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CHAPTER 1  

 

INTRODUCTION 

 

1.1 Overview 

Predicting the response of a system of interest at unknown input conditions is one primary task 

in engineering. This task involves many major activities, such as physics modeling, uncertainty 

quantification, statistical inference, probabilistic analysis, sensitivity analysis, etc. Predicting the 

system response is not simply propagating the input through the computational model of the 

system, since various uncertainty sources are involved in the prediction, including input 

uncertainty, model discrepancy, model parameter uncertainty, surrogate model uncertainty, 

measurement error, etc. All of these uncertainty sources can be categorized into two types: the 

aleatory uncertainty caused by natural variability that cannot be reduced, and the epistemic 

uncertainty caused by lack of knowledge that can be reduced by collecting more information.  

It is desirable to reduce the epistemic uncertainty by using available information such as 

experimental data, thus reducing the uncertainty propagated to the prediction, so that the prediction 

can be more accurate. This activity is related to several topics, including 1) optimization of the 

data collection effort within limited resources, 2) model calibration to reduce the epistemic 

uncertainty with available test results, and 3) model validation to evaluate the quality of the 

calibrated model. The third step is necessary to guarantee that the reduced uncertainty is 

converging to the true value of the quantity of interest, instead of biasing away from it. 

Computational efficiency in model calibration is another concern in the system response 

prediction. Two strategies are possible the improve this efficiency: 1) reduce the dimension of 
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model calibration by identifying and fixing non-important uncertainty sources, and 2) develop 

more efficient and scalable inference algorithms. The first strategy can be realized by sensitivity 

analysis. However, the sensitivity analysis considering both aleatory and epistemic uncertainty 

sources is not well-established [1–3], and the computational efficiency of the existing sensitivity 

analysis algorithms is not satisfactory. New developments in sensitivity analysis will be one 

objective in this dissertation. The second strategy depends on the mathematical tool used for model 

calibration, and this dissertation selects the Bayesian network (BN). While efficient analytical 

inference algorithms (either approximate or exact) for the BN with discrete variables have been 

well-established in the literature, the inference in BN with continuous variables is still challenging 

if the BN is nonlinear and/or non-Gaussian, and this will be another objective in this dissertation. 

Another concern in system response prediction is uncertainty integration, which includes two 

challenges. First, the various uncertainty sources in system response prediction are usually 

correlated, thus integration across these uncertainty sources are required. Second, the results from 

model calibration and model validation need to be integrated, especially when alternative results 

for the same quantity of interest are present. This dissertation also aims to contribute to solving 

these two challenges. 

In the rest of this chapter, Section 1.2 proposes the research objectives in the dissertation based 

on the introduction above, then Section 1.3 illustrates the organization of this dissertation section 

by section. 

1.2 Research Objectives 

The overall goal of the proposed research is to develop a versatile and efficient framework for 

system response prediction under aleatory and epistemic uncertainty. In this research, both time 

independent and time dependent systems are considered. Various uncertainty integration 
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techniques are utilized, including model calibration, model validation, sensitivity analysis, 

Bayesian network, etc. The innovations of the proposed research are mainly related to global 

sensitivity analysis and Bayesian network.  

Five objectives are pursued to achieve the overall goal. Since sensitivity analysis contributes to 

reducing the dimension of our prediction challenge prior to other activities, the first task is to 

develop a computational framework to compute the sensitivity indices that quantify the relative 

contributions of various aleatory/epistemic uncertainty sources towards the system response 

prediction uncertainty, where both random variable input and time series input should be 

considered. 

The second objective is the system response prediction of time independent systems. This 

objective is straightforward if adequate amounts of system test data are available. However, 

challenges emerge if 1) test data from the system of interest may not be available so the prediction 

relies on the data from component or sub-system tests; 2) the test budget is limited thus an optimum 

allocation of test resources is needed. 

The third objective is the system response prediction for time-dependent systems. In this case, 

the evolution of the state variables of the system need to be tracked, thus the resultant prediction 

also varies over time. 

Global sensitivity analysis (GSA) is heavily used in earlier objectives. However, computational 

efficiency is always a bottle-neck to use GSA in uncertainty integration. Therefore, the fourth 

objective is to propose a new efficient algorithm to compute the sensitivity index. 

Beside GSA, another foundation mathematical tool of this research is the Bayesian network 

(BN). Thus the fifth objective is to improve the uncertainty reduction efficacy and the 

computational efficiency of the BN. The uncertainty reduction efficacy is measured by whether 
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after inclusion in the BN, the observation data are effective in reducing the uncertainty of the state 

variables via Bayesian inference. And the computational efficiency refers to the reduction in the 

time cost of the Bayesian inference, in both static Bayesian and dynamic Bayesian networks. 

1.3 Organization of the Dissertation 

The subsequent chapters of this dissertation will be devoted to the objectives proposed above. 

Chapter 2 provides an introduction to the tools and methods for system response prediction 

considered in this research, including 1) Bayesian network, 2) Bayesian inference basics, 3) 

Bayesian inference algorithms, 4) various uncertainty sources in system response prediction, 5) 

model calibration and model validation, 6) global sensitivity analysis, and 7) auxiliary variable 

method. 

Chapter 3 develops a novel computational framework to compute the Sobol’ sensitivity indices 

that quantify the relative contributions of various uncertainty sources towards the system response 

prediction uncertainty. The proposed framework is developed for two types of model inputs: 

random variable input and time series input and both aleatory and epistemic uncertainty sources 

are considered. A novel controlled-seed computational technique based on pseudo-random number 

generation is proposed to efficiently represent the natural variability in the time series input. This 

controlled-seed method significantly accelerates the Sobol’ indices computation under time series 

input and makes it computationally affordable. 

Chapter 4 addresses the system response prediction for a complex multi-level problem. In this 

problem, the lack of data at the system level makes it impossible to conduct model calibration 

directly. So system model parameters are estimated using tests at lower levels of complexity which 

share the same model parameters with the system. The results of calibration, validation, and the 
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proposed sensitivity-based relevance analysis are integrated into a roll-up method to predict the 

system output. 

Chapter 5 aims to achieve “robust” test resource allocation, which means that the system 

response prediction is insensitive to the variability in test outcomes, therefore, consistent 

predictions can be achieved under different test outcomes. It is concluded that this objective can 

be achieved if the contribution of model parameter uncertainty in the synthetic data can be 

maximized. Global sensitivity analysis (Sobol’ index) is used to assess this contribution, and to 

formulate an optimization problem to achieve the desired consistent prediction. 

Chapter 6 extends the discussion on system response prediction in Chapter 4 and Chapter 5 to 

time dependent systems, where the concept of dynamic Bayesian network (DBN) is used. The 

DBN integrates physics models and various aleatory (random) and epistemic (lack of knowledge) 

uncertainty sources in crack growth prediction. A modification to the DBN structure, which does 

not affect the diagnosis results but reduces time cost significantly, is also proposed. By using 

particle filter as the Bayesian inference algorithm for the DBN, the proposed approach handles 

both discrete and continuous variables of various distribution types, and non-linear relationships 

between nodes. 

Sobol’ index is a prominent methodology in the global sensitivity analysis, thus Chapter 7 

proposes a new algorithm to calculate the first-order Sobol’ index. The proposed algorithm is 

capable of computing the first-order index if only input-output samples are available but the 

underlying model is unavailable, and its computational cost is not proportional to the dimension 

of the model inputs. In addition, the proposed method can also estimate the first-order index with 

correlated model inputs. Considering that the first-order index is the desired metric to rank model 
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inputs but current methods can only handle independent model inputs, the proposed algorithm 

contributes to filling this gap. 

Chapter 8 extends the usage of global sensitivity analysis (GSA) from deterministic model to 

stochastic model, i.e., Bayesian network. The proposed method aims to calculate the Sobol’ 

sensitivity index of a node with respect to the node of interest. Before collecting observations, the 

proposed algorithm can predict the uncertainty reduction of the node of interest purely using the 

prior distribution samples, thus providing quantitative guidance for effective observation and 

updating. 

The inference is one key objective of a Bayesian network, and Chapter 9 proposes an efficient 

approximate inference algorithm for a continuous Bayesian network. A network collapsing 

technique is proposed to convert a multi-layer BN to an equivalent simple two-layer BN so that 

the unscented Kalman filter can be applied to the collapsed BN and the posterior distributions of 

state variables can be obtained analytically. For dynamic BN, the proposed method is also able to 

propagate the state variables to the next time step analytically using the unscented transform, based 

on the assumption that the posterior distributions of state variables are Gaussian. Thus the proposed 

method achieves a very fast approximate solution, making it particularly suitable for dynamic BN 

where inference and uncertainty propagation are required over many time steps. 
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CHAPTER 2  

 

BACKGROUND CONCEPTS AND METHODS 

 

2.1 Introduction to Bayesian Network 

During the past 30 years, the Bayesian network (BN) has become a key method for 

representation and reasoning under uncertainty in the fields of engineering [4,5], machine learning 

[6,7], artificial intelligence [8,9], etc. BN is a directed acyclic graph (DAG) model which means 

that all the nodes are connected by directed edges and along the directions of these edges we cannot 

find a cycle with the same node as the starting and ending node. An example of a DAG model is 

given in Figure 2.1. 

 
Figure 2.1 DAG model example 

In a BN, random variables are denoted by nodes (vertices) and their dependence relationships 

are denoted by directed edges (arcs). An edge indicates the conditional dependence of the down-

stream child node on the upstream parent node(s). This dependence is described mathematically 

by a conditional probability distribution (CPD), which can be as simple as a small table, or as 

complex as a stochastic model. The entire BN represents the joint distribution of the random 

variables. Denote the random variables in a BN as 𝑿 = {𝑋1, 𝑋2, … , 𝑋𝑛}. Based on the chain rule in 

probability theory, the joint distribution of 𝑿 is 
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𝑝(𝑿) =∏ 𝑝(𝑋𝑖|Pa𝑋𝑖)

𝑛

𝑖=1
 

(2.1)  

where 𝑝(𝑋𝑖|Pa𝑋𝑖) denotes the CPD of 𝑋𝑖  and Pa𝑋𝑖  denotes the parent nodes of 𝑋𝑖 . Note that 

𝑝(𝑋𝑖|Pa𝑋𝑖) = 𝑝(𝑋𝑖) if 𝑋𝑖 does not have any parent node, and 𝑋𝑖 is a root node. If Figure 2.1 is 

considered as a BN, its root nodes are  ,  ,   and  . Based on Eq. (2.1), the joint distribution of 

this BN is 

 𝑝( ,  ,  ,  ,  ,  ) = 𝑝( )𝑝( )𝑝( | ,  )𝑝( )𝑝( )𝑝( | ,  ) (2.2)  

BN can take different types of random variables as nodes, including discrete and continuous 

variables of different distribution types. A BN with discrete variables only is called a discrete BN, 

and a BN with continuous variables only is called a continuous BN. A BN with both discrete and 

continuous variables is called a hybrid BN. 

The BN explained above refers to a “static” Bayesian network for a time-independent system. 

To track a time-dependent system whose states evolve over time, the concept of BN is extended 

to a dynamic Bayesian network (DBN), which can be considered as a series of static BNs, one for 

each time instant, with additional edges connecting the state variables in adjacent time instants. 

One example of DBN is shown in  

 
Figure 2.2 DBN example 

The DBN follows first-order Markov assumption, so that: 

𝑋2
  1 𝑋2

 

   1   

𝑋1
  1 𝑋1
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1. The state variables of the BN at time 𝑡 depend only on the state variables of the BN at 

time 𝑡 − 1, and this dependence and the underlying CPDs are generally assumed to be 

time-invariant [10];  

2. The observable variable 𝒀  at time 𝑡 only depends on the state variable 𝑿  at the same 

time instant. 

The following expressions and equations can be derived from this first-order Markov 

assumption: 

 

𝑿 ⊥ 𝒚1:  1 |𝑿  1 ⇒ 𝑝(𝑿 |𝒚1:  1, 𝑿  1) = 𝑝(𝑿 |𝑿  1) 

𝒚 ⊥ 𝒚1:  1|𝑿 ⇒ 𝑝(𝒚  |𝑿 , 𝒚1:  1) = 𝑝(𝒚 |𝑿 ) 

(2.3)  

In Eq. (2.3), the symbol “⊥” means “independent of”, so that the first formula in Eq. (2.3) 

denotes that 𝑿  is independent of 𝒚1:  1 at a given value of 𝑿  1; and the second formula denotes 

that 𝒚  is independent of 𝒚1:  1 at a given value of 𝑿 . 

In this research, Bayesian network is the main methodology for uncertainty integration, 

diagnosis, and prognosis. Another main methodology is global sensitivity analysis, which will be 

introduced in Section 2.6. 

2.2 Bayesian Inference Basics 

Based on the earlier discussion in Section 2.1, we can denote a BN as ⟨⟨𝑽, 𝑬⟩, 𝑷⟩, where 𝑽 =

{𝑿, 𝒀} is the vector of nodes (random variables); 𝑿 denotes the state variables to be inferred and 𝒀 

denotes the observable variables; 𝑬 represents the directed edges; and 𝑷 denotes the CPDs for the 

edges in 𝑬. 

The research on BN includes two main topics: inference and learning. Inference aims to 

estimate the posterior distribution of the state variables based on the prior distribution of BN and 
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evidence. Usually, this evidence is the observation 𝒚 of nodes 𝒀, thus the inference is to calculate 

the posterior probability distribution 𝑝(𝑿|𝒀 = 𝒚). In contrast, learning aims to construct the DAG 

and estimate the CPD for each edge based on the data of the random variables; thus learning 

calculates 𝑬  and 𝑷 . This research focuses on inference, i.e., calculating 𝑝(𝑿|𝒀 = 𝒚) . The 

inference is based on Bayes’ theorem: 

 𝑝(𝑿|𝒀 = 𝒚) ∝ 𝑝(𝑿)𝑝(𝒀 = 𝒚|𝑿) (2.4)  

where 𝑝(𝑿) and 𝑝(𝑿|𝒀 = 𝒚) are the prior and posterior distributions of state variables 𝑿, and 

𝑝(𝒀 = 𝒚|𝑿) is the likelihood function of 𝑿. The likelihood function can be understood as the 

probability to observe 𝒀 = 𝒚 at given value of 𝑿, so that it is a function of 𝑿 and we denote it as 

𝐿(𝑿) . Assume that 𝒀 = { 1,  2, … ,  𝑚}  and correspondingly 𝒚 = {𝑦1, 𝑦2, … , 𝑦𝑚} , then the 

expression of the likelihood function is: 

 
𝐿(𝑿) =∏ 𝑝( 𝑖 = 𝑦𝑖|Pa𝑌𝑖)

𝑚

𝑖=1
 

(2.5)  

where Pa𝑌𝑖 ∈ 𝑿 is the parents nodes of  𝑖 and 𝑝( 𝑖 = 𝑦𝑖|Pa𝑌𝑖) is the PDF value at  𝑖 = 𝑦𝑖 of the 

CPD for  𝑖. It is easy to see that 𝑝( 𝑖 = 𝑦𝑖|Pa𝑌𝑖) is a function of Pa𝑌𝑖, and the product is a function 

of 𝑋  due to Pa𝑌𝑖 ∈ 𝑿 . Note that if  𝑖  has no parent node, its corresponding term reduces to 

𝑝( 𝑖 = 𝑦𝑖), which is the PDF value of the prior distribution of  𝑖 at the location of 𝑦𝑖, and it is 

simply a constant. 

Note that Eq. (2.5) is for data obtained in a single experiment. In the case of data from multiple 

independent experiments, the entire likelihood function will be the product of the likelihood 

function for each single experiment. 
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In a dynamic Bayesian network (DBN), inference estimates the probability 𝑝(𝑿 |𝒚1:  ), i.e., the 

posterior distribution of the state variables in the current time instant given observations in the past 

and current time instants. The inference in a DBN is a recursive process across time instants. Using 

Eq. (2.3) and Bayes’ theorem in Eq. (2.4), if 𝑿  are continuous variables we have 

 

𝑝(𝑿 |𝒚1: ) ∝ 𝑝(𝑿 |𝒚1:  1)𝑝(𝒚 |𝑿 , 𝒚1:  1)

= [∫𝑝(𝑿 |𝒚1:  1, 𝑿  1)𝑝(𝑿  1|𝒚1:  1)d𝑿  1] 𝑝(𝒚 |𝑿 )

= [∫𝑝(𝑿 |𝑿  1)𝑝(𝑿  1|𝒚1:  1) d𝑿  1] 𝑝(𝒚 |𝑿 ) 

(2.6)  

In Eq. (2.6), 𝑝(𝒚 |𝑿 , 𝒚1:  1) is replaced by 𝑝(𝒚 |𝑿 ) based on the second formula of Eq. (2.3); 

and 𝑝(𝑿 |𝒚1:  1, 𝑿  1) is replaced by 𝑝(𝑿 |𝑿  1) based on the first formula of Eq. (2.3).  Then 

Eq. (2.6) can be rewritten as 𝑝(𝑿 |𝒚1: ) ∝ [∫ 𝑝(𝑿 |𝑿  1)𝑝(𝑿  1|𝒚1:  1) d𝑿  1]𝑝(𝒚 |𝑿 ), where 

the terms on the right-hand side indicate two components in estimating 𝑝(𝑿 |𝒚1: ): 

1. Propagate the posterior distribution 𝑝(𝑿  1|𝒚1:  1)  obtained at time 𝑡 − 1  through the 

transient CPD 𝑝(𝑿 |𝑿  1) and marginalize over 𝑿  1 to construct the prior distribution 

𝑝(𝑿 |𝒚1:  1) at time 𝑡; 

2. Calculate the likelihood function 𝑝(𝒚 |𝑿 ) based on Eq. (2.5), which only utilizes the 

observation at time 𝑡.  

These two components also imply that the state variables and observations at earlier time 

instants can be neglected once the prior distribution 𝑝(𝑿 |𝒚1:  1) at time 𝑡 is constructed. This 

process is repeated for the BN in each time instant in order to track the evolution of the state 

variables over time. 
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Note that if 𝑿  are discrete variables, Eq. (2.6) will be re-derived as 𝑝(𝑿 |𝒚1: ) ∝

[∑ 𝑝(𝑿 |𝑿  1)𝑝(𝑿  1|𝒚1:  1)𝑿𝑡−1 ]𝑝(𝒚 |𝑿 ) . The implication of the two components in the 

previous paragraph is still valid. 

In Eq. (2.4) for static BN and Eq. (2.6) for DBN, the product of the prior distribution and the 

likelihood function is only proportional to but not equal to the posterior distribution. Thus a 

specific inference algorithm, either exact or approximate, is required to calculate the PDF/PMF 

value of the posterior distribution or generate random samples representing the posterior 

distribution. Fast, analytical inference algorithms for static/dynamic BN with discrete variables 

have been well-developed in the literature, but the current algorithms for static/dynamic BN with 

continuous variables are either time-consuming or restricted to specific CPDs and/or BN topology. 

A literature review of inference algorithms is provided below in Section 2.3. 

2.3 Bayesian Inference Algorithms 

2.3.1 Static BN 

 
Figure 2.3 Class of inference algorithms for static BN 

Exact and approximate inference algorithms for static BN have been developed in the literature, 

as shown in Figure 2.3. For a static BN with discrete variables, exact inference is always possible 

and available algorithms include the most popular Junction tree algorithm [11], the variable 

elimination algorithm [12], the arc reversal method [13], the differential approach [14], etc. 

Continuous BN
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Variable elimination

MCMC
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Importance 
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Logic sampling

Adaptive IS

Gibbs sampling
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Multivariate 
Gaussian
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Stochastic 
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However, exact inference is computationally prohibitive for large networks, thus approximate 

inference algorithms such as loopy belief propagation [15] have been developed to improve the 

computational efficiency. 

For a static BN with continuous variables, if all the root nodes (i.e., nodes without parents) have 

Gaussian distributions and all the edges from parent nodes 𝑼 ∈ ℝ𝑁𝑈 to child node 𝑉 ∈ 𝑽 are linear 

Gaussian CPDs such that 𝑝(𝑉|𝑼)~𝑁(𝑾𝑉𝑈 + 𝝁𝑉, 𝜎𝑉
2) where matrix 𝑾𝑉 ∈ ℝ𝑁𝑈×𝑁𝑈  and vector 

𝝁𝑉 ∈ ℝ𝑁𝑈  and variance 𝜎𝑉
2 ∈ ℝ  have been predefined, then the joint distribution of 𝑽  is 

multivariate Gaussian. Inference 𝑝(𝑿|𝒀 = 𝒚) for this static BN is simply a conditional Gaussian 

distribution and the exact solution can be found in Ref. [16].  

A more general static BN will have non-Gaussian variables, thus a sampling-based approximate 

inference algorithm (referred to here as stochastic simulation) is needed. This is a family of 

algorithms categorized into importance sampling (IS) and Markov Chain Monte Carlo (MCMC) 

methods. The major difference between these two categories is that the IS generates samples 

independently from an importance function in one shot, while the MCMC methods generate 

samples sequentially thus the next sample depends on the current sample. IS has several variants 

including 1) the logic sampling algorithm [17] where the importance function is the prior 

distribution of BN; and 2) the adaptive importance sampling algorithm [18,19] where the 

importance function is optimized adaptively. Note that these stochastic simulation algorithms are 

also applicable for a static BN with discrete variables. 

As shown in Figure 2.3, usually the stochastic simulation algorithms are the only choice for a 

static BN with continuous non-Gaussian variables. These sample-based methods are 

computationally expensive for large networks. In this research, a more efficient inference 

algorithm will be proposed in Chapter 9. 



 14 

2.3.2 Dynamic Bayesian Network (DBN) 

 
Figure 2.4 Class of inference algorithms for DBN 

Exact and approximate inference algorithms for the DBN have been developed in the literature, 

as shown in Figure 2.4. For the DBN with discrete variables, exact inference is always possible 

and available algorithms include the forward-backwards algorithm [20] and the frontier algorithm 

[21], etc. As shown in Eq. (2.6), the inference at time 𝑡 of the DBN is not related to earlier state 

variables and observations once the prior distribution of 𝑿  is constructed, and the subsequent step 

is the inference for the BN at time 𝑡, which is static. Thus the exact inference algorithms for static 

BN can be extended to DBN. Murphy [22] proposed the interface algorithm by extending the 

junction tree algorithm to the inference of DBN with discrete variables. Approximate inference 

algorithms for the DBN with discrete variables have been developed to improve computational 

efficiency, including the loopy belief propagation algorithm , the Boyern-Koller algorithm [23], 

and the factored frontier algorithm [24]. 

The particle filter is a generic approximate algorithm for dynamic Bayesian networks. The 

particle filter is also named “survival of the fittest”, where a particle with higher weight (defined 

based on likelihood) is prone to be replicated and a particle with lower weight is prone to be 

dropped. The particle filter is applicable to both discrete and continuously DBNs, and has no limit 

on the DBN topology and CPD formats. The main concern on particle filter is computational cost. 

A DBN has more nodes requires more particles to cover the sampling space of the state variables, 
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thus increases the computational cost. Details of particle filter will be introduced in Chapter 6, 

where it is used for uncertainty integration in time-dependent structural health diagnosis/prognosis. 

 
Figure 2.5 Underlying DBN of Kalman filter 

In contrast to particle filter, Kalman filter and extended Kalman filter and unscented Kalman 

filter are analytical algorithms thus they are more efficient. Note that the three types of Kalman 

filters above are NOT proposed for DBN but for a dynamic system which can be depicted by the 

state function and measurement function. Kalman filter [25] gives exact inference for a linear 

Gaussian dynamic system, while the extended Kalman filter or unscented Kalman filter are 

designed when the state function and/or the measurement function are non-linear, still with 

Gaussian variables. But this dynamic system has an underlying DBN as shown in Figure 2.5. This 

DBN has two layers: Layer 1 is for state variables 𝑿  and Layer 2 is for observation variables 𝒁 . 

Theoretically, the three types of Kalman filters are applicable for any DBN if it has the topology 

in Figure 2.5 so that the CPDs from 𝑿  to 𝒁  can be represented by a measurement function and 

the CPDs from 𝑿  1  to 𝑿  can be represented by a state function. The basic Kalman filter is 

adequate if both the state function and measurement function are linear and the noise terms are 

zero-mean Gaussian variables; otherwise the extended Kalman filter or unscented Kalman filter is 

required. 

One contribution of this research is to extend the unscented Kalman filter to be an inference 

algorithm for Bayesian networks of more complex topology (more than two layers), as shown in 

𝑿 𝑿  1

𝒀 𝒀  1

State function
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Chapter 9. A brief introduction to the basic Kalman filter and the unscented Kalman filter can be 

found in Section 9.1, and the proposed inference algorithm will be illustrated in Section 9.3. 

2.4 Uncertainty Sources in System Response Prediction 

In order to predict the response of a system, we usually describe the system by a computational 

model in the format of  =  (𝜽𝑚; 𝑿) where   is the system response to be predicted; 𝜽𝑚 is the 

vector of unknown model parameters; and 𝑿 is the vector of model inputs. In the ideal case where 

the model perfectly represents the underlying physics and the values of 𝜽𝑚 and 𝑿 are known, the 

system response can be easily obtained by a functional evaluation of the computational model. 

However, various uncertainty sources arise in a real system, making the response prediction more 

complex. And these uncertainty sources can be categorized into irreducible aleatory uncertainty 

due to natural variability and reducible epistemic uncertainty due to lack of knowledge. 

First, usually there is discrepancy between the model prediction by  (𝜽𝑚; 𝑿) and the true 

physics, due to two types of errors [26,27]: 1) the numerical errors in solving the mathematical 

model (such as discretization, truncation and round-off errors); and 2) model form error. Often the 

estimates of these errors are also uncertain (epistemic); therefore the model output is uncertain. 

For example, if the mathematical model is a differential equation and  (𝜽𝑚; 𝑿) solves it using 

numerical discretization (e.g., finite element, finite difference), then the discretization error 𝜖ℎ(𝑿) 

at a given model input is deterministic for a given value of the input [28]; however some 

implementations use Gaussian process (GP) models [29,30] to capture the uncertainty in 

estimating 𝜖ℎ. The model discrepancy 𝛿(𝑿) is the difference between the computational model 

and the real system. The model error 𝛿(𝑿) can be modeled using different formulations [31], 

which introduces more parameters. Kennedy and O’Hagan [32] represent it by a GP model, so the 

model discrepancy is also stochastic at a given model input. In some studies the discrepancy term 
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𝛿(𝑿) includes the numerical errors, and in some studies it refers only to model form error, after 

accounting for numerical errors that are estimated separately. 

Second, to promote computational efficiency, often the computational model is replaced by a 

surrogate model 𝑆(𝜽𝑚; 𝑿). This surrogate model brings additional uncertainty in the prediction, 

due to limited training points. Several options such as polynomial response surface [33], 

polynomial chaos expansion [34], Gaussian process (GP) model [30,35] etc. are available. This 

research uses the GP surrogate model [35]. The output of the GP model at a given input is a 

Gaussian distribution, which represents the surrogate model prediction uncertainty. Considering 

the discretization error, model form error, and surrogate model uncertainty, a general expression 

of the corrected system response prediction may be written as 

  = 𝑆(𝜽𝑚; 𝑿) + 𝜖ℎ(𝑿) + 𝛿(𝑿) (2.7)  

where the prediction   is stochastic due to the uncertainty in the three terms on the right hand side, 

even at a fixed value of 𝜽𝑚 and 𝑿. 

In addition, extra uncertainty sources arise in characterizing 𝜽𝑚 and 𝑿. The model parameters 

𝜽𝑚  have fixed but unknown values, thus there is epistemic uncertainty (lack of knowledge) 

regarding 𝜽𝑚. 

If a model input 𝑋  is a random variable, its natural variability can be represented by a 

probability distribution with distribution parameters 𝜽𝑋 . If only limited observations of 𝑋  are 

available, there is uncertainty in the distribution type and distribution parameters. This uncertainty 

is also referred as statistical uncertainty [36] or second-order uncertainty [37]. Therefore, the 

uncertainty in model input 𝑋  has two components: aleatory natural variability and epistemic 

uncertainty regarding distribution type and distribution parameters. 
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If a model input 𝑋 is not a random variable but a time series, the prediction of system response 

  requires the values of 𝑋 over all time steps. Two types of time domain methods have been 

developed to model the time series input using observed data: 1) cycle counting methods, including 

the rainflow counting method [38] and the Markov chain method [39]; and 2) random process 

methods, such as the autoregressive moving average (ARMA) model [40]. This research chooses 

the ARMA model and therefore a brief introduction to ARMA is given in Section 3.2. 

Table 2.1. Uncertainty sources in system response prediction 

Uncertainty type Symbol Uncertainty source Category 

Solution approximation 𝑆(𝜽𝑚; 𝑿) Surrogate model  Epistemic 

Solution approximation 𝜖ℎ(𝑿) Discretization error Epistemic 

Model form error 𝛿(𝑿) Model discrepancy Epistemic 

Model parameter 𝜽𝑚 Model parameter uncertainty Epistemic 

Random variable input 𝜽𝑋 Distribution parameter uncertainty Epistemic 

𝑋 given 𝜽𝑋 Input natural variability Aleatory 

Time series input by ARMA 

model 
�̅�, 𝝓, 𝜽, 𝜎𝜖 Model parameter uncertainty Epistemic 

𝜖  Input natural variability Aleatory 

The uncertainty sources discussed above are listed in Table 2.1. The natural variability in the 

model input is aleatory; all other sources are epistemic. 

2.5 Model Calibration and Model Validation 

2.5.1 Model Calibration 

Section 2.4 gave a generic formula for system response prediction in Eq. (2.7). The main 

challenge in using this formula for prediction is that the values of the model parameters 𝜽𝑚 and 

other parameters are unknown, thus model calibration is needed. Model calibration aims to adjust 

these calibration parameters so that the agreement between model prediction and experimental 

data is maximized [41]. Techniques of model calibration includes least squared error, maximum 
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likelihood estimation, maximum a posteriori, etc. This research uses Bayesian inference as the 

model calibration technique, as shown in the following brief introduction. 

Model calibration requires experimental data. Consider the case of random variable input. 

Usually, the model input 𝑿 and output   can be observed in each test, thus forms the pairwise 

input-output data. Experimental data brings another uncertainty of measurement error. And the 

relationship between the experimental data 𝑍 and the corrected model prediction as: 

 𝑍 = 𝑆(𝜽𝑚; 𝑿) + 𝛿(𝑿) + 𝜖𝑚 (2.8)  

where 𝜖𝑚 is the measurement error in the output observation, and 𝜖𝑚 is usually assumed to be 

Gaussian distribution 𝑁(0, 𝜎𝑚
2 ) . In sum, all the parameters to calibrate include: 1) model 

parameters 𝜽𝑚; 2) hyper-parameters 𝜽𝛿  of the model error 𝛿(𝒙); and 4) standard deviation 𝜎𝑚 of 

𝜖𝑚. 

Eq. (2.8)  has an underlying Bayesian network, as shown in Figure 2.6. Here the state variables 

are {𝜎𝑚, 𝜽𝑚, 𝜽𝛿 , 𝑆, 𝛿} and the observation variables are {𝑿, 𝒁}. For the input-output pairwise data 

from a single experiment, the likelihood function can be constructed by Eq. (2.5), and the entire 

likelihood function is the product the likelihood function for each experiment. After assigning prior 

distributions to all the root nodes and implementing Bayesian inference algorithms, we can obtain 

the posterior distributions of all the state variables, but usually we are mainly interested in the 

posterior of {𝜎𝑚, 𝜽𝑚, 𝜽𝛿} for future system response prediction. 

Note that Figure 2.6 is a generic expression of the model calibration, but its topology may vary 

in a specific problem. For example, the numerical example in Section 4.6 assume that 𝛿 is an 

unknown constant to be calibrated, thus 1) the node 𝛿(𝑿) reduces to 𝛿; and 2) 𝜽𝛿  and the edge 

from 𝑿 to 𝛿(𝑿) will be removed from the BN. 
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Figure 2.6 Bayesian network for calibration 

Note that Eq. (2.8) and Figure 2.6 imply that the model input 𝑿 is a vector random variables, 

which is NOT time dependent. If 𝑿  represents time series input, then the output will be 

accumulative effects of the input across a period time. In this case, a time series model such as an 

autoregressive moving average (ARMA) model is needed to simulate the input, and the parameters 

of this time series model also need to be calibrated. Details for this case can be found in Chapter 

3. 

2.5.2 Model Validation 

The term “model validation” has had different interpretations in different studies, and this 

research follows the AIAA definition [42], i.e., model validation is the process of determining the 

degree to which a model is an accurate representation of the real world from the perspective of the 

intended uses of the model. Generally, model validation is realized by comparing the model 

prediction against experimental data. Both model calibration and model validation are conducted 

in this research, but they use different sets of experimental data (no calibration data is used in 

model validation). Comprehensive reviews on model validation can be found in [42–45]. A 

methodology for integrating model validation results from multiple experiments, each of which 

tests one part of the physics in the target application, can be found in Ref. [46].  

Model calibration and model validation are distinct activities. Theoretically, for a computation 

model  (𝜽𝑚; 𝑿) where 𝑿 is a set of model inputs and 𝜽𝑚 is a set of model parameters, model 

𝜽𝑚 𝜽𝛿𝜎𝑚 𝑿

𝛿 𝑿𝑆 𝜽𝑚; 𝑿

𝑍~𝑁 𝑆 + 𝛿, 𝜎𝑚
2
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validation can be conducted exclusive of any model calibration [42] if the model parameters are 

assumed to be known. However, the model parameters 𝜽𝑚 are often unknown. Therefore, prior to 

model validation, model calibration can be conducted to quantify the values of 𝜽𝑚 or reduce the 

uncertainty about their values. Model calibration used in this research not only reduces the 

analyst’s uncertainty about 𝜽𝑚 by Bayesian inference, but also quantifies the model error 𝛿(𝑿) 

which is defined as the difference between model prediction and reality. For a new test input 𝑿 =

𝒙, the corrected prediction model is  (𝜽𝑚; 𝒙) + 𝛿(𝒙). Note that the prediction can be stochastic 

at fixed model inputs 𝑿 = 𝒙 if the model parameters 𝜽𝑚 are still uncertainty. In addition, uncertain 

model errors, surrogate model uncertainty are other reasons that the prediction can be stochastic 

at fixed model inputs. Compared to the original computational model, the new model is different 

in two aspects: 1) reduced uncertainty in 𝜽𝑚; and 2) introduction of model error 𝛿(𝑿). In this 

research, the model to be assessed in model validation is this “corrected” model. Thus validation 

is a subsequent and distinct activity after calibration in this research. In other words, we consider 

model calibration and model validation as two distinct activities, and use two different sets of 

experimental data for these two activities, as suggested in Refs. [47,48]. Thus the calibration 

results of 𝛿(𝑿) and 𝜽𝑚 do not change as a result of model validation in our approach. 

Model validation is about comparing the model prediction against experimental data, and a 

model validation metric is needed to quantify this comparison. Among the validation metrics in 

the literature, classical hypothesis testing gives an acceptance/rejection decision. Confidence 

intervals have also been calculated for the difference between model prediction and observed data 

[42]. Validation metrics resulting in a single quantitative value indicating the degree of model 

validity have also been developed. In Bayesian hypothesis testing [47,49], the posterior 

distribution obtained by model calibration is used as the null hypothesis and an alternative 
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distribution is selected for the alternative hypothesis. The result of Bayesian hypothesis testing is 

a Bayes factor (the likelihood ratio between the null and alternate hypotheses), measuring the 

support from validation data to the null and alternate hypotheses. This is a relative measure 

significantly depending on the choice of distribution of the alternate hypothesis. In contrast, Ferson 

et al. [50,51] proposed an area metric, which is the difference between CDFs and has the same unit 

as the prediction/data. For the case that the model output is stochastic at the fixed model input, this 

metric measures the area between the CDF of model output and the EDF (empirical distribution 

function) of experimental data at a fixed model input. If data are from experiments with different 

inputs, this metric is still applicable by building a single EDF for all the data with 𝑢-pooling 

method [50]. 

The model validation metric used in this research is the model reliability metric proposed by 

Rebba and Mahadevan [52] and further developed by Sankararaman and Mahadevan [53]. This 

metric measures the model validity by “model reliability”, which is defined as the probability that 

the difference between model prediction and observed data is less than a pre-defined tolerance. 

Details of this metric and its extensions will be illustrated in Sections 4.1 and 4.3.1. 

2.6 Global Sensitivity Analysis: Sobol’ Index 

Uncertainty propagation problems generally involve a deterministic function in the form of  =

 (𝑿)  where 𝑿 = {𝑋1, … , 𝑋𝑘}  is the vector of stochastic model inputs. Here the function is 

deterministic function if a give value of 𝑿 results in a single value of  . The computation model 

 (𝜽𝑚; 𝑿) in Section 2.4 is also a deterministic function suitable for GSA. 

Global sensitivity analysis (GSA) studies how the uncertainty in the output can be apportioned 

to the uncertainty in the stochastic model inputs. For the computational model  =  (𝜽𝑚; 𝑿) in 

Section 2.4, GSA is to quantify the contribution of each random variable in the model parameters 
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𝜽𝑚 and model inputs 𝑿. In fact, GSA treats all the random variables in the same way, no matter 

this variable belongs to model inputs or model parameter. For the sake of notation convenience, 

this section does not distinguish model inputs and model parameters, but denotes  =  (𝑿) as the 

generic function format for GSA where 𝑿 = {𝑋1, … , 𝑋𝑘} is the vector of all the stochastic model 

inputs (also include stochastic model parameters). 

GSA quantifies the contributions of the stochastic model inputs to the output variance so that 

their importance can be ranked. Based on the result of GSA, inputs with negligible contribution 

can be fixed at their mean values thus reducing the number of stochastic variables. Reviews on 

various GSA methods can be found in Refs. [54,55]. The Sobol’ sensitivity indices method based 

on variance decomposition is a prominent one among these methods. Usage of the Sobol’ indices 

in different engineering problems can be found in Refs. [56–60]. 

A brief introduction to the Sobol’ index is given here. Assuming that  =  (𝑿) is a real 

integrable function and all the model inputs 𝑿 = {𝑋1, … , 𝑋𝑘} are mutually independent, Sobol’ [61] 

proved the following formula to decompose the variance of  : 

 𝑉( ) =∑𝑉𝑖

𝑘

𝑖

+∑ ∑ 𝑉𝑖1𝑖2

𝑘

𝑖2=𝑖1 1

𝑘

𝑖1=1
+∑ ∑ ∑ 𝑉𝑖1𝑖2𝑖3

𝑘

𝑖3=𝑖2 1

𝑘

𝑖2=𝑖1 1

𝑘

𝑖1=1
+⋯+ 𝑉12…𝑘 (2.9)  

where 𝑉𝑖  is the variance of   caused by 𝑋𝑖  individually, and 𝑉𝑖1…𝑖𝑠(𝑠 ≥ 2) is the variance of 𝑦 

caused by the interaction of {𝑋𝑖1 , … , 𝑋𝑖𝑠}. 

Dividing 𝑉( ) at both sides of Eq. (2.9) for normalization, the Sobol’ index is defined as: 

 1 =∑𝑆𝑖

𝑘

𝑖

+∑ ∑ 𝑆𝑖1𝑖2

𝑘

𝑖2=𝑖1 1

𝑘

𝑖1=1
+∑ ∑ ∑ 𝑆𝑖1𝑖2𝑖3

𝑘

𝑖3=𝑖2 1

𝑘

𝑖2=𝑖1 1

𝑘

𝑖1=1
+⋯+ 𝑆12…𝑘 (2.10)  
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where the index 𝑆𝑖 measures the contribution of 𝑋𝑖 alone to the variance of  , without interacting 

with any other inputs. 𝑆𝑖  is called first-order index or main effects index. Other indices 

𝑆𝑖1…𝑖𝑠(𝑠 ≥ 2) in Eq. (2.10) are higher-order indices, measuring the contribution of the interaction 

of {𝑋𝑖1 , … , 𝑋𝑖𝑠}.  

The calculation of 𝑆𝑖 is based on the following formula: 

 𝑆𝑖 =
𝑉𝑖

𝑉( )
=
𝑉𝑋𝑖 ( 𝑿−𝑖( |𝑋𝑖))

𝑉( )
 (2.11)  

where 𝑿 𝑖 means all the model inputs other than 𝑋𝑖. 

Another index is the total effects index 𝑆𝑖
𝑇 , which overall contribution of 𝑋𝑖  by itself plus 

interactions with other inputs. This total effects index is defined as the sum of all the indices in Eq. 

(2.10) related 𝑋𝑖. For example, if 𝑘 = 3 so that Eq. (2.10) reduces to 1 = 𝑆1 + 𝑆2 + 𝑆3 + 𝑆12 +

𝑆13 + 𝑆23 + 𝑆123, the total effects index of 𝑋1 will be: 

  𝑆1
𝑇 = 𝑆1 + 𝑆12 + 𝑆13 + 𝑆123 (2.12)  

Eq. (2.12) implies that we need to calculate multiple indices to obtain the total effects index, but it 

is not necessary. Similar to Eq. (2.11), the calculation of 𝑆𝑖
𝑇 is based on the following formula: 

 𝑆𝑖
𝑇 = 1 −

𝑉( ( |𝑿 𝑖))

𝑉( )
 (2.13)  

Eq. (2.11) and Eq. (2.13) can be extended to assess the contribution of a model input subset 𝑿𝒑 

which contains more than one input [62,63]. The main Sobol’ index of 𝑿𝒑 is defined by extending 

Eq. (2.11) as 
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 𝑆𝑿𝑷 =
𝑉 ( ( |𝑿𝒑))

𝑉( )
 (2.14)  

𝑆𝑿𝑷 is a combined measure of the individual contributions of the components of 𝑿𝒑 and of the 

interactions among them. 

And the total effects Sobol’ index of 𝑿𝒑 is defined by extending Eq. (2.13) as 

 𝑆𝑿𝑷
𝑇 = 1 −

𝑉 ( ( |𝑿 𝒑))

𝑉( )
 (2.15)  

where 𝑿 𝒑  is the complementary subset of 𝑿𝒑 . 𝑆𝑿𝑷
𝑇  is a combined measure of the individual 

contributions of the components of 𝑿𝒑, the interactions among them, and the interactions between 

𝑿𝒑 and 𝑿 𝒑. 

A key assumption of the Sobol’ index is the mutual independence of model inputs. With 

correlated model inputs, Eqs. (2.9) and (2.10) are no longer valid. However, Saltelli [64] pointed 

out that the first-order index 𝑆𝑖 is still an informed choice to rank the importance of correlated 

model inputs, since 𝑆𝑖 can be defined in another way where independent model inputs are not 

assumed: 

1. The importance of 𝑋𝑖 at a particular location �̃�𝑖 can be measured by 𝑉𝑿−𝑖( |𝑋𝑖 = �̃�𝑖), i.e., 

smaller 𝑉𝑿−𝑖( |𝑋𝑖 = �̃�𝑖) indicates greater importance of 𝑋𝑖; 

2. The dependence of this measurement on the location of 𝑋𝑖  is removed by taking the 

average of 𝑉𝑿−𝑖( |𝑋𝑖 = �̃�𝑖), i.e.  𝑋𝑖 (𝑉𝑿−𝑖( |𝑋𝑖)); 

3. By the law of total variance 𝑉( ) =  𝑋𝑖(𝑉𝑿−𝑖( |𝑋𝑖)) + 𝑉𝑋𝑖( 𝑿−𝑖( |𝑥𝑖)) , a larger 

𝑉𝑋𝑖( 𝑿−𝑖( |𝑋𝑖)) equally indicates a greater importance of 𝑋𝑖; 
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4. The first-order index is redefined by normalization, thus 𝑆𝑖 = 𝑉𝑋𝑖( 𝑿−𝑖( |𝑋𝑖))/𝑉( ). 

In sum, we can use the first-order Sobol’ index 𝑆𝑖 whether the model inputs are correlated or 

not. In comparison, other higher order indices in Eq. (2.10) and the total effects index 𝑆𝑖
𝑇  are 

meaningless if the model inputs are correlated, since their derivations requires uncorrelated model 

inputs. In this research, 𝑆𝑖
𝑇  is utilized if the model inputs are uncorrelated, since it is a more 

comprehensive index considering the interaction between different inputs; and 𝑆𝑖 is used if the 

model inputs are correlated. 

In addition, it should be kept in mind that the Sobol’ index requires the function  =  (𝑿) to 

be a deterministic function, which means that a single realization of 𝑿 gives a corresponding single 

realization of  . This research emphasize the term “deterministic function” to contrast from 

“stochastic” functions such as Eq. (2.7) , where the function output is uncertain (i.e., it has many 

possible realizations) even if all the inputs are fixed. One objective of this research is to extend the 

usage of Sobol’ index to stochastic functions, and the auxiliary variable method is required for this 

purpose. A brief introduction of the auxiliary variable method will be given in Section 2.7; and the 

proposed method of GSA for stochastic function of aleatory and epistemic uncertainty, considering 

both random variable input and time series input, can be found in Chapter 3. 

Another key question in computing the Sobol’ index is the computational cost. Direct 

calculation of 𝑆𝑖 and 𝑆𝑇
𝑖  based on Eqs. (2.11) and (2.13) is quite expensive since a double-loop 

Monte Carlo simulation (MSC). For 𝑆𝑖 in Eq. (2.11), the inner loop  𝑿−𝑖( |𝑋𝑖) computes the mean 

value of   using 𝑛1  random samples of 𝑿 𝑖 ; and the outer loop computes 𝑉𝑋𝑖( 𝑿−𝑖( |𝑋𝑖)) by 

iterating the inner loop 𝑛2 times at different values of 𝑋𝑖. In addition, another 𝑛3 MCS iterations 

are required to compute 𝑉( ) in Eq. (2.11). The cost of double-loop MCS, defined as the total 

number of model evaluations to compute all 𝑆𝑖 (𝑖 = 1 to 𝑘), is 
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 Cost = 𝑘𝑛𝑑𝑙
2 + 𝑛𝑑𝑙 (2.16)  

where we assume 𝑛1 = 𝑛2 = 𝑛3 = 𝑛𝑑𝑙.This cost increases with 𝑛𝑑𝑙 and 𝑘, and is unaffordable if 

a single model evaluation is time-consuming or economically expensive, since 𝑛𝑑𝑙 is often of the 

order greater than 1000 in many practical applications. The double-loop simulation for 𝑆𝑖
𝑇  is 

similar and also expensive.  

Various algorithms have been proposed to reduce the computational cost, and one objective of 

this research is to propose a new efficient algorithm. A literature review on existing algorithms 

will be given in Section 7.2, and the proposed algorithm to compute 𝑆𝑖 can be found in Section 7.3. 

2.7 Auxiliary Variable Method 

The auxiliary variable method was developed by Sankararaman and Mahadevan [65] to 

distinguish the contributions of aleatory natural variability and epistemic distribution parameter 

uncertainty in a random variable 𝑋 . The distribution of 𝑋  is conditioned on the value of its 

distribution parameter 𝜽𝑋, which has uncertainty represented by a probability density 𝑝(𝜽𝑋). This 

parameters distribution 𝑝(𝜽𝑋)  is also referred as second-order probability. The conditional 

distribution of 𝑋 is denoted as 𝑝(𝑋|𝜽𝑋). This conditional distribution 𝑝(𝑋|𝜽𝑋) and the second-

order probability 𝑝(𝜽𝑋)  actually constitutes a hierarchical Bayesian model. With different 

realizations of 𝜽𝑋, 𝑝(𝑋|𝜽𝑋) constitutes a family of distributions, as shown in Figure 2.7. Each 

single distribution represents the natural variability of 𝑋 at a particular realization of 𝜽𝑋, and the 

spread of the distributions indicates the contribution of uncertainty in 𝜽𝑋 . This family of 

distribution only gives a qualitative representation of aleatory and epistemic uncertainties; a 

method of quantitative contribution assessment is still required. 
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Figure 2.7 Family of PDFs 

Based on the probability integral transform theorem [66], random sampling from the 

conditional distribution 𝑝(𝑋|𝜽𝑋)  is realized in two steps: 1) define a variable 𝑈𝑋  of standard 

uniform distribution 𝑈(0, 1) and generate its sample 𝑢𝑋, which is taken as the CDF value of 𝑋, 

and 2) obtain a sample 𝑥 of 𝑋 by the inverse conditional CDF 𝒫 1(𝑈𝑋|𝜽𝑋), i.e., 

 𝑥 = 𝒫 1(𝑈𝑋 = 𝑢𝑋|𝜽𝑋) (2.17)  

The same procedure is repeated for other realizations of 𝜽𝑋. Note that the distribution of 𝑈𝑋 is 

independent of the realization of 𝜽𝑋. At a given value of 𝜽𝑋, the sample of 𝑈𝑋 and the sample of 

𝑋 have a one-to-one mapping, i.e., a single value of 𝑋  is determined once the value of 𝑈𝑋  is 

decided. Thus the natural variability in 𝑋 is represented by 𝑈𝑋. 

This standard uniform random variable 𝑈𝑋, which is the CDF value of 𝑝(𝑋|𝜽𝑋), is named as 

the auxiliary variable. With 𝑈𝑋, Eq. (2.17) helps to build a deterministic input-output function 𝑋 =

 (𝑈𝑋 , 𝜽𝑋) for computing Sobol’ indices, since a sample of 𝜽𝑋  and a sample of 𝑈𝑋  lead to a 

deterministic value of 𝑋 based on Eq. (2.17). Then the resultant Sobol’ index of 𝜽𝑋 assesses the 

contribution of epistemic distribution parameter uncertainty, and the Sobol’ index of 𝑈𝑋 assesses 

the contribution of the natural variability of 𝑋. 

Although the auxiliary variable approach is a standard procedure in sampling random variables, 

generally it is used implicitly and only the resultant samples of the random variables are recorded 
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and utilized. However, as explained above, Ref. [65] found that if we use this auxiliary variable 

explicitly, it brings the benefit of separating the aleatory and epistemic uncertainty in a single 

random variable 𝑋 and quantifying their contributions to the overall uncertainty in X. Ref. [65] 

only considered the aleatory and epistemic in the random variable model input, whereas this 

research extends the usage of the auxiliary variable to several topics: 1) assess the relative 

contributions of aleatory and epistemic uncertainty sources in time series prediction, as illustrated 

in Chapter 3; 2) global sensitivity analysis for Bayesian network, as illustrated in Chapter 5; and 

3) development of an efficient Bayesian inference algorithm, as illustrated in Chapter 7.  
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CHAPTER 3  

 

GLOBAL SENSITIVITY ANALYSIS UNDER ALEATORY AND EPISTEMIC 

UNCERTAINTY 

 

3.1 Background 

In many practical engineering systems, direct measurement of the system response under actual 

usage conditions is often not available; instead, a model is used to predict the response, in order to 

facilitate decisions related to design, risk management etc. In this case, the uncertainty in system 

response prediction is affected by various uncertainty sources. The importance of each uncertainty 

source can be measured by its contribution to the uncertainty in the system response prediction. 

Such information is useful in several ways, especially in problem dimension reduction (by ignoring 

the insignificant uncertainty sources) and in resource allocation for uncertainty reduction (by 

focusing additional data collection or model refinement efforts on significant uncertainty sources).  

As introduced in Section 2.6, global sensitivity analysis (GSA) [54] provides a quantitative 

assessment of the relative contribution of model inputs towards the uncertainty in the model output. 

GSA methods can be either data-driven (e.g., based on analysis of variance ANOVA), or model-

based, such as the computation of Sobol’ indices [61] . In model-based prediction as shown in 

Figure 3.1, the computation of Sobol’ indices is well-established for aleatory inputs [62,67,68], 

but their computation considering both aleatory and epistemic uncertainty sources (in model inputs 

and in model prediction) is not well-established [1–3]. Thus this chapter focuses on developing a 

framework for computing the Sobol’ indices considering both aleatory and epistemic uncertainty 

sources when considering uncertainty propagation through a computational model. 
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Figure 3.1 Model-Based prediction 

Related to Figure 3.1, there is uncertainty in the model inputs, and in the model output even for 

a fixed input. A model input may be deterministic or random, and epistemic uncertainty can be 

present in both, due to inadequate data. In case of a deterministic input, its value may be unknown; 

in the case of a random input, its distribution type and/or distribution parameters may be unknown. 

The latter case is a mixture of aleatory and epistemic uncertainty. When the input is propagated 

through the computational model to compute the output, epistemic uncertainty sources in the 

model (uncertain model parameters, numerical approximations in the model, and model form 

assumptions) contribute to additional uncertainty in the model prediction. The objective of this 

section to quantify the contributions of various aleatory and epistemic uncertainty sources in the 

input and the model to the uncertainty in the model output. 

The proposed framework for realizing this objective is shown in Figure 3.2. Due to inadequate 

data, the aleatory model inputs (either random variables or random processes) are mixed with 

epistemic uncertainty. Due to model uncertainty sources, the model output is uncertain even for a 

fixed input. When using an input-output model to compute the Sobol’ indices, a deterministic 

input-output relationship, i.e., a one-to-one mapping, is needed. Therefore, a methodology is 

proposed in this research by introducing auxiliary variables based on the probability integral 

transform (explained in Section 2.7) to establish such a deterministic input-output relationship, 

and to separate the aleatory and epistemic uncertainty sources when the two are mixed.  This 

strategy helps to calculate the Sobol’ indices separately for both aleatory and epistemic uncertainty 

sources.  

ModelInput Output

Model parameters
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Figure 3.2 Proposed framework for Sobol’ indices computation under aleatory and epistemic uncertainty 

A particular problem of interest in this research is when the input to the computational model 

is a time series, such as the loading history on a mechanical component causing fatigue damage. 

Several options are available for modeling the time series input; this research uses the 

Autoregressive Moving Average (ARMA) approach, which is able to explicitly quantify the 

aleatory and epistemic uncertainty components in the time series input through the use of Bayesian 

calibration. The ARMA model and Bayesian calibration are described in Section 3.2. Sensitivity 

computation in the presence of time series input brings a significant challenge regarding 

computational effort, especially due to the introduction of a large number of noise terms (one in 

each time step). Therefore this research proposes a novel technique, based on the concept of 

pseudo-random number generation, to significantly improve the computational efficiency in 

calculating the Sobol’ indices in the presence of time series input that has both aleatory and 

epistemic uncertainty. 

In summary, this section makes three new important contributions to model-based sensitivity 

analysis: 1) computation of Sobol’ indices in the presence of both input uncertainty (aleatory and 

epistemic) and model uncertainty (epistemic); 2) a novel technique to separate the aleatory and 

epistemic uncertainty sources in time series input; and 3) a novel computational technique (based 

on pseudo-random number generation) for efficient computation of Sobol’ indices in the presence 

of time series input. 
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3.2 Autoregressive Moving Average (ARMA) Model 

This section focuses on model-based GSA with time series input. The ARMA model is selected 

to model the time series input due to its ability to capture both natural variability and epistemic 

uncertainty in the time series input. An ARMA(𝑝, 𝑞) model assumes that the input at time step 𝑡 

is a linear combination of 1) earlier input values from step 𝑡 − 𝑝 to step 𝑡 − 1; 2) earlier values of 

noise from step 𝑡 − 𝑞 to step 𝑡 − 1; and 3) the current value of noise at step 𝑡, i.e., 

 𝑋 = �̅� +∑ 𝜙𝑖𝑎𝑋
  𝑖𝑎

𝑝

𝑖𝑎=1
+ 𝜖 +  ∑ 𝜃𝑖𝑚𝜖

  𝑖𝑚
𝑞

𝑖𝑚=1
 (3.1)  

where 𝑋  and 𝑋  𝑖𝑎  are the inputs at time step 𝑡 and time step 𝑡 − 𝑖𝑎 ; 𝝓 = {𝜙1, … , 𝜙𝑝} are the 

coefficients of the AR model; 𝜽 = {𝜃1, … , 𝜃𝑞} are the coefficients of the MA model;  �̅�  is a 

constant; and 𝜖  and 𝜖  𝑖𝑚  are the random noise terms at time step 𝑡 and time step 𝑡 − 𝑖𝑚. All the 

random noise terms are generally assumed to be independent and identically distributed Gaussian 

variables 𝑁(0, 𝜎𝜖
2), i.e., Gaussian white noise [69]. And these noise terms represent the natural 

variability of the time series input. 

To build an ARMA model, the values of its orders 𝑝 and 𝑞 are first identified by matching the 

theoretical autocorrelation function to the sample autocorrelation function computed from the 

observed time series data. The Ljung-Box 𝑄 statistic [70] can be used to measure the adequacy of 

the matching. 

The values of the ARMA parameters {�̅�, 𝝓, 𝜽, 𝜎𝜖} have epistemic uncertainty due to limited 

history data. The ARMA model can capture this epistemic uncertainty by assigning probability 

distributions to the ARMA parameters  {�̅�, 𝝓, 𝜽, 𝜎𝜖}. Bayesian inference may be used to calibrate 

the distributions of the ARMA parameters using the observed data [69]. In contrast, the counting 
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matrix in the cycle counting methods is deterministic so that the epistemic uncertainty due to 

limited time series data is difficult to quantify. 

3.3 GSA under Both Aleatory and Epistemic Uncertainty 

The uncertainty sources in system response prediction have been listed in Table 2.1. 

Theoretically, GSA based on Sobol’ indices can be used to assess the contribution of any 

uncertainty source, no matter whether it is aleatory or epistemic. However, the existence of both 

aleatory and epistemic uncertainties in Table 2.1 brings two challenges to computing the Sobol’ 

indices using an input-output prediction model. First, the model prediction  = 𝑆(𝜽𝑚; 𝑿) +

𝜖ℎ(𝑿) + 𝛿(𝑿) is not deterministic, i.e.,   does not have a single deterministic value even if 𝜽𝑚 

and 𝑿 are fixed. The reason is that 𝑆(𝜽𝑚; 𝑿), 𝜖ℎ(𝑿) and 𝛿(𝑿) can each be uncertain even for fixed 

values of 𝑿 and 𝜽𝑚. In this research, since the GP surrogate model is used, the surrogate model 

prediction 𝑆(𝜽𝑚; 𝑿)  is a Gaussian random variable for fixed values of 𝑿  and 𝜽𝑚 ; the 

discretization error 𝜖ℎ(𝑿) and model form error 𝛿(𝑿) are also estimated by GP models, thus they 

are both Gaussian random variables for a fixed value of 𝑿. Therefore   is the sum of three 

Gaussian random variables. 

Second, each uncertainty source in Table 2.1 should be represented by a single random variable 

of known or fixed probabilistic distribution if we want to compute the Sobol’ indices. However, 

this required single random variable is not available for some uncertainty sources. The main reason 

is that one uncertainty source may depend on another one. For example, the uncertainty in the 

discretization error 𝜖ℎ(𝑿) depends on the value of 𝑿. In this case, the distribution of  𝜖ℎ(𝑿) is not 

fixed but changes with the value of 𝑿. The first contribution of this research is to use the auxiliary 

variable to decouple the dependent uncertainty sources, so that the uncertainty term that depends 

on other uncertainty sources can be separately represented by a single auxiliary variable of fixed 
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uniform distribution 𝑈(0,1) , and the deterministic function required for the Sobol’ indices 

computation can be established. 

Identifying the single variable to represent the natural variability in the ARMA model is even 

more difficult. At given values of ARMA parameters, if we run the ARMA model 𝑁 times, 𝑁 

different time series histories can be obtained. The variation among these histories represents the 

natural variability in the ARMA model (last row in Table 2.1), which is caused by the noise terms 

{𝜖1, 𝜖2, … , 𝜖𝑁} in the ARMA model at each time step. Although we can consider all the noise terms 

in the GSA, this will make the GSA extremely high-dimensional. Thus the second contribution of 

this research is a new method defining a single auxiliary variable that captures all the noise terms, 

i.e., the natural variability in the ARMA model; this method is described in Section 3.3.2, and 

referred to as uncontrolled-seed method. 

Although the proposed uncontrolled-seed method reduces the dimension of the GSA, its 

computational efficiency is still not satisfying. Therefore the third contribution of this research is 

a new controlled-seed method proposed in Section 3.3.3, which uses the seed as a single random 

variable capturing the natural variability in the ARMA model. This method obtains the same result 

as the uncontrolled-seed method and reduces computational cost significantly. 

3.3.1 GSA for Random Variable Input 

The auxiliary variable method introduced in Section 2.7 can be extended to any variable whose 

distribution is conditioned on other variables. Assume that the distribution of a random variable   

depends on the value of another random value   by a conditional distribution 𝑝( | ). Then the 

uncertainty in 𝑝( | ) can be captured by a single auxiliary variable 𝑈𝐴, which is the CDF value 

of 𝑝( | ). In other words, the auxiliary variable can be used to represent any uncertainty term 
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whose distribution depends on other uncertainty sources. The represented uncertainty term can be 

either aleatory or epistemic. 

Assume that the model inputs 𝑿 = {𝑋1, … , 𝑋𝑘} are random variables. For the random variables 

𝑆(𝜽𝑚; 𝑿), 𝜖ℎ(𝑿) and 𝛿(𝑿) in Table 2.1 whose distribution is conditioned on the value of 𝑿 and 

𝜽𝑚 , auxiliary variables 𝑈𝑆 , 𝑈
ℎ
 and 𝑈𝛿  can be introduced to represent the uncertainties due to 

surrogate model, discretization error, and model discrepancy respectively at fixed values of 𝑿 and 

𝜽𝑚. In addition, auxiliary variables 𝑼𝑿 = {𝑈𝑋1 , 𝑈𝑋2 , … , 𝑈𝑋𝑘} are also introduced for each model 

input 𝑋𝑗(𝑗 = 1 to 𝑘)  that has both aleatory and epistemic uncertainty. Then a deterministic 

function suitable for Sobol’ indices computation can be built as: 

  =  (𝜽𝑚, 𝜽𝑋 , 𝑼𝑿, 𝑈𝑆, 𝑈 ℎ
, 𝑈𝛿) (3.2)  

Note that no auxiliary variable is needed for 𝜽𝑋  or 𝜽𝑚  since their distributions are not 

conditioned on any other variables. Another observation is that either aleatory or epistemic 

uncertainty can be represented by the auxiliary variables depending on the situation. For example, 

𝑼𝑿  represents the aleatory uncertainty in model inputs; whereas 𝑈𝑆, 𝑈 ℎ
, and 𝑈𝛿  represent the 

epistemic uncertainties caused by surrogate model uncertainty, discretization error, and model 

form error respectively. 

 
Figure 3.3 Deterministic function for random variable input 

 

𝑼𝑿 =  𝑿

𝜽𝑋 = 𝜽𝑋
 

𝑿 = 𝒙

𝑈𝜖ℎ = 𝑢𝜖ℎ

𝑈𝛿 = 𝑢𝛿

𝑈𝑆 = 𝑢𝑆

𝜽𝑚 = 𝜽𝑚
 

𝜖ℎ = 𝜖ℎ
 

𝛿 = 𝛿 

𝑆 = 𝑠

 = 𝑦
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The flowchart in Figure 3.3 illustrates the application of Eq. (3.2). A sample of the distribution 

parameters 𝜽𝑋  gives the marginal distribution for each model input 𝑋, and auxiliary variables 

𝑼𝑿 = {𝑈𝑋1 , 𝑈𝑋2 , … , 𝑈𝑋𝑘} helps to generate a deterministic sample of 𝑿 by CDF inversion on the 

joint distribution of model inputs 𝑿. Note that the model inputs 𝑿 discussed in this section is a set 

of scalar random variables. The case that 𝑿 represents a time series input will be discussed in 

Section 3.3.2 and Section 3.3.3. 

The sample of 𝑿 decides the distribution of input-dependent discretization error 𝜖ℎ and model 

form error 𝛿, and the corresponding auxiliary variables 𝑈𝜖ℎ and 𝑈𝛿 generate deterministic values 

of 𝜖ℎ  and 𝛿  respectively by inverting the corresponding CDFs. Similarly, the value of 𝑆  is 

determined by the value of 𝑿, 𝜽𝑚, and auxiliary variable 𝑈𝑆. Finally a deterministic prediction is 

computed as 𝑦 = 𝑠 + 𝜖ℎ + 𝛿. The deterministic function in Eq. (3.2) is now ready for Sobol’ 

indices computation. The resultant sensitivity indices of 𝜽𝑋  assess the contributions of input 

distribution parameter uncertainty towards the uncertainty in model prediction  ; the indices of 

𝜽𝑚 assess the contributions of model parameter uncertainty; and the indices of auxiliary variables 

assess the contributions of the corresponding uncertainty sources, as shown in Table 2.1. 

Note that Eq. (3.2) proposes a framework to assess the contribution of each uncertainty source 

with random variable inputs. If any uncertainty source is ignored in practice, this framework is 

still applicable by removing the corresponding variable in Eq. (3.2). For instance, if Richardson 

extrapolation is used to compute a deterministic discretization error and ignore the uncertainty in 

it, the auxiliary variable 𝑈𝜖ℎ is not needed in Eq. (3.2). Similarly, if an input random variable 𝑋𝑗 

has only aleatory uncertainty and no epistemic uncertainty (i.e., its probability distribution is 



 38 

precisely known), then the corresponding auxiliary variable 𝑈𝑋𝑗 is not needed; in this case, the 

probability density 𝑝(𝑋𝑗) represents the uncertainty (variability) in 𝑋𝑗. 

3.3.2 GSA for Time Series Input 

As discussed earlier, the epistemic uncertainty in the ARMA model of the times series input 

can be represented by assigning probability distributions to its parameters {�̅�,𝝓, 𝜽, 𝜎𝜖}  and 

updating these distributions using Bayesian inference. Like other random process representations, 

the ARMA model takes the input at each time step as a random variable 𝑋  and the observed value 

at this time step is a realization of this random variable. Theoretically, this time series can be 

considered as a 𝑁 -dimensional vector of random variables 𝑿 = {𝑋1, … , 𝑋𝑁𝑡} where 𝑁  is the 

number of time steps, so the flowchart in Figure 3.3 is still applicable. However, since 𝑁  is usually 

very large, several studies have tried to reduce this 𝑁 -dimensional time series input to a low-

dimensional representation.  

Ben-Haim [71] employed a deterministic convex model of Fourier series rather than 

probabilistic models to represent the uncertainty in a load history. However, this deterministic 

model ignores the aleatory uncertainty in the time series input, even if the epistemic uncertainty 

can be introduced into this model by allowing the Fourier coefficients to vary. Echard et al. [72] 

used nine displacement histories to represent the uncertainty of in-service loads. This method 

needs adequate observations of time series input, which may be impossible.  

Another option to reduce the dimension of a random process is the Karhunen-Loeve expansion 

[73,74], which represents a random process by the eigenvalues and eigenfunctions of the 

covariance function. The first 𝑙  largest eigenvalues and the corresponding engenfunctions are 

retained if the explained variance of the random process reaches a threshold such as 95% or 99%. 
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The explained variance is given by ∑ 𝜆𝑖𝑒
𝑙
𝑖𝑒=1

∑ 𝜆𝑖𝑒
∞
𝑖𝑒=1

⁄ , where 𝜆𝑖𝑒 is the 𝑖𝑒-th largest eigenvalue 

[74]. However, the value of 𝑙  highly depends on the autocorrelation function of the random 

process: more eigenvalues and eigenfunctions are needed to explain the same variance if the 

autocorrelation function decays faster. Consider a random process represented by an ARMA(1, 1) 

model 𝑋 = −2 + 0.2𝑋  1 + 𝜖 + 0.2𝜖  1 where the noise terms have a Gaussian distribution 

𝑁(0, 0.12) . Figure 3.4 shows the autocorrelation function and the first 50 eigenvalues. The 

autocorrelation function decays to almost zero after 3 lags. No dominant eigenvalue is observed, 

therefore most eigenvalues should be retained to explain the variance. Thus the dimension of the 

random process cannot be significantly reduced in some cases. 

  
Figure 3.4 Autocorrelation and eigenvalues for ARMA model 

The objective of this research is not only to make the Sobol’ indices computation affordable 

but also to distinguish the contributions of aleatory and epistemic uncertainties towards the 

uncertainty in the prediction. Here the auxiliary variable method is extended to assess the 

individual contribution of each uncertainty source. The deterministic function required for the 

Sobol’ indices computation is: 

  =  (�̅�, 𝝓, 𝜽, 𝜎𝜖 , 𝜽𝑚, 𝑈𝑆, 𝑈𝜖ℎ , 𝑈𝛿 , 𝑈𝜖) (3.3)  

An evaluation of Eq. (3.3) is shown in Figure 3.5, which can be realized in 7 steps: 
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1. Generate a sample of the ARMA model parameters �̅�, 𝝓, 𝜽, 𝜎𝜖 from their joint distribution. 

This joint distribution represents the epistemic uncertainty regarding the ARMA model 

parameters, and can be obtained by Bayesian inference using observed time series data. 

2. Generate a sample 𝜽𝑚
  of the physics model parameters 𝜽𝑚. 

3. Generate 𝑁 time histories {𝝌1, … , 𝝌𝑁} based on the samples of  �̅�, 𝝓, 𝜽, 𝜎𝜖 from Step 1. 

Here the model input 𝑿 = {𝑋1, … , 𝑋𝑁𝑡} is a time series input of 𝑁  time steps. A generated 

history 𝝌𝑖(𝑖 = 1,… ,𝑁)  is a realization of 𝑿 , thus 𝝌𝑖  is a vector of 𝑁  elements. The 

difference between these time histories represents the natural variability in the ARMA 

model caused by the noise terms. By propagating each time history with the sample of 𝜽𝑚
  

through the stochastic surrogate model 𝑆(𝜽𝑚; 𝑿) , a family of 𝑁  distributions can be 

constructed. Each distribution 𝑆𝑖(𝜽𝑚
 , 𝝌𝑖) (𝑖 = 1,… ,𝑁) represents the effect of epistemic 

surrogate model uncertainty at a given time history, thus an auxiliary variable 𝑈𝑠  is 

introduced to represent it. 

4. Generate a sample of 𝑈𝑠 to conduct CDF inversion of each distribution 𝑆𝑖(𝜽𝑚
 , 𝝌𝑖) (𝑖 =

1, … , 𝑁)in Step 3. The resultant 𝑁 samples {𝑠1, … , 𝑠𝑁} from the 𝑁 distributions constitute 

a new random variable 𝑆  whose uncertainty is caused by the ARMA model natural 

variability. 

5. If the discretization error 𝜖ℎ(𝑿) is stochastic (e.g., due to the use of a GP model) at a given 

time series input, each time history from Step 3 gives a distribution of discretization error, 

thus a family of 𝑁  distributions 𝜖ℎ𝑖(𝝌𝑖) (𝑖 = 1 to 𝑁) can be constructed. An auxiliary 

variable 𝑈𝜖ℎ  representing the discretization error uncertainty is introduced to obtain a 

sample from each distribution, and the resultant 𝑁 samples construct a random variable 𝜖ℎ 

whose uncertainty is caused by the ARMA model natural variability. 
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6. Use the same procedure as Step 5 for 𝛿(𝑿) : each time history from Step 3 gives a 

distribution of model discrepancy, thus a family of 𝑁 distributions 𝛿𝑖(𝝌𝑖) (𝑖 = 1 to 𝑁) can 

be constructed. An auxiliary variable 𝑈𝛿  is introduced to obtain a sample from each 

distribution, and the resultant 𝑁 samples construct  a random variable 𝛿 whose uncertainty 

is caused by the ARMA model natural variability. 

7. Define a new variable  𝜖 as the sum of 𝑆, 𝛿, and 𝜖ℎ from steps 3 to 6. The uncertainty in 𝑆, 

𝛿 and 𝜖ℎ is caused by the natural variability in the ARMA model, thus the uncertainty in 

 𝜖 is also caused by natural variability in the ARMA model. Another auxiliary variable 𝑈𝜖 

is introduced to represent the uncertainty in  𝜖. (Note that 𝑆, 𝛿, and 𝜖ℎ can be correlated, 

and the calculation in Figure 3.5 correctly accounts for this correlation by generating 

correlated samples of 𝑆, 𝛿, and 𝜖ℎ). With 𝑁 samples of 𝑆 from step 4, 𝑁 samples of 𝛿 from 

step 5, and 𝑁 samples of 𝜖ℎ from step 6, we can obtain 𝑁 samples of  𝜖 to represent its 

distribution. A sample of 𝑈𝜖  is generated to conduct CDF inversion on  𝜖  to obtain a 

deterministic value 𝑦 so that a deterministic function can be established. 

Note that Eq. (3.3) is as flexible as Eq. (3.2). The corresponding variable in Eq. (3.3) can be 

removed if any uncertainty source is ignored. 
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Figure 3.5 An evaluation of Eq. (3.3) 

3.3.3 Controlled-Seed Method for GSA with Time Series Input 

An important challenge in the application of Eq. (3.3) is the computational cost. Here we define 

“one evaluation of the deterministic function such as Eq. (3.3)” as a function evaluation. 

Computation of the Sobol’ indices based on Eqs. (2.11) and (2.13) is computationally intensive 

since it requires repeated function evaluations at different values of the inputs. If the double-loop 

method introduced in Section 2.6 is used, the cost to compute all the first-order indices is  

𝑁𝑓 = 𝑘𝑛2 + 𝑛, as shown in Eq. (2.16). The number of function evaluations for the total effects 

indices is the same as the first order indices. If  𝑋𝑖(𝑖 = 1 to 𝑘) are uncorrelated with each other, a 

single loop method [67] has been developed to reduce the cost in Eq. (2.11) to 𝑘𝑛 + 𝑛. But when 

the model inputs are correlated, there is no alternative to the double loop method [67]. This section 

only applies the double loop method, considering the general case of correlated inputs. 
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Regarding Eq. (3.3) for GSA with time series input, one function evaluation shown in Figure 

3.5 requires computations over 𝑁 time histories. If the time cost for one time history is 𝑡0, the time 

cost for one function evaluation of Eq. (3.3) is 𝑁𝑡0. Thus the overall time cost for the first-order 

indices is: 

 𝑇1 = 𝑁𝑡0 ×𝑁𝑓 = 𝑁𝑡0(𝑘𝑛
2 + 𝑛) (3.4)  

The time cost given by Eq. (3.4) is sometimes unaffordable. Consider a simple example where 

1) the time series input is generated by an ARMA(1, 1) model of four model parameters, 

i.e., �̅�, 𝜙1, 𝜃1 and 𝜎𝜖; 2) the discretization error and surrogate model uncertainty are ignored; and 

3) the values of the model parameters 𝜽𝑚 are precisely known. Then the deterministic function of 

Eq. (3.3) reduces to  =  ( �̅�, 𝜙1, 𝜃1, 𝜎𝜖 , 𝑈𝛿 , 𝑈𝜖), which requires a six-dimensional GSA (𝑘 = 6). 

Assume 𝑡0 = 0.01s, which is quite fast and implies the use of a surrogate or a simplified reduced-

order model for a realistic structure. Suppose 𝑁 = 100 and 𝑛 = 500, the overall time cost by Eq. 

(3.4) is about 417 hours, which is rarely affordable. Of course, parallel computing can be used to 

reduce this time cost, but that requires more computational resources. 

The reason for the unaffordable time cost by Eq. (3.4) is as follows: in Eq. (3.4) the natural 

variability of time series input is represented by 𝑁 sampled time histories (Figure 3.5), so the 

auxiliary variable 𝑈𝜖 can be introduced only after computing all the sampled time histories to 

predict the system response. In other words, one function evaluation of Eq. (3.4) requires 

computing 𝑁  time histories. In contrast, in Eq. (3.2) for random variable inputs, the natural 

variability in random variable input 𝑋 is represented by a single PDF (a PDF in Figure 2.7), and 

the auxiliary variable 𝑈𝑋  generates a deterministic value of 𝑋 from this distribution. Thus in a 

function evaluation of Eq. (3.2), only a single value of 𝑋 is propagated into the model of 𝑆(𝜽𝑚; 𝑿), 
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𝜖ℎ(𝑿) and 𝛿(𝑿) to predict the system response. Therefore, the function evaluation of Eq. (3.4) can 

be accelerated significantly if the natural variability in time series input can be captured by a single 

PDF before propagating the time histories through the prediction model. The next subsection 

proposes a controlled-seed method to achieve this outcome. 

As explained earlier, the natural variability of time series input is represented by generating 

multiple time histories, which is basically a process of generating random numbers. Random 

numbers in computers are always generated by deterministic algorithms such as Mersenne Twister 

generator [75], Combined Multiplicative Recursive generator [76] or Wichmann-Hill generator 

[77]. These pseudo-random number generators use a positive integer known as a seed to generate 

a random number of various distribution types, and a new seed is deterministically computed 

before generating the next random number. A fixed initial seed value will give a fixed set of 

random numbers. Nevertheless, the deterministic generators are sufficiently complicated so that 

the generated pseudo-random samples can pass various statistical tests of randomness. 

Therefore, if a code is used to generate time series input using a mathematical model such as 

the ARMA model, the sample at each time step is determined once the initial seed value for 

sampling the first time step is given. For example, Figure 3.6 shows that the same initial seed  𝐾 

leads to the same load history at different runs of the ARMA model in MATLAB. 
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Figure 3.6 Seed and ARMA model simulation in MATLAB 

This initial seed 𝐾 is considered as a random variable controlling the generation of the time 

series input. For the random variable input, the auxiliary variable 𝑈𝑋  captures the natural 

variability in the random variable input 𝑋 due to the one-to-one mapping between each value of 

𝑈𝑋 and the value of 𝑋; similarly, the initial seed 𝐾 captures the natural variability in the time series 

input due to one-to-one mapping between the value of 𝐾 and the realization of the time series input. 

It is equally possible for any positive integer to be used as a seed, so theoretically 𝐾 has a discrete 

uniform distribution 𝑈𝑑(1, 𝑛𝑐) where the upper bound 𝑛𝑐 is a very large positive integer decided 

by the specific programing language and computer. But in practice we can define the bounds of 

this discrete uniform distribution, depending on how many different possible histories are adequate 

to represent the natural variability in time series input. The numerical example in Section 3.4 

assigns a discrete uniform distribution 𝑈𝑑(1, 100)  to the initial seed 𝐾  by implying that 100 

possible histories are adequate to represent the natural variability in the ARMA model. 
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An additional step is needed to apply the initial seed 𝐾 to global sensitivity analysis. Although 

the initial seed 𝐾 captures the natural variability in the time series input, its distribution is discrete 

but Sobol’ indices requires continuous random variables. Therefore another auxiliary variable 𝑈𝐾, 

which is the CDF value of 𝐾, is introduced to represent 𝐾. The mapping between the value of 𝑈𝐾 

and the value of 𝐾 is: 

 𝐾 = 𝑎 + ⌊𝑈𝐾(𝑏 − 𝑎 + 1)⌋ (3.5)  

where 𝑎 and 𝑏 are the positive integers of lower and upper bounds respectively, and ⌊∙⌋ is the floor 

function. The first constraint for 𝑎 and 𝑏 is that 𝑎 < 𝑏 ≤ 𝑛𝑐. In addition, the difference between 𝑎 

and 𝑏 should be large enough to guarantee the diversity of resultant seed values, so that adequate 

different time histories can be generated to represent the natural variability in the time series input. 

In Figure 3.5, the auxiliary variable 𝑈𝜖 is to pick one sample of   from 𝑁 samples. In other 

words, 𝑈𝜖 actually picks one time series time history. Now the auxiliary variable 𝑈𝐾 reaches the 

same objective, thus it equivalently captures the natural variability in the time series input via 𝐾. 

Then a new deterministic function for GSA is proposed as: 

  =  (�̅�, 𝝓, 𝜽, 𝜎𝜖 , 𝜽𝑚, 𝑈𝑆, 𝑈𝜖ℎ , 𝑈𝛿 , 𝑈𝐾) (3.6)  

where 𝑈𝐾 plays the same role as 𝑈𝜖 in Eq. (3.3).  

Similar to Eq. (3.3), an evaluation of Eq. (3.6) is shown in Figure 3.7, which can be realized in 

five steps: 

1. Generate a sample of  �̅�, 𝝓, 𝜽, 𝜎𝜖 from their joint distribution; 

2. Sample 𝑈𝐾 and compute the corresponding value of 𝐾 using Eq. (3.5). Then generate a 

time history 𝝌 by taking the value of 𝐾 as the initial seed; 
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3. Generate a sample 𝜽𝑚
  of model parameters 𝜽𝑚; 

4. Compute 𝑆(𝜽𝑚
 ; 𝝌), 𝜖ℎ(𝝌) and 𝛿(𝝌), where each one is a distribution; 

5. Sample the auxiliary variables 𝑈𝑆, 𝑈𝜖 and 𝑈𝛿 to obtain deterministic values of 𝑠, 𝜖ℎ and 𝛿 

by CDF inversion on the distributions in Step 4, respectively. Then the deterministic value 

of response prediction is 𝑦 = 𝑠 + 𝜖ℎ + 𝛿. 

Note that Eq. (3.6) is as flexible as Eqs. (3.2) and (3.3). The corresponding variable can be 

removed if any uncertainty source is ignored. 

 

Figure 3.7 An evaluation of Eq. (3.6) 

As the initial seed 𝐾 is introduced, the proposed method by Eq. (3.6) is named as “controlled-

seed method”; in contrast, the method by Eq. (3.2) is named as “uncontrolled-seed method”. By 

developing the controlled-seed method, the natural variability in time series input is captured by 

𝑈𝐾. As shown in Figure 3.7, only one time history requires computation in each function evaluation 

of Eq. (3.6). Thus the overall time cost for the first-order indices is: 
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 𝑇2 = 𝑡0(𝑘𝑛
2 + 𝑛) (3.7)  

Compared with Eq. (3.3) , the computational effort is significantly reduced by the factor 𝑁. For 

the earlier example in Section 3.4 where 𝑡0 = 0.01s, 𝑛 = 500, and 𝑁 = 100, the time cost reduces 

to 4.17 hours, instead of 417 hours. 

3.4 Numerical Example 

 
Figure 3.8 Cantilever beam 

Consider a single cantilever beam shown in Figure 3.8. An edge crack is assumed to have 

initiated at the top surface, and this crack grows under the time series loading 𝑿 of 𝑁  cycles 

imposed at the other end of the beam. The initial crack size 𝑎0  is assumed to have a normal 

distribution 𝑁(0.03,0.00152), representing the uncertainty in measuring 𝑎0. The objective of this 

example is to assess the contribution of each uncertainty source to the uncertainty in the final crack 

length prediction. The uncertainty sources include structure properties (structure geometry, initial 

crack size, material properties, and crack growth parameters), loading history, and various model 

errors (surrogate model error, discretization error, and model form error). In this example, for the 

sake of illustration, we only consider the uncertainty in initial crack size, loading history, and 

model errors. Properties of the structure are assumed to be fixed and known. However, the 

proposed methodology can easily include these additional uncertainty sources. 

Crack
Cyclic loading
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Section 3.4.1 illustrates the prediction model to compute the final crack length, i.e., how to 

compute the crack growth at a given time series history generated by ARMA. Section 3.4.2 

develops the deterministic functions required for global sensitivity analysis and provides two 

scenarios: 1) assumes known ARMA model parameter distributions, and compares the efficiency 

of the uncontrolled-seed method and the controlled-seed method, and 2) calibrates ARMA model 

parameters by Bayesian inference, and the effect of correlation between ARMA parameters is 

investigated. 

3.4.1 Computational Models 

As shown in Figure 3.9, two finite element (FE) models are established by the commercial 

software ANSYS to compute the stress intensity factor Δ𝐾𝑠 under load 𝑋 and crack length  . The 

first FE model has coarse mesh around the crack tip, while the second FE model has fine mesh 

around the crack tip. 

 
Figure 3.9 FEA model 

At given stress intensity factor Δ𝐾𝑠, an empirical curve of crack growth rate vs. stress intensity 

factor obtained in material experiment can be used to compute crack growth Δ  in each cycle, as 

shown in Figure 3.10. 

Coarse mesh Fine mesh
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Alternatively, the Paris’ law can be also used as the crack growth model to compute Δ : 

 d /d𝑁 =  Δ𝐾𝑠
𝑚 (3.8)  

In Eq. (3.8),   and 𝑚  are Paris’ law parameters; d d𝑁⁄  is the crack growth rate, and its 

magnitude is equal to the predicted crack growth Δ  in one cycle. Since Δ𝐾𝑠 depends on load 𝑋 

and the crack length  , Δ  is a also function of 𝑋 and  , i.e., Δ (𝑋,  ).  

Paris’ law fits the linear behavior part of the empirical curve well, but diverges from the 

empirical curve in the non-linear behavior parts and brings errors. Using the linear behavior data 

of the empirical curve, the Paris’s law parameters   and 𝑚 are obtained by a linear regression 

model of log(d d𝑁⁄ ) = log  + 𝑚 log Δ𝐾𝑠. The values of   and 𝑚 by the linear regression are 

 = 3.2379 × 10 8 and 𝑚 = 2.1577. Since this linear regression gives a high 𝑅-squared value 

of 0.997, this research fixes   and 𝑚 as constants. 

 
Figure 3.10 Paris law vs. Empirical crack growth curve 

Depending on different mesh resolutions and crack growth models, three models with different 

levels of fidelity are established, as shown in Table 3.1. The crack growth predicted by each of 

these three models in the 𝑡-th cycle are denoted as Δ  
𝑙 , Δ  

𝑚, and Δ  
ℎ, respectively. Note the time 

𝑡 is put in subscripts in this example, since the superscripts are used for other purpose.  
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Table 3.1. Models of different fidelities 

Models Predicted crack growth 

 in each cycle 

Mesh type Crack growth model 

Low fidelity model Δ  
𝑙  Coarse mesh Paris’s law 

Mid-fidelity model Δ  
𝑚 Fine mesh Paris’ law 

High fidelity model Δ  
ℎ Fine mesh Empirical curve 

For the sake of illustration, the crack growth prediction by the high fidelity model is assumed 

to be the true value, and the low fidelity model is assumed to be the computational model. As 

illustrated earlier, the computational model needs two corrections to approximate the true value. 

At the 𝑡-th cycle, the low fidelity model prediction Δ  
𝑙  is corrected as: 

 

Δ  
𝑐(𝑋 ,  𝑖 1) = Δ  

𝑙 + (Δ  
𝑚 − Δ  

𝑙) + (Δ  
ℎ − Δ  

𝑚)

= Δ  
𝑙 (𝑋 ,    1) + 𝜖ℎ(𝑋 ,    1) + 𝛿(𝑋 ,    1) 

(3.9)  

where 𝑋  is the load at the 𝑡-th cycle, and    1 is the crack length after the (𝑡 − 1)-th cycle. The 

difference between Δ  
𝑚 and Δ  

𝑙  is caused by mesh resolutions (indicating discretization error) 

and denoted as 𝜖ℎ(𝑋 ,    1); and the difference between Δ  
ℎ  and Δ  

𝑚  is caused by different 

crack growth models (model form error or model discrepancy)  and denoted as 𝛿(𝑋 ,    1). 

25 values of 𝜖ℎ(𝑋 ,    1) and 𝛿(𝑋 ,    1) at different load 𝑋 and crack length   are computed 

to train Gaussian process (GP) models for 𝜖ℎ(𝑋 ,    1)  and 𝛿(𝑋 ,    1) , which are used to 

compute the error terms at desired values of load and crack length. The GP model output for 

𝜖ℎ(𝑋 ,    1) is denoted as 𝑔𝑝𝜖ℎ(𝑋 ,    1), and the GP model output for 𝛿(𝑋 ,    1) is denoted as 

𝑔𝑝𝛿(𝑋 ,    1) . In addition, for the sake of computational efficiency during uncertainty 

propagation (since many Monte Carlo samples will be used), a third GP model denoted as 

𝑔𝑝𝑠(𝑋 ,    1) is built to replace the low fidelity model in Table 3.1 and used in the prediction. 

Therefore the crack growth prediction at the 𝑡-th cycle is: 
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 Δ  
𝑐(𝑋 ,    1) = 𝑔𝑝𝑠(𝑋 ,    1) + 𝑔𝑝𝜖ℎ(𝑋 ,    1) + 𝑔𝑝𝛿(𝑋 ,    1) (3.10)  

Note that all three terms at the right-hand side of Eq. (3.10) are GP models, thus their outputs 

are Gaussian random variables with given values of 𝑋  and    1, so that the crack growth Δ  
𝑐 is 

also a Gaussian variable. In our computation, the standard deviation of this Gaussian variable is 

less than 1% of its mean value, so that the probability that Eq. (3.10) gives a negative crack growth 

is almost zero. 

Eq. (3.10) is for one cycle. The final crack length is predicted by applying Eq. (3.10) at all 

cycles sequentially and using   =    1 + Δ  
𝑐. Since the crack growth Δ  

𝑐(𝑋 ,    1) is the sum 

of three Gaussian distributions, the crack growth in each cycle is stochastic so the starting crack 

length for each cycle is also stochastic. But this stochastic starting crack length will make the 

application of Eq. (3.10) tedious due to the nesting of Monte Carlo sampling loops from one cycle 

to another. Since this numerical example is mainly used to illustrate the proposed framework of 

contribution assessment, we simply use the mean value of    1 to compute the crack growth; the 

uncertainty in    is the accumulated uncertainty from the three GP models.  Specifically, each of 

the three Gaussian distributions on the right hand side of Eq. (3.10) are separated into the sum of 

its mean value and a zero mean Gaussian distribution: 

 

𝑔𝑝𝑠(𝑋 ,    1) = 𝜇𝑠(𝑋 ,    1) + 𝑔𝑝𝑠
0(𝑋 ,    1) 

𝑔𝑝𝜖ℎ(𝑋 ,    1) = 𝜇𝜖ℎ(𝑋 ,    1) + 𝑔𝑝𝜖ℎ
0 (𝑋 ,    1) 

𝑔𝑝𝛿(𝑋 ,    1) = 𝜇𝛿(𝑋 ,    1) + 𝑔𝑝𝛿
0(𝑋 ,    1) 

(3.11)  

The crack length prediction    after the 𝑡-th cycle is assumed to be the sum of a mean value 

𝜇𝐴𝑡 and three zero mean Gaussian distributions: 



 53 

   = 𝜇𝐴𝑡 +∑ 𝑔𝑝𝑠
0(𝑋 , 𝜇𝐴𝑡−1)

 

1
+∑ 𝑔𝑝𝜖ℎ

0 (𝑋 , 𝜇𝐴𝑡−1)
 

1
+∑ 𝑔𝑝𝛿

0(𝑋 , 𝜇𝐴𝑡−1)
 

1
 (3.12)  

where: 

 

𝜇𝐴𝑡 = 𝜇𝐴𝑡−1 + 𝜇𝑠(𝑋 , 𝜇𝐴𝑡−1) + 𝜇𝜖ℎ(𝑋 , 𝜇𝐴𝑡−1) + 𝜇𝛿(𝑋 , 𝜇𝐴𝑡−1) for 𝑡 ≥ 2 

𝜇𝐴𝑡 = 𝑎0 + 𝜇𝑠(𝑋 , 𝑎0) + 𝜇𝜖ℎ(𝑋 , 𝑎0) + 𝜇𝛿(𝑋 , 𝑎0) for 𝑡 = 1 

(3.13)  

Eq. (3.12) is the prediction model used in this numerical example. In Eq. (3.12), ∑ 𝑔𝑝𝑠
0(𝑋 ,    1)

𝑖
1  

is the variable of accumulated surrogate model uncertainty, denoted as 𝑆 
𝑎; ∑ 𝑔𝑝𝜖ℎ

0 (𝑋 ,    1)
 
1  is 

the variable of accumulated discretization error uncertainty, denoted as 𝜖ℎ
𝑎
 
; ∑ 𝑔𝑝𝛿

0(𝑋 ,    1)
𝑖
1  is 

the variable of accumulated mode discrepancy uncertainty, denoted as 𝛿 
𝑎. Auxiliary variables will 

be introduced to assess the contribution of 𝑆 
𝑎, 𝜖ℎ

𝑎
 
 and 𝛿 

𝑎 to the uncertainty of   . 

3.4.2 Contribution Assessment of Each Uncertainty Source 

First, the uncertainty in the final crack length  𝑁𝑡  is from the time series input represented by 

an ARMA model, including the natural variability in ARMA model and the epistemic uncertainty 

in the ARMA parameters. Second, for a given time series input, the uncertainty in  𝑁𝑡  is from the 

three accumulative error terms in Eq. (3.12). Based on Eqs. (3.3) and (3.6), the deterministic 

functions required in global sensitivity analysis are: 

  𝑁𝑡 =  (𝑎0, �̅�, 𝝓, 𝜽, 𝜎𝜖 , 𝑈𝑆, 𝑈𝜖ℎ , 𝑈𝛿 , 𝑈𝜖)   for uncontrolled-seed method (3.14)  

  𝑁𝑡 =  (𝑎0, �̅�, 𝝓, 𝜽, 𝜎𝜖 , 𝑈𝑆, 𝑈𝜖ℎ , 𝑈𝛿 , 𝑈𝐾)   for controlled-seed method (3.15)  

The evaluations of Eqs. (3.14) and (3.15) follow the steps in Section 3.3.2 and Section 3.3.3, 

respectively. 

Case 1: Uncontrolled-seed method vs. controlled-seed method with known ARMA model 
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Figure 3.11 Theoretical and sampling autocorrelation function for ARMA(1, 1) model 

This section assumes that the time series input is an ARMA(1, 1) model. The distributions of 

ARMA parameters are assumed as �̅�~𝑁(−2, 0.22) ,  𝜙1~𝑁(0.5, 0.1
2) ,  𝜃1~𝑁(0.75, 0.1

2) , 

𝜎𝜖~𝑈(0.1, 0.5) and they are uncorrelated. To make the uncontrolled-seed method computationally 

affordable, we assume that the time series input only has 10 time steps. Assuming that 100 time 

series histories are adequate to represent the ARMA model with given parameters, Eq. (3.13) 

generates 𝑁 = 100 time series in each function evaluation and Eq. (3.14) sets the distribution of 

seed as 𝐾~𝑈𝑑(1, 100) . This assumption can be verified by checking the consistency of the 

autocorrelation function 𝑅𝑠(𝜏) based on 100 sample histories and the theoretical autocorrelation 

function 𝑅(𝜏) of ARMA(1, 1) model with the given ARMA parameters. The comparison of 𝑅𝑠(𝜏) 

and 𝑅(𝜏) is shown in Figure 3.11 for a ARMA model with  �̅� = −2, 𝜙1 = 0.5, 𝜃1 = 0.75 and 

𝜎𝜖 = 0.1, where 𝑅𝑠(𝜏) are computed based on 100 sample histories with initial seed values ranging 

from 1 to 100. In Figure 3.11, 𝑅𝑠(𝜏) and 𝑅(𝜏) is consistent, so our assumption of 100 sample 

histories is reasonable. 
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Table 3.2 Global sensitivity analysis for case 1 

  First-order effects Total effects 

 Methods Uncontrolled-seed Controlled-seed Uncontrolled-seed Controlled-seed 

 𝑛  120 500 120 500 

 Time (hrs.) 17.4 3.0 17.7 3.1 

   

 

Indices 

 

 

 

 

 

 

𝑎0 0.073 0.075 0.086 0.084 

�̅� 0.107 0.100 0.297 0.290 

𝜙1 0.497 0.484 0.735 0.737 

𝜃1 0.000 0.000 0.001 0.001 

𝜎𝜖 0.004 0.006 0.032 0.039 

𝑈𝑆 0.000 0.000 0.000 0.000 

𝑈𝜖ℎ  0.000 0.000 0.000 0.000 

𝑈𝛿  0.000 0.000 0.000 0.000 

𝑈𝜖/𝑈𝐾 0.051 0.055 0.068 0.072 

The result of GSA using both the uncontrolled-seed and controlled-seed method are reported in 

Table 3.2. Both the first order and total effects indices can be reported since all the variables in 

this example are uncorrelated. 

Table 3.2 shows consistent results between the two methods: 1) the indices for the same 

uncertainty source using different methods are very close; 2) both 𝑈𝜖  in the uncontrolled-seed 

method and 𝑈𝐾 in the seed method equivalently capture the natural variability in time series input; 

3) 𝜙1 is the most dominant variable in the prediction uncertainty. The slight difference between 

the indices for the same uncertainty source is mainly caused by the limited number of samples in 

the uncontrolled-seed method (𝑛 =120). But if we also apply 500 samples for the uncontrolled-

seed method, its time cost will be over unaffordable 300 hours. This also proves the efficiency of 

the controlled-seed method. 

Case 2: Correlation vs. non-correlation with calibrated ARMA model 
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Figure 3.12 shows a synthetic time history generated as observed data. The loading at each 

cycle includes a maximum value and a minimum value. Figure 3.12 only shows the minimum 

value at each cycle since the maximum values are assumed to be zero. 

 
Figure 3.12 Synthetic time series data 

An ARMA(2, 2) model is selected to model this time series input. The parameters of the 

ARMA(2, 2) model are  �̅�, 𝝓 = {𝜙1, 𝜙2}, 𝜽 = {𝜃1, 𝜃2} and 𝜎𝜖. Prior distributions are assumed for 

the ARMA model parameters, and posterior distributions are obtained from Bayesian calibration 

using Markov Chain Monte Carlo (MCMC) sampling [78].  

The marginal PDFs of the priors and the posterior distributions are shown in Figure 3.13. The 

posteriors of some ARMA parameters are highly correlated, as shown in bold in the correlation 

matrix of  

Table 3.3. For example, the correlation between 𝜙1 and 𝜙2 is -0.8. This can also be explained 

physically: one criterion to guarantee the stationarity of the ARMA(2, 2) model is 𝜙1 + 𝜙2 < 1 

[40], i.e., a larger 𝜙1 requires a smaller 𝜙2 thus indicates a negative correlation between them. The 

correlation of ARMA parameters has a significant influence on assessing the contribution of each 

uncertainty source, as shown later. 
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Figure 3.13 Prior and posterior distributions of ARMA parameters 

 

Table 3.3 Correlation matrix of ARMA parameters 
 

�̅� 𝜙1 𝜙2 𝜃1 𝜃2 𝜎𝜖 

�̅� 1.000 0.174 0.451 0.082 -0.134 0.004 

𝜙1 0.174 1.000 -0.800 0.059 -0.125 -0.082 

𝜙2 0.451 -0.800 1.000 -0.004 0.033 0.080 

𝜃1 0.082 0.059 -0.004 1.000 -0.105 -0.400 

𝜃2 -0.134 -0.125 0.033 -0.105 1.000 0.279 

𝜎𝜖 0.004 -0.082 0.080 -0.400 0.279 1.000 

By assuming that 100 samples of the time series are adequate to represent the ARMA model 

with given parameters, Eq. (3.13) generates 100 time series in each evaluation and Eq. (3.14) sets 

the distribution of seed as 𝐾~𝑈𝑑(1, 100). 

Table 3.4. Global sensitivity analysis: First-order indices for example 2 

 𝑎0 �̅� 𝜙1 𝜙2 𝜃1 𝜃2 𝜎𝜖 𝑈𝑆 𝑈𝜖ℎ 𝑈𝛿  𝑈𝐾  

Corr. ignored 0.001 0.055 0.249 0.314 0.000 0.000 0.000 0.000 0.000 0.000 0.001 

Corr. considered 0.291 0.002 0.001 0.000 0.003 0.002 0.002 0.001 0.001 0.005 0.525 

In addition to the longer time series input (200 verses 10), this example is different from the 

previous one regarding the correlation of ARMA parameters. To show the impact of this 
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correlation, two results of the global sensitivity analysis are shown in Table 3.4. One result 

intentionally uses the marginal distributions in Figure 3.13 and ignores the correlation in ARMA 

parameters and another correctly considers the correlation. Only the first-order indices are reported 

since the total effects indices are not applicable for correlated variables. This example only uses 

the controlled-seed method since the uncontrolled-seed method is not affordable for a time series 

with 200 cycles, given the computational resources available. 

  
(a) Correlation = -0.8 (b) Correlation ignored 

Figure 3.14 Scatter plot of 𝝓𝟏 and 𝝓𝟐 

The indices in Table 3.4 indicate the impact of ARMA parameter correlation in assessing the 

contribution of each uncertainty source. The result ignoring correlation misleads us to take 𝜙1 and 

𝜙2  as the dominant factors, while actually their contribution reduces when the correlation is 

considered. The reason for this overestimation can be revealed by the scatter plots in Figure 3.14; 

the scatter width of 𝜙1 and 𝜙2 is much narrower due to the correlation of -0.8 between them, so 

the uncertainty caused by them in the prediction is reduced significantly. 

In the result considering correlation, the important uncertainty sources are initial crack size 𝑎0 

and time series input natural variability 𝑈𝐾. The indices for ARMA model parameters are all small, 
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indicating that collecting more time series data cannot help us reduce uncertainty in the final crack 

length prediction. 

In this example, the sensitivity indices for surrogate model error (captured by 𝑈𝑆), discretization 

error (captured by 𝑈𝜖ℎ) and model form error (captured by 𝑈𝛿) are very small because our GP 

models are quite accurate and the variance of the GP model prediction is very small. Here the GP 

models reach high accuracy because 1) they have only two inputs (load and crack length); and 2) 

the crack growth is a smooth function with weak non-linearity. Thus 25 training points were 

enough to achieve very low prediction variance. 

3.5 Summary 

Various uncertainty sources arise at different steps in the computational prediction of the system 

response, including surrogate model uncertainty, model discrepancy, model input uncertainty, etc. 

Some uncertainty sources are aleatory and some are epistemic. In this research, global sensitivity 

analysis (GSA) based on Sobol’ indices is used to quantify the contribution of each uncertainty 

source. One challenge is that under aleatory and epistemic uncertainty the prediction model is 

stochastic whereas the Sobol’ indices computation requires a deterministic model. Another 

challenge is that with time series input the GSA will be extremely high-dimensional since each 

time step introduces a random noise term in the ARMA model. 

To solve the first challenge, this research uses the auxiliary variable to represent each 

uncertainty source explicitly and establish the required deterministic function such that the Sobol’ 

indices can be computed. Based on the auxiliary variable, this research proposes an uncontrolled-

seed method to solve the second challenge, by defining a single variable to represent the natural 

variability in the time series input, thus reducing the problem dimension.  Furthermore, a novel 

controlled-seed method is proposed based on the concept of pseudo-random number generation. 
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This method requires computing only one history in each function evaluation thus the computation 

of the Sobol’ indices is significantly accelerated. These contributions help to assess the 

contributions of each aleatory and epistemic uncertainty source to the uncertainty in the time series 

prediction, such as fatigue crack growth.  
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CHAPTER 4  

 

UNCERTAINTY INTEGRATION AND RESPONSE PREDICTION IN MULTI-LEVEL 

PROBLEMS 

 

4.1 Background 

Parameters of computational models are often calibrated using experimental data. For a 

complicated system, it may be difficult to conduct full-scale experiments, but it may be possible 

to obtain data at lower levels of complexity (e.g., isolated physics or simpler configurations). 

Figure 4.1 shows such a multi-level problem with two lower levels (𝐺1, 𝐺2) and a system level (𝐻). 

The lower levels and the system level constitute a hierarchy, and different levels have the same set 

of model parameters (𝜽𝑚) that need to be calibrated.  

 
Figure 4.1 Multi-level parameter estimation problem 

In order to predict the system level output when data are only available at lower levels, a 

reasonable route is to quantify the model parameters using lower level data and propagate the 

results through the computational model at the system level. Several issues need to be addressed 

in realizing such a multi-level parameter estimation problem. First, even if model input and output 

are measured in the lower level tests, thereby forming pairwise input-output data, the calibration 

result can still be uncertain due to several sources, including 1) model errors in the lower level 

computational models; 2) measurement errors in the experiments; and 3) sparse experimental data. 

Data at Level 1

𝜽𝑚

𝐺1

𝐺2

𝐻

Data at Level 2

System output?
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Second, the existence of multiple lower levels provides multiple possibilities to conduct model 

calibration and leads to multiple calibration results. In a multi-level problem, model calibration 

can be conducted using the data from a single level or multiple levels. For the problem in Figure 

4.1 with two lower levels, 3 calibration options are possible: 1) calibration using the data and 

model from Level 1 alone; 2) calibration using the data and model from Level 2 alone, and 3) 

calibration using the data and models from both Level 1 and Level 2. Generally, if data are 

available at 𝑛  different levels, 2𝑛 − 1  model calibration options are possible to quantify the 

uncertainty of model parameters [79]. 

As introduced in Section 2.5, this research uses Bayesian inference for model calibration, thus 

the result of model calibration is a joint posterior distribution of model parameters. As Kennedy 

and O’Hagan [32] pointed out, the posterior distribution is the “best-fitting” results in the sense of 

representing the calibration data faithfully, not necessarily representing the true physical values. 

The main objective of this research is to determine the appropriate distribution for model 

parameters 𝜽𝑚 to be used in system level prediction. One possibility is to use all the lower level 

data in model calibration and propagate the resultant posterior distribution to predict the system 

level output. However, this result is conditioned on the event that both the models at Level 1 and 

Level 2 are valid, which may or may not be true [80]. This research answers this question by 

assigning a “confidence” measure to each posterior distribution. Note that this research is not using 

the term “confidence” in the same sense as is used in statistics (as in confidence interval). This 

“confidence” measure constitutes of two components: 1) the model validity at the corresponding 

lower level (one can think of this as local confidence regarding each lower level); 2) the 

relationship between the lower level and the system level, i.e., the relevance of the posterior 

distribution obtained at the lower level to the system level prediction problem (one can think of 
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this as inter-level confidence). The relationship between two lower levels can be also important. 

However, this relationship is not considered here since in this research the obtained information in 

a lower level is extrapolated to the system level, but not to another lower level. 

Before quantifying the local confidence, the relationship between model calibration and model 

validation should be clarified. This topic has been covered in Section 2.5, and can be summarized 

as: 

1. The purpose of model calibration is to adjust a set of parameters associated with a 

computational model so that the agreement between model prediction and experimental 

observation is maximized [41]. 

2. Model validation is the process of determining the degree to which a model is an 

accurate representation of the real world from the perspective of the intended uses of 

the model. Generally, model validation is realized by comparing the model prediction 

against experimental data. 

3. Model calibration and model validation are distinct activities. But usually, before model 

validation, model calibration can be conducted to quantify the values of 𝜽𝑚 or reduce 

the uncertainty about their values. 

With the calibration and validation perspectives to be used in this research defined as above, 

the reason to use model validation to quantify the local confidence is explained next. In model 

validation, the assessed model validity of the corrected prediction model  (𝜽𝑚; 𝒙) + 𝛿(𝒙) at a 

lower level is a combined effect of three components: 1)  (𝜽𝑚; 𝒙); 2) 𝛿(𝒙); and 3) the posterior 

distribution of 𝜽𝑚. The third aspect corresponds to the “local confidence” (not to be confused with 

confidence intervals used in statistics), thus this research takes the model validity as one factor 

affecting our confidence in extrapolating the posterior distribution of the model parameter from 
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the lower level to the system level. This is reasonable since the model parameter has been 

calibrated with a model corresponding to the lower level experiment, and it is important to know 

whether the model was calibrated accurately; the calibration result is obviously affected by how 

accurately the lower level model represents the physics in the lower level experiment. 

Model validation is about comparing the model prediction against experimental data, and a 

model validation metric is needed to quantify this comparison. 

The model validation metric used in this research is the model reliability metric proposed by 

Rebba and Mahadevan [52] and further developed by Sankararaman and Mahadevan [53]. This 

metric measures the model validity by “model reliability”, which is defined as the probability that 

the difference between model prediction and observed data is less than a pre-defined tolerance. 

Here the model prediction is stochastic, whose uncertainty is caused by the uncertainty in the 

posterior distribution of model parameters as well as the uncertainty regarding the model error. In 

other words, the model reliability metric considers the combined effect of these two sources of 

uncertainty. The value of model reliability is between 0 and 1, thus it can be conveniently used as 

a weighting term in subsequent uncertainty integration across multiple levels.  

For a given validation data point, the model reliability is a deterministic value. However, its 

value is different for different data points.  To capture this variability in model reliability, this 

research proposes a stochastic model reliability metric where the model reliability is treated as a 

random variable instead of a deterministic value. In addition, this research extends the model 

reliability metric to handle the multivariate output. 

As mentioned earlier, the inter-level confidence to extrapolate a lower level posterior 

distribution to the system level is about the relationship between the lower level and the system 

level. In this research, the relationship between the lower level and the system level is quantified 
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by a proposed relevance analysis. The necessity of relevance analysis is explained here. An 

inherent assumption in the proposed relevance analysis is that if the physical configuration and 

inputs of a lower level experiment (say Level 2 in Figure 4.1) is more similar to the system level 

than another lower level experiment (say Level 1 in Figure 4.1), it is reasonable to assign higher 

confidence to the calibration result at this level (i.e., Level 2). Thus the relevance of the lower level 

to the system level is the degree to which the experimental configuration and inputs at a lower 

level reflect the physical characteristics of the system so that the calibration results can be reliably 

used in the system level prediction. The relevance decides the inter-level confidence on the 

calibration at lower levels and influences the uncertainty integration. This research proposes a 

method to quantify the relevance using Sobol’ indices and the cosine similarity of sensitivity 

vectors. 

With the local confidence and inter-level confidence quantified, uncertainty integration is 

needed to aggregate all the available information from model calibration, model validation (for 

local confidence) and relevance analysis (for inter-level confidence). A roll-up methodology for 

uncertainty integration was proposed in Ref. [80], which results in the integrated distribution of 

model parameters as a weighted average of the posterior distributions, and the weight terms are 

the model reliability at lower levels. A brief introduction to this methodology is given in Section 

4.5, and this research extends it to incorporate more information from the lower levels, including 

1) the stochastic model reliability; and 2) the relevance between any lower level and the system 

level. 

In summary, the motivation of this research is to quantify the distributions of model parameters 

to be used in system level prediction, by using the available information at multiple levels from 

model calibration, model validation, relevance analysis, and uncertainty integration. The posterior 
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distributions of model parameters are computed by Bayesian inference. The integration of multiple 

posterior distributions for each model parameter is assisted by model validation and relevance 

analysis and realized in a proposed new roll-up method. This research develops a methodology to 

compute the relevance using Sobol’ indices and cosine similarity of vectors. In model validation, 

the model reliability metric is extended to capture the variability in model reliability among 

different validation points and to consider multivariate output. Finally, the integrated distributions 

of model parameters are propagated through the computational model at the system level to predict 

the system output and quantify its uncertainty. 

4.2 Model Calibration 

Model calibration has been covered in Section 2.5.1. However, since calibration is the first step 

of the proposed methodology in this section, a brief summary is given here for the sake of 

completeness. 

Suppose the physical input-output relationship at a single level is described by a computational 

model  𝑐 =  (𝜽𝑚; 𝑿), where  𝑐 is the computational model output, and 𝜽𝑚 is a set of unknown 

model parameters, and 𝑿 is the model input. Kennedy and O’Hagan (KOH) [32] expressed the 

relationship between the experimental observation 𝑧 and the computational model as: 

 𝑍 =  (𝜽𝑚; 𝑿) + 𝛿(𝑿) + 𝜖𝑚 (4.1)  

where 𝛿(𝑿) is the model error (input-dependent); 𝜖𝑚 is the measurement error which is usually 

assumed to be Gaussian distribution 𝑁(0, 𝜎𝑚
2 ). The model error 𝛿(𝑿) can be modeled using 

different formulations [31], which introduces more parameters. In addition, to reduce the 

computational effort, the computational model  (𝜽𝑚; 𝑿) may be replaced by a surrogate model, 

and this research uses the GP model. The parameters of 𝛿(𝑿)  and the surrogate model for 
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 (𝜽𝑚; 𝑿) are also uncertain and need to be estimated. These parameters are also called hyper-

parameters to distinguish them from model parameters 𝜽𝑚. In sum, all the parameters to calibrate 

include: 1) model parameters 𝜽𝑚; 2) hyper-parameters in the surrogate model for  (𝜽𝑚; 𝑿); 3) 

hyper-parameters 𝜽𝛿  of the model error 𝛿(𝑿); and 4) standard deviation 𝜎𝑚 of 𝜖𝑚. The presence 

of so many calibration parameters is challenging if calibration data are sparse. 

This research ignores the hyper-parameter uncertainty in the GP model of  (𝜽𝑚; 𝑿) for three 

reasons: 1) enough training points are used to build an accurate GP model with small variance in 

the GP prediction, thus the hyper-parameter uncertainty is expected to be small; 2) considering 

this hyper-parameter uncertainty will bring enormous computational effort [81] in model 

calibration and validation, whereas this hyper-parameter uncertainty is not the focus of this 

research; and 3) the uncertainty in the hyper-parameters is typically negligible compared to actual 

model parameters [82]. Thus we first estimate the hyper-parameters of the GP model and then fix 

them as deterministic values in the subsequent calibration of model parameters 𝜽𝑚. In addition, if 

the model input is fixed, then the input dependent model discrepancy 𝛿(𝑿) will become a single 

parameter 𝛿. In the numerical example of this section, for each lower level calibration test, the 

model/experimental input is fixed and so the vector of calibration parameters 𝜽 includes: 1) model 

parameters 𝜽𝑚; 2) model error 𝛿; and 3) the standard deviation 𝜎𝑚 of measurement error 𝜖𝑚. 

In a multi-level problem, each lower level may provide data for multivariate output quantities, 

and each output quantity at any level has a corresponding model error 𝛿(𝑿) and measurement error 

standard deviation 𝜎𝑚 to be calibrated. In Figure 4.1, if calibration data consist of two output 

quantities at Level 1, model calibration includes two model error terms and two measurement error 

terms; and if two output quantities at Level 2 are also included for calibration, model calibration 

includes four model error terms and four measurement error terms. 
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For the model error 𝛿(𝑿), we need to select the prior distribution for each hyper-parameter in 

the above formulation. But if model input 𝑿 is fixed and the hyper-parameters are fixed, we only 

need to select a prior distribution for 𝛿. In the numerical example in Section 4.6, since there is no 

information available on 𝛿, a uniform prior distribution is assumed as 𝛿~𝑈(𝑎, 𝑏) where 𝑎 and 𝑏 

are the lower and upper bounds of the uniform distribution. The prior distribution of 𝜎𝑚 is chosen 

as the non-informative Jeffrey’s prior 𝑝′(𝜎𝑚) ∝ 1/𝜎𝑚 , which is invariant under re-

parameterization [83]. In addition, the prior distributions for 𝜽𝑚 are constructed based on expert 

opinion. 

With prior distributions for 𝜽 = {𝜽𝑚, 𝜽𝛿 , 𝜎𝑚} defined and experimental data at lower levels 

obtained, the Bayesian inference expresses the posterior distribution of 𝜽 as: 

 𝑝′′(𝜽) =
𝐿(𝜽)𝑝′(𝜽)

∫ 𝐿(𝜽)𝑝′(𝜽) d𝜽
 (4.2)  

where 𝐿(𝜽) is the likelihood function of 𝜽 and 𝑝′(𝜽) is the joint prior PDF of 𝜽. The samples of 

𝑝′′(𝜽) are often generated numerically by Markov Chain Monte Carlo (MCMC) methods [78]. 

Note that if the computational model  (𝜽𝑚; 𝑿)  is replaced by a GP model 

𝐺𝑃(𝜽𝑚; 𝑿)~𝑁(𝜇𝑠(𝜽𝑚; 𝑿), 𝜎𝑠
2(𝜽𝑚; 𝑿)) , this research not only considers its mean prediction 

𝜇𝑠(𝜽𝑚; 𝑿)  but also its variance 𝜎𝑠
2(𝜽𝑚; 𝑿) . Therefore Eq. (4.1) will change to 𝑍 =

𝑁(𝜇𝑠(𝜽𝑚; 𝑿), 𝜎𝑠
2(𝜽𝑚; 𝑿)) + 𝛿(𝑿) + 𝑁(0, 𝜎𝑚

2 ), and the likelihood function 𝐿(𝜽) is established 

based on this modified equation so that the surrogate model uncertainty is also incorporated in 

model calibration. 



 69 

4.3 Model Validation 

As mentioned in Section 4.1, a multi-level problem with 𝑛 lower levels can provide 2𝑛 − 1 

alternative model calibration results, but model calibration cannot answer the question regarding 

how to integrate them. Thus model validation is necessary to assess the validity of the model 

calibration before using the calibrated model parameters for system output prediction. 

In this research, the basic concept in uncertainty integration is to combine all the information 

from lower levels and results in an integrated distribution of model parameter 𝜃 as the weighted 

average of multiple posterior distributions. To make the integrated distribution as a valid PDF, the 

sum of the weight terms computed in model validation should be unity. The model reliability 

metric directly satisfies this requirement and is selected in this research. 

Section 4.3.1 introduces the model reliability metric; Section 4.3.2 extends it to consider the 

model reliability as a stochastic variable to aggregate the validation results at different validation 

points, and Section 4.3.3 extends the model reliability metric to deal with multivariate output 

4.3.1 Model Reliability Metric 

In model reliability metric, for a specific application, the model is defined to be valid if the 

difference between the model prediction 𝑦 and the corresponding validation measurement is less 

than a predefined tolerance 𝜆. Due to the measurement error (𝜖𝑚~𝑁(0, 𝜎𝑚
2 )), the measurement is 

actually a random variable. For a single observed value 𝑑, this random variable is denoted by   

with mean value 𝑑 and standard deviation 𝜎𝑚, i.e.  ~𝑁(𝑑, 𝜎𝑚
2 ). Let 𝐺 denote the event that the 

model is valid, then the model reliability is defined as the probability of event 𝐺: 

 𝑃(𝐺|𝑑) = 𝑃(| − 𝑑| < 𝜆) (4.3)  
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The probability in Eq. is used as a metric to measure model validity, thus this metric is named 

as “model reliability metric”. If   and 𝜎𝑚  are deterministic, Eq. (4.3) computes the model 

reliability where 휀 is a dummy variable for integration: 

 𝑝(𝐺|𝑑) = ∫
1

𝜎𝑚√2𝜋
exp [−

(휀 − ( − 𝑑))2

2𝜎𝑚2
]

𝜆

 𝜆

 d휀 (4.4)  

In this research, the model prediction 𝑦 refers to the computational model output corrected by 

the model error, i.e.,  =  (𝜽𝑚; 𝑿) + 𝛿(𝑿) . Although model input 𝒙  is known, the model 

prediction 𝑦  is still stochastic due to the uncertainty of 𝛿(𝑿)  and 𝜽𝑚 . Furthermore, another 

calibration parameter 𝜎𝑚 can be also uncertain. In this case, the model reliability is: 

 𝑃(𝐺|𝑑) = ∫𝑃(𝐺|𝜽, 𝑑)𝑝′′(𝜽) d𝜽 (4.5)  

where 𝑃(𝐺|𝜽, 𝑑) is given by the right side of Eq. (4.4), and 𝑝′′(𝜽) is the joint posterior distribution 

of 𝜽 = {𝜽𝑚, 𝜽𝛿 , 𝜎𝑚}. Note that if the computational model  (𝜽𝑚; 𝑿) is replaced by a GP model 

𝐺𝑃(𝜽𝑚; 𝑿)~𝑁(𝜇𝑠(𝜽𝑚; 𝑿), 𝜎𝑠
2(𝜽𝑚; 𝑿)) , this research not only considers its mean prediction 

𝜇𝑠(𝜽𝑚; 𝑿)  but also its variance 𝜎𝑠
2(𝜽𝑚; 𝑿),  thus the model prediction will be  =

 𝑁(𝜇𝑠(𝜽𝑚; 𝑿), 𝜎𝑠
2(𝜽𝑚; 𝑿)) + 𝛿(𝑿). Then the model reliability in Eq. (4.4) is computed based on 

this formula so that the surrogate model uncertainty is also incorporated in model validation. 

Eqs. (4.4) and (4.5) are only suitable for a single observed value 𝑑 from an output quantity. If 

multiple data points are observed for an output quantity (i.e., multiple validation experiments), 

then Eqs. (4.4) and (4.5) are not correct. Model validation is further complicated if experimental 

data are observed for a multivariate output and multiple validation data points are available. 

Therefore the concept of the model reliability metric needs to be extended to deal with multiple 
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data points and multivariate output. The first issue will be addressed in Section 4.3.2 by proposing 

a stochastic model reliability metric, while the second issue will be addressed in Section 4.3.3. 

4.3.2 Stochastic Model Reliability Metric 

As shown in Eqs. (4.4) and (4.5), the value of model reliability 𝑃(𝐺) is deterministic at a single 

data point  , but changes over different data points. If model inputs 𝑿 of these data points are 

known, a mathematical function 𝑃(𝐺|𝑿) = 𝑆(𝑿) can be established where 𝑃(𝐺|𝑿) is the model 

reliability at model input 𝑿. However, this function may be not accurate due to validation data 

sparseness (only five validation points are available in the numerical example in Section 4.6). Thus 

constructing a mathematical function for model reliability (as a function of 𝑿) is not considered in 

this research. Instead, this research uses a probability distribution to represent the variability in 

𝑃(𝐺), and this distribution is constructed using the model reliability values at different validation 

data points. (The first option could be considered if a large number of validation experiments are 

conducted). 

In this research, model reliability 𝑃(𝐺) is assumed to have a beta distribution since 𝑃(𝐺) ∈

[0,1]  and the sample space of beta distribution is also the interval [0,1] . If a data set 𝒅 =

{𝑑1, 𝑑2, ⋯ , 𝑑𝑛} of one output quantity is observed for model validation from 𝑛 experiments with 

different inputs, the corresponding model reliability values computed by Eq. (4.5) at each 

experiment are 𝒅𝑅 = {𝑑𝑅1, 𝑑𝑅2, ⋯ , 𝑑𝑅𝑛}. Using 𝒅𝑅, several methods can be used to construct the 

PDF of model reliability, such as the method of maximum likelihood, method of moments, or 

Bayesian inference. This research uses the method of moments to construct the PDF of 𝑃(𝐺). In 

summary, this approach gives a stochastic representation of model reliability, i.e., 𝑃(𝐺) is not a 

single value but represented by a probabilistic distribution. The next section extends the model 

reliability metric to deal with multivariate output. 
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4.3.3 Extension to Multivariate Output 

If K output quantities are observed in a validation experiment, we have a set of K models sharing 

the same model input and model parameters: 

 𝒀 = 𝑭(𝜽𝑚; 𝑿) + 𝜹(𝑿) ↔ {

 1 =  1(𝜽𝑚; 𝑿) + 𝛿1(𝑿)

 2 =  2(𝜽𝑚; 𝑿) + 𝛿2(𝑿)
⋯

 𝐾 =  𝐾(𝜽𝑚; 𝑿) + 𝛿𝐾(𝑿)

 (4.6)  

where  𝑗(𝜽𝑚; 𝑿) and 𝛿𝑗(𝑿) (𝑗 = 1 to 𝐾) are the computational model and model error of the 

𝑗 ℎquantity. Each quantity also has a measurement error 𝜖𝑚𝑗
~𝑁(0, 𝜎𝑚𝑗

2 ) and the corresponding 

variable 𝑍𝑗 =  𝑗 + 𝑁(0, 𝜎𝑚𝑗

2 ) representing the measurement. We denote 𝒁 = {𝑍1, … , 𝑍𝑗 , … 𝑍𝐾}
𝑇

. 

Assume that 𝑛 experiments are conducted. In the 𝑖 ℎ experiment (𝑖 = 1 to 𝑛), data points for K 

quantities form a data set 𝒅𝑖 = {𝑑𝑖1, … , 𝑑𝑖𝑗 , … , 𝑑𝑖𝐾}
𝑇
. In addition, the pre-defined tolerance for 

each quantity is included in a vector 𝝀 = {𝜆1, … , 𝜆𝑗 , … , 𝜆𝐾}
𝑇
. 

The distance between 𝒁 and 𝒅𝑖  can be measured by multiple distance functions such as the 

Euclidean distance, Chebyshev distance, Manhattan distance, and Minkowski distance [84]. This 

research uses the Mahalanobis distance [85]. The Mahalanobis distance between 𝒁  and 𝒅𝑖  is 

defined as 𝑀 = √(𝒁 − 𝒅𝑖)𝑇𝚺𝒁
 1(𝒁 − 𝒅𝑖)  where 𝚺𝒁  is the covariance matrix of 𝒁 . The 

Mahalanobis distance transfers 𝒁 and 𝒅𝑖 into the normalized principal component (PC) space [85] 

by using 𝚺𝒁
 1 . Compared to other distance functions, the Mahalanobis distance brings two 

advantages: 1) the correlations between output quantities are considered; and 2) the output 

quantities are normalized to the same scale to prevent any quantity from dominating the metric 

simply due to large numerical values. Using the Mahalanobis distance, the model reliability for 

multivariate output is defined as: 
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 𝑃(𝐺|𝒅𝑖) = 𝑃(𝑀 < 𝜆𝑀) = 𝑃 (√(𝒁 − 𝒅𝑖)𝑇𝚺𝒁
 1(𝒁 − 𝒅𝑖) < √𝝀𝑇𝚺𝒁

 1𝝀) (4.7)  

where 𝜆𝑀 = √𝝀𝑇𝚺𝒁
 1𝝀 is the normalized tolerance. 

Generally, the posterior distributions obtained in model calibration are numerical samples 

generated by MCMC, so the subsequent model reliability in Eqs. (4.4) and (4.5) is also computed 

numerically. Numerical computation also facilitates the realization of the extended model 

reliability in Eq. (4.7). Here the model reliability is expressed as: 

 

𝑃(𝐺|𝒅𝑖) = 𝑃(𝑀 < 𝜆𝑀|𝒅𝑖) = ∫ 𝑝(𝑀|𝒅𝑖)d𝑀
𝜆𝑀

0

 

= ∫ (∫𝑝(𝑀|𝒅𝑖 , 𝜽)𝑝′′(𝜽)d𝜽) d𝑀
𝜆𝑀

0

 

(4.8)  

Eq. (4.8) indicates a numerical algorithm to compute the model reliability: 

1. Generate a random sample of 𝜽 from its posterior distribution 𝑝′′(𝜽); 

2. Generate a sample of 𝑀 conditioned on 𝜽 by generating a sample of 𝒁 and computing its 

Mahalanobis distance from 𝒅𝑖; 

3. Repeat steps 1 and 2 to obtain 𝑁 samples of 𝑀; these samples can be used to construct the 

distribution 𝑝(𝑀|𝒅𝑖), which is not conditioned on 𝜽; 

4. If 𝑁′ out of 𝑁 samples in step 3 satisfy 𝑀 < 𝜆𝑀, the model reliability is 𝑃(𝐺|𝒅𝑖) = 𝑁′/𝑁. 

The model reliability 𝑃(𝐺|𝒅𝑖) by Eq. (4.8) is regarding a single experiment and 𝑃(𝐺|𝒅𝑖) is a 

deterministic value. Thus 𝑛  experiments will give 𝑛  different model reliability values 

{𝑃(𝐺|𝒅1), … , 𝑃(𝐺|𝒅𝑛)} . As proposed in Section 4.3.2, these values can be used to build a 

probability distribution for the model reliability 𝑃(𝐺), by treating 𝑃(𝐺) as a random variable 

instead of a deterministic value. 
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4.4 Relevance Analysis 

Section 4.1 explains the necessity to assign a larger weight to the level physically “closer” or 

more relevant to the system level than the other. For instance, to predict the battery temperature of 

a spacecraft on the way to Mars, the data of the same quantity collected from its journey to the 

Moon will be more valuable than the data collected in any laboratory experiment on earth, since 

the former ones come from a physical environment more similar to the system of interest. Hence 

this section develops a method for relevance analysis, which measures the degree to which the 

experimental configuration and inputs at a lower level reflect the physics captured in the system-

level model. Currently, such measure is only intuitive and qualitative; an objective quantitative 

measure of relevance is needed for uncertainty integration. 

The methodology to measure relevance should have two desired features. First, the defined 

methodology needs no mathematical details of the model in each level, since the model in each 

level could be a black box. Second, the resultant relevance measure can be used conveniently as a 

weighting term in uncertainty integration. To fulfill these two criteria, a relevance analysis using 

Sobol’ indices is proposed in this section. 

Consider a model  =  (𝑿)  where 𝑿 = {𝑋1, … , 𝑋𝑁}  is a vector containing all the inputs. 

Sensitivity analysis measures the contribution of each input to the uncertainty of 𝒀 [54]. Compared 

to local sensitivity analysis, global sensitivity analysis (GSA) considers the entire probability 

distribution of the input, not just the contribution at a local point. The Sobol’ indices for GSA have 

been developed in the literature based on the variance decomposition theorem [61], including first-

order index and total effects index. For a particular input 𝑋𝑖 , its first-order index is 𝑆1
𝑖 =

𝑉( ( |𝑋𝑖))/𝑉( ); and its total effects index is 𝑆𝑇
𝑖 = 1 − 𝑉( ( |𝑿 𝑖))/𝑉( ) where 𝑿 𝑖 means 

all the inputs other than 𝑋𝑖. The first-order index 𝑆1
𝑖  measures the contribution of 𝑋𝑖 by itself, and 
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the sum of first-order indices of all inputs is always less than or equal to unity. The difference 

between this sum and unity is the contribution of the interaction among inputs. In contrast, the 

total effects index 𝑆𝑇
𝑖  contains not only the contribution of 𝑋𝑖, but also the interaction effect of 𝑋𝑖 

with other inputs. The interaction between variables will be ignored if the first-order index is used, 

thus this research uses the total effects index to develop a method to quantify the relevance. In the 

following discussion the term sensitivity index indicates the total effects index. 

Without loss of generality, this research takes the multi-level problem in Figure 4.1 for the 

illustration of relevance analysis. To predict the system output  𝑠  (such as the maximum 

acceleration at the top mass in the numerical example in Section 4.6), the same quantity is also 

measured at lower levels (in the numerical example the maximum acceleration at the top mass is 

also measured at Level 1 and Level 2). The three prediction models for this quantity at different 

levels are  𝐿1 = 𝐺𝑃𝐿1(𝜽𝑚, 𝑿𝐿1) + 𝛿𝐿1(𝑿𝐿1) ,  𝐿2 = 𝐺𝑃𝐿2(𝜽𝑚, 𝑿𝐿2) + 𝛿𝐿2(𝑿𝐿2) ,   𝐿1 =

𝐺𝑃𝐿𝑠(𝜽𝑚, 𝑿𝐿𝑠) where 𝜽𝑚 are model parameters and 𝑿𝐿1 , 𝑿𝐿2 , 𝑿𝑠 are the model inputs at each level. 

Note that 1) the computational models are replaced by the GP models to improve computational 

efficiency; 2) model errors are considered in Level 1 and Level 2; and 3) model error at the system 

level is not considered since no information on it is available. These prediction models are 

stochastic, i.e., the output is stochastic even at fixed values of model inputs and model parameters. 

However, the Sobol’ indices computation requires a deterministic model, i.e., deterministic output 

at given values of model inputs and model parameters. This research applies the auxiliary variable 

methodology based on the probability integral transform, as developed in Refs [86][59], to obtain 

a deterministic value of the output for a given realization of inputs and model parameters; thus the 

Sobol’ indices can be computed.  
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Assume model parameters, model inputs, auxiliary variables constitute 𝑁𝐿1 elements in total at 

Level 1; since each element has a corresponding sensitivity index, a 𝑁𝐿1-dimensional vector 𝑉𝐿1 

of sensitivity indices will be obtained at Level 1. Similarly, a 𝑁𝐿2-dimensional sensitivity vector 

𝑉𝐿2 will be obtained at Level 2 and a 𝑁𝑠-dimensional sensitivity vector 𝑉𝑠 will be obtained at the 

system level. 

Rigorously, measuring the relevance requires comparing the mathematical model of the lower 

level and the mathematical model of the system level. However, this comparison is not easy if the 

models at different levels have distinct formats and are addressing different physical 

configurations (3-mass-spring vs. 3-mass-spring-on-beam in the numerical example) and are under 

different inputs (sinusoidal inputs vs. random process inputs in the numerical example). Further, 

the model sometimes may be a black box; thus we cannot access its mathematical details and a 

direct comparison would be difficult. The obtained sensitivity vectors quantify the contribution of 

each model input/parameter towards the uncertainty in the model output. In other words, the 

sensitivity vector indicates which model input/parameter is more important in affecting the model 

output uncertainty. Actually, whether the model input/parameter is important is determined by the 

physics of the model, thus the sensitivity vector is a representative of the physics, to the extent that 

the model represents the physics accurately. Therefore, this research considers the sensitivity 

vector as an indicator of the physics captured in the model. (Of course, how well the physics is 

captured in the model is already indicated by the model reliability metric); thus the comparison of 

the vectors from two different levels is used to quantify the relevance between these two levels. 

One issue in the comparison of 𝑉𝐿𝑖(𝑖 = 1,2)  and 𝑉𝑠  is that they may have different sizes 

(𝑁𝐿1 , 𝑁𝐿2 , 𝑁𝑠 may not be equal to each other) and some elements in one vector may not be present 

in the other vector. The shared dimensions of 𝑉𝐿𝑖  and 𝑉𝑠  are model parameters 𝜽𝑚 ; and the 
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unshared dimensions are the different model inputs and auxiliary variables at each level. To solve 

this problem we add the unshared dimension in 𝑉𝐿𝑖  or 𝑉𝑠  to the other vectors but set the 

corresponding sensitivity indices as zero since the added dimensions have no effect in the 

computation of the original sensitivity vector. Thus all the vectors 𝑉𝐿𝑖 or 𝑉𝑠 are brought to the same 

size. 

Several methods are available to compare two vectors, such as Euclidean distance [84], 

Manhattan distance [84], Chebyshev distance [84], and cosine similarity [84,87]. To include the 

relevance in the subsequent uncertainty integration conveniently, we define the relevance index 𝑅 

as the square of cosine similarity of the sensitivity vectors, where the cosine similarity is the 

normalized dot product of two vectors: 

 𝑅 = (
𝑉𝐿𝑖 ∙ 𝑉𝑠

‖𝑉𝐿𝑖‖‖𝑉𝑠‖
)

2

 (4.9)  

In other words, the above relevance index is the square of the cosine value of the angle between 

two sensitivity vectors, the elements in which are all positive. If the angle is zero, the relevance 

between these two levels is 1; if the two vectors are perpendicular, the relevance is 0. 

In addition, this definition of relevance generates a value on the interval [0, 1]; and its 

complement, the square of the sine value, indicates physical non-relevance; hence the sum of 

“relevance” and “non-relevance” is the unity. Here the relevance index is a plausibility model for 

the proposition “The lower level model reflects the physical characteristics of the system level 

model”, and the plausibility of this proposition is the relevance index. Based on Cox’s theorem 

[88], this plausibility model is isomorphic to probability, since 1) the relevance index is a real 

value depending on the information of sensitivity vectors we obtained, and 2) the relevance index 

changes sensibly as the sensitivity vectors change. Thus the relevance index can be converted to 
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probability by scaling, which has been done since the relevance index defined in Eq. (4.9) is 

already on the interval [0, 1]. Therefore in the roll-up methodology proposed in Section 4.5, we 

treat the relevance index as a probability and conveniently include it as a weighting term in the 

uncertainty integration. 

However, the relevance index is only calculated based on the prediction models at each level, 

and data at lower levels; but no system-level observation data is assumed to be available. 

Therefore, if the system-level model does not capture the system-level physics very well, the 

relevance index cannot capture the effect of this discrepancy. Thus the proposed relevance index 

approach is not a fully physics-based approach and does not provide a comprehensive comparison 

of the actual physics at different levels. However, the sensitivity vector does provide an indication 

of the physics captured in the models through variance decomposition, and we seek to include this 

information in the distributions of those system level model parameters that are inferred using 

lower level tests and models. 

When the system-level model has additional physics, there may be additional parameters in the 

system-level model to reflect this. The sensitivity vector of the system level model will quantify 

the contribution of these additional parameters, as well as the contribution of the parameters shared 

with the lower level models. The relevance index is based on the dot product of sensitivity vectors 

for the models at two different levels. Therefore, if the additional physics parameters in the system-

level model have a significant contribution, then the physics in the Level 1 model may not be 

closely related to the physics in the system-level model. In that case, the two corresponding 

sensitivity vectors will diverge, and the relevance index of Level 1 will be small. Similarly, if the 

physics in the Level 2 model is not closely related to the physics in the system-level model, the 

relevance index of Level 2 will be small. 
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A further question arises in the computation of relevance index. Sobol’ indices consider the 

entire distribution of the influencing variable, but the posterior distribution of 𝜽𝑚 (to be used in 

system level prediction) is unknown before the uncertainty integration. In order to solve this 

problem, a straightforward iterative algorithm to compute the relevance index 𝑅 is proposed below: 

1. Set an initial value of 𝑅. 

2. Obtain the integrated distribution of each model parameter using the current relevance and 

the proposed roll-up method in Section 4.5 below. 

3. Use the integrated distributions from step 2 to compute the sensitivity indices, and re-

compute the updated relevance index 𝑅. 

4. Repeat steps 2 and 3 until the relevance index 𝑅 converges. 

Thus, the results of calibration and validation at each lower level and relevance indices between 

the lower levels and the system level have been obtained. The next task is to construct the 

integrated distribution of the system level model parameters and predict the system output. 

4.5 Uncertainty Integration and Prediction 

For a multi-level problem, the purpose of uncertainty integration is to combine all the available 

information (from calibration, validation and relevance analysis) from the lower levels and predict 

the response at the system level. In this research the information from the lower level includes: 1) 

the posterior distributions from model calibration by considering data at each individual lower 

level, as well as data from multiple lower levels; 2) the model reliability distributions from model 

validation at each lower level; and 3) the relevance indices between each lower level and the 

system level. A roll-up methodology has been proposed in Ref. [80] for uncertainty integration. 

For the multi-level problem in Figure 4.1, this methodology results in an integrated distribution 

[89] for a model parameter 𝜃 ∈ 𝜽𝑚: 



 80 

 

𝑝(𝜃| 1
𝐶,𝑉,  2

𝐶,𝑉) = 𝑃(𝐺1)𝑃(𝐺2)𝑝(𝜃| 1
𝐶 ,  2

𝐶) + 𝑃(𝐺1
′)𝑃(𝐺2)𝑝(𝜃| 2

𝐶) 

                              +𝑃(𝐺1)𝑃(𝐺2
′)𝑝(𝜃| 1

𝐶) + 𝑃(𝐺1
′)𝑃(𝐺2

′)𝑝(𝜃) 

(4.10)  

In Eq. (4.10) the integrated distribution 𝑝(𝜃| 1
𝐶,𝑉,  2

𝐶,𝑉) is a weighted average of multiple 

posterior distributions and contains four terms: in the first term the posterior distribution 

𝑝(𝜃| 1
𝐶 ,  2

𝐶) uses the calibration data of both Level 1 and Level 2 and its weight 𝑃(𝐺1)𝑃(𝐺2) is 

the probability that both of the models are valid; in the second and third terms the posterior 

distribution 𝑝(𝜃| 𝑖
𝐶) uses the calibration data at Level 𝑖 alone and its weight is the probability that 

the model at Level 𝑖 is valid but the model at another level is invalid; in the last term the weight 

𝑃(𝐺1
′)𝑃(𝐺2

′) of the prior distribution 𝑝(𝜃) is the probability that both of the models are invalid. 

After obtaining the integrated distributions for all the parameters in 𝜽𝑚, the system response can 

be predicted by propagating all these integrated distributions through the computational model of 

the system level.    

Obviously, the weight of each PDF on the right-hand side of Eq. (4.10) is purely decided by 

model validation. This research proposes an extension of Eq. (4.10) to include two additional 

concepts: 

1. Stochastic model reliability: The model reliability 𝑃(𝐺𝑖) in Eq. (4.10) is a deterministic 

value, where 𝐺𝑖 is the event that the model at Level 𝑖 is valid; and this research proposes 

the stochastic model reliability metric, where 𝑃(𝐺𝑖)   is a random variable with PDF 

𝑝(𝑃(𝐺𝑖)) as explained in Section 4.3.2; 

2. Relevance index: This has been defined in Section 4.4 as the square of the cosine value of 

the angle between the sensitivity vectors at a lower level and system level. We treat the 

relevance index similar to probability in the roll-up methodology, based on Cox’s theorem. 
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If 𝑆𝑖  denotes the event that Level 𝑖 is relevant to the system level, then the probability 

𝑃(𝑆𝑖|𝐺𝑖) is equal to the value of the relevance index 𝑅; this probability is conditioned on 

𝐺𝑖  since the computation of the relevance index uses the model at Level 𝑖; in contrast 

𝑃(𝑆𝑖
′|𝐺𝑖) denotes the probability of non-relevance, and is equal to 1 − 𝑅. 

The roll-up formula in Eq. (4.10) can be extended to consider stochastic model reliability by 

rewriting the left-hand side as 𝑝(𝜃| 1
𝐶,𝑉,  2

𝐶,𝑉, 𝑃(𝐺1), 𝑃(𝐺2)) and averaging it over 𝑝(𝑃(𝐺1)) and 

𝑝(𝑃(𝐺2)). But a new formula is required to include the relevance index. Take the multi-level 

problem in Figure 4.1 as an example. The integrated distribution of a model parameter 𝜃 

conditioned on the calibration and validation data and model reliability 𝑃(𝐺𝑖)(𝑖 = 1,2)  is 

redefined as: 

 

𝑝 (𝜃| 1
𝐶,𝑉,  2

𝐶,𝑉, 𝑃(𝐺1), 𝑃(𝐺2))                                                                     

= 𝑃(𝐺1𝐺2𝑆1𝑆2)𝑝(𝜃| 1
𝐶 ,  2

𝐶) + 𝑃(𝐺1𝑆1 ∩ (𝐺2
′ ∪ 𝑆2

′))𝑝(𝜃| 1
𝐶)        

+𝑃(𝐺2𝑆2 ∩ (𝐺1
′ ∪ 𝑆1

′))𝑝(𝜃| 2
𝐶) + 𝑃((𝐺1

′ ∪ 𝑆1
′) ∩ (𝐺2

′ ∪ 𝑆2
′))𝑝(𝜃) 

(4.11)  

From the view of generating samples, Eq. (4.11) indicates two criteria: 1) whether a level is 

relevant to the system level; 2) whether a level has a valid model. A sample of 𝜃 is generated from 

𝑝(𝜃| 1
𝐶 ,  2

𝐶) only when both levels satisfy both criteria; a sample of 𝜃 is generated from 𝑝(𝜃| 𝑖
𝐶) 

if level 𝑖 satisfies both criteria but the other level does not; and a sample of 𝜃 is generated from the 

prior distribution 𝑝(𝜃) if neither level satisfies both criteria. By assuming independence of model 

validity and relevance between different lower levels, the weight terms in Eq. (4.11) are computed 

by using the values of 𝑃(𝐺𝑖), 𝑃(𝑆𝑖|𝐺𝑖) and two fundamental probability relationships: 𝑃(𝐺𝑖𝑆𝑖) =

𝑃(𝐺𝑖)𝑃(𝑆𝑖|𝐺𝑖), 𝑃(𝐺𝑖
′ ∪ 𝑆𝑖

′) = 1 − 𝑃(𝐺𝑖𝑆𝑖). Eq. (4.11) also implies the option of “using only data 

from one level”. If both the model validity and relevance are 1 for Level 1, and either model 
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validity or relevance is 0 for Level 2, Eq. (4.11) reduces to 𝑝(𝜃| 1
𝐶,𝑉,  2

𝐶,𝑉) = 𝑝(𝜃| 1
𝐶), i.e., only 

Level 1 data is used. 

The integrated distribution of 𝜃, which is conditioned on both calibration and validation data, 

can now be computed as: 

𝑝(𝜃| 1
𝐶,𝑉 ,  2

𝐶,𝑉) = ∬𝑝(𝜃| 1
𝐶,𝑉 ,  2

𝐶,𝑉, 𝑃(𝐺1), 𝑃(𝐺2)) 𝑝(𝑃(𝐺1))𝑝(𝑃(𝐺2))d𝑃(𝐺1)d𝑃(𝐺2) (4.12)  

Eqs. (4.11) and (4.12) express the proposed approach of integrating calibration, validation and 

relevance results at lower levels. Note that Eq. (4.12) accounts for stochastic model reliability. The 

analytical expression of 𝑝(𝜃| 1
𝐶,𝑉,  2

𝐶,𝑉) is difficult to derive since the results we collect in model 

calibration and validation are all numerical. A single loop sampling approach is proposed to 

construct 𝑝(𝜃| 1
𝐶,𝑉,  2

𝐶,𝑉) numerically, as follows: 

1. Generate a sample of 𝑃(𝐺1) and 𝑃(𝐺2) from their distributions. 

2. Compute the weight terms in Eq. (4.11). Divide the interval [0, 1] into four ranges; the 

length of the 𝑘 ℎ range is equal to the value of the 𝑘 ℎ weight in Eq. (4.11). 

3. Generate a random number from the uniform distribution 𝑈(0, 1). 

4. Generate a sample of 𝜃 using stratified sampling, i.e., from 𝑝(𝜃| 1
𝐶 ,  2

𝐶) if the random 

number in step 3 is located in the first range; from 𝑝(𝜃| 1
𝐶) if located in the second range; 

from 𝑝(𝜃| 2
𝐶) if located in the third domain; from 𝑝(𝜃) if located in the fourth domain. 

5. Repeat steps 1 to 4 to obtain multiple samples of 𝜃; then construct the PDF 𝑝(𝜃| 1
𝐶,𝑉,  2

𝐶,𝑉) 

by any method such as kernel density estimation [90]. 

After obtaining the integrated distributions of all the model parameters, the final step is to 

propagate the integrated distributions through the computational model of the system of interest to 
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predict the system level output. This can be done by Monte Carlo sampling or other preferred 

stochastic analysis methods. Due to the uncertainty in the model parameters, the predicted system 

output will also be stochastic, and its distribution can be constructed by kernel density estimation. 

The distribution of the system output now systematically includes the contributions from 

calibration and validation activities at lower levels, and also accounts for the relevance of the lower 

levels to the actual system. 

4.6 Numerical Example 

4.6.1 Problem Description 

 

(a) Level 1 (b) Level 2 (c) Level 3 

Figure 4.2 Structural dynamics challenge problem 

A multi-level structural dynamics challenge problem provided by Sandia National Laboratories 

[91] is used to illustrate the methodology developed in Sections 4.2 to 4.5. As shown in Figure 4.2, 

Level 1 contains three mass-spring-damper dynamic components in series, and a sinusoidal force 

input 𝑃𝑠 = 300 sin(500𝑡) is applied to 𝑚1. At Level 2, the dynamic system is mounted on a beam 

supported by a hinge at one end and a spring at the other end; a sinusoidal force input 𝑃𝑠 =

3000 sin(350𝑡) is applied on the beam. The configuration of the system level is the same as Level 
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2, but the input is a random process loading (indicating difference in usage condition). Here Level 

1 and Level 2 are defined as lower levels, and experimental data are assumed to be available only 

at the lower levels. All levels share six model parameters: three spring stiffnesses 𝑘𝑖(𝑖 = 1,2,3) 

and three damping ratios 휁𝑖(𝑖 = 1,2,3); and they are assumed to be deterministic but unknown 

parameters, which are to be calibrated. The units of all quantities are non-dimensional. 

Suppose ten experiments are conducted at each of Level 1 and Level 2; and the displacement, 

velocity and acceleration history at each degree of freedom are recorded. Six quantities at each 

lower level are extracted from these records as the synthetic experimental data in model calibration 

and validation: 1)  𝑖(𝑖 = 1,2,3): the maximum acceleration in the 𝑖 ℎ mass; 2)  𝑖(𝑖 = 1,2,3): the 

energy dissipated by the 𝑖 ℎ damper in 1000 time units. 

Table 4.1 Synthetic experimental data at Level 1 

 Calibration Data Validation Data 

 1 10749 8146 9195 9500 10185 9940 10233 9887 9837 10409 

 2 6362 6827 6780 5759 6319 6579 6346 6730 6160 6126 

 3 1509 1465 1431 1556 1512 1416 1288 1293 1548 1360 

 1 93230 93059 84033 86102 92717 84258 89758 95249 85275 90709 

 2 8110 7283 8377 8590 8736 7490 8407 8127 8710 8477 

 3 33948 30740 30693 34290 24536 34579 31193 29959 33172 33723 

 

Table 4.2 Synthetic experimental data at Level 2 
 

Calibration Data Validation Data 

 1 3876 4110 4372 4187 4443 4486 3912 4237 4394 4807 

 2 4316 4051 4488 3947 4596 4347 5008 4930 4455 4809 

 3 3648 4133 4311 4558 4126 4410 4037 4380 4523 4277 

 1 8593 9009 8966 8910 9746 8606 8644 8757 9050 8458 

 2 1566 1563 1749 1616 1602 1718 1577 1597 1614 1451 

 3 2490 2975 2679 2891 3017 2654 2834 3021 2983 3121 

The synthetic experimental data are listed in Table 4.1 and  
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Table 4.2. The data points for each quantity from the first five tests are selected as calibration 

data and the rest as validation data. 

Computational models for the three levels have been established. The method to solve the 

dynamic problem at Level 1 can be found in structural dynamics textbooks [92]; and the 

computational models using the finite element method for Level 2 and the system level are 

provided by Sandia National Laboratories [32]. 

Since the model input at each level is fixed, the input-dependent model error is an unknown 

deterministic value. Thus the parameters to be calibrated in this example are: the spring stiffnesses 

𝑘𝑖(𝑖 = 1,2,3), the damping ratios 휁𝑖(𝑖 = 1,2,3), model error 𝛿 and the output measurement error 

standard deviation 𝜎𝑚  if the data of the corresponding quantity are used in model calibration. 

Based on expert opinion, suppose the prior distribution of each 𝑘𝑖  and 휁𝑖  is assumed to be 

lognormal with a coefficient of variation of 10% and mean values of 𝜇𝑘1 = 5000, 𝜇𝑘2 = 9000, 

𝜇𝑘3 = 8000, 𝜇
𝑖
= 0.025 (𝑖 = 1, 2, 3). The prior distribution of model error is assumed to be 

uniform, i.e., 𝛿~𝑈(𝑎, 𝑏) and the prior of 𝜎𝑚 is Jeffrey’s prior 𝑝′(𝜎𝑚) ∝ 1/𝜎𝑚. 

The objective in this numerical example is to quantify the uncertainty in the prediction of 

maximum acceleration at 𝑚3 in the system level, by using available models and experimental data. 

Since as many as six quantities are measured, we can choose any combination of these six 

quantities in the analysis. Measurement data on more output quantities reduce the uncertainty in 

the system output prediction, but the computational effort will also increase and each quantity will 

bring two more related terms (𝛿  and 𝜎𝑚 ) for calibration. For the sake of brevity, only the 

calibration and validation results using the test data for all six quantities are provided below. But 

a plot showing the reduction in the uncertainty of system output prediction with the increase of 

output quantity measurements is also provided at the end. 
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4.6.2 Results and Analysis 

  

  

  
Figure 4.3 Posterior distributions of model parameters 

In order to reduce the computational effort, Gaussian process (GP) surrogate models are 

established to replace the computational models for all the output quantities. The surrogate model 

uncertainty introduced by the GP models is incorporated in model calibration and validation. The 

calibration results of 𝑘𝑖 and 휁𝑖 using the calibration data of the six output quantities at different 

levels are shown in Figure 4.3, including all the PDFs needed in Eq. (4.11). As more data are used 
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in the calibration, the uncertainty of the model parameters will decline. Thus Figure 4.3 shows that 

the posterior distributions using the data at both levels always have less uncertainty than those 

using data at a single level. The difference between the posterior distributions within each sub-

figure also indicates that the posterior distribution is a best-fitting result in the sense of representing 

that particular data-set, but we do not yet know how to combine these alternatives in the subsequent 

prediction. This is answered by model validation and relevance analysis. 

Next model validation is performed using the stochastic model reliability metric with the 

multivariate output. The tolerance for each quantity is chosen to be 15% of the validation data. 

Level 2 is expected to have lower model reliability value for two main factors: 

1. The discretization error at Level 2 due to a limited number of finite elements for the beam 

(41 in this example). But this factor is not effective here since the data at Level 2 are 

synthetic data generated using the computational model, meaning that the difference 

between the computational model and the physics model is ignored. This factor will come 

into play if experimental data instead of synthetic data are used. 

2. The coupling between the beam and the damped mass-spring system brings stronger 

nonlinearity at Level 2. Under the same number of training points, the GP surrogate model 

at Level 2 has more surrogate uncertainty (larger GP model prediction variance) than the 

GP surrogate model at Level 1. This factor is included in the numerical example. 

The model reliability values given by the validation data from each validation test are listed in 

Table 4.3, which indicate lower model reliability at Level 2. In Figure 4.4, these values are used 

to construct the distributions of model reliability at Level 1 and Level 2 using the method of 

moments. 
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However, even though the model at Level 1 has higher model reliability than the model at Level 

2, Level 2 is closer to the system level of interest since they have the same configuration. Therefore 

relevance analysis also needs to be considered. 

Table 4.3 Model reliability values 

Validation Test 1 2 3 4 5 

Model reliability at Level 1 0.9702 0.9580 0.9398 0.9828 0.9800 

Model reliability at Level 2 0.9616 0.8564 0.9208 0.9796 0.7904 

  
Figure 4.4 Distribution of model reliability 

The relevance index of each lower level to the system level is computed using the iterative 

algorithm in Section 4.4. The initial values of relevance indices for both lower levels are set as 1. 

The algorithm converges after three iterations for Level 1, and after five iterations for Level 2. The 

results are: 𝑃(𝑆1) = 0.5785, 𝑃(𝑆2) = 0.8971. This result means that Level 2 is more relevant to 

the system level, which is consistent with our intuition since Level 2 has the same structural 

configuration as the system and differs only in the load input (sinusoidal vs. random process). 

Compared with the result of model validation, Level 2 has a lower value of model reliability but 

higher relevance index. 
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Figure 4.5 Integrated distributions of model parameters 

Based on all the information from calibration, validation and relevance analyses, the integrated 

distributions of all six model parameters are constructed in Figure 4.5 using Eqs. (4.11) and (4.12). 

Figure 4.5 also shows the result by considering validation only (no relevance) using the previous 

rollup method in Eq. (4.10) but extended for stochastic model reliability metric. It is shown that 

the proposed roll-up method is more conservative than the previous one since we add one more 

criterion of relevance during the generation of samples from the posterior distribution. 
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The system output is predicted by propagating the integrated distribution of model parameters 

through the computational model at the system level. Figure 4.6 gives not only the prediction using 

the data of all six quantities but also the prediction by other combinations of quantities whose 

names are shown in the legend. The mean values and variances of the predictions are shown in 

Table 4.4. As more quantities are employed, the mean value of prediction decreases from 712 to 

656; and the variance shows an overall decreasing tendency, but not monotonic (the variance 

increases slightly when the number of outputs considered rises from 2 to 3, and from 4 to 5). 

 
Figure 4.6 System output prediction 

Table 4.4. Mean values and variances of predictions 

Number of quantities 1 2 3 4 5 6 

Mean values 710 713 690 632 655 656 

Variance 12202 10499 10959 4868 5432 2301 

 

4.7 Summary 

This research developed a methodology to quantify the uncertainty in the system level output 

in a multi-level problem if experimental data are available only at lower levels and no data is 

available at the system level. The particular focus of this research was to determine the appropriate 
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distribution for model parameters 𝜽𝑚  to be used in system level prediction, using calibration, 

validation, and sensitivity analyses at lower levels.  

Note that the focus is not on improving the precision of calibration, but on including as much 

information as possible. The lower level models have different physical configurations and/or 

excitation compared to the system level prediction model (e.g., 3-mass-spring vs. 3-mass-spring-

on-beam and sinusoidal inputs vs. random process inputs), and no calibration data is available 

corresponding to the system level configuration. Thus the proposed approach results in increasing 

the uncertainty of the posteriors because the lower-level models do not have 100% reliability or 

100% relevance to the system level. 

The quantification of relevance is an important contribution to uncertainty integration. The 

relevance index quantifies the extent to which the lower level model reflects the physics captured 

in the system level model, and contributes to the weight of each posterior distribution in the 

uncertainty integration. In the proposed method, the relevance index is computed using the Sobol’ 

indices, and defined as the square of the cosine of the angle between two sensitivity vectors. As 

mentioned in Section 4.4, this approach does not provide a comprehensive comparison of the 

actual physics at different levels but seeks to include the indication of physics given by variance-

based sensitivity analysis, based on the prediction models at different levels.  

For model validation, the proposed stochastic model reliability metric solves the problem of 

properly integrating results from multiple validation experiments. This research also extends the 

model reliability metric to deal with multivariate data, i.e., measurements of multiple output 

quantities.  

The third contribution of this research is the development of the roll-up formula (Eqs. (4.11) 

and (4.12)) to integrate the information from three sources: 1) posterior distribution of model 
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parameters by model calibration; 2) stochastic model reliability in model validation; 3) and 

relevance index of each lower level to the system level. The steps to realize this integration 

numerically are also developed. 

In conclusion, model calibration obtains posterior distributions of each parameter within and 

across different lower levels; model validation evaluates the model reliability at each lower level 

separately, and the relevance analysis reveals the relationship between each lower level and the 

system level. All the above activities provide information to obtain the integrated distribution of 

model parameters. Using all this information, the system level output is predicted by propagating 

the integrated distributions of model parameters through the computational model at the system 

level. 
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CHAPTER 5  

 

USE OF GLOBAL SENSITIVITY ANALYSIS IN TEST RESOURCE ALLOCATION 

FOR ROBUST PREDICTIONS 

 

5.1 Background 

In engineering applications, it is often required to estimate the system response under untested 

conditions using available computational models and test data at different conditions. The 

computational model aims to describe the physics of the system and can be denoted as  =

 (𝑿; 𝜽), where   is the system response, and 𝑿 is the set of model inputs, and 𝜽 is the set of model 

parameters. Usually the inputs 𝑿 for a test are measurable, and their natural variability across 

different tests is represented by a probability distribution 𝑝(𝑿). Note that this natural variability is 

irreducible (aleatory uncertainty). The model parameters 𝜽 have fixed but unknown values in all 

tests on the same specimen. The uncertainty regarding the values of 𝜽 is epistemic uncertainty due 

to lack of information, which can be reduced using test data. (In some problems, the model 

parameters could be input-dependent; this research does not consider such cases). 

Two important questions in system model development are: 1) how to quantify and reduce the 

uncertainty in 𝜽; and 2) how to validate the agreement of the computational model to the true 

physics or quantify their difference. Activities that answer these two questions respectively are 

model calibration and model validation. Various approaches to model calibration and validation 

have been studied in the literature. Consider for example model calibration using Bayesian 

inference. While some researchers directly use the computational model  =  (𝑿; 𝜽)  and 

calibrate 𝜽, others [32] use a model discrepancy term 𝛿(𝑿) to correct the computational model 
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and calibrate both 𝜽 and 𝛿(𝑿). Consider another example regarding the use of test data. Some 

researches treat all the data as calibration data and use the calibrated model parameters in 

predicting the system response [93,94]; others integrate the results of model calibration and model 

validation (each done with different sets of data) in predicting the system response [95–97]. 

Both model calibration and validation require test data. Due to the variability in test outcomes, 

two sets of test data of the same size may lead to two distinct system response predictions (after 

calibration and/or validation) even if the same computational model and the same framework of 

model calibration/validation are used. This raises the question as to how many tests of each type 

are necessary to “optimize” the resultant system response prediction under limited test budget. The 

focus of this research is to develop an optimization approach to answer this question, assuming the 

computational model and the framework of model calibration/validation are given. The design 

variables of this optimization are the numbers of each type of test, denoted as 𝑵 ∈ ℕ𝑞 if 𝑞 types 

of tests are available; the objective function and constraints will be discussed later. Note that 1) 

this optimization needs to be solved before any actual test is conducted [95]; and 2) this 

optimization needs to consider test outcome uncertainty due to which the subsequent system 

response prediction is also uncertain. 

The actual physical test data from a certain type of test are obtained by 1) selecting the values 

of inputs 𝑿; 2) propagating 𝑿 through the physical test configuration where the model parameters 

𝜽 are at their true but unknown values; and 3) recording the input-output data, where both the input 

and output may have measurement errors. In actual tests where the values of 𝑿 have been decided, 

the test outcome uncertainty arises from the measurement errors. However, the data considered in 

test resource allocation analysis always has to be synthetic since it is done before any actual test. 

The generation of synthetic data is a simulation of the three steps above, with the physical test 
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configuration replaced by a computational model and the model parameters being unknown. Thus 

two additional uncertainty sources are introduced in the synthetic data: 1) uncertainty regarding 

the value of 𝜽; and 2) model discrepancy, i.e., the difference between the computational model 

and the actual physics. In a Bayesian framework, the first one can be represented by the prior 

distribution of 𝜽 based on available knowledge. No information on model discrepancy is available 

before any actual test. 

Starting from the synthetic data generation explained above, several approaches for test 

resource allocation have been studied in the literature [95,98–102], and the main difference 

between these approaches is the choice of the objective function. Note that model calibration aims 

to reduce the uncertainty in model parameters, and thus reduce the uncertainty in the subsequent 

prediction. Thus in the case that only model calibration is considered in system response 

prediction, generally the objective of test resource allocation optimization is to minimize the 

prediction uncertainty subject to limited budget. Several quantities have been used to represent 

prediction uncertainty, and the first one is variance. Sankararaman et al. [95] minimized  (𝑉( )) 

where 𝑉( ) is the variance of the prediction at given numbers of each type of test, and  (∙) 

denotes the average of 𝑉( ) over different synthetic data sets. Similarly, Vanlier et al. [99] defined 

the variance reduction via model calibration as 1 −  (𝜎𝑛𝑒𝑤
2 𝜎𝑜𝑙𝑑

2⁄ ) and maximized it, where 𝜎𝑛𝑒𝑤
2  

is the variance of the prediction using the posterior distribution and 𝜎𝑜𝑙𝑑
2  is the variance of the 

prediction using the prior distribution. Entropy measures have also been used to represent 

prediction uncertainty. In [100], the authors maximized the relative entropy (Kullback–Leibler 

divergence) from the prediction 𝑝′(𝑦) using the prior distribution and the prediction 𝑝′′(𝑦) using 

the posterior distribution; while in [101,102], the authors maximized the mutual information, i.e., 

the change of entropy from 𝑝′(𝑦) to 𝑝′′(𝑦). 
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The above approaches that directly minimize the uncertainty in the prediction are not applicable 

when model validation is also incorporated in the system response prediction. The reason is that 

model validation may indicate that the calibrated model is not exactly valid; accounting for this 

result increases the uncertainty in the prediction. Thus the earlier approaches tend to conclude that 

model validation is not necessary. Mullins et al. [48] proposed a method considering both model 

calibration and model validation, in which model calibration is via Bayesian inference, and model 

validation is via a stochastic model reliability metric describing model validity through a 

probability distribution. In this method, the objective regarding model validation tests is to 

minimize the spread in the family of predictions that results from the uncertainty in model validity, 

denoted as  {𝑉[ ( )]} where the inner  ( ) is the prediction mean at given synthetic data set 

and given value of model validity, and 𝑉[∙] is the average over the distribution of model validity, 

and the outer  {∙} is the average over the different data sets. The objective regarding model 

calibration tests is still to minimize the variance of the prediction, denoted as  { [𝑉( )]} where 

𝑉( ) is the prediction variance based on a given synthetic data set and given value of model 

validity; the inner  [∙] is the average over the distribution of model validity, and the outer  {∙} is 

the average over different synthetic data sets. 

In this section, the proposed concept of “robust test resource allocation” means that the system 

response prediction is non-sensitive to the variability in test outcomes; so that at the optimal value 

of the design variables 𝑵 ∈ ℕ𝑞 , different test outcomes result in consistent predictions. This 

concept and the required objective function will be explained in Section 5.2. The approach is 

suitable in different situations when only model calibration is considered or when both model 

calibration and model validation are considered, as shown in the numerical examples in Section 

5.5. 



 97 

The constraint in the optimization of test resource allocation is generally the budget. Note that 

the constraint and objective are interchangeable, i.e., the optimization may have two alternative 

formats: 1) subject to the budget constraint, optimize the design variable 𝑵 ∈ ℕ𝑞 (the number of 

each type of test) to reach the most robust prediction; or 2) subject to the robustness requirement 

in the prediction, find 𝑵 to minimize the budget. The proposed approach can be used with either 

formulation. 

In sum, the objectives of this research are to 1) find the optimal number of each type of test 

such that different data sets result in consistent system response predictions; 2) develop solutions 

for both formats of the optimization problem; and 3) adapt to different cases when only model 

calibration is considered or when both model calibration and model validation are considered. The 

rest of this research is organized as follows. Section 5.2 proposes the objective in the optimization 

of robust test allocation. Section 5.3 analyzes the uncertainty sources in the synthetic data and the 

use of Sobol’ indices to assess their contributions towards the uncertainty in the prediction. Section 

5.4 develops a flexible approach for test resource allocation optimization. Section 5.5 uses two 

numerical examples to illustrate the proposed approach. 

5.2 Objective of Robust Test Resource Allocation 

The objective of the proposed test resource allocation optimization can be visually represented 

as in Figure 5.1, which shows the families of the prediction PDFs at different values of the design 

variables 𝑵. Within a sub-figure, the variation between the PDFs is caused by the test outcome 

variability among different data sets. From Figure 5.1(a) to Figure 5.1(c) this variation becomes 

smaller and the predictions reveal stronger consistency due to: 1) the decreased variability of mean 

values  ( ) across the PDFs, meaning that the centroids of the family members are closer; and 2) 

the decreased variability of the variance 𝑉( ) across the PDFs, meaning that the ranges of values 
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covered by the PDF are similar. In other words, at the value of optimal 𝑵 in Figure 5.1(c), the 

effects of test outcome uncertainty on  ( )  and 𝑉( )  are small so that consistent response 

predictions can be obtained with different sets of test data. 

   

(a) (b) (c) 

Figure 5.1 System response prediction: non-robust to robust 

Therefore, this research defines the objective for robust test resource allocation as: minimize 

the contribution of test outcome uncertainty towards the variability (i.e., scatter) in the prediction 

mean value  ( ) and the prediction variance 𝑉( ). 

Global sensitivity analysis using Sobol’ indices is a prominent approach to quantify the 

contributions of input uncertainty towards the uncertainty in the output. A brief introduction to 

Sobol’ indices has been given in Section 2.6. The remaining challenge is to establish a 

deterministic function required by the Sobol’ indices to map the test outcome uncertainty to the 

prediction uncertainty. This challenge will be analyzed and resolved in Section 5.3. 

5.3 Uncertainty Sources in Test Outcomes 

Recall that all the data considered in test resource allocation analysis has to be synthetic since 

the analysis is done before any actual test. The uncertainty in the synthetic data depends on specific 

test conditions, including 1) the possible values of inputs 𝑿; 2) the number of test types; and 3) 

whether a single test specimen or multiple specimens are used for each type of test. Regarding the 
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first condition, this research assumes that the testing personnel will provide the range of the 

possible values of the test inputs. In the absence of any other information, the range may be 

represented by a uniform distribution, thus for a single model input 𝑋 ∈ 𝑿 we have 𝑋~𝑈(𝐿𝑋 , 𝑈𝑋) 

where 𝐿𝑋 is the lower bound and 𝑈𝑋 is the upper bound. Other types of distributions can also be 

used to represent the possible values of model inputs if additional information is available. 

This section will analyze the uncertainty sources in the synthetic data regarding the second and 

third conditions; the corresponding deterministic function required by the Sobol’ indices also 

varies correspondingly. The rest of this section starts with the simplest case of one type of test and 

single specimen and subsequently extends it to multiple types of tests and multiple test specimens. 

5.3.1 Single Type of Test and Single Test Specimen 

 
Figure 5.2 Synthetic data: single type of test and single specimen 

If only one type of test is available and all tests are conducted on a single specimen, the actual 

test data is a set of 𝑁 data points obtained from the same specimen. Figure 5.2 shows the generation 

and usage of the synthetic data in this case. As shown in the left part of Figure 5.2, to generate a 

data set of  𝑁 synthetic data points, four steps should be followed: 1) select and fix the values of 

𝜽 ∈ ℝ𝑑𝜽, where 𝑑𝜽 is the dimension of model parameters; 2) generate 𝑁 samples of model inputs 

𝒙𝑗 ∈ ℝ𝑑𝑿(𝑗 = 1 to 𝑁)  where 𝑑𝑿  is the dimension of model inputs; and 3) propagate 𝒙𝑗(𝑗 =

Model parameters 𝜽

Model inputs 𝒙𝑗

Output measurement error 𝜖𝑗
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Mean   Variance 𝑉  
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1 to 𝑁) and 𝜽 through the computational model  (∙); and 4) record the model input and output 

with measurement errors added. The resultant data set contains pairwise data points { 𝑗 , 𝑧𝑗}(𝑗 =

1 to 𝑁) as 

 

 𝑗 = 𝒙𝑗 +  𝑗  

𝑧𝑗 =  (𝒙𝑗, 𝜽) + 𝜖𝑗 
(5.1)  

where  𝑗 ∈ ℝ𝑑𝑿  is the model input measurement error and 𝜖𝑗 ∈ ℝ  is the model output 

measurement error. If the model input measurement error is ignored, then  𝑗 = 𝒙𝑗. 

A crucial point in the generation of synthetic data is regarding the model parameters 𝜽. For a 

single specimen, 𝜽 have true but unknown values, meaning that the uncertainty in 𝜽 is epistemic. 

Thus the uncertainty brought by 𝜽 is the uncertainty in selecting the values of 𝜽 before generating 

a synthetic data set; once selected, the values of 𝜽 are fixed within the synthetic data set. This 

uncertainty in 𝜽 only exist in the synthetic data; actual tests will fix the value of 𝜽 at their true 

values. 

The four steps above indicate three uncertainty sources in generating a pairwise synthetic data 

point { 𝑗, 𝑧𝑗}, including: 

1. Uncertainty regarding the values of model parameters 𝜽, which can be represented by their 

prior distribution 𝑝′(𝜽) based on available knowledge before conducting any physical test. 

This uncertainty is epistemic since 𝜽 have unknown but fixed true values. 

2. Uncertainty regarding the possible values of inputs 𝒙𝑗 to be used in the tests. As mentioned 

earlier, this uncertainty can be represented by uniform distribution 𝑋~𝑈(𝐿𝑋 , 𝑈𝑋) for 𝑋 ∈

𝑿 . This uncertainty is also epistemic since the values of 𝑿  are unknown during test 

selection analysis, but will be decided by the test personnel in actual tests. 
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3. Uncertainty regarding input measurement errors  𝑗  and output measurement error 𝜖𝑗 . 

Usually measurement error is assumed to have a zero mean Gaussian distribution thus 

 𝑗~𝑁(𝟎, 𝚺𝑿) and 𝜖𝑗~𝑁(0, 𝜎
2). The uncertainty in  𝑗 and 𝜖𝑗 is aleatory if the values of 𝚺𝑿 

and 𝜎  are known; but additional epistemic uncertainty regarding 𝚺𝑿  and 𝜎  will be 

introduced if their values are unknown. 

In sum, Figure 5.2 shows that for a given number of tests, the synthetic data set { 𝑗, 𝑧𝑗}(𝑗 =

1 to 𝑁) is uniquely determined once 𝜽, 𝒙𝑗,  𝑗 and 𝜖𝑗 (𝑗 = 1 to 𝑁) are determined. Then for a given 

framework of model calibration/validation, the subsequent prediction distribution 𝜋𝑌(𝑦) and its 

mean value  ( )  and variance 𝑉( )  are also uniquely determined. Thus the deterministic 

functions suitable for computing Sobol’ indices are 

 

 ( ) =  (𝐺(𝜽, 𝜶1, … , 𝜶𝑁)) 

𝑉( ) = 𝑉(𝐺(𝜽, 𝜶1, … , 𝜶𝑁)) 

(5.2)  

where 𝜶𝑗 = {𝒙𝑗,  𝑗 , 𝜖𝑗} ∈ ℝ2𝑑𝑿 1 for 𝑗 = 1 to 𝑁 representing the uncertainty sources in generating 

a single pairwise data point { 𝑗 , 𝑧𝑗}, and 𝑁 is the number of pairwise data points; 𝐺(∙) represents 

the entire process shown in Figure 5.2, including both synthetic data generation and model 

calibration/validation analyses before predicting the system response. A model 

calibration/validation framework considering only model calibration is considered in Section 

5.5.1; another framework incorporating both model calibration and model validation is considered 

in Section 5.5.2. 

In Eq. (5.2), the uncertainty in {𝜶1, … , 𝜶𝑁} represents the variability in the actual test outcomes; 

while the epistemic uncertainty in 𝜽 only exist in the synthetic data, not in actual test data. To 

minimize the sensitivity of the prediction to the variability in the test outcomes, we need to 
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minimize the sensitivity index of {𝜶1, … , 𝜶𝑁} in Eq. (5.2) so that  ( ) and 𝑉( ) are non-sensitive 

to the variability in test outcomes and consistent prediction distributions can be achieved under 

different actual test outcomes. However, this minimization requires the sensitivity index closer to 

zero while numerical accuracy is always a challenge for small sensitivity indices.  

Instead, this research chooses to maximize the sensitivity index of 𝜽. If that is achieved, the 

epistemic uncertainty in 𝜽 will be dominant towards the uncertainty in the prediction mean  ( ) 

and the prediction variance 𝑉( ) (based on synthetic data). In the system response prediction using 

actual test data where 𝜽 are fixed at their true values, the most dominant uncertainty contribution 

to  ( ) and 𝑉( ) will be removed. Therefore the uncertainty in  ( ) and 𝑉( ) caused by test 

outcome uncertainty will reduce significantly and consistent prediction distributions can be 

achieved under different actual test outcomes. In sum, the basic idea of the proposed approach is 

to maximize the contribution of epistemic uncertainty regarding model parameters in the synthetic 

data. 

Note that the proposed approach guarantees consistent predictions regardless of what the true 

values of 𝜽 are, since the Sobol’ index is a global sensitivity analysis method and considers the 

entire distribution of 𝜽. 

5.3.2 Single Type of Test and Multiple Test Specimens 

For a single type of test, multiple test specimens are required if the test is destructive so that 

each specimen can be used only once. Two examples of destructive tests are fatigue test and tensile 

strength test. The true value of a model parameter 𝜃𝑙 ∈ 𝜽 for 𝑙 = 1 to 𝑑𝜽  is fixed for a single 

specimen, but varies across different specimens. This variability of 𝜽 may be represented by a 

probability distribution 𝑝(𝜃𝑙|𝑷𝜃𝑙
) where 𝑷𝜃𝑙 are the distribution parameters of 𝜃𝑙. For example, 

𝑷𝜃𝑙  are the mean and variance if 𝜃𝑙  has a Gaussian distribution. In addition, the entire set of 
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distribution parameters for all components of 𝜽  are denoted as 𝑷𝜽  where 𝑷𝜃𝑙 ∈ 𝑷𝜽  for 𝑙 =

1 to 𝑑𝜽. In this case, 𝑷𝜽 have unknown true values thus the uncertainty in 𝑷𝜽 is epistemic; and this 

uncertainty can be represented by a prior distribution 𝑝(𝑷𝜽) based on available knowledge. Thus 

model calibration aims to quantify the uncertainty in 𝑷𝜽, instead of 𝜽. (Note that 𝜽 have both 

aleatory and epistemic uncertainty, whereas the uncertainty in 𝑷𝜽 is epistemic). 

In the case of single type of test and multiple test specimens, the steps in generation and usage 

of the synthetic data set of 𝑁 data points are similar to those in Figure 5.2, but the box “Model 

parameters 𝜽” should be replaced by “𝑷𝜽 → 𝜽𝑗”, where 𝜽𝑗  is the value of 𝜽 generated for the 𝑗-th 

specimen (i.e., the 𝑗-th test). Compared to Figure 5.2, the values of 𝑷𝜽 are now selected before 

generating a synthetic data set; once selected, the values of 𝑷𝜽 are fixed within the synthetic data 

set. The values of model parameters 𝜽𝑗(𝑗 = 1 to 𝑁)for each of the 𝑁 specimens are generated 

from the conditional distribution 𝑝(𝜃𝑙|𝑷𝜃𝑙
) for 𝑙 = 1 to 𝑑𝜽. 

It seems natural to replace 𝜽 in Eq. (5.2) with 𝑷𝜽 and build new functions for the Sobol’ indices 

computation. However, the new functions will not be deterministic functions as required by the 

Sobol’ indices. A specific realization of 𝑷𝜽  does not determine the values of 𝜽  but only the 

distribution 𝑝(𝜃𝑙|𝑷𝜃𝑙
) for 𝑙 = 1 to 𝑑𝜽; thus 𝜽 are still stochastic at given 𝑷𝜽. Only deterministic 

values of 𝜽 and 𝛼𝑖 = {𝒙𝑗 ,  𝑗 , 𝜖𝑗} (𝑗 = 1 to 𝑁) can decide the subsequent prediction distribution 

𝑝( ) and its mean value  ( ) and variance 𝑉( ). In sum, an approach to establish a deterministic 

relationship from 𝑷𝜽 to 𝜽 is needed. 

This required deterministic relationship can be provided by the auxiliary variable method 

developed in Ref. [59,65,86]. This method introduces an auxiliary variable 𝑈𝜃𝑙, which is the CDF 
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value of 𝑝(𝜃𝑙|𝑷𝜃𝑙
), and builds the needed deterministic relationship using the probability integral 

transform as: 

 𝜃𝑙 = 𝒫𝜃𝑙|𝑷𝜃𝑙
 1 (𝑈𝜃𝑙) (5.3)  

where 𝒫𝜃𝑙|𝑷𝜃𝑙
 1 (∙) is the inverse CDF (cumulative distribution function) of 𝜃𝑙 at given 𝑷𝜃𝑙. Note that 

𝑈𝜃𝑙 has the standard uniform distribution 𝑈(0,1). Eq. (5.3) indicates three steps: 1) generate the 

values of 𝑷𝜃𝑙 from their prior distribution to produce the conditional distribution 𝑝(𝜃𝑙|𝑷𝜃𝑙
); 2) 

generate the value of 𝑈𝜃𝑙  from 𝑈(0,1); and 3) substitute 𝑈𝜃𝑙  into the inverse CDF 𝒫𝜃𝑙|𝑷𝜃𝑙
 1 (∙) to 

obtain a unique value of 𝜃𝑙. 

The uncertainty in model parameter 𝜃𝑙 consists of two components: 1) the epistemic uncertainty 

in distribution parameters 𝑷𝜃𝑙, represented by the prior distribution 𝑝(𝑷𝜃𝑙
); and 2) the aleatory 

uncertainty in 𝜃𝑙 at given 𝑷𝜃𝑙, represented by the conditional distribution 𝑝(𝜃𝑙|𝑷𝜃𝑙
). These two 

parts are coupled since 𝑝(𝜃𝑙|𝑷𝜃𝑙
) depends on the value of 𝑷𝜃𝑙. The introduced auxiliary variable 

𝑈𝜃𝑙  captures the aleatory uncertainty, and also helps to decouple the aleatory and epistemic 

uncertainties  [65]  since the distribution of 𝑈𝜃𝑙~𝑈(0,1) does not depend on 𝑷𝜃𝑙. 

With the introduction of the auxiliary variable, deterministic functions suitable for Sobol’ 

indices computation can be established as 

 

 ( ) =  (𝐺(𝑷𝜽, 𝑼𝜽, 𝜶1, … , 𝜶𝑁)) 

𝑉( ) = 𝑉(𝐺(𝑷𝜽, 𝑼𝜽, 𝜶1, … , 𝜶𝑁)) 

(5.4)  

where 𝜶𝑗 = {𝒙𝑗,  𝑗 , 𝜖𝑗}  for 𝑗 = 1 to 𝑁  as in Eq. (5.2); 𝑼𝜽  contains all the auxiliary variables 

introduced for each 𝜃𝑙 , thus 𝑈𝜃𝑙 ∈ 𝑼𝜽  for 𝑙 = 1 to 𝑑𝜽 ; 𝐺(∙)  represents the entire process of  
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synthetic data generation and the framework of model calibration/validation (using the synthetic 

data) to predict the system response. 

As explained earlier, the basic idea of the proposed approach is to maximize the contribution 

of the epistemic uncertainty of 𝜽 in the synthetic data. Thus we need the contribution of 𝑷𝜽 is 

dominant in the context of Eq. (5.4). If that is achieved, in the system response prediction using 

actual test data where 𝑷𝜽 are fixed at their true values, the most dominant uncertainty contribution 

to  ( ) and 𝑉( ) will be removed. Therefore the uncertainty in  ( ) and 𝑉( ) caused by test 

outcome uncertainty will reduced significantly, and different actual test outcomes will lead to 

consistent predictions. 

5.3.3 Multiple Types of Tests and Single Test Specimen 

 
Figure 5.3 Synthetic data: 𝒒 types of tests and single specimen for each type 

In the case that 𝑞 different types of tests are to be considered and each type utilizes only one 

specimen (non-destructive test), Figure 5.2 expands to Figure 5.3, and Eq. (5.2) expands to 

 

 ( ) =  (𝐺(𝜽, 𝚨1, … , 𝚨𝑞)) 

𝑉( ) = 𝑉 (𝐺(𝜽, 𝚨1, … , 𝚨𝑞)) 

(5.5)  

Eq. (5.5) gives the required deterministic functions for Sobol’ indices computation. In Eq. (5.5), 

𝚨𝑖 = {𝜶1
𝑖 , … , 𝜶𝑁𝑖

𝑖 } for 𝑖 = 1 to 𝑞  represents the uncertainty regarding inputs and measurement 

errors in generating the synthetic data for the 𝑖-th type of test, where 𝜶𝑗
𝑖 = {𝒙𝑗
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and 𝑗 = 1 to 𝑁𝑖; 𝑗 represents the test number and 𝑁𝑖 is the total number of the 𝑖-th type of test. 

Note that here 𝜽 is the vector of the model parameters in all types of tests. 

Similar to the earlier discussion, in the test resource allocation optimization regarding Eq. (5.5), 

we need the contribution of the epistemic uncertainty in 𝜽 towards the uncertainty in  ( ) and 

𝑉( ) to be dominant. 

5.3.4 Multiple Types of Tests and Multiple Test Specimens 

The most complex case is that 𝑞 different types of tests are to be considered and the 𝑖-th type 

of test utilizes 𝑁𝑖  specimens corresponding to 𝑁𝑖  tests. Similarly to Eq. (5.5), the epistemic 

uncertainty is regarding the unknown true values of distribution parameters 𝑷𝜽; and an auxiliary 

variable is introduced for each model parameter in order to establish deterministic functions 

required by the Sobol’ indices computation, as explained in Section 5.3.2. The resultant functions 

are: 

 

 ( ) =  (𝐺(𝑷𝜽, 𝑼𝜽, 𝚨1, … , 𝚨𝑞)) 

𝑉( ) = 𝑉 (𝐺(𝑷𝜽, 𝑼𝜽, 𝚨1, … , 𝚨𝑞)) 

(5.6)  

Similarly, in the test resource allocation optimization regarding Eq. (5.6), we need the 

contribution of the epistemic uncertainty in 𝑷𝜽 towards the uncertainty in  ( ) and 𝑉( ) to be 

dominant. 

5.3.5 Selection of Sobol’ Indices 

So far deterministic functions for Sobol’ indices computation in different test conditions have 

been established. Robust design of resource allocation can be achieved by maximizing the 

contribution of the epistemic uncertainty regarding either 𝜽 (single specimen) or 𝑷𝜽  (multiple 
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specimen). This epistemic uncertainty is represented by a set of random variables (𝜽 in Eqs. (5.2) 

and (5.5); 𝑷𝜽 in Eqs. (5.4) and (5.6)). The total effect sensitivity index considers the interactions 

between the subset of random variables and its complement; thus to be more comprehensive, the 

optimization in this research uses Eq. (2.15) to compute the total effect index for the subset of 

epistemic uncertainty (either 𝜽 or 𝑷𝜽). In the following sections, Sobol’ index indicates the total 

effect index in Eq. (2.15). The computed Sobol’ indices are denoted as 𝑆𝒎
𝐸(𝑌)

 for  ( ) and 𝑆𝒎
𝑉(𝑌)

 

for 𝑉( ). In the case of single specimen, 𝒎 = 𝜽 so that 𝑆𝒎
𝐸(𝑌)

 and 𝑆𝒎
𝑉(𝑌)

 are the Sobol’ indices of 

𝜽; in the case of multiple specimen, 𝒎 = 𝑷𝜽 so that 𝑆𝒎
𝐸(𝑌)

 and 𝑆𝒎
𝑉(𝑌)

 are the Sobol’ indices of 𝑷𝜽. 

5.4 Optimum Test Resource Allocation 

5.4.1 Formulation 

As discussed in Sections 5.1 and 5.2, the proposed robust test resource allocation means that 

the system response prediction is non-sensitive to the variability in test outcomes, so that consistent 

predictions of the system response under different sets of test data. This consistency can be 

obtained if the contribution of epistemic uncertainty in 𝜽 or 𝑷𝜽towards the uncertainty in  ( ) 

and 𝑉( ) is dominant. That gives two objectives in the optimization: 1) maximize 𝑆𝒎
𝐸(𝑌)

, the 

Sobol’ index of 𝜽 or 𝑷𝜽 with respect to  ( ); and 2) maximize 𝑆𝒎
𝑉(𝑌)

, the Sobol’ index of 𝜽 or 𝑷𝜽 

with respect to 𝑉( ). Several methods are available to solve multi-objective problems. One simple 

method is to combine 𝑆𝒎
𝐸(𝑌)

 and 𝑆𝒎
𝑉(𝑌)

 through a weighted sum since they are both dimensionless 

and have the same scale [0,1]. This constitutes the first optimization formulation of robust test 

resource allocation: 
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Max   𝑝1𝑆𝒎
𝐸(𝑌) + 𝑝2𝑆𝒎

𝑉(𝑌) 

s. t.   ∑  𝑖𝑁𝑖
𝑞

𝑖=1
≤  0 and 𝑁𝑖 ≥ 0 

(5.7)  

where  𝑖 > 0 is the unit cost of the 𝑖-th (𝑖 = 1 to 𝑞) type of test and 𝑁𝑖 is the number of tests of 

the 𝑖-th type; and  0  is the budget constraint; and 𝑝1  and 𝑝2  are use-defined positive constant 

weight coefficients. 

Eq. (5.7) tries to reach the most optimal test design subject to the budget constraint. As 

explained in Section 5.1, another possible format of optimization is to minimize the budget subject 

to the sensitivity threshold. Thus the alternative optimization formulation for robust test resource 

allocation is 

 

Min ∑  𝑖𝑁𝑖
𝑞

𝑖=1
 

s. t.   𝑆𝒎
𝐸(𝑌) ≥ 𝜆𝐸(𝑌), 𝑆𝒎

𝑉(𝑌) ≥ 𝜆𝑉(𝑌) and 𝑁𝑖 ≥ 0 

(5.8)  

where 𝜆𝐸(𝑌)  and 𝜆𝑉(𝑌)  are the desired lower bounds of the Sobol’ index for  ( )  and 𝑉( ), 

respectively. 

Eqs. (5.7) and (5.8) are both integer optimization problems since the design variables 

𝑁𝑖(𝑖 = 1 to 𝑞) are integers. Sometimes integer optimization is solved using a relaxation approach 

[103], where the integer constraint is first relaxed, and the integers nearest to the resultant optimal 

solution are used as the solution of the original (unrelaxed) problem. Unfortunately, this approach 

is not applicable here because the synthetic data to be used in model calibration/validation can be 

generated only if 𝑁𝑖(𝑖 = 1 to 𝑞) are integers. It is not possible to generate test data for a non-

integer number of tests. 
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5.4.2 Solution Algorithm 

A simulated annealing algorithm [104] is used for the solution of Eqs. (5.7) and (5.8) because 

it can handle stochastic discrete optimization problems without requiring relaxation. For discrete 

optimization problems such as in Eqs. (5.7) and (5.8), this algorithm aims to minimize an objective 

function 𝑓(𝒔) where 𝒔 = {𝑠1, … , 𝑠𝐿} is a vector of integers and its feasible region is 𝛀. If the 

objective is to maximize 𝑓(𝒔) as shown in Eq. Eqs. (5.7), −𝑓(𝒔) ought to be minimized. 

 
Figure 5.4 Simulated annealing algorithm 

As shown in Figure 5.4, the simulated annealing algorithm starts from an initial value 𝒔0 ∈ 𝛀. 

If 𝒔 is the optimal solution in an iteration, a new value 𝒔′ will be randomly selected within the 

neighborhood of 𝒔. This neighborhood, denoted as ℵ(𝒔), can be defined by different proposal 

density functions; and this research defines ℵ(𝒔) = [𝑠1 ± 𝑑1, … , 𝑠𝑙 ± 𝑑𝐿] ∩ 𝛀 where 𝑑𝑙 is a user-

defined positive integer for 𝑙 = 1 to 𝐿 . In one iteration, if 𝑓(𝒔′) < 𝑓(𝒔)  the new value 𝒔′  is 

accepted as the new optimal solution; otherwise the probability to accept 𝒔′ is 

𝒔′ ∈ ℵ 𝒔

𝒔 ∈ 𝛀

𝑓 𝒔′ < 𝑓 𝒔  

Yes

𝒔 = 𝒔′

𝜆~𝑈 0,1
No

𝜆 < 𝑃𝑎 
Yes

No

𝒔 = 𝒔𝟎 ∈ 𝛀

𝑘 ≤ 𝐾 Yes

End at 𝒔

No
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 𝑃𝑎 = exp (−
𝑓(𝒔′) − 𝑓(𝒔)

𝑇
) (5.9)  

where 𝑇 is the parameter that governs how tight the acceptance criterion should be. Specifically, a 

random sample 𝜆 is generated from the standard uniform distribution 𝑈(0,1), and 𝒔′ is accepted if 

𝜆 < 𝑃𝑎 . The reason for accepting 𝒔′  with a probability 𝑃𝑎  even when it does not improve the 

objective function is to explore additional regions and reduce the opportunity to stop at a local 

minimum. As the algorithm proceeds, the threshold for acceptance becomes tighter, so only 

reductions and very small increases to the objective function can be accepted. This threshold 

tightening is governed by a reduction to the parameter 𝑇 as 

 𝑇 = 𝑇0 (1 −
𝑘

𝐾
)
𝛼

 (5.10)  

where 𝑇0 is the user-defined starting value of 𝑇, 𝑘 is the current iteration number, 𝐾 is the total 

number of iterations allowed, and 𝛼 is a user-defined exponent that determines the rate of decrease 

of 𝑇. This iteration proceeds until the total allowed number of iterations 𝐾 is expended. 

5.5 Numerical Examples 

This section uses two examples to illustrate the proposed method. The first example is a 

mathematical problem considering model calibration only, and the second example is a dynamics 

problem considering both model calibration and validation. 

5.5.1 Mathematical Example 

This sub-section presents a simple mathematical example to illustrate the proposed approach 

for robust resource allocation. In this example, the system output is the sum of two subsystem 

outputs, and each sub-system has separate model inputs and model parameters: 
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  = 𝑊1 +𝑊2, 𝑊1 = 𝑋1𝜃1, 𝑊2 = 𝑋2𝜃2 (5.11)  

The inputs 𝑋1  and 𝑋2  are assumed to be independent random variables; the uncertainty 

regarding their values in tests is represented by uniform distributions 

𝑋1~𝑈(90,110), 𝑋2~𝑈(40,60), based on ranges obtained from the test personnel. 

Two types of tests are available. Test Type I measures 𝑊1  with measurement error 

𝜖1~𝑁(0,50
2); and test Type II measures 𝑊2 with measurement error 𝜖2~𝑁(0,40

2). The resultant 

synthetic data are pairwise data {𝑋1,𝑊1} and {𝑋2,𝑊2}, respectively. Assume that the unit cost of 

Type I test is 4 and the unit cost of Type II test is 1. 

Two cases are considered in this example: single test specimen vs. multiple test specimens. In 

case 1 of single specimen, model parameter 𝜽 = {𝜃1, 𝜃2} have true but unknown values to be 

calibrated. In case 2 of multiple specimens, {𝜃1, 𝜃2} follow normal distributions 𝑁(𝜇𝜃1 , 𝜎𝜃1
2 ) and 

𝑁(𝜇𝜃1 , 𝜎𝜃1
2 ) across specimens, and the parameters to be calibrated are 𝑷𝜽 = {𝜇𝜃1 , 𝜎𝜃1 , 𝜇2, 𝜎𝜃2}. 

 
Figure 5.5 Prediction after model calibration with test data 

The process to realize the system prediction  , i.e., the framework of model 

calibration/validation with the synthetic data is shown in Figure 5.5, where the posterior 

distributions of calibration parameters together with the known distributions of 𝑋1  and 𝑋2  are 

DataPriors of 𝜽 or 𝑷𝜽

Posteriors of 
𝜽 or 𝑷𝜽
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Distributions 
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propagated through the computational model in Eq. (5.11) to obtain the distribution of  . Note that 

model validation is not considered in this example; only calibration is considered. The proposed 

test resource allocation approach can also handle model validation, as shown in the next numerical 

example. 

Case 1: Single test specimen 

In this case, model parameters 𝜽 = {𝜃1, 𝜃2}  have unknown deterministic values and prior 

distributions 𝜃1~𝑁(5,  0.5
2), 𝜃2~𝑁(10,  1

2) are assumed for them.  

This case is applied to the two optimizations in Eqs. (5.7) and (5.8). For the optimization in Eq. 

(5.7), we set the total budget constraint at 16; thus Eq. (5.7) becomes (assuming equal weights 

𝑝1 = 𝑝2) 

 
Max   𝑆𝜽

𝐸(𝑌) + 𝑆𝜽
𝑉(𝑌) 

s. t.   4𝑁1 + 𝑁2 ≤ 16 and 𝑁𝑖 ≥ 0 

(5.12)  

where 𝑁1 is the number of Type I tests and 𝑁2 is the number of Type II tests. 𝑁1 and 𝑁2 are the 

decision variables, i.e., we need to decide the number of replications of each type of test. 

The simulated annealing algorithm is used to solve Eq. (5.12), and Figure 5.6 records the 

process of optimization. Figure 5.6(a) shows that the optimization starts at an initial design point 

(𝑁1, 𝑁2) = (1,1) and terminates at the optimal solution (𝑁1, 𝑁2) = (2,8). Figure 5.6(b) shows that 

only some of the random walks are accepted and the maximized Sobol’ index sum 𝑆𝜽
𝐸(𝑌)

+ 𝑆𝜽
𝑉(𝑌)

 

is 1.89. The feasible region in Figure 5.6(a) covers the combinations of 𝑁1 and 𝑁2 such that 4𝑁1 +

𝑁2 ≤ 16. Note that 1) this feasible region is obtained by extra computation; and 2) this feasible 

region is shown only to help in visualizing the result but is NOT needed in the optimization. 
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(a) History of accepted random walks (b) History of the Sobol’ indices sum 𝑆𝜃
𝐸(𝑌) + 𝑆𝜃

𝑉(𝑌) 

Figure 5.6 Optimization of the mathematical example based on Eq. (5.12) 

As discussed in Section 5.3.1, since the robustness objective 𝑆𝜽
𝐸(𝑌) + 𝑆𝜽

𝑉(𝑌)
 is maximized, the 

optimal solution (𝑁1, 𝑁2) = (2,8)  for Eq. (5.12) should lead to consistent system response 

prediction regardless of the true values of 𝜽. Three steps are pursued to verify it: 1) assume true 

values of 𝜽; 2) generate multiple sets of synthetic data with the size of (𝑁1, 𝑁2) = (2,8); and 3) 

plot the family of prediction PDFs using the data sets in step 2 and observe whether they are 

consistent. Although the data are still synthetic, this is a simulation of the prediction using the 

actual test data since the model parameters 𝜽 are fixed at the same value across different data sets; 

while in the synthetic data generation for test resource allocation shown in Figure 5.2, the model 

parameters are fixed within a single data set but vary across different data sets. The results of this 

verification are shown in Figure 5.7. Figure 5.7(a) indicates that (𝑁1, 𝑁2) = (2,8)  leads to 

consistent predictions if the true values of model parameters are {𝜃1, 𝜃2} = {4.9, 9.5}; similarly, 

Figure 5.7(b) and Figure 5.7(c) show that consistent predictions are also obtained if {𝜃1, 𝜃2} =

{5.4, 9.8} or {𝜃1, 𝜃2} = {5.0, 10.5}. 
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(a) 𝜃1 = 4.9, 𝜃2 = 9.5 (b) 𝜃1 = 5.4, 𝜃2 = 9.8 (c) 𝜃1 = 5.0, 𝜃2 = 10.5 

Figure 5.7 Family of prediction PDFs at the solution of Eq. (5.12) of (𝑵𝟏, 𝑵𝟐) = (𝟐, 𝟖) 

For the optimization in Eq. (5.8), we set the Sobol’ index lower bounds as 𝜆𝐸(𝑌) = 𝜆𝑉(𝑌) =

0.95; thus Eq. (5.8) becomes 

 

Min 4𝑁1 +𝑁2 

s. t.   𝑆𝜽
𝐸(𝑌) ≥ 0.95, 𝑆𝜽

𝑉(𝑌) ≥ 0.95 and 𝑁𝑖 ≥ 0 

(5.13)  

The simulated annealing algorithm is used to solve Eq. (5.13), and Figure 5.8 records the 

process of optimization. Figure 5.8(a) shows that the optimization starts at an initial design point 

(𝑁1, 𝑁2) = (8,8) and terminates at the optimal solution (𝑁1, 𝑁2) = (3,7). Figure 5.8(b) shows that 

only some of the random walks are accepted and the minimized cost is 19. The feasible region in 

Figure 5.8(a) covers the combinations of 𝑁1 and 𝑁2 such 𝑆𝜽
𝐸(𝑌) ≥ 0.95 and 𝑆𝜽

𝑉(𝑌) ≥ 0.95. Similar 

to Figure 5.6, note that 1) this feasible region is obtained by extra computation; and 2) this feasible 

region is shown only to help in visualizing the result but is NOT needed in the optimization. 
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(a) History of accepted random walks (b) History of cost 𝟒𝑵𝟏 + 𝑵𝟐 

Figure 5.8 Optimization of the mathematical example based on Eq. (5.13) 

As discussed in Section 5.3.1, since the robustness constraints 𝑆𝜽
𝐸(𝑌) ≥ 0.95, 𝑆𝜽

𝑉(𝑌) ≥ 0.95 are 

satisfied, the optimal solution (𝑁1, 𝑁2) = (3,7) for Eq. (5.13) should lead to consistent system 

response prediction regardless of the true values of 𝜽. The same three steps for Figure 5.7 are 

pursued to verify it. The results of this verification are shown in Figure 5.9. Figure 5.9(a) indicates 

that (𝑁1, 𝑁2) = (3,7) leads to consistent predictions if the true values of model parameters are 

{𝜃1, 𝜃2} = {5.7, 10.5}; similarly, Figure 5.9(b) and Figure 5.9(c) show that consistent predictions 

are also obtained if {𝜃1, 𝜃2} = {5.2, 9.1} or {𝜃1, 𝜃2} = {4.6, 10.8}. 

   

(a) 𝜃1 = 5.7, 𝜃2 = 10.5 (b) 𝜃1 = 5.2, 𝜃2 = 9.1 (c) 𝜃1 = 4.6, 𝜃2 = 10.8 

Figure 5.9 Family of prediction PDFs at the solution of Eq. (5.13) of (𝑵𝟏, 𝑵𝟐) = (𝟑, 𝟕) 

Case 2: Multiple test specimens 
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In this case, model parameters 𝑷𝜽 = {𝜇𝜃1 , 𝜎𝜃1 , 𝜇2, 𝜎𝜃2} have unknown deterministic values and 

uniform prior distributions 𝜇𝜃1~𝑈(4,6) , 𝜎𝜃1~𝑈(0.2,1) ,  𝜇𝜃2~𝑈(8,10) , 𝜎𝜃2~𝑈(0.8,1.5)  are 

assumed for them. 

This case is also applied to the two optimizations in Eqs. (5.7) and (5.8). The unit cost of Type 

I test is 4 and the unit cost of Type II test is 1. For the optimization in Eq. (5.7), we set the total 

budget constraint at 33; thus Eq. (5.7) becomes (assuming equal weights 𝑝1 = 𝑝2) 

 

Max   𝑆𝑷𝜽
𝐸(𝑌) + 𝑆𝑷𝜽

𝑉(𝑌) 

s. t.   4𝑁1 + 𝑁2 ≤ 33 and 𝑁𝑖 ≥ 0 

(5.14)  

The simulated annealing algorithm is used to solve Eq. (5.14), and Figure 5.10 records the 

process of optimization. Figure 5.10(a) shows that the optimization starts at an initial design point 

(𝑁1, 𝑁2) = (5,5) and terminates at the optimal solution (𝑁1, 𝑁2) = (5,13). Figure 5.10(b) shows 

that only some of the random walks are accepted and the maximized Sobol’ index sum 𝑆𝑷𝜽
𝐸(𝑌)

+

𝑆𝑷𝜽
𝑉(𝑌)

 is 1.92. 

  

(a) History of accepted random walks (b) History of the Sobol’ indices sum 𝑺𝜽
𝑬(𝒀) + 𝑺𝜽

𝑽(𝒀)
 

Figure 5.10 Optimization of the mathematical example based on Eq. (5.14) 
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As discussed in Section 5.3.1, since the robustness objective 𝑆𝑷𝜽
𝐸(𝑌)

+ 𝑆𝑷𝜽
𝑉(𝑌)

 is maximized, the 

optimal solution (𝑁1, 𝑁2) = (5,13)  for Eq. (5.14) should lead to consistent system response 

prediction regardless of the true values of 𝑷𝜽. The results of this verification are shown in Figure 

5.11. 

   

(a) 𝑷𝜽 = {𝟒. 𝟐, 𝟎. 𝟗, 𝟖. 𝟑, 𝟏. 𝟏} (b) 𝑷𝜽 = {𝟓. 𝟖, 𝟎. 𝟒, 𝟗. 𝟏, 𝟎. 𝟗} (c) 𝑷𝜽 = {𝟒. 𝟕, 𝟎. 𝟔, 𝟗. 𝟔, 𝟏. 𝟐} 

Figure 5.11 Family of prediction PDFs at the solution of Eq. (5.14) of (𝑵𝟏, 𝑵𝟐) = (𝟓, 𝟏𝟑) 

For the optimization in Eq. (5.8), we set the Sobol’ index lower bounds as 𝜆𝐸(𝑌) = 𝜆𝑉(𝑌) =

0.95; thus Eq. (5.8) becomes 

 

Min 4𝑁1 +𝑁2 

s. t.   𝑆𝑷𝜽
𝐸(𝑌) ≥ 0.95, 𝑆𝑷𝜽

𝑉(𝑌) ≥ 0.95 and 𝑁𝑖 ≥ 0 

(5.15)  

The simulated annealing algorithm is used to solve Eq. (5.15), and Figure 5.12 records the 

process of optimization. Figure 5.12(a) shows that the optimization starts at an initial design point 

(𝑁1, 2) = (12,12)  and terminates at the optimal solution (𝑁1, 𝑁2) = (5,10). Figure 5.12(b) 

shows that only some of the random walks are accepted and the minimized cost is 30. 
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(a) History of accepted random walks (b) History of cost 𝟒𝑵𝟏 + 𝑵𝟐 

Figure 5.12 Optimization of the mathematical example based on Eq. (5.15) 

As discussed in Section 5.3.1, since the robustness constraints 𝑆𝑷𝜽
𝐸(𝑌) ≥ 0.95, 𝑆𝑷𝜽

𝑉(𝑌) ≥ 0.95 are 

satisfied, the optimal solution (𝑁1, 𝑁2) = (5,10) for Eq. (5.15) should lead to consistent system 

response prediction regardless of the true values of 𝑷𝜽. The results of this verification are shown 

in Figure 5.13. 

   

(a) 𝑷𝜽 = {𝟒. 𝟕, 𝟎. 𝟑, 𝟖. 𝟏, 𝟏. 𝟎} (b) 𝑷𝜽 = {𝟓. 𝟕, 𝟎. 𝟗, 𝟗. 𝟎, 𝟎. 𝟒} (c) 𝑷𝜽 = {𝟒. 𝟗, 𝟎. 𝟓, 𝟗. 𝟒, 𝟏. 𝟐} 

Figure 5.13 Family of prediction PDFs at the solution of Eq. (5.15) of (𝑵𝟏, 𝑵𝟐) = (𝟓, 𝟏𝟎) 

5.5.2 Multi-level Problem 

The second numerical example is a multi-level structural dynamics challenge problem from 

Section 4.6. In this example, we have four types of tests and a single specimen. As shown in 

Section 4.6 and Figure 4.2, this multi-level problem consists of three levels. Tests are available at 

Level 1 and Level 2, and it is required to predict the system response in Level 3. All three levels 
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have the same model parameters, i.e., the three spring stiffnesses 𝒌 = {𝑘1, 𝑘2, 𝑘3} (The damping 

ratios are assumed to known in this section). This example assumes the case of single test specimen 

thus 𝒌 are the parameters to be calibrated. They are assumed to be deterministic but unknown, 

with independent prior distributions 𝑘1~𝑁(5000,  500
2) , 𝑘2~𝑁(10000,  1000

2) , and 

𝑘3~𝑁(9000,900
2). 

Four types of tests are available in this example: 

1. Type I test measures  3
𝐿1 and the resultant data set  1

𝐶 is used in model calibration; 

2. Type II test measures  3
𝐿1 but the resultant data set  1

𝑉 is used in model validation; 

3. Type III test measures  3
𝐿2 and the resultant data set  2

𝐶 is used in model calibration;  

4. Type IV test measures  3
𝐿2 but the resultant data set  2

𝑉 is used in model calibration.  

The unit costs of these four types of tests are denoted as  𝑖(𝑖 = 1 to 4) respectively, and the 

number of each type of test is denoted as 𝑁𝑖(𝑖 = 1 to 4) respectively. 

The key step to predict  3
𝐿3 is to estimate the values of the model parameters 𝒌 = {𝑘1, 𝑘2, 𝑘3}. 

A reasonable route is to quantify the model parameters 𝒌 = {𝑘1, 𝑘2, 𝑘3}  using lower level 

calibration data of  3
𝐿1 and  3

𝐿2, and propagate the results through the computational model at the 

system level. However, either  3
𝐿1 or  3

𝐿2 can be used to calibrate the same model parameters, thus 

3 calibration options are possible: 1) calibration using the data on  3
𝐿1 alone; 2) calibration using 

the data on  3
𝐿2 alone; and 3) calibration using the data on both  3

𝐿1 and  3
𝐿2. The challenge in such 

a multi-level problem is how to select from or combine these alternative calibration results. This 

research uses the roll-up method developed in Ref. [96] and [105] to solve this challenge. This 

roll-up method uses Bayesian model averaging of various calibration results and the weights for 

the averaging are obtained from model validation in each lower level. Thus the framework of 
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model calibration/validation for prediction considers both model calibration and validation. A brief 

introduction of this framework is given here: 

1. Model calibration by Bayesian inference to obtain the posterior distributions 𝑝(𝒌| 1
𝐶), 

𝑝(𝒌| 2
𝐶), and 𝑝(𝒌| 1

𝐶 ,  2
𝐶), respectively. 

2. Model validation at lower levels using the model reliability metric in Refs. [53,96] and 

Section 4.3. The resultant model validity at Level 1 and Level 2 is denoted as 𝑃(𝐺1) and 

𝑃(𝐺2), respectively. 

3. Obtain the integrated distribution 𝑝(𝒌| 1
𝐶,𝑉,  2

𝐶,𝑉) by the roll-up formula [79,96,105] in 

Eq. (5.16): 

 

𝑝(𝒌| 1
𝐶,𝑉,  2

𝐶,𝑉) = 𝑃(𝐺1)𝑃(𝐺2)𝑝(𝒌| 1
𝐶 ,  2

𝐶) + 𝑃(𝐺1
′)𝑃(𝐺2)𝑝(𝒌| 2

𝐶) 

                              +𝑃(𝐺1)𝑃(𝐺2
′)𝑝(𝒌| 1

𝐶) + 𝑃(𝐺1
′)𝑃(𝐺2

′)𝑝(𝒌) 

(5.16)  

where 𝑃(𝐺1
′) = 1 − 𝑃(𝐺1)  and 𝑃(𝐺2

′) = 1 − 𝑃(𝐺2)  and 𝑝(𝒌)  denotes the prior 

distribution of 𝒌. In Eq. (5.16) the integrated distribution 𝑝(𝒌| 1
𝐶,𝑉,  2

𝐶,𝑉) is a weighted 

average of four terms: in the first term the posterior distribution 𝑝(𝒌| 1
𝐶 ,  2

𝐶) uses the 

calibration data of both Level 1 and Level 2 and its weight 𝑃(𝐺1)𝑃(𝐺2) is the probability 

that both models are valid; in the second and third terms the posterior distribution 𝑝(𝒌| 𝑖
𝐶) 

uses the calibration data at Level 𝑖 alone and its weight is the probability that the model at 

Level 𝑖  is valid but the model at another level is invalid; in the last term the weight 

𝑃(𝐺1
′)𝑃(𝐺2

′) of the prior distribution 𝑝(𝒌) is the probability that both of the models are 

invalid. 
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4. Propagate 𝑝(𝒌| 1
𝐶,𝑉,  2

𝐶,𝑉)  through the computational model of  3
𝐿3  to predict the  

distribution of  3
𝐿3. 

Since the computational models and measurement errors are known so that synthetic data of 

four types of test can be generated, and the framework of model calibration/validation is known, 

the proposed approach of test resource allocation is used to optimize the number of each type of 

test.  

This example is applied to the two optimizations in Eqs. (5.7) and (5.8). Assume the unit cost 

of each type of test is  1 =  2 = 1,  3 =  4 = 5. For the optimization in Eq. (5.7), we set the total 

budget constraint at 60; thus Eq. (5.7) becomes (assuming equal weights 𝑝1 = 𝑝2) 

 
Max   𝑆𝜽

𝐸(𝑌) + 𝑆𝜽
𝑉(𝑌) 

s. t.   𝑁1 + 𝑁2 + 5𝑁3 + 5𝑁4 ≤ 60 and 𝑁𝑖 ≥ 0 

(5.17)  

The simulated annealing algorithm is used to solve Eq. (5.17). The initial value is 𝑁1 = 𝑁2 =

𝑁3 = 𝑁4 = 3. Among 500 iterations, the random walks of 226 iterations are accepted. Figure 5.14 

shows the change of index sum over the iterations and the maximized index sum at the optimal 

solution is 1.88. The final optimal solution is 𝑁1 = 11,𝑁2 = 9,𝑁3 = 6,𝑁4 = 2. 

 
Figure 5.14 Optimization of the multi-level problem based on Eq. (5.17) 
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As discussed in Section 5.3.1, since the robustness objective 𝑆𝜽
𝐸(𝑌) + 𝑆𝜽

𝑉(𝑌)
 is maximized, the 

optimal solution (𝑁1, 𝑁2, 𝑁3, 𝑁4) = (11,9,6,2)  should lead to consistent system response 

prediction regardless of the true value of model parameters 𝒌. Similar to the mathematical example 

in Section 5.5.1, verification of this multi-level test allocation result is shown in Figure 5.15. Figure 

5.15 indicates that consistent predictions with three different assumed true values of model 

parameters. 

   

(a) 𝒌 = {𝟓𝟔𝟎𝟎, 𝟏𝟎𝟒𝟑𝟑, 𝟖𝟔𝟑𝟖} (b) 𝒌 = {𝟒𝟒𝟖𝟑, 𝟗𝟏𝟏𝟐, 𝟗𝟗𝟖𝟕} (c) 𝒌 = {𝟓𝟕𝟕𝟔, 𝟗𝟖𝟏𝟐, 𝟗𝟑𝟗𝟑} 

Figure 5.15 Family of prediction PDFs at (𝑵𝟏, 𝑵𝟐, 𝑵𝟑, 𝑵𝟒) = (𝟏𝟏, 𝟗, 𝟔, 𝟐) 

This example is also applied to the optimization in Eq. (5.8). Assuming the unit cost of each 

type of test is  1 =  2 = 1 ,  3 =  4 = 5 , and the threshold 𝜆𝐸(𝑌) = 𝜆𝑉(𝑌) = 0.95 , Eq. (5.8) 

becomes 

 

Min 𝑁1 + 𝑁2 + 5𝑁3 + 5𝑁4 

s. t.   𝑆𝜽
𝐸(𝑌) ≥ 0.95, 𝑆𝜽

𝑉(𝑌) ≥ 0.95 and 𝑁𝑖 ≥ 0 

(5.18)  

The simulated annealing algorithm is used to solve Eq. (5.18). The initial value is 𝑁1 = 𝑁2 =

𝑁3 = 𝑁4 = 15. Among 500 iterations, the random walks of 164 iterations are accepted. Figure 

5.16 shows the change of cost over the iterations and the minimized cost at the optimal solution is 

66. The final optimal solution is 𝑁1 = 11,𝑁2 = 10,𝑁3 = 6,𝑁4 = 3. 
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Figure 5.16 Optimization of the multi-level problem based on Eq. (5.18) 

As discussed in Section 5.3.1, since the robustness constraints 𝑆𝜽
𝐸(𝑌)

≥ 0.95, 𝑆𝜽
𝑉(𝑌)

≥ 0.95 are 

satisfied, the optimal solution (𝑁1, 𝑁2, 𝑁3, 𝑁4) = (11,10,6,3) should lead to consistent system 

response prediction regardless of the true value of model parameters 𝒌. Similar to the mathematical 

example in Section 5.5.1, verification of this multi-level test allocation result is shown in Figure 

5.17. Figure 5.17 indicates that consistent predictions with three different assumed true values of 

model parameters. 

   

(a) 𝒌 = {𝟒𝟒𝟗𝟐, 𝟏𝟏𝟏𝟖𝟑, 𝟗𝟏𝟏𝟔} (b) 𝒌 = {𝟓𝟎𝟕𝟒, 𝟖𝟕𝟔𝟎, 𝟕𝟖𝟏𝟐} (c) 𝒌 = {𝟓𝟐𝟕𝟔, 𝟗𝟖𝟖𝟑, 𝟗𝟓𝟏𝟖} 

Figure 5.17 Family of prediction PDFs at (𝑵𝟏, 𝑵𝟐, 𝑵𝟑, 𝑵𝟒) = (𝟏𝟏, 𝟏𝟎, 𝟔, 𝟑) 

5.6 Summary 

Test resource allocation aims to optimize the number of each type of test before any actual test 

is conducted. This research focuses on the proposed robust test resource allocation, which means 
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that the system response prediction is non-sensitive to the variability in the test outcomes so that 

consistent predictions can be achieved under different test outcomes. 

The main challenge for the proposed approach is to quantify the contribution of test outcome 

uncertainty towards the uncertainty in the prediction. Since test resource allocation is needed 

before any actual test, this test outcome uncertainty means the uncertainty in the synthetic data. 

This research analyzes the uncertainty sources in the synthetic data regarding different test 

conditions and concludes that consistent predictions will be achieved if the contribution of 

epistemic uncertainty regarding model parameters in the synthetic data can be maximized. This 

research uses the global sensitivity analysis method Sobol’ indices to assess this contribution, so 

the desired consistent predictions can be guaranteed regardless of the true values of the parameters 

in the actual tests (𝜽 for single specimen and 𝑷𝜽 for multiple specimen). 

Two cases of optimization are considered in this research: 1) subject to the budget constraint, 

optimize the number of each type of test to reach the most robust design; or 2) subject to the 

robustness requirement, find the number of each type of test to minimize the budget. In addition, 

the proposed approach can be applied in multiple situations: 1) only model calibration tests are 

performed, or 2) both model calibration and model validation tests are performed. The proposed 

method results in a discrete stochastic optimization problem, and a simulated annealing algorithm 

is used to solve this problem. 

This research assumes that the test inputs are from a range of values, which represents the 

uncertainty regarding the test inputs through uniform distributions. Future work will focus on the 

selection of the best input values (test design) such that the resultant prediction uncertainty can be 

further reduced. This challenge can be addressed in two ways: 1) optimize the number of tests and 
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test inputs together; or 2) adaptively decide the number of tests and their input conditions based 

on the observation data as the test campaign progresses. 
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CHAPTER 6  

 

UNCERTAINTY INTEGRATION IN TIME DEPENDENT STRUCTURAL HEALTH 

DIAGNOSIS/PROGNOSIS 

 

6.1 Background 

In the earlier part of this dissertation, Chapter 4 discussed the response prediction for a time-

independent system, especially when test is available at the sub-system/component level; and 

Chapter 5 discussed test strategy to obtain a robust prediction, but the system of interest is still 

time-independent. This chapter focuses on time dependent systems, where the prediction is not a 

single value or probability distribution, but a series of values or probability distributions varying 

over time. This chapter is organized for a case study of aircraft wing structural health diagnosis 

and prognosis, but the underlying concepts of dynamic Bayesian network, particle filter, etc., are 

applicable to other time-dependent systems. 

In deciding whether an aircraft is capable of safely performing an upcoming mission, a 

structural health monitoring (SHM) system is desired to provide the decision-maker with the 

information on damage state of the aircraft, such as the crack length on the wing or the reliability 

of a replaceable unit.  Information based on fleet statistics is not useful in assessing the health and 

capability of a particular aircraft, since the damage state varies from aircraft to aircraft due to the 

variability in manufacturing, material properties, mission history, pilot variability, etc. The data 

collected in Ref. [106] reveal that at the same operational hours some aircraft has twice the fatigue 

damage rate compared to others aircrafts. In sum, a SHM system tailored to each individual aircraft 

is desirable. 
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One example of an individualized SHM system is the individual aircraft tracking (IAT) program 

[107] to track the potential fatigue damage in the major airframe structural components such as the 

wing. A typical IAT program for F-16 [108] utilizes the recorded load history to predict the crack 

growth and estimate the crack severity index (CSI); then a comparison between the resultant CSI 

and a baseline condition will classify the aircraft health into three damage severity levels. This 

IAT system mainly focuses on the variation of load history; other uncertainty sources such as the 

epistemic uncertainty regarding the true values of geometric or material properties are not 

considered. A more comprehensive IAT program integrating various uncertainty sources in crack 

growth prediction is desirable, in order to avoid over- or under-estimating the damage prognosis 

and achieve a balanced decision-making considering safety, performance and budget. 

Therefore, this chapter aims to develop a powerful approach for building a probabilistic 

individual aircraft tracking (PIAT) model. This model is developed to analyze the crack growth 

on the leading edge of an aircraft wing, as shown in Figure 6.1; but the underlying concepts can 

be extended to other airframe structural components or the entire airframe. As explained earlier, 

this PIAT model is supposed to integrate various uncertainty sources over the entire life of aircraft 

wing. In addition, the PIAT is also desired to achieve the following objectives: 1) integrate 

heterogeneous information including test data, mathematical models, expert opinions, etc.; 2) fly 

virtually through the same load history as the actual aircraft wing; 3) reduce the uncertainty in 

model parameters and track the time-dependent system states using measurement data, i.e., 

diagnosis; and 4) predict the evolution of damage states if no data is available, i.e., prognosis. An 

introduction to diagnosis and prognosis can be found in Ref. [109]. 
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Figure 6.1 Aircraft wing and its leading edge 

Bayesian network (BN) is a promising approach to integrate various uncertainty sources and 

heterogeneous information. Regarding various uncertainty sources, Bayesian network allows 

different types of random variables, including discrete and continuous variables of different 

distribution types. Regarding heterogeneous information, Bayesian network is able to incorporate 

operational data, laboratory data, reliability data, expert opinion, and mathematical models 

(physics-based as well as empirical) [110].  

As explained in Section 2.1, Bayesian network is extended to dynamic Bayesian network 

(DBN) to track a time-dependent system whose states evolve over time. The ability to track system 

evolution over time make DBN a suitable methodology to build the PIAT model for diagnosis and 

prognosis of the aircraft wing. 

When data of any node is obtained, the Bayesian network is updated by Bayesian inference thus 

the uncertainty in the state variables can be reduced. A review of Bayesian inference algorithms 

for DBN have been given in Section 2.3.2, including Kalman filter [25], extended Kalman filter 

[25], unscented Kalman filter [111], and particle filter [112] . The Kalman filter gives exact and 

analytical updating results [25] for a linear Gaussian DBN, which means: 1) the state function and 

the measurement function are both linear; 2) state variables have a joint Gaussian distribution; and 

3) all the noise terms are assumed to be independent zero mean Gaussian variables. If the state 
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function and/or the measurement function are non-linear, the extended Kalman filter linearizes 

these functions to the first order, and gives analytical updating results. Extended Kalman filter 

requires computing the Jacobian matrix, which brings computational difficulty in the case of high 

non-linearity [111]. 

Another method to handle the non-linear relationships in the DBN is the unscented Kalman 

filter. Both Kalman filter and extended Kalman filter are purely analytical. In contrast, the 

unscented Kalman filter uses the method of unscented transform to select several sample points, 

and propagates them through the non-linear functions. The propagation is used to derive analytical 

updating results with accuracy to the third order, and the computation of the Jacobian matrix is not 

required [113]. However, the unscented Kalman filter can encounter ill-conditioning problems in 

the covariance matrix [113]. 

Although the extended Kalman filter and unscented Kalman filter provide solutions to non-

linear DBN, they still assume that all the state variables are Gaussian. This research aims to 

develop a generic DBN framework that can handle 1) both discrete and continuous variables; 2) 

various types of continuous variable distributions; and 3) linear/non-linear functional 

relationships. In contrast, particle filter (PF) is a sampling-based algorithm, where a particle is 

sample from the joint distribution of the BN at one time step. The PF is a generic algorithm and 

fulfills the above requirements [113–115], thus this research chooses PF as the Bayesian inference 

algorithm for DBN. A brief introduction to the particle filter is given in Section 6.2.1. 

The implementation of the PF includes: 1) forward propagation, i.e., sampling of the child nodes 

based the samples of the parent nodes and their dependence relationships; 2) backward inference, 

i.e., updating of the current BN to reduce uncertainty. Forward propagation is needed in each time 

step, while backward inference is needed only if the data of any child node is observed. Due to the 
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complexity of the DBN for a realistic system, the implementation of the PF algorithm is non-

trivial. Section 6.2.2 of this research contributes to solve this problem by classifying the random 

variables in a DBN into five groups so that the required particles can be generated over these 

groups sequentially. 

Compared to the analytical algorithms such as the Kalman filter, PF is more computationally 

intensive since: 1) the forward propagation proceeds each particle individually; and 2) updating 

requires extra efforts in computing the likelihood and weights of the particles. This research denote 

the time step of purely forward propagation as “prognosis step”, and the time step requiring 

backward inference as “diagnosis step”. Obviously, a diagnosis step is more expensive than a 

prognosis step. This research also contributes to reduce the computational efforts. Generally the 

test data in analyzing an airframe component include load data and damage measurement data; 

and usually load data outnumber damage measurement data significantly. Section 6.2.3 of this 

section modified the structure of the DBN regarding the node of load and its observation, thus 

updating is NOT needed if the load is observed but the damage is not. The modified DBN is proved 

to be equivalent to the original DBN, but reduces the number of the diagnosis steps thus spends 

much less effort in updating. 

In the rest of the paper, Section 6.3 analyzes the uncertainty sources in the fatigue crack growth 

on an aircraft wing and incorporate them into a DBN.  Section 6.4 computes and analyzes the 

results of diagnosis and prognosis of the aircraft wing. Methods established in Section 6.2 are 

applied in sections 6.3 and 6.4. 



 131 

6.2 Diagnosis and Prognosis in the DBN 

6.2.1 Introduction to Particle Filter 

 
Figure 6.2 A simple DBN 

Particle filter (PF) is a general algorithm to track the evolution of the state variables in a DBN. 

In the simple DBN in Figure 6.2, assume that the state variables 𝑿 ∈ ℜ𝑚 at time 𝑡 evolves from 

the state variables 𝑿  1 ∈ ℜ𝑚 according to the state function 

 𝑿 = 𝑓(𝑿  1, 𝒗  1)  (6.1)  

where 𝒗  1 ∈ ℜ𝑚 is the vector of noise terms in the state function. The measurement 𝒁 ∈ ℜ𝑛 is 

obtained according to the measurement function 

 𝒁 = ℎ(𝑿 , 𝝈 ) (6.2)  

where 𝝈 ∈ ℜ𝑛 is the vector of noise terms in the measurement function.  

In case that the DBN represented by Eqs. (6.1) and (6.2) is not a linear Gaussian DBN, several 

particle filter algorithms have been developed to track the evolution of 𝑿  and 𝒁 . The most basic 

particle filter algorithm is sequential importance sampling (SIS) [112]. The SIS considers the full 

joint posterior distribution at time step 𝑡, 𝑝(𝑿0: |𝒁1: ). This distribution is approximated with a 

weighted set of particles {𝒙𝑖
0: , 𝜔𝑖

 } =1
𝑁 . These particles approximate the joint posterior distribution 

𝑝(𝑿0: |𝒁1: ) by 

𝑿  1 𝑿 

𝒁  1 𝒁 

State function

Measurement 
function
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 𝑝(𝑿0: |𝒁1: ) ≈∑ 𝜔𝑖
 𝛿𝒙𝑖

0:𝑡

𝑁

𝑖=1
  (6.3)  

where 𝛿𝒙𝑖
0:𝑡 is a delta function at 𝒙𝑖

0: . 

In this section, capital letters denote random variables; lower-case letters denote particles, 

where the superscript 𝑖 indicates that it is the 𝑖-th particle. The subscripts of letters indicate the 

time step. Thus the state variables at time step 𝑡 are denoted as 𝑿 . At time step 𝑡, the 𝑖-th particle 

of 𝑿  is denoted as 𝒙𝑖
 , and it is sampled based the current state 𝑿𝑖

0:  1 and the observation 𝒁1:  

according to a proposal density 

 𝑿𝑖
 ~𝑞(𝑿 |𝑿𝑖

0:  1, 𝒁1: ) (6.4)  

In other words, the new state 𝑿𝑖
  of the 𝑖-th particle at time step 𝑡 is sampled from a distribution 

which takes the current state 𝑿𝑖
0:  1 and the observation 𝒁1:  as parameters. 

At time step 𝑡, the weight 𝜔𝑖
  is updated from 𝜔𝑖

  1 by 

 𝜔𝑖
 ∝ 𝜔𝑖

  1 𝑝(𝒁
 |𝑿𝑖

 )𝑝(𝑿𝑖
 |𝑿𝑖

  1)

𝑞(𝑿𝑖
 |𝑿𝑖

  1, 𝒁 )
 (6.5)  

In addition, the initial state 𝑿𝑖
0  are sampled from the joint prior distribution of the state 

variables, and the initial weight 𝜔𝑖
0 for each particle is 1/𝑁. 

In practice, iterations of Eqs. (6.4) and (6.5) over time step 𝑡 may lead to particle degeneracy 

problem, i.e., only a few particles have significant weights. This problem can be solved by 

resampling: a new set of 𝑁 particles is generated from the discrete approximation shown in Eq. 

(6.3), and the weight of each new particle is set as 1/𝑁 again. 
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Some variants of the SIS algorithm have been developed in the literature to simplify its 

implementation, and a widely used one is the sampling importance resampling (SIR) algorithm 

[112]. The SIR algorithm 1) takes the state transition distribution 𝑝(𝑿 |𝑿𝑖
  1) as the proposal 

density distribution 𝑞(𝑿 |𝑿𝑖
0:  1, 𝒁1: ), and 2) conducts resampling at each iteration. Thus Eqs. 

(6.4) and (6.5) reduce to 

 𝑿𝑖
 ~ 𝑝(𝑿 |𝑿𝑖

  1) (6.6)  

 𝜔𝑖
 ∝ 𝑝(𝒁 |𝑿𝑖

 ) (6.7)  

Note that resampling is after the calculation of Eqs. (6.6) and (6.7) at each time step, where new 

particles of 𝑿𝑖
  are generated and the weight of each new particle is set as 1/𝑁.  

It is straightforward to implement the SIR algorithm, since it only requires sampling from the 

distribution 𝑝(𝑿 |𝑿𝑖
  1) and evaluating the likelihood 𝑝(𝒁 |𝑿𝑖

 ). Thus this algorithm is used in 

this research for aircraft wing structural health diagnosis and prognosis in this research. Other more 

sophisticated algorithms can be also implemented in the proposed methodology, such as the 

auxiliary sampling importance resampling filter [116], regularized particle filter [117], and Rao-

Blackwellized particle filter [118]. 

6.2.2 Implementing Particle Filter in DBN 

There are two challenges in implementing the SIR algorithm of Eqs. (6.5) and (6.6) to a complex 

DBN (such as the DBN of aircraft wing in Section 6.3.2). First, in addition to dynamic nodes 

whose states change over time, static nodes shared by all the time steps are also included. An 

example of the static node is node A in Figure 6.3(a). The existence of static nodes violates the 

prerequisite assumption of DBN: one separate BN for each step.  
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Second, the states of some dynamic nodes depend not only on the previous state of these 

variables but also on some other variables in the current time step. For example, in Figure 6.3(a) 

node    on    1 and   . Thus at time step 𝑡, 𝑃  must be sampled prior to   . This requires us to 

distinguish the parent nodes of each state variable in 𝑿  to implement Eq. (6.6). 

 
 

(a) DBN (b) New particle generation 

Figure 6.3 Particle filter for an illustrative DBN 

The solutions to these two challenges are explained using an illustrative DBN showed in Figure 

6.3. The first challenge can be resolved by separating a static node into two identical nodes. In 

Figure 6.3, the shared static node   is split to    1  and   . Subscripted by 𝑡 − 1 and 𝑡 ,    1 

belongs to the BN at time step 𝑡 − 1  and    belongs to the BN at time step 𝑡 . An arrow 

representing the deterministic relationship    1 =    directs from    1 to    so that these two 

nodes are identical. In sum, this solution fulfills the assumption of one BN for each time step, and 

guarantees that the same static node is shared by each time step. 

The solution to the second challenge requires several steps in order to realize Eq. (6.6). The 

nodes in BNs at time step 𝑡 − 1 and 𝑡 are classified into five groups: 

1. �̃�  1: state variables in 𝑿  1 with arrows directed to state variables in 𝑿 . Among all the 

nodes in 𝑿  1, only �̃�  1 are the parent nodes of the variables in 𝑿 , thus Eq. (6.6) can be 

written as 𝑿𝑖
 ~ 𝑝(𝑿 |�̃�𝑖

  1). �̃�  1 = {   1,    1,    1} for the illustrative DBN in Figure 

6.3. 

   1

   1   1

𝐻  1𝐺  1

 

  

    

𝐻 𝐺 

   1   1     

   1   1

   1

  

    

𝐻 𝐺 

    

  

  

�̃�  1

𝜶 
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2. 𝜶 : child nodes of �̃�  1 in the BN at time step 𝑡. The sampling of 𝜶  depends on the value 

of �̃�  1 in the previous BN. 𝜶 = {  ,   ,    } for the illustrative DBN in Figure 6.3. 

3.   : intermediate nodes of 𝜶 . A node in    has both ancestor and descendant nodes in 𝜶 . 

A node in    depends on some nodes in 𝜶 , and a node in 𝜶  can also depend some nodes 

in   . In Figure 6.3 we have   =   . 

4.   : ancestor nodes of 𝜶  or    in the BN at time step 𝑡. No node in    is the descendant 

node of �̃�  1, i.e., the sampling of    is independent of the previous BN. The distribution 

of    is denoted as 𝑝(  ). The sampling of 𝜶  and    depends both on �̃�  1 and   , which 

can be expressed by a conditional distribution 𝑝(𝜶 ,   |�̃�𝑖
  1,  𝑖

 ). In Figure 6.3, we have 

  = {  ,   }. 

5.   : descendant nodes of 𝜶  or    in the BN at time step 𝑡. The sampling of    depends on 

𝜶  or   , i.e., a conditional probability distribution  𝑖
 ~𝑝(  |𝜶𝑖

 ,   ). In Figure 6.3 we have 

  = {𝐺 , 𝐻 }. 

As 𝑿  is denoted as {𝜶 ,   ,   ,   } based on the classification above, the sampling of 𝑿𝑖
  in Eq. 

(6.6) is realized sequentially by 

 

 𝑖
 ~𝑝(  ) 

𝜶𝑖
 ,  𝑖

 ~𝑝(𝜶 ,   |�̃�𝑖
  1,  𝑖

 ) 

 𝑖
 ~𝑝(  |𝜶𝑖

 ,  𝑖
 ) 

(6.8)  

For the illustrative DBN in Figure 6.3, to generate new particles 𝑿𝑖
 =

{ 𝑖
 ,  𝑖

 ,  𝑖
 ,  𝑖

 ,  𝑖
 ,  𝑖

 , 𝐺𝑖
 , 𝐻𝑖

 } based on �̃�𝑖
  1 = { 𝑖

  1,  𝑖
  1,  𝑖

  1},  𝑖
 = { 𝑖

 ,  𝑖
 } is first sampled 

by 𝑝(  ) = 𝑝(  ,   ) = 𝑝(  )𝑝(  | 𝑖
 ); then 𝜶𝑖

 = { 𝑖
 ,  𝑖

 ,  𝑖
 } and  𝑖

 =  𝑖
  are sampled by 
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𝑝(𝜶 ,   |�̃�𝑖
  1,  𝑖

 ) = 𝑝(  | 𝑖
  1)𝑝(  | 𝑖

 ,  𝑖
 )𝑝(  | 𝑖

  1,  𝑖
 )𝑝(  | 𝑖

  1,  𝑖
 ) ; finally   =

{𝐺 , 𝐻 } is sampled from 𝑝(  |𝜶𝑖
 ,  𝑖

 ) = 𝑝(𝐺 | 𝑖
 )𝑝(𝐻 | 𝑖

 ). 

6.2.3 Computation Effort Reduction by Modifying the DBN Structure 

As explained in Section 1, the diagnosis step is more expensive than the prognosis step. The 

prognosis step is purely forward uncertainty propagation and only requires particle generation by 

Eq. (6.8). In contrast, the diagnosis step requires Bayesian inference thus brings extra computation 

effort for the likelihood 𝑝(𝒁 |𝑿𝑖
 ), the weight 𝜔𝑖

  and the resampling in SIR. The computational 

cost increase as more diagnosis steps are needed. Diagnosis step happens if and only if any child 

node is observed. Prognosis step happens in two cases: 1) no observation is available; 2) all the 

observations are for the root nodes, thus the distribution of other nodes can be obtained by 

uncertainty propagation using Eq. (6.8) with these root nodes fixed at their observations.  

The damage 𝑎 in an airframe component is caused by the load 𝑃 applied on it, thus the DBN 

starts from the node of load 𝑃 and end at the node of damage 𝑎 (In crack growth analysis of the 

aircraft, the damage 𝑎 is the fatigue crack length).  

Generally 𝑃 and 𝑎 are observable. Due to the measurement error, the observed data of 𝑃 is the 

realization of a new random variable 𝑃𝑜𝑏𝑠 and the observed data of 𝑎 is the realization of a new 

random variable 𝑎𝑜𝑏𝑠 . Thus in the BN node 𝑃 directs to node 𝑃𝑜𝑏𝑠 , indicating a measurement 

model such as 𝑃𝑜𝑏𝑠 = 𝑃 + 𝜖𝑃  where 𝜖𝑃  is the measurement error; node 𝑎 directs to node 𝑎𝑜𝑏𝑠 , 

indicating another measurement model such as 𝑎𝑜𝑏𝑠 = 𝑎 + 𝜖𝑎 where 𝜖𝑎 is the measurement error. 

The resultant BN at one time step is shown in Figure 6.4(a), where 𝑵 denotes all the other nodes 

except for 𝑃, 𝑃𝑜𝑏𝑠, 𝑎, and 𝑎𝑜𝑏𝑠. 
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If a data point  𝑃 of the load 𝑃 is observed, in the BN node 𝑃𝑜𝑏𝑠 will be fixed at  𝑃; similarly, 

node 𝑎𝑜𝑏𝑠 will be fixed at the data point  𝑎 if the damage 𝑎 is observed. Since neither node of 

𝑃𝑜𝑏𝑠  and 𝑎𝑜𝑏𝑠  is root node, diagnosis of Bayesian inference is needed whenever the data of 𝑃 

and/or 𝑎 are available. If the full load history is measured, diagnosis of Bayesian inference is 

conducted in every time step even if the crack length data are sparse. This causes tremendous 

computational cost. 

  

(a) Original DBN (2) Modified DBN 

Figure 6.4 Original BN and modified BN 

In fact, it can be proved that under certain assumptions (explained below) we can reverse the 

arrow from 𝑃 to 𝑃𝑜𝑏𝑠, i.e., replace 𝑃 → 𝑃𝑜𝑏𝑠 with 𝑃𝑜𝑏𝑠 → 𝑃, and the modified BN is equivalent to 

the original one. In the modified BN, 𝑃𝑜𝑏𝑠 is a root node so that Bayesian inference is not needed 

if only the load is observed. In other words, diagnosis is conducted only at limited steps with the 

crack length observed, which reduces the computational cost significantly. Proof of the 

equivalence between the original BN and the modified BN is given as follows. 

If the load is not observed, the node 𝑃𝑜𝑏𝑠 can be removed in the BN thus the original BN and 

the modified BN are exactly the same. If the load is observed, two cases need to be considered. In 

the first case, we assume that both the load and the crack length are observed. In the original BN, 

if load and crack length data are denoted as  𝑃 and  𝑎, the posterior distribution over the BN is: 

𝑃

𝑎

𝑵

𝑃𝑜𝑏𝑠

𝑎𝑜𝑏𝑠

𝑃

𝑎

𝑵

𝑃𝑜𝑏𝑠

𝑎𝑜𝑏𝑠
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𝑝(𝑃,𝑵, 𝑎|𝑃𝑜𝑏𝑠 =  𝑃, 𝑎𝑜𝑏𝑠 =  𝑎) 

∝ 𝑝(𝑃𝑜𝑏𝑠 =  𝑃, 𝑎𝑜𝑏𝑠 =  𝑎|𝑃, 𝑵, 𝑎)𝑝(𝑃,𝑵, 𝑎) 

= 𝑝(𝑎𝑜𝑏𝑠 =  𝑎|𝑎)𝑝(𝑃𝑜𝑏𝑠 =  𝑃|𝑃)𝑝(𝑃)𝑝(𝑁|𝑃)𝑝(𝑎|𝑵) 

(6.9)  

where 𝑝(𝑎𝑜𝑏𝑠 =  𝑎|𝑎)𝑝(𝑃𝑜𝑏𝑠 =  𝑃|𝑃) is the likelihood function and 𝑝(𝑃)𝑝(𝑵|𝑃)𝑝(𝑎|𝑵) is the 

prior distribution over 𝑃,𝑵, and 𝑎. 

For the modified BN, the posterior distribution is: 

 

𝑝(𝑃,𝑵, 𝑎|𝑃𝑜𝑏𝑠 =  𝑃, 𝑎𝑜𝑏𝑠 =  𝑎) 

∝ 𝑝(𝑃𝑜𝑏𝑠 =  𝑃, 𝑎𝑜𝑏𝑠 =  𝑎|𝑃, 𝑵, 𝑎)𝑝(𝑃,𝑵, 𝑎) 

= 𝑝(𝑎𝑜𝑏𝑠 =  𝑎|𝑎)𝑝(𝑃𝑜𝑏𝑠 =  𝑃|𝑃, 𝑵, 𝑎)𝑝(𝑃,𝑵, 𝑎) 

= 𝑝(𝑎𝑜𝑏𝑠 =  𝑎|𝑎)𝑝(𝑃|𝑃𝑜𝑏𝑠 =  𝑃)𝑝(𝑁|𝑃)𝑝(𝑎|𝑵) 

(6.10)  

where 𝑝(𝑎𝑜𝑏𝑠 =  𝑎|𝑎) is the likelihood function, and 𝑝(𝑃|𝑃𝑜𝑏𝑠 =  𝑃)𝑝(𝑁|𝑃)𝑝(𝑎|𝑵) is the prior 

distribution over 𝑃,𝑵, and 𝑎 is conditioned at 𝑃𝑜𝑏𝑠 =  𝑃. The posteriors in Eqs. (6.9) and (6.10) 

are equivalent if 𝑝(𝑃𝑜𝑏𝑠 =  𝑃|𝑃)𝑝(𝑃) ∝ 𝑝(𝑃|𝑃𝑜𝑏𝑠 =  𝑃).  

As the measurement noise is generally assumed to be zero mean Gaussian distribution, we have 

𝑃𝑜𝑏𝑠 = 𝑃 + 𝑁(0, 𝜎𝑝), which gives 𝑃 = 𝑃𝑜𝑏𝑠 − 𝑁(0, 𝜎𝑝). Then it can be proved that: 

 (𝑃𝑜𝑏𝑠 =  𝑃|𝑃) = 𝑝(𝑃|𝑃𝑜𝑏𝑠 =  𝑃) =
1

𝜎𝑝√2𝜋
exp(−

(𝑃 −  𝑝)
2

2𝜎𝑝2
) (6.11)  

Thus the condition of 𝑝(𝑃𝑜𝑏𝑠 =  𝑃|𝑃)𝑝(𝑃) ∝ 𝑝(𝑃|𝑃𝑜𝑏𝑠 =  𝑃) will be fulfilled if node 𝑃 in the 

original BN has a non-informative uniform distribution such that 𝑝(𝑃) is a constant. 

In the second case, we assume that only the load is observed. The posterior distribution over 

the original BN is: 



 139 

 

𝑝(𝑃, 𝑵, 𝑎|𝑃𝑜𝑏𝑠 =  𝑃) ∝ 𝑝(𝑃𝑜𝑏𝑠 =  𝑃|𝑃, 𝑵, 𝑎)𝑝(𝑃, 𝑵, 𝑎) 

= 𝑝(𝑃𝑜𝑏𝑠 =  𝑃|𝑃)𝑝(𝑃)𝑝(𝑁|𝑃)𝑝(𝑎|𝑵) 

(6.12) 

The posterior distribution over the modified BN is obtained purely by uncertainty propagation: 

 𝑝(𝑃,𝑵, 𝑎|𝑃𝑜𝑏𝑠 =  𝑃) = 𝑝(𝑃|𝑃𝑜𝑏𝑠 =  𝑃)𝑝(𝑁|𝑃)𝑝(𝑎|𝑵) (6.13) 

Eqs. (6.12) and (6.13) are equivalent under the same assumptions: 1) zero mean Gaussian 

measurement error for the load; and 2) 𝑝(𝑃) is a non-informative uniform prior distribution in the 

original BN if the load is observed. The first one is a widely used assumption in the literature. The 

second one requires that load 𝑃  is independent of 𝑃  1 if 𝑃  is observed. This is also a reasonable 

assumption since the observation of the load at time 𝑡 provides strong information for the true 

value of the load at time 𝑡 such that the information from 𝑃  1 can be neglected. A time series 

model giving the CPD of 𝑝(𝑃 |𝑃  1) is still applicable if 𝑃  is not observed. 

In sum, this section distinguished the steps of diagnosis and prognosis. The time-consuming 

diagnosis is required if and only if any child node is observed. This section also showed that under 

two weak assumptions, the CPD 𝑃 → 𝑃𝑜𝑏𝑠 can be replaced by 𝑃𝑜𝑏𝑠 → 𝑃 such that the number of 

diagnosis steps can be reduced significantly, i.e., Bayesian updating is required only if crack 

inspection data is available.  

6.3 Dynamic Bayesian Network of Crack Growth on Aircraft Wing 

Different fracture mechanics-based fatigue crack growth models have been developed to 

calculate the propagation of long cracks, including Paris’ law [119], modified Paris’ law [120], 

Wheeler’s retardation model [121], etc. Generally these models require computing the stress 

intensity factor 𝐾, for which finite element analysis (FEA) is widely used. Two techniques of 

utilizing the FEA to compute the crack growth can be found in the literature: 1) include the crack 
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geometry into the FEA model and compute the stress intensity factor by the FEA directly; then 

calculate the crack growth using a crack growth law and adjust the crack geometry by modifying 

the input file to the FEA model [4,19]; 2) build a FEA model without the crack geometry and 

compute the nominal stress at the crack; then calculate the stress intensity factor using an analytical 

formula and subsequent crack growth using a crack growth law [122]. Due to the mesh complexity 

of the FEA model with the crack geometry, the computational cost of technique 2 is significantly 

smaller than technique 1. Since crack growth prediction under uncertainty requires numerous runs 

of the FEA model, technique 2 is applied in this research. Based on technique 2, the rest of this 

section discusses the uncertainty sources in predicting the fatigue crack growth on the leading edge 

of an aircraft wing; then all the uncertainty sources are incorporated into the DBN. Note that DBN 

is still applicable regarding technique 1, and this research selects technique 2 only for higher 

computational efficiency. 

6.3.1 Uncertainty Sources 

Uncertainty Sources in the FEA Model and Surrogate Model 

Figure 6.5 shows the FEA model of the leading edge of an aircraft wing. Spring and beam 

elements in Figure 6.5 simulate the connection between the leading edge and the wing body. The 

load on the leading edge is simulated by connecting the leading edge to an anchor point through 

rigid bars and applying the load 𝑃 on the anchor point. A single bolt is assumed to fix the anchor 

point to the wing body. 15 geometric and material parameters are assumed as random variables in 

the FEA model: 

1. 𝑇𝑖(𝑖 = 1 to 7): The leading edge is divided into 7 sections along the   axis, and 𝑇𝑖 is the 

thickness of  the 𝑖-th section; 
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2. 𝐾𝑖(𝑖 = 1 to 4): 𝐾1 and 𝐾2 are the stiffnesses of Spring A and B along the   axis; 𝐾3 and 

𝐾4 are the stiffnesses of Spring A and B along the 𝑍 axis; 

3.  𝐼 𝑃: Inboard beam property, which is the area moment of inertia of Beam A; 

4. 𝑂 𝑃: Outboard beam property, which is the area moment of inertia of Beam B; 

5. 𝑇𝑅: Taper ratio, measuring the rate that the leading edge width shrinks from the wing root 

to the wing tip; here it is defined as the ratio of Beam A length to Beam C length; 

6.  𝐴: Coordinate of the anchor point along the   axis; the value of  𝐴 varies if the bolt is 

loose. 

 
Figure 6.5 Leading edge of an aircraft wing 

All the parameters above except for  𝐴  have deterministic but unknown values thus brings 

epistemic uncertainty. Prior distributions are assigned to them, and the proposed DBN-based PIAT 

model seeks to reduce their epistemic uncertainty by Bayesian inference. The value of  𝐴 changes 

over time thus the proposed PIAT model needs to track its evolution. 

These 15 parameters and the load 𝑃 are the inputs to the FEA model in Figure 6.5, which 

computes the nominal stress 𝑆 at the crack. Probabilistic prediction as well as Bayesian inference 

require many evaluations of the analysis model. In order to achieve computational efficiency, this 

research uses a Gaussian process (GP) surrogate model [30,35] to replace the FEA model. Training 

Anchor 
point

Rigid 
bars



 142 

points are obtained by repeatedly running the FEA model at different combinations of values (DoE 

points) of the 15 parameters and the load 𝑃. At given inputs, the prediction of the GP model is a 

normal distribution 𝑆~𝑁(𝜇𝐺𝑃, 𝜎𝐺𝑃
2 ) , which represents the surrogate model uncertainty in 

computing the stress for a given value of the inputs. This also indicates that these 15 parameters 

and the load 𝑃 are the parent nodes of stress 𝑆 in the DBN, and the corresponding conditional 

probability distribution (CPD) is given by the GP model prediction 𝑆~𝑁(𝜇𝐺𝑃, 𝜎𝐺𝑃
2 ). 

Not all the 15 parameters are equally important to the crack growth. Global sensitivity analysis 

by Sobol’ indices [59,61] can be used to assess the contribution of each parameter to the 

uncertainty in the crack growth. Parameters of low sensitivity can be fixed at their nominal values, 

thus reducing the computational cost in diagnosis and prognosis. 

Crack Growth Model Uncertainty and Damage State Uncertainty 

Once the nominal stress at the crack is computed using the GP model, the next step is to compute 

the stress intensity factor and crack growth. Methods to compute the stress intensity factor for 

different load conditions and crack shapes are summarized in Ref [123]. The validity of these 

models is generally problem-dependent. For the sake of illustration, this research assumes a mode 

I uniaxial crack; thus the range of stress intensity factor in one time step is 

 Δ𝐾 = 1.2 Δ𝑆√𝜋𝑎𝑠 (6.14)  

where 1.2  is the crack shape factor and Δ𝑆 is the stress range and 𝑎𝑠 is the initial crack length in 

the current time step. Here   is defined as a multiplier for the shape factor, and the uncertainty in 

  represents the uncertainty in the shape factor. 

Next, for the sake of illustration, this research uses the Paris’ law to compute the crack growth 

Δ𝑎 in each time step: 
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d𝑎

d𝑁
=  Δ𝐾𝑚 (6.15)  

where   and 𝑚 are the Paris’ law parameters obtained from material component experiments; 

d𝑎 d𝑁⁄  is the crack growth rate, and its magnitude is equal to the predicted crack growth Δ𝑎 in 

one time step. The crack length after the current time step is 𝑎 = 𝑎𝑠 + Δ𝑎.   and 𝑚 are assumed 

to be known constants in this research to keep the focus on other parameters that provide particular 

challenges to DBN that are addressed in this research;   and 𝑚 can be easily treated as aleatory or 

epistemic uncertain quantities and included in the DBN as needed. 

The uncertainty sources in the crack growth prediction are the uncertainties in the parameters 

of Eq. (6.14), which are affected by the damage state, and uncertainties regarding the parameters 

of Eq. (6.15) (ignored in this research). In this research, two damage states are considered. 

1. Bolt looseness ( ): For the sake of illustration, assume that bolts are used to fix the anchor 

point to the wing body. Assume that all the bolts are collectively represented by one notional 

bolt with equivalent properties. Whether the bolt becomes loose depends on its resistance 𝑅 

and the current load 𝑃. A higher 𝑃 or a lower 𝑅 leads to a higher probability of loose bolt ( =

1). The bolt will stay loose once it becomes loose ( = 0). The loose bolt causes uncertainty 

in the anchor point position ( 𝐴) thus affecting the nominal stress (𝑆) at the crack location. In 

addition, Eq. (6.16) is assumed to simulate the degradation of the bolt resistance with time step 

𝑡. In Eq. (6.16), 𝑅0 is the initial bolt resistance; 𝑘 is the degradation coefficient and it has a 

negative value so that 𝑅(𝑡) decreases with 𝑡. 

 𝑅(𝑡) = 𝑅0 exp(𝑘𝑡) (6.16)  
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2. Crack tip in elastic zone vs. plastic zone (𝑀): The aircraft wing is mostly elastic (𝑀 = 0); it is 

assumed that randomly located plastic zones (𝑀 = 1) can be caused by accidents such as a 

dropped hammer; the crack is assumed to start at the elastic zone and there is a finite probability 

that the crack grows into a plastic zone in any time step; the crack is assumed to stay in the 

plastic zone once it reaches it. It is assumed that 1) the shape factor multiplier in the elastic 

zone ( 𝑒) has a known deterministic value obtained from material coupon experiments; 2) the 

plastic zone retards the crack growth thus the multiplier  𝑝 in the plastic zone is smaller than 

 𝑒; and 3)  𝑝 has a deterministic but unknown value, i.e., epistemic uncertainty. This damage 

state 𝑀 can be represented by expanding Eq. (6.14) as 

 Δ𝐾 = {
1.2 𝑒Δ𝜎√𝜋𝑎𝑠    if    𝑀 = 0

1.2 𝑝Δ𝜎√𝜋𝑎𝑠    if    𝑀 = 1
 (6.17)  

The damage states above bring two new uncertainty sources: 1) whether the damage states have 

occurred; and 2) uncertainty in the value of  𝑝. The proposed DBN-based PIAT model is beneficial 

in tracking the damage states and quantify the uncertainty in  𝑝. In addition, the damage states are 

discrete variables, thus requiring a DBN that can handle both discrete and continuous variables. 

Load Uncertainty 

The uncertainty in load 𝑃 depends on specific cases. In case 1, the load history at each time step 

is measured by sensors in the aircraft wing. The measured load history can be used to simulate the 

flight, diagnose damage states, and compute the crack length after the flight. Techniques to 

measure the load history include flight parameters-based loads monitoring and strain gauge-based 

loads monitoring [124]. In this case, the uncertainty in the load history is the measurement error. 
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The numerical example in Section 4 assumes the measurement error as a zero mean Gaussian noise, 

i.e., 𝜖𝑝~𝑁(0, 𝜎𝑝
2). 

In case 2, the PIAT model is used to simulate the future load time history and predict the crack 

growth. To model this time series input based on the observed load history in earlier flights and 

capture the uncertainty in the future loading, two types of time domain methods have been 

developed: time step counting methods and random process methods. The time step counting 

methods [125] discretize the time series into 𝑘 levels and extract a counting matrix from the data. 

The counting matrix is used to generate the load history stochastically. In contrast, one of the 

random process methods, e.g., the autoregressive moving average (ARMA) [40] model assumes 

that the input in the current time step is a linear function of 1) its past 𝑝 values; and 2) the current 

and past 𝑞 values of noise terms. Both types of methods can be used in the PIAT model. In case 2, 

the load uncertainty includes the natural variability in the time series input and epistemic 

uncertainty due to limited information in building the model. 

Different conditions in case 1 and 2 affect the DBN structure. Let 𝑃  1 and 𝑃  denote the loads 

at time 𝑡 − 1 and 𝑡; and 𝑃𝑜𝑏𝑠 
  1 and 𝑃𝑜𝑏𝑠

  denote their observations at time 𝑡 − 1 and 𝑡 respectively. 

In the BN of case 1, 𝑃  1 and 𝑃  are directly connected to the nodes 𝑃𝑜𝑏𝑠 
  1 and 𝑃𝑜𝑏𝑠

  respectively, 

giving the conditional probability distributions (CPDs) of 𝑃𝑜𝑏𝑠 
  1~𝑁(𝑃  1, 𝜎𝑝

2)  and 

𝑃𝑜𝑏𝑠
 ~𝑁(𝑃 , 𝜎𝑝

2). In the BN of case 2, the value of 𝑃  1 affects the value of 𝑃 , thus an arrow of 

CPD defined by the time series model is used to connect them. The node 𝑃𝑜𝑏𝑠
  or 𝑃𝑜𝑏𝑠 

  1 are not 

necessary since the load is not observed. A hybrid case is also possible, i.e., both case 1 and 2 

occur in the DBN. The DBN structures of case 1, case 2, and the hybrid case are shown in Figure 

6.6. 
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Crack Length Data Uncertainty 

The crack length data are assumed to be available from on-ground inspection, which brings two 

uncertainty sources: measurement error and data sparsity. Similar to the load uncertainty, the 

measurement error in the crack length data depends on the accuracy of the inspection technique, 

and is generally assumed to have a zero mean Gaussian distribution 𝜖𝑎~𝑁(0, 𝜎𝑎
2). The proposed 

methodology can also handle other distributions of measurement error. 

Crack length data are rarely available for every time step. Even if one data point is obtained 

after each mission and applied in the DBN for diagnosis and prognosis, the crack length data are 

missing during the mission; thus data uncertainty is introduced by data sparseness. 

In sum, two data sources are available for the PIAT model of aircraft wing: load history data and 

crack inspection data. The availability of these data can be quite flexible: 1) load history data can 

be available at all time steps (case 1 in Figure 6.6), no time step (case 2 in Figure 6.6) and limited 

time steps (case 3 in Figure 6.6); while crack inspection data are only available at sparse time steps. 

DBN has the capacity of both Bayesian inference (diagnosis) and uncertainty propagation 

(prognosis). 

 

 

 

(a) Case 1 (b) Case 2 (c) Hybrid case 

Figure 6.6 DBN structure for loading history uncertainty 

𝑃  1 𝑃 

𝑃𝑜𝑏𝑠
  1 𝑃𝑜𝑏𝑠

  

𝑃  1 𝑃 𝑃  1 𝑃 𝑃  1

𝑃𝑜𝑏𝑠 
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6.3.2 DBN Construction 

 
Figure 6.7 Dynamic Bayesian network for crack growth 

Table 6.1 Nomenclature for the DBN 

𝑃𝑜𝑏𝑠 Load observation Δ𝐾 Stress intensity factor range 

𝑃 Load Δ𝑎 Crack growth in current time step 

  Bolt looseness 𝑎 Crack length after current time step 

 𝐴 Anchor point position 𝑎𝑜𝑏𝑠 Crack length observation 

Δ𝑆 Stress range 𝜽 Geometric and material properties 

𝑀 Elastic/Plastic zone  𝑝 Shape factor in the plastic zone 

𝑎𝑠 Crack length before current time step   

As shown in Figure 6.7, the uncertainty sources identified in Section 6.3.1 are represented by 

nodes in the DBN; nodes are connected by arrows which represent conditional probability 

distributions or deterministic functional relations. The superscript 𝑡 − 1 or 𝑡 denotes the time step, 

and the symbols in Figure 6.7 are explained in Table 6.1. 

In Figure 6.7, an elliptical node is a stochastic node, meaning the variable is stochastic for given 

values of parent nodes, thus the arrows towards it represent a CPD; a triangular node is a  functional 

 𝑝

𝑀  1

Δ𝑆  1

 𝐴
  1

𝑃  1

𝜽

   1

𝑎𝑠
  1

𝑀 

Δ𝑆 

 𝐴
 

𝑃   

Time step 𝑡 − 1 Time step 𝑡

𝑎𝑠
 

Observed node

Discrete node

Continuous node
Δ𝐾  1 Δ𝐾 

Δ𝑎  1 Δ𝑎 

𝑎  1 𝑎 

Functional node

𝑃𝑜𝑏𝑠
  1 𝑃𝑜𝑏𝑠

 

𝑎𝑜𝑏𝑠
  1 𝑎𝑜𝑏𝑠
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node, meaning the variable is the result of deterministic calculation for given values of parent 

nodes thus the arrow towards it represent a deterministic function. In addition, elliptical nodes with 

solid lines represent continuous variables, whereas elliptical nodes with dashed lines represent 

discrete variables. The rectangular nodes represent observed variables (e.g., load and crack length). 

In addition, solid arrows are used within a BN slice, and dashed arrows connect the nodes across 

different time steps. 

In Figure 6.7, node 𝜽 represents all the 15 geometric and material properties (except for  𝐴) of 

the aircraft wing. Each property should be a node in the DBN connected to Δ𝑆. They are depicted 

as a single node to save space. 

Another special node in the DBN is 𝑎𝑠. For the BN in any time step, prior distributions are 

assigned to all the root nodes first, then uncertainty propagation or Bayesian inference will be 

conducted. Except for time step 1 where prior distributions are defined by users, BNs at other time 

steps obtain the prior distributions by propagating the posterior distributions of previous time step 

through the arrows connecting adjacent BNs. But for 𝑎0
 : 

1. If the crack length is not observed at time step 𝑡 − 1, its prior distribution is the predicted 

distribution of 𝑎  1, which means a deterministic functional relationship 𝑎  1 = 𝑎0
 , thus 

𝑎  1 directs to 𝑎0
  in Figure 6.7; 

2. If the crack length is observed at time step 𝑡 − 1, its prior distribution for time step t should 

be defined using this data point. Let  𝑎𝑡−1  denote the observed data point value. This 

research defines the prior distribution of 𝑎0
  as 𝑁( 𝑎𝑡−1 , 𝜎𝑎), thus 𝑎𝑜𝑏𝑠

  1 also directs to 𝑎0
  in 

Figure 6.7. 

Once the DBN is constructed, diagnosis and prognosis are the next steps in the health 

monitoring of the aircraft wing. This is explained in Section 6.4. 
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6.4 Results and Analysis 

A numerical example of crack growth on the leading edge of aircraft wing is used to illustrate 

all the concepts explained in earlier sections. The structure of the aircraft wing has been explained 

in Section 6.3.2. A time series input of 10,000 steps is applied at the anchor point. The FEA result 

in Figure 6.8 shows that under the geometric and material property uncertainty and load 

uncertainty, the location of maximum stress is always around Node 389. Thus we assume that a 

crack of 0.0588 inch is initialized at Node 389 and grows under the time series loading at the 

anchor point. A GP surrogate model predicting the stress at Node 389 is built to replace the FEA 

model. 

 
Figure 6.8 Maximum stress in the aircraft wing 

It is assumed that the time series input is observed at each step, and that the measurement error 

is a zero mean Gaussian variable 𝑁(0,0.0022). The observed load history is shown in Figure 6.9. 

Furthermore, crack length data are assumed to be observed only at time steps 2000, 4000, 5600, 

6400, and 6800. 

Maximum 
stress
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Figure 6.9 Load history observation 

As explained in Section 6.3.1, the aircraft wing contains 15 stochastic geometric parameters 

and one stochastic crack growth model parameter  𝑝. Except for the anchor point position  𝐴, all 

these parameters are static root nodes in Figure 6.7.  

GSA results for the elastic zone (𝑀 = 0) and plastic zone (𝑀 = 1) are shown in Table 6.2. In 

the elastic zone, 𝑇4  is the only significant parameter; in the plastic zone, 𝑇4  and  𝑝  are both 

significant. The sensitivity index of  𝐴 is small, indicating that  𝐴 and its only parent node bolt 

looseness   can be fixed at nominal values and the crack length data cannot track the evolution of 

  effectively. In this research, we retain the nodes of   and  𝐴 in the DBN to quantitatively prove 

this proposition. The parameters in Table 6.2 except for 𝑇4,  𝑝 and  𝐴 are fixed at their nominal 

values. 
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Table 6.2 GSA results 

 Elastic zone Plastic zone 

Parameters First-order index Total effects index First-order index Total effects index 

𝑇1 0.000 0.000 0.000 0.000 

𝑇2 0.000 0.000 0.000 0.000 

𝑇3 0.012 0.025 0.001 0.002 

𝑇4 0.875 0.902 0.104 0.277 

𝑇5 0.002 0.010 0.000 0.000 

𝑇6 0.001 0.003 0.000 0.000 

𝑇7 0.000 0.000 0.000 0.000 

𝐼 𝑃 0.000 0.000 0.000 0.000 

𝑂 𝑃 0.000 0.001 0.000 0.000 

𝐾1 0.000 0.000 0.000 0.000 

𝐾2 0.001 0.002 0.000 0.000 

𝐾3 0.000 0.000 0.000 0.000 

𝐾4 0.000 0.000 0.000 0.001 

𝑇𝑅 0.000 0.000 0.000 0.000 

 𝐴 0.022 0.031 0.002 0.004 

 𝑝 / / 0.696 0.865 

The deterministic relationships (represented by the arrows to deterministic nodes in the DBN) 

have been discussed in Section 6.3.1. The conditional probability distribution for the continuous 

node Δ𝑆  is a Gaussian distribution 𝑁(𝜇𝐺𝑃( 𝐴
 , 𝑃 , 𝜽), 𝜎𝐺𝑃( 𝐴

 , 𝑃 , 𝜽))  obtained by the GP 

surrogate model. Then the DBN for the crack growth is constructed as in Figure 6.7 and used for 

diagnosis and prognosis.  

In this example, since the load 𝑃 is observed at each time step, which provides strong evidence 

on the true value of 𝑃, the CPD of 𝑝(𝑃 |𝑃  1) can neglected thus the arrow from 𝑃  1 to 𝑃  can 

be removed in the DBN of Figure 6.7. The prior distribution of node 𝑃 at each time step is assumed 

to be a uniform distribution 𝑈(𝑃𝑙, 𝑃𝑢), where 𝑃𝑙 and 𝑃𝑢 are lower and upper bounds based on expert 
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opinion. With these assumptions, the method of replacing 𝑃 → 𝑃𝑜𝑏𝑠 by 𝑃𝑜𝑏𝑠 → 𝑃 in Section 6.2.3 

is applied to improve the computational efficiency. This research uses 104  particle in the 

computation of this example and the overall time cost is 𝑇 = 11109𝑠, including: 1) 11102𝑠 ≈

3.1ℎ𝑟𝑠 spent on forward propagation of 104  time steps; and 2) 7𝑠 spent on 4 updating. If the 

method in Section 6.2.3 is not used so that each time step requires updating, the time spent on 

updating will be 17500𝑠 and overall time cost will be 28602𝑠 ≈ 7.9ℎ𝑟𝑠. In other words, the 

proposed method in Section 6.2.3 reduces the time cost by 61%. 

The resistance of the bolt decreases as time, as shown in Eq. (6.16). Here we assume that the 

initial resistance of the bolt is 𝑅0 = 0.275; the resistance 𝑅(𝑡) reduces to 0.9𝑅0 after 104 time 

steps so that the degradation coefficient is 𝑘 = −1.0536 × 10 5 . The conditional probability 

tables for the discrete nodes  ,  𝐴 and 𝑀 are assumed as shown in Table 6.3, Table 6.4, and Table 

6.5, for the sake of illustration.  

Table 6.3 Conditional probability table of 𝑩𝒕 

𝑝(  |𝑃 ,    1)    1 = 1 
   1 = 0 

𝑃 < 0.85𝑅(𝑡) 0.85𝑅(𝑡) < 𝑃 < 0.95𝑅(𝑡) 𝑃 > 0.95𝑅(𝑡) 

  = 0 0 1 0.975 0.95 

  = 1 1 0 0.025 0.05 

 

Table 6.4 Conditional probability table of 𝒀𝑨𝒕 

𝑝( 𝐴
  |  )  𝐴

 = 0  𝐴
 = 9.935 ± 0.5  𝐴

 = 9.935 ± 1.0  𝐴
 = 9.935 ± 1.5  𝐴

 = 9.935 ± 2.0 

  = 0 1.0 0.0 0.0 0.0 0.0 

  = 1 0.0 0.25 0.125 0.075 0.05 

 

Table 6.5 Conditional probability table of 𝑴𝒕 

𝑝(𝑀 |𝑎 ,  𝑀  1) 𝑀  1 = 1 
𝑀  1 = 0 

𝑎 < 0.1 0.1 < 𝑎 < 0.12 0.12 < 𝑎 < 0.15 0.15 < 𝑎  

𝑀 = 0 0 1 0.8 0.6 0.5 

𝑀 = 1 1 0 0.2 0.4 0.5 
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True values are assumed for the model parameters in Table 6.2. Synthetic data for the observed 

crack length at time steps 2000, 4000, 5600, 6400, and 6800 are generated using the load history 

in Figure 6.9 and the assumed true values. Using these data, the objectives of this numerical 

example are to calibrate the static variables 𝑇4 and  𝑝, track the evolution of the time-dependent 

damage state variables   and 𝑀, and predict the crack length in the future. The results of these 

calculations are shown in Figures Figure 6.10 to Figure 6.14. 

  
Figure 6.10 Updating of 𝑻𝟒 Figure 6.11 Updating of 𝑭𝒑 

Figure 6.10  and Figure 6.11 show the updating of 𝑇4 and  𝑝 at each time step of inspection. 

Due to its high sensitivity in both the elastic zone and plastic zone, the uncertainty of 𝑇4 is reduced 

significantly just after the Inspection 1 at 𝑡=2000 of crack length. In contrast,  𝑝 is not updated at 

Inspection 1 at 𝑡=2000. The reason is that the crack tip has not reached the plastic zone at 𝑡=2000 

(shown in Figure 6.12) thus the obtained data do not contain information on the parameter  𝑝 of 

the plastic zone. The uncertainty in  𝑝 is reduced using the data from later inspections, where the 

crack tip has reached the plastic zone. 
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Figure 6.12 Tracking damage state 𝑴 (crack tip in elastic vs. plastic zone) 

Figure 6.12 shows the inferred evolution of damage state 𝑀. Recall that 𝑀 = 0 indicates that 

the crack tip is in the elastic zone, whereas 𝑀 = 1 indicates that the crack tip is in the plastic zone. 

Since the two states of the discrete variable 𝑀 are 0 and 1, the mean value of the inferred 𝑀 is 0 ×

𝑝(𝑀 = 0) + 1 × 𝑝(𝑀 = 1), i.e., equal to the probability 𝑝(𝑀 = 1). This probability 𝑝(𝑀 = 1) 

increases before Inspection 1 due to the assumed conditional probability distribution 

𝑝(𝑀 |𝑎 ,  𝑀  1) and reaches around 0.1 at 𝑡 = 2000. Then the network was updated by the crack 

length data from Inspection 1 and 𝑝(𝑀 = 1) is corrected to 0. The unobserved true value of 𝑀 is 

still 0 at 𝑡 =2000 thus this correction is valid. This reduced 𝑝(𝑀 = 1) also reduces the effect of 

the uncertainty in  𝑝, and thus reduces the uncertainty in the crack length prediction, as shown in 

Figure 6.14. A similar correction also occurs at Inspection 2, where 𝑝(𝑀 = 1) is corrected from 

0.7 to 1.0. In inspections 3, 4 and 5, Figure 6.12 shows a probability of  𝑝(𝑀 = 1) = 1, i.e., the 

crack has reached the plastic zone. 
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Figure 6.13 Tracking damage state 𝑩 (bolt loosening) 

Figure 6.13 shows the inferred evolution of damage state  , where  = 1 indicates a loose bolt 

and  = 0 indicates a tight bolt. The probability 𝑝( = 1), which is equal to the mean value of 

inferred  , increases before any inspection due to the assumed conditional probability distribution 

𝑝(  |𝑃 ,    1). The curve fluctuates due to the randomness in load 𝑃 . However, 𝑝( = 1) is not 

corrected significantly by the crack length data in the inspection. This can be explained by the 

GSA results in Table 6.2. The sensitivity of  𝐴  with respect to the crack length is negligible, 

meaning that as the only parent node of  𝐴, the bolt looseness    also has negligible influence on 

the crack growth, and is therefore not updated significantly. 
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Figure 6.14 Diagnosis and prognosis of crack length 

Figure 6.14 shows the diagnosis and prognosis of the crack length. The uncertainty in the crack 

length is reduced to measurement error at each inspection, and grows between inspections. The 

uncertainty grows fast (wide 95% bounds) before the first inspection, since the uncertainty 

propagation is based on prior distributions of 𝑇4 . The uncertainty grows slower between 

inspections 1 and 2 due to: 1) significantly reduced uncertainty in 𝑇4 at the first inspection, as 

shown in Figure 6.10; and 2) low probability that the crack has reached the plastic zone as shown 

in Figure 6.12, i.e., low probability that the uncertainty in  𝑝 is introduced. The uncertainty grows 

fast between Inspections 2 and 3 since: 1) the crack has reached the plastic zone so that the 

uncertainty in  𝑝 is introduced; the data from Inspection 2 barely reduces the uncertainty in  𝑝, as 

shown in Figure 6.11. The uncertainty grows slower again after Inspection 3 since the uncertainty 

in  𝑝 has been reduced by the observation data at Inspections 3, as shown in Figure 6.11. 

6.5 Summary 

Various uncertainty sources affect the health state diagnosis and prognosis of aircraft 

components. This chapter establishes a framework for probabilistic health diagnosis and prognosis 

using a dynamic Bayesian network (DBN). This framework is versatile due to the following 
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characteristics: 1) incorporate various aleatory and epistemic uncertainty sources; 2) handle both 

discrete and continuous variables; 3) allow the continuous variables to have any distribution type; 

and 4) allow non-linear functional relationships. 

Particle filter is used as the Bayesian inference algorithm for the non-linear and non-Gaussian 

DBN. The implementation of particle filter for this DBN is non-trivial due to 1) the existence of 

static nodes, which are time-independent variables shared by all the Bayesian networks; and 2) 

state variables that may have parent nodes across two adjacent Bayesian networks. Therefore, this 

research classifies the nodes in adjacent Bayesian networks into five groups to facilitate generating 

new particles based on the particle in the Bayesian network in the previous time instant. The 

generated new particles are used in Bayesian updating and help to realize the diagnosis. 

Prognosis requires no Bayesian inference thus is computationally less demanding than 

diagnosis. In case that the load is observed at each time step, theoretically Bayesian updating of 

the DBN is required at each time step, which implies large computational cost. This research shows 

that the DBN can be modified under reasonable assumptions about measurement error and load 

observation; as a result, the number of time steps requiring Bayesian updating of the DBN is 

reduced significantly, thus providing substantial savings in computational effort (61% saving in 

the numerical example). 

All the concepts above are illustrated by a numerical example of fatigue crack growth on the 

leading edge of an aircraft wing. The results for this example show that the proposed framework 

has the capabilities to: 1) track the evolution of time-dependent state variables (diagnosis); 2) 

reduce the uncertainty in time-independent state variables (diagnosis); and 3) probabilistically 

predict the crack growth in the future (prognosis).  
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CHAPTER 7  

 

EFFICIENT GLOBAL SENSITIVITY ANALYSIS: A NEW SAMPLE-BASED 

ALGORITHM TO ESTIMATE THE FIRST-ORDER SOBOL’ INDEX 

 

7.1 Background 

Section 2.6 provided an introduction to the global sensitivity analysis using Sobol’ index. For 

a deterministic function  =  (𝑿)  where the input 𝑿 = {𝑋1, … , 𝑋𝑘}  is a vector of mutually 

independent random variables, the calculation of the first-order Sobol’ index 𝑆𝑖 is based on the 

following formula: 

 𝑆𝑖 =
𝑉𝑋𝑖 ( 𝑿−𝑖( |𝑋𝑖))

𝑉( )
 (7.1)  

where 𝑿 𝑖 means all the model inputs other than 𝑋𝑖. 

As pointed out in Section 2.6, computing 𝑆𝑖 based on Eq. (7.1) is expensive since the numerator 

leads to a double-loop MCS. As shown in Eq. (2.16), the computational cost (number of functional 

evaluation) is 𝑘𝑛𝑑𝑙
2 + 𝑛𝑑𝑙 . This cost increases with 𝑛𝑑𝑙 and 𝑘, and is unaffordable if a single model 

evaluation is time-consuming or economically expensive, since 𝑛𝑑𝑙 is often of the order greater 

than 1000 in many practical applications. 

Various algorithms have been proposed to reduce the computational cost of the Sobol’ indices. 

These algorithms can be categorized into analytical methods and sample-based methods. In the 

analytical methods, the original model  =  (𝑿) is generally approximated by some surrogate 

model of special form, so that the multi-dimensional integral can be converted into multiple 
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univariate integrals, which can be easily calculated analytically or numerically. Zhang & Pandey 

[62] approximated the original model  =  (𝑿) by a multiplication of univariate functions; then 

the univariate integral was calculated by Gaussian quadrature. Sudret [126] proposed that if the 

original model is approximated by a polynomial chaos expansion (PCE), the Sobol’ index can be 

calculated by post-processing the PCE coefficients. Chen et al. [63] proposed another analytical 

method for commonly used surrogate models such as the linear regression model, Gaussian 

process model [30], Gaussian radial basis function model, and MARS model [127]; and analytical 

solution of the Sobol’ index is available if the model inputs are normally or uniformly distributed. 

Analytical methods reduce the number of model evaluations significantly, but may require: 1) 

extra approximations and assumptions, and 2) extra computational cost in building the surrogate 

model. 

Compared to the analytical methods, sample-based methods are more widely used [68,86,128–

130] in engineering due to their simplicity in implementation. The basic sample-based method for 

GSA is the double-loop MCS, which has been explained earlier and often has prohibitive 

computational cost. Various efficient sample-based methods have been developed in the literature 

to reduce this cost. A brief review of these sample-based methods is given in Section 7.2. To the 

authors’ knowledge, the computational cost (number of model evaluations) of most sample-based 

methods is proportional to the model input dimension 𝑘 . Therefore the first objective of this 

research is to develop a more efficient sample-based method whose computational cost is not 

proportional to 𝑘, but much less. 

A key assumption of the Sobol’ index is the mutual independence of model inputs. With 

correlated model inputs, higher-order indices are no longer valid. However, Saltelli [64] pointed 

out that the first-order index 𝑆𝑖 is still an informed choice to rank the importance of correlated 
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model inputs, which has been explained in Section 2.6. Saltelli’s paper [67] in 2002 mentioned 

that there is no alternative to the expensive double-loop MCS to compute 𝑆𝑖 with correlated model 

inputs. The authors have not found any efficient algorithm in more recent studies, either. Thus the 

second objective of this research is to develop an efficient algorithm that can handle correlated 

model inputs. 

The outline of this section is as follows. Section 7.2 briefly reviews existing sample-based 

methods for GSA, and discusses their computational cost. Section 7.3 illustrates the proposed 

modularized sample-based method that reduces the computational cost and handles correlated 

model inputs. Section 7.4 uses three numerical examples to compare the proposed method with 

existing methods. 

7.2 Literature Review: Sample-based Methods 

7.2.1 Sobol’s Scheme 

Consider a real integrable function  =  (𝑿)  where 𝑿 = {𝑋1, … , 𝑋𝑘}  is the vector of 

independent model inputs. Denote 𝒁 = {𝑍1, … , 𝑍𝑘} as the vector of the same independent model 

inputs, i.e., 𝑍𝑖(𝑖 = 1 to 𝑘) and 𝑋𝑖 are independently and identically distributed (i.i.d.). Sobol’ [61] 

developed the following formula to compute the first-order index: 

 𝑉𝑖 = ∫ (𝒙) (𝑋𝑖, 𝒁 𝑖)𝑝(𝑿)𝑝(𝒁 𝑖)d𝑿d𝒁 𝑖 −  2( ) (7.2)  

where 𝑝(∙) denotes the joint probability density function (PDF) of all the arguments, and it is the 

product of the PDFs of individual arguments under the assumption of independent model inputs. 

𝒁 𝑖 are all the variables in 𝒁 other than 𝑍𝑖. 

Eq. (7.2) leads to the following estimator of 𝑉𝑖: 
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 𝑉𝑖 =
1

𝑛
∑  (𝒙𝑗) (𝑥𝑖

𝑗
, 𝒛 𝑖

𝑗
)

𝑛

𝑗=1
− [

1

𝑛
∑  (𝒙𝑗)

𝑛

𝑗=1
]

2

 (7.3)  

Eq. (7.3) requires 𝑛𝑠 samples of 𝑿 and 𝑛𝑠 samples of 𝒁, which are sampled independently from 

the distributions of the model inputs. In Eq. (7.3), the superscript 𝑗 is the index of the samples and 

the subscript 𝑖 is the index of model inputs. For example, 𝒙𝑗 means the 𝑗-th sample of 𝑿, and 𝒛 𝑖
𝑗

 

means the 𝑗 -th sample of  𝒁  except 𝑍𝑖 . In Eq. (7.3),  (𝒙𝑗)  implies 𝑛𝑠  model evaluations; 

 (𝑥𝑖
𝑗
, 𝒛 𝑖

𝑗
) implies 𝑛𝑠  model evaluations for each model input, i.e., 𝑘𝑛𝑠  evaluations for all the 

model inputs. To improve the accuracy, generally another 𝑛𝑠 model evaluations are needed over 

the samples in 𝒁, and the results are used to estimate 𝑉( ) together with earlier evaluations over 

𝑿. The first-order index is calculated as 𝑆𝑖 = 𝑉𝑖/𝑉( ). The overall cost for all the first-order 

indices is 𝑘𝑛𝑠 + 2𝑛𝑠.  

Eq. (7.3) is the first efficient sample-based method to compute the first-order Sobol’ index. 

Several methods have been proposed to improve its accuracy or reduce computational cost. 

Homma & Saltelli [131] suggested a more accurate estimator of 𝑉𝑖 by using 
1

𝑛
∑  (𝒙𝑗) (𝒛𝑗)𝑛
𝑗=1  to 

calculate  2( ) instead of [
1

𝑛
∑  (𝒙𝑗)𝑛
𝑗=1 ]

2

 . Thus Eq. (7.3) becomes [132]: 

 𝑉𝑖 =
1

𝑛
∑  (𝒙𝑗)[ (𝑥𝑖

𝑗
, 𝒛 𝑖

𝑗
) −  (𝒛𝑗)]

𝑛

𝑗=1
 (7.4)  

Compared to Eq. (7.3), Eq. (7.4) brings no extra model evaluation. 

Sobol’ & Myshetskaya [133] improved Eq. (7.4) further by replacing  (𝒙𝑗) with  (𝒙𝑗) − 𝑐, 

where 𝑐 is a constant equal or close to the true value of  ( ). Thus Eq. (7.4) becomes: 
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 𝑉𝑖 =
1

𝑛
∑ [ (𝒙𝑗) − 𝑐][ (𝑥𝑖

𝑗
, 𝒛 𝑖

𝑗
) −  (𝒛𝑗)]

𝑛

𝑗=1
 (7.5)  

Eq. (7.5) brings no extra model evaluation either. In the numerical examples in Section 7.4, we 

define 𝑐 as the mean value of   over all samples of 𝑿 and 𝒁. 

In addition, another formula for 𝑉𝑖 to improve the accuracy of small 𝑆𝑖 is proposed by Owen 

[134]: 

 𝑉𝑖 =
1

𝑛
∑ [ (𝒙𝑗) −  (𝑤𝑖

𝑗
, 𝒙 𝑖

𝑗
)][ (𝑥𝑖

𝑗
, 𝒛 𝑖

𝑗
) −  (𝒛𝑗)]

𝑛

𝑗=1
 (7.6)  

In Eq. (7.6) another i.i.d of 𝑿 is denoted as 𝑾, and a sample set of size 𝑛𝑠 is generated for 𝑾 

so that 𝑤𝑖
𝑗
 is the 𝑗-th sample of the 𝑖-th model input in this sample set. Eq. (7.6) proves to be more 

accurate in estimating small 𝑆𝑖; but no accuracy improvement is observed in estimating large 𝑆𝑖 

[134]. In addition, the term  (𝑤𝑖
𝑗
, 𝒙 𝑖

𝑗 ) in Eq. (7.6) brings 𝑛𝑠 more model evaluations to estimate 

a single 𝑆𝑖. 

More sample-based methods derived from Eq. (7.3) can be found in Refs. [67,135–137].  This 

research does not describe all these methods due to space limitations. Note that all the existing 

sample-based methods using the Sobol’ scheme have a computational cost proportional to model 

inputs dimension 𝑘. 

7.2.2 FAST Scheme 

The FAST (Fourier amplitude sensitivity test) scheme includes two methods: classical FAST 

[138] and improved FAST [139] based on random balanced design [140]. The classical FAST was 

introduced in the 1970s, earlier than the introduction of Sobol’ index. However, FAST estimates 
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the equivalent of the first-order index defined in Eq. (7.1); thus the classical FAST is considered 

as an algorithm to compute the first-order index. 

The classical FAST method assumes that any model input 𝑋𝑖(𝑖 = 1 to 𝑘) follows the standard 

uniform distribution 𝑈(0,1), such that the domain of the model inputs is a unit hypercube  𝑘 =

(𝑿|0 ≤ 𝑋𝑖 ≤ 1; 𝑖 = 1 to 𝑘). This can be satisfied by converting all the model inputs into their CDF 

space. 

Instead of directly generating random samples of 𝑿 to fill in the sampling space  𝑘 , FAST 

utilizes a curve to explore it. This curve is defined as: 

 𝑋𝑖(𝑠) = 𝐺𝑖(sin𝜔𝑖𝑠) ∀ 𝑖 = 1 to 𝑘 (7.7)  

In Eq. (7.7), 𝑠 varies in [−𝜋, 𝜋]; 𝜔𝑖 is the angular frequency of 𝑋𝑖, set as linearly independent 

positive integers, and detailed strategy to select 𝜔𝑖  can be found in [141]; 𝐺𝑖(∙) is a transfer 

function. 

The curve in Eq. (7.7) explores the hypercube  𝑘 as 𝑠 changes. In other words, by generating 

samples of 𝑠 from the uniform distribution 𝑈(−𝜋, 𝜋), the corresponding samples of 𝑋𝑖(𝑖 = 1 to 𝑘) 

can be obtained by Eq. (7.7). The resultant samples of 𝑋𝑖(𝑖 = 1 to 𝑘) should follow the uniform 

distribution 𝑈(0,1) , and the samples of 𝑋𝑖  and 𝑋𝑗(𝑖 ≠ 𝑗)  should be independent. These two 

objectives are achieved by the designed transfer function 𝐺𝑖(∙). Different forms of 𝐺𝑖(∙) have been 

proposed in Refs. [138,142,143]. 

Substituting Eq. (7.7) into the original model  =  (𝑿) results in a new function of 𝑠 denoted 

as  =  (𝑿(𝑠)), which can be expanded into a Fourier series. Then the total variance 𝑉( ) and 

the output variance caused by 𝑋𝑖 itself are: 
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 𝑉( ) = 2∑ Λ𝑝
 ∞

𝑝=1
,    𝑉𝑖 = 2∑ Λ𝑝𝜔𝑖

 ∞

𝑝=1
 (7.8)  

where 𝑝 can be any positive integer; Λ𝑝 and Λ𝑝𝜔𝑖
 are the Fourier spectrum at frequency 𝑝 and 

𝑝𝜔𝑖 , respectively. Eq. (7.8) means that 𝑉𝑖  is related to the Fourier spectrum at the selected 

frequency 𝜔𝑖 and its higher harmonics 𝑝𝜔𝑖.  

In numerical computation, 𝑛𝐹  samples of 𝑠  are uniformly generated from [−𝜋, 𝜋] , 

corresponding to 𝑛𝐹  underlying samples of 𝑿 = {𝑋1, … , 𝑋𝑘} . The model  =  (𝑿(𝑠))  is 

evaluated at these samples to obtain the model output values, based on which the Fourier spectrum 

Λ𝑝 can be computed by a numerical integral. Usually Λ𝑝𝜔𝑖
 is computed up to 𝐻𝜔𝑖, where 𝐻 is 

usually set to 4 or 6. Fourier coefficients at frequencies higher than 𝐻𝜔𝑖 can be ignored in Eq. 

(7.8). 

The computational cost of classical FAST is simply 𝑛𝐹 , since the same model evaluation 

 (𝑿(𝑠)) can be used to evaluate different 𝑉𝑖. However, 𝑛𝐹 is constrained to a lower limit 𝑛𝐹 ≥

2max(𝜔𝑖) + 1 [138]. According to the algorithm in Ref. [141] to select 𝜔𝑖, max(𝜔𝑖) increases 

with the input dimension 𝑘, thus the computational cost 𝑛𝐹 also increases as 𝑘. 

The improved FAST combines the classical FAST above with random balanced design. The 

improved FAST generates 𝑛𝐹  samples of 𝑠  with 𝜔𝑖 = 1 ∀ 𝑖 = 1 to 𝑘 . Then the model  =

 (𝑿(𝑠)) is evaluated 𝑛𝐹 times to obtain the corresponding output values, denoted as  (𝑠𝑗), 𝑗 =

1 to 𝑛𝐹. 

To obtain 𝑉𝑖 , the output values  (𝑠𝑗) are reordered as  𝑅(𝑠𝑗) such that the corresponding 

values of 𝑋𝑖  are ranked in increasing order. Then 𝑉𝑖  is calculated in the same way as for the 

classical FAST approach by computing Fourier spectrum. 
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The improved FAST has no lower limit of sample size thus its computational cost 𝑛𝐹 is not 

related to the model input dimension 𝑘. In addition, this method also achieves better accuracy 

[54,139,144] than the classical FAST. 

7.3 Proposed Method 

The motivation of the proposed method is rooted in the following challenge: with the input-

output samples regarding a physics/computational model available, can we directly estimate the 

Sobol’ index from the samples without more model evaluations? The intuitive answer should be 

yes, since the resultant input-output samples contain information about 1) the underlying input-

output functional relationship, and 2) the underlying input/output distributions. 

One GSA method based on the classical ANOVA using factorial design of experiments was 

proposed in [145]. If the random samples of each model input are considered as the levels of factors 

in the factorial design, this method gives the same result as the Sobol’ index since the variance 

decomposition powering the Sobol’ index is the same as that used in the classical ANOVA [146]. 

However, the factorial design in this method requires all possible combinations of the model input 

samples (levels) [145] and the corresponding model output samples, thus common MCS samples 

are not applicable. 

In this research, a new sample-based method is proposed to resolve this challenge. Instead of 

modifying or improving the Sobol’ scheme or the FAST approach, the proposed method is 

developed by analyzing the inner and outer loops of MCS in calculating the first-order index. 

7.3.1 Algorithm 1 

The proposed Algorithm 1 addresses the first-order index expression of Eq. (7.1), whose 

numerator includes the inner loop  𝑿−𝑖( |𝑋𝑖) and the outer loop 𝑉𝑋𝑖(∙).  
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Consider a model of  =  (𝑿)  where 𝑿 = {𝑋1, … , 𝑋𝑘} . We divide 𝑿  into two sets: 𝑿 =

{𝑋𝑖, 𝑿 𝑖} where 𝑿 𝑖  are the inputs other than 𝑋𝑖 .  𝑿−𝑖( |𝑋𝑖) is a function of 𝑋𝑖 , and it can be 

proved that the mean value of   over = {𝑋𝑖, 𝑿 𝑖} is equal to the average of  𝑿−𝑖( |𝑋𝑖) over 𝑋𝑖: 

 

 𝑋𝑖 ( 𝑿−𝑖( |𝑋𝑖)) = ∫ 𝑿−𝑖( |𝑋𝑖) 𝑝(𝑋𝑖)d𝑋𝑖 

= ∫(∫ (𝑋𝑖, 𝑿 𝑖)𝑝(𝑿 𝑖|𝑋𝑖)d𝑿 𝑖) 𝑝(𝑋𝑖)d𝑋𝑖 

= ∫∫ (𝑋𝑖, 𝑿 𝑖)𝑝(𝑋𝑖, 𝑿 𝑖)d𝑋𝑖d𝑿 𝑖 =  ( ) 

(7.9)  

Eq. (7.9) is called the law of total expectation and can be found in Ref. [147]. In Eq. (7.9), if 𝑋𝑖 

is constrained into a closed and bounded interval Φ, the distribution of 𝑋𝑖 (and 𝑿 𝑖 for correlated 

inputs) will change but Eq. (7.9) is still valid. In this case, based on the extreme value theorem 

[148], if  𝒙−𝑖( |𝑋𝑖)  is a continuous function of 𝑋𝑖  in Φ , it must have a maximum value 

max
𝑋𝑖∈Φ

( 𝑿−𝑖( |𝑋𝑖)) and a minimum value min
𝑋𝑖∈Φ

( 𝑿−𝑖( |𝑋𝑖)) in Φ. The mean value of  𝑿−𝑖( |𝑋𝑖), 

i.e.,  Φ( 𝑿−𝑖( |𝑋𝑖)), is between these maximum and minimum values. Due to 𝑋𝑖 ∈ Φ, we denote 

the mean value of   as  Φ( ). With  Φ( ) =  Φ( 𝑿−𝑖( |𝑋𝑖)) proved in Eq. (7.9), we obtain 

 min
𝑋𝑖∈Φ

( 𝑿−𝑖( |𝑋𝑖)) ≤  Φ( ) ≤max
𝑋𝑖∈Φ

( 𝑿−𝑖( |𝑋𝑖)) (7.10)  

Furthermore, since  𝑿−𝑖( |𝑋𝑖) is a continuous function in Φ, the intermediate value theorem 

[148] proves that  

 ∃𝑥𝑖
 ∈ Φ such that  Φ( ) =  𝑿−𝑖( |𝑥𝑖

 ) (7.11)  

Eq. (7.11) leads to the proposed Algorithm 1 if we design the interval Φ based on stratified 

sampling. 
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Stratified sampling generates samples in equal probability intervals to represent the distribution 

of a random variable 𝑋. Figure 7.1(a) shows one strategy [54] of stratified sampling: 1) divide the 

CDF of 𝑋𝑖 into 𝑀 intervals such that these intervals have the same length; 2) generate one sample  

𝑢𝑙 (the red dots in Figure 7.1(a), and 𝑙 = 1 to 𝑀) from each CDF interval and obtain samples of 

𝑋𝑖 (the green dots in Figure 7.1) by CDF inversion 𝑥𝑖
𝑙 = 𝑃 1(𝑢𝑙), where 𝑃 1(∙) is the inverse CDF 

of 𝑋𝑖. If we take the bounds of these intervals of the CDF as the inputs of 𝑃 1(∙), the sampling 

space of 𝑥𝑖  is actually divided into 𝑀  equally probable intervals Φ𝑙(𝑙 = 1 to 𝑀), as shown in 

Figure 7.1(b), and 𝑥𝑖
𝑙 is actually a random sample generated within Φ𝑙. 

  

(a) Stratified sampling (b) Equally probably intervals of 𝒙𝒊 

Figure 7.1 Stratified sampling and equally probably intervals 

Consider the inner loop  𝑿−𝑖( |𝑋𝑖) in Eq. (7.1) first. Assuming Φ = Φ𝑙,  Eq. (7.11) proves that 

∃𝑥𝑖
𝑙 ∈ Φ𝑙 such that  𝒙−𝑖( |𝑥𝑖

𝑙 ) =  Φ𝑙( ), where  Φ𝑙( ) is the mean value of   with 𝑋𝑖 ∈ Φ𝑙. 

In other words, calculating  Φ𝑙( ) is equivalent to fixing 𝑋𝑖  at an unknown but existing point 

𝑥𝑖
𝑙 ∈ Φ𝑙 and calculating the conditional mean value  𝑿−𝑖( |𝑋𝑖 = 𝑥𝑖

𝑙 ). 

 

𝑋𝑖

C
D

F

𝑥𝑖
1

𝑥𝑖
2 𝑥𝑖

3 𝑥𝑖
4𝑥𝑖

5… 𝑥𝑖
𝑀

𝑋𝑖

C
D

F

Φ5Φ3Φ4Φ1 Φ2 … Φ𝑀



 168 

The outer loop 𝑉𝑋𝑖(∙) requires fixing 𝑋𝑖 at different locations, and these selected locations are 

samples from the distribution of 𝑋𝑖. Based on stratified sampling, the set of these unknown but 

existing points 𝒙𝑖
 = {𝑥𝑖

1 , … , 𝑥𝑖
𝑀 }  from the equally probable intervals 𝚽 = {Φ1, … ,Φ𝑀}  can 

represent the distribution of 𝑋𝑖 . As  Φ𝑙( ) =  𝑿−𝑖( |𝑋𝑖 = 𝑥𝑖
𝑙 ), the computation of 𝑆𝑖  in the 

proposed Algorithm 1 is expressed as 

 𝑆𝑖 =
𝑉𝚽 ( Φ𝑙(𝑦))

𝑉(𝑦)
 (7.12)  

where it numerator is the variance of { Φ1( ),  Φ2( ), … ,  Φ𝑀( )} . The steps to realize 

Algorithm 1 are listed in Section 7.3.3. 

7.3.2 Algorithm 2 

Based on the law of total variance  

 𝑉( ) =  𝑋𝑖 (𝑉𝑿−𝑖( |𝑋𝑖)) + 𝑉𝑋𝑖 ( 𝑿−𝑖( |𝑋𝑖)) (7.13)  

Eq. (7.1) can be rewritten as 

 𝑆𝑖 = 1 −
 𝑋𝑖 (𝑉𝑿−𝑖( |𝑋𝑖))

𝑉( )
 (7.14)  

The proposed Algorithm 2 is regarding this equivalent first-order Sobol’ index expression in 

Eq. (7.14), whose numerator implies an expensive double-loop Monte Carlo simulation including 

the inner loop 𝑉𝑿−𝑖( |𝑋𝑖) and the outer loop  𝑋𝑖(∙). Its inner loop part 𝑉𝑿−𝑖( |𝑋𝑖) is a function of 

𝑋𝑖. Assume 𝑋𝑖 ∈ Φ, where Φ can be the entire sampling space of 𝑋𝑖 or only a small interval. Based 

on the extreme value theorem, 𝑉𝑿−𝑖( |𝑋𝑖) must have a maximum value and a minimum value in 
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Φ. The mean value of 𝑉𝑿−𝑖( |𝑋𝑖), i.e.,  Φ(𝑉𝑿−𝑖( |𝑋𝑖)) for 𝑋𝑖 ∈ Φ, is between these maximum 

and minimum values: 

 min
𝑋𝑖∈Φ

(𝑉𝑿−𝑖( |𝑋𝑖)) ≤  Φ(𝑉𝑿−𝑖( |𝑋𝑖)) ≤ max
𝑋𝑖∈Φ

(𝑉𝑿−𝑖( |𝑋𝑖)) (7.15)  

Then the intermediate value theorem proves that 

 ∃𝑥𝑖
# ∈ Φ s. t. 𝑉𝑿−𝑖( |𝑥𝑖

#) =  Φ(𝑉𝑿−𝑖( |𝑋𝑖)) (7.16)  

With 𝑋𝑖 ∈ Φ, we rewrite the law of total variance in Eq. (7.13) as: 

 𝑉Φ( ) =  Φ (𝑉𝑿−𝑖( |𝑋𝑖)) + 𝑉Φ ( 𝑿−𝑖( |𝑋𝑖)) (7.17)  

where the subscript Φ means all the terms are constrained to 𝑋𝑖 ∈ Φ. Substituting Eq. (7.17) into 

Eq. (7.16) and assuming Φ = Φ𝑙 as one of the equally probable intervals in stratifying sampling, 

we can have 

 ∃𝑥𝑖
𝑙# ∈ Φ𝑙 s. t. 𝑉𝑿−𝑖( |𝑥𝑖

𝑙#) = 𝑉Φ𝑙( ) − 𝑉Φ𝑙( 𝑿−𝑖( |𝑋𝑖)) (7.18)  

where 𝑥𝑖
𝑙# is an unknown but existing point in Φ𝑙. Note that now 𝑉Φ𝑙( ) is the variance of   given 

𝑋𝑖 ∈ Φ𝑙 and 𝑉Φ( 𝑿−𝑖( |𝑋𝑖)) is the variance of  𝑿−𝑖( |𝑋𝑖) given 𝑋𝑖 ∈ Φ𝑙. 

The outer loop  𝑋𝑖(∙) requires fixing 𝑋𝑖 at different locations, and these selected locations are 

samples from the distribution of 𝑋𝑖. Based on stratified sampling, the set of these unknown but 

existing points 𝒙𝑖
# = {𝑥𝑖

1#, … , 𝑥𝑖
𝑀#}  from the equally probable intervals 𝚽 = {Φ1, … ,Φ𝑀}  can 

represent the distribution of 𝑋𝑖. Based on Eqs. (7.14) and (7.18), computation of 𝑆𝑖 is expressed as 
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𝑆𝑖 = 1 −
 𝚽 (𝑉𝑿−𝑖( |𝑥𝑖

𝑙#))

𝑉( )
= 1 −

 𝚽 (𝑉Φ𝑙( ) − 𝑉Φ𝑙( 𝑿−𝑖( |𝑋𝑖)))

𝑉( )
 

= 1 −
 𝚽 (𝑉Φ𝑙( ))

𝑉( )
+
 𝚽 (𝑉Φ𝑙( 𝑿−𝑖( |𝑋𝑖)))

𝑉( )
 

(7.19)  

On the right-hand side of Eq. (7.19), the first term is a known constant 1; the second term can 

be directly computed using the Monte Carlo samples, following the steps given later in Figure 7.2; 

the third term is still a challenge but we can prove that this term can be ignored by rewriting it as: 

 
 𝚽 (𝑉Φ𝑙( 𝑿−𝑖( |𝑋𝑖)))

𝑉( )
=  𝚽 (

𝑉Φ𝑙( 𝑿−𝑖( |𝑋𝑖))

𝑉Φ𝑙( )

𝑉Φ𝑙( )

𝑉( )
) (7.20)  

In Eq. (7.20), the term 𝑉Φ𝑙( 𝑿−𝑖( |𝑋𝑖)) 𝑉Φ𝑙( )⁄ =  𝑆𝑖
Φ𝑙

 is nothing but the first-order sensitivity 

of 𝑋𝑖 as it is restricted to the interval Φ𝑙. We always have 𝑆𝑖
Φ𝑙
< 𝑆𝑖 since the uncertainty of 𝑋𝑖 has 

been reduced significantly by restricting it in Φ𝑙 such that its sensitivity index will be much lower.  

The other term in Eq. (7.20) 𝑉Φ𝑙( ) 𝑉( )⁄  is the ratio of 1) the variance of   as 𝑋𝑖 is restricted to 

the interval Φ𝑙 and 2) the overall variance of  . 

If 𝑋𝑖 has a high sensitivity index 𝑆𝑖 close to one, restricting it to Φ𝑙 will reduce the variance of 

𝑦 significantly such that 𝑉Φ𝑙( ) 𝑉( )⁄  will be close to zero; meanwhile 𝑆𝑖
Φ𝑙

 will be also smaller 

than 𝑆𝑖. Overall, their product will be close to zero. 

If 𝑋𝑖  has a low sensitivity index 𝑆𝑖  closer to zero, restricting it to Φ𝑙  will NOT reduce the 

variance of   significantly such that 𝑉Φ𝑙( ) 𝑉( )⁄  will be close to 1; however, we always have 

𝑆𝑖
Φ𝑙
< 𝑆𝑖 so that 𝑆𝑖

Φ𝑙
 is closer to zero. Overall, their product will be close to zero. 



 171 

In sum, no matter whether 𝑆𝑖 is closer to zero or one, Eq. (7.20) is always a small value close 

to zero, and this value will reduce further as the number of intervals 𝑀 increases, since in that case 

Φ will be narrower so that . Thus Eq. (7.19) can be approximated as 

 𝑆𝑖 ≈ 1 −
 𝚽 (𝑉Φ𝑙( ))

𝑉( )
 (7.21)  

Eq. (7.21) is the proposed Algorithm 2, and the steps to realize it are listed in Section 7.3.3. 

7.3.3 Implementation and Benefits of the Proposed Method 

The innovation in the proposed methods is that the inner loop  𝑿−𝑖( |𝑋𝑖) or 𝑉𝑿−𝑖( |𝑋𝑖) is not 

conditioned on an explicit sample of 𝑋𝑖 selected by the user, but on an unknown but existing point. 

The first-order index 𝑆𝑖 is obtained without knowing the value of this existing point. The benefits 

of the proposed methods can be observed from the following steps to realize Eqs. (7.12) and (7.21): 

1. Generate 𝑛𝑀 random samples of 𝑿; 

2. Obtain corresponding values of   by evaluating  =  (𝑿), and estimate 𝑉( ) using all 

samples of  ; 

3. Divide the domain of 𝑋𝑖 into 𝑀 equally probable intervals, as shown in Figure 7.1; 

4. Assign the samples of   into divided intervals based on one-to-one mapping between the 

samples of 𝑋𝑖 and samples of  ; 

5. For Algorithm 1, estimate  Φ𝑙( )  as the sampling mean of   in each interval; for 

Algorithm 2, estimate 𝑉Φ𝑙( ) as the sampling variance of   in each interval; 

6. For Algorithm 1, estimate 𝑉𝚽( Φ𝑙( )) as the sampling variance of  Φ𝑙( ) in step 5; for 

Algorithm 2, estimate  𝚽(𝑉Φ𝑙( )) as the sampling mean of 𝑉Φ𝑙( ) in step 5; 

7. 𝑆𝑖 = 𝑉𝚽( Φ𝑙( ))/𝑉( ) for Algorithm 1 and 𝑆𝑖 = 1 −  𝚽(𝑉Φ𝑙( ))/𝑉( ) for Algorithm 2. 
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Figure 7.2 Steps to realize the proposed method 

The steps to realize the proposed method are also illustrated in Figure 7.2, where samples in 

different equally probable intervals are represented in different colors. These steps indicate that 

the proposed methods are modularized in two aspects. First, Steps 3 and 4 show that the samples 

of 𝑿 𝑖 are not used in calculating the index 𝑆𝑖 for 𝑋𝑖, so that index calculations for different model 

inputs are separated. Therefore the calculation of 𝑆𝑖 purely depends on the samples of 𝑋𝑖 and  , 

and can be achieved even if the samples of 𝑿 𝑖 are missing. Second, model inputs sampling, model 

evaluation, and index calculation are separate processes. The computational cost of most existing 

sample-based methods is proportional to the model inputs dimension 𝑘 because each input needs 

new samples to calculate its Sobol’ index. In comparison, the computational cost of the proposed 

method is not proportional to 𝑘 because each input uses the same samples to calculate its Sobol’ 

index. Therefore in the proposed method the accuracy of the resultant Sobol’ index only relies on 

the number of samples 𝑛𝑀 and the selected value of 𝑀, but not dependent on 𝑘.  

Another benefit brought by this modularization is that the input-output samples in step 1 can be 

from other uncertainty quantification activities. It provides a solution of sensitivity analysis when 
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input-output samples are available but the underlying model is not available or too expensive for 

re-running. 

One very important benefit of the proposed methods is that the derivation of these proposed 

algorithms does not assume independent model inputs. Thus the proposed methods can handle 

both independent and correlated model inputs. To the authors’ knowledge, the proposed method 

is the only available alternative so far to the costly double-loop MCS method when the model 

inputs are correlated. 

7.3.4 Accuracy Comparison: Algorithm 1 vs. Algorithm 2 

For a given set of input-output samples, the factor affecting the implementation of the proposed 

method is 𝑀, the number of equally probable intervals used to stratify the samples. This section 

identifies the effect of 𝑀 on the proposed algorithms and compares their accuracy. The algorithm 

found to be better will then be used to compare against existing methods. 

 
Figure 7.3 Thick cantilever beam 

First, Algorithms 1 and 2 are compared by an illustrative example of a thick cantilever beam 

shown in Figure 7.3. This example computes the beam’s tip deflection along the 𝑦-axis using the 

Timoshenko beam theory [149]: 

 𝑢 =
𝑃

6 𝐼
[(4 + 5𝜈)

ℎ2𝐿

4
+ 2𝐿3] (7.22)  

𝑏

𝐿

ℎ

𝑃

𝑦

𝑥
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where 𝐼 = 𝑏ℎ3 12⁄ . The statistics of other model inputs in Eq. (7.22) are listed in Table 7.1. 

Table 7.1 Statistics of model inputs in the cantilever beam example 

Input Load Young’s 

modulus 

Poisson’s 

ratio 

Width Height Length 

Symbol/Unit 𝑃/kN  /GPa 𝜈 𝑏/mm ℎ/mm 𝐿/mm 

Distribution type Normal Lognormal Lognormal Lognormal Lognormal Lognormal 

Mean 2.5 200 0.225 1.0 3.0 3.5 

COV 0.1 0.05 0.05 0.05 0.05 0.05 

   

(a) 𝑴 = 𝟏𝟎𝟎 (b) 𝑴 = 𝟓𝟎𝟎 (c) 𝑴 = 𝟏𝟎𝟎𝟎 

Figure 7.4 Algorithm 1, Cantilever beam example 

   

(a) 𝑴 = 𝟏𝟎𝟎 (b) 𝑴 = 𝟓𝟎𝟎 (c) 𝑴 = 𝟏𝟎𝟎𝟎 

Figure 7.5 Algorithm 2, Cantilever beam example 

The proposed two algorithms are used to calculate the first-order index using 104 MCS samples. 

Results for different interval numbers 𝑀 are shown in Figure 7.4 and Figure 7.5, where the “True 

value” is estimated by the costly double-loop MCS method with 𝑛𝑑𝑙 = 104. 
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Figure 7.4 clearly shows that Algorithm 1 tends to overestimate the first-order index, especially 

at large 𝑀 values; while Figure 7.5 shows that Algorithm 2 is more robust and reveals adequate 

accuracy at different values of 𝑀. This observation can be explained by analyzing the numerical 

errors in implementing Algorithms 1 and 2. 

In Algorithm 1, assume that the true mean value of   in the 𝑙-th interval Φ𝑙 is 𝜇𝑙(𝑖 = 1 to 𝑀) 

while the estimated sampling mean value is �̅�𝑙. We denote �̅�𝑙 = 𝜇𝑙 + 𝑑𝑙 where 𝑑𝑙 is the bias due 

to limited samples in Φ𝑙. At given 𝑀, the best estimate for 𝑉𝑋𝑖( 𝑿−𝑖( |𝑋𝑖)) is 

 �̂� =
1

𝑀 − 1
∑ (𝜇𝑙 − �̅�)2

𝑀

𝑙=1
 (7.23)  

where �̅�  is the mean value of 𝜇𝑙 , i.e.,  �̅� = (∑ 𝜇𝑙𝑀
𝑙=1 )/𝑀 . This �̂�  approximates the desired 

𝑉𝑋𝑖( 𝑿−𝑖( |𝑋𝑖)) well if 𝑀 is large enough. However,  �̂� can be obtained only if 𝜇𝑙 ∀ 𝑙 = 1 to 𝑀 is 

estimated correctly, which cannot be achieved due to the numerical errors. Denoting �̿� =

(∑ �̅�𝑙𝑀
𝑙=1 )/𝑀 and �̅� = (∑ 𝑑𝑙𝑀

𝑙=1 )/𝑀, the actual estimate of 𝑉𝑋𝑖( 𝑿−𝑖( |𝑋𝑖)) is 

 �̃� =
1

𝑀 − 1
∑ (�̅�𝑙 − �̿�)2

𝑀

𝑙=1
=

1

𝑀 − 1
∑ (𝜇𝑙 + 𝑑𝑙 − �̅� − �̅�)

2𝑀

𝑙=1
 (7.24)  

The bias of �̃� from �̂� is 

 

�̃� − �̂� =
1

𝑀 − 1
[∑ (𝜇𝑙 + 𝑑𝑙 − �̅� − �̅�)

2𝑀

𝑙=1
−∑ (𝜇𝑙 − �̅�)

2𝑀

𝑙=1
] 

=
1

𝑀 − 1
[∑ (2𝜇𝑙 + 𝑑𝑙 − 2�̅� − �̅�)(𝑑𝑙 − �̅�)

𝑀

𝑙=1
] 

=
2(𝜇𝑙 − �̅�)

𝑀 − 1
∑ (𝑑𝑙 − �̅�)

𝑀

𝑙=1
+

1

𝑀 − 1
∑ (𝑑𝑙 − �̅�)

2𝑀

𝑙=1
 

=
1

𝑀 − 1
∑ (𝑑𝑙 − �̅�)

2𝑀

𝑙=1
> 0 

(7.25)  
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Eq. (7.25) clearly indicates that �̃�  is a positively biased estimate of �̂� , where �̂�  is used to 

approximate the desired term  𝑉𝑋𝑖( 𝑿−𝑖( |𝑋𝑖)). Due to the square term in the last line of Eq. (7.25), 

this bias tends to increase as 𝑀 becomes large. This explains why Algorithm 1 overestimates the 

first-order indices in Figure 7.4 and why this overestimation increases with 𝑀. 

In Algorithm 2, assume that the true variance of 𝑦 in the 𝑙-th interval Φ𝑙  is 𝑆𝑙(𝑖 = 1 to 𝑀) 

while the estimated sampling mean value is 𝑉𝑙. We denote 𝑉𝑙 = 𝑆𝑙 + 𝛿𝑙 where 𝛿𝑙 is the bias due 

to limited sample in Φ𝑙. At given 𝑀, the best estimate of  𝑋𝑖(𝑉𝑿−𝑖( |𝑋𝑖)) is  ̂ = (∑ 𝑆𝑙𝑀
𝑙=1 )/𝑀 

while the actual estimate is   ̃ = (∑ 𝑉𝑙𝑀
𝑙=1 )/𝑀. The bias of  ̃ from  ̂ is 

  ̃ −  ̂ =
1

𝑀
∑ (𝑉𝑙 − 𝑆𝑙)

𝑀

𝑙=1
=

1

𝑀
∑ 𝛿𝑙

𝑀

𝑙=1
 (7.26)  

The bias from Eq. (7.26) is around zero since 𝛿𝑙 can be randomly positive or negative.  Then  ̃ 

is an unbiased estimate of  ̂, where  ̂  is used to approximate the desired term   𝑋𝑖(𝑉𝑿−𝑖( |𝑋𝑖)). 

This explains why Algorithm 2 estimates the first-order index accurately at different values of 𝑀. 

In conclusion, Algorithm 2 is more accurate and robust than Algorithm 1. Note that Eqs.(7.25) and 

(7.26) which compare the accuracy of Algorithms 1 and 2 are general; the cantilever beam example 

was only for illustrative purposes. 

In this cantilever beam example, Figure 7.5 proves the robustness of Algorithm 2 at different 

values of 𝑀. Section 7.4.4 will give a detailed discussion on the selection of 𝑀 based on another 

three numerical examples and provide an empirical instruction in selecting 𝑀. 

7.3.5 Extension of the Proposed Method 

Theoretically, the proposed Algorithms 1 or 2 can be extended to estimate higher-order Sobol’ 

index. For example, the formula for the second-order Sobol’ index of 𝑋𝑖 and 𝑋𝑗 (𝑖 ≠ 𝑗) is[54] 
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 𝑆𝑖𝑗 =
𝑉 ( ( |𝑋𝑖, 𝑋𝑗))

𝑉( )
− 𝑆𝑖 − 𝑆𝑗 

(7.27)  

where 𝑆𝑖 and 𝑆𝑗 are given by the proposed method. 

Similar to Algorithm 1, 𝑉( ( |𝑋𝑖, 𝑋𝑗)) in Eq. (7.27) can be estimated by: 1) dividing 𝑋𝑖 and 𝑋𝑗 

into equally probable intervals; and 2) 𝑉( ( |𝑋𝑖, 𝑋𝑗)) = 𝑉𝚽( Φ𝑙( ))  where Φ𝑙(𝑙 = 1 to 𝑀) 

represents a 2-dimensional equally probable interval, instead of a 1-dimensional interval in 

calculating 𝑆𝑖. In general, Sobol’ index of order   requires calculating 𝑉( ( |𝑋𝑖1 , 𝑋𝑖2 , … , 𝑋𝑖𝐷)), 

meaning that Φ𝑙  is an interval in a  -dimensional sampling space. The required number of 

intervals to fill this space, i.e., the value of 𝑀, increases with  . For a given number of samples, 

this means less samples in a single interval and increased numerical error in estimating 

𝑉𝚽( Φ𝑙( )). In the worst case, some intervals may not contain any sample at all. In conclusion, 

extending the proposed method to higher-order indices is theoretically possible, but much larger 

numbers of samples are needed for accurate results. Therefore, this research only focuses on the 

first-order index. 

7.3.6 Summary 

Section 7.3 proposed two new algorithms to calculate the first-order Sobol’ index. The main 

innovation is that the conditional mean value 𝑉𝑿−𝑖( |𝑋𝑖) or the conditional variance  𝑿−𝑖( |𝑋𝑖) is 

no more conditioned on a user-defined location but an unknown existing location of 𝑋𝑖 . This 

innovation enables the proposed algorithms to directly estimate the Sobol’ index from the input-

output samples, and reuse the same samples to compute the indices of different input. This section 

also proves that Algorithm 2 is more accurate and robust than Algorithm 1. Therefore in the next 
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section Algorithm 2 is selected to compete with existing methods. The proposed method has the 

following advantages: 

1. Less computational effort than most existing sample-based methods in Section 7.2, since 

its computational cost is not proportional to the model input dimension. 

2. Handling correlated model inputs, which is an advantage over both the existing sample-

based methods and the existing analytical methods such as the M-DRM algorithm in [62]. 

3. Capability to compute the first-order index if input-output samples have been generated 

but the underlying model is not available or too expensive for re-running, and this is also 

an advantage over both the existing sample-based methods and the existing analytical 

methods. In fact, the first-order Sobol’ index of 𝑋𝑖  can be computed by the proposed 

method even if the samples of 𝑿 𝑖 are missing. 

The only parameter to be tuned in the proposed method is the number of equally probable 

intervals. The selection of this parameter will be discussed in Section 7.4.4. 

Note that analytical methods such as the M-DRM algorithm [62] are more efficient and use less 

model evaluations than the proposed method. However, these methods need a mathematical model 

that connects the input to the output so that the users can run the functions at some specific values; 

whereas our proposed method works directly with the input-output samples, which might have 

been collected from tests or field observations. As pointed out in the abstract, the main focus of 

this research is to extract Sobol’ index from the samples directly. Another difference is that the 

analytical methods need independent inputs, whereas our method is applicable also with correlated 

inputs. 



 179 

7.4 Numerical Examples 

The objective of this section is to compare the performance of the proposed method against 

existing sample-based methods. The proposed Algorithm 2 is used in the comparison since Section 

7.3.4 has shown that this algorithm is more accurate than Algorithm 1. Three numerical examples 

are used for comparison: 1) a low-dimensional classical non-smooth function; 2) a high-

dimensional linear function; and 3) a cantilever beam problem with correlated model inputs. The 

comparison is conducted under the same computational cost, i.e., the same number of model 

evaluations. 

For examples 1 and 2, the selected existing methods are 1) Sobol’ method in Eq. (7.5), and 2) 

improved FAST. As a representative of the Sobol’ scheme, Sobol’ method in Eq. (7.5) is selected 

due to its higher accuracy than Eqs. (7.3) and (7.4), and lower computational cost than Eq. (7.6). 

The improved FAST method is selected due to its advantage of higher accuracy and lower cost 

than the classical FAST. 

For example 3, the selected existing method is the costly double-loop MCS since other 

advanced methods are only suitable for independent model inputs. 

Except the improved FAST, other methods (Sobol’ method, double-loop MCS, and proposed 

method) in this section require random samples of model inputs. To achieve a comparison of best 

possible performance, this section uses Latin hypercube sampling to generate these random 

samples. Latin hypercube sampling fills the model input sampling space more evenly and improves 

the computational accuracy at given cost [55,139,140]. 
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7.4.1 Example 1: Non-smooth function 

The classical non-smooth function proposed by Sobol’ [61] and widely used in the literature 

[79,133,142,143] is considered in Example 1, as 

  =∏
|4𝑋𝑖 − 2 + 𝑎𝑖|

𝑎𝑖 + 1

𝑘

𝑖=1
 (7.28)  

where 𝑋𝑖 (𝑖 = 1 to 𝑘)  are independent model inputs, each following a standard uniform 

distribution 𝑈(0,1); and 𝑎𝑖  (𝑖 = 1 to 𝑘) are user-defined constants. An analytical expression of the 

first-order index is available for this function: 

 

𝑉(𝑦) = −1 +∏ [
1

3(𝑎𝑖 + 1)2
+ 1]

𝑘

𝑖=1
 

𝑆𝑖 =
1

𝑉(𝑦)
∙

1

3(𝑎𝑖 + 1)2
 

(7.29)  

Eq. (7.29) indicates that a smaller value of 𝑎𝑖 corresponds to a larger first-order index. Here we 

define a 4-dimentional function (𝑘 = 4) with 𝑎𝑖 = 𝑖 such that 𝑆1 > 𝑆2 > 𝑆3 > 𝑆4. 

 
Figure 7.6 First-order index of the non-smooth function 

Comparison of the three methods is shown in Figure 7.6. The true values are based on Eq. 

(7.29). And the 95% confidence intervals for the three methods are based on 1000 runs. For each 
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method, a single run should spend the same computational cost of model evaluations to achieve a 

fair comparison. The computational cost of Sobol’ method is 𝑘𝑛𝑠 + 2𝑛𝑠  where 𝑘 = 4  in this 

example and 𝑛𝑠 is number of samples to calculate a single index 𝑆𝑖. Here we use 𝑛𝑠 = 100 thus 

the computational cost of the Sobol’ method is 600 model evaluations. To achieve a fair 

comparison, we also use 𝑛𝑀 =600 samples in the improved FAST method and the proposed 

method. In this example the number of equally probable intervals is 𝑀 = [√𝑛𝑀] = 24, i.e., the 

square root of 𝑛𝑀 rounded to the nearest integer. A detailed discussion on the selection of 𝑀 can 

be found in Section 7.4.4.  

Sobol’ method is expected to be less accurate, since it will only use 100 samples to compute 

the first-order index of each individual variable, but the other two methods use all the 600 samples 

to compute the first-order index of each individual variable. This is confirmed by the wider 

confidence interval for the Sobol’ method in Figure 7.6.  

In contrast to the Sobol’ method, the improved FAST and the proposed method reduce the 

confidence interval by over 50%. However, the improved FAST tends to slightly overestimate the 

first-order indices in this example. This is probably due to the limited Fourier spectrum order (𝐻 =

6 here). The indices estimated by the proposed method (Algorithm 2) show excellent agreement 

with the true values. 

Note that analytical methods may solve the same problem using less functional evaluations. For 

instance, the M-DRM algorithm [62] can compute the Sobol’ indices of a higher order (𝑘 = 8) 

non-smooth function with only 81 model evaluations. The example here is to test the validity of 

the proposed method and prove its advantage in reducing computational cost and improving 

accuracy compared to other sample-based methods. Compared to analytical methods, the 

advantages of the proposed methods are: 1) no approximation in the model of interest; 2) 
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calculation of Sobol’ indices if input-output samples are available but the model is not; and 3) 

handling problems with correlated model inputs. 

7.4.2 Example 2: High-dimensional Linear Function 

The computational cost in the improved FAST and the proposed method is not proportional to 

the model input dimension. This advantage is more prominent in high-dimensional problems. 

Consider a 50-dimensional linear function  = ∑ 𝑏𝑖𝑋𝑖
50
𝑖=1  where 𝑏𝑖 = 1 + 𝑖/50  and 𝑋𝑖  are 

independent model inputs of standard normal distribution. For this example, the true value of the 

first-order index has analytical solution 𝑆𝑖 = 𝑏𝑖
2/∑ 𝑏𝑖

250
𝑖=1 . 

The results of the three methods are shown in Figure 7.7, where the 95% confidence intervals 

for the three methods are based on 1000 runs. For each method, a single run should use the same 

computational cost of model evaluations to achieve a fair comparison. The computational cost of 

Sobol’ method is 𝑘𝑛𝑠 + 2𝑛𝑠  where 𝑘 = 50  in this example and 𝑛𝑠  is number of samples to 

calculate a single index 𝑆𝑖 . Here we use 𝑛𝑠 = 200  thus the computational cost of the Sobol’ 

method is 10400 model evaluations. To achieve a fair comparison, we also use 𝑛𝑀 =10400 

samples in the improved FAST method and the proposed method. Similar to the non-smooth 

function example, the number of equally probable intervals is 𝑀 = [√𝑛𝑀] = 102. A detailed 

discussion on the selection of 𝑀 can be found in Section 7.4.4. 



 183 

 

 

 
Figure 7.7 First-order index of the linear function 

In Figure 7.7, the improved FAST and the proposed method show comparable performance. 

The improved FAST method still slightly overestimates the first-order indices in this example. The 

improved FAST method and the proposed method reduce the confidence interval width by around 

80% in contrast to Sobol’ method. 

7.4.3 Example 3: Cantilever Beam with Correlated Inputs 

Examples 1 and 2 show that the improved FAST and the proposed method perform equally well 

and outperform the Sobol’ method. Model inputs are independent in examples 1 and 2. However, 

advanced methods such as the improved FAST method are no more valid for correlated model 
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inputs and the costly double-loop MCS is the only existing option. The proposed method provides 

an alternative to compute the first-order index with correlated model inputs. The example in this 

section illustrates this unique benefit of the proposed method. Other benefits have been discussed 

in Section 7.3.3. 

Consider the cantilever beam example in Section 7.3.4 again. Here the model inputs are 

assumed to follow correlated normal distributions. Mean values and standard deviations of the 

model inputs are listed in Table 7.2 and their correlation matrix is shown in Table 7.3.  

Table 7.2 Statistics of model inputs 

Model input 𝑃/kN  /GPa 𝜈 𝑏/mm ℎ/mm 𝐿/mm 

Mean value 2.5 200 0.225 1.0 3 3.5 

Standard deviation 0.25 20 0.0225 0.1 0.3 0.35 

 

Table 7.3 Correlation matrix of model inputs 

Model input 𝑃/kN  /GPa 𝜈 𝑏/mm ℎ/mm 𝐿/mm 

𝑃/kN 1.000 0.174 0.451 0.082 -0.134 0.004 

 /GPa 0.174 1.000 -0.800 0.059 -0.125 -0.082 

𝜈 0.451 -0.800 1.000 -0.004 0.033 0.080 

𝑏/mm 0.082 0.059 -0.004 1.000 -0.105 -0.400 

ℎ/mm -0.134 -0.125 0.033 -0.105 1.000 0.279 

𝐿/mm 0.004 -0.082 0.080 -0.400 0.279 1.000 

The results of the double-loop MCS method and the proposed method are shown in Figure 7.8, 

where the 95% confidence intervals for the two methods are based on 1000 runs. For each method, 

a single run should use the same computational cost of model evaluations to achieve a fair 

comparison. The computational cost of the double-loop MCS method is 𝑘𝑛𝑑𝑙
2 + 𝑛𝑑𝑙  where 𝑘 = 6 

in this example and 𝑛𝑑𝑙 is number of samples to calculate a single index 𝑆𝑖. Here we use 𝑛𝑑𝑙 = 50 

thus the computational cost of the double-loop MCS method is 15050 model evaluations. To 

achieve the fair comparison, we also use 𝑛𝑀 =15050 MCS samples in the proposed method. 
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Similar to the other two examples, the number of equally probable intervals is 𝑀 = [√𝑛𝑀] = 123. 

A detailed discussion on the selection of 𝑀 can be found in Section 7.4.4. 

The true values in Figure 7.8 are approximated by an extreme expensive double-loop MCS with 

𝑛𝑑𝑙 = 104, whose total cost is more than 6 × 108 model evaluations. Figure 7.8 shows that: 1) the 

proposed method is very accurate for correlated model inputs; and 2) compared to the double-loop 

MCS, the proposed method narrows the confidence intervals by 80%~95% for the same number 

of model evaluations. 

 
Figure 7.8 First-order index of the cantilever beam example with correlated inputs 

7.4.4 Discussion: Selection of 𝑴 

At a given number of input-output samples (𝑛𝑀 is fixed), the only parameter to be tuned in the 

proposed method is 𝑀, the number of equally probably intervals. A lager 𝑀 tends to improve the 

accuracy in the outer loop of  𝚽(𝑉Φ𝑙( )) in Eq. (7.21); but also reduce the accuracy in the inner 

loop since the average number of samples 𝑛 = 𝑛𝑀/𝑀  to compute 𝑉Φ𝑙( )  in each individual 

interval will be decreased. Therefore a tradeoff between 𝑀 and 𝑛 is to be decided. This section 

aims to compare different selections of 𝑀 using the three numerical examples above and provides 

an heuristic guideline in selecting 𝑀. This discussion constitutes of the following steps: 
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1. Set different values of 𝑀. The medium value is 𝑀 = [√𝑛𝑀] to achieve a balance of 𝑀 =

𝑛; the lowest values is 5 meaning only 5 intervals; and the highest value is 𝑀 = 𝑛𝑀/5 

meaning only around 5 samples in each interval. 

2. Calculate the confidence intervals (CI) of the first-order indices at different values of 𝑀. 

3. Compare the accuracy at different values of 𝑀 based on the location and width of the CIs. 

The comparison for the non-smooth function example is shown in Figure 7.9. As explained in 

Section 7.4.1, the total number of input-output samples is 𝑛𝑀 = 600. As shown in the legend of 

Figure 7.9, 5 values of 𝑀  are used where the medium value is 𝑀 = [√𝑛𝑀] = 24. Figure 7.9 

indicates that: 1) the result by 𝑀 = 5 & 𝑛 = 120 is biased from the true value, especially for 𝑋1; 

2) the result by 𝑀 = 120 & 𝑛 = 5 has wider CIs than others; and 3) the results by other values of 

𝑀 are comparable good. In sum, this example requires 𝑀 ≥ 10 and 𝑛 ≥ 10. 

 
Figure 7.9 Selection of 𝑴 in the non-smooth function example 

The comparison for the high-dimensional linear function example is shown in Figure 7.10, and 

only the last five inputs are included due to limited space. As explained in Section 7.4.2, the total 

number of input-output samples is 𝑛𝑀 = 10400. As shown in the legend of Figure 7.10, 7 values 

of 𝑀 are used where the medium value is 𝑀 = [√𝑛𝑀] = 102. Figure 7.10 indicates that: 1) the 

result by 𝑀 = 5 is biased from the true value significantly; 2) the result by 𝑀 = 10 is biased 
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slightly but still acceptable; 3) the results by 𝑛 = 5 have significant wider CIs; 4) the result by 𝑛 =

10 also have wider CIs but still acceptable; and 5) the results by other values of 𝑀 are comparable. 

In sum, this example requires 𝑀 ≥ 10 & 𝑛 ≥ 10 but 𝑀 ≥ 50 & 𝑛 ≥ 50 is recommended. 

 
Figure 7.10 Selection of 𝑴 in high-dimensional linear function example 

The comparison for the cantilever beam with correlated inputs is shown in Figure 7.11, and 

only the inputs with first-order index larger than 0.1 is listed. As explained in Section 7.4.3, the 

total number of input-output samples is 𝑛𝑀 = 15050. As shown in the legend of Figure 7.11, 7 

values of 𝑀 are used where the medium value is 𝑀 = [√𝑛𝑀] = 123. Figure 7.11 indicates that: 1) 

the results by 𝑀 = 5,10 or 𝑛 = 5,10 are biased from the true value, especially for 𝐿; and 2) the 

results by other values of 𝑀 are comparable, and the result by 𝑀 = 𝑛 = 123 is slightly better. In 

sum, this example requires 𝑀 ≥ 50 and 𝑛 ≥ 50. 
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Figure 7.11 Selection of 𝑴 in the cantilever beam example 

Based on the comparisons above, the authors conclude that the minimum requirement for the 

proposed algorithm is 𝑀 ≥ 10 & 𝑛 ≥ 10 ; but 𝑀 ≥ 50 & 𝑛 ≥ 50  is recommended. Actually a 

simple strategy is 𝑀 = [√𝑛𝑀] to achieve a balance of 𝑀 = 𝑛, and this strategy has been used in 

all the examples in this research. Note that this guidance is purely heuristic, and formally 

optimizing the value of 𝑀 may be explored in future. 

7.4.5 Example 4: Input-Output Function NOT Available 

The proposed algorithm can estimate the first-order Sobol’ index as long as the input-output 

samples have already been collected, even if the underlying function is NOT available or cannot 

be re-evaluated. This situation often happens in the industry when an analyst supplies only the 

input-output data, but does not provide the computational model due to proprietary reasons. The 

reason that we used computational models in the earlier examples was to be able to compare the 

accuracy of our method with existing methods. Here we demonstrate the case of sensitivity 

analysis with only input-output data, assuming the computational model is not available.  

We generated 2500 Monte Carlo input-output samples using the Ishigami function  =

sin𝑋1 + 𝑎 sin2 𝑋2 + 𝑏𝑋3
4 sin 𝑋1  [126]. These samples can be downloaded via the URL 

https://github.com/VandyChris/Global-Sensitivity-Analysis/blob/master/Ishigami.csv. Now 

https://github.com/VandyChris/Global-Sensitivity-Analysis/blob/master/Ishigami.csv
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suppose that only these samples are available, and that the actual function is not available, and 

even the distributions of 𝑋𝑖(𝑖 = 1,2,3) are not known. In this situation, the proposed algorithm can 

directly estimate the first-order Sobol’ indices from the available samples following the steps in 

Figure 7.2, but the existing algorithms discussed in Section 7.2 cannot. Using the proposed 

Algorithm 2 and 𝑀 = 50, the result is obtained as shown in Table 4. (Of course, if the function is 

known, then it is possible to verify the accuracy of this result. We have verified that the result 

using the above analytical function is exactly the same. However, the purpose of this example is 

to demonstrate that the proposed method can calculate the first-order Sobol’ indices using only the 

input-output samples. An alternative approach is to build a regression model based on the samples, 

and then use the regression model for GSA using any of the other existing methods; in that case, 

the regression error should also be accounted for).  

Table 7.4 First-order Sobol' index 

Variable 𝑋1 𝑋2 𝑋3 

First-order index 0.42 0.23 0.00 

 

7.5 Summary 

This chapter focused on directly extracting first-order Sobol’ indices from Monte Carlo 

samples. To solve this problem, this research showed that the conditional variance and mean in 

the expression of the first-order Sobol’ index can be computed at an unknown but existing location 

of model inputs, instead of an explicit user-defined location. This concept leads to the proposed 

method which is modularized in two aspects: 1) separate the index calculations for different model 

inputs; and 2) model inputs sampling, model evaluation, and index calculation are separate 

processes. The modularization brings several benefits: 1) The computational cost of the proposed 

method is not proportional to the number of model inputs; 2) The proposed method can be used 
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when only legacy input-output data or field data are available but the underlying model is not 

available, which is our main focus; 3) The calculation of 𝑆𝑖 purely depends on the samples of 𝑋𝑖 

and 𝑦, and can be achieved even if the samples of 𝑿 𝑖 are missing; and most importantly 4) The 

proposed method is able to compute the first-order index with correlated model inputs. 

The proposed method includes two algorithms. Algorithm 1 computes the inner loop 

 𝑿−𝑖( |𝑋𝑖)  first and then the outer loop 𝑉𝑋𝑖(∙) ; while Algorithm 2 computes the inner loop 

𝑉𝑿−𝑖( |𝑋𝑖) first and the then outer loop  𝑋𝑖(∙). Section 7.3.4 proves that Algorithm 2 provides 

higher accuracy while Algorithm 1 is positively biased due to numerical error.  

Algorithm 2 is used in two numerical examples with independent model inputs to compare with 

two existing methods: 1) the widely used Sobol’ method, and 2) the improved FAST method. The 

latter one also has a computational cost that is not proportional to the model inputs dimension; and 

it is the best previously available algorithm for independent model inputs to the authors’ 

knowledge. The results show that the proposed method has comparable accuracy with improved 

FAST and outperforms the Sobol’ method. Algorithm 2 is also used in a third numerical example 

with correlated model inputs and seen to significantly outperform the double-loop MCS method; 

the improved FAST method cannot handle correlated model inputs. 

The benefits brought by the proposed method imply strong promise for practical 

implementation such as test design [48,89], dimension reduction, feature selection, etc. Nowadays 

in areas such as transportation and social networks, obtaining data can be much easier than 

extracting the underlying models. Since the proposed method is highly efficient and only requires 

data, it is especially useful in ranking and identifying important variables, no matter whether the 

variables are correlated or not. 
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CHAPTER 8  

 

GLOBAL SENSITIVITY ANALYSIS OF A BAYESIAN NETWORK 

 

8.1 Background 

In a Bayesian network, how a node of interest is affected by the observation at another node is 

of interest in both forward propagation and backward inference. However, two challenges in the 

application of Bayesian network are: 1) if the calculation is sample-based, a high-dimensional 

network (the number of nodes is large) will encounter the problem of computational efficiency, 

especially when the network includes some time-consuming computational models; 2) before the 

inference, efficacy of the observation to reduce the uncertainty in the state variables of interest is 

unknown. The second challenge is also financially important, since we do not want to invest our 

limited budget to measure some variables that are not useful in uncertainty reduction. 

 The global sensitivity analysis (GSA) of Bayesian network proposed in this chapter aims to 

solve the two challenges above by calculating the first-order Sobol’ index of node 𝑋1 with respect 

to another node of interest 𝑋𝑁. In forward propagation where 𝑋1 is the ancestor node of 𝑋𝑁, a low 

index of 𝑋1 indicates that 𝑋1 is not significantly contributing to the uncertainty in 𝑋𝑁, thus we can 

simply fix 𝑋1 at a deterministic value and reduce the dimension of the network. In backward 

inference where 𝑋1  is the child node of 𝑋𝑁 , a low sensitivity index of 𝑋1  indicates that the 

observation of node 𝑋1 will not significantly reduce the uncertainty in 𝑋𝑁; thus we should measure 

another node with a higher Sobol’ index in order to effectively calibrate 𝑋𝑁  and reduce its 

uncertainty. 
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The desired GSA for a Bayesian network confronts two challenges of feasibility and 

affordability. First, the computation of the Sobol’ index requires a deterministic function [150] but 

the Bayesian network is a stochastic model, i.e., it has probabilistic relationships among the nodes. 

And the required deterministic function mapping 𝑋1 (and some other variables) to the node of 

interest 𝑋𝑁 is unestablished. Proof of the existence and the establishment of this deterministic 

function needs to be solved. 

Second, using the existing algorithms, the computation of the Sobol’ index can be expensive 

even if the deterministic function is established. However, in Bayesian network, the prior samples 

of the node of interest 𝑋𝑁 and the observation node 𝑋1 is easy to obtain. Thus the new sample-

based algorithm proposed in Section 7.3 which directly estimate the first-order Sobol’ index turns 

out to be an ideal algorithm for the sensitivity analysis of Bayesian network. This section will also 

extend the proposed algorithm in Section 7.3 to estimate the variance reduction ratio (VRR) of the 

node of interest at a given value of the observation node. 

The rest of the chapter is organized as follows. Section 8.2 uses the auxiliary variable method 

to convert the path between node 𝑋1 and node 𝑋𝑁 to a deterministic function, thus making the 

Sobol’ index computation feasible for a Bayesian network. An introduction to the auxiliary 

variable method can be found in Section 2.7. Section 8.3 extends the proposed algorithm in Section 

7.3 to estimate the uncertainty reduction of the node of interest when another node is fixed at the 

observation. This extension only uses the prior distribution samples, and no Bayesian inference 

effort is required. Thus this extension provides quantitative guidance for effective observation and 

updating, i.e., deciding which node is the most effective observation node in reducing the 

uncertainty in the node of interest. Section 8.4 illustrates the proposed method using two examples, 
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including a time-independent static Bayesian network and a time-dependent dynamic Bayesian 

network. 

8.2 Feasibility and Affordability of GSA for a Bayesian Network 

8.2.1 Deterministic Function for a Directed Path 

 
Figure 8.1 Auxiliary variable for a CPD 

The auxiliary variable method have been extended to any variable whose distribution is 

conditioned on other variables [59,86], i.e., to any conditional probability distribution (CPD) in 

the Bayesian network. Assume that the distribution of a random variable   depends on the value 

of two other random variables   and   by a CPD 𝑝( | ,  ). Then the variability in 𝑝( | ,  ) can 

be captured by a single auxiliary variable 𝑈𝐶 , which is the CDF value of 𝑝( | ,  ). Thus the 

uncertainty in variable   is caused by two components: 1) the uncertainty due to the parent nodes 

 ,  ; and 2) the uncertainty expressed by the CPD at given values of   and  . The introduced 

auxiliary variable captures the later part. As shown in Figure 8.1,  ,   and   constitute a simple 

Bayesian network. The introduced auxiliary variable 𝑈𝐶  converts   to be a deterministic node, 

which means the value of   is fixed once the value of its parent nodes { ,  , 𝑈𝐶} is given. Finally 

this auxiliary variable build a deterministic function  = 𝒫 1(𝑈𝐶| ,  ), where 𝒫 1(∙) is the 

inverse CDF of the CPD 𝑝( | ,  ).  

 

 

   

 

Stochastic node

Deterministic node

𝑈𝐶
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Figure 8.2 Deterministic function for the path 𝑿𝟏 → 𝑿𝑵 

The auxiliary variable method can be further extended to a directed path in a Bayesian network, 

as follows. In a Bayesian network, a node 𝑋1 is called the ancestor node of node 𝑋𝑁 if it leads a 

directed path 𝑋1 → 𝑋2… → 𝑋𝑁 to node 𝑋𝑁. For example, in Figure 8.3 node   has the ancestor 

nodes  ,  ,   and  . As shown in Figure 8.2, by introducing auxiliary variables to each CPD in 

this directed path, a deterministic function mapping 𝑋1 to 𝑋𝑁 is established 

 

{
 
 

 
 𝑋2 = 𝒫 1(𝑈𝑋2|Pa𝑋2

′ , 𝑋1)

𝑋3 = 𝒫 1(𝑈𝑋3|Pa𝑋3
′ , 𝑋2)

…
𝑋𝑁 = 𝒫 1(𝑈𝑋𝑁|Pa𝑋𝑁

′ , 𝑋𝑁 1)

 (8.1)  

where 𝒫 1(𝑈𝑋𝑖|Pa𝑋𝑖
′ , 𝑋𝑖 1) for 𝑖 = 2 to 𝑁 is the inverse CDF of the CPD 𝑝(𝑋𝑖|Pa𝑋𝑖

′ , 𝑋𝑖 1), and 

𝑈𝑋𝑖 is the auxiliary variable introduced for this CPD, and Pa𝑋𝑖
′  represents the parent nodes of 𝑋𝑖 

that are not in this path (Note that another notation 𝑃𝑉 is used later, which means all the parents 

node of 𝑉, i.e., Pa𝑋𝑖 = {Pa𝑋𝑖
′ , 𝑋𝑖 1} in Figure 8.2. The inputs of Eq. (8.1) are {𝑋1, 𝑋𝑖,Pa𝑋𝑖

′ , 𝑈𝑋𝑖} for 

𝑖 = 2 to 𝑁, thus Eq. (8.1) can be also denoted as a deterministic function 𝑓: {𝑋1, 𝑋𝑖, Pa𝑋𝑖
′ , 𝑈𝑋𝑖} →

𝑋𝑁. 

𝑋1 𝑋2 𝑋𝑁… …

 a𝑋2
′  a𝑋𝑁

′

𝑋2 𝑋𝑁

𝑈𝑋2 𝑈𝑋𝑁

𝑋1𝑋3

 a𝑋3
′

𝑋3

𝑈𝑋3

 a𝑋2
′  a𝑋𝑁

′ a𝑋3
′
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Figure 8.3 Auxiliary variable for a Bayesian network 

The deterministic function established in Eq. (8.1) can be illustrated by a simple Bayesian 

network in Figure 8.3, which introduces an auxiliary variable to each CPD so that all the child 

nodes are converted to deterministic nodes. Based on Eq. (8.1),   is an ancestor node of   via the 

directed path  →  , thus the deterministic function mapping   to   is 

  = 𝒫 1(𝑈𝐶| ,  ) (8.2)  

And   is also an ancestor node of 𝐺  via the directed path  →  →  → 𝐺 , thus the 

deterministic function mapping   to 𝐺 is 

 {

 = 𝒫 1(𝑈𝐶| ,  )

 = 𝒫 1(𝑈𝐸| ,  ,  )

𝐺 = 𝒫 1(𝑈𝐺| ,  )

 (8.3)  

8.2.2 Deterministic Function for an Undirected Path 

As explained in Section 8.2.1, the directed path from 𝑋1 to 𝑋𝑁 requires that all the arcs are 

directed towards 𝑋𝑁. In comparison, an undirected path 𝑋1 − 𝑋2 −⋯− 𝑋𝑁 (where the arc “−“ is 

still directed, either “→” or “←”) only requires all the adjacent nodes in the path are connected by 

arcs, regardless of the direction of the arcs. The deterministic function established in Eq. (8.1) for 

the directed path can be also extended to the undirected path based on the theorem of Arc Reversal 

[151]. 

 

 

 

  

 

𝐺𝐻

  

 

  

 

𝐻 𝐺

𝑈𝐶

𝑈𝐸

𝑈 

𝑈𝐺
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Theorem 1. Arc Reversal. Given that there is an arc (𝑉1, 𝑉2) from node 𝑉1 to node 𝑉2, but no 

other directed path from 𝑉1 to 𝑉2, arc (𝑉1, 𝑉2) can be replaced by arc (𝑉2, 𝑉1). Afterwards, both 

nodes inherit each other’s parent nodes. 

 
Figure 8.4 Arc Reversal [151] 

This theorem is illustrated in Figure 8.4. Here Pa𝑉1 indicates the parent nodes of 𝑉1, and Pa𝑉2 

indicates the parent nodes of 𝑉2. In addition, Pa𝑉1\Pa𝑉2 are the nodes which are the parents of 𝑉1 

but not the parents of 𝑉2, and correspondingly Pa𝑉2\Pa𝑉1  are the nodes which are the parents of 𝑉2 

but not the parents of 𝑉1; and Pa𝑉1 ∩ Pa𝑉2 are the shared parents of 𝑉1 and 𝑉2. Figure 8.4 shows 

that after reversing the arc between 𝑉1 and 𝑉2, extra arcs (Pa𝑉1\Pa𝑉2 , 𝑉2) and (Pa𝑉2\Pa𝑉1 , 𝑉1) are 

also derived based on Ref. [151] and added the new BN to guarantee that the new BN after arc 

reversal is mathematically equivalent to the original BN. The CPDs also need to be redefined, and 

the derivation of the new CPDs can be also found in Ref [151]. However, note that the proposed 

method in this research do NOT need to derive these new CPDs. The main focus of this section is 

to illustrate the possibility of arc reversal and prove the existence of the deterministic function 

mapping 𝑋1 to 𝑋𝑁 even if the path between them is undirected. 

With respect to the undirected path between 𝑋1 and 𝑋𝑁, Theorem 1 proves that the arc (𝑋𝑖, 𝑋𝑗) 

between two adjacent nodes 𝑋𝑖  and 𝑋𝑗  ( 𝑖 = 𝑗 + 1 or 𝑗 − 1  so that they are adjacent) can be 

reversed, as long as there is no other directed path from 𝑋𝑖 to 𝑋𝑗. If all the arcs towards 𝑋1 can be 

reversed, this undirected path will be converted to a directed path from 𝑋1  to 𝑋𝑁  so that a 

deterministic function mapping 𝑋1 to 𝑋𝑁 exists based on Eq. (8.1). In Figure 8.3, the undirected 

𝑉2𝑉1

 a𝑉1\𝑃𝑉2  a𝑉2\ a𝑉1 a𝑉1 ∩  a𝑉2

𝑉2𝑉1

 a𝑉1\ a𝑉2  a𝑉2\ a𝑉1 a𝑉1 ∩  a𝑉2
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path 𝐻 ←  → 𝐺 can be converted to a directed path 𝐻 →  → 𝐺 by reserving the arc ( , 𝐻); then 

a deterministic function mapping 𝐻 to 𝐺 can be constructed using auxiliary variables. 

Furthermore, a directed path from the node of interest 𝑋𝑁  to 𝑋1  can be even converted to 

another directed path from 𝑋1 to 𝑋𝑁  by reversing all the arcs, so that a deterministic function 

mapping 𝑋1 to 𝑋𝑁 exists. For example, the directed path  →  →  → 𝐺 in Figure 8.3 can be 

converted to 𝐺 →  →  →   so that a deterministic function mapping 𝐺 to   can be constructed 

using auxiliary variables. 

8.2.3 Affordability of GSA for A Bayesian Network  

For two arbitrary nodes 𝑋1 and 𝑋𝑁, Sections 8.2.1 and 8.2.2 explained the possibility to build a 

deterministic function mapping 𝑋1 to 𝑋𝑁 as long as Theorem 1 of Arc Reversal is satisfied. This 

process is illustrated in Figure 8.5. Thus we can conduct the GSA on Eq. (8.1) and compute the 

first-order Sobol’ index 𝑆𝑋1 for 𝑋1. As explained earlier, 𝑆𝑋1 is the average ratio of the reduced 

variance of 𝑋𝑁 by fixing 𝑋1. If an observation of 𝑋1 is used in the subsequent Bayesian inference 

to update the network, this Sobol’ index 𝑆𝑋1 provides an assessment of two aspects before the 

updating: 1) identifiability of 𝑋𝑁, i.e., whether 𝑋1 has a low sensitivity such that fixing 𝑋1 at its 

observation does not identify the value of 𝑋𝑁; and 2) quantification of the expected uncertainty 

reduction of 𝑋𝑁 in the updating. 
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Figure 8.5 Deterministic function for a path 

However, the computation of 𝑆𝑋1  is non-trivial. First, building the deterministic function 

explicitly can be complicated in either forward propagation or backward inference. In the case of 

forward prorogation, an ancestor node is observed and the posterior distribution of the descendant 

node is of interest, i.e. the path is 𝑋1 → ⋯ → 𝑋𝑁. The deterministic function mapping 𝑋1 to 𝑋𝑁 

can be established by Eq. (8.1). However, the effort to build this function becomes intensive if the 

path is long so that many nodes and auxiliary variables will be involved in Eq. (8.1). In the case 

of backward inference, which is more common in Bayesian network, a descendant node is 

observed and the posterior distribution of an ancestor node is of interest, i.e., the path is 𝑋𝑁 →

⋯ → 𝑋1. To build the required deterministic function mapping 𝑋1 to 𝑋𝑁, all arcs in the path need 

to be reversed, and this brings extra computational effort to modify the structure of the Bayesian 

network and derive new CPDs. 

Second, even with the deterministic function established, calculating the sensitivity index also 

needs intensive effort. The inputs of the deterministic function includes the nodes in the Bayesian 

network, so the correlation between them is unavoidable. As mentioned in Saltelli’s paper [67], 

since current efficient algorithms for Sobol’ index usually require uncorrelated inputs, the 

expensive double-loop MCS is the only choice. 

The efficient sample-based algorithm proposed in Section 7.3 can directly extracts the first-

order Sobol’ index from the Monte Carlo samples, and turns out to be an ideal algorithm for the 

sensitivity analysis of Bayesian network. For a Bayesian network, samples from its joint prior 
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distribution are easy to obtain. If the Bayesian network has been established, these samples can be 

easily generated based on all CPDs, and these samples may be used again in the subsequent 

updating; if the Bayesian network is to be learned from the data, these data are actually the prior 

samples needed. We will also see that explicitly establishing the deterministic function is not 

necessary, and the expensive double-loop MCS method is also avoided. Based on Section 7.3, the 

sensitivity of the node of interest 𝑋1 to the observation node 𝑋𝑁 is 

 𝑆𝑋1 = 1 −
 𝚽 (𝑉Φ𝑙(𝑋𝑁))

𝑉(𝑋𝑁)
 (8.4)  

Now the sensitivity analysis of Bayesian network becomes straightforward since its feasibility 

has been proved and an efficient algorithm making use of the prior distribution samples has been 

developed. To implement Eq. (8.4) to calculate the first-order Sobol’ index of 𝑋1, we only need 

to: 

1. Obtain the samples from the joint distribution of 𝑋1 and 𝑋𝑁; 

2. Use the samples of 𝑋1 as input samples (𝑋𝑖 sample in Figure 7.2) and the samples of 𝑋𝑁 

as output samples (  sample in Figure 7.2); 

3. Follow the steps in Figure 7.2 to calculate the first-order Sobol’ index of 𝑋1. 

These three steps above are straightforward and do not require intensive computational effort. 

Thus the affordability of the proposed sensitivity analysis for the Bayesian network has been 

solved. 
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8.3 Variance Reduction Prediction in Bayesian Inference 

The resultant index 𝑆𝑋1 from Eq. (8.4) is the average ratio of the variance reduction of 𝑋𝑁 by 

fixing 𝑋1  at its observation; and this is an average over all possible values of 𝑋1 . This is an 

informative estimate before the updating if the value of the observation is NOT known. 

If the value of the observation of 𝑋1 is known, this variance reduction ratio (VRR) estimate can 

be further improved by identifying the equally probably interval where the observation is located 

and computing the local variance. Denote Φ̂ as the equally probable interval that contains the 

observation  �̂�1, i.e., �̂�1 ∈ Φ̂.   

The improved estimate is 

 VRR ≈ 1 −
𝑉Φ̂(𝑋𝑁)

𝑉(𝑋𝑁)
 (8.5)  

Compared to Eq. (8.4) which computes the average VRR of 𝑋𝑁 over all possible values of 𝑋1, 

Eq. (8.5) estimates the VRR of 𝑋𝑁 at a specific value of 𝑋1. The accuracy of Eq. (8.5) will be 

higher if 1) Φ̂ is narrower so that �̂�1 is closer to 𝑋1
# and 2) more samples of 𝑋𝑁 are assigned to Φ̂ 

so that 𝑉Φ̂(𝑋𝑁) is a better estimate of 𝑉(𝑋𝑁|𝑋1 = 𝑋1
#). 

8.4 Numerical Examples 

8.4.1 Structural Dynamics Problem 

A structural dynamics problem provided by Sandia National Laboratories is used to illustrate 

the proposed method, and more details on this problem can be found in Ref. [68,79,91,130]. As 

shown in Figure 8.6, the system of interest contains three mass-spring-damper components in 

series; and these components are mounted on a beam supported by a hinge at one end and a spring 

at the other end; and a sinusoidal force input 𝑃 = 3000 sin(350𝑡) is applied on the beam. 
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This system has three model parameters of spring stiffnesses 𝒌 = (𝑘1, 𝑘2, 𝑘3) and they are 

assumed to have unknown true values to be calibrated. The prior distribution of 𝑘𝑖 is assumed to 

be Gaussian with a coefficient of variation of 10% and mean values of 𝜇𝑘1 = 5000, 𝜇𝑘2 = 10000, 

and 𝜇𝑘3 = 9000. 

 
Figure 8.6 Beam with mass-spring-damper 

The quantity to be measured for model calibration is the maximum acceleration  3 in the 3rd 

mass 𝑚3. A computational model  3 =  (𝒌) based on finite element analysis has been provided 

by Sandia National Laboratories [91]. 

To improve the computational efficiency, a Gaussian process (GP) [30,152] surrogate model 

 3 = GP(𝒌)  is constructed to replace the expensive dynamics computational model. The 

prediction of the GP model is a Gaussian distribution 𝑁(𝜇(𝒌), 𝜎2(𝒌)), thus a CPD is given by the 

GP model. 

The observation variable is denoted as   and we have  =  3 + 𝜖𝑚  where 𝜖𝑚  is the 

measurement error with a zero-mean Gaussian distribution 𝜖𝑚~𝑁(0, 𝜎𝑚
2 ). Thus another CPD is 
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given by the measurement error. In this example, 𝜎𝑚 is another parameter to be calibrated and we 

assign a non-informative uniform prior distribution 𝑈(150,250) to it. 

 
Figure 8.7 Bayesian network of Example 1 

A Bayesian network is established for this model calibration problem, as shown in Figure 8.7. 

In this example, we are interested in 1) calculating the first-order Sobol’ index of the calibration 

parameters {𝑘1, 𝑘2, 𝑘3, 𝜎𝑚}  with respect to the observation variable  , and 2) predicting the 

variance reduction ratio (VRR) of the calibration parameters at a given observation. 

Table 8.1 First-order Sobol' index, Example 1 

Parameter 𝑘1 𝑘2 𝑘3 𝜎𝑚 

First-order Sobol’ index 0.50 0.02 0.11 0.00 

As samples are generated from the joint prior distribution of this network, the first-order Sobol’ 

indices of {𝑘1, 𝑘2, 𝑘3, 𝜎𝑚} are obtained by considering the calibration parameter as 𝑋𝑁 and the 

observation variable   as 𝑋1 in Eq. (8.5). The results are listed in Table 8.1. From this table, we 

conclude that the variance of 𝑘1 will reduce by 50% on average due to calibration; the variance 

reduction of 𝑘3  is 11% on average; while the variance of 𝑘2  and 𝜎𝑚  will not be reduced 

significantly by calibration. This is a very valuable insight. Thus if we want to reduce the 

uncertainty in 𝑘2, we need to observe another quantity. In the latter computation of VRR at specific 

observations of  3, we focus on 𝑘1 and 𝑘3.  

 3~𝑁 𝜇 𝒌 , 𝜎2 𝒌

𝑘1~𝑁 5000,5002 𝑘2~𝑁 10000,10002 𝑘3~𝑁 9000,9002

𝜎𝑚~𝑈 150,250

 ~𝑁  3, 𝜎𝑚
2



 203 

Table 8.2 Variance reduction ratio at specific observations of 𝑨𝟑 

Data 

point 

𝑘1 𝑘3 

Proposed method 

(Bayesian inference 

NOT needed) 

Sample-based 

(Bayesian inference 

needed) 

Proposed method Sample-based 

3900 49.9% 47.0% 3.2% 4.0% 

4000 45.2% 44.2% 13.6% 15.4% 

4100 38.3% 42.4% 23.6% 19.7% 

4200 43.5% 44.8% 20.7% 25.5% 

4300 48.2% 54.2% 35.2% 31.9% 

4400 60.5% 63.2% 41.7% 38.9% 

4500 69.6% 69.1% 43.3% 44.7% 

Table 8.1 shows the average variance reduction ratio (VRR). Now assume that the specific 

observed value of  3 is known (a synthetic data point). Based on Eq. (8.5), we predict the VRR of 

𝑘1 and 𝑘3 for this specific observation, as shown in Table 8.2, where the “Sample-based” method 

mean we finish the Bayesian inference and compute the VRR based on the samples of the posterior 

distributions. In comparison, the proposed method only uses the samples from the prior 

distribution, and no actual Bayesian inference effort is required. 

We also implement the Bayesian inference using the rejection sampling (RS) algorithm [17] to 

generate 2 × 104 samples from the posterior distributions of the calibration parameters. Figure 8.8 

shows the PDFs of these posterior distributions at data point 4500. We re-calculate the VRR by 

comparing the variances of the posterior samples and the prior samples. As shown in Table 8.2, 

our earlier predictions are close to the sample-based results. This verifies the effectiveness of the 

proposed method. Note that these two results are not exactly the same due to: 1) the numerical 

error in computing the output variance within the equally probable interval that contains the data 

point (𝑉Φ̂(𝑋𝑁) in Eq. (8.5)); 2) the approximation of �̂�1 ≈ 𝑋1
# in Eq. (8.5); and 3) the numerical 

error in the RS. 
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Figure 8.8 Posterior distributions at observation value of 𝑨𝟑 = 𝟒𝟓𝟎𝟎 

In summary, this example verified the effectiveness of the proposed method to predict the 

variance reduction ratio before conducting the Bayesian updating. Thus the proposed method 

provides valuable guidance for selecting observation nodes; for example, the subsequent updating, 

nodes such as 𝑘2 and 𝜎𝑚 cannot be updated by observing  3 data. 

8.4.2 Example of a Dynamic Bayesian Network 

This example applies the proposed method to a mathematical example of a dynamic Bayesian 

network, as shown in Figure 8.9. The CPDs of this dynamic Bayesian network are as follows. 
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Figure 8.9 Dynamic Bayesian network of Example 2 

The root node  0 has an unknown true value to be calibrated, so that  0 is a static node and 

 0
 =  0

  1. The prior distribution of  0 is 𝑁(2,0.52).  1 and  2 are two dynamic state variables, 

and their states are to be tracked. At 𝑡 = 1 the CPD of the child node  1 is  1
1~𝑁( 0

12 + 10, 12); 

at 𝑡 > 1 the CPD of  1 is  1
 ~𝑁( 0

 2 + 0.9 1
  1 + 1, 12), thus the distribution of  1 depends on 

its previous value and the value of  0.  2 is the child node of  1 and its CPD is  2
 ~𝑁( 1

 2, 52). In 

this problem the observation node is  3 and its CPD is  3
 ~𝑁( 2

 , ( 2
 20⁄ )2), i.e., the value of  2

  

plus a measurement error of zero mean Gaussian distribution. This example considers the first 30 

steps of this dynamic Bayesian network. Assuming the true value of  0 is 2.5, the synthetic data 

of the observable node  3 is generated at each step, as shown in Figure 8.10. 

 
Figure 8.10 Observations, Example 2 

A widely-used particle filter method named sequential importance resampling (SIR) algorithm 

[112] is applied in this example to track the state variables. Here a particle is a sample from the 

joint distribution of the state variables. This SIR algorithm propagates the particles of the posterior 
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distribution at time step 𝑡 − 1 to time step 𝑡 to obtain the particles of the prior distribution of time 

step 𝑡. The likelihoods of these particles are calculated and normalized as the weights for them. 

Then the particles are resampled based on the weight terms and the resultant new particles 

represent the posterior joint distribution of the state variables in time step 𝑡. 

 

 

 
Figure 8.11 Posterior distribution of state variables 

The number of particles in this example is 50,000. The mean value and 95% bounds of the 

posterior distributions of the state variables are shown in Figure 8.11. The uncertainty of  0 

reduces and its posterior distribution approximates to its true value 2.5, but this uncertainty 

reduction is not significant after step 20. 
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Figure 8.12 Variance reduction ratio (VRR) of the state variables 

At each step, before the calculation of the likelihoods and the particle resampling, we apply the 

proposed method using the particles of the prior joint distribution of the state variables. The 

variance reduction ratio (VRR) of each state variable is predicted by the proposed method of Eq. 

(8.5) using the prior samples of the state variables. This VRR is also calculated by the 

prior/posterior samples at each step. Figure 8.12 shows that the results from these two methods are 

consistent so that the proposed method is verified. Note that the proposed method uses the prior 

samples and the observation data; while the sample-based method needs both the prior and 
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posterior sample. In other words, the proposed method can be applied before Bayesian inference, 

but the sample-based method happens after the Bayesian inference has been done.  

In this example, the CPD of  0 is  0
 =  0

  1 so the uncertainty of  0 will not be enlarged in the 

propagation from time step 𝑡 − 1  to time step 𝑡 . However, its uncertainty is reduced by the 

updating in each time step. Figure 8.11 shows that this uncertainty reduction is significant for the 

first 5 times steps so that the VRR in Figure 8.12 has a large value before time step 5; this 

uncertainty reduction is negligible after time step 20 so that the value of VRR is closer to zero after 

time step 20.  

In comparison, Figure 8.12 shows that the uncertainty in the posterior distributions of  1 and 

 2 are not reducing, even if their VRR values in Figure 8.12 are always significant. The reason is 

that the uncertainty of  1 and  2 are enlarged in the propagation from time step 𝑡 − 1 to time step 

𝑡, so their prior distributions at 𝑡 have more uncertainty than the posterior distribution at 𝑡 − 1. 

The uncertainty in the prior at 𝑡 is reduced by the updating, but the posterior uncertainty at 𝑡 may 

not be smaller than the posterior uncertainty at 𝑡 − 1 if the uncertainty reduction by the updating 

cannot outperform the uncertainty enlargement by the propagation. Note that the VRR in Figure 

8.12 is the variance reduction with respect to the prior/posterior distribution at the same time step, 

not the variance reduction for adjacent posterior distributions. 

In summary, this example extended the proposed sensitivity analysis to a dynamic Bayesian 

network and verified its validity. The proposed method is capable to predict the variance reduction 

of each state variable before updating. 
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8.5 Summary 

In a Bayesian network, how a node of interest is affected by fixing another node at some value 

is of prominent interest. The proposed GSA for Bayesian network calculates the first-order Sobol’ 

index of any node 𝑋1 with respect to any other node of interest 𝑋𝑁. In forward propagation where 

𝑋1 is the ancestor node of 𝑋𝑁, a low index of 𝑋1 indicates that 𝑋1 is not significantly contributing 

to the uncertainty in 𝑋𝑁  so that we can simply fix 𝑋1  at a deterministic value. In backward 

inference where 𝑋1 is the descendant node of 𝑋𝑁, a low sensitivity index of 𝑋1 indicates that 𝑋𝑁 

cannot be updated by observing 𝑋1; thus we should measure another node of higher Sobol’ index 

in order to calibrate 𝑋𝑁 and reduce its uncertainty. 

The proposed GSA for Bayesian network is realized in two steps. First, an auxiliary variable 

method is used to convert the path between node 𝑋1 and node 𝑋𝑁 to a deterministic function thus 

making the Sobol’ index computation feasible for a Bayesian network. If the path from 𝑋1 to 𝑋𝑁 

is not a directed path form, the theorem of arc reversal is used to transform it to the desired directed 

path so that the auxiliary variable method can still be used to build the deterministic function. 

Second, this research proposed an efficient algorithm to directly estimate the Sobol’ index from 

Monte Carlo samples of the prior distribution of the Bayesian network, so that the proposed GSA 

for the Bayesian network is computationally affordable. The resultant Sobol’ index is the average 

variance reduction ratio across all possible observations of 𝑋1. The proposed algorithm can also 

give an accurate prediction of the uncertainty reduction of the node of interest purely by using the 

prior distribution samples when the value of the observation is known, thus providing an 

informative guidance before the updating.  
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CHAPTER 9  

 

FAST INFERENCE ALGORITHM FOR NON-LINEAR BAYESIAN NETWORKS 

WITH CONTINUOUS VARIABLES 

 

9.1 Background 

The research on BN includes two main topics: inference and learning, and this dissertation 

focuses on inference, which aims to estimate the posterior distribution of the state variables based 

on evidence. An introduction to Bayesian inference has been provided in Section 2.2. One main 

challenge in Bayesian inference is time cost. This challenge is more severe in time dependent 

problem of dynamic Bayesian network, where inference in real time may be required. Therefore, 

this chapter aims to develop a fast inference algorithm. 

A quick recap of Bayesian inference is given here to facilitate further development of this 

chapter. 

As shown in Section 2.2, the inference in static BN is to calculate the posterior probability 

distribution 𝑝(𝑿|𝒀 = 𝒚) , where 𝑋  is the vector of state variables for inference, and 𝒚  is the 

measurement of the observation variables 𝒀. The inference is based on Bayes’ theorem: 

 𝑝(𝑿|𝒀 = 𝒚) ∝ 𝑝(𝑿)𝑝(𝒚|𝑿) (9.1)  

where 𝑝(𝑿) and 𝑝(𝑿|𝒀 = 𝒚) are the prior and posterior distributions of state variables 𝑿, and 

𝑝(𝒚|𝑿) is the likelihood function of 𝑿.  
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In a dynamic Bayesian network (DBN), inference is to estimate the probability 𝑝(𝑿 |𝒚1:  ), i.e., 

the posterior distribution of the state variables in the current time instant given observations in the 

past and current time instants. The inference in a DBN is based on: 

 𝑝(𝑿 |𝒚1: ) ∝ 𝑝(𝑿 |𝒚1:  1)𝑝(𝒚 |𝑿 ) (9.2)  

The detailed derivation of Eq. (9.2) can be found in Eq. (2.6). Similar to Eq. (9.1), Eq. (9.2) 

also include two components: 

1. The prior distribution 𝑝(𝑿 |𝒚1:  1) at time 𝑡;  

2. The likelihood function 𝑝(𝒚 |𝑿 ) (based on Eq. (2.5)), which only utilizes the observation 

at time 𝑡. 

In Eq. (9.1) for static BN and Eq. (9.2) for DBN, the product of the prior distribution and the 

likelihood function is only proportional to but not equal to the posterior distribution. Thus a 

specific inference algorithm, either exact or approximate, is required to calculate the PDF/PMF 

value of the posterior distribution or generate random samples representing the posterior 

distribution. A literature review on inference algorithms has been provided in Section 2.3, where 

we can find that fast, analytical inference algorithms for static/dynamic BN with discrete variables 

have been well-developed in the literature, but the current algorithms for static/dynamic BN with 

continuous variables are either time-consuming or restricted to specific CPDs and/or BN topology.  

This research aims to develop a more general approximate inference algorithm for static/dynamic 

BN with continuous variables. The main concept of the proposed algorithm is to utilize the 

auxiliary variable method based on the probability integral transform [65][59] to collapse a 

complex BN of arbitrary topology to a two-layered BN so that the unscented Kalman filter (UKF) 

can be used for inference. The proposed algorithm is analytical and fast, and applicable to 
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static/dynamic BN of any topology and CPDs as long as the assumption of Gaussian posterior 

distribution is acceptable. 

The rest of the chapter is organized as follows. Section 9.2 gives a brief introduction of the 

unscented Kalman filter, which is used in the proposed method; Section 9.3 develops the proposed 

method; and Section 9.4 provides two numerical examples. 

9.2 Introduction to Unscented Kalman Filter 

9.2.1 Kalman Filter 

Kalman filter [25] is an exact inference algorithm for linear Gaussian dynamic system, which 

means: 1) the state function and the measurement function are both linear; 2) state variables have 

a joint Gaussian distribution; and 3) all the noise terms are assumed to be independent zero mean 

Gaussian variables. The state function is 

 𝑿  1 = 𝑨 𝑿 + 𝒗  (9.3)  

where 𝑨 ∈ ℝ𝑁𝑋×𝑁𝑋 is the state transition matrix, and 𝑩 ∈ ℝ𝑁𝑋×𝑁𝑋 is the control-input matrix 

applied to the control vector   ∈ ℝ𝑁𝑋, and 𝒗 ~𝑁(0,𝑸 ) is the zero-mean Gaussian noise where 

𝑸 ∈ ℝ𝑁𝑋×𝑁𝑋 is the covariance matrix. 

The measurement function is 

 𝒀 = 𝑯 𝑿 + 𝝈  (9.4)  

where 𝑯 ∈ ℝ𝑁𝑌×𝑁𝑋  is the observation transition matrix, and 𝝈 ~𝑁(0, 𝑹 )  is the zero-mean 

Gaussian noise where 𝑹 ∈ ℝ𝑁𝑌×𝑁𝑌 is the covariance matrix. 
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 The Kalman filter algorithm computes the posterior distribution 𝑝(𝑿 |𝒚1:  1)  at given 

𝑨 , 𝑩 , 𝑸 , 𝑯  and 𝑹 . Five functions have been derived for this objective, which can be found in 

Ref. [25].  

An extended Kalman filter or an unscented Kalman filter may be used when the state function 

and/or the measurement function are non-linear. In this case the state function is: 

 𝑿  1 = 𝑓(𝑿 , 𝒗 ) (9.5)  

and the measurement function is: 

 𝒀 = ℎ(𝑿 , 𝒏 ) (9.6)  

The functions 𝑓(∙) in Eq. (9.5) and ℎ(∙) in Eq. (9.6) are non-linear functions, in contrast to the 

linear functions in Eqs. (9.3) and (9.4).  

The main concept of the extended Kalman filter is to linearize 𝑓(∙) and ℎ(∙) to the first order, 

so that inference results can be obtained following the five equations of Kalman filter. The details 

of the extended Kalman filter can be found in Ref. [25]. However, this “first-order” approximation 

in the extended Kalman filter can introduce large errors into the mean and covariance of the 

posterior distribution [153], and calculation of the Jacobian matrix also brings computational 

difficulty in the case of high non-linearity [111]. 

In contrast, the main concept of unscented Kalman filter is to calculate the output mean and 

variance of 𝑓(∙) and ℎ(∙) using the method of unscented transform, where several sigma points are 

selected and propagated through the non-linear functions. The unscented Kalman filter avoids 

calculating the Jocobian matrix, and has been reported to be more accurate than the extended 

Kalman filter [111,153,154]. An introduction of the unscented Kalman filter is given latter. 
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Figure 9.1 Underlying DBN of Kalman filter 

Note that these three types of Kalman filters above are NOT proposed for DBN but for a 

dynamic system which can be depicted by the state function and measurement function. But this 

dynamic system has an underlying DBN as shown in Figure 9.1 (the same as Figure 2.5). This 

DBN has two layers: Layer 1 is for state variables 𝑿  and Layer 2 is for observation variables 𝒁 . 

Theoretically, the three types of Kalman filters are applicable for any DBN if it has the topology 

in Figure 9.1 so that the CPDs from 𝑿  to 𝒁  can be represented by a measurement function and 

the CPDs from 𝑿  1  to 𝑿  can be represented by a state function. The basic Kalman filter is 

adequate if both the state function and measurement function are linear and the noise terms are 

zero-mean Gaussian variables; otherwise the extended Kalman filter or unscented Kalman filter is 

required.  

However, DBNs with more than two layers cannot be updated by Kalman filters since the CPDs 

between two layers of state variables are missing in the dynamic system of state/measurement 

functions. An example of a DBN where a Kalman filters cannot be used is shown in Figure 9.2, 

for which the CPD 𝑃(𝑿2
 |𝑿1

 ) is missing in the dynamic system. 

𝑿 𝑿  1

𝒀 𝒀  1

State function

Measurement 
function
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Figure 9.2 A DBN where the Kalman filter cannot be used 

This research aims to collapse a DBN of more than two layers to an equivalent DBN of two 

layers so that the unscented Kalman filter can be applied. The unscented Kalman filter is selected 

here since it can handle non-linear problems and has been shown to have better accuracy than the 

extended Kalman filter. The proposed algorithm is developed in Section 9.3. 

9.2.2 Unscented Transform 

Unscented transform is the basis for unscented Kalman filter. For a non-linear function 𝒀 =

𝐺(𝑿) where the outputs 𝒀 ∈ 𝑅𝐾 and the inputs 𝑿 ∈ 𝑅𝐿, the unscented transform (UT) is a method 

to calculate the mean and covariance matrix of 𝒀 with limited function evaluations. This section 

introduces the “scaled unscented transform” in Ref. [153,155] which improves the original 

unscented transform in Ref. [111] so that the calculated covariance matrix is guaranteed to be 

positive semi-definite. 

Assuming 𝑿 has the mean vector �̅� and covariance matrix 𝑷𝑿, 2𝐿 + 1 sigma points of 𝑿 are 

generated as 

 

𝝌0 = �̅� 

𝝌𝑖 = �̅� + (√(𝐿 + 𝜆)𝑷𝑿)
𝑖
 for 𝑖 = 1,… , 𝐿 

𝝌𝑖 = �̅� − (√(𝐿 + 𝜆)𝑷𝑿)
𝑖 𝐿

 for 𝑖 = 𝐿 + 1,… ,2𝐿 

(9.7)  

𝑋2
  1 𝑋2

 

   1   

𝑋1
  1 𝑋1
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The weights for these sigma points are shown in Eq. (9.8), where 𝑊0
(𝑚)

 and 𝑊𝑖
(𝑚)

 are for 

computing the mean vector of 𝒀, and 𝑊0
(𝑐)

 and 𝑊𝑖
(𝑐)

 are for computing the covariance matrix of 

𝒀. 

 

𝑊0
(𝑚)

=
𝜆

(𝐿 + 𝜆)
 

𝑊0
(𝑐) =

𝜆

(𝐿 + 𝜆)
+ (1 − 𝛼2 + 𝛽) 

𝑊𝑖
(𝑚)

= 𝑊𝑖
(𝑐) =

1

2(𝐿 + 𝜆)
, 𝑖 = 1,… , 2𝐿 

(9.8)  

In Eqs. (9.7) and (9.8), 0 ≤ 𝛼 ≤ 1 determines the spread of the sigma points around  �̅� and is 

usually set to a small positive value such as 1e-3; 𝛽 ≥ 0 is a non-negative weighting term to 

incorporate knowledge of the higher order moments of 𝑿 and the optimal choice is 𝛽 = 2 is 𝑿 has 

a Gaussian distribution; 𝜆 = 𝛼2(𝐿 + 𝜅) − 𝐿 is a scaling parameter where 𝜅 is usually set to zero; 

(√(𝐿 + 𝜆)𝑷𝑿)
𝑖
 is the 𝑖-th row of the matrix square root. 

Then the sigma points in Eq. (9.7) are propagated through 𝒀 = 𝑔(𝑿) to obtain the sigma points 

of 𝒀: 

 𝓨𝑖 = 𝑔(𝝌𝑖) for 𝑖 = 0,… ,2𝐿 (9.9)  

And the mean vector and covariance matrix of 𝒀 are approximated as 

 

�̅� ≈ ∑ 𝑊𝑖
(𝑚)

𝓨𝑖

2𝐿

𝑖=0
 

𝑷𝒀 ≈∑ 𝑊𝑖
(𝑐)(𝓨𝑖 − �̅�)(𝓨𝑖 − �̅�)𝑇

2𝐿

𝑖=0
 

(9.10)  
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The UT is accurate to the third order for Gaussian inputs, and to at least the second order for 

non-Gaussian inputs [153,155], thus resultant unscented Kalman filter proves to be more accurate 

than the extended Kalman filter which linearize the state/measurement functions to the first order. 

UT also avoids computing the Jocobian matrix which may bring computational difficulty in the 

case of high non-linearity [155]. 

9.2.3 Unscented Kalman Filter 

The UKF consists of two parts: time update and measurement update. Time update means 

propagating to next time step and measurement update means inference using observation data. 

UKF considers the state/measurement function in Eqs. (5.5) and (5.6) as a single function with 

𝑿𝑎
 = [

𝑿 

 𝒗 

𝝈 
] as inputs and [

𝑿  1

𝒚  1
] as outputs. Here the mean and covariance of the inputs are   

 �̅�𝑎
 = [�̅�𝑎

 𝑇 , 𝟎, 𝟎]
𝑇

,       𝑷𝑎
 = [

𝑷 0 0
0 𝑸 0

0 0 𝑹 

] (9.11)  

where the superscript 𝑇 means transpose. The sigma points of 𝑿𝑎
  and the corresponding weights 

𝑊𝑖
(𝑐)

 and 𝑊𝑖
(𝑚)

can be generated by Eqs. (9.7) and (9.8), where 𝐿 is the dimension of 𝑿𝑎
 . Here a 

sigma point of 𝑿𝑎
  is in the format 

 𝝌𝑎
𝑖, = [

𝝌𝑋
𝑖, 

𝝌𝑣
𝑖, 

𝝌𝜎
𝑖, 

]  for𝑖 =  0,1, … ,2𝐿 (9.12)  

where the three components correspond to 𝑿 , 𝒗  and 𝝈 .  
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Time update aims to propagate 𝑿  to time step 𝑡 + 1 and obtain the prior distribution of 𝑿  1. 

Note that the distribution of 𝑿  is the posterior which has been updated using data 𝒚 , or simply 

the prior of 𝑿  if 𝒚  is missing. Based on the UT, the sigma points of 𝑿  1 are 

 𝝌𝑋
𝑖,  1 = 𝑓(𝝌𝑋

𝑖, , 𝝌𝑣
𝑖, ) (9.13)  

where 𝑓(∙) is the state function. Thus the prior mean and covariance of 𝑿  1 can be obtained by 

Eq. (9.10) as 

 

�̅�  1 =∑ 𝑊𝑖
(𝑚)

𝝌𝑋
𝑖,  1

2𝐿

𝑖=0
 

𝑷  1 =∑ 𝑊𝑖
(𝑐)(𝝌𝑋

𝑖,  1 − �̅�  1)(𝝌𝑋
𝑖,  1 − �̅�  1)

𝑇2𝐿

𝑖=0
 

(9.14)  

Measurement update aims to calculate the posterior distribution of 𝑿  using data 𝒀 = 𝒚 . 

Based on the UT, the sigma points of 𝒀  are 

 𝝌𝑌
𝑖, = ℎ(𝝌𝑋

𝑖, , 𝝌𝜎
𝑖, ) (9.15)  

Thus the mean and covariance of 𝒀  are 

 

�̅� =∑ 𝑊𝑖
(𝑚)

𝝌𝑌
𝑖, 

2𝐿

𝑖=0
 

𝑷𝑌
 =∑ 𝑊𝑖

(𝑐)(𝝌𝑌
𝑖, − �̅� )(𝝌𝑌

𝑖, − �̅� )
𝑇2𝐿

𝑖=0
 

(9.16)  

and the covariance of 𝑿  and 𝒀  is 

 𝑷𝑋𝑌
 =∑ 𝑊𝑖

(𝑐)(𝝌𝑋
𝑖, − �̅� )(𝝌𝑌

𝑖, − �̅� )
𝑇2𝐿

𝑖=0
 (9.17)  

Thus the Kalman gain 𝑲 , the posterior mean  �̅� ′′ and covariance 𝑷 ′′ of 𝑿  are 
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𝑲 = 𝑷𝑋𝑌
 𝑷𝑌

  1 

�̅� ′′ = �̅� −𝑲 (𝒚 − �̅� ) 

𝑷 ′′ = 𝑷 −𝑲 𝑷𝑌
 𝑲 𝑇 

(9.18)  

The obtained �̅� ′′ and 𝑷 ′′ can be used as  𝑿  and 𝑷  in the time update of Eqs. (9.11) to (9.14) 

and propagate to time step 𝑡 + 1. 

It is clear that the time update and measurement update are two distinct calculations in UKF. 

For the dynamic system depicted by Eqs. (9.5) and (9.6), these two parts are iteratively 

implemented, as shown in Figure 9.3. 

 
Figure 9.3 Flowchart to implement the unscented Kalman filter 

If the DBN has the topology shown in Figure 9.1 so that it can be depicted as a dynamic system 

in Eqs. (9.5) and (9.6), the UKF can be applied. In addition, if a static BN can be depicted by the 

measurement function in Eq. (9.6), we can simply use the measurement update part of UKF as the 

Bayesian inference algorithm for this static BN. 

However, just like the Kalman filter and extended Kalman filter, UKF also assumes that that 

all the state variables are Gaussian. In some problems, this assumption might cause large error if 

the distribution of state variables is highly nonlinear, e.g., multi-modal [156]. 

𝒚 available?
Initial state
for 𝑡 = 1

�̅� , 𝑷 
Measurement 
update

Time 
update
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9.3 Proposed Fast Inference Algorithm 

UKF can be a fast inference algorithm for DBN if the DBN has the two-layer topology shown 

in Figure 9.1, provided the assumption of Gaussian distributions for the state variables is 

acceptable. For a DBN of more than two layers such as the one in Figure 9.2, UKF is not applicable. 

This section proposes a network collapsing method to covert a DBN of arbitrary topology to an 

equivalent DBN of two layers, so that the usage of UKF can be extended to a DBN of any topology. 

9.3.1 Network Collapsing and Bayesian Inference 

 
Figure 9.4 Network collapsing: Example 1 

The basic concept of the proposed network collapsing method is to introduce an auxiliary 

variable to each CPD within the state variables, and this concept can be explained by the collapsing 

of the three-layer BN in Figure 9.4. In Figure 9.4(a), the state variables 𝑋1 and 𝑋2 are at layer 1 

and 2 respectively, and layer 3 is the observation variable  . 𝑋1 has a Gaussian prior 𝑁(�̅�1, 𝑃𝑋1); 

the CPD between the state variables is 𝑝(𝑋2|𝑋1); and the CPD for the observation variable is 

𝑝( |𝑋2). We also assume that the format of 𝑝( |𝑋2) is a measurement function similar to Eq. 

(9.6): 

  = ℎ(𝑋2, 𝜎) (9.19)  

where 𝜎 is the noise term of the zero-mean Gaussian distribution 𝜎~𝑁(0, 𝑅), so that   is still a 

random variable at given 𝑋2. 
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Figure 9.4(b) introduces an auxiliary variable 𝑈𝑋2  to the CPD 𝑝(𝑋2|𝑋1), thus 𝑋2  now is a 

functional node such that 

 𝑋2 = 𝒫𝑋2|𝑋1
 1 (𝑈𝑋2) (9.20)  

where 𝒫𝑋2|𝑋1
 1 (∙) is the inverse CDF of 𝑝(𝑋2|𝑋1). This functional node does not count as a layer 

thus the BN has been collapsed to two layers, as shown in Figure 9.4(c). By substituting Eq. (9.20) 

into Eq. (9.19), this BN can be expressed by a single measurement function 

  = ℎ(𝒫𝑋2|𝑋1
 1 (𝑈𝑋2), 𝜎) = ℎ(𝑋1, 𝑈𝑋2 , 𝜎) (9.21)  

Now the state variables are 𝑋1 and 𝑈𝑋2 in the first (upper) layer, and the observation node is   

in the second (lower) layer. However, UKF is still not applicable to Eq. (9.21) since 𝑈𝑋2 has a 

uniform distribution 𝑈(0,1)  while the UKF requires all state variables to have Gaussian 

distributions. As shown in Figure 9.4(d), we can handle this problem by introducing another 

standard Gaussian variable 𝑁𝑋2~𝑁(0,1) where we have 

 𝑈𝑋2 = Φ(𝑁𝑋2) (9.22)  

where Φ(∙) is the CDF function of standard Gaussian distribution. Now 𝑈𝑋2 is converted to a 

functional node which does not count as a layer. The final collapsed BN is shown in Figure 9.4(e), 

which can be expressed by a measurement function 

  = ℎ (𝒫𝑋2|𝑋1
 1 (Φ(𝑁𝑋2)) , 𝑛) = ℎ(𝑋1, 𝑁𝑋2 , 𝑛) (9.23)  

where both of the state variables 𝑋1 and 𝑁𝑋2 have Gaussian distribution so that the measurement 

update part of UKF can be applied for Bayesian inference if   is observed.  
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A more complex BN example is shown in Figure 9.5. The state variables are 𝑿 =

{ ,  ,  ,  ,  ,  } and the observation nodes are 𝒀 = [ 1,  2]
𝑇 . The root nodes { ,  ,  ,  } have 

Gaussian distributions; the CPDs between the state variables are 𝑝( | ,  ) and 𝑝( | ,  ,  ); and 

we assume the CPDs for  1 and  2 can be expressed by a measurement function 

 𝒀 = ℎ( ,  , 𝝈) (9.24)  

where 𝝈 ∈ ℝ2 is the measurement noise of zero-mean Gaussian distribution 𝑁(𝟎, 𝑹).  

 
Figure 9.5 Network collapsing: Example 2 

Similar to the example in Figure 9.4, we collapse the BN into two layers by introducing 

auxiliary variable 𝑈𝐶 and 𝑈𝐸 for the CPDs between the state variables: 

  = 𝒫𝐶|𝐴,𝐵
 1 (𝑈𝐶),  = 𝒫𝐸|𝐶,𝐷,𝐹

 1 (𝑈𝐸) (9.25)  

And standard Gaussian variables 𝑁𝐶 and 𝑁𝐸 are introduced to 𝑈𝐶 and 𝑈𝐸 so that all the state 

variables in the transformed network Figure 9.5(b) have Gaussian distributions: 

 𝑈𝐶 = Φ(𝑁𝐶), 𝑈𝐸 = Φ(𝑁𝐸) (9.26)  

Finally the BN is collapsed to two layers in Figure 9.5(c). By substituting Eqs. (9.25) and (9.26) 

into Eq. (9.24), we can express the collapsed BN by a single measurement function 
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 𝒀 = ℎ (𝒫
𝐸|𝒫𝐶|𝐴,𝐵

−1 (Φ(𝑁𝐶)),𝐷,𝐹
 1 (Φ(𝑁𝐸)),  , 𝝈) = ℎ( ,  , 𝑁𝐶 ,  , 𝑁𝐸 ,  , 𝝈) (9.27)  

In Eq. (9.27), all the state variables { ,  , 𝑁𝐶 ,  , 𝑁𝐸 ,  } have Gaussian distribution so that the 

measurement update part of UKF can be applied for Bayesian inference if 𝒀 = { 1,  2}  are 

observed. 

In general, in a BN of arbitrary topology, if the CPD between the observation variables 𝒀 and 

their parent state variables Pa(𝒀) is 

 𝒀 = ℎ(Pa(𝒀), 𝝈) (9.28)  

Then by introducing auxiliary variables for the CPDs between state variables and standard 

Gaussian variables to convert these auxiliary variables to functional nodes, this BN of arbitrary 

topology can be collapsed to a two-layer BN expressed by a single measurement function of the 

form 

 𝒀 = ℎ(𝑿𝑟 , 𝑵, 𝝈) (9.29)  

where 𝑿𝑟 are the root nodes without any parents node and assumed to have Gaussian distribution; 

𝑵  is the standard Gaussian variables introduced for the auxiliary variables, and 𝒏  is the 

measurement noise. The state variables in Eq. (9.29) are 𝑿𝑐 = [𝑿𝑟
𝑇 , 𝑵𝑇]𝑇. 

When 𝒀 are observed, the measurement update part of UKF in Eq. (9.15) to Eq. (9.18) can be 

implemented as follows: 

1. The sigma points 𝝌𝑋
𝑖, , 𝝌𝜎

𝑖, 
 in Eq. (9.15) are generated by Eq. (9.7) where 𝐿  is the 

dimension of 𝑿𝑐 = [𝑿𝑟
𝑇 , 𝑵𝑇]𝑇; the weights of the sigma points are calculated by Eq. (9.8); 

2. The sigma points 𝝌𝑌
𝑖, 

 are calculated by propagating the sigma points 𝝌𝑋
𝑖, , 𝝌𝜎

𝑖, 
 through Eq. 

(9.29); 
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3. The posterior distribution of 𝑿𝑐 = [𝑿𝑟
𝑇 , 𝑵𝑇]𝑇 is calculated using Eqs. (9.16) to (9.18). 

9.3.2 Posterior Distribution of Collapsed Nodes 

The objective in Bayesian inference is to obtain the joint posterior distribution of all the state 

variables. In Eq. (9.29), the Bayesian inference using Eq. (9.15) to Eq. (9.18) results in the posterior 

of 𝑿𝑟 and 𝑵 where 𝑿𝑟 are the root nodes and 𝑵 are the introduced standard Gaussian variables for 

collapsing the network into two layers. However, the posteriors of the non-root state variables 𝑿𝑛𝑟 

are missing. For example, the posterior of 𝑋2 is missing for the network in Figure 9.4, and the 

posteriors of   and   are missing for the network in Figure 9.5.  

This problem can be solved by another unscented transform. A non-root state variable 𝑋𝑟 is the 

output of a deterministic function of 

 𝑋𝑛𝑟 = 𝒫𝑋𝑛𝑟|Pa(𝑋𝑛𝑟)
 1 (Φ(𝑁𝑋𝑛𝑟)) (9.30)  

where Pa(𝑋𝑛𝑟) denotes the parent nodes of 𝑋𝑛𝑟 ; and 𝑁𝑋𝑛𝑟  is the introduced standard Gaussian 

variable for 𝑋𝑛𝑟.  Eq. (9.30) is actually a function 𝑓: (Pa(𝑋𝑛𝑟),𝑁𝑋𝑛𝑟) → 𝑋𝑛𝑟. Using the posterior 

mean and variable of Pa(𝑋𝑛𝑟) and 𝑁𝑋𝑛𝑟, the posterior mean and variance of 𝑋𝑛𝑟 can be computed 

by another unscented transform in Eq. (9.7) to Eq. (9.10). 

However, the covariance within 𝑿𝑛𝑟 and the covariance between 𝑿𝑟 and 𝑿𝑛𝑟  are missing if 

Eq. (9.30) is built separately for each non-root state variable. To obtain covariance of 𝑿 =

[𝑿𝑛𝑟
𝑇 , 𝑿𝑟

𝑇]𝑇, a multi-output function 𝑓: (𝑿𝑟 , 𝑵) → 𝑿 can be constructed: 
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 𝑿 = [
𝑿𝑟

𝑿𝑛𝑟
] =

[
 
 
 
 
 
 

𝑿𝑟

𝒫𝑋𝑛𝑟,1|Pa(𝑋𝑛𝑟,1)
 1 (Φ(𝑁𝑋𝑛𝑟,1))

𝒫𝑋𝑛𝑟,2|Pa(𝑋𝑛𝑟,2)
 1 (Φ(𝑁𝑋𝑛𝑟,2))

…

𝒫𝑋𝑛𝑟,𝑑|Pa(𝑋𝑛𝑟,𝑑)
 1 (Φ(𝑁𝑋𝑛𝑟,𝑑))]

 
 
 
 
 
 

 (9.31)  

where 𝑿𝑛𝑟 = [𝑋𝑛𝑟,1, 𝑋𝑛𝑟,2, … , 𝑋𝑛𝑟,𝑑]
𝑇
 and 𝑑 is the size of 𝑿𝑛𝑟. Note that the root nodes 𝑿𝑟 are also 

part of the outputs of Eq. (9.31), so that the full covariance matrix of 𝑿 = [𝑿𝑛𝑟
𝑇 , 𝑿𝑟

𝑇]𝑇  can be 

computed. Based on Eq. (9.31), the corresponding functions for the examples in Figure 9.4 and 

Figure 9.5 are 

 [
𝑋1
𝑋2
] = [

𝑋1

𝒫𝑋2|𝑋1
 1 (Φ(𝑁𝑋2))

],                 

[
 
 
 
 
 
 
 
 
 
 
 ]
 
 
 
 
 

=

[
 
 
 
 
 

 
 

𝒫𝐶|𝐴,𝐵
 1 (Φ(𝑁𝐶))

 
 

𝒫𝐸|𝐶,𝐷,𝐹
 1 (Φ(𝑁𝐸))]

 
 
 
 
 

 (9.32)  

9.3.3 Forward Propagation to Next Time Step 

The proposed method in Sections 9.3.2 and 9.3.3 can be used for the Bayesian inference in a 

static BN or within one time instant of a DBN. In a DBN, if the state function is 𝑿  1 = 𝑓(𝑿 , 𝒗 ), 

where 𝒗  denotes the process noise, the propagation (time update) from time step 𝑡 to time step 

𝑡 + 1 can be done by the unscented transform in Eq. (9.10) or Eq. (9.14). The sigma points of 

[𝑿 𝑇 , 𝒗 
𝑇
]
𝑇
 and the weights are generated by their mean value vector [�̅� 𝑇 , 𝟎]

𝑇
 and covariance 

matrix [
𝑷 𝟎
𝟎 𝑸 ]. Here 𝑷  is the covariance matrix of 𝑿  obtained posterior covariance of 𝑿  from 

Eq. (9.31) if data 𝒚  are available, or the prior covariance of 𝑿  propagated from time step 𝑡 − 1 

if 𝒚𝒕 are NOT available; and 𝑸  is the covariance matrix of process noise 𝒗 . 
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Note that the introduced standard Gaussian variables 𝑵 in Eq. (9.29) are not propagated to time 

step 𝑡 + 1. Therefore, when data 𝒚  1 are available, new auxiliary variables and new standard 

Gaussian variables 𝑵 are required for the Bayesian inference for time step 𝑡 + 1. This introduction 

of new auxiliary variables and standard Gaussian variables at each observation time step does not 

significantly increase the computational effort, since the backpropagation in Bayesian inference is 

only done one step at a time; thus what is needed is proper book‐keeping at each time step to use 

the realizations of the appropriate auxiliary variables and standard Gaussian variables 

corresponding to each time step. 

9.3.4 Summary 

The proposed method in this section is a fast Bayesian inference algorithm for the BN of 

arbitrary topology, as long as the assumption that all the state variables has a joint Gaussian 

distribution is acceptable.  

In the proposed method, an auxiliary variable and a corresponding standard Gaussian variable 

are introduced to each CPD between the state variables, so that the original BN can be collapsed 

to a two-layer BN thus the measurement update part of the UKF can be applied for Bayesian 

inference, as shown in Section 9.3.1. The posterior distribution of the collapsed nodes can be 

recovered by another unscented transform, as shown in Section 9.3.2. And for DBN, the resultant 

posterior of the state variables can be propagated to the next time step via another unscented 

transform, as shown in Section 9.3.3. The proposed method is applied iteratively for a DBN to 

track the evolution of state variables along with time. 
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9.4 Numerical Examples 

9.4.1 Mathematical Example 

 
Figure 9.6 DBN of the mathematical example 

In this example, the designed DBN for illustration is shown in Figure 9.6, where  0
  and  1

  are 

unknown state variables to be tracked, and  2
  is the observation node to be measured in each time 

step. We assume that this DBN has 20 steps in total, i.e., 𝑡 = 1 to 20 . At 𝑡 = 1 , the prior 

distribution of the root node  0
 =1 and the subsequent CPDs are defined as 

  0
 =1~𝑁(2,0.52),    1

 =1~𝑁( 0
 =1 + 10,12),    2

 =1~𝑁 ( 1
 =11.2, 52) (9.33)  

At  𝑡 > 1, the CPDs are 

  0
 =  0

  1,    1
 ~𝑁( 0

 + 0.9   1
  1 + 1,12),    2

 ~𝑁 ( 1
 1.2, 52) (9.34)  

Eqs. (9.33) and (9.34) shows that the true value of  0
  is invariant with time, but the true value 

of  1
  is changing with time. The CPD for the observation node   

2 is always 𝑁 ( 1
 1.2, 52), which 

can be also expressed as a measurement function  2
 =  1

 1.2 + 𝜎 , where measurement noise 

𝜎 ~𝑁(0,5
2). 

The measurement data of  2
  is shown in Figure 9.7. These data are actually synthetic thus the 

true values of  0
  and  1

  in each step are known. We will compare these true values with the 

Bayesian inference results using the measurement data of  2
 . 

 0
 

 1
 

 2
 

 0
  1

 1
  1

 2
  1
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Figure 9.7 Measurement data of 𝑪𝟐

𝒕  

The proposed method in Section 9.3 is applied to calibrate the true value of  0
  and track the 

history of  1
 , and compare with the true values. In addition, particle filter also is used to solve the 

same problem and compare with the proposed method. These comparisons are shown in Figure 

9.8 and Figure 9.9. The error bars in these two values indicates the 95% confidence interval of the 

posterior distribution, so that a narrower error bar indicates lower uncertainty in the posterior 

distribution.  

Figure 9.8 shows that the true value of  0
  is 2.5; and both particle filter and the proposed 

method give posterior distributions approaching the value with decreasing uncertainty. Figure 9.9 

shows that both particle filter and the proposed method succeed in tracking the history of  1
 . 

The Bayesian inference results by particle filter and the proposed method are highly close so 

that their error bars are almost overlapping in Figure 9.8 and Figure 9.9. However, the proposed 

method is computationally much more efficient than particle filter: in a PC of Intel i7 CPU and 16 

GB RAM, the time cost of particle filter is 10 seconds with 5000 particles, while the time cost of 

the proposed method is less than 1 second. 
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Figure 9.8 Bayesian inference for 𝑪𝟎

𝒕  

 
Figure 9.9 Bayesian inference for 𝑪𝟏

𝒕  

9.4.2 Crack Growth Example 

Here we use the crack growth problem in Chapter 6 as another example. The discrete variables 

are ignored (fixed) since the proposed algorithm in this section is only applicable to DBN of 

continuous variables. The geometry and the FEA model of this problem can be found in Figure 

6.1 and Figure 6.8, respectively. A Gaussian process (GP) surrogate model has been established 

to replace it. At given 𝜃  and 𝑃 , the prediction of Δ𝑆  is a Gaussian variable 

Δ𝑆~𝑁(𝜇(𝜃, 𝑃), 𝜎2(𝜃, 𝑃)). This actually constructs a CPD in the subsequent Bayesian network, 

where the parents nodes are 𝜃 and 𝑃, the child node is Δ𝑆. 

This examples assumes that a crack has been initialized in the location of maximum stress. For 

the sake of illustration, this example assumes a mode I uniaxial crack; thus the range of stress 

intensity factor in one time step is  
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 Δ𝐾 = 1.2 Δ𝑆√𝜋𝑎0 (9.35)  

where 1.2  is the crack shape factor and Δ𝑆 is the stress range and 𝑎0 is the initial crack length in 

the current time step. Here   is defined as a multiplier for the shape factor, and the uncertainty in 

  represents the uncertainty in the shape factor. The output of Eq. (9.36), Δ𝐾, is a functional node 

in the subsequent Bayesian network. In addition, this example assumes that the prior distribution 

of the initial crack length at 𝑡 = 1 is 𝑁(0.0588,0.00052). 

Next, this section still uses the Paris’ law to compute the long crack growth Δ𝑎 in each time 

step: 

 
d𝑎

d𝑁
=  Δ𝐾𝑚 (9.36)  

where  = 1.51 × 10 9  and 𝑚 = 3.7  are the Paris’ law parameters obtained from material 

coupon experiments;   and 𝑚 are assumed to be known constants in this example but can be be 

easily treated as random variables of unknown true values and included in the Bayesian network 

if needed; d𝑎 d𝑁⁄  is the crack growth rate, and its magnitude is equal to the predicted crack growth 

Δ𝑎 in one time step. The crack length after the current time step is 𝑎 = 𝑎0 + Δ𝑎. In the subsequent 

Bayesian network Δ𝑎 and 𝑎 are functional nodes. 

In this example, the crack length 𝑎 is measurable with measurement error 𝑁(0, 𝜎𝑎
2) where 𝜎𝑎 =

10 4; the load 𝑃 is also measurable with measurement error 𝑁(0, 𝜎𝑃
2) where 𝜎𝑃 = 0.002. Thus 

the two observation variables in the Bayesian network are 𝑎𝑜𝑏𝑠 and 𝑃𝑜𝑏𝑠, where the corresponding 

CPDs are 𝑎𝑜𝑏𝑠~𝑁(𝑎, 𝜎𝑎
2) and 𝑃𝑜𝑏𝑠~𝑁(𝑃, 𝜎𝑃

2).  

A Bayesian network is established for this example, as shown in the left half of Figure 9.10 

(functional nodes are denoted by triangles). At 𝑡 = 1, the prior distribution of the root nodes are 
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assumed to be   =1~𝑁(0.8,0.082), 𝜃 =1~𝑁(0.08,0.0082), 𝑃 =1~𝑁(0.25,0.012),  and 

𝑎0
 =1~𝑁(0.0588,0.00052). 

 
Figure 9.10 Dynamic Bayesian network of Example 2 

In this time dependent problem, the state function, which is the transition from 𝑡 to 𝑡 + 1, is 

also required. This example models the load 𝑃 as a first-order auto-regressive model 𝑃  1 = 0.2 +

0.2𝑃 + 𝜖 , where the white noise term is 𝜖 ~𝑁(0,0.01
2). 𝑎0

  1 in Figure 9.10 is the initial crack 

length at time step 𝑡 + 1 . If 𝑎  is not measured, we define 𝑎0
  1 = 𝑎 , thus the posterior 

distribution of 𝑎  is the prior distribution of 𝑎0
  1; if 𝑎  is measured, we define 𝑎0

  1 = 𝑎𝑜𝑏𝑠
 +

𝑁(0, 𝜎𝑎
2), i.e., the measurement value plus measurement noise. Since 𝜃 and   are time-invariant 

model parameters of unknown true values, the state function for this example is 

 [

𝜃  1
   1
𝑃  1
𝑎0
  1

] = [

𝜃 

  

0.2 + 0.2𝑃 + 𝜖 

𝑎  if 𝑎  not measured;  𝑎𝑜𝑏𝑠
 + 𝑁(0, 𝜎𝑎

2) if 𝑎  measured

] (37) 

  

𝜃 

Δ𝑆 

𝑃 

Time step 𝑡

𝑎0
 

Δ𝐾 

Δ𝑎 

𝑎 

𝑎𝑜𝑏𝑠
 

𝑃𝑜𝑏𝑠
 

   1

𝜃  1

Δ𝑆  1

𝑃  1

Time step 𝑡 + 1

𝑎0
  1

Δ𝐾  1

Δ𝑎  1

𝑎  1

𝑎𝑜𝑏𝑠
  1

𝑃𝑜𝑏𝑠
  1
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The objective of this example is to predict the crack growth in 20,000 times steps and calibrate 

the true values of model parameters 𝜃 and  . This example assumes that the data of 𝑃𝑜𝑏𝑠 are only 

available at the first 10,000 time steps; while the data of 𝑎𝑜𝑏𝑠 are only available at the following 

five time steps: 𝑡 = 2000,4000,6000,8000,10000. All of these data are synthetic and they are 

generated based on the dynamic Bayesian network in Figure 9.10 using assumed true value of 𝜃 =

0.0877,  = 0.75, 𝑎0
 =1 = 0.0588. 

The solution of this example follows the flowchart in Figure 9.3: if data of 𝑎𝑜𝑏𝑠 and/or 𝑃𝑜𝑏𝑠 are 

available, posterior distributions of state variables are obtained before propagating them to the next 

time step; otherwise, the prior distribution of state variables are directly propagated to the next 

time step. 

Note that the data in this example are synthetic, thus the true values of 𝜃 and   are known, and 

the true value of crack length in each step is also known. The results by the proposed method is to 

be compared with these true values to verify the proposed method. The results of the proposed 

method and the comparison to the true values are shown in Figure 9.11, Figure 9.12 and Figure 

9.13. 

Figure 9.11 shows the Bayesian inference of   by the proposed method. Recall that the prior 

distribution of   is 𝑁(0.8,0.082) and its true value is 0.75. In Figure 9.11 the final posterior 

distribution of   is 𝑁(0.749,0.0262).  The posterior mean is very close to the true value of 0.75, 

and the posterior standard deviation is also reduced by 67.5% compared to the prior. Thus it is 

clear that the posterior distribution of   converges to the true value. 
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Figure 9.11 Bayesian inference of 𝑭 

 
Figure 9.12 Bayesian inference of 𝜽 

 
Figure 9.13 Crack growth prediction 

 
Figure 9.14 Enlarge view of Figure 9.14 from step 5000 to 9000 
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Similarly, Figure 9.12 also shows that the posterior distribution of 𝜃 converge to the true value. 

Recall that the prior distribution of 𝜃 is 𝑁(0.08,0.0082) and its true value is 0.0877. In Figure 9.12 

the final posterior distribution of 𝜃 is 𝑁(0.0879,0.00182).  The posterior mean is very close to 

the true value, and the posterior standard deviation is also reduced by 77.4% compared to the prior. 

It is observed that the distribution of   and 𝜃  are updated only at the steps of 𝑡 =

2000,4000,6000,8000,1000, i.e., only when the measurement data on 𝑎𝑜𝑏𝑠 are available. This is 

because 1) in time update, the propagation from 𝑡 to 𝑡 + 1 does not change the distributions of   

and 𝜃 since the state function indicates that    1 =    and 𝜃  1 = 𝜃 ; and 2) the node 𝑃𝑜𝑏𝑠 is d-

separated [157] to   and 𝜃 in the Bayesian network, i.e., 𝑃𝑜𝑏𝑠 is independent of   and 𝜃 and the 

data on 𝑃𝑜𝑏𝑠 cannot update the distributions of   and 𝜃 during the measurement update. Therefore, 

only the data of 𝑎𝑜𝑏𝑠 can update and change the distribution of   and 𝜃. 

The crack growth prediction is shown in Figure 9.13, which can be divided into three stages:  

1. Stage 1 is before the first observation of 𝑎𝑜𝑏𝑠 at 𝑡 = 2000. This stage is purely uncertainty 

propagation. Due to the large uncertainty in    and 𝜃, the uncertainty of 𝑎 accumulates fast 

during this stage and the mean prediction also deviates from the true value.  

2. Stage 2 ranges from the first observation of 𝑎𝑜𝑏𝑠 at 𝑡 = 2000 to the last observation of 𝑎𝑜𝑠 

at 𝑡 = 10000. This stage includes both uncertainty propagation and Bayesian inference. 

The prediction matches the true value well and the prediction uncertainty is small due to 

two reasons: 1) the uncertainty in   and 𝜃  are reduced by Bayesian inference using 

observation data, as shown in Figure 9.11 and Figure 9.12; 2) the observation is used to 

construct the prior distribution with measurement error, where the observation matches the 

true value well so constructed prior matches the true value well, and the measurement error 

is small so that the prior uncertainty is low.  
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3. Stage 3 is after 𝑡 = 10000. This stage is purely uncertainty propagation. The uncertainty 

of 𝑎 accumulates with time, but this accumulation is slow since the uncertainty in   and 𝜃 

have been reduced significantly during Stage 2. The prediction mean value still matches 

the true value well since the posterior distributions of   and 𝜃 have closely approached 

their true values. 

9.5 Summary 

For a non-linear and/or non-Gaussian Bayesian network (BN) with continuous variables, 

existing inference algorithms are sample-based, such as MCMC for static BN and particle filter 

for dynamic BN. These sample-based methods are very time-consuming. This research proposed 

an approximate analytical inference algorithm to obtain the posterior distributions of state 

variables efficiently. First, this research proposed a network collapsing technique based on the 

concept of auxiliary variable to convert a multi-layer BN to an equivalent simple two-layer BN. 

Then unscented Kalman filter is applied to the collapsed BN so that the posterior distributions of 

state variables can be obtained analytically and efficiently. The proposed method is also able to 

retrieve the posterior distributions of state variables that are hidden during the collapsing process. 

In the case of a dynamic BN, the proposed method is also able to propagate the state variables to 

the next time step analytically using an unscented transform.  

The proposed method can be applied to both static and dynamic Bayesian networks, and its 

main advantage is high computational efficiency. For a static BN where only a single inference is 

needed so that computational time is not a concern, the computational efficiency of the proposed 

method may not be a significant advantage. However, the proposed method is particularly suitable 

for a dynamic BN, where inference and uncertainty propagation are required recursively so that 
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computational effort is a significant concern. Two examples of dynamic BN have been provided 

in this research to illustrate the proposed method.  
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CHAPTER 10  

 

CONCLUSION 

 

10.1 Summary of Accomplishments 

The overall goal of the research in this dissertation is to develop a versatile and efficient 

framework for system diagnosis and prognosis under aleatory and epistemic uncertainty. In this 

research, both time independent and time dependent systems are considered. This target is 

approached by carrying out studies regarding the state-of-the-art uncertainty quantification and 

integration techniques. The Bayesian network is utilized as the platform that integrate various 

sources of uncertainty, and the global sensitivity is utilize the tool for dimension reduction and 

optimization. The accomplishments and innovations of this dissertation are outlined as follows. 

1. Global sensitivity analysis (GSA) incorporating epistemic uncertainty and time series 

input 

Chapter 3 developed a novel computational framework to compute the Sobol’ indices that 

quantify the relative contributions of various uncertainty sources towards the system response 

prediction uncertainty. In the presence of both aleatory and epistemic uncertainty, two challenges 

were addressed in this research for the model-based computation of the Sobol’ indices: due to data 

uncertainty, input distributions are not precisely known; and due to model uncertainty, the model 

output is uncertain even for a fixed realization of the input. An auxiliary variable method based on 

the probability integral transform was introduced to distinguish and represent each uncertainty 

source explicitly, whether aleatory or epistemic. The auxiliary variables facilitate building a 

deterministic relationship between the uncertainty sources and the output, which is needed in the 
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Sobol’ indices computation. The proposed framework was developed for two types of model 

inputs: random variable input and time series input. A Bayesian autoregressive moving average 

(ARMA) approach was chosen to model the time series input due to its capability to represent both 

natural variability and epistemic uncertainty due to limited data. A novel controlled-seed 

computational technique based on pseudo-random number generation was proposed to efficiently 

represent the natural variability in the time series input. This controlled-seed method significantly 

accelerates the Sobol’ indices computation under time series input, and makes it computationally 

affordable. 

2. System response prediction in multi-level problem with calibration, validation, and 

relevance analysis 

Chapter 4 proposed a methodology to quantify the uncertainty in the system level prediction by 

integrating calibration, validation and sensitivity analysis at different levels. The proposed 

approach considers the validity of the models used for parameter estimation at lower levels, as 

well as the relevance at the lower level to the prediction at the system level. The model validity is 

evaluated using a model reliability metric, and models with multivariate output are considered. 

The relevance is quantified by comparing Sobol’ indices at the lower level and system level, thus 

measuring the extent to which a lower level test represents the characteristics of the system so that 

the calibration results can be reliably used in the system level. Finally the results of calibration, 

validation and relevance analysis are integrated in a roll-up method to predict the system output. 

3. GSA-based resource allocation for robust predictions 

Chapter 5 achieved “robust” test resource allocation, which means that the system response 

prediction is insensitive to the variability in test outcomes therefore consistent predictions can be 

achieved under different test outcomes. This research analyzed the uncertainty sources in the 



 239 

generation of synthetic data regarding different test conditions, and found that this objective can 

be achieved if the contribution of model parameter uncertainty in the synthetic data can be 

maximized. Global sensitivity analysis (Sobol’ index) was used to assess this contribution, and to 

formulate an optimization problem to achieve the desired consistent prediction. A simulated 

annealing algorithm was applied to solve this optimization problem. The proposed method is 

suitable either when only model calibration is considered or when both model calibration and 

model validation are considered. 

4. Structural health diagnosis and prognosis for time dependent system using dynamic 

Bayesian network 

Chapter 6 used the concept of dynamic Bayesian networks (DBN) to build a versatile 

probabilistic model for diagnosis and prognosis, and illustrated the proposed method by an aircraft 

wing fatigue crack growth example. The proposed method integrates physics models and various 

aleatory and epistemic uncertainty sources in fatigue crack growth prediction. In diagnosis, the 

DBN is utilized to track the evolution of the time-dependent variables (dynamic nodes) and 

calibrate the time-independent variables (static nodes); in prognosis, the DBN is used for 

probabilistic prediction of crack growth in future loading time steps. This research also proposed 

a modification of the DBN structure, which does not affect the diagnosis results but reduces time 

cost significantly by avoiding Bayesian updating with load data. By using particle filtering as the 

Bayesian inference algorithm for the DBN, the proposed approach handles both discrete and 

continuous variables of various distribution types, and non-linear relationships between nodes. 

Challenges in implementing the particle filter in DBN where 1) both dynamic and static nodes 

exist, and 2) a state variable may have parent nodes across two adjacent Bayesian networks, are 

also resolved. 
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5. An efficient sample-based method to estimate the first-order Sobol’ index 

Chapter 7 developed a new method to directly estimate the first-order Sobol’ index based only 

on available input-output samples, even if the underlying model is unavailable. The innovation is 

that the conditional variance and mean in the formula of the first-order index are calculated at an 

unknown but existing location of model inputs, instead of an explicit user-defined location. The 

proposed method is modular in two aspects: 1) index calculations for different model inputs are 

separate and use the same set of samples; and 2) model input sampling, model evaluation, and 

index calculation are separate. Due to this modularization, the proposed method is capable to 

compute the first-order index if only input-output samples are available but the underlying model 

is unavailable, and its computational cost is not proportional to the dimension of the model inputs. 

In addition, the proposed method can also estimate the first-order index with correlated model 

inputs. Considering that the first-order index is a desired metric to rank model inputs but current 

methods can only handle independent model inputs, the proposed method contributes to filling this 

gap. 

6. Global sensitivity analysis of a Bayesian network 

Chapter 8 extended the use of global sensitivity analysis (GSA) to Bayesian networks in order 

to calculate the Sobol’ sensitivity index of a node with respect to the node of interest. The desired 

GSA for Bayesian network addresses two challenges. First, the computation of the Sobol’ index 

requires a deterministic input-output function while the Bayesian network has probabilistic 

relationships between nodes. Second, the computation of the Sobol’ index can be expensive, 

especially if the model inputs are correlated, which is common in a Bayesian network. To solve 

the first challenge, this research used an auxiliary variable method to convert the path between two 

nodes in the Bayesian network to a deterministic function, thus making the Sobol’ index 
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computation feasible in a Bayesian network. To solve the second challenge, this research used the 

algorithm proposed in Chapter 7 to directly estimate the first-order Sobol’ index from Monte Carlo 

samples of the prior distribution of the Bayesian network, so that the proposed GSA for Bayesian 

network is computationally affordable. Before collecting observation, the proposed algorithm can 

predict the uncertainty reduction of the node of interest purely using the prior distribution samples, 

thus providing quantitative guidance for effective observation and updating. 

7. An efficient approximate inference algorithm for Bayesian networks with continuous 

variables 

The inference in a Bayesian network with continuous variables is still challenging if the BN is 

non-linear and/or non-Gaussian. Chapter 9 proposed a network collapsing technique based on the 

concept of probability integral transform to convert a multi-layer BN to an equivalent simple two-

layer BN, so that the unscented Kalman filter can be applied to the collapsed BN and the posterior 

distributions of state variables can be obtained analytically. For dynamic BN, the proposed method 

is also able to propagate the state variables to the next time step analytically using the unscented 

transform, based on the assumption that the posterior distributions of state variables are Gaussian. 

Thus the proposed method achieves a very fast approximate solution, making it particularly 

suitable for dynamic BN where inference and uncertainty propagation are required over many time 

steps. 

10.2 Future Works 

Section 10.1 listed the accomplishments of this dissertation, and several potential future works 

may be pursued. 

For the resource allocation in Chapter 5, future work will focus on the selection of the best input 

values (test design) such that the resultant prediction uncertainty can be further reduced. This 
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challenge can be addressed in two ways: 1) optimize the number of tests and test inputs together; 

or 2) adaptively decide the number of tests and their input conditions based on the observation data 

as the test campaign progresses. 

For the uncertainty integration of time dependent system in Chapter 6, model validation is 

necessary to assess the quality of the prediction, thus future work needs to focus on model 

validation for time-dependent systems. Quantification of the prognosis uncertainty is necessary to 

assist decision making under uncertainty. 

For the global sensitivity analysis of the Bayesian network in Chapter 8, the limitation of the 

proposed method at present is that currently it only considers a single observation, thus an 

extension to the case of multiple observations needs to be addressed in future work. 

For the fast Bayesian inference algorithm in Chapter 9, the proposed method is only applicable 

for a BN with continuous variables. Future research is needed to develop fast inference algorithms 

for hybrid BN of both discrete and continuous variables.  

10.3 Concluding Remarks 

This dissertation focused on developing a framework of system response prediction under 

uncertainty. The proposed methods address several challenges in uncertainty integration and 

system response prediction, including: 1) considering both aleatory and epistemic uncertainty; 2) 

solving multi-level problems where the prediction needs to be extrapolated from lower level of 

complexity to the system level of interest; and 3) the prediction for time dependent system under 

uncertainty. In this dissertation, two major mathematical tools, namely sensitivity analysis (GSA) 

using Sobol’ index and the Bayesian network were considered, and this dissertation also 

contributed to new developments regarding these tools.  
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All of these new developments above cover various scenarios in the system response prediction, 

and will be of high value to the decision makers. The new developments in the global sensitivity 

analysis allows us to reduce the dimension of the system of interest under various types of inputs, 

no matter whether the system is time-dependent or time-independent. The new developments in 

Bayesian network allow us to track the status of a complex time-dependent system in real time. 

All of these new developments helps predict the system response and evolution, thus show a great 

potential to be used in an industrial problems. 
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