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CHAPTER 

 

1. INTRODUCTION 

 

The goal of this work has been to understand the function of dopamine 

in the context of glucose stimulated insulin secretion (GSIS). Insulin secretion is 

the natural response of the body to hyperglycemia (1). The secretion of the 

antagonist hormone glucagon is the response to hypoglycemia (1). The regulated 

secretion of these two hormones is necessary to maintain glucose homeostasis 

in healthy individuals. Any impairment in this regulation results in poor glycemic 

control. Type-2 diabetes is characterized by the loss of glycemic control, and the 

resulting chronic hyperglycemia damages the capillaries in the body. Untreated 

type-2 diabetes leads to damages in the retina, in the kidneys, in the peripheral 

tissues, and in the heart (2).  

As a consequence of increased obesity in the population, an increased 

number of people are expected to develop type-2 diabetes in the next decades. 

Thus, a big effort is being made at developing new drugs that can better re-

establish euglycemia during the early phase of the disease, when insulin 

replacement is not yet required. From this perspective, it is fundamental to 

investigate what stimuli other than glucose which can regulate insulin secretion. I 

focused my study on dopamine. Previous literature showed its role as an inhibitor 

of insulin secretion, although there was no consensus over its physiological 

relevance (3, 4). I investigated dopamine synthesis, secretion, and its action on 
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its specific receptor. The ensemble of results depicts a dopaminergic negative 

feedback loop acting on insulin secretion. Blocking this dopaminergic feedback 

increases GSIS. Therefore, it is a potential target for new drugs to improve 

treatment of type-2 diabetes. 

In this chapter I present the background information about the 

pancreatic islets, insulin secretion and its regulation by G-protein coupled 

receptors (GPCRs), in particular by dopamine and its receptors.  

 

1.1 The endocrine pancreas and the islets of Langerhans 

The pancreas is identified as a single organ in the mammalian 

abdominal cavity, but in fact it is composed of two parts with distinct functions: 

the endocrine pancreas and the exocrine pancreas. The exocrine pancreas is a 

digestive organ: it produces digestive enzymes that are secreted into the small 

intestine via the pancreatic duct (5). The endocrine pancreas is an endocrine 

gland that produces several hormones that function to regulate glucose 

concentration in the bloodstream. The most abundant and important pancreatic 

hormones are: insulin, glucagon, and somatostatin. These hormones are 

secreted directly into the blood vessels that perfuse the endocrine pancreas. For 

this reason the endocrine pancreas that constitutes approximately 1-2% of the 

pancreatic mass, receives about 10-15 % of the total blood supply for the whole 

pancreas (6, 7). The endocrine pancreas is organized in spheroidal clusters of 

endocrine cells, the islets of Langerhans, scattered across the volume of the 

exocrine pancreas.  
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1.1.1 The islets of Langerhans 

The islets of Langerhans, which were discovered by a medical student 

and first described in his dissertation in 1869 (8, 9), constitute the functional unit 

of the endocrine pancreas. Five major cell types can be identified in an islet: the 

insulin producing β-cells, the glucagon producing α-cells, the somatostatin 

producing δ-cells (1, 10, 11), the pancreatic polypeptide producing PP-cells (12, 

13), and the ghrelin producing ε-cells (14, 15). The cytoarchitecture of the islets 

varies in between different species, and so does the relative abundance of each 

cell type in the islet of different species (16). Mouse islets have a characteristic 

structure with a core of β-cells surrounded by a mantle of α-cells on the surface, 

which is interspersed with the δ-cells. β-cells represent 60-80% of the cells, α-

cells constitutes 15 -20% of the cells, and δ-cells, PP cells, and ε-cells 

collectively are less than 10% of the cells (16, 17). With regard to their size, there 

is again variability across species, with mouse islets following a log-normal 

distribution, and having an average size of ~ 100 µm (18). The islet size and the 

β-cells/islet cells ratio for various species are summarized in Table 1. 

The cytoarchitecture of the islets of Langerhans is crucial to their 

function. In fact, dispersed islet cells display a reduced dynamic range of 

hormone secretion in response to glucose (19, 20). In the islet environment, the 

endocrine cells interact reciprocally via surface receptors, cell adhesion and 

junctional molecules (21-23). 
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islets. This interconnection and coordination result in tight regulation of hormone 

secretion by the islets, which is necessary to maintain proper blood glucose 

concentrations, even under the most extreme conditions. 

 

1.1.2 Glucose homeostasis and type-2 diabetes 

Glucose is the main variable controlling hormone secretion by the islet. 

Under fasting conditions, the concentration of glucose in the blood is ~ 5 mM. 

Any increase in glucose concentration (e.g. after a meal) triggers insulin 

secretion. Insulin acts on the liver, the adipose tissue, and the muscles to 

stimulate glucose uptake and storage (1). When glucose concentration 

decreases below 5 mM (e. g. after intense exercise) insulin secretion is halted 

and glucagon is secreted. Glucagon acts mainly on the liver to increase the 

hepatic glucose output by stimulating glycogenolysis and gluconeogenesis (1). 

Glucose homeostasis is maintained by the counteracting effects of both 

hormones. The different secretion profiles of insulin, glucagon, and somatostatin 

for a healthy human and a healthy mouse in response to glucose can be seen in 

Figure 1. 
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of physical activity (32). The normal values for a healthy individual are: a fasting 

plasma glucose concentration (FPG) of 5.6 mM, and a plasma glucose 

concentration comprised between 5.6 mM and 6.9 mM two hours after a 75 g 

oral glucose tolerance test (2h-PG) (33). There is a consensus model that 

describes the early stage of type-2 diabetes and its progressive development. 

The elevated caloric intake and the lack of exercise produce obesity and insulin 

resistance in an individual with the polygenic predisposition to develop type-2 

diabetes. When this happens more insulin is necessary to clear the same amount 

of glucose from the bloodstream. At this stage the individual has normal fasting 

glucose levels, but shows hyperinsulinemia and impaired glucose tolerance, that 

is 2h-PG between 7.8 mM and 11.0 mM. With the progression of the disease, β-

cell function starts deteriorating and postprandial hyperglycemia appears. When 

β-cell function decreases to 50% type-2 diabetes becomes full-blown, showing 

mild fasting hyperglycemia. Later stages show fasting hyperglycemia (FPG > 7.0 

mM, 2h-PG >11.1 mM) and then finally a total loss of β-cell function. The 

progression of type-2 diabetes is illustrated in Figure 2. If left untreated, 

hyperglycemia causes macrovascular and microvascular complications due to 

glucose toxicity (34). The damage to capillaries targets the kidneys, the retina, 

the heart, the brain, and the peripheral circulation. Thus, type-2 diabetes causes 

elevation in the risk of developing heart disease and stroke, hypertension, 

blindness, kidney failure, neuropathies and amputations (2). 
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With type-2 diabetes being a disease that has such a slow progression 

(spanning almost 30 years to go from 100% to 0% β-cell function (36)), the 

development of better drugs to treat the early stages can significantly delay the 

late stage of the disease with its onset of the microvascular complications, 

improving the quality of life for patients. For this reason, expanding our 

knowledge on the mechanisms that regulate insulin secretion is important, as it 

increases the number of targets for new possible drugs. 

 

1.1.3 The mechanism of glucose stimulated insulin secretion 

β-cells secrete insulin in response to elevated glucose, as is shown in 

Figure 1. The cascade of intracellular events that produces this response has 

been studied in great detail and can be summarized as follows. Extracellular 

glucose enters the β-cell cytoplasm through the facilitative glucose transporter 

GLUT2 (38-40). This high capacity transporter equilibrates extra- and intra-

cellular glucose within seconds. In the cytoplasm, glucose is phosphorylated by 

the enzyme glucokinase, and the resulting glucose-6 phosphate enters the 

glycolytic pathway (41-43). The complete oxidative metabolism of one molecule 

of glucose-6 phosphate produces 36 molecules of ATP, thus the cytosolic 

[ATP]/[ADP] ratio increases. β-cells express ATP-sensitive potassium channels 

(KATP) that close in response to this elevated [ATP]/[ADP] ratio (44-46). The 

closure of KATP channels increases the concentration of intracellular K+ 

depolarizing the cell membrane, which leads to the opening of L-type voltage 

gated calcium channels. The influx of Ca2+ triggers conformational changes in 
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the exocytotic machinery causing the fusion of the insulin secretory granules with 

the plasma membrane, and insulin is secreted in the extracellular space (47-50). 

Secretion continues until the membrane repolarizes. Multiple processes are 

responsible for the repolarization of the β-cell membrane. The elevated 

concentration of intracellular Ca2+ ([Ca2+]i) stimulates the activity of Ca2+ATPase 

that transports Ca2+ in the endoplasmic reticulum. This process diminishes both 

[Ca2+]i and the [ATP]/[ADP] ratio (51). Additionally the opening of Ca2+ activated 

K+ channels (52) and voltage dependent K+ channels (53) generates an efflux of 

K+. These three processes cause a temporary cessation of insulin secretion, until 

more glucose is metabolized and the full chain of events starts again. So the 

overall response to glucose of a β-cell is a sequence of action potentials eliciting 

insulin secretion. 

 

1.1.4 The coordinate response of β-cells  

Isolated β-cells respond to an increase in glucose concentration with a 

sequence of action potentials, but the action potentials of two β-cells will not be 

synchronous, due to the stochastic nature of the molecular processes. 

Nonetheless, in the islets, β-cells show a coordinated response to glucose. 

Thanks to the presence of gap junctions providing electrical coupling, the β-cells 

excitability is synchronized, and so are the changes in [Ca2+]i, and insulin 

secretion (25). As a result of the β-cell synchronization GSIS from an islet is 

pulsatile. In detail, the membrane potential of a β-cell in an intact islet 

experiences burst of action potentials interspersed between silent phases, with a 
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periodicity of 8-27 s. These fast oscillations are superimposed to slow oscillations 

that have a periodicity of 5-10 min. Both [Ca2+]i, and insulin follow the same 

periodicity (54). While the fast oscillations are dependent on the changes to the 

electrical properties of the membrane, the slow oscillation are currently attributed 

to changes in the metabolic processes that affect the [ATP]/[ADP] ratio (55, 56). 

Hence the specific architecture of an islet contributes to produce the 

characteristic insulin secretion profile that is biphasic and pulsatile. The first 

phase is a strong secretory response occurring 5-10 minutes after the glucose 

stimulation. After a short decrease in secretion, the second phase follows, which 

is characterized by a slow increase in insulin secretion and the insulin pulses 

(57). Pulsatile secretion of insulin is observed in vivo too, in the portal vein of 

mice and humans (57-59). Interestingly, during type-2 diabetes, the strong first 

phase secretory response is lost (60, 61), and similarly the pulsatile response is 

altered (62, 63). This suggests that the pulsatile secretion is important for proper 

insulin signaling. In fact pulsatile insulin therapy seems to significantly reduce the 

progression of diabetic complications in patients, when compared with non-

pulsatile insulin treatment (64). The current model to explain the advantages of 

pulsatile insulin administration, points at its positive effects on the insulin receptor 

sensitivity both in the liver and in adipose tissue (65, 66). 
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1.2 GPCR regulation of insulin secretion 

 

1.2.1 The GPCR family of receptors 

G-protein coupled receptors (GPCRs) constitute the largest family of 

cell surface receptors, with more than 800 members encoded by the human 

genome (67). The basic function of these membrane-spanning proteins is to 

translate an extracellular stimulus into an intracellular signal. The variety of 

stimuli that target GPCRs is similarly wide, and includes photons, ions, amines, 

fatty acids, amino-acids, nucleotides, peptides, proteins, and steroids. In addition, 

there are more than 100 orphan GPCRs for which neither the ligand nor the 

function is yet known (68). The ensemble of these receptors regulates embryonic 

development and organism homeostasis, and they are involved in vision, smell, 

taste, memory, and learning. For this reason they are an important target for drug 

design. It has been estimated that almost 50% of the drug targets in the 

pharmaceutical industry are GPCRs (69), and 46 GPCRs have been successfully 

targeted by drugs (70). 

The first primary structure of a GPCR was published 30 years ago (71-

73). Since then, we have learned that despite the necessary structural diversity 

that allows GPCRs to carry such variety of functions, these receptors share a 

similar topology. They have a core of 7 transmembrane α-helices with 3 

hydrophilic intracellular loops, 3 hydrophilic extracellular loops, an extracellular 

N-terminus, and an intracellular C-terminus (Figure 3).  
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of the 4 families is associated to a preferential signaling pathway. The Gs family 

stimulates adenylyl cyclase (AC) activity, resulting in increased cAMP levels. This 

leads to activation of protein kinase A (PKA) and the group of exchange protein 

directly activated by cAMP (Epac), both of which act on multiple downstream 

targets (78, 79). The Gi/o family inhibits AC activity via its Gα subunit, and also it 

acts on phospholipase C-β (PLC-β), K+ channels, AC, and phosphoinositide3-

kinase (PI3K) via the Gβγ complex (78). The Gq/11 family activate PLC-β that 

produces inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). In turn IP3 

causes release of Ca2+ from the intracellular stores, and DAG activates protein 

kinase C (PKC) (78). The G12/13 is the least characterized of the 4 groups, and it 

is thought to stimulate phospholipase D, c-Src, PKC. Also it has been reported to 

interact with GTP-ase-activating protein for Ras, RasGAP, and Bruton’s tyrosine 

kinase (78, 80). A schematic and simplified representation of the complex 

interactions between the G proteins is shown in Figure 4.  

The tuning of insulin secretion to meet the energy demand of an 

healthy organism, and maintaining glucose homeostasis, is one example of 

complex large-scale regulation mediated by GPCRs. The fact the β-cells express 

multiple GPCRs and G proteins allow them to sense the energy status and the 

energy demand of the body. The network of interactions between GPCRs and G 

proteins activates multiple second messengers in the β-cells to constantly adjust 

their function and their output to the external demand. This concept will be 

described in more detail in the next section.  
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mimetics are now available to directly stimulate the GLP-1 receptor. Also there 

are inhibitors of dipeptidyl-peptidase 4 (DPP4) which increase the concentration 

of endogenous GLP-1 (85, 86). Since our lab is primarily interested in insulin 

secretion from the β-cell, I describe the relevant intracellular mechanisms that 

GPCRs can act on to modulate insulin secretion. First, increasing K+ 

conductance causes the hyperpolarization of β-cell membrane, which 

counterbalances the depolarization that triggers opening of L-type Ca2+ channels. 

The net effect is a reduction of Ca2+ dependent exocytosis. In the β-cell, this 

mechanism is activated by receptor that signals via Gi/o (i.e. norepinephrine) (87). 

This effect can be obtained by Gα acting on the KATP channels (88). Alternatively, 

the Gβγ complex can directly activate the G protein-gated inward rectifying 

potassium channels (GIRK) (89, 90), as these channels are active in β-cells (91).  

Second, AC activity increases cAMP that potentiates GSIS through PKA and 

Epac. Gs and Gi/o coupled receptor can respectively stimulate or inhibit AC to 

modulate insulin secretion (88, 92). Additionally the Gβγ complex can differentially 

stimulate and inhibit 8 of the 9 isoforms of AC (93).  Third, GPCRs can modulate 

insulin secretion by a direct effect on the Ca2+ conductance. The β-cell expresses 

at least 6 isoforms of the pore forming subunit of the voltage gated calcium 

channel: CaV1.2, CaV1.3, CaV2.1, CaV2.2, CaV2.3, CaV3.1 (that correspond to 

α1C, α1D, α1A, α1B, α1E, α1G in the previous nomenclature system) (94, 95). They 

conduct L-, P/Q, N-, R- and T- calcium currents (Table 4). While the L-type 

calcium current is responsible for the Ca2+ influx during the first phase of insulin 
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C-terminus of SNAP-25, thus blocking the interaction with the synaptotagmins 

and inhibiting exocytosis (106-109). 

 

1.3 Dopamine and the dopamine receptors 

 

1.3.1 The neurotransmitter dopamine 

Dopamine was first identified as neurotransmitter in brain by Arvid 

Carlsson almost 50 years ago (110). For this discovery he received the Nobel 

Prize for medicine in the year 2000. He showed that dopamine was not just an 

intermediate product in the synthesis of epinephrine and norepinephrine; instead 

it was a neurotransmitter itself. Dopaminergic neurons were identified in specific 

regions of the brain: the substantia nigra and the ventral tegmental area. 

Dopaminergic neurons project fibers to the basal ganglia, to the nucleus 

accumbens, and to the prefrontal cortex (111, 112). Dopaminergic neurons were 

also identified in the hypothalamus, where they modulate the secretion of the 

hormone prolactin from the anterior pituitary gland (113). These neurons control 

crucial brain functions like motor coordination (114), motivation (115), reward 

(116), and working memory (117). Dysfunction of the dopaminergic neurons can 

cause Parkinson’s disease (118), and is thought to be the cause of schizophrenia 

(119) and attention deficit hyperactivity disorder (120). Dopamine, once it has 

been secreted by the dopaminergic neurons, achieves its effect via binding to 

dopamine receptors.  
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secretion. I describe the rationale and the results of this research in the next 

chapters.  
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CHAPTER 

 

2. DOPAMINE SYNTHESIS IN THE ISLETS 

 

2.1 Historical background 

In this section, I provide a historical overview of the literature that 

pertains to the presence of dopamine in the pancreatic islets. Our interest in 

studying the role of dopamine in the islets was initially inspired by the work of 

Rubí et al. (3). They describe the inhibitory effect of exogenous dopamine on 

glucose stimulated insulin secretion (GSIS). But a careful review of the literature 

shows that while dopamine is known to inhibit insulin secretion, there is no 

consensus about where dopamine could originate to stimulate islets in a living 

mouse.  

The first mention of biogenic amines in pancreatic islets dates back to 

1963 by Falck and Hellman (124). In their report the authors present the result of 

a new method to detect catecholamines and tryptamines. They report that 

“No specific fluorescence was observed in the islets of rat 
and mouse. In the guinea-pig, cat, dog and horse, however, 
a moderate and sometimes rather strong fluorescence 
developed in some of the islet cells.” 

The publications that followed this first report offered contradicting 

results and conclusions, so after 50 years the controversy is still in place. In the 

first decade following Falck and Hellman’s brief communication, the scientific 

community seemed to agree that mouse islets were devoid of biogenic amines, 
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therefore most of the studies were performed in golden hamster, guinea pig and 

rabbit (125-130). In 1968, islet cells were classified as “amine precursor uptake 

and decarboxylation” (APUD) cells based on cytochemical and ultrastructural 

similarities with other polypeptide hormone producing cells (131). It was 

observed that injection of L-dopa and dopamine produced a hyperglycemic 

response in mice, but in the whole animal setting the contribution of epinephrine 

and norepinephrine release from adrenergic nerve fibers could not be excluded 

(126). Dopamine was first detected in freshly isolated mouse islet homogenates 

in 1977 by Hansen and Hedeskov (132). They used a system that combined thin 

layer chromatography to separate the amines, and double radio-isotope labeling 

to quantitate them against a standard curve. They simultaneously detected 

dopamine, epinephrine, norepinephrine and serotonin in the islet homogenates 

from albino mice, but they could not exclude that dopamine was coming from 

fragments of adrenergic nerve fibers in the islets.  While the work of Feldman’s 

group expanded the knowledge on monoamines uptake and action in the islets of 

the golden hamster (133-135), they emphasized that islets from different species 

show great differences in their responses to experimental treatments (136). 

Therefore the knowledge gained on one particular species does not always apply 

to another species. Moreover, understanding of dopamine action in the islet was 

complicated because both stimulation and inhibition of insulin secretion had been 

reported: potentiated GSIS was reported in rat islets perfused with L-dopa (137), 

whereas lowered GSIS was showed in mice injected with L-dopa (138, 139). The 

work from Lundquist’s group showed that radio-labeled dopamine could be 
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detected in mouse beta cell secretory granules, following the injection of radio-

labeled L-dopa (138). They report a partial inhibition of glucose stimulated insulin 

secretion following the injection, but in this and further studies, they suggested 

that dopamine synthesis could have taken place in other tissues (140). In 

following studies, they concluded that the L-dopa induced inhibition of GSIS was 

independent from dopamine accumulation but rather related to a direct effect of 

L-dopa (139). However, aromatic L-amino-acid decarboxylase (AADC) and 

monoamine oxidases (MAO) activities were characterized in mouse islets 

homogenates (139, 141, 142), but no direct measurement of dopamine 

accumulation was done in those studies. Vesicular monoamine transporter type 2 

(VMAT-2) has also been reported in rodent islets (143, 144). Despite the 

presence of dopaminergic machinery in the β-cells, it is not known where 

dopamine could originate to stimulate islets in a living mouse. Dopamine does 

not cross the blood-brain barrier, and although there are peripheral sources of 

dopamine in the body (123, 145-147), circulating dopamine levels in the plasma 

are too low to activate its receptors (147-149).  While there is a high degree of 

innervation in the islets, there are no reports of dopaminergic neurons innervating 

them (150). There is not a consensus conclusion in the literature about the 

physiological source of dopamine, and its function in the pancreatic islets. 

Therefore I tested the hypothesis that islet β-cells synthesize dopamine from 

circulating L-dopa. While parts of this hypothesis have been previously proposed 

by different authors over the years to explain different observations, this 

hypothesis has not been rigorously tested in all its aspects in intact mouse islets.  
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exclude as much as possible any external effect that could complicate the 

interpretation of the results. For this reason I chose to work with isolated intact 

islets instead of using the in vivo paradigm. This allowed me to study the 

interplay between dopamine synthesis and insulin secretion, without the 

contribution of other tissues and innervation.  

 

2.2 Materials and methods 

 

2.2.1 Islet isolation and culture  

C57Bl/6 (Harlan Sprague Dawley, Inc) mice were used for these 

experiments. All animals were fed standard laboratory chow, and cared for 

according to the guidelines of the Vanderbilt Institutional Animal Care and Use 

Committee. 2-6 month-old mice were anesthetized by intraperitoneal injection of 

0.05 ml of a ketamine (Bioniche Teoranta, Inverin, Co. Galway, Ireland) and 

xylazine (Lloyd laboratories, Shenandoah, IA, USA) mixture at a dose of 80 

mg/ml and 20 mg/ml respectively. The pancreas was quickly removed and the 

animal was euthanized. The islets of Langerhans were isolated in Hanks’ 

balanced salt solution (HBSS) following a modified version of the protocol from 

Lacy et al. (151). The isolated pancreas was rinsed in cold HBSS and minced 

using scissors. The tissue was collected in a 15 ml conical tube with 8 ml HBSS, 

and 6 mg of collagenase P (Roche) were added. The digestion proceeded for 10 

minutes in a water bath at 34 ºC, with continuous shaking. Setting the water 
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temperature at 34 ºC instead that 37 ºC resulted in a more gentle and 

reproducible digestion of the tissue.  Subsequently, the digested tissue was spun 

down for 15 seconds, until a soft pellet formed. The supernatant was discarded 

before resuspending the pellet in 8ml of cold HBSS. Two more rounds of 

centrifugation were necessary to remove any trace of collagenase. The final 

suspension was transferred in a 10 mm non-treated dish (Corning) and islets 

were handpicked under a dissecting microscope. This protocol for islet isolation 

yielded 150-300 islets per mouse. The islets were cultured overnight in islet 

medium (RPMI 1640 medium with glutamine (Invitrogen,Carlsbad, CA) 

supplemented with 10% heat inactivated fetal bovine serum, 100 units/ml 

penicillin, 100 µg/ml streptomycin, 11 mM glucose), at 37 ºC in humidified 

atmosphere with 5%CO2. Islets for the dopamine assay were cultured overnight 

in islet medium with 2 mM glucose so that insulin secretion was kept at its basal 

rate, and dopamine accumulation was maximized.  

 

2.2.2 Dopamine content assay 

After being treated according to the experiment being performed, islets 

from a single mouse were transferred in a 1.5 ml tube containing ice cold 

phosphate buffered saline (PBS) (Mediatech Inc) and rinsed once. The lysis was 

performed in 28 μl of minimal lysis buffer (5 % glycerol, 1 % TritonX-100, 100 mM 

NaCl, 1 mM EDTA, 4 mM Na2S2O5, 10 mM HCl) for 30 minutes on ice. The 

sample was snap frozen using a bath of ethanol and dry ice, and then thawed at 

room temperature. After 3 freeze/thaw cycles it was sonicated for 5 minutes. 
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Finally the sample was centrifuged at 13000 g for 10 minutes in a tabletop 

centrifuge, and the supernatant was collected for dopamine and protein 

determinations.  I diluted 5 μl of sample in 20 ul of lysis buffer to measure the 

protein concentration in duplicate. I used the Pierce 660nm protein assay reagent 

in a 96-well plate format and read the absorbance at 660 nm. I used a serial 

dilution of BSA stock to generate the standard curve. The remaining sample was 

diluted to a final volume of 500 μl in minimal lysis buffer. This dilution it proved to 

be a critical step to be able to extract dopamine from the islet matrix. When I 

processed some undiluted samples, the dopamine extraction was reduced 

dramatically. I measured dopamine concentration using the Dopamine Research 

ELISA (Rocky Mountains Diagnostics, Inc.). The protocol has 4 phases. The first 

phase is the extraction phase where dopamine is extracted from the sample by 

using a cis-diol-specific affinity gel. In the next phase the gel bound dopamine is 

acylated and then eluted. Then the acylated dopamine is enzymatically 

derivatized. The derivatized samples and standards are then loaded in the ELISA 

plate. The unknown concentration is determined by comparison with the 

absorbance of a standard curve. The concentration range for the dopamine in the 

standard curve was 36 – 3600 pg.  Each sample was split in half and processed 

in duplicate. I used a Spectramax M5 plate reader (Molecular Devices) to read 

the 96-well plates. The results of the dopamine concentration assay were 

normalized to the sample protein content, and expressed as (pg of 

dopamine)/(μg of protein). n represents the number of mice used to test each 

condition. Data are plotted as mean ± SEM. 
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2.2.3 Dopamine secretion assay 

Islets from multiple mice were pooled and allowed to recover from the 

isolation procedure overnight in islet medium, at 37 ºC in 5% CO2 humidified 

atmosphere. On the next day they were divided in groups of 215 islets in Krebs 

Ringer Bicarbonate HEPES Buffer (KRBH) at 37 °C in 5% humidified CO2. 

KRBH components were: 128.8 mM NaCl, 4.8 mM KCl, 1.2 mM KH2PO4, 1.2 

mM MgSO4, 2.5 mM CaCl2, 5 mM NaHCO3, 10 mM HEPES, 0.1 % bovine 

serum albumin, pH 7.4. Each group was treated with 2.8 mM glucose +10 µM L-

dopa for 40 min to increase the islet dopamine content. Each group was then 

transferred to 1.5 ml eppendorf tubes contatining KRBH + 2.8 mM glucose for 20 

min, to let the dopamine content equilibrate. Then each group was transferred to 

the 1.5 ml eppendorf tube containing KRBH + the condition to be tested for the 

secretion experiments. Each group was incubated for 45 minutes. After 

incubation, the supernatant was collected, dopamine preservatives were added 

(1 mM EDTA, 4 mM Na2S2O5, 10 mM HCl), and this supernatant was used to 

measure secreted dopamine. The standard curve for these measurements had a 

12 pg – 1200 pg range.  A small fraction of the same supernatant was used to 

measure secreted insulin. The islets were processed to measure total dopamine 

and insulin content. Data from each group were normalized to the respective islet 

dopamine content, and reported as the percentage of the islet dopamine content. 

n represents the number of experimental groups. 
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2.2.4 Insulin secretion assay 

After being cultured overnight following the isolation procedure, the 

islets were equilibrated for 1 hour in Krebs Ringer Bicarbonate HEPES Buffer 

(KRBH) at 37 °C in humidified 5% CO2 atmosphere. KRBH components were: 

128.8 mM NaCl, 4.8 mM KCl, 1.2 mM KH2PO4, 1.2 mM MgSO4, 2.5 mM CaCl2, 5 

mM NaHCO3, 10 mM HEPES, 0.1 % bovine serum albumin, pH 7.4. During the 

equilibration period glucose concentration was 2.8 mM. Islets were then 

transferred in 1.5 ml tubes (4 islets per tube) containing KRBH + the condition to 

be tested. The tubes were incubated at 37 °C in a water-bath for 45 minutes. A 

fraction of the supernatant was collected to determine secreted insulin, while 

TritonX-100 was added to the remaining volume at a final concentration of 1 % to 

extract total islet insulin. The tubes were frozen overnight at -20 °C. Initially 

insulin concentration was measured by RIA in the Vanderbilt Hormone Assay 

Core. But later I measured the insulin concentration using the Insulin (Mouse) 

Ultrasensitive ELISA (ALPCO).  Each condition was tested in triplicate. Insulin 

secretion results were always expressed as the percentage of secreted insulin 

relative to the total insulin content of the islets. n represents the number of mice 

used to test each condition. 

 

2.2.5 Statistical analysis 

Data analyses were performed using GraphPad Prism version 4.03 for 

Windows, GraphPad Software, San Diego California USA, www.graphpad.com. 
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Data are presented as mean ±SEM. Significance was evaluated by Student’s t 

test, and defined as P < 0.05. 

 

2.3 Examining dopamine accumulation in the islets 

 

2.3.1 Ths synthesis of dopamine from available L-dopa 

As described in section 2.1, the experiments presented in this section 

were designed to test the first part of our hypothesis focusing on whether 

dopamine is 1) naturally present in the islet cells, 2) produced by islet cells, and 

3) co-secreted with insulin. This part of the hypothesis is independent from the 

other questions that pertain to how dopamine produces the inhibition of GSIS. 

Nonetheless it is a keystone component to demonstrate that a dopaminergic 

negative feedback regulates GSIS. 

First, I measured the amount of dopamine, if any, present in the 

pancreatic islets of C57Bl6 mice. Due to the small size of our specimen (one islet 

can have from 100 to 10000 cells), I decided to use all the islets that could be 

isolated from a mouse for each dopamine measurement. I used the protocol 

described in 2.2.2 to extract and determine dopamine and protein content of the 

islet homogenates. I also wanted to be able to determine if the dopamine that I 

would detect was indeed coming from the islet cells, or was instead coming from 

residual acinar tissue (that has been shown to be enriched in dopamine itself 

(123)), or from the remnant fragment of adrenergic fibers in the islets. Therefore I 
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0.161 ± 0.020 pg/µg of protein (n = 13). This value corresponds to approximately 

0.5 pg of dopamine/islet. This result confirmed that islets cells contain dopamine. 

With regard to the amount dopamine I measured in the freshly isolated 

islets, I found it to be much lower that what has been previously reported by 

Hansen and Hedeskov (132) or by Lundquist et al. (140). After converting our 

data to the same units, 0.161 ± 0.020 pg/µg of protein corresponds to 0.158 ± 

0.020 µmol/Kg of islet wet weight (using the same conversion factors as (140), 

which assume the protein content to be 15% of the wet weight of a tissue), this 

value is 10 times lower of the 1.7 µmol/Kg of islet wet weight that has been 

reported in (140) and 100 time lower that the 16.8 ± 7.2 µmol/Kg of islet wet 

weight reported in (132). Even if Hansen and Hedeskov admittedly state that 

their value is much higher than expected, I still cannot identify a specific reason 

for the discrepancy between our estimate and the data from Lundquist et al.. 

However, I can present few possible explanations. First, the purity of the islet 

specimen is crucial, and if the islets contain acinar tissue, this would result in 

elevated dopamine content. Second, there can be variability within mouse 

strains: I used C57Bl6 male mice, Lundquist et al. used NMRI female mice, and 

Hansen and Hedeskov used albino male mice (Theiller’s original strain, Tuck & 

Son, Rayleigh, Essex, UK). Third the animal feeding state, or the particular diet 

used, both can affect the dopamine content of the islets, since L-dopa levels in 

the plasma fluctuate with meals (153). Fourth the method used to extract and 

measure dopamine content, and the different normalization choice. I used an 

affinity gel and an ELISA and normalized our result to the protein content. 



 37

Lundquist et al. used alumina extraction and HPLC, and normalized their results 

to the protein content. Hansen and Hedeskov used thin layer chromatography 

and double isotope radioactive labeling technique, and normalized their result to 

the DNA content. As a final consideration, our estimate of the dopamine content 

of the islets is lower than the value reported for the striatum, but this is expected 

since that is the dopamine richest region of the brain (212.1 ± 19.8 pg/µg of 

protein (154)). Nonetheless, even if this amount may appear low, I will show in 

the next chapter that it is sufficient to exert a tonic inhibition on GSIS.  

Next I wanted to know if islet cells can efficiently produce dopamine 

from its precursors. It has been reported previously that mouse islet cells express 

TH and AADC (142), therefore they could synthesize dopamine either starting 

from tyrosine or from L-dopa. I chose to use L-dopa as the precursor for our 

experiments for two practical reasons: more cells express AADC while only a few 

show TH expression (142), and TH activity is the rate limiting step in the 

dopamine synthesis process. So L-dopa can be processed by more islet cells, 

and would produce a more rapid response. I added 10 µM of L-dopa to the islet 

culture medium and I measured the amount of dopamine in the islet immediately 

after the isolation procedure, or after 30 minutes, 1 hour, 2 hours, 4 hours and 24 

hours of culture. The results are shown in Figure 8. The incubation of isolated 

islets in medium supplemented with L-dopa produced a rapid and saturable 

increase in their dopamine content to an average value of 4.76 ± 0.48 pg/µg of 

protein (n = 28). 
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Based on the work of Rubí et al. (155) dopamine acts on D2-like 

receptors. Therefore quinpirole (a D2/D3/D4 agonist) should replicate the effects 

of dopamine on GSIS. I observed that the addition of 10 µM quinpirole the non-

stimulatory condition did not change insulin secretion compared to the untreated 

islets Figure 11A. This confirms that dopamine effects can only be observed 

when secretion is stimulated. 

At this point I wanted to rule out the possibility that L-dopa had a direct 

effect on GSIS, independent of dopamine accumulation. Therefore I performed 

insulin secretion experiments to measure GSIS in the presence of elevated islet 

dopamine content but in the absence of L-dopa. In this case, the islets were 

treated with three different concentrations of L-dopa for 60 minutes to increase 

their dopamine content. After this treatment they were used for the insulin 

secretion assay, using only the glucose stimulus (Figure 11B). The results show 

that pre-treatment with 100 nM and 10 µM L-dopa significantly inhibited GSIS, 

and addition of the D2/D3/D4 agonist quinpirole produced a comparable 

inhibition of GSIS. Also I observed that treatment with 10 nM L-dopa, which is 

comparable to 5 nM plasma concentration of L-dopa in the mouse (149, 156), 

produced a trend toward GSIS inhibition but did not reach statistical significance 

for the number of observations used (n=7). This result is at least in part due to 

the limitations of in vitro settings versus physiological situation. In the mouse, the 

islet is constantly exposed to L-dopa, while the in vitro experiments depend on an 

acute treatment. It is also known that L-dopa is quickly oxidized in aqueous 

solution, and for this reason ascorbic acid is often added as a preservative. In our 
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experiments, though, I could not add ascorbic acid because it affects GSIS 

directly (157).  Thus, the effective concentration of L-dopa in the final solution 

may be diminished by oxidation, and this effect would particularly affect the 

results at lower L-dopa concentrations. 

The data presented so far are in agreement with the working 

hypothesis that calls for dopamine secretion in order to produce inhibition of 

GSIS, and the results in Figure 11B clearly support it. But considering that 

dopamine, even if secreted, would be inactive at low glucose, as the quinpirole 

experiment showed, I cannot draw any conclusion about when dopamine is being 

secreted by the islet cells. According to the findings by Ericson et al. (138) 

dopamine accumulates in the insulin secretory granules of the β-cells. Based on 

that I hypothesized that dopamine is co-secreted with insulin. I wanted to have a 

direct measurement of dopamine secretion to clarify this part of the model. So I 

designed an experiment to measure both insulin secretion and dopamine 

secretion from the same islets.  

The main challenge in this experiment was the small amount of 

dopamine that I anticipated to be secreted. To overcome this problem, I 

increased the number of islets to be used in each test. Also I treated the islets 

with 10 µM L-dopa for 40 minutes before the secretion experiment to maximally 

increase their dopamine content. While the increase in dopamine content would 

improve the detectability of dopamine secretion, it would also inhibit GSIS, as 

seen in Figure 11B. For this reason, glucose stimulation alone would not be a 

sufficient stimulus to test the co-secretion of dopamine and insulin. Therefore I 
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they secreted 11.7 ±1.9 % of their dopamine content (n = 6). The insulin 

secretion from the same experimental groups of islets showed an inhibition of 

GSIS, with no statistically significant difference between insulin secretion at 2.8 

mM glucose versus 16.7 mM glucose (0.57 ± 0.07 % of islet insulin content, n =5, 

and 0.57 ± 0.12 % of islet insulin content, n =5), consistent with Figure 11B. 

Insulin secretion was maximally stimulated by 16.7 mM glucose + 50 µM 

forskolin (4.8 ± 1.2 % of islet insulin content, n =4). I chose forskolin to overcome 

the dopamine-induced inhibition of GSIS because it can stimulate insulin 

secretion even in the absence of extracellular calcium influx, by elevating cAMP 

(158).  As I show in the next chapter, this would relieve the dopamine-induced 

inhibition of GSIS because the inhibition itself correlates with a possible reduction 

of calcium influx.  

The design of this experiment proved to be very critical to obtain data 

that could be easily interpreted. It took few rounds of puzzling results before I 

could figure out the correct approach. In my first attempt, I tried to reduce the 

number of islets necessary for the experiment, by applying a series of stimuli to 

the same group of islets and collect the supernatant after each stimulus. The 

result was that the amount of secreted dopamine would always be very high for 

the first stimulus. I measured dopamine secretion over an interval of two hours 

under the same condition (2.8 mM glucose), and observed that soon after the 

L-dopa treatment, dopamine is constitutively secreted by the islet, until its content 

returns to its basal level. This behavior can be explained by assuming that the 

excess of newly produced dopamine saturates the insulin granule but also the 



 46

synaptic-like micro vesicles. These vesicles could be responsible for the 

secretion of dopamine in the absence of a glucose stimulus. Therefore I decided 

that the best strategy was to work in parallel with large groups of islets. In this 

way each group received the assigned stimulus at the same time after the 

dopamine loading step. Following this protocol a change in dopamine secretion 

would not be masked by the time dependent decrease in dopamine content. 

 

2.4 Summary 

In this chapter, I introduced the relevant literature that in the past 50 

years has contributed to build our understanding of the role of dopamine in 

regulating insulin secretion from the pancreatic islet. Previous studies have 

shown that dopamine can inhibit GSIS in isolated islets (3), but there is no 

consensus on the availability or origin of any dopamine that can act on islets in 

vivo. Even when dopamine accumulation was qualitatively found in mouse β-cells 

following an L-dopa injection to the animal (138), the site of synthesis was not 

addressed. This has led to a conundrum since the islets are sensitive to 

dopamine, but the dopamine concentration in the plasma is too low (0.67 ± 0.21 

nM in C57Bl6 mice) to trigger its receptor (148, 149), and dopaminergic 

innervation of the pancreas has not been reported.  Thus, islet sensitivity to 

exogenous dopamine has not generally been considered physiologically relevant. 

I tested the hypothesis that the islet itself produces dopamine from 

circulating L-dopa (149, 156), which has not yet been rigorously examined in a 

single species.  In this chapter I addressed the question of dopamine synthesis 
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and secretion in mouse islet cells. By focusing our study on isolated mouse 

islets, I could measure dopamine accumulation due solely from synthetic activity 

of the islets (Figure 7 and Figure 8), excluding the contribution of other tissues 

(138). Our data show that freshly isolated islets contain dopamine at a level of ~ 

0.5 pg/islet. This value should reflect as close as possible the in vivo condition of 

an islet in its native environment. When L-dopa was increased in vitro, I 

measured a rapid 30-fold increase in the islet dopamine content. Similarly, when 

circulating L-dopa levels were raised by exogenous administration in vivo, I saw 

a 50-fold increase in dopamine concentration, which corresponds to a robust 

inhibition of GSIS. I observed a dose-dependent inhibition of GSIS by combining 

L-dopa and glucose, but based on the results in Figure 11B I conclude that this 

effect was due to increased dopamine content, and not a direct pharmacological 

effect of L-dopa on GSIS. Neither L-dopa nor the dopamine receptor agonist 

quinpirole altered basal insulin secretion at low glucose concentration. This 

supports the hypothesis that dopamine only produces its effect when insulin is 

being secreted. Also it suggest that intracellular dopamine does not affect GSIS. 

Only when dopamine is secreted by the islet it shows its inhibitory effect. From 

these experiments I conclude that dopamine is physiologically present in the 

pancreatic islet of the mouse. It is produced by the islets and this production can 

be significantly boosted by increasing the availability of the precursor L-dopa. 

Next I studied when dopamine is secreted by the β-cells in the islet. 

Based on findings by Ericson et al. using radiolabeled L-dopa (138), I 

hypothesized that dopamine is co-secreted with insulin, and I tested this concept 
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by simultaneously measuring dopamine and insulin secretion under different 

conditions. These results in Figure 12 show that dopamine secretion follows 

insulin secretion, which is a circumstantial evidence of the co-localization of the 

two substances in the same granules. 

By the same time that our work was published, a study by Simpson et 

al. (159) was published, where they authors similarly study a dopamine-mediated 

autocrine inhibition in human islets. They used Nafion-coated carbon fiber 

microelectrodes to measure dopamine secretion by chrono-amperometry and 

voltammetry. They come to the same conclusion: dopamine is secreted from the 

islet in response to glucose. Moreover, they performed perfusion experiments 

under glucose stimulation and reported dopamine secretion peaks largely 

coincident with insulin secretion peaks. These independent experiments 

corroborate our conclusion that dopamine and insulin co-localize in the secretory 

granule of the β-cells.  

Having established that β-cells synthesize and secrete dopamine 

during GSIS, I proceeded to investigate how dopamine inhibits GSIS. The results 

of those experiments are described in the next chapter that pertains to the 

identification of the specific receptor that dopamine is signaling through, and the 

intracellular changes that are associated with the dopamine-induced inhibition of 

GSIS. 
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CHAPTER 

 

3. DOPAMINE SIGNALING IN THE ISLETS 

 

3.1 Introduction 

The material presented in this chapter summarizes our work done to 

identify the specific dopamine receptor involved in the dopamine-induced 

inhibition of GSIS. We know that dopamine signals through a family of five 

G-protein coupled receptors named: D1, D2, D3, D4 and D5 (160). Additionally 

Rubí et al. first showed expression of dopamine receptor D2 (DRD2) in the rat 

β-cell tumor cell line INS1-E, and described the inhibition of cytoplasmic Ca2+ 

activity and insulin secretion by dopamine (3). Two following studies reported 

opposite roles for DRD2 in regulating insulin secretion showing both inhibition 

and stimulation (161, 162). Hence there is still a controversy about the role of 

DRD2 in mouse islets. I studied dopamine signaling in intact isolated islets of 

C57Bl6 mice. Also I studied the intracellular changes that follow the activation of 

the dopamine signaling cascade in the β-cells, focusing our attention to the 

changes in the [Ca2+]i. I identified DRD3 as the mediator of dopamine signaling it 

the β-cells. The results of these experiments, combined with the ones presented 

in the previous chapter complete the picture of a dopaminergic negative 

feedback that regulates GSIS in the mouse. They collectively show that β-cells 

produce dopamine from L-dopa, secrete dopamine with insulin, detect the 
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secreted dopamine signal through their dopamine receptors, and react by 

decreasing their [Ca2+]i thereby inhibiting GSIS.  

 

3.2 Materials and methods 

 

3.2.1 NAD(P)H imaging 

Combined autofluorescence from nicotinamide adenine dinucleotide 

(NADH) and nicotinamide adenine dinucleotide phosphate (NADPH) is 

collectively indicated as NAD(P)H autofluorescence. Both dinucleotides are 

involved in the redox state of the β-cells as they transfer electrons to other 

molecules by transitioning from the reduced state (NADH and NADPH) to the 

oxidized state (NAD+ and NADP+) and vice versa. As they are both fluorescent 

only in their reduced form, they can be used to monitor the metabolism of the the 

β-cells during glucose stimulation (163), as shown in Figure 13. NAD(P)H 

autofluorescence can be excited using UV light with a wavelength of 360 nm, and 

the emission is in the 400 nm – 500 nm region. But, the use of the ultraviolet light 

is highly toxic to living cells. Instead, I used two-photon excitation to excite the 

NAD(P)H autofluorescence. With this technique a pulsed laser is used to 

increase the temporal density of the photons, and a high numerical aperture 

objective is used to concentrate the photons in a small focal spot. The result is a 

photon density high enough to produce the simultaneous absorption of two 
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bottomed dish (Mat-Tek Corp.) containing freshly prepared imaging media (125 

mM NaCl, 5.7 mM KCl, 2.5 mM CaCl2, 1.2 mM MgCl2, 10 mM HEPES, 0.1 % 

bovine serum albumin, pH 7.4) with 2 mM glucose and equilibrated 30 minutes 

prior to the experiment. NAD(P)H images were acquired at 2 mM, 8 mM and 16.7 

mM glucose and a at 16.7 mM glucose + 3 mM sodium cyanide to have a 

maximum value for normalization of the results. This is based on the property of 

cyanide that blocks the mitochondrial electron transport chain, forcing the 

conversion of all NAD(P)+ to NAD(P)H (164).  After this initial group, different 

groups of islets from the same mouse were then used to image NAD(P)H 

autofluorescence in the experimental conditions to be tested. n represents the 

number of mice that all the conditions were tested on. 

 

3.2.2 Calcium Imaging 

Islets were labeled by incubation with 4µM Fluo-4 AM (Invitrogen) in 

imaging medium containing 2 mM glucose at room temperature for 45 minutes. 

The islets were then loaded in a simple microfluidic device on the microscope 

stage (165) and maintained at 37 ºC under humidified 5 % CO2. The islets were 

constantly perfused with fresh imaging buffer containing the drug to be tested. I 

used a Plan-Apochromat 20x/0.8 objective (Zeiss Inc.) and 488 nm excitation 

laser at 0.3 % of total power. The emission was collected from 492 nm to 622 

nm. Pixel size was 0.830 μm. Images were acquired at a rate of 1 frame per 

second. n represents the number of islets. 
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3.2.3 MIN6 culture 

Mouse MIN6 cells (166) were maintained in sodium bicarbonate 

buffered Dulbecco’s modified Eagle’s medium (DMEM) with the addition of 10% 

heat inactivated fetal bovine serum, 50 µM β-mercaptoethanol, 100 units/ml 

penicillin, and 100 µg/ml streptomycin. Cells were cultured at 37 ºC in 5% CO2 

humidified atmosphere. 

 

3.2.4 DRD2-mVenus live imaging 

Islets and MIN6 cells were transduced using adeno-associated virus 

(AAV) particles for the expression of the fusion protein in which the long isoform 

of the human DRD2 (DRD2L) is fused to the yellow fluorescent protein mVenus. 

AAV for the expression of mVenus alone was used as a control. The AAV 

particles were a generous gift from Dr. Jonathan Javitch (Columbia University). 

Briefly, the islets or cells were exposed to AAV for 18 hours and then  cultured for 

48 hours in regular medium to obtain maximal expression prior to imaging. The 

islets were imaged on the LSM710 confocal microscope (Zeiss Inc.) using a 

Fluar 40X oil objective, with NA=1.30. I used a 514 laser line to excite the 

mVenus fluorescence, and I collected the emission setting the bandpass from 

518 nm to 613 nm. The pixel dwell time was 25.2 µs. To image whole islets, I 

acquired z-stack of images with a pixel size of 0.415 µm and 2 µm between each 

image in the stack. To image single cells in the islet, I changed the pixel size to 

0.086 µm. For imaging experiments with MIN6 cells, I used a Nikon Eclipse Ti 

microscope equipped with a TIRF objective (ApoTirf 60X Oil DIC N2 NA = 1.49). 
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The widefield fluorescence images were acquired using a Xenon lamp excitation 

and a GFP ex/em filter set. For the TIRF images the excitation was provided by a 

488 nm diode laser while the same emission filter was used (505 bp). The 

acquisition time was 1 frame/s and the pixel size was 0.086 µm. All the live 

fluorescence experiments were performed at 37 ºC under humidified 5 % CO2. 

 

3.2.5 Image analysis 

Image analysis was performed using ImageJ (167). For each image, 

background was subtracted and regions of interest (ROIs) were drawn 

corresponding to the islets. The average intensity in these ROIs was calculated 

for each frame. The intensity plots from calcium imaging experiments were 

subsequently processed for frequency analysis using SpectralAnalysis v3.0, a 

freely available routine written for MATLAB(168). For the NAD(P)H images, the 

average intensity was then averaged between the islets from the same mouse 

and expressed as a percentage of the intensity obtained with cyanide. 

 

3.2.6 SDS-PAGE and western blot 

Islets were transferred to a tube and rinsed once in ice cold PBS. The 

tube was kept on ice and the lysis buffer was added. The lysis buffer had the 

following components: 150 mM NaCl, 1 % TritonX-100, 0.5 % sodium 

deoxycholate, 0.1 % SDS, 50 mM Tris pH 8.0, 5 mM EDTA, 1 mM EGTA, 5 mM 

NaF, 1 mM Na3VO4, 1 mM PMSF, and a cocktail of mammalian protease 

inhibitors (P8340 from Sigma). Lysis proceeded on ice for 45 minutes, followed 
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by sonication for 5 minutes. The sample was centrifuged at 14000 g for 30 

minutes at 4 °C. The supernatant was collected, assayed for protein 

concentration and mixed with Laemli loading buffer. Mouse brain extract (B6928, 

Sigma) was used as positive control. The islet lysates and positive control were 

subjected to SDS/PAGE (10 %) and then transferred onto nitrocellulose 

membrane. The membranes were blocked for 1 hour at room temperature with 

Tris-buffered saline containing 0.1 % Tween-20 (TBS-T), 5 % BSA, and 5 mM 

sodium azide. For DRD2 immunoblotting, the membranes were incubated with 

the rabbit anti-D2 polyclonal antibody (AB5084P, Millipore) (1:1000) at 4 °C 

overnight. Secondary incubation was done with goat anti-rabbit IgG horseradish 

peroxydase conjugate antibody (W4011, Promega) diluted 1:5000. The specific 

control peptide (AG221, Millipore) was used to neutralize the rabbit anti-D2 

antibody in the control experiment. The same protocol was used for 

immunoblotting of DAT, but with a 1:1000 dilution of mouse anti-DAT monoclonal 

antibody (mAb16, generous gift from Dr. Roxanne A. Vaughan at University of 

North Dakota). The secondary antibody was a goat anti-mouse IgG horseradish 

peroxydase conjugated, diluted 1:5000. In all of the experiments, signal was 

detected by chemiluminescence (ECL Plus system from GE Healthcare, and 

Kodak BioMax light film).  

For the DRD3 immunoblotting, the islets were homogenized in Dounce 

homogenizer in lysis buffer without detergents. The homogenate was centrifuged 

at 7000 g for 5 min. The resulting pellet was dissolved in lysis buffer and defined 

as the nuclear fraction. The supernatant was centrifuged at 500000 g for 10 
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minutes. The resulting pellet was dissolved in lysis buffer and defined as the 

membrane fraction. The second supernatant was used as the cytosolic fraction. 

The primary antibody used for this experiment was a rabbit polyclonal antibody 

(ab42114, from Abcam inc.) at a 1:750 dilution. The secondary antibody was the 

same used for the DRD2 immunoblotting. The control peptide used in the 

neutralization experiment was a 19 amino acids D3 peptide (ab128688, from 

Abcam Inc.) 

 

3.2.7 Design PCR strategy for genotyping DRD2-KO mice 

During the course of our study I received breeding pairs of mice 

carrying a null-mutation in of the Drd2 gene from Dr. Claudia Schmauss 

(Department of Psychiatry/Neuroscience, Columbia University, New York). They 

were generated by gene targeting strategy as described in (169). In detail, a 2 kb 

restriction fragment of the Drd2 gene was replaced with the poly(A+)less PGK-

neor-cassette. This insertion replaces the majority of exon 2 and results in the 

null mutation by the introduction of a stop codon in the 5’ end of the cassette.  

When I received the mice, DNA extraction and following southern 

blotting was the only protocol available for genotyping these mice. The DNA 

region containing the Drd2 gene is GC-rich, therefore some polymerases can fail 

to amplify it. I tested different approaches using commercially available 

polymerases that are specifically designed to amplify GC-rich regions, as well as 

multiple primer pairs. I established a reliable PCR protocol that does not required 
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special polymerases, and that correctly identifies the wild type and the mutant 

allele in the genomic DNA. 

The primer pair for the wild type allele amplifies a 515 bp product in the 

DNA region that is deleted in the mutant allele. The sense primer is: D2wt1 

5’-AACTCAGAGAGCTGACCCTCCT-3’. The antisense primer is: D2wt2 

5’-AGAACAAGCTGAGCATTGAGC-3’. Conversely the primer pair for the mutant 

allele amplifies a 673 bp product that includes part of the Neor cassette and part 

of the Drd2 gene. The sense primer is: D2KOc1 

5’-ATGAACTGCAGGACGAGGCA-3’. The antisense primer is: D2KOc2 

5’-AAATGGGTGGAGCCAAGAAAG-3’. I used Extract-N-Amp™ Tissue PCR Kit 

(Sigma) for the DNA extraction following the vendor’s instruction. I added to each 

reaction mix 4 µl of tissue extract and 0.5 µl of each of the 4 primers (from 10 µM 

solution). The thermocycler sequence was: 95 °C for 2 minutes, 95 °C for 20 

seconds, 60 °C for 10 seconds, 72 °C for 5 seconds, 72 °C for 3 minutes, and the 

steps from the second to the fourth are repeated 35 times. A wild type mouse 

(D2+/+) produces a single 515 bp product, a homozygous mutant mouse (D2-/-) 

produces a single 673 bp product, and a heterozygous mouse (D2+/-) produces 

both products. 
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3.3 The intracellular effect of dopamine signaling in the β-cell 

 

3.3.1 The effects of dopamine on the redox state of the β-cells 

GSIS requires the metabolism of glucose via the mitochondrial 

respiration to produce the ATP. This is the first step in the chain of events that 

lead to insulin secretion, as it is described in section 1.1.3. Dopamine instead can 

produce reactive oxygen species (as hydrogen peroxide), semiquinones and 

quinones through the activity of MAO-B or via auto-oxidation (170, 171). These 

highly reactive species are cytotoxic in elevated concentrations and are thought 

to be the cause of dopamine and L-dopa neurotoxicity in culture (172, 173). 

Notably, it has been shown that dopamine can inhibit mitochondrial respiration 

(174). For these reason, I first tested the possibility that dopamine-induced 

inhibition of GSIS was just the direct result of impaired mitochondrial function in 

β-cell.  

I used two photon excitation microscopy to excite autofluorescence 

from NAD(P)H, which increases with the metabolism of glucose during the 

production of ATP. Therefore, it can be used to monitor the redox state of the 

β-cell in the islets (163). The rationale for this experiment was that if dopamine is 

inhibiting the mitochondrial respiration, then it should prevent the glucose 

dependent increase in NAD(P)H autofluorescence. The results are shown in 

Figure 14. 
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3.3.2 The effects of dopamine on the intracellular calcium dynamics 

The next best candidate for our study was intracellular calcium. As 

discussed in section 1.1.3 the rise in [Ca2+]i causes the exocytosis of insulin 

granules. Also, calcium channels CaV1.2 and CaV1.3 are possible downstream 

targets of dopamine receptors (175, 176). Moreover when Rubí et al. (3) looked 

at the effect of dopamine in rat INS1-1E cells, they observed that the 15 mM 

glucose-induced increase in [Ca2+]i was reduced in presence of 10 µM dopamine. 

Therefore it is possible that endogenous dopamine causes the inhibition of GSIS 

by reducing the influx of Ca2+ in intact islets. 

I imaged [Ca2+]i in intact islets using the fluorescent indicator Fluo4-AM 

that, once in the cytoplasm, emits a fluorescence signal with an intensity that is 

proportional to [Ca2+]i and to the concentration of the indicator itself. I used a 

confocal microscope for this experiment, because it is well suited to image thick 

specimens as the islets. Instead of measuring the Fluo4 fluorescence just before 

and after each treatment, I took advantage of the characteristic coordinated 

response of the β-cells in the islet. I stimulated the islets by increasing the 

glucose concentration in the imaging media from 2 mM to 8 mM. This treatment 

triggers the fast [Ca2+]i oscillations that are exquisitely dependent on the electrical 

properties of the β-cells membrane. I imaged the [Ca2+]i oscillations in the islet 

over time, before and after each treatment. I quantified the frequency of the 

oscillations instead of their amplitude, so that our data are independent from the 

concentration of Fluo4, and unaffected by focal drift and photobleaching that can 

occur during extended imaging time. Having established a robust method to 
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3.4 The identification of the dopamine receptor expressed in β-cells 

 

3.4.1 The immunodetection of DRD2 and DAT 

I have tested so far the parts of the hypothesis pertaining to the 

synthesis and secretion of dopamine. I also showed that this endogenous 

secretion affects the frequency of [Ca2+]i oscillation, and ultimately inhibits GSIS. 

The question remains of which of the 5 dopamine receptors are expressed in 

β-cells, and more importantly which one(s) is mediating the effects of dopamine. 

Also, to complete the picture of the dopaminergic system that is regulating GSIS, 

I looked for the expression of the dopamine transporter (DAT). DAT would 

reuptake dopamine from the intracellular space, terminating the dopamine 

signaling and contributing to keep this signaling localized in the islet.  

The work of Rubí et al. (3) is the only study showing that dopamine 

receptors are expressed in mouse β-cells. In detail, they show the expression of 

the dopamine receptor D2 (DRD2) in rat INS1-E cells, by SDS-PAGE and 

western blot; also they show immunostaining for DRD2 in dispersed mouse 

β-cells. From these experiments, they concluded that DRD2 is associated with 

insulin granules and not present on the plasma membrane. 

Our first experiment was to test the expression of DRD2 in mouse 

islets. The results of the western blot are shown in Figure 19.  
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The islet cells transduced with EGFP showed diffuse fluorescence with 

no membrane labeling (Figure 22). Since I am overexpressing this receptor, I 

expect to observe a percentage of abnormal trafficking that may not reflect the 

natural localization of the protein. But the fact the majority of the signal is 

associated with the cell membrane lead us to conclude that the receptor is 

normally trafficked to the plasma membrane. The perinuclear distribution that can 

still be observed can be interpreted as immature peptide that has yet to be 

translocated to the plasma membrane. More experiments can definitively answer 

the question about DRD2 localization in β-cells, but these results strongly 

suggest that the intracellular localization presented by Rubí et al. (3) is not the 

conclusive answer. 

 

3.4.3 Functional consequences of  Drd2 gene deletion in islets 

During the course of our study I received transgenic mice carrying a 

global null-mutation of the Drd2 gene. The details of the gene targeting strategy 

are described in (169). The mice lack the majority of exon 2 of the Drd2 gene and 

they have a stop codon that prevents the translation of the rest of the truncated 

gene. The homozygous mutant mouse (D2-/-) was a good model to further test 

our hypothesis: I could isolate islets that lacked the DRD2. These islets should 

have enhanced GSIS, according to our hypothesis of a dopaminergic negative 

feedback. Also they should be insensitive to dopamine and L-dopa treatment. 

The results of the insulin secretion experiments are shown in Figure 23. 
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As expected, the antagonist produced a significant increase in the 

frequency compared to the untreated islets. Also, when dopamine was added to 

the islets in the presence of the antagonist, there was no observed effect.  

The results of these two experiments not only demonstrate that DRD3 

is the receptor mediating the dopamine signaling in the β-cell, but they also show 

that the dopaminergic negative feedback is active in untreated islets. In fact, the 

blockade of DRD3 significantly increased GSIS and the frequency of the [Ca2+]i 

oscillations in such islets.  

In their study, Simpson et al. (159) present the results of similar 

experiments, performed on human islets. Based on the effects haloperidol on 

GSIS, they conclude that DRD2 mediates the dopaminergic inhibition. I think that 

their conclusion is questionable. A simple, but naïve, explanation is that contrary 

to mouse islets, human islets express only DRD2 and that isoform is mediating 

the dopaminergic inhibition. However, there is no evidence to exclude that DRD3 

is also expressed in human islets, since they looked only for DRD2 expression. 

Moreover they used haloperidol to antagonize DRD2, and they measured an 

increase in GSIS. But haloperidol is not a selective DRD2 antagonist, in fact it 

has similar Ki for DRD2, DRD3 and DRD4 (~ 2.1, ~ 7, and ~ 2.3 nM respectively 

(177)). Therefore their results could be explained equally well by hypothesizing 

that DRD3 is the receptor mediating the dopamine effect in human islets.  
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In support of our hypothesis, the selective inhibitor produced a 

significant inhibition of GSIS. When it was added in the presence of dopamine, 

the GSIS showed an accentuated inhibition, but it did not reach the statistical 

significance for the number of observation used (n=8).  

Once again our conclusion on the role of DAT and the effect of its 

inhibition are conflicting with the conclusion of Simpson et al. (159). I used the 

same inhibitor (GBR 12909) at a higher concentration than they did (1 μM versus 

500 nM). I used 4 islets/ml for our static incubations, and they used 50-250 

islets/ml in their static incubations. I observed an inhibition of GSIS, while they 

report an enhanced GSIS in response to the DAT inhibitor. They reasoned that 

while it is commonly accepted that DAT inhibitors increase extracellular 

dopamine, this effect is lost in the islets because of their high degree of perfusion 

by the vasculature. According to their discussion, this should enhance the 

diffusion of dopamine away from the cultured islet tissue. Given the much higher 

islet concentration in their experiments, this effect should have been even more 

apparent in our experiments. Instead, I observe the opposite outcome, the 

inhibition of GSIS. If the diffusion of dopamine is to explain their data, I find it 

difficult to attribute it to perfusion, as in both labs, these were static incubations. 

One possible explanation, other than a species dependent difference, is the 

quality of the human islets they received. Having worked with human islets, we 

know how unpredictable their quality is. An over-digested batch would have 

loosely connected cells, which could better explain their result. But I can only 

speculate on this aspect. Further experiments are necessary to characterize the 
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function of DAT in the islets, and the resulting data should elucidate the truth 

underlying these currently contradictory results. 

 

3.5 Summary 

In this chapter, I further tested the hypothesis of a dopaminergic 

negative feedback loop that regulates the GSIS from the islet. I tested various 

steps that follow the secretion of dopamine from the β-cells and that have a role 

in GSIS. I confirmed that neither dopamine nor L-dopa are interfering with the 

metabolism of glucose. I did so by monitoring the glucose-induced increase in 

the autofluorescence from NAD(P)H. Then, I measured the changes in [Ca2+]i 

dynamics that both dopamine and L-dopa produce during GSIS. Instead of 

measuring the absolute [Ca2+]i, I monitored its oscillations over time. This 

provided us with a robust measure that is independent from other experimental 

variables like: photobleaching, focal drift, the concentration of the calcium 

indicator, fluctuations in the illumination power. For both drugs I measured a 

dose dependent decrease in the frequency of the [Ca2+]i oscillations, that 

correlates very well with the observed decrease in GSIS. I excluded that L-dopa 

directly affected the [Ca2+]i oscillations, instead it worked as an external source to 

build up dopamine. The excess of dopamine, in turn, acted on the dopamine 

receptor to produce the changes in [Ca2+]i. Thus I came to test the most 

controversial question: which of the 5 dopamine receptor is expressed and 

functional in the pancreatic islet? In two other works (3, 159), the authors both 

concluded that DRD2 is the isoform present in mouse and human islets. Our data 
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instead clearly show that while DRD2 is present in the islets, DRD3 is the isoform 

that is mediating the dopaminergic signaling. I demonstrated this by using islets 

from knock-out mice lacking DRD2 and showing that they still responded to 

dopamine. I used isoform-specific dopamine receptor antagonists for DRD2 and 

DRD3 on wild type islets, and I showed that only the antagonism of DRD3 

abolished the effects of dopamine, enhanced GSIS in untreated islets, and 

increased the frequency of [Ca2+]i oscillations. Finally, I verified that DAT is also 

expressed in the islets, and I indirectly tested its activity using the DAT inhibitor 

(GBR 12909). Based on our working hypothesis, the inhibition of dopamine 

reuptake should result in increased extracellular dopamine, and that in turn 

produces a stronger inhibition of GSIS. This is indeed the result I measured. 

Simpson et al. (159) report the opposite outcome for the same experiment.  

While I question the logic of their interpretation of those results, I currently cannot 

find a good explanation to reconcile this conflict. More experiments will be 

necessary to solve this controversy.  
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CHAPTER 

 

4. QUANTITATIVE FLUORESCENCE AND SINGLE MOLECULE IMAGING 

 

4.1 Introduction 

During the course of the research in the Piston lab, I had the 

opportunity to participate in a wide range of collaborative projects, to which I 

could contribute the microscopy expertise gained in the lab. These were also 

excellent opportunities to face different scientific questions, and come up with 

creative solutions. A number of these collaborative studies have already been 

published (178-181). In this chapter I present part of the results of one of these 

collaborations, because it exemplifies how significant information can be gained 

from quantitative analysis of confocal images. Also it used a strategy to perform 

single molecule tracking that can be translated to future studies aiming at 

studying the dynamics of dopamine receptors and dopamine transporter in the 

islet. The results of this study were published in the work by Chang et al.(182).  
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4.2 Materials and Methods 

 

4.2.1 Cell culture and treatments 

The immortalized serotonergic neural cell line, RN46A, was provided 

by Dr.Scott R. Whittemore (University of Miami School of Medicine). Cells were 

cultured in DMEM/F12 (1:1; Invitrogen) supplemented with 10% FBS and 

incubated in a humidified atmosphere with 5% CO2 at 37°C. Although RN46A 

cells endogenously express functional SERT proteins, an increase in SERT 

expression can be obtained by incubating cells in DMEM/F12 (1:1) containing a 

1% B27 supplement (Invitrogen) plus 1 µM serotonin (5-HT) for 24 h before 

single molecule labeling experiments. 

 

4.2.2 Labeling RN46A cells with ligand-conjugated quantum dots 

For single quantum dot (Qdot) labeling of SERT proteins, biotinylated 

IDT318 ligand was first incubated with RN46A cells followed by three washes to 

remove unbound ligand. Streptavidin-conjugated quantum dots (SAv-Qdots) 

(Invitrogen) were then added to detect the biotinylated moiety of antagonist-

associated linker. To minimize the possibility of cross-linking of ligands and the 

overlap of quantum dots trajectories, we adapted the Qdot-based, single 

molecule labeling protocol of Triller and colleagues (183), where the ligand 

concentration (0.5 µM) is set well below saturation (saturation concentration: ≥ 10 

µM). In addition, low concentrations (0.5 nM) of SAv-Qdots were used to detect 
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ligand binding at the lowest recommended concentration as studied by Triller and 

colleagues (183). For experiments involving cholesterol depletion, cells were 

incubated with 5 µM methyl-β-cyclodextrin (MβCD) (Sigma) at 37°C for 30 min 

before two-step Qdot-SERT labeling. The MβCD cholesterol depletion protocol 

we used does not result in overt changes in RN46A cell morphology, though 

more prolonged incubations (90 min) of RN46A cells with 10 µM MβCD at 37°C 

produce cell rounding paralleled by a decrease in SERT mobility. To avoid 

endocytosis and to achieve successful quantification in dual-channel imaging, all 

optical live-cell images were taken immediately after Qdot labeling. Endocytosis 

from longer labeling experiments could be readily detected by an accumulation of 

larger clusters of Qdots within the endosomes. 

 

4.2.3 Microscopy 

For high speed line-scanning confocal microscopy, images were 

obtained on a Zeiss LSM 5-Live confocal system and collected with a Zeiss 

63X/1.4 NA oil-immersion objective lens. Excitation was provided by a 488 nm 

100-mW diode laser. Frame rate was 10 Hz. Imaging was performed at 37°C. 

Single Qdot emission was collected using a long pass 650 filter. Line scan 

images with scan format of 512x128 pixels were processed using Zeiss LSM 

Image Examiner.  
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4.2.4 Data analysis of single quantum dot imaging 

Real-time tracking of single Qdot labeled SERT proteins was obtained 

using a Zeiss 5-Live line-scanning confocal microscope. Individual recording of 

each sample was performed at 37°C for 1 min at a scanning speed of 1 

frame/100 ms. Raw data files were extracted to generate stacks of individual 

16 bit TIF images for single molecule tracking. Positions (x and y coordinates) 

and trajectories of the single Qdot-labeled SERT proteins were determined by 

Matlab routines developed by Jaqaman et al.(184). Single Qdots undergo 

fluorescence intermittency, which can contribute to the trajectory assessment 

and may cause difficulty in tracking. To effectively decrease Qdot blinking 

probability, we decreased excitation laser power through setting the signal-to-

noise limit just above 6. In addition, as suggested by Dahan and colleagues 

(185), segment linking was processed to obtain trajectories as long as possible 

and blinking tolerance was limited to no more than 10 consecutive frames. 

Segment linking for complete trajectory generation was performed via the 

method described by Cohen and colleagues (186). Mean squared displacement 

(MSD) values, velocity, least-square fitting, and numerical distribution functions 

were processed using Matlab and Sigmaplot programming routines (187). 

Although a complete understanding of the diffusion processes of 

membrane transporters is still lacking, temporary lateral confinement of a 

diffusing protein due to local environmental constraints such as interaction with 

lipid rafts or cytoskeletal corrals, can be best described as anomalous sub-

diffusion (188). For a stochastic process of anomalous diffusion, monitored 
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continuously, others have previously established that such movements can be 

described as Lévy processes (189, 190). We investigated the distribution of 

instantaneous velocity (instantaneous movement over one time interval) of single 

SERT proteins in RN46A cells and found that the distribution follows a non-

Gaussian distribution. The statistical distribution of instantaneous velocities of 

single SERT proteins is well fit to the Lévy probability distribution function. In all 

of our analyses the R2 values of the fit of instantaneous velocity are higher than 

95%, indicating high reliability of our fits. 

 

4.3 Serotonin transporter, quantum dots, and fast imaging 

The technical challenge at the base of this collaboration project was to 

image a single fluorescent particle at a high frame rate, to quantitate its dynamic 

properties over time. The establishment of a robust protocol for this imaging 

mode allowed interrogating the biological model during various treatments to 

study complex intracellular mechanisms. The protein of interest was the human 

serotonin transporter (SERT) that has been studied as a determinant of 

neuropsychiatric disease risk (191). The distribution of SERT across membrane 

micro-domains have been investigated with biochemical studies (192, 193), but 

they cannot resolve the changes in single molecule behavior which result in the 

macroscopic functions. The advantage of the single-molecule tracking allowed 

the characterization of the protein movement that reports on events affecting the 

function and the regulation of SERT. 
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The quantum dot solution was imaged on the glass coverslip surface 

over time, and we could successfully identify single quantum dots displaying the 

characteristic intermittent fluorescence. This pattern is not detectable when 

multiple particles are measured. It can be seen in Figure 29 how the trace from 

ROI1 displays only 2 intensity levels, and the lower one coincides with the 

background intensity in the same image. The use of quantum dots to label SERT 

provided two advantages: 1) it allowed us to identify single particles, by looking at 

their intermittent fluorescence 2) it allowed us to use frame rate of 10 Hz and yet 

collect images with a good contrast, thanks to their brightness and photo-stability. 

 

4.3.2 Tracking a single SERT 

We labeled SERT on the neuronal cell line RN46A. We chose this cell 

line because it has a low expression level of SERT (197), and that made it easier 

to identify and track single SERT molecules over time. After extracting the 

trajectories of each individual SERT in an image, we proceeded computing the 

displacement over time and the mean squared displacement (MSD) for each 

trajectory. The displacement provided information on the type of movement of 

each particle (free vs. caged diffusion). The MSD is instead a function of the 

diffusion coefficient D, and it increases linearly with time in the case of free 

diffusion (MSD ∝ Dt). But the model that currently best describes the movement 

of a transporter in a membrane, and anchored to other structures, is the 

anomalous sub-diffusion (188, 198). In this model MSD ∝ tα (α<1), and therefore 
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coefficient (10-3 ~ 10-2 µm2/s), and a small fraction of them has a higher diffusion 

coefficient (10-2 ~ 10-1 µm2/s). On the contrary, in MβCD-treated cells, the 

distribution revealed the presence of a single population with a higher diffusion 

coefficient (10-2 ~ 10-1 µm2/s) matching the value of the minority population 

observed in the control (Figure 32D).  

 

4.3.3 Correlation of SERT motor behavior with transporter function 

The same analytical approach was used to quantitate the effect of 

various pharmacological treatments, in order to test if mobility restrictions 

contribute to physiologically relevant features of SERT regulation. It has been 

shown that activation of PKG by cGMP induce an increase in serotonin uptake 

rates (199). So we measured the effect of the cell-permeant cGMP analog 

(8-Br-cGMP) on SERT mobility. The treatment induced a significant increase in 

the instantaneous velocity that went from 0.75 ± 0.06 µm/s to 1.60 ± 0.03 µm/s 

(P < 0.001) (Figure 33A). It also increased the subpopulation of SERT proteins 

displaying a higher diffusion coefficient (Figure 33B). Interestingly, this increased 

in velocity and diffusion coefficient, was associated with a 75 % of SERT protein 

still displaying confined lateral diffusion (Figure 33C). Although the treatment 

induced faster movements of SERT, the protein appeared to be still confined to 

its membrane microdomain. As we thought that the effect of 8-Br-cGMP 

treatment was to induce phosphorylation of SERT and its increase in uptake rate, 

we treated the cells with a p38 MAPK specific inhibitor (SB203580). The 

treatment greatly reduced the effect of 8-Br-cGMP (Figure 33D).  
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analysis technique could be applied to the detection of other transporter (i.e. 

DAT) and membrane proteins (provided that a specific ligand or antibody is 

associated to the quantum dots). The experiment in this chapter described the 

movement of the endogenous SERT in the plasma membrane of RN46A cells. 

Taking advantage of the intermittent nature of the fluorescence of individual 

quantum dots, we could identify single SERT on the cell membranes and image 

them at high speed (frame rate was 10 Hz) over time. By plotting the MSD/∆t vs 

∆t, two population of SERT were identified: the majority that had lower diffusion 

coefficient and a confined lateral diffusion, and a smaller percentage that 

displayed higher diffusion coefficient. The treatment with MβCD that extracts 

cholesterol from the plasma membrane and disrupts lipid rafts, resulted in a total 

shift of the SERT population to the higher diffusion coefficient, and the MSD/∆t vs 

∆t displayed a slope indicative of free lateral diffusion. The treatment with IL-1β is 

known to produce the p38 MAPK activation of SERT, with consequent increase 

in the serotonin uptake rate. This treatment produced an increase in the 

instantaneous velocity of SERT that yet was still showing the confined lateral 

diffusion of the lipid raft milieu. We confirmed, by treating the cells with 

Cytochalasin D, that the increased mobility of SERT during the IL-1β treatment 

was caused by the disruption of the cytoskeleton anchors that regulates SERT 

activity. This disruption increased the instantaneous velocity, in association with 

the increased uptake rate, but did not cause SERT to diffuse out of the lipid raft. 

This also suggested that lipid raft integrity is independent from the cytoskeleton 

anchors.  
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CHAPTER 

 

5. CONCLUSION AND FUTURE DIRECTIONS 

 

5.1 Conclusion 

I described experiments that show the existence of a negative 

feedback regulation of glucose-stimulated insulin secretion (GSIS) from the 

pancreatic islet. This negative feedback relies on the endogenous synthesis of 

dopamine by the islet and the consequent co-secretion of dopamine and insulin 

during glucose stimulation. The presence of the dopamine receptor D3 (DRD3) in 

the islet cells, makes them sensitive to the secreted dopamine, and mediates the 

tonic inhibition of GSIS, by reducing the Ca2+ influx.  

Our study was based on the literature from the past 50 years, which 

has contributed to build our hypothesis for the role of dopamine in regulating 

insulin secretion from the pancreatic islet. Previous studies showed that 

dopamine can inhibit GSIS in isolated islets (3), but there was no consensus on 

the availability or origin of any dopamine that can act on islets in vivo. This led to 

a conundrum since the islets are sensitive to dopamine, but the dopamine 

concentration in the plasma is too low (0.67 ± 0.21 nM in C57Bl6 mice) to trigger 

its receptor (148, 149), and dopaminergic innervation of the pancreas has not 

been reported.  Thus, islet sensitivity to exogenous dopamine has generally not 

been considered to be physiologically relevant. 
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I first tested the hypothesis that the islet itself produces dopamine from 

circulating L-dopa, which was not previously rigorously examined. By focusing 

our study on isolated mouse islets, I measured dopamine accumulation from the 

endogenous synthetic activity of the islets. I estimated that freshly isolated islets 

contain dopamine at a level of ~ 0.5 pg/islet. This value should reflect as close as 

possible the in vivo condition of an islet in its native environment. When L-dopa 

was increased in vitro, I measured a rapid 30-fold increase in the islet dopamine 

content. Similarly, when circulating L-dopa levels were raised by exogenous 

administration in vivo, I saw a 50-fold increase in dopamine concentration, which 

corresponded to a robust inhibition of GSIS. I report a dose-dependent inhibition 

of GSIS by combining L-dopa and glucose in static incubation assays performed 

on isolated islets. Based on the results from secretion experiment with pre-

treated islets, I conclude that this effect was due to increased dopamine content, 

and not a direct pharmacological effect of L-dopa on GSIS. However, neither L-

dopa nor the dopamine receptor agonist quinpirole altered basal insulin secretion 

at low glucose concentration. This supports the hypothesis that dopamine must 

be secreted by the islet to produce its effect; also it reinforces the idea that 

dopamine can only produce an effect when insulin secretion is being stimulated. 

The conclusion I draw from these experiments is that dopamine is physiologically 

present in the pancreatic islet of the mouse. It is produced by the islets, and its 

production can be significantly boosted by increasing the availability of the 

precursor L-dopa.  
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Next, I examined the glucose dependence of dopamine secretion by 

the β-cells in islets. According to our hypothesis, dopamine is co-secreted with 

insulin.  I tested this concept by simultaneously measuring dopamine and insulin 

secretion. I showed that dopamine secretion parallels insulin secretion, thus 

making the granular co-localization of the two substances very likely. At the same 

time that our work was published, a study by Simpson et al. (159) was published, 

where the authors measured dopamine secretion by chrono-amperometry and 

voltammetry, and came to the same conclusion: dopamine is secreted from the 

islet in response to glucose. Moreover, they performed perfusion experiments 

under glucose stimulation and reported dopamine secretion peaks largely 

coincident with insulin secretion peaks. These independent experiments 

corroborate our conclusion that dopamine and insulin co-localize in the secretory 

granule of the β-cells.  

Having established that β-cells synthesize and secrete dopamine 

during GSIS, I proceeded to investigate how dopamine inhibits GSIS. First, I 

verified that neither dopamine nor L-dopa were interfering with the metabolism of 

glucose. I did so by monitoring the glucose-induced increase in the 

autofluorescence from NAD(P)H. Then, I looked at the frequency of [Ca2+]i 

oscillations during GSIS, which changes upon exposure to either dopamine or 

L-dopa. In both cases, I measured a dose-dependent decrease in the frequency 

of the [Ca2+]i oscillations, which correlated with the decrease in GSIS. This 

suggests that dopamine signaling is altering [Ca2+]i influx to produce inhibition of 

GSIS. Finally, I identified the dopamine receptor that mediates this inhibition.  
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It has been shown by two different groups that the DRD2 isoform is 

present in mouse and human islet, and thus it has been assumed that this 

isoform mediates the dopamine effects on GSIS (3, 159). However, the results of 

our experiments clearly showed that while DRD2 is present in the islets, DRD3 is 

the isoform that mediates the dopaminergic signaling. I demonstrated this by 

using islets from mice containing a genetic deletion of DRD2 and showing that 

they still responded to dopamine during GSIS. Further, by using isoform-specific 

dopamine receptor antagonists for DRD2 and DRD3 on wild type islets, I showed 

that only the antagonism of DRD3 abolished the effects of dopamine on insulin 

secretion, enhanced GSIS in untreated islets, and increased their frequency of 

[Ca2+]i oscillations. Finally, I verified that the dopamine transporter (DAT) is also 

expressed in the islets, and I indirectly tested its activity using the DAT inhibitor 

(GBR 12909). Based on our hypothesis, DAT removes dopamine from the 

extracellular space, terminating the dopaminergic signaling. Therefore, the 

inhibition of dopamine reuptake should result in increased extracellular 

dopamine, and that in turn produces a stronger inhibition of GSIS. This is indeed 

the result that I measured in the static incubations performed in the presence of 

GBR 12909. Yet, Simpson et al. (159) report the opposite outcome for the same 

experiment, proposing that the extracellular dopamine is quickly diluted in the 

assay buffer, and so the antagonism of DAT results in dopamine depletion of the 

islet with a consequent enhancement of GSIS. I currently cannot find a good 

explanation to reconcile these conflicting results, and more experiments on this 

topic are necessary to solve this controversy. 
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5.2 Future directions 

 

5.2.1 Studying the pathway downstream of DRD3 activation 

I showed that dopamine inhibits GSIS via DRD3 activation; thus, it 

would be reasonable to investigate the resulting intracellular pathway that 

produces such effect in β-cells. DRD3 couples to inhibitory G-proteins, as do the 

other members of the D2-like family of dopamine receptor (122). The signaling 

pathway for this family implies that upon dopamine binding, the Gαi subunit can 

inhibit adenylyl cyclase (AC), and the free Gβγ complex can affect Ca2+ channels, 

K+ channels, or phospholipase C (201). However, the specific cellular milieu 

determines which one of the targets is primarily affected. The experiments 

described so far show that DRD3 activation decreases the frequency of [Ca2+]i 

oscillations, which is suggestive of a reduction of Ca2+ influx. This effect is fast, 

as the frequency shift takes place in about 120 seconds in the experimental 

setup used for our imaging experiments. In a previous study on INS1-E cells, 

dopamine was shown to not produce a decrease of intracellular cAMP (3). For all 

these reasons, I propose that DRD3 acts via Gβγ to modulate Ca2+ influx through 

the plasma membrane voltage dependent calcium channels. Yet, the same effect 

can be obtained in two ways: Gβγ can activate K+ channels (KATP or GIRK), 

hyperpolarizing the membrane and thus reducing the activity of the Ca2+ 

channels; or Gβγ can directly bind the α-subunit of the Ca2+ channels and 



 101

decrease the Ca2+ conductance. Our future experiments aim at identifying the 

pathway that is active in β-cells.  

I will use isolated islet loaded with the calcium indicator Fluo-4 AM, and 

keep them at the same glucose concentration (8 mM) at which I observed the 

DRD3 effects. I will treat them with K+ channel blockers (Tolbutamide for KATP 

and tertiapine-Q for GIRK) to keep the membrane depolarized and measure the 

rise in [Ca2+]i. I will repeat the experiment adding dopamine to the K+ channel 

blockers, and measuring again the rise in the [Ca2+]i. If I will observe a difference 

in the rate of the increase of [Ca2+]i (or possibly in its plateau level) I will interpret 

the result as a sign that Gβγ is acting on Ca2+ channels. Otherwise I will conclude 

that Gβγ likely acts on K+ channels. In this last case, I could use the same 

strategy to tell if KATP or GIRK are the target. I will apply to the islet tolbutamide 

alone, or tertiapine-Q alone, to see in which case dopamine produces a 

difference in the [Ca2+]i. Consequently, I will separate out which K+ channel family 

is the target of Gβγ complex. 

It is possible that the effect of Gβγ is localized near the channels, and is 

thus too small to be detected by measuring the global [Ca2+]i by this approach. 

Therefore, negative results from these experiments cannot be conclusive. In this 

case, I can perform more sensitive experiments to detect local [Ca2+]i changes 

with targeted indicator dyes, or measure directly the interaction between Gβγ and 

its target. 

To measure the interactions directly, I are planning to utilize Förster 

resonance energy transfer (FRET) experiments in βTC3 cells. I will use 
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Gγ-mVenus fusion protein to tag the Gβγ complex without altering its function 

(202), while rsTagRFP (203) will be fused to the N-terminus of the α1C-subunit of 

the Ca2+ channels to tag the L-type Ca2+ channels without affecting their 

properties (204). The co-transfection of these constructs will allow measuring 

FRET if the Gβγ binds the L-type Ca2+ channel. However since not all the tagged 

proteins will be interacting at the same time, our FRET signal will be masked in 

the background fluorescence of the non-interacting proteins. I plan to circumvent 

this problem using a lock-in approach to extract the small FRET signal from the 

high background fluorescence (205). Thanks to the photo-switching properties of 

rsTagRFP, the acceptor in these experiments can be turned on and off by 

excitation at 445 nm and 570 nm respectively, which allows us to cyclically 

modulate the acceptor state of this protein. Correspondingly, I will look for 

intensity peaks in the mVenus emission. This approach has been shown to 

improve detection of FRET efficiencies down to 0.1% (205). Negative results 

from this experiment do not exclude the interaction between the two proteins, as 

FRET can be prevented by an incorrect relative orientation of the two fluorescent 

proteins. In this case, alternative fusion protein configurations would be tested. 

Alternatively, I can do fluorescence cross-correlation spectroscopy 

(FCCS) experiments to detect the interaction of the two proteins. This approach 

will require tagging the Gβγ complex and the L-type Ca2+ channel with GFP and 

mCherry. The cross-correlation function that is obtained from the two auto-

correlation functions for the two fluorescent species will detect any interaction 

between the two proteins. 
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The experimental approaches that I described so far rely on 

fluorescence detection to investigate the changes in the ion channel properties 

(either Ca2+ or K+) caused by dopamine receptor activation. Patch-clamp 

electrophysiology is the preferred technique to study ion channels properties. 

Therefore I will perform some electrophysiology experiments to investigate the 

effects of dopamine. I will use flattened islets or betaTC3 cells to measure the 

calcium currents through the voltage gated calcium channel. These currents will 

be monitored during glucose stimulus (8 mM), and during the administration of 

increasing concentrations of dopamine. I expect to observe a dose dependent 

effect of dopamine on the currents. Alternatively, if the results show that there is 

no effect of dopamine on the calcium currents, I will measure potassium currents 

at non stimulatory glucose concentration. The approach will be again to measure 

the currents at various dopamine concentrations and to observe a dose 

dependent effect. If one of these planned experiments will show a dopamine 

dependent effect on the currents, I will try to confirm that the effect is mediated 

by the Gβγ complex by applying a synthetic peptide to the patched cell. The 

peptide will bind to the Gβγ complex, and I expect it to counterbalance the effect 

of dopamine on the ion currents. 

If none of these approaches produce positive results, I will reconsider 

our initial assumption and instead investigate the effect of DRD3 activation on AC 

and PKA.  
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5.2.2 Studying the role of dopamine as a paracrine signal 

Given the degree of similarity between the α-cells and the β-cells in the 

islets, I cannot exclude that α-cells also express DRD3. This hypothesis is very 

intriguing because it could explain the characteristic glucagon secretion pattern 

of the α-cells. They secrete glucagon at low glucose concentration (< 3 mM) and 

they stop secreting at high glucose concentration (> 5 mM). Yet it is not 

completely understood how this glucose-inhibition of glucagon secretion (GIGS) 

works. Experimental evidences show that the α-cells lose GIGS when they are 

dispersed from the islet, pointing at the possibility that a paracrine signal from 

other islet cells is responsible for the effect (19). Despite 40 years of research 

(10), an appropriate paracrine signal has not yet been identified, and many other 

hypotheses are being considered. Several likely paracrine candidates, such as 

insulin, zinc, GABA, and somatostatin, inhibit glucagon secretion when applied to 

isolated islets, but they do not show an effect when applied to dispersed α-cells 

(19). Moreover, α-cells respond to high glucose concentrations similarly to β-

cells, by depolarizing the membrane and displaying elevated [Ca2+]i, yet they do 

not increase their secretion. Therefore the unknown inhibition mechanism is 

thought to act downstream of the increase in [Ca2+]i.  

Based on this evidence, I plan to test the hypothesis that α-cells 

express DRD3, and that dopamine is a paracrine signal that produces GIGS. 

Since I showed that dopamine is co-secreted with insulin, this would explain the 

glucose-dependence of the glucagon inhibition. Since dopamine is secreted by 

the β-cells, this would explain why dispersed α-cells lose GIGS. Since DRD3 can 
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signal via Gβγ complex, this could explain also the inhibitory effect downstream of 

the increase in [Ca2+]i. In fact it has been shown that Gβγ can inhibit exocytosis 

independently of [Ca2+]i (109, 206), by binding to the SNARE complex, thus 

competing with Ca2+-dependent activation of the exocytotic machinery. I can test 

this hypothesis by performing static incubations to measure glucagon secretion 

from isolated islets. I would apply excess of dopamine at low glucose to see if 

this inhibits glucagon secretion. Conversely, I would apply dopamine receptor 

antagonists at high glucose to see if they increase glucagon secretion.  

 

5.2.3 Subcellular localization of DRD3 and DAT 

It has been suggested that DR are located on the insulin secretory 

granules in β-cells, so that they can be activated only during insulin secretion (3). 

This concept of localization poses a problem if I consider that the insulin granules 

also contain dopamine, the ligand for DR. I tried to investigate this subject by 

performing live-cell imaging experiments on islets that were transduced with 

DRD2-mVenus. I detected the majority of the receptor on the plasma membrane 

of the β-cells, but as I was not imaging the endogenous receptors, the results 

cannot be considered conclusive. I plan to perform a series of experiments using 

DRD3 antibodies to detect endogenous receptors in fixed intact islet. Based on 

our previous experiences, I anticipate having high level of non-specific binding of 

the primary antibody. So I will perform a series of control experiment to 

discriminate the specific signal from the non-specific one. The use of the 

antibody-specific antigen was very useful for our western blot experiment, so I 
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will use the same approach for the immunohistochemistry. Alternatively, I could 

perform parallel experiments on wild type and DRD3-knock-out islets. I currently 

do not have the DRD3-knock-out mice, but our collaborator Dr. Claudia 

Schmauss at Columbia University has created this line of animals. Similarly, I 

can investigate the localization of DAT in the islet, by comparing the results from 

wild type and DAT-knock-out mice. In this case our collaborator Dr. Aurelio Galli 

will provide the transgenic animals. 

 

5.3 Significance 

The summary of the presented results shows that a dopaminergic 

negative feedback acting on insulin secretion is active in β-cells. Importantly, 

blocking this dopaminergic feedback increases GSIS. Therefore DRD3, or one of 

the steps downstream of its activation, is a potential target for new drugs to treat 

type-2 diabetes. At the same time, the existence of a dopaminergic inhibition of 

GSIS allows speculation regarding the high prevalence of abnormal glucose 

tolerance in 50-80% of Parkinson patients (207). Prospective studies have 

suggested that diabetes is not a preceding risk factor for Parkinson’s disease, yet 

the two diseases show a significant positive association, possibly explained by a 

common underlying biological mechanism (208, 209). I reason that the 

dopaminergic regulation of GSIS in the islets could be such underlying 

mechanism. Since β-cells share the dopaminergic system with the dopaminergic 

neurons of the substantia nigra, it is possible that the still unknown cause of 

dopaminergic neuron loss underlying in Parkinson’s disease could also cause the 
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specific loss of β-cell function that results in type-2 diabetes. Another interesting 

consideration can be made: the therapy for Parkinson’s disease consists of 

administration of L-dopa and benserazide to increase dopamine concentration in 

dopaminergic neurons and prevent peripheral conversion of L-dopa and its 

consequent side effects (210). However, a few patients still experience 

hyperglycemia and hyperinsulinemia as side effects of the treatment (210, 211). 

Indeed, in our experiments benserazide did not completely halt the production of 

dopamine in the islets. I can speculate that if this holds true in patients, then the 

Parkinson’s treatment regimen could partially inhibit GSIS and put a chronic 

stress on islet function that would exacerbate the association between type-2 

diabetes and Parkinson’s disease (207-210).  

The expression of DAT in the pancreatic islet provides another 

possible link relating type-2 diabetes and Parkinson’s disease.  I can speculate 

that the brain and endocrine pancreas are responding to the same insult, and 

that both tissues suffer same type of damage (i.e., loss of dopaminergic cells). If 

substance(s) that enter neurons via DAT is one cause of Parkinson’s disease, 

then the same substance(s) could have equally deleterious effects on islet cells 

(212-214).  

Finally, the presence of DRD3 in the β-cells makes them an undesired 

target of antipsychotic drugs. This could be particularly important considering the 

number of studies showing associations between metabolic syndrome and 

atypical-antipsychotic therapy (215-219). The results on this subject are not of 

easy interpretation, as the atypical antipsychotic drugs act on multiple receptors. 
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Nonetheless some of their metabolic side effects could be independent from their 

action on the central nervous system, but instead may be related to direct action 

on insulin secretion. A better knowledge of their mechanism of action on the 

DRD3, and consequently on GSIS from the islet, could be helpful in designing 

antipsychotic drugs with fewer metabolic side effects, or improved therapeutic 

regimens that minimize these side effects with the current available drugs.  
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