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Chapter 1 

 

Introduction: GABAA Receptors and Epilepsy 

 

Epilepsy 

 

Epilepsy is one of the most common neurological disorders, affecting about 0.5-

1% of the general population [1].  Epilepsy is defined as unprovoked, recurrent seizures, 

which are transient signs and symptoms of abnormal, excessive excitation and 

synchronous neuronal activity in the brain.  Either enhancement of excitatory or 

reduction of inhibitory neurotransmission (E/I imbalance) could result in these excessive 

activities.  Most seizures arise from the cerebral cortex, although subcortical structures 

can also generate seizures.  Although epilepsy can develop at any age, it is more likely to 

occur in children or individuals over the age of 65 years.  Epilepsy can be controlled 

often by antiepileptic drugs, and surgery can reduce seizure frequency or abolish seizures 

in some patients.   
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Seizures 

Based on the recent proposed classification of the International League Against 

Epilepsy (ILAE) Commission on Classification and Terminology, epileptic seizures can 

be described as either focal or generalized in terms of their pattern of activity [2].  As 

shown in electroencephalograms (EEGs), focal seizures are characterized by excessive 

neuronal activities in focal regions of one hemisphere, while generalized seizures involve 

the whole cortex.  Clinical seizures produce overt, noticeable clinical signs or symptoms, 

while electrographic (or subclinical) seizures produce subtle clinical signs or symptoms 

but are apparent on an EEG. 

Focal seizures were called partial seizures in the 1989 and 1981 by the ILAE 

Classification and Terminology [3, 4].  These seizures originate within networks limited 

to one hemisphere.  The behavioral phenotype of each seizure is determined by normal 

functions served by the cortical site where the seizure originates.  Partial seizures were 

further characterized as simple partial seizures and complex partial seizures.  Simple 

partial seizures do not affect awareness or memory, while complex seizures affect 

awareness and/or memory of events before, during, and immediately after the seizure, as 

well as behavior.  Partial seizures can spread to both hemisphere and progress to 
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secondarily generalized seizures.  The EEG features of partial seizures are variable.  

Partial seizures are proposed to be classified as focal seizures in 2010, and the difference 

between simple and complex partial seizures are simplified in this proposal [2]. 

Generalized seizures originate within one network and rapidly engage both 

cerebral cortex hemispheres [2].  The major subtypes of generalized seizures are absence, 

myoclonic, tonic, tonic-clonic and atonic. 

Absence seizures are brief, usually lasting less than 30 seconds, and feature 

impaired consciousness and unresponsiveness associated with staring.  The EEG 

signature of absence epilepsy is a generalized 3 Hz spike-wave discharge generated from 

abnormal thalamocortical oscillations [5].   

Myoclonic seizures are rapid, shock-like jerks of a muscle or group of muscles.  

The EEG signature of myoclonic seizures features a polyspike-and-slow-wave discharge.  

If several myoclonic seizures occur in succession, they are called clonic seizures.   

Tonic seizures cause muscle stiffening, generally of those in the back, legs, and 

arms.  They are generalized, involving bilateral musculature in a symmetric or nearly 

symmetric manner.  Tonic seizures are characterized by flexion at the waist and neck, 

abduction and flexion or extension of the upper extremities, and flexion or extension of 
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lower extremities.  They typically occur during sleep and last 2-20 seconds.  The EEG 

usually shows generalized, low-voltage, fast polyspikes.   

Tonic-clonic seizures are the most common generalized seizures.  They usually 

last 1-2 minutes, begin with stiffening of the body (tonic phase) and repeated jerks of the 

arms and/or legs as well as loss of consciousness (clonic phase).   

Atonic seizures cause an abrupt loss of normal muscle tone for seconds, often 

resulting in falls, or, when milder, head nods or jaw drops.  Consciousness is usually 

impaired.  EEG recordings often show an electrodecremental response.   

 

Etiologies of epilepsy 

The term Epilepsy refers to both recurrent, unprovoked seizures and to more 

complex syndromes.  The ILAE decided not to require the disease-syndrome distinction 

in referring to epilepsies at this time [2].  Although it is often referred to as epilepsy when 

seizures are the only neurologic disorder, and epilepsy syndrome when seizures are one 

of a group of symptoms, these two terms are used depending on context and custom.   

In referring to syndromes, each epilepsy syndrome can be characterized according 

to features including the age at onset, cognitive and developmental antecedents and 
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consequences, motor and sensory examinations, EEG features, provoking or triggering 

factors, and patterns of seizure occurrence with respect to sleep [2].  The etiologies of the 

epilepsies were described as idiopathic, symptomatic, or cryptogenic.  With idiopathic 

epilepsies, the disorder is not associated with other neurological or neuropsychiatric 

abnormalities, and often arises from genetic abnormalities that lead to alteration of basic 

neuronal regulation.  Symptomatic epilepsies, in contrast, arise from the effects of a 

structural lesion, whether that lesion is focal, such as a tumor, or generalized such as a 

defect in metabolism causing widespread injury to the brain.  Cryptogenic epilepsies are 

presumed to be symptomatic, but the presumptive lesion is not identified during 

evaluation.   

Current development in molecular genetics, however, showed that these terms 

cannot describe accurately the etiologies of epilepsies.  For example, Dravet syndrome is 

associated with genetic mutations in genes encoding sodium and GABAA receptor 

channels[6], but it has been classified as a symptomatic generalized epilepsy [2].  The 

ILAE proposed a rational system for characterizing and classifying etiologies based on 

mechanisms, which classified epilepsy etiologies as genetic, structural-metabolic, and 

unknown [2]. 
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Genetic epilepsy directly results from a genetic cause.  The associated gene and 

the mechanism of this association should be identified.  Nevertheless, if the genetics 

studies showed a strong inheritable pattern, the disease can also be referred to as a genetic 

epilepsy. 

Structural-Metabolic epilepsy is the secondary result of structural or metabolic 

abnormalities.  These abnormalities can be associated with genetic defects, such as 

malformations of cortical development or metabolic disorders. 

Unknown epilepsy indicates that the mechanism of epilepsy needs further 

investigation.  It is different from cryptogenic epilepsy because it does not make any 

assumption about the underlying cause of the epilepsy. 

 

International classification of epilepsies and epileptic syndromes  

1.  Localization-Related (Local, Focal, Partial) Epilepsies and Syndromes 

 1.1  Idiopathic (with age-related onset)  

  Benign epilepsy of childhood with centrotemporal spikes (OMIM no. 

117100)   
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Benign occipital epilepsy of childhood (OMIM no. 132090)  

 1.2  Symptomatic  

  Rasmussen’s encephalitis 

  Frontal lobe epilepsies  

  Occipital lobe epilepsies  

  Parietal lobe epilepsies 

  Temporal lobe epilepsies 

 1.3  Cryptogenic 

2.  Generalized Epilepsies and Syndromes  

 2.1  Idiopathic (with age-related onset) 

  Benign neonatal familial convulsions (OMIM no. 269720)  

  Benign neonatal convulsions (OMIM no. 121200) 

  Dravet Syndrome (OMIM no. 607208) 

  Childhood absence epilepsy (pyknolepsy) (OMIM no. 600131) 

  Juvenile absence epilepsy (OMIM no. 607631) 
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  Juvenile myoclonic epilepsy (OMIM no. 254770) 

 2.2 Cryptogenic or Symptomatic 

  West syndrome (OMIM no. 308350) 

  Lennox-Gastaut syndrome (OMIM no. 606369)  

  Tuberous Sclerosis (OMIM no. 191100) 

3.  Epilepsies and Syndromes Undetermined Whether Focal or Generalized 

4.  Special Syndromes 

 

Idiopathic/Genetic Epilepsies 

 

Genetic epilepsy is the direct result of a known or presumed genetic defect(s) in 

which seizures are the core symptom of the disorder [2].  The distinction between the old 

epilepsy classifications as idiopathic and symptomatic epilepsies was often unclear.  

Idiopathic epilepsy syndromes are primary brain disorders that have no other identifiable 

neurological defects, and genetic factors are implied.  Symptomatic epilepsies are 

associated with brain lesions resulting from structural diseases such as trauma, tumor, or 
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cortical malformations.  However, some of symptomatic epilepsies are also caused by 

genetic defects, such as mitochondria diseases, amino-acidopathies, and storage 

They are also classified as genetic epilepsies in the recent proposal of ILAE 

and Terminology [2].  In this review, we will focus on mutations in inhibitory GABAA 

receptor subunit genes that are associated with genetic epilepsies. 

 

Monogenic Epilepsies 

Monogenic epilepsies are caused by mutations in single genes.  Monogenic 

diseases can be passed on to subsequent generations in several ways: autosomal dominant 

(AD), autosomal recessive, X-linked dominant, X-linked recessive, Y-linked, and 

mitochondrial.  However, most of the monogenetic epilepsies are AD.  The genetic 

studies of epilepsies mediated by monogenic inheritance required many affected 

members (up to ten for AD diseases) for linkage analysis.  Unfortunately, large families 

are often not found in epilepsy studies, probably because of incomplete penetrance of the 

epilepsy trait, the small family size, or technical difficulties in accurate diagnosis of 

disease-affected individuals [7].  Most of the epilepsy associated GABAA receptor 

subunit mutations are AD monogenic mutations. 
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Polygenic Epilepsies 

Polygenic epilepsies are also called complex epilepsies or multifactorial 

epilepsies, which are likely associated with effects of multiple “susceptibility” genes in 

combination with lifestyle and environmental factors [8].  Identification of susceptibility 

genes is difficult because complex epilepsies do not have a clear-cut pattern of 

inheritance, although they often cluster in families.  Some of the GABAA receptor subunit 

genes are susceptibility genes for polygenic epilepsies. 

 

GABAA Receptors 

 

GABA is the major inhibitory neurotransmitter in the CNS, and abnormalities in 

both pre- and post-synaptic GABAergic inhibition could produce epilepsy.  The fast 

neural inhibition is mediated by ionotropic GABAA receptors while the slow, prolonged 

neural inhibition is mediated by metabotropic GABAB receptors.  GABAA receptors are 

ligand-gated ion channels (LGIC) that belong to the evolutionarily related and 

similar "Cys-loop" super-family that also includes nicotinic acetylcholine receptors 

(nAChRs), glycine receptors (GlyRs), and the 5HT3 receptor.  GABAA receptors are 
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heteropentamers assembled from seven different subunit families: (1-6), (1-3), (1-3), 

,  and  [9, 10].  The (1-3) subunits are expressed in retina and do not assemble with 

other subunits [9, 10].  GABAA receptor sequence diversity is further increased by 

alternative splicing in some subunit mRNAs [11, 12].  Each GABAA receptor subunit is a 

four transmembrane protein.  Sequence homology between subunits in the same family is 

70-80%, and between subunits in different families is 30-40%.  Most GABAA receptors 

are composed of two  subunits, two subunits, and one  or  subunit [10].  

Interestingly, not all subunit combinations are physiologically relevant [13].  There are 

 and  subunits in cerebellar granule cells, but 6 subunit knockout 

mice had greatly decreased subunit membrane expression in cerebellar granule cells, 

which still expressed and  subunits [14].  Immunochemistry and subtractive 

immunoprecipitation studies showed that the most common subunit composition in the 

brain is followed byand    Most of the 2 subunit-

subunit-containing GABAA receptors are synaptic receptors mediating fast phasic 

currents, while the  subunit-containing GABAA receptors are commonly extrasynaptic 

receptors mediating slow tonic currents [16]. 
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Antiepileptic drugs that work on GABAA receptors 

GABAA receptors were identified pharmacologically long before each subunit 

was cloned.  Once assembled, GABAA receptors form chloride channels containing 

binding sites for agonists, antagonists and allosteric modulators, such as GABA, 

picrotoxin, barbiturates, benzodiazepines, and the anesthetic steroids [9].  GABAA 

receptors with different subunit compositions have distinct kinetics and pharmacological 

properties [9].  GABAA receptors are activated by GABA and the GABA analog 

muscimol, which bind to the N-terminus at  interfaces [17, 18].  Depending on 

variations of intracellular chloride concentration during development, GABAA receptors 

are initially excitatory in immature brain and then inhibitory in adult brain [19].  The 

potency and efficacy of GABA vary with GABAA receptor subunit composition.  

Compared to synaptic 2 subunit-containing GABAA receptors mediating phasic 

inhibition, extrasynaptic  subunit-containing GABAA receptors mediating tonic 

have higher GABA potency and higher affinity but lower efficacy [10].  GABAA receptor 

currents can be potentiated by benzodiazepines, barbiturates, and neurosteroids, and 

blocked by Zn2+, bicuculline, penicillin, and picrotoxin.  Drugs inhibiting GABAA 
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receptor currents can induce epilepsy in animals [20].  Benzodiazepines and barbiturates 

are approved for use as antiepileptic drugs in the United States. 

Benzodiazepines are clinically used for antianxiety, antiepileptic, muscle relaxant, 

and hypnotic activity [21].  Clonazepam, clorazepate, diazepam and lorazepam are 

approved in the United States for treatment of certain types of seizures.  These classical 

benzodiazepines exert most of their effects by binding to GABAA receptors at the  

interface [22].  The benzodiazepine molecule is oriented such that the C5-phenyl 

substituent extends approximately parallel to the plane of the membrane [23].  

Benzodiazepines increase the agonist-binding affinity of GABAA receptors and the 

frequency of gated channel opening [24].  The presence of a subunit is essential for 

benzodiazepine binding, and  subunit-containing GABAA receptors have the highest 

sensitivity [25].  The subunit residue at histidine 101 is essential for benzodiazepine 

binding, so benzodiazepines bind non-selectively to  and  subunit-

GABAA receptors, but  and  subunit-containing GABAA receptors are not sensitive 

all benzodiazepines because these two subunits have an arginine at this position [26].  

Genetically modified mice showed that different subunit subtypes mediate different 

benzodiazepine effects.  The H101R mutation abolished diazepam binding to GABAA 
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receptors containing mutant  subunits [27].  The (H101R) mouse studies suggested 

that the motor sedative, anterograde amnesic, anticonvulsant actions and addictive 

properties of benzodiazepines are mediated by  subunit-containing GABAA receptors, 

while the sleep continuity-enhancing, anxiolytic-like, myorelaxant, motor-impairing and 

ethanol-potentiating effects are mediated by GABAA receptors containing other  

[27-30].  A similar strategy to abolish benzodiazepine binding sites in other  subunits 

showed that anxiolytic and myorelaxant activities are mediated by  subunit-containing 

GABAA receptors [31, 32].  The  subunit-containing GABAA receptors are involved in 

mediating anxiolytic activity of diazepam and myorelaxent activity at high diazepam 

concentrations [32-34].  The  subunit-containing GABAA receptors are involved in 

mediating myorelaxant activity of diazepam, as well as hippocampus-dependent learning 

and memory processes, such as trace fear conditioning [35, 36].  Although it has not been 

confirmed whether GABAA receptor subtype heterogeneity affects benzodiazepine 

function in the same way in human brain, GABAA receptor subtype selective drugs 

depending on  subunits have been developed to reduce the undesired actions [37]. 

Phenobarbital was identified as the first effective organic antiseizure agent in 

1912, and primidone is an effective treatment for partial and tonic-clonic seizures [21].  
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Barbiturates bind to GABAA receptors and enhance GABAergic current by increasing the 

mean open time but do not affect the channel conductance or opening frequency [38, 39].  

Barbiturates bind to GABAA receptors probably at a different site than GABA or 

benzodiazepines, because barbiturate binding increases [3H]GABA, [3H]muscimol, and 

[3H]flunitrazepam binding to GABAA receptors [40, 41].  Barbiturates at high 

concentrations can also activate GABAA receptors in the absence of GABA [42].  

Phenobarbital can reach this concentration when used during anesthesia [43].   

 

GABAA receptor assembly and trafficking 

GABAA receptor assembly in the endoplasmic reticulum (ER) 

Because of the complex subunit expression pattern in neurons, most GABAA 

receptor assembly and trafficking studies have been performed in heterologous cells 

overexpressing subunit cDNAs [44].  GABAA receptor subunits are membrane proteins, 

and thus each subunit has a leading signal peptide in the premature peptide.  During 

protein translation, the signal peptide targets the polypeptide to the Sec61 translocation 

machinery cotranslationally or posttranslationally and mediates translocation to the ER 

lumen [45].  The hydrophobicity pattern of signal peptides is the most important factor 
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this function [46].  Signal peptides are cleaved from premature subunits by a signal 

peptidase after translocation and cleaved again in the hydrophobic center between two 

leucine residues into small pieces [45].  While it has not been demonstrated in GABAA 

receptor subunit signal peptides, the cleaved signal peptide may function as a signaling 

molecule and exert cellular functions [47-49].   

GABAA receptor assembly occurs in the ER lumen [50] and involves classical ER 

chaperones including BIP and calnexin [50, 51].  Coexpressed L and  

subunits assembled into receptors that were trafficked to the cell membrane, but 

coexpressed L and L subunits were retained in the ER [50].  Unassembled and 

misfolded subunits were retained in the ER and degraded by the proteasome [52, 53].  

assembled GABAA receptors form a clockwise  arrangement when 

viewed from a synaptic gap [54, 55].  The  and  subunits can assemble into 

heteropentameric receptors and be expressed on the membrane in culture cells or mouse 

brain [50, 56], and thus,  subunits are not required for receptor membrane trafficking.  

Mice lacking  subunits (2-/- mice) had slightly reduced GABA binding sites in brain, 

lost 94% of benzodiazepine binding sites [56].  The sequences important for subunit 

oligomerization and receptor assembly are at the N-terminus of  and  subunits [57-
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[57-59].  Alteration in these N-terminus sequences abolished subunit oligomerization and 

receptor assembly.  In vivo studies showed that GABAA receptor assembly is a 

preferential process.  The  subunit knockout mice had decreased subunit membrane 

expression in cerebellar granule cells [14], and the  subunit knockout mice had 

decreased subunits level on forebrain membranes [60].  The subunit preferentially 

assembles with  and subunits.  GABAA receptor subunits have N-linked 

glycosylation sites at the N-terminus, and the subunit glycosylation pattern affects 

oligomerization and ER stability [61].  The subunits are also ubiquitinated in the ER 

an activity-dependent manner [62].  Blocking neuronal activity with the voltage-gated 

sodium channel blocker tetrodotoxin or glutamate receptor antagonists decreased 

GABAergic mIPSC amplitude and frequency in cultured neurons.  These neurons showed 

increased  subunit ubiquitination and decreased total and surface levels of GABAA 

receptors.  However, increasing neuronal activity with the GABAA receptor antagonist 

picrotoxin increased GABAA receptor surface levels.  This activity-dependent 

ubiquitination controls the number of GABAA receptors in the ER and their membrane 

expression level, suggesting that ER-to-Golgi translocation is an important regulation 

point for GABAA receptor membrane trafficking.  ER-to-Golgi translocation can be 

facilitated by the ubiquitin-like protein Plic-1, which binds directly to  and subunits 
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inhibits ubiquitin-dependent degradation [63].  Blocking the binding of Plic-1 to  

subunits reduced GABAergic current in CA1 neurons in hippocampal slices, and 

overexpressing Plic-1 with  subunits increased  subunit stability, which led to 

increased subunit total and surface levels. 

 

Figure 1.1 GABAARs membrane trafficking in the secretory pathway. Adapted from 

[64] 
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GABAA receptor trafficking in the Golgi apparatus 

Within the Golgi apparatus, the Golgi-specific palmitoyltransferase DHHC zinc 

finger domain protein (GODZ) interacts with a cysteine-rich domain in the second 

cytoplasmic loop of subunits, and palmitoylates  subunits in assembled receptors 

[65].  Palmitoylation is a reversible posttranslational modification that enhances protein 

hydrophobicity and regulates membrane trafficking and clustering [66].  Decreasing 

GODZ activity in neurons significantly decreased postsynaptic clustering of GABAA 

receptors, as well as GABAergic mIPSCs, but did not alter AMPA receptor-mediated 

glutamatergic transmission [65].  GABAA receptor subunits glycosylated in the ER carry 

high mannose N-linked glycans that are sensitive to Endoglycosidase H (EndoH) 

digestion [52, 61].  The oligosaccharide side chains are further modified in the Golgi 

apparatus so that they are insensitive to EndoH digestion but can still be removed by 

Peptide: N-Glycosidase F (PNGase F), an endoglycosidase that can remove all N-linked 

glycans [67].  Abolishing glycosylation in  receptors decreased peak current 

amplitudes of whole cell currents and reduced channel mean open time of single channel 

currents [61].  Thus, the glycosylation pattern affected GABAA receptor biogenesis and 

channel function. 
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Golgi-to-plasma membrane translocation 

The translocation of GABAA receptors from the Golgi apparatus to the plasma 

membrane is facilitated by Brefeldin-A-inhibited GDP/GTP exchange factor 2 (BIG2), 

GABAA receptor associated protein (GABARAP), N-ethylmaleimide-sensitive factor 

(NSF), and Phospholipase-C-related catalytically inactive protein 1 and 2 (PRIP-1, PRIP-

2) [68-71].   

BIG2 is a Sec7 domain-containing guanine nucleotide exchange factor (GEF) that 

catalyzes GDP/GTP exchange on the class I small G-protein ADP-ribosylation factor 1 

and 3 (ARF1/3) [72].  Activation of these G-proteins regulates coated vesicle formation 

from the Golgi apparatus and facilitates cargo translocation from Golgi to plasma 

membrane [73].  BIG2 directly interacts with the human exocyst protein Exo70 in the 

trans-Golgi network and in microtubules, suggesting that this protein complex has a 

functional association in both early and late stages of vesicular trafficking [74].  BIG2 

pulled down GABAA receptors from rat brain lysate and colocalized with GABAA 

receptors in cultured hippocampal neurons [68].  BIG2 binds to  subunits in the 

second intracellular loop at a position that overlaps the Plic-1 binding site.  Coexpressing 

BIG2 and  subunits in HEK293 cells improved  homopentamer membrane 

trafficking.   
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GABARAP interacts with the intracellular loop of  subunits and microtubules in 

vitro and in vivo [69, 75].  GABARAP is enriched in the Golgi apparatus and 

postsynaptic cisternae, but not at inhibitory synapses [76].  Overexpressing GABARAP 

in cultured neurons and heterologous cells increased GABAA receptor membrane levels 

[77], suggesting enhanced Golgi-to-membrane translocation.  This enhancement was 

abolished by a mutation at the GABARAP C-terminus that disrupted adding phospholipid 

to GABARAP [78].  Activating NMDA receptors increased GABAA receptor binding 

with GABARAP and expression of GABAA receptors at the dendritic surface of 

hippocampal neurons [79].  GABARAP binds to the postsynaptic marker gephryin, but 

this interaction is not important for GABAA receptor postsynaptic anchoring [80].  

GABARAP might be involved only with intracellular trafficking of GABAA receptors. 

NSF is an ATPase associated with various cellular activities protein.  It is critical 

for intracellular membrane fusion and protein membrane trafficking [70].  NSF binds to 

SNARE (soluble NSF attachment proteins receptor) complexes and utilizes the energy of 

ATP hydrolysis to disassemble them, thus facilitating SNARE recycling [81].  NSF 

directly binds to GABARAP and the intracellular loop of 1-3 subunits [70, 76].  NSF 

GABARAP colocalization was detected in cultured neurons by confocal microscopy and 
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in hippocampal/spinal slices by electron microscopy [76].  Together with GABARAP, 

NSF is also essential for enhanced GABAA receptor membrane expression after NMDA 

activation [79].  Abolishing GABARAP C-terminus modification disrupted subcellular 

localization of both NSF and GABAA receptors and blocked GABARAP-promoted 

GABAA receptor surface expression [78].  Mutations in the 2 subunit-binding domain of 

GABARAP had similar negative effects [77].  NSF and GABARAP might work together 

to facilitate GABAA receptor Golgi-to-membrane translocation.  Interestingly, 

overexpressing NSF alone decreased surface GABAA receptor level, but overexpressing 

GABARAP alone increased GABAA receptor surface level [70, 77].  NSF ATPase 

activity is required for down regulation of GABAA receptor membrane trafficking, which 

can be increased by PKC phosphorylation at serine 460 and threonine 461 residues of 

NSF [82].   

PRIPs, PRIP-1 and PRIP-2, were isolated from rat brain as inositol 1,4,5-

1,4,5-trisphosphate-binding proteins [71].  PRIP-1 is expressed mainly in brain, while 

PRIP-2 is a ubiquitous protein [83].  The regional expression of PRIP-1 and PRIP-2 

mRNAs were identified in hippocampal pyramidal cells, dentate granule cells, pyramidal 

and granule cell layers of the cerebral cortex, and granule cell and Purkinje cell layers 
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cerebellar nuclei of the cerebellum [83].  This expression pattern is close to GABAA 

receptors [71].  PRIPs directly interacted with  subunits,  subunits, and GABARAP 

[71, 84, 85].  PRIPs and subunits bind to the same region of GABARAP, and PRIPs 

inhibited  subunit binding to GABARAP in vitro [71].  However, PRIP-1-/- and 

PRIP1/2-/- mice both had normal GABAergic currents in hippocampal neurons, but 

decreased  subunit membrane levels, and behavioral response to pharmacological 

treatments suggesting decreased  subunit-containing GABAA receptor expression in the 

mouse brain [71, 84, 86].  Furthermore, the PRIP1/2-/- mice did not show a decrease in 

membrane  subunit membrane levels [87].  PRIP1/2-/- mice also had increased 6 

subunit membrane levels, and pharmacological and electrophysiological studies showed 

that more subunits assembled with subunits into functional receptors in cerebellar 

granule cells, so the normal  subunit membrane level might be due to increased 

expression of  receptors.  PRIPs are important for  subunit-containing GABAA 

receptor surface expression.   
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GABAA receptor clustering at synapses 

GABAA receptors integrate into cell membranes at extrasynaptic locations and 

diffuse laterally in the membrane where they are recruited to postsynaptic sites after 

synaptic formation [88, 89].  The induction of GABAergic inhibitory synapses is poorly 

understood.  Secreted proteins such as Narp and Ephrin B1 and cell adhesion molecules 

such as SynCAM and Neuroligin directly induce formation of excitatory synapses [90].  

Although Neuroligin-2 and Neurexin 1 are suggested to regulate inhibitory neuron 

synaptogenesis [91-93], mice lacking neuroligin expression had a normal density of 

synaptic contacts, suggesting that neuroligins are required for proper synapse maturation 

and brain function, but not for the initial formation of synaptic contacts [94, 95].  The 

detailed mechanism of inhibitory synapse formation is still unknown. 

The heterogeneity resulting from varying subunit composition affects GABAA 

receptor subcellular targeting [96].  1, 2, 2/3, and  subunit-containing GABAA 

receptors often locate at postsynaptic membranes in receptor clusters [97-99].  α4, 1, 

δ subunit-containing receptors are often distributed diffusely or at perisynaptic 

[99].   subunit-containing receptors are predominately extrasynaptic, including α52 

receptors [100, 101].  Extrasynaptic α6 or δ subunit-containing GABAA receptors are 
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major mediators of tonic inhibition, while2 subunit-containing receptors normally 

mediate phasic inhibition [16, 101, 102]. 

GABAA receptor neuronal subcellular targeting is strongly associated with 

interaction between GABAA receptor subunits and gephyrin, an inhibitory synaptic 

scaffold protein for both GABAergic and glycinergic synapses [97, 103-105].  Disrupting 

postsynaptic gephyrin clusters not only decreased postsynaptic GABAA receptor clusters, 

but also reduced the number of GABAergic presynaptic boutons contacting the 

pyramidal cells, suggesting that gephyrin clustering is required for maturation of 

GABAergic synapses [106].  Gephyrin consists of three major domains, a 20 kDa N-

N-terminal G domain and a 43 kDa C-terminus E domain connected by a central linker 

domain of 18-21 kDa [107].  The E domain contains a common binding site for glycine 

receptor  subunits and GABAA receptor 2, 3, and 1 subunits [108-111], and they 

to gephyrin in an exclusive manner [112].  Although the GABAA receptor 2 subunit is 

required for recruiting gephyrin to the surface membrane [113], the 2 subunit binding 

in gephyrin is still unknown.  The gephyrin binding sites on glycine or GABAA receptor 

subunits are predominantly in the M3-M4 intracellular loop, except for the GABAA 

receptor 2 subunit, which is at TM4 [113].  The number of α2, α3, β2/3, and γ2 subunit 
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immunoreactive synaptic clusters were significantly decreased in geph−/− mice, but the 

punctate staining of GABAAR α1 and α5 subunits was unaltered [114].  Recent studies, 

however, also showed that gephyrin directly bound to α1 subunits and decreased 

membrane diffusion of 1 subunit-containing receptors [115].  All of this evidence 

supported a model in which GABAA receptors on the membrane recruit gephyrin to 

stabilize formation of inhibitory synapses [106, 114-116].  Loss of gephyrin decreased 

spontaneous IPSCs but not whole cell GABA currents in cultured hippocampal neurons 

[106].   

The interaction between GABAA receptors and gephyrin also requires collybistin 

[117].  Collybistin is a member of the Dbl family of guanine nucleotide exchange factors, 

but the small GTPase, Cdc42, is not involved in gephyrin and GABAA receptor synaptic 

targeting [118].  Collybistin-deficient mice had a region-specific loss of postsynaptic 

gephyrin and GABAA receptor clusters in the hippocampus and the basolateral amygdala, 

but glycine receptor clusters were not affected [119].  Interestingly, the SH3 domain at 

collybistin N-terminus and GABAA receptor subunits binds to gephyrin at the same 

binding site [112], and both N-terminus and lipid binding C-terminus of collybistin are 

required for recruiting GABAA receptor-gephyrin complexes to postsynaptic membranes 
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[117, 118, 120].  The presence of gephyrin or collybistin strengthened the tri-hybrid 

interactions between α2 subunits and collybistin or α2 subunits and gephyrin, suggesting 

that GABAA receptors, collybistin and gephyrin form a trimeric complex [109].  

GABAA receptors can form clusters independent of gephyrin.  Gephyrin-deficient 

geph-/- mice had unaltered numbers of GABAA receptor α1 and α5 subunit-containing 

postsynaptic puncta and inhibitory presynaptic terminals [114], and α2 and γ2 subunit-

containing GABAA receptors in hippocampal cultures from geph-/- mice clustered at 

pyramidal synapses at reduced levels [116].  The ERM family protein radixin directly 

binds to 5 subunit-containing receptors and cytoskeleton protein F-actin and facilitated 

5 receptor clustering [121].  Depletion of radixin in cultured neurons drastically 

decreased 5 receptor clustering, but the surface level of 5 receptors was not altered.  

The radixin knockout mouse also had background levels of 5 subunit-containing 

receptor clustering but normal surface 5 subunit-containing receptor levels in brain.  

However, electron microscopy studies demonstrated 5 subunit-containing receptor 

clusters at synaptic membranes that colocalized with gephyrin and 2 subunit-containing 

receptors [122].   
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GABAA receptor endocytosis and degradation 

GABAA receptors are internalized exclusively at extrasynaptic sites in a clathrin- 

and dynamin-dependent manner [89, 123].  More than 25% of surface GABAA receptors 

were internalized after 30 minutes [124], 70% of the internalized GABAA receptors were 

rapidly recycled back to the surface, and 30% of neuronal GABAA receptors were 

degraded by lysosome after 6 hours [124].  The interaction between GABAA receptors 

and clathrin is mediated by  or subunits and the clathrin adaptor protein AP2 

[85, 123, 125, 126].  The AP2 binding sites on  and  subunit intracellular domains 

can be phosphorylated by a variety of kinases including PKA, PKC, CaMKII or Akt 

[127-131], and phosphorylation decreases the binding affinity between GABAA receptors 

and AP2, allowing for activity- and subunit-dependent modulation of surface 

receptor levels.  Applying a non-phosphorylated peptide corresponding to the 3 subunit 

AP2 binding site to cultured hippocampal neurons increased mIPSC amplitude and 

frequency [125].  Co-applying non-phosphorylated peptides corresponding to the 2 and 

3 subunit AP2 binding sites increased mIPSC amplitude in additive manner [126].  

These resulted demonstrated that GABAA receptor endocytosis directly regulates 

inhibitory synaptic transmission.  Mice carrying homozygous phosphorylation defective 
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2Y365/7F subunits died early in development, and heterozygous 2Y365/7F mice had 

mIPSC amplitude in the hippocampal CA3 region because of increased GABAA receptor 

levels, but also deficits in CA3-dependent spatial memory [132].  However, 

overexpression of 2 subunits in transgenic mice did not significantly alter mouse 

behavioral or biochemical phenotypes except ethanol tolerance [133], suggesting that 

GABAA receptor-dependent synaptic inhibition strength regulation is paramount for 

mouse development and normal brain function. 

Huntingtin-associated protein (HAP1) directly binds to the intracellular domain of 

 subunits.  When HAP1 was overexpressed in cultured neurons, it inhibited 

endocytosed GABAA receptor degradation and facilitated receptor recycling [124].  

HAP1-/- mice lacking HAP1 had substantially decreased surface GABAA receptor levels, 

as well as mIPSC amplitudes [134].  HAP1 links GABAA receptors to the kinesin family 

motor protein 5 (KIF5) [135].  KIF5 mediates GABAA receptor membrane insertion, and 

disrupting the HAP1-KIF5 complex decreased synaptic GABAA receptor number and 

reduced the amplitude of inhibitory postsynaptic currents.  The decreased inhibitory 

synaptic currents may contribute to Huntington’s disease because mutant huntingtin 

interrupts HAP1 function and disrupts GABAA receptor recycling [135]. 
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Endocytosed GABAA receptors that are not recycled are degraded by lysosomes 

[124].  This degradation is dependent on 2 subunit ubiquitination [136].  Blocking 2 

subunit ubiquitination, disrupting the trafficking of ubiquitinated cargo to lysosomes, or 

blockade of lysosomal activity increased the efficacy of synaptic inhibition.  Mutations at 

2 subunit ubiquitination sites also blocked the loss of synaptic GABAA receptors after 

anoxic insult.  In addition to ubiquitin-mediated proteasomal degradation of GABAA 

receptors in the ER, the synaptic 2 subunit-containing GABAA receptor level is also 

regulated by ubiquitin-dependent lysosomal degradation.   

 

GABAA receptor epilepsy channelopathies 

 

Overview 

Mutations and variations in GABAA receptor subunits have been associated with 

several genetic epilepsy syndromes [44, 137, 138].  Epilepsy associated GABAA receptor 

subunit mutations were identified from genes encoding α1, 3, 2 and δ subunits 

(GABRA1, GABRB3, GABRG2 and GABRD) [44].  These are rare mutations, but studying 

their mechanisms has further elucidated the function of GABAA receptors and 
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inhibitory neurotransmission [139, 140].  The functional characterization of epilepsy-

epilepsy-associated GABAA receptor mutations has been performed in heterologous cells, 

cultured neurons, and genetically modified mice as model systems.  A comprehensive 

comparison about advantages and disadvantages of these systems can be found in Ref 

[141].  Monogenic epilepsies associated with GABAA receptor subunit mutations vary in 

severity from the relatively benign childhood absence epilepsy (CAE; MIM no. 600131) 

the severe epilepsy syndrome, Dravet syndrome (DS; MIM no. 607208).  These 

either directly or indirectly reduce inhibitory GABAergic neurotransmission, which 

cause brain hyperexcitability and thereby predispose patients to seizures.  Investigators 

have designated the numbering of mutations in GABRG2 based on the position in the 

mature peptide (i.e. GABRG2(R43Q)), but mutant amino acids in GABRA1, GABRB3 and 

GABRD are in the immature peptide that includes the signal sequence (i.e. 

GABRA1(A322D)).  For consistency, the numbering of all GABAA receptor subunit gene 

mutations will be designated in the immature peptide (i.e. GABRG2(R82Q)) in this thesis, 

including GABRG2 gene mutations. 
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GABRG2 gene mutations 

GABRG2 gene expression pattern and subunit function 

There have been 19 epilepsy mutations identified in GABAA receptor subunit 

genes, 8 of which were identified in the GABRG2 gene, suggesting its strong association 

with epilepsy [142].  The human GABAA receptor  subunit is encoded by the GABRG2 

gene, which is located on chromosome 5q34 in a cluster with GABRB2, GABRA6, and 

GABRA1 genes encoding , 6, and 1 subunits, respectively [143].  The mouse 

GABRG2, GABRA1 GABRA6 and GABRB2 genes also form a cluster on mouse 

chromosome 11.  The temporal and spatial expression of GABAA receptor subunits is 

strictly regulated [144-149].  In mouse brain, the 2 subunit is the most abundant 

subunit, followed by the subunit [150].  The  subunit is rare.  Approximately 75-

75-80% of GABAA receptors contain the 2 subunit [10].  The  subunit mRNA level is 

prominent at birth, increases to a maximum level in the second or third postnatal week, 

then decreases slightly to the adult level [144, 150, 151].  In situ hybridization showed 

 subunit mRNA is expressed in the cerebral cortex, pyramidal cell layer of the 

hippocampus, granule cell layer of the dentate gyrus, inferior and superior colliculi, 

caudate, and cerebellar cortex [144-146, 151].  The expression in the cerebellar cortex is 

mainly in the internal granule cell layer; the mRNA level in the external granule cell 
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is lower.  The subunit mRNA is expressed in the olfactory bulb in mitral cell, 

glomerular, and internal granular layers.  The brainstem also has prominent subunit 

mRNA expression.  This pattern is consistent with 2 subunit protein level shown in 

immunohistochemistry studies [148].   

There are three splice variances of subunits, γ2L, γ2S, and γ2XL subunits [11, 

12].  The XL subunits retained a 40 amino acid peptide between Ser 171 and Tyr172 

from alternative splicing of intron 5.  The subunit, however, did not oligomerize with  

subunits and was not expressed on cell surface membrane.  Thus, the function of this 

variant is still unknown.  In the presence of the neuron-specific RNA binding protein 

Nova, a 24 bp extra exon was retained in the 2L subunit mRNA after GABRG2 gene 

intron 8 alternative splicing [152].  The retained exon translates to an eight amino acid 

peptide, LLRMFSFK, in the second intracellular loop that encodes a potential consensus 

serine phosphorylation site for protein kinase C.  Both 2L and S receptors 

were endocytosed at similar levels after activating PKC with PMA [153].  

either γ2L or γ2S variant in transgenic mice using an actin promoter did not affect 

motor activity, acute effects of benzodiazepines and alcohol, or responses to alcohol 

withdrawal [133].  Expressing either γ2L or γ2S subunits in -/- mice as a transgene fully 
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rescued the KO mice behavior, making it indistinguishable from wildtype mice [154].  

The extra 24 bp exon was knocked out from intron 8 to generate 2L-/- knockout mice 

[155].  Homozygous2L-/- knockout mice are viable and indistinguishable from wildtype 

mice, but they were more sensitive to benzodiazepines because of an increase in affinity 

brain membrane receptors for benzodiazepine agonists [156].  However, the extra 

predicted phosphorylation site in the γ2L subunit introduced novel functions compared to 

γ2S subunits.  When expressed in HEK293 cells alone, 2S subunits were expressed on 

cell membranes as homopentamers but 2L subunits were retained in ER [157].  After 

mutating the extra 8 amino acid peptide in 2L subunits to 8 alanines, the mutated 2L 

subunits were expressed also on the membrane.  The 2L subunits more efficiently 

accumulate at inhibitory synapses than 2S subunits [158].  PKC activation facilitated the 

postsynaptic clustering of 2L, but not 2S, subunits, and this effect was blocked by 

mutating Ser343 to Ala343.  Therefore, it is not surprising that γ2L and γ2S subunits are 

differentially expressed in brain regions [159, 160].  The γ2S subunit mRNA is expressed 

at a fairly constant level during brain development, while γ2L subunit mRNA levels are 

low at birth and increase dramatically with maturation [159].  In new born mice, 85% of 

 subunit mRNAs is the S variant, which decreases to 45% at 6 weeks of age.  In adult 

rat brain, 2S and γ2L subunit protein levels vary depending on brain region [160].  The 
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2S subunit level is higher than γ2L subunit level in the hippocampus, cerebral cortex, 

olfactory bulb.  In contrast, the 2L subunit level is higher than the γ2S subunit in the 

inferior colliculus, medulla, and the cerebellar Purkinje cells.  The relative ratio of γ2L to 

γ2S subunit levels is altered in aging brain, during pregnancy, and with schizophrenia 

[161-163].  It is not clear whether the relative ratio of γ2L to γ2S subunit levels changes 

epilepsy. 

Although  subunits are not required for GABAA receptor membrane expression, 

they are important for normal brain function.  Homozygous -/- knockout mice had 

normal body weight and brain histology, but they died within two weeks after birth [56].  

The  subunit is required for maintaining postsynaptic GABAA receptor clustering [97].  

The -/- mice lost both GABAA receptor clustering and scaffold protein gephyrin at the 

postsynaptic sites in cerebral cortex and cultured neurons, which were restored by 

ectopically express  subunits [164].  However, endogenous  subunit expression was 

not changed in the -/- mice to compensate for the loss of  subunit [56].  Recordings 

obtained from -/- mouse dorsal root ganglion neurons showed GABAergic currents that 

were similar to receptor currents recorded from heterologous cells [56, 165].  These 

-/- mice lost 94% of their benzodiazepine binding sites but GABA binding sites were 



36 

 

slightly decreased.  The heterozygous +/- mice had significantly decreased 

benzodiazepine binding sites and increased extrasynaptic GABAA receptor radioligand 

binding sites in cortex, striatum, thalamus, hippocampus, inferior colliculus, and 

granule cell layer, but muscimol binding sites were not different [166].  

Immunohistochemistry study also showed these animals had decreased GABAA receptor 

clustering in hippocampus and cerebral cortex [167].  The +/- mice showed increased 

anxiety characterized by harm avoidance behavior and an explicit memory bias for threat 

cues, probably resulting from disinhibition in CA3 of hippocampus [167].  Diazepam 

treatment reversed the anxiety phenotypes.  These behavioral phenotypes were 

recapitulated insubunit knockdown mice [168].  The GABAA receptor dysfunction 

might be associated with anxiety traits in patients.  No studies of possible seizure 

phenotypes in -/- or +/- mice have been reported. 
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Figure 1.2 GABAA receptor γ2 subunit mutations associated with genetic 

epilepsy syndromes.   

 

Predicted membrane topology of GABAA receptor γ2 subunit consists of a 

large extracellular domain at the N-terminus, four transmembrane domains (M1–

M4) and a large cytoplasmic domain. In this figure, we depicted GABAA receptor 

γ2 subunit mutations associated with genetic epilepsy syndromes at their 

appropriate protein domain within the subunit. 
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GABRG2 gene missense mutations 

The first identified epilepsy mutation in GABAA receptor subunits was the 

GABRG2(K328M) mutation, which is an AD mutation associated with a family with 

generalized epilepsy with febrile seizures plus (GEFS+) [169].  A lysine residue in the 

short extracellular domain between transmembrane domain M2 and M3 is mutated to a 

methionine residue in the mutant 2 subunit.  When expressed in Xenopus oocytes, 

mutant 2(K328M) receptors had decreased peak current amplitude and diazepam 

enhancement compared to wildtype 2 receptors [169].  However, GABAergic 

current recorded from HEK293T cells expressing the 2(K328M) receptors had 

unchanged current amplitude but accelerated desensitization [170, 171].  Transient 

analysis suggested that the mutant 2(K328M) receptors decreased channel opening 

rate constant kop by 5 fold, which decreased GABA-induced channel-opening equilibrium 

constant between the closed- and open-channel forms of the receptor (Φ-1 = kop/kcl) [172].  

The anticonvulsant pentobarbital and neurosteroid 5-THDOC increased the ratio of 

channel-opening and closing rate constants and partially rescued the malfunction of 

receptors [173, 174].  Single channel currents in HEK293T cells showed that 

2(K328M) receptors had reduced mean open times [170, 171].  When 2(K328M) 
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subunits were overexpressed in cultured hippocampal neurons, they were assembled into 

GABAA receptors, expressed on the surface membrane, formed clusters as wildtype 2 

subunits, and accelerated deactivation of mIPSCs [175, 176].  These studies suggested 

that the mutant 2(K328M) subunits were assembled to GABAA receptors and trafficked 

postsynaptic membrane at normal efficiency, but decreased GABAergic mIPSCs by 

accelerating channel deactivation.  The GABRG2(K328M) mutation might associate with 

epilepsy because it decreases GABAergic inhibitory neurotransmission.   

The GABRG2(R82Q) mutation is an AD mutation identified from a large family 

patients with epilepsy syndromes including CAE and febrile seizures [177].  The 

alone is associated with febrile seizures (fifteen individuals) and possibly GEFS+ (three) 

this family.  The possible interactions with other yet to be identified modifier genes 

contributed to other epilepsy symptoms including typical CAE (eight individuals), 

myoclonic astatic epilepsy (two individuals), generalized epilepsy with tonic–clonic 

seizures alone (one individual), partial epilepsy (one individual) and unclassified epilepsy 

despite evaluation (two individuals) [178].  Transcranial magnetic stimulation (TMS) 

studies demonstrated that the subjects affected by the GABRG2(R43Q) mutation had 

increased intracortical excitability because of reduced net short-interval intracortical 
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inhibition and increased intracortical facilitation; the motor thresholds were not altered 

either at rest or with weak voluntary activation [179].  The GABRG2(R82Q) mutation 

replaced an arginine residue located in the distal N-terminus of the 2 subunit between 

interface to a glutamine residue [59, 176].  The mutant subunit might have altered 

benzodiazepine binding affinity because the Arg82 residue in  subunit is in the 

of the first high-affinity benzodiazepine binding site at the  interface [177, 180].  

When expressed in HEK293T cells, mutant 2(R82Q) receptors had decreased peak 

current amplitude, but macroscopic current activation and deactivation were not altered, 

nor was [3H]flunitrazepam binding affinity [170, 180].  However, the total 

benzodiazepine binding site was decreased in both HEK293T cells expressing 

2(R82Q) receptors and in the brain of patients carrying the GABRG2(R82Q) 

mutation, reflecting the decreased surface 2 subunit-containing GABAA receptor 

expression [180, 181].  Statistical parametric mapping showed that the greatest change in 

benzodiazepine binding in human brain occurred in insular and anterior cingulate 

Further studies showed that the R82Q mutation impaired mutant  subunit 

oligomerization with patterning subunits and GABAA receptor assembly [59, 175, 176, 

180, 182].  When the 2(R82Q) subunits were coexpressed with  subunits in 

HEK293T cells, most of the mutant 2(R82Q) subunits were retained in the ER so the 
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majority of functional GABAA receptors on the cell membrane are composed of  

subunits.  The 2(R82Q) subunits in postsynaptic GABAA receptor clusters were 

decreased too.  The  subunit increases GABAA receptor channel conductance and 

opening duration, so the receptors are more efficient in conducting Cl- currents 

than  receptors [183].  However, the 2(R82Q) subunits suppressed endogenous  

subunit surface expression in cultured hippocampal neurons and decreased tonic current 

amplitude, suggesting possible dominant negative function [176].   

Although no studies of possible seizure phenotypes in -/- or +/- mice have been 

reported, decreasing  subunit expression in mouse whole brain (+/- mice) or cortex 

(Emx1Cre × fγ2/+ mice) decreased postsynaptic  subunit expression and induced 

abnormal mouse behaviors [167, 184].  Knocking out the  subunit at embryonic day 10 

in cerebral glutamatergic neurons in heterozygous mice (Emx1Cre × fγ2/+ mice) 

recapitulated the anxiety behaviors of constitutive subunit knockout  mice and 

reduced adult hippocampal neurogenesis, but heterozygous mice (CaMKIICre2834 × 

fγ2/+ mice) with knockout of the 2 subunit from forebrain glutamatergic neurons since 

postnatal day 17 were not different from wildtype mice [184].  The  subunit expression 

during embryonic and early postnatal developmental stages accounted for the abnormal 
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mouse behaviors.  Homozygous  R82Q/R82Q mice died before postnatal day 19, which 

similar to -/- mice [185] and had decreased surface and total subunit levels in brain 

tissue and cultured neurons.  Heterozygous R82Q/+ mice carrying only one 

GABRG2(R82Q) allele had decreased surface  subunit expression in cultured neurons, 

but surface  subunit level in cultured neurons was not changed.  The R82Q/+ mice also 

showed decreased GABAA-mediated synaptic currents in layer II/III cortical pyramidal 

neurons, but not in thalamic neurons, and behavioral arrest associated with 6-to 7-Hz 

spike-and-wave discharges (SWDs), which is the clinical hallmark of human CAE (3 7-

in humans).  The genetic background modified the penetrance of the GABRG2(R82Q) 

mutation as well as the EEG pattern during seizures, which supported the possible 

gene effects in the human pedigree.  The GABRG2(R82Q) allele containing a neomycin 

cassette decreased mRNA expression by 76-91%, which was fully restored after the 

neomycin cassette was removed [186].  When the neomycin cassette was removed in the 

forebrain from the temporally and spatially regulated conditional heterozygousR82Q/+ 

knockin mice since conception, the mice had similar pentylenetetrazol-induced seizure 

susceptibility in adulthood as the constitutive heterozygousR82Q/+ knockin mice.  

However, when the neomycin cassette was removed from these animals at postnatal day 

21, the mice had significantly higher pentylenetetrazol-induced seizure susceptibility in 
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adulthood than those mice expressing the R82Q subunits from conception.  

Decreasing the R82Q subunit expression from conception to P21 made the mice less 

likely to have seizures, suggesting that the R82Q subunit has the potential to impair 

brain E/I balance with an unknown mechanism.  Therefore, the GABRG2(R82Q) 

associates with epilepsy through multiple mechanisms: impairing subunit oligomerization 

and mutant  subunit-containing GABAA receptor membrane trafficking, enhancing 

modifier gene effects, and other dominant negative effects, possibly inhibiting tonic 

GABAA receptor currents [176]. 

The GABRG2(R177G) mutation was identified from a family of patients with 

febrile seizures [187].  The mutation is located in exon 4 of the GABRG2 gene and 

changed the highly conserved Arg177 residue in the second benzodiazepine binding site 

in the  subunit N-terminus to glycine.  Mutant (R177G) receptors have 

increased desensitization and reduced sensitivity to diazepam, but the same peak current 

amplitude and Zn2+ inhibition as wildtype  receptors.  The molecular mechanisms 

of the GABRG2(R177G) mutation are still unclear.  Future studies focusing on the mutant 

protein maturation and mutant receptor biogenesis are needed to elucidate the molecular 

defect of this mutation in epilepsy. 
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The GABRG2(P83S) mutation was identified in a large French Canadian family 

exhibiting febrile seizures and idiopathic generalized epilepsy over three generations 

[188].  The nine individuals carrying this mutation in heterozygous form had febrile 

seizures and/or other epilepsy syndromes.  The mutation changed the highly conservative 

 subunit Pro83 residue next to the Arg82 residue described above into a serine residue.  

The (P83S) receptors had normal channel kinetics and responded normally to 

GABAA receptor modulators Zn2+ and diazepam.  Future studies are needed to explore 

how the GABRG2(P83S) mutation induces epilepsy. 

GABRG2 gene nonsense mutations 

The GABRG2(Q390X) mutation was identified in a family with generalized 

epilepsy and febrile seizures [189, 190].  Genetic study showed that the 

mutation interacted with an unidentified modifier gene and caused Dravet syndrome in 

individual carrying the mutation in a heterozygous form [189].  The mutation changed the 

Gln390 residue to a premature-translation termination codon (PTC) in the last exon, 

is translated to a truncation  subunit that lacks its C-terminal 78 amino acids [191].  

mutant subunit mRNA was not degraded by nonsense mediated decay (NMD), consistent 

with the previous study that the PTC at the last exon did not activate NMD [192].  The 
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mutant (Q390X) subunit was retained in the ER as an immature peptide, but it 

oligomerized with partnerning wildtype subunits, retained them in the ER, and 

the degradation of wildtype subunits though ER-associated degradation dependent on 

ubiquitinylation and proteasome degradation [191].  Currents recorded from 

2Q390X/+ receptors were reduced compared to those from hemizygous 2+/- 

receptors.  Mutant 2(Q390X) subunits formed SDS-resistant, high-molecular-mass 

complexes shortly after they were synthesized and were degraded significantly slower 

wildtype  subunits [193].  The function of the 2(Q390X) subunit-containing SDS-

SDS-resistant, high-molecular-mass complexes is not clear, but protein aggregation has 

been linked to neurodegenerative diseases, such as Alzheimer's disease (beta-amyloid 

aggregation), “mad cow” disease (prion aggregation), and Huntington's disease 

aggregation) [194].  The GABRG2(Q390X) mutation generated a mutant  subunit that 

was not trafficked to the cell membrane, decreased surface wildtype receptor expression 

a dominant negative manner, and formed protein aggregations that could interfere with 

normal cell functions.   

The GABRG2(Q40X) mutation is a heterozygous nonsense mutation identified 

from twin sisters with Dravet syndrome [195].  The mutation changed the Gln40 residue 
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at the end of the  subunit signal peptide to a PTC, which is located at the second exon 

 subunit mRNA.  The mutant mRNA is likely to be degraded by NMD, so the 

GABRG2(Q40X) mutation may associate with epilepsy though haplo-insufficiency, but 

this has not been demonstrated yet.   

The GABRG2(W429X) mutation was identified in a family with GEFS+ [196].  

The mutation changed the Trp390 residue to a PTC and truncated the  subunit in the 

intracellular loop between the third and fourth transmembrane segments.  Because the 

PTC is located at the last exon, the mutant mRNA should not be degraded by NMD.  

Therefore, the mutant allele is expected to be expressed as a truncated  subunit with 

loss of the C-terminal 39 amino acids.  Further studies are needed to elucidate the 

function of the (W390X) subunit and demonstrate how the GABRG2(W390X) mutation 

associates with epilepsy. 

The GABRG2(R136X) mutation was identified from a family with febrile seizures 

and GEFS+ [197].  The mutation changed Arg136 residue to a PTC, which is located at 

the exon 4 of  subunit mRNA.  The mRNA should be degraded by NMD, but this has 

not been reported.  The undegraded mRNAs would be translated as truncated  subunits 

containing the wildtype signal peptide and the N-terminal 97 amino acids.  When 



47 

 

expressed in a cultured neuronal cell line, mutant (R136X) subunits were detected in 

ER and decreased GABAA receptor clusters on the cell surface relative to wildtype  

subunits.  Further studies are needed to elucidate whether and how the (R136X) 

subunits affects GABAA receptor biogenesis, and whether the GABRG2(R136X) 

is associated with epilepsy through mechanisms other than haplo-insufficiency.  

GABRG2 gene intron splice donor site mutation 

The GABRG2(IVS6+2TG) mutation is an AD mutation identified from a two 

generation family with CAE and febrile seizures [198].  The mutation changed the 

GABRG2 gene intron 6 splice donor site sequence from GT to GG and prevented the 

splicing from happening at this site [199].  It was predicted that the mutant intron 6 might 

splice out between the wildtype acceptor site and donor site of intron 5 or an alternative 

splice donor site 375 bp or 758 bp downstream of the original wildtype donor site, 

a mutant mature mRNA containing PTC in the middle, and get degraded by NMD.  

However, not all the NMD-susceptible mRNAs are removed by NMD [200, 201].  NMD 

efficiency is different among cell types, and undegraded mRNAs are translated to 

It is possible that the mutant 2(IVS6+2TG) subunit mRNAs are expressed to proteins, 

and their amount is higher in cells that have lower NMD efficiency.  Further studies are 
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needed to decide the intron splice pattern of the mutant mRNA, evaluate the function of 

possible translation products, and demonstrate the association with epilepsy. 

 

GABRA1 gene mutations 

GABRA1 gene expression pattern and  subunit function 

The human GABAA receptor  subunit is encoded by the GABRA1 gene, which 

also located on human chromosome 5q34 in a cluster with GABRB2, GABRA6, and 

GABRG2 [143].  In adult mouse brain, the  subunit is the most abundant subunit and 

is colocalized with and  subunits in virtually all brain regions [13, 147].  The  

subunit mRNA level is weak at E18 and during the first prenatal week, dramatically 

increases during the second postnatal week and then progressively increases to the adult 

level [144, 150, 202].  Using in situ hybridization,  subunit mRNA was shown to be 

expressed at high levels in the cerebral cortex, pyramidal cell layer of the hippocampus, 

granule cell layer of the dentate gyrus, thalamus, septum, inferior colliculi, and globus 

pallidus in adult rat brain [146, 147, 202].  The expression in the cerebellar cortex is 

mainly in the Basket cells, Purkinje cells, and granule cells [145, 146, 202].  The 

expression in the Bergmann glia is low.  The subunit mRNA is expressed in the 
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olfactory bulb in mitral cells, and in the glomerular layer.  The brainstem also has 

prominent subunit expression.  This pattern is consistent with  subunit levels shown 

in immunohistochemistry studies [148].   

Despite the fact that the  subunit is the most abundant  subunit and 

ubiquitously expressed in brain,  mice are viable, fertile, and show no spontaneous 

seizures [203, 204].  The loss of subunit induced adaptive responses [205, 206].  The 

 and  subunits were upregulated by 37% and 39% in  mice cerebral cortex; the 

 subunit in the cerebellum is decreased by 38%, while  subunits were decreased by 

65% and  subunits were decreased by 47%.  The total GABAA receptor number was 

decreased more than 50% [204].  These compensatory responses probably happened at 

the protein level [206-208], which is also suggested by microarray studies demonstrating 

that genes involved in protein trafficking and metabolism were over-represented in  

mice [206].  



50 

 

 

Figure 1.3 GABAA receptor α1 subunit mutations associated with genetic epilepsy 

syndromes.   

 

Predicted membrane topology of GABAA receptor α1 subunit consists of a large 

extracellular domain at the N-terminus, four transmembrane domains (M1–M4) and a 

large cytoplasmic domain. In this figure, we depicted GABAA receptor α1 subunit 

mutations associated with genetic epilepsy syndromes at their appropriate protein 

domain within the subunit. 
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GABRA1 gene missense mutations 

The GABRA1(A322D) mutation is a missense mutation found in all family 

members who were affected with an AD form of JME (ADJME) [209].  All patients had 

one wildtype and one mutant α1(A322D) subunit allele.  Homozygous α1(A322D) 

receptors had ∼10% of the peak current and an ∼200-fold higher GABA EC50 value 

compared with wildtype α1 receptors [209].  Heterozygous expression of mutant and 

wildtype  subunits at a 1:1 ratio produced smaller currents than wildtype and much 

larger currents than homozygous mutant transfections [210].  The mutation introduces a 

negatively charged aspartate into the middle of the 1 subunit third transmembrane 

domain, thus destabilizing insertion of the M3 domain into the lipid bilayer and 

1 subunit misfolding [53].  The misfolded 1(A322D) subunit was primarily degraded 

by ER-associated degradation before receptor assembly [211], or rapidly endocytosed 

membrane insertion and degraded by lysosomal degradation [212].  Recent studies 

demonstrated the 1(A322D) subunit oligomerized with other GABAA receptor subunits 

and retained them in the ER, thus decreasing membrane levels of GABAA receptors in a 

dominant negative manner [213].  Interestingly, it preferentially decreased α3β2γ2 

receptor membrane level by a greater amount than α1β2γ2 receptors.  The 
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GABRA1(A322D) mutation would induce epilepsy though both GABRA1 gene haplo-

haplo-insufficiency and 1(A322D) subunit dominant negative effects. 

The AD GABRA1(D219N) mutation was identified from the same studies in the 

French Canadian family with febrile seizures and idiopathic generalized epilepsy that 

identified the GABRG2(P83S) mutation [188].  The negatively charged residue Asp219 at 

the extracellular N-terminal domain was mutated to a non-charged polar residue N219 in 

the mutant 1(D219N) subunit.  The mutation was proposed to reduce the interaction 

between D129 and K247, thus destabilize the GABAA receptor opening state similar to 

the GABRG2(K328M) mutation.  Consistent with this hypothesis, the 1(D219N) subunit 

was assembled with 2 and 2 subunits, trafficked to cell membrane, but the GABA-

evoked currents in 1(D219N) coexpression had faster desensitization [188].  

However, the 2(K328M) mutation only affected receptor kinetics, and (K328M) 

receptors had peak current amplitudes similar to  wildtype receptors [170], while 

1(D219N) receptors had peak current amplitudes in between of  and  

receptors, suggesting that the 1(D219N) subunit had decreased oligomerization and 

receptor assembly.  Further studies are needed to explore how the GABRA1(D219N) 

mutation induces epilepsy. 
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GABRA1 gene deletion mutations 

The GABRA1(S326fs328X) mutation is a de novo AD mutation identified from a 

patient with CAE [214].  A single nucleotide Cytosine975 was deleted from codon of 

residue S326 in exon 8, causing a frameshift, and creating a PTC at residue L328, 74 bps 

upstream of the last exon–exon junction.  The mutant 1(S326fs328X) subunit was 

truncated from the middle of the third transmembrane domain.  It totally abolished 

GABA-evoked current recorded from cells cotransfected with 1(S326fs328X) 

subunits [214].  The mutant mRNA was degraded by NMD, and the undegraded mRNA 

was translated to protein that was further degraded by ER-associated degradation through 

the ubiquitin-proteasome system [201].  The process of both NMD and ER-associated 

degradation decreased the total level of 1(S326fs328X) subunits to less than 3% of 

wildtype 1 subunit total levels.  The GABRA1(S326fs328X) mutation would induce 

epilepsy in patients through GABRA1 gene haplo-insufficiency.  Because 1-/- mice 

lacking 1 subunits did not have spontaneous seizures [203, 204], the pathogenesis of 

GABRA1(S326fs328X) mutation might also involve other unidentified modifier genes. 

The AD GABRA1(K353delins18X) mutation was the third mutation identified 

the genetic screening in the family that identified GABRG2(P83S) and GABRA1(D219N) 
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mutations [188].  The four patients carrying this mutation over two generations all had 

epilepsy.  The mutant allele had a 25 bp insertion close to the intron 10 splice acceptor 

site.  RT-PCR of the patient’s mRNA demonstrated a 1242 bp fragment of intron 10 in 

mature mutant mRNA, resulting in deletion of 103 amino acids from the 1 subunit C-

C-terminus containing the last transmembrane domain TM4, and translation of an 18 

amino acid intronic sequence until the PTC [188].  The mutant 1(K353delins18X) 

subunit was truncated and retained inside of the cell.  No GABA-evoked current was 

recorded from cells cotransfected with 1(K353delins18X) subunits.  The 

GABRA1(K353delins18X) mutation might induce epilepsy by GABRA1 gene haplo-

haplo-insufficiency, but further studies are needed to elucidate the mechanism of 

epileptogenesis associated with this mutation. 

 

GABRB3 gene mutations 

GABRB3 gene expression pattern and  subunit function 

The human GABAA receptor  subunit is encoded by the GABRB3 gene, which 

also located at human chromosome 15q11.2-q12 in a cluster with GABRA5, and GABRG3 

genes [143].  The mouse GABRB3, GABRA5 and GABRG3 gene cluster is located at 
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mouse chromosome 7.  The GABRB3 gene is located in the Angelman/Prader-Willi 

of human chromosome 15 (15q11q13) [215].  Angelman syndrome results from deletion 

of a chromosome 15 fragment carrying the GABRB3 gene [216].  The  subunit mRNA 

level is high during development, peaks at P12, and then decreases to adult levels during 

the first and second postnatal weeks [144, 151].  Studies using in situ hybridization 

showed that  subunit mRNA was detected in E14 embryonic brain in the olfactory 

thalamus, and spinal cord, then drastically increased in the hippocampus, cerebral cortex, 

and internal granule cell layer of the cerebellum until the first postnatal week [144, 151].  

The  subunit mRNA was also detected in the external granule cell layer of the 

cerebellum, caudate, thalamic nuclei, and superior and inferior colliculi at this age.  In 

adult rat brain,  subunit mRNA is expressed at high levels in olfactory bulb, cortex, 

caudate-putamen, accumbens nucleus, hypothalamus, amygdala, hippocampal formation, 

and at moderate levels in thalamus, superior and inferior colliculus, and many areas of the 

brainstem [146, 147, 217].  Expression in the cerebellar cortex is mainly in Purkinje cells 

and granule cells.  This pattern is consistent with  subunit protein level as shown in 

immunohistochemistry studies [148].   
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Figure 1.4 GABAA receptor β3 subunit mutations associated with genetic epilepsy 

syndromes.  

 

GABAA receptor β3 subunits are translated as a precursor protein whose signal 

sequence (green) is removed leaving a mature protein consisting of a large extracellular 

domain at the N-terminus, four transmembrane domains (M1–M4) and a large 

cytoplasmic domain. In this figure, we depicted GABAA receptor β3 subunit mutations 

associated with genetic epilepsy syndromes at their appropriate protein domain within 

the subunit. 
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GABRB3 gene mutations 

The GABRB3 mutations P11S, S15F and G32R were identified from families with 

CAE [218].  The GABRB3(P11S) mutation was also identified from multiple families 

with autism spectrum disorders [219].  The GABRB3(P11S) and GABRB3(S15F) 

mutations are in exon 1a of the GABRB3 gene and encodes the 3 subunit signal peptide.  

The GABRB3(G32R) mutation is in the 3 subunit mature peptide next to the first N-

glycosylation site, N33 residue, in the N-terminus.  All three mutations were predicted to 

change 3 subunit N-terminus secondary structure, but not the signal peptide cleavage 

[218].  All three mutant subunits had increased glycosylation and decreased peak 

amplitudes of GABA-evoked whole cell currents when they were coexpressed with  

2 subunits [218-220].  Further studies demonstrated that these three mutations might 

affect GABAA receptor biogenesis through different mechanisms.  With 

α1β3(P11S)HAγ2S subunit coexpression, there were reduced surface levels of β3(P11S)HA 

subunits [219], while with α1β3(G32R)HAγ2L subunit coexpression there was increased 

surface expression of β3 subunits but decreased surface expression of γ2L subunits, 

suggesting that the mutation altered surface GABAA receptor stoichiometry [220].  The 
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α1β3(G32R)γ2L receptors had significantly reduced macroscopic current density and 

impaired gating with shorter mean open time in single channel currents, which could be 

because the mutation altered salt bridges at  and  subunit interfaces that are 

important for subunit oligomerization [220].  These three mutations might induce 

epilepsy through GABRB3 gene haplo-insufficiency.  This hypothesis is consistent with 

EEG studies that homozygous GABRB3 knock-out mice demonstrated epileptiform 

complexes and seizures responsive to antiepileptic drugs [221]. 

Also consistent with the important role of GABRB3 in epilepsy, SNPs identified 

in the region from the exon 1a promoter to the beginning of intron 3 in GABRB3 

haplotype 2 were found to have a significant association with CAE [222].  The disease-

associated haplotype 2 promoter reduces the nuclear protein binding affinity, resulted in 

significantly lower transcription activity than the haplotype 1 promoter that is over-

represented in the controls.  In silico analysis suggested the decreased binding of the 

neuron-specific transcriptional activator N-Oct-3 in haplotype 2 promoter.  The GABRB3 

haplotype 2 promoter could significantly decrease 3 subunit mRNA and protein level, 

and induce epilepsy through GABRB3 halpo-insufficiency. 
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GABRD variants. 

GABRD gene expression pattern and subunits function. 

Human GABAA receptor  subunit is encoded by the GABRD gene, which is 

located on human chromosome 1 (1p36.3) but not clustered with any other GABAA 

receptor subunit genes [223].  Deletion of the 1p36 region is associated with neurological 

defects such as severe psychomotor retardation, seizures, growth delay, and dysmorphic 

features [224-227].  Angelman syndrome results from deletion of a chromosome 15 

fragment carrying the GABRB3 gene [216].  The neurobehavioral symptoms of 

Angelman syndrome patients are very similar to 1p36 deletion syndrome patients, so the 

GABRD gene has been suggested to underlie these defects [223].  Further studies 

confirmed that the GABRD gene is a susceptibility locus for epilepsy [228]. 

Similar to the  subunit, the  subunit mRNA level is only detected at low levels 

after birth and progressively increases to the adult level [144].  Studies using in situ 

hybridization showed that the  subunit mRNA level is lower than  subunit levels in 

adult rat brain [145-147].  The  subunit is mostly expressed at high levels in the 

cerebellar cortical gray matter, at low level in dentate gyrus and subiculum in 

hippocampus, cerebral cortex, and granule layer of olfactory bulb [146, 147].  An 
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immunohistochemistry study confirmed this expression pattern and showed that the  

subunit distribution is similar to that of high affinity GABAA receptors identified by 

autoradiography [148, 229, 230].  

GABRD gene variants 

GABRD(E177A) and GABRD(R220H) are both GABRD variants identified from 

two small families with an AD generalized epilepsy similar to GEFS+ [228].  Both 

variants are located in the  subunit N-terminus, either adjacent to one of the two 

that form a disulfide bond (E177A), or between the cys-loop and the beginning of the 

transmembrane domain (M1) (R220H).  Compared with wildtype receptors, 

α1β2Sδ(E177A) and α1β2Sδ(R220H) receptors had significantly decreased GABAA 

receptor current amplitudes [228].  This could be because both variants decreased surface 

levels of mutant receptors, as well as the single channel mean channel open time [231].  

Although  subunit-containing GABAA receptors are extrasynaptic [99, 232, 233], these 

receptors have slower and less extensive desensitization and high sensitivity to GABA, 

thus transporting more Cl- into the cell [16].  The GABRD(E177A) and GABRD(R220H) 

variants could cause disinhibition by impairing  subunit-containing GABAA receptor 

function, thus inducing epilepsy.  However, a genetic study showed that the frequency of 
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the GABRD His220 allele in epilepsy patients was not different from controls [234], 

suggesting that the GABRD(R220H) variant could be a modifier or susceptibility gene for 

epilepsy. 

 

Figure 1.5 GABAA receptor δ subunit variations associated with genetic epilepsy 

syndromes.  

 

Predicted membrane topology of GABAA receptor δ subunit consists of a large 

extracellular domain at the N-terminus, four transmembrane domains (M1–M4) and a 

large cytoplasmic domain. In this figure, we depicted GABAA receptor δ subunit 

variants associated with genetic epilepsy syndromes at their appropriate protein domain 

within the subunit. 
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The Intronic GABRG2 Mutation, IVS6+2TG, Associated with CAE Altered 

Subunit mRNA Intron Splicing, Activated Nonsense-Mediated Decay and Produced 

a Stable Truncated γ2 Subunit 
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Abstract 

 

The intronic GABRG2 mutation, IVS6+2TG, was identified in an Australian 

family with childhood absence epilepsy (CAE) and febrile seizures [198].  The GABRG2 

intron 6 splice donor site was found to be mutated from GT to GG.  We generated 

wildtype and mutant 2S subunit bacterial artificial chromosomes (BACs) driven by a 

CMV promoter and expressed them in HEK293T cells and expressed wildtype and 

2S subunit BACs containing the endogenous hGABRG2 promoter in transgenic mice.  

Wildtype and mutant GABRG2 mRNA splicing patterns were determined in both BAC 

transfected HEK293T cells and transgenic mouse brain, and in both, the mutation 

abolished intron 6 splicing at the donor site, activated a cryptic splice site, generated 

partial intron 6 retention and produced a frame shift in exon 7 that created a premature 

translation-termination codon (PTC).  The resultant mutant mRNA was either degraded 

partially by nonsense mediated mRNA decay (NMD) or translated to a stable, truncated 

subunit (the 2-PTC subunit) containing the first 6 GABRG2 exons and a novel frame-

frame-shifted 29 aa C terminal tail.  The 2-PTC subunit was homologous to the mollusk 

acetylcholine binding protein (AChBP) but was not secreted from cells.  It was retained 
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the ER and not expressed on the surface membrane, but it did oligomerize with  and 

subunits.  These results suggested that the GABRG2 mutation, IVS6+2TG, reduced 

surface α2 receptor levels, thus reducing GABAergic inhibition, by reducing GABRG2 

transcript level and producing a stable, nonfunctional truncated subunit that had a 

dominant negative effect on 2 receptor assembly.  

 

Introduction 

 

Epilepsy is one of the most common neurological disorders, affecting up to 3% of 

the general population.  One-third to one-half of all epilepsy syndromes have a genetic 

basis [235], and patients with genetic epilepsy syndromes (GESs) have absence, 

myoclonic, and/or generalized tonic-clonic seizures [236].  Most mutations associated 

with genetic epilepsies have been identified in genes encoding voltage- or ligand-gated 

ion-channels [237].   

GABAA receptors mediate the majority of inhibitory neurotransmission in the 

Epilepsy mutations have been identified in GABAA receptor subunit genes (GABR) 

GABRA1, GABRB3 and GABRG2 [142], but most of the mutations are in GABRG2.  The 
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1, 2 and γ2 subunits form the most abundant GABAA receptor subtype in the CNS [13, 

15, 16], and the 2 subunit plays a critical role in brain function.  In mouse brain, 

approximately 75-80% of GABAA receptors contain the γ2 subunit [10].  Mice lacking  

subunits (2-/- mice) died shortly after birth [56].  These γ2-/- mice lost 94% of their 

benzodiazepine binding sites but GABA binding sites were only decreased slightly.  The 

 subunit is required for maintaining postsynaptic GABAA receptor clustering [97].  

Heterozygous +/- mice had significantly decreased benzodiazepine binding sites and 

increased extrasynaptic GABAA receptor radioligand binding sites in the CNS, but 

unchanged muscimol binding sites [166], and these animals had decreased GABAA 

receptor clustering in hippocampus and cerebral cortex [167].  The +/- mice had 

increased anxiety [167], a behavior recapitulated in subunit knockdown mice [168].  

Epilepsy, however, has not been reported in -/- or +/- mice. 

GABR mutations have been associated with seizures ranging from relatively 

absence and/or febrile seizures to severe myoclonic seizures [138].  The most well 

characterized  subunit missense mutation is GABRG2(R82Q) associated with childhood 

absence epilepsy and febrile seizures [177].  This mutation impaired  receptor 

assembly, retained mutant  subunits in the endoplasmic reticulum and reduced receptor 
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surface trafficking [59, 170, 176].  Knock-in mice harboring the GABRG2(R82Q) 

mutation had reduced cell surface  subunit expression and reduced cortical inhibition, 

even in heterozygous animals [185].  Mice heterozygous for the mutation also had 

absence seizures.   

GABRG2(IVS6+2TG) is a mutation of the intron 6 splice donor site from GT to 

GG identified in an Australian family with CAE and febrile seizures [198].  The basis for 

the epilepsy in this family results from the specific alteration in splicing of 

GABRG2(IVS6+2TG) mRNA and on subsequent translation of protein.  To determine 

this splicing pattern, we generated wildtype and mutant GABRG2(IVS6+2TG) BACs 

and determined how the IVS6+2TG mutation altered intron 6 splicing and  subunit 

expression in HEK293T cells and transgenic mouse brain.  We then characterized the 

biogenesis and function of the translated mutant  subunit.   
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Materials and Methods 

 

Expression vectors with GABAA receptor subunits 

The coding sequences of human α1, β2, γ2S and 2L GABAA receptor subunits 

from the translation initiation codon ATG to the stop codon were cloned into pcDNA3.1 

expression vectors (Invitrogen) or pLVX-IRES-ZsGreen1 vectors (Clontech) as 

previously described [211].  The cDNA encoding the HA peptide, YPYDVPDYA, was 

introduced between the 4th and 5th amino acids of mature γ2S and γ2L subunits, which 

has been reported to be a functionally silent position [50].  In recent studies, the position 

of the mutant and variant amino acids in α1, β3 and δ subunits have been specified in the 

immature peptide that includes the signal peptide, but mutations in γ2 subunit have been 

reported in the mature peptide, excluding the signal peptide.  For consistency, in this 

study the positions of γ2 subunit mutations were designated also in the immature peptide.   

The BAC clone number RP11-1035I20 (BACPAC Resources; 

http://bacpac.chori.org) contains a human chromosome 5 fragment that included the 

wildtype human GABRG2 gene genomic sequence (and thus a complete intron 6) and 20 

kb upstream and 40 kb downstream human chromosome 5 sequences (Figure 1A).  The 
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BAC sequence was confirmed by restriction enzyme digestion and direct DNA 

The BAC clone was recombined with the pEHHG vector [238], which contained the 

reporter gene driven by the HSV early gene promoter.  In target cells expressing these 

BAC vectors, eGFP fluorescence was detected.  In this BAC clone hGABRG2 was 

predicted to be driven by the promoter sequence in the 20 kb upstream human 

sequence, while the eGFP was driven by a separate HSV promoter, and thus, expression 

eGFP was independent of expression of hGABRG2.  To introduce the point mutation in 

hGABRG2 at the IVS6+2 position, we used galK facilitated recombineering [239, 240].  

The galK gene encodes galactose kinase and provides both positive and negative 

factors in this technique.  Using galK facilitated BAC recombineering, the human 

chromosome sequence upstream of the GABRG2 translation initiation sequence ATG was 

replaced with a CMV promoter (Figure 1A).  Unless otherwise specified, wt and mutant 

hGABRG2 BACs were driven by the CMV promoter and contained the eGFP reporter 

gene.   
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Cell culture, transfection and RNAi 

Human embryonic kidney cells (HEK293T) (ATCC, CRL-11268) and HeLa cells 

(ATCC, CCL-2) were incubated at 37°C in humidified 5% CO2, 95% air and grown in 

Dulbecco's modified Eagle's medium (Invitrogen) supplemented with 10% fetal bovine 

serum, 100 IU/ml penicillin, and 100 μg/ml streptomycin (Invitrogen).  Cells were 

transfected with cDNAs using the FuGENE 6 transfection reagent (Roche Applied 

Science) or Lipofectamine 2000 (Invitrogen) at a DNA:Transfection Reagent ratio of 1:3 

according to the manufacturer’s instructions.  The transfected cells were harvested after 

36 hrs in culture for the following experimental protocols. 

Sprague Dawley rat cortex was dissected from E18 embryos and dissociated using 

0.25% trypsin and mild trituration [241].  Neurons were plated on poly-l-ornithine-coated 

coverslips in DMEM (Invitrogen) supplemented with 10% horse serum, 2 mM glutamine 

and 1 mM Na-Pyruvate.  After 4 hours, medium was replaced by 1 ml of serum-free 

culture medium containing Neurobasal with B27 supplement, glutamine (2 mM) and 

penicillin/streptomycin.  Cultures were maintained at 36°C in a humidified CO2 incubator 

for up to 4 weeks and fed once a week.  Cultured neurons were transfected with 

Lipofectamine 2000 (Invitrogen) at 7 DIV according to the manufacturer's instructions.  
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mixture of 1 μg of DNA and 3 μl of lipofectamine in 60 µl of Opti-MEM (Invitrogen) 

added to the well.  One hour after incubation, the culture media containing the 

Lipofectamine/DNA complex was completely replaced with fresh serum-free 

Neurobasal/B27 culture media.  Neurons were immuno-stained 7 days after transfection. 

NMD efficiency was decreased by knocking down the essential factor UPF1.  

Silencer select pre-designed and validated siRNA (Ambion, siRNA ID s11926) was 

transfected to cells using Lipofectamine RNAiMax (Invitrogen) according to the 

manufacturer’s manual.  Twenty-four hours later the same cells were transfected again 

with the wildtype or mutant BAC constructs and harvested two days later for RT-PCR.  

The efficiency of UPF1 knockdown was confirmed by Western blot. 

 

RNA extraction, RT-PCR and Taqman real-time qPCR 

Total RNAs were extracted from transfected HEK293T cells by using the 

PerfectPure RNA Cultured Cell kit (5 Prime) following the manufacturer's protocol.  

RNA in mouse brain tissue was expressed by TRIzol reagent (Invitrogen) and PureLink 

RNA mini kit (Invitrogen) according to manufacturer’s manual, and human total brain 

RNA was obtained from Ambion.  200 ng total RNA of each sample was reverse 
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transcribed to cDNA in a 10 l volume using the Taqman MicroRNA Reverse 

Transcription Kit (Applied Biosystems).  The transcribed cDNA was used as a template 

perform regular PCR using Expand High Fidelity PCR Kit (Roche Applied Sciences) 

following the manufacturer’s manual.  One l of the 50 times diluted transcribed cDNA 

was mixed with Taqman® Universal PCR Master Mix (Applied Biosystems) and 

Taqman® probes in a total volume of 5 l for the Taqman® qPCR experiments.  

Taqman® probe detecting human GABRG2 gene mRNA, human GAPDH gene, 18S 

rRNA, or eGFP (part number 4331348 [Custom Taqman Gene Expression Assay 

were used.  Each sample was run in triplicates, and the average threshold cycle (Ct) value 

of each sample was calculated by the Sequence Detection System v2.3 Standard Edition 

(Applied Biosystems).  The average Ct values of GABRG2 gene mRNA were normalized 

to the endogenous human GAPDH, 18S rDNA or eGFP amount, and the normalized Ct 

values of samples were compared to get the relative RNA abundance. 

 

Generation and maintenance of hGABRG2 BAC transgenic mice 

The cesium chloride density centrifugation purified BAC DNAs were 

microinjected into the male pronucleus of C57BL/6J F1 fertilized mouse embryos and 



72 

 

implanted into pseudopregnant ICR surrogate mice by the Vanderbilt Transgenic/ES Cell 

Shared Resource Facility.  Founder mice were bred to C57BL/6J mice to establish 

transgenic lines.  All animals used in these studies were handled in strict compliance with 

the guidelines of the American Association for Laboratory Animal Science and the 

Vanderbilt University Institutional Animal Care and Use Committee Protection of 

Research Subjects. 

 

Transgenic mouse genotyping PCR 

Mouse tail samples collected at P14-21 were extracted using red Extract-N-AMP 

tissue PCR kit (Sigma) according to manufacturer manual.  Forward primers binding to 

either HA tag (primer sequence: TACCCCTACGACGTGCCCGACTACGCC) or intron 

1/exon 2 border 

(GTAATCTATGTGTTTTTTGACCAATATGTTTTTTCTTAGCTTCACTAGCCAGA

AATCTG) and reverse primer binding to intron 2 

(CACCTCTCCCACTCATAGGCCTGAATG) were used for genotyping.  PCR cycling 

conditions were: 95 °C 5 min initial denature step; 95 °C 1 min/68 °C 1 min/72 °C 1 min 

(30 cycles); 72 °C 5 min final step. 
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Immunohistochemistry  

Brains were removed from CO2 euthanized mice, fresh frozen in powdered dry 

ice, and stored at -80°C until sectioned.  Parasagittal sections, 20-μm thick, were 

prepared with a cryostat (CM1950, Leica Microsystems), and stored at -80°C until 

immunostaining [242].  Brain slices were fixed and permeablized with 2% 

paraformaldehyde (Sigma) in PBS for 2 minutes, and washed with PBS.  Slices were 

incubated overnight in rabbit monoclonal anti-HA epitope-tagged antibodies (1:500; 

clone C29F4, Cell Signaling) in PBS with 0.2% Triton-X (Sigma) to detect HA epitope-

tagged 2 subunits, following by two hour incubation in IRDye800 conjugated donkey 

anti-rabbit IgG secondary antibodies at 1:1000 dilution in PBS with 0.2% Triton-X.  

Immunolabeled slices were scanned with Odyssey imaging system (Li-cor) after air dry.  

Scan parameters were: resolution 21m, quality highest, focus offset 0.0 mm, intensity 

5.0 in both 700 and 800 channels.  The 700 channel fluorescence signal was scanned to 

show autofluorescence of the brain sections.  Scanned images were analyzed with 

Odyssey V3.0 (Li-cor).  
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Immunocytochemistry and confocal microscopy 

HEK293T cells were plated on poly-L-ornithine-coated, glass-bottom imaging 

dishes at a density of 3 x 105 cells/dish and cotransfected with 0.5 µg each of human 

subunit plasmid.  Cells were fixed with 1% paraformaldehyde for 15 minutes to stain 

surface proteins, or permeabilized with CytoPerm (BD Biosciences) for 15 minutes to 

stain total proteins.  The fixed/permeabilized cells were stained with rabbit polyclonal 

BIP antibodies (Abcam) for an hour, then a mixture of Alexa 568 conjugated donkey 

anti-rabbit secondary antibodies, Alexa 488 conjugated mouse monoclonal HA 

antibodies, and Alexa 647 conjugated mouse monoclonal α1 subunit antibodies 

(Millipore) for an hour.  BIP protein (GRP78) is an ER specific marker.  BIP antibodies 

visualized ER in total staining, and showed membrane integrity in surface staining.   

Neurons were fixed with 4% paraformaldehyde/4% glucose in PBS for 15 

to stain surface proteins, or permeablized with CytoPerm (BD Biosciences) for 15 

to stain total proteins.  Coverslips were then blocked for 1 hour with 10% BSA in PBS, 

and incubated in mouse monoclonal antibody against the HA-epitope tag (Covance) and 

rabbit polyclonal antibodies against ER marker BIP (Abcam) for 2 hours, followed by 

Alexa568 conjugated donkey anti-mouse IgG antibodies (Invitrogen) and Alexa647 
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conjugated donkey anti-rabbit IgG antibodies (Invitrogen) for 1 hour.  Antibodies were 

diluted in 4% BSA in PBS for surface staining, or in 4% BSA in PBS containing 0.2% 

Triton X-100 for total staining.  Coverslips were mounted with 5% n-propyl gallate 

(Sigma) in PBS/Glycerol.  The ZsGreen translated from the pLVX-IRES-ZsGreen1 

vector (Clontech) was a marker for transfected neurons. 

Confocal experiments were performed in part using the VUMC Cell Imaging 

Shared Resource (supported by NIH grants CA68485, DK20593, DK58404, HD15052, 

DK59637 and EY08126).  Images were obtained using a Zeiss LSM 510 META inverted 

confocal microscope.  Stained HEK293T cells or cultured neurons were excited with the 

488 nm laser for the Alexa 488 fluorophore or ZsGreen signal, 543 nm laser for the 

Alexa 568 fluorophore signal and 633 nm laser for the Alexa 647 fluorophore signal.  We 

adjusted the pinhole of all channels to obtain 1 μm sections from HEK293T cells, or 2 

μm sections from cultured neurons.  In each experiment, we adjusted the laser intensity 

and detector sensitivity to utilize the full linear range of detection.  Images were obtained 

with 8-bit, 1024 × 1024 pixel resolution, and an average of 4 scans was taken to decrease 

the background noise. 
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Flow cytometry 

To collect cells for flow cytometry analysis, monolayer cultures of HEK293T 

cells were dissociated by 37 °C trypsin (Invitrogen) for 2 min, then isolated to single cells 

in 4 °C PBS containing 2% fetal bovine serum and 0.05% sodium azide (FACS buffer) 

by pipette up and down ten times.  Surface levels of each subunit were also quantified in 

2 mM EDTA dissociated cells compared to trypsinized cells.  The relative surface levels 

were not affected by trypsinization (data not shown).  To evaluate total subunit levels, 

cells were permeablized with CytoPerm (BD Biosciences) for 15 minutes, and washed 

with CytoWash (BD Biosciences). 

Following washes with FACS buffer for surface staining or CytoWash for total 

staining, cells were incubated with anti-HA epitope-tagged antibodies (clone 16B12, 

Covance) conjugated to the Alexa-647 fluorophore (Invitrogen) for 1 hour.  Cells were 

then washed three times and fixed with 2% paraformaldehyde.  Flow Cytometry 

experiments were performed in the VMC Flow Cytometry Shared Resource, which is 

supported by the Vanderbilt Ingram Cancer Center (P30 CA68485) and the Vanderbilt 

Digestive Disease Research Center (DK058404).  Data were acquired using FACSDiva 

6.0 (BD Biosciences) and analyzed off line using FlowJo 7.5 (Treestar, Inc.).  The mean 
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fluorescence intensity of each sample was evaluated, and normalized to the 100% control 

(LHA or SHA as noted in each figure legend).  The normalized mean 

fluorescence intensity was represented as a percentage of the 100% control.   

 

Immunoblotting 

Transgenic mouse brain tissue samples or cultured HEK293T cells were sonicated 

in radioimmune precipitation assay (RIPA) buffers (Pierce) and a protease inhibitor 

cocktail (Sigma Aldrich).  Total tissue or cell lysates were cleaned by centrifugation at 

20,000 X g for 30 min in 4 °C.  The supernatants were mixed with Nupage LDS sample 

buffer (Invitrogen) then subjected to SDS-PAGE.  Proteins in gels were transferred to 

Millipore Immobilon® FL PVDF Membrane (Millipore).  Non-specific binding on the 

membrane was blocked with the Odyssey blocking buffer (Li-cor).  Rabbit polyclonal 

anti-GABAA receptor 2 subunit antibodies (final concentration, 2 μg/ml; Alomone) and 

monoclonal anti-HA epitope-tagged antibodies (0.2 g/ml; clone 16B12, Covance) were 

used to detect endogenous mouse 2 subunits and HA epitope-tagged 2 subunits, 

respectively.  Monoclonal anti-GABAA receptor α1 subunit antibodies (final 

concentration, 5 μg/ml; clone BD24, Chemicon) and monoclonal anti-GABAA receptor 
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β2/3 antibodies (4 µg/ml; clone 62-3G1, Upstate) were used to detect wildtype human α1 

and β2 subunits, respectively.  The polyclonal anti-human Upf-1 (hUpf-1) antibodies 

(Abgent, AP1905c) were used at a final concentration of 125 ng/ml.  Anti-Na+/K+-

Anti-Na+/K+-ATPase antibodies (0.2 μg/ml; clone ab7671, Abcam) were used to check 

loading variability.  Following incubation with primary antibodies, IRDye® secondary 

antibodies were used at a 1:10,000× dilution (Li-cor) for visualization of specific bands 

with the Odyssey imaging system (Li-cor).  The band intensities of scanned images were 

quantified with the Odyssey analysis software (Li-cor).  

 

Glycosidase Digestion 

Whole cell lysates obtained from 10 mm-Tris RIPA buffer (10 mm Tris-HCl, 150 

mm NaCl, 1.0 mm EDTA, 1% Nonidet P-40, and 0.25% sodium deoxycholate) extraction 

were subjected to endo H and peptide N-glycosidase-F digestion (New England Biolabs) 

following the manufacturer's recommended protocol.  The digestion reactions were 

carried out at 37 °C for 3 hours and terminated by addition of sample buffer.   
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Immunoprecipitation 

Protein complexes containing HA-tagged GABAA receptor subunits were 

immunoprecipitated using EZview Red anti-HA M2 beads (Sigma) 30 minutes at room 

temperature following manufacture’s manual.  After three washes with extracting RIPA 

buffer, protein complexes were eluted with 100 μg/ml HA peptide (Sigma).   

 

Electrophysiology 

Lifted whole cell recordings were obtained from transfected HEK293T cells as 

previously described [170].  Briefly, cells were bathed in an external solution consisting 

of (in mM): NaCl 142; KCl 8; MgCl2
 6; CaCl2 1; HEPES 10; glucose 10, pH 7.4, 325 

mOsm.  Electrodes were fire-polished to resistances of 0.8-1.5 M and filled with an 

internal solution consisting of (in mM): KCl 153; MgCl2 1; MgATP 2; HEPES 10; EGTA 

5, pH 7.3, 300 mOsm.  The combination of internal and external solutions produced a 

chloride equilibrium potential of ~0 mV.  For all recordings, cells were voltage clamped 

-20 mV.  GABA (1 mM) was applied to cells for 4 seconds and cells were then washed 

with external solution for 40 seconds.  Zn2+ (10 M) was then preapplied for 10 seconds 

followed by coapplication of GABA (1 mM) and Zn2+ (10 M) for 4 seconds.  Finally, 
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cells were washed with external solution for 10 seconds followed by application of 

(1 mM) for 4 seconds.  Whole cell currents were low-pass filtered at 2-5 kHz and 

at 10 kHz, and peak current amplitudes were quantified using the pClamp9 software suite 

(Axon Instruments).   

 

Statistical analysis 

Data are presented as means  SEM.  We used Student’s t-test for two group 

comparisons, and one-way or two-way analysis of variance (ANOVA) with Bonferroni’s 

multiple comparison test for multiple comparisons.  Data were plotted and analyzed with 

GraphPad Prism 5 (GraphPad Software). 
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Results 

 

The GABRG2(IVS6+2TG) mutation generated a mutant hGABRG2(IVS6+2TG) 

BAC transcript that retained a 53 bp intron 6 fragment 

The GABRG2(IVS6+2TG) mutation altered the GABRG2 intron 6 splice donor 

site sequence.  As a result, it was proposed that intron 6 is spliced out either with the 

site from another intron, resulting in exon skipping, or with an alternative donor site 

downstream of the wildtype site, resulting in cryptic splice donor site activation and 

intron 6 retention in the mutant mature mRNA [198].  However, the actual splice pattern 

of the mutant mRNA is unknown, and patient tissues or RNA samples are not available.  

Our approach to determine the splicing pattern of the mutant gene was to study splicing 

vitro and in vivo of a BAC construct that contained hGABRG2 genomic sequence, and 

a full length intron 6 (Figure 1A, see methods for construct details).  Intron splicing is 

type specific, and the optimal approach to study splicing of GABRG2 is to do so in cells 

with endogenous GABRG2 expression.  We used Lipofectamine 2000 to transfect either 

wildtype or mutant hGABRG2 BACs containing their native promoter and the eGFP 

reporter gene into PC12 cells, which have been reported to have endogenous GABRG2 
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expression [243].  Although GFP expression was observed in BAC-transfected PC12 

using RT-PCR we were unable to demonstrate hγ2 subunit mRNA.  As an alternative 

strategy, we replaced the hGABRG2 promoter with a CMV promoter and expressed the 

CMV promoter-driven hGABRG2 BAC in HEK293T cells (Figure 1A, see methods for 

construct details), and using RT-PCR, we were able to demonstrated hγ2 subunit mRNA 

expression.  Thus unless otherwise specified, all hGABRG2 BAC constructs in the 

remainder of the in vitro studies utilized the CMV promoter.   

To determine wildtype and mutant hGABRG2 splicing patterns, we expressed 

both wildtype hGABRG2 BAC and control 2S cDNA constructs in HEK293T cells and 

collected total RNA.  DNA sequencing of hGABRG2 BAC RT-PCR products using 

primers binding to exons 5 and 9 of the GABRG2 coding sequence showed that the 

intervening introns 6, 7 and 8 were completely spliced out, and only 2S subunit mRNA 

was transcribed from the hGABRG2 BAC (not shown).  This was consistent with the 

finding that the γ2S subunit splice variant is the default splicing product and that 

generation of the γ2L subunit splice variant requires positive regulation such as the 

function of neuron-specific RNA binding protein Nova-1 [152, 244, 245].   
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The mutant hGABRG2(IVS6+2TG) BAC transcript was expressed in HEK293T 

cells and cloned and sequenced (Figure 1B).  The mutant hGABRG2(IVS6+2TG) BAC 

intron 6 utilized a cryptic splice donor site 53 bp downstream of the wildtype splice 

donor site, and thus, the mutant transcript retained a 53 bp intron 6 fragment (Figure 1C, 

D).  None of the intron splice donor site prediction models that we employed detected 

this site, suggesting that its sequence did not comply with general splice donor site rules.  

The mutant splice donor site was predicted to be much weaker than the wildtype site 

[246], having less hydrogen bonding with the splice machinery, and hence, forming a less 

stable mRNA-protein complex.  These are all common properties of mutant splice donor 

sites [199].   
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Figure 2.1 The GABRG2(IVS6+2TG) BAC transcript retained 53 bp of intron 6 

sequence 
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A. Structures of the human GABRG2 genomic sequence used in this study. The 

genomic sequence of GABRG2 in the BAC used in this study (RP11-1035I20) and the 

CMV promoter-driven GABRG2 BAC are shown.  The yellow horizontal lines represent 

introns and 3’- and 5’-UTRs.  The brown horizontal line represents intron 6.  The vertical 

dark blue lines represent exons.  The black arrow points to the mutation.  The brown 

arrow at the left end represents the CMV promoter.  The length of each line is 

proportional to the molecular size of the represented region (nucleic acid number).  B.  

The mutant mRNA was cloned into the TOPO cloning vector (upper) and human 

genomic mRNA (lower) sequences were aligned.  The last 91 bp of the mutant exon 6 

alignment result including the retained intron 6 sequence are presented.  The number on 

the lower line shows the position of each nucleotide in human chromosome 5.  The red 

arrow points to the IVS6+2T�G mutation, and the red line underlines the retained 53 bp 

intron 6 sequence.  C.  The structure of the GABRG2(IVS6+2TG) BAC transcript is 

shown.  The arrows represent exons 1-9.  The red line represents the retained intron 6 

fragment.  The yellow lines represent 3’- and 5’-UTRs.  The blue lines underline the 

signal and mature peptides.  The length of each arrow and line is proportional to the 

molecular size of the represented region (nucleic acid number).  D.  The sequence of the 

mutant intron 6 splice donor site is shown.  In the full mutant exon 6 sequence, a “t” in 

lower case is shown at the TG mutation site.  The dotted black box shows the wildtype 

intron 6 splice site conservative sequences, and the dotted red line marks the wildtype 

splice site.  The solid black box encloses the 7 nucleic acids at the mutant donor site 

sequence, and the solid red line marks the splice site.  The nucleotides in upper case are 

exon 6 sequences, and the nucleotides in lower case are intron sequences.   

 

The mutant GABRG2(IVS6+2TG) mRNA should be translated to a truncated 

subunit containing the signal peptide and N-terminal 217 amino acids of the 

wildtype γ2 subunit 

In silico translation, using Vector NTi (Invitrogen), showed that the mutant 

transcript should be translated to a polypeptide containing the signal peptide and N-
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N-terminal 217 amino acids of the wildtype 2 subunit.  The retained 53 bp intron 6 

fragment caused a frame shift in exon 7, which generated a stop codon 33 bp from the 

of the fragment.  The retained intron 6 fragment and the exon 7 frame shift sequence are 

predicted to be translated to a novel 29 amino acid peptide tail at the C-terminus of the 

mutant protein (Figure 2A), so the mutant protein contained the N-terminus of the 

subunit and the novel C-terminal tail (2-PTC subunit) (Figure 2B).  The hydrophobicity 

of the 29 amino acid tail was evaluated by ProtScale at Expasy.org [247] and was found 

be hydrophilic at the N-terminus and hydrophobic at the C-terminus (Figure 2C).  The 

maximum hydrophobic region was the C-terminus, where the calculated maximum 

hydrophobicity was 1.43 [248].  This was very close to the maximum hydrophobicity of 

the wildtype 2S subunit, which was 1.75 when evaluated by the same model.  The 

structure of the mutant 2-PTC subunit was unknown, but bioinformatics models did not 

predict that any secondary structure formed in this fragment.   

This truncated subunit was reminiscent of the soluble acetylcholine-binding 

proteins (AChBPs) found in mollusk glial cells [249-251].  AChBP sequences are 

homologous to the N-terminal extracellular domains of cys-loop family ligand gated ion 

channel (LGIC) subunits, and the crystal structure and protein function are similar to the 
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ligand-binding domain of the nicotinic acetylcholine receptor -subunit.  GABAA 

receptors also belong to the cys-loop LGIC family.  AChBPs oligomerize to form 

homopentamers containing binding sites for agonists and antagonists including 

acetylcholine.  Upon acetylcholine release, AChBPs are released from glia cells into 

synaptic gaps and inhibit cholinergic neurotransmission by binding free acetylcholine 

molecules [249].  Sequence alignment showed that the 2-PTC subunit has the highest 

homology with the Aplysia californica AChBP (Ac-AChBP) (Figure 2D).  ClustalW 

alignment showed that the 2-PTC subunit had a 21-29% sequence identity with AChBPs 

(not shown), which was even higher than the 13-25% sequence identity between AChBPs 

and LIGC subunit N-terminal extracellular domains [251].  The GABRG2(IVS6+2TG) 

mutation might generate a mutant protein, the 2-PTC subunit, that structurally resembles 

AChBPs and interferes with GABAergic neurotransmission in a similar way. 
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Figure 2.2  The mutant BAC transcript was predicted to encode a truncated protein 

containing most of the γ2 subunit N-terminus and a novel hydrophobic C-terminal 

tail translated from the retained intron 6 fragment and the exon 7 frame shift 

product   

 

A.  The predicted sequence of the C-terminal tail of the GABRG2(IVS6+2TG) 
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The expression pattern of hGABRG2HA BACs in transgenic mouse brain was similar 

to that of the endogenous GABRG2 

The transcription product of the CMV driven hGABRG2(IVS6+2TG) BAC in 

HEK293T cells, the 2-PTC subunit mRNA, retained a 53 bp intron 6 fragment in the 

mutant exon 6.  However, it has been reported that promoter usage can affect intron 

splicing pattern [252], and thus, the mutant hGABRG2(IVS6+2TG) BAC might be 

spliced to another mRNA when driven by its endogenous promoter.  The intron splicing 

pattern is also cell type dependent.  To minimize possible artifacts, we studied intron 

splicing of the hGABRG2(IVS6+2TG) BAC with its endogenous promoter region in 

transgenic mouse brain (Figure 3).  We first expressed an HA-tagged hGABRG2 BAC in 

BAC transcript (2-PTC subunit) is shown.  The blue background shows the retained 53 

bp intron 6 fragment, and the red octagon shows the position of the PTC in exon 7. 

Sequences of both DNA strands are shown.  The predicted amino acids are shown in blue 

blue above the DNA sequences.  B.  The predicted membrane topology of the 2-PTC 

subunit is shown.  The grey circles represent the wildtype 2 subunit N-terminus 217 aa 

peptide.  The dark blue circles represent the 29 aa novel C-terminus translated from 

retained the intron 6 and exon 7 frame shift product.  C.  The hydrophobicity of the novel 

novel C-terminal tail translated from retained intron 6 and exon 7 frameshift product was 

determined based on an amino acid scale [248].  The average hydrophobicities of 5 

adjacent amino acids (Y axis) are plotted against the amino acid positions in the peptide 

(X axis).  D. Peptide sequence alignment by ClustalW2 showing the 2-PTC subunit is 

homologous to AChBP identified from different species.  Ac-AChBP, Aplysia 

californica; Bt-AChBP, Bulinus truncatusi; Ls-AChBP, Lymnaea stagnalis. 
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C57BL/6J mice, which is the C57BL/6-Tg(hGABRG2HA)RLM mouse line (according to 

Jackson Laboratory mouse nomenclature, Tg(hGABRG2HA mice)).  The HA-tag was 

introduced to a functionally silent position in the wildtype subunit coding sequence.  The 

HA-tagged 2 subunits were not recognized by polyclonal 2 subunit antibodies (not 

shown).  These antibodies recognized a strong nonspecific band below 50 kDa and weak 

2 subunit specific bands below the nonspecific band (Figure 3A).  The Western blot on 

adult mouse total brain tissue lysate showed that both transgenic mice (Figure 3Aa; lanes 

4-5) and wildtype littermates (Figure 3Aa; lanes 1-3) had endogenous mouse 2 subunits, 

but only transgenic Tg(hGABRG2HA) mice had both endogenous mouse and HA-tagged 

human 2 subunits (Figure 3Ab; lanes 4-5).  The merged image showed that the HA-band 

molecular mass was similar to the endogenous mouse 2 subunit band (Figure 3Ac).  We 

repeated this Western blot four times with 15 adult Tg(hGABRG2HA) mouse brain 

and detected the same HA-tag band in addition to the endogenous mouse 2 subunit band.  

Although the HA-tagged hGABRG2 BAC construct had human GABRG2 gene genomic 

sequence and transcription regulatory elements, it was translated to protein in the 

transgenic mouse brain. 
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We then collected brain samples from Tg(hGABRG2HA) mice and wildtype 

littermates, cryosectioned them to 20 m sections, stained the sections with HA 

antibodies and IRDye800 conjugated donkey anti-mouse IgG secondary antibodies, and 

scanned the immuno-labeled sections with the Odyssey imaging system (Figure 3Ba, b).  

Wildtype mouse brain sections only showed weak fluorescence signal in the 800 channel 

(Figure 3Bb).  Its pattern was similar to the pattern of its auto-fluorescence scanned in the 

700 channel, which did not receive any antibody labeling (not shown).  The 

Tg(hGABRG2HA) mouse brain section had enhanced 800 channel fluorescence signal 

primarily in olfactory bulb, cortex, hippocampus, thalamus, midbrain, pons and 

cerebellum.  The expression pattern of HA-tagged human 2 subunits in the 

Tg(hGABRG2HA) mouse brain was similar to endogenous mouse 2 subunits as reported 

previously [149, 253].  The human GABRG2 gene promoter in hGABRG2HA BACs and 

the endogenous mouse GABRG2 gene promoter functioned similarly. 
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Figure 2.3 The wildtype human hGABRG2HA BAC in transgenic mouse brain had 

the same expression pattern as the endogenous mouse mGABRG2.   
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The γ2-PTC subunit was expressed as a stable protein in HEK293T cells and 

Tg(hGABRG2IVS6+2TG) mouse brain 

Having confirmed the expression pattern of hGABRG2 BACs, we next 

the effect of the mutation on mRNA splicing in the transgenic mouse brain.  We 

introduced the IVS6+2TG mutation into the BAC without the HA-tag, expressed the 

mutant BAC in C57BL/6-Tg(hGABRG2IVS6+2TG)RLM mice (Tg(hGABRG2IVS6+2TG) 

mice), collected transgenic mouse and wildtype littermate brain total RNAs and 

them to total cDNAs.  To determine the effect of the mutation on mRNA splicing pattern 

in transgenic mice, we performed RT-PCR using primers binding to exon 5-7 of the 2 

subunit cDNA.  The amplified fragment from wildtype human or mouse 2 subunit 

A.  Western blot on brain total lysate of Tg(hGABRG2HA) transgenic mice 

showing transgenic mice expressed both endogenous mouse 2 subunits and HA-tagged 

human γ2 subunits (n = 4).  Endogenous mouse 2 subunits were labeled in the red 

channel.  ATPase and HA-tagged proteins were labeled in the green channel.  The 

merged image showed the molecular size of HA-tagged human 2 subunits and 

endogenous mouse 2 subunits were similar.  White arrows in the middle panel point to 

the HA-bands.  B.  The expression pattern of 2HA subunits in the Tg(hGABRG2HA) 

mouse brain was similar to that of 2 subunits in wt mouse brain.  HA-antibodies stained 

parasagittal sections of adult Tg(hGABRG2HA) BAC transgenic mouse brain (a) or adult 

wildtype littermate brain (b).  Sections were scanned in Odyssey scanner as one image 

after immuno-labeling, which was presented in gray scale.  The signal in the 

Tg(hGABRG2HA) section was over-saturated in some regions because the setting was 

chosen to visualize the non-specific binding in the wildtype littermate section (n = 3). 
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was 320 bp, and the fragment amplified from the CMV-driven BAC transcript in 

HEK293T cell, the 2-PTC subunit, was 373 bp.  The primers amplified only one band 

from wildtype littermate total cDNAs but two bands that were almost overlapping from 

mutant Tg(hGABRG2IVS6+2TG) mouse total cDNAs (data not shown).  The IVS6+2TG 

mutation generated an NciI restriction enzyme site in the middle of the 2-PTC subunit 

cDNA.  NciI should cut the amplified mutant exon 5-7 fragment into two fragments of 

204 and 169 bp, thus allowing more separation on the gel between the amplified mouse 

fragment (320 bp) and the digested mutant transgene products (204 and 169 bp).  We 

repeated the exon 5-7 RT-PCR in mutant transgenic mouse brain total RNAs and in 

wildtype human 2S subunit or 2-PTC subunit cDNA transfected cell total RNAs.  We 

then digested the RT-PCR products with NciI and separated digested products in 

bromide stained agarose gel (Figure 4A).  The human2S subunit PCR product was 

undigested and remained about 320 bp as expected (Figure 4A, lane a), but the 2-PTC 

subunit PCR product was digested to a broad ~200 bp band, consistent with two 204 and 

169 bp products (Figure 4A, lane b).  The Tg(hGABRG2IVS6+2TG) mouse total RNA RT-

RT-PCR product showed two bands of about 320 and 200 bp (again consistent with two 

204 and 169 bp products) after digestion (Figure 4A, lane 5), while their wildtype 

littermate RT-PCR fragments had only one 320 bp fragment after digestion (Figure 4A, 
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lanes 6-8).  Direct DNA sequencing of the cloned RT-PCR products showed that the 

Tg(hGABRG2IVS6+2TG) mouse brain had human 2-PTC subunit cDNA identical to the 

transcription product of CMV-hGABRG2(IVS6+2TG) BAC in HEK293T cells, as well 

as endogenous mouse 2 subunit cDNA.  This RT-PCR was repeated in seven 

Tg(hGABRG2IVS6+2TG) mouse brain total RNA samples at different ages (three at P0, 

at P35), and the same mutant human BAC transcript was detected in these animals.  Thus, 

the splicing pattern of the mutant hGABRG2(IVS6+2TG) BAC intron 6 in mouse brain 

was the same as the splicing pattern of the mutant CMV driven BAC intron 6 in 

HEK293T cells.   

Although mutant GABRG2(IVS6+2TG) BAC 2 subunit mRNAs were 

susceptible to degradation by NMD, we still detected 2-PTC subunit mRNAs in 

transfected HEK293T cells and Tg(hGABRG2IVS6+2TG) mouse brain.  In silico 

predicted that the -PTC subunit retained most of the wildtype  subunit N-terminus.  

We transfected wildtype 2S subunit cDNA and 2-PTC subunit cDNA in HEK293T 

separated total cell lysates using a 4-12% gradient NuPage Novex Bis-Tris gel 

and ran Western blots using polyclonal 2 subunit antibodies (Figure 4Ba).  All samples 

had a faint nonspecific band slightly smaller than 50 kDa, and a specific 2 subunit band 
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wildtype 2 subunit that was around 40 kDa (Figure 4Ba, lanes 1-2, upper arrow).  The 

2-PTC subunit transfected cells had the same non-specific band and showed a 2 subunit 

specific doublet band smaller than 37 kDa (Figure 4Ba, lane 3-4, lower arrow).  The faint 

lower band in the doublet was visible only at the higher 2-PTC subunit amount and was 

obvious in 3 μg cDNA transfected cells (Figure 4Ba, lane 3) but not in the 1 μg cDNA 

transfected (Figure 4Ba, lane 4).  It was probably generated by a different pattern of 

subunit glycosylation [61].  The predicted 2-PTC subunit encodes an ~33 kDa protein 

containing a signal peptide of 4 kDa and mature peptide of 28 kDa.  The molecular mass 

of this protein band in SDS-PAGE gel was larger than predicted for the mature peptide, 

probably because of posttranslational modifications.  Thus, the 2-PTC subunit was 

translated as a stable protein in HEK293T cells.   
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Figure 2.4 The γ2-PTC subunit was expressed as a stable protein in HEK293T cells 

and Tg(hGABRG2IVS6+2TG) mouse brain. 

 

A.  Mutant 2-PTC subunit mRNA was detected in Tg(hGABRG2IVS6+2TG) 

mouse brain total RNA.  RT-PCR experiment amplifying exon 5-7 of 2 subunit, 

followed by NciI digestion, showed that the IVS6+2TG mutant 2 subunit mRNAs 

were expressed in Tg(hGABRG2IVS6+2TG) mutant BAC transgenic mice brain total RNA.  

B. (a) The 2S or -PTC subunits cDNAs were transfected in HEK293T cells at 

different amounts, total protein level were evaluated by western blot using antibodies 

against the epitope at  subunit mature peptide N-terminus.  (b) Western blot on the 

Tg(hGABRG2IVS6+2TG) mouse and wildtype littermates total brain lysate showing mutant 

2-PTC subunits were expressed in Tg(hGABRG2IVS6+2TG) mouse brain.  Numbers 

below each lane represent the mouse numbers.  Experiment was repeated three times and 

seven Tg(hGABRG2IVS6+2TG) mice were studied.   

  

We then collected Tg(hGABRG2IVS6+2TG) mouse brain total lysate and blotted 

with the same antibodies (Figure 4Bb).  All mouse samples had the 2 subunit specific 

band at the same size as the wildtype 2S subunit in HEK293T cells, which were 

endogenous mouse 2 subunits (Figure 4Ba, lane 5-8, upper arrow).  The 

Tg(hGABRG2IVS6+2TG) mouse brain sample (from mouse #5), however, had an extra 

doublet band at the same size as the 2-PTC subunit in HEK293T cells (Figure 4Ba, lane 

lower arrow).  We evaluated 12 Tg(hGABRG2IVS6+2TG) mouse brain samples at ages 

varying from P0 to P80 and detected the same staining pattern.  We also introduced the 
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hGABRG2(IVS6+2TG) BAC to the B6D2F1/J mouse and made a B6D2-

B6D2-Tg(hGABRG2IVS6+2TG) mouse.  Western blot on four B6D2-

B6D2-Tg(hGABRG2IVS6+2TG) mouse brain samples at P30 showed the same mouse 2 

and human 2-PTC subunit band migration pattern as the C57BL/6-

mouse brain samples.  The mutant human GABRG2(IVS6+2TG) BAC transgene was 

detected as stable 2-PTC subunits in the Tg(hGABRG2IVS6+2TG) mouse brain.  These 

mice expressed both endogenous mouse 2 and human 2-PTC subunits in brain.  

Therefore, both Tg(hGABRG2IVS6+2TG) mice and transfected HEK293T cells can be used 

to study the function of the -PTC subunit.   

 

NMD decreased mutant γ2-PTC subunit mRNA levels 

The GABRG2 mutation, IVS6+2TG, generated a PTC in exon 7.  The mature 

mutant 2-PTC subunit mRNA, therefore, should be degraded by the NMD machinery, 

since it contains a PTC that is more than 55 bp upstream of an exon-exon junction 

In contrast, the GABRG2(Q390X) mutation is an autosomal dominant mutation associated 

with Dravet Syndrome [189].  The mutation generates a PTC in the last exon, so the 

mature mutant GABRG2(Q390X) mRNA should not be degraded by NMD and should be 
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translated to truncated 2(Q390X) subunits [191].  To determine if NMD was activated 

these PTCs, wildtype hGABRG2, NMD-susceptible mutant hGABRG2(IVS6+2TG) and 

NMD-resistant mutant hGABRG2(Q350X) BACs were expressed in HEK293T cells 

expressing siRNAs against the NMD essential factor UPF1, and γ2 subunit mRNA levels 

were quantified using the Taqman real-time PCR assay.  BACs were also transfected into 

HEK293T cells expressing siRNAs without cellular function according to the 

manufacturer’s manual.  The Taqman probe was designed to bind to the borders of exons 

4 and 5.  The levels of BAC-derived γ2 subunit mRNAs were compared to GFP mRNA 

levels for each condition, and then the γ2 subunit mRNA levels of UPF1 siRNA 

cells were compared to negative control siRNA transfected cells for each BAC construct.  

Western blot showed that the UPF1 protein level was unchanged in negative control 

siRNA transfected HEK293T cells compared to untransfected control cells but was 

decreased to ~20% in UPF1 siRNA transfected cells (data not shown).  Real-time PCR 

results showed that the wildtype 2 subunit mRNA levels was not changed (1.16 ± 0.14 

fold, n = 6) after UPF1 knock down (Figure 5A).  The 2-PTC subunit mRNA level, 

however, was increased 2.14 ± 0.52 fold after UPF1 knock down (p < 0.05, n = 6), while 

expected the 2(Q390X) subunit mRNA level was not changed (1.19 ± 0.20 fold; not 

significant, n = 6).  We also evaluated 2 subunit mRNA level after blocking another 
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NMD essential factor, SMG6 and obtained similar results (not shown).  Thus, 2-PTC, 

not 2 or 2(Q390X), subunit mRNA was subject to degradation by NMD. 

 

NMD decreased mutant γ2-PTC subunit levels 

We collected the BAC transfected cells lysate and blotted proteins using 

endogenous 2 subunit antibodies (not shown).  We quantified the 2 subunit band 

intensity of each lane, normalized to the ATPase band intensity of the same lane, and 

compared the normalized 2 subunit band intensity between cells expressing UPF1 

siRNA and cells expressing negative control siRNA (Figure 5B).  The wildtype band 

intensity was unchanged (87.2 ± 18.9%, n = 4), the GABRG2(IVS6+2TG) BAC protein 

band intensity was increased to 232.6 ± 31.5% (p < 0.01, n = 4), while the 

GABRG2(Q390X) BAC band intensity was unchanged (116.0 ± 20.5%; p = 0.095, n = 4) 

relative to the wildtype band intensity.  The increased amount of GABRG2(IVS6+2TG) 

BAC protein was consistent with the increased mRNA level.  The wildtype and mutant 2 

subunit protein level increases after blocking SMG6 had the same trend (not shown).   

These data demonstrated that the amount of the GABRG2(IVS6+2TG) BAC 

translation product, the 2-PTC subunit, was increased by decreasing NMD efficiency in 
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cells.  The 2-PTC subunit protein levels in the brain of the Tg(hGABRG2IVS6+2TG) 

mouse, and presumably human patients, would be determined by both mutant 

GABRG2(IVS6+2TG) gene transcription level and NMD efficiency.  

 

 

Figure 2.5 The mutant γ2-PTC subunit mRNA level was decreased by NMD, while 

the undegraded mRNA was translated to the immature γ2-PTC subunit with an ER 

glycosylation pattern. 
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A.  The mRNA level of the 2-PTC subunit was increased after UPF1 knockdown 

(n = 6).  RNA levels were evaluated by Taqman quantitative real-time PCR as described 

in methods.  * = p < 0.05, one-way ANOVA with Bonferroni’s multiple comparison test.  

B.  The protein level of the 2-PTC subunit was increased also after UPF1 knockdown (n 

= 4).  ** =  p < 0.01, one-way ANOVA Bonferroni’s multiple comparison test.  C.  In 

HEK 293T cells the 2-PC subunit is a stable protein that was not secreted into the 

culture media.  HA-tagged wildtype 2S subunit cDNA, -PTC subunit cDNA and 

pcDNA empty vector were expressed in HEK293T cells.  Culture media of each cell and 

total cell lysate were both collected and incubated with HA-beads to pull down HA-

tagged proteins.  Pull-down proteins were eluted with HA-peptide, separated by SDS-

PAGE, and blotted with HA-antibodies.  The experiment was repeated three times and a 

representative gel was shown.  D.  The 2-PTC subunit had an ER glycosylation pattern.  

HA-tagged wildtype 2L and -PTC subunits were expressed in HEK293T cells as 

either single subunits or were coexpressed with subunits (Receptor).  Total cell 

lysates from each condition were collected and digested with endoglycosidase Endo H or 

PNGase F.  Digested and undigested proteins were blotted with HA-antibodies.  U 

undigested; H Endo H digested; F PNGase F digested.  The experiment was repeated four 

times and a representative gel was shown.The γ2-PTC subunit was not secreted into the 

culture medium.   

 

The γ2-PTC subunit was not secreted into the culture medium  

As noted above, the 2-PTC subunit is homologous to the AChBPs [254], which 

are secreted into the extracellular space by glial cells where they bind acetylcholine to 

terminate synaptic transmission.  When Ac-AChBPs were expressed in HEK293T cells, 

homopentameric Ac-AChBPs were secreted into the culture media [250].  Thus by 

analogy, it is possible that 2-PTC subunits are folded correctly, form pentamers and are 

secreted from cells.  However, due to the increased hydrophobicity at the C-terminal tail, 
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it is also possible that the subunit has a transmembrane segment that folds and assembles 

a membrane bound protein and is not secreted.  Epitope-tagged -PTCHA subunits were 

used to determine the cellular fate of the truncated -PTC subunits.  The HA-tag was 

added to the same site that was functionally silent in wildtype subunits.  When wildtype 

SHA or -PTCHA subunits were expressed in HEK293T cells, both were stable proteins 

(Figure 5C).  As the 2 subunit antibodies showed in Tg(hGABRG2IVS6+2TG) mouse 

samples, HA-tagged mutant -PTCHA subunits (lane 2) were smaller than wildtype 

subunits (Figure 5C, lane 1).  The HA-beads successfully pulled down HA-tagged 

wildtype SHA or mutant -PTCHA subunits from total cell lysate (Figure 5C, lanes 4-5) 

but pulled down nothing from the cell culture medium (Figure 5C, lane 7-8).  We 

collected about 15 ml of culture media from each sample.  If the -PTCHA subunit was 

secreted from cells at the same efficiency as Ac-AChBP (1 - 3 mg/L) [250], there would 

about 15 - 45 µg of 2-PTC subunit protein in 15 ml of culture media.  We used the 

Odyssey quantitative Western blot system to detect the -PTCHA subunit.  According to 

the manufacturer’s (Li-Cor) document, even if the amount of -PTCHA subunit was 

hundred times less than 15 - 45 g, it should still be sufficient for detection by our 

blot.  Although the 2-PTC subunit is highly homologous to the secreted Ac-AChBP, 2-

2-PTCHA subunits were present, but not secreted, into the culture medium.  In 
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Tg(hGABRG2IVS6+2TG) mouse brain or human patients, the mutant allele would be 

translated to -PTC subunits, which are likely to be also expressed inside of the neurons 

and not secreted to extrasynaptic spaces. 

 

The γ2-PTC subunit attained altered ER associated glycosylation 

While not secreted, 2-PTC subunits could still form homooligomers or 

heterooligomers that are trafficked to the surface membrane.  During the process of 

subunit maturation, immature N-linked mannose-rich oligosaccharides attached in the ER 

are replaced by mature glycans that are attached in the trans-Golgi region.  Wildtype γ2L 

subunits show only low levels of membrane trafficking when expressed alone, which 

increased substantially with co-expression of α1 and β2 subunits [157].  To determine if 

the 2-PTC subunits had mature glycosylation consistent with surface membrane 

trafficking, we compared the glycosylation patterns of γ2L and 2-PTC subunits without 

or with cotransfection of α1 and β2 subunits.   

Endo H cleaves immature N-linked mannose-rich oligosaccharides attached in the 

ER but not the mature glycans attached in the trans-Golgi region.  In contrast, PNGase F 

removes all oligosaccharides attached both in the ER and trans-Golgi regions [255].  
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When expressed alone, γ2LHA subunits on Western blot ran as a single band that was 

sensitive to digestion by endoglycosidases Endo H and PNGase F, consistent with 

primarily immature glycosylation and suggesting that γ2LHA subunits were retained in the 

ER (Figure 5D, WT subunit).  When co-expressed with α1 and β2 subunits, γ2LHA 

subunits showed an extra band on Western blots that was insensitive to Endo H digestion, 

but was sensitive to PNGase F digestion (Figure 5D, WT Subunit).  With coexpression of 

α1 and β2 subunits, 2LHA subunits had mature glycosylation, suggesting processing in 

Golgi apparatus and trafficking to the cell membrane.   

With expression alone or with coexpression of α1 and β2 subunits, 2-PTCHA 

subunits showed only one band on Western blot that was sensitive to both Endo H and 

PNGase F (Figure 5D, Mutant subunit), suggesting that γ2-PTCHA subunits were retained 

in the ER and not transported to the Golgi apparatus.  The size of the digested 2 -PTCHA 

subunit protein band was consistent with the predicted size of the mature 2 -PTCHA 

subunit based on amino acid sequence.  This phenomenon is consistent with the finding 

that 2 -PTCHA subunits were not secreted into the culture medium, which requires Golgi 

translocation.  These data further suggested that the γ2-PTC subunit might not be 
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trafficked to the cell membrane and might instead be retained in the ER under 

physiological conditions such as in patients or in Tg(hGABRG2IVS6+2TG) mouse neurons.   

 

The γ2-PTC subunits oligomerized with α1 and β2 subunits 

GABAA receptor subunit oligomerization is determined by sequences at the 

extracellular N-terminal domain [256], and the γ2-PTC subunit included more than 90% 

the wildtype γ2 subunit N-terminal extracellular domain.  A benzodiazepine-binding site 

is present at the α subunit interface.  A radioligand binding study showed that the 

of radio-labeled benzodiazepine binding in cells expressing α1 and full-length γ2 subunits 

was comparable to the cells expressing 1 subunits and the N-terminus of γ2 subunits, 

that cells expressing α1, β2 and γ2 subunits had much higher benzodiazepine binding 

[257].  There is a 15 amino acid sequence in the γ2 subunit N-terminal extracellular 

domain around residue R82 (residue numbered in the immature peptide) that was 

to pull down β2 subunits, but the presence of an R82Q mutation in this peptide abolished 

the interaction, suggesting that this site was involved in the oligomerization of β and γ2 

subunits [59].  The γ2-PTC subunit includes this 15 amino acid sequence, and so to 

explore if 2-PTC subunit can oligomerize with partnering subunits, wildtype γ2SHA, 



107 

 

γ2LHA and mutant γ2-PTCHA subunits were co-expressed with α1 and β2 subunits in 

HEK293T cells.  HA-tagged proteins were pulled down using HA-beads and blotted for 

α1 and β2 subunits or for the HA tag (Figure 6A).  The amount of pulled down α1 or β2 

subunits reflected binding between the γ2 subunits and α1 or β2 subunits, respectively.  

The eluted HA-tagged proteins showed a band pattern that was similar to that of the total 

HA-tagged proteins.  The wildtype γ2SHA or γ2LHA subunits both pulled down substantial 

amounts of α1 and β2 subunits (Figure 6A, lanes 2, 3).  The γ2-PTCHA subunit pulled 

down α1 and β2 subunits (Figure 6A, lane 4), but the amounts pulled down were less than 

those pulled down by wildtype 2L or 2S subunits (Figure 6A, lane 4).  This was an 

expected finding because the mutant γ2-PTCHA subunits contain the entire extracellular N 

terminal domain of 2 subunits including the 15 amino acid peptide sequence that has 

shown to be sufficient to pull down β2 subunits.  These data suggested that γ2-PTC 

subunits in physiological conditions would be nonfunctional and decrease GABAergic 

inhibition by decreasing surface subunit levels and having a dominant negative action 

reduce heteropentameric GABAA receptor assembly and trafficking because of its direct 

interaction with 1 and 2 subunits.   
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The γ2-PTC subunit was a stable intracellular protein 

The hGABRG2HA BAC had CNS expression pattern that was similar to that of the 

endogenous mouse 2 subunit gene (Figure 3B), and mutant 2-PTC subunits were 

identified in Tg(hGABRG2IVS6+2TG) mouse brain.  Since mutant 2-PTC subunits had 

immature glycosylation and impaired oligomerization, it is likely that they had impaired 

assembly into receptors and impaired membrane trafficking.  Furthermore, it may be 

recognized as a misfolded or misassembled protein that was subject to ER associated 

degradation by the proteasome.  To evaluate this, we quantified mutant subunit 

and membrane trafficking using high throughput flow cytometry.  We expressed wildtype 

or mutant 2HA subunits in HEK293T cells either as single subunits or coexpressed with 

and β2 subunits and evaluated total and surface levels of each subunit in >50,000 cells.  

All subunits were transcribed from the same pcDNA3.1 vector.  The total HA level 

obtained with cotransfection of α1, β2 and 2SHA subunits was used as a control (100%) 

other γ2 subunit levels, and total levels obtained from pcDNA mock transfected cells 

used as a baseline control (0%).  Total levels of the γ2-PTCHA subunit did not differ from 

those of wildtype γ2LHA or γ2SHA subunits with single subunit expression (p = 0.02, 0.06, 

respectively, n = 4), or when coexpressed with 1 and 2 subunits (Figure 6B).  Thus, 
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mutant γ2-PTCHA subunit was not degraded and was as stable in these cells as wildtype 

subunits.   

 

Figure 2.6 The γ2-PTC subunits oligomerized weakly with α1 and β2 subunits and 

had impaired membrane trafficking. 

 

A. HA-tagged wildtype and mutant 2 subunits were coexpressed withα1 and 2 

subunits in HEK293T cells.  Total cell lysate from each condition were collected and 

incubated with HA-beads.  Pull down products were eluted with HA-peptide and blotted 

with antibodies against  subunits,  subunits, and the HA-epitope-tag.  Western blot 

on total cell lysate with HA antibodies are also shown.  Total cell lysate were also blotted 

blotted for  and  subunits in western blot but data not shown.  The experiment was 
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repeated six times and a representative gel was shown.  B. The normalized mean 

fluorescence intensity showing the total HA level from wildtype and mutant 2HA 

subunits expressed as either single subunit (black) or with subunit coexpression 

(gray).  The total HA level with α1, 2 and 2SHA subunit coexpression was used as 

100%.  The total HA level of pcDNA mock transfected cells was taken as a 0% baseline.  

baseline.  Data were analyzed with a two-way ANOVA with Bonferroni’s multiple 

comparison test.  C.  The surface HA level from wildtype and mutant 2HA subunits 

expressed as either single subunit (black) or with α1 and 2 subunits coexpression 

(grey).  The surface HA level with coexpression of α1, 2 and 2SHA subunits was used 

as 100%.  The surface HA level of pcDNA mock transfected cells is 0% baseline.  Data 

Data were analyzed with a two-way ANOVA with Bonferroni’s multiple comparison test.

 

The γ2-PTC subunit had impaired membrane trafficking 

To assess surface trafficking of the mutant 2-PTC subunit, we used 

technique of flow cytometry without cell permeabilization.  We cotransfected cells using 

the same subunit combinations used to assess total cell levels of 2SHA subunits by 

measuring surface HA levels for each subunit (Figure 6C).  The surface HA level 

with 2SHA subunit coexpression was used as a 100% normalization control for HA 

subunit surface level, and surface HA level obtained with pcDNA mock transfected cells 

was used as baseline (0%).  The single wildtype 2LHA subunit had a low surface level 

(2.93 ± 0.76%, n = 4), which was increased substantially (29.71 ± 0.88%, p < 0.01, n = 4) 

by co-expression with 1 and 2 subunits.  The wildtype 2SHA single subunit surface 
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level was much higher than 2LHA subunit surface level, probably because the 2SHA 

subunits have higher trafficking efficiency and lower PKC-dependent endocytosis [153, 

157].  Its single subunit surface level (34.08 ± 3.80%, n = 4) was substantially higher than 

the 2LHA subunits single subunit surface level.  Its surface level with 1 and 2 subunit 

coexpression was 100%, also substantially higher than with 122LHA coexpression (n 

4).  Compared to 2LHA and 2SHA subunits, the surface levels of the 2-PTCHA subunit 

were substantially smaller with both expression conditions.  The 2-PTCHA single subunit 

surface level was low (0.76 ± 0.56%, n = 4) and did not increase significantly with 1 

2 subunit coexpression (2.76 ± 0.30%, n = 4, not significant).  The surface levels of 2-

2-PTC subunits with or without 1 and 2 subunit coexpression were not 

greater than the mock control level (p value: single subunit > 0.05; with 1 and 2 

coexpression: >0.05, n = 4).  These results suggest that even though the mutant 2-PTC 

subunit oligomerized with 1 and 2 subunits, it was not trafficked to the cell surface.   

 

The γ2-PTC subunits were retained in the ER 

We have demonstrated that γ2-PTC subunits are stable in cells and minimally 

trafficked to the cells surface when coexpressed with 1 and 2 subunits.  Given this 
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impaired trafficking, it is likely that the mutant γ2-PTC subunits with or without 

oligomerization with 1 and 2 subunits are retained in the ER with little localization in 

the trans-Golgi or surface membrane.  Because the mutant hGABRG2(IVS6+2TG) 

BAC in the Tg(hGABRG2IVS6+2TG) mouse does not have an HA tag, and the antibodies 

against endogenous 2 subunits had a high nonspecific signal, we could not stain the 

Tg(hGABRG2IVS6+2TG) mouse brain to detect where the 2-PTC subunit was expressed.  

Therefore, we coexpressed wildtype and mutant γ2-PTCHA subunits with 1 and 2 

subunits in HEK293T cells, stained the permeabilized cells with fluorescence-conjugated 

antibodies against the α1 subunit or the HA tag, and obtained confocal microscope 

to visualize the cellular localization of the subunits (Figure 7A).  The ER was visualized 

using antibodies against the ER marker BIP.  In addition, membrane expression was 

confirmed further by confocal microscope images taken from unpermeablized HEK293T 

cells cotransfected with α1 and β2 subunits and wildtype or mutant γ2HA subunits (not 

shown).  BIP staining was not detected in any of these samples, showing that 

paraformaldehyde fixation did not permeablize the membrane (not shown).  With 

coexpression of 1 and 2 subunits without γ2 subunits, the α1 subunit signal overlapped 

the ER signal, but also showed a ring structure that surrounded the ER signal (Figure 7A, 

1st row) and outlined the cell membrane (not shown), consistent with low levels of 
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122-PTC and higher levels of 12 receptor expression on the cell membrane.  With 

coexpression of 1, 2 and γ2HA subunits, wildtype γ2LHA or γ2SHA subunits were both 

visualized in regions that overlapped α1 subunits (Figures 7A, 2nd and 3rd row; surface 

staining not shown), consistent with co-assembly with α1 and 2 subunits into receptors 

that were trafficked to the cell surface.  The γ2-PTCHA subunit signal overlapped that of 

the ER signal (Figure 7A, 4th row), and was absent from the surface membrane (not 

shown).  The wildtype , 2L and 2S subunits often showed HA signals in the region 

that was recognized by Golgi specific antibodies (not shown), but the γ2-PTCHA subunit 

was not.  Thus, the γ2-PTCHA subunit was retained primarily in the ER, consistent with 

background levels on the surface membrane and its absence in the culture medium. 
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We then cloned the γ2SHA and γ2-PTCHA subunit cDNAs into pLVX-γ2HA-IRES-

pLVX-γ2HA-IRES-ZsGreen1 vectors expressing γ2HA subunits and green fluorescent 

protein ZsGreen from the same mRNA but separated by internal ribosome entry site 

sequence (IRES) and expressed them in cultured cortical neurons (Figure 7B).  

Cytoplasmic ZsGreen protein showed green fluorescence in both soma and processes in 

Figure 2.7 When expressed with α1 and β2 subunits, mutant γ2-PTC subunits were 

trapped in the ER. 

 

A.  Confocal images were obtained of the distribution of GABAA receptor 

subunits in permeablized HEK293T cells.  In HEK293T cells α1 and 2 subunits were 

coexpressed with a blank pcDNA vector, and wildtype and mutant 2HA subunits were 

coexpressed with α1 and 2 subunits at 1 µg of each cDNA.  The transfected cells were 

permeablized and stained with Alexa fluorophores conjugated antibodies against HA-tag 

(Alexa488 conjugated, green) or α1 subunits (Alexa647 conjugated, blue).  The ER was 

visualized with primary rabbit antibodies against the ER marker BIP, and Alexa568 

conjugated secondary antibodies against rabbit IgG (red).  Scale bars were 5 µm.  B. 

Confocal images were obtained of transfected cultured cortical neurons expressing γ2HA 

subunits in pLVX-IRES-ZsGreen1 vectors.  B1. Cultured neurons were permeablized and 

immune-stained with mouse monoclonal antibody against the HA-epitope tag and rabbit 

polyclonal antibodies against ER marker BIP, followed by Alexa568 conjugated donkey 

anti-mouse IgG antibodies (red) and Alexa647 conjugated donkey anti-rabbit IgG 

antibodies (blue).  The ZsGreen, shown in green, labeled transfected neurons.  Scale bars 

were 10 µm.  B2.  Cultured neurons were immune-stained without permeabilization, 

showing surface expression of HA-epitope tagged γ2 subunits.  Neurons were stained 

with mouse monoclonal antibody against the HA-epitope tag and Alexa647 conjugated 

donkey anti-mouse IgG (blue).  The ZsGreen, shown in green, labeled transfected 

neurons.  Scale bars were 10 µm.   
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transfected neurons.  The γ2HA subunit fluorescence signal was detected in all ZsGreen 

positive neurons, but also in a few ZsGreen negative neurons, suggesting that the cDNA 

downstream of IRES has a lower probability for translation to proteins (not shown).  The 

γ2-PTCHA subunit fluorescence signal in permeablized neurons was diffusely distributed 

over the neuron soma and less intensely over the process, and it colocalized well with ER 

marker, BIP (Figure 7B1).  On the contrary, the γ2SHA subunit signal was present in 

widespread, large clusters on neuronal somata and dendritic arbors, and spread outside of 

the ER marker signal (Figure 7B1).  The clustered expression pattern of γ2SHA subunit 

immunoreactivity resembled that of endogenous γ2 subunits in cultured neurons [99].  

The surface staining on cortical neurons further confirmed that the γ2-PTCHA subunit was 

absent from cell membranes (Figure 7B2).  While the γ2SHA subunit showed strong γ2HA 

clusters on unpermeablized transfected neurons, both on cell somata and processes, the 

γ2-PTCHA subunit had only background level of the HA-epitope tag signal (Figure 7B2), 

similar to the HA-epitope tag signal from pLVX-IRES-ZsGreen1 empty vector mock 

transfected neurons (not shown).  These data confirmed that the γ2-PTCHA subunit was 

retained in the ER when expressed in neurons and not able to be expressed on synaptic 

membranes. 
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The GABA-evoked current from α1β2γ2-PTC subunit coexpression was similar to 

12 receptor current 

The data above suggest that the majority of receptors on the surface of cells with 

coexpression of 1, 2 and γ2-PTC subunits would likely be 12 receptors.  To explore 

this, we coexpressed 1 and 2 subunits and 1 and 2 subunits with γ2-PTC or γS 

subunits in HEK293T cells and recorded GABA-evoked current evoked by a saturating 

concentration (1 mM) of GABA (Figure 8A).  With coexpression of 1 and 2 subunits, 

GABA-evoked currents had a small peak amplitude of ~400 pA and very fast 

desensitization (Figure 8A).  With coexpression of 1, 2 and γS subunits, GABA-

evoked currents were much larger and desensitization was slower.  With coexpression of 

1, 2 and γ2-PTC subunits, GABA-evoked currents had fast desensitization, and a small 

peak amplitude that was more similar to 12receptor currents than 12γ2S receptor 

currents. 

We then recorded from cells coexpressing 1, 2 and γ2S or γ2-PTC subunits (n 

8 cells) and measured peak current amplitudes (Figure 8B).  With coexpression of 1, 2 

and γ2-PTC subunits, the average peak current amplitude was 575.5 pA.  With 
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coexpression of 1, 2 and γ2S subunits, the average peak current amplitude was 3516.0 

pA, and with coexpression of 1 and 2 subunits, the peak current amplitude was 710.4 

pA.  The peak current amplitudes of these two wildtype receptors fall in the normal range 

of reported values.  The 2-PTC receptor peak current amplitude was significantly 

decreased from S receptors but was similar to that of  receptors. 

The divalent cation Zn is an endogenous neuromodulator [258].  It’s ability to 

inhibit GABAA receptor currents depends on receptor subunit composition [259].  The 

 receptors are highly sensitive to Zn2+, with IC50 values about 0.1-1 M, while the 

 receptors are very insensitive to Zn2+, with IC50 values of about 200-600 M.  

bathed cells with an external solution containing 10 M Zn2+, applied 1 mM GABA 

or with 10 M Zn2+, and then compared the peak currents with and without Zn2+ (Figure 

8C).  We also applied GABA at the same time interval but without Zn2+, and compared 

peak currents to quantify current rundown.  With coexpression of 1 and 2, α1, 2 and 

2S or α1, 2 and 2-PTC subunits, currents showed minimum peak amplitude decreases 

with repetitive GABA applications.  The  receptor peak current amplitude decreased 

10%, the 2S receptor peak current amplitude did not decrease, and the 2-

receptor peak current amplitude decreased 17%.  However, with Zn application,  



118 

 

receptor peak current amplitude decreased 83.2%, 2-PTC receptor peak current 

amplitude decreased 85.3%, and 2S receptor peak current amplitude decreased 

9.6%.  Zn2+ inhibited all three receptor currents with different efficiencies.  The 2-

2-PTC receptors had the same high sensitivity to Zn2+ as the receptors 

consistent with formation primarily of surface receptors with coexpression of α1, 

and 2-PTC subunits. 
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Figure 2.8 GABA-evoked currents recorded from cells coexpressing of α1, β2 and 

γ2-PTC subunits were similar to those obtained with expression of 1and 2 

subunits 

 

A.  GABAergic currents were recorded from coexpressed α12, α122-PTC and 

α122S subunits.  The merged picture showed the relative peak amplitude of currents 

recorded from α122-PTC subunits was much smaller than that from α122S subunits, 

but close to those obtained from α12 subunits.  B.  Peak current amplitudes from 

wildtype and mutant receptors were plotted.  * = p < 0.05, one-way ANOVA with 

Bonferroni's multiple comparison test.  C.  The currents recorded from coexpressed 

2-PTC subunits had a Zn2+ sensitivity that was similar to that of coexpressed  

subunits.  Cells expressing 2S, 2-PTC or subunits were exposed to two 

1 mM GABA applications 4 seconds apart or one 1 mM GABA application followed by 

10 M Zn2+ washed 4 seconds and 10 M Zn2+ with 1 mM GABA application.  The peak 

currents ratio of each cell was plotted. ** = p < 0.01 compared to the control conditions 

(two-way ANOVA with Bonferroni’s multiple comparison test). 

 

The γ2-PTC subunits induced an increase in the ER stress marker BIP 

Although 2-PTC subunit mRNA was decreased by NMD, and the translation 

product was expressed poorly on the cell membrane, patients carrying one mutant allele 

had seizures.  The mutant 2-PTC subunit was clearly expressed in the transgenic mouse 

brain and was stable in HEK 293T cells and produced haploinsufficiency and a dominant 

negative effect on receptor assembly.  Since the γ2-PTC subunit was so stable in 

transgenic mouse brain, the possibility that the existed mutant subunit had additional 

functions that might contribute to epilepsy pathogenesis.   
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The 2-PTC subunits were stable ER proteins with a sequence similar to a 2 

subunit truncated in the middle of the first transmembrane domain.  While the 2-PTC 

subunits were stable and not degraded, the subunit may not have the same conformation 

wildtype 2 subunits and could induce the unfolded protein response (UPR).  The level of 

the ER chaperone BIP is an indicator of UPR-induced ER stress.  We expressed 3 g of 

wildtype or mutant 2-PTCHA subunits in HEK293T cells and then evaluated cellular BIP 

levels by Western blot (Figure 9A).  The BIP band intensity for each condition was 

normalized to that of pcDNA mock transfected cells (100%) (Figure 9B).  BIP levels in 

untreated and mock transfected cells were not different, but treatment of untransfected 

cells with tunicamycin, an ER stress inducer, significantly increased BIP levels to 339.3 ± 

69.3% (n = 5, p < 0.01).  Wildtype 2SHA subunits induced an increase in BIP levels to 

143.9 ± 22.4% (n = 5), but it was not significantly different from the mock transfected 

condition or untreated untransfected cells (not significant).  The 2-PTCHA subunits 

increased BIP levels to 244.8 ± 31.3% (n = 5), which was significantly more than that of 

the 2SHA subunits (p < 0.05) or mock transfected cells (p < 0.01).  The 2-PTCHA 

induced BIP more efficiently than the wildtype subunit.  The ER-retained (Q390X) 

subunit has a strong dominant negative effect on GABAA receptor assembly [191].  The 

mutant subunit bound to  and wildtype HA subunits when coexpressed in the 
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HEK293T cells, retained them in the ER, and decreased their surface expression.  

Expressing S(Q390X)HA subunits in HEK293T cells increased the BIP level to 224.6 ± 

27.2% (n = 5), which was also significantly higher than the 2SHA subunits (p < 0.05), but 

had a trend of lower than the 2-PTC subunits (not significant).  We evaluated the 

of apoptotic cells using Annexin V and found that the expression of 2-PTCHA subunits 

not significantly increase cell apoptosis (data not shown).  Thus, 2-PTCHA subunits 

increased cell stress but did not induce apoptosis in these cells. 

 

Figure 2.9 The γ2-PTC subunits induced an increase in the ER stress marker 

BIP. 

 

A. BIP protein levels in 2HA subunit transfected cells or tunicamycin treated 

cells were evaluated.  HEK293T cells were either transfected with 3 g of 2SHA, 

2-PTCHA, or 2S(Q390X)HA subunit cDNA, or were treated with 1 M tunicamycin 

for 3 hours.  Total proteins were collected and analyzed with Western blot detecting 
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Discussion 

 

The intronic GABRG2 mutation, IVS6+2TG, resulted in activation of a cryptic 

mRNA splice donor site 

The GABRG2 intronic mutation, IVS6+2TG, mutated the intron 6 splice donor 

site sequence from GT to GG, thus destroying the function of the site.  It was suggested 

that the most likely pathway for splicing of this mutant mRNA was via exon 5 skipping 

[198], but the actual splice pattern was not determined.  Analysis of mammalian EST 

sequences revealed that 98.7% of introns contained canonical GU-AG junctions and that 

0.56% contained noncanonical GC-AG junctions [260].  The large mutant rabbit β-globin 

intron with an IVS+2TG mutation was cleaved at the first step at the correct 5’ site 

reduced efficiency, but the splicing intermediate was not cleaved at 3’ site leading to 

detecting ATPase and BIP (n = 5).  B. The band intensities of BIP and ATPase 

protein bands were quantified using Odyssey V3.0 software.  The BIP intensity of 

each condition was normalized to ATPase band intensity.  The normalized BIP band 

band intensities were plotted.  (**) = p < 0.01 and (*) = p < 0.05 compared to the 

normalized BIP level obtained from either pcDNA mock transfected cells or 

untreated and untransfected cells (one-way ANOVA with Bonferroni’s multiple 

comparison test). 
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accumulation of the lariat intermediate [261].  These findings suggested that intron 6 of 

the mutant GABRG2(IVS6+2TG) gene was unlikely to be normally spliced.   

DBASS5 is a database of aberrant 5’ splice sites in human disease genes [199] 

contains 40 mutations at the U of the 5’ GU sequence.  In this database, the 5’ GU 

sequence was mutated most frequently to GG (35%), GC (35%) or GA (22.5%) 

Interestingly, 92.5% of the mutations activated a cryptic 5’ donor site within about 100 

of the wildtype donor site (not shown).  When expressed in HEK293T cells, the GABRG2 

mutation, IVS6+2TG, activated a cryptic 5’ donor site 53 bp downstream of the 

site, consistent with the function of these mutations in the DBASS5 database.  While 

alternative intron splicing is regulated differently among cell types, the core intron 

machinery is distributed ubiquitously in every cell.  To confirm that the splicing pattern 

found HEK 293T cells in vitro is also found in mouse brain in vivo, we expressed the 

human hGABRG2 BACs driven by its endogenous promoter in C57BL/6J mice.  The 

Tg(hGABRG2HA) mice expressed the HA-tagged BAC clone RP11-1035I20, and the 

Tg(hGABRG2IVS6+2TG) mice expressed the untagged BAC clone carrying the 

IVS6+2TG mutation.  There is a 20 kbp human chromosome 5 fragment upstream of 

the GABRG2 genomic sequence in this BAC clone, which is predicted to contain the 
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endogenous human 2 subunit promoter.  This BAC clone was recognized by the mouse 

transcription and translation machineries, resulting in expression of wildtype and mutant 

human 2 subunits in the transgenic mice brain.  When the BACs were expressed in 

mouse brain, the mutant intron 6 splicing pattern was the same as the mutant BACs 

expressed in HEK293T cells.   

Pre-mRNA intron splicing is regulated by functional interactions among 

transcription, splicing and chromatin epigenetic modifications [252, 262].  The CMV-

GABRG2 BACs were driven by a CMV promoter, which could recruit a different set of 

transcription factors and interact with the splicing machinery differently than with the 

endogenous GABRG2 promoter.  However, the GABRG2 BAC and the 

GABRG2(IVS6+2TG) BAC driven by the endogenous promoter and the CMV 

promoter-driven BACs had the same intron splicing pattern.  Thus, the CMV promoter 

and the endogenous promoter had the same effect on GABRG2 gene intron splicing. 
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The intronic GABRG2 mutation, IVS6+2TG, resulted in partial intron 6 retention 

and a frame shift resulting in a PTC in exon 7 that activated NMD 

The mature mutant mRNA retained a 53 bp intron 6 fragment that resulted in an 

open reading frame shift in exon 7 and generated a PTC in exon 7.  Thus, the mutant 

mRNA was NMD susceptible and we confirmed this by demonstrating that the mutant 

mRNA was rescued partially by abolishing NMD function.  NMD-susceptible mRNAs 

have lower translational efficiency, and protein translated from NMD-susceptible mRNA 

is often not stable, probably because such proteins are truncated [201, 263].  Our study 

suggested that the IVS6+2TG mutation could significantly decrease mutant 2 subunit 

mRNA levels due to NMD, suggesting that the disease may be, at least in part, caused by 

GABRG2 haplo-insufficiency.   

 

Transcription of the mutant mRNA resulted in production of a stable truncated 

protein, the γ2-PTC subunit 

Although 2-PTC subunit mRNAs were subject to degradation by NMD, they 

not necessarily completely degraded since different cell types have different NMD 

efficiency [200].  For example, we demonstrated that 39.1% of 1(S326fs328X) subunit 
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mRNA survived NMD in HEK293T cells, 17% survived in HeLa cells, and 24% 

in cortical neuronal cell culture [201].  In cell types with less NMD efficiency than 

HEK293T cells, the amount of mutant transcript could be higher than 40%, and mRNA 

degraded by NMD could be translated to a stable protein.  The mutant 

GABRG2(IVS6+2TG) mRNA translation product was shown to contain the N-terminal 

217 amino acids of the wildtype 2 subunit and a novel 29 amino acid peptide tail the (the 

2-PTC subunit) composed of retained intron 6 sequence and frame shifted exon 7 

sequence at the C-terminus of the mutant protein.  The -PTC subunit is homologous to 

 subunit truncated in the middle of TM1.  The sequence homology between the first 

amino acid of wildtype2 subunit and 2-PTC subunit is 88.2%.  Surprisingly, the 2-

2-PTC subunit was a stable intracellular protein in HEK293T cells, transfected rat 

neurons and Tg(hGABRG2IVS6+2TG) mouse brain, and while the 2-PTC subunit total 

was comparable to wildtype 2S or 2L subunits in HEK293T cells, its surface level was 

significantly lower than the wildtype subunits.   
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The γ2-PTC subunit has a structure similar to AChBPs but has different functions 

The 2-PTC subunit contains the N-terminus of the 2 subunit, and the sequence 

identity between 2-PTC subunit and AChBPs was high (21-29%) [254].  Thus the 2-

PTC subunit is homologous to AChBPs.  AChBPs form homopentamers in glial cells 

[250, 251, 254], and  the crystal structure of AChBP homopentamers resembles the N-

terminus of assembled cys loop receptors.  When wildtype 2 subunits were coexpressed 

with α1 and β2 subunits in HEK293T cells or adult rat brain, they oligomerized with 1 

and 2 subunits to form 122 heteropentamers, but not 2 homopentamers or 12 

heteropentamers [183, 257], suggesting that the binding efficiency of 2 subunits to 1 

and 2 subunits is higher than it is between 2 subunits.  Given the sequence similarity to 

AChBPs, the γ2-PTC subunit might also be able to oligomerize with α1 and β2 subunits 

and might even be assembled into heteropentameric receptors.  Our studies showed that 

γ2-PTC subunits did oligomerize with 1 and 2 subunits; however, they did not produce 

heteropentamers that were secreted or trafficked to the cell membrane.  Instead, they 

were retained in the ER and had a dominant negative effect on surface trafficking of 

122 receptors.  Thus, although 2-PTC subunits and AChBPs are highly homologous, 

these two proteins clearly have very different functions. 
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The GABRG2(IVS6+2TG) mutation could induce epilepsy by both 2 subunit 

haplo-insufficiency and 2-PTC subunit dominant negative functions 

We demonstrated in vitro in transfected HEK293T cells and in vivo in mice that 

mutant mRNA was degraded partially by NMD, and that the mRNA that was not 

was translated to the stable 2-PTC subunit.  The 2-PTC subunit was primarily retained 

in the ER and only minimally expressed on cell membranes.  GABAA receptors 

containing 2 subunits are predominately synaptic receptors that mediate phasic synaptic 

neurotransmission, and the 2 subunit is required for synaptic GABAA receptor 

The IVS6+2TG mutation decreased the 2 subunit mRNA level and generated a 

protein that was poorly trafficked to the cell membrane.  It should decrease the membrane 

level of 2 subunit-containing GABAA receptors, decrease the amount of synaptic 

receptors, and impair inhibitory GABAA receptor currents.  Thus, the 

GABRG2(IVS6+2TG) mutation could produce epilepsy, at least in part, by 2 subunit 

haplo-insufficiency.   The 2-PTC subunit oligomerized with α1 and 2 subunits and had 

a dominant negative effect on surface trafficking of 122 receptors.  The 
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GABRG2(IVS6+2TG) mutation could also produce with epilepsy due to the dominant 

negative effects of the 2-PTC subunit.   

 

The GABRG2(IVS6+2TG) mutation could induce epilepsy also by inducing 

chronic ER stress 

The 2-PTC subunit is retained in the ER and increased the ER stress marker BIP 

level significantly higher than wildtype 2S subunits.  Another GABRG2 epilepsy 

mutation, the autosomal dominant GABRG2(Q390X) mutation, is associated with Dravet 

syndrome [189].  The mutant 2(Q390X) subunit is also retained in the ER and not 

expressed on the cell membrane [191].  The 2(Q390X) subunit also increased BIP level 

in HEK 293T cells, but to a level slightly less than that the increase produced by the 2-

2-PTC subunit.  Increased BIP level during UPR induced ER-stress induces both 

apoptosis and protective responses such as reduced translation, enhanced ER protein-

protein-folding capacity, and clearance of misfolded ER proteins [264].  These adaptation 

and apoptosis responses are designed to help adaptation to the stress or to remove 

cells, depending on the nature and severity of the stress [265].  The fact that 2-PTC 

subunit transfected cells did not induce apoptosis suggested that the 2-PTC subunit 
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induced mild, chronic stress in the cell, but the adaptive responses induced by 2-PTC 

subunits would affect how cells respond to other stress factors.  ER stress responses 

contribute to the pathogenesis of diseases including diabetes mellitus, cancer and AIDS 

[265].  Neurodegenerative diseases such as Alzheimer’s disease and Huntington’s disease 

are often associated with ER stress responses induced by mutant proteins.  Thus, ER 

responses may contribute to the pathogenic mechanism of both GABRG2(Q390X) and 

GABRG2(IVS6+2TG) mutations.   
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Abstract 

 

Objective: To explore the pathogenic mechanisms underlying generalized 

epilepsy and febrile seizures plus (GEFS+) in a family with a novel GABRG2 frameshift 

mutation.   Methods: GABRG2 sequencing, expression of the predicted mutant 2S subunit 

cDNA, immunoblotting, flow cytometry assay and electrophysiology in HEK293T cells. 

Results: Four affected and one unaffected individuals carried a c.1329delC 

GABRG2 mutation [2S(S443delC)] resulting in a protein with a modified and elongated 

carboxy-terminal different from the wildtype 2S subunit.  The mutant subunit was 

translated as a stable and larger protein compared to the wildtype 2S subunit; it was 

retained in the ER and not expressed on the cell surface membrane, suggesting a 

mechanism of haploinsufficiency.  Peak GABA-evoked currents recorded from cells 

cotransfected with mutant 2S, 1 and 2 subunits were significantly decreased and 

comparable to 12 receptor currents.  

Interpretation: The 2S(S443delC) mutation is the first GABR epilepsy mutation 

predicted to produce an unnatural stop codon in the 3’ UTR and an extended peptide.  

GEFS+ phenotype observed in this family is likely caused by 2S subunit loss-of-

and possibly to dominant-negative suppression of 122 receptors.  Most GABRG2 
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truncation mutations result in GEFS+, but the spectrum of phenotypic severity is wider, 

ranging from asymptomatic individuals to the Dravet syndrome.  Mechanisms 

the severity of the phenotype are therefore complex and difficult to correlate with its 

demonstrable functional effects.   

 

Introduction 

 

GABAA receptors are ligand-gated chloride ion channels and the primary 

mediators of fast inhibitory synaptic transmission in the central nervous system.  They are 

formed by pentameric assemblies of different subunit subtypes from eight subunit 

families (α1-α6, 1-3, 1-3, δ, , ,  and ρ1-ρ3)[44].  Classical anticonvulsants such 

as benzodiazepines or barbiturates potentiate GABAA receptor currents[9].  Mutations in 

GABAA receptor subunit genes, including GABRA1, GABRAB3, GABRBD and GABRG2, 

in different subunit domains, have been associated with generalized epilepsy syndromes 

and with the genetic epilepsy with febrile seizures plus (GEFS+) spectrum, including 

Dravet syndrome, in rare families and in sporadic cases with de novo mutations[44].   

GABRG2 gene mutations and variants associated with epilepsy include three 

missense mutations in coding sequences[169, 177, 187], three nonsense mutations in 
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coding sequences[189, 195, 196], and one mutation in an intron splice donor site that was 

also predicted to cause a protein truncation[198].  Phenotypes associated with missense 

mutations are relatively mild and include familial childhood absence epilepsy and febrile 

seizures[177], GEFS+ without Dravet syndrome[169] and febrile seizures[187].  

Nonsense mutations in coding sequences have been associated with more severe 

phenotypes, including Dravet syndrome[189, 195], but also with phenotypes similar to 

those caused by missense mutations, including GEFS+[196] and childhood absence 

epilepsy and febrile seizures[198].  There is evidence that epilepsy syndromes associated 

with protein truncation mutations are caused by a combination of degradation of unstable 

subunit mRNA and of unstable truncated subunit protein with a dominant negative 

suppression of the biogenesis of wild type subunits[191, 201].  This combination of 

effects would result in a considerable loss of inhibition that might explain the most severe 

phenotypes [191]. 

We studied a family with mild generalized epilepsy and febrile seizures in which 

affected individuals carried a novel frame shift mutation of the GABRG2 gene, resulting 

a mutant protein that was predicted to lose the last 24 C-terminal amino acids and gain 50 

amino acids different from those of the natural variant, with consequent lower 

hydrophobicity of the C-terminus.  This is the first GABR epilepsy mutation predicted to 

produce an unnatural stop codon in the 3’ UTR and to produce an extended subunit 
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peptide.  The subunit mRNA should be stable and should produce 2S subunits with a 

disrupted 4th transmembrane domain and an extended C terminal tail.  To explore the 

pathogenic mechanisms underlying this novel mutation, we expressed the predicted 

2S subunit cDNA in HEK293T cells.  The mutant 2S subunit was translated as a stable 

protein with a larger molecular mass than the wildtype 2S subunit.  It was not detected 

the cell membrane, and peak GABA evoked currents recorded from cells cotransfected 

with mutant 2S subunit andα1 and 2 subunits were significantly decreased.  The 

GABAergic currents recorded from coexpressed α1, 2 and 2S(S443delC) subunits 

likely α12 receptor currents. 

 

Subjects/Materials and Methods 

 

Patients 

We studied a non consanguineous Italian family comprised of 4 affected members 

and a healthy carrier (Figure 1A).  The proband (III:4), a 5 year-old boy, was brought to 

medical attention at 9 months after a febrile seizure, lasting less than a minute.  He 

experienced 7 subsequent seizures until age 3 years, always during fever.  At 19 months, 

neurological examination was normal, and the Griffiths developmental scale general 
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quotient was 96.  EEG showed normal background activity with rare bursts of 

epileptiform abnormalities during sleep (Figure 1B).  Brain MRI was normal.  No 

treatment was assigned.  The proband’s sister (III:3) was a healthy 7 year old girl.  The 

proband’s 35 year old mother (II:3), had a single febrile and several nonfebrile 

convulsive seizures starting at 6 months and recurring during infancy, especially in sleep.  

She was initially resistant to phenobarbital but responded to valproate and remained 

seizure free from age 5 to 8 while on this drug.  At the age of 8, therapy was 

A single seizure occurred again at age of 16.  EEG, at age 20, showed generalized bursts 

of slows waves.  She had normal cognitive abilities and her brain MRI was normal.  The 

proband’s 49 year old uncle (II:2), had experienced a few febrile seizures in infancy.  His 

10 year old son (III:1) had only had a nonfebrile generalized seizure while awake at the 

of 9.  The proband’s 70 year old grandmother (I:1) did not recall having ever been told 

she experienced seizures.  The overall family clustering of clinical features is consistent 

with generalized epilepsy with febrile seizures plus (GEFS+). 

After obtaining informed consent we extracted genomic DNA from peripheral 

blood of affected family members (II:2, II:3, III:1 and III:4) and their healthy relatives 

(I:1 and II:4).  The study was approved by the Commission for Medical Ethics of the 

Meyer’s University Hospital.   
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GABRG2 mutation analysis 

We performed mutation analysis of the GABRG2 gene in the proband (III:4) and 

extended the genetic study to available family members (I:1, II:2, II:3, II:4, III:1) (Figure 

1A).  DNA was extracted from peripheral blood leukocytes using an automated DNA 

isolation robot (QIASymphony, QUIAGEN GmbH, Hilden, Germany), according to the 

manufacturer’s protocol.  The 9 exons covering the coding regions of GABRG2 

(Reference sequence: NM_000816.3) and their respective intron-exon boundaries were 

amplified by PCR and cycle sequenced using the BigDye Terminator v.1.1 chemistry 

(LIFE Technologies, Carlsbad, CA, USA).  The sequence reactions were analyzed on a 

3130XL  sequencer (LIFE Technologies, Carlsbad, CA, USA).  The identified GABRG2 

alteration was not found in a control population of 190 ethnically matched subjects and 

was described according to nomenclature using the cDNA sequence NM_000816.3.   

 

Bioinformatics 

The TMpred[266] and TMHMM[267, 268] programs predict the membrane-

membrane-spanning regions and their orientation using a database of naturally occurring 

transmembrane proteins.  Since the mutant subunit was predicted to lose the last 24 C-

C-terminal amino acids and to gain 50 amino acids different from the wildtype subunit, 
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used TMPred and TMHMM to predict if the mutant subunit was able to cross the 

membrane as the 4th transmembrane region of the wildtype subunit. 

 

Expression vectors with GABAA receptor subunits 

The coding sequences of human α1, 2, 2S and 2L GABAA receptor subunits 

from the translation initiation codon ATG to the stop codon were cloned into pcDNA3.1 

expression vectors (Invitrogen) as previously described[211].  The cDNA encoding the 

HA peptide, YPYDVPDYA, was introduced between the 4th and 5th amino acids of 

mature γ2S and γ2L subunits to create 2SHA and 2S(S443delC)HA subunits, which has 

been reported to be a functionally silent position[50].  The 2 subunit 3’ polyA site 

fragments were cloned from RP11-1035I20 (BACPAC Resources; 

http://bacpac.chori.org).   

 

Cell culture and transfection 

Human embryonic kidney cells (HEK 293T) (ATCC, CRL-11268) were 

at 37°C in humidified 5% CO2, 95% air and grown in Dulbecco's modified Eagle's 

(Invitrogen) supplemented with 10% fetal bovine serum, 100 IU/ml penicillin, and 100 

μg/ml streptomycin (Invitrogen).  Cells were transfected with cDNAs using the FuGENE 
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6 transfection reagent (Roche Applied Science) at a DNA:Transfection Reagent ratio of 

1:3 according to the manufacturer’s instructions.  The transfected cells were harvested 

after 36 hrs in culture for the following experimental protocols. 

 

Flow cytometry 

Flow cytometry was performed as described previously [269].  Briefly, 

transfected cells were collected in FACS buffer (1X PBS pH 7.0 with 2% fetal bovine 

serum) and separated to single cells, then permeablized with CytoPerm (BD Biosciences) 

for 15 minutes, and washed with CytoWash (BD Biosciences).  Permeablized cells were 

incubated with anti-HA antibodies (clone 16B12, Covance) conjugated to the Alexa-647 

fluorophore for an hour, then washed three times and fixed with 2% paraformaldehyde.  

Flow Cytometry experiments were performed in the Vanderbilt Medical Center Flow 

Cytometry Shared Resource, which is supported by the Vanderbilt Ingram Cancer Center 

(P30 CA68485) and the Vanderbilt Digestive Disease Research Center (DK058404).  

Samples were run on a 5-laser BD LSRII system equipped with 635 nm red diode lasers.  

For each staining condition, 50,000 cells were analyzed.  Nonviable cells were excluded 

from analysis based on forward and side scatter profiles (not shown) as determined by 

staining with 7-aminoactinomycin D (Invitrogen).  Data were acquired using FACSDiva 

6.0 (BD Biosciences) and analyzed off line using FlowJo 7.5 (Treestar, Inc.).  The mean 
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fluorescence intensity of each sample was evaluated, and normalized to the 100% control 

(SHA as noted in the text).  The normalized mean fluorescence intensity was 

represented as a percentage of the 100% control.  Data were plotted as mean ± SEM.  

Pair-wise two-tail Student t-tests were used to compare between conditions unless 

otherwise specified. 

 

Immunoblotting 

Cultured HEK 293T cells were lysed in radioimmune precipitation assay (RIPA) 

buffers (Pierce) and a protease inhibitor cocktail (Sigma Aldrich).  Cell lysates were 

cleaned by centrifugation at 20,000 X g for 30 min.  The supernatants were subjected to 

further experiments or directly to SDS-PAGE.  Proteins in gels were transferred to 

Millipore Immobilon® FL PVDF Membrane (Millipore).  Non-specific binding on the 

membrane was blocked with the Odyssey blocking buffer (Li-cor).  Monoclonal anti-HA 

epitope tag antibodies (0.2 g/ml; clone 16B12, Covance) were used to detect HA 

epitope-tagged 2 subunits.  Anti-Na+/K+-ATPase antibodies (0.2 μg/ml; clone ab7671, 

Abcam) were used to check loading variability.  Following incubation with primary 

antibodies, IRDye® secondary antibodies were used at a 1:10,000× dilution (Li-cor) for 

visualization of specific bands with the Odyssey imaging system (Li-cor).  
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Electrophysiology 

Lifted whole cell recordings were obtained from transfected HEK 293T cells as 

described previously[170].  Briefly, cells were bathed in an external solution consisting 

of (in mM): NaCl 142; KCl 8; MgCl2
 6; CaCl2 1; HEPES 10; glucose 10, pH 7.4, 325 

mOsm.  Electrodes were fire-polished to resistances of 0.8-1.5 M and filled with an 

internal solution consisting of (in mM): KCl 153; MgCl2 1; MgATP 2; HEPES 10; EGTA 

5, pH 7.3, 300 mOsm.  The combination of internal and external solutions produced a 

chloride equilibrium potential of ~0 mV.  For all recordings cells were voltage clamped at 

-20 mV.  GABA (1 mM) was applied to cells for 4 seconds and cells were then washed 

with external solution for 40 seconds.  Zn2+ (10 M) was then preapplied for 10 seconds 

followed by coapplication of GABA (1 mM) and Zn2+ (10 M) for 4 seconds.  Finally, 

cells were washed with external solution for 10 seconds followed by application of 

GABA (1 mM) for 4 seconds.  Whole cell currents were low-pass filtered at 2-5 kHz and 

digitized at 10 kHz, and peak current amplitudes were quantified using the pClamp9 

software suite (Axon Instruments). 
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Results 

 

The c.1329delC deletion in the GABRG2 gene is predicted to cause an open-reading 

frame shift and generate a novel domain terminus in 2 subunits 

The proband (III:4) had a heterozygous c.1329delC deletion in the GABRG2 gene, 

and the mutation was also present in individuals I:1, II:2, II:3 and III:1 (Figure 1A).  The 

c.1329delC mutation deleted a cytosine nucleotide in the Ser443 codon TCC of the 

immature 2S subunit sequence.  It was predicted in silico to cause open-reading frame 

shift, resulting in the loss of the natural stop codon and generation of a new stop codon in 

the GABRG2 3' UTR (p.Tyr444MetfsX51).  Specifically, the mutant 2S subunit, that we 

named S443delC, was predicted to lose the last 24 C-terminal amino acids and gain 50 

amino acids differing from those of the natural variant (Figure 2B).  The TMPred-

calculated hydrophobicity of the mutant subunit showed that the mutant 2S(S443delC) 

subunit C-terminus hydrophobicity was somewhat lower compared to the same region of 

the wildtype 2S subunit (2A).  The TMHMM program did not identify any 

transmembrane domain in the novel C-terminus (not shown).  Thus, the S443delC 

mutation likely interrupted the wildtype 2S subunit membrane topology. 
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The 2S subunit genomic sequence carries two polyA sites, 800 bp and ~2.4 kbp 

downstream of the 2S subunit translation stop codon.  We cloned genomic sequence 

containing either the proximal polyA site or both proximal and distal polyA sites to 2S 

subunit cDNA and introduced the S443delC mutation.  It is unclear whether or not the 

extension of the C terminus of the subunit into the 3’ UTR would alter polyA site usage.  

When wildtype or mutant 2S subunits were expressed in HEK293T cells, all four 

subunits had the same 3’-UTR, suggesting that the mutation did not interfere with polyA 

site recognition (Figure 3).  The sequence of the 3’-UTR fragment showed that they all 

utilized the proximal polyA site.  The sequence of the mutant 2S(S443delC) subunit 

showed that, as predicted, the mutation caused a frame shift in exon 9 and generated a 

novel 50 amino acids C-terminus.  The mutant 2S(S443delC) subunit premature peptide 

is 493 amino acids while the wildtype 2S subunit premature peptide is 467 amino acids, 

a difference in length of 26 amino acids.   
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Figure 3.1 GABRG2(S443delC) mutation was identified in a GEFS+ family. 

 

A.  Pedigree of the family with GEFS+.  The arrow points to the proband.  B. 
The EEG presented is from patient III:4 and shows a burst of generalized epileptiform 
abnormality. 

 

Figure 3.2  The mutant 2S(S443delC) subunit sequence. 

 

The peptide sequence of wildtype 2S (A) and mutant 2S(S443delc) subunit 
(B) premature peptide is predicted to have a novel 50 amino acid C-terminus.  The 
underlined sequence in A represents wildtype TM4. The bold red letters represent the 
novel C-terminus generated by frame shift.  
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Figure 3.3 The GABRG2(S443delC) mutation did not affect polyA site recognition. 

 

The RT-PCR fragments were amplified from total RNAs collected from 

HEK293T cells transfected with mutant or wildtype 2S subunit cDNAs carrying either 
both distal and proximal polyA sites (Long UTR) or only the proximal polyA site (Short 
UTR).  An adaptor primer was added to the end of the UTR during cDNA synthesis.  RT-
PCR was performed with two sets of primers.  The exon 1 forward primer binding site 
started at the ATG translation start site.  The exon 9 reverse primer bound to the 
complimentary strand of DNA, and the binding site started at the TGA translation 

termination site of the wildtype 2S subunit, 1404 bp downstream of the ATG translation 
start site.  The exon 6 forward primer binding site started at the beginning of exon 6 of 

the 2S subunit cDNA.  The UTR primer was a reverse primer that bound to the adaptor 
primer at the end of mRNAs downstram of the polyA tail. 



146 

 

The 2S(S443delC) subunits were stable proteins, but their total level was 

significantly lower than wildtype 2S subunits 

We cloned the coding sequence of the 2S(S443delC) subunit cDNA into the 

pcDNA3.1 vector, introduced an HA-epitope tag at a functionally silent site, and 

expressed it in HEK293T cells either alone or with α1 and 2 subunits (Figure 4).  

Western blot showed that when expressed alone, the 2S(S443delC) subunit was 

translated to a stable protein in HEK293T cells, but its molecular size was larger than 

wildtype 2S subunits (Figure 4A, lane 2, 3).  Coexpression with α1 and 2 subunits 

altered the glycosylation pattern of wildtype 2S subunits (Figure 4A, lanes 2 and 5, see 

double bands in lane 5 but not lane 2) but did not affect that of mutant 2S(S443delC) 

subunits (Figure 4A, lanes 3 and 6).  The epilepsy associated mutation, Q390X, generated 

a 2S subunit that was truncated in the second intracellular loop[189].  The 2S(Q390X) 

subunit was an intracellular protein that only had endoplasmic reticulum (ER) core 

glycosylation[191].  The 2S(Q390X) subunit protein bands were much smaller than 

wildtype 2S or mutant 2S(S443delC) subunit bands (Figure 4A, lane 4).  The 

glycosylation pattern of the 2S(Q390X) subunit was not affected also by coexpression 

with α1 and 2 subunits (Figure 4A, lanes 4 and 7).  These data suggested that the 

cellular localization of the 2S(S443delC) subunits might be the same as that of 

2S(Q390X) subunits. 
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The Western blot result suggested that the 2S(S443delC) subunits had decreased 

protein level with expression of either single subunits or with coexpression with α1 and 

2 subunits.  We then evaluated the total levels of the 2S(S443delC) subunits with both 

single subunit expression or with coexpression with α1 and 2 subunits (Figure 4B).  We 

permeablized the transfected HEK293T cells, stained HA-tagged 2SHA or 

2S(S443delC)HA subunits using fluorescence conjugated HA antibodies and evaluated 

mean fluorescence intensity by flow cytometry.  The total level of HA-tag in cells 

coexpressing α1, 2 and 2S subunits was set at 100%.  When expressed alone, the 2SHA 

subunit total level was 86.6 ± 1.6%, and with coexpression with 1 and 2 subunits the 

2SHA subunit total level was increased (p = 0.01).  However, the total level of 

2S(S443delC)HA subunits was only 34.6 ± 4.6% when expressed alone as single subunit 

or 35.7 ± 6.0% when coexpressed with 1 and 2 subunits.  The total level of 

2S(S443delC)HA subunits was not changed by coexpression with 1 and 2 subunits (p 

= 0.74), but was significantly lower than the 2S subunit total level either with single 

subunit expression or α1, 2 and 2S subunit coexpression (p < 0.01 in both cases). 
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Figure 3.4 The 2(S443delC)subunits were stable, but their total level was 
decreased. 

 

A.  Western blot was performed on transfected HEK29T cells total cell lysates.  
The red channel shows the ATPase antibodies signal, and the green channel shows the 
HA-antibody signal.  B.  Total HA levels obtained from transfected HEK293T cells were 

plotted.  The wildtype 2S subunit and mutant 2S(S443delc) subunit cDNAs were 
transfected either with pcDNA empty vector or with  and  subunit cDNAs, and the 
results were expressed relative to the level obtained for the wild type 2S subunit 
coexpressed with α1 and 2 2S subunits.  The double stars correspond to p < 0.01 
compared to wildtype α1 2 and 2S subunit coexpression. 

 

2S(S443delC) subunits were not expressed on the cell membrane 

GABAA receptor subunits are synthesized in the ER where they are assembled to 

heteropentameric receptors and then trafficked to the cell membrane[50].  Misfolded and 

unassembled GABAA receptor subunits are degraded in the ER by the ubiquitin-
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ubiquitin-proteasome system[52, 270].  When coexpressed, the truncated 2S(Q390X) 

subunits were retained in the ER where they oligomerized with 1 and 2 subunits and 

decreased surface 1 and 2 subunit levels[191].  Because 2S(S443delC) subunits might 

have four transmembrane domains similar to wildtype S subunits, we explored if the 

2S(S443delC) subunits could assemble with1 and 2 subunits and be expressed on 

membranes as functional receptors.  We coexpressed 2SHA or 2S(S443delC)HA subunits 

with 1 and 2 subunits in HEK293T cells, stained both permeablized and 

unpermeablized cells with antibodies against the  subunit and the HA tag.  The 1 

subunits can assemble with  subunits to form functional heteropentameric  

receptors that traffic to the cell membrane[56, 183].  Confocal images from cells 

cotransfected with 1, 2 and 2S subunits showed the HA-tag signal in both 

permeablized and unpermeablized cells, suggesting that wildtype 2S subunits were 

expressed intracellularly as well as on the cell surface (Figure 5A).  The HA signal was 

colocalized with the  subunit signal in both total and surface conditions.  With 

coexpression of 1, 2 and 2S(S443delC) subunits, HA signal was only detected in 

permeablized cells (Figure 5B), suggesting that the mutant subunit was retained in the ER 

and did not form receptors that trafficked to the cell surface.   
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Figure 3.5 The 2(S443delC)subunits were retained in an intracellular 
compartment. 

 

Confocal images of wildtype  (A) and mutant 2S(S443delC) (B) subunits 
coexpressed with and 2 subunits were obtained.  Total signals were evaluated by 
staining permeablized cells, and surface signals were evaluated by staining 
paraformaldehyde fixed cells. 
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The GABA-evoked current recorded from 2S(S443delC) receptors was 

significantly decreased. 

We characterized the effect of the 2S subunit mutation, S443delC, on 

122S receptor current properties.  Whole-cell currents were elicited from lifted 

HEK293T cells cotransfected with 1 and 2 subunits and wildtype 2S or mutant 

2S(S443delC) subunits by applying a saturating GABA concentration (1 mM) for 4 sec 

using the rapid concentration jump technique, and the amplitudes of GABA-evoked 

currents were determined (Figure 6).  Normalized 122S(S443delC) receptor current 

had a different time course compared to wildtype 122S receptor current, suggesting 

different macroscopic current kinetics (Figure 6A).  The mutant receptor currents 

desensitized faster and their residual currents were smaller than those of wild type 

currents.  Mutant receptor peak current was reduced relative to wildtype receptor peak 

current (Figure 6A).  Maximal wildtype peak current was substantially larger (6203 ± 223 

pA, n = 6) than that obtained from mutant receptors (466 ± 31.8 pA, n = 3, p < 0.001) 

(Figure 6B).  Moreover, in 5 of 8 of the cells expressing mutant receptors, very small 

currents (26.7 ± 6.81 pA) were evoked by 1 mM GABA (Figure 6C).  Wild-type 

receptors did not show this phenomenon, but  subunit null condition  receptors 
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(not shown).  All these properties suggested that the GABA-evoked currents recorded 

from cells coexpressing 1, 2 and 2S(S443delC) subunits were 12 receptor currents. 

 

Discussion 

 

We identified a novel frame shift mutation, S443delC, in an Italian family with 

GEFS+.  A cytosine nucleotide was deleted from the S443 residue in the last exon of the 

Figure 3.6 The 2(S443delC)receptors had decreased GABA evoked currents. 

 

A.  GABAergic currents were recorded from HEK293T cells coexpressing 

2S or 2S(S443delC) subunits.  B.  Peak current amplitudes from wildtype 
and mutant receptors were plotted.  C.  Cells coexpressing the 2S(S443delC) 
subunits had two different peak currents.  Three cells showed an average peak current of 
466 ± 31.8 pA, n = 3, while no current was obtained from 5 cells. 
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GABRG2 gene.  The resultant DNA sequence suggested that the mutant allele should be 

translated to a stable protein with the last 24 amino acids of the wildtype 2 subunit that 

contains the 4th transmembrane domain replaced by a novel 50 amino acid C-terminus, 

which had decreased hydrophobicity.  The frame shift mutation shifted the stop codon 

into the 3’ UTR, thus shortening it, but it did not interfere with polyA site recognition.  

Western blot showed that mutant 2S(S443delC) subunits were stable proteins, but that 

their total level was decreased compared to that of similarly expressed wildtype S 

subunits.  When coexpressed with 1 and 2 subunits, 2S(S443delC) subunits were 

retained inside of the cell, and GABA-evoked currents from the cells were similar to 

obtained from 12 receptors.  Thus, the 2 subunit mutation, S443delC, might 

a  subunit null allele and be associated with epilepsy, at least in part, through halplo-

halplo-insufficiency.   

There have been 16 epilepsy-associated mutations identified in GABR subunit 

genes, 7 of which were identified in the GABRG2 gene, suggesting its strong association 

with epilepsy[44].  Although the 2 subunit is not required for pentameric GABAA 

receptor assembly and surface trafficking[50, 56], mutations in the  subunit affected the 

GABAA receptor expression, trafficking, and function[44].  The 2 subunit is important 

for gephyrin-dependent GABAA receptor clustering at postsynaptic sites[97].  It also 

increases GABAA receptor channel conductance and opening duration[183].  The -/- 
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knockout mice had normal brain structure and body weight, but they died within two 

of birth[56].  Decreasing 2 subunit level in heterozygous 2+/- mice[167] or  subunit 

knockdown mice[168] resulted in decreased GABAA receptor clustering and abnormal 

mouse behaviors.  However, no studies of possible seizure phenotypes in -/- or +/- 

have been reported.   

We demonstrated that the 2(S443delC) subunit is retained in the ER and not 

expressed on the cell surface membrane, suggesting a mechanism of haplo-insufficiency.  

However, it might also be associated with epilepsy by dominant negative effects on 

wildtype GABAA receptor subunits assembly and membrane trafficking.  The epilepsy-

associated 2(R82Q) and(Q390X) subunit mutations also were shown to generate 

mutant proteins that were retained in the ER[182, 191].  The mutant 2(R82Q) subunit 

has decreased oligomerization with partnering subunits and is expressed on the cell 

membrane at low levels[59, 170].  It decreased surface α1 and 2 subunit levels when 

they were coexpressed in the HEK293T cells, and decreased endogenous  

subunit surface expression in cultured hippocampal neurons[176].  The (Q390X) 

subunit was retained in the ER and not expressed on the cell membrane[191].  It bound to 

α1 and wildtype 2 subunits when they were coexpressed in the HEK293T cells and 

decreased the membrane level of these wildtype subunits.  However, both 2(R82Q) and 

2(Q390X) subunits are stable proteins with similar total levels as the wildtype 2 

subunits[182, 193].   
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The (A322D) mutation is associated with juvenile myoclonic epilepsy[209].  

The mutation impaired the membrane topology of (A322D) subunits so the 

(A322D) subunit was misfolded, retained in the ER, and degraded by proteasomal 

degradation[53, 210, 211].  The total level of (A322D) subunits was around 10% of 

wildtype α1 subunits with both Western blot and flow cytometry[210, 213].  The 

2(S443delC) subunit has a novel C-terminus that is less hydrophobic than the wildtype 

C-terminus that was predicted not to fold correctly.  The 2(S443delC) subunit might 

have decreased total level because of ER retention and increased proteasomal 

degradation, although that must be confirmed.  However, the (A322D) subunit 

associated with wildtype subunits in the ER and reduced wildtype both and 

receptor surface expression[213].  It is possible that although the 2(S443delC) 

subunit has reduced total levels, it could oligomerize with α and  subunits and decrease 

wildtype GABAA receptors surface expression, but must also to explored.  The functional 

consequences of the S443delC mutation could be a combination of haplo-insufficiency 

and dominant negative effects.  The 2(R82Q) mutation also decreased 2 subunit-

containing GABAA receptor surface expression, and partnering subunit membrane 

expression.  The mutant 2R82Q/+ knock in mice had the same type of seizures as humans 

bearing the mutation[185].  The effect of 2(S443delC) subunit could be sufficient to 

induce epilepsy.   
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This report confirms that most GABRG2 receptor truncation mutations result in a 

combination of generalized and febrile seizures, also recognized as GEFS+ spectrum1.  

However, it is becoming increasingly obvious that the spectrum of phenotypic severity is 

inexplicably wide, ranging from asymptomatic individuals (see individual I:1 in this 

report and the Q40X mutation carrier7) to patients with the Dravet syndrome1,7.  

Mechanisms influencing the severity of the phenotype associated with a given mutation 

are therefore complex and difficult to correlate with its demonstrable functional effects.  

Phenotypic severity is likely modulated by the individual genetic background through 

different and possibly multiple mechanisms, including the response to ER stress7.  

 

Acknowledgement statement 

 

We thank the family for participating in our research.  We thank Ningning Hu for 

technical assistance.  This work was supported by EU Sixth Framework Thematic 

Priority Life Sciences, Genomics and Biotechnology for Health; Grant Number: LSH-

CT-2006-037315 to RG and NIH R01 NS051590 to RLM.  



157 

 

Chapter 4 

 

The Dravet Syndrome-Associated GABRG2 Nonsense Mutation, Q40X, Activated 

NMD and Generated a Truncated Subunit That was Partially Rescued by 

aminoglycoside-Induced Stop Codon Read-through 

 

Xuan Huang1,3*, Mengnan Tian2,3*, Ciria C. Hernandez3, Ningning Hu3 and Robert L. 

Macdonald1, 2,3 

The Graduate Program of Neuroscience1, Departments of Pharmacology2 and Neurology3 

Vanderbilt University Medical Center 

Nashville, TN 37212 

* Both authors contribute equally to this work 



158 

 

Abstract 

 

The GABRG2 nonsense mutation, Q40X, is associated with the severe epilepsy 

syndrome, Dravet syndrome, and is predicted to generate a premature translation-

translation-termination codon (PTC) in the GABRG2 transcription product, GABAA 

receptor2 subunit mRNA.  We determined the effects of the mutation on 2 subunit 

mRNA and protein synthesis and degradation, as well as on α1β22 GABAA receptor 

assembly, trafficking and surface expression in HEK cells.  Using bacterial artificial 

chromosome (BAC) constructs, we found that 2(Q40X) subunit mRNA was degraded 

nonsense mediated mRNA decay (NMD).  The undegraded mutant mRNA was translated 

to a truncated peptide, likely the signal peptide, which was further cleaved.  We also 

that mutant 2(Q40X) subunits did not assemble into functional receptors, thus 

GABA-evoked current amplitudes.  The GABRG2(Q40X) mutation is one of several 

epilepsy-associated nonsense mutations that have the potential to be rescued by reading 

through the PTC, thus restoring full-length protein translation.  We investigated use of 

aminoglycoside, gentamicin, to rescue translation of intact mutant subunits by inducing 

mRNA read-through.  In the presence of gentamicin, synthesis of full length 2 subunits 

was partially restored, and surface biotinylation and whole cell recording experiments 
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suggested that rescued 2 subunits could corporate into functional, surface GABAA 

receptors, indicating a possible direction for future therapy. 

Key words: GABAA receptors, epilepsy, γ2 subunit, GABRG2(Q40X) mutation, 

loss of function, gentamicin 

 

Highlights 

 

 Dravet syndrome-associated mutation, GABRG2(Q40X), decreased 2 subunit 

mRNA levels.  

 Undegraded 2(Q40X) subunit mRNA was expressed as a truncated 2 subunit and a 

novel proteolytic band. 

 Mutant 2(Q40X) subunits were not assembled to functional GABAA receptors. 

 Aminoglycosides partially rescued wildtype 2 subunit expression from mutant 

mRNA. 

 Rescued 2 subunits had the same expression and function as wildtype 2 subunits. 
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Introduction 

 

Epilepsy is a common neurological disorder that affects about 1% of the world’s 

population [271].  Epilepsy syndromes are usually either symptomatic and due to a 

known brain injury or idiopathic and not due to brain injury.  Idiopathic genetic epilepsy 

syndromes (IGES) comprise ~30% of all cases and can vary in severity from the mild 

juvenile absence epilepsy syndrome to the severe Dravet syndrome [272, 273].  While 

many IGES are benign, Dravet syndrome is not.  It is associated with myoclonic and 

generalized tonic-clonic seizures that begin at an early age, frequent episodes of status 

epilepticus and progressive intellectual decline, and it is resistant to a wide range of 

antiepileptic drugs.  Many epilepsy-associated mutations are in ion channel genes, and 

about one half of Dravet syndrome patients have nonsense mutations in ion channel 

genes that create premature translation-termination codon (PTCs), and thus, truncated 

subunit proteins [274].  GABRG2(Q40X) is a nonsense mutation located in GABAA 

receptor 2 subunits that has been associated with Dravet syndrome [275].   

GABAA receptors are heteropentameric chloride ion channels that mediate the 

majority of inhibitory neurotransmission in the CNS.  The receptor complex is composed 

of five subunits from nineteen different genes, and the main synaptic receptors are 
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composed of two  subunits, two β subunits and one 2 subunit.  Out of the fifteen GABR 

epilepsy-associated mutations or variants, seven are in GABRG2, and these mutations 

been shown to decrease channel function by altering receptor biogenesis or channel 

function [276].  The GABRG2(Q40X) mutation was shown to impair GABAA receptor 

channel function and to form granules in neurons [275].  However, the effects of this 

mutation on GABAA receptor function are unknown.   

Current therapies for the devastating epilepsies produced by truncation mutations 

are symptomatic and relatively ineffective.  One potential treatment would be to rescue 

the nonsense mutation by drug-induced read-through.  Aminoglycosides such as G-418 

and gentamicin partially restore the expression and function of full-length proteins by 

inducing PTC read-through [200, 277].  A drug designed to specifically induce ribosomes 

to read through stop codons generated by PTCs (Ataluren®) is currently under Phase 3 

clinical trial to treat cystic fibrosis patients carrying PTCs in the CFTR gene, further 

confirming the clinical feasibility of this strategy [278, 279].  Because the dramatic loss 

of function produced by subunit truncation mutations likely contributes to the 

pathogenesis of Dravet syndrome, the read-through strategy presents a potential approach 

to treat epilepsies associated with PTCs.   

To explore the effects of the GABRG2(Q40X) mutation, we studied the 

transcription of wildtype and mutant GABRG2 mRNA, the translation of 2 and 
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subunit protein and the properties of GABAA receptors that were assembled with 

coexpression of α1, 2 and γ2 or γ2(Q40X) subunits in HEK 293T cells.  We found that 

the Q40X mutation engaged the cellular quality control machinery to activate nonsense 

mediated mRNA decay (NMD) to decrease mutant mRNA levels and produced a 

signal peptide that was not incorporated into functional receptors.  Restoring expression 

of the full-length wildtype 2 subunit by read-through should be able to rescue the 

truncation caused by the Q40X mutation.  To evaluate the plausibility of aminoglycoside-

aminoglycoside-induced read-through of an epilepsy-associated PTC, we determined 

whether gentamicin could rescue mutant 2(Q40X) subunits.  We demonstrated that 

gentamicin partially restored the expression full-length 2 subunits, and that the rescued 

subunits assembled with α12 subunits to form functional α122 GABAA receptors.   

 

Materials and Methods 

 

Expression vectors 

The coding sequences of human α1, β2 and γ2S GABAA receptor subunits were 

cloned into pcDNA3.1 expression vectors (Invitrogen) as previously described [211].  All 

subunit residues were numbered based on the immature peptide.  The γ2S(Q40X) and 
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γ2S(Q40X,TGA) subunit constructs were generated using the QuikChange site-directed 

mutagenesis kit (Stratagene).  An HA epitope was inserted at a functionally silent site 

(between the 4th and 5th residue of the mature peptide of both wildtype and mutant γ2S 

subunit) to facilitate our experiments [50].  To detect the truncated protein generated by 

the mutation, we also inserted an HA epitope at the N terminus of the unprocessed 

while an FLAG epitope was inserted between the 4th and 5th residue of the mature 

using overlapping PCR.   

The GABRG2 BAC construct containing the Q40X mutation was generated using 

the BAC clone number RP11-1035I20 (BACPAC Resources; http://bacpac.chori.org), 

which contains the wildtype human GABRG2 gene genomic sequence.  The human 

chromosome sequence upstream of GABRG2 translation start site was replaced with a 

CMV promoter, and the mutation was introduced by galK facilitated BAC 

recombineering [239].  A reporter gene containing an SV40 early promoter-driven eGFP 

was integrated to BACs using Cre (NEB) recombination [238].  Thus, both wildtype and 

mutant GABRG2 BACs contained the CMV promoter-driven GABRG2 gene and an 

eGFP reporter gene driven by the SV40 early promoter.   
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Cell culture and transfection 

Human embryonic kidney cells (HEK 293T) (ATCC, CRL-11268) were 

incubated at 37°C in humidified 5% CO2, 95% air and grown in Dulbecco's modified 

Eagle's medium (Invitrogen) supplemented with 10% fetal bovine serum, 100 IU/ml 

penicillin, and 100 μg/ml streptomycin (Invitrogen).  Cells were transfected using the 

FuGENE 6 transfection reagent (Roche Applied Science) at a DNA:Transfection Reagent 

ratio of 1:3 according to the manufacturer’s instructions.  Eighteen to 20 hours after 

transfection, gentamicin (50 mg/ml, GIBCO) was added to the culture dish. 

The NMD essential factor UPF1 or SMG6 was knocked down using siRNAs to 

block the NMD machinery.  SilencerSelect® pre-designed and validated siRNA (Ambion, 

siRNA ID s11926) was transfected to cells using Lipofectamine RNAiMax (Invitrogen) 

according to the manufacturer’s manual.  Twenty-four hours later cells were transfected 

again with the wildtype or mutant BAC constructs and harvested two days later for RT-

PCR.   

 

RNA extraction, RT-PCR and Taqman real-time qPCR 

Total RNAs from transfected HEK 293T cells were extracted by using the 

PerfectPure RNA Cultured Cell kit (5Prime) following the manufacturer's protocol and 
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then reverse transcribed to cDNA using the Taqman MicroRNA Reverse Transcription 

(Applied Biosystems).  The transcribed cDNA was used then as the PCR template to 

identify 2 subunit transcripts using a forward primer located in exon 6 and a reverse 

primer located in exon 7.  Taqman® probes detecting human GABRG2 gene mRNA, 

human GAPDH gene, 18S rRNA, or eGFP (part number 4331348 [Custom Taqman Gene 

Expression Assay Service]) were used to quantify the amount of transcribed cDNA.  

sample was triplicated in each individual experiment, and the average threshold cycle 

value for each sample was calculated by the Sequence Detection System v2.3 Standard 

Edition (Applied Biosystems).  The average Ct values of GABRG2 gene mRNA were 

normalized to the endogenous human GAPDH, 18S rDNA or eGFP amount, to compare 

the relative RNA abundance. 

 

Western Blot, PNGase F digestion and surface biotinylation 

After sonication, the whole cell lysates of transfected HEK cells were collected in 

modified RIPA buffer (Pierce) and 1% protease inhibitor mixture (Sigma).  Collected 

samples were subjected to gel electrophoresis using NuPAGE○R (Invitrogen) or TGX 

(BioRad) precast gel and then transferred to PVDF-FL membranes (Millipore).  
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Monoclonal anti-HA antibody (Covance or Cell signaling) and monoclonal anti-

FLAG antibody (Sigma) were used to detect the epitope tag in γ2S subunits.  Anti-

sodium potassium ATPase antibody (Abcam) was used as a loading control.  After 

incubation with primary antibodies, IRDye® (LI-COR Biosciences) conjugated secondary 

antibody was used at 1:10,000 dilution, and the signals were detected using the Odyssey 

Infrared Imaging System (LI-COR Biosciences).  The integrated intensity value (IDV) of 

each specific band was calculated using the Odyssey 3.0 software (LI-COR Biosciences). 

To remove all N-linked glycan, cell lysates were incubated with the PNGase F 

enzyme (NEBiolab) at 37°C for 3 hours following manufacturer’s manual.  Treated 

samples were then subjected to SDS-PAGE and Western blot.  

Surface proteins were collected using surface biotinylation as described before 

[61].  Transfected cells were biotinylated using the membrane-impermeable reagent sulf-

HNS-SS-biotin (1 mg/ml, Thermo Scientific) at 4°C for 1 h.  Cells were lysed after being 

quenched with 0.1 M glycine.  The biotin-labeled plasma membrane proteins were pulled 

down by High Binding Capacity NeutrAvidin beads (Thermo Scientific Pierce) after 

centrifugation.   
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Flow cytometry 

High throughput flow cytometry was performed to investigate the surface 

expression of GABAA receptor subunits.  Transfected cells were collected in phosphate-

buffered saline containing 2% fetal bovine serum and 0.05% sodium azide as described 

before [269].  Cell samples were incubated with an Alexa fluorophore (Invitrogen)-

conjugated monoclonal anti-α1 antibody (Millipore), monoclonal anti-β2/β3 antibody 

(Millipore) or monoclonal anti-HA antibody (Covance), then fixed by 2% 

paraformaldehyde.  The fluorescence signals were read on a BD Biosciences 

FACSCalibur system.  Nonviable cells were excluded from study based on the previously 

determined forward and side scatter profiles.  The fluorescence index of each 

experimental condition was subtracted by the fluorescence index of mock-transfect 

condition and then normalized to that of the control condition.  Flow Cytometry 

experiments were performed in the VMC Flow Cytometry Shared Resource, which is 

supported by the Vanderbilt Ingram Cancer Center (P30 CA68485) and the Vanderbilt 

Digestive Disease Research Center (DK058404). 
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Whole cell electrophysiology 

Whole cell voltage-clamp recordings were performed at room temperature on 

HEK293T cells 24-72 hrs after transfection with GABAA receptor subunits as described 

previously [280].  Successfully transfected cells were identified by the presence of GFP 

fluorescence (see Cell culture and transfection, above).  Cells were bathed in an external 

solution containing 142 mM NaCl, 1 mM CaCl2, 8 mM KCl, 6 mM MgCl2, 10 mM 

glucose, and 10 mM HEPES (pH 7.4, ∼325 mOsM).  Recording electrodes were pulled 

from thin-walled borosilicate capillary glass (World Precision Instruments, Sarasota, FL) 

using a P2000 laser electrode puller (Sutter Instruments, San Rafael, CA), fire-polished 

with a microforge (Narishige, East Meadow, NY), and filled with an internal solution 

containing 153 mM KCl, 1 mM MgCl2, 10 mM HEPES, 5 mM EGTA, 2 mM Mg2+-ATP 

(pH 7.3, ∼300 mOsm).  All patch electrodes had a resistance of 1–2 MΩ.  The 

combination of internal and external solutions yielded a chloride reversal potential of ~ 0 

mV, and cells were voltage-clamped at -20 mV using an Axopatch 200B amplifier (Axon 

Instruments, Union City, CA).  A rapid exchange system (open tip exchange times ~ 400 

μs), composed of a four-barrel square pipette attached to a Perfusion Fast-Step (Warner 

Instruments Corporation, Hamden, CT) and controlled by Clampex 9.0 (Axon 

Instruments), was used to apply GABA to lifted whole cells.  The channels were 

by 1 mM GABA for 4 s, followed by an extensive wash for 40 s, then blocked by 10 mM 
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Zn2+ for 10 s.  GABA (1 mM) was then applied for 4 s in the presence of 10 µM Zn2+.  

Peak current amplitudes after the Zn2+ application were normalized to those before the 

Zn2+ application to calculate the sensitivity to Zn2+ blockade.  All currents were low-pass 

filtered at 2 kHz, digitized at 5-10 kHz, and analyzed using the pCLAMP 9 software 

 

Data analysis 

Numerical data were reported as mean ± S.E.  Statistical differences were 

determined by one way analysis of variance or by pair wise Student’s t-test.   
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Results 

 

The γ2S subunit mutation, Q40X, decreased γ2S subunit transcripts 

The nonsense mutation Q40X generated a PTC in the second exon of GABRG2 

(Figure 1A).  Since nonsense mutations located at least 50-55 nt upstream of an exon-

exon-exon junction activate NMD to degrade susceptible transcripts [281], the mutant 

2S(Q40X) subunit mRNA level should be decreased.  NMD efficiency is an inherent 

property of cells and varies among cell types [282].  In HEK 293T cells, the mRNA level 

of an NMD-competent construct was degraded by about 60% [201].  To determine 

whether mutant GABRG2(Q40X) mRNA was degraded by the NMD machinery, we 

expressed mutant or wildtype CMV promoter-driven GABRG2 BACs in HEK293T cells 

with siRNAs against the NMD essential factor UPF1 or negative control siRNAs.  Total 

RNA was extracted from transfected cells 36 hours after transfection, and mRNAs were 

reverse transcribed to cDNA.  RT-PCR using primers flanking GABRG2 5’ exon 6 and 3’ 

exon 7 amplified a fragment from both wildtype and mutant BAC transfected cells 

1B).  Sequencing showed that the mutant BAC transcript contained the 2S subunit 

containing a PTC at codon 40.  The 2S subunit mRNA levels were then quantified using 

real-time PCR with a probe targeting GABRG2 5’ exon 4 and 3’ exon 5 border and 

normalized to GFP mRNA levels for each condition.  The transcript levels from cells 
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treated with siRNA against UPF1 were compared to those from cells treated with control 

siRNA.  The 2S subunit mRNA level in cells transfected with wildtype GABRG2 BACs 

was not changed by UPF1 siRNA (1.04 ± 0.07 fold, n = 4 after UPF1 knock down) 

1C).  The mutant 2S(Q40X) subunit mRNA level in cells transfected with mutant 

GABRG2(Q40X) BACs, however, was increased by UPF1 siRNA (1.99 ± 0.35 fold, n = 

p < 0.05) (Figure 1C).  Thus, blocking NMD rescued the mutant 2S(Q40X) subunit, but 

did not alter wildtype 2S subunit mRNA levels.  A similar trend was observed in cells 

transfected with siRNAs against the NMD essential factor SMG6 (data not shown). 

 

Figure 4.1  Mutant mRNA was degraded by NMD.  
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A. A schematic representation of the genomic structure of GABRG2.  Vertical 

brown arrows represent exons composing 2S subunit cDNA.  The Q40X mutation is 
located in exon 2.  B. The 2S transcript was identified in mutant GABRG2(Q40X) BAC 
transfected cells using RT-PCR.  HEK 293T cells were treated with siRNA against the 
NMD factor UPF1 or with nonspecific siRNA and were then transfected with wildtype or 
mutant GABRG2 BAC.  A forward primer located in exon 6 and a reverse primer located 

in exon 7 of the 2S subunit cDNA were used to amplify reverse transcribed cDNA from 
transfected cells.  C. The transcript level of the mutant GABRG2(Q40X) BAC was 
increased by NMD knock down.   

 

The 2S subunit mutation, Q40X, generated a truncated peptide 

We next studied the protein generated by the mutant 2S(Q40X) cDNA, since not 

all mutant mRNA was degraded by NMD.  The Q40X nonsense mutation is located in the 

40th residue of the immature 2S subunit, which is the first residue of the predicted 

subunit [283].  Thus, this mutation is predicted to generate a truncated protein encoding 

the 39 aa 2 subunit signal peptide.  To explore this prediction, we inserted an HA-tag at 

the N terminus of the immature 2S subunit cDNA and a FLAG-tag between the 4th and 

residue of the mature 2S subunit cDNA, generating a double tagged SPHA-2SFLAG 

subunit (Figure 2A).  Signal peptides are composed typically of a positively charged ‘N 

domain’, a hydrophobic ‘H domain’ and a slightly polar ‘C domain’ [284, 285].  The 

additional HA tag at the N terminus of the immature 2S subunit did not significantly 

the hydrophobicity pattern of the signal peptide calculated in silico using the ProtScale 
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sofware [286] (Figure 2B).  Insertion of an epitope in the N domain should not change 

signal peptide topology or function [287, 288].   

We expressed wildtype 2SHA, mutant SPHA-2S(Q40X)FLAG or wildtype SPHA-

2SFLAG subunits in HEK293T cells and ran Western blots for HA- or FLAG-tagged 

proteins (Figure 2C).  In cells transfected with 2SHA subunits, a large band was detected 

by anti-HA antibody at about 45 kDa, and as expected, no signal was detected by anti-

FLAG antibody (Figure 2C, lane 2).  In cells transfected with SPHA-2SFLAG subunits, a 

large band just below 50 kDa was detected by anti-FLAG antibody and a small band 

below 10 kDa was detected by anti-HA antibody (Figure 2C, lane 4).  The size of the 

higher molecular mass FLAG-band was consistent with mature, glycosylated 2S 

subunits [191], and the size of the lower molecular mass HA-band was consistent with 

the predicted signal peptide.  In contrast, in cells transfected with mutant SPHA-

2S(Q40X)FLAG subunits, no FLAG-specific signal was detected (Figure 2C, lane 3), 

indicating that synthesis of full length 2S subunits was abolished by the 

GABRG2(Q40X) mutation.  Interestingly, two different small peptides below 10 kDa 

were detected by anti-HA antibody in the mutant SPHA-2S(Q40X)FLAG subunit 

transfected cells (Figure 2C, lane 3), which may have been caused by a further cleavage 

of the signal peptide by signal peptide peptidase [289].   
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In addition to the small signal peptide, a clear, but faint, band with a higher 

molecular mass was also detected from SPHA-2SFLAG transfected cells using an anti-HA 

antibody.  Its molecular mass was similar to that of immature 2S subunits containing 

signal peptides.  To determine molecular masses of 2S and SPHA-2SFLAG subunits more 

accurately, we removed all of their glycans by PNGase F digestion (Figure 2D).  After 

glycan removal, the size of HA-tagged 2SHA subunits was shifted from about 45 KDa to 

about 37 kDa, consistent with a mature, glycosylated subunit.  In contrast, the size of 

HA-tagged SPHA-2FLAG subunits was unchanged by glycan removal and remained at 

about 42 kDa, consistent with an immature, unglycosylated subunit.  The 5 kDa 

difference in molecular mass of the two subunits after PNGase F treatment was consistent 

with the molecular mass of the signal peptide.  Thus, SPHA-2SFLAG subunits produced an 

HA-tagged immature subunit in addition to the HA-tagged signal peptide and FLAG-

tagged mature subunit.  Mutant SPHA-2S(Q40X)FLAG subunits, however, only produced 

an HA-tagged signal peptide that was subjected to further cleavage.  These results 

demonstrated that the 2S subunit mutation, Q40X, disrupted translation of mature 2S 

subunits and generated a truncated protein composed of the signal peptide.    
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Figure 4.2 The GABRG2(Q40X) mutation generated a truncated peptide. 
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A. To identify the protein generated by the GABRG2(Q40X) mutation, an HA tag 
was inserted into the N terminus and a FLAG tag was inserted between the 4th and 5th 

residue of the mature 2S subunit protein to produce the wildtype SPHA-2SFLAG or 
mutant SPHA-2S(Q40X)FLAG subunit.  SP: signal peptide. SC: stop codon.  B. The 
hydrophobicity patterns of 2S and SPHA-2SFLAG subunit signal peptides were calculated 
using the online PScale program.  The Y-axis represents scores calculated based on the 
hydrophobicity scale of different amino acids; the X-axis represents the numbering of 

each residue in the signal peptide sequence.  C. The 2(Q40X) subunit mutation 
generated a truncated peptide.  HEK 293T cells were transfected with wildtype 2SHA, 
wildtype SPHA-2SFLAG or mutant SPHA-2S(Q40X)FLAG subunits.  Cell lysates (10 µg) 
from wildtype 2SHA subunit transfected cells and cell lysates (50 µg) from wildtype 
SPHA-2SFLAG or mutant SPHA-2S(Q40X)FLAG subunit transfected cells were subjected to 
Western blot by anti-FLAG and anti-HA antibodies.  ATPase level was used as a loading 

control.  D. Samples from cells transfected with 2SHA and SPHA-2SFLAG subunits were 
collected and treated with PNGase F to remove all glycans.  F: PNGase F digestion; U: 
undigested control; M: protein loading marker.  Figures are representative of 3 different 
experiments. 

 

The 2S subunit mutation, Q40X, disrupted the membrane insertion of 2S subunits 

and changed the composition of GABAA receptors 

To explore the effects of the GABRG2(Q40X) mutation on receptor assembly and 

channel function, we created HA-tagged 2S(Q40X)HA subunits with the HA-tag inserted 

between the 4th and 5th residue of the mature 2S(Q40X) subunits.  We then cotransfected 

HEK 293T cells with α1, 2 and 2SHA or 2S(Q40X)HA subunits.  Surface levels of 

different GABAA receptor subunits were detected by flow cytometry (Figure 3A).  The 

fluorescence indices of each subunit under different experimental conditions were 

normalized to those obtained with cotransfection of α122SHA subunits.  Cotransfection 
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of either α12 or α122 subunits can produce functional GABAA receptors on the cell 

surface [50, 290].  Binary α receptors are likely composed of two α and three  subunits 

while ternary α receptors are likely composed of two α, two  and one  subunits [291, 

292].  Our flow cytometry analysis revealed a significant relative increase of surface 2 

subunit levels with cotransfection of α12 subunits compared to cotransfection of 

α122SHA subunits (α12: 2.14 ± 0.23; α122SHA: 1.00; n = 7) with no change in the 

relative amount of surface α1 subunits (α12: 0.92 ± 0.05; α122SHA: 1.00; n = 7) 

3A).  In the presence of the Q40X mutation, no surface 2S(Q40X) HA signal was 

by anti-HA antibody (Figure 3A), consistent with finding that synthesis of the full-length 

2S(Q40X) subunits was disrupted by the mutation (Figure 2C).  With cotransfection of 

α122S(Q40X)HA subunits, surface α1 subunit levels were similar to those obtained with 

cotransfection of α12 and α122SHA subunits (α12: 0.92 ± 0.05; α122SHA: 1.00; 

α122S(Q40X)HA: 0.91 ± 0.03; n = 7).  However, with cotransfection of 

α122S(Q40X)HA subunits, surface 2 levels were increased significantly compared to 

those obtained with cotransfection of α122SHA subunits, reaching the levels of α12 

receptors (α122S(Q40X)HA: 1.99 ± 0.20; n = 7; p < 0.05) (Figure 3A).  We also 

evaluated the total cell expression of the receptor subunits (Figure 3B).  The total levels 

α1 and 2 subunits with cotransfection of α122S(Q40X)HA subunits were also similar 

those obtained with cotransfection of α12 subunits.  These data indicated that mutant 
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2S(Q40X) subunits did not incorporate into surface receptors, and thus GABAA 

assembled in the presence of mutant 2S(Q40X) subunits were binary α receptors. 

To determine how mutant 2S(Q40X) subunits affected GABAA receptor 

we used a rapid exchange system to apply 1 mM GABA for 4s to lifted HEK293T cells 

coexpressing α12, α122SHA, or α122S(Q40X)HA subunits (Figure 3C).  Peak 

amplitude recorded from cells coexpressing α12 subunits was 1351 ± 158 pA (n = 9), 

approximately 67% smaller than that recorded from cells coexpressing α122SHA 

subunits (4106 ± 156 pA, n = 15, p < 0.001) (Figure 3C, left traces), a difference 

with previously reported data [290, 293, 294].  Peak current amplitude from cells 

coexpressing α122S(Q40X)HA subunits was also decreased (1778 ± 232 pA, n = 18) to 

about 57%, significantly smaller than that recorded from cells coexpressing α122SHA 

subunits (p < 0.001), but not different from that obtained from cells coexpressing only 

α12 subunits (p > 0.05).  Furthermore, currents recorded from cells containing 

α122S(Q40X)HA subunits were substantially more sensitive to Zn2+ inhibition than 

currents recorded from cells containing α122SHA subunits.  Currents evoked by 1 mM 

GABA from cells coexpressing α12, α122SHA or α122S(Q40X)HA subunits were 

inhibited to different extents by coapplication of 10 μM Zn2+ chloride (Figure 3C, right 

traces).  The fractional Zn2+ inhibition of currents evoked from cells coexpressing 

α122S(Q40X)HA subunits was significantly higher than those evoked from cells 
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coexpressing α122SHA subunits (93 ± 1%, n = 18; 9 ± 2%, n = 15, respectively, p < 

0.001) but similar to those evoked from cells containing α12 subunits (94 ± 1%, n = 17, 

> 0.05).  Because the sensitivity of GABAA receptors to Zn2+ inhibition depends on 

subunit composition, these results also suggested that mutant 2S(Q40X) subunits were 

incorporated into ternary α122S(Q40X) receptors, thus leading to expression primarily 

of binary α12 receptors on the cell surface.   

 

Figure 4.3 The mutant γ2S(Q40X) subunit was not expressed on the cell surface.  
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A. Mutant 1β22S(Q40X)HA subunits were coexpressed in HEK293T cells.  
Surface and total level of each subunit were evaluated through flow cytometry.  The 
fluorescence indices of each subunit under different experimental conditions were 

normalized to those obtained with cotransfection of α122SHA subunits (n = 7, mean ± 
SEM).  Group differences were analyzed by the one way ANOVA test.  B. Sample traces 
of whole cell recordings from cells expressing α122SHA or α122S(Q40X)HA 
subunits.  GABAA receptor-mediated currents evoked by 1 mM GABA were recorded.  
After a 4.0 sec wash, the currents were recorded again with coapplication of 10 µM Zn2+ 

 

Full-length 2S(Q40X) subunits were partially rescued by gentamicin-induced stop 

codon read-through.   

The Q40X mutation generated a PTC in GABRG2 and failure to produce 

full-length 2S subunits likely contributes to its epilepsy pathogenesis.  Aminoglycosides, 

such as G-418 and gentamicin, can promote partial read-through of PTCs, thus partially 

rescuing the synthesis of functional, full-length subunits [295, 296].  Therefore, we 

determined to what extent gentamicin could rescue the GABRG2(Q40X) mutation.  The 

read-through efficiency of gentamicin depends on the nature of the stop codon as well as 

the surrounding nucleotides, with the TGA stop codon being most efficiently bypassed 

[297].  To maximize read-through efficiency, we replaced the original TAG stop codon 

with the TGA stop codon (Figure 4A) and then transfected 2S(Q40X,TGA)HA subunit 

cDNA into HEK cells.  Eighteen hours after transfection, varying concentrations of 

gentamicin were added to culture media.  Forty-eight hours later, the transfected cell 
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samples were collected and amounts of full length 2SHA subunit translated from the 

mutant 2S(Q40X,TGA)HA subunit mRNA was evaluated by Western blot with anti-HA 

antibody (Figure 4B) .  

 

 

 

Fgure 4.4 Gentamicin partially restored expression of full length 2S subunits by 
read-through of 2S(Q40X) subunit mRNA.  

 

A.  The original TAG stop codon was replaced by the TGA stop codon to 
maximize read-through efficiency.  B. and C. Cells were transfected with 

2S(Q40X,TGA)HA (B) or 2S(Q40X)HA (C) subunits and treated with different 
concentrations of gentamicin for 48 hours.  Cell lysates (10 µg) from wildtype 2SHA 
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In the absence of gentamicin treatment, mature, full-length, HA-tagged 2S 

subunits were detected from wildtype transfected cells (Figure 4B, lane 9), but mature, 

full-length, HA-tagged 2S(Q40X,TGA)HA subunits were not detected from mutant 

transfected cells (Figure 4B, lane 1).  After addition of gentamicin, we were able to detect 

an HA-tagged protein band of the same size as the wildtype 2SHA subunit in cells 

transfected with 2S(Q40X,TGA)HA subunits (Figure 4B, lanes 2-6).  No HA signal was 

detected from mock transfected cells in the presence or absence of gentamicin (Figure 

lanes 7-8), indicating that the rescue was specific and that expression of full length 2S 

subunits was partially restored from 2S(Q40X,TGA)HA transfected cells.  Compared to 

non-treated wildtype 2SHA subunit transfected cells, the rescue efficiency of 

2S(Q40X,TGA)HA subunits was gentamicin concentration-dependent (Figure 4D, filled 

circles), reaching as high as 6.2 ± 0.7% at a concentration of 2 mg/ml gentamicin (n = 7), 

which is comparable to previous reports [297, 298].  We also evaluated the read-through 

efficiency of 2S(Q40X)HA subunits whose mRNA contained the native TAG stop codon.  

We found that a smaller, but still substantial, amount of full-length 2SHA subunit (2.5 ± 

subunit transfected cells were loaded, while cell lysates (50 µg) from mutant 

2S(Q40X,TGA)HA or 2S(Q40X)HA subunits transfected cells were loaded.  D.  Band 
intensity of the 2SHA subunit was normalized to the ATPase signal and plotted against 
gentamicin concentration (n = 7 and 5 respectively, mean ± SEM). 
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0.2%, n = 5) was rescued (Figure 4C) in a gentamicin concentration-dependent fashion 

(Figure 4D, filled squares). 

 

Gentamicin-rescued 2S subunits were trafficked to the cell surface. 

A functional γ2S subunit will oligomerize with partnering α and β subunits to 

form pentameric αβγ2S receptors that are trafficked to the cell surface.  To determine 

whether the γ2S subunits rescued by gentamicin were functional, we evaluated their 

surface expression.  We cotransfected HEK 293T cells with α1β22S(Q40X,TGA)HA 

subunits, and after forty-eight hours of gentamicin treatment (1 mg/ml), surface protein 

was collected through surface biotinylation and blotted by anti-HA antibody.  We found 

that after gentamicin treatment a small, but significant, amount of HA-signal was 

detected on the cell surface with a molecular mass similar to that of wildtype γ2SHA 

subunits (Figure 5A, lane 2 versus 4).  HA-signal was not found in non-biotinylated 

samples, indicating that the detected HA-signal was not caused by artifact introduced 

during experiments (Figure 5A, lane 3).   

To exclude the possibility that the HA-signal we detected through surface 

biotinylation was due to membrane destruction after gentamicin treatment, we also 

for the cytoplasmic marker GAPDH.  Then we compared the HA/GAPDH ratio between 



184 

 

total samples and surface samples.  Although a little GAPDH signal was found in surface 

samples, it was much lower than that obtained from total samples.  After gentamicin 

treatment, the HA/GAPDH ratio of surface samples from mutant transfected cells was 

more than 200 times higher compared to the HA/GAPDH ratio of total samples (data not 

shown).  This result indicated that the HA signal detected through surface biotinylation 

was not caused by cytoplasmic contamination and that the rescued γ2S subunits were 

expressed on the cell surface.   

 

Figure 4.5 Gentamicin increased surface expression of mutant 2(Q40X) subunits 
and decreased Zn2+ sensitivity of mutant receptor currents.  



185 

 

 

A. HEK 293T cells were cotransfected with 1β22S(Q40X,TGA)HA subunits.  
Cells were then treated with 1 mg/ml of gentamicin for 48 hours, then surface protein 
samples were collected through surface biotinylation and blotted by anti-HA, anti-
ATPase and anti-GAPDH antibody.  Cell lysates (0.5 mg and 1 mg) from cells expressing 

wildtype 2SHA and mutant 2S(Q40X,TGA)HA subunits were used to collect the surface 
fraction.  Cell lysates (10 µg and 50 µg) from wildtype 2SHA and mutant 
2S(Q40X,TGA)HA subunits transfected cells were loaded as total fraction.  Samples not 
coated with biotin were also collected as controls.  B. HEK 293T cells were cotransfected 

with 1β22S(Q40X,TGA)HA subunits.  Cells were treated then with 1 mg/ml of 
gentamicin for 24 hours, and whole cell currents in response to 1 mM GABA then were 
recorded.  The current amplitudes recorded in the presence of 10 µM Zn2+ were 
normalized to those recorded in the absence of Zn2+.  C. The percentage of current 
amplitudes inhibited by Zn2+ was compared to that obtained from cells untreated with 
gentamicin (n = 19, p < 0.001). 

 

Gentamicin-rescued 2S subunits were functional 

We then evaluated assembly of α1β2γ2S(Q40X) receptors after gentamicin 

treatment by studying Zn2+ sensitivity of GABA-evoked currents to distinguish αβ from 

αβγ receptor currents.  In the absence of gentamicin, currents recorded from cells 

containing α1β2γ2S(Q40X,TGA)HA subunits were substantially sensitive to 

(Figure 3B).  In contrast, after 24 h gentamicin treatment, the fractional Zn2+ inhibition of 

currents recorded from treated cells containing α1β2γ2S(Q40X,TGA)HA subunits was 

significantly smaller than those recorded from untreated cells (Figure 5B) (79 ± 1%, n = 

19; p < 0.001).  This appearance of Zn2+ insensitive currents indicates the existence of 
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receptors on the cell surface.  Taken together, these results suggest that gentamicin 

read-through of some of the γ2S(Q40X) subunit transcripts to produce full length γ2S 

subunits, and that the rescued full length γ2S subunits were assembled with α1 and β2 

subunits to form functional receptors on the cell surface.  

 

Discussion 

 

The GABRG2 mutation, Q40X, may induce epilepsy through haploinsufficiency 

The GABRG2(Q40X) mutation was identified from heterozygous dizygotic twin 

sisters with Dravet Syndrome [275].  We investigated the effects of this mutation on the 

assembly, trafficking and function of receptors in HEK cells cotransfected with 

α122S(Q40X) subunits.  Q40X is a mutation that produces a PTC in exon 2 of 

genomic DNA.  Using BAC constructs containing this mutation, we found that mutant 

2S subunit mRNA levels were increased significantly after we knocked down the NMD 

factor UPF1 or SMG6, indicating that the mutant mRNA was degraded by NMD.  NMD 

is a cellular surveillance mechanism that reduces expression of truncated products by 

degrading nonsense mutation-containing mRNA during translation [298].  It was shown 

that NMD could reduce the level of a PTC-containing transcript to 20% in the brain, 
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although the regional specificity was not addressed [299].  If NMD destroys the mutant 

mRNA completely, heterozygous patients carrying one mutant GABRG2(Q40X) allele 

would suffer from GABRG2 haploinsufficiency.  However, not all mutant transcripts will 

be degraded, and NMD efficiency was shown to vary among different cell types [282].  

Thus, we also characterized the mutant protein generated by this mutation.  Q40 is the 

residue of the predicted mature 2 subunit.  Therefore, production of a truncated protein 

composed only of the signal peptide would be predicted.  To investigate this small 

peptide, we generated the double tagged SPHA-2S(Q40X)FLAG subunits.  We found that 

synthesis of full-length 2 subunit protein was abolished by this mutation and production 

of the signal peptide was increased.  Surprisingly, the signal peptide generated by SPHA-

SPHA-2S(Q40X)FLAG subunits was further cleaved (Figure 2B), probably through signal 

peptide peptidase [289, 297].  Our strategy successfully demonstrated the signal peptide 

processing products of 2 subunits, providing a method to study other signal peptide 

related mutations.  Our strategy also revealed an additional outcome of the Q40X 

mutation.  It is possible that the signal peptide peptidase cleavage site was better exposed 

in the truncated 2(Q40X) subunits, resulting in further cleavage.  Although quite limited, 

a few studies have indicated that in addition to membrane targeting, signal peptide 

fragments could interact with signaling molecules [300] or be processed as antigenic 
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epitopes [47].  Whether or not the novel cleavage pattern of the 2(Q40X) subunit signal 

peptide contributes to the epilepsy pathogenesis requires more detailed study. 

To further explore how the truncated 2(Q40X) subunits affected receptor 

assembly, we compared GABAA receptors formed by coexpression of 1β22S or 

1β22S(Q40X) subunits.  Both flow cytometry and whole cell recordings showed that 

mutant 2(Q40X) subunits did not incorporate into functional ternary 1β22S(Q40X) 

receptors.  Instead, binary 1β2 receptors were formed that conducted much smaller 

currents.  Therefore, GABRG2(Q40X) is likely a non-functional allele, and this mutation 

could cause haploinsufficiency of 2 subunits in patients.  2 subunits are widely 

distributed in the brain [148], and homozygous 2 knockout mice died within a few days 

after birth [56].  Although seizures have not been reported from heterozygous 2+/- 

knockout mice, heterozygous 2R82Q/+ knock-in mice carrying one mutant GABRG2 allele 

developed absence epilepsy [185].  Hence, loss of one functional GABRG2 allele in 

patients carrying the GABRG2(Q40X) mutation is likely responsible for development of 

the epilepsy phenotype.   
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The expression and function of mutant 2(Q40X) subunits were partially rescued by 

gentamicin in vitro 

Out of the seven epilepsy-associated mutations identified in GABRG2, four 

generated PTCs [276], and out of mutations identified from Dravet Syndrome patients, 

50% were PTC mutations [274].  Aminoglycosides, including G418 and gentamicin, have 

been used to promote read-through of PTCs by disturbing stop codon recognition during 

translation.  In vitro and in vivo in animals and in preclinical studies in humans, 

successful rescue of the mutant phenotype has been reported for several different disease 

models [296, 301, 302].  In our study, we observed that full length 2S subunits were 

rescued from both 2S(Q40X, TGA) subunits containing an optimized PTC and 

2S(Q40X) subunits containing the native PTC TAG, suggesting that this strategy could 

be applied to partially compensate for PTC mutations.  Furthermore, the rescued 2 

subunits were trafficked to the cell surface and were incorporated into functional 

receptors, which is promising for future therapy. 

Aminoglycoside-induced read-through has been used primarily in recessive 

disorders, where protein expression is almost null.  However, this therapeutic approach 

may also work in autosomal dominant disorders [303], including epilepsy.  On the one 

hand, it is possible that a small amount of rescued 2 subunits during a critical time 

could benefit patients substantially.  GABA acts as a trophic factor during neural 
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development [304-306], disrupting postsynaptic 2 subunit clusters decreased presynaptic 

GABAergic innervation [307].  Study of heterozygous 2R82Q/+ mice revealed that 

GABAA receptor dysfunction during development increased seizure threshold in 

[308].  Thus lack of functional GABAA receptors during development may cause 

reduction of GABAergic neurons, further contributing to the decreased inhibitory tone in 

adult brain.  If neuronal inhibitory tone could be increased in patients carrying mutations 

such as Q40X before synaptogenesis is complete, it is possible that only a small amount 

rescued 2 subunits could ameliorate the developmental deficits and decreased seizure 

susceptibility in later life.  On the other hand, perhaps full rescue of mutant 2 subunits is 

not needed to compensate for the haploinsufficiency.  Our in vitro data showed that 75% 

of 2 subunits were still expressed on the cell surface when only half amount of 2 

cDNA was transfected withand  subunit cDNAs at 1:1:0.5 ratio and had about 63% 

of GABA-evoked current compared to cells expressing  subunit cDNAs at 1:1:1 

ratio [191].  According to the 2:2:1 stoichiometry ratio of β receptors, with expression 

of 2 subunits mRNA in a 1:1:1 ratio, 2 subunits may be in excess.  In vivo studies in 

heterozygous 2+/- knockout mice also showed 25% reduction of β receptors [167].  If 

that also holds true in patients carrying a haplo-insufficient GABRG2 allele such as 

GABRG2(Q40X), less than 50% of 2 subunits would be required to restore the normal 

function of 2 subunits.  Furthermore, mutations like Q390X in 2 subunits display a 
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dominant negative effect to impair trafficking of wildtype subunits [191].  Read-through 

of 2(Q390X) subunits could not only increase surface 2 subunits translated from mutant 

2(Q390X) subunits, but also increase trafficking of 2 subunits translated from wildtype 

2 subunits as well as partnering  and β subunits.  Therefore, it would be worthwhile to 

evaluate read-through of GABRG2(Q390X) subunit mRNA. 

Long term use of aminoglycosides could cause nephrotoxicity and ototoxicity 

[309].  With treatment using a high concentration of gentamicin (2 mg/ml), our cells also 

exhibited lower survival rates (data not shown).  Although gentamicin has been tested in 

patients carrying PTC mutations of cystic fibrosis [310] and Duchenne muscular 

dystrophy [301], it is necessary to explore other less toxic drugs.  PTC124 (Ataluren®) is 

a nonaminoglycoside read-through compound with superior read-through efficacy and 

lower toxicity [279, 311].  A phase II prospective trial showed that PTC124 

administration reduced abnormalities in cystic fibrosis patients [312].  Compounds with 

better efficacy and therapeutic window could be identified in future and our work shows 

a possible direction for epilepsy therapy. 
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Chapter 5 

 

Conclusion and Future Directions 

 

Summary 

 

The GABRG2 mutation could induce epilepsy through multiple mechanisms 

The goal of this dissertation study is to elucidate the mechanisms of 

epileptogenesis for novel epilepsy channelopathies associated with the GABRG2 

mutations, including the intronic mutation GABRG2(IVS6+2TG), deletion mutation 

GABRG2(S443delC) and truncation mutation GABRG2(Q40X), and to propose novel 

clinical strategies to treat epilepsies associated with mutant GABAA receptor genes.   

1. GABRG2(IVS6+2TG) mutation 

The GABRG2(IVS6+2TG) mutation altered the GABRG2 intron 6 splice donor 

site sequence from GT to GG.  As a result, it was proposed that intron 6 is spliced out 

either with the donor site from another intron, resulting in exon skipping, or with an 

alternative donor site downstream of the wildtype site, resulting in cryptic splice donor 



194 

 

activation and partial intron 6 retention in the mutant mature mRNA [198].  We 

mutant and wildtype minigenes and BACs and expressed them in HEK293T cells and 

transgenic mouse brain and determined the mutant GABRG2(IVS6+2TG) gene intron 

splicing pattern.  We found that the mutant intron 6 was spliced out between the wildtype 

acceptor site and a novel donor site 53 bp downstream of the wildtype one, resulting in 

partial intron 6 retention, which produced a frame shift in exon 7 that generated a PTC.  

The resultant mutant GABRG2(IVS6+2TG) mRNA was partially degraded by NMD, or 

translated as the -PTC subunit containing the first 6 GABRG2 exons and a novel frame 

shifted 29 amino acid C terminal tail.  We also identified 2 subunit truncated mRNAs 

when the GABRG2 gene was expressed in human cells but not in mouse brain.  These 

truncated mRNAs were truncated due to exon skipping from both wildtype and mutant 

BAC transcripts, and the GABRG2 mutation, IVS6+2TG, enhanced expression of the 

truncated mRNAs.  These results demonstrated that the mutation, IVS6+2TG, reduced 

GABRG2 transcript level by activation of NMD and enhancing truncated 2 subunit 

mRNA prodocution.  It might produce epilepsy by GABRG2 gene haplo-insufficiency. 

The full length GABRG2(IVS6+2TG) BAC transcript translation product, 2-

2-PTC subunit, was cloned and expressed in HEK293T cells.  The 2-PTC subunit 

contains the signal peptide and the N-terminal 217 aa of the wildtype 2 subunit and a 

hydrophobic novel C-terminus.  It is a stable protein and its total level was comparable to 
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that obtained from wildtype 2 subunits.  NMD efficiency varies among cell types [313].  

The mutant NMD-susceptible GABAA receptor (GABAR) subunit mRNA level was 

decreased to 17% of wildtype level in cultured cortical neurons [201].  The mRNA level 

of an NMD-susceptible mRNA was decreased to 18% in mouse brain, and varied 

16% in ovary to 36% in thymus [314].  This variation resulted from different protein 

levels of the NMD machinery components in each tissue.  These studies suggested that 

about 17-36% of 2-PTC mRNA should survive NMD, and that its protein level would be 

about 17-36% of wildtype 2 subunits. 

The sequence identity between the 2-PTC subunit and the mollusk AChBP was 

high (21-29%) [254], and thus the 2-PTC subunit is homologous to the AChBP.  

However, further studies demonstrated that the 2-PTC subunit and AChBPs have 

protein functions.  AChBPs form homopentamers in glial cells, which have crystal 

structure that resembles the N-terminus of assembled cys loop receptors [250, 251, 254].  

AChBP homopentamers are released to synaptic gaps in an ACh-dependent manner and 

bind with ACh to terminate ACh neurotransmission.  The γ2-PTC subunits did 

oligomerize with partnering subunits, but they were not assembled to pentameric 

that were secreted or trafficked to the cell membrane.  Instead, they were retained in the 

ER, bound to  subunits, and had dominant negative effects on GABAR surface 

trafficking.  Although it supported the hypothesis that the GABRG2(IVS6+2TG) 
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mutation induced epilepsy by GABRG2 gene haplo-insufficiency because the 2-PTC 

subunit was not expressed on cell membrane, the GABRG2(IVS6+2TG) mutation could 

also induce epilepsy by 2-PTC subunit dominant negative effects because the 2-PTC 

subunit induced ER-stress and retained  subunits in the ER.  More than 80% of the 

1(A322D) subunit is degraded in the ER [53], but it still oligomerized with wildtype 

subunits and decreased surface  and receptor levels, preferentially those 

 receptors [213].  The 1(A322D) mutation is associated with JME [210].  

Because the 2-PTC subunit total level is comparable to wildtype 2 subunits, if 16-36% 

the 2-PTC mRNA escaped NMD, the 2-PTC subunit level would be 16-36% of 

subunits.  The γ2-PTC subunit could induce GABAR disinhibition through dominant 

negative effects similar to the α1(A322D) subunit. 

An ER-stress response could also contribute to GABRG2(IVS6+2TG) mutation 

pathogenesis because the 2-PTC subunit increased the ER stress marker BIP level 

significantly higher than wildtype 2S subunits.  Increased BIP level during unfolded 

protein response (UPR) induced ER-stress induces both apoptosis and protective 

such as reduced translation, enhanced ER protein-folding capacity, and clearance of 

misfolded ER proteins [264].  These adaptation and apoptosis responses are designed to 

adapt to the stress or removal of the affected cells, depending on the nature and severity 

the stress [265].  ER stress responses contribute to the pathogenesis of diseases including 
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diabetes mellitus, cancer and AIDS.  Neurodegenerative diseases such as Alzheimer’s 

disease and Huntington’s disease are often associated with ER stress responses induced 

mutant proteins.  Another GABRG2 epilepsy mutation, the AD GABRG2(Q390X) 

mutation, is associated with Dravet syndrome [189], and the 2(Q390X) subunit is also 

retained in the ER and not expressed on cell membrane [191].  The 2(Q390X) subunit 

increased BIP level in HEK 293T cells, but to a level slightly less than that the increase 

produced by the 2-PTC subunit.  The fact that 2-PTC subunit-transfected cells did not 

have apoptosis suggested that the 2-PTC subunit induced mild stress in the cell, but the 

adaptive responses induced by 2-PTC subunits would affect how cells respond to other 

stress factors.  If ER stress responses contributed to its pathogenic mechanism, the 

GABRG2(IVS6+2TG) mutation might be more efficient in inducing epilepsy than the 

GABRG2(Q390X) mutation.  Furthermore, patients bearing the GABRG2(Q390X) 

mutation had epilepsy ranging from mild febrile seizures to severe Dravet Syndrome, and 

sibling that has the wildtype 2 subunit gene had myoclonic astatic epilepsy, suggesting 

that the disease phenotype of the mutant 2(Q390X) subunit might be affected by 

genes [189].  Although the GABRG2(IVS6+2TG) and GABRG2(Q390X) mutations 

were associated with different epilepsies, they may possibly induce epilepsy though a 

common pathway.  However, the 2(Q390X) subunit had slow degradation and formed 

SDS-resistant, high-molecular-mass complexes or aggregates in multiple cell types, 
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including neurons [193], but we did not detected any of such complexes formed by 2-

subunits (not shown).  If slow protein degradation and aggregates contributed to 

GABRG2(Q390X) mutation pathogenesis, GABRG2(IVS6+2TG) mutation would not 

have such effects. 

In summary, the GABRG2(IVS6+2TG) mutation affected GABRG2 gene 

mRNA intron splicing, decreased mutant mRNA level by NMD and enhanced alternative 

intron splicing, generated a 2-PTC subunit that was a stable protein retained in the ER, 

induced ER-stress through unfolded protein response (UPR), and had dominant negative 

effects on GABAR membrane trafficking.  It associated with epilepsy through both 

haplo-insufficiency and dominant negative effects. 

2. GABRG2(S443delC) mutation 

The GABRG2(S443delC) mutation, associated with GEFS+, deleted a cytosine 

nucleotide from the S443 residue in the last exon of the GABRG2 gene.  We cloned the 

mutant mRNA into the pcDNA vector and expressed it in HEK293T cells.  RT-PCR 

results suggested that the mutant allele was translated to a stable protein with the last 24 

amino acids of the wildtype 2 subunit containing the 4th transmembrane domain 

by a novel 50 amino acid C-terminus.  Bioinformatics analysis suggested that the novel 

C-terminus had decreased hydrophobicity compared to the wildtype C-terminus.  The 

frame shift mutation shifted the stop codon into the 3’ UTR, thus shortening it, but it did 



199 

 

not interfere with polyA site recognition.  The mutant 2S(S443delC) subunit was a 

protein and appeared on a Western gel as a band with larger molecular mass than the 

wildtype 2S subunit band, but with a total level that was decreased to ~35% of wildtype 

2S subunit under similar expression conditions.  When coexpressed with 1 and 2 

subunits, 2(S443delC) subunits were retained in the ER and not expressed on the cell 

surface membrane, and GABA-evoked currents from the cells were similar to those 

obtained from 12 receptors.  Another frame shift mutation in the α1 subunit, 

α1(S326fs328X), was subcloned into an intron8 minigene, and mutant minigene mRNA 

was partially decreased by NMD.  Depending on NMD efficiency, 16-39% of mutant 

mRNA level was translated to mutant α1(S326fs328X) subunit, which is truncated in the 

middle of the third transmembrane domain [201].  The α1(S326fs328X) subunit was 

retained in the ER and degraded by ER-associated degradation.  In cells with higher 

efficiency, the α1(S326fs328X) subunit was not detected in minigene transfected cells 

[201].  The α1(S326fs328X) mutation would induce epilepsy by GABRA1 gene haplo-

haplo-insufficiency [201].  Similar to the α1 subunit mutation, S326fs328X, the γ2 subunit 

mutation, S443delC, might generate a 2 subunit null allele and be associated with 

epilepsy, at least in part, through halplo-insufficiency.   

However, the 2(S443delC) subunit might also be associated with epilepsy by 

dominant negative effects on wildtype GABAA receptor subunit assembly and membrane 
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trafficking.  The epilepsy-associated 2(R82Q),(Q390X) and α1(A322D) subunit 

mutations also were shown to generate mutant proteins that were retained in the ER [182, 

191, 210].  Both 2(R82Q) and 2(Q390X) subunits were found to be stable proteins with 

total levels similar to those of wildtype 2 subunits [182, 191, 193].  These two subunits 

oligomerized with partnering subunits and efficiently decreased surface α1 and 2 

levels when they were coexpressed in HEK293T cells [59, 170, 180, 182].  The 

subunit also decreased endogenous  subunit surface expression in cultured 

neurons, and impaired tonic GABAergic current [176].  The mutant 2R82Q/+ knock in 

mice had the same type of seizures as humans bearing the mutation [185].   

The (A322D) subunit, associated with juvenile myoclonic epilepsy (JME) 

was misfolded, retained in the ER, and extensively degraded by proteasomal degradation 

[53, 210, 211].  The total level of (A322D) subunits was around 10% of wildtype α1 

subunits [210, 213].  However, the (A322D) subunit associated with wildtype subunits 

in the ER and reduced wildtype both and receptor surface expression, 

preferentially that of receptors [213].  The 2(S443delC) subunit was predicted 

not to fold correctly because of the novel C-terminus that is less hydrophobic than the 

wildtype C-terminus.  The very low total level of 2(S443delC) subunit might be because 

of increased proteasomal degradation due to ER retention, although that must be 

confirmed.  It is possible that although the 2(S443delC) subunit has reduced total levels, 
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it could oligomerize with α and  subunits and decrease wildtype GABAA receptors 

surface expression, but must also to explored.  The functional consequences of the 

S443delC mutation could be a combination of haplo-insufficiency and dominant negative 

effects.  The (A322D) mutation was associated with juvenile myoclonic epilepsy, and 

the γ2(R82Q) mutation induced the same type of seizures as human patients in 

heterozygous mutation knock-in mice.  The dominant negative effect of γ2(S443delC) 

subunit could also be sufficient to induce epilepsy.   

3. GABRG2(Q40X) mutation 

The GABRG2(Q40X) mutation, associated with Dravet Syndrome [275], 

significantly decreased γ2(Q40X) mRNA by NMD [298].  The Q40X mutation produced 

a PTC in exon 2 of GABRG2 genomic DNA.  The mutant 2S subunit mRNA levels were 

increased significantly after we knocked down either NMD factor UPF1 or SMG6 in 

BAC-transfected HEK293T cells.  If NMD destroys the mutant mRNA completely, 

heterozygous patients carrying one mutant GABRG2(Q40X) allele would suffer from 

GABRG2 haploinsufficiency.  However, NMD could only reduce the level of a PTC-

containing transcript to 20% in the brain [299], or 17% in cultured neurons [201, 282].  

Thus, we also characterized the mutant protein generated by this mutation.   

The γ2(Q40X) subunit is predicted to produce  a truncated protein composed only 

of the signal peptide.  Using double tagged SPHA-2S(Q40X)FLAG subunits, we 
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demonstrated that synthesis of full-length 2 subunit protein was abolished by this 

mutation, production of the signal peptide was increased, and surprisingly, the SPHA-

SPHA-2S(Q40X)FLAG subunit signal peptide had novel peptide cleavage, probably 

signal peptide peptidase [289, 297].  We are determining if the novel cleavage pattern of 

the 2(Q40X) subunit signal peptide contributes to the epilepsy pathogenesis [47, 300], 

which would demonstrate possible dominant negative function of the 2(Q40X) mutation. 

Further studies supported the hypothesis that the 2(Q40X) mutation induced 

epilepsy through GABRG2 gene haplo-insufficiency.  The mutant 2(Q40X) subunits did 

not incorporate into functional ternary 1β22S(Q40X) receptors.  GABA-evoked 

current recorded from coexpressed 1β22S(Q40X) subunits had properties similar to 

those obtained from binary 1β2 receptors.  Although 1β2γ2(R82Q) receptors had 

normal GABA-evoked current properties but decreased pentameric receptor assembly 

and surface trafficking [170], heterozygous 2R82Q/+ knock-in mice carrying one mutant 

GABRG2 allele developed absence epilepsy that resembles patients symptoms [185].  

Hence, loss of one functional GABRG2 allele in patients carrying the GABRG2(Q40X) 

mutation is likely responsible for development of the epilepsy phenotype.   
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4. Using aminoglycosides to treat epilepsies induced by mutant GABRG2 allele 

carrying PTC mutations. 

We have successfully improved the function of PTC mutation, GABRG2(Q40X) 

mutation, using aminoglycosides gentamicin or G418, neither of which is a conventional 

anticonvulsant drug.  Aminoglycosides have been used in clinical trials to rescue the 

mutant phenotype by disturbing stop codon recognition during translation and promote 

read-through of PTCs [296, 301, 302].  We demonstrated that full length 2S subunits 

were rescued from 2S(Q40X) subunits after aminoglycoside treatment.  Furthermore, 

the rescued 2 subunits were trafficked to the cell surface and incorporated into 

functional receptors, which is promising for future therapy.  We provided proof of 

principle evidence that this strategy could be applied to partially compensate for PTC 

mutations. All epilepsy associated GABAA receptor subunit mutations are AD mutations, 

including the PTC mutations GABRG2(Q40X) and GABRG2(Q390X) [44].  Although 

aminoglycoside treatment only rescued ~10% of functional γ2 subunits, it could be 

sufficient to decrease patient’s seizures.  In amplified RNA (aRNA) studies in dentate 

granule cells, the amount of γ2 subunit mRNA was comparable to the total amount of 

α(1-6) mRNAs or the total amount of β(1-3) subunits mRNAs [315]; γ1 and γ3 mRNA 

not detected.  Nevertheless, according to the 2:2:1 stoichiometry of β receptors, with 

expression of 2 subunits mRNA in a 1:1:1 ratio, 2 subunits may be in excess.  The 
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subunit is preferentially assembled with αβ subunits to form pentameric receptors and 

trafficked to cell membranes [183, 191].  Decreasing the dosage of one gene in 

heterozygous 2+/- knock-out mice only reduced β receptors by 25% [167].  If that also 

holds true in patients carrying a haplo-insufficient GABRG2 allele such as 

GABRG2(Q40X), less than 50% of the normal 2 subunit level would be required to 

the normal function of 2 subunits.  GABAergic neurotransmission is important for both 

neural development and normal brain function in adults [304-307].  Decreased GABAA 

receptor levels during development reduced the number GABAergic neurons and 

increased seizure threshold in adulthood [308].  Thus, it is possible that a small amount of 

2 subunit rescue during a critical period, such as during or before synaptogenesis, could 

ameliorate the developmental deficits and decreased seizure susceptibility in patients’ 

life.  This read-through strategy is likely to improve seizure symptoms in patients 

PTC mutations. 

Furthermore, PTC mutations such as 2(Q390X) had strong dominant negative 

effects to impair wildtype GABAA receptor biogenesis, and induced a very severe form 

epilepsy [191].  Read-through of 2(Q390X) subunits could not only increase surface 2 

subunits translated from mutant 2(Q390X) subunits, but also eliminate the amount of 

mutant 2(Q390X) subunits and decrease the disturbance on wildtype GABAA receptor 
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biogenesis.  Therefore, it would be worthwhile to evaluate the read-through strategy to 

improve the function of GABRG2(Q390X) mutation. 

 

Future Directions 

 

The complexity of GABRG2 mutation mechanisms of pathogenesis provides a 

model not only to understand how a point mutation in GABAR subunit gene causes 

GABAR disinhibition and induces epilepsy in patients, but also how to explore strategies 

to improve GABAR haplo-insufficiency, membrane trafficking or ER-stress in neurons, 

and ultimately improve patients quality of life.  We have demonstrated successful rescue 

of the GABRG2(Q40X) mutation.  However, it is not feasible to obtain wildtype γ2 

subunits from γ2-PTC or γ2(S443delC) subunits using aminoglycosides treatment.  To 

better understand how these mutations affect mouse brain function and find strategies to 

treat these epilepsies, we would use cultured cells, cultured neurons, and transgenic mice 

to further study the function of the γ2-PTC subunit, understand how it affects brain 

function [167, 184], and attempt to improve the function from pathways downstream of 

mutant GABAA receptor functions.   
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Decreased GABAR surface expression was associated with decreased mIPSC 

amplitude and frequency in GABAergic neurons [65].  Heterozygous 2+/- knock-out 

mice had decreased GABAR postsynaptic clusters [167] and also had decreased 

neurogenesis in adult mouse brain [184].  We have demonstrated that a human 

GABRG2(IVS6+2TG) BAC was translated to a 2-PTC subunit in a transgenic 

(Tg(hGABRG2IVS6+2TG) mouse.  Although the mRNA transcribed from the mutant gene 

was susceptible to NMD, about 16-39% of the mutant mRNA could be translated to 2-

PTC subunit because NMD efficiency varies among cell types [201, 314].  The 2-PTC 

subunit is a stable ER protein with total level comparable to wildtype 2 subunits.  It had 

a dominant negative effect on cells because it induced the unfolded protein response and 

ER-stress and pulled down  and subunits at low efficiency.  Studies in epilepsy-

associated 2 subunit mutations suggested that the 2-PTC subunit could decrease 

GABAR biogenesis [175, 176, 180, 182, 191].  However, it is unknown whether the 2-

PTC subunit could bind to other  or  subunits, or  subunits which are assembled into 

predominantly extrasynaptic GABARs, or whether it decreased membrane trafficking of 

wildtype receptors or affected surface GABAR ion channel function.  It is also unknown 

whether the ER-stress adaptive response in cells expressing 2-PTC subunit affects 

GABAR biogenesis.   If 2-PTC subunits decreased surface GABAR expression, decreased the number 

postsynaptic GABAR clusters, and reduced synaptogenesis and adult neurogenesis in 
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mouse brain, it would be possible that the GABRG2(IVS6+2TG) gene expressed in 

mouse as a transgene (Tg(hGABRG2IVS6+2TG) mouse) decreases seizure threshold or 

generates spontaneous seizures in mouse.  It is unknown if the 2-PTC subunit could 

affect GABAR expression and targeting in neurons, and whether its function was 

to affect synaptogenesis and neurogenesis in mouse brain.  We propose several future 

studies to address these questions. 

 

Determine if the 2-PTC subunit decreased GABAR biogenesis in HEK293T cells. 

In Chapter 3 we demonstrated that the 2-PTC subunit oligomerized with  and 

2 subunits and retained them in the ER.  There are 19 GABAR subunit subtypes.  Each 

subtype has a unique temporal and spatial expression pattern [149].  GABAR 

heterogeneity ensures the functional diversity of GABARs.  The JME-associated 

1(A322D) subunit is retained in the ER and degraded by 80% [52, 53, 213].  It 

oligomerized with wildtype subunits in the ER and reduced the surface expression of 

and receptors, preferentially  receptors [213].  When the CAE-

CAE-associated 2(R82Q) subunit was expressed in cultured neurons, it decreased 

level of endogenous  subunits and reduced tonic GABAergic current [176].  These 

studies suggested that the 2-PTC subunit might have a differential dominant negative 

effect on GABAR subunits.  HEK293T cells do not have endogenous expression of any 
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GABAR subunit genes [44].  We would coexpress FLAG-tagged 2SFLAG or 2-PTCFLAG 

subunit with HA-tagged 1-, 2, 3, wildtype 2L, 2S, and  subunits, pull down 

FLAG-tagged proteins with FLAG beads, and blot for HA-tagged subunits.  The result 

will demonstrate if the 2-PTCFLAG subunit can bind to any wildtype subunits other than 

and  subunits. 

Then we would determine if the 2-PTC subunit could alter GABAR ligand 

binding affinity or decrease the number of GABAR ligand binding sites.  We would 

coexpress 1 g each of 2S or 2-PTC subunit cDNA withand subunit cDNAs in 

HEK293T cells, collect cell membrane, perform radioligand binding with [3H]Ro 15-

and [3H]muscimol, and analyze the binding curve by nonlinear regression [180].  [3H]Ro 

15-4513 binds to the benzodiazepine binding site at  subunit interfaces, and 

[3H]muscimol binds to GABA binding site at  interface.  Radioligand binding to cells 

coexpressing 2(R82Q) subunits showed that mutant receptors had substantially 

decreased maximum binding (BMAX) at the benzodiazepine site, but that the amount of 

GABA binding sites was not changed [180].  The mutant 2(R82Q) receptors also 

had similar binding affinity (KD) to [3H]Ro 15-4513 and [3H]muscimol as wildtype 

receptors.  Coexpression of -PTC subunits showed that GABA-evoked current 

was similar to  receptor current, but if 2-PTC subunits decreased surface 

of receptors, GABA binding sites would be decreased also.  We would evaluate if 
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coexpression mutant 2-PTC subunits had substantially decreased BMAX for [3H]Ro 

15-4513 and [3H]muscimol compared to coexpression of wildtype 2S or  

subunits.  There are two  and two  subunits in a heteropentameric or 

If the 2-PTC subunit preferentially decreased surface or  level, it could change the 

stoichiometry of the surface GABARs, which might change the number of GABA 

sites in each GABAR or [3H]muscimol binding affinity.  There are two identical GABA 

binding sites at  interface in wildtype  or S receptors.  We would 

evaluate if the mutant 2-PTC coexpression had different shape [3H]muscimol 

binding curve from coexpressed wildtype 2S or , subunits and if the 

[3H]muscimol binding affinity (KD) was different.  We would further analyze the 

[3H]muscimol binding curve of coexpressed 2-PTC or 2S and  subunits 

with a Hill plot.  The result will show if the GABAR ligand binding site is changed [316]. 

There are 19 GABAR subunits expressed in the  CNS.  The pull down experiment 

shows whether 2-PTC subunits bind to wildtype subunits, and the radioligand binding 

study further elucidates how 2-PTC subunits affect GABAR assembly and membrane 

trafficking.  We would perform high throughput flow cytometry and electrophysiology 

studies to explore how the 2-PTC subunit affects GABAR biogenesis and ion channel 

function.  We would coexpress 0.2 g each of  subunits and 0.2 g of HA-tagged 

or  subunit cDNAs with increasing amounts of untagged 2S or 2-PTC subunit cDNA 
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ranging from 0 g (wildtype coexpression) to 1.6 g ( times more than each wildtype 

subunit).  Total transfected cDNA will be normalized to 3 g with pcDNA empty vector.  

Previous experiments determined that GABAR subunit mRNA and protein levels 

increased in linearly if the transfected cDNA was less than 3 g.  The  and subunits 

will be those that are pulled down by 2-PTCFLAG subunits.  Only one type of  or 

subunit will be expressed in each experiment.  We would immune-stain the permeablized 

and unpermeablized cells with antibodies detecting  or  subunit, or HA-epitope tag.  

We would run flow cytometry to evaluate surface and total levels of each subunit in the 

presence of mutant or wildtype untagged 2 subunits at increasing amounts.  The total 

level of each subunit will be quantified from permeablized cells, and surface level will be 

quantified from unpermeablized cells.  If the 2-PTC subunits decrease wildtype subunit 

surface and/or total levels significantly more than the wildtype 2 subunit does, it had a 

dominant negative effect on wildtype GABAR subunit expression and/or membrane 

trafficking.  The high throughput and quantitative flow cytometry technique facilitates 

quantifying the efficiency of 2-PTC subunit dominant negative effects.  These studies 

will elucidate how 2-PTC subunits affect GABAR ER-to-membrane trafficking, which 

a major regulation mechanism of GABAR biogenesis [64, 270].   

The -PTC subunit had GABA evoked current similar to receptors, 

and the flow cytometry experiment quantified the efficiency of -PTC subunit decreases 



211 

 

in synaptic and extrasynaptic GABAR membrane trafficking.  In order to understand how 

the 2-PTC subunit affects GABAR function, we would coexpress 2S or 2-PTC 

with  or an subunit that could be pulled down by 2-PTC subunit, record GABA 

evoked current from transfected cells, and evaluate whether 2-PTC subunits changed 

current amplitude or kinetics.  The mean current amplitude will demonstrate if 2-PTC 

subunits decreased the membrane level of  subunits, which is evaluated by flow 

cytometry, and the current kinetics will demonstrate if2-PTC subunits affected surface 

GABAR stoichiometry and pharmacological properties, which are also evaluated by 

radioligand binding. 

The 2-PTC subunit substantially increased cellular BIP levels and induced ER-

ER-stress.  It is possible that the 2-PTC subunit retained  and subunits in the ER 

because these subunits all bind to ER chaperones such as BIP, and ER-stress response 

enhanced ubiqutin-proteasome degradation and eliminated  subunits.  To evaluate 

this possibility, we would coexpress 1 g of wildtype or  subunit cDNAs 

HEK293T cells and treat cells with 1 M tunicamycin for 3 hours, and then evaluate 

surface and total levels of treated and untreated cells by flow cytometry.  A previous 

demonstrated that tunicamycin treatment increased BIP level significantly higher than 

expressing 2-PTC subunit in cells.  If the wildtype subunit surface and total levels were 

not affected by tunicamycin treatment, the 2-PTC subunit dominant negative function 
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not result from ER-stress.  If they were, we would introduce the R82Q mutation to the 2-

2-PTC subunit, which decreases the oligomerization between  and  subunits [59], 

evaluate if the 2-PTCR82Q subunit could decrease surface and total  levels. 

 

Determine if the 2-PTC subunit affected neuronal function. 

Studies in HEK293T cells can elucidate the effects of 2-PTC subunits on 

GABAR ER-to-membrane trafficking.  We would like to extend these studies to 

biogenesis and trafficking of 2-PTC subunits in cultured cortical neurons.  After 

GABARs are trafficked to neuronal surface membranes, they diffuse laterally and then 

become restricted to specific synaptic or extrasynaptic compartments depending upon 

interaction with cytoskeletal proteins [64, 115, 270].  GABAR mobility at synaptic and 

extrasynaptic sites is regulated in an activity-dependent manner [317].  These regulatory 

processes are absent in HEK293T cells.   

To determine subcellular localization of-PTC subunits in cultured cortical 

neurons, we would express IRES-ZsGreen vectors containing HA-tagged 2S or -PTC 

subunit cDNA because there is endogenous rat 2 subunit expression in cultured neurons, 

stain for endogenous rat 1 subunit and HA-tagged 2 subunit, and take confocal images 

green fluorescent cells.  Axons and dendrites will be visualized by ZsGreen, which is 
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synthesized in cell bodies and diffuses in the cytoplasm.  Wildtype 2SHA subunits will be 

assembled into GABARs and expressed on postsynaptic membranes [176] and will have 

substantial colocalization with  subunits on both somatic and dendritic sites on 

ZsGreen-positive neurites.  If 2-PTCHA subunits are still retained in the ER, as was seen 

in HEK293T cells, HA staining will be somatic staining with little dendritic staining, and 

its colocalization with1 subunit at dendritic sites will be substantially decreased. 

To determine whether 2-PTCHA subunits decreased the number of postsynaptic 

GABAR clusters and GABAergic synaptogenesis, we would stain 2SHA or -PTCHA 

subunit cDNA transfected neurons with antibodies against  subunit and pre- or post-

synaptic markers including vesicular inhibitory amino acid transporter (VIAAT), 

glutamate decarboxylase 65 (GAD65) and gephyrin, take confocal images, and then 

quantify the number of  subunit-containing GABAR clusters and pre- and postsynaptic 

markers on ZsGreen positive neurites.  VIAAT and GAD65 are GABAergic presynaptic 

markers, and gephyrin localizes at postsynaptic membranes [65].  Decreased levels of 

postsynaptic 2 subunit-containing GABAR clusters were associated with reduced pre- 

and postsynaptic membrane marker staining [65].  Our study will demonstrate if 2-PTC 

subunits decreased postsynaptic targeting of endogenous 1 subunit-containing 

GABARs, and if this dominant negative effect was sufficient to reduce the level of 

GABAergic pre- and postsynaptic membrane markers.   
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Decreased expression of postsynaptic 2 subunit-containing GABAR clusters 

reduced GABAergic mIPSC frequency and amplitude [65].  Overexpressing ER-retained 

2(R82Q) subunits in cultured neurons also reduced tonic GABAergic currents [176].  

Studies in HEK293T cells will elucidate if 2-PTC subunits have dominant negative 

effects on synaptic or perisynaptic GABARs.  We would express IRES-ZsGreen vector-

containing 2SHA or -PTCHA subunit cDNA in cultured neurons, record GABAergic 

mIPSCs from ZsGreen positive neurons, and determine if -PTC subunits decreased 

frequency, amplitude or kinetics of GABAergic mIPSCs [65].  We would also record 

tonic GABAergic current with prolonged, focal application of 1 μM GABA from 

ZsGreen positive cells and evaluate the current amplitude normalized to the membrane 

capacitance of the recorded neuron [176], which will demonstrate if 2-PTC subunit 

expression inhibited extrasynaptic GABAergic currents.   

These studies will demonstrate if 2-PTC subunits affected the number of 

and GABAergic electrophysiological properties in neurons.  Induced ER-stress in 

cultured hippocampal neurons by tunicamycin or thapsigargin increased mEPSCs in an 

activity-dependent manner but did not alter mIPSC or the number of active synapses 

suggesting that if 2-PTC subunits have effects, they would be associated with altered 

GABAR biogenesis but not induced ER-stress response.  This possibility can also be 
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explored by studying GABAergic synaptogenesis and synaptic/extrasynaptic currents in 

tunicamycin treated cultured neurons. 

 

Determine if the hGABRG2(IVS6+2TG) transgene affected mouse brain 

development. 

Our studies in HEK293T cells and cultured neurons should elucidate whether and 

how 2-PTC subunits interact with wildtype GABAR subunits and affect neuronal 

function.  We would explore how 2-PTC subunits affect mouse brain development and 

behavior using transgenic mice overexpressing a wildtype or mutant GABRG2 BAC.  We 

would study the expression and neuronal colocalization of wildtype h2HA subunits in 

transgenic Tg(hGABRG2HA) mice and identify neuronal populations in which GABAR 

trafficking and targeting are likely to be affected by2-PTC subunits.  We would 

determine then the efficiency of NMD to degrade 2-PTC subunit mRNA in neurons and 

whether the2-PTC subunit affected neuronal development and function in transgenic 

mice overexpressing the GABRG2(IVS6+2TG) BAC (Tg(hGABRG2IVS6+2TG) mouse).  

However, we generated Tg(hGABRG2HA) and Tg(hGABRG2IVS6+2TG) mice through two 

different pronuclear injections, so the number of BAC transgenes integrated to each 

genome is likely to be different for these two transgenic mouse models, as well as the  

subunit transcription level.  To avoid this pitfall, we would compare Tg(hGABRG2HA) or 
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Tg(hGABRG2IVS6+2TG) mouse data obtained from wildtype littermates from the same 

breeding.  Because we did not disturb endogenous wildtype mouse 2 subunit expression 

in these two transgenic mouse lines, the result will demonstrate the phenomenon 

with overexpression of wildtype h2HA or mutant 2-PTC subunits. 

 

Determine the regional expression pattern of h2HA and 2-PTC subunit. 

We would first perform in situ hybridization using probes binding to endogenous 

mouse 2, h2HA or h2-PTC subunits in Tg(hGABRG2HA) and in Tg(hGABRG2IVS6+2TG) 

transgenic mouse brain sections collected at 30-35 days after birth (P30-35), when 2 

mRNA and protein levels are stable [144, 150, 319].  The Tg(hGABRG2HA) mouse brain 

had high level of h2HA subunit in cortex, hippocampus, thalamus and cerebellum the 

as mouse endogenous 2 subunit protein [149], but h2HA mRNA pattern was not studied.  

The in situ hybridization shows the mRNA expression patterns of h2HA or h2-PTC 

subunits or endogenous mouse 2 subunits and confirms if the h2HA mRNA expression 

pattern is the same as the endogenous mouse 2 mRNA.  We would quantify the signal 

intensities of each subunit in cortex, hippocampus, thalamus and cerebellum, where the 

subunit has high mRNA expression [145, 146].  The cortex and thalamus are important 

generalized epilepsy epileptogenesis [5], while decreased 2 subunit level interfered with 

hippocampal function including increased anxiety behavior traits and decreased adult 
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neurogenesis [167, 184].  The 2-PTC mRNA level is determined by the number of 

GABRG2(IVS6+2TG) BAC transgenes integrated to the mouse genome, GABRG2 

transcription rates, and NMD efficiency in each cell.  Comparing h2 and 2-PTC mRNA 

signal intensities in these four regions will demonstrate which region has lower NMD 

efficiency, suggesting higher 2-PTC subunit expression, and hence higher 2-PTC 

dominant negative effects.  The 2 mRNA signal intensities quantified from brain slices 

will be confirmed by Northern blot.  We would dissect P30-35 cortex, hippocampus, 

thalamus and cerebellum from acute dissected Tg(hGABRG2HA) or 

Tg(hGABRG2IVS6+2TG) mouse brain, extract total RNA, and run Northern blot with 

used in in situ hybridization and quantify the band intensities of human and mouse 2 

mRNAs.  Exposing the radio-labeled slides in emulsion will visualize the cellular 

distribution of h2-PTC subunits and further identify the neuronal populations that could 

have more 2-PTC dominant negative effects.   

The 2-PTC subunit protein level will be determined by Western blot.  We would 

dissect P30-35 mouse cortex, hippocampus, thalamus and cerebellum from acute 

Tg(hGABRG2IVS6+2TG) mouse brain, prepare total tissue lysates, run Western blot with 

antibodies, and quantify the band intensities of human 2-PTC and mouse 2 mRNAs.  

The 2 antibodies detect both endogenous mouse 2 subunit and human 2-PTC subunit, 

but the h2-PTC band has a smaller molecular mass than the m2 band.  Western blot 
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demonstrate the relative levels of h2-PTC and m2 subunit in these regions, which 

have the same trend as Northern blot.  If there is regional variation in h2-PTC subunit 

protein level, it will improve our understanding of h2-PTC subunit dominant negative 

effect when the h2-PTC subunit is expressed at different levels. 

The cellular localization of h2HA subunits will be studied by 

immunohistochemistry.  We would co-immunostain with HA-antibody and either 1 

antibody or GABAergic postsynaptic membrane marker gephyrin in Tg(hGABRG2HA) 

mouse brain sections.  The h2HA subunit had strong colocalization with 1 subunit when 

coexpressed in HEK293T cells.  When it was overexpressed in cultured hippocampal 

neurons, it was expressed at GABAergic synapses the same as endogenous 2 subunits 

[176], suggesting that the 1 and h2HA signal should both be expressed at GABAergic 

synapses and colocalized with gephyrin.  After confirming this, we would co-

immunostain Tg(hGABRG2IVS6+2TG) mouse brain sections with 1 and gephyrin 

antibodies, take confocal images in regions that have different 2-PTC subunit protein 

levels, and quantify the colocalization of 1 and gephyrin.  The results will suggest if the 

2-PTC subunit dominant negative effect is sufficient to decrease the number of GABAR 

postsynaptic clusters. 

To further confirm if the surface GABARs are decreased in 

Tg(hGABRG2IVS6+2TG) mouse brain, we would cryosection 20 m fresh frozen 
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Tg(hGABRG2HA) or Tg(hGABRG2IVS6+2TG) mouse brain sections and perform 

radioligand binding with [35S]TBPS, [3H]muscimol and [3H]Ro 15-4513.  [35S]TBPS 

binds to extrasynaptic GABARs, [3H]muscimol binds to GABA binding sites, and 

15-4513 binds to benzodiazepine sites [166].   The heterozygous �2+/- mouse had 

decreased [3H]Ro 15-4513 binding but increased [35S]TBPS binding, suggesting that 

extrasynaptic GABAR levels were increased [166].  Compared to wildtype littermate, the 

Tg(hGABRG2IVS6+2TG) mouse should have increased [3H]muscimol and [3H]Ro 

15-4513 binding because the hGABRG2(IVS6+2TG) BAC transgene overexpressed 

h�2 subunits, which can be assembled into GABARsand trafficked to the neuronal 

membrane.  If �2-PTC subunits decrease membrane GABAR levels, the 

Tg(hGABRG2IVS6+2TG) mouse would have decreased [3H]muscimol and [3H]Ro 15-

15-4513 binding.  If 2-PTC subunits pull down extrasynaptic GABAR subunits in 

HEK293T cells, the [35S]TBPS binding would decrease too.  The alteration will be 

stronger in the regions with higher 2-PTC protein and vice versa. 

 

Determine if the h2-PTC subunit decreased the number of synapses or newborn 

neurons in Tg(hGABRG2IVS6+2TG) mouse brain 

Decreased surface GABAR expression is associated with decreased active 

synapses in neurons [65, 320, 321], while inhibiting GABAR degradation increases 
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synapse number [136].  We would quantify the number of synapses in the neurons 

overexpressing 2-PTC subunits from Tg(hGABRG2IVS6+2TG) mouse brain sections and 

determine whether 2-PTC subunits could decrease surface GABAR levels enough to 

decrease synapse numbers, and whether the decrease would be dependent on 2-PTC 

subunit amount.  The 1-/- knock-out mice lacking postsynaptic GABARs had 

significantly decreased synapse density after P11 [320].  We would prepare brain sections 

from PFA fixed Tg(hGABRG2HA) or Tg(hGABRG2IVS6+2TG) mice at P14 and P28 and 

immuno-stain sections for HA-tagged 2HA or endogenous mouse 1 subunits with pre- 

and post-synaptic markers including GAD6, VGAT and gephyrin.  Confocal images will 

demonstrate the regions where h2HA subunits are overexpressed and assembled to 

GABARs, and quantification of colocalization the coefficient between 1 subunit in HA-

HA-positive synapses with pre- and postsynaptic markers will elucidate if the synapse 

density is increased or decreased by overexpressing wildtype h2HA subunits at P14 and 

P28.  Then we would repeat the experiment in Tg(hGABRG2IVS6+2TG) mouse and take 

confocal images from the same regions studied in Tg(hGABRG2HA) mouse brain and 

showed strong 2-PTC total levels in in situ hybridization and Western blot.  The result 

will demonstrate if overexpression of 2-PTC subunits decreases synaptic density in 

brain. 
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Adult neurogenesis increases after symptomatic stimulation such as brain 

seizures, radiation, or neurodegenerative diseases [322].  However, decreased surface 

GABAR levels in conditional 2+/- mice lacking 2 subunits in forebrain since early 

embryonic development is associated with decreased adult hippocampal neurogenesis 

[184].  The 2-PTC subunit is expressed the same as the endogenous 2 subunit.  The 2-

2-PTC dominant negative effect should also appear early in development [144, 253, 

If it increased chronic ER-stress enough, adult neurogenesis might be increased as an 

adaptive response to ER-stress [322].  If it decreased surface GABAR levels sufficiently 

to mimic the knock-out effect in the heterozygous 2+/- mouse, it might decrease adult 

neurogenesis.  We would explore whether 2-PTC subunit overexpression is sufficient to 

affect adult neurogenesis.  We would inject BrdU into Tg(hGABRG2HA) or 

Tg(hGABRG2IVS6+2TG) mice at P56 (4 × 80 mg/kg, i.p., at 2 h intervals, in saline at 8 

mg/ml, pH 7.4) and harvest brain 28 d later to detect mature neurons differentiated from 

adult-born BrdU-labeled cells.  Alternatively, we would inject a single dose of 200 mg/kg 

(20 mg/ml) to 8-week-old mice and harvest brain 24 hours later to quantify adult-born 

replicating/undifferentiated cells.  The PFA fixed brain would be dissected to 40 m 

and immunestained for BrdU and NeuN.  The number of BrdU+/NeuN+ cells in cortex, 

thalamus, hippocampus and cerebellum would be compared between transgenic mouse 

wildtype littermates from the same breeding [184].  Overexpressing h2HA subunits in 



222 

 

HEK293T cells did not increase ER-stress, suggesting that Tg(hGABRG2HA) mice might 

not have different numberx of adult-generated neurons compared to wildtype littermate 

mice.  However, Tg(hGABRG2IVS6+2TG) mice might have different numbers of adult-

adult-generated neurons, and the alteration might suggest the mechanisms for the mutant 

BAC-induced phenomenon. 

 

Summary 

We proposed several future studies comprehensively evaluating how the 2-PTC 

subunit dominant negative effect affects GABAR biogenesis, neuron function, and brain 

development.  These studies will demonstrate whether 2-PTC subunits could bind to 

GABAR subunits expressed at synaptic or extrasynaptic sites, how it could affect surface 

GABAR biogenesis in neurons, and whether these alterations would be sufficient to 

affect mouse brain development.  These findings will facilitate our understanding about 

the expression and function of the GABRG2(IVS6+2TG) mutation, and how it induces 

seizures.  It will also help us understand the pathogenesis of other epilepsy-associated 

GABAR subunit mutations, such as GABRG2(S443delC) mutations.  
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