and upon binding regulate their activity62.  These kinases phosphorylate 

phosphatidyl inositol bisphosphate (PIP2) to producephosphatidyl inositol triphosphate 

(PIP3) in the membrane63.  PIP3 activates Phosphatase and Tensin homolog (PTEN), a 

PIP phosphatase, that dephosphorlyates PIP3 back into PIP264.  The dynamics of PI3K 

and PTEN together control the concentration of PIP2 and PIP3, and the feedback from 

PIP3 to PTEN allows the cell to ignore stimulation that arose from noise.  For above 

threshold signals, the persistent PIP3 presence activates a ribosome associated 

complex (RAC) that stimulates actin polymerization, which produces protrusions, and 

the alpha serine/threonine-protein kinase (Akt) pathway governing myosin assembly, 

which is responsible for cell contractions63,65,66.  Together this signaling network 

transduces the receptor binding events into structural conformation within the cell to 

govern chemotaxis.  This signaling network is shown in Figure 2.5.  The receptors that 

feed into this network are bound with frequencies that mirror the external concentrations 

of cAMP, so in non-uniform fields this signal transduction network is non-uniformly 

activated.  This gives rise to spatial organization of the proteins within the network, 

which we outline below. 
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Figure 2.5 Schematic of the minimal interactions within the chemotaxis signaling 
network.  When cAMP binds to the receptor, the Beta and gamma g-protein subunits 
dissociate from the interior of the cAR1 receptor.  These subunits bind to and activate 
Ras, which in turn binds to and activate PI3K.  This activation causes an increase in the 
rate at which PI3K phosphorylates PIP2 into PIP3.  PIP3 Activates PTEN when 
dephosphorlyates PIP3 back into PIP2 which gives a threshold for persistent PIP3 
concentrations.  PIP3 also activates a Rac Complex that governs the kinetics of actin 
polymerization that causes pseudopodia extension and activates Akt, which promotes 
the assembly of myosin II which contracts the cell.  In tandem, these effects produce 
chemotaxis.  The machinery outlined above is responsible for the excitable cell behavior 
covered in more detail in the later sections of this chapter. Adapted from51,62–64 
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 2.7.3 Protein and enzyme localization 

Upon cAMP stimulation, g-protein coupled subunits are released from the membrane 

into the cytoplasm and trigger the downstream signaling network governing chemotaxis.  

In a chemical gradient, the receptors on the high side of the cell are bound more 

frequently than the low side, yielding a front to back gradient of g-protein subunits along 

the membrane67.  PI3K, activated by these subunits, also shows higher concentrations 

at the high side under stimulation68.  The high concentration of PI3K phosphorylates a 

large number of PIP2, which creates a high concentration of PIP3.  PTEN, which is 

uniformly distributed in the absence of signal, is concentrated at the back end, further 

amplifying the gradient of PIP3 through dephosphorylation of PIP3 into PIP2 at the 

rear69,70.  PIP3 recruits Myosin I to the membrane, which polymerizes actin preferentially 

at the front9.  The high PTEN and PIP2 concentrations on the low side of the cell create 

a myosin II gradient that is also high at the low side51.  Myosin II is responsible for 

depolymerization of actin and contracts the cell by pulling on the actin filiments52.  The 

actin polymerization at the front coupled with depolymerization at the back gives a high 

probability of pseudopod extension at the high side.  The contraction due to myosin II 

activity at the back combined with the extension of pseudopods at the front drive 

directed migration53.  The spatial distributions of PI3K, PTEN, and Myosin II are shown 

in Figure 2.6, with the white arrow indicating cAMP gradient direction.  In order to 

connect chemotactic responses with these spatial distributions, modeling efforts began 

with the intention of creating a set of equations representing the cell which would mimic 

observations of chemotaxis.  These efforts began both at the single cell and population 

levels with the intention of tying the two scales together in a unified framework.  
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Figure 2.6 Fluorescent images of selected proteins from the chemotaxis pathway68.  
The white arrow denotes the direction of an applied cAMP gradient.  PI3K 
concentrations are high at the leading edge of the cell while PTEN and Myosin II 
concentrations are high at the rear.  The high PI3K concentration results in actin 
polymerization through the machinery outlined previously while high PTEN inhibits 
polymerization.  High Myosin II contracts the cell at the rear and moves the fluid within 
the cell forwards such that it migrates up the cAMP gradient.  The spatial organization of 
these proteins is crucial for chemotaxis.  The receptor changes during development 
modulate the signaling rates at the cell membrane and in turn change the spatial 
distributions of these proteins and the chemotactic response71. 
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2.8 Models of Chemotaxis Transduction 

The efforts to model transduction of chemical signals can be divided into two 

philosophical approaches: A reductionist approach identifies individual proteins and 

constructs them into a network that accurately simulates the salient features, and a 

global approach identifies and recreates spatio-temporal patterns in the population’s 

phenomenological response.  At the single cell level, a reductionist approach was taken 

where increasing numbers of proteins within the signaling network were discovered and 

their relationships with the others defined, creating large signaling maps.  The kinetics 

of such maps were measured to populate coupled differential equation models that 

have been able to accurately predict chemotactic responses.  This approach is limited 

by scale due to the increasing cost of solving larger numbers of coupled differential 

equations and the difficulty in interpreting high dimensional results gleaned from such 

models.  At the population level, the well studied framework of excitable media was 

applied to the observations of cell motion and cAMP waves.  These models allowed 

predictions for density dependent effects as well as predictions for pdsA activity in 

degrading cAMP.  The two approaches were tied together by inserting an excitable 

signaling element within the cell transduction network models and a description of the 

secretion events as excitable.  This unification gave insight into the connections 

between single cell and multi-cell responses through coupling of similar mechanisms at 

different size scales. 
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 2.8.1 Protein Networks 

A reductionist approach to identifying the transduction network elements is to disable 

them one at a time and quantify the phenomenological response.  A combination of 

targeted drugs, and genetic manipulation, where the portion of the genome which 

encodes the specific signaling protein is removed, is used to disable specific elements.  

Genetic modification of D. discoideum has been commonplace for many years and is 

considered to be relatively easy72.  The chemotaxis61,63,73,74 and signal relay75–78 

pathways in D. discoideum were explored in this fashion, resulting in large protein 

transduction models.  In particular, transduction maps that connect receptor binding to 

chemotaxis were constructed, such as the two seen in Figure 2.7, though the particulars 

are beyond the scope of this document.  These two models have phenomena 

associated with specific signaling elements because when those elements are removed, 

the phenomenon is lost.  This framework can be further exploited by disabling multiple 

elements to identify redundant pathways.  In such cases the phenomena might be 

weakened in single knockdowns, but not entirely lost until several proteins are 

disrupted.  Signaling elements are often used in multiple pathways, so this process can 

also elucidate key regulator proteins that control many responses if several phenomena 

are concurrently lost.  The network maps created in this framework are readily useable 

to elicit a specific response, such as the removal of cAMP secretion, but are often 

unable to be used accurately control phenomenological responses or predict dynamic 

responses.  In order to control a phenomenological response with a reductionist model, 

a large number of individual interactions would have to be controlled, and prediction of 

perturbations of large models requires phenomenological models to act as targets.  
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Figure 2.7 Example chemotaxis signaling networks in D. discoideum.  A) Signaling 
network connecting cAMP binding and pseudopodia creation from a review connecting 
many studies together79.  The phenomena associated with each level in the chemotaxis 
path are noted in the right column.  Several parallel paths are responsible for these 
phenomena.  The network is a mix of signaling proteins and descriptions of cell 
responses.  The proteins that govern specific responses have been found through 
genetic knockdown studies where single elements were removed from the cells and the 
responses compared to wild type cells.  B) Signaling network connecting g-protein 
subunit disassociation to chemotaxis74.  The protein signaling network governing actin 
and myosin kinetics is outlined and connected to the phenomena at the front and back 
of the cell that give rise to chemotaxis.  The signaling network map is of little importance 
to our work, but illuminates one of the methodologies employed to describe chemotaxis.  
We abstract the signaling network and instead connect receptor changes directly to 
chemotactic measures to determine the quantitative effects of receptor number and 
phosphorylation.  Our method could be extended to each step in the transduction 
network to build a quantitative description of chemotaxis. 
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 2.8.2 Phenomenological models 

Phenomenological modeling involves observation and quantification of a systemic 

behavior and a subsequent discovery of the rule set that governs the creation of such 

patterns.  Typically, the models start with the simplest, shortest set of rules the yield the 

most salient features of the phenomenon.  The model can be made more complex and 

accurate with increasing difficulty.  One example of a phenomena treated in this fashion 

is the creation of spiral waves in excitable media, whose most basic requirements are 

an autocatalytic element, an inhibitory element, diffusion, and a constraint.  Many 

systems can be described broadly by the simplest model, and individual systems can be 

further addressed by adding more rules to it.  In the aggregation of D. discoideum, the 

cells themselves are the autocatalytic piece, secreting more cAMP when they encounter 

it75,80,81.  They also supply the inhibitory piece, pdsA82,83, which degrades cAMP.  Both 

molecules are subject to diffusion, and the system is constrained by the transduction 

networks governing chemotaxis and secretion, which change the location and timing of 

the release of both chemicals.  The result of this configuration is spiral waves84,85 in the 

motion of D. discoideum as it aggregates, which have been implicated as the method 

for self organization and later differentiation choices23,86.  In order to understand how the 

transduction networks constrain the population response, additional symbols that 

represent the embedded interactions of the proteins that construct the networks have to 

be utilized and their relationships defined.  This is, of course, the reductionist approach.  

Genetic knock out studies similar to the ones used to probe the signal transduction 

network were used to modulate key components of signal relay.  Unperturbed cells 

produce both concentric waves and spiral waves87 and the conditions required for each 
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have been investigated with such knock outs.  PdsA was shown to be an important 

mediator of class selection, spiral or concentric, in this fashion.  Populations of cells that 

could not produce pdsA always made concentric waves and mixed populations showed 

both80.  Cell density was also implicated in class selection by simply titrating them 

before placement on the surface84,88.  A comparison of the waves of motion of cell 

populations with variable density to the predicted waves from a model including density 

and pdsA degradation is shown in Figure 2.8.   

Both the internal and external dynamics of the transition from unicellular to 

multicellular through aggregation by chemotaxis exhibit the characteristics of excitable 

media.  In order to connect the two scales, the transduction network needed to be 

modeled as an excitable system and the initial efforts to do so include a black box with 

these dynamics inside.  These early efforts had some success in describing migratory 

characteristics that previous models had failed to predict, specifically the ability to adapt 

to signals and filter noise.  Such successes encouraged the continued effort to explore 

these models and match them to physiological agents.  In doing so, the two scales were 

connected through the framework of excitable media. 
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Figure 2.8 Comparison of observations of spirals waves D. discoideum motion and 
predicted wave patterns for excitable media.  A-C) Visualization of spiral wave motion 
generated by subtracting sequential images of the cells84.  Together, frames A-C show 
onset of pattern formation over two minutes.  Frame A is the earliest, B and C are one 
and two minutes later respectively.  D-F) Simulations of excitable media representing D. 
discoideum cells with different Camp degradation rates89.  Frame D is the lowest, E and 
F are one and two orders of magnitude higher respectively.  The model is populated 
with the kinetics of cAMP secretion and allows for diffusion.  The observation of waves 
and comparison to the sizes of the different simulations allowed the degradation rate to 
be calculated.  The phenomenological models and the reductionist protein models are 
distinct but can help inform each other through simulation and behavioral prediction.  
The protein models need to be further quantified into a predictive framework and the 
phenomenological models need to have their parameters informed through 
experimental measures.  Our study offers a method for determining the validity of 
protein models and our future work section outlines an experimental procedure for 
populating the excitable parameters through observation of the cAMP field. 
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2.8.3 Bridging the Scales 

The first effort to insert an excitable box into the signal transduction network of D. 

discoideum came in the form of local excitation, global inhibition (LEGI).  LEGI works by 

having a uniformly distributed chemical species that inhibits the excitable species.  This 

sets a signaling threshold that filters out noise.  Once above this threshold, the excitable 

species produces more of itself and the inhibitor with some lag.  This causes a rapid 

rise, or excitation, of the species followed by a drop back to basal levels.  Once the 

excitable species is at its basal level, the inhibitor drops as well, resetting the threshold.  

Small signals when the inhibitor is high are ignored, though larger stimuli can raise the 

excitable species again.  The LEGI models have captured chemotaxis behaviors that 

previous efforts have been unable to recapitulate, namely sensitivity to shallow 

gradients, through amplification of internal gradients by inhibiting signals at the back 

and becoming excited at the front, and the cytoskeleton waves that accompany 

migration90–93, while retaining features of simpler models such as cell shape94,95.  It was 

later discovered that this framework describes the dynamic regulation of PIP3 through 

both PTEN and PI3K, where local signals drive an increase in PI3K action and a 

decrease in PTEN action.  Both paths are excitable, so these effects are autocatalytic 

and rapidly increase after passing a threshold.  The threshold is set by global inhibition 

of both paths, which also acts to cancel errant signals96.  The two parallel LEGI systems 

act to enhance PIP2 phosphorylation (via PI3K) and reduce PIP3 dephosphorylation 

(via PTEN) to amplify the gradient signal directly downstream of the receptors, 

successfully describing a method for shallow gradient sensing.  The observation of 
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propagating waves around the perimeter of the cell during migration97,98 moved 

investigation towards incorporation of the  actin cytoskeleton into the excitable 

framework.  The proteins that govern pseudopod formation via polymerization and 

depolymerization in the actin cytoskeleton have the required properties for excitability; 

they are subject to diffusion and feature autocatalysis via a positive feedback loop99–101.  

Although the inhibitor is unknown, the polymerization features a threshold before 

initiation, which indicates that it exists102.   

These excitable networks operate on different timescales so their connection is 

only possible in a framework that contains memory, which allows the different elements 

to proceed with respect to the past states of the other elements.  To further connect the 

dynamic response kinetics, detection of shallow gradients, and actin waves together in 

a unified framework, Legi modules were connected to biased excitable network 

elements (BEN) whose responses depend on previous states.  With the biased 

elements, the timescale of each response could be set by perturbing model parameters, 

connecting various scales of phenomena within the LEGI framework99,103.The LEGI 

systems in D. discoideum are upstream of both the migratory and chemical secretion 

pathways, which connects the excitable protein networks to the excitable global 

phenomena of spiral waves of cAMP through a single mechanism90.  As the models 

become more complex, it takes more time to check the accuracy of all of the individual 

elements.  In order to speed up the process determining the feasibility of models, 

attention turned to finding the fundamental limitations of signal transduction so that any 

model that violated these limitations could be quickly discarded or modified.  Here we 

describe the abstract framework that calculates such bounds, communication or 
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information theory.  This nonparametric framework assumes no form of the relationships 

between signals and their responses so any transformation or transduction system is 

inherently viable.  Determining the feasibility of models in this framework depends solely 

on the content of the signals and responses, which is advantageous when the signaling 

networks are not fully mapped.  We begin with the quantification of distributions of 

signals and responses, cover the metric for dependency between them, then discuss 

how the bounds of this dependency allow for model sorting. 

 

2.9 Information theory 

The aggregation of D. discoideum cells relies on intercellular communication.  

Communication theory or Information Theory (IT) conceptualizes communication in a 

mathematical framework by treating the basic components of communicated media, 

such as words within a language, as a distribution of symbols with defined probability of 

being transmitted.  In linguistics, the probability of a word would be based on the 

frequency it is used within the language.  For instance, ‘the’ would have a relatively high 

probability in English while ‘sporadic’ might be self-descriptive.  Within the context of a 

sentence these probabilities can change which allows for a listener to guess at the any 

missing content.  IT aims to quantify the ability of a transmitter to send a message 

accurately through a communication channel to a receiver, and illuminate the effects of 

signal processing104.  In D. discoideum, cells transmit chemical messages through 

complex internal pathways when probing their environment and through external 

solutions to signal to each other.  The transduction networks process the inputs to 
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mediate cellular responses to internal and external cues.  IT has been directly applied to 

quantify the transduction capability of cellular signaling pathways105,106 and has 

identified the structure of several signal transduction networks107–109.  Indeed, the view 

of D. discoideum as a communication channel has yielded many insights. 

 

 2.9.1 Information 

In his seminal work on information theory, Claude Shannon outlined the method for 

quantifying information and its transmission.  He begins with a description of an abstract 

communication channel, through which any set of symbols can be conveyed, from 

sounds to images to binary digits.  A schematic of such a channel is shown in Figure 

2.9.  The set of symbols can encoded, which changes the distribution of symbols, sent 

through a medium such as air or a wire where it is subjected to noise, then decoded into 

another set of symbols.  The measure that describes the distributions of symbols is 

called information.  This measure is crucial to determine channel transmission rates, 

optimal encoding schemes, and uncertainty.  The definition of information is analogous 

to entropy from statistical mechanics and denotes the amount of uncertainty in the 

outcome of a random process. 

  



35 
 

 

Figure 2.9 Representation of a communication channel.  A distribution of input 
messages is shown on the left in yellow.  These messages are transformed using an 
encoder, which changes the symbols within the input distribution.  The transformed 
messages are sent through a medium called the communication channel, where they 
may be subjected to noise which obfuscates the symbols as they are transmitted.  The 
messages are then decoded using the inverse of the encoding transformation and the 
resulting messages are aggregated into the output distribution.  Information theory 
quantifies the speed and accuracy that the messages can be transmitted through the 
channel.  In our study, the input distribution is the distribution of gradient angles within 
the cAMP field, the channel is the signal transduction network and the output is the 
distribution of cell trajectory angles. 
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Generally speaking, the more uniform the distribution, the higher the information, and 

the more possible outcomes, the higher the information as shown in Figure 2.10.  The 

equation for calculating information is: 

                     

   

 

 

(2.1) 

Where I(X) is the information in bits of the random variable X and p(x) is the probability 

of x.  The base of the logarithm sets the units.  A bit is the amount of information in a 

discrete random variable that has two equally likely outcomes, and is commonly used in 

computer systems which are built on binary.  The base that corresponds to bits is 2, and 

is the base that is used throughout this document.  Information theory was first used 

formally to describe the rate at which computer systems could reliably transmit symbols 

over a noisy communication channel, the channel capacity.  It was quickly applied to 

both encryption algorithms, which obfuscate messages by increasing the number of 

symbols used, and compression algorithms, which shrink file sizes by decreasing the 

number of symbols.  Similar approaches to biological systems were also developed to 

investigate transduction schemes by quantifying environmental variability and 

predictability of behaviors over time.  Information theoretic approaches have been used 

to quantify transduction capability of cells to particular responses, to find signaling bottle 

necks.  IT has also been used to determine the number of redundant systems required 

for cell decision making as well as determining the overall complexity, the number of 

signaling agents, in a transduction system110,111.  Similar approaches have been used to 

create rule sets for cellular automata and sort behaviors into classes112. 
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Figure 2.10 Information versus uniformity and number of possibilities.  A) Uniform and 
Gaussian distributions are convolved to different degrees, with the far left being entirely 
Gaussian and the far right uniform.  The distributions have identical mean and variance.  
The information at each level of convolution is calculated and normalized to the 
information of the uniform distribution.  The information increases as the resulting 
distribution becomes more uniform.  B) Uniform distributions with results drawn from 
increasing numbers of bins are created and their information content calculated.  
Information is normalized to the information of a uniform distribution with 100 bins.  As 
the number of possible events, or bin number, increases, so does the information 
content.  The external chemical field changes drastically during the development of D. 
discoideum.  In the vegetative state, the external field is uniform with fluctuations around 
the bacteria that the cells hunt.  During aggregation, the chemical field is often assumed 
to be normal, but the actual distribution is unknown.  Our experiments impose a 
normally distributed cAMP field throughout the developmental time course, which limits 
the information available to be transduced, though the transduction is lower than the 
capacity by a factor of two. 
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 2.9.2 Mutual Information 

In order to quantify the efficiency or capacity of any communication channel, a metric 

relating the inputs and outputs is required.  Mutual Information (MI) fills this role as a 

measure of the dependence between the input and output.   

                 
      

        
 

      

 
 

(2.2) 

Where X and Y are random variables and p(x,y) is the joint probability distribution.  

Since the communication channel makes no assumptions about the relationship 

between the input and output, it is critical that MI be nonparametric.  It uses the ratio of 

the joint probability distribution to the marginal distributions, which is unity when X and Y 

are independent thanks to Bayes’ law, which states that if X,Y are independent, then 

                (2.3) 

Which makes MI zero for independent variables.  MI is also bounded by the minimum of 

the information content of the two distributions independently, as you can never 

decrease uncertainty over a communication channel.  Bayes law can also be employed 

to change the above MI equation into another form: 

                (2.4) 

The two equations for MI are equivalent, but are often interpreted differently.  Equation 

2.2 is interpreted as the entropy that is shared between two processes, similar in 

concept to covariance which gives the strength of a linear relationship between two 
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variables.  This form is commonly used in phenomenological studies where individual 

messages are either inaccessible or meaningless.  Equation 2.3 is interpreted as the 

average reduction in entropy in an output upon receiving a message from the input.  

This interpretation is commonly employed in reductionist approaches, where individual 

messages can be measured and their responses recorded, to make statements about 

the distribution of responses from particular signals.  The responses are distributed 

instead of exact due to noise within the network.  These interpretations are identical as 

well, accumulation of all of the individual methods will yield the full distribution and the 

full distribution can be sub-sampled.  The advantage of having the two equivalent 

equations and interpretations is that the reductionist and phenomenological views can 

be tied together in a single value and connected in words.  The two scales have yet to 

be connected in this fashion, but progress on both ends has been made.  MI between 

the external chemical cue and cellular response has illuminated individual signaling 

pathway structures and given an upper bound for the information transduction of the 

network across several signal distributions113, and optimal prediction schemes for 

dynamics in excitable media have been established using IT114.  Connecting these 

together requires the correct conditions within the prediction schemes which are 

dependent on correctly, or at least functionally, modeling the dynamics of the 

transduction networks.  Plausibility of models can be determined using the data 

processing inequality, outlined below. 
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Figure 2.11 Mutual information over a communication channel.  A set of messages (x), 
blue bar, is drawn from the input distribution (X) in yellow on the left.  These messages 
are sent down a noisy communication channel and received at the output (Y), the red 
distribution.  The set of received messages (y|x), blue region right, is collected in the 
output distribution.  The Mutual information is the difference between the information of 
the output distribution and the information of the set of received messages when the 
input is known.  We measure the gradient angle and the cell trajectory and calculate the 
MI between them.  The MI value states the transduction capacity of the signaling 
network for the given input distribution and is used to validate chemotaxis models. 
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 2.9.3 The Data Processing Inequality 

The data processing inequality essentially states that information content cannot be 

increased though post processing.  Upon transmission of signal over a noisy channel, 

nonnegative uncertainty is introduced and cannot be combated except through further 

communication.  A natural extension of this concept is that in any multistep process, MI 

between the first and nth step is always less than or equal to the MI between the first 

and n-1th step.  Information cannot be created through processing.  This is more 

formally stated in the data processing inequality115. 

For a markov chain 

      

                

 

 

(2.5) 

This is a convenient rule to apply to signal transduction networks because they have 

many steps in the processes of communicating an event and forming a response.  The 

steps in signal transduction all rely on the state of the previous step, so they form a 

Markov chain.  All of the steps that are visualized and quantified can also be ordered 

and bottlenecks, which create the most uncertainty, can be located.  Models of 

transduction networks are compared to these experimental measurements to check 

their validity and determine when knowledge is missing by using the data processing 

inequality.   
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 2.9.4 The Data Processing Inequality in D. discoideum Signaling 

D. discoideum chemotaxis involves several transduction steps.  The external chemical 

field probabilistically binds to receptors on the cellular membrane, which release g-

protein subunits into the cytoplasm, triggering a protein-enzyme transduction pathway.  

These spatially distributed activations change the local protein concentrations and result 

in preferential pseudopodia extension at locations of higher chemical concentrations.  

Models of individual steps are validated by comparing their theoretical transduction 

capability to measurements of the upstream steps.  For instance, observation of the 

transduction of the external chemical field, the most upstream step, to directed 

migration, the most downstream step, sets the bound on all of the intermediate steps.  

This has been used to validate theoretical receptor transduction models, which lie 

between the external field and directed motion.  The other pieces of the transduction 

network can be similarly approached so that models of pieces and the whole 

transduction network can be validated.  Several advances in the understanding of the 

structure of the signaling network have already been made, outlined below. 

 

2.10 Information Theoretic Models 

Recapitulating all aspects of D. discoideum chemotaxis in a simulation has remained 

elusive in modeling efforts, though various models have been able to emulate some the 

behaviors.  IT has been applied in chemotaxis modeling in an effort to elucidate whether 

hypothesized transduction modules were feasible through application of the data 

processing inequality.  This method was used to show that cells leverage internal bias, 



43 
 

polarity, to improve chemotactic ability during intercellular signaling when external 

chemical gradient angles are persistent116.  An application of IT has additionally 

confirmed that the cells must control external chemical levels through degradation to 

combat noise and increase the concentration range over which they can chemotax117.  

A key question that has been raised by such studies is how the environmental noise 

level attenuates the bounds for transduction.  Experimental probing of this question is 

difficult, as changing relative noise also changes gradient strength, concentration, or 

both, requiring many variations on these parameters to successfully delineate their 

effects.  Models that include gradient strength and concentration have alleviated some 

of this requirement by making predictions about how the bounds would change.  In our 

work, we extend these models over development to elucidate the effects of relative 

noise as the cells change.  We compare this extended model to experimental conditions 

at two gradient strengths over development to validate it.  Here we outline the models 

that we extended. 

 

2.10.1 Levine Model 

Analytical approaches to information theory models have more rapidly advanced than 

experimental measurement of signal transduction due to the difficulty in correctly 

binning data and the large amount of data points required to accurately estimate 

transduction.  Theoretic approaches began when Levine created a geometrically simple 

model cell, which had receptors uniformly distributed on its surface.  Each receptor has 

a probability of being bound at any point in time that is a function of its binding kinetics 
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and the local chemical concentration.  The local chemical signal could be derived from 

any distribution, but this work focused on uniform and normal distributions of gradient 

angles for an ambiguous mean concentration.  The transduction capacity of the spatially 

distributed receptors was analytically approached.  The total information transduction of 

chemical cues into directed migration is limited by the noise at the receptors, so 

modeling the receptors establishes an upper bound for the whole cells transduction 

ability due to the data processing inequality.  The upper bound for each distribution type 

was calculated.  This work had one particularly clever step in the analytical approach 

that facilitated the rest of the derivations.  Initially, the derivation of the transduction 

bound involved a difficult 2-D integration, which could only be approximated with series 

expansion, as had been done previously113.  Levine took advantage of the simple 

geometry to change the spatially distributed random variables describing the receptor 

binding probabilities into a complex random variable vector, which was sufficient for the 

analytical solutions.  By turning the problem into a 1-D complex integral, the analytical 

solution for the transduction bound was found: 

                           
    

  
    

 

(2.6) 

 

Where         is the MI between the external gradient angle   and the trajectory 

response angle  , equated to the MI between    and the complex random vector   , 

which describes the probabilities of spatially distributed receptors being bound.     is the 

external noise, β is an amplification constant, p is the gradient steepness,   is      ,    

is the external variance, and       is the modified Bessel function of the first kind and 
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order zero.  To test this model, experimental collection of gradient angle and cellular 

response needed to be collected, but the paper instead made an assumption about the 

mean and variance of their applied signal and showed that, if their assumption was 

correct, the model did not violate the data processing inequality.  Direct measurements 

of the external signal have been made possible thanks to the availability of fluorescent 

proteins attached to biocompatible small molecules.  There have additionally been 

advances in imaging technology to enable the creation of larger data sets of cell tracks 

and chemical signals so that experimental measurement of transduction with 

reasonable uncertainty is feasible.  These efforts created a framework for validating 

models of transduction through experiments with well-defined external signals, typically 

linear or exponential gradients, through comparison of the predicted upper bound on 

transduction to experimental measures. 
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Figure 2.12 Cartoon of the Levine and Segota models.  A) Representation of the single 
state model and mutant cell line.  The cAMP concentration is shown as red intensity and 
the cell is represented by the gray circle.  On the outer membrane the uniformly 
distributed receptors are the smaller circles and the red fill and gray fill are bound and 
unbound receptors respectively.  The binding rates are a function of the dissociation 
constants and the local concentration, resulting in a higher probability of being bound in 
higher cAMP concentrations at the upper side.  B) Inclusion of two states into the 
model, which is equivalent to the wild type cells.  The two receptor states are outlined in 
blue and black for slow and fast respectively.  C) Cartoon of the experimental data.  For 
each observation, the gradient angle and cellular trajectory are calculated and recorded.  
This data is aggregated into a joint probability distribution and the MI between the 
gradient and trajectory is calculated.  The one and two state models set the upper 
bound for signal transduction of the mutant and wild type observations respectively.  We 
extend the model predictions over development by incorporating the receptor number 
and phosphorylation changes and experimentally validate the models by showing that 
the experimental measures always lie under the model predictions. 
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Figure 2.13 Collection of MI measures from literature117.  Mean concentration and 
gradient strength determine the signal to noise ratio which is noted by color.  The red 
regions have relatively high noise, while the blue regions have relatively high signal.  
The calculated values for the upper bound of information transduction for the gradient 
and concentration are plotted along constant values as solid lines.  The model used to 
generate the information bounds is the single state Levine model for cells with a radius 
of five microns and receptors with 30 nana-molar dissociation constants.  The 
experimental results are plotted in various shapes for different papers and their CIs are 
denoted by color with darker being smaller.  The paper list is in the right side legend.  
The experiment with the largest violation of the data processing inequality is denoted by 
a 1 and this region is studied further in the following sections.  We study this region over 
development for both the wild type cells and the mutants whose receptors are always 
phosphorylated to determine the effect of receptor changes on transduction. 
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 2.10.2 Segota Model 

After the pioneering work by Levine, Segota compared experimental measures of MI to 

the theoretical bound at varying mean concentrations and gradient strengths.  This 

study scanned relative external noise under a variety of conditions to deconvolute the 

effects of noise, gradient strength, and average concentration.  Starting with the Levine 

model, they found that at low to mid gradient strengths and concentrations the data 

processing inequality is not violated, so the model is a reasonable description (see 

Figure 2.14 left).  At high concentrations and gradient strengths however the 

experimental measurement exceeds the theoretical bound; the data processing 

inequality is violated.  The model, therefore, could not be complete.  It was already 

known that the CAR1 receptor in D. discoideum changes from a fast signaling state to a 

slower one via phosphorylation due to a binding event, and this was added to the 

Levine mode.  They showed that models with two different receptor speeds alleviated 

the violation (see Figure 2.14 right).   

We build on the work of Levine and Segota in our study by extending these 

models through development.  The number of receptors and the fraction that are 

phosphorylated, and therefore slow, changes over the course of development.  Both of 

these parameters are in the aforementioned models so the predicted bounds for 

transduction will change.  Additionally, we experimentally test these new bounds by 

exposing cells to two different gradients at several developmental time points.  We also 

extend the single receptor speed model over development and experimentally realize it 

by leveraging a mutant cell line that whose receptors are always phosphorylated.  In 

both of these cases, the data processing inequality is not violated. 
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Figure 2.14 Mutual Information in experiment versus single and multistate receptor 
model bounds.  Left) Single state predictions for MI are plotted as the solid against 
gradient steepness and mean concentration.  The shaded region represents the model 
bounds for all of mean concentration inside of the gradient chamber, which changes 
inside of a linear gradient chamber.  The experimental results are graphed as the 
dashed line with error bars representing the standard error.  If the data processing 
inequality was not violated, then the experimental results would be under the top of the 
shaded region everywhere.  This is not the case in the region denoted by a 1, and is the 
same region from Figure 2.13.  Right) the inclusion of multiple receptor states changes 
the model bounds by a large enough margin such that the data processing inequality is 
no longer violated.  We extend the model predictions over development and use a 
mutant cell line with a single receptor state that should follow the single state predictions 
to determine whether the models are valid and if the change in transduction capacity is 
due to multiple receptor states.   
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There have been several additional IT models for chemotaxis transduction, 

focusing largely on the dependence of transduction ability on the ratio of external noise 

to external signal, or the inclusion of specific transduction elements into the IT 

framework.  Here we outline those efforts, and in our work we show qualitative 

agreement of our findings with the model predictions. 

 

 2.10.3 Rate Distortion and LEGI 

Rate distortion theory is a sub field of information theory and, where information theory 

aims to find the maximum rate of accurate transduction for a channel, rate distortion 

aims to find the speed at which symbols should be transmitted to be reconstructed with 

some acceptable threshold of inaccuracy.  This is useful in studying signal transduction 

in cells because the inaccuracy can be measured and used to calculate parameters 

within models that would give rise to exactly that distortion.  Thus, if a transduction 

channel is known and the bounds for transduction are calculated with information 

theory, the internal noise on the different elements can be used to account for the 

difference between the bound and the lower actual transduction capacity.  Iglesias 

applied rate distortion theory to the LEGI model to account for such discrepancy 

between the LEGI bound and the measured transduction.  Distortion was implemented 

in the LEGI model by varying the hill coefficient of the excitable element.  The hill 

coefficient defines both the lower threshold for excitation as well as the steepness of the 

curve of the excitable element once past this threshold.  Simply stated, it controls the 
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sensitivity to fluctuations in signal.  This fits well into studies of the effects of 

environmental noise because modulating the external fluctuation magnitude and 

observing the responses of an excitable system allows calculation of this coefficient.  

The Iglesias work showed that the transduction capability could be matched by 

changing the internal distortion of a cell relative to the external noise levels.  They thus 

found the distortion for vegetative and developed cells.  This distortion was levied 

against internal bias, which weights the cell trajectory on previous movement, and 

compared to cell movement of the vegetative and aggregation competent cells.  They 

found that vegetative cells had little to no bias while the developed cells incorporated 

bias.  With the distortion and bias for both developmental stages they calculated the 

optimal chemical fields that the LEGI model with these parameters could transduce and 

found the early cells are best at transducing uniform distributions with high fluctuations 

and developed cells are best at exponential gradient.  This is in agreement with the 

reality of the signals presented to those cells at those developmental stages.  Early in 

development, the cells are primed to respond to secreted factors from uniformly 

distributed bacteria, which make a uniformly distributed chemical field with local 

fluctuations.  Later in development, the cells are attracted to aggregation centers, which 

yield exponential gradients that are normally distributed from what is approximately a 

point source when far away.  They conclude that the cells are indeed utilizing an optimal 

sensing scheme for their expected environment at different stages of development.  

Using a Monte Carlo method, they then compute the chemotactic efficiency, which gives 

the projection of cell motion in the direction of the gradient as a percentage of the total 

length travelled, for various values of bias and distortion and compare to analytical 
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calculations of MI that incorporate LEGI elements and bias into the Levine Model.  They 

find that, in general, greater chemotactic efficiency requires greater MI and that bias 

increases chemotaxis efficiency.  In our study, we explore bias through treatment of 

phosphorylation of receptors as a mechanism for integrating signals.  Phosphorylation 

slows down the kinetics of the receptor so that g-protein subunits remain in the 

cytoplasm for longer after a signaling event triggering downstream signaling and 

receptors take longer to bind to external cAMP.  The smaller frequency of sampling the 

environment and changing internal signaling effectively increases the time required for a 

cell to change its motion, biasing it towards previous trajectories.  We similarly find that 

bias increases the accuracy of chemotaxis. 
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Figure 2.15 Hill functions with varying Hill coefficients.  The production rate of an 
excitable species is plotted against concentration.  The rate is normalized with respect 
to its maximal rate.  The concentration is expressed in terms of the concentration at 
which the rate is half maximized.  The steepness and threshold of the response of an 
excitable system can be matched to a Hill function by fitting the coefficient and half 
maximal concentration.  The threshold sets the magnitude of the environmental 
fluctuations that the excitable system will ignore and the steepness sets how quickly it 
maximizes its production after passing the threshold.  These two parameters were used 
to match the chemotactic response of D. discoideum to different amounts of 
environmental noise.  In our future work section, we outline the extension of excitable 
information theoretic models over development.  The hill coefficient may be changed as 
development progresses, and the thresholding that is supplies can be experimentally 
tested using variable relative external noise values.   
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 2.10.4 Filtering and Integration 

The Endres group studied memory schemes and their impact on signal transduction 

and compared the theoretical limits to experimental measures performed in a gradient 

chamber that could be switched in a few seconds.  They also varied the gradient 

steepness and concentration to study the effects of relative environmental noise.  

Furthermore, they explored the effects of temporal correlation of environmental noise by 

changing how rapidly they reversed the gradient.  This allowed them to determine the 

sensing strategy of cell in rapidly or slowly fluctuating environments.  They compared 

two different strategies, one where the cell used prior measurements to predict the next 

signal (prediction), and another where the cell weighs previous and current signals to 

estimate the true current signal (filtering).  They find that both schemes increase the 

signal transduction fidelity in fluctuating environments, giving a possible explanation for 

how the cells sense past the data processing limit of simpler models.  They then 

compared the turning behavior of simulated cells with prediction and filtering schemes 

to observations in the gradient chamber and saw the cells persisting in the original 

direction and making a u-turn, which qualitatively agrees with the filtering simulations.  

These filtering schemes are equivalent to integrating signals over a larger time step, 

implemented biochemically as an incoherent feed forward loop. 

 

2.11 Persistence 

As a result of the integrating, averaging, and memory functions that cells employ to 

increase their ability to transduce external signals, they respond more slowly to dynamic 
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signals than simpler and less accurate sensing schemes.  This is immediately evident 

when comparing early development cells that have less aggressive integrating 

strategies and shorter memories, and as a result change direction rapidly, to late 

development cells that employ these strategies in full and respond to changes in signals 

with arcing turns.  The slow response, termed persistence, has been quantified using 

mean square displacement and folded into LEGI models using bias. 

 

2.12 MSD 

Cellular trajectories are easily tracked and are processed to find their randomness using 

mean square displacement (MSD).  The slope of the log-space MSD versus delay time 

in measurement determines the power law relationship between the square of how far, 

on average, the cells move in a given time interval.  For slopes near unity, the cells 

move like Brownian particles with their displacement growing as the square root of time.  

Slopes near two represent ballistic motion where displacement is proportional to time.  

Cells lie between Brownian and ballistic motion, and their persistence can be quantified 

as the transition between the two types of motion over time.  Under no stimulus, 

developed D. discoideum cells will travel in a fairly straight line for about three minutes 

before transitioning into random motion41.  These results have been used to add a 

stochastic fluctuation to motility models such that simulated cells have the same 

persistence time118 and functional responses to external stimuli have been mapped 

using cellular observation and stochastic modeling119.  These efforts set the accepted 

persistence time for cells in the absence of stimuli for a variety of perturbations. 
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 2.12.1 Connecting LEGI to Persistence: LEGI-BEN 

LEGI models of cells can predict a variety of aforementioned responses, but fail to 

predict how long cells will continue in a single direction, their persistence.  In order to 

overcome this, LEGI was modified to include a biased excitable network module (BEN), 

which is driven by the LEGI outputs.  This results in an excitable network that is filtered 

by the LEGI system, so that only locations where the LEGI has become excited have 

the potential to be excited in the downstream network103.  This setup allows the bias of 

the system, and therefore the temporal response to dynamic signals, to be controlled by 

the LEGI parameters99.  In tandem, these results incorporate a persistence control into 

the LEGI system which enabled LEGI parameters to be discovered though dynamic 

external field experiments and information theoretic approaches to be connected to 

persistence measures. 

 

2.13 Intention of Manuscript 

The body of literature reviewed above represents the approaches to chemical signal 

transduction into directed migration by D. discoideum, focusing on information theoretic 

approaches and receptor mechanisms.  The literature at large is concerned with 

elucidating the transduction network and connecting it to the phenomenological 

response through a physiological framework.  D. discoideum cells are studied primarily 

at either early or late developmental points, with the conserved elements between the 

two time points receiving considerable theoretical attention, but remaining 
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experimentally vacant.  Modeling efforts utilizing analytical solutions to information 

theory measures have outpaced experimental validation as data collection on the scale 

required is cumbersome, especially in light of the theoretical focus on the relative noise 

in the environment which requires many physical perturbations to the microfluidic 

gradient controllers employed.  The connection between persistence and chemical 

sensing strategies remains abstract and vague, particularly in the frame of information 

transduction.  We aim to extend information theory predictions throughout the 

developmental time course by using known developmentally controlled receptor 

modifications in our transduction models and experimentally validating them using 

mutant cells that disrupt such modifications, thereby connecting early and late time 

points.  Additionally, we use two microfluidic chambers that create gradients with 

different slopes to experimentally test the effects of relative environmental noise levels 

thought this developmental time course.  Finally, we connect the transduction strategies 

to cellular persistence over development by observing cell responses to dynamic 

signals and processing them with both information theoretic and Euclidian metrics. 

 

  



58 
 

Chapter 3 

 

Information Processing Throughout Early Development of D. discoideum 

Manuscript submitted to the special issue of Physical Biology dedicated to  

The 10th Q-Bio conference 

Jonathan Ehrman, Mario Avaldi, Christopher Janetopoulos, and Erin Rericha 

 

The manuscript presented herein would scarcely have been possible without the aid of 

Mario Avaldi.  During his last two years at Vanderbilt, he spent countless hours in the 

lab collecting data and performing preliminary analysis.  He showed initiative and work 

ethic rarely found in an undergraduate, and was always willing to debate every angle of 

the project (and all other topics).  He also provided an opportunity for me to hone my 

mentoring skills while giving feedback on my approach, for which I am forever grateful.   

 

3.1 Abstract 

Detection of chemical signals is critical for the function of eukaryotic cells.  D. 

discoideum cells are particularly adept at responding chemical gradients, sensing single 

percent concentration changes across their body.  D. discoideum has two well studied 

states at the beginning and end of a developmental transition, during which the cells 

change the number and speed of their receptors to better match their environmental 

conditions.  Additionally, the cells elongate and become more persistent in their 

migration direction.  Here, we measure the ability of the cells to sense gradients through 

this developmental transition as they change their internal machinery.  Additionally, we 
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impair the ability of the cells to modulate the speed of the receptors and measure the 

effect of a single receptor state on gradient sensing over development.  We compare 

cells from the wild type and mutants that are equally elongated to resolve any 

differences caused by misregulation of development in the mutants.  We then extend a 

previous information theoretic model to include both receptor speed and number 

changes, and exclusively changes in number to represent both types of cells.  We show 

that the models in each case show no violations of the data processing inequality, and 

are therefore reasonable descriptions of the cell responses.  We compare the MI 

findings to the chemotaxis index of the cells to determine whether cell migration 

strategies skew toward instantaneous responses or integration of signal, and find that 

early cells respond to fluctuations while more developed cells integrate the signal.  We 

confirmed this experimentally by exposing the cells to a switch in gradient direction and 

calculating the amount of time that it took the cells to turn.  We then compare our 

findings to additional information theoretic approaches to modeling transduction and find 

qualitative agreement.   

 

3.2 Introduction 

As the capacity for computational models has improved, more is needed from 

experiments to provide rigorous feedback.  Recent efforts to model developmental 

transitions necessitate observation of cells at several time points and quantification of 

the dynamic relationship between environmental stimuli and the cells responses as this 

transition progresses.  D. discoideum has long served as a model organism for studies 

for migration, signal detection, and developmental transitions.  When nutrients are 
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plentiful cells of the social amoeba D. discoideum tend to be round, meander in their 

migration towards increasing concentrations of folic acid120,121, and react to reversals in 

gradient direction via internal reorganization of the cytoskeleton structure122,123, such 

that the front of the cells becomes the back.  Upon starvation, the cells undergo a 

development cycle, mediated by an autocrine, paracrine feedback loop that stimulates 

the detection, synthesis, and secretion, of the common second messenger cyclic-

AMP124,125.  Later in development, the cells are elongated and respond to dynamic 

signals by turning their body around and retaining the cell front.  These cells migrate in 

a single direction for longer; they are more persistent.  Here we provide quantification of 

specific aspects of the developmental transition in order to improve the connection with 

computational models.  In particular, we measure the changes in cell shape and 

persistence that accompany the first six hours of development.  We find that wild type 

cell elongation begins at a development time of 3 hours and plateaus from 5 hours 

onwards.  Cells early in development more rapidly change their migration direction in 

response to dynamic signals; persistence increases with development time. 

The first six hours of the developmental transition is driven by the binding of 

cAMP to the CAR1 receptor, a g-protein coupled receptor, which is subsequently 

phosphorylated.  Phosphorylation in mammalian g-protein receptors, is frequently a vital 

regulatory step126–128, however the role of phosphorylation for CAR1 is controversial 

with noted effects ranging from regulation of chemotaxis, actin distributions and signal 

relay, adaptation of ACA, control of developmental timing, and alteration of signal 

transduction rates129–133.  Here we examine the impact of receptor phosphorylation on 

the onset of cell elongation and cell persistence using CM12345- mutant cells which 
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have receptors that are always phosphorylated.  We find that the mutant cells, when 

starved under pulsing, elongate at a slower pace, with mutant cells at 4.5-6 hours 

resembling wild type cells at 3 hours.  The mutant cells are incapable of responding to 

dynamic signals on the timescale of our experiment. 

Here we revisit the application of information theory to D. discoideum 

chemotaxis.  Seminal work by Franck and Segota134 consider the mutual information 

between the chemokine gradient direction and the cells migratory direction and found a 

violation of the information inequality.  The authors proposed that the data processing 

inequality could be resolved by considering multiple phosphorylation states.  To test this 

hypothesis, we compare the evolution of the information transduction capacity for wild 

type and cells with disrupted phosphorylation states.  We find, both experimentally and 

through modeling, that the wild type cells with multiple receptor states having a greater 

transduction capacity than the single state mutants.  The capacity of wild type cells is 

greatest at 3 hours of development, corresponding with the onset of polarity, declines 

over several hours, and then recovers in the later stages.  The mutant cells do not 

respond to gradients at 3 hours, and have similar transduction capacities from 4.5 hours 

onwards, which is consistent with the morphological measure of their development. 

Finally, we explore the difference between information theoretic measures and 

standard chemotaxis metrics.  We note that information theory uses simultaneous 

measurements of input and response signals while chemotaxis index, the standard 

efficiency measure, compares integrated inputs and responses.  Thus, we have short- 

and long-time scale measures that we use to determine how heavily the cells rely on 

previous knowledge as development progresses.  We find that early development cells 
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have little to no integration, while cells later in development rely more heavily on 

previous signals. 

Taken together our work compliments previous efforts to find changes in protein 

and RNA expression135–138, receptors139,140, increased cell length, and migration 

persistence141 by extending them over development.  Additionally, our work connects 

information theoretic approaches involving excitable signaling networks to models of 

transduction in integration and filtering schemes.  Our use of two gradient strengths 

over development corroborates the prediction of excitable network models that 

chemotactic efficiency is positively correlated with signal to noise ratio and inversely 

related to the receptor dissociation constant.  Usage of CM12345- cells and dynamic 

gradients confirmed the prediction that integration increases fidelity but slows responses 

to change.   

 

3.3 Materials and Methods 

 

3.3.1 Cell growth and development  

WT D. discoideum Ax3 cells are grown in HL5 to 4x106 cells ml-1.  The developmental 

process is initiated by washing the cells in development buffer (DB) three times and 

resuspending them at 1x107 cells ml-1 in 5 ml aliquots.  The solution is placed on an 

orbital shaker at 160 rpm.  After 1 hour, 100μl of 4μm cAMP is dropped into the solution 
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over 5 seconds every 6 minutes.  The cells are harvested and resuspended to 2.5x106 

cells ml-1 before loading into the microfluidic chamber.  Adapted from141. 

 

3.3.2 Elongation assays 

Cells are developed as above and sampled every 30 minutes then flowed into the cell 

cavity of the gradient chamber.  Brightfield images are taken as in Microscopy (without 

fluorescent images) 

 

3.3.3 Dynamic gradient assays 

Cells are developed as above and sampled every 90 minutes then flowed into the cell 

cavity of the gradient chamber.  A fluorescent cAMP solution is prepared by mixing DB 

with cAMP and Alexa Fluor 568 tagged dextran (Invitrogen) to 50μM and 0.44mM 

respectively.  Two peristaltic pumps (Viibre, Vanderbilt University), calibrated to 6ul/hour 

flow rate, are used to drive fluid flow through a switchable LabSmith AV202-C360 valve 

and into the flow cavities of the gradient chamber (see Figure 3.5B), causing a linear 

cAMP gradient to form across the cell cavity via diffusion.  The Labsmith valve is 

switched after 15 minutes to flip the high and low sides of the gradient.  Images are 

collected as in Microscopy for 75 minutes.   
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Figure 3.1 Comsol flow field.  A) The Normalized flow velocity is shown by color with red 
representing the maximum flow and blue the minimum.  The effects of the corner bend 
are shown (inset) with the diffusion slits far enough from the corner to prevent uneven 
flow.  B) The red vectors represent the velocity at each location to scale.  The maximum 
flow is 200um/second.  The minimum flow occurs in the central chamber (inset) at 
10nm/second.  The inset vector lengths are increased by a factor of 103.  The flow rates 
within the central chamber are too low to cause a migratory response to shear. 

 

 

Figure 3.2 Switching fluorescent gradients inside of the microfluidic chamber.  10x 
fluorescent images A) Green and red fluorescent dyes flow through the outer channels, 
left and right, and create linear gradients.  The inset red boxes have the intensity of 
each plotted against location, showing linear red and green gradients.  B) Image taken 
five minutes after switching the fluids.  The red and green linear gradients have 
switched directions.  This experiment allowed us to measure the cells persistence to 
dynamic signals. 
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3.3.4 Microfluidic Chamber 

Microfluidic chambers that create linear gradients have been designed142–144.  These 

chambers suffer from substantial flow across the central chamber, turbulent flow, and 

mixing issues.  We have minimized these drawbacks through simulation in Comsol 

(Figure 3.1), with the main improvements being larger, straight flow cavities to simplify 

flow and a single outlet to dampen pressure differences across the central chamber.  

The geometry is outlined in Figure 3.5A.  Specifically, our shallow gradient chamber has 

a 4mm long, 1mm wide, and 100μm tall central cell cavity which is separated from the 

6mm long, 1mm wide, and 100μm tall flow cavities on the top and bottom by 56 high 

impedance (i.e.  small cross section relative to length) 80μm long, 2μm wide, and 10μm 

tall slits spaced 5μm apart.  The slits run from 1mm to 5mm along the flow cavities to 

connect the central and outer cavities.  At 6mm, the flow cavities are brought together at 

a 30o angle.  The 1mm between the slits and the flow cavity angle change makes the 

effects of the angle change on flow profile negligible (see Supplemental Information).  

The steep gradient chamber is identical save for a central cell chamber that is 500μm 

wide.  Gradient chambers were drawn in Adobe illustrator and made into 

photolithography masks by Front Range Photomask LLC.  The photolithography was 

performed on 3 inch silicon wafers in two sequential steps according to standard 

procedure (MicroChem Procedures); the first step creates the 2um tall gradient slits and 

the second overlays the flow and cell subsections onto the slits.  The masters are then 

treated with Trichloro(1H,1H,2H,2H-perfluorooctyl)silane (Sigma) so that they are 

nonstick.  Polydimethylsiloxane (PDMS) (Corning) is then poured onto the wafers in 

10:1 base to curing agent, desiccated, and baked at 60oC for 4 hours.  After removing 
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the PDMS from the master, holes for 150μm inner diameter (PEEK) and 1/16th inch 

inner diameter (Tygon) tubing are punched in the inlets and outlet respectively.  The 

chambers are then sealed to a 4 well Nunc Lab-Tek chamber slide according to 

standard procedure 145  and filled with DB until used. 

 

3.3.5 Microscopy 

Alexa 568 fluorescent and brightfield images are taken every 10 seconds on a Zeiss 

Observer.Z1 microscope with an AxioCamMR3 camera controlled by AxioVision 

software.  All images are taken with a 20x Plan-Apochromat M27 (NA0.8) phase 

contrast objective.  Phase contrast images allow for easy segmentation and tracking of 

cells while fluorescent image intensities correlate with chemical concentration. 
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Figure 3.3 Evolution of the gradient chamber via circuit analysis.  The gradient chamber 
was redesigned to minimize fluid flow across the central chamber.  A) Drawing of 
original pump and tubing setup.  Colored boxes match to their analogous parts in B.  B) 
Circuit diagram of pump and valve setup.  The pumps act like batteries and the tubing 
and diffusion slits as resistors.  C) Final gradient chamber setup.  Shorting the flow 
wires before exiting the chamber causes the voltage on each side of the central 
chamber to be equal, and no fluid to flow across the center.  We also decreased the 
tubing resistances by using larger diameter tubing, thereby increasing the relative 
resistance of the diffusion slits.  Together these changes provided a stable central 
chamber with low flow across the cells. 
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Figure 3.4 Gradient chamber photolithography mask.  The varied width of the central 
chamber changes the gradient steepness.  The bottom two chambers were used in the 
gradient switching experiments.  The various central chamber widths were used to 
explore the connection between relative external noise and signal transduction. 
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Figure 3.5 Experimental Setup.  A) Over head schematic of the Microfluidic Chamber.  
Each device has three addressable chambers top, center and bottom.  The top and 
bottom chambers direct flow of a cAMP solution or DB past the diffusion slits that 
separate them from the central chamber.  The high impedance slits minimize flow 
across the central chamber while allowing cAMP and buffer to diffuse across them.  The 
central chamber houses the cells during each experiment.  b) Valve configuration.  The 
fluid flow through the microfluidic gradient chamber is driven by two peristaltic pumps 
though a valve that reverses its outputs.  In one configuration, represented by solid 
lines, the pump directs the red and green solutions into the top and bottom inlets 
respectively.  The paths are labeled A and B.  After switching the valve, with new paths 
represented by dashed lines, the red and green solutions are directed into bottom and 
top inlets respectively, reversing the solutions.  The paths are labeled A’ and B’.  The 
gradient direction within the chamber can be switched over the period of 90 seconds, 
which provides a method to determine the cells response to dynamic signals and 
calculate their persistence. 
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3.3.6 Calibrating cAMP Gradient 

Fluor 568 tagged dextran was mixed with the cAMP solution and used to infer the cAMP 

field.  This is nontrivial as the dextran and cAMP have diffusion constants that are 30 

um2/s146 and 444 um2/s 147 respectively.  The experiments have 5 parameters that 

determine the dynamics of the chemical signal: 1) the location within the chamber, the 

relative flow rates of the 2) top and 3) bottom channels, 4) the time of the switch, 5) the 

lag between the start of flow and the start of image acquisition.  Comsol was used to 

simulate flow and diffusion of dextran and cAMP at various values of the above 

parameters for the entire geometry of the microfluidic chamber.  The experiment covers 

only half the distance between the flow chambers and about 10% of the length of the 

cell chamber.  To determine the location of the experimental data within the chamber, 

the mean square distance between simulation and experiment is calculated for many 

sections of the chamber and minimized to find the optimal simulation solution.  An 

identical approach is used to find the following.  The concentration at the low side of the 

image is dominated by flow at short time scales and was thusly used to find the top and 

bottom channel velocities.  The initial concentration profile across the chamber is used 

to find the time lag between the start of flow and image acquisition.  The edges of the 

simulation, being closest to the flow chambers, give an accurate depiction of the 

solutions within the flow chambers and are used to find the switch time (Figure 3.6). 
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Figure 3.6 Selection of the best simulation.  A) The experimental data (blue curve) is 
plotted over location within the chamber at the beginning of the experiment.  The solid 
red line represents the simulated data that best fits the experimental data, with +/- 10% 
in the location parameter in dashed lines.  B) The experimental data is plotted over 
location within the chamber at the beginning of the experiment.  The solid red line 
represents the simulated data that best fits the experimental data, with +/- 10% in the 
time offset parameter in dashed lines.  C-D) The experimental data is plotted over time 
at the far left (C) and right (D) of the chamber.  The solid red line represents the 
simulated data that best fits the experimental data, with +/- 10% in the location switch 
time parameter in dashed lines.  The best fit simulation was selected and the cAMP 
data was used to determine the cAMP field for the experiment.  This method gives and 
indirect measurement of the field which is more accurate than the typical assumed 
distribution because large fluctuations can be measured and accounted for, but is less 
accurate than direct measurement.  Direct measures as of yet are not available, though 
we outline a method for them in the future work section, Chapter 4. 
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Figure 3.7 Experimental and simulated chemical concentrations.  A) The Intensity of the 
fluorescently tagged dextran is represented by height and is plotted over location and 
time during a gradient switching experiment.  B-C) A gradient switching experiment is 
simulated in Comsol with a molecule with the diffusion coefficient of the dextran 
molecule (B) and cAMP (C).  The height represents the concentration and is plotted 
over location along the gradient and time.  Many such surfaces were generated and the 
closest are plotted here.  D) The simulated curves (dashed lines) and experimental 
measurements (points) are plotted versus location in the chamber at 5 (blue) 15 (green) 
and 25 (red) minutes.  The error bars represent the standard error for each region.  The 
Comsol simulations were matched to the experiments using the parameters outlined in 
Figure 3.6 
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Figure 3.8 Dextran and cAMP switch simulations.  The normalized concentration 
profiles are shown for dextran (left column) and cAMP (right column) immediately 
following a simulated switch at 5 minutes.  The maximum concentrations are 
represented in red with zero in blue.  The top channel velocity is 5% higher than the 
bottom channel to match an experimental condition.  We used the difference between 
the timing of dextran and cAMP switches in the simulation to determine the cAMP 
switch timing of the experiments.  The persistence measures compared the cAMP 
switch to the cell trajectory switch.  The persistence measures and the difference 
between the dextran and cAMP switches are both on the order of a few minutes so the 
correction was critical to obtain the true value of the switches. 
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  3.3.7 Image Analysis 

Images are analyzed with a combination of ImageJ (NIH) and Matlab (MathWorks, 

Natick, MA) with the image processing toolbox.  Brightfield phase contrast images have 

their background removed via ImageJ’s background subtraction algorithm (rolling ball 

radius 10 pixels).  The images are loaded sequentially into Matlab and binarized which, 

thanks to the nature of phase contrast images, gives boundaries that are accurate 

though sometimes not closed.  To close the boundaries, the images are then essentially 

treated with the morphological transformation bottom hat (dilation and erosion), though 

the number of iterations is experiment dependant.  The boundaries are then filtered by 

area, yielding accurate outlines of cells while ignoring imaging artifacts.  The cells are 

tracked in subsequent frames using a nearest neighbor approach.  The major (minor) 

axis of each cell is found by calculating the major (minor) axis of the ellipse that has the 

same normalized second central moments as the cell.  The ratio of major axis to minor 

axis of each ellipse is stored as the cells elongation at a particular time.  The x and y 

gradients at each location of the fluorescent images are approximated using the built in 

Matlab function.  An annulus is created around each cell at each time point and the 

gradient values within those locations are averaged, their angle and magnitude 

calculated and stored.  This method ensures that the effects of cells in the fluorescent 

channel are removed and that each cell receives a local gradient measure. 
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Figure 3.9 Cell boundary and shape identification.  A) 10x Brightfield image of cells in 
the absence of cAMP.  B) Binarized image after background subtraction.  The images 
will be treated with the morphological operation ‘top hat’ multiple times then filled.  C) 
The boundaries of the cells (blue) plotted on top of the Brightfield image.  The 
boundaries have been filtered by area to remove large clumps of cells and small 
artifacts.  D) Ellipses fit to the cell boundary are plotted.  The red outline is the ellipse 
with the green and cyan lines the major and minor axis respectively.  The axes are used 
to calculate the elongation ratio for each cell.  This analysis was critical to determine the 
developmental timing of the mutant cell lines needed to compare them the wild type 
cells. 
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Figure 3.10 Local gradient directions and cellular trajectories.  A) Analyzed brightfield 
image with the cell boundary in blue and the cAMP and buffer gradient directions in red 
and green respectively.  B) Initial cell trajectory image.  The trajectories are plotted in 
cyan.  C) Trajectories after 200 seconds.  The cell trajectories are plotted for each cell 
and each image.  The simultaneously measured trajectory and gradient angles enable 
the calculation of the MI between them.  The measures over time enable the calculation 
of the chemotaxis index and the persistence of the cells. 
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Figure 3.11 Persistence for individual cells.  The cell trajectory is plotted in blue and the 
gradient direction in red.  The red ellipse is the characteristic shape of the cell over the 
entire experiment.  From left to right in A,B and C are the images before the gradient 
switch, at the gradient switch, at the trajectory switch and several frames after the 
trajectory switch for 3,4.5 and 6 hours post starvation.  The persistence time for each 
cell is written in green after the trajectory switches.  These images confirmed that the 
cell tracking and gradient algorithms were functioning as expected and that the 
persistence measures were accurate. 
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3.3.8 Mutual Information Models 

A circular cell with N uniformly distributed receptors on its surface is divided into 

sectors.  If the external chemical gradient has reached steady state, then we can 

assume that the ligand binding has reached equilibrium, so the mean fraction of bound 

receptors in each sector depends on the local concentration and dissociation constant 

of the receptors: 

       
  

     
 

 
(3.1) 

 

When extended to multiple receptor states, the mean fraction of bound receptors also 

depends on the percent of the receptors that are in each state.   

       
       

         
 

       

         
 

 
(3.2) 

Using the above equation, we can derive the MI bound for cells with multiple states 

following117 to arrive at: 

     
                       

 

                               
   

 
                        

                                
 

 
 

(3.3) 
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This reduces to: 

     
                  

                                
 

 

 
(3.4) 

if we enforce a single (slow) receptor state, representative of the mutant cells, which 

matches117. 

 

3.3.9 Receptor State over Development 

None of the receptors are in the slow state at three hours of development148 and they 

asymptotically approach 75% in the slow state out to 6 hours.  The cells are subjected 

to 50nM cAMP every 6 minutes during development149 and the receptor dissociation 

constants are Kdslow=900nM and Kdfast=300nM150.  We can thus write a differential 

equation for the fraction of receptors in each state as  

      

  
              

      

             
               

      

             
  

 
(3.5) 

where Pslow(fast) is the fraction of the receptors in the slow (fast) state, Kdslow(fast) is the 

dissociation constant of the slow (fast) receptors, [cAMP] is the mean local 

concentration of cAMP, and Cf→s is the rate at which the fast receptors dephosphorylate 

to become slow. 
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3.3.10 Chemotaxis Index Calculation 

Chemotaxis index is used to measure how well a cell can track an applied gradient 

signal over time.  It is calculate by first finding the average gradient direction over 30 

seconds, finding the cell displacement vector over the same interval, then taking the 

cosine between them and averaging it over many cells. 

                 (3.7) 

3.4 Results 

 

3.4.1 Quantification of Elongation throughout Development 

Qualitative descriptions state that D. discoideum cells elongate during their 

developmental transition from individual cells to aggregates, and quantitative measures 

have shown that the late development cells are more elongated than at early 

development.  The timing of the transition between the two states had not previously 

been quantified.  It has also been noted that phosphorylation plays a key role in 

development, so we compare our quantification of the transition in mutant and WT cells.  

By sampling developing WT cultures, we find that the ratio of the major to minor axis of 

the cells is fairly constant over the first 3 hours, at which time the ratio increases before 

reaching a plateau at 5 hours (Figure 3.12A, blue).  The mutant cells, which cannot 

phosphorylate their cAMP receptors, show retarded elongation.  These cells reach a 

ratio equivalent to the three hour WT ratio at four hours, and remain in that range before 

showing a slight increase at six hours (Figure 3.12A, orange).  Overnight development 
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showed little further increase in this ratio, meaning that the cells do not proceed past 

this development point, though the development could be recovered by co-developing 

mutant and WT cells at 1:1 concentration, which shows that the mutants are viable 

outside of their phosphorylation handicap.  This retarded development is consistent with 

results that show phosphorylation impacts downstream adaptation of ACA129.  

Adaptation in WT cells gives a prolonged period, about six minutes, where cells don’t 

respond to signals.  The cells synchronize their secretion with this refractory period, as 

out of phase signals are ignored.  The period and synchronization of these oscillatory 

signals is crucial to drive development151.  Due to the lack of adaptation, the CM12345- 

cells respond to every signal, leading to the observed continuous secretion of cAMP, 

which inhibits synchronization and subsequently development.  We thus compare the 

4.5 and 6 hour mutant cells to the WT cells at 3 hours of development and compare the 

6 hour co-developed mutant cells to the 6 hour WT cells for the following measures. 
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Figure 3.12 Elongation and persistence versus development time.  A) Elongation versus 
development time.  The ratio of the major and minor axes for the WT (blue) and mutant 
(orange) cells is plotted every thirty minutes over development.  The mean for the WT 
cells at 3 hours is represented by a horizontal dotted line to show equivalence to the 
mutants at 4 hours onwards.  The cells recovered by co-development are plotted in 
green, and their equivalence to WT 4.5-5 hours is shown with the black dashed line.  
The error bars represent the standard error of the ratio.  This result allows us to 
compare cells from the wild type and mutant populations thorough their elongation 
ratios.  Additionally, the recovery of the co developed cells shows that, aside from the 
phosphorylation state of the receptors, the mutant cells are otherwise identical to the 
wild type.  B) Persistence versus development time.  For each experiment, the time it 
takes each cell to turn after the gradient direction switches is recorded (inset) The red 
curve represents the direction of the gradient, the purple curve is the average cell angle 
and the blue bar represents the time between the gradient and trajectory switches.  The 
cell averages are plotted 3, 4.5, and 6 hours and the error bars represent the standard 
error.  This result shows that the cells respond to external signal changes more slowly 
as development progresses. 
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3.4.2 Response to Dynamic Signals throughout Development: Persistence 

A common qualitative description of D. discoideum development states that 

undeveloped cells meander while developed cells persist in a single direction, both in 

the absence of a chemical signal and in an applied gradient123.  We found first that a 

large fraction, ~75%, of cells at 3 hours of development performed u-turns in shallow 

gradients instead of the rapid reversals expected as shown in Figure 3.13.  We sought 

to quantify the development of persistence over time.  We found the direction of the 

gradient and cell trajectories as functions of time and calculated the time between the 

gradient flip and the trajectory flip for each cell.  An example of this is shown in Figure 

3.12B (inset).  We found that cells respond slowly to reversals of shallow (steep) 

gradients, 1% (2%) change in concentration over the cell length, with the cells 

developed for [3, 4 and 5 hours] taking 1.83 (1.17), 2.33 (1.25), and 2.66 (1.50) minutes 

to flip their migration direction respectively.  These results are shown in Figure 3.12B, 

with the WT and CM12345- cells represented by the solid and dashed lines 

respectively. This time scale is significantly longer than has been observed for cells 

responding to rapid reversals of steep exponential gradients122, however  it is consistent 

with earlier findings of cell persistence based on MSD in the absence of chemical 

signals152.  As expected, the CM12345- were underdeveloped did not respond to 

changes in the gradient direction, instead moving randomly after the switch.  This is 

intuitively reasonable, as receptor phosphorylation is required for controlling local 

affinity150and adaptation to signals153.  In wild type cells, the heavily phosphorylated 

front has slow signaling receptors, while the back has non-phosphorylated fast 

receptors.  The sudden change in gradient direction quickly binds to the rear receptors 
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while the front receptors slowly stop signaling.  Since the cell cannot rearrange its 

internal structure, it turns and realigns with the gradient.  In the CM12345- cells, all of 

the receptors are slow signaling so the rear receptors slowly start signaling as the front 

slowly stop, which would make the response to the change in gradient direction take 

about three times as long due to the difference in affinity.  This is confounded by the 

increase in average concentration during a gradient reversal within our device.  The wild 

type cells utilize phosphorylation to adapt to this increase, but the CM12345- cells 

increase their signaling thought the cell.  The combination of these two effects 

substantially increase the time it for the mutant cells to reverse direction, beyond the 

timescale of our experiment. 

 

3.4.3 Gradient Transduction throughout Development 

The multiple receptor type mutual information equation derived in the methods section 

has two dependencies that change over development: receptor number and the fraction 

of the receptors in the fast and slow states.  The former was measured by Kimmel and 

Devreotes148; the number of receptors linearly increases from 35000 to 75000 over 

development hours 3 to 6, the plot of which is shown in Figure 3.14A as the dotted red 

line.  The fraction of receptors in the slow state was calculated according to Michaelis-

Menten kinetics as outlined in methods and shown in Figure 3.14A as the dashed 

purple line.  We plot the MI surface for a shallow gradient as a function of receptor 

number and the percentage phosphorylated, or slow, in Figure 3.14B.  We then use the 

dynamics of receptor number and phosphorylation described above to plot the path on 
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this surface for the CM12345- (orange dashed) and WT (blue dashed) as they progress 

through the developmental transition.  From the paths generated by the MI equation we 

find, surprisingly, that the bound on MI will be at a maximal .78 (.9) bits at 3 hours, drop 

to .63 (.75) bits by 4.5 hours, and recover to .71 (.83) bits by 6 hours in the shallow 

(steep) gradient.  The graphs of the predictions are shown Figure 3.14C in blue solid 

and dashed lines for shallow and steep gradients respectively.  This is somewhat 

contradictory of the established description of chemotaxis ability over development, 

which implies that the cells would monotonically increase their transduction capability.  

The development of the CM12345- cells only changes the receptor number as the 

receptors are always in the slow state.  The relationship between MI and development 

for the CM12345- is thusly linear, starting at .3 (.42) bits at 3 hours and increasing to .51 

(.63) bits at six hours in the shallow (steep) gradient.  This prediction is shown in Figure 

3.14C as solid and dashed orange lines for shallow and steep gradients respectively.  

Since the MI predictions are for the upper bounds on transduction for each cell type, we 

expect that the experimentally measured MI values would all fall under the predicted 

values.  Indeed, we see that taking into account the receptor states leads to no 

experimental violations of the data processing inequality; all the measurements fall 

under the bounds.  Results shown in Figure 3.14C 
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Figure 3.13 U-turn fractions versus development time.  The fraction of U-turns 
performed in shallow gradients in response to a reversal of gradient directions is plotted 
against development time.  The error bars represent the standard error three 
independent experiments at each time point.  More than 30 cells were observed in each 
experiment.  This measure was significantly different from the descriptions in literature, 
which state that the cells at three hours lack internal polarity and should therefore have 
mostly direction reversals via internal reorganization.  The descriptions suggest that 
frequent u-turns would only happen when the cells have elongated, which we show is 
between 4-5 hours.  This result suggests that the proteins within the cells are spatially 
organized early in the development process and that the cytoskeleton spatial 
organization that leads to elongation occurs after these proteins are already organized.   
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Figure 3.14 Models and Experimental Results.  A) MI model inputs.  The number of 
CAR1 receptors (blue) and the fraction of the receptors in the slow state (orange) is 
plotted versus development time, adapted from148 and according to Equation 5 derived 
in methods respectively.  B) The shallow gradient MI surface for the fraction of slow 
receptor and receptor number domain is plotted, with the WT (blue dashed) and mutant 
(orange dashed) developmental paths plotted on the surface.  C) MI model versus 
experiment.  The MI models are plotted against development time for WT (blue curves) 
and mutant (orange curves) cells.  The solid and dashed lines represent the model 
predictions for shallow and steep gradients respectively.  The experimentally measured 
MI for various points in development for WT (blue), mutant (orange), and rescued 
mutant (green) cells, with dashed and solid regions representing the shallow and steep 
gradients respectively.  The error bars represent standard error.  D) Chemotaxis index 
versus development time.  The chemotaxis index for WT (blue), mutant (orange), and 
rescued mutant (green) cells are plotted over development in shallow (solid regions) 
and steep (dashed regions) gradients.  The error bars represent the standard error for 
each time point.  Three experimental sets for each time point were used in all plots 
giving ~1200 independent measurements for each bar.  These results together show 
that the models are reasonable, since there are no violations of the data processing 
inequality, and that the cells trade their ability to respond to dynamic signals in the early 
stages of the transition (high initial MI) for long term accuracy late in the transition (high 
final CI) by receptor number and phosphorylation changes. 
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3.4.4 Standard Measure: Chemotaxis Index 

Since our prediction and experimental results for MI of these cells seemed contradictory 

to the qualitative description of the cells over development, as well as quantitative 

measures at the early and late time points, we looked to the standard measure - 

chemotaxis index (CI) – to further quantify our experiments.  The CI index of the WT 

cells linearly increase with development time and is higher in the steeper gradient 

(Figure 3.14D), which corroborates the prevailing description.  Upon closer inspection of 

the two measures we used, MI and CI, we see that they measure fundamentally 

different responses to external signals.  MI uses simultaneous measurements of the 

applied signal and response, while CI averages both the signal and trajectory over 

several measurements.  MI and CI therefore measure chemotactic ability on different 

timescales, with MI giving the fast response capability and CI giving the ability of the 

cells to accurately integrate signals over longer times.  MI and CI coupled with the 

response to dynamic signals (persistence) allow us to determine how the cells modulate 

their weight of current signals and statistics of previous measurements. 

 

3.5 Discussion and Conclusion 

We have investigated how multiple receptor states affect both developmental timing and 

chemotactic ability.  Using information theory, we extended previous models though 

development to predict the ability of the cells to respond on short timescales, and found 

that our experimental realization of the model had no violations of the data processing 

inequality, which means that our model is reasonable.  Using the chemotaxis index, we 
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investigated the cells accuracy when integrating signals.  We compared the WT and 

mutant cells and found that both development and signal transduction are adversely 

effected by having only a single receptor state.  Additionally, we tested the cells 

responses for two different gradient strengths and found qualitative agreement between 

the increase in MI when compared to the model predictions.  Interestingly, the co-

developed cells at 6 hours showed a greater increase in MI than expected.  This is likely 

due to the heterogeneity in the development of the cells that is detrimental to their 

response to shallow gradients; the WT cells produce the pdsA required to degrade the 

cAMP secreted by the cells to synchronize development, and see that the cells are still 

less developed at 6 hours than are the WT. 

Our three measures, MI, CI, and persistence, give a description of how the 

weighting of current and previous signals changes over development.  The MI results 

show early cells having the highest dependence on current signals, which drops off 

before eventually recovering.  The CI results show the cells increasing their ability to 

accurately integrate signals over development.  The persistence results give 

experimental confirmation that the cells can more rapidly respond to dynamic signals 

earlier in the developmental process.  Taken together, we conclude that the cells have 

high weights on current signals early, and increase the weight of previous signals as 

they develop.  This phenomenological strategy is connected to the underlying 

physiological changes in the receptor number and state.  Early in development, receptor 

numbers are relatively low, but signal frequently giving a large sample of the 

environment.  The speed of the receptors drops more rapidly than new receptors are 

made, which leads to smaller samples of the environment per unit time, which is 
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somewhat offset by the storage of previous signals in the receptor states which 

produces an integrated signal.  The fidelity of the transduction recovers later in 

development as the receptor number increases, yielding larger samples per unit time 

while retaining the integration of previous signals.  The cells late in development are 

therefore the most accurate over longer timescales, but also are the slowest to respond 

to dynamic signals.  This description is corroborated by the results of the mutant cells, 

which show only marginal in the MI over development time, and are significantly lower 

than the WT cells.  Since the mutant cells exhibit retarded development, their receptor 

number stays low, but they still integrate the applied signal, leaving them with 

consistently smaller samples of the environment per unit time.  This leaves them less 

effective than WT on both short and long time scales. 

Another model focused on the receptors and their immediate downstream effects 

is LEGI (local excitation and global emission)103,154,155.  The LEGI models have captured 

chemotaxis behaviors that previous efforts have been unable to recapitulate, namely 

sensitivity to shallow gradients and the cytoskeleton waves that accompany migration90–

93, while retaining features of simpler models such as cell shape94,95.  In these LEGI 

schemes, the cells are able to adapt to background concentrations156, though the ratio 

of the background concentration to the gradient still plays a role.  The model predicts, at 

the parameters used in this work, that the chemotactic efficiency (analogous to CI) is 

positively correlated with background concentration and inversely related to the receptor 

dissociation constant157.  For an information theoretic approach to LEGI modules, the 

receptor dissociation constant is related to transduction through the distortion constant, 

which essentially raises the noise in the signal through the receptor.  Slow receptors 
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have higher distortion in this model and the more receptors in the slow state, the lower 

the MI between the external chemical field and the chemotactic response116.  These two 

predictions from modeling LEGI corroborate our results, as the mutant cells have higher 

dissociation constants (slower receptors) and lower CI and MI; they effectively see more 

noise compared to the gradient strength than does the wild type, and are therefore less 

adept at chemotaxis at all time scales. 

The information processing of D. discoideum can alternatively be phrased as an 

active filtering scheme that relies on memory to decide which signals are relevant.  

Biological memory based filtering schemes are commonly used to describe regulatory 

processes that have the ability to adapt to signals158–161, a component shared with LEGI 

which can use memory to create bias116 and inhibit errant signals162.  Active filtering 

schemes have been shown to effectively time-average noisy signals to improve 

accuracy163, just as we propose the cells do by modulating their receptor dissociation 

constant at the later stages of development.  Furthermore, the CAR1 receptors in D. 

discoideum use phosphorylation events to both store previous signals and modulate 

dissociation constant132,71.  Since the phosphorylation of receptors increases over 

development time, filtering and integration models predict that the cells would become 

better at tracking signals over time (CI increases) and slower to respond to dynamic 

signals (persistence increase) just as we see in our experiments.  The mutant cell lines 

we used in our study could not phosphorylate their receptors, impairing the filtering 

mechanism by removing the memory unit and removing the integrating mechanism by 

forcing the dissociation to remain in their fast state.  As would be postulated by such 
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filtering and integration schemes, these cells are worse at rapidly transducing chemical 

gradient information and less capable of following a gradient over time. 

Our work quantifies the developmental transition of D. discoideum from its 

vegetative state to its aggregation state through morphology and persistence measures 

and validates multi-state receptor models though the same transition.  The model states 

the upper bound for transduction through the chemotactic signaling network, and the 

experimental measures are in some cases far below it.  Whether the cells are 

suboptimal communication channels or there are missing pieces of the model remains 

unclear.  The external cAMP field that we measure here is not the true field, as the cells 

both secrete cAMP and phosphodiesterase to degrade it and the addition of these 

effects would undoubtedly change both the model and measurements.  The 

environmental noise that the cells experience would also be modified by these factors.  

The role of noise over development and in persistence could be further investigated 

through use different concentrations of cAMP on each side, which would modulate the 

average concentration while retaining the ability to hold the slope constant. 
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Chapter 4 

 

 Future work: D. discoideum 

 

4.1 FRET Probe 

One major concern for our approach is the assumption that the fluorescently tagged 

dextran follows the cAMP field.  We mitigated this concern as much as we could 

through simulation, but direct imaging of cAMP would alleviate this concern altogether.  

Recent advances in imaging have enabled the detection of specific molecule 

concentrations through the use of a tailored pair of fluorescent proteins attached to a 

chemical binding site that controls the distance between the fluorophores.  The 

fluorescent pair undergoes Förster resonance energy transfer (FRET) through coupling 

of their dipoles when they are close together.  When chemical concentrations are low 

and the binding site is unoccupied, the fluorescent pair is separated by a small distance, 

typically about 1-10 nanometers.  A laser is used to stimulate the ‘donor’, which both 

emits light and gives energy to the ‘acceptor’.  The acceptor will also emit photons due 

to this interaction, and the ratio between the intensities of light coming off the donor and 

acceptor fluorophores is calculated.  When chemical concentrations are high, the 

binding protein changes confirmation and increases the distance between the donor 

and acceptor such that the FRET interaction is lost.  When the donor is stimulated, it 

exclusively emits photons without giving energy to the acceptor, which skews the ratio 

of emitted intensities towards the donor’s frequency.  Using known chemical 

concentrations, this FRET probe ratio can be calibrated and used to measure local 
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chemical concentrations dynamically.  Furthermore, probes such as these can be 

attached to a glass surface to remove the effects of probe diffusion from measurements 

and increase resolution.  A cAMP probe that works internally for a variety of cell types 

including D. discoideum has previously been invented, but one that works on the 

exterior has not.  We made attempts to create such a probe working with the Piston lab 

and the CORE, and although we made some progress the probe was never completed.  

In our efforts, we managed to get the two fluorophores folded correctly but the binding 

domain was not functional and tests with cAMP had little effect on the response of the 

probe.  Nevertheless, a probe of this nature would yield insight on several questions 

within D. discoideum.  It would allow the dynamic visualization of the external cAMP 

field which would further the modeling efforts of D. discoideum as an excitable system, 

allow for more accurate mutual information observations both in aggregation and in an 

applied field, and would give insight into why cells don’t chase their tails when secreting 

cAMP.  These questions are expanded below. 

 

4.1.1 D. discoideum as an Excitable System 

Static visualization of cAMP by Devreotes showed the spiral waves that were seen in 

the motion of D. discoideum cells and led to the application of the excitable media 

framework to cAMP detection and secretion.  Models of excitable media populated with 

parameters representative of the known features of the D. discoideum secretion of 

cAMP and pdsA and their interaction and diffusion reproduced some aspects of the 

pattern formation during aggregation, but the picture is still incomplete.  The location 
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and timing of secretions of cAMP and pdsA from the cells are unknown.  The cell 

boundaries exhibit wave like properties during migration which may play a role in the 

location of the secretions, but must be simulated and used as the boundary conditions 

for secretion as well as the external cAMP field.  An external cAMP FRET probe would 

illuminate the secretion pattern that could then be implemented into the models of 

excitable media.  The secretion dynamics of pdsA could be found by comparing the 

FRET signal due to the secretion of cAMP in wild type cells to the signal generated by 

pdsA null mutants.  Together, this would modify the source and sink terms to more 

accurately reflect the cells and could increase the accuracy of the simulations. 

 

4.1.2 Mutual Information Accuracy 

We use a fluorescent protein-tagged small molecule to infer the local cAMP field around 

the cells.  This method, in addition to requiring substantial effort to make the inference, 

suffers due to the cells ability to secrete and degrade cAMP.  Accurate estimation of MI 

in D. discoideum chemotaxis requires accurate measurement of the chemical field that 

the cells are transducing, and the dynamics of the cells modulation of this field are 

unknown.  Additionally, the models that generate transduction bounds that the 

experimental observations must fall under use gradient steepness and average 

concentration as parameters, and both of these are subject to the cells interference on 

the applied field.  The plausibility of a model depends critically on the comparison of the 

experimental observations and the models predictions, both of which suffer from lack of 

knowledge about the actual chemical field.  An external cAMP FRET probe would 
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enable direct measurement of the cAMP field, and the actual signal could thus be used 

in both the model and experimental calculation.  Additionally, the error in MI calculations 

is limited by the bin size into which the measurements are sorted.  In our setup, the bin 

size is set by the magnitude of the fluctuations within the fluorescent signal, which 

represents our certainty about the cAMP signal absent of cell effects.  The direct 

measurement would allow smaller bin size and although this would increase the number 

of measurements required to decrease error, the lower limit of the certainty about the MI 

measurements would ultimately be lower.  Taken together, these two effects enable 

more rigorous testing of the plausibly of models. 

 

4.1.3 Secretion during Streaming 

Towards the end of the aggregation developmental period, the cells begin to follow each 

other in streams to the aggregates.  The cells touch each other and proceed in a head 

to tail fashion.  The role of cAMP in this process is unknown, but it is hypothesized that 

the cells secrete cAMP selectively at the back to attract nearby cells into the stream.  An 

open question during this stage is ‘why don’t isolated cells chase their tails?’ since they 

may secrete only at their back side.  The physical contact between cells may play a role 

in determining the location and timing of secretion so that cells within the stream secrete 

cAMP differently than isolated cells.  To investigate this, direct measurement of the 

cAMP is required.  An external cAMP FRET probe would immediately elucidate this 

through observation of the secretion dynamics of cells included in the stream and cells 

in isolation. 
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4.2 Extension of MI Bounds in LEGI Models through Development 

The information theoretic treatments of LEGI models revolve around the effects of 

varying the environmental noise relative to the signal.  Phosphorylation of receptors 

allows the cells to integrate over signals and average out noise.  The number of 

receptors that each cell has affects the sample size, which determines the magnitude of 

the effect of noise.  Both the phosphorylated receptor fraction and number of receptors 

changes over development, and affect the bias and distortion constant of the LEGI 

module within the cell respectively.  The effects of bias and distortion have previously 

been modeled and fit to experimental observations at early and late developmental time 

points by Iglesias116.  In our work, we model the bounds of signal transduction and 

compare them to experiments throughout development.  The difference between the 

bound and the measured MI is the distortion within the cells.  Our measure of 

persistence over development is related to the bias of the cells, though some additional 

analysis needs to be done.  The distributions of cell trajectories and gradient angles are 

available and can be used to create conditional probability distribution functions which, 

combined with the distortion, can be matched to the distributions from Iglesias to 

calculate the bias for each developmental time point.  The exact relationships between 

receptor phosphorylated fraction and number and distortion and noise need to be 

flushed out to plug into the Iglesias work and predict the response over development 

and can then be compared to the experimental observations.  This work gives insight 

into the receptor kinetics role during the transition from bacteria hunting to aggregation 

and gives an additional check for plausibility of the models previously developed. 
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Chapter 5  

 

Literature Review: Mechanosensing and Autophagy in the Gut 

 

In this section we investigate the response of CACO-2BBE human gut epithelial cells to 

shear force from fluid flow in a microfluidic flow chamber and make two substantial 

findings: microvilli in the gut act as a mechanosensor and that shear stress causes fluid 

flux through the autophagy pathway.  To motivate the use of a microfluidic device, I 

outline the difficulties inherent to human studies, compare and contrast animal and 

culture models, and comment on the merits of using silicon flow chambers to 

compliment or replace both.  The most accessible control in such chambers is the flow 

of fluid, which led us to the discovery of the two shear dependant responses presented 

herein.  First, we find that microvilli on the apical surface of the cells act as a 

mechanosensor, transmitting applied force into signaling events within the cell.  We 

compare these actin rich protrusions to the well studied mechanosensor in the cochlea 

of the ear, stereocilia, and report a fundamental difference in the immediate signaling 

strategy.  Calcium ion channels are activated within the stereocilia and we demonstrate 

that this is not the case for microvilli.  Although the immediate downstream signaling 

event in microvilli remains elusive, we show that the cells indeed use them as a 

mechanosensor through observation of fluid filled vacuole like structures that appear in 

response to shear and their absence when microvilli cannot bundle together, in the 

absence of microvilli, and in control cells without flow.  The second finding is the 

identification of these vesicles as residing downstream of autophagosomes.  This 
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identification was accomplished by using drugs that effect known autophagy signaling 

elements combined with fluorescent imaging of proteins associated with 

autophagosomes.  This was connected to the mechanosensor by performing these 

observations in the presence and absence of shear in control cells, unbundled microvilli 

mutants, and cells without microvilli and confirming that these autophagy pathway 

elements were only active during shear stimulation in control experiments.  In the 

following background section, I first outline the reasons for pursing medical advances in 

microfluidic devices instead of animals, the effects of these systems on discovery 

focusing on responses to shear stress, and the evidence for microvilli sensing these 

stresses, comparing them to stereocilia.  I then outline the critical steps in autophagy 

including the constituents that we imaged, and comment on which pieces are used 

during the response to shear stress.  This section concludes with an outline of how our 

paper fits into the body of literature and connects the mechanosensing of microvilli to 

the increase in autophagic flux. 

 

5.1 Leveraging Evolutionary Conservation for Insight on Humans 

Use of humans in scientific research is limited both by ethical concerns and 

fundamental bounds.  The knowledge that humans feel pain and are self aware 

precludes studies that intentionally harm or kill us.  Humans are complex and live a long 

time in comparison to other organisms, which make us poor candidates for basic 

science or genetic and evolutionary studies.  Humans are required in the study of 

human specific attributes, such as the effect of drugs on mental activity164–166 and 
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mental disorders167–171, a variety of psychological work, and beneficial applications of 

technology and substances thoroughly tested in simpler systems, such as testing of 

chemotherapy medication after study in animal and culture systems172–176. Often, usage 

of simpler animal and culture assays is merited, such as for science questions where 

the primary components of the system are conserved across species; the similarity 

between different organisms offers an opportunity to gain knowledge about many 

systems simultaneously while using the most cost or time efficient option.  Combined 

with translational efforts, which bridge basic and applied sciences, leveraging of these 

similarities reduces the ethical cost of many efforts in the life sciences by eliminating the 

need for testing on humans to learn about humans.  The study of organisms outside of 

humans additionally grants insight into the fundamental attributes of life through the 

discovery of conserved elements across species, which opens the door for efforts to 

combine humans with other organisms or biotechnology.  The following two sections 

outline the benefits and limitations of animal studies and contrasts them cell culture 

systems. 

 

5.2 Animal Studies 

Animals are commonly used as models for disease in biomedical and behavioral 

research as well as for product development and testing177–183.  Animals are frequently 

used to test hypothesis in a wide variety of fields from drug efficacy in cancer biology, to 

toxicity and addiction in pharmacology, and genetic regulation, differentiation, and 

morphogenesis in developmental biology184–187.  They see such pervasive use because 
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they are a whole body system with complex interactions between the parts and 

experience the physical and chemical stresses that are required to develop and 

maintain their form of life.  Since mammalian life has common ancestors, animals share 

features with humans and perturbations of those common elements can yield insight 

into how the human system functions in our shared environment.  Results from 

translational animal studies include the discovery of insulin188, testing and development 

of a variety of vaccinations189–191 and disease treatments192–194, and development of 

biotechnology like pacemakers and organ replacements195–197.  These results have 

undoubtedly spared a great deal of suffering and death for humans, and the number of 

animals sacrificed to increase knowledge is dwarfed by two orders of magnitude by the 

number consumed for sustenance so it seems an efficient and ethically permissible use 

of other species.  Despite the cornucopia of results derived from animal studies, many 

concerns remain.  Animals and humans are not identical so not every discovery in an 

animal model provides insight into humans, and not knowing what will or will not 

translate leads to problems such as failed clinical trials and excessive side effects in 

drug discovery198–201.  Animals also lack some of the complexity of human systems, 

especially in cognition, so questions about the particulars of human dominance in this 

environment are inaccessible in animal models.  Additionally the ethical concerns of 

animal studies are numerous.  Inhumane treatment abounds, simply observed by the 

unwillingness to perform such experiments on humans and more formally shown in the 

violation of the regulations involving animal use202.  The plethora of both positive and 

negative attributes causes the tension that motivates other types of study that would 

retain the gains provided while avoiding the pitfalls. 
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5.3 Culture Studies 

A cell culture study involves removal of cells from plants, animals, or humans, and 

growing them in a suitable environment that includes the nutrients, gasses, pH, and 

temperature necessary for their survival.  Cells in these systems proliferate to 

confluence, total coverage of the substrate, and can be sampled and subcultured to 

produce large numbers of cells that are tested in a variety of perturbations to garner 

understanding of their construction and responses to stimuli.  Cell culture studies are 

used in many of the same fields as animals and, in contrast to animal studies, are 

simple, cheap, and ethically viable.  Cell culture systems are more apt for addressing 

basic science questions.  The simplicity of culture studies gives more precise control 

over variables and perturbations and foregoes the complex interactions present in the 

body and in animal studies.  Small, controlled populations of cells in isolation are suited 

for making single changes their signaling networks and comparing the perturbed result 

to the unperturbed, mapping networks of interactions by investigating them one at a 

time.  Additionally, single cell analysis is more accessible in the simpler setup of culture.  

Specific cell conditions can be produced more rapidly in culture, as the gestation and 

development of animals is not present.  The use of human cells in these systems 

overcomes the genetic differences between humans and animals, and the static nature 

of cell culture removes the physical stresses present within an animal.  The ethical 

concerns over mistreatment of animals are not as pronounced in culture, though not 

entirely absent as living organisms are even more casually sacrificed due to their 

perceived lower value.  The ability to probe individual cells within culture has yielded 

many insights into signal transduction, genetics, and heterogeneity.  The insights gained 
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from culture studies include discovery and manufacture of vaccines203–206, treatment for 

diseases207, and pathogenesis discovery208.  Culture and animal assays have attributes 

that are often complimentary, such as the simplicity of culture and complexity of 

animals.  To gain further insight into the relationship between phenomenological 

observations from animal studies and their physiological underpinnings probed in 

culture studies, assays that lie somewhere between the two have been developed.   

 

5.4 Bridging the Gap: Organs-on-a-chip 

Cell culture and animal studies can be difficult to compare and integrate because they 

address isolated and integrated conditions respectively.  In order to experimentally 

connect the approaches, parts from each assay were combined into hybrid systems.  In 

one such case, the ‘organ-on–a-chip’ (OoC) framework adds complexity to cell culture 

systems by introducing physiologically relevant stresses and resources present in 

animal studies, while maintaining precise control over them by excluding some 

interactions.  These microfluidic chips are typically fabricated with Polydimethylsiloxane 

(PDMS), an optically clear and flexible silicone.  These chips include precise fluid flow 

control and take advantage of the flexibility of PDMS to add dynamic shear stresses 

matched to physiological systems.  Examples of such chips are shown in Figure 5.1 for 

a lung that ‘breathes’, a gut that has periodic stress like in digestion, a brain barrier with 

addressable perfusion ports, and liver with nutrient flow control.  Since PDMS is 

optically clear, the chip contents can be continuously observed under a microscope, 

which is difficult in animal studies though fairly common in cell culture.  Chips of this 
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nature have also been fabricated to mimic the heart and breast, and some organs have 

even been connected together with a circulatory system209–212.  They are populated with 

human cells, which can be derived from the specific organ or pluripotent stems cells that 

are differentiated within the chip.  As such, OoC retain the direct translation of cell 

culture systems to medical applications and the developmental progression present in 

animal studies.  Additionally, immediate ethical concerns are equivalent to those 

present in cell culture, though as the chips become more complex and connected 

suggestions of equivalence to animal models could be initiated.  After further 

development when the OoC contain the minimal set of resources and stresses the 

assay could be compared to animal models to further explore conserved physiology 

among mammals and reduce the number of animals sacrificed in medical studies.  OoC 

have already been used to grant insights into a variety of areas such as the interplay 

between the microbiome and epithelial cells in the gut213–215, morphological features of 

cells in the gut and liver216,217, chemotherapy resistance in the lung218, and drug 

discovery and delivery in the brain, lung, and heart219–224.  These results have been 

achieved with minimal usage of animals and improve upon culture assays by adding 

complexity, including constant fluid delivery. 
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Figure 5.1 Examples of organs-on-a-chip.  A) Lung-on-a-chip225 that stretches lung 
epithelial cells that sit on a porous membrane with a vacuum to mimic breathing.  The 
bottom chamber has fluid flow with nutrients while the top chamber is exposed to open 
air B) Gut-on-a-chip226 stretches gut epithelial cells that sit on a porous membrane with 
a vacuum to mimic peristalsis in the gut.  Fluid flow is present in the top and bottom 
channels for nutrient delivery and may be different to create gradients.  C) Brain-on-a-
chip227 with a blood flow chamber coated in endothelial cells separated from a chamber 
with a variety of brain cells by a porous membrane to mimic the blood brain barrier.  
Perfusion channels are at the top for nutrient delivery and sampling.  D) Liver-on-a-
chip228 with a central cell housing chamber separated from nutrient filled media by micro 
channels that allow diffusion and flow across them.  Scale bar is 50um.  OoC provide a 
more physiological accurate environment and maintain control over it and enable 
imaging of the cells during culture and over long periods.  



106 
 

5.4.1 Flow in OoC 

OoC supply nutrients with constant perfusion of media across cells in contrast to the 

occasional media change of culture.  Such flow produces shear stress on the cells.  In 

the case of endothelial cells, such flow is a physiologically accurate addition because 

these cells line the interior of blood and lymphatic vessels that house moving fluid.  

Investigations into the addition of flow to endothelial cells show that the cells elongate 

and align229,230 with the flow direction through mechanotransduction of the shear stress 

and reorganization of the actin cytoskeleton231.  There are a variety of responses to 

shear stress in epithelial cells that have little overlap with endothelial responses.  In 

confluent lung cells, flow drives a transition from state with high individual cell motility 

and frequent remodeling of cell neighbors within the sheet to a state with slower and 

collective motility and little remodeling232,233.  The retarded timing of this transition is 

correlated with asthmatic airways, so regulation of responses to shear stresses is 

crucial in lung cells during development234.  In confluent gut cells, shear stress causes 

out of plane polarity and height increases as well as a transition from a flat sheet to 

spatially repeating three dimensional structures characteristic of crypt-villi in developed 

gut cells225.  Both of these examples transduce external shear stress into organization in 

a developmental transition and the mechanism in each is poorly understood.  We aim to 

connect these responses to shear stress in a future project by investigating the jamming 

transition in gut cells and comparing the results to the lung cells. 
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5.5 Microvilli as Mechanosensors 

Intestinal epithelial cells do not have a primary cilium, which is the predominant 

mechanosensor in other epithelial cells.  Instead, actin rich protrusions called microvilli 

are located on their surface.  These protrusions are similar to stereocilia, which are 

mechanosensors in the ear, in several ways.  Both have actin containing protrusions 

bundled together by proteins, protocadherin235–237, as shown in Figure 5.2.  In both 

cases, these bundles of filaments have increased elastic modulus compared to the 

unbundled fibers, which causes greater force on membrane238–240.  This is graphed in 

Figure 5.3.  In our study cells that have been genetically modified to be incapable of 

producing bundling proteins, and therefore have much lower bending stiffness, lose 

their mechanosensing phenotype.  Second, both are present only at confluent cell 

densities when the cells communicate with each other physically, suggesting that they 

have a role in population dynamics.  It has also been suggested that stereocilia 

developed from microvilli due to the parallels in the way that their proteins structurally 

organize the filaments.  Additionally, the bundling proteins are connected to internal 

actin bundles through harmonin, shown in Figure 5.2 C on the interior of the stereocilia 

and microvilli, and deficiencies in harmonin are implicated in both Usher syndrome241–

243, a disorder that causes deafness, and defects in microvilli assembly in the 

gut235,244,245.  One critical difference between stereocilia and microvilli is in the signaling 

that occurs at the cell membrane when the protrusions are perturbed.  When a sound 

wave travels through the spiral shaped cochlea, the membrane layers within move in 

relation to each other causing relative displacement of the stereocilia within each bundle 

and modulating the tension on the bundling proteins, or tip links246–248.  These tip links 
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are connected to via tethers to ion channels that separate high and low concentrations.  

Under tension, these channels open shorting the action potential by permitting the ion 

concentrations to equilibrate between the sides249.  We investigated whether microvilli 

use ion gating by manually changing calcium concentrations both up and down and saw 

an inverse response and no response respectively.  We thus concluded that the 

microvilli signal through an unknown mechanism.  We confirmed that they were 

signaling by comparing cells under shear stress that were under confluent, which would 

prevent them from forming microvilli235, had no bundling proteins, CACO-2 cells that 

have few microvilli, and CACO-2BBE cells, which have a more established brush boarder 

and more microvilli.  We saw that BBE cells had a large number of vacuole like 

structures, CACO-2 cells had fewer, and cells with disrupted microvilli had almost none, 

confirming that the shear stress was being transduced through the microvilli. 
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Figure 5.2 Comparison of stereocilia and microvilli.  A) electron microscope images of 
bundled stereocilia250.  Scale bar is 1um.  B) Electron microscope image of bundled 
microvilli in confluent CACO-2 cells235.  Scale bar is 100nm.  C) Cartoon depiction of the 
connection between two stereocilia245.  Legend (inset) describes the main components 
for both stereocilia and microvilli (D).  D) Cartoon depiction of the connection between 
two microvilli245.  The visual similarity and the shared structural components between 
the stereocilia and the microvilli motivate the study of microvilli as mechanosensors.  In 
the ear, shear stress on the stereocilia opens calcium channels which enable hearing.  
In the gut, we observe fluid filled vacuoles present under shear and absent in static 
conditions. 
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Figure 5.3 Force on the membrane for forces applied to bundles of varying stiffness248.  
Each curve represents the force that the cell membrane feels versus the force applied 
to a rod connected perpendicular to its surface.  Curves are different by the bending 
stiffness that describes them, with 20kbT (solid), 40kbT (dashed), and 80kbT (dotted).  In 
our study we use a genetic knockdown of the microvilli bundling protein.  The bending 
stiffness of the unbundled microvilli is less than the bundled, as shown by comparing 
the dotted, dashed and solid lines.  The result of this lower bending stiffness is lower 
force on the membrane for any applied force.  We see the loss of the vacuole 
phenotype, meaning that there is a threshold of force on the membrane to elicit the 
response, and that the bundling of microvilli is crucial in this process. 
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5.6 Autophagy 

After showing that microvilli act as mechanosensors, we turned our attention to the 

downstream signaling that led to vacuoles and probed their identity.  We showed that 

the cells were healthy, though not developing, by staining the cells for proliferation, 

necrosis, and a wide variety of developmental markers.  Through incidental triggering of 

the vacuoles in nutrient poor media while optimizing one of these markers, our attention 

turned to autophagy.  We show that some autophagy associated proteins are used in 

the creation of vacuoles.  Autophagy is the process of degrading and recycling cellular 

components.  Autophagy occurs when cell constituents are damaged or in nutrient poor 

conditions to conserve material.  It is also used to eliminate cytotoxic protein aggregates 

and foreign microbes.  In macroautophagy, damaged organelles, subunits of cells with 

specific functions, are entirely surrounded by a double membrane referred to as an 

autophagosome.  This organelle fuses with a lysosome, which reduces the pH and 

degrades the contents with various acid hydrolases.  In microautophagy, cytoplasmic 

material is transported directly into lysosomes by invagination of the lysosomal 

membrane.  We show that the vacuoles are not related to microautophagy, and are in 

fact related to macroautophagy through staining for the membrane proteins that 

accompany each.  In canonical autophagy, there are four critical steps, initiation, 

nucleation, elongation and closure, and degradation and recycling251.  The steps are 

outlined below. 
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 5.6.1 Initiation 

The first step in autophagy was discovered in yeast Saccharomyces cerevisiae.  ATG1 

(AuTophaGy protein 1) is phosphorylated by AMPK in nutrient poor conditions, which 

activates the kinase.  In nutrient rich conditions, mTOR (mechanistic target of 

rapamycin) phosphorylates ATG1 at different site which disrupts the interaction of 

AMPK and ATG1, thereby inhibiting autophagy252.  An ATG1 ortholog, equivalent genes 

in different species, was observed in Caenorhabditis elegans and originally named unc-

51 (UNCoordinated-51) then relabeled ATG1 when it was shown to be equivalent.  

Before this nomenclature change however, the human ortholog was discovered253 and 

called ULK1 (Unc-51 Like Kinase 1) a name it retains.  All of these kinases perform the 

same action in autophagy, interacting with AMPK and mTOR to sense the 

environmental nutrient level and turn autophagy on or off.  Once turned on, nucleation 

of the phagophore occurs. 

 

 5.6.2 Nucleation 

Nucleation of an phagophore occurs downstream of ULK1254.  Upon activation, ULK1 

moves to the location of autophagosome production.  ULK1 phosphorylates Beclin 1, a 

scaffolding protein255  that promotes action of VPS34-PI3K256 (Vacuolar protein sorting 

34) which phosphorylates lipids into phospholipids.  These phospholipids have two 

hydrophilic tails and a hydrophilic head, so in an aqueous solution they reach a lower 

energy state by aligning and forming a double layer with the tails inside257, the classic 
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lipid bilayer.  This process results in the nucleation of autophagosomes which can be 

built upon through further lipid organization, which elongates the membrane. 

 5.6.3 Elongation and Closure 

After nucleation, the membrane pieces are elongated through lipidation of LC3 (Light 

Chain 3) into LC3-II258 via conjugation with phosphatidylethanolamine by ATG3, a 

ubiquitin-like enzyme, and subsequent recruitment to the nucleated autophagosome 

outlined above259.  The membrane grows as a double sheet260 due to a physical 

property of the conjugation enzyme; it is an amphiphilic helix that lowers the energy of 

the membrane only at regions of high curvature (radius ~10nm) where packing defects 

caused unequal numbers of lipids on the two sheet interiors.  This causes membrane 

expansion through LC3 recruitment at the area of high curvature, keeping the two 

adjacent sides close together and forming a growing double membrane sheet261.  This 

process is outlined in Figure 5.5, starting with ATG3 action at the phagophore, and 

ending when the double membrane fuses together and becomes an autophagosome, 

excluding further action by ATG3.  To explain why the entire sheet curves during 

elongation, eventually forming a sphere, Figure 5.4 graphs the energy of the membrane 

against the curvature of the sheet.  The energy curve initially has three minima, two 

representing spherical membranes and one with the membrane flat.  As the membrane 

continues to grow, shown by the red arrow, the curve gradually diminishes the energy 

boundary between the flat and spherical conformations, eventually losing the minima 

when the membrane is flat.  This causes the membrane boundaries to come together 

and fuse, becoming a sphere, the conformation with the lowest energy262,263.  The 

closure occurs through either membrane fusion264, connecting of the membrane pieces, 
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and/or membrane scission265, cutting of the membrane.  In our study, the vacuoles get 

larger over time, suggesting that vesicles fuse with the vacuole after closure.  The 

vacuoles tend to become less circular as they increase in size, which we hypothesize is 

due to the incorporation of the vesicle membrane into the vacuole membrane.  Since 

the ratio of volume contained within a sphere its surface area grows proportionally to the 

diameter, we suggest that the excess membrane in larger vacuoles has low tension, 

which results in these morphological shifts. 

 

5.6.4 Degradation and Recycling 

Once the autophagosome has been formed, recycling occurs via fusion with a 

lysosome.  Lysosomes are single membrane organelles with membranes comprised of, 

among other things, LAMP1 (Lysosome Associated Membrane Protein 1).  The pH 

inside of a lysosome is typically 4.5-5, which is optimal for the class of enzymes that 

catalyze degradation through hydrolysis, called acidic hydrolytic enzymes, by using the 

excess of positively charged hydrogen atoms to promote bond cleavage of molecules 

through the theft of the shared electrons in a covalent bond.  Once the lysosome has 

fused with the autophagosome, the autolysosome has both LC3 and LAMP1 

incorporated in its membrane and the pH is matched to the lysosome.  In our study, we 

see concurrent decoration of the vacuoles with LC3, the autophagosome membrane 

protein, and LAMP1, the lysosomal membrane protein.  This suggests that the vacuoles 

are in fact autolysosomes and that response of the cells to shear stress flows through 

parts of the autophagy pathway. 
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Figure 5.4 Energy of different curvatures and lengths of double membranes263.  
Reduced energy is plotted against reduced curvature for three different ratios of radius 
of the sheet (rsheet) to radius of the tip of the membrane (rrim).  Energy and curvature are 
made dimensionless and referred to as reduced to make this graph scale free.  The 
direction of the energy curve during sheet growth is noted by the red arrow.  As the 
sheet grows, the energy minimum of a straight line is lost and the minima for circular 
membranes get deeper. 
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Figure 5.5 Role of the helical ATG3 in double membrane construction261.  A) ATG3 
targets high curvature areas in the phagophore membrane by lowering energy in these 
regions cause by packing defects.  B) The double membrane elongates through 
addition of LC3-II by ATG3.  C) The membrane closes through fission and becomes an 
autophagosome.  ATG3 no longer attaches to the membrane.  In our study, we show 
that the vacuoles are decorated with LC3-II and that knocking down LC3-II significantly 
lowers the number of vacuoles created.  This suggests that the autophagy machinery 
plays a key role in the construction of the vacuoles. 
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5.7 Intention of Manuscript 

The minimum to show activation of the canonical autophagy pathway includes evidence 

of ULK1 activation, incorporation of LC3 into autophagosomal membranes, LAMP1 and 

LC3 colocalization and acidification in autophagosomes.  Autophagy is well studied and 

receiving a good deal of attention currently in studies of cancer266–268, neurological269,270 

and cardiovascular271,272 diseases, and obesity273,274, and was the topic of the 2016 

Nobel Prize in medicine or physiology.  Biological systems are rarely linear and pieces 

of transduction networks are used in other signaling pathways creating a dense 

signaling network.  To address this, ‘non-canonical autophagy’ was coined to describe 

transduction when only a fraction of this sequence is activated, and opening the door for 

studies of repurposed autophagy proteins and enzymes or pathways sections.  In our 

study we replace the initiation step with signal mechanotransduced through microvilli 

and connect it to flux of fluid through autophagosomes.  We follow this signal through 

merger with lysosomes via observation of the timing of the creation of vacuole like 

structures that are decorated with LC3, LAMP1, and are acidified under shear stress 

from fluid flow.   
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Chapter 6  

 

Microvillar Sensation of Shear Stress Induces Autophagic Flux in the Intestinal 

Epithelium 

Sun Wook Kim, Jonathan Ehrman, Mok-Ryeon Ahn, Scott W.  Crawley,  

James R.  Goldenring, Matthew J.  Tyska, Erin C.  Rericha, Ken S.  Lau 

 

The manuscript presented herein is a collaborative effort principally between the labs of 

Erin Rericha and Ken Lau.  Sun Kim and I are co-first authors on this work, and working 

together with him multiple days a week for two years has been a great pleasure.  Sun’s 

command over biological methods and dogma coupled with his willingness to 

thoroughly share his knowledge greatly decreased the learning curve for this material.  

Sun’s desire to learn the more abstract and quantitative methodologies that I provided 

gave me an opportunity to solidify my knowledge and allowed us to develop a common 

language to facilitate our cooperation.  His discipline and focus was inspiring on several 

occasions, and pushed me and the project forward. 

 

 

6.1 Abstract 

We find a novel link between mechanotransduction and autophagy through the actin-

rich microvillar protrusions lining the gut.  These protrusions on the apical cell surface 

share structural similarities to the mechanosensitive stereocilia in the inner hair cells of 

the ear.  Intestinal epithelial monolayers with microvilli, when exposed to persistent fluid 
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shear stress, developed large vacuoles lined with autophagy associated proteins LC3 

and LAMP1.  The size and number of vacuoles were suppressed by perturbations to the 

autophagy pathway, including small molecule inhibitors and LC3 knockdown as well as 

through perturbations to the microvilli.  Together, our results establish a link between 

apical shear and autophagic trafficking in intestinal epithelial monolayers. 

 

6.2 Introduction 

Macro-autophagy, referred herein as autophagy, is an essential cellular process for 

maintaining cell physiology by removing damaged organelles and by salvaging proteins 

under nutrient poor conditions275.  Autophagy is mediated through specialized vesicles, 

called autophagosomes, which fuse with lysosomes to induce protein degradation by 

acidic lysosomal hydrolases 276.  Defects in autophagy result in poor cellular response 

to stress and are associated with a wide range of pathologies, including 

neurodegeneration, cancer, and liver diseases, cardiovascular diseases, and 

autoimmune diseases277–283.  Recently, autophagy has been linked to intestinal 

pathophysiology.  Genome-wide association studies have identified several risk alleles 

to inflammatory bowel disease in autophagy-related genes (e.g., NOD2, ATG16L1, 

XBP1, IRGM, LRRK2)284–292.  As the intestinal epithelium responds strongly to nutrient 

stress293,294, a role for autophagy in maintaining gut function is expected.  A large body 

of literature focuses on the role of nutrient signaling, such as AMPK and mTOR, on the 

induction of autophagy295.  Less work has been done on other potential autophagy 

modulators, an obvious candidate being mechanical stress as solid and liquid regularly 
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stress the apical surface of the gut.  Cytoskeletal microtubules, which deform as the cell 

changes shape, interact with and regulate MAP-LC3 (microtubule-associated protein 

1A/1B-light chain 3, herein referred to as LC3), a central component of the autophagy 

machinery.  Microtubules also regulate the transport of various pre- and post- 

autophagy vesicles 296.  As such, a new class of microtubule-modifying drugs, such as a 

Flubendazole, has been identified as potent autophagy inducers297.  Furthermore, a 

recent study reported that the primary cilium, a microtubule-rich structure, can activate 

autophagy in kidney epithelial cells in response to shear stress 298.  These observations 

support the role of mechanotransduction in autophagy regulation. 

Here, we find that intestinal epithelial cells, when organized as a monolayer, 

respond to shear stress by increasing flux through the autophagic trafficking pathways.  

As intestinal epithelial cells lack a primary cilium, shear-stress must be transduced 

through another mechanical sensor.  We find that actin-rich microvillar protrusions are 

required to trigger the shear stress response.  The intermicrovillar adhesion complex 

(IMAC) linking adjacent microvilli resembles the complex that links stereocilia in the 

inner hair cells of cochlear299, which mechanically respond to sound waves300.  Our 

findings provide the first evidence of a mechanosensing role of microvilli and propose a 

novel mechanically-controlled mechanism for breaking down macronutrients in the 

immature gut. 
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6.3 Materials and Methods 

 

6.3.1 Cell Culture 

Caco-2BBE and Caco-2 cells were cultured in DMEM (4.5 g/l glucose, Corning) in 37oC 

incubator supplied by 5% CO2, supplemented with 20% and 10% fetal bovine serum 

(FBS) (Sigma), respectively.  All media were supplemented with 1% 

penicillin/streptomycin and 2mM L-Glutamine (Hyclone).   

 

6.3.2 Microfluidic Device Fabrication 

Microfluidic devices are constructed from polydimethylsiloxane (PDMS) to the 

specifications below.  Designs were produced in Adobe illustrator and made into 

photolithography masks (Front Range Photomask).  Photolithography was performed on 

3 inch silicon wafer according to standard procedure (MicroChem Procedures).  The 

masters were then treated with Trichloro(1H,1H,2H,2H-perfluorooctyl)silane (Sigma) to 

create nonstick surfaces.  PDMS (Corning) was then poured onto the wafers in 10:1 

base to curing agent, desiccated, and baked at 60oC for 4 hours.  After removing the 

PDMS from the master, holes for tubing were punched in the inlets and outlets.  The 

chambers were then sealed to a 4 well Nunc Lab-Tek chamber slide according to 

standard procedure 145.  The chambers were then coated with a 50 μM collagen 

(Sigma), 300 μM Matrigel (Sigma) mixture in DMEM (Sigma).  After one hour under UV 

light, the devices were rinsed with DMEM, covered with PBS and refrigerated until used. 
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6.3.3 Live Cell Imaging with Microfluidic Control 

For shear experiments, 25 mM HEPES was added in the media when cells were 

seeded in the microfluidic device.  Cells were seeded at a density of 3 x 107 cells/ml to 

obtain dense confluency and 7.5 x 106 cells/ml to obtain less dense confluency for 

microvilli perturbation experiments.  After 5 hours incubation to allow monolayer 

formation, un-attached cells were washed off prior to the start of overnight shear 

experiments.  Live cell imaging was performed using a Nikon A1R (Nikon) or a LSM 710 

(Zeiss) fluorescent confocal microscope using a 20x objective in 30 minute intervals.  At 

the end of the experiment, cells were fixed in situ with 4% paraformaldehyde (PFA) then 

the devices were dissembled for further cellular analysis. 

To visualize the cytoskeleton and microvillar changes, Caco-2BBEcells were 

transfected with a GFP-UtrCH plasmid, containing the actin-binding domain of 

utrophin301.  To study cell proliferation and cell cycle, cells were transfected with a 

FUCCI plasmid 302.  For dextran uptake assay, FITC-dextran (70 kDa, Molecular 

Probes) at a final concentration of 5 mg/ml, RFP-dextran (10 kDa, Molecular Probes) at 

a final concentration of 10 mg/ml, and/or LysoTracker (Molecular probes) at a final 

concentration of 50 nM were supplied continuously to the microfluidic devices for the 

duration of experiments.  Live cell imaging was conducted and dextran positive particle 

(as determined by manual thresholding) count was conducted in ImageJ (NIH). 

 

6.3.4 Immunofluorescence Microscopy 

Fixed cells were permeabilized  0.1% Triton X and 1% bovine serum albumin (BSA) in 

PBS, blocked with  5% BSA (Sigma) and 5% goat serum in PBS (Jackson 
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ImmunoResearch) in PBS for 1h at room temperature.  Cells were stained with primary 

antibodies diluted in the blocking buffer for 1.5~2 h, and then with fluorescent secondary 

antibodies (Life Technologies), Hoechst (Life technologies), and Phalloidin (Life 

technologies) for 1 hour.  Images were taken using 20X or 60X objectives on a Nikon 

A1R (Nikon) or a LSM 710 (Zeiss) confocal microscope.  TUNEL assay was performed 

according to manufacturer’s specifications (Roche).  For quantification, sizes of single 

particles were measured using custom scripts in ImageJ(NIH) after thresholding out 

excessively large particle clusters.  Numbers of particles were estimated by the total 

area occupied by positively stained regions as determined by manual thresholding in 

ImageJ(NIH).  Whole cell quantification was done by Z-maximal projection. 

 

6.3.5 Apical Surface Biotinylation 

Caco-2BBEwere seeded in the microfluidic device for 1 day to ensure monolayer 

establishment, and then were washed ice-cold PBS supplemented with 0.1 mM CaCl2 

and 1.0 mM MgCl2 (PBS-CM).  EZ-Link® Sulfo-NHS-LC-Biotin (0.5 mg/ml) 

(ThermoScientific) was freshly prepared in ice-cold PBS-CM, and applied to the 

microfluidic chamber to the apical surface of the monolayer at 4oC for two consecutive 

20 min periods, after which Stretavidin-Cy3 (Sigma) was applied for 1 h at 4oC.  

Additional biotin was quenched with 100 mM glycine and washed prior to the start of 

microfluidic experiments. 
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6.3.6 Histochemical Staining 

Samples were fixed with 4% PFA for 1 h at room temperature, and then dehydrated with 

60% isopropanol for 5 minutes.  Samples were then stained with Oil red O solution for 

10 min and imaged with brightfield microscopy (EVOS).  Periodic Acid-Schiff staining 

was performed to manufacturer’s specifications (Abcam). 

 

6.3.7 Small Molecule Studies  

100 nM Bafilomycin A1 (BafA) (Sigma),50 μM Chloroquine (CQ) (Enzo Life Sciences), 

and10 μM BAPTA-AM (Molecular probes) were prepared in culture media from a 

dimethyl sulfoxide (DMSO)-based stock solution.  5 mM 3-Methyladenine (3-MA) 

(Sigma) and 3 μM Ionomycin (Sigma) were dissolved directly in media.  Small 

molecules were supplied to the microfluidic devices continuously for the duration of 

experiments.  Control cells were treated with the DMSO vehicle. 

 

6.3.8 RNA Knockdown  

siRNA against LC3α (sc-106197) and LC3β (sc-43390) (Santa Cruz Biotechnology) 

were transfected into Caco-2BBEcells with PolyJet to manufacturer’s specifications 

(SignaGen Laboratory).  Cells were used48 h later for experiments.  PCDH24 shRNA 

was applied to Caco-2BBE cells as previously described 299.  Control cells were treated 

with scramble RNAi. 
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6.3.9 Real-Time PCR 

RNA was extracted using RNeasy kit (Qiagen), and reverse transcribed using 

Quantitect reverse transcription kit (Qiagen) to manufacturer’s specifications.  qRT-PCR 

was performed using ABI StepOne system (ABI) using relative quantities are calculated 

from Ct values using Gapdh expression as housekeeping gene.   

 

6.3.10 Electron Microscopy 

Samples were prepared by washing samples with 0.1M sodium cacodylate and fixed 

with 2.5% glutaldehyde in sodium cacodylate for 1 h at RT, followed by post-fixation in 

1% osmium tertroxide for 1 h in sodium cacodylate.  After washing with 0.1 M Sodium 

cacodylate, samples were dehydrated with a serial dilution of ethanol, then a 50-50 

mixture of ethanol and propylene oxide, and finally propylene oxide.  Electron 

micrographs were taken by 250 ESEM (Quanta).   

 

6.3.11 Analysis of Vacuole Count and Size, and Monolayer Height 

Vacuoles tend to have uniform intensity, while cells are full of contrasting features, so 

images were first passed through a variance filter in ImageJ (NIH), followed by further 

analysis in Matlab (MathWorks).  Images were binarized, and morphologically 

transformed using “bottom hat” (dilation and erosion).Vacuolar boundaries were filtered 

by area and circularity, yielding outlines of vacuoles while ignoring the majority of other 

cell features (Figure 6.1).  Vacuolar diameters were estimated by the diameters of 

circles with the same area as each object to negate noise of boundary identification.  
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Both the vacuole number and size results from this automated algorithm were initially 

compared to results performed manually. 

To determine the height of cell monolayers, we used the highest actin signal 

below the dextran level as the apical boundary of the monolayer.  The basal boundary 

was determined as the highest actin signal above the substrate, which was non-

fluorescent.  The difference between the top and bottom was recorded at every pixel, 

with errors removed and the surface smoothed.   
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Figure 6.1 Vacuole Identification.  A) Brightfield image of CACO-2 cells under shear for 
10 hours.  B) The brightfield images have their background removed in ImageJ, then 
are imported into Matlab.  We then treat the images with a variance filter, then the 
morphological operation top hat several times to identify all objects in the image.  The 
objects are filtered by area and circularity to select for fairly round objects.  The 
boundaries of the identified vacuoles are overlaid in green.  The area of each vacuole 
and total number are collected for each image to track both statistics over time.  The 
algorithm was taught on three data sets that were also counted manually for each 
image.  For each subsequent experiment, the output number is verified by eye for two 
time points and parameters varied if needed.  This algorithm allowed for rapid 
assessment of the vacuole numbers used throughout the manuscript. 
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6.4 Results 

 

6.4.1 Shear Stress Induces Formation of Vacuoles 

To investigate whether intestinal cell monolayers, which lack primary cilia, respond to 

apical shear stress, a monolayer composed of Caco-2BBE cells was grown in a 

microfluidic device then subjected to the presence or absence of a fluid flow across the 

apical surface.  A fluid shear stress of 0.025 dyne/cm2 mimicking physiological luminal 

stress on the intestinal epithelium was applied overnight303,304.  Under shear stress, the 

Caco-2BBE layer height increased compared to static control (Figure 6.2), corroborating 

earlier reports on the effects of shear flow on epithelial cell polarization305,306.  

Surprisingly, previously uncharacterized vacuole-like structures (termed “vacuoles” 

herein) appeared after 3 hours of exposure to fluid shear stress and increased in 

number and size until reaching a plateau after 6 hrs (Figure 6.3A-3B).  These structures 

were observed under static control conditions, but with significantly less frequency and 

at much smaller sizes.  Vacuoles can be indicative of cellular stress preceding cellular 

senescence or cell death.  However, Caco-2BBE cells proliferated normally under shear 

stress despite vacuole formation, as shown by the fluorescence ubiquitination cell cycle 

indicator (FUCCI) cell cycle reporter (Figure 6.4A)307.  Cell death observed by TUNEL 

staining was not increased by shear stress compared to control for up to 3 days of 

exposure (Figure 6.4B).  These results demonstrated that the vacuole formation 

process is a normal cellular response to shear forces applied at the apical surfaces of 

intestinal epithelial cells.   
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Figure 6.2 Cell monolayer height increases under shear stress.  (A) Representative 
fluorescence images of the Z-axis view of Caco-2BBE monolayers labeled with GFP-
UtrCH (green), comparing overnight shear with static control.  Inset (magenta or green) 
bars depict average cell heights from these images.  (B) Monolayer heights depicted as 
a surface using an image processing algorithm that detects apical cell boundaries by 
the location of where GFP-UtrCH meets fluorescent media.  (C) Quantification of 
monolayer heights by considering every point on a surface depicted in B, calculated as 
fold change relative to static control.  Error bars represent SEM from n=2 independent 
experiments.  *P<0.05 by t-test.  These results are consistent with the literature 
description of gut epithelial responses to shear stress of the same magnitude. 
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Figure 6.3 Shear stress induces vacuole formation in dense Caco-2BBE monolayers.  
(A)Representative DIC images of vacuole formation induced by shear overnight 
compared to static control.  Vacuoles are highlighted in red.  (B) Quantification of the 
number of vacuoles formed as a time course of shear induction compared to static 
control.  Quantitative data were obtained by an image processing algorithm that 
segments vacuolar objects over entire time course movies, with 5 fields of view tracked 
and quantified per experiment.  Bands represent standard error of the mean (SEM) from 
n=3 independent experiments.  Data scales are normalized values derived from mean 
centering and variance scaling of each set of time course experiments.  Statistical 
analysis was done by 2-way ANOVA.  (C) Representative DIC/fluorescence image 
depicting 10 kDa fluorescently-labeled dextran included in vacuoles (red) and dextran-
negative vacuoles (green), comparing shear overnight to static control.  (D) 
Quantification of the number of dextran-positive vacuoles formed as a time course of 
shear induction compared to static control.  Quantitative data were obtained by 
automatically counting the number of dextran particles exceeding a size threshold over 
the entire movie from maximum Z-projections.  Data scales, error bars, and statistical 
analysis are the same as B.  These results show that vacuole creation is dependent on 
shear stress due to their absence in static conditions, and that fluid flux into vacuoles is 
increased rather than the endocytosis rate due to the lag of dextran positive vacuoles 
behind vacuole creation. 
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Figure 6.4 Epithelial monolayers exposed to shear stress maintain proliferation without 
cell death induction.(A) Representative fluorescence images of Caco-2BBEmonolayers 
under overnight shear or static control, depicting cell cycle reporter FUCCI, Geminin 
(green) and Cdt1 (red).  Scale bars, 100 μm (B) Representative fluorescent images 
depicting TUNEL (green) to assess cell death.  Scale bars, 50 μm. 
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Next we considered whether these striking vacuolar structures were larger 

manifestations of known cellular entities.  To determine whether shear-induced 

vacuoles are glycogen storage granules 308, we used Periodic-Acid-Schiff (PAS) to stain 

for polysaccharides in cells exposed to shear stress overnight and discovered that the 

vacuoles were PAS negative (Figure 6.5A).  Surprisingly, PAS-positive puncta were 

observed in control cells (Figure 6.5A), but these puncta disappeared upon shear stress 

induction.  This experiment also excluded the possibility that vacuolated cells are goblet 

cells since PAS also detects acidic mucins produced by goblet cells.  In addition, 

negative oil red staining indicated that the vacuoles are not large liposomes (Figure 

6.5B).  Finally, we investigated whether these intracellular vacuolar structures could be 

identified as vacuolar apical compartments (VACs) 309,310.  VACs result from macro-

engulfment and subsequent invagination of apical membranes that contain actin-rich 

microvilli.  To determine the possible apical origin of vacuolar membranes, we 

biotinylated the apical membrane prior to the start of shear flow, but after a monolayer 

with a tight barrier had formed (Figure 6.6A).  The vacuoles formed after exposure to 

shear stress were only partially decorated with biotin (Figure 6.6B), unlike VACs that are 

completely labeled by biotin.  Furthermore, the majority of vacuoles were not lined with 

actin-rich microvilli (Figure 6.6C), another hallmark of VACs.  These observations 

excluded the possibility that shear-induced vacuoles identify with VACs and other 

commonly observed large, cellular structures. 
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Figure 6.5 Shear-induced vacuoles are not glycogen storage vesicles, mucin-rich 
granules, or liposomes.(A)Representative brightfield images showing PAS staining of 
cell monolayers exposed to overnight shear or static control.  White arrows indicate 
detached, rounded cells.  Black arrows indicate PAS positive granules.  Red arrows 
indicate shear-induced vacuoles.  (B) Representative brightfield images showing Oil red 
O staining of cell monolayers exposed to overnight shear or static control.  White arrows 
indicate detached, rounded cells.  Black arrows indicate Oil red O+ granules.  Red 
arrows indicate shear-induced vacuoles.  Scale bars, 50 μm. 
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Figure 6.6 Shear-induced vacuoles are not VACs (Vacuolar Apical Compartments).  (A) 
Representative fluorescence images of the Z-axis view of Caco-2BBE monolayers that 
are selectively biotinylated (red) at the apical membrane at the start of the experiment.  
Cells were allowed to form a monolayer overnight and biotinylated on ice prior to the 
experiment.  (B) Representative DIC/fluorescence images (as maximum Z-projections) 
of biotin (red) in cell monolayers after overnight shear.  Scale bars, 10 μm.  (C) 
Representative DIC/fluorescence images (as maximum Z-projections) of actin labeled 
by GFP-UtrCH in cell monolayers after overnight shear.  Shear-induced vacuoles are 
not lined with actin (and hence, microvillar protrusions).  Scale bars, 10 μm.   
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6.4.2 Vacuoles are Enriched with Extracellular Fluid from Altered 

Trafficking 

To determine whether shear-induced vacuoles formed by increased uptake of 

extracellular material, we supplied fluorescently-labeled dextran to the culture media in 

our shear experiments.  Ten kDa dextran accumulated in vacuoles (Figure 6.3C), while 

seventy kDa dextran was excluded (Figure 6.7A).  This observation indicated that the 

contents of vacuoles can originate from extracellular sources, but there is a size 

selection for contents that can be included, ruling out phagocytosis or pinocytosis-based 

uptake mechanisms.  In addition, we confirmed that shear-induced vacuoles were 

intracellular by confocal microscopy, using a live-actin reporter to delineate cell borders 

(GFP-UtrCH)301 while observing the localization of dextran-labeled vacuoles (Figure 

6.7B). 

Increased inclusion of extracellular material into vacuoles can result from distinct 

but related mechanisms, e.g., increased flux of extracellular material into the cell, and/or 

prolonged residence of material within the cell through altered trafficking.  Prior research 

efforts have shown that the shuttling of internalized material among downstream routes 

can be controlled by cytosolic proteins and complexes such as ESCRTs, Rab GTPases, 

and coat proteins 311.  These routes include recycling back to the plasma membrane 

through the recycling endosome, sorting via early endosomes into the multivesicular 

bodies, vesicular fusion with the Golgi complex, delivery to lysosomes for degradation, 

and repackaging for transcytotic or exosomal release312.  Redirection of these 

homeostatic trafficking routes by greatly increasing flux into pathways with slower out-

flux could result in accumulation of extracellular material into vacuoles.  We present 
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multiple pieces of evidence to demonstrate that shear-induced vacuoles do not result 

from increased endocytic uptake, and may result from this redirection mechanism.  

First, if vacuoles arose directly from increased uptake, all vacuoles should rapidly 

include dextran; instead, we observed about 30 percent of vacuoles containing dextran 

(Figure 6.3C).  Second, dextran inclusion lagged vacuole formation, indicating that 

vacuoles initially arise by incorporating material already in the cell without direct uptake 

(Figure 6.3D).  Third, we considered increased endocytosis by immunofluorescence 

imaging of vesicles, specifically focused on pathways that take up low molecular weight 

material.  Clathrin-, dynamin- or caveolin- labeled vesicles were not substantially 

different between shear and control conditions (Figure 6.8).  In addition, the early 

endosomal marker EEA decreased under shear compared to control (Figure 6.10A-

B).These results suggest shear stress does not affect in-flux through endocytosis, but 

out-flux from the early endosomal compartment into downstream trafficking pathways.  

Hence, we investigated whether perturbations to downstream trafficking pathways 

altered the appearance or size of shear-induced vacuoles. 
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Figure 6.7 Internalized 10 kDa, but not 70 kDa, dextran, accumulates in vacuoles.  (A) 
Representative fluorescence images of internalized 10kDa dextran (top) and 70 kDa 
dextran (bottom) over maximum Z-projections in overnight shear or static control 
groups.  Scale bars, 100 μm.  (B)Representative images depicting dextran-positive 
vacuoles (white arrows) in cells with borders marked by GFP-UtrCH under overnight 
shear.  Two biological replicates shown.  Scale bars, 50 μm.  These results mean that 
there is a size selection in the uptake of fluid that is eventually trafficked into the 
vacuoles. 
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Figure 6.8 Shear stress applied to cell monolayers does not induce endocytosis.  
Monolayers exposed to overnight shear or static control conditions were fixed and 
stained with antibodies.  Representative IF images depicting (A) Clathrin (green), (B) 
Dynamin (red) and (C) Cav2 (green).  Scale bars, 50 μm. 
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6.4.3 Shear-Induced Vacuole Formation is Associated with Altered Flux into 

an Autophagic Pathway 

Recent data indicated that the plasma and early endosomal membranes are possible 

sources of membrane for autophagosome formation, suggesting that a possible 

downstream fate of endosomes is processing by the autophagy machinery 313,314.  The 

partial incorporation of endocytosed, biotinylated membranes (Figure 6.15B), as well as 

EEA1+ membranes (Figure 6.9), into the shear-induced vacuoles was consistent with 

the involvement of the multiple membrane sources involved in autophagosome 

formation.  To definitively establish an association between shear-induced vacuole 

formation and the autophagy machinery, we stained for LC3, a cytosolic protein that is 

lipidated and recruited to autophagic membranes.  LC3+ puncta were markedly 

upregulated throughout the epithelial monolayer under shear stress (Figure 6.10C-D).  

Strikingly, LC3 labeled almost all vacuoles in their entireties, in contrast to partial 

punctate labeling of EEA1 and biotin, implicating the direct involvement of the 

autophagy machinery in vacuole formation and maintenance (Figure 6.10E and 6.9B). 
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Figure 6.9 Shear-induced vacuoles are associated with the autophagy machinery.  
Representative DIC/IF images of (A) EEA1 (magenta) and (B) LC3 (green) and 
vacuoles in one confocal image section.  Scale bars, 20 μm.  (C)Representative IF 
images (as maximum Z-projections) of LAMP1+ lysosomes (red) induced by shear 
overnight compared to static control.  Scale bars, 25 μm.  Data scales are normalized 
values derived from mean centering and variance scaling of each set of experiment. 
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Figure 6.10 Shear-induced vacuoles are associated with increased autophagy, but not 
endocytosis.  (A) Representative immunofluorescence (IF) images (as a maximum Z-
projection) of early endosome antigen 1 (EEA1 - red) positive endosomes induced by 
shear overnight compared to static control.  (B) Quantification of EEA1+ particles by 
total particle area in A.  (C) Representative IF images (as a maximum Z-projection) of 
LC3 (green) expression induced by shear overnight compared to static control.(D) 
Quantification of LC3+ particles in C.  (E) Representative DIC/IF images of LC3 (green) 
and vacuoles in one confocal image section.  (F) Representative IF images (as a 
maximum Z-projection) of lysosomes marked by LAMP1 (red) induced by shear 
overnight compared to static control.  (G) Quantification of the average size of individual 
LAMP+ puncta in F.(H) Representative IF images of LC3 and LAMP1co-localization 
around shear-induced vacuoles.  Error bars represent SEM from n=3 independent 
experiments.  Data scales are normalized values derived from mean centering and 
variance scaling of each set of experiment.  **P<0.01, **** P<0.0001 by t-test.  These 
results show that the vacuoles contain autophagy the related membrane protein LC3 
and lysosomal related membrane protein LAMP1, meaning that the vacuoles are 
produced in part by the autophagy machinery and fuse with lysosomes for degradation.  
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Autophagosomes and their contents are known to be degraded by the cell via 

fusion with lysosomes.  To investigate the involvement of lysosomes in vacuoles, cells 

were stained with the lysosome marker LAMP1.  While exposure to shear stress did not 

increase the number of LAMP1+ puncta (Figure 6.9C), the sizes of individual LAMP1+ 

puncta did significantly increase, signifying altered trafficking and fusion activities 

(Figure 6.10F-G).  Moreover, colocalization of LC3 with LAMP1 was increased under 

shear stress, with LAMP1 lining entire vacuoles similar to LC3 (Figure 6.10H and 6.11A-

B).  In addition, vacuoles containing detectable dextran from the extracellular fluid 

colocalized with lysotracker, a fluorescent acidotropic probe for tracking lysosomes in 

living cells (Figure 6.11C).  Taken together, these results demonstrated that fluid shear 

stress results in an increase in vacuole formation associated with the autophagy 

machinery downstream of extracellular uptake. 

Having established an association between shear stress and the autophagy 

machinery, we pharmacologically perturbed different steps of the autophagy pathway 

and measured the impact on shear-induced vacuole formation.  Treatment with 

chloroquine (CQ), a well-known lysosomotropic agent that inhibits autophagy, 

suppressed shear-induced vacuole formation, implying a causal role of the autophagy 

pathway in this phenomenon (Figure 6.14A-B).  CQ inhibits steps downstream of 

autophagosome formation, resulting in the accumulation of LC3 puncta that cannot 

turnover 297,315–317, as we also observed in the context of shear stress (Figure 6.12A-B).  

Treatment with 3-Methyladenine (3-MA), another well-established autophagy inhibitor 

that targets PI3K, also suppressed the shear-induced vacuoles (Figure 6.14A-C).  

However, treatment with Bafilomycin A (BafA) did not impact shear-induced vacuole 



143 
 

number (Figure 6.14D), but instead led to significantly larger vacuole sizes (Figure 

6.14E-F).  While CQ is a general lysosomotropic agent that can affect acidification and 

hence fusion of all endosomes as well as perturb the Golgi 318, BafA inhibits V-ATPase 

and acidification of only lysosomes and vacuoles 319.The consequent rise in pH due to 

BafA may render acidic hydrolases non-functional, leading to accumulation of vacuolar 

contents and larger vacuole sizes.  Consistent with this notion, colocalization of dextran 

(marking vacuolar content) and lysotracker (marking acidic pH) was decreased by BafA 

in the context of shear stress (Figure 6.12C-D).  In addition, we observed a slight 

decrease in LC3 puncta under BafA treatment (Figure 6.12E), due to its trafficking into 

and turnover by shear-induced vacuoles.  To definitively support the role of the 

autophagy machinery in shear-induced vacuole formation, we knocked down LC3 using 

siRNA, as performed previously320,321.  Downregulation of either isoforms of LC3 

reduced vacuole formation in response to shear (Figure 6.14G-H and 6.13).  These 

results suggested that shear stress may activate a non-canonical pathway involving the 

autophagy machinery, where CQ acts on an additional step of autophagosome-

endosome fusion into vacuoles, and BafA inhibits turnover of vacuolar contents.   
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Figure 6.11 Shear-induced vacuoles are lined with autophagy components.  (A) 
Representative IF images of LC3 and LAMP1co-localization around shear-induced 
vacuoles.  Scale bars, 20 μm.  (B) Three dimensional reconstruction of confocal imaging 
stacks depicting LC3 (green) and LAMP1 (red) lining spherical shear-induced vacuoles.  
(C) Representative fluorescence image of colocalization of 10 kDa dextran (red) with 
the lysosomal marker LysoTracker (green) in vacuoles after overnight shear induction.  
Scale bar, 100 μm.  Insets depict localization of red and green (yellow) in two vacuoles.  
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Figure 6.12 Chloroquine (CQ) and bafilomycin A1 (BafA) exert different effects on 
shear-induced vacuole formation.  (A)Representative IF images (as maximum Z-
projections) of LC3 (green) expression in cell monolayers exposed to overnight shear 
with culture media supplemented with vehicle or CQ.  Scale bars, 50 μm.  (B) 
Quantification of LC3+ particles in A.(C) Representative fluorescence images of 10 kDa 
dextran (red) colocalization with LysoTracker (green) in cell monolayers exposed to 
overnight shear with culture media supplemented with vehicle or BafA.  Scale bars, 25 
μm.  (D) Quantification of the intensity of LysoTracker in dextran+ particles identified by 
image processing of C.  (E) Representative IF images (as maximum Z-projections) of 
LC3 (green) expression in cell monolayers exposed to overnight shear with culture 
media supplemented with vehicle or BafA.  Scale bars, 50 μm.  Error bars represent 
SEM from n=3 independent experiments.  Data scales are normalized values derived 
from mean centering and variance scaling of each set of experiment.** p<0.01,*** 
p<0.001 by t-test. 
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Figure 6.13 LC3 knockdown decreases shear-induced vacuole formation.  
Quantification of the number of vacuoles induced by overnight shear in (A) LC3β 
knockdown, and (B)LC3α/LC3β double knockdown, compared to scramble control.  
Error bars represent SEM from n=3 independent experiments.  Data scales are 
normalized values derived from mean centering and variance scaling of each set of 
experiment.* p<0.05 by t-test. 
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Figure 6.14 The autophagy machinery is required for shear-induced vacuole formation.  
(A) Representative DIC images of vacuole formation induced by shear overnight in 
vehicle, chloroquine (CQ), or 3-methyladenine (3-MA)-treated cell monolayers.  
Vacuoles are highlighted in red.  (B-D) Quantification of the number of vacuoles formed 
resulting from shear induction overnight or static control, comparing monolayers treated 
with vehicle and (B) CQ, (C) 3-MA, (D) Bafilomycin A (BafA).  (E) Representative DIC 
images of vacuole formation induced by shear overnight, comparing BafA- with vehicle-
treated cell monolayers.  (F) Distribution of vacuole diameter measured by image 
analysis of E.  Data represent combination of all vacuoles from n=3 experiments (5 
fields of view each).  (G) Representative DIC images of vacuole formation induced by 
shear overnight in cell monolayers with LC3 knockdown compared with scramble 
control.  (H) Quantification of the number of vacuoles formed in G.  Error bars represent 
SEM from n=3 independent experiments.  Data scales are normalized values derived 
from mean centering and variance scaling of each set of experiment.  ns not significant, 
**P<0.01, ***P<0.001, **** P<0.0001 by t-test.  These results show that the autophagy 
machinery is required to produce the vacuoles, since autophagy specific drugs 
significantly lower the vacuole number, and that lysosomal fusion is required to remove 
and degrade the vacuoles, since the fusion targeted BafA dramatically increased the 
size of the vacuoles.  The size and number of the vacuoles are determined by the flux 
into and out of them, which is controlled by the shear stress and lysosomal attachment 
respectively. 

  



149 
 

6.4.4 Apical Shear Mechanosensation Depends on Microvillar Protrusions 

We next turned our attention to the mechanism of mechanosensation by intestinal 

epithelial cells which lack the well-known mechanosensor, the primary cilium.  

Enterocytes in the gut epithelium develop microvilli, actin-rich protrusions located at the 

apical surface.  Caco-2BBE cells are known to adopt an enterocyte-like state upon dense 

contact with neighboring cells.  Microvilli have remarkable structural similarity to the 

stereocilia of the inner ear, a bona fide mechanosensor 299, as outlined in chapter 5.  

We hypothesized that the microvilli acted as the primary sensor of fluid shear stress 

upstream of vacuole formation.  Using a live-actin reporter to label actin-rich structures, 

we confirmed that Caco-2BBE cells formed microvillar protrusions upon dense confluency 

both in the absence and presence of shear stress (Figure 6.16A) unlike trophoblasts 

that do not form microvilli without shear322. 

To investigate the potential for microvilli as a mechanosensor, we pursued three 

complementary perturbation strategies.  First, we observed the shear-stress response 

of the parental Caco-2 line, which is less efficient at forming microvilli than the Caco-

2BBE line primarily used in this study (Figure 6.15A)323,324.  Parental Caco-2 cells under 

shear stress formed significantly fewer vacuoles compared to Caco-2 BBE cells (Figure 

6.15B-C).  Dextran+ particles in the parental line were also decreased, correlating with 

the number of vacuoles (Figure 6.15D).  Second, we observed the shear stress 

response of Caco-2BBE cells in less dense monolayers, where microvilli protrusions do 

not form due to a poor polarizing environment (Figure 6.15A)324.  Vacuole numbers and 

dextran+ particles were significantly diminished in confluent monolayers that were less 

densely populated (Figure 6.15E-G).  Third, we specifically knocked down proto-
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cadherin-24 (PCDH24) in the Caco-2BBE line.  PCDH24 is an essential adhesion 

molecule of the IMAC complex that bundles microvilli.  PCDH24 downregulation is 

known to form an aberrantly sparse brush border in Caco-2BBE cells299.  We confirmed 

that PCDH24 expression was downregulated in our knockdown cell line (Figure 6.16B), 

which was accompanied by a defective brush border with few microvilli (Figure 6.17A, 

Figure 6.18).  Exposure to shear stress in PCDH24 knockdown cells generated 

significantly less vacuoles and dextran+ particles compared to the scramble control 

under shear (Figure 6.17B-D).  Finally, we evaluated whether shear-induced LC3 

upregulation is dependent on microvilli.  The number of LC3+ puncta was also 

decreased with PCDH24 knockdown under shear compared to scramble control (Figure 

6.17E-F).  Taken together, these results support a necessary role of intestinal microvilli 

in the transduction of apical shear stress to induce vacuole formation. 

Studies in inner hair cells and trophoblasts have revealed that increased calcium 

flux downstream of a mechanically gated ion channel is responsible for mechano-

transduction322,325,326.  To investigate whether microvilli-based mechanotransduction is 

calcium-dependent, we performed shear experiments with administration of BAPTA-AM, 

a cell permeable Ca2+ chelator that was used in both inner hair cell and trophoblast 

studies.  Unlike in these two cell systems, BAPTA-AM did not inhibit the shear-induced 

vacuole formation (Figure 6.19A).  Administering ionomycin to raise intracellular calcium 

also had minimal effects on shear-induced vacuole formation (Figure 6.19B).  Hence, 

unlike other mechanosensitive cell systems, shear-induced vacuole formation is not 

triggered by increased Ca2+ flux into the cells.   
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Figure 6.15 Microvilli are required for shear-induced vacuole formation.  Representative 
DIC images of shear-induced vacuole formation overnight (A, D), comparing: (A) Caco-
2BBE (control) with Caco-2 parental, and (D) dense (control) with less dense confluent 
plating. Vacuoles are highlighted in red.  (B and E) Quantification of vacuole number as 
a time course of shear stress or static control, comparing conditions outlined in A and D.  
Statistical analysis was done by 2-way ANOVA.  (C and F) Quantification of the number 
of dextran-positive vacuoles resulting from overnight shear induction or static control, 
comparing conditions outlined in A and D.  Error bars represent SEM from n=3 
independent experiments.  Data scales are normalized values derived from mean 
centering and variance scaling of each set of experiment.  **P<0.01, ***P<0.001 by t-
test.  These results solidify the connection between mechanosensing by microvilli and 
vacuole production by removing the microvilli in two ways, with the parental cells that 
create fewer microvilli and through less dense seeding in which the cells produce fewer 
microvilli, and observing the significant decrease in vacuole number as a result. 
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Figure 6.16 Shear does not affect microvilli formation.  (A) Representative fluorescence 
images of cell monolayers transfected with GFP-UtrCH to visualize actin, including 
microvillar protrusions.  Confocal image sections focused on the apical surfaces of cell 
monolayers exposed to shear stress or static control for the indicated times.  Scale 
bars, 10 μm.  (B) Confirmation of PCDH24 knockdown by shRNA in Caco2BBE cells 
using real time RT-PCR.  Fold changed compared to scramble control. 
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Figure 6.17 Perturbing microvilli by PCDH24 knockdown suppressed vacuole formation 
and autophagic trafficking.  (A) Representative scanning electron micrographs of the 
apical surfaces of cell monolayers cultured overnight, comparing PCDH24 knockdown 
with scramble control.  (B)Representative DIC images of shear-induced vacuole 
formation overnight, comparing PCDH24 knockdown with scramble control.  (C) 
Quantification of vacuole number as a time course of shear stress or static control, 
comparing conditions outlined in B.  Statistical analysis was done by 2-way ANOVA.  
(D) Quantification of the number of dextran-positive vacuoles resulting from overnight 
shear induction or static control, comparing conditions outlined in B.  (E) Representative 
IF images (as a maximum Z-projection) of LC3 (green) expression induced by shear 
overnight, comparing PCDH24 knockdown with scramble control.  (F) Quantification of 
LC3+ particles in E.  Error bars represent SEM from n=3 independent experiments.  
Data scales are derived from mean centering and variance scaling of each set of 
experiment.  **P<0.01, ****P<0.0001 by t-test.  These results show a direct connection 
between mechanosensing of microvilli and parts of the autophagy machinery.  
Knockdown of the bundling protein, which lowers the bending stiffness, shown in Figure 
5.3 to decrease the force on the membrane, results in both fewer vacuoles and less 
LC3 expression.   
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Figure 6.18 Knock down of PCDH24 perturbs microvilli formation.  (A) Representative 
scanning electron micrographs of the apical surfaces of cell monolayers cultured 
overnight, comparing PCDH24 knockdown with scramble control.  Scale bars, 5 μm.  
(B)Representative fluorescence images of cell monolayers transfected with GFP-UtrCH 
to visualize actin, including microvillar protrusions.  Confocal image sections focused on 
the apical surfaces of cell monolayers cultured overnight, comparing PCDH24 
knockdown with scramble control.  Scale bars, 10 μm. 

  



155 
 

6.5 Discussion 

In this study, we report that intestinal epithelial cell monolayers respond to apical shear 

stress by mechanosensitive microvillar protrusions.  Unlike trophoblasts which respond 

to shear stress by forming microvilli 322, our results suggest that epithelial monolayers 

use microvilli as a mechanosensor to induce intracellular vacuole formation via a non-

canonical autophagic trafficking pathway.  There is no evidence that shear stress 

increased endocytosis resulting from shear stress.  Instead, shear-stress directs flux 

downstream of endocytosis into the autophagy pathway.  Vacuole formation depends 

on central autophagy components such as LC3, and processes such as LAMP1+ 

lysosomal recruitment and fusion.  Glycogen-containing granules are reduced by shear, 

consistent with studies reporting autophagy to be a central pathway for degrading 

glycogen stores, specifically in glycogen storage disease327,328.Taken together, we have 

uncovered a novel mechanism occurring in multicellular collectives, such as epithelial 

monolayers, that links mechanical forces to the autophagy machinery. 

Although shear-induced vacuole formation shares components of the canonical 

autophagy pathway, our data suggests that it is actually a distinct process that is 

broadly classified as non-canonical autophagy.  Canonical autophagy begins with 

phagopore formation, then maturation into autophagosomes, and ends with lysosomal 

fusion into autolysosomes that degrades vesicular contents329.  Shear-induced vacuole 

formation does not end with autolysosomes that are observed as small puncta in the 

cell.  Instead, previously uncharacterized, large vesicular structures with acidic pH are 

formed.  These structures are distinct from swelled autolysosomes that form when 

downstream degradation is blocked330.  Furthermore, we were not able to observe 
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organelles destined for degradation within vacuoles, which is characteristic of 

starvation-induced autophagy 331.  The distinctiveness of shear-induced vacuole 

formation from canonical autophagy is supported by the differences in CQ and BafA 

action, which are thought to inhibit the same autophagosome-lysosome fusion step332.  

In shear-induced vacuole formation, CQ inhibits a vesicular fusion step prior to vacuole 

formation, and BafA inhibits vacuole acidification and degradation.  This mechanism is 

supported by larger, but less acidic vacuoles formed under BafA (Figure 6.14E-F and 

S9C-S9D).  In turn, the accumulation of LC3 puncta caused by CQ blockage of 

vesicular fusion297,315–317 is not observed in BafA treatment (Figure 6.14E), as flux into 

vacuoles is still permitted.  Other LC3-dependent non-canonical autophagy pathways 

include LC3-associated phagocytosis resulting from immune signaling333–335, as well as 

entotic vacuolation336,337.Importantly, our observations in cilia-deficient but microvilli-rich 

intestinal epithelial cells are distinct from canonical autophagy triggered by shear forces 

acting on the primary cilia of kidney epithelial cells 298. 

The downstream mechanism by which microvilli transmit mechanical signals to 

autophagy components remains to be elucidated.  However, unlike other protrusion-

based mechanotransduction systems that trigger mechanically-gated calcium 

channels298,322,325,326,338, shear-induced vacuole formation is minimally affected by 

calcium changes.  We speculate that actin-tubulin cytoskeletal cross-talk transmits 

apically-sensed signals to the intracellular autophagy pathway.  Previous studies have 

demonstrated the dependency of autophagy on microtubule dynamics296,297,339, 

specifically tubulin acetylation that affects intracellular trafficking340,341.  Cytoskeletal 

changes may trigger the initial recruitment and fusion of endomembrane vesicles, and 
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subsequent lipidation of LC3.  The post-translational modification of microtubules may 

be a good place to start for finding a mechanistic link between F-actin-rich microvillar 

protrusions and vacuole formation induced by shear stress.  In turn, other physical 

perturbations on the cytoskeleton such as tension may also induce autophagy 

components. 

What could be the physiological relevance in shear-induced vacuole formation? 

The intestine is home to some 100 trillion microbes, and the apical microvilli of epithelial 

cells are the first line of defense against pathogens342.  Engulfment and intracellular 

vacuolation resulting from insults to the microvilli may be a containment strategy for 

pathogens.  An example of such containment strategy is toll-like receptor triggering of 

phagocytosis of microbes to be degraded by the autophagypathway334,343.As such, a 

significant number of autophagy genes are associated with inflammatory bowel 

disease284–292.  Perhaps, the physical state of microvilli can serve as an additional cue 

for such a pathway.  In addition to microbial defense, shear-induced vacuole formation 

may have a role in fetal and neonatal digestion.  Although there is luminal motion in the 

adult gut, the adult mucosa is covered by mucus layers that somewhat shield epithelial 

microvilli344, and solid luminal contents may impose mechanical stress distinct from 

simple shear345.  In contrast, vertebrate neonates maintain a liquid diet from milk, and 

their intestinal mucosa is immature, with sparse microvillar protrusions and minimal 

mucus, mimicking the state of Caco-2BBE monolayers346,347.  Indeed, the Caco-2 line, 

when polarized, is known to resemble enterocytes at an immature/neonatal stage 348.  In 

neonates, dietary nutrients and immunoglobulins traverse the intestinal mucosa as 

macromolecules though pinocytosis of enterocytes, and are trafficked into intracellular 
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vacuoles 349,350.  Lysosomal proteases and β-galactosidase are highly expressed at 

these stages for digestion, and these enzymes are subsequently decreased further in 

development.  The autophagy machinery may be one of the conduits of this digestive 

process.  Bridging biological processes of microbial defense and digestion, 

dysregulated shear-induced autophagy in a premature gut may lead to malnutrition 

coupled to mucosal injury and abnormal microbial colonization, leading to devastating 

neonatal conditions such as necrotizing enterocolitis (NEC).  Indeed, autophagy 

components are required for the development of NEC in both human and mouse 

models 343.  Here, we have uncovered a novel pathway by which autophagic flux can be 

regulated by mechanical stress, which may have significant consequences in 

understanding intestinal physiology and disease processes. 
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Figure 6.19 Shear-induced vacuole formation is not triggered by increased calcium flux.  
Representative DIC images of vacuole formation induced by overnight shear or static 
control, with media supplemented with vehicle or (A) 10 μM BAPTA-AM or (B) 1μM 
ionomycin.  Vacuoles are highlighted in red.  Scale bars, 100 μm. 
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Chapter 7 

 

 Future Work: Mechanosensing and Autophagy in the Gut 

  

7.1 Jamming in gut cells 

Behavioral transitions within biological systems that arise from physical constraints have 

received treatment through analogy with phase transitions.  Cells within a tissue 

features two such transitions, a jamming transition in which increases in density drive a 

shift from highly motile cells to a fairly static sheet, and a glass transition in which 

temperature increases have the opposite effect, driving the cells from a static state to a 

more motile state233.  In each case, the dynamics arise from the energy of the collection 

of the cells in comparison to energy required to rearrange the sheet, which depends on 

the internal energy of each cell.  A cell within a tissue has several factors contributing to 

its energy, which is outlined in Figure 7.1.  Lisa Manning has developed a model of 

jamming for cells that can be described as such232.  We outline this model herein. 
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Figure 7.1 Cell energy components.  A) The membrane of a cell contributes to the 
overall energy as a spring; a change in the perimeter results in a quadratic change in 
the energy.  B) When cells are in contact with each other, the actin connected to the 
membrane acts like a spring perpendicular to the bilayer, which have some average 
energy stored within them.  When confluent, the total perimeter of each cell contacts 
other cells so the number of these springs depends on the perimeter of the cell and a 
change in perimeter linearly changes the total energy from the springs.  C) Local 
regions on cell membranes prefer to be flat to minimize energy, but as a whole the 
membrane has its lowest energy as a circle.  Within a cell sheet the membranes of the 
cells fill all of the space, and a collection of non-overlapping circles cannot cover a 
region entirely so each cell is stretched in some way raising its energy.  The energy in 
small regions of the membrane depends on the local curvature, and for minimal areas 
the mean curvature is zero and minimizes the energy.  Increasing the mean curvature to 
fill the entire space in a confluent sheet increases the area and energy away from their 
minima.  Together, these pieces use cell shape to define its energy.  Equation from232.   
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The mechanical energy of a cell is: 

       
              

  

With P and A the perimeter and area of the cell respectively and the subscripts i and 0 

are the measured and optimal values respectively.  The first term is a result of the 

spring-like membrane, which increases the energy of the cell when the perimeter is 

increased or stretched as a quadratic.  The second term is due to the spring like actin 

bundles that pull inwards on the membrane, and whose number increases linearly with 

perimeter giving the linear dependence for this terms energy contribution.  The last term 

is due to the difference between the internal and external walls of the cell membrane as 

the bilayer is bent.  The optimal condition is for circular cells, but this rarely occurs in a 

tissue as a collection of circles does not have perfect packing density.  Note that this 

energy equation is solely dependent on the shape of the cells.  In order to move within 

the sheet, a cell needs to overcome the energy barrier due to its neighbors.  The energy 

of the tissue in comparison to these energy barriers determines the frequency of cells 

escaping their well and finding a new optimal configuration with different neighbors.  

The tissue energy is controlled differently in jamming and glass transitions.  In jamming, 

the cell density is the order parameter that determines the state of the system, and 

increasing the number of cells linearly increases the energy of the tissue because the 

total energy is the sum over all cells.  Additionally the cells become more compact as 

the density increases which changes both the perimeter and area of the cells as 

polynomials.  In glass transitions, temperature is typically the order parameter, though 

pressure can be used as well.  These two directly control the energy of the sheet, and 

increasing either will cause an increase in shape fluctuation magnitude making sheet 
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rearrangements occur more frequently.  Simple processes similar to jamming and glass 

transitions are classically described as an Arrhenius process: 

      
      

With R the transition rate, ω0 the escape attempt frequency,    is the energy potential 

separating two neighbor configurations, and ε = kb/T the scale of energy fluctuations.  

The average dwell time in a state is the inverse of the rate of rearrangement.  The 

relationship between the energy of each cell and the fluctuation magnitude determines 

whether the dwell time function can be normalized; if dwell time is finite then the tissue 

is solid-like and if it is not finite then the tissue is fluid-like.  Both jamming and glass 

transitions are more complicated than this due to intermediate states where collections 

of cells have correlated movement, but the concepts are similar. 

Lisa Manning’s experimental work with lung cells in asthmatic patients applied this 

phase transition framework to the study of development and disease.  This work 

showed that the timing of the transition between unjammed and jammed states 

increased predicted whether a patient would develop asthma234.  In asthmatic patients, 

the pressure on the cells is greater during early development of the lung, so pressure 

was varied on healthy cells to study these transitions.  Cells from patients with and 

without asthma were collected and perpetuated.  Particle image velocimetry (PIV) was 

used on phase contrast images to calculate the MSD and they found that increasing 

pressure on the cells increased migration persistence for both groups.  The four point 

susceptibility was used to show that increased pressure decreased the lifetime of 

collective motion; the cells remained unjammed in high pressure.  The size and lifetime 
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of the correlated regions are related to the neighbor rearrangement frequency, though 

the form of the relationship depends on the cellular energy distribution.  With the 

distribution measured the experimental observations can be connected to the model to 

fit the parameters.   

In our experiments, we see density dependant effects on the formation of vacuoles in 

response to shear stress.  Below confluence, the cells don’t show any response to 

shear stress but at confluence we see consistent production of vacuoles under shear.  

This suggests that there may be a jamming transition that occurs at high density.  

Additionally, the cells only from microvilli when they are confluent, which may affect the 

changes in internal energy of the cell due to shear stresses that bend them and 

subsequently transmit the force into the membrane.  We also observe a change in 

migration speed under shear compared to static experiments.  The effect of transmitting 

the force on the microvilli to the membrane could also play a role in a glass transition.  

To test these questions, we implemented a particle image velocimetry (PIV) algorithm to 

track cell movement within the sheet.  We also borrowed a watershed algorithm, 

Seedwater Segmenter351, from David Mashburn in the Hutson lab to track the cell 

boundaries and calculate their energy, which connects the model of jamming directly to 

experiment by measuring the shape of each cell as it changes over time.  The results of 

the two algorithms on our images are shown in Figures 7.2 and 7.3.  Continuation of this 

approach could yield a phase transition description of the cells in response to shear 

stress at different densities.  Such a framework may yield insight into the developmental 

transition or onset of disease as it has in lung cells. 
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Figure 7.2 Identification of cell boundaries from fluorescent actin.  A) Fluorescent 
images of CACO-2 cells are processed in Matlab to make the boundaries more 
apparent.  B) The Seedwater Segmenter351 is used to identify the boundaries of the 
cells, shown in blue.  Both the preprocessing and the parameters of the segmenter 
need to be adjusted and improved to give more accurate boundaries.  Accurate 
boundaries would allow direct connection of the shape based energy model and the 
observation of the jamming transition.   
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Figure 7.3 PIV analysis of CACO-2 cells under shear.  Bright field images of CACO-2 
cells were collected every 10 minutes and analyzed with particle image velocimetry.  
The magnitude of each vector represents the speed at which that region is moving.  
With this analysis, we can determine the size and lifetime of correlated regions to 
determine whether the cells are jammed or not.  The analysis of the shape based 
energy from above can have its parameters fitted to match the correlated region size 
and time. 
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Epilogue 

 

We set out to study the dynamic relationship between cells and their environment.  The 

developmental transition in D. discoideum in which the cells aggregate to become a 

multicellular organism is well studied, but the effects of receptor phosphorylation on 

chemotactic ability were not quantified.  In our work, we used previous knowledge from 

literature about receptor number and phosphorylation changes over development to 

extend information theoretic models of chemical gradient transduction into directed 

motion.  We found that the cells use receptor phosphorylation and number to change 

how they sample their environment and respond to different external chemical fields at 

different developmental time points.  D. discoideum’s chemotactic accuracy and ability 

to respond to dynamic signals was previously characterized at the beginning and end of 

the developmental transition.  We furthered this study with imposed dynamic external 

chemical fields on the cells at several points in development, and found that the cells 

trade the ability to respond to rapid fluctuations for long term accuracy as development 

progresses.  In the CACO-2 study, we explored the effects of shear stress on gut 

epithelial cells.  This was an exploratory study where we found a novel mechanism to 

activate parts of the autophagy machinery.  We found that the cells use their microvillar 

protrusions to sense shear stress.  We showed that the cell altered fluid trafficking as a 

result of this stress and observed the creation of fluid filled vacuoles.  We used a 

combination of targeted drugs, genetic manipulations, and fluorescent labels to show 

that the manufacture of the vacuoles included parts of the autophagy machinery and 

that shear stress is essential to trigger this response.  We hope that mechanical sensing 
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will someday be as well studied and modeled as chemical sensing so that the 

information theoretic framework could be applied to epithelial cells’ transduction 

networks in the same fashion as we applied it to D. discoideum. 
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Appendix I - Protocols 

1. Photolithography protocol 

 Note: This is a modified protocol from Ron Reiserer and Dave Schaffer in Viibre 
(Vanderbilt University) 

Materials: 

1) SU-8 2XXX 

2) Silicon wafer 

3) Photolith mask 

4) Blunt Syringe 

5) NovaCure 

6) IPA 

7) SU-8 Developer 

8) Edge Bead Remover 

9) Crystallization dish 

10) Rubylith tape 

11) Dark Safety Glasses 

Method: 

i. Turn on vacuum pump in changing area 

ii. Remove SU-8 2XXX from chemical cabinet 

a. XXX is the expected height of the film in microns if spun at 3000 rpm 

b. Turn on Novacure to let it heat up 

iii. Spin- coat 

a. Remove dust from wafer with nitrogen 

b. Make sure the spinner waste beaker is placed under the exhaust of the 

spinner – exhaust port is on the back of the spinner 

c. Place wafer on center of spinner 

i. Spin with hand to check if wafer is centered 

d. Weigh SU-8 

i. Write weight on excel sheet 

e. Turn vacuum on, pour a 1.5 inch diameter circle of SU-8 on the center of 

the wafer 

i. Have wipe ready to wipe bottle and catch excess resist 

ii. Avoid getting SU-8 into threads of bottle 

f. Weigh SU-8 

i. Write weight on excel sheet 

iv. Program the spinner 

a. Choose your program or select an existing one to modify 
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b. Press F1 to enter program mode 

c. Press STEP to go between steps 

i. 1st step: 10 seconds at 500 rpm (acl 5) 

ii.  2nd step: 30 seconds at 3000 rpm (acl 10) 

iii. I follow this exactly for SU8-2XXX to make XXXum features 

iv.  Spinning at higher rpm will create thinner layer 

d. Run the spinner 

v. Edge Bead Removal 

a. Find a program where you can spin at 2000 rpm for 10 minutes 

b. Fill blunt syringe with EBR 

c. Spin wafer 

d. Spraying a constant stream, dissolve the SU-8 around the outer edge of 

the wafer 

i. Remove up to 1mm from edge 

ii. Avoid spraying EBR on the center of the wafer 

e. Stop spinning 

i. Repeat c if there is still SU-8 at edge 

ii. If bare, turn off vacuum and remove wafer 

vi. Soft Bake 

a. Place wafer on hotplate 

b. Let hotplate ramp itself to 95o C – sit for 5-20min (depends on SU-8, look 

at data sheet) 

c. Let cool down to 40o C 

d. Clean the spinner with a beta wipe while waiting 

e. Remove wafer after bake and let it cool on beta wipe 

vii. Exposure 

a. Enter program into Novacure 

b. Select SET-UP 

c. Enter password (1111) 

d. Select EXPOSURE 

e. Select DOSE and enter value 

i. See table for value 

ii. Remember 231 times what it says on data sheet 

iii.  95000 for 100um thick features 

f. Min Time - press OK 

g. Max Time - press OK 

h. Remove light guide and attach to stand 

i. PUT ON SAFETY GLASSES 

j. Run the program to be sure light hits in the 3 inch circle 

i. Adjust height of stand if needed 
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k. Dust off photomask with nitrogen – maybe clean with IPA 

l. Place wafer on circle with mask on top—emulsion side down (brown/metal  

side down) 

m. Adjust mask so that any bad spots on the wafer are covered by opaque 

regions of the mask – won’t be exposed 

n. Cover unused areas with Rubylith tape 

o. *Wear safety glasses* Run the program using foot pedal. 

p. Return the NovaCure light guide to the radiometer port on the NovaCure 

box. 

viii. Post-Exposure Bake 

a. Remove mask and place wafer on hotplate 

b. For 100um features, set the hotplate to ramp at 2o/min (120o/hour) 

c. Otherwise, set to 3o/min (180o/ hour) 

d. Calculate how long it takes to reach 95o C 

i. Add bake time from data sheet table 

e. Set timer to total time 

f. Set temperature to 95o 

g. Select auto off 

i. This turns off heat when the timer finishes 

h. Wait until timer runs out and plate cools to 40o C 

i. Remove wafer and let cool 

ix. Development 

a. Immersion 

i. Pour developer into crystallization dish to cover wafer  

ii. Swirl dish until all uncured SU-8 is removed 

1. This can take ~20-30 minutes for SU-8  >  50um thick SU-8 

iii. Rinse device with IPA, dry with nitrogen 

b. Spray: conducted  in the spinner 

i. Spray developer onto wafer, wait 30 seconds, spin off 

ii. Repeat 4-5 times 

iii. Wash with IPA while spinning, wait for it to dry 

iv. Check for undeveloped SU-8 

1. Repeat i and iii if there is any white film on wafer or near 

features. 

x. Hard Bake 

a. Place device on hotplate 

b. Set ramp to 2o/min (120o/hour) 

c. Calculate how long it takes to reach 180o C 

i. Add 20 minutes 

d. Set timer to total time 
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e. Set temperature to 180o 

f. Select auto off 

g. Cover device with upside-down glass crystallization dish 

i. Have edge of dish over the edge of the hotplate so air can escape 

h. Label glass slide with name, date, and contact info and set it on or in front 

of hotplate 

xi. CLEAN UP 

a. Clean spinner with acetone and IPA with beta wipes 

i. dispose of beta wipes in hood 

b. Put spinner waste/developer waste into waste container under bench 

labeled “Organic Wastes Only” 

c. Check that exposure lamp is off and light guide is in radiometer port – 

don’t turn off NovaCure if someone is coming in after you 

d. Close nitrogen gas valves 

e. Turn off vacuum pump in the entry to the clean room 

xii. Retrieve wafer when complete 

a. Silinize wafer 

 

References 

SyBBURE – “Module 1- Fundamentals of SU-8 Photolithography” 

MicroChem- “SU-8 2000 Permanent Epoxy Negative Photoresist PROCESSING 
GUIDELINES FOR: 

SU-8 2000.5, SU-8 2002, SU-8 2005, SU-8 2007, SU-8 2010 and SU-8 2015” 
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2. Silinization protocol 

Materials: 

1) Wafer from photolithography 

2) Trimethylsilane or similar 

3) Transfer pipette 

4) Glove box 

5) Plastic apparatus to hold wafer 

6) Microscope slide 

7) Dessicator 

8) Vacuum pump 

 

i. Tape back of wafer to plastic holder 

ii. Load wafer and transfer pipette into glove box 

iii. Place microscope slide in dessicator 

iv. Place 3 drops of silane onto glass slide 

v. Place plastic apparatus in dessicator 

a. Wafer features down 

vi. Vacuum air out of dessicator 

vii. Leave over night 

viii. Remove wafer 

ix. Wash with ethanol 
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3. PDMS pouring protocol 

PDMS pouring protocol 

Materials: 

1) Silinized wafer 

2) Aluminum foil 

3) 3in Petri dish 

4) Razor blade 

5) PDMS base and curing agent 

6) Mixer 

7) Scale 

8) Dixie cup 

9) 60o level oven 

10) Dessicator and vacuum pump 

Method: 

i. Cut aluminum foil circle using the lid of a 3in Petri dish as a guide 

ii. Place wafer in center of foil circle 

iii. Fold the edges of the circle around the wafer to form vertical edges 

iv. Crimp the foil so it will hold fluid over the wafer 

v. Place each wafer in petri dish 

vi. Weigh out 15 grams of PDMS base for each wafer to be filled in a Dixie cup  

vii. Add 1.5 grams of curing agent per wafer (10:1 base to curing agent) 

viii. Mix in the thinky mixer for 1 minute 

ix. Pour ~15 grams mixed PDMS into each wafer 

x. Stack wafers in dessicator and degass for 30 minutes 

xi. Refill dessicator slowly  

xii. Remove wafers  

xiii. Place in 60o oven for 3-4 hours (can be longer) 

xiv. PDMS will not be sticky at all when cured 
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4. Plasma Sealing Protocol 

Materials: 

1) PDMS Sheet 

2) Razer blade 

3) Hole punch 

4) Scotch tape 

5) Glass slide 

6) 60oC Oven 

7) Tweezers 

 

Method: 

i. Remove PDMS from silicon wafer 

ii. Cut out PDMS chambers 

iii. Punch holes from the bottom, featured side 

iv. Clean both top and bottom of PDMS with scotch tape 

v. Cover microscope slide with scotch tape to prevent accidental bonding 

vi. Clean cover slip with methanol and alpha wipe and let dry 

vii. Place cover slip and PDMS chamber on tape-covered microscope slide feature 

side up 

viii. Place in plasma sealer and close door and air valve 

ix. Turn on vacuum and power 

x. Wait until plasma sparks then adjust air valve so that the plasma is bright pink 

xi. Leave in pink plasma for 30-60 seconds 

xii. Turn off vacuum and power 

xiii. Open air valve to let out air over ~10 seconds 

xiv. Use tweezers to pick up and flip PDMS chamber and put into contact with cover 

slip 

xv. Bake in 60oC oven for 3 minutes 

xvi. Remove and fill with water or buffer 

xvii. Chamber will remain hydrophilic for up to 2 weeks 
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5. Freezing and Defrosting cells Protocol 

 

Materials: 

1) Cryogenic freezing tubes 

2) HL-5 

3) Dicty Cells  

4) Fetal Bovine Serum 

5) DMSO 

6) Dicty Incubator 

 

1) Freezing Cells 

i) Grow cells in flask 

ii) Prepare freezing solution 

(a) HL-5 with 25% fetal bovine serum, 10%DMSO 

iii) Resuspend cells in freezing solution at 5E7cell/ml 

iv) Pipette 1ml aliquots into cryogenic freezing tubes 

v) Label and place in -80oC freezer on 8th floor 

 

2) Defrosting Cells 

i) Remove cells from -80oC freezer on 8th floor 

ii) Warm to room temperature 

iii) In tall Petri dish, pipette 12ml of HL-5 with appropriate antibodies 

iv) Pipette Cells into Petri DIsh 

v) Label with date and put in dicty incubator 

vi) Ready to harvest in 2-3 days 
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6. Axenic Growth Protocol 

1) Growing  Cells in Petri dish 

i. Defrost cells 

ii. Pipette contents of cell aliquot into Petri dish 

iii. Add 13ul of HL5 with appropriate antibodies 

iv. Ready to harvest in 2-3 days 

 

2) Growing cells in flask 

i. Shake Petri dish with cells to suspend dead cells by sliding on surface – 

not in a circle 

ii. Remove all HL5 and discard 

iii. Pipette 12 ml of HL5 over the cells several times, rotating dish 30o 

between washes 

iv. Remove all HL5/cells with pipette then replace ~.5ml of the cell solution 

v. Pipette rest of cell solution into 125ml flask 

vi. Add 35ul of HL5 + antibodies to flask 

vii. Place on orbital shaker in Dicty incubator 

viii. Cells grown in ~2 days 

 

3) Diluting cells 

i. Remove 35 ml from flask 

ii. Add 35 ml of HL5 +antibodies to flask 
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7. Development Protocol 

i. Find Cell concentration in flask 

a. Count on hemocytomter 

b. Cell Concentration = Sum 5 squares * 50,000 (cells/ml) 

ii. Development volume = 5E7(cells) / Cell Concentration (cells/ml) 

iii. Pipette Development Volume of cell solution into 50ml conical tube 

iv. Centrifuge Cells at 1500rpm, acceleration 9, 20oC for 5 minutes 

v. Remove supernatant and resuspend cells in 50ml Development Buffer (DB) 

****Development Clock Starts***** 

vi. Centrifuge Cells at 1500rpm, acceleration 9, 20oC for 5 minutes 

vii. Resuspend cells in 5ml DB 

viii. Pipette all solution into 50ml flask 

ix. Place flask on orbital shaker in Dicty incubator 

x. Wait 1 hour from when the flask goes onto shaker <not synced with development 

clock 

xi. While waiting make cAMP solution by putting 2ul .1M cAMP aliquot into 50ml DB 

xii. Begin pulsing after 1 hour wait 

xiii. Use Dicty pump to drop cAMP into cell solution every 6 minutes 

a. Wait for 5:55 minutes, flow for 0:05 minutes 

b. 3 rpm 
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8. Gradient Switching Experiment Protocol 

Dicty Gradient Switching Protocol 

Materials: 

1) .1mM cAMP Gradient Solution 

2) 10kD dextran dye 

3) 70kD dextran dye 

4) 2x Viibre pumps 

5) LabSmith 4 port valve 

6) Tygon tubing 

7) Peek tubing 

8) Tygon to peek micro fluidic adapter 

9) Zeiss epifluorescent microscope 

10) Dicty mutants (Chris) 

11) 2x Thumb tack 

12) Silinized gradient wafer 

13) Development pump 

14) Centrifuge 

15) Orbital Shaker 

16) Incubator 

17) 50ml conical tubes 

18) Eppindorf tubes 

19) Lab-Tek Cell Culture Chamber 

 

i. Perform Axenic Growth of Dicty cells in 125ml flask 

ii. Punch Peek tubing holes in top, bottom, and center (2x) inlets of 4 Gradient 

Chambers with blue punch  

iii. Punch Tygon tubing hole in outlet of 4 Gradient Chambers with pink punch  

iv. Plasma Seal 4 Gradient Chambers to cell Lab-Tek Cell Culture Chamber 

v. Fill Gradient Chambers with Development Buffer (DB) after sealing 

vi. Prepare Gradient Solutions 

vii. Assemble Gradient Pumps and Valve 

 

viii. Calibrate Viibre pumps 

i. Fill inlet and outlet tubes with fluid then attach to pump inserts 

a. DO NOT PULL OR PUSH THROUGH PUMP 

ii. Connect valve outlet tubes to fluid collection reservoirs 

iii. Run pump at 25 rpm for 30 minutes 
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iv. Multiply outlet fluid volume by 2 and divide by 25 to find ul/hour/rpm 

v. Connect valve outlets to gradient chamber 

vi. Connect waste reservoir to chamber 

vii. Insert thumb tacks 

viii. Observe gradient under microscope and adjust flow rates 

ix. Stop flow. 

ix. Begin Dicty Development protocol 

x. Connect 2 Viibre pumps to control box 

xi. Connect power cable , then USB cable from controller computer to Viibre pump 

control box 

xii. Open Ampere 

xiii. Connect power cable and usb cable from controller computer to LabSmith control 

box 

xiv. Connect LabSmith control box to Labsmith breadboard 

xv. Open LabSmith software 

***************Refine Pump Speed******************** 

xvi. Attach Tygon outlet with waste reservoir to Gradient Chamber 

xvii. Attach Peek inlet tubes to Gradient Chamber  

xviii. Plug Gradient Chamber center inlets with thumb tacks 

xix. Run Viibre pump at 1rpm <<<<change to ul/hour 

xx. Watch gradient develop using GFP and AF568 fluorescent channels on Epi 

Scope through eyepiece 

xxi. Adjust pump flow so that the gradient is centered  

xxii. Stop pumps  

xxiii. Remove thumb tacks and fill center chamber with DB 

xxiv. Take 200ul of cell solution and dilute to 3E6cells/ml (~60 cells in hemocytometer) 

xxv. Add cells to middle chamber   

xxvi. Replace thumb tacks 

xxvii. Begin Viibre pumps at .1rpm  

xxviii. Repeat 16-27  so that Cells are added at 3:00, 4:30, 6:00, and 7:30 hours 

development time 

************* Refine Pump Speed ********************** 

xxix. Image Cells and Gradient switch 

i. Every 30 seconds take 20x 

a. Bright field (250ms) 

b. AF568 (15ms) 

c. GFP (10ms) 

ii. Switch Lab Smith Valve orientation 5 minutes into image acquisition 
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iii. Stop acquisition after 70 minutes 

a. 20 minutes till next time point to Refine Pump Speed  

 

Calibrate Viibre pumps notes 

The following steps must be performed in order: Connect two Viibre pumps to the pump 

controller box.  Connect the power cable to the pump controller box.  Connect the usb 

cable to the pump controller box.  Open ampere using the rainbow triangle icon on the 

taskbar of the controlling computer.  Click on controllers then manage controllers.  In the 

pop up screen select the Quad pump and click on add controller, then click yes when 

prompted to add a timer and ok to confirm. 

 Make inlet reservoirs for each pump (2) and a waste reservoir (1) with an eppendorf 

tube and a 4 inch long piece of Tygon tubing by creating a hole in the top of the 

eppendorf tube large enough for the Tygon tubing and insert the tubing.  Fill the 

reservoir with DI water.  Connect the free end of the Tygon tubing to the inlet of the 

Viibre pump (can be either hole).  Run the pump at full speed in the direction that draws 

fluid from the reservoir by clicking on the play button in ampere and dragging the slider 

for each pump to either the top or bottom.  Remember which direction each pump 

needs to go to move fluid from the inlet to the outlet.  Once the tube and pdms pump 

insert are full, water will begin to exit the outlet hole.  At this time stop the pump.  Cut a 

two foot piece of Tygon tubing for each pump.  Fill each tube with one of the Gradient 

Solutions by inserting a syringe needle into one end and submersing the other end in 

the gradient solution, pulling the plunger to fill.  With the syringe still in the tube, connect 

the opposite end to the outlet of the Viibre pump.  Remove the syringe and slide the 

Tygon-to-peek adapter piece on to the Tygon tube and screw it into the adapter that is 
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connected to the valve inlet tube.  Once both tubes are connected run the pumps at full 

speed to fill all of the peek tubing.  Once several drops of fluid have emerged from the 

valve outlet tubes, stop the pump.  Connect the valve outlet tubes to fluid collection 

reservoirs and run the pumps at 25rpm for 30 minutes then stop the flow.  Measure the 

fluid in the collection reservoirs, multiply by two and divide by 25 to find the flow rate in 

μl/hour/rpm. 

Connect to the peek tubing to the gradient chamber.  Insert the waste reservoir tube into 

the gradient chamber and insert the thumb tacks into the center inlet holes.  Insert the 

well chamber into the well chamber insert on the microscope stage.  Begin pumping 

fluid through the chamber at 60μl/hour (use rate found above to convert rpm to μl/hour).  

Observe the gradient under the microscope using the GFP and Alexa568 filters to view 

each fluid.  Adjust the flow rate so that the gradients cross in the middle of the chamber. 

Seal gradient chambers to glass notes 

Carefully remove the pdms from the silicon wafer.  Cut out the intermediate sized 

chambers (middle column).  Lay the chambers on a pdms sheet so that the punched 

only touch pdms (no hard surfaces).  Punch the holes from the side of the pdms that 

was against the silicon wafer, feature side up.  Use the peek tubing punch to make 

holes in the top, bottom, and center inlets (4 total) and the pink Tygon punch to make a 

hole in the outlet.  Cover both sides of each chamber with scotch tape to clean off dust.  

Place a cover slip and three chambers feature side up on a microscope slide that is 

covered in scotch tape.  Place slide in the center of the plasma cleaner, set the power to 

high and turn on the vacuum and power switches.  Wait for the plasma cleaner to emit 
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light (~30 second wait) then use the valve on the door of the plasma cleaner to adjust 

the airflow, making the plasma as pink as possible.  Once at the correct color, wait for 

45 seconds then switch off the power and vacuum and open the air valve to allow gas 

back into the chamber.  Once the door can be opened, remove the slide and flip each 

chamber onto the cover slip so that the treated sides are in contact.  Place in 60o oven 

for ~3minutes to strengthen the bond, and then fill each chamber with DB, starting with 

the center inlets then the top and bottom inlets.  Once filled with DB the chambers will 

last several days. 
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