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CHAPTER 1  

INTRODUCTION 

 

This thesis describes the motivation for, development of, and evaluation of the 

chemotherapy plan abstraction method (CPAM), and its use for cohort plan analysis. This 

introduction defines the concepts related to the generic and clinical tasks of planning and 

plan abstraction, and their importance in clinical practice and research. 

1.1. Plan abstraction 

Plan abstraction is an important generic and clinical reasoning task. Table 1.1 

defines the concepts related to planning and plan abstraction. An intended plan is a 

sequence of future actions specified by an actor to achieve a goal. Planning is the task of 

specifying a plan. When a plan is executed, the sequence of pre-specified actions is 

carried out. Some of those actions will have associated artifacts (e.g., execution 

timestamp and serial ordinal number) that can be reviewed by an outside observer. The 

executed plan, therefore, can include modifications due to execution time changes in the 

state of the plan components. Plan abstraction is the task of inferring the existence of a 

plan from the pattern of observed events(1; 2). Plan recognition, on the other hand, is the 

task of establishing a correspondence between a sequence of observed events and a 

known set of established plans(1). Cohort plan analysis is the task of conducting a 

collective analysis of plans executed by a cohort of actors. 
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Table 1.1. Definition of concepts related to plan abstraction. 

Definitions include the generic (domain non-specific) context, general clinical 

context, and chemotherapy context. 

Term / 

Concept 

Generic Task Clinical Task Chemotherapy Task 

Intended 

plan 

A sequence of 

actions specified by 

an actor to achieve a 

goal. 

A sequence of diagnostic 

or therapeutic events 

specified by a clinician 

with the goal of 

improving a patient’s 

duration or quality of life. 

A sequence of 

chemotherapy medication 

events specified by an 

oncologist with the goal of 

treating a specific cancer 

and improving the 

patient’s duration or 

quality of life. 

Executed 

plan 

A completed plan 

with observable 

artifacts in terms of a 

sequence of events 

corresponding to the 

plan implementation. 

A completed diagnostic 

or therapeutic plan with a 

sequence of recorded 

clinical events 

corresponding to the 

plan. 

A completed 

chemotherapy plan with a 

sequence of recorded 

chemotherapy medication 

events corresponding to 

the plan. 

Planning Task of specifying a 

plan. 

Clinical task of 

specifying a clinical plan. 

Clinical task of specifying 

a chemotherapy plan. 

Plan 

abstraction 

Task of inferring 

executed plans from 

an observed 

sequence of past 

events. 

Clinical task of inferring 

a clinical plan from a 

sequence of past 

diagnostic or therapeutic 

events. 

Clinical task of inferring a 

chemotherapy plan from 

an observed sequence of 

the past chemotherapy 

medication events. 

Plan 

recognition 

Task of establishing 

a correspondence 

between an observed 

sequence of past 

events and a known 

set of established 

plans. 

Clinical task of matching 

an observed set of 

clinical events to a 

known set of clinical 

plans. 

Clinical task of matching 

an observed set of 

chemotherapy medication 

events to a known set of 

chemotherapy plans. 

Plan 

selection 

Task of selecting 

from among a set of 

plans that can all 

achieve the same 

goal. 

Clinical task of selecting 

from among an 

established set of 

diagnostic or treatment 

plans for a given disease. 

Task of selecting from 

among an established set 

of chemotherapy protocols 

to treat a given type and 

stage of cancer. 

Cohort plan 

analysis 

An analysis of the 

executed plans of a 

cohort of actors 

A clinical analysis of the 

executed diagnostic and 

therapeutic plans of a 

cohort of patients. 

A clinical analysis of the 

executed chemotherapy 

plans of a cohort of cancer 

patients. 
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1.2. Plan abstraction in medicine 

An intended clinical plan is a sequence of future diagnostic or therapeutic events 

specified by a provider with the goal of improving the patient’s duration or quality of life. 

Clinical planning is the task of specifying a clinical plan. Many clinical plans are highly 

specific for a particular disease, and are established as a standard of care through clinical 

research. A clinician prescribes an appropriate clinical plan for a given disease condition 

through a process of plan selection, while balancing between likely relative efficacy, 

side-effects and cost. An executed clinical plan consists of the completed sequence of 

clinical events corresponding to the intended plan. The actual events, though, can deviate 

from the intended course of the plan (e.g., due to inability of the patient to tolerate the 

side-effects). The task of clinical plan abstraction involves inferring the clinical plan 

from actual clinical events. Clinical plan recognition is the task of establishing a 

correspondence between the observed sequence of clinical events and the set of known 

clinical plans established as standard of care. 

Clinical care follows a cyclical process of diagnosis, treatment plan selection, 

treatment plan management, and response assessment tasks (Figure 1.1). Diagnosis is the 

task of ascertaining the disease condition while response assessment is the task of 

evaluating how the disease condition changes in the context of treatment. Treatment plan 

management is the task of scheduling, customizing, and iteratively refining the intended 

plan events based on the outcome of the response assessment task. A treatment summary 

is a concise statement summarizing the clinical events associated with an executed 

treatment plan. Plan abstraction is the essential task of deriving the treatment summary 



 

from observed clinical events

both the treatment selection

 

Figure 1.1. Disease management and plan abstraction tasks

Disease management is a cyclical process, consisting of 

selection, treatment plan management and treatment response assessment tasks. 

The treatment history is reviewed in terms of treatment plans that correspond to the 

respective treatment protocols, and plan abstraction task produces treatment plans 

from the treatment events stored in 

the treatment selection task

treatment is reviewed and managed with respect to the disease response and is 

either continued or

 

Clinical cohort plan analysis is the task of 

for a cohort of patients. Such 

adherence to standard of care

effectiveness of multiple treatment plans, and 

4 

observed clinical events. The treatment summary provides important feedback 

treatment selection and the treatment management tasks (figure 1.1). 

Disease management and plan abstraction tasks. 

Disease management is a cyclical process, consisting of diagnosis, 

selection, treatment plan management and treatment response assessment tasks. 

The treatment history is reviewed in terms of treatment plans that correspond to the 

respective treatment protocols, and plan abstraction task produces treatment plans 

from the treatment events stored in EMR. The treatment history is reviewed during 

the treatment selection task and treatment plan management task

treatment is reviewed and managed with respect to the disease response and is 

either continued or revised. 

Clinical cohort plan analysis is the task of evaluating a set of executed clinical plans 

. Such cohort level analysis can address questions related to patient 

adherence to standard of care plans, physician practice patterns, the 

effectiveness of multiple treatment plans, and the comparative cost of multiple plans. 

provides important feedback for 

tasks (figure 1.1).  

 

diagnosis, treatment 

selection, treatment plan management and treatment response assessment tasks. 

The treatment history is reviewed in terms of treatment plans that correspond to the 

respective treatment protocols, and plan abstraction task produces treatment plans 

. The treatment history is reviewed during 

and treatment plan management task. The current 

treatment is reviewed and managed with respect to the disease response and is 

executed clinical plans 

can address questions related to patient 

the comparative 

comparative cost of multiple plans.  
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1.3. Chemotherapy plan abstraction 

The chemotherapy version of the concepts listed in table 1.1 can be defined in a 

similar fashion as those for the clinical tasks, except that in case of chemotherapy all 

events represent the chemotherapy drug events.  

Chemotherapy plans are a class of protocol-based treatments consisting of 

specialized drugs to kill cancer cells while minimizing toxicity to the patient. Individual 

patients show varying degrees of tolerance to chemotherapy drug treatments. As such, it 

is common for the executed chemotherapy plan to have minor or major deviations from 

the intended plan to account for patient toxicity. Chemotherapy protocols are highly 

complex treatment plans specific to a particular cancer type, and are established as 

standard of care through rigorous clinical research. Some chemotherapy plans span many 

months or even years, and can consist of hundreds of distinct drug events. A given plan 

can consist of multiple drugs and a given drug may be part of multiple plans.  

Figure 1.2 shows several examples of simple and complex intended (panel A) and 

executed (panel B) chemotherapy plans and their respective treatment summaries (panel 

C). Intended chemotherapy plans (Figure 1.2-A) are specified as a set of medication 

events that repeat at a given frequency and number of cycles. For example, plan 1 is a 

simple chemotherapy plan consisting of a single drug paclitaxel (‘P’) that is repeated 

every twenty-one days for four cycles. Plan 3 on the other hand is a more complex plan 

that consists of two drugs repeated in multiple nested cycles. In plan 3, cisplatin (‘C’) is 

given on day 1 only while etoposide (‘E’) is given daily for three days starting on day1. 

The whole set is repeated every twenty-one days for six cycles. 



 

Figure 1.2. Plan representations

Panel A shows 

marked in the box

repeats (e.g., 

consisting of only one drug (

another simple plan that repeats every three weeks, but it cons

(bevacizumab

consists of drugs 

times daily starting day 1; the whole set is then repeated 

the first day, Etoposide is then repeated 

shows executed plans

Actual dates and day#s are stated for individual medication events.

representation of 

abstracted plans shows the start

periodicity disc

 

Panel B of figure 1.2 shows 

that can result from execution of these plans

versions of these plans, which forms 

to inferring the constituent drugs, the abstracted version also shows the start date, end 

date, number of cycles, 
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Plan representations. 

shows intended plans. The looping arrow indicates ‘repetition’ of the drug 

marked in the box, q gives the frequency of repetition, and x gives the number of 

 q21x4 indicates repeat every 21 days 4 times).  Plan 1

consisting of only one drug (paclitaxel – ‘P’) repeating every three weeks. Plan 2 is 

another simple plan that repeats every three weeks, but it consists of multiple drugs 

evacizumab – ‘B’, carboplatin – ‘C’ and paclitaxel – ‘P’). Plan 3 is complex 

drugs cisplatin – ‘C’ given on day 1 and etoposide 

times daily starting day 1; the whole set is then repeated ; that are given together on 

the first day, Etoposide is then repeated six times every twenty-one days. 

xecuted plans corresponding to the intended plans shown in 

Actual dates and day#s are stated for individual medication events.

representation of abstracted plans as inferred from the events in panel B. 

abstracted plans shows the start-date, end-date, number of cycles and average 

periodicity discerned from the observed events.  

Panel B of figure 1.2 shows the respective examples of the actual sequence of events 

that can result from execution of these plans. Panel C shows the corresponding 

which forms a treatment summary for a given patient

tuent drugs, the abstracted version also shows the start date, end 

 and average periodicity (rate of repetition) for the respective 

 

‘repetition’ of the drug 

gives the number of 

Plan 1 is a simple plan 

) repeating every three weeks. Plan 2 is 

ists of multiple drugs 

). Plan 3 is complex and 

toposide – ‘E’ repeated 3 

are given together on 

one days. Panel B 

corresponding to the intended plans shown in panel A. 

Actual dates and day#s are stated for individual medication events. Panel C gives a 

as inferred from the events in panel B. The list of 

date, number of cycles and average 

actual sequence of events 

corresponding abstracted 

for a given patient. In addition 

tuent drugs, the abstracted version also shows the start date, end 

and average periodicity (rate of repetition) for the respective 
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plans. The actual rate of repeat (averaged over all the cycles) for each of these plans is 

longer than that suggested by the respective plans, which demonstrates that the intended 

plan is not always executed as designed in order to account for patient response to the 

treatment. 

Cancer care follows the same cyclical process of diagnosis, chemotherapy plan 

selection, chemotherapy plan management and response assessment (in terms of tumor 

size and patient tolerance) tasks, as shown in figure 1.1. During the plan selection task, 

the oncologist uses the treatment summary as the record of therapies the patient has 

previously completed to inform selection of the next treatment. During the chemotherapy 

plan management task, the oncologist uses the summary of the current executed plan to 

recall any deviations from the intended plan due to toxicity.  

Organizations like ASCO recommend using cancer treatment summaries(3) to 

record the details of an executed cancer treatment. ASCO’s chemotherapy treatment plan 

and summary templates were developed to help improve documentation and coordination 

of cancer treatment and survivorship care. They are intended to facilitate provider-to-

provider and provider-to-patient communication. The completed treatment summaries are 

recorded in the patient chart and can be distributed to the patient and to their providers. 

Importantly, the treatment plan and summary are not intended to replace detailed chart 

documentation, including complete patient histories or chemotherapy flow sheets. 

However, manual generation of a chemotherapy treatment summary can be a very 

time consuming task for clinicians in practice. In addition to cognitive stress of 

discerning patterns pertaining to complex plans there are challenges associated with the 

extraction of medication events from the medical records and technical intricacies 
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accompanying clinical data sources. Chapter 2 further elaborates on the challenges of 

extracting medication events and intricacies of accessing clinical data sources. 

 

Table 1.2. Questions that can be addressed for cohort analysis. 

Operational, quality, and research questions addressed when plan history information 

is available for cohort analysis. Questions may be across or within plans, across or 

within disease and with disease feature restrictions.  Listed are several questions (Q) 

across these dimensions and their clinical utility (U). 

Available Data 

Sources Cohort Analysis Across Plans Cohort Analysis Within a Plan 

Treatment 

History alone 

Q: What are the most frequently used 

plans across all cancer diagnosis? 

U: Resource utilization 

U: Cost analysis 

U: Prioritize CPOE order set 

implementation 

U: Pharmacy supply management 

Q: What is the variance in sequencing, 

total number of cycles, and cycle 

frequency for a given plan across cancer 

diagnosis? 

U: Estimate of variance in plan utilization 

across cancer diagnoses 

Treatment 

History plus 

Cancer 

Diagnosis 

Q: What are the most frequent plans for 

a given cancer diagnosis? 

Q: Which plans are most often used first, 

second, or third in treatment 

sequencing for a given cancer 

diagnosis? 

U: Analysis of variance in provider 

practice patterns within and across 

institutions 

Q: What is the variance in sequencing, 

total number of cycles, and cycle 

frequency for a given plan for a single 

cancer diagnosis? 

U: Estimate of patient toxicity to plan 

U: Estimate of average disease progression 

on plan 

Treatment 

History plus 

Cancer 

Diagnosis, 

Cancer Stage, 

Tumor 

Biomarkers, and 

Patient Survival 

Q: What are the most frequent plans for 

a given cancer diagnosis, stage, and 

set of biomarkers? 

U: Analysis of variance in provider 

practice patterns within and across 

institutions 

U: Analysis of provider compliance with 

standard guidelines 

Q: What is the comparative efficacy of 

plans for a given cancer diagnosis, 

cancer stage and set of tumor 

biomarkers?  

U: Comparative effectiveness research 

on large populations 

Q: What is the variance in sequencing, 

total number of cycles, and cycle 

frequency for a given plan for a single 

cancer diagnosis, stage and biomarker? 

U: Estimate of patient toxicity to plan 

U: Estimate of average disease progression 

on plan 

Q: What is the comparative efficacy of a 

given plans for a given cancer diagnosis, 

cancer stage and set of tumor 

biomarkers? 

U: Predictive and prognostic biomarker 

discovery for a given plan.  

 

When detailed chemotherapy plan histories are available for a large cohort of 

patients, many questions can be addressed related to quality, efficacy, and cost of care 

(Table 1.2). For example, when chemotherapy plan history alone is available, a cohort 
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level analysis across all plans can reveal the frequency of treatment plans at a given 

institution. A computerized provider order entry (CPOE) implementation team could use 

this information to help prioritize creating order set templates at their facility. Several 

more questions can be addressed when the cancer diagnosis information is added. For 

example, what are some of the most frequently administered chemotherapy protocols for 

a given cancer diagnosis?   This can give information on provider practice patterns within 

and across institutions, including insight into provider awareness of existing knowledge 

and resource utilization(4).  Likewise, a within plan analysis of a given disease can 

include an evaluation of the variance in sequencing, total number of cycles, and cycle 

frequency for a given plan. In the case of a plan for a metastatic cancer for instance, the 

median duration of treatment could correlate with the median time to disease progression 

in that patient population. 

Such cohort level analyses, however, are currently very time-consuming to perform 

since researchers must manually recreate the treatment history from clinical documents 

stored in the EMR, as exemplified by the study conducted by Zafar et al.(5) 

1.4. Chemotherapy plan abstraction as a temporal abstraction task 

Chemotherapy plans involve one or more drugs repeated over a number of cycles, 

for a specified periodicity. Considering the discrete drug events as instances along the 

temporal dimension it is possible to apply temporal reasoning methods to solve the 

problem of chemotherapy plan abstraction. Identifying individual instances by 

corresponding drug-name and time-stamp can help establish temporal patterns among the 

sequence of events. Application of temporal logic enables extraction of such attributes as 

the periodicity and cycle length of plans inferred from the temporal patterns. Whereas 
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plan recognition needs to use an external knowledge base of standard plans as a reference 

to recognize the plan from the executed sequence of events, a plan abstraction method 

could be created that relies solely on the content of data to infer plans and derive the 

related attributes. 

I therefore hypothesize that it is possible to create a chemotherapy plan abstraction 

method that takes as input distinct chemotherapy drug events and accurately generate as 

output a temporal sequence of chemotherapy treatment summaries in terms of abstracted 

plans. 

1.5. Overview of the thesis document 

The following six chapters describe the development of the Chemotherapy Plan 

Abstraction Method (CPAM) and its application to cohort plan analysis.  Chapter 2 

describes the challenges of performing the chemotherapy plan abstraction and cohort plan 

analysis tasks in the clinical and research settings. Chapter 3 reviews the temporal 

reasoning literature related to the computational task of plan abstraction. This chapter 

includes a discussion of the dimensions of the plan recognition and plan abstraction tasks, 

prior work related to these dimensions, and their limitations. 

Chapter 4 describes the CPAM, a data-driven temporal reasoning method that takes 

as input chemotherapy medication events and generates as output a sequence of abstract 

chemotherapy plans for patients in multiple cancer domains. This chapter describes the 

details of the data extraction method, pre-processing method, and plan abstraction 

method. Chapter 5 describes the evaluation methodology and results, including an 

evaluation of the performance of the CPAM at a patient level, and an evaluation of the 

clinical utility of the abstracted plans for cohort plan analysis.  
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Chapter 6 discusses the contributions and limitations of the CPAM in the domains of 

informatics and medicine. Chapter 7 discusses possible future work including iterative 

improvements to the CPAM and its potential applications for patient care and clinical 

research. 
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CHAPTER 2   

CHALLENGES OF CLINICAL PLAN ABSTRACTION 

 

As recommended by ASCO(3), oncologists will often create a treatment summary 

for each course of treatment as an unstructured text document. These treatment 

summaries have several limitations. First, each individual summary provides an overview 

of a specific set of treatment events, but lacks an overall view of the patient’s entire 

treatment history. Second, they lack structure to enable use by downstream systems for 

clinical decision support or cohort analysis. Third, they are time consuming to produce 

since the only way to obtain the executed plan summary is by abstracting the plans from 

the chronology of past medication events. Finally, there are limitations with respect to the 

accuracy and truthfulness of past medication events that can be derived from the EMR. 

This chapter discusses the challenges associated with accessing the medication events 

from the EMR system for the purpose of chemotherapy plan abstraction. 

2.1. Challenges related to extraction of medication events from the EMR 

An executed clinical plan consists of a sequence of recorded clinical events that 

correspond to an intended clinical plan (table 1.1, figure 1.2). The EMR records these 

clinical events in many different and complementary ways. Some event records 

correspond more closely to the intended event (e.g., clinical order record) than to the 

executed event (e.g., nursing medication administration record). Some events are 

recorded in highly structured ways while others are recorded in free text, resulting in a 

variable accuracy in extracting these events. The following subsections describe the 

challenges related to medication event data extraction from the EMR systems. 
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2.1.1. Clinical information artifacts for medication events 

Treatment information is recorded in several types of clinical records and in various 

formats that have varying degrees of accessibility to automated systems. Providers often 

use multiple clinical data sources to extract the treatment summary. Each data source has 

advantages and disadvantages for manual or automated plan abstraction. 

2.1.1.1. Truthfulness of event and data accuracy. 

Plan abstraction requires accurate medication event data. Two levels of accuracy are 

apparent, event truthfulness and data accuracy. Event truthfulness refers to the confidence 

associated with the event having actually occurred. Data accuracy refers to the 

completeness and faithfulness with which event data is reproduced from a given data 

source. For a given EMR implementation, and the corresponding clinical data sources, 

there is an implicit decision process of optimization between event truthfulness and data 

accuracy. 

2.1.1.2. Clinical data sources 

The data sources considered for the purpose of chemotherapy plan abstraction 

method are clinical notes, provider orders, provider order sets, pharmacy dispensing 

records, and nursing medication administration records.  Table 2.1 presents a categorical 

summary of each clinical data source across the following dimensions: temporal context, 

degree of structure, storage format, data completeness, and medication information. 

These dimensions are analyzed with respect to truthfulness and data accuracy. 

The temporal Context refers to the temporal context of medication events recorded 

in each type of document including reference to the past, current or intended medication 



14 

 

events or plans. The information pertaining to the future events only conveys an 

intention, limiting the truthfulness of the event having actually occurred. 

The degree of structure refers to whether the data elements of medication events are 

in structured or free-text format. The degree of structure affects the data accuracy of the 

events. 

The storage format refers to the medium of data storage. Data stored on paper can be 

accessed manually, but only by a single user at a time. Data stored in digital media can be 

accessed by multiple simultaneous users as well as by automated or programmable 

systems. Text files stored as image files are more difficult for automated systems to 

process than text stored in an ASCII format. The storage format affects the data accuracy 

of the events. 

Data completeness refers to the extent of availability of data pertaining to different 

types of medication events, e.g., events pertaining to the medications taken at home, or 

taken outside a given institution. This data informs the degree of truthfulness of events. 

Medication information refers to the data elements of the individual medication 

events, e.g., the drug name, drug code, dosage, route, and schedule (time-stamp). This 

dimension along with degree of structure influences the data accuracy of the events. 
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Table 2.1. Categorical summary of clinical data sources. 

Summary of clinical data sources by various dimensions affecting the truthfulness 

and data accuracy. [V ≡ Implementation level at Vanderbilt University Medical 

Center; * ≡ Naming / Coding convention may be local to the institution.] 
D

im
e

n
si

o
n
 

Attribute 

Clinic 

Notes 

Provider 

Orders 

Provider 

Order Sets 

Pharmacy 

Dispensing 

Records 

Nursing Medication 

Administration 

Record 

T
em

p
o
ra

l 
C

o
n

te
x

t 

Current 

Medication 

Events 

+ + + + + 

Past 

Medication 

Events 

+ - - - - 

Future 

Medication 

events 

+ - - - - 

Current plan + - + - - 

Past plan + - - - - 

Future plan + - - - - 

D
eg

re
e 

o
f 

st
ru

ct
u
re

 Free text + + + - + 

Semi-

structured 

+/- + 

(V 95%) 

+  

(V 95%) 

- +  

(V 95%) 

Highly 

structured 

- + 

(V 5%) 

+ 

(V 5%) 

+ 

(V 100%) 

+ 

(V 5%) 

S
to

ra
g

e 

fo
rm

at
s 

Paper + + - - + 

Scanned Image 

Files 

+ (V) +  

(V 95%) 

+  

(V 95%) 

- + 

Digital + (V) + 

(V 5%) 

+ 

(V 5%) 

+ (V) + 

(V 100%) 

D
at

a 
C

o
m

p
le

te
n

es
s 

Administered 

Medications 

+ + 

(V 5%) 

+ 

(V 5%) 

+ 

(V 100%) 

+ 

(V 100%) 

Medications 

taken at home 

+ + 

(V 45%) 

- - N/A 

Within 

Institution 

record 

+ + + + + 

Outside 

Institution 

record 

+ - - - - 

M
ed

ic
at

io
n
 I

n
fo

rm
at

io
n
 Plan Name +* - +* - +/- 

Drug Name +* +* +* + + 

Drug Code - +* +* + +* 

Dosage  

(e.g., mg/m
2
) 

- + + + + 

Dose Amount 

(e.g., mg) 

+ + + + + 

Route (e.g., iv) + + + + + 

Schedule + + + + + 
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The following paragraphs describe the data sources in greater detail with respect to 

these dimensions. Table 2.2 lists the relative advantages and disadvantages of the data 

sources. 

Clinical notes: For every patient encounter, the provider creates a clinical note to 

record the details about the patient history, physical exam, test results, treatment plan and 

response assessment. The information can include a summary of the past, current, and 

intended medication events and treatment plans. When cancer treatments consist of 

multiple cycles that span many months, the providers often record information regarding 

the current treatment plan in their clinic notes and typically refer to the most recent 

clinical note to remind them of the state of the current plan.  Even with these reminders, 

the providers often lose track of the current cycle number and must use other sources to 

reconstruct the most recent history. 

Clinical notes are typically recorded in free text format. In the absence of an EMR 

implementation, the notes are handwritten on paper, and any subsequent information 

extraction is only feasible through manual review. EMR implementation allows direct 

entry of notes into the system that can then be accessed by programmable processes. The 

notes prior to the EMR implementation can be scanned and brought into the EMR system 

as image files with limited ability for data extraction.  The information contained in 

notes, however, is largely unstructured. To obtain any meaningful information, 

moderately sophisticated natural language processing (NLP) methods are required. The 

accuracy of information extracted from such methods however is limited and highly 

variable(6)
, 
(7)

,
(8).  
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Table 2.2. Advantages and disadvantages of various clinical data sources. 

[BCMA= Bar code medication administration.]  

Data 

Source 
Advantages Disadvantages 

C
li

n
ic

al
 N

o
te

s 

• Text documents ubiquitously available. 

• Can provide data about other events 

temporally correlated to medication 

events 

• Requires NLP to extract medication 

events and plans with variable accuracy, 

and temporal ambiguity(6)
,
(7)

,
(8)  

• Mention of medication indicates 

intention that may not result in 

corresponding administration event.  

P
ro

v
id

er
 O

rd
er

s 

• Computerized provider order entry 

(CPOE) systems contain well structured 

medication event data 

• CPOE systems provide electronically 

readable data that can be used by 

automated and programmable systems 

• Can provide data about other treatment 

events temporally correlated to 

medication events 

• Medications administered may differ 

from the order in dose or schedule, or 

may not actually be administered 

• The level of uncertainty of corresponding 

administration event is considerably 

smaller than that of clinical notes 

P
ro

v
id

er
 O

rd
er

 

S
et

s 

• Contain an order set name that may 

correspond to an abstract plan name 

• When unchanged, the order set name is 

consistently used across providers within 

an institution 

• Group medication events that are part of 

a plan 

• Order set name is institution specific and 

not standardized 

• Order sets may be used as a starting point 

template for a completely different plan 

• The level of uncertainty of corresponding 

to the plan is smaller than that of clinical 

notes 

P
h

ar
m

ac
y
 

D
is

p
en

si
n

g
 

R
ec

o
rd

s 

• Most hospitals have electronic pharmacy 

systems 

• Contain well structured medication event 

data 

• Provide electronically readable data that 

can be used by automated and 

programmable systems 

• Medication administered may differ from 

the pharmacy order in dose or schedule 

or may not actually be administered.  

• The level of uncertainty of corresponding 

administration event is smaller than that 

of provider orders or order-sets 

N
u

rs
e 

M
ed

ic
at

io
n

 

A
d

m
in

is
tr

at
io

n
 

R
ec

o
rd

 

• Most accurate document of what patient 

actually received (drug, dose, schedule, 

including time-stamp)  

• BCMA contains structured data about the 

administered drugs including time-stamp 

of administration, coded drug name, 

dose, units, route, schedule and 

frequency 

• Free text requires NLP to extract 

medication events 

• BCMA systems have limited use in most 

outpatient chemotherapy infusion centers 

 

Provider orders: Provider orders contain information about the provider’s intended 

plan of treatment and include orders for medications, procedures and lab tests. In many 
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systems orders are documented on paper, which are stored as such or scanned into a 

digital storage as image files. In either case, to obtain medication information, the 

accessibility to these documents is limited to manual processing.  

CPOE systems allow providers to enter structured orders that are recorded 

electronically. If CPOE is implemented the order information can easily be retrieved 

using standard tools. Unlike clinical notes no NLP is required and the data available is 

highly accurate, as to the ordering event of the medication. The medication event data 

obtained from provider orders is only the intention to administer the medication 

treatment. Some proportion of orders may be cancelled before being fulfilled by the 

pharmacy. Cancellations occur for many reasons including, lack of available drug, or a 

change in the patient state or treatment plan. These cancellations can affect the accuracy 

of medication event data obtained from provider orders and special processing is thus 

required. Clinical orders, however, have a higher degree of certainty with respect to 

current medication event than clinical notes, but not as certain as medication 

administration event records. Finally, provider orders are limited to a single institution 

and do not contain information about the orders outside a given medical facility. 

Provider order-sets: Many implementations of CPOE allow for the creation of order 

sets, a collection of orders that are defined by a specific treatment protocol.  Order sets 

facilitate ordering a complete set of drugs in the protocol all at once, rather than creating 

multiple individual orders from memory. Medications ordered using order sets retain all 

of the properties of regular orders described above. However, for the purposes of the plan 

abstraction task, order sets make two main contributions: 1) grouping medications 

together that belong to a plan creates a partial knowledge base of plans, and 2) order sets 
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are often assigned an institution specific identifiers including unique names and numbers, 

and their utilization can thus be tracked. Many institutions with CPOE order sets for 

chemotherapy solve the chemotherapy plan abstraction problem by looking at the order 

set name (or number). This approach has some advantages and disadvantages.  

When order sets are used, the order set name provides a consistent naming 

convention within the institution for that plan.  For example, the breast cancer plan "Dose 

Dense Adriamycin and Cytoxan" is a common adjuvant breast cancer plan that is also 

called "Dose Dense AC" or "dd AC" when written in short hand in clinical notes.  As 

such, providers will have variable representations of plan names in clinical notes, but 

order sets provide a consistent representation within the institution.  The order set names 

and identifiers, however, do not follow any national standard such that they can be 

compared across institutions. Yet, order sets are a convenient way to acknowledge plans 

that have a high likelihood of being the same intended plan across providers in a single 

institution, and are a more reliable representation of plan names than clinical notes. 

While this is useful for commonly prescribed plans, most institutions do not have the 

resources to create order sets for every variation of every possible chemotherapy plan. 

One institution’s recent implementation of a chemotherapy CPOE system for impatient 

and outpatient treatment required creation of over one thousand chemotherapy sets(9). 

 Some plans are only used once every few years for rare diseases.  Other plans are simply 

slight modifications of a more commonly used plan, and as such providers simply use the 

more common plan as a starting point template and modify it to transform to an alternate 

plan. Modifications can include changes in medication dose, deletion or addition of a 

medication or a modification to the plan schedule. It is, therefore, difficult to rely on the 
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order set name as the definitive evidence that the plan elements were administered to the 

patient.  

Furthermore, order sets do not capture the temporal frequency of plans. While each 

cycle may be represented by a separate order set, the provider has to remember how 

frequently each cycle should be given.  This is not represented in an order set view of 

chemotherapy plans. Finally, while inpatient CPOE order sets are relatively common, 

outpatient chemotherapy order management systems are less common. Availability of 

this type of data is lacking in many institutions. 

Pharmacy dispensing records: The hospital pharmacy information system (PIS) 

stores information for every medication dispensed that is intended for administration on 

the medical facility premises. This includes inpatient medications and outpatient 

medications to be administered in infusion centers. The PIS documents the medication 

events that are the closest representation of the corresponding administration event, short 

of administration itself. Thus the event data obtained from pharmacy dispensing records 

is a good representation of the executed medication events. Furthermore, most hospital 

facilities have implemented PIS, however they only store information pertaining to the 

dispense events at a single institution. 

Medication events in PIS are highly structured and can be readily retrieved. The 

pharmacy dispensing records store information related to the drug name, drug-code, 

dispense time-stamp, frequency, quantity, and billing charge. Many systems use National 

Drug Codes (NDC) as well as other drug coding systems to represent the names of drugs.   

Like CPOE systems, PIS are transaction systems that facilitate pharmacy workflow 

and billing.  Orders are cancelled through negation of charges. Cancellation of a 
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chemotherapy medication is recorded as a negation of the exact amount of the billing 

charge, while those for other medications can be a partial charge negation. Conventions 

for such cancellations vary with implementations and business rules at different facilities. 

The accuracy of reconstructing medication events obtained from pharmacy dispensing 

records is very high as long as the cancellations are addressed appropriately. 

Nurse medication administration records: Nurses create a record of each 

medication administered during an inpatient hospitalization or an outpatient infusion 

center visit. The nurse medication administration record is the highest level of truth that 

the patient received a particular medication. Each medication administration event 

records the drug name, dosage, administration time-stamp, and quantity given. These 

records reflect only the medication administration events within the premises of a given 

facility. 

Nurse medication administration records, at many facilities, are a paper-based or are 

documented in free text digital formats. Obtaining medication event information from 

these records involves manual or, if stored electronically, NLP processing. Some 

institutions have implemented bar-coded medication administration (BCMA) systems or 

structured nursing documentation systems. The medication administration event 

information in such cases is available in structured and complete format. This includes a 

structured coded drug identifier that uses a terminology similar to pharmacy systems.  

However, BCMA is rarely implemented at outpatient infusion centers where most of the 

chemotherapy drugs are administered.  
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2.1.1.3. Advantages and disadvantages of sources for chemotherapy events 

There is an implicit decision process for optimization between truthfulness of 

chemotherapy medication event and corresponding data accuracy for the task of 

chemotherapy plan abstraction. A comparison between the provider’s clinical notes and 

nurse administration records can provide a good example for event accuracy. A 

chemotherapy drug event recorded in clinical notes is only an intention of such an event 

to occur, whereas the same event recorded in nurse administration records provides the 

conclusive proof of occurrence of the event. If both the records are in free text format, 

data accuracy for either of these sources is limited. If the same chemotherapy event, 

however, is recorded in the CPOE or in the pharmacy dispensing records the event data 

accuracy would be very high. 

The BCMA records, if implemented and available, would provide the most accurate 

account of medication administration event in terms of event truthfulness and data 

accuracy. Given a choice between the CPOE and the pharmacy dispensing records, the 

later would provide a more accurate picture of chemotherapy drug events by virtue of 

being closer in time to the corresponding administration event. Also, relative to a given 

administration event, the corresponding provider orders in the CPOE system have a wider 

time-precedence as compared to the corresponding drug dispensing event. Moreover, 

electronic implementation of the pharmacy dispensing records has wider penetrance 

compared to CPOE implementations or provider order-set implementations. In an ideal 

scenario all of these sources could be used together and triangulated to provide a 

statistical certainty as to the degree of confidence in the occurrence of a medication 

event. 
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2.2. Challenges related to extracting chemotherapy plan history 

The executed chemotherapy plans are not recorded in structured abstracted version 

(figure 1.2C). The abstract versions of the plans therefore must be derived from the 

distinct medication events. Any task or process that derives the chemotherapy plans from 

the distinct medication events must be able to deduce the plan attributes for individual 

plans.  

An abstract representation of chemotherapy plan provides such attributes as the 

constituent drugs, number of elapsed cycles, average periodicity, the start date, and the 

end date. A chemotherapy plan history is a listing of executed plans (figure 1.2C) that are 

abstracted from the chronology of executed medication events (figure 1.2 B).  

A chemotherapy plan history is the treatment summary that an oncologist would refer to 

during the plan selection task (figure 1.1). The treatment summary not only contains the 

details of the actual plans administered, it also implicitly conveys the knowledge of the 

intended plans. It informs the oncologist regarding the sequence of the plans and the 

number of elapsed cycles of the past and current plan.  

Oncologists usually record such information as the current plan and the cycle 

number in clinical notes, to refer back to it during the subsequent encounter. The 

sequence of treatments is also recorded in summary sections of documents. Such 

documentation practices can be prone to transcription error and are often difficult to find 

in the sea of clinical records. Another approach is to reconstruct the treatment history by 

reviewing the history of distinct chemotherapy administration events, and creating an 

abstract conceptualization of the chemotherapy plans from the details and chronology of 

those events. Current interfaces, however, provide only simple formatting with basic 



 

segregation of the event data. An example of one such interface is a chemotherapy flow 

sheet shown in figure 2.1. 

Figure 2.1. An example o

A visual aid interface provided for oncologists. For a given patient and date

it provides patient specifics, some lab

given to the patient along with the chronology of the 

 

Manually abstracting chemotherapy plans from distinct chemotherapy drug events is, 

at best, a sub-optimized process.

plan attributes, and calculating the 

during a patient encounter.

2.3. Challenges related to cohort plan analysis

Many prospective and retrospective cancer cohort studies take into account the 

patient’s treatment history as part of their analysis. Researchers commo

and record the patients’ treatment history through manual data collection 

chart reviews. At the individual patient level, they use similar techniques and data 

sources as the clinicians to perform the plan 
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data. An example of one such interface is a chemotherapy flow 

.  

An example of chemotherapy flows-sheet. 

A visual aid interface provided for oncologists. For a given patient and date

it provides patient specifics, some lab-test data and lists the chemotherapy drugs 

given to the patient along with the chronology of the administration events.

bstracting chemotherapy plans from distinct chemotherapy drug events is, 

optimized process. Keeping mental record of the event order, inferring the 

plan attributes, and calculating the average periodicity of the plan cycles is not feasible 

during a patient encounter.  

Challenges related to cohort plan analysis 

Many prospective and retrospective cancer cohort studies take into account the 

patient’s treatment history as part of their analysis. Researchers commo

treatment history through manual data collection 

At the individual patient level, they use similar techniques and data 

sources as the clinicians to perform the plan abstraction task. Such efforts are very costly, 

data. An example of one such interface is a chemotherapy flow 

 

A visual aid interface provided for oncologists. For a given patient and date-range, 

test data and lists the chemotherapy drugs 

administration events. 

bstracting chemotherapy plans from distinct chemotherapy drug events is, 

Keeping mental record of the event order, inferring the 

the plan cycles is not feasible 

Many prospective and retrospective cancer cohort studies take into account the 

patient’s treatment history as part of their analysis. Researchers commonly reconstruct 

treatment history through manual data collection or retrospective 

At the individual patient level, they use similar techniques and data 

Such efforts are very costly, 
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time consuming, and sub-optimal at best.  Due to the high cost of manual data extraction, 

these efforts tend to be restricted to small patient samples. 

2.3.1. Data sources beyond the EMR for cohort plan analysis 

The comparative effectiveness research (CER) between two or more chemotherapy 

plans is feasible only when detailed treatment history is available for a cohort of patients. 

CER is designed to inform health-care decisions by providing evidence on the 

effectiveness, benefits, and harms of different treatment options(10). There has recently 

been a big push by the US government to encourage CER(11).  However, CER usually 

requires large data sets that historically have only been available in large state and 

national cancer registries.  One such cancer registry is the SEER(12) database that 

contains patient demographic, date of diagnosis, cancer type, cancer stage, first line of 

treatment and vital status.  It is used to create national cancer incidence statistics(13). 

However, the treatment history in SEER and other cancer registries is limited to a listing 

of the drugs used in the first line of treatment and their start date. It does not contain any 

information regarding the doses of medications, their frequency, number of cycles, 

duration of treatment, or treatment response.  Nor does it contain any information on 

subsequent therapies, an important piece of information for CER beyond first line 

therapy. Furthermore these registries are incredibly expensive to maintain since they 

require manual data abstraction and data entry. 

Other researchers outside oncology have performed cohort plan analysis using 

administrative health data such as claims management system (CMS) databases(14). The 

CMS databases contain coded information on medication events that are billed to 

insurance as part of patient care. The medication billing records include a date of service 
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and a structured medication code. Yet others have performed analysis of large databases 

of pooled outpatient pharmacy records. 

2.3.2. Learning cancer systems for cohort analysis 

A learning cancer system (LCS) has recently been described to facilitate secondary 

use of EMR data for continuous CER with feedback to clinical decision support 

systems(15).  Given the heterogeneity of clinical information artifacts for treatment 

history and medication events, automated methods will be needed to facilitate 

chemotherapy plan abstraction to realize the promises of a LCS. Both clinicians and 

researchers thus have a need for a method that can create a rich set of treatment history 

attributes similar to that of ASCO’s treatment summary guideline(3). 

Cancer research is currently limited to learning from the clinical outcomes of only 

the 3% of the cancer patients who participate the clinical trials. The recent progress in 

molecular testing has increased the number of sub-types of cancer patients, thus shrinking 

the individual pools of the study participants. Some molecular variants could be too small 

to necessitate data aggregation over multiple institutions. Given this trend, it would be 

compelling to learn from the experience of all cancer patients (with their data 

anonymized), rather than a small proportion of them.  

2.4. Hypothesis 

To satisfy these requirements, I hypothesize that an automated plan abstraction 

method can accurately abstract medication plans from the temporal sequence of 

medication event records across multiple cancer domains. The following approach was 

used to test this hypothesis:  
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• Create a data-driven method for automated chemotherapy plan abstraction. 

• Test the performance of the method against a manually annotated gold standard 

set of chemotherapy plans. 

• Train and test the performance of the method on a data set limited to two cancer 

diagnoses. 

• Test the generalizability of the method performance on a separate data set that 

includes all cancer diagnoses except those in the previous step. 

• Demonstrate the utility of the method for cohort plan analysis using a large data 

set of medication events from a single cancer diagnoses at a single institution. 

• Perform an across plan analysis by identifying the most frequent plans for a given 

cancer diagnosis. 

• Perform a within plan analysis by exploring the variance in sequencing, total 

number of cycles, and cycle frequency for a given plan for a single cancer 

diagnosis. 
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CHAPTER 3  

TEMPORAL REASONING FOR PLAN ABSTRACTION 

 

Temporal reasoning is essential to successfully addressing problems of a time-

sensitive and dynamic world. Plan abstraction is a type of temporal reasoning task that 

takes as input time stamped events and produces as output a sequence of abstracted plans. 

Temporal representation and reasoning as an area of informatics research has been 

extensively reviewed(16–21). This chapter focuses on the dimensions of temporal 

abstraction methods as they relate to plan abstraction, prior work on temporal abstraction, 

and limitations of the prior approaches to perform the task of temporal abstraction. 

3.1. Dimensions of temporal abstraction methods 

Before discussing the abstraction methods and techniques, it is important to 

understand the dimensions involved in temporal abstraction (TA) methodologies. The 

dimensions of a typical TA method include input data, input knowledge, reasoning 

methods used to perform the temporal abstraction task, the abstracted output data, and the 

clinical domains of application. The following sections describe details of each of these 

dimensions. Table 3.1 lists three of the several methods discussed in the following 

sections, along with their dimensions. 

3.1.1. Input data 

TA creates higher level concepts from input of distinct event data represented as 

instances or intervals in time. In the medical domain higher level concepts are abstracted 

from clinical event data. Some examples of clinical event data are medications, clinical 

procedures, lab tests, and vital sign (temperature, blood pressure, pulse rate) 
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measurements. Clinical data event may itself be structured and contain data components. 

For example, in chemotherapy plan abstraction, the medication event has a drug-name 

and dose amount. 

 

Table 3.1: Summary of the temporal abstraction methods. 

Method Input Type 

Clinical 

Domain Output 

RESUME Time-stamped 

observational or 

treatment events 

Knowledge-

based 

AIDS, 

CGVHD 

Set of interval-based, 

context specific 

parameters at the same 

or higher level of 

abstraction, along with 

their respective values 

(based on 

KBTA) 

RASTA 

(distributed 

algorithm) 

Time-stamped 

event data and 

case-identifiers 

(patient-ID) 

Knowledge-

based Hypertension 

Structured datasets 

passed as XML to 

invoking application or 

stored in relational 

database 

CAPSUL  

Time-stamped 

event data 

pertaining to the 

procedures, 

treatments, and 

lab results 

Knowledge-

based 

Bone 

Marrow 

Transplant 

(BMT) 

Interval-based 

abstractions directly 

used by applications or 

displayed using 

visualization tool (e.g., 

KNAVE) 

 

The temporal granularity of input data defines the conceptual representation of the 

timestamp associated with the input event (e.g., a second, an hour, or a day). The 

RESUME system(22), for example, uses timestamps at specific predefined level of 

granularity. Complex temporal abstractions can be inferred from the input event data, but 

the set of granularity levels (and thus the implied temporal uncertainty) is limited to the 

finest granularity of the input data.  
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The complexity of TA task increases if multiple granularities are used for the input 

timestamps(19; 20); it is therefore desirable that the timestamp used for input events be 

uniform. Given the disparate and varying nature of data sources that provide the input 

event data (see chapter 2), it is often required to conform the input data to use consistent 

temporal granularity. Such procedures are covered by pre-processing steps. Conformation 

of the temporal granularity is but one of the pre-processing steps. Other pre-processing 

steps include filtering of input event data with-respect to desired type of events and fixing 

it with respect to the data content.  

3.1.2. Input knowledge 

The input knowledge used by TA methodology is typically known as a ‘knowledge 

base’. Some TA methods that use a ‘knowledge base’ as input can be applied across 

multiple domains. A knowledge base is useful as input in the creation of generalizable 

TA methods that are not domain- or problem-specific. In such implementations the 

methodology remains the same while the knowledge base used is domain-specific and 

therefore changes depending on the applied domain. Depending on the method, the input 

knowledge base can be a combination of rules, ontologies, or semantics. 

One of the most well-known TA methods is Y Shahar’s KBTA framework(23), 

developed in 1980s. In this framework the external knowledge base provides domain 

specific structural and semantic knowledge to perform TA tasks. It uses four domain 

specific knowledge types: structural, classification, temporal semantic and temporal 

dynamic knowledge. As another example, ChronoMiner developed by R. Raj(24) is an 

ontology-driven method, which uses a mining ontology as an input knowledge base to 
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mine patterns of HIV mutations associated with the drug-resistance from the time-

oriented research data. 

The abstractions produced by methods using a knowledge base are dictated and 

constrained by the input knowledge. Even though the TA methods that use a knowledge 

base can be applied across multiple domains using domain-specific knowledge, they 

require the knowledge to be maintained and kept up-to-date to produce accurate 

abstractions. Often a separate effort is established to acquire and curate the knowledge 

base for each domain of application; “Knowledge acquisition” as the step is termed in 

KBTA, involves collecting and curating the knowledge and building onto it moving 

forward; this step also involves amending or improving the existing pool of 

knowledge(25). 

3.1.3. Reasoning methods 

The reasoning methodology itself can be classified broadly into knowledge-driven 

and data-driven methods. A knowledge-driven method uses an external knowledge base 

as a guide to recognize abstractions from the input data and consists domain independent 

reasoning subtasks. A data-driven method, on the other hand, uses the input data itself to 

perform the abstraction task. The following two subsections describe the knowledge-

driven and data-driven TA approaches and corresponding examples. 

3.1.3.1. Knowledge-driven methods 

The knowledge-driven TA methods use domain-specific structural or ontological 

knowledge to perform generic TA tasks.  
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Shahar’s KBTA(23) method, for example, uses domain specific structural, 

classification, temporal semantic and temporal dynamic knowledge as its knowledge 

base. The KBTA method itself is decomposed into five sub-tasks: temporal context 

restriction, vertical temporal inference, horizontal temporal inference, temporal 

interpolation and temporal pattern matching. Each of these sub-tasks is solved by a set of 

corresponding domain independent rules. These sub-tasks produce abstractions of several 

types: state (e.g., high, low), gradient (e.g., increasing, decreasing), rate (e.g., slow, fast), 

and pattern (e.g., crescendo). The RESUME system(22) is an implementation of KBTA 

framework. The knowledge base for RESUME is called “TA ontology” and it defines 

ontologies of events (e.g., drug administration), of parameters (e.g., blood-glucose 

values), and of interpretation contexts. The RESUME system takes as input the time-

stamped patient data and clinical events, and produces abstractions that can be stored for 

additional analysis or for subsequent use by other applications. The TA mechanisms 

iterate alternately, activated by the input data and by the previously derived abstractions. 

This setup, as Shahar and Musen describe, makes KBTA versatile enough to be used over 

a variety of clinical domains(26).  

RASTA is another knowledge based approach developed by O’Connor et al(27). 

RASTA incorporates many ideas and concepts used by RESUME (which uses KBTA 

framework), and acts as a basis of a scalable architecture for performing temporal 

reasoning with clinical data. RASTA uses a distributed algorithm to allow independent 

evaluation of abstractions in abstraction hierarchies. The algorithm allows the 

methodology to work in parallel on very large datasets and supports varying 

configuration options to deal with different application requirements. RASTA uses an 
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“abstraction knowledge base” for input knowledge, which is a detailed description of all 

the temporal abstractions that it can perform in a particular domain with the time-stamped 

input data (termed as primitive data in RASTA terminology). The input data is assumed 

to be sourced from a relational database specified in the ‘mapping knowledge base’, 

which also specifies the database table and column name for each data component. Each 

piece of the input (primitive) data is time-stamped. The abstractions are associated with a 

particular context (another part of knowledge base) – a proposition that intuitively 

represents a state of affairs (e.g., an abstraction may be relevant only during the 

administration of a certain type of drug).  The TA algorithm itself, like the KBTA 

framework, contains four sub-tasks: context restriction, vertical temporal inference, 

horizontal temporal inference and temporal interpolation. 

Chkravarty et al. proposed CAPSUL(28) as a ‘pattern specification language’ to 

acquire and evaluate the knowledge for the knowledge base, and to perform TA by 

analyzing patterns among the time-oriented clinical data. CAPSUL allows the 

specification of components (what repeats), pattern constraints (how it repeats) and the 

corresponding context to define the ontology of patterns. CAPSUL allows 3 levels of 

constraints, local, global, and repeating, which are defined as ranges to enhance 

flexibility. Based on the given ontology of patterns (the knowledge base), CAPSUL relies 

on the RESUME system as its computational tool to perform the temporal abstractions. 

Abstractions are associated with respective rules that govern how they are derived from 

the input time-stamped data points for a given set of constraints. As is the case for 

RESUME, the newly created abstractions are added to a general pool of instances from 

which further abstractions can be derived. 
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3.1.3.2. Data-driven methods 

Data-driven methods rely on the content of the ‘input data’ to abstract and infer 

temporal information. These methods adopt statistical, machine-learning, or heuristic 

approaches for TA over the data.  

The data-driven methods adopting statistical approach use tools of regression 

analysis or association rules to perform TA. For example Lin et al. used logistic 

regression, association rule analysis and classification trees (a data mining technique) to 

impute associations between antiretroviral drugs administered (as a predictor) to the HIV 

patient and corresponding mutation of the HIV(29). The temporal analysis used was the 

time-window of drug administration and the extent to which the HIV mutated during that 

time. The temporal abstraction produced at individual patient level was the length of the 

time window and corresponding number of mutations in the HIV.  

Bramsen et al. used a supervised machine-learning approach to identify pair-wise 

temporal relations using temporal anchors(30). They used manually annotated samples 

for supervised training and used segment boundaries (events) and anchors (e.g., 

yesterday) to discern the relationship between events. This method would produce a set 

of event pairs and their temporal relationship identified by the method in terms of before, 

after and incomparable, along with a corresponding score (a higher score indicates higher 

confidence). The method may produce, for example, an event pair (insulin injection, 

blood glucose measurement) with a relationship of ‘before’ – indicating that the event 

‘insulin injection’ occurred ‘before’ the event of ‘blood glucose measurement’.  

A heuristic approach seeks to gather temporal information by exploration of 

possibilities, rather than following pre-set rules. Cousins et al. have used the temporal 
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granularity heuristics(17) to associate the level of importance of a medical event to the 

temporal granularity being considered. For example, even in an acute setting like an ICU, 

previously recorded information is manipulated at a different level of temporal 

granularity than the current events; also, once discharged from the hospital, the entire 

ICU course can be combined into a single abstract fact.  

Data-driven TA methods, unlike the knowledge-based methods, do not use any 

external reference to perform the task of abstraction. The abstraction task is performed 

either by using standard algorithms (e.g., statistical methods) or by using / following the 

features contained in the data itself. 

3.1.4. Output data 

Temporal abstraction methods can produce outputs of various types typically with a 

time interval temporal representation. The KBTA method is capable of producing 

temporal abstractions of interval, state, gradient, rate and pattern, depending on the 

application. The RESUME system(22), for example, produces temporal abstraction for 

chronic graft-versus-host disease (CGVHD). The abstraction (shown in Figure 5 of the 

paper) shows the respective grades for mylo-, platelet or granulocyte toxicity, along with 

corresponding trends of decreasing or increasing platelet and granulocyte counts. 

The RASTA system produces abstractions as structured data sets of temporal 

intervals. These abstractions are passed to the invoking application as a custom XML 

data structure or stored in a relational database. The output of CAPSUL is a set of 

interval-based abstractions (including pattern abstractions) that can be directly used by 

applications, or can be displayed and explored using visualization tool, such as 

knowledge-based abstraction visualization and exploration (KNAVE)(31). 
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Other customized TA applications, such as the temporal granularity heuristics 

created by Cousins et al. produces an output on a graphical user interface (GUI) to 

communicate the time-line of the events that can be interactively manipulated to varied 

degree of granularity and observe the events(17). The time-line of diabetes data for a DM 

patient shows events of illness, stress, hospitalization, along with varying levels of blood 

glucose. The ChronoMiner(24) by R. Raj also produces the GUI output showing the 

subject-wise longitudinal view of clinical data showing the viral load, mutations, the 

chronology of the drug treatment intervals for each drug. Such visual displays are 

informative and can communicate valuable information to clinicians.  

Bramsen et al. produce pair-wise temporal associations between events(30) and 

respective events as identified by the segmentations that can be useful for processing 

clinical narratives. The output abstractions produced by the KBTA based methods used 

by Shahar and Musen can be of different types, state, gradient, rate or pattern; and are 

determined by using goal-oriented task specific controls. 

3.1.5. Clinical domains 

Given the fact that patient health and medical data is time-sensitive, temporal 

representation and abstraction touches almost every domain of medical practice. There is 

a long history of using temporal abstraction methods in the domain of cancer dating back 

to the 1980’s. Kahn et al. developed TOPAZ(18) to interpret time-varying patient data for 

applications in cancer chemotherapy treatments and generate narrative summary of the 

temporal events found in the EMR. 

The KBTA method and CAPSULE have both been used for assessment of graft 

versus host disease in bone marrow transplant. The KBTA method has also been used in 
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the domain of therapy for insulin-dependent diabetes(26), and AIDS patients’ therapy(22; 

32). Levy’s Rule-based Response Assessment Method was used to classify tumor 

response to treatment in solid tumors and lymphoma(33). In the domain of medical 

research Lin et al.(29) and Raj et al.(24) have used customized TA methods to study HIV 

mutations associated with drug-resistance. Shahar and Musen reason(34) that clinical 

guidelines are a common format in medical domains (be it oncology, AIDS, or diabetes) 

for prescribing a set of rules and policies that a provider should follow. They have 

demonstrated that automated support for clinical guidelines could be enhanced 

considerably by formal representation of therapy-planning-operators’ efforts, plan-

revision strategies, and the underlying goals and policies of the guideline in the form of 

temporal abstraction patterns to be maintained, achieved or avoided.  

TA is a very useful mechanism available to analyze medical information. With the 

advent of EMR systems, it is imperative that various applications of TA can be designed 

and devised. Adlassnig et al.(20) have provided a detailed account of promising 

directions of research in the field of temporal representations and reasoning in medicine, 

and Augusto(19) suggests that more research is needed to make time-based systems for 

widespread use in medicine. 

3.2. Limitations of prior work on temporal abstraction 

The existing methods such as those based on KBTA(23)
, 

(26), use external 

knowledge base as a reference to perform TA. To accomplish the TA task accurately, 

these methods require a carefully compiled and curated knowledge base. Additionally 

they need to continually maintain this knowledge base to keep it up to date. The tasks of 

knowledge acquisition and evaluation require the creation of the additional elaborate 
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tools. In the cancer domain itself, as was discussed in chapter 2, there are over one 

thousand protocols of chemotherapy treatment(9) with several thousand more under 

investigation in therapeutic clinical trials(35). If a knowledge-based TA method were to 

be used for chemotherapy plan abstraction, it would require maintaining a knowledge 

base of all these chemotherapy protocols and regular updates that result from the 

developments of the new protocols culminating at the end of the clinical trials in 

progress. This regular maintenance of a knowledge base requires significant effort from 

experts in various cancer domains.  

Other TA methods have restricted application for detecting patterns from the input 

events and are otherwise not generalizable or reusable methods. The data-driven method 

for prediction of HIV mutations by R. Raj(24), for example, indicates only temporal 

association between the HIV mutations and corresponding treatment. It is used as a 

preliminary step to provide predictors for domain experts to perform confirmatory 

analysis. The elegant interface produced by Cousins(17) for display and manipulation of 

temporal information does a very good job of displaying temporal events in appropriate 

sequence, but achieves little in creating patterns at the output with associated attributes to 

aptly describe features of the distinct treatment plans abstracted from the input events. 

The data-driven method for finding temporal order in discharge summaries by 

Bramsen(30) is also restricted to indicating temporal association between two events in 

terms of their relative temporal order. 

3.3. Informatics opportunity 

Considering the limitations of the knowledge-based TA methods, there is an 

opportunity to create a data-driven plan abstraction method that does not rely on external 
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knowledge base to abstract medication plans. In an ICU setting knowledge-based and 

data-driven methods were used for TA to derive features that would be used to predict 

whether postsurgical patients needed mechanical ventilation (MV)(36). The knowledge-

based method uses knowledge from practitioners to derive qualitative patterns of state 

changes. The data-driven method, on the other hand, searches through a large number of 

data summaries to discover those that have predictive value for the need for MV. An 

assessment of the two methods by Verduijn showed that the knowledge-based method 

had better sensitivity, with a lower misclassification rate. Moreover, the data-driven 

method provided additional statistical summaries.  

In addition to the need for an integrated solution for a plan abstraction method at 

clinical level, it is expected that such a tool would be useful in performing cohort 

analysis. As described in chapter 2, the task of extracting treatment history for individual 

patients in a cohort study is laborious, lengthy and costly. A tool that can abstract 

treatment history from distinct medication events can prove to be a valuable resource.  
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CHAPTER 4  

CHEMOTHERAPY PLAN ABSTRACTION METHOD

 

The chemotherapy plan abstraction method takes as input chemotherapy 

a sequence of patient level chemotherapy treatment 

plans can be used for patient care and research, or can be used as input to a cohort pla

Schematic of chemotherapy plan abstraction method. 

processing module takes its input from a data source residing in the EHR 

(Electronic Health Record) and produces standardized, time-stamped medication 

event data. The plan abstraction method reads the time-stamped medication event 

data as input and produces patient level plans as output. These plans can be 

analyzed at the cohort level to provide informative aggregate data.
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stamp medication events, detect temporal patterns among them
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medication plans at the output. The method uses a ‘data-driven’ knowledge base (KB) to 

refine the plans before delivering the plans as output. Figure 4.1 shows the schematic of 

this approach. Depending on the particular requirements of the data source for medication 

events, a corresponding pre-processing module creates standardized medication event 

data that can be used as input to the method. The chemotherapy plans and corresponding 

information attributes that the method produces provide valuable information to the 

practicing oncologists. This information, when considered collectively over patient 

groups, can serve as input for cohort level analysis.  

4.2. Pre-processing of data 

The method expects the medication events to have a minimum of three important 

attributes, Patient ID, Drug Name, and the date-time stamp of drug administration. Very 

few data repositories in EHR subsystems can provide medication event data with these 

attributes without some amount of pre-processing. A pre-processing module imparts 

flexibility to the method by enabling it to read input data from disparate sources. Pre-

processing incorporates filtering, cleansing and transforming of the input data to 

accommodate variances inherent in the sources of data. 

4.2.1. Data Sources 

Table 2.1 summarizes the various clinical data sources available at the Vanderbilt 

University Medical Center (VUMC) (denoted by a “V”) that could be used to extract 

medication events. 

At the time of this study, these data sources were available with variable 

completeness (denoted by the “%”). Specifically, bar-coded nursing administration 

records were not available for the patients treated in the outpatient cancer infusion center, 
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where the vast majority of cancer drug therapies are administered. Pharmacy dispensing 

records, however, were available electronically for both the outpatient and the inpatient 

population, providing a complete record of the chemotherapy medications administered 

to the cancer patients at our institution. The pre-processing method discussed here creates 

well-formatted medication events from the pharmacy transaction database for use as 

input to the CPAM. 

4.2.1.1. Pharmacy database and the Synthetic Derivative 

The Enterprise Data Warehouse (EDW) at the VUMC contains the schema where 

pharmacy transaction data are stored. Four DB tables in this schema contain the 

medication dispensing information. The EDW, however, contains patient identified data. 

To develop and test the plan abstraction method while maintaining patient privacy, we 

chose to de-identify the pharmacy datasets used for training and testing the method. At 

the same time, we took the opportunity to incorporate the comprehensive version of the 

de-identified pharmacy data into our institution’s de-identified synthetic derivative of the 

EHR.  

In 2006, the VUMC began the effort of creating a comprehensive de-identified 

relational research database called the Synthetic Derivative(37) (SD).  The SD contains 

clinical data (physician notes, orders, diagnoses, lab tests, etc.) in de-identified form(38), 

derived from the VUMC’s EHR; all the personal information from the EHR is stripped, 

and dates shifted (synthesized) before it is inserted into the SD.  

The SD makes use of DE-ID, a commercially available licensed de-identification 

tool, to scrub EHR records of the 18 HIPAA safe harbor provisions, along with the other 

significant pre- and post-processing techniques. The de-identification process ensures that 



 

the corresponding relevance of attributes to individuals is maintained, but re

identification (reverse of de

(MRNs) identifying individual patients are replaced by respective 

(RUIDs), and dates (of birth, admission, discharge, diagnoses, etc.) are randomly shifted. 

To ensure temporal relativity of the dates 

the date shift is consistent for a given patient. 

approval, which was obtained for this study

 

Figure 4.2. SD and Tumor Registry

Figure showing pharmacy dispensing records set in SD and corresponding overlap 

with the Tumor Registry data in terms of number of patients that have respective 

data in either sets. SD = Synthetic Derivative.

 

Currently over 1.5 TB in size, the SD contains information 

patients from the majority

results, vital signs, imaging, pathology reports, billing codes, clinical narratives etc. 

43 

the corresponding relevance of attributes to individuals is maintained, but re
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SD has been used as a stand-alone resource for clinical research. The Vanderbilt Ingram 

cancer center (VICC) tumor registry (TR) data for over 62,000 patients has recently been 

added to the SD, to enhance cancer research. As part of research effort for this thesis, 

pharmacy data was added to the SD consisting of 17,645,747 charged item records 

between January 2, 2006 and May 22nd, 2011. Figure 4.2 shows the pharmacy 

dispensing records set and the TR data set, and the number of patients with data in both 

sets. 

4.2.2. Data extraction and processing methods 

For the purpose of testing the chemotherapy plan abstraction method, only 

medication dispensing transactions pertaining to chemotherapy drugs were extracted. 

Vanderbilt's pharmacy system uses National Drug Codes (NDC) as its controlled 

terminology for representing drug concepts. A sub-set of these codes is manually 

classified as "cancer drugs" for operational purposes.  This classification was used as a 

reference to filter the pharmacy dispensing records for chemotherapy drug instances. A 

single de-normalized dataset of chemotherapy drug events was extracted from the 

pharmacy data in the SD. Each record in the dataset had the following attributes: 1) a 

surrogate of patient identifier, 2) name of the drug, 3) NDC identifier, 4) drug dose, 5) 

frequency at which the drug is to be administered, 6) route of administration, 7) the 

quantity of the drug dispensed, 8) the dollar amount charged to the patient’s account, 9) 

the date-time-stamp of the charge, and 10) the date of charge. The date-time-stamp of 

charge corresponds to both the pharmacy dispense date and the nursing drug 

administration date. 
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Derivative). The pre-processing module extracts the chemotherapy

events from pharmacy dispensing records in SD by applying chemotherapy drug

filters. The chemotherapy drug events are then normalized through several pre
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drugs events, 3) normalizing drug names, and 4) consolidating drug doses. At the 
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indicate the patients and corresponding medication events.]  
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Eliminating canceled orders: Pharmacy systems are clinical transaction systems that 

allow the pharmacy department to record and store orders and bill for the dispensed 

medications. If the order is valid when the patient presents to the infusion center to get 

their medication, the nurse administers the medication and the corresponding charge is 

processed by the billing system. If due to some reason the dose needs to be changed or 

the medication canceled, the pharmacy system records that cancellation as a reversal of 

the charge for that dispensing event. A small proportion of the transactions have positive 

as well as corresponding negative charge records. To eliminate these canceled orders, the 

pre-processing method groups the pharmacy records by patient, drug name and credit 

date of charge. The corresponding charge amounts are aggregated to obtain the net 

amount charged for a given drug-dispensing event. Dispensing events with a net zero 

charge were eliminated, since they represent cancelled orders, as illustrated in figure 4.4 

drug B is eliminated because B+ and B– charges for drug B result in 0 net charge. 

Removing records with oral drugs: Anti-cancer therapies that are given orally are 

typically taken at home daily or for several consecutive days. Most of these therapies are 

not dispensed by the hospital chemotherapy pharmacy but rather by the patient’s 

preferred outpatient pharmacy. Rarely, these drugs are dispensed by the hospital 

chemotherapy pharmacy when the patient is admitted to the hospital or on a research 

protocol. Since these events were rare and did not represent a complete history of oral 

anti-cancer therapies prescribed to our patient population, they were eliminated for the 

purpose of this analysis. All the dispensing records with oral administration route 

(attribute ROUTE with either of these values – ‘ORAL’, ‘PER TUBE’, ‘PO’, ‘PO/PT’ – 



 

which are all equivalent of oral route) were therefore removed. As illustrated in figure 

4.4, drug F with oral route is removed.
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which are all equivalent of oral route) were therefore removed. As illustrated in figure 

4.4, drug F with oral route is removed. 
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variants to respective common terms, distinct drug names were extracted from the initial 

dataset. A practicing oncologist manually mapped the synonyms to a common preferred 

drug term. The original dataset was then augmented with a new attribute – 

DRUG_NAME_USED; for each record with drug name variant, the corresponding 

preferred term was assigned to this new attribute. As illustrated in figure 4.4, Drug E is a 

variant of drug B and therefore name B is assigned to this drug. For example, drug names 

Docetaxel and Docetaxel (Taxotere) are both equivalent to Docetaxel; therefore the name 

Docetaxel assigned to the new attribute DRUG_NAME_USED for both cases. 

Drug dose consolidation and controlling temporal granularity: Some medication 

orders have multiple dispensing records in the pharmacy system because the total dose of 

a given medication order is dispensed in multiple vials. Depending on the quantity of the 

drug ordered, the corresponding transactions are appropriately split if it exceeds the 

constrained size. Also, the finest granularity of administration event frequency considered 

for this method is one day. Any given drug with multiple doses dispensed on the same 

day, for a given patient, is counted as a single drug event in the temporal sequence of 

drugs administered to the patient. This was done by assigning the earliest date-time stamp 

to the group of records that matched for the patient, drug name and dispense date. For 

example, drug B in figure 4.4 (which was originally named drug E) is dispensed as two 

separate doses on the same day. It is consolidated into a single dose, with the earliest 

time-stamp of the two. As an example, the drug Doxorubicin is typically dispensed in two 

vials, corresponding to a single dose administered to a patient. These two dispensing 

events were consolidated into a single dispense event. 
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At the end of the pre-processing steps, the dataset consisted of 

therapy drug events for 7,805 distinct cancer patients, spanning 5 years and 5 

wing attributes: 1) a surrogate of patient identifier, 2) name of the 

g (with common terminology) and 3) dispense date. 

Plan abstraction Method steps. 

1) Assign day number, 2) group same day events, 3) group successively recurring 

events, 4) identify patterns and 5) consolidate partial patterns by referencing 

knowledge base (KB).  

chemotherapy plan abstraction method 

chemotherapy plan abstraction method takes as input

medication events including the patient ID, drug name, and administration 

generates as output a sequence of patient level chemotherapy plans. The method 

in a 5 step process shown in figure 4.5: 1) assign

events, 3) group the successively repeating events, 4) 

processing steps, the dataset consisted of 136,998 

, spanning 5 years and 5 
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Figure 4.6. Steps 1 and 2 of 

Step1 – Assigning day number

chronologically and then, assigned a relative day number starting with 1. 
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relative day number.
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consolidate partial plans. The drug events are processed one patient at a 

to arrive at the patient level chemotherapy plans. The first two steps, being relatively 

simple are achieved by using queries written in structured query language (SQL)

later three steps involve relatively complex processing and use Perl scripts.

Steps 1 and 2 of CPAM. 

Assigning day number: Medication events for a given patient are ordered 

chronologically and then, assigned a relative day number starting with 1. 

Subsequent events are assigned day numbers relative to this first event. Day# = 

relative day number. 

Grouping same day events: Events occurring on the same day are grouped 

together with drug names abbreviated and concatenated. 

Assign day number 

The method starts with assigning a day number for each event, for a given patient. 

After arranging events in chronological order, the earliest event is assigned

processed one patient at a 

The first two steps, being relatively 

written in structured query language (SQL). The 

later three steps involve relatively complex processing and use Perl scripts. 

 

: Medication events for a given patient are ordered 

chronologically and then, assigned a relative day number starting with 1. 

Subsequent events are assigned day numbers relative to this first event. Day# = 

: Events occurring on the same day are grouped 

, for a given patient.  

order, the earliest event is assigned the day 
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number of 1 with each successive event numbered based on its date relative to the earliest 

event. This step thus converts absolute time instances into their corresponding relative 

time instances. For example, as shown in figure 4.6, the earliest drug event for Cisplatin 

occurring on 2008-07-29 is assigned the day number of 1. A subsequent event occurring 

on 2008-08-19 is assigned the day number of 22, that date being the 22
nd

 day from 2008-

07-29. Events occurring on the same day are assigned the same day number; for example, 

events for Bevacizumab, Carboplatin and Paclitaxel occurring on 2008-09-30 are all 

assigned the day number of 64. 

Step 2: Group the same day events 

In this step, the events occurring on the same day are grouped together to form a 

common event and the corresponding drug names are concatenated. Before 

concatenating, the names are capitalized and abbreviated to the first four characters, and a 

‘+’ sign is used as a separator between consecutive drug names. Figure 4.6 highlights 

these actions. For example events for the drugs Cisplatin and Etoposide occur on the 

same day; these events are merged together as a single event. The drug names are 

abbreviated to CISP and ETOP respectively, concatenated and separated by a ‘+’ sign.  

Abbreviating the drug names and concatenation thereof with a ‘+’ separator creates a 

new vocabulary for the CPAM. 

Step 3: Group the successively repeating events 

By this step, for a given patient on any given day, only a single event comprised of 

one or more drugs remains. With the events arranged in chronological order, the method 

looks for successively repeating events. Each group of repeating events is merged 



 

together into a single record instance. For example, as shown in figure 4.7, events for 

Etoposide (ETOP) repeat twice and are merged into a single instance with a relative date 

of ‘2, 3’ as an attribute. As another example, events comprising

Bevacizumab (BEVA), Carboplatin (CARB) and Paclitaxel (PACL) are merged together 

into another single record instance of drug combination BEVA+CARB+PACL, a 

chemotherapy plan commonly prescribed to lung cancer patients. Several new attributes 

are created at this step including 

carried forward to the next step (and defined in table 4.1). Simple plans start emerging at 

the end of this step, but more complex plans require additional processing.

Figure 4.7. Step 3 of CPAM.

Group the successively repeating events

merged into a single instance with corresponding start

number of cycles.

 

Step 4: Identify patterns

In this step, the method 

sequence of record instances produced 
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together into a single record instance. For example, as shown in figure 4.7, events for 

Etoposide (ETOP) repeat twice and are merged into a single instance with a relative date 

of ‘2, 3’ as an attribute. As another example, events comprising

Bevacizumab (BEVA), Carboplatin (CARB) and Paclitaxel (PACL) are merged together 

into another single record instance of drug combination BEVA+CARB+PACL, a 

chemotherapy plan commonly prescribed to lung cancer patients. Several new attributes 

re created at this step including StartDate, DayString and (number of) Cycles

carried forward to the next step (and defined in table 4.1). Simple plans start emerging at 

the end of this step, but more complex plans require additional processing.

of CPAM. 

the successively repeating events. Events that repeat successively are 

merged into a single instance with corresponding start-date, day

number of cycles.  

Identify patterns 

n this step, the method attempts to detect the repeating patterns of drugs among the 

sequence of record instances produced in the previous step. As shown in figure 4.

together into a single record instance. For example, as shown in figure 4.7, events for 

Etoposide (ETOP) repeat twice and are merged into a single instance with a relative date 

of ‘2, 3’ as an attribute. As another example, events comprising of the drugs 

Bevacizumab (BEVA), Carboplatin (CARB) and Paclitaxel (PACL) are merged together 

into another single record instance of drug combination BEVA+CARB+PACL, a 

chemotherapy plan commonly prescribed to lung cancer patients. Several new attributes 

Cycles, which are 

carried forward to the next step (and defined in table 4.1). Simple plans start emerging at 

the end of this step, but more complex plans require additional processing. 

 

. Events that repeat successively are 

date, day-sequence and 

detect the repeating patterns of drugs among the 

previous step. As shown in figure 4.8, the 
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pattern consisting of an instance of CISP+ETOP followed by an instance of ETOP is 

repeating twice. Record instances exhibiting such patterns are merged together with 

corresponding pattern constructed. For example, the pattern of CISP+ETOP followed by 

ETOP is constructed as “CISP+ETOP, ETOP”, where a comma (“,”) separates each drug 

component in the pattern. This is another example of the emerging vocabulary for this 

method. Whenever such patterns are identified corresponding record instances are 

merged and several attributes are re-computed as described in table 4.1. Any records not 

participating in pattern sequences are carried forward unaffected. For example, as shown 

in figure 4.8, the record instances consisting of the drug group CISP+ETOP and another 

one consisting of the drug group BEVA+CARB+PACL. 

Step 5: Consolidate partial patterns 

Close examination of step 4 output reveals some plans that appear similar to other 

plans, but are somehow incomplete. For example, the record corresponding to plan 

‘CISP+ETOP’ (the second in the list at step 4 of figure 4.8) appears to be an incomplete 

version of the previous plan ‘CISP+ETOP, ETOP’. This could have happened due to the 

patient intolerance to the toxicity of the drugs and thus likely represents an incomplete 

cycle of the same plan. To be able to infer such incomplete or non-repeating complex 

patterns as plans, a list of distinct plans is compiled at the end of step 4. Every record 

produced at the end of step 4 that repeats more than once (attribute value for Cycles > 1) 

is classified as a plan at this stage and included in a data-driven knowledge base (KB). 

Non-repeating plans may be incomplete plans and are thus not included in this list. For 

example, in figure 4.8 plans ‘CISP+ETOP, ETOP’ and ‘BEVA+CARB+PACL’ are 

added to this knowledge base. 



 

 

Figure 4.8. Steps 4 and 5 of CPAM

Step 4: Identify patterns

the record instances produced by the previous step. For example, the pattern 

CISP+ETOP, ETOP is seen repeating twice. Record instances for these patterns are 

grouped together and corresponding 

attributes are computed as described in table 4.1. [KB = Knowledge Base]

Step 5: Consolidate partial plans

immediately prior to it

The drug-string in the plan is modified to indicate the drug

from the last instance of the plan. The 

number of plan cycles by 1, marking it with an asterisk to indicate that the la

cycle of the plan was incomplete.

 

The plans produced by step

reference to identify partial plans 

matches partially with a plan in the KB, and the matchin

immediately prior plan for a given patient, the prior plan record and the partial sequence 

are merged together. As shown in figure 4.

once, and has a similar drug sequence to that of th

thus two plan instances are merged. The 

54 

5 of CPAM.  

Step 4: Identify patterns. The method attempts to identify repeating patterns among 

the record instances produced by the previous step. For example, the pattern 

CISP+ETOP, ETOP is seen repeating twice. Record instances for these patterns are 

grouped together and corresponding StartDate, DaySequence, 

attributes are computed as described in table 4.1. [KB = Knowledge Base]

Step 5: Consolidate partial plans. If a partial sequence similar to the plan 

immediately prior to it exists, the partial sequence is merged with t

string in the plan is modified to indicate the drug-component missing 

from the last instance of the plan. The Cycles string is modified to increment the 

number of plan cycles by 1, marking it with an asterisk to indicate that the la

cycle of the plan was incomplete. 

The plans produced by step 4 are parsed one more time using knowledge base as a 

rence to identify partial plans among the drug-sequence. If any drug

matches partially with a plan in the KB, and the matching plan happens to be the one 

immediately prior plan for a given patient, the prior plan record and the partial sequence 

are merged together. As shown in figure 4.8, the plan instance CISP+ETOP occurs only 

similar drug sequence to that of the prior plan, ‘CISP+ETOP, ETOP’

two plan instances are merged. The number of cycles is increment

 

. The method attempts to identify repeating patterns among 

the record instances produced by the previous step. For example, the pattern 

CISP+ETOP, ETOP is seen repeating twice. Record instances for these patterns are 

, Cycles and other 

attributes are computed as described in table 4.1. [KB = Knowledge Base] 

. If a partial sequence similar to the plan 

, the partial sequence is merged with the prior plan. 

component missing 

string is modified to increment the 

number of plan cycles by 1, marking it with an asterisk to indicate that the last 

using knowledge base as a 

sequence. If any drug-sequence 

g plan happens to be the one 

immediately prior plan for a given patient, the prior plan record and the partial sequence 

, the plan instance CISP+ETOP occurs only 

‘CISP+ETOP, ETOP’, and 

cycles is incremented by 1 and is 
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marked with an asterisk, indicating that the last cycle of the plan was incomplete. The 

drug-sequence in the plan is modified, enclosing the component that was missing in the 

last cycle with a pair of braces. The marking of ‘cycles’ string with an asterisk and 

enclosing the missing drug-component with braces is yet another example of new 

vocabulary used by the method to communicate specific meanings. 

The output of the chemotherapy plan abstraction method is a set of structured data, 

with each record representing an abstract form of chemotherapy plan inferred from the 

input data of distinct chemotherapy drug events. A new ‘vocabulary’ is devised to convey 

specific and helpful details for each of the plans. The abstract versions of the plans 

produced by the method are accompanied by a rich set of attributes that are consistent 

with those suggested by ASCO in their treatment summary guidelines(3). A complete list 

of attributes that is produced by the method, for each plan, is given in table 4.1 along with 

the corresponding description. 
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Table 4.1. Plan attributes produced by chemotherapy plan abstraction method. 

Attribute Description 

Patient Id Surrogate identifier of the patient for whom the chemotherapy plans 

are produced from the corresponding drug events. 

Serial Number For a given patient this is a running number assigned to each plan, 

from the earliest to latest, starting with 1. SerialNumber facilitates a 

simple way of assigning cardinality and order to the set of plans for a 

given patient. 

Drugs The string listing the chemotherapy drugs that constitute the plan. 

Individual drug components are separated by comma (‘,’). Each of the 

drug components themselves may consist of multiple drugs – when 

multiple drugs are administered on the same day – in which case these 

drugs are separated by “+” sign. 

Cycles This is the number of cycles by which the chemotherapy plan repeats. 

In case of the compound plans (plans consisting of multiple drug 

components separated by comma) this attribute is a set of cycles 

delimited by comma and enclosed in a pair of parentheses – with each 

component within the parentheses having one-to-one correspondence 

to the drug-component in the plan. This string represents the dose 

count of the first dose set of the drugs. The total number of cycles for 

the compound plan is indicated by the right-most numeric, outside the 

parentheses and separated by ‘x’ from the parenthesized set, and 

indicates the number of times for which the whole plan is repeated. In 

cases where the last cycle of a compound plan is incomplete (as shown 

in figure 4.8) an asterisk appears at the end of this attribute. 

StartDate This is the date when the first drug event of the chemotherapy plan (as 

listed in the attribute Drugs) was started. 

StartDay This is the day number corresponding to the StartDate of the plan 

DayString The string of day numbers when the drug-events corresponding to this 

plan occurred. For a compound plan, this attribute is a set of day 

number values enclosed in a pair of parentheses and delimited by 

comma – with each component having one-to-one correspondence to 

the drug-component in the Drugs string.  

DaysToChange For a given patient, this is the number of days between the StartDate 

of the current plan and that of the one immediately prior. [By 

definition, this attribute will have meaning only for the plan records 

with SerialNumber > 1.] 

DaysBetween For a given patient, this is the number of days between StartDate of 

the current plan and the last drug event of the one immediately prior. 

Periodicity This is the periodicity with which the chemotherapy plan is repeated. 
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CHAPTER 5  

EVALUATION 

 

The evaluation of the CPAM consists of an assessment of its accuracy and utility for 

cohort plan analysis. The former evaluates the extent to which the method correctly infers 

patient level treatment plans. The later analyzes the concordance of the method’s cohort 

level output with expected standard of care chemotherapy protocols.  

5.1. Evaluation of patient level performance 

The chemotherapy plan abstraction method was iteratively trained using a manually 

curated gold-standard training set of chemotherapy drug events for breast and lung cancer 

patients. The method was then tested on two manually curated datasets of chemotherapy 

drug events for 1) breast and lung cancer patients and 2) non-breast, non-lung cancer 

patients. 

5.1.1. Training and testing data sets 

The training and testing data sets were derived from the pharmacy-dispensing 

database in the SD.  Specific subsets were grouped by cancer diagnosis as determined by 

the tumor’s site and histology from the tumor registry data.  Table 5.1 shows the counts 

of patients and corresponding drug-events used in the training and testing data sets for the 

CPAM. 

To ensure that the method could satisfactorily process the drug events for mixed 

cancer domains, the initial training and testing data sets consisted of patients with either 

lung cancer or breast cancer. The initial training set consisted of 163 patients with 2,402 

chemotherapy drug events before pre-processing and 2,298 events after pre-processing.  
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Similarly, Test Set 1 consisted of 341 breast and lung cancer patients with 5,713 

chemotherapy drug events after pre-processing. 

  

Table 5.1. Training and testing datasets. 

Training and testing data sets including a description of the cancer domain covered, 

the patient count, and the drug events counts before and after the pre-processing. 

  

Training 

set 
Non-trained test sets 

Test set 1 Test set 2 

Test set 2 

(Sample for 

evaluation) 

Cancer Domain 

breast & 

lung 

breast & 

lung 

non-breast/non-lung solid 

tumor  

Patient count 163 341 7,805 168 

Pre-filtered drug events 2,402 6,050 139,659 3,366 

Pre-processed drug events 2,298 5,713 136,998 3,214 

 

To test the generalizability of the CPAM, a testing set was created of patients with 

non-breast, non-lung cancer solid tumors. 7,805 patients with 136,998 chemotherapy 

drug events were identified in the SD. A random sample was draw from this data set to 

create Test set 2.  The size of the statistically relevant random sample was estimated by 

taking into account the expected performance of the method. Based on earlier tests, the 

recall and precision values of 0.8 each were considered. Using these values for either of 

the characteristics, the sample size figure of 300 was obtained [using proportionality test 

function prop.test of statistics package R - version 2.12.2 (2011-02-25)], with a 95% 

confidence interval of (0.7493, 0.8428). This suggests that if the true recall and precision 

of the method were to be 0.8 each, for any random sample of 300 plans obtained at the 

output of the method, these parameters would evaluate to be between (0.7493, 0.8428) 

95% of the time. Though the calculated sample size was 300 plans, drawing a set of 
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exactly 300 plans from the output was not feasible, since for a given patient, all or no 

plans needed to be included. The resulting testing set consisted of 306 plans for 168 

cancer patients. 

After applying the CPAM to both the training and the testing sets, a trained medical 

oncologist manually classified the output to create the gold standard. The oncologist 

compared the individual plans and the corresponding input medication events for each 

patient, marking each abstracted plan as a true positive (TP), false positive (FP), or false 

negative (FN) plan. For example, if the method produced multiple output plans for what 

should have been a single plan, each abstracted plan would be classified as a false 

positive plan. Likewise, the collection of FP plans would be classified as single false 

negative plan corresponding to the actual plan that was not detected. 

 

Table 5.2. Performance results of the CPAM. 

Performance results of the CPAM showing the recall, precision, F1-score and 

accuracy for the training test set and the two non-trained test sets. 

Training test set 
(95% C.I.) 

Non-trained test sets 
(95% C.I.) 

Test-1 

Test-2 

(Sample) 

Recall 
0.888 

(0.8432, 0.9223) 

0.913 
(0.8870, 0.9329) 

0.899 
(0.8537, 0.9316) 

Precision 
0.752 

(0.6996, 0.7973) 
0.829 

(0.7989, 0.8563) 
0.755 

(0.7020, 0.8012) 

F1-Score 0.814 0.869 0.821 

Accuracy 
0.687 

(0.6348, 0.7346) 
0.768 

(0.7361, 0.7979) 
0.696 

(0.6427, 0.7442) 

 

5.1.2. Performance results of the plan abstraction method 

Table 5.2 shows the performance of the CPAM for the training and testing data sets 

along with their respective confidence intervals. The original training set had a recall rate 
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of 88.8%, a precision of 75.2% and an accuracy of 68.7%.   For the testing round, test set 

1 had a recall rate of 91.3%, a precision of 82.9% and an accuracy of 76.8%.  Test set 2, 

had a recall rate of 89.9%, a precision of 75.5% and an accuracy of 69.6%. The results for 

test set 2 represent generalized performance of the chemotherapy plan abstraction method 

for solid tumors with a confidence level of 95%. 

5.2. Cohort level plan analysis 

One of the primary goals of the CPAM is to extract sequences of patient level 

chemotherapy protocols from discrete medication events for cohort level analysis. The 

second part of the evaluation process demonstrates a simple use of cohort level analysis 

to evaluate the practice patterns and the variance in plan adherence for several 

chemotherapy plans as compared to the standard of care. For a single disease breast 

cancer, we demonstrate an across plan analysis comparing the frequency of the plans 

administered, and a within plan analysis to understand variances in the administration of 

a single plan. 

5.2.1. Across plan analysis 

The first analysis assessed the most frequently administered chemotherapy protocols 

for a cohort of breast cancer patients at the VUMC.  This gives insight into the practice 

patterns for this disease at our institution.  A cohort of 554 breast cancer patients treated 

with chemotherapy was isolated in the SD using a combination of the tumor registry and 

the pharmacy data sets.  For this set, a list of abstracted chemotherapy plans was created 

along with the count of patients receiving each plan, and ordered by descending patient 

count.  For this cohort, 107 unique breast cancer plans were identified. Table 5.3 shows 

the 5 most frequently prescribed plans. A full list of breast cancer plans abstracted by the 
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CPAM is listed in Appendix A.  The most commonly administered plan in this cohort 

was an adjuvant therapy protocol Cyclophosphamide + Doxorubicin, received by about 

36%. of patients.  In comparison, the 5
th

 most commonly prescribed plan, an adjuvant 

protocol consisting of the drugs Cyclophosphamide + Docetaxel, was administered to 

only about 8% of this population.  This demonstrates a clear dominance of the 

Cyclophosphamide + Doxorubicin adjuvant therapy protocol among this group of breast 

cancer providers. 

 

Table 5.3. List of five most frequently administered chemotherapy plans for breast cancer. 

Five most frequently administered chemotherapy plans showing corresponding 

patient count along with average and standard of care figures for number of cycles 

and periodicity. The line of therapy column indicates whether the corresponding plan 

is used for adjuvant or metastatic treatment (or both). The values in columns with 

grey-background are provided by a practicing oncologist. 

Name 

Chemotherapy 

Protocol 

Patient 

Count 

  Periodicity (days) Number of Cycles 

Line of 

therapy 

Standard 

of Care 
Average 

(Min, Max, SD) 

Standard 

of Care 
Average 

(Min, Max, SD) 

Cyclophosphamide, 

Doxorubicin 198 Adjuvant 14 
15.8 

(7, 28, 3.1) 4 
3.6 

(1, 6, 0.9) 

Paclitaxel 138 

Adjuvant, 

Metastatic 7 
10.6 

(6.4, 29.4, 4.7) 

12, 

Unlimited 
7.1 

(1, 16, 4.3) 

Trastuzumab 61 

Adjuvant, 

Metastatic 7, 14, 21 
22.1 

(7.8, 63, 8.6) 

1 year, 

Unlimited 
9.0 

(1, 64, 11.1) 

Fulvestrant 55 Metastatic 28 
27.3 

(13, 107, 16.6) Unlimited 
6.4 

(1, 53, 8.5) 

Cyclophosphamide, 

Docetaxel 46  Adjuvant 21 
21.7 

(20, 29.7, 1.8) 4 
3.7 

(1, 6, 1.0) 
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Figure 5.1. Line of therapy bar-plot for the two most frequently administered breast cancer 

plans. 

The line of therapy bar-plot shows that most of the patients receiving the 

“CYCL+DOXO” plan received it as the first line of therapy, and most of those 

receiving “PACL” plan received it as the second line of therapy. 

 

The sequence of plans also gives insight into provider adherence to standard of care 

protocols.  Figure 5.1 shows the bar chart for the sequence of therapy for the two most 

frequently administered breast cancer plans. The sequence of therapy, represented by the 

Serial Number attribute produced by the CPAM indicates whether the plan was given 

first, second or third in sequence for a given patient. As is consistent with the clinical 

practice, the Cyclophosphamide + Doxorubicin plan is typically the first plan to be 

administered in the adjuvant setting(39). Depending upon the clinical context, the 

Paclitaxel plan is typically administered second following the Cyclophosphamide + 

Doxorubicin plan in the adjuvant setting(39)
, 
(40) or as a first line of treatment in the 

metastatic setting(41).  This analysis demonstrates both that the CPAM produces results 
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concordant with what is expected for standard of care, and that the VUMC practice 

patterns are likewise concordant. 

5.2.2. Within plan analysis 

A within plan analysis also provides insights regarding plan adherence. As discussed 

in earlier chapters, patient toxicity may require deviation of the actual chemotherapy drug 

administration events from the planned periodicity and cycles defined by a chemotherapy 

protocol. Table 5.3 shows the observed average periodicity and number of cycles 

compared with the corresponding standard of care values for the five most frequent breast 

cancer plans. 

The statistical parameters, including the standard deviation were calculated for each 

plan over the respective number of patients. A trained medical oncologist defined the 

corresponding standard of care values. Figure 5.2 shows violin plots of the observed 

values for periodicity and cycles for the two most frequently prescribed plans, 

“Cyclophosphamide + Doxorubicin” and “Paclitaxel” [statistics package R, version 

2.12.2 (2011-02-25).] Over each of these violin plots, a reference line is drawn in red 

corresponding to the standard of care value and another line in green showing the average 

for the dataset. The distribution plots for “Cyclophosphamide + Doxorubicin” exhibit a 

pronounced modality at or near the standard of care values, indicating a close 

concordance to the respective standard of care values for this treatment plan. 

 



 

Figure 5.2. Periodicity and # of Cycles distribution for the two most frequently administered 

breast cancer plans.

Violin plots showing the distribution of the f

cycles for respective patient cohorts receiving one of the two most frequently 

administered chemotherapy plans for breast cancer.

 

For the second most common plan 

number of cycles both show a bimodal distribution. 

cycles and another at 12 cycles; and

another near 14 days. These plots suggest

containing the single agent 

standard of care protocols for Paclitaxel, one where Paclitaxel is given every two weeks 

for 4 cycles(39) and the other where it is given 
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Periodicity and # of Cycles distribution for the two most frequently administered 

breast cancer plans. 

Violin plots showing the distribution of the figures for periodicity and 

cycles for respective patient cohorts receiving one of the two most frequently 

administered chemotherapy plans for breast cancer.  

or the second most common plan “Paclitaxel”, however, the periodicity and 

number of cycles both show a bimodal distribution. The cycles plot exhibits a

cycles and another at 12 cycles; and the periodicity plot exhibits a bulge near 7 days and 

These plots suggest the possibility of two different plans

the single agent Paclitaxel. This information is consistent with two known 

standard of care protocols for Paclitaxel, one where Paclitaxel is given every two weeks 

and the other where it is given weekly for 12 cycles(42). 

 

 
Periodicity and # of Cycles distribution for the two most frequently administered 

igures for periodicity and number of 

cycles for respective patient cohorts receiving one of the two most frequently 

the periodicity and 

plot exhibits a bulge at 4 

bulge near 7 days and 

y of two different plans, both 

is consistent with two known 

standard of care protocols for Paclitaxel, one where Paclitaxel is given every two weeks 
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CHAPTER 6  

DISCUSSION 

 

The CPAM takes as input time stamped medication events and produces as output 

abstract level medication plans using a data-driven approach. This method has clinical as 

well as research applications. This chapter discusses the contributions of the CPAM to 

informatics and medicine, and its limitations. 

6.1. Informatics contributions 

The need for abstraction of temporal data is often encountered in medicine. Even 

though a wide literature concerning temporal abstraction is cited in various medical 

domains, processing the temporal data still remains a challenge(43)
, 
(19) due to the varied 

and interacting clinical dimensions involved (e.g., disorders, treatments, disease states). 

As referenced in this text earlier, there have been several proposals towards the 

framework of the knowledge-based approach for temporal abstraction and its 

applications. Though there are fewer references concerning data-driven approach to 

temporal abstraction, the efforts(36) in that direction are rapidly evolving(43). 

6.1.1. Data-driven approach 

Data-driven methods have the advantage of not requiring extensive knowledge 

acquisition and continued maintenance. Data-driven methods rely on and derive their 

knowledge from the features and content of the data provided as input. The CPAM 

performs reasonably well without the need for a manually derived knowledge base. 

Because the method does not rely on any external knowledge base, it is not limited by 
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any rigid rules pertaining to the specific parameters of the plans it abstracts as to the 

ranges of variations in periodicity or number of cycles it can detect. 

6.1.2. Simplicity of the method 

The CPAM is a simple heuristic approach that derives its knowledge base from the 

input data. The method does not use any complex mathematical algorithms or 

sophisticated probabilistic analysis; it uses basic grouping, pattern identification and 

matching processes. Due to the simplicity of the implementation, the method does not 

have any specific software or hardware constraints. It can be implemented in any 

environment and expected to perform equally well in terms its outcome. The performance 

speed of the method is also scalable with the bulk of input data. During this project, the 

final data bulks given as input to the method were more than 50 times larger than the 

initial input data and the method performed well without degradation in processing time. 

The versatility of the method also lies in its flexibility to accept data from a variety 

of input sources. Given appropriately formulated pre-processing steps, it can take 

chemotherapy event data input from any of the clinical sources discussed in chapter 2. 

6.1.3. Secondary use of pharmacy data for research 

In addition to the development of the CPAM, this work has enabled secondary use of 

Vanderbilt’s Pharmacy transaction database for research. Implementation of 

computerized pharmacy dispensing record systems is widespread, and the data stored in 

such systems is in a structured format. Prior to the development of the CPAM the 

pharmacy dispensing records data were only available to researchers via the enterprise 

data warehouse (EDW) with all the patient health information (PHI) intact. As part of the 

CPAM development effort, and to be able to provide sufficient data bulk, the SD 
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database was expanded to include the pharmacy dispensing records data in a de-identified 

form. This facilitated the use of pharmacy data for wider use by the Vanderbilt research 

community. 

6.2. Informatics limitations 

The CPAM has several limitations including issues related to controlled 

terminologies, pattern detection, and the lack of a query tool.  

6.2.1. Drug terminology limitations 

Medications often have several clinically relevant synonyms including the generic 

name (e.g., Vemurafenib), brand name (e.g., Zelboraf), and names used during drug 

development (e.g., PLX4032). In addition to variations in drug name, there are several 

widely used drug terminologies that create unique identifiers including RxNorm and 

NDC to name a few.  Clinical information systems use a variety of drug name and drug 

coding terminologies along with institution specific variations.  For instance, where 

possible, the VUMC pharmacy information system uses the First Databank (FDB) drug 

knowledge base as its reference terminology including the generic and brand drug names 

as well as the NDC codes.  However, knowledge bases such as FDB often lag in their 

representation of investigational agents that have not yet been assigned an NDC.  In order 

to process investigational drugs using the PIS, a custom term is created often with a non-

specific NDC and a custom generated name.  In the VUMC system for instance, the word 

‘INVEST’ (for investigational) is appended to the end of the drug name. This allows the 

pharmacy to bill appropriate drug supply for a clinical trial. 

The current implementation of the CPAM has several limitations with respect to the 

pre-processing approach to drug name normalization. First, it does not use a controlled 
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drug terminology to identify anti-cancer drug names by class. The current 

implementation leverages an existing manually annotated list of anti-cancer drugs 

specific to the VUMC pharmacy system. While this manually annotated list is 

continuously updated for operational purposes, this approach limits the generalizability of 

the method to other data sources, including pharmacy data sources from other 

institutions. Second, the method does not use a controlled terminology to identify drug 

name synonyms. Instead, a manual process was required to map drug name synonyms to 

a common preferred term. Given that several of the drugs were investigational agents, a 

combination of the RxNorm and National Cancer Institute Thesaurus (NCIT) 

terminologies could be leveraged to generalize the approach. 

6.2.2. Limitations in pattern detection 

The CPAM is based on the assumption that groups of medications are given as 

repeating events. This is an appropriate assumption for many oncology treatments that 

often repeat but may be less relevant for other diseases. However, there are some 

complex cancer treatments that span several consecutive days with multiple drugs that do 

not repeat, especially in hematologic malignancies. Due to the assumption that all plans 

must repeat for a patient, the CPAM does not recognize the non-repeating plans correctly. 

The method could be extended to look for non-repeating patterns across patients. 

The CPAM had good performance for both simple and complex plans where all 

components of the plan recur for each cycle.  However, the CPAM had more difficulty 

for those cases where some component of the plan is missing in one or more cycles. For 

example, one of the valid chemotherapy plans involves a combination of the drugs 

“Irinotecan” and “Leucovorin" given every two weeks. In some cases however, the 
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patient received only “Irinotecan” for some events, thus breaking the pattern of 

combination drugs. For those patients the method produced a plan sequence consisting of 

two distinct plans, one each corresponding to “IRIN+LEUC” and “IRIN” (represented by 

respective abbreviated drug names), instead of the actual plan “IRIN{+LEUC}” (the 

braces around the LEUC being indicative of the fact that the last component of the plan 

was missed during the trailing cycles). This happens because, 1) the event corresponding 

to IRIN by itself repeats, and 2) IRIN by itself is a valid chemotherapy plan. 

Finally, the CPAM is limited in its ability to classify distinct plans with the same 

drugs but different cycle frequency. A good example involves the drug PACLITAXEL 

where there are two distinct plans that use the single drug, one that is given at the 

frequency of 7 days and the other at a frequency of 14 days. This is evident in figure 5.2, 

which shows a bimodal distribution of cycle frequency (periodicity). These two distinct 

plans could be easily resolved by considering the cycle frequency as part of the plan 

abstraction method. 

6.2.3. Lack of query tool and incremental data analysis 

The CPAM does not offer any GUI based query mechanism to efficiently conduct 

either patient level or cohort level plan analysis. Data abstraction and analysis is done 

using the SQL through standard query tools and requires adequate technical skills.  

Development of a query tool would enhance the utility of the method for researchers. 

Finally, this initial implementation of the CPAM performs a one-time retrospective 

data analysis. The method does not allow for continuous updates of the plans as new data 

emerges in time. The technical implementation of the method would need to be extended 

to accommodate this requirement. 
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6.3. Clinical contributions 

In addition to being a simple data-driven approach to temporal abstraction the 

CPAM has already demonstrated applications for clinical research including 

identification of cohorts by treatment plan and identification of practice patterns at our 

institution.  

The CPAM was used for cohort identification to isolate lung cancer patients who 

had received two distinct chemotherapy plans as their first treatment. Using the tumor 

registry database to identify cases of lung cancer, the CPAM was able to accurately 

segregate two sub-populations, one following the chemotherapy plan “Bevacizumab + 

Carboplatin + Paclitaxel” and the other following the plan “Carboplatin + Paclitaxel”. 

The two cohorts are being evaluated for the presence of genetic variations that may 

predict response to Bevacizumab. Prior to the development of the CPAM, it would have 

taken a significant amount of time, effort and cost to isolate the two patient cohorts 

through manual chart review of hundreds of lung cancer patients. 

The CPAM has been used to evaluate the practice patterns for breast cancer patients 

at the VICC. The across plan analysis provided listing of the most frequently 

administered plans for this population (Table 5.3 and Appendix A). This demonstrates the 

trends in chemotherapy prescribing patterns at our institution over the last 5 years. The 

list has been used for operational purposes to help prioritize the creation of the order sets 

for the new chemotherapy CPOE system at the VICC. It could also be used to analyze 

resource utilization by the pharmacy department to help prioritize purchasing 

requirements and other resource planning tasks.  
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The within plan analyses facilitated important information regarding the provider 

practice patterns, patient tolerance to the treatment, and tumor response to the treatment. 

Figures 5.1 and 5.2 show the distribution of the periodicity, number of cycles and 

sequence of therapy for the two most frequently administered breast cancer plans. The 

analysis shows the degree of concordance with the established standard of care for these 

protocols. In particular, the most commonly prescribed plan “Cyclophosphamide + 

Doxorubicin”, is typically administered every 14 days for 4 cycles. The data for 198 

patients shows an average cycle frequency of 15.8 days with an average of 3.8 cycles. 

This means that most patients were able to tolerate the treatment on the standard 

schedule. This has important implications for both, assessing the quality of care and 

identifying therapies where toxicities often require deviation from the standard schedule. 

A within plan analysis can also be used to estimate the time to disease progression 

(TTP) for a given therapy. TTP is typically measured from the date of the first treatment 

until the date the tumor is documented to progress, typically measured by imaging 

studies. The CPAM documents the duration of the treatment, which could be a surrogate 

for TTP for certain clinical settings. Figure 6.1 shows the distribution plot of the number 

of cycles for the “Fulvestrant” plan, a medication given only in the metastatic setting for 

breast cancer.  Fulvestrant is typically given every 4 weeks, such that the number of 

cycles corresponds to the number of months the treatment was given. The distribution 

plot for this plan shows a median number of cycles to be about 4 and the average number 

of cycles is 6.4. These numbers have close correspondence to the median TTP of 5.5 

months observed by Robertson et al. in a prospective analysis of two multicenter trial of 

Fulvestrant versus Anastrozole(44). While the patient sample size of this multicenter 



 

study was much larger (n=428), and that of the VICC is much small

proximity of the TTP value shows the importance of the cohort analysis that can be done 

with the output produced by the CPAM. 

 

Figure 6.1. # of Cycles distribution for the treatment plan of Fulvestrant

Violin-plot of the distribution for number of cycles for 

chemotherapy treatment plan of Fulvestrant
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6.4. Clinical limitations 

We have demonstrated some utility of the CPAM for clinical research however, it 

does have some limitations. First, the method is currently restricted to medications that 

were administered at the institution’s infusion center. In order to provide a complete 

treatment history, the data sources and the CPAM would need to be extended to include 

oral and intravenous medications not administered at the VUMC. Second, the current 

implementation of CPAM does not take into account any dose variations, and it also does 

not indicate at the output if there were any dose variations. The method only recognizes a 

complete absence of an administration event. Such enhancements would be valuable both 

clinically and for research. 
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CHAPTER 7  

CONCLUSION AND FUTURE DIRECTIONS 

 

7.1. Conclusions 

The CPAM is a temporal reasoning method that accurately abstracts a sequence of 

chemotherapy plans at the patient level. The major advantage of the CPAM is its simple 

data-driven approach to plan abstraction that does not require maintenance of an external 

knowledge base of plans. The utility of the CPAM is further demonstrated through 

several cohort plan analyses that provide information on provider practice patterns, plan 

adherence to standard of care, patient toxicity, and tumor response to treatment. 

7.2. Future directions 

The CPAM could be further extended in several dimensions for both patient care and 

clinical research. 

7.2.1. Implementation in clinical care systems for patient care 

The CPAM could prove to be a useful tool in a clinical setting if incorporated into 

EHR systems or in the chemotherapy flow sheets. The tool can produce the abstract form 

of chemotherapy plans instead of the simple chronology of discrete drug events. In a 

clinical system, the CPAM could decrease the time spent by a clinician to perform 

chemotherapy plan abstraction. A system could also be developed that utilizes the CPAM 

to help create treatment summaries in the form suggested by ASCO(3).  



75 

 

7.2.2. Extensions for clinical research 

Within oncology, the CPAM could be extended in a number of dimensions to further 

facilitate clinical research. First, the method could be extended to take medication event 

input from additional data sources including inpatient and outpatient CPOE, nursing 

administration records, and clinical notes. It could also be extended to continuously 

update plans as new drug events occur over time. The addition of a GUI for plan query 

would also facilitate research utilization of the important abstracted data. 

In order to facilitate comparative effectiveness research, additional patient data 

would need to be integrated with the abstracted treatment plans produced by the CPAM. 

Preliminary work towards this end has been already demonstrated by the use of diagnosis 

and histology data from the tumor registry database. Additional tumor registry and 

clinical data features such as demographics, cancer stage, tumor biomarkers and vital 

status would also need to be integrated to facilitate CER. In addition, the cost of 

treatments could be included to perform comparative cost analysis. 

7.2.3. Application to other clinical domains 

Many chronic diseases such as diabetes, hypertension, cardiovascular disease, and 

HIV, require ongoing management and assessment by the special providers. The 

treatments of such diseases are continuous and prolonged, and involve multiple groups of 

treatments over time. On these premises, it should be possible to extend use of the CPAM 

to infer treatment plans for such diseases too. Given the fact that the medication 

administration for most of these diseases is on an outpatient basis, and the medication 

administration events are relatively unreliable, it would require incorporation of some 
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stochastic techniques to establish the authenticity of the medication events to accurately 

abstract corresponding plans. 

Healthcare providers routinely perform the task of reviewing a patient’s medication 

history, which can be quite laborious. Given that all the raw data required for such 

summaries are already available in many EHR systems, incorporation of abstraction tools 

like CPAM could significantly improve provider workflow. Similarly, secondary use of 

EHR data does not have to involve manual reviews and creation of ad-hoc processes. 

Researchers’ resources are better spent at thinking in terms of abstract ideas rather than 

mundane task of sifting through distinct low-level data items. CPAM-like tools could 

provide such abstract level output for analysis of EHR data. The CPAM has great 

potential to assist both the clinical care and clinical research. 
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APPENDIX – A 

 

BREAST CANCER CHEMOTHERAPY PLANS 

 

Table A–1. List of chemotherapy plans for breast cancer patient cohort, in descending order of 

frequency of administration. 

  Counts Periodicity Dose Count 

PLAN 

Plan 

Cnt. 

Distinct 

Pt. 

Cnt. Avg. 

std. 

dev. Min. Max. Avg. 

Std. 

dev. Min. Max. 

CYCL+DOXO 201 198 15.8 3.1 7.0 28.0 3.6 0.9 1.0 6.0 

PACL 138 138 10.6 4.7 6.4 29.4 7.1 4.3 1.0 16.0 

TRAS 72 61 22.1 8.6 7.8 63.0 9.0 11.1 1.0 64.0 

FULV 55 55 27.3 16.6 13.0 107.5 6.4 8.5 1.0 53.0 

CYCL+DOCE 48 46 21.7 1.8 20.0 29.7 3.7 1.0 1.0 6.0 

VINO 47 47 14.6 12.6 6.0 67.0 6.1 8.1 1.0 47.0 

GOSE 44 42 42.6 23.2 24.0 119.0 7.7 6.6 1.0 31.0 

PACL+TRAS, TRAS 36 36 68.2 65.9 21.0 178.0 1.2 0.5 1.0 3.0 

BEVA 33 32 17.2 3.5 13.8 26.3 10.7 16.5 1.0 92.0 

DOXO 32 32 14.0 9.5 7.0 43.0 4.4 8.7 1.0 51.0 

DOCE 31 31 14.6 4.5 7.0 25.2 3.9 3.7 1.0 21.0 

GEMC 30 30 12.9 5.3 7.0 29.8 4.3 5.1 1.0 28.0 

BEVA+PACL, PACL 27 25 18.8 5.4 14.0 34.0 5.0 6.4 1.0 33.0 

CARB+GEMC 23 23 14.2 3.4 7.0 21.0 5.4 3.7 1.0 15.0 

CISP+PACL 16 16 10.9 2.0 7.0 14.5 8.6 7.8 1.0 35.0 

TRAS+VINO, VINO 16 14 30.3 14.2 21.0 63.0 3.9 2.8 1.0 10.0 

BEVA+CYCL+DOXO 14 14 14.1 0.7 13.0 15.7 3.4 1.2 1.0 4.0 

CARB+DOCE+TRAS, TRAS 13 13 28.0 0.0 28.0 28.0 1.2 0.6 1.0 3.0 

CISP+PACL, PACL 12 11 85.3 68.2 14.0 150.0 1.3 0.5 1.0 2.0 

PACL, BEVA+PACL 10 10 30.0 11.4 14.0 49.0 5.6 6.7 1.0 24.0 

CISP, CISP+PACL 9 9         1.0 0.0 1.0 1.0 

PACL+TRAS 9 9 19.3 26.1 7.0 77.0 5.1 4.5 1.0 12.0 

NAB- 9 9 12.9 7.5 8.8 27.7 4.4 3.4 1.0 9.0 

CYCL+FLUO+METH 8 8 22.2 1.8 21.0 25.5 3.6 2.2 1.0 6.0 

BEVA+PACL, BEVA 7 7 218.0 0.0 218.0 218.0 1.3 0.8 1.0 3.0 

PACL+TRAS, PACL 7 7 17.5 4.9 14.0 21.0 1.9 1.1 1.0 4.0 

TRAS, PACL+TRAS 7 7 119.0 120.4 49.0 258.0 3.6 3.1 1.0 8.0 

CISP+PACL, CISP 6 6 37.0 0.0 37.0 37.0 1.3 0.8 1.0 3.0 

TRAS+VINO 6 6 14.0 0.0 14.0 14.0 1.2 0.4 1.0 2.0 

CARB 5 5 8.4 1.3 7.0 9.3 2.4 1.5 1.0 4.0 



82 

 

CARB+DOCE+TRAS 5 5 21.1 0.1 21.0 21.2 2.2 2.2 1.0 6.0 

CARB+GEMC, GEMC 5 5 46.3 25.6 21.0 82.0 3.6 4.2 1.0 11.0 

TRAS, CARB+DOCE+TRAS 5 5         1.8 0.4 1.0 2.0 

IXAB 5 5 7.9 2.4 6.3 11.4 12.6 12.5 1.0 33.0 

BEVA+DOCE 4 4 20.8 5.7 14.0 28.0 3.8 2.1 2.0 6.0 

CARB+DOCE 4 4 8.4 0.0 8.4 8.4 2.3 2.5 1.0 6.0 

BSI-+CARB+GEMC, BSI- 4 4 10.7 9.0 5.0 21.0 6.3 5.1 1.0 12.0 

CARB+PACL 4 4 10.2 6.7 6.0 20.3 5.5 5.7 2.0 14.0 

DOCE+TRAS 4 4 7.9 1.3 7.0 8.8 2.3 1.9 1.0 5.0 

RITU 4 4 7.5 1.0 7.0 9.0 4.0 0.0 4.0 4.0 

FULV+GOSE 4 4 30.5 3.5 28.0 33.0 2.0 1.4 1.0 4.0 

CYCL+DOXO, TRAS 4 4         1.0 0.0 1.0 1.0 

BEVA+PACL+TRAS 4 3 14.0 0.0 14.0 14.0 2.0 2.0 1.0 5.0 

BEVA+PACL 4 4         1.0 0.0 1.0 1.0 

BEVA+GEMC, GEMC 3 3 24.5 4.9 21.0 28.0 1.7 0.6 1.0 2.0 

BEVA+PACL+TRAS, 

PACL+TRAS 3 2 28.0 0.0 28.0 28.0 1.3 0.6 1.0 2.0 

VINO, TRAS+VINO 3 3 574.0 0.0 574.0 574.0 1.3 0.6 1.0 2.0 

TRAS, FULV 3 1 23.3 4.0 21.0 28.0 3.3 0.6 3.0 4.0 

GOSE+TRAS, TRAS 3 3 35.5 9.2 29.0 42.0 2.3 1.2 1.0 3.0 

CYTA 3 3 13.0 0.0 13.0 13.0 1.3 0.6 1.0 2.0 

CARB+PACL+TRAS 3 2 7.0 0.0 7.0 7.0 1.7 0.6 1.0 2.0 

BEVA+CARB+GEMC 2 1 21.0 0.0 21.0 21.0 1.5 0.7 1.0 2.0 

BEVA+GEMC 2 2 14.0 0.0 14.0 14.0 1.5 0.7 1.0 2.0 

BSI-+CARB, BSI- 2 2 18.0 4.2 15.0 21.0 3.5 2.1 2.0 5.0 

FLUO 2 2         1.0 0.0 1.0 1.0 

FULV+GOSE, FULV 2 2 28.0 0.0 28.0 28.0 1.5 0.7 1.0 2.0 

GEMC, GEMC+TRAS 2 2 20.0 0.0 20.0 20.0 2.0 1.4 1.0 3.0 

VINO, TRAS 2 2 22.0 0.0 22.0 22.0 1.5 0.7 1.0 2.0 

VINO, BEVA+VINO 2 2 24.0 5.7 20.0 28.0 3.5 2.1 2.0 5.0 

TRAS, PACL 2 2 133.0 0.0 133.0 133.0 2.0 1.4 1.0 3.0 

TRAS, CARB+PACL 2 2 20.0 0.0 20.0 20.0 1.5 0.7 1.0 2.0 

T-DM 2 2 23.0 0.3 22.8 23.2 21.0 15.6 10.0 32.0 

PACL, CARB+PACL 2 2 21.0 0.0 21.0 21.0 2.0 1.4 1.0 3.0 

GEMC+TRAS 2 2 14.0 0.0 14.0 14.0 1.5 0.7 1.0 2.0 

FLUO+METH 2 2 7.0 0.0 7.0 7.0 1.5 0.7 1.0 2.0 

DOCE+TRAS, TRAS 2 2 75.0 0.0 75.0 75.0 4.5 4.9 1.0 8.0 

CISP+DOXO 2 2 10.7 0.0 10.7 10.7 2.5 2.1 1.0 4.0 

BEVA+VINO 2 2         1.0 0.0 1.0 1.0 

BEVA+DOCE, DOCE 2 2 14.0 0.0 14.0 14.0 3.5 3.5 1.0 6.0 

ALDE 1 1 1.0 0.0 1.0 1.0 4.0 0.0 4.0 4.0 

CARB+PACL, 1 1 14.0 0.0 14.0 14.0 3.0 0.0 3.0 3.0 
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BEVA+CARB+PACL 

DOCE+NAB- 1 1         1.0 0.0 1.0 1.0 

DOCE+GEMC 1 1         1.0 0.0 1.0 1.0 

DOCE+DOXO 1 1         1.0 0.0 1.0 1.0 

DENO 1 1 39.0 0.0 39.0 39.0 3.0 0.0 3.0 3.0 

CYCL+FLUO 1 1 19.0 0.0 19.0 19.0 2.0 0.0 2.0 2.0 

CYCL+EPIR 1 1         1.0 0.0 1.0 1.0 

CYCL+DOXO+RITU+VINC 1 1 21.0 0.0 21.0 21.0 3.0 0.0 3.0 3.0 

CYCL 1 1         1.0 0.0 1.0 1.0 

CISP+PACL, PACL, CISP 1 1         1.0 0.0 1.0 1.0 

CISP+ETOP, ETOP 1 1 28.0 0.0 28.0 28.0 4.0 0.0 4.0 4.0 

CISP 1 1 12.3 0.0 12.3 12.3 8.0 0.0 8.0 8.0 

CARB+PACL, CARB 1 1         1.0 0.0 1.0 1.0 

VINB 1 1 9.0 0.0 9.0 9.0 2.0 0.0 2.0 2.0 

TRAS, GEMC+TRAS 1 1 61.0 0.0 61.0 61.0 2.0 0.0 2.0 2.0 

TOPO 1 1 6.7 0.0 6.7 6.7 16.0 0.0 16.0 16.0 

NAB-+TRAS 1 1         1.0 0.0 1.0 1.0 

MM-1 1 1 7.0 0.0 7.0 7.0 3.0 0.0 3.0 3.0 

MITO 1 1 26.0 0.0 26.0 26.0 2.0 0.0 2.0 2.0 

METH 1 1         1.0 0.0 1.0 1.0 

IXAB+TRAS 1 1         1.0 0.0 1.0 1.0 

IRIN 1 1 28.0 0.0 28.0 28.0 2.0 0.0 2.0 2.0 

GEMC, DOCE 1 1         1.0 0.0 1.0 1.0 

GEMC+TRAS, GEMC 1 1 22.0 0.0 22.0 22.0 5.0 0.0 5.0 5.0 

FULV, TRAS 1 1 14.0 0.0 14.0 14.0 2.0 0.0 2.0 2.0 

FULV, DENO 1 1 65.0 0.0 65.0 65.0 2.0 0.0 2.0 2.0 

FULV+TRAS 1 1         1.0 0.0 1.0 1.0 

ERIB 1 1 14.0 0.0 14.0 14.0 4.0 0.0 4.0 4.0 

EPIR 1 1 7.0 0.0 7.0 7.0 2.0 0.0 2.0 2.0 

DOXO+IFOS 1 1 8.0 0.0 8.0 8.0 14.0 0.0 14.0 14.0 

CARB+DOCE, CARB 1 1 35.0 0.0 35.0 35.0 2.0 0.0 2.0 2.0 

CARB+DOCE+TRAS, TRAS, 

CARB+DOCE 1 1 50.0 0.0 50.0 50.0 2.0 0.0 2.0 2.0 

BORT 1 1 8.2 0.0 8.2 8.2 13.0 0.0 13.0 13.0 

BEVA+TRAS 1 1 21.0 0.0 21.0 21.0 16.0 0.0 16.0 16.0 

BEVA+NAB- 1 1         1.0 0.0 1.0 1.0 

BEVA+PACL, PACL, BEVA 1 1 28.0 0.0 28.0 28.0 2.0 0.0 2.0 2.0 

BEVA+CARB+GEMC, 

BEVA+GEMC 1 1 80.0 0.0 80.0 80.0 2.0 0.0 2.0 2.0 

 

 


