
PRINCIPLES FOR SAFE AND AUTOMATED MIDDLEWARE SPECIALIZATIONS

FOR DISTRIBUTED REAL-TIME EMBEDDED SYSTEMS

By

Akshay V. Dabholkar

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

May, 2012

Nashville, Tennessee

Approved:

Dr. Aniruddha Gokhale

Dr. Douglas Schmidt

Dr. Gabor Karsai

Dr. Jeffrey Gray

Dr. Janos Sztipanovits

To Aai, Daddy and Poonam for their unconditional love, support and encouragement
And ofcourse Riya and Simba, the joys of our lives

ii

ACKNOWLEDGMENTS

Having a tremendously inquisitive mind about everything I see and do, I was always

sure about pursuing a research oriented career since my junior years of undergraduates

studies. However, I didn’t know what was required in order to achieve the coveted PhD

degree and when I embarked on that journey, I was everything but certain. Treading through

the highs and lows of being a PhD student wanting to fulfill his ambitions, there are many

people I am thankful for believing in me at times when I was not feeling motivated and for

guiding me down the right path. Without them, I would never have realized that its not the

destination that is important but the journey is what you take away in terms of your attitude

towards challenges you face in your career and life.

First and foremost, I would like to thank my advisor Dr. Aniruddha Gokhale for pro-

viding me with support and encouragement not only professionally as a mentor but also

personally as a friend. It is the friendly atmosphere created by him that made the entire

PhD experience bearable and provided me impetus to fight on and conquer the challenges

posed along the way. Andy, as he is fondly called, spent many hours discussing research

ideas, reviewing papers, presentations and ensuring a good foundation based on indepen-

dent thinking was laid to achieve the goals. I am also thankful to him for having confidence

in me and supporting me during difficult times while trying to forge research ideas and

getting them published.

I would also like to thank Dr. Douglas Schmidt (Doug), for providing me the initial

opportunity to be a part of the reputed Distributed Object Computing (DOC) group at Van-

derbilt. Doug’s pioneering work in distributed middleware has been the core source of

inspiration for me since my undergraduate days that motivated me to pursue a doctoral

degree in this area in the first place. Through his teaching, I learned the nuances of good

software design and distributed middleware that will stay with me for the rest of my pro-

fessional life.

iii

I would also like to express my gratitude to the rest of my committee members, Dr. Janos Szti-

panovits, Dr. Gabor Karsai, and Dr. Jeff Gray for agreeing to serve on my qualifier and

dissertation committees. I am especially grateful to Jeff for reviewing my dissertation and

managing to find time to remotely attend my qualifier and dissertation defenses.

I have been fortunate to interact with some very motivated and talented past and present

colleagues: Krishnakumar Balasubramanian, Nishanth Shankaran, Amogh Kavimandan,

Chetan Kulkarni, Abhishek Dubey. Moreover, the journey would not have been enjoyable

and survivable without the company of Jaiganesh Balasubramanian (Jai), Nilabja Roy, and

Sumant Tambe who were an integral part of our daily coffee sessions, that brewed up some

of the most hilarious jokes on graduate student life. We concocted many that were worthy

of deserving a DOC group version of the PhD Comics.

Finally, I would like to especially thank my mother and father, Minal and Vishwas, and

my dear wife, Poonam, for their unconditional love, unwavering support and encourage-

ment over the years throughout the uphill journey of my PhD. And of course our beautiful

baby girl, Riya, the joy of our life. Also our lovely dog, Simba, our 1st child, for the great

times everyday. To them, I dedicate this thesis.

Akshay V. Dabholkar

Vanderbilt University

April 2, 2012

iv

ABSTRACT

Developing distributed applications, particularly those for distributed, real-time and

embedded (DRE) systems, is a difficult and complex undertaking due to the need to ad-

dress four major challenges: the complexity of programming interprocess communica-

tion, the need to support a wide range of services across heterogeneous platforms and

promote reuse, the need to efficiently utilize resources, and the need to safely adapt to run-

time conditions. The first two challenges are addressed to a large extent by standardized,

general-purpose middleware. However, the need to support a large variety of applications in

different domains has resulted in very feature-rich implementations of these standardized

middleware. Consequently, this feature-richness acts counter productive to resolving the

remaining two challenges; instead it incurs excessive memory footprint and performance

overhead, as well as increased cost of testing and maintenance. Moreover, despite the rich-

ness in general-purpose features, middleware often lacks application-specific behavior that

is needed to adapt to runtime conditions including faults.

To address the four challenges all at once while leveraging the benefits of general-

purpose middleware, this dissertation describes a scientific approach to specializing the

middleware. To enable better comprehension, easier validation and to promote reuse, the

dissertation presents a three dimensional taxonomy to document recurring specializations,

and assess the strengths and weaknesses of the documented techniques. The principles of

separation of concerns are used in the context of this taxonomy to define six stages of a

middleware specialization process lifecycle. Finally, to overcome the accidental complex-

ities stemming from the manual use of specialization techniques, such as aspect-oriented

programming (AOP), feature-oriented programming (FOP), and reflection, the six-stage

specialization process has been codified resulting in concrete tool artifacts that automate

the specialization process for different requirements.

The tooling resulting from this dissertation includes (1) FORMS (Feature Oriented

v

Reverse Engineering based Middleware Specializations), which provides coarse-grained

middleware feature pruning through a decision tree based reasoning of desired middle-

ware features and a novel reverse-engineering algorithm, (2) GeMS (Generative Middle-

ware Specializations), which provides fine-grained middleware feature pruning through

an automated process that deduces the context for specializations through application in-

variant properties and subsequently optimizes the middleware design patterns and frame-

works through generative source-to-source transformations, (3) GrAFT (Generative As-

pects for Fault-Tolerance), which provides fine-grained middleware feature augmentation

by weaving application-specific reliability concerns in system artifacts through model-to-

text, model-to-code transformations, and (4) SafeMAT (Safe Middleware Adaptation for

Real-Time Fault-Tolerance), which enables safe middleware adaptation to runtime fail-

ures while improving predictability and resource utilization within the hard real-time con-

straints.

vi

TABLE OF CONTENTS

Page

DEDICATION . ii

ACKNOWLEDGMENTS . iii

ABSTRACT . v

LIST OF TABLES . xi

LIST OF FIGURES . xii

Chapter

I. Introduction . 1

I.1. Emerging Trends and Technologies 1
I.2. Overview of Research Challenges 5

I.2.1. Spatial disparity between horizontally decomposed mid-
dleware and vertical domain-level concerns 5

I.2.2. Lack of a priori knowledge of specialization require-
ments due to temporal separation of application lifecy-
cle phases . 7

I.2.3. Lack of mechanisms for reusing specializations 7
I.2.4. Lack of mechanisms for transparent provisioning of

domain-specific semantics 8
I.2.5. Achieving Safe Adaptability To Runtime Failures While

Maintaining The Hard Real-Time 8
I.3. Research Approach . 10
I.4. Dissertation Organization . 11

II. Taxonomy of Contemporary Middleware Specialization Techniques 13

II.1. Middleware Background . 13
II.1.1. Definition . 13
II.1.2. Traditional Middleware Specialization 14

II.2. Taxonomy of Middleware Specialization Techniques 15
II.2.1. Feature-Dependent Specialization 16
II.2.2. Lifetime-Dependent Specialization 18
II.2.3. Paradigms-Dependent Specialization 20

II.3. Assessment of Modularization Techniques for Middleware Spe-
cialization . 26

vii

II.3.1. Qualitative Evaluation of the Middleware Specializa-
tion Taxonomy . 26

II.3.2. Guidelines for Middleware Specialization 28
II.4. Discussion . 29

III. The Automated Middleware Specialization Process 32

III.1. Unresolved Challenges . 32
III.1.1. Challenge 1: Inference of the Middleware Features . . . 34
III.1.2. Challenge 2: Determination of the Specialization Context 34
III.1.3. Challenge 3: Inferring the Specializations from the Spe-

cialization Context . 35
III.1.4. Challenge 4: Identifying the Specialization Points within

the Middleware . 35
III.1.5. Challenge 5: Generating the Specialization Transfor-

mations . 35
III.1.6. Challenge 6: Executing the Specialization Transforma-

tions on Middleware Source 36
III.2. Process Overview . 36

IV. Feature-oriented Reasoning Techniques to Drive the Middleware Special-
izations . 39

IV.1. Related Research . 39
IV.1.1. Forward Engineering Approaches 39
IV.1.2. Reverse Engineering Approaches 42

IV.2. Unresolved Challenges . 43
IV.2.1. Challenge 1: Identifying Opportunities to Drive Mid-

dleware Specializations 43
IV.3. Feature Oriented Reasoning . 44

IV.3.1. Feature Mapping Wizard 44
IV.3.2. Deducing the Specialization Context from System Mod-

els . 47
IV.3.3. Inferring Specializations from Specialization Context . 48

V. Automated Realization of Middleware Specializations 50

V.1. Related Research . 50
V.1.1. Aspect-oriented programming (AOP) for modularizing

crosscutting concerns 50
V.1.2. Higher-level abstractions and generative mechanisms . . 52
V.1.3. Limitations in related research 53

V.2. Unresolved Challenges . 54
V.2.1. Challenge 1: Reducing Manual Effort in devising Spe-

cializations . 54
V.2.2. Challenge 2: Lack of middleware support for domain-

specific recovery semantics 56

viii

V.3. Automated Realization of Middleware Specializations 57
V.3.1. Identifying Specialization Points 57
V.3.2. Generation and Execution of Specialization Advice . . 59
V.3.3. Discovering Closure Sets 61
V.3.4. Transparent Augmentation of Domain-specific Seman-

tics in System Architecture 64
V.3.5. Middleware Composition Synthesis through Build Spe-

cialization . 67
V.4. Evaluation . 68

V.4.1. Logging Server Case Study 68
V.4.2. Evaluation of the Closure Computation Algorithm . . . 70
V.4.3. Additional Insights provided by the algorithm 72
V.4.4. Validation of the Algorithm 73
V.4.5. Evaluation of the Generative Middleware Specializa-

tion Algorithms . 74
V.4.6. Illustrating the generative algorithms on a DRE Case

Study . 74
V.4.7. Evaluation of GRAFT 80

VI. Reliable Distributed Real-time and Embedded Systems Through Safe Mid-
dleware Adaptation . 86

VI.1. Related Research . 86
VI.1.1. Dynamic Scheduling 87
VI.1.2. Resource-aware Adaptations 87
VI.1.3. Real-time fault-tolerant systems 88
VI.1.4. Need for Safe Fault Tolerance 88

VI.2. Unresolved Challenges . 89
VI.2.1. Challenge 1: Identifying the Opportunities for Slack in

the DRE System . 90
VI.2.2. Challenge 2: Designing Safe and Predictable Dynamic

Failure Adaptation . 92
VI.2.3. Challenge 3: Validating System Safety in the Context

of DRE System Fault Tolerance 92
VI.3. Design of SafeMAT . 93

VI.3.1. The ARINC-653 Component Model Middleware 93
VI.3.2. SafeMAT Architecture 96
VI.3.3. Distributed Resource Monitoring 100
VI.3.4. Resource-Aware Adaptive Failure Mitigation 102
VI.3.5. Pre-deployment Application Performance Evaluation . . 108
VI.3.6. SafeMAT Implementation 108

VI.4. Empirical Evaluation of SafeMAT 113
VI.4.1. Evaluating SafeMAT’s Utilization Overhead 115
VI.4.2. Evaluating SafeMAT-induced Failover Overhead Times 117
VI.4.3. Discussion: System Safety and Predictability 120

ix

VI.5. Conclusion . 121

VII. Future Work – Deployment and Composition of Specialized Middleware . 123

VII.1.Side-effects of Specializations on System Composition and De-
ployment . 123

VII.2.Related Research . 127
VII.2.1.Flexible Middleware Composition 127
VII.2.2.QoS-specific Middleware Customizations 128

VII.3.Unresolved Challenges . 130
VII.3.1.Challenge 1: Preserving Operational Correctness of Spe-

cialized Middleware Stack 130
VII.3.2.Challenge 2: Preserving Deployment Transparency dur-

ing Middleware Composition 131
VII.3.3.Challenge 3: Determining Middleware Composition Gran-

ularity . 132
VII.4.Proposed Research: Safe Composition and Transparent Deploy-

ment of Specialized Middleware (DeCoM) 133
VII.4.1.Hypothesis 1: "Do No Harm" 133
VII.4.2.Hypothesis 2: "Whole does not exceed the Parts by 20%"134

VII.5.Evaluation Criteria . 135

VIII. Concluding Remarks . 137

Appendix

A. Underlying Technologies . 140

A.1. Aspect Oriented Programming (AOP) Terminologies 140
A.2. Model-Driven Development (MDD) 140
A.3. Overview of Lightweight CCM 141
A.4. Overview of Component Middleware Deployment and Configu-

ration . 144
A.5. The ARINC-653 Component Model (ACM) 145

B. List of Publications . 150

B.1. Refereed Journal Publications 150
B.2. Refereed Conference Publications 150
B.3. Refereed Workshop Publications 151
B.4. Technical Reports . 152
B.5. Poster Publications . 153

REFERENCES . 154

x

LIST OF TABLES

Table Page

1. Evaluation of the Combinations of Dimensions 31

2. SP-KBASE: Extensible Catalog of Specialization Techniques 49

3. Performance Optimization Principles [131] 49

4. Outcome of applying FORMS to a Product-line of Networked Logging
Applications . 70

5. Middleware Developer Effort Savings 79

6. Middleware Performance Improvement Metrics 80

7. Savings in Fault-tolerance Programming Efforts in Developing MHS
Case Study Without/With GRAFT . 83

8. Summary Of Research Contributions 139

xi

LIST OF FIGURES

Figure Page

1. Middleware Features (ACE [110]) . 2

2. Antagonistic Design Forces . 3

3. Middleware Layers . 6

4. Three Dimensional Taxonomy of Middleware Specialization Research . . 16

5. Lifetime-Dependent Middleware Specialization 18

6. A Reflective System with Causally Connected Meta-level 21

7. Reflective Middleware . 23

8. The Middleware Specialization Lifecycle 33

9. The Automated Middleware Specialization Process 37

10. Middleware PIM Feature Model . 45

11. Decision Tree used by the Feature Mapper Wizard 46

12. Middleware Specialization Path . 61

13. Automated Generation of Failure Detection and Handling Code 66

14. Logging Application Variant . 69

15. Modularization Disparities . 72

16. The Basic Single Processor (BasicSP) Application Scenario 75

17. Specialization Context in BasicSP . 76

18. A Distributed Processing Unit Controlling Conveyor Belts 82

19. Runtime Steps Showing Group Recovery Using GRAFT 84

20. GPS (BasicSP) Subsystem Assembly 91

xii

21. Slack in GPS Schedule . 91

22. SafeMAT Architecture . 98

23. Partition Manager . 99

24. Backup Deployment Scenarios . 104

25. The HFA Algorithm . 106

26. Distributed Resource Monitoring (DRM) Communication Sequence . . . 110

27. IMU System Assembly. 113

28. Application Recovery after Failover . 115

29. SafeMAT Utilization Overhead . 116

30. Different Component Replica Deployments 118

31. SafeMAT Mitigation Overhead for Different Replica Deployments 119

32. SafeMAT Mitigation Overhead for Component Group Recovery 120

33. Application Display Jitter (Hyperperiod = 1 sec) 121

34. A Generic Application Server and its components 125

35. Deployment of Non-homogenous Specialized Application Servers 126

36. Application Server Stack . 130

37. Component Allocation Example . 132

38. Composition Granularity . 133

39. Aspect Oriented Programming (AOP) 141

40. Layered LwCCM Architecture . 142

41. An Overview of OMG Deployment and Configuration Model 145

42. A module configuration and the time line of events as they occur. 147

43. SHM architecture. 148

xiii

CHAPTER I

INTRODUCTION

I.1 Emerging Trends and Technologies

A large variety of applications and application product lines such as those found in

avionics [116], telecommunication call processing, multimedia streaming video, industrial

automation, multi-satellite missions [122], shipboard computing [113] and mission-critical

computing environments, have varied requirements such as transparent distribution, inter-

operability, real-timeliness, predictability, fault tolerance, fast recovery, high throughput,

high availability, etc. As a result these distributed, real-time and embedded (DRE) systems

are leveraging general-purpose middleware in their design and implementation due to many

benefits such as lowering the time to market and hiding accidental complexities [18] asso-

ciated with a particular domain. Traditionally, middleware hides the underlying details of

interprocess communication and heterogeneous technologies from the application develop-

ers using a ”black-box” paradigm such as encapsulation in object-oriented programming

and through the use of elegant design abstractions such as design patterns and frameworks

as shown in figure 1.

Middleware like Real-time Common Object Request Broker Architecture (RT-CORBA) [88]

and the Real-Time Specification for Java (RTSJ) [17] enables these systems to realize long

shelf lives by shielding these systems from the constant evolution in the underlying oper-

ating systems and hardware resources. Research in middleware over the past decade [16,

114, 143] has significantly advanced the quality and feature-richness of general-purpose

middleware, such as J2EE, .NET, CORBA, and DDS. The economic benefits of middle-

ware are significant with up to 50% decrease reported in software development time and

costs [100].

Despite these benefits, general-purpose middleware poses numerous challenges when

1

Figure 1: Middleware Features (ACE [110])

developing Distributed Realtime and Embedded Systems (DRE). First, owing to the strin-

gent demands of DRE on quality of service (QoS) (e.g. real-time response in industrial

automation) and/or constraints on resources (e.g. memory footprint of embedded medi-

cal devices monitoring a patient), the feature-richness and flexibility of general-purpose

middleware becomes a source of excessive memory footprint overhead and a lost op-

portunity to optimize for significant performance gains and/or energy savings. Second,

general-purpose middleware lack out of the box support for modular extensibility of both

domain-specific and domain-independent features within the middleware without unduly

expending extensive manual efforts at retrofitting these capabilities. For example, DRE

in two different domains as in industrial automation and automotive may require different

forms of domain-specific fault tolerance and failover support. Arguably, it is not feasible

for general-purpose middleware developers to have accounted for these domain-specific

requirements ahead-of-time in their design. Doing so would in fact contradict the design

2

goals of middleware, which aim to make them broadly applicable to a wide range of do-

mains, i.e., general-purpose. The figure 2 shows the antagonistic design forces between

domain-specific applications and general-purpose middleware.

Design Forces

Middleware Architecture Traits

Platform

Independent

Highly Flexible

& Configurable

Multilayered &

Feature-rich

Design Forces

Portability
Wide

Applicability
Reusability

Platform-

specific

mapping

Highly

Optimized

Streamlined

Infrastructure

Middleware Stack

Infrastructure

Middleware

Distribution Middleware

Common Services

Domain-specific

Services

Applications (sensors, embedded, enterprise)

Specific

Feature

Requirements

Multiple QoS

Requirements

Footprint

Constraints

Conflicting

Design Forces

Figure 2: Antagonistic Design Forces

Developing proprietary and customized middleware solutions for individual DRE is not

a feasible alternative due to the excessive costs of development, maintenance and testing.

3

Moreover, such solutions often tend to reinvent many solutions that already exist in general-

purpose middleware. Due to the large number of application domains addressed by DOC

middleware, the frameworks that are provided are feature rich. Any particular application,

though, is likely to only use a fraction of these features. This problem is especially relevant

for embedded applications, where memory and other resources are already at a premium

which results into simultaneous stringent QoS requirements. As a result, developers are

often faced with either reinventing pieces of an middleware, custom tailored to their needs,

or they are faced with the daunting task of refactoring an existing middleware to obtain an

appropriate subset of that application’s functionality. In either case, subsequent develop-

ment, maintenance and testing of the application becomes more complex, due to the effects

of future revisions on all of the derived subsets. Current trends and economies of scale in

software development actually call for extensive reuse and rapid assembly of application

functionality from off-the-shelf infrastructure and application components. Third, legacy

applications that are deployed in safety-critical domains such as avionics, automotive, in-

dustrial automation have a long shelf life. Due to their safety-critical nature, these applica-

tions are over-provisioned in terms of the resources to handle failures even in the worst-case

scenarios, and are closed in nature with precisely specified hard real-time Quality of Ser-

vice (QoS) requirements of schedulability, timeliness, processor and memory allocation,

and reliability. Due to their closed nature, they are severely constrained in terms of their

ability to support changing requirements without the right tools and techniques.

Addressing this dilemma requires an approach that will enable DRE developers to de-

rive the benefits of general-purpose middleware, however, without incurring the overhead

of unwanted features while seamlessly allowing domain-specific extensions. Such an ap-

proach must be rooted in scientific principles, which is particularly important for DRE

applications due to the need to formally verify the correctness of different systemic proper-

ties of DRE. We call such an approach as Middleware Specialization. Although traditional

4

middleware solves these problems to some extent, it is limited in its ability to support spe-

cializations and adaptations. Middleware adaptation is a separate issue from specialization

and focus is on middleware specialization techniques in this dissertation.

I.2 Overview of Research Challenges

DRE systems based on the .NET, J2EE, and CORBA standards are often subjected to

both stringent certification and cost issues. Therefore, it is important that any modification

to the middleware sources be retrofitted with minimal to no changes to the middleware

portability, standard APIs interfaces, application software implementations, while preserv-

ing interoperability wherever possible. Otherwise such specialization approaches obviate

the benefits accrued from using standards-based middleware. Additionally the accidental

complexity from manually applying such approaches to mature middleware implementa-

tions renders the specializations tedious and error prone to implement.

Most prior efforts at specializing middleware (and other system artifacts) [22, 51, 70,

96, 136, 142] often require manual efforts in identifying opportunities for specialization

and realizing them on the software artifacts. At first glance it may appear that these manual

efforts are expended towards addressing problems that are purely accidental in nature. A

close scrutiny, however, reveals that system developers face a number of inherent complex-

ities as well, which stem from the following reasons:

I.2.1 Spatial disparity between horizontally decomposed middleware and vertical

domain-level concerns

Middleware is traditionally designed using object-oriented (OO) principles, which en-

force a horizontal decomposition of its capabilities into layers comprising class hierarchies

as shown in figure 3. This design is, however, not suited for specializing middleware since

5

domain concerns tend to map along the vertical dimension, which are shown to cross-

cut the OO class hierarchies [45] hence necessitating vertical decomposition.For exam-

ple, in OO-based middleware implementations of Real-time CORBA (RTCORBA) [94],

the implementation of features related to handling requests at a fixed priority (called the

SERVER_DECLARED model) or allowing priorities to be propagated from task to task

(called the CLIENT_PROPAGATED_PRIORIYmodels) crosscut multiple functional mod-

ules such as the object request broker (ORB), the portable object adapter (POA), and re-

quest demultiplexing and dispatching modules. Since the two priority models are mutually

exclusive, only one configuration can be valid along the critical path between tasks of a

DRE system. Thus, any transformation to prune the logic for the unused priority model

must necessarily involve modifying several different classes that implement these different

modules. Therefore, there is a need to reason about the middleware features induced by the

application requirements and the configurations of those features.

Figure 3: Middleware Layers

6

I.2.2 Lack of a priori knowledge of specialization requirements due to temporal sep-

aration of application lifecycle phases

DRE systems often involve a well-defined application development lifecycle compris-

ing the design, composition, deployment, and configuration phases. Due to the temporal

separation between these phases, and potentially a different set of developers operating at

each phase, it is not feasible to identify specialization opportunities all at once. Instead,

with each successive phase of the development lifecycle, system properties start becoming

invariant one by one. For example, the system composition of an end-to-end task chain

may reflect the need to differentiate priorities among multiple information flows across

the tasks. However, whether the requests within a flow are handled at a fixed priority at

each task or whether the priorities are propagated end-to-end will be evident only after the

developers configure the system. Thus, any specialization will have to wait until the con-

figuration of the system is known. So there is a need to identify the context for performing

specializations by inspecting the application composition, configuration and deployment

models.

I.2.3 Lack of mechanisms for reusing specializations

Unlike the years of efforts in documenting good patterns of software design, there is a

general lack of a knowledge base documenting reusable patterns for middleware special-

ization, which leads to reinventing specialization efforts in identifying what specializations

are needed, and in realizing them. For example, if there is no approach to document how

the specializations for a particular priority model are performed, then developers will be

faced with similar challenges every time the same specialization is to be performed on a

different DRE system. So what is required is a reusable, systematic and automated process

for specializing middleware.

7

I.2.4 Lack of mechanisms for transparent provisioning of domain-specific semantics

Supporting domain-specific semantics for instance, application-transparent failover of

a group of components is important to extend the benefits of separation of concerns pro-

vided by component-based middleware to dependable operational strings. Separation of

concerns not only expedites the development of individual software components but also

simplifies QoS planning necessary in the later stages of the DRE system lifecycle. Large-

scale DRE systems require such flexibility because it simplifies planning for mode change

involving graceful degradation in their QoS as opposed to an abrupt denial. For instance,

redundant operational strings could be deployed in a surveillance system differing only in

their QoS. A primary operational string and its underlying resources could have been con-

figured for high-resolution, low-latency image processing whereas one or more alternate

operational strings could be configured using gradually inferior QoS to be used only if the

primary operational string fails.

I.2.5 Achieving Safe Adaptability To Runtime Failures While Maintaining The Hard

Real-Time

While the middleware can be optimized at design time for the specific application re-

quirements, it is still subject to unexpected events that can occur at runtime i.e., failures.

With an increasing trend towards realizing larger system-of-systems that are composed

predominantly from existing systems (e.g. ultra large-scale systems [53] or cyber-physical

systems [138]), which we collectively term as distributed real-time and embedded (DRE)

systems. The realization of DRE systems gives rise to interdependencies between indi-

vidual subsystems. Moreover, a new range of faults arise in the context of DRE systems,

which must be handled to maintain the mission-critical nature of the overall DRE system

in the context of the induced interdependencies.

Unfortunately, the original design of these subsystems seldom enable their seamless

integration within the larger DRE systems. For example, due to the critical nature of the

8

real-time tasks executing in these subsystems, the individual subsystems are often over-

provisioned in terms of resource usage to deal with worst case fault scenarios. This over

provisioning in the individual systems is detrimental to realizing reliable DRE systems be-

cause fault tolerance solutions for the DRE systems do not have the flexibility to add new

resources or modify the real-time schedules of tasks in the individual subsystems. Re-

designing and reimplementing the individual systems is not an option due to economic

forces. Thus, designing fault-tolerance mechanisms for DRE systems must somehow uti-

lize the available resources without compromising the real-time properties of the individual

subsystems. Consequently, there is a need to identify opportunities for resource availabili-

ties so that DRE system fault tolerance solutions can be implemented. The key insight we

leverage for our work depends on the existence of a significant slack in the over-provisioned

individual subsystems. The challenge lies in identifying this slack and making effective use

of it, which is the subject of this research.

Our next question is identifying the right fault tolerance mechanisms for DRE systems.

Software Health Management (SHM) [35, 118] is a promising approach to providing fault-

tolerance in real-time systems because it not only provides for fault detection and recovery

but also effective means for fault diagnostics and reasoning, which can help make effective

and predictable fault mitigation and recovery decisions. However, this technique does not

account for the constraints in the resources and applies only to latent errors in component

functional implementations that are known a priori with predefined failover strategies. If

SHM were to be used as is in DRE systems, it is likely to result in suboptimal runtime

failure adaptations that do not utilize the resources in the most effective manner.

Adaptive Fault Tolerance (AFT) [8] has been known to improve the overall reliability

and resource utilizations, however, for soft real-time applications through dynamic runtime

failure adaptation techniques. Since they require additional resources to perform failure

recovery, they can consume precious time from the real-time schedule of individual sub-

systems. Therefore, these failure adaptation mechanisms need to be provisioned in a safe

9

manner (i.e., without compromising the real-time schedules of existing real-time tasks)

while still accruing the benefits of adaptations and better resource utilizations. While both

SHM and AFT are promising techniques, they have limitations for use in DRE systems.

I.3 Research Approach

To address the middleware specialization challenges identified in Section I.2 this dis-

sertation describes (1) the contemporary research in specializing middleware in terms three

dimensional taxonomy, (2) a feature-oriented approach to reasoning about application re-

quirements and composition, deployment and QoS models to determine the middleware

features that are required by the application components along with the specialization con-

text that help drive the specializations to be performed on the underlying middleware in

order to support their QoS demands, (3) the reverse-engineering, generative and AOP tech-

niques that rely on source code inspection to prune the middleware features, specialize

the middleware sources and augment domain-specificity within the middleware runtime

entities, and (4) a proposed approach for specializing application server composition and

deployment infrastructure. A brief summary of the different aspects of this dissertation is

presented below.

1. Taxonomy of Contemporary Middleware Specialization Techniques creates a vo-

cabulary to reason about middleware specialization techniques in terms of the devel-

opment lifecycle, the paradigms and feature-oriented dimensions. Every paradigm

used for specialization either prunes or augments features or both and is applicable

across one or more of the lifecycle stages. This makes it easy to classify the special-

ization techniques and reason about their impact on the middleware. The taxonomy

also aids the identification and development of a specialization lifecycle which is the

described in detail in the subsequent chapters. Chapter II describes the specialization

techniques and their taxonomy in detail.

10

2. Feature-oriented Reasoning Techniques to Drive the Middleware Specializa-

tions has been demonstrated using the decision tree based reasoning to determine

the middleware features that are being used by the applications and model interpre-

tation technique to automatically determine application invariants that provide the

context to determine what specializations are applicable. Chapter IV describes the

reasoning and deduction techniques for driving specializations in detail.

3. Automated Realization of Middleware Specializations enables automated identi-

fication of specialization points and the generation of specialization directives that

enable transformation of the middleware sources. A build specialization technique

is also described that helps automatically prune down the build configurations based

on computation of independent closure sets of code artifacts dependencies. Chapter

V describes this approach in detail.

4. Safe Adaptation of Middleware to enable predictable and efficient adaptation to

various granularities of runtime failures while maintaining real-time constraints and

improving existing resource utilizations. Existing SHM mechanisms have been en-

hanced with a flexible and configurable distributed resource monitoring framework

and an intelligent failure adaptation algorithm that takes into account the failure

types, granularity and failover replica placement. Chapter VI describes the frame-

work architecture and adaptation algorithm and the experimental validations in de-

tail.

I.4 Dissertation Organization

The remainder of this dissertation is organized as follows: each chapter describes a

single focus area, describes the related research, the unresolved challenges, our research

approach to solve these challenges, and evaluation criteria for this research. Chapter II

11

describes the contemporary middleware specializations and their classification into a three-

dimensional taxonomy. Chapter IV describes feature-oriented reasoning techniques for

discovering opportunities to drive middleware specializations. Chapter V presents the au-

tomated and generative transformation approach and the corresponding algorithms for spe-

cializing middleware and its build system. Chapter VI presents the safe and predictable

middleware adaptation approach and the corresponding frameworks and algorithm for adapt-

ing the middleware to runtime failures. Chapter VII presents the future work that discusses

the side effects of specializing middleware in the context of application server composi-

tion and deployment, which are not adequately addressed by contemporary solutions. A

research approach is proposed address the challenges.Finally, Chapter VIII presents the

concluding remarks and a dissertation timeline.

12

CHAPTER II

TAXONOMY OF CONTEMPORARY MIDDLEWARE SPECIALIZATION
TECHNIQUES

This chapter surveys the existing body of research in middleware specializations and

categorizes it into three dimensions of lifecycle, paradigm and feature manipulation. Ex-

amples of each category are described and compared in detail. It organizes the research into

a taxonomy representation and proposes a multi-stage lifecycle for specializing general-

purpose middleware.

II.1 Middleware Background

II.1.1 Definition

Middleware is the connectivity software or communication infrastructure bus that en-

capsulates a set of services residing between the operating system layer and the user ap-

plication layer. Middleware facilitates the communication and coordination of application

components that are potentially coordination of application components that are potentially

distributed across several networked hosts. Moreover, middleware provides application de-

velopers socket programming. In this manner, middleware can hide interprocess commu-

nication, mask the heterogeneity of the underlying systems (hardware devices, operating

systems, and network protocols), and facilitate the use of multiple programming languages

at the application level. Middleware can also be considered as a ”glue” that enables in-

tegration of legacy the use of multiple programming languages at the application level.

Middleware ISO OSI reference model [15]. We now discuss the role specialization can

play in various application s, effectively implementing the session and presentation layers

13

II.1.2 Traditional Middleware Specialization

Traditional middleware can be classified based on the type of programming-language

abstraction that it provides for interaction among distributed software components: pro-

cedural, object-oriented, transactional, or message-oriented. The corresponding primitive

communication techniques are distributed remote procedure calls (RPC), remote object in-

vocations, transactions, and message passing respectively.

• RPC middleware extends the procedure call in procedural programming languages

to include remote procedure calls (RPC), where the body of the procedure resides

on a remote host and can be called the same way as a local procedure. Birrell [14]

implemented the first full-fledged version of RPC. Sun Microsystems adopted RPC

as part of its open network computing. Later, Open Group developed a standard

for RPC called distributed computing environment (DCE) [107]. Most Unix and

Windows operating systems now support RPC facilities. RPC middleware can be

specialized is to use the static and dynamic binding selection such that the right

network transport is configured for the application’s needs.

• Object-oriented middleware combines object-oriented programming paradigm and

the RPC architecture. It provides the abstraction of a remote object, whose methods

can be invoked as if the object were in the same address space as its client. Encapsula-

tion, inheritance, and polymorphism are often supported by this type of middleware.

e.g. CORBA [85], Java RMI [121], and DCOM [79]. One approach of specializing

OO middleware can be to use frameworks and design patterns such as strategy, fac-

tory, adaptor, acceptor-connector, leader-follower to customize the middleware pro-

cessing to the applications runtime requirements. Another approach could be to use

compile-time specialization may include code optimization for specific architectures

and hardware platforms. AOP can be useful for both these approaches.

14

• Transactional middleware supports distributed transactions among processes run-

ning on distributed hosts. Originally, this type of middleware was targeted at inter-

connecting heterogeneous database systems. The goals include providing data in-

tegrity, high-performance, and availability using the two-phase commit protocol. e.g.

IBM CICS [50] and BEA Tuxedo [46]. Transactional middleware can be customized

similar to OO middleware where specific binding mechanisms such as most resource

efficient database drivers, query optimization on-the-fly.

• Message-oriented middleware (MOM) facilitates asynchronous message exchange

between clients and servers using the message-queue programming abstraction [39],

a generalization of the operating system mailbox. Messages do not block a client

and are deposited into a queue with no specific receiver information. In addition,

the message-queue abstraction decouples clients and servers, which enables inter-

action among otherwise incompatible systems. e.g. IBM MQSeries [52] and Sun

Java Message Queue [120]. MOM middleware could be specialized to handling a

particular routing substrate (using multicast group communication, broadcast), stor-

age management technology or communication protocols (such as publish-subscribe,

peer-to-peer, etc.).

The specialization techniques used to customize and optimize traditional middleware

are disconnected and need to be integrated and enhanced with the new specialization tech-

nologies such as aspect-oriented programming, component-based design and model driven

engineering.

II.2 Taxonomy of Middleware Specialization Techniques

Middleware can be categorized with respect to the type of specialization it provides. As

suggested before Middleware research can be broadly classified along three dimensions of

15

application development: (1) feature-dependent, (2) paradigm-dependent, and (3)lifetime-

dependent.

AU
GM
EN
TA
TI
ON

PR
UN
IN
G

COMPUTATIONAL

REFLECTION

ASPECT ORIENTED

PROGRAMMING (AOP)

MODEL-DRIVEN

ENGINEERING (MDE)

TU
NA
BL
E

MU
TA
BL
E

CU
ST
OM
IZ
AB
LE

CO
NF
IG
UR
AB
LE

PRE-POSTULATED JUST-IN-TIME

LIFECYCLE STAGES

P
A

R
A

D
IG

M
-D

E
P

E
N

D
E

N
T

FE
A
TU

R
E
-

M
A
N
IP

U
LA

TIO
N

Figure 4: Three Dimensional Taxonomy of Middleware Specialization Research

II.2.1 Feature-Dependent Specialization

Feature-oriented programming (FOP) captures the variants of a base behavior though

a layer of encapsulation of multiple abstractions and their respective increments that to-

gether pertain to the definition of a feature [78]. FOP decomposes complex software into

features which are the main abstractions in design and implementation. They reflect user

16

requirements and incrementally refine one another. FOP is particularly useful in incremen-

tal software development and software product lines (SPLs).

The specialization of a middleware platform along the feature-dependent dimension

consists of composing it according to the features/functionalities required by the hosted

applications. This is a dynamic process that consists of augmenting/inserting new features

as well as pruning/removing unnecessary features. We distinguish between feature pruning

and feature augmentation specialization strategies as follows:

II.2.1.1 Feature Pruning

Feature pruning is a strategy applied to remove features of the middleware to customize

it. In this case the original middleware provides a broad range of features but many are not

needed for a given use case. These unwanted features are pruned from the original middle-

ware. This approach is taken by FOCUS [68] where unnecessary features are automatically

removed from general purpose middleware through techniques such as memoization to pro-

vide optimizations for DRE systems.

II.2.1.2 Feature Augmentation

Feature augmentation is a strategy applied when the specialization is grounded via the

insertion of new features, either because the original middleware did not support it or the

middleware is composed out of building blocks [3, 16, 128]. The latter variety of middle-

ware platforms are designed to overcome the limitations of monolithic architectures. Their

goal is to offer a small core and to use computational reflection to augment new function-

alities.

In Section A.1, AOP can be used to compose middleware platforms where the mid-

dleware core contains only the basic functionalities [51, 142]. Other functionalities that

implement specific requirements of the applications are incrementally augmented in the

17

middleware by the weaver process, when they are required and decrementally pruned when

they are not required.

II.2.2 Lifetime-Dependent Specialization

One approach to classify specialization techniques is based on the time scale at which

it is implemented: pre-postulated and just-in-time [141]. Figure 5 shows this dimension of

our taxonomy. If middleware specialization is performed during the application compile or

startup time, we designate it pre-postulated/static specialization. For example, Embedded-

Java (java.sun.com/products/em\discretionary{-}{}{}beddedjava) min-

imizes the footprint of embedded applications during the application compile time. Sim-

ilarly, if the middleware specialization is performed during the application run time, we

designate it just-in-time/dynamic specialization. For example, MetaSockets [109] load

adaptive specialization code during run time to adapt to wireless network loss rate changes.

Notice that in Figure 5, dynamism increases from left to right.

Specialization

Type

DEVELOPMENT

TIME

COMPILE

TIME
RUN TIME

DELOYMENT /

STARTUP TIME

Customizable

Pre-Postulated
(Static)

Lifetime-Dependent
Middleware Specialization

TunableConfigurable

Just-In-Time
(Dynamic)

Mutable

Application

Lifetime
INIT TIME

Figure 5: Lifetime-Dependent Middleware Specialization

18

java.sun.com/products/em\discretionary {-}{}{}beddedjava

II.2.2.1 Pre-postulated Specialization

Pre-postulated or Static specialization tailors the middleware before knowing its exact

application use case. This process tries to identify the general requirements of possible

future applications and defines the middleware configuration that will be used by the appli-

cations. It is further divided into customizable and configurable middleware.

• Customizable specialization enables adapting the middleware during the applica-

tion compile/link-time so that a developer can generate specialized (adapted) ver-

sions of the application. Note that a customized version is generated in response

to the functional and environmental changes realized after the application design-

time. Examples of specialization mechanisms provided by customizable middleware

are static weaving of aspects [63], compiler flags, and precompiler directives [66].

QuO [144] and EmbeddedJava are examples of customizable middleware.

• Configurable specialization enables adapting the middleware during the applica-

tion startup time thereby enabling an administrator to configure the middleware in

response to the functional and environmental changes realized after application com-

pile time during its deployment or startup. Some examples of specialization mech-

anisms provided by configurable middleware include CORBA portable intercep-

tors [84], optional command-line parameters, for example, to set socket buffer-size,

and configuration files such as ORBacus configuration file (www.orbacus.com).

II.2.2.2 Just-in-time (JIT) Specialization

Just-in-time (JIT) or Dynamic specialization occurs at run time by identifying the re-

quirements of the running application and customizing the middleware according to the

application needs. It can be further classified into tunable and mutable middleware.

• Tunable Specialization enables adapting the middleware after the application startup

time but before the application is actually being used. Doing so enables an admin-

istrator to fine-tune the application in response to the functional and environmental

19

www.orbacus.com

changes that occur after the application is started. Examples of specialization mech-

anisms provided by tunable middleware are ”two-step” specialization approaches

(including static AOP during compile time and reflection during run time) employed

by David et. al [27] and Yang et. al [139], the component configurator pattern [112]

used in DynamicTAO [67], and the virtual component pattern [24] used in TAO and

ZEN middleware.

• Mutable Specialization is the most powerful type of middleware specialization that

enables adapting an application during run time. This specialization is also called

Adaptive Specialization. Hence, the middleware can be dynamically specialized

while it is being used. The main difference between tunable middleware and mutable

middleware is that in the former, the middleware core remains intact during the tuning

process whereas in the latter there is no concept of fixed middleware core. Therefore,

mutable middleware are more likely to evolve to something completely different and

unexpected. Examples of specialization techniques provided by mutable middleware

are reflection [16], late composition of components [66], and dynamic weaving of

aspects [139].

II.2.3 Paradigms-Dependent Specialization

Numerous advances in programming paradigms have also contributed to middleware

specialization techniques. Although many important contributions have been made in this

area, a review of the literature shows that four paradigms, in addition to object-oriented

paradigm, play key roles in supporting middleware specialization: computational reflec-

tion [19], component-based design [124], aspect-oriented programming [63], and feature-

oriented programming [105].

There are other approaches such as program slicing, partial evaluation, policies, au-

tomatic tuning of configuration parameters that enable customization of system software.

20

However these approaches are more fine-grained in the sense that they are used to manipu-

late, customize and verify the correctness of individual programs. However, each of these

approaches can be utilized through the more coarser-grained approaches that are being

considered in this paper.

II.2.3.1 Computational Reflection

Computational reflection [19] refers to the ability of a program to reason about, and

possibly alter, its own behavior. Reflection enables a system to open up its implementation

details for such analysis without compromising portability or revealing the unnecessary

parts. In other words, reflection exposes a system implementation at a level of abstrac-

tion that hides unnecessary details, but still enables changes to the system behavior [72].

As depicted in Figure 6, a reflective system (represented as base-level objects) has a self

representation (represented as meta-level objects) that is causally connected to the system

meaning that any modifications either to the system or to its representation are reflected in

the other.

Figure 6: A Reflective System with Causally Connected Meta-level

21

The base-level part of a system deals with the normal (functional) aspects of the system

whereas the meta-level part deals with the computation (implementation) aspects of the

system. The meta-level contains the building blocks responsible for supporting reflection.

The elements of the base-level and that of the meta-level are, respectively, represented by

base-level objects and meta-level objects. A meta-object protocol (MOP) [62] is a meta-

level interface that enables systematic (as opposed to ad hoc) inspection and modification

of the base-level objects and abstraction of the implementation details.

A causal connection/interface associates the base-objects with the meta-objects to sup-

port the base/meta objects communication and guarantees that modifications to the meta-

level are reflected into corresponding modifications to the base-level and vice-versa. Re-

cently, reflection has also been studied in middleware, where it enables adapting the behav-

ior of a distributed application by modifying the middleware implementation. Reflective

middleware is often concerned with adapting non-functional aspects of distributed applica-

tions including QoS, performance, security, fault tolerance, and energy management.

Computational reflection is an efficient and simple way of inserting new functionalities

in a reflective middleware. Thus, it is necessary only to know components and interfaces.

The next generation middleware [16, 40] exploits computational reflection to customize

the middleware architecture. Reflection can be used to monitor the middleware internal

(re)configuration [106]. The middleware is divided in two levels: base-level and meta-level.

According to Figure 6, the middleware core is also represented by base-objects and new

functionality is inserted by meta-objects. Figure 7 shows that the meta-level is orthogonal

to the middleware and to the application. This separation allows the specialization of the

middleware via extension of the meta-level.

22

Figure 7: Reflective Middleware

II.2.3.2 Aspect Oriented Programming (AOP) Techniques

Kiczales et al. [63] realized that complex programs are composed of different inter-

vened crosscutting concerns (properties or areas of interest such as QoS, energy consump-

tion, fault tolerance, and security). While object-oriented programming abstracts out com-

monalities among classes in an inheritance tree, crosscutting concerns are still scattered

among different classes thereby complicating the development and maintenance of appli-

cations.

AOP [63] applies the principle of “separation of concerns” (SoC) [99] during develop-

ment time in order to simplify the complexity of large systems. Later, during compile or

run time, an aspect weaver can be used to weave different aspects of the program together

to form a program with new behavior. AOP proponents argue that disentangling the cross-

cutting concerns leads to simpler development, maintenance, and evolution of software.

Naturally, these benefits are important to middleware specialization. Moreover, AOP en-

ables factorization and separation of crosscutting concerns from the middleware core [119],

which promotes reuse of crosscutting code and facilitates specialization.

In the context of middleware, we refer to AOP approaches as existing software plat-

forms that expose hooks for applications using these platforms, to adapt, alter, modify, or

23

extend the normal execution flow of a service requested. Non-functional features (moni-

toring code, logging, security checks, etc.) can be transparently woven into the middle-

ware code paths or unnecessary features can be pruned through bypassing code paths or

middleware layers. In that sense, the CORBA portable interceptor (PI) mechanisms, al-

though not explicitly positioned as an aspect-oriented approach, belong to this category.

Using AOP, customized versions of middleware can be generated for application-specific

domains. Yang et al. [139] and David et al. [27] both provide a two-step approach to dy-

namic weaving of aspects in the context of middleware specialization using a static AOP

weaver during compile time and reflection during run time. Other recent examples ex-

plicitly positioning themselves as aspect-oriented approaches are the JBoss AOP approach

(www.jboss.org) and the Spring AOP approach (www.springframework.org).

II.2.3.3 Component-Based Design (CBD) Techniques

Software components are software units that can be independently produced, deployed,

and composed by third parties [124]. Components are self-contained: components clearly

specify what they require and what they provide. CBD supports the large scale reuse of

software by enabling assembly of commodity-off-the-shelf (COTS) components from a va-

riety of vendors. The independent deployment of components enables late composition

(also referred to as late binding), which is essential for adaptive systems. Late composi-

tion provides coupling of two compatible components at run time through a well-defined

interface. A system developed using CBD is an amalgam of components that can be reorga-

nized easily. When applied to middleware, CBD provides a flexible and extensible system.

Specially, a middleware can be customized to specific application domains, through the

integration of domain-specific components, and can evolve using third-party components.

Moreover, component-based middleware can be dynamically adapted to its environment

using late composition. Examples of major component-based middleware solutions are

DCOM [79] (discussed earlier), EJB [28], and CCM [12].

24

www.jboss.org
www.springframework.org

Enterprise Java Beans (EJB) is a middleware component model for Java proposed by

Sun Microsystems that enables Java developers to use off-the-shelf Java components, or

beans. Since EJB is built on top of Java technology, EJB components can only be imple-

mented using the Java language, however. The EJB component model supports specializa-

tion by automatically supporting services such as transactions and security for distributed

applications. The CORBA Component Model (CCM) is a distributed component model

proposed by OMG that can be considered as a cross-platform, cross-language superset of

EJB. CCM supports specialization by enabling injection of adaptive code into component

containers (i.e., the component themselves remain intact).

II.2.3.4 Model-Driven Engineering (MDE) Techniques

MDE is an emerging paradigm that integrates model-based software development tech-

niques (including Model-Driven Development [111] and the OMG’s Model Driven Archi-

tecture) with QoS-enabled component middleware to help resolve key software develop-

ment and validation challenges encountered by developers of large-scale distributed, real-

time and embedded (DRE) middleware and applications. In particular, MDE tools can be

used to specify requirements, compose DRE applications and their supporting infrastruc-

ture from the appropriate set of middleware components, synthesize the metadata, collect

data from application runs, and analyze the collected data to re-synthesize the required

metadata. These activities can be performed in a cyclic fashion until the QoS constraints

are satisfied end-to-end.

Conventional middleware architectures suffer from insufficient module-level reusabil-

ity and the ability to adapt in the face of functionality evolution and diversification. As

reported in [142], ”intrinsic” and ”extrinsic” properties interact non-modularly in con-

ventional middleware architectures. Consequently, middleware architects are faced with

immense architectural complexities because the concern density per module is high. The

code-level reusability of the ”common abstractions” is also drastically reduced because

25

the generality of intrinsic components is restricted by the ”extrinsic” properties in the face

of domain variations. A contributing factor to this complexity, is that the code-level de-

sign reusability in conventional middleware architectures is incapable of adequately deal-

ing with ”change” in two dimensions: time (functional evolution) and space (functional

diversification).

The reusability in conventionally developed software components is insufficient due

to the lack of explicit means to effectively distinguish intrinsic and extrinsic architectural

elements. Conventional middleware architectures also lack effective means to reuse ”ex-

trinsic” properties, especially ones that are crosscutting [63] in nature, i.e., not localized

within modular boundaries. Conventional architectures have fallen short of doing so be-

cause they are incapable of componentizing and reusing crosscutting concerns as analyzed

in [140]. Being able to componentize and to reuse these functionalities tremendously fa-

cilitates the construction of middleware systems. To tackle the aforementioned problems,

Zhang et. al. [142] propose a new architectural paradigm called Modelware which embod-

ies the ”multi-viewpoints” [83] approach.

II.3 Assessment of Modularization Techniques for Middleware Specialization

In this section we use our taxonomy to assess the strengths and weaknesses of various

modularization approaches used for specializing middleware. We then develop a frame-

work for systematic and automated middleware specialization that provides guidelines for

middleware application developers to reason about, optimize, customize and tune the mid-

dleware according to their domain-specific requirements.

II.3.1 Qualitative Evaluation of the Middleware Specialization Taxonomy

In the following we use a combination of artifacts of individual dimensions of our

taxonomy to assess the pros and cons of various modularization techniques when applied

to middleware specialization.

26

Table 1 summarizes our assessment of different modularization techniques. We briefly

discuss below each paradigm with respect to the lifetime dimension of the taxonomy

a. Pre-postulated Specializations: FOP, AOP and MDE are widely used at design-time

and compile-time respectively to perform feature augmentation and pruning. Although

feature modules – the main abstraction mechanisms of FOP – perform well in imple-

menting large-scale software building blocks, they are incapable of modularizing certain

kinds of crosscutting concerns [5]. This weakness is the strength of aspects. Caesar

[77], AFMs [5] combine FOP with AOP to overcome the shortcomings of “purely hier-

archial” feature specifications in FOP. However, reflection has limited application during

the pre-postulated phases except during deployment it could be used to inspect the target

platform features before the application is deployed.

b. Just-in-time Specializations: AOP has few use cases at just-in-time where dynamic

weaving of feature aspects could be set up with the help of native compile-time platform

support, such as Java Virtual Machine (JVM) [103]. JAsCo [130] is an adaptive AOP

language used to specialize Web Services implementations [132] whereas PROSE [82]

and Abacus [141] are just-in-time aspect-based middleware. Beyond design-time, MDE

cannot be applied since it relies mainly on predetermined system feature requirements.

However, it can configure dynamic augmentation or pruning of features at run-time. Re-

cently models at run-time has been used for self-healing systems. The principles from

those domains need to be applied for specializing middleware dynamically based on

models. Computational reflection can be used to support the runtime introspection of

the application and perform dynamic augmentation and pruning of features to adapt its

internal implementation and reconfigure itself depending upon the dynamic conditions

prevalent at run-time. However, This enables support for more powerful dynamic spe-

cializations which are useful for power and resource management, and dynamic adapta-

tion as in wireless sensor networks, embedded systems, etc.

27

II.3.2 Guidelines for Middleware Specialization

We now provide guidelines for middleware specialization using our taxonomy. We use

the lifecycle dimension as the dominant dimension since it imparts a systematic ordering to

the process of performing middleware specialization. We believe the guidelines can apply

to any systems software, such as an operating system, web server or a database management

system.

a. Development-time specializations: During development-time the middleware devel-

oper can program the application code with features that need to be loaded at initialization-

time and features that can be swapped in/out at run-time through strategies. MDE and

AOP based techniques are more effective to program development-time specializations.

In this phase, feature-augmentation should be the goal.

b. Compile-time specializations: Compile-time specializations can be used to transpar-

ently weave-in (augment) or weave-out (prune) features code. AOP is the key enabler

for performing compile-time specializations.

c. Deployment-time specializations: Deployment-time specializations mainly address tar-

get platform-specific concerns such as type of data transport, database drivers, etc. The

middleware features are matched to make optimal use of the underlying platform fea-

ture constraints. Special tools which perform the task of setting up the deployment can

use reflection to query the platform features and use AOP to transparently change the

underlying bindings or supply the required configuration parameters when launching ap-

plications.

d. Initialization-time specializations: Feature configuration is performed at initialization-

time using the configuration parameters that are pre-programmed either at development-

time and/or compile-time or supplied during the application startup-time.

e. Run-time specializations: At run-time, features can be swapped in or out using either

reflection or dynamic aspect weaving depending upon the conditions prevalent after the

28

application is executing. However, too much dynamism can lead to unpredictable appli-

cation behavior leading to unstable specializations that are difficult to verify for safety

criticality and correctness. To benefit from mutable middleware, we should harness its

power using techniques such as safe specialization. So most of the dynamic feature

swapping needs to be statically programmed before hand.

f. Integrated specializations: Since no single modularization technique can specialize

middleware over all phases of the application lifetime, multiple techniques need to be ap-

plied and validated in unison starting with MDE and AOP at pre-postulated time whereas

computational reflection at just-in-time. It is important to restrict feature changes at run-

time that conflict with the design-time feature configurations. Applying overlapping

specializations may cause inconsistencies in the applications. This is the same problem

as the feature interaction problem in pattern recognition that needs to be addressed in

middleware specialization also. Inconsistency can be caused when FOP, AOP or MDE

augments a dependent feature set during pre-postulated phases but reflection prunes one

of the features from the set during just-in-time phases which may lead to unpredictable

runtime behavior and failures. Inconsistencies can also occur within the same life-time

phase. Hence, tools and techniques are needed to validate specializations when multiple

customization techniques are applied in tandem not only within a phase but across entire

application lifetime.

g. Optimal specializations: Finally specialization tools should not only validate but also

optimize various feature changes so that they are not only consistent but satisfy the qual-

ity of service (QoS) requirements of the applications.

II.4 Discussion

Adaptive middleware specialization is still an ongoing research that requires more work

in the following areas. First, domain-specific middleware services requires serious atten-

tion as specialization approaches tend to be addressing domain problems. Several projects

29

have successfully provided common-services in middleware. To enable reuse and separa-

tion of concern in each specific application-domain, however, domain-specific middleware

services should also be widely available. Second, mutable middleware specialization pro-

vides a powerful and at the same time dangerous dynamic specializations that are more

likely than other types of middleware specializations to turn an application into something

totally different and unexpected. This can be confirmed from the Table 1 that a very few ap-

proaches employ mutable specialization. To benefit from mutable middleware, we should

harness its power by techniques such as safe specialization. Third, applying overlapping

specializations to a distributed application may cause inconsistency in the application. This

is the same problem as feature interaction problem in pattern recognition that needs to be

addressed in middleware specialization also. Finally, we realized that there is no one mid-

dleware specialization solution that can suit all distributed applications. There are a few

new areas such as context-aware middleware and publish-subscribe (pub-sub) middleware

that could benefit a lot from the various specialization techniques. While there is ongoing

research, there is still substantial amount of work to be done in order to achieve the benefits

of specialization.

Finding an optimized and adaptive middleware specialization solution using current

state-of-the-practice middleware specialization approaches is not an easy task. A devel-

oper needs to know all available middleware approaches and should spend a lot of time

and money to find the optimized solution. Developing tools, techniques and high-level

paradigms that assist a developer in this tedious process is a useful research area that pro-

motes development of adaptive software. Inventing domain-specific specialization pattern

languages can serve as guidelines for the synthesis of such tools.

Based on the insights gained from the taxonomy of middleware specializations, we have

come up with an automated middleware specializations process in the next chapter.

30

Table 1: Evaluation of the Combinations of Dimensions

COMBINATIONS USE CASES STRENGTHS WEAKNESSES RELATED WORK
Pre-

postulated +
AOP

Weave/Prune at
compile-time

Transparency
without
affecting core

Code Bloating FACET, CLA,
FOCUS, Bypassing

Layers,
AspectOpenORB

Pre-
postulated +

MDE

Weave/Prune
only known
features

Elegant design Runtime
specializations
not possible

DTO, CLA,
Modelware

Pre-
postulated +
Reflection

Inspect target
platform
features

Useful during
deployment

Difficult to
predict runtime
conditions

AspectOpenORB,
DTO

Just-in-time
+ AOP

Dynamic
weaving of
features

Dynamic
Adaptation

Requires native
platform support

JAsCo, PROSE,
Abacus

Just-in-time
+ MDE

Self-healing
systems

Validation of
Specializations

Incur runtime
overhead

Models@Runtime

Just-in-time
+ Reflection

Introspect
runtime
application
features

Dynamic
Adaptation
reconfiguration

Can cause
unpredictable
behavior

AspectOpenORB

AOP + FOP ISD and SPLs Better
modularization
of crosscutting
features

Runtime
specializations
not possible,
cause conflicts

AFMs, Caesar

FOP + MDE SPLs Better
composition of
features

Runtime
specializations
not possible,
cause conflicts

FOMDD [129]

AOP +
Reflection

Composition
based on
application
requirements

On-demand
feature
weaving

May cause
conflicts

AspectOpenORB

AOP + MDE
+ FOP +

Reflection

De-
sign/Weave/Prune
valid features
combinations

Systematic,
correct
specialization
process

Safe
specializations is
challenging

Research Needed

31

CHAPTER III

THE AUTOMATED MIDDLEWARE SPECIALIZATION PROCESS

This section presents the automated and generative middleware specialization lifecy-

cle and the resulting framework for middleware specialization using generative, reverse

engineering and AOP techniques. We assume that middleware developers develop mod-

ule code bottom-up based on a design template and subsequently create the corresponding

build configurations for their modules through mechanisms, such as Makefiles or Visual

Studio Project files. We identify the requirements for an automated solution based on the

taxonomy we developed in the previous chapter.

III.1 Unresolved Challenges

Since the requirements desired by the application are bound to change over the appli-

cation lifecycle, the need for an extensible and portable automated specialization approach

becomes even more apparent. Current specialization techniques do not provide a auto-

mated, generic, reusable, extensible and systematic mechanism for refining existing, and

accommodating new specializations, as well as accounting for different middleware plat-

forms. This dissertation research has identified a middleware specialization lifecycle (as

show in figure 8) in the form of six key steps involved in providing an automated middle-

ware specialization solution - 1) Specification of specialization concerns, 2) Deduction of

specialization context, 3) Mapping of concerns to code artifacts, 4) Generation of special-

ization transformations 5) Transformation of the code artifacts and, 6) Composition and

Configuration of specialized middleware forms. Some of the key research issues encom-

passing these specialization lifecycle steps include:

However, automating middleware specializations for DRE applications with stringent

32

Figure 8: The Middleware Specialization Lifecycle

QoS requirements is a hard problem, which requires resolution of several research chal-

lenges described next. The research challenges in specializing middleware for DRE sys-

tems are encountered in all the stages of development lifecycle.

Detecting the system invariants manually on a case-by-case basis is infeasible, not to

mention the subsequent manual efforts at specializing the middleware for each of the sys-

tem under consideration. Many questions arise if automation is desired: How are the sys-

tems invariants to be identified automatically? Once these invariants are identified, how are

they mapped to the underlying middleware-specific features that will indicate what parts

of the middleware must be pruned and how the rest of the middleware be optimized? This

problem is hard given that domain concerns crosscut class hierarchies of middleware de-

sign, and because system properties become invariant in different phases of the system

lifecycle. For example, structural composition is often invariant after the design phase and

remains so over the remainder of the application lifecycle. Similarly, the configuration and

33

deployment properties are invariant after the deployment and configuration decisions are

made, however, they may vary on a per-deployment basis. We present the key requirements

of an automated solution to middleware specialization.

III.1.1 Challenge 1: Inference of the Middleware Features

There is a general lack of reasoning methodologies that help inferring the middleware

features directly from the requirements specifications by the application developers. There

are techniques that help infer application features but they are not systematic and are com-

pletely manual. What is required is a reasoning methodology that is semi-automated and

requires only a few higher-level features to automatically infer the lower-level features.

Moreover, there is a need for a systematic and automated process that not only gives a

standard way of requirements and feature reasoning but also scopes down the space of re-

quirements to that only provided by the middleware. Such a reasoning process should help

reason the application requirements in terms of middleware features which will further

enable simplifying the specialization process.

III.1.2 Challenge 2: Determination of the Specialization Context

We define specialization context as the intent that drives the specialization process.

Deriving the specialization context relies on detecting the system invariants [75], which

become known over the application lifecycle stages. Examples of system invariants in-

clude periodic invocations such as timeouts that provide status updates in publish-subscribe

communication paradigms, readonly operations, single interface operations that always get

dispatched to the same server-side handlers, state synchronization tasks in stateful group

failover [126]. Thus, in order to discover the specialization context, it is important to iden-

tify the invariant system properties from these high-level system models. However, the

current state of art still relies on manual identification of the specialization context from

the application composition, configuration and deployment models [68].

34

III.1.3 Challenge 3: Inferring the Specializations from the Specialization Context

DRE system developers must be able to map the specialization context to one or more

known patterns of specialization. To eliminate the existing manual and non-scientific ap-

proaches, Inferring the set of specializations will require a repository of specialization pat-

terns that can be queried using the context, which then returns a set of specializations

applicable in that context. Such a repository must be extensible to include new patterns as

they are discovered.

III.1.4 Challenge 4: Identifying the Specialization Points within the Middleware

The inferred patterns of specialization manifest at a higher level of abstraction than the

level of middleware source code that actually must be transformed. Thus, there is a need

to identify the collection of Specialization Points, which are regions of code within the

middleware where specialization patterns will apply [63]. Although it is important to rely

on patterns of specializations, such patterns are described at a higher level of abstraction

than the level of middleware source code that actually gets transformed as an outcome of

specialization. Thus, there is a need to identify the collection of specialization points within

the middleware where specialization patterns can apply. The notion of a specialization

Point is akin to that defined by AOP [63].

III.1.5 Challenge 5: Generating the Specialization Transformations

Although the specialization points are determined, the exact nature of the transforma-

tion to be carried out at those points corresponding to the specialization patterns must be

specified as a set of transformations, which we call Specialization Advice. Currently, these

transformation rules are manually developed [68] which is a tedious task that requires de-

tailed knowledge of the middleware implementation architecture and can cause undesirable

side effects within the middleware if developed incorrectly. Moreover, the maintenance of

35

these rules as the middleware frameworks and their respective sources evolve with chang-

ing application requirements.

III.1.6 Challenge 6: Executing the Specialization Transformations on Middleware

Source

Once the specialization points are determined, the final step is applying the set of

specialization techniques, which essentially are specialization advice, on the middleware

source code so that the code paths are transformed and the code is optimized to reflect the

intended specializations. Applying the advice requires a staging of backend tools, such as

AspectJ and AspectC++, specific to the programming language in which the middleware

is developed, or language-agnostic tools, such as Perl. Naturally, the manifestation of a

specialization advice is specific to the programming language in which the middleware is

developed. Examples include AspectJ or AspectC++ advice, or Perl expressions.

III.2 Process Overview

Figure 9 illustrates the automated middleware specialization process and we briefly

describe the steps of the process below:

1.Feature Mapping Wizard - The application developer starts the middleware specializa-

tion wizard and begins describing the characteristics of the application to be developed

specifying the PIM application, domain-level concerns needed for the application variant.

The Feature Mapping wizard maps the PIM application domain-level concerns to PIM

middleware features. The wizard asks questions about the configuration requirements

and options of the application for which middleware is to be developed. The selected

features are also configured along the way as they are selected for composition. The PLE

developer response determines the next question that will be asked.

2.Deduce Invariants - application invariants provide the specialization context to drive the

specializations. The invariants are detected by parsing the system models through model

36

Selected

Specializations

FOCUS

Scripting

Engine

Specialized

Middleware

Sources

Pruned

MPC Files

Compiler

Deduce

Invariants

Infer

Specializations

System

Invariants

Feature

Specification

Wizard

Domain-

to-PIM

Mapping

Domain

Features

1

PIM-to-PSM

Mapping

2

Infer

Features

Closure SetsClosure SetsFeature

Implementations

Feature

Definitions

Transformation

Generator

Source

Inspection

Engine

Specialization

Algorithms

SN

DB

Intuitive System Modeling

Structural

Models

QoS

Models

Deployment

Models

Closure

Computation

Algorithm

Specialization

Transformations

Specialized

Middleware

Binaries

5

4

3b

3a

Pruned

Middleware

Feature Model

6

Figure 9: The Automated Middleware Specialization Process

interpreters. Invariants are application properties which maybe structural or configura-

tion or deployment that don’t change over the application use case. The fact that these

invariants don’t change leads us to believe that the middleware control path used by their

implementations gets executed repeatedly.

3.Infer Features - Once the pruned PIM middleware feature set is obtained from the

wizard, it is then mapped to the actual PSM middleware features that implement the indi-

vidual PIM features using the PIM-PSM mappings that are provided by the middleware

developer.

Extracted Features \bullet PIM-PSM Mapping = Source Feature Definitions

4.Infer Specializations - Once the specialization invariants are determined, they are looked

up in the specialization knowledge base - SP-KBASE to determine the specializations

37

that are applicable. The specializations are then ordered according to the dependencies

specified in the SP-KBASE.

5.Transformation Generator - The transformation generator includes a source inspection

engine that parses the middleware source code and modularizes it into code blocks which

indirectly help identify the specialization points. The generator specializes the middle-

ware frameworks based on the inferred invariant features by removing all the framework

indirections and hardcoding the use of that feature directly.

6.Closure Computation: Once the hints are obtained, they are used to create closure sets

using an algorithm that systematically composes the source code and files that are asso-

ciated with each feature into a feature module (FM). The closure sets are essentially all

the dependencies that are gathered by the tool.

7.Specialized Middleware Synthesis: The build configuration is specialized by adding

source files from individual closure sets of feature modules to the build descriptor thereby

generating the build configuration file, such as a Makefile. For our evaluations, the pro-

cess generates the Make Project Creator (MPC) [38] build configuration file. This MPC

file represents the part of the specialized middleware that is to be built for the application

variant. The generated MPC file is then used to create PSM Makefiles by running the

MPC-supplied perl-based scripts. The platform-specific Makefiles are then used to for

compilation of the specialized middleware for the application component or entire appli-

cation variant. Thus multiple middleware forms may be synthesized depending upon the

whether they were compiled for for the entire application or individual components.

Notice that this process is entirely repeatable and reusable. A repository of require-

ments for application variants can be maintained. There is no need to maintain the cus-

tomized versions of the middleware since it can be synthesized through this process on

demand. In the next two chapters we focus on some of the important building blocks of

specialization process.

38

CHAPTER IV

FEATURE-ORIENTED REASONING TECHNIQUES TO DRIVE THE
MIDDLEWARE SPECIALIZATIONS

The previous chapter realized a taxonomy for categorizing contemporary middleware

specialization research. The taxonomy lead insights in developing a multi-stage middle-

ware specialization lifecycle. However, realizing each of the stages of the specializing

lifecycle is a tedious process which requires reasoning about the applications to discover

opportunities for specializing middleware.

This chapter addresses the first challenge outlined in Section I.2 Ű feature-oriented

reasoning to drive middleware specializations. First, an overview of the existing research in

the field of specification and reasoning techniques is presented. Second, a list of challenges

that are still unresolved is presented. Finally, a solution approach is presented that provides

a feature oriented reasoning technique for determining the middleware feature requirements

and an automated deduction technique for identifying the application invariants that provide

the specialization context.

IV.1 Related Research

We survey and organize related work along two different dimensions: forward engi-

neering and reverse engineering, and the techniques they use to realize these processes.

IV.1.1 Forward Engineering Approaches

IV.1.1.1 Feature-oriented programming (FOP) for feature module construction

Current PLE research is supported primarily through feature-oriented programming

(FOP) techniques as advocated by AHEAD [11], CIDE [60], and FOMDD [129]. These

39

approaches are based on processes that annotate features in source code and compose fea-

ture modules that are essentially fragments of classes and their collaborations that belong to

a feature. Being forward engineering techniques that they rely on clear identification of fea-

tures, their dependencies and their interactions right from the requirements gathering stage

of the PLE software lifecycle. Some efforts in this direction stem from the identification of

feature interactions, their dependencies, granularity and their scope [5].

The reasoning process presented in this dissertation research encompasses the AHEAD

and CIDE FOP methodologies by leveraging reverse engineering to enable automatic iden-

tification of features and their dependencies and composing only the features that directly

serve the domain concerns of the application variant application. However both approaches

rely on manual identification of features in legacy source code and manual definition of

composition rules. Closure computation can be potentially extended by integrating both

AHEAD and CIDE based FOP approaches to support fine-grained composition of feature

modules.

IV.1.1.2 Addressing the spatial disparity between OO design and domain concerns

Both aspect-oriented programming (AOP) and feature-oriented programming (FOP)

have been used extensively for specializing systems by addressing the disconnect between

the vertical decomposition of OO design and horizontal decomposition of domain concerns.

For example, Lohmann et. al. [70] argue that the development of fine-grained and resource-

efficient system software product lines requires a means for separation of concerns [127]

that does not lead to extra overhead in terms of memory and performance which they show

using AspectC++.

The FACET [51] project identifies the core functionality of a middleware framework

and then codifies all additional functionality into separate aspects that represent domain

concerns, which then can be woven into the core middleware. Our work used FOP-based

reverse engineering in a tool called FORMS [26] that prunes unnecessary features from the

40

middleware by deducing the necessary middleware features from high-level application

requirements (i.e., domain concerns).

IV.1.1.3 Specialization in temporally distinct phases of application lifecycle

The Modelware [142] methodology adopts both the model-driven engineering (MDE) [111]

and AOP. The authors use the modeling views – intrinsic to characterize middleware archi-

tectural elements that are essential, invariant, and repeatedly used despite the variations in

the application domains, and extrinsic to denote elements that are vulnerable to refinements

or can become optional when the application domains change. Edicts [22] is an approach

that shows how optimizations are also feasible at other application lifecycle stages, such

as deployment- and run-time. Just-in-time middleware customization [141] shows how

middleware can be customized after application characteristics are known.

Polze et. al., [102] propose a framework that uses design-time and configuration-time

information for automatic distributed, replicated instantiation of components. The require-

ments are specified declaratively using a graphical textual interface. The proposed aspect

weaver needs to combine fault-tolerance, timing, and consensus aspects at or before run-

time. However, the details of AOP mechanisms that compose multiple, possibly overlap-

ping, non-functional aspects is not discussed.

IV.1.1.4 Combining modeling and aspects for refinement

The Modelware [142] methodology adopts both the model-driven architecture (MDA) [87]

and AOP. Borrowing terms from subject-oriented programming [47], the authors use the

term intrinsic to characterize middleware architectural elements that are essential, invari-

ant, and repeatedly used despite the variations in the application domains. They use the

term extrinsic to denote elements that are vulnerable to refinements or can become optional

when the application domains change.

Modelware advocates the use of models and views to separate intrinsic functionalities

41

of middleware from extrinsic ones. Modelware considerably reduces coding efforts in sup-

porting the functional evolution of middleware along different application domains. These

are mainly forward engineering approaches that are dependent upon an efficient design

process. However, most of the existing general purpose middleware has already been de-

veloped and there is a need to facilitate its specialization for domain-specific use through

top-down reverse engineering approaches like FORMS.

Moreover, both FACET and Modelware being forward engineering approaches there is

no automatic solution to manually annotating features and identification of cross-cutting

concerns and modularizing them.

IV.1.2 Reverse Engineering Approaches

IV.1.2.1 Design Pattern Mining from source

Substantial research has been conducted on discovering design and architectural pat-

terns from source code [32]. However, most such techniques are informal and therefore

lead to ambiguity, imprecision and misunderstanding, and can yield substandard results

due to the variations in pattern implementations. In order to specialize middleware such

design pattern mining techniques need to be well supported by round-tripping techniques

provided by our methodology that will enable any specializations at design level to re-

flect back into the source code. We are investigating the application of such techniques to

automate feature annotation in source code.

Since forward engineering techniques focus on feature identification, static, and dy-

namic composition, they rely on strong modular boundaries. However, reverse engineering

approaches like source code analysis which is the base of FORMS can prove to be bene-

ficial to identifying features that span module boundaries and identifying discrepancies in

the intended logical design of the middleware and their physical implementations.

42

IV.2 Unresolved Challenges

IV.2.1 Challenge 1: Identifying Opportunities to Drive Middleware Specializations

The higher-level application composition, QoS configuration and deployment models

provide opportunities for detection of the specialization context which is used to determine

and drive the specializations and optimizations that can be performed within the middle-

ware. The application models of composition, QoS configurations and deployment specify

the performance constraints such as response-time, throughput, timeliness and reliability

that are placed on individual application components, their connections as well as the end-

to-end workflows of components (known as component assemblies). Similarly by interpret-

ing the QoS configurations it is possible to determine in advance what features from the

underlying middleware will be utilized by the component applications. Additionally, the

deployment of the application assembly can also provide useful hints for optimization from

how individual components are mapped to machines, whether they are collocated, what

kind of platform bindings, protocols, endianness they use, etc. Thus in order to discover

the specialization context, it is important to identify the invariant system properties [75]

from these high-level system models.

However, existing specialization techniques don’t examine the application composition,

configurations and interactions to deduce the repetitive and redundant tasks performed by

the application. The application context that represents these repetitive tasks manifests it-

self in terms of periodic invocations such as timeouts that provide status updates in publish-

subscribe communication paradigms, readonly operations, single interface operations that

always get dispatched to the same server-side handlers, state synchronization tasks in state-

ful group failover [126]. Such repetitive that can be potentially sped up by optimizing the

underlying middleware through caching [68], bypassing middleware layers [29], or fusion

of layers [68], etc. to eliminate redundant processing at each middleware layer.

Moreover, the automatic detection of the specialization context also reduces the need

43

for a dedicated modeling annotation language to identify the context within the applica-

tion models. Most coarse grained contexts can be detected automatically by examining the

modeling structure and attributes but finer-grained contexts may need explicit identifica-

tion. After automating the tedious task of identification of the middleware specialization

context, the DRE system developer will still need to determine what specializations are

applicable for a particular context. Current techniques of determining this mapping are still

manual [68].

IV.3 Feature Oriented Reasoning

IV.3.1 Feature Mapping Wizard

In the development process, the automated specialization process’s role is applicable

in the packaging and assembly phases where the PLE application variants along with the

hosting middleware is configured and packaged. The requirements reasoning wizard per-

forms the difficult job of mapping the PIM application domain concerns to PIM middleware

features. Domain concerns describe the characteristics of the application being developed.

These characteristics may include functional concerns as well as non-functional (QoS) con-

cerns. Functional concerns describe the way a particular application/application behaves,

and its configuration. Non-functional concerns usually describe the way a application is

supposed to perform which includes dimensions of concurrency, usually describe the way

a application is supposed to perform which includes

Normally, domain concerns and middleware features manifest themselves into separate

hierarchial representations. Therefore, a mapping is required to transform domain concern

hierarchies to middleware feature hierarchial models. In order to create a systematic map-

ping, this wizard makes use of model transformations to navigate through the concern and

feature hierarchies. Interestingly, both the functional and non-functional concerns can map

within the same middleware feature model. The higher-level features in the decision tree

44

represent the functional concerns and since the lower-level features configure the higher-

level features, they represent the non-functional concerns.

Figure 10: Middleware PIM Feature Model

Feature models of the general-purpose middleware as shown in Figure 10 tend to be

very complex and huge making it very cumbersome to analyze for modularity. Fortunately,

the feature sets for application variants are limited, which makes the mapping of concerns

tangible within the middleware feature set. This helps us map known domain concerns to

the middleware features in advance resulting in a m : n correspondence between the domain

concern model and middleware feature model. Thus, based on the domain concern model,

the middleware feature model needs to be pruned to remove the unwanted features that

do not map to the domain concerns. This is done through the feature model interpreters

provided by the process.

The feature mapping wizard traverses an internal decision tree as shown in figure 11

to ask different questions to the application developer to infer the application variant char-

acteristics. These characteristics include distribution features, such as client/server; con-

currency features, such as single/multi-threaded, in that order. It asks questions ranging

from coarse-grained ones like whether the application variant is client-server or peer-to-

peer, to fine-grained questions like what kind of thread-spawning strategy is desired. Each

45

Figure 11: Decision Tree used by the Feature Mapper Wizard

coarse-grained answer scopes down the application characteristics based upon which the

next fine-grained questions are asked that configure the application behavior.

After performing this mapping, a pruned PIM middleware feature set is generated that

is mapped to the PSM middleware feature definitions through the transformations. We

assume that the mapping of PSM middleware features to their PSM feature definitions i.e.,

source code, is already performed a priori by the middleware developer at design time

thus enabling us to directly determine the PSM source code that implements the PSM

middleware feature set. The wizard outputs the PSM source code hints that act as the

starting point of the closure computation algorithm.

46

IV.3.2 Deducing the Specialization Context from System Models

Approach System invariant properties provide an indication of what features from the un-

derlying middleware will be utilized by the applications. Since system invariant proper-

ties become evident only with every successive phase of application lifecycle, we classify

the system invariants as (1) structural invariants, which are obtained from the structural

composition of the system; (2) configuration invariants, which are obtained from the QoS

configuration parameters selected for the middleware hosting platforms that specify the

performance constraints. These constraints include latency, throughput, timeliness and re-

liability that are placed on individual application components, and their connections as

well as the end-to-end workflows of components (known as component assemblies); and

(3) deployment invariants, which are obtained from the resource allocations including the

mapping of application software components to processors, platform bindings, endianness,

languages, compilers, and collocation of different application software components.

An approach to identifying these invariants is through model interpreters that traverse

the application models and establish the specialization context. Such a step eliminates the

need for dedicated modeling annotations to identify the context within the application mod-

els. Most coarse-grained contexts can be detected automatically by examining the modeling

structure and attributes but finer-grained contexts may need explicit identification.

Implementation We have developed a model interpreter that traverses the system models

to detect the invariants that provide the specialization context. The interpreter makes use of

well-defined matching patterns that were specifically developed for the PICML component-

based DRE system modeling language [10] to ease the traversal to specific granularity lev-

els (assembly, component, connection, port, interface, methods, parameters, config proper-

ties, etc) of the system model. The interpreter proceeds by starting from the highest level

of granularity (assembly) to the lowest (parameters, configuration properties). Once it dis-

covers the invariants, it gathers the configuration data associated with them that will be

further used to deduce the specialization context. The interpreter maintains an extensible

47

catalog of these matching expressions that can be predefined by the model developer and if

necessary can be further extended to accommodate the discovery of newer invariants.

IV.3.3 Inferring Specializations from Specialization Context

Approach Depending upon where they occur in the application model, the invariants that

form the specialization context have certain semantics that implicitly determine the spe-

cializations that can be performed. For instance, application invariants such as repetitive

tasks can provide a different specialization context based on the semantics they have, e.g.,

periodic tasks can manifest in terms of periodic invocations that have synchronous request-

response semantics which provide opportunities to optimize the redundant processing along

the middleware call processing path. Since the specialization contexts map to different pat-

terns of specialization, an extensible repository that can be queried for the right specializa-

tions is needed.

Implementation We have synthesized an extensible and intuitive repository called SP-KBASE,

which serves as a knowledge base and is implemented as a complex multi-dimensional

hashmap that stores the specialization patterns corresponding to the specialization. Note

that a pattern also encodes the ordering in which individual specializations must be exe-

cuted. Such an ordering is useful to the specialization staging algorithm that can correctly

determine the next specialization to be performed. Another important piece of informa-

tion that is stored is the incompatibilities or conflicts with other specializations in terms of

common code paths or features being manipulated by them.

The snippet of SP-KBASE knowledge base shown in Table 2 has been developed based

on the intuition of the middleware developers who have expert-level knowledge of the

middleware design and implementation. The model interpreter from Step 1 parses the

SP-KBASE using the uniquely inferred specialization contexts for each invariant and ob-

tains the set of specializations. It then orders them based on the dependency information

extracted from the dependency fields and emits out an ordered set of specializations that

48

Table 2: SP-KBASE: Extensible Catalog of Specialization Techniques
System Invariants Optimization Principles Specialization Techniques

S1 Periodic Invocations P1, P4 Memoization
S2 Fixed Priorities P1, P4 Aspect Weaving
S3 Homogenous Nodes P1 Constant Propagation
S4 Same Call Handler P1, P4, Memoization + layer-folding
S5 Known Implementation P2 Aspect weaving
S6 Fixed Platform P2 autoconf

System Invariants Specialization Joinpoints Depends On Conflicts
S1 Periodic Invocations Request Creation – S3
S2 Fixed Priorities Concurrency – S5
S3 Homogenous Nodes Demarshaling Checks – S1
S4 Same Call Handler Dispatch Resolution S2 –
S5 Known Implementation Framework Generality – S2
S6 Fixed Platform Deployment Generality S2, S5 –

Table 3: Performance Optimization Principles [131]
Principle Description

P1 Avoid obvious waste
P2 Avoid unnecessary generality
P3 Don’t confuse specification and implementation
P4 Optimize the expected case

are to be performed. It reports the incompatible set of specializations to the end-user or

simply skips them if running in ’silent’ mode.

49

CHAPTER V

AUTOMATED REALIZATION OF MIDDLEWARE SPECIALIZATIONS

The previous chapter developed a reasoning methodology for determining the features

that are desired from the middleware which ultimately pruned the middleware feature set

to only the features that are being directly used. It also presented a automated deduction

methodology for identifying application invariants and inferring the specializations that are

applicable to the specialization context of the detected invariants. However, the difficult

task of the actual realization of the middleware specialization still remains which if per-

formed manually becomes tedious and unproductive for the middleware developer.

This chapter addresses the second challenge outlined in Section I.2 Ű automated re-

alization of middleware specializations. First, an overview of the existing research in the

field of dynamic middleware adaptation techniques is presented. Second, a list of chal-

lenges that are still unresolved is presented. Finally, a solution approach is presented that

provides two automated techniques for generation of specialization transformation direc-

tives and for transformation of the middleware build configurations.

V.1 Related Research

V.1.1 Aspect-oriented programming (AOP) for modularizing crosscutting concerns

AOP provides a novel mechanism to reduce footprint by enabling crosscutting concerns

between software modules to be encapsulated into user selectable aspects. FACET [51]

identifies the core functionality of a middleware framework and then codifies all additional

functionality into separate aspects. To support functionality not found in the base code,

FACET provides a set of features that can be enabled and combined subject to some de-

pendency constraints. By using AOP techniques, the code for each of these features can be

50

weaved at the appropriate place in the base code. However FACET requires manual refac-

toring of the middleware code into fine grained aspects for composition. FORMS does

not require manual refactoring of the middleware code necessitated by the AOP techniques

through its automated detection of features and feature dependencies within middleware

source code.

Alexandersson et al. [4] recognizes the benefits of applying aspect-oriented program-

ming (AOP) techniques to modularize the crosscutting fault-tolerance concerns and also

identifies the limitations of existing AOP languages (e.g. AspectC++ [117]) to do the same.

AspectC++ language is extended to support five fault tolerance mechanisms including re-

covery cache, time redundant execution, recovery blocks, run-time checks, and control-

flow checking. The mechanisms proposed here could be used for incremental checkpoint-

ing to reduce state synchronization overhead.

JReplica [48] uses AOP to modularize the replication aspect of fault-tolerance. JReplica

replication primitives extend the Java language so that modularized fault-tolerance aspects

can be weaved around the classes implementing the business functionality. It ensures that

only the required method invocation paths are intercepted as opposed to all. However this

optimization is not possible while being completely application-transparent.

Afonso et al. [2] propose an AOP-based approach for modularizing fault tolerance code

from threaded applications in distributed embedded systems. Their approach is used to in-

ject fault tolerance at the application thread level and considers several fault tolerant mech-

anisms (e.g., recovery blocks, distributed recovery blocks, and n-version programming).

Although they provide “base” aspect with reusable pointcuts, concrete aspect implementa-

tion must be provided by the application developer.

51

V.1.2 Higher-level abstractions and generative mechanisms

The DADO project [96, 136] has shown how AOP can be used in a software devel-

opment process to bypass the rigid layered processing by extending the middleware plat-

form with new aspect-oriented modeling syntax and code generation tools. The FOCUS

project [68] relies on manual identification of the application invariants, the specialization

context and the specialization points within the middleware source, and manual writing of

scripts to feed into a transformation tool that specializes the middleware sources.

Sevilla et al. [115] propose an aspect-oriented code generation approach for transpar-

ently providing fault-tolerance and load-balancing in CORBA-LC component model. Code

is generated from annotations in higher level graphical models of system composition.

Their technique uses active replication but does not propose any way to deal with non-

determinism. Also, they do not discuss how fault-monitoring, passive replication, state-

synchronization infrastructure can be synthesized and deployed.

Automatic aspect generation is used in [123] to shift method call logging from FT-

CORBA [92] middleware to application level to improve performance. Thread-level syn-

chronization aspects are automatically weaved into the application code from a textual com-

ponent description provided by the developer. Finer granularity of thread synchronization

is shown to improve performance than method-call level synchronization of FT-CORBA.

The CORRECT [13, 21] project describes a project that is looking at applying step-wise

refinement and OMG’s Model Driven Architecture [91] to automatically generate Java code

used in a fault tolerant distributed system. The project uses UML to describe the software

architecture in both a platform-independent and platform-specific form. Model-to-model

transformations are used to incrementally enrich the models with platform-specific artifacts

until the Java skeleton code is generated.

Meta-object protocols (MOP) have been used [108, 125] to introduce fault-tolerance

transparently in dependable systems. Taiani et al. [125] propose a MOP for communication

of context information from middleware to the operating system using thread-local storage

52

(TLS). They exploit the introspection and interception capabilities of the operating system

to coordinate operations on mutex for ensuring determinism on actively replicated multi-

threaded servers.

V.1.3 Limitations in related research

Even if AOP is shown to be effective, it still suffers from the overhead of excessive

memory footprint due to the additional code required for instrumenting the aspects within

the source codes. Moreover, the learning curve required leads to additional complexity in

maintaining and debugging AOP programs. The FACET like AOP approaches additionally

require redesigning and refactoring the traditional middleware into aspects. Our work on

FORMS does not address the vertical decomposition problem in its entirety since it only

accounts for coarser-grained features. As shown later, however, tools like FORMS can be

leveraged to add a systematic process to the higher-level requirements reasoning and to

customize the middleware build configurations.

Although the FOCUS tool itself is reusable, the specializations required manual iden-

tification of opportunities for specialization within the middleware code. Naturally, these

solutions are not maintainable, reusable and extensible, and therefore cannot be easily tran-

sitioned to apply to different middleware and are cumbersome to evolve with the middle-

ware. Similarly, the manual writing of bypass IDL files required by DADO and refactoring

of middleware mandated by FACET hampers reusability.

Modelware demonstrates an interesting approach to specializing middleware, however,

its success hinges on generating the entire middleware code from model artifacts. On the

contrary our work is focused on specializing existing middleware code. The framework

presented in this chapter incorporates the promising ideas from these related research while

maximizing the opportunities for automation and reuse.

53

V.2 Unresolved Challenges

V.2.1 Challenge 1: Reducing Manual Effort in devising Specializations

In order to alleviate the manual efforts of the developers in designing and devising the

middleware specializations, the following steps need to be resolved:

• Identification of the Specializations Points within the Middleware Architecture

- Middleware is usually developed using the layered architectural style where each

layer is composed using reusable components that are organized using sophisticated

frameworks [55]. Each middleware layer therefore provides commonality as well

as variability to the layer above it. While some of the middleware specializations

can be ad-hoc, most of them really end up specializing these frameworks to remove

unwanted commonality by pinning down the variability. These commonalities and

variabilities usually form the source of performance bottlenecks since they comprise

repetitive and redundant processing where the output provided by one layer to the

layer above it does not change.. The variabilities usually manifest themselves into

polymorphic behaviors programmed within the middleware patterns and frameworks

in order to provide additional indirection that enables the required processing strate-

gies to be chosen on-the-fly. Thus if these points are known in advance the addi-

tional indirection due to polymorphism can be eliminated. This requires recognizing

the specialization points within the middleware source code. Current techniques for

doing this involves annotating the source code with special labels/tags that map to

individual specializations. These specialization tags are then need to be processed

by special scripts or tools to transform the middleware code into a optimized code.

Manually inspecting the vast middleware source code for identifying the specializa-

tion points and annotating them is a tedious, time-consuming and cumbersome task

for the middleware developer. Moreover, as the middleware evolves, maintaining the

locations of these specialization points and their semantics becomes an extremely

difficult task.

54

• Realization of Specializations - In order to execute the specializations, the mid-

dleware code first needs to be transformed. The transformation tools require input

transformation directives that are realized using the specialization tags to perform

these source-to-source transformations.These source-to-source transformation direc-

tives can be realized using scripting techniques or advanced programming techniques

like AOP. However, AOP techniques suffer from unbounded quantification which is

not suitable for selectively transforming the middleware source that is to be special-

ized. Moreover, AOP techniques result into code bloating and testing nightmares

for the developer. Additionally, it is tedious and cumbersome to manually write the

complicated source transformation scripts requiring detailed knowledge of the mid-

dleware implementation architecture and can cause undesirable side effects within

the middleware if developed incorrectly. Therefore, there is a need to automatically

generate these transformation scripts correctly.

• Execution of Specializations within the Middleware - To transform the source

code the identification of specialization points becomes crucial. Once the specializa-

tion points are identified, the middleware source needs to be transformed according

to the optimizations programmed by each specialization. In order to execute the

specializations, two steps are involved - transformation and staging. Once the trans-

formation derivatives are realized, they need to be executed on the middleware source

code. Tools need to be built that are able to automatically perform these transforma-

tions. Other alternative is to develop direct source transformation tools that inspect

the sources, find the specialization points and perform the transformations. However

such tools are difficult to implement and cumbersome to maintain. Once a middle-

ware developer identifies the specialization points within the middleware architecture

and the specializations that apply at those points, it is important to ensure that no two

specializations conflict with one another in unpredictable ways. Specializations need

to be compatible with one another at both the logical (architecture design) level as

55

well as physical (source code) level. At the logical level their compatibility can

be checked through architectural constraint checks. However at physical level it is

necessary to ensure that any two specializations that impact same or shared control

flows ensure that correctness is ensured. This becomes difficult to verify since even

if two specializations compatible at logical level can cause conflicts at the physical

level. This incompatibilities need to be captured and codified in a form that is easily

interpretable by specialization staging tools.

V.2.2 Challenge 2: Lack of middleware support for domain-specific recovery seman-

tics

General purpose middleware have limitations in how many diverse domain-specific se-

mantics can they readily support out-of-the-box. Since different application domains may

impose different variations in fault tolerance (or for that matter, other forms of quality

of service) requirements, these semantics cannot be supported out-of-the-box in general-

purpose middleware since they are developed with an aim to be broadly applicable to a

wide range of domains. Developing a proprietary middleware proprietary middleware so-

lution for each application domain is not a viable development and maintenance costs. The

modifications necessary to the middleware are seldom restricted to a small portion of the

middleware. Instead they tend to impact multiple different parts of the middleware. Nat-

urally, a manual approach consumes significant development efforts and requires invasive

and permanent changes to the middleware.

Realizing these capabilities at application level impacts all the lifecycle phases of the

application. First, application developers must modify their interface descriptions specified

in IDL files to specify new types of exceptions, which indicate domain-specific fault con-

ditions. Naturally, with changes in the interfaces, application developers must reprogram

their application to conform to the modified interfaces. Modifying application code to sup-

port failure handling semantics is not scalable as multiple components need to be modified

56

to react to failures and provision failure recovery behavior. Further, such an approach re-

sults in crosscutting of failure handling code with that of the normal behavior across several

component implementation modules.

Resolving this tension requires answering two important questions. First, how can

solutions to domain-specific fault tolerance requirements can be realized while leveraging

low cost, general-purpose middleware without permanently modifying it? An approach

based on aspect-oriented programming (AOP) [63] can be used to modularize the domain-

specific semantics as aspects, which can then be woven into general-purpose middleware

using aspect compilers. This creates specialized forms of general-purpose middleware that

support the domain-imposed properties.

Many such solutions to specialize middleware exist [57, 80], however, these solutions

are often handcrafted, which require a thorough understanding of the middleware design

and implementation. The second question therefore is how can these specializations be

automated to overcome the tedious, error-prone, and expensive manual approaches? Gen-

erative programming [25] offers a promising choice to address this question.

V.3 Automated Realization of Middleware Specializations

V.3.1 Identifying Specialization Points

Approach To identify the specialization points within the middleware we rely on the fact

that most standards-based middleware implementations use frameworks that are based on

well-known design patterns. Therefore it is possible to optimize the frameworks by special-

izing their constituent design patterns. Traditional frameworks and patterns are designed to

be extensible by using indirections and dynamic dispatching through virtual hooks to sup-

port newer features that support newer functionality and processing methodologies. Exam-

ples of such frameworks are mainly transport protocol handlers, request demultiplexing and

concurrency models. Rather than relying on the source code annotation alone to specify

the specialization points, other techniques like code profiling and inspection, and feature

57

identification and composition can also be leveraged. Specialization points for functional

artifacts can be identified by examining the design patterns in the middleware frameworks

whereas the points for the execution threads of control can be identified by examining the

middleware call paths. We leverage well-known optimization patterns (shown in Table 3) to

specialize traditional middleware frameworks. A preliminary catalog identifying the mid-

dleware specialization points and the specialization techniques that apply to these points is

shown in Table 2. We expect this catalog to be extended as new points are discovered.

Implementation To specify the specialization points, we first figure out the source code

files that need to be transformed. The transformation rules only need to manipulate the

source files that are actually implementing the salient framework features. To that end

we have leveraged and extended our previous work, FORMS [26], to figure out the file

dependency structure for the framework/pattern that needs to be specialized. The closure

computation can take the required features as input and compute the closure set of source

file dependencies that are independent of other closures. This gives us the files we need to

process to perform the required source transformations. Based on the predefined set of

We have developed a generic inspection engine that uses source code inspection to

identify the various individual components of a class such as header includes, forward

declarations, scopes, methods, and data members. This pre-processing implicitly helps to

identify the specialization points. Once the pre-processing is done, it provides the necessary

information for the following operations – method removal, class movement, scope section

replacement, checking for already defined methods, checking the order of typedefs and

forward declarations needed for ensuring clean compilations – which form the basis of the

specialization advice the algorithm generates.

58

V.3.2 Generation and Execution of Specialization Advice

Approach Once the specialization points are identified, to specialize the frameworks into

their optimized equivalents, we require rules needed to perform the corresponding source-

to-source transformations on the frameworks sources by using the available tools and

scripts. One way of performing this is to represent these middleware and patterns in terms

of high-level domain-specific architectural models [43]. Then perform model-to-model

(M2M) transformations to convert these models into their optimal equivalents and later per-

form model-to-source (M2S) transformations to produce the optimized source. A drawback

of this approach is the additional burden on the middleware developers to construct these

models and two-level transformations [98]. Another way is to annotate the framework and

pattern source code to identify the specialization points and write source-to-source trans-

formations (S2S) [68]. However it is cumbersome to manually annotate and identify the

design patterns and the corresponding implementing sources.

Algorithm 1 Generic Specialization Advice Generation Algorithm with the Pattern Spe-
cialization Plug-Ins

F : Framework Feature to be specialized/concretized.
M : Middleware Sources
D : Developer specified advice/specialized code
Ms : Specialized subset of Middleware Sources M
Input - F , M, D
Output - Ms (Initially empty)

begin
Fs := FIND all the framework files that contain the usage of the concrete Framework Feature Class f using FORMS
Ps := FIND the pattern implementation files using FORMS
Pd := COLLATE the data necessary for transformation using FORMS and D

{PATTERN SPECIALIZATION PLUG-IN}

REPLACE Base Class occurences with Concrete Class in all framework files Fs
REMOVE the Includes for the Alternative Features from the framework files Fs
REMOVE other Alternative Features from the build configuration using FORMS Ms
end

Implementation In order to avoid these cumbersome techniques, we have developed differ-

ent generic transformation algorithms for optimizing/transforming each of the commonly

used patterns (Bridge, Strategy, Template Method) in contemporary middleware. We have

59

opted to design the transformation algorithms to work with C++ – the most complex mid-

dleware implementation OO language being used. In case of other less complicated lan-

guages like C#, Java, etc., the algorithms will be much simpler and easier to implement.

For example, unwanted indirections (virtual hook methods) in the Strategy pattern can be

removed by collapsing class hierarchies, whereas dynamic dispatching (to concrete strat-

egy/feature classes) in the Bridge Pattern can be eliminated by replacing with concrete

instances of the strategy/feature implementations. On the other hand, the redundant com-

putations in the middleware call processing path can be optimized by applying layer folding

as shown in figure 12 and memoization optimizations.

The generic advice generation algorithm 1 generates rules at two levels: (1) the middle-

ware framework level and (2) the constituent design patterns that implement the framework.

The framework-specific transformations are performed to accommodate their correspond-

ing constituent patterns-specific transformations. These include specializing the use of the

pattern features in the other framework source code, particularly callbacks, feature instan-

tiations and their usages, and the compilation of the framework code. Thus, the algorithm

basically performs three major tasks by leveraging and extending the FORMS tool - (1) De-

termines all the framework implementing classes that utilize the feature to be specialized

and leverages the corresponding specialization advice provided by the middleware devel-

oper, (2) It delegates the pattern specializations to the respective specialization plug-ins as

described in algorithm 2, and (3) Specializes the build configuration files for compilation.

We have developed similar algorithms for other commonly occurring design patterns within

middleware frameworks such as Strategy, Adapter, Template Method, etc. which haven’t

shown in this chapter due to lack of space.

Any specialized code/data for the transformations is provided by the middleware devel-

oper since they can best determine how to optimize a particular code path within a particular

framework. These rules are ultimately fed to the source transformation tools like FOCUS

60

Container

Client
OBJ
REF

in args
operation()
out args +

return

ORB
INTERFACE Object Adapter

ORB CORE VME

Component
(Servant)

Se
rvice

s

Protocol
Interface

Component
Interface

Services
Interface

Customization

points
Specialized Path

Applicability
General Specific

B
in

d
in

g
 T

im
e

R
u

n
-t

im
e

D
e

s
ig

n
-t

im
e

Figure 12: Middleware Specialization Path

[68] whose Perl scripts execute the transformations on the sources and subsequently the

build specialization tools generate the specialized middleware source build configurations.

V.3.3 Discovering Closure Sets

Once the PSM source code hints that directly implement the domain concerns are de-

termined, their dependencies on other code within the middleware needs to be determined.

All such code that is interdependent on each other is what implements the domain concern.

61

Algorithm 2 Bridge Pattern Specialization Plug-In
{Eliminates Indirections - Removes Virtual Method Dispatches}
Input - Ps, Ms
begin
for each concrete Feature Class Headers h ∈ Ps do

ADD Forward Declarations & Public Methods from the Bridge Impl Class
REMOVE Base Inheritance
REMOVE all ’virtual’ keywords
CREATE Concrete Feature Class within the main class Constructor
REMOVE all Alternative Feature references

end for
REPLACE the Bridge Impl Class occurrences with the Concrete Feature Class {also replaces the #includes} in all relevant files Ms
end

Algorithm 3 Template Method Pattern Specialization Plug-In
{Collapses Hierarchies - Fuses Derived class into Base class}
Input: Fs, M
Output: Ms (Initially empty)

begin
for each Base Feature Class c ∈ Ps do

REPLACE Forward Declarations, Includes, Public Methods, Private Methods and Private Data from the Derived Feature Class
REPLACE Base Constructor methods with the Derived Constructor methods
DEFINE ’typedef’ c as the Derived Feature Class
REMOVE all ’virtual’ and pure ’virtual’ keywords
REPLACE Base Feature Constructor with Derived Feature Constructor
COMMENT the c methods that are overridden in the Derived Feature Class

end forMs
end

We call such a set of source files as a closure set in which there are no source file depen-

dencies going out of the closure set. We differentiate between feature definition and feature

implementation files. Feature definition makes it easier to identify and annotate features

whereas feature implementations which capture the feature behavior may differ from one

middleware implementation to another depending upon the language of implementation.

Thus the closure computation identifies the set of dependent features definitions and their

definitions, and composes them into a coherent and independent feature module.

Algorithm 4 Strategy Pattern Specialization Plug-In
Input: Ps
Output: Ms (Initially empty)

begin
for the concrete Strategy Class f ∈ Ps do

REMOVE Base Inheritance
ADD Forward Declarations, Includes, Public Methods from the Abstract Base Strategy Class
REMOVE all ’virtual’ keywords from Method Declarations

end forMs
end

62

We have designed a recursive closure computation algorithm that walks through the

source code dependency tree and identifies the source that is dependent on the feature.

However, opening each file on-the-fly and checking the dependencies is inefficient since it

requires numerous I/O operations. Instead we run an external dependency walker tool like

Doxygen or Redhat Source Navigator [31] to extract out the dependency tree.

Algorithm 5 Algorithm for Computing Closure Set for a product variant
1: Ms : Mapping of PSM middleware features to PSM definitions
2: Fp : Feature Set for Product Variant p
3: Cp : Closure set for product p ∈ Fp
4: C f : Closure set for feature f ∈ Fp
5: Cs : Closure set for source hint s ∈Ms
6: Pi : Pending set of feature implementations whose closure set needs to be calculated
7: Input: Fp, Ms
8: Output: Cp (Initially empty)

9: begin
10: Cp := /0
11: for each feature f ∈ Fp do
12: s := FIND feature definition from Ms for feature f
13: C f := /0
14: Cs := /0
15: Cs := COMPUTE closure for feature definition s
16: C f := C f ∪Cs
17: Pi := FIND new feature implementation files for each feature definition in Cs
18: while Piisnotempty do
19: Cs := /0
20: Cs := COMPUTE closure for feature implementation file i ∈ Pi
21: C f := C f ∪Cs
22: Pi := Pi∪ FIND new feature definition & implementation files that were found in the closure computation
23: end while
24: Cp := Cp ∪C f
25: end forCp
26: end

1.Lines (1-7): The middleware developer provides the mapping from the PIM middleware

features to the PSM feature definition files i.e., PSM source hints in which the features

are defined.

2.Lines (10-17): Once these PSM source hints are obtained the algorithm computes the

closure set for each of the source hints. This step produces additional dependent PSM

feature definition files which automatically form part of the closure set. Hence, their

closure set need not be recalculated.

3.Line (18): The previous step gives rise to potentially more dependent feature definitions

63

that are not directly used by the product-line variant but required by the PSM source hints.

The algorithm identifies the PSM feature implementation files for the dependent feature

sets.

4.Line (19): The closure for the corresponding feature implementation files may need to

be calculated. These new files form the pending implementation set and are added to the

list of pending files whose closure needs to be calculated.

5.Lines (20-26): Now the algorithm iteratively calculates closure sets for each pending

feature implementation file until all the pending implementation files are accounted for.

The closure computation will always give rise to more pending feature implementation

files as described in the 2nd step.

The closure sets corresponding to the application variants that are discovered in Sec-

tion V.3.3 are different from cliques or maximally independent sets in graph theory. Closure

sets, though transitive, are completely self-sufficient so they can also be called independent

transitive closures.

V.3.4 Transparent Augmentation of Domain-specific Semantics in System Architec-

ture

DRE systems may operate in particular modes that require certain specific operational

semantics. For example, some applications may change modes depending on runtime

changes or support dependability by failing over to an entirely new operational string

(workflow of components). To achieve transparent provisioning of domain-specific seman-

tics for component-based DRE systems, both the components and the middleware runtime

infrastructure must be instrumented automatically in a coherent fashion.

To provide domain-specific dependability semantics, automatic instrumentation of the

components is needed to achieve fault-masking. Fault-masking hides system failures from

the clients with minimal impact on the end-to-end QoS (i.e., response time). Depending

64

upon the style of replication, the fault-masking strategy varies. For instance, passive repli-

cation often requires re-invocations of the remote call if it fails. In the case operational

strings, however, the failure of the operational string may not be immediately apparent to

the client components that are not directly connected to the failing component. Such indi-

rectly connected components need to failover to the replica functionality in a timely manner

to begin re-execution of the failed invocation. As a result, enabling transparent failover of a

group of components requires coordination between fault-masking and fault-detector mod-

ules unlike single component failover.

Interception is the primary technique applied to achieve application-transparent failover.

Several flavors of interception such as linker-level [81], ORB-level [86], container-level [23],

service-level [92], and aspect-oriented [63] have been used in the past. However, in the case

of QoS-intensive component-based DRE systems, a low-overhead interception mechanism

that can be integrated seamlessly and automatically in the fabric of deployment infrastruc-

ture is needed.

V.3.4.1 Automatic weaving of code for fault-masking and recovery

The MDE tools assist in deploying the entire system and configuring the middleware,

however, they do not specialize the middleware. It is necessary for the middleware to

be specialized using the domain-specific fault tolerance semantics specified in the MDE

tools, without expending any manual effort. To address this challenge, GRAFT uses a

deployment-time generative approach that augments general-purpose middleware with the

desired specializations.

GRAFT specializes the client-side middleware stubs. Client-side middleware stubs are

used to communicate exceptions to client-side applications so that they can initiate ap-

propriate recovery procedure in response to that. As mentioned in Section V.4.7.1, these

exceptions could be raised because of (1) hardware faults detected by the server or (2)

software failure of the server side component itself. Both are examples of catastrophic

65

exceptions, in response to which clients must initiate group recovery. To simplify devel-

opers’ job, GRAFT generates code at deployment-time that augments the behavior of the

middleware-generated stubs to catch failure exceptions, and initiate domain-specific failure

recovery actions.

Figure 13: Automated Generation of Failure Detection and Handling Code

GRAFT provides a model interpreter, which (1) traverses the CAML model, (2) identi-

fies the components that participate in FailOverUnits, (3) identifies the components that are

clients of the FailOverUnit participant components, and (4) generates modularized source

code that provides failure detection and recovery as shown by Step 1 in Figure 13. Depend-

ing upon the role of the component, two different types of behaviors are generated by the

interpreter.

66

We have identified two different roles of components with respect to a FailOverUnit:

(1) participants of a FailOverUnit (e.g., FC component) and (2) non-participant client com-

ponents that are directly communicating with one or more participants of the FailOverUnit

(e.g., MFC component). The participants of a DPU do not failover, however, clients of a

DPU fail over to a replica FailOverUnit. To allow this difference in the behavior, failover

code is generated only for the client components whereas the code for FailOverUnit partic-

ipant components do not perform failover; instead they trigger failover in the client com-

ponents of the FailOverUnit.

GRAFT encodes this difference in behavior by generating different AspectC++ code for

each component associated with a FailOverUnit depending upon whether the component is

a participant or a client. For participant components, for every method in the interface that

can potentially raise a catastrophic exception, an around advice is generated that catches

exceptions representing catastrophic failure and initiates a shutdown procedure for all the

participant components. For the client components, however, a different around advice is

generated that not only detects the failure and initiates a group shutdown procedure but also

performs an automatic failover to a replica FailOverUnit.

To modularize and transparently weave the failure detection and recovery functional-

ity within the stubs, GRAFT leverages Aspect-oriented Programming (AOP) [63] support

provided by the AspectC++ [117] compiler. The CAML model interpreter generates As-

pectC++ code,1 which is then woven by the AspectC++ compiler into stubs at the client

side producing specialized stub implementations as shown by Step 2 in Figure 13. Finally,

the specialized source code of the stubs are compiled using a traditional C++ compiler.

V.3.5 Middleware Composition Synthesis through Build Specialization

Different middleware use sophisticated techniques to compile its source code into shared

libraries. Some of these techniques rely on straightforward scripting e.g., shell script,

1Due to space restrictions we are not showing the generated aspect code.

67

batch files, perl scripts, or ANT scripts while some of them rely on descriptor files such

as make file system or advanced cross-compiler build facilities like MPC (Make Project

Creator) [38]. We leverage the MPC cross-compiler facility since it supports multiple com-

pilers and IDEs and is therefore more generic and widely applicable for synthesizing mid-

dleware shared libraries written in different programming languages.

The MPC projects of the general-purpose middleware do not necessarily represent the

feature modularization per se. The closure sets are converted into MPC files for synthesis of

the specialized middleware represented by the closure sets through the respective language

tools. These MPC files are specialized versions of the combination of the original MPC files

of the general-purpose middleware and are the real representation of feature modularization

in terms of application variant requirements.

V.4 Evaluation

V.4.1 Logging Server Case Study

In order to explain and evaluate the FORMS middleware specialization process, we

use a motivating example of a application variant of networked logging servers as shown

in Figure 14. We choose this particular application variant since logging various status

and error messages is a very frequent and widely used facility for monitoring the system

performance as well as system survivability in different domains such as enterprize, or

distributed real-time and embedded systems like shipboard computing and mission critical

aviation software.

A logging server has different performance requirements depending upon the type of

application that is using the logging facility. Depending upon the application domain the

need for logging varies from sporadic to frequent logging. Enterprize applications may

require sporadic logging where logging is restricted to mostly error and status messages

whereas certain high security mission critical application that are susceptible to infiltra-

tions may require more detailed logging traces of the system behavior in order to detect

68

Figure 14: Logging Application Variant

discrepancies and errors that may lead to discovering an impending or in-progress security

attack. Hence sporadic logging may require iterative or reactive logging servers whereas

frequent logging may require multithreaded or multiprocess logging servers.

We evaluate FORMS by modeling a application variant of networked logging applica-

tions based on contemporary, widely used communication middleware such as ACE [54].

ACE is a free, open-source, platform-independent, highly configurable, object-oriented

(OO) framework that implements many core patterns for concurrent communication in

software. It enables developing product variants using various types of communication

paradigms such as client-server, peer-to-peer, event-based, publish-subscribe, etc. Within

69

each paradigm it supports various models of computation (MoC) which are highly con-

figurable for different QoS requirements. We have designed the networked logging ap-

plication variant servers based on the client-server paradigm with individual models con-

forming to various MoCs including iterative, reactive, thread-per-connection (TPC), real-

time thread-per-connection (RT-TPC) and process-per-connection (PPC). Each application

variant may in turn have different QoS requirements for event demultiplexing and event

handler dispatching, signal handling, service initialization, interprocess communication,

shared memory management, message routing, dynamic (re)configuration of distributed

services, concurrent execution and synchronization.

Figure 14 shows the representation of the logging server application variant in terms

of commonality and variability of the features. We have showcased only those features

that are required since we are not interested in how the individual logging server variant

is implemented but rather what PIM features it desires from the underlying middleware

platform.

V.4.2 Evaluation of the Closure Computation Algorithm

Table 4: Outcome of applying FORMS to a Product-line of Networked Logging Applica-
tions

Networked Logging Applications Application Variant Outcome of Closure Computations Synthesized Middleware
application variant # of Middleware # of Middleware Size of Closure Static Footprint

(described in Domain Concerns) PIM Features PSM Features Set (PSM files) (KB)
Simple (Iterative) Logging 9 107 502 1,456

Reactive Logging 12 109 502 1,456
Thread Per Connection Logging 11 176 502 1,456

Real-Time Thread Per 12 178 502 1,456
Connection Logging

Process Per Connection Logging 12 120 508 1,500

By creating specialized variants of ACE middleware for different types of logging

servers, the profiling tools estimate the memory footprint savings, dependent middleware

features, source files that implement the features, and exercise unit tests to determine

70

whether the expected performance is met. We showcase the compile-time metrics that

result from middleware specialization.

V.4.2.1 Footprint and Feature Reductions

Our experiments provide interesting insights about the relationship between the number

of middleware features being used and the footprint of the synthesized middleware. The

ACE middleware is implemented in 1,388 source files and 436 features with a resulting

footprint of 2,456 KB. Table 4 shows that the algorithm has achieved significant optimiza-

tions - a 64% reduction in the number of source files used, a 60-76% reduction in the

number of features used, and a 41% reduction in memory footprint. The ACE middleware

was compiled on Windows using Visual Studio 8.0 compiler. Similar improvements were

also observed with GNU GCC compiler on Linux.

Table 4 also shows that the PLE variants share many middleware PIM features as ver-

ified by the almost similar footprint measurements (1,456 KB - 1,500 KB). This means

that the middleware forms a homogenous core that supports the entire application variant.

In this case, a single version of the ACE middleware could be synthesized for the entire

application variant instead of synthesizing individual variants for each product. Thus, the

process also provides guidelines as to whether to synthesize individual variants or a single

variant for the application variant thereby eliminating the need to provide and maintain

multiple specialized middleware variants.

V.4.2.2 Modularization Discrepancies

On the other hand as shown in Figure 15, there is a wide disparity between the number

of PSM middleware features required by the individual product variants (107-178) variants

and the PSM source files (502-508) implementing them. More specifically after inspecting

the individual application variant’s generated MPC build configuration, there were some

unused PSM features that percolated into the feature modules of a application variant.

71

Figure 15: Modularization Disparities

This means that there are several unused middleware features that find their way in the

specialized middleware for the Iterative, Reactive and PPC product variants that originally

required fewer features.

V.4.3 Additional Insights provided by the algorithm

The closure computation algorithm can be enhanced to give additional insights to mid-

dleware developers about the middleware modularization, ease of testing and maintenance

overheads.

1. Discovering Modularization Discrepancies: The reason for the modularization dis-

crepancies described in section V.4.2.2, are due to the physical implementation de-

pendencies between the logical feature modules. These results from the conflicts

between the design goals envisioned by the middleware designers and the implemen-

tation goals of the middleware developers. This happens if a single PSM implemen-

tation source file implements more than one PIM feature or vice versa. Thus the

logical PIM feature independence does not always translate to their actual physical

72

PSM implementation independence. Thus even though general-purpose middleware

is designed in a modular way, the modularity does not manifest exactly in the same

way in their implementations of the middleware layers. The algorithm can thus pro-

vide a guideline to the middleware developers to detect and break unnecessary de-

pendencies within their source code and thereby reduce the tight coupling between

the modules within the middleware layers.

2. Automated Test Case Selection: The algorithm reduces the amount of features, in

turn reduces the functionalities that are expected from the middleware. Thus it can

enable automatic test case selection of functional unit tests in order to alleviate the

testing and maintenance overhead for the middleware developers

3. Discovering Middleware Core: The algorithm helps in identifying the core middle-

ware features needed by the application variant. The algorithm can take a multiset

intersection of all the closure sets that are generated for the different application

variant variants. This intersection represents the commonality whereas the rest of the

features represent the variability. Thus, closure computation can potentially figure

out the differences between the logical middleware core as designed and envisioned

by the middleware architect and physical middleware core estimated by the closure

computation.

V.4.4 Validation of the Algorithm

As middleware is statically specialized, checking the correctness of its functionalities

becomes paramount. In this case a simple successful compilation of the specialized middle-

ware and shared library generation are not sufficient. It becomes necessary to verify the run-

time correctness of the specialized middleware through exhaustive testing processes. We

validated the closure computation methodology by re-executing the tests on the specialized

middleware that were originally designed for the general-purpose middleware. However,

73

we also ensured that the tests that have been invalidated due to the missing features from

the specialized middleware are pruned away and not re-executed.

V.4.5 Evaluation of the Generative Middleware Specialization Algorithms

Since middleware specialization is a software engineering process, we demonstrate its

applicability and evaluate its merits along the following dimensions: (1) We first show how

the algorithms can be applied to specialize middleware for a representative DRE system

case study; (2) We show the savings in effort (and hence improvement in productivity)

on the part of a DRE system developer accrued by using the algorithms in contrast to

manually performing the specializations; and (3) We show the improvement in latencies

and static and runtime memory footprints of the specialized middleware version compared

to traditional middleware.

V.4.6 Illustrating the generative algorithms on a DRE Case Study

We now show how the algorithms are applied to specialize middleware for a represen-

tative DRE system case study using the specializations cataloged in the knowledge base

SP-KBASE shown in Table 2.

V.4.6.1 Avionics: The Boeing Boldstroke Basic Single Processor (BasicSP) Applica-

tion

Scenario Description BasicSP (Basic Single Processor) is a scenario from the Boeing Bold

Stroke avionics mission computing application variant [116], which is a component-based,

publish/subscribe platform built atop the TAO Real-time CORBA Object Request Broker

(ORB) [114]. It supports the Boeing family of fighter aircraft, including many product

variants, such as F/A-18E, F/A-18F, F-15E, F-15K, etc. Figure 16 illustrates the BasicSP

application scenario, which is an assembly of avionics mission computing components

reused in different Bold Stroke product variants.

74

TIMER

20Hz

GP

S
NAV

DISPAIRFRAM

E

TIMER

20Hz

GP

S
NAV

DISPAIRFRAM

E

timeout
data_avail

get_data ()

data_avail

get_data ()

Figure 16: The Basic Single Processor (BasicSP) Application Scenario

BasicSP involves four avionics mission computing components that periodically send

GPS position updates to a pilot and navigator cockpit displays at a rate that is configurable.

The time to process inputs to the system and present output to cockpit displays should thus

be less than the rate, which as shown in the figure is a single 20 Hz frame.

Problems The real-time concerns are orthogonal to the traditional horizontal middleware

decomposition. In the BasicSP scenario the real-time requirements of predictable latency

of 20Hz is desired by each of the individual components so that the aircraft pilots receive

their location in real-time. At the same time, these application invariants are not known

in advance so they cannot be automatically used to deduce the specializations that can be

potentially performed. Moreover, the system requirements may change if the system is de-

ployed in a different physical domain or a different aircraft. For example, a different variant

of this scenario for different customer requirements, however, may use different framework

components or may send different events to consumers or may service operations via dif-

ferent request dispatchers or may run on nodes with different byte orders, but with the

same compiler/middleware implementation, in which case data need not be aligned. These

changing requirements render point specialization solutions useless and therefore the need

for a systematic, extensible and reusable specialization approach becomes even more ap-

parent.

75

V.4.6.2 Applying Generative Specializations to Specialize Middleware for BasicSP

We show how the model interpreters traverse the BasicSP model to realize the special-

izations. Figure 17 shows the specialization context and specialization points with BasicSP.

Node ANode B

1 Collocated

Components

2 Redundant Request

Creation

2

2

3

Resolution of the same

dispatch

4 Redundant de-marshaling checks

5
Component

Generality

3

Figure 17: Specialization Context in BasicSP

Applying Step 1 (Deducing the Context) Structural Invariants - The BasicSP case study

uses a “push-event, pull-data” communication model, which forms the basis of the struc-

tural composition of the system. On receiving an event, the Airframe and Nav_Display

components repeatedly use the same get_data() operation to fetch new GPS and Dis-

play updates, respectively. In a connection between GPS and Airframe components,

therefore, the get_data() operation is sent and serviced by the same request dispatcher.

Configuration Invariants - In BasicSP, the connection properties such as the pulse rate

76

Airframe
Nav_Display
get_data()
get_data()

of 20 Hz, and corresponding data delivery deadlines form the application QoS configuration

model. In this case study, the processing rate is fixed at a maximum latency rate of 20 Hz,

the transport protocol used is VME backplane, and the request demultiplexing mechanism

within the middleware is reactive.

Deployment Invariants - The target nodes on which the BasicSP components are de-

ployed (not shown in the Figure) have the same byte order (endianness) since the processors

used in this case study are homogeneous.

Applying Step 2 (Inferring the Specializations) Structural Invariants - The BasicSP

push-event, pull-data communication model imposes the need for features that support

event communication as well as request-response semantics from the underlying middle-

ware. Since there are no concurrent requests, no concurrency support is needed of the

middleware, and hence we can deduce only a single request dispatcher is involved which

translates to the ’S4’ specialization in Table 2.

Configuration Invariants - In BasicSP, the constant pulse rate of 20 Hz indicates the

periodic nature of events and the rate at which data will be pulled. It also indicates the

deadline for communication and computation for the periodic task. Periodicity maps to

the ’S1’ specialization. Since the period of the end-to-end task is fixed, such hard real-

time requirements call for features that support fixed priority scheduling translating to

the ’S2’ specialization. In RTCORBA, the feature that supports this requirement is the

SERVER_DECLARED model. Since no other priorities and concurrent requests are in-

volved, it needs a simple reactive event demultiplexing and single threaded event process-

ing model within the underlying middleware. Hence, it calls for a single threaded Select

Reactor-based [112] request handling. For RTCORBA, this property indicates there is no

need for the thread pool mechanisms. Moreover, since only one transport mechanism is

used, there is no need for sophisticated software solutions that support pluggable transport

protocols, such as the extensible transport mechanism in RTCORBA. Both these invariants

translate to the ’S5’ specialization.

77

Deployment Invariants - In BasicSP, since there is no need for byte order checking

and codeset negotiations (by virtue of using a homogeneous set of processors), there is no

need for marshaling data according to the byte order and data encoding rules including

those involving alignment of data along word boundaries. Similarly, there is no need for

mapping priorities between sending and receiving components. All these translate to the

’S3’ specialization.

Applying Step 3 (Identifying Joinpoints) The identification of specialization joinpoints

for the middleware through optimizing the design patterns is automatically performed by

the generic inspection engine as described in Section V.3.1. The necessary annotations get

automatically inserted in the pattern implementation sources which are recognized by the

FOCUS source code manipulation tool. However, for the other non-structural specializa-

tions, the annotations need to be manually defined by the middleware developer since those

require explicit specification of the specialized advice that may exhibit different behavior

from the original code at which it is applied.

Applying Steps 4 and 5 (Advice Generation and Execution) For lack of space we do

not show the complete generated specialization advices. Instead, Listing 1 shows a snippet

for the rules that get generated for the bridge pattern corresponding to the steps specified

in the Algorithm 2. The FOCUS tool subsequently specializes the middleware code.

V.4.6.3 Improvements in Developer Productivity through Auto-Generation

We leverage FOCUS [68] to execute the generated specialization advice on the mid-

dleware source code. The FOCUS source transformation rules for specializing the design

patterns and middleware frameworks are represented in XML. Manually writing these rules

by the middleware developer on a per instance basis is not only cumbersome and exces-

sively tedious but also complex to maintain as the middleware source code evolves. Auto-

generating them using the generative algorithms as described in Section V.3.2 alleviates

the burden on the developers as well as makes them easy to extend and maintain. Table 5

78

Listing 1 Generated Transformation Rules for Bridge Specialization
<module name="ACE/ace">

<file name="Select_Reactor_Base.h">
<add>
<hook>REACTOR_SPL_INCLUDE_FORWARD_DECL_ADD_HOOK</hook>
<data>class ACE_Sig_Handler; </data>

</add>
<remove>virtual</remove>
<remove>: public ACE_Reactor_Impl</remove>
<remove>#include "ace/Reactor_Impl.h"</remove>
<substitute>

<search>ACE_Reactor_Impl</search>
<replace>ACE_Select_Reactor_Impl</replace>

</substitute>
</file>
<file name="Reactor.cpp">

<add>
<hook>REACTOR_SPL_CONSTRUCTOR_COMMENT_HOOK_END</hook>
<data> ACE_NEW (impl, ACE_Select_Reactor); </data>

</add>
</file>

</module>

shows how many lines are auto-generated on a per-pattern basis and how these translate

to cumulative savings for the entire middleware framework that is implemented using that

pattern.

Table 5: Middleware Developer Effort Savings
Design Pattern #lines #lines % Savings

(Middleware Framework) Generated Handwritten
Bridge (Reactor) 115/443 17 96.16 %

Strategy (Flushing) 29/201 4 98.01 %

Strategy (Wait On) 29/141 4 97.16 %

Template Method 172/974 25 97.43 %
(Pluggable Protocol)

However, developers will still need to provide the specialized code if they wish to spe-

cialize a particular middleware call path in their own way. This specialized code is applied

like an aspect advice at the code joinpoints specified through annotations. As shown, the

79

auto generation almost completely eliminates the burden of manually writing the transfor-

mations and figuring out the specialization joinpoints with savings in excess of 9̃7%. For

the sake of terseness, we have only shown a few of the frameworks that were optimized.

V.4.6.4 Empirical Evaluations

We evaluated the outcome of applying the generative algorithms by measuring the fol-

lowing criteria: (1) the static footprints of the middleware binaries, (2) dynamic footprints

of the BasicSP applications, (3) the average latencies of requests, and finally (4) the overall

throughput of the application components. We have applied the generative algorithms to

the widely used TAO Real-time ORB implementation for DRE systems software. Table 6

reveals that the resultant savings are substantial for DRE applications meant to be deployed

on resource constrained embedded devices. The dynamic footprints are a lot higher (5x)

than the static footprints of the middleware binaries since the specialized middleware bina-

ries were generated for each BasicSP application components.

Table 6: Middleware Performance Improvement Metrics
Metrics Before After % Savings

Specialization Specialization
Footprint (Static) 3,226 KB 2,082 KB 35.4 %

Footprint (Dynamic) 13,588 KB 10,657KB 21.57 %
Average Latency 3367 µs 2160 µs 35.84%

Throughput 0.26 reqs/s 0.41 reqs/s 36.59%

V.4.7 Evaluation of GRAFT

In this section we evaluate the model-to-model, model-to-text transformation capabili-

ties of GRAFT. First we present a representative case-study and later evaluate GRAFT by

80

measuring the efforts saved to specialize middleware in the context of the case-study. Ad-

ditionally we also qualitatively validate the runtime behavior of the specialized middleware

in meeting the fault tolerance requirements of the MHS case study.

V.4.7.1 Case-study for GRAFT

To better present our GRAFT solution, we illustrate a case study that benefits from

GRAFT to realize its fault tolerance requirements. Our case study is a warehouse material

handling system (MHS). A MHS provides automated monitoring, management, control,

and flow of warehouse goods and assets. A MHS represents a class of conveyor systems

used by couriers (e.g., UPS, DHL, and Fedex), airport baggage handling, retailers (e.g.,

Walmart and Target), food processing and bottling.

Architecture. The software components in the MHS architecture can be classified as (1)

management components, which make decisions such as where to store incoming goods,

(2) material flow control (MFC) components, which provide support for warehouse man-

agement components by determining the routes the goods have to traverse, and (3) hard-

ware interface layer (HIL) components, which control MHS hardware, such as conveyor

belts and flippers.

Figure 18 shows a subset of the MHS operations, where a MFC component directs

goods within the warehouse using the route BELT A→BELT B or the route BELT A→BELT

C. Flippers F and F′ assist in directing goods from BELT A to BELT B and BELT C, re-

spectively. Further, as shown in Figure 18, HIL components, such as Motor Controllers

(MC1, MC2, MC1′, MC2′) and the Flipper Controller (FC, FC′), control the belt motors

and flippers, respectively. The MFC component instructs the Flipper Controller component

to flip, which in turn instructs the Motor Controller components to start the motors and

begin transporting goods.

Domain-specific Fault Model. As goods are transported using different conveyor belts,

faults could occur. Two broad kinds of faults are possible in the MHS system: (1) hardware

81

Figure 18: A Distributed Processing Unit Controlling Conveyor Belts

faults, (e.g., jamming of the flipper) and (2) software faults, (e.g., MC or FC component

crashes). Hardware faults in the MHS system are detected by their associated HIL compo-

nents and communicated using application-specific software exceptions. Software faults,

such as software component crashes, are detected by the clients of those components using

system-level software exceptions generated by the underlying middleware. Both types of

faults affect the reliable and correct operation of the MHS system, and are classified as

catastrophic faults.

Domain-specific Failure Handling and Recovery Semantics. Failure recovery actions

in MHS are based on warm-passive replication semantics. When catastrophic faults are

detected in a MHS, the desired system response is to shutdown the affected hardware as-

sembly and activate a backup hardware assembly automatically. For example, when one of

the motors of BELT B or flipper F fails, the MFC component should stop using the BELT B

and route the packages via BELT C instead. The consequence of such a decision means that

the HIL components associated with BELT B should be deactivated and those with BELT C

as well as flipper F′ need to be activated.

82

The MHS thus imposes a group-based fault tolerance semantics on the software com-

ponents controlling the physical hardware. If any one component of the group fails, the

failure prevents the whole group from functioning and warrants a failover to another group.

We call this group of components as a distributed processing unit (DPU) – in this case

MC1, MC2 and FC for BELT B. Further, the clients of a DPU (e.g., the MFC component)

must failover to an alternative DPU if any of the components in the primary DPU fails.

Fault-tolerance Programming Efforts
Component # of try # of catch Total # of

Name blocks blocks lines
Material Flow Control 1 / 0 3 / 0 45 / 0

Flipper Controller 2 / 0 6 / 0 90 / 0
Motor Controller 1 0 / 0 0 / 0 0 / 0
Motor Controller 2 0 / 0 0 / 0 0 / 0

Table 7: Savings in Fault-tolerance Programming Efforts in Developing MHS Case Study
Without/With GRAFT

V.4.7.2 Evaluating savings in effort to specialize middleware

A significant reduction in programming efforts is achieved due to automatic generation

of code that handles failure conditions at runtime in the MHS system. The generated code

for each component is different depending upon the number of remote interfaces used by

a component, the number of methods in each remote interface, and the types of exceptions

raised by the methods. The number of try blocks in Table 7 corresponds to the number

of remote methods whereas the number of catch blocks correspond to the number of

exceptions.

For example, when MFC component invokes a method of the FC component, 45 lines

of aspect code is generated to handle group recovery semantics for that one function call

alone. GRAFT’s approach yields higher savings in modeling and programming efforts for

83

larger, more complex systems, which may have hundreds of components with tens of them

requiring fault-tolerance capabilities.

V.4.7.3 Qualitative validation of runtime behavior

Figure 19 shows how the specialized stubs generated by GRAFT react to failures at run-

time and provide group recovery semantics. To control the lifecycle of the components, the

aspect code communicates with domain application manager (DAM), which is a standard

deployment and configuration infrastructure service defined in LwCCM. It provides high-

level application programming interface (API) to manage lifecycle of application compo-

nents. Below, we describe the steps taken by GRAFT when a catastrophic exception is

raised.

Figure 19: Runtime Steps Showing Group Recovery Using GRAFT

a. As shown in Figure 19, MFC component directly communicates with the FC compo-

nent, which in turn communicates with MC1 and MC2 components. Consider a scenario

84

where FC makes a call on MC1 and MC1 detects a motor failure and raises MotorFail-

ureException. The exception is caught by the generated aspect code in FC indicated by

(1) in Figure 19.

b. The specialized stubs in FC, initiate shutdown of the primary DPU by instructing the

DAM to remove participating components of the primary DPU (FC, MC1, and MC2),

including itself.

c. DAM instructs the containers hosting the primary DPU components (FC, MC1, and

MC2) to passivate and remove the components.

d. Removal of FC component triggers a system-level exception at the MFC component,

which is again caught by the specialized stub at MFC-side.

e. The specialized stubs for MFC fetch a reference of FC′ from the naming service. The

naming service is assumed to be pre-configured at deployment-time with lookup infor-

mation for all the components in the system.

f. MFC successfully fails over to the replica DPU (FC′, MC1′, and MC2′) and resumes

the earlier incomplete remote function call. Finally, FC′ communicates with MC1′ and

MC2′ to drive the belt motors of the backup BELT C and continues the operation of MHS

system without interruption.

85

CHAPTER VI

RELIABLE DISTRIBUTED REAL-TIME AND EMBEDDED SYSTEMS
THROUGH SAFE MIDDLEWARE ADAPTATION

The past chapters focused on developing a taxonomy for categorizing and reasoning

about middleware specializations and realized a feature-oriented, automated and genera-

tive process for inferring middleware features, deducing application invariants, and ulti-

mately synthesizing the middleware specializations, respectively. Although the presented

techniques significantly reduce the developer efforts involved in driving and synthesizing

middleware specializations, they do not adequately address the runtime issues that arise

when middleware needs to adapt to satisfy the stringent requirements of DRE systems.

This chapter addresses the final challenge outlined in Section I.2 Ű safe adaptation of

middleware to failures within stringent real-time QoS constraints. First, an overview of the

existing research in the field of specialization implementation techniques is presented. Sec-

ond, a list of challenges that are still unresolved is presented. Finally, a solution approach

is presented that enables safe and predictable middleware adaptation to failures through a

distributed resource monitoring framework and the corresponding resource aware middle-

ware adaptation algorithm that accounts for failure type, granularity and failover replica

placements.

VI.1 Related Research

In this section we discuss the existing body of research in the area of adaptive fault

tolerance in distributed real-time and embedded systems and compare and relate our work

on SafeMAT. We categorize adaptive fault tolerance research in following areas:

86

VI.1.1 Dynamic Scheduling

Common methodologies to leverage the slack in execution schedule have focussed on

dynamic scheduling depending upon the runtime conditions. The Realize middleware [58]

provides dynamic scheduling techniques that observes the execution times, slack, and re-

source requirements of applications to dynamically schedule tasks that are recovering from

failure, and make sure that non-faulty tasks do not get affected by the recovering tasks.

VI.1.2 Resource-aware Adaptations

Resource-aware Adaptations: The DARX framework [74] provides fault-tolerance for

multi-agent software platforms by focusing on dynamic adaptations of replication schemes

as well as replication degree in response to changing resource availabilities and applica-

tion performance. [44] proposes adaptive fault tolerance mechanisms to choose a suitable

redundancy strategy for dynamically arriving aperiodic tasks based on system resource

availability. Research performed in AQUA [69] dynamically adapts the number of replicas

receiving a client request in an ACTIVE replication scheme so that slower replicas do not

affect the response times received by clients. Eternal [59] dynamically changes the loca-

tions of active replicas by migrating soft real-time objects from heavily loaded processors

to lightly loaded processors, thereby providing better response times for clients. FLARe [8]

proactively adjusts failover targets at runtime in response to system load fluctuations and

resource availability. It also performs automated overload management by proactively redi-

recting clients from overloaded processors to maintain the desired processor utilization at

runtime. [42] focuses on an adaptive dependability approach by mediating interactions

between middleware and applications to resolve constraint consistencies while improving

availability of distributed systems.

87

VI.1.3 Real-time fault-tolerant systems

Real-time fault-tolerant systems: IFLOW [20] and MEAD [101] use fault-prediction

techniques to reduce fault detection and client failover time to change the frequency of

backup replica state synchronization to minimize state synchronization during failure re-

covery, and by determining the possibility of a primary replica failure and redirecting

clients to alternate servers before failures occur, respectively. The Time-triggered Message-

triggered Objects (TMO) project [64] considers replication schemes such as the primary-

shadow TMO replication (PSTR) scheme, for which recovery time bounds can be quan-

titatively established, and real-time fault tolerance guarantees can be provided to applica-

tions. FC-ORB [135] is a real-time Object Request Broker (ORB) middleware that employs

end-to-end utilization control to handle fluctuations in application workload and system re-

sources by enforcing desired CPU utilization bounds on multiple processors by adapting

the rates of end-to-end tasks within user-specified ranges. Delta-4/XPA [104] provided

real-time fault-tolerant solutions to distributed systems by using the semi-active replica-

tion model. Other research [61] uses simulation models to analyze multiple checkpointing

intervals and their effects on fault recovery in fault-tolerant distributed systems.

VI.1.4 Need for Safe Fault Tolerance

For the hard real-time DRE systems, applying dynamic load balancing, dynamic rate

and scheduling adjustments, adaptive replication and redundancy schemes add extraneous

dynamism and therefore potential unpredictability to the system behavior. Altering the re-

dundancy strategies require altering the real-time schedules which is not acceptable for hard

real-time systems that are strictly specified. Constantly redirecting clients upon overload

and promoting backups to primaries adds unnecessary resource consumptions for fixed

priority systems. Such approaches do not attempt to minimize the number of resources

used; their goal is to maintain service availability and desired response times for the given

number of resources in passively replicated systems. However, in hard real-time systems

88

exceeding the RMS bound of 70% of the processor utilization is not a concern as the tasks

are guaranteed to not be preempted until their allocated quantum is over. So as long as task

utilizations are guaranteed to be under 100% processor load, their deadlines and profiled

WCETs are guaranteed to be satisfied. In SafeMAT we guarantee through exhaustive ap-

plication performance profiling by establishing runtime utilization and failover overhead

bounds that the dynamic failure adaptations will not violate the real-time deadlines and

overload the resources. Moreover, as the system resources are over-provisioned we use

semi-active replication which subsumes the need for expensive state-synchronization and

load balancing mechanisms.

VI.2 Unresolved Challenges

This section brings out the challenges that motivate the need for the three primary vec-

tors of the SafeMAT middleware presented in this chapter. Before delving into the chal-

lenges, we present a model of the system and the underlying platform we consider in this

chapter.

Platform Assumptions Our research focuses on a class of DRE systems where the

system workloads and the number of tasks in the individual subsystems that make up the

DRE system are known a priori. Examples of individual subsystems that make up DRE

systems include tracking and sensing applications found in the avionics domain, the auto-

mobile system found in the automotive domain (e.g., reacting to abnormalities sensed by

tires), conveyors systems in industrial automation (e.g., periodic monitoring and relaying

of health of physical devices to operator consoles), or resource management in the soft-

ware infrastructure for shipboard computing domain. These systems demonstrate stringent

constraints on the resources that are available to support the expected workloads and tasks.

For this chapter we focus on the CPU resource only.

In our research we assume that the individual subsystems of the DRE system use the

89

ARINC-653 [6] model in their design and implementation because of its support for tem-

poral and spatial isolation, which are key requirements for real-time systems. ARINC-653

uses fixed-priority preemptive scheduling where the platform is specified in terms of mod-

ules that are allocated per processor which in turn are composed of one or more partitions

that are allocated as tasks. Each partition has its own dedicated memory space and time

quantum to execute at the highest priority such that it gets preempted only when its allo-

cated time quantum expires. Multiple components or subtasks can execute through multi-

tasking within each quantum. For evaluating our design of SafeMAT and experimentation,

we have leveraged an emulation [34] of the ARINC-653 specification.1

Section I.2 highlighted the need for resource-aware and safe adaptive fault tolerance

for DRE systems that also incorporated principles of software health management. Real-

izing these objectives is fraught with a number of challenges, which are presented below.

The three primary vectors of our SafeMAT solution stem from the need to resolve these

challenges.

VI.2.1 Challenge 1: Identifying the Opportunities for Slack in the DRE System

As noted in Section I.2, DRE systems are composed often from individual legacy sub-

systems. Many of these subsystems comprise real-time tasks with strict deadlines on their

execution times. To ensure the safety- and mission-criticality of these subsystems, they are

configured with predefined execution schedules computed offline that are fixed for their

execution lifetime once they are deployed in the field. This ahead-of-time system planning

ensures that such subsystems will behave deterministically in terms of their expected be-

havior and their provided services, and the critical tasks with hard real-time requirements

will always satisfy their deadlines. To achieve this predictability, these subsystems are

over-provisioned in terms of the allocated time and required capacity of resources. Natu-

rally, for most of the time many of these resources remain under-utilized and hence provide

1We used the emulation environment since it was readily available to us, and has been used previously to
demonstrate key ideas of software health management for avionics applications.

90

Figure 20: GPS (BasicSP) Subsystem Assembly

00:00:00 00:00:04Hyper period 1
Frame Size =4

Part 3Part 2Part 1 Part 4Sensor
Sensor

2
Sensor

3
GPSGPS2 GPS3

Nav
Display

SHM

00:00:03

STOP Part3
START Part4

00:00:04

STOP Part4
START Part1

00:00:00

START Part1

00:00:01

STOP Part1
START Part2

00:00:02

STOP Part2
START Part1

Figure 21: Slack in GPS Schedule

an immediate opportunity to host the fault tolerance mechanisms needed for DRE systems.

However, due to the dynamic nature of faults, the amount of slack available in each subsys-

tem may vary at runtime thereby rendering any offline computation of slack for DRE fault

tolerance useless. Therefore, there is a need to obtain a runtime snapshot of available slack

in the system that then will enable the runtime execution of fault tolerance mechanisms for

DRE systems. Such a monitoring capability must provide real-time information while at

the same time not impose any significant overhead on the system. Section VI.3.3 presents

our solution to a scalable Dynamic Resource Monitoring (DRM) capability in SafeMAT.

In the context of our ARINC653-based scheduling of the DRE systems, DRM is not only

91

able to obtain the actual CPU utilizations of the partition tasks but also of the subtasks (i.e.,

application components) that are allocated within the partition.

VI.2.2 Challenge 2: Designing Safe and Predictable Dynamic Failure Adaptation

Failures in DRE systems may manifest in different types and granularities. For exam-

ple, some component failures may be logical or critical. The granularity of failures could

be a component, group of components (subsystem), processes or processors. Moreover,

the induced interdependencies in DRE systems due to composition of individual subsys-

tems may lead to cascading failures of the dependent components (domino effect). Such

an effect has the potential to increased deadline violations and over-utilization of system

resources. Statically defined fault tolerance schemes will not work to completely handle

these kinds of failures. Dynamic failure adaptation techniques can provide better capabili-

ties to tolerate different kinds and granularities of failures, and can achieve better resource

utilizations. However, given the criticality of hard real-time system execution, the failure

adaptations that can be performed need to be safe and predictable. By utilizing the slack

(which is obtained using the DRM capabilities), we can provision dynamic fault adapta-

tion, however, we must ensure that the execution deadlines are not violated while achieving

such runtime adaptations. Consequently, it is necessary to reduce the amount of recovery,

which calls for failure detection and mitigation mechanisms that are fast and lightweight

in terms of their space and runtime overhead as well are adaptive to the failure type and

granularity, and component replica placements. Section VI.3.4 describes the adaptive fault

tolerance mechanism supported by SafeMAT.

VI.2.3 Challenge 3: Validating System Safety in the Context of DRE System Fault

Tolerance

Although it may be feasible to design dynamic fault tolerance techniques for DRE sys-

tems by leveraging the slack, there is no easy approach to validate the safety and correctness

92

of the resulting system and it is difficult to develop a mathematical proof of correctness of

the system due to its dynamic nature. Thus, there is a need for a scalable and accurate

capability that can validate the overall DRE system for safety and predictability. SafeMAT

provides a framework to profile a DRE system to validate if the real-time properties are

met in the context of faults that can be artificially injected into the system. Section VI.3.5

describes such a framework that provides empirical validation of the system safety and

predictability.

The rest of this chapter presents our SafeMAT middleware that resolves these three

challenges.

VI.3 Design of SafeMAT

This section presents our SafeMAT solution to provide adaptive and dynamic fault tol-

erance to DRE systems. Since SafeMAT is designed to extend an existing emulation envi-

ronment for ARINC-653, we first briefly describe the underlying system and the existing

fault management approach. Subsequently, we describe our SafeMAT solution.

VI.3.1 The ARINC-653 Component Model Middleware

The emulation middleware we use in our research is called the ARINC-653 Compo-

nent Model (ACM) middleware, which essentially implements the CORBA Component

Model [95] abstraction over the ARINC-653 emulation environment. ACM components

interact with each other via well-defined patterns, facilitated by ports: asynchronous con-

nections (event publishers & consumers) and/or synchronous provided/required interfaces

(facets/receptacles). ACM allows the developers to group a number of ARINC-653 pro-

cesses into a reusable component. Since this framework is geared towards hard real-time

systems, it is required that each port be statically allocated to an ARINC-653 process

whereas every method of a facet interface be allocated to a separate process.

ACM provides a design-time graphical modeling environment to enable a developer

93

to assemble the components of the application, deploy them into ARINC-653 partitions

(essentially OS processes) of ARINC-653 modules (essentially the processors), and con-

figure various real-time properties of the components. A runtime middleware honors these

decisions. The ACM middleware comprises multiple different functionalities. Of interest

to us in this research is the Module Manager (MM), which is a controller responsible for

providing temporal partitioning among partitions.2 For this purpose, each module is bound

to a single core of the host processor. Using offline analysis, the MM is configured with

a fixed cyclic schedule computed from the specified partition periods and durations. It is

specified as offsets from the start of the hyper period, duration and the partition to run in

that window. Once configured and validated, the MM implements the schedule using the

SCHED_FIFO policy of the Linux kernel and manages the execution and preemption of

the partitions. The MM is also responsible for transferring the inter-partition messages

across the configured channels. In case of a distributed system, there can be multiple MMs

each bound to a processor core that are controlled hierarchically by a system-level module

manager.

VI.3.1.1 Software Health Management in ACM

We have extended and augmented the ACM software health management framework [35]

with resource-aware adaptive fault tolerance (AFT). ACM supports the notion of Software

Health Management (SHM), which provides incremental fault mitigation strategies and op-

erates at two levels. The first and basic level of protection is provided by component-level

health management (CLHM), which is implemented in all components. It provides a lo-

calized timed state machine with state transitions triggered either by a local anomaly or

by timeouts, and actions that perform the local mitigation. The second and global level is

called system-level health management (SLHM). The SLHM comprises an aggregator of

alarms that are received from individual CLHMs. The Aggregator feeds these alarms to a

2Partitions are mapped to Linux processes.

94

diagnostics engine, which is configured with a failure propagation graph to reason about

the root cause of failures. The decisions are then fed to a fault mitigation capability called

a Deliberative Reasoner [36].

VI.3.1.2 Task Model

We employ a hierarchial fixed-priority preemptive task model of N partition tasks (de-

noted as G = {T1, T2, ..., TN}) using Linux SCHED_FIFO scheduling class and are al-

located within a module deployed on a predesignated CPU among a cluster of hardware

nodes. All partition tasks can have periodic and sporadic subtasks (ARINC-653 processes)

that constitute the application components which have hard real-time requirements as well

as soft real-time requirements. Each component subtask is also scheduled on a FIFO basis.

Each partition task Ti inside a module is configured with an associated period (denoted as

Pi) that identifies the rate of execution. Upon a hard deadline violation, the faulty process

is prevented from further execution by the partition scheduler by default. It is possible to

change this action to allow a restart. Soft deadline violations results in a warning issued by

the middleware and logs the warning by default. We assume that the networks within this

class of DRE systems provide bounded communication latencies for application commu-

nication and do not fail or partition.

VI.3.1.3 Fault Model

An ACM component can be in one of the following three states: active (where all

ports are operational), inactive (where none of the ports are operational) and semi-active

(where only the consumer and receptacle ports are operational, while the publisher and

facet ports are disabled). We focus on fail-stop failures within hard DRE systems that pre-

vent clients from accessing the services provided by hosted applications. Failures can be

masked by recovering and failing over to redundant backup replica components. Due to

hard real-time constraints and to avoid state synchronization overhead, we use semi-active

95

replication [30] to recover from fail-stop processor failures. In semi-active replication, one

replica—called the primary—handles all client requests in active state. Backup replicas are

in semi-active state where they process client’s requests but do not produce any output.

We consider two main sources of failure for each component port (a) logical failure -

internal software, concurrency (deadline violations due to lock timeouts) and environmen-

tal faults, and latent error in the developer code to implement the operation associated with

the port or (b) a critical failure, such as process/processor failures, or undetected compo-

nent failures. By convention, to recover from logical failures, we failover to similar backup

replicas with identical interfaces but alternate implementations (from different vendors/de-

velopers). In case of critical failures, we failover to identical backup replicas or to alternate

backup replicas if available. Also by convention, alternate backup replicas can be deployed

within the same partition whereas identical backup replicas are always deployed to different

partitions in the same module or different modules of ACM.

VI.3.2 SafeMAT Architecture

We have designed the Safe Middleware Adaptation for Real-Time Fault Tolerance

(SafeMAT) middleware to safely provision adaptive failure mitigation and recovery mech-

anisms in DRE systems that is resource-aware and leverages the benefits of software health

management. The design of SafeMAT is driven by a holistic approach to answering the

following three questions that emerge in fault tolerance for DRE systems:

VI.3.2.1 How to be resource-aware?

To answer this question requires fine-grained information on the resource utilization in

the system, which can then be used in the adaptive decisions to deal with faults. The Dis-

tributed Resource Monitoring (DRM) framework in SafeMAT described in Section VI.3.3

provides this capability.

96

VI.3.2.2 How to deal with failures in the system of systems context by being aware

of resources?

To answer this question requires a dynamic fault tolerance capability that can be adap-

tive to account for resource availabilities. The Adaptive Failure Management (AFM) frame-

work in SafeMAT described in Section VI.3.4 provides this capability.

VI.3.2.3 How to ensure that the solutions do not compromise the safety and timeli-

ness of existing real-time systems?

To answer this question requires a capability to validate that the dynamic and adaptive

fault tolerance mechanisms will not compromise on the safety and timeliness of the already

deployed systems. The Performance Metrics Evaluation (PME) framework in SafeMAT

described in Section VI.3.5 provides this capability.

Figure 22 illustrates the architectural components of SafeMAT and their interactions. It

depicts the underlying ARINC-653 Component Middleware solution upon which SafeMAT

is designed and implemented.

SafeMAT has been architected in the form a hierarchy of cooperating components im-

plemented atop ACM. At the topmost level resides the System Module Manager along

with the SLHM that hosts the System Resource Monitor (sRM) and the Resource-Aware

Deliberative Reasoner (RADaR), respectively. At the second level are the different Module

Managers that are deployed on each computing processor core or machine, each hosting a

Module Resource Monitor (mRM). At the third level are the different Partition Managers

responsible for managing each partition, each hosting a Partition Resource Monitor (pRM).

Each of the managers consequently have Failure Handlers to detect the failures in the par-

titions or modules and notifying them to the RADaR. The logical failures in components

are notified by the respective CLHMs (from the ACM framework) residing in each appli-

cation component. The different monitors form the DRM framework whereas the RADaR

along with the various Failure Handlers form the AFM framework in SafeMAT. SafeMAT

97

Module N

Partitions

CLHM Components

Partition
Resource
Monitor
(pRMn)

Partition Managers

Failure
Handler

Partition
Resource
Monitor
(pRMc)

Partition
Launcher

System-Level Health Manager

Alarm
Aggregator

Resource Aware
Deliberative

Reasoner
(RADaR)

Diagnoser

HFA DR

System Module Manager

Module
Scheduler

Failure
Handler

System
Resource
Monitor

(sRM)

Module 1

Module Manager 1

Partition
Scheduler

Failure
Handler

Module
Resource
Monitor
(mRM)

Partitions

CLHM Components

Partition
Resource
Monitor
(pRMn)

Partition Managers

Failure
Handler

Partition
Resource
Monitor
(pRMc)

Partition
Launcher

Module Manager N

Partition
Scheduler

Failure
Handler

Module
Resource
Monitor
(mRM)

Figure 22: SafeMAT Architecture

extends ACM by providing an additional level of lower-level fault mitigation in the form

of a partition manager and its resource monitor (pRM). Doing so helps to isolate failures in

partitions and mitigate partition faults by taking actions right away instead of involving the

module manager.

VI.3.2.4 Isolating the Impact of Failed Partitions

SafeMAT extends ACM by providing an additional level of lower-level fault mitigation

in the form of a partition manager and its resource monitor (pRM). As with any multipro-

cess system, processes can fail due to external factors such as driver faults, buffer overruns,

98

Module Manager

Partition
Creator

Module
Initializer

Partition
Scheduler

Failure
Handler

Module
Resource
Monitor
(mRM)

Partition Manager 1

Partition
Launcher

Failure
Handler

Partition
Resource
Monitor
(pRMc)

Partition Manager N

Partition
Launcher

Failure
Handler

Partition
Resource
Monitor
(pRMc)

Module

Init. Launch, Restart, Swap, Failover

Init, Launch, Start,
Stop, Terminate

Partition N

Partition
Initializer

Components
Partition
Resource
Monitor
(pRMn)

Partition 1

Partition
Initializer

Components
Partition
Resource
Monitor
(pRMn)

Figure 23: Partition Manager

segmentation faults, etc. It is necessary to enhance the safety of the real-time application

by preventing failed partition processes from affecting the real-time schedule. The Module

Manager handles the scheduling and execution of the partitions so whenever a partition

process fails, it needs to ensure a quick recovery of that partition in a way that will not

affect the real-time application schedule. However, in order to achieve this, the Module

Manager needs to stop its scheduler and focus on restarting and initializing the partition.

So in order to detect and isolate the effect of the partition failure and relieve the Module

Manager from handling the partition recovery, we have developed a Partition Manager

as shown in the Figure 23. The Partition Manager is instantiated for each partition and

is responsible for handling the execution and failure management of each individual par-

titions. Partition Manager coordinates with the RADaR described in Section VI.3.4 for

99

managing the partition failures and their recovery. Whenever, it detects a partition fail-

ure, it restarts the partitions if instructed by the RADaR. Moreover, it also hosts the pRM

to enable computation the resource utilization of the partition process and its constituent

component threads. It also ensures that if the partition is restarted then it does not need

to re-perform the synchronization with the Module Manager in order to save time and be

ready and initialized before its next scheduling quantum arrives.

VI.3.3 Distributed Resource Monitoring

The Distributed Resource Monitoring (DRM) framework resolves Challenge 1 of Sec-

tion VI.2 by providing a highly configurable and flexible distributed, hierarchical frame-

work for monitoring the health and utilizations of system resources at various granularities,

such as processor, process, component and thread. The framework comprises a distributed

hierarchical network of a single System Resource Monitor (sRM) controlling multiple dis-

tributed Module Resource Monitors (mRM) that in turn control multiple Partition Resource

Monitors (pRM) local to them in client-server configurations. The sRM resides in the sys-

tem module whereas the mRMs are always deployed within the Module Managers and

the pRMs are deployed within the individual partitions and their Partition Managers. The

pRMs are of two types depending on their configured modes (a) pMRc in the COMPUTE

mode and (b) pMRn in the NOTIFY mode.

VI.3.3.1 Configurability in DRM

It is possible to configure the DRM framework using different strategies, depending on

the overall system configuration and amount of system resources available. These strate-

gies include reactive and periodicmonitoring strategies that can be used in conjunc-

tion with different granularities of monitoring system resources ranging from processes to

threads. The reactive monitoring strategy is the least resource consuming since the CPU

utilizations are computed only when instructed by the RADaR (in case of a failure). The

100

periodic monitoring strategy is the most resource consuming since the monitors compute

utilizations periodically and keep the historic record of the utilizations to provide a better

prediction regarding the utility of the resources. In the periodic strategy, the mRM peri-

odically sends utilizations of all components to the sRM so that the information is readily

available but may not be the most current one. The periodic strategy is also useful for

profiling the resource utilizations during the profiling and tuning of the system execution

characteristics in Section VI.3.5. Finally, it is also possible to configure the DRM frame-

work to supply only the utilizations of the specific entities that RADaR is interested in.

VI.3.3.2 Discovering Resource Allocations

The DRM framework is also capable of discovering the runtime deployment and allo-

cations of components to specific partitions and modules at runtime thereby obviating the

need to configure the framework manually thereby enabling fast monitoring. It infers the

assignments of the different subtasks to their components as well as allocations of com-

ponents to their partitions when the monitors initialize their state. The pRMn runs within

the partition in the NOTIFY mode where it does not compute the resource utilizations but

only sends the mappings of the deployed components and their subtasks. These mappings

are collated by the mRM and sent to the sRM which maintains the global allocations of

subtasks to components, deployment of components to partitions, and the assignments of

partitions to their modules. This capability enables the application of the DRM framework

more generally to other types of systems where the allocations and deployments can change

at runtime. Once the component deployment and allocations are learned by the sRM, it up-

dates them with the primary-backup information about the components, component groups,

and modules.

101

VI.3.3.3 Resource Liveness Monitoring

The DRM framework has been additionally entrusted with monitoring the health of

its own monitors by periodically making the monitors in the lower level send their health

status to the upper level monitors. This monitoring capability is auxiliary to the existing

signal handlers that also detect partition and partition manager failures thereby creating a

more robust dual health monitoring capability. Thus, if the health status beacon is not re-

ceived from the pRMn and pRMc by the Module Manager and Partition Manager then it

is assumed that the Partition (process), and the Partition Manager (process) have crashed

respectively. Similarly, it is assumed the module (processor/core) has crashed if the mRM

has not reported its health status beacon. Every time a failure is detected by the parent

entity, the failure status is sent to the RADaR. Thus, the major advantage of SafeMAT over

ACM is that while the SHM framework in ACM can only detect logical component fail-

ures, the DRM framework in SafeMAT can detect critical module, partition and component

failures.

VI.3.4 Resource-Aware Adaptive Failure Mitigation

To perform resource-aware failure adaptation and address Challenge 2 of Section VI.2,

we have developed the Adaptive Failure Mitigation (AFM) engine that leverages the DRM

framework and augments the ACM-SHM framework through different cooperating runtime

mechanisms, such as hierarchical failover and safe failure isolation. The AFM is designed

as a collection of different components including the Failure Handlers and RADaR that

integrate the Hierarchical Failure Adaptation (HFA) algorithm we developed with the De-

liberative Reasoner (DR) [36] of the SLHM. The Failure Handlers are responsible for de-

tecting process and processor failures and the simultaneous logical and critical component

failures that have occurred but not reported to the HFA. The Failure Handlers along with

the DRM framework and the HFA algorithm work together to provide quick and efficient

failure adaptation at runtime.

102

VI.3.4.1 Failover Strategies

The type of failover strategy employed by the runtime failure adaptation mechanism is

highly dependent on the failure type (i.e., logical or critical), the failure granularity (e.g.,

component, subsystem, partition or module), and the primary-backup deployment topol-

ogy. The primaries can constitute individual components or groups of components (also

called subsystems) and also the modules themselves. The ACM modeling paradigm allows

various deployment scenarios for the primary components and their backups as shown in

the Figure 24. For instance, the application component primaries and their corresponding

backups can be deployed within the same module or can be spread across multiple mod-

ules. Moreover, they can either be deployed within the same partition or different partitions

depending whether they are identical instances or alternate implementations of the primary

replica. If the backups are an identical replica then by convention they are never deployed

within the same partition as they are meant to handle critical failures that usually result in

the process or the processor crashing. However, backups with alternate component imple-

mentations can be deployed within the same partition as they are meant to handle latent

errors in the component’s implementation logic.

Due to the different primary-backup deployment possibilities, it is necessary to im-

plement adaptive failover mechanisms that take into account the failure type, granularity

and deployment topology that can enable the ability to failover and recover the application

component(s) at the component, subsystem, process and processor levels. Moreover, to

remain resource-aware, our algorithm chooses the best candidates at each level for failover

by ranking the backups dynamically in increasing order of either their processor or partition

or component utilizations for which we leverage the DRM framework.

103

Description

Deploying

within same

Module

Deploying

within

separate

Modules

Deployment of Primary and their Backups

Module 1

Primary

Replica

Alternate

Backup Replica

Identical

Backup Replica

Module 2

Primary

Replica

Alternate

Backup Replica

Identical

Backup Replica

Module 1

Figure 24: Backup Deployment Scenarios

VI.3.4.2 Enabling Hierarchical Failure Adaptation (HFA)

We have developed a Hierarchical Failure Adaptation (HFA) algorithm that adapts its

failover targets depending upon the failure type, granularity and the primary-backup de-

ployments. The algorithm is invoked whenever any of the DRM or the ACM-SHM frame-

works detect a failure. In order to provide quick and efficient failover once the ACM Alarm

Aggregator and the Failure Handlers detect a failed primary (component/partition/module),

the sRM proactively pre-computes the sorted list of least utilized backups and the message

is sent to the RADaR already containing the failed primaries piggybacked with the sorted

list of failover target backups. The least utilized resource indicates maximum available

slack. It then hands over the control to the SLHM.

104

It is the responsibility of the SLHM to determine as to when to activate the failure

recovery mechanisms which is dependent upon the number of failures the system can with-

stand that have been programmed in advance within the ACM-SHM framework. It is also

dependent upon the time taken by the system to stabilize till all alarms/errors are collected,

which is usually a hyperperiod long in duration. Additionally, the AFM failure handlers

and the DRM liveness monitoring is capable of detecting simultaneous module, partition,

logical and critical component failures and are intelligently mitigated by the HFA algorithm

in an hierarchical fashion.

VI.3.4.3 The HFA Algorithm

At the core of the HFA algorithm (Figure 25) are three functions: DetermineFailover,

DRWrapper, and Restart. DetermineFailover is a function that determines how best

to choose a failover target component and rewire it with the rest of the application. On a

failure, HFA first detects the failure type (module/partition/component group/critical/log-

ical). If it’s a module failure (MF), the algorithm fails over to the least utilized identical

module and calls REWIRE on all the components in that module. If it’s a partition failure

(PF), the algorithm invokes the DRWrapper function for each component deployed in that

partition. Otherwise a component failure (LF /(CF)) is assumed and the DRWrapper func-

tion is called for that component. DRWrapper then calls the DeliberativeReasoner function

to determine group failure (GF) i.e., if the component has any dependent components that

will also require failover and it selects the least utilized backup target group of components

and finally calls DetermineFailover on each component in the failed group.

In case of logical failure (LF), DetermineFailover function checks if alternate backup

replica is available. Otherwise, it checks for critical failure (CF), and if true selects the

least utilized identical backup replica if available. If not available, it checks if alternate

backup replica is available. If not available, it restarts that partition to provide degraded

QoS. If available, it checks for a simultaneous partition failure (PF), in which case it selects

105

RADaR

Partition Manager

BEGIN

MT = HEAD (MI)

FORALL CT in MT

PF?

NO

MF? YES

DRWrapper
(Component C)

CI not empty?

NO

CT = HEAD (CA)

YES

CT = HEAD (CI)

YES

Restart
(Partition P)

IF P has
Facets?

YES

FORALL PD

REREAD P’s
references

GF?
YES

FORALL C in P

YES

FORALL CT in GT

RESTART (P)

DetermineFailover
(Component C)

PF?

NO

FORALL c in CA

YES

IF c not in P?

CT = c

YES

NO

NO

NO

REWIRE (CT)

LEGEND
MF, PF, GF, LF, CF :- Module, Partition, Group, Logical,
Critical Component Failure Flags

MT, GT, CT :- Module, Group, Component Failover Targets

CF, CA :- Sorted Set of Identical, Alternate Backup Replicas

GF = DeliberativeReasoner (C)

GT = DeliberativeReasoner (C)

GT = CreateBackups (GT)

CF? NO

CA not empty?

LF?

YES

YES
NO

Figure 25: The HFA Algorithm

the least utilized identical replica in a different partition. If not a critical or logical failure,

it restarts the partition. DetermineFailover handles the simultaneous partition failure as

a special case where it has occurred simultaneous with a logical component failure. In

case of a simultaneous critical component failure, it does not need to handle this special

case as identical backup replicas are always deployed on a different partition as primary.

If the restarted partition contained facets, the Restart function ensures that the dependent

partitions reread the restarted partition’s new component references.

106

Algorithm 6 The Hierarchical Failover Adaptation (HFA) Algorithm

Input:
1: M, P, G, C : Module, Partition, Group,

Component Failed Primaries
2: MF ,PF , GF , CF , LF : Flags for Mod-

ule, Partition, Group, Critical and Log-
ical component Failures

3: MI , GI , CI , CA : Sorted List of Identical
& Alternate Backup Replicas

Output:
4: MT , GT , CT : Failover Target Backup

Replicas
Begin HFA

5: if MF then
6: MT ← HEAD(MI)
7: for all CT ∈MT do
8: REWIRE(CT)
9: end for

10: else if PF then
11: for all C ∈ P do
12: DRWrapper(C)
13: end for
14: else
15: DRWrapper(C)
16: end if
End
Begin DRWrapper (Component C)

1: GF ← DeliberativeReasoner(C)
2: if GF then
3: GT ← DeliberativeReasoner(C)
4: GI ←CreateBackups(GT)
5: GT ← HEAD(GI)
6: for all CT ∈ GT do
7: DetermineFailover(CT)
8: end for
9: else

10: DetermineFailover(C)
11: end if
End

Begin DetermineFailover (Component C)
1: if LF then
2: CheckAlternate (C)
3: else if CF then
4: if CI 6= /0 then
5: CT ← HEAD(CI)
6: else
7: CheckAlternate (C)
8: end if
9: else

10: Restart(P)
11: end if
12: REWIRE(CT)
End

Begin CheckAlternate (Component C)
1: if CA 6= /0 then
2: if PF then
3: for all c ∈CA do
4: if c 3 P then
5: CT ← c
6: end if
7: end for
8: else
9: CT ← HEAD(CA)

10: end if
11: else
12: Restart(P)
13: end if
End
Begin Restart (Partition P)

1: RESTART (P)
2: if P has provided interfaces then
3: for all p ∈ Pd do
4: REREAD(P’s references)
5: end for
6: end if

End

107

VI.3.5 Pre-deployment Application Performance Evaluation

The real-time system execution schedule specifies the period of execution along with

the allocated start and end times of the system tasks forming the scheduling quantum within

the system execution time period (P). To address Challenge 3 of Section VI.2, we have de-

veloped an application Performance Metrics Evaluation (PME) framework that can profile

the application execution times and CPU utilizations by leveraging the DRM framework to

measure the actual utilizations of various component tasks within their allocated scheduling

quantum in the system execution period. The profiling of a system’s resource utilization

during execution, both in the presence and absence of failures, helps in determining post-

failover processor utilization of the application and SafeMAT components. We measure the

approximate worst case execution times (WCETs) of the SafeMAT adaptation mechanism

to estimate the additional runtime overhead incurred. This can also help in safely predict-

ing whether the application is capable of recovering within the hard real-time deadline.

Moreover, the fine grained performance evaluation of the application component subtasks

can also provide the basis for the system integrator for determining the slack in the system

and thereby alter the task allocations within the application execution schedules to enable

provisioning the necessary runtime adaptation mechanisms and additional new/upgraded

functionalities.

VI.3.6 SafeMAT Implementation

SafeMAT has been implemented atop the ACM hard real-time ARINC-653 emulation

middleware. It is implemented in around 5000 lines of C/C++ source code excluding the

ACM code. We describe the implementation details of the individual frameworks of Safe-

MAT.

108

VI.3.6.1 Partition Manager

We have implemented the Partition Manager as a separate process that gets spawned

by the Module Manager for each partition that needs to be spawned. The Module Manager

sends the necessary partition information through environment variables and command line

parameters to the Partition Manager which in turn spawns the partition with the right pa-

rameters and the same environment variables set. In order for the partitions to correctly

synchronize back with the Module Manager, the Module Manager’s PID is also set as one

of the environment parameters along with the partition name, and the boolean indicating

whether the partition is being restarted. The Partition Manager implements signal handlers

as a means of handling partition failures. Whenever the failure handlers detect a partition

failure, they check it’s exit status after receiving a SIGCHLD and if it’s an abnormal termi-

nation, the Partition Manager restarts the partition and also sets the boolean to true. If the

boolean is set to true then the partitions do not need to re-perform the synchronization with

the Module Manager and can quickly recover in time before their next scheduling quantum

in the next hyperperiod. Furthermore, in order to handle partition restarts as described in

the HFA algorithm in Section VI.3.4, if the facet side partition needs restarting the facet

reference is reread for the receptacle side partition. This can be achieved through catching

the invalid object reference exception and/or by sending a message to the partitions.

VI.3.6.2 Distributed Resource Monitoring (DRM) Framework

We have developed the DRM using the client server paradigm that can be configured

with two different communication strategies - reactive and periodic. The commu-

nication between the mRM and the pRMs is established through plain UDP sockets for

performance. We didn’t employ TCP sockets as we assume the closed network that the

avionics systems operate on have high reliability and high bandwidth performance with

a small bounded network propagation delay. The sRMs are in charge of configuring the

mRMs and pRMs with the communication strategies so that the clients need to worry

109

about correctly configuring all the monitors and thereby alleviating the need for config-

uration checking before deployment. This is achieved by making the mRM always initiate

the first communication to setup and configure the monitors with the right strategy, the

CPU number on which the module is deployed, the name of the partition to be monitored.

The port at which they are expected to receive the messages is set through the environment

variables while spawning the Partition Managers which forwards this information to the

partitions that configure the pRMs. Additionally each of the monitors of the DRM frame-

work are also programmed to perform their health monitoring by periodically sending their

health status beacons to the their immediate parents through ALIVE socket messages. This

aids in the detection of the partition (process) and module (processor) failures.

sRM mRM pRMc pRMnSystem Module Manager Module Manager Partition Manager Partition

Run ()
Sync

*Gather () GET
GET GET

UTIL

MAPPING

Run () Run () *Run ()

MAPPING
UTIL

Figure 26: Distributed Resource Monitoring (DRM) Communication Sequence

The pRMc computes the processor, process and thread utilizations from the /proc/stat,

the corresponding /proc/<PID>/stat and /proc/<PID>/task/<TID>/stat files

on Linux. In the ACM emulated middleware we associate the module, partition and com-

ponent utilizations with the respective processor, process and thread group utilizations. The

partition and component utilizations are always computed as a fraction of the processor uti-

lizations on which they are deployed on to reflect their true utility to the AFM engine. To

110

allow for efficient querying, the mRMs and the sRM maintain the mappings of the com-

ponent allocations to their partitions and modules so that the AFM engine can selectively

query the utilizations of specific components, partitions and modules. The PIDs are re-

ported back by the pRMs to their corresponding mRM within the Module Manager when

the partitions notify their initialization statuses to the Module Manager through the Linux

message queues /dev/mqueue/<Q-NAME>. The pRMns within the partition commu-

nicate with the partition initialization logic and obtains the list of components assigned

and deployed within that partition. The partition initializer also reports the correspond-

ing ARINC-653 process (Linux Pthreads) identifiers (TIDs) that execute the different ports

and methods within a component. This mapping of the components to their corresponding

TIDs is reported back by the pRMns to their corresponding mRM. Once the mRM has the

necessary partition PIDs and the component to TID mappings, it enables the sRM to re-

port CPU utilizations on a per component or a per process or a per module basis whenever

queried by the SLHM components. The sequence of communications that occur between

the sRM, mRM, pRMc, and pRMn components is shown in the Figure 26.

VI.3.6.3 Adaptive Failure Mitigation (AFM) Engine

The Diagnoser and Deliberative Reasoner components from the SLHM framework have

been extended by integrating the HFA algorithm and DRM frameworks. We have devel-

oped the Resource Aware Deliberative Reasoner (RADaR) by improving the reasoning

algorithm employed by the Deliberative Reasoner (DR) within the SLHM framework to

compute component failover targets by considering the CPU utilizations, failure type, fail-

ure granularity and the deployment topology. We have incorporated the failure detection

of the partitions and modules through failure handlers and DRM health status monitoring.

Additionally, in order to detect logical or component failures in case of simultaneous par-

tition or module failures, the RADaR traverses the history of any failures that were caught

by the Alarm Aggregator and the output files generated out by the CLHMs that indicate

111

the failure types. This gives us the capability to handle both logical component failures as

well as critical process and processor failures simultaneously within the same framework.

The HFA algorithm provides a wrapper over the DR’s reasoning algorithm. We integrated

the HFA algorithm in the decision making part of the deliberative reasoning algorithm that

gets executed each time the DR gets invoked with the failed components. First it uses the

DR’s dependency tracking phase to figure out the dependent group of component’s that

require failover and the failover candidates initially generated by the DR. The DR achieves

this through a search of the component’s assembly specification and deduces the failed

component’s dependencies and determines whether the dependent components also need

recovery. When the DR comes up with the initial failover target component or a group of

components, they may not be necessarily the best candidates. We select the best failover

target for the failed component by executing the HFA algorithm on the initial result of the

DR and manipulate the DR’s output with the better candidates provided by our algorithm.

The HFA algorithm achieves this by querying the sRM for the sorted rank lists of failover

target backup replica components based on their relative utilizations.

VI.3.6.4 Application Performance Metrics Evaluation (PME) Framework

We profile the SafeMAT component’s actual WCETs and actual online CPU utilization

percentages within each execution quantum of the hyperperiod by analyzing the timing logs

generated by the Module Manager and the Partitions and the performance logs generated

out by the DRM framework respectively over a large number of iterations. To achieve

this we can configure the DRM to periodically collect the CPU utilizations only at the

end of each hyperperiod. The analysis of the timing log files is performed by parsing the

standard tags such as START_*, STOP_* corresponding to the start and stop times of the

various processing blocks using Python scripting. We compare these to the actual measured

CPU utilization between those times to the duration of the quantum to get an idea of the

slack that is available within each quantum. We particularly profile the utilizations of the

112

Health Management and SafeMAT framework components to verify that the utilizations

don’t reach 100% so that they are able to finish their decision making within the allocated

quantum . This ensures that the recovery from failures is made as fast as possible.

VI.4 Empirical Evaluation of SafeMAT

Figure 27: IMU System Assembly.

To measure the performance of the various SafeMAT adaptive mechanisms, we used a

representative DRE system called the Inertial Measuring Unit (IMU) [37] from the avionics

domain. IMU is rich and large enough to provide a large number of components and redun-

dancy possibilities that stem from the composition of its subsystems comprising the Global

Positioning System (GPS), the Air Data Inertial Reference Unit (ADIRU) [76], the flight

control (PFC) subsystem, and the Display subsystem. Figure 27 shows the IMU system

assembly comprising primary subsystems of GPS and ADIRU, and their two secondary

113

backup replica subsystems connected to redundant PFC and Display subsystems. When

the GPS processor has an updated position, it sends a pulse out of its publisher port and

the subscriber GPS Receiver can asynchronously detect it and fetch the data coordinates.

The ADIRU subsystem comprises actively replicated 6 Accelerometers, 4 Processors, and

3 Voters and is designed to withstand 2 Accelerometer failures. The 6 Accelerometers feed

acceleration values to each of the four Processors which compute the body acceleration

data and fed it to each of the three Voters. In turn the Voters choose the middle value and

output it to the PFC subsystem. The GPS Processor and The ADIRU Voter feed the 3D lo-

cation coordinates and acceleration values respectively to each of the PFC subsystem that

integrates the acceleration values over the 3D coordinates and computes the next coordi-

nate position and outputs it to the Display subsystem which further votes and chooses one

of the three coordinate values received. The Secondary GPS and ADIRU subsystems are

semi-actively replicated. The GPS subsystems and ADIRU subsystems run at a frequency

of 0.1 Hz and 1 Hz respectively. The PFC fetches the GPS data a slower but accurate rate

of 0.1 Hz whereas the Display subsystem fetches the data from the PFC subsystem at a rate

of 1 Hz. Thus, the hyperperiod of the IMU is 10 seconds (LCM of 1 and 10). Deployment

information of all the subsystems is not shown in this paper for similar reasons. However,

we discuss the impact of various primary-backup deployments on the overall runtime adap-

tation overhead added by SafeMAT by going into the deployment details of the standalone

adaptation of the GPS Subsystem in Section VI.4.2. 3

4 Deployment information of all the subsystems is not shown in this paper for simi-

lar reasons. However, we discuss the impact of various primary-backup deployments on

the overall runtime adaptation overhead added by SafeMAT by going into the deployment

details of the standalone adaptation of the GPS Subsystem in Section VI.4.2

3The details of each subsystem and their deployments have been omitted in this paper for the lack of
space, which can be found in [37].

4The details of each subsystem and their deployments have been omitted in this paper for the lack of
space, which can be found in [37].

114

VI.4.1 Evaluating SafeMAT’s Utilization Overhead

We use SafeMAT’s PME framework to determine the overhead imposed by the Safe-

MAT’s fast failure adaptation capability by measuring the CPU utilizations of its compo-

nents. Measuring the actual utilizations at the end of each execution hyperperiod is an

indicator of the slack available for accommodating failure adaptation mechanisms. Since

SafeMAT builds over ACM, we executed 100 iterations of the IMU system each for the

plain vanilla ACM-SHM and the SafeMAT adaptation failure recovery mechanisms. We

artificially introduced failures at 15, 20, 30, 35 iterations in the GPS Processor, Accelerom-

eters 6, 5 and 4, respectively such that the values output by them are exceedingly high (i.e.

deviate from the expected trend). Once Accelerometer 4 fails at iteration 35, the system be-

gins to malfunction and the Display starts receiving erroneously high acceleration values.

Figure 28: Application Recovery after Failover

Figure 28 shows the 3D-position (X, Y, Z coordinates) values received by the Pilot_Display_Subsystem

getting out of sync between iterations 30 and 40, and recovering after the SafeMAT failure

115

adaptation takes place. The perturbation is caused by the erroneous acceleration values

because the IMU is solely capable of operating using just the acceleration values without

the need for continuous GPS input. GPS coordinates are used to just supply the initial

coordinates for the integration over the acceleration values computed by the PFC sub-

system. At this moment the SafeMAT failure adaptation starts executing and makes the

ADIRU and GPS primary subsystems failover to one of their semi-active secondary subsys-

tems depending upon their overall least average utilizations. In this execution scenario the

Primary_ADIRU_Subsystem fails over to the Secondary_ADIRU_Subsystem2

whereas the Primary_GPS_Subsystem fails over to the Secondary_GPS_Subsystem1.

Figure 29 shows that the SafeMAT does not add significant utilization overhead (2-6%)

over the existing ACM-SHM imposed utilizations (26-73.26%).

Figure 29: SafeMAT Utilization Overhead

116

VI.4.2 Evaluating SafeMAT-induced Failover Overhead Times

To qualitatively measure SafeMAT’s runtime failover overhead times we measure the

worst-case execution times (WCETs) of the SafeMAT’s components based on two main

parameters: (1) the impact of component replica placements relative to their primaries and

(2) the number of nested components within the component group that need failover. We

measure the failover overhead (TFO) as:

TFO = TDiag +TDR +
m

∑
i=1

(
TmRM +

p

∑
j=1

TpRM

)
+TsRM +THFA

where

m - number of modules

p - number of partitions within each module

TDiag - WCET for Failure Diagnosis

TDR - WCET for Deliberative Reasoning

TsRM - WCET for the sRM to collect utilizations

TmRM - WCET for each mRM to collect utilizations

TpRM - WCET for each pRM to collect utilizations

THFA - WCET for Hierarchical Failover Algorithm

VI.4.2.1 Impact of Component Replica Deployments

To measure the impact of component replica deployments, we focused on the GPS

subsystem from the IMU case study. Figure 20 shows the assembly for the BasicSP system

with a redundant set of Sensor and GPS components (Sensor2 Sensor3, GPS2, GPS3).

Sensors publish an event every 2 sec for their associated GPS. The GPS consumes the

event published by its sensor at a periodic rate of 2 sec. Afterwards, it publishes an event,

which is sporadically consumed by the Navigation Display. Thereafter, the NavDisplay

component updates its location by using getGPSData facet of the GPS Component. In the

117

(a) Same Partition as Primary (b) Different Partition as Primary (c) Different Module as Primary

Figure 30: Different Component Replica Deployments

initial setup of the assembly, the Sensor, GPS, and NavDisplay components are used and

hence set to be in active mode. The redundant Sensor and GPS (Sensor2 Sensor3, GPS2,

GPS3) are not used. The GPS2 & GPS3 is set to a semi-active mode, leaving the Sensor2 &

Sensor3 components in active mode. This would allow the GPS2 & GPS3 to keep track of

the current state (by being in semi-active mode where the GPS2’s and GPS3’s consumers

are active) but not affecting NavDisplay.

We created different deployment scenarios by altering the placements of the component

replica by either placing them either within the same partition as primary(Figure 30a),

or a different partition in the same module (Figure 30b)or a different partition within a

different module(Figure 30c). We executed the GPS subsystem with the existing vanilla

ACM-SHM recovery mechanisms in place and with the new SafeMAT failure adaptations

enabled. We have considered the WCETs of both ACM-SHM and SafeMAT in this case.

As shown in Table 31, SafeMAT incurs comparable execution times to the existing ACM-

SHM execution times as this scenario has been evaluated on a per component basis. The

times go up as the replica partitions move further away from the primaries. The high

recovery overhead per component are due mainly to the unavoidable network latency to

collect the utilizations. However, the minuscule overhead on the order of a few milliseconds

are very insignificant in this case and will not cause deadline violations when there is a

large amount of slack available, which is usually the case. Therefore, this is not a cause

118

of concern as shown in the next evaluation where we progressively increase the number of

components that need failover – a scenario that is more common in real systems.

Figure 31: SafeMAT Mitigation Overhead for Different Replica Deployments

VI.4.2.2 Impact of Component Group Size

To measure the impact of size of the group of components that require failover, we

measure the overhead incurred by SafeMAT for the GPS and ADIRU subsystems where

the number of components increase from just 2 to 13. As shown in the evaluation Table 32,

when the number of components increase, the SafeMAT overhead costs gets amortized

over larger number of components. The effective additional runtime overhead incurred

by SafeMAT’s adaptive mechanisms becomes significantly less (9-15%) compared to the

ACM-SHM’s diagnostic and reasoning overhead. SafeMAT’s overhead is largely depen-

dent on the size of the recovery group, deployment complexity of the components within

the recovery group, and the amount of network communication required within the DRM

119

as shown in the TFO equation. However, it does not grow exponentially, as recovery group

size increases. The more the number of components that need failover, the more the amount

of utilization data that can be bundled together in the network messages that are sent by the

DRM monitors to RADaR. Conversely, the smaller the number of components affected,

the greater the overhead incurred by SafeMAT due to the network communication that is

mandatory even for relatively small number of messages exchanged.

Figure 32: SafeMAT Mitigation Overhead for Component Group Recovery

VI.4.3 Discussion: System Safety and Predictability

Compared to the vanilla ACM-SHM mechanisms, SafeMAT adds negligible runtime

utilization overhead without overloading the system while performing better failure recov-

ery within the available utilization slack. Moreover, by selecting the least-utilized failover

targets, SafeMAT maintains more available post recovery slack within the system compared

to ACM-SHM, while potentially improving the task response times as well. Figure 33

120

shows that there was no noticeable impact on the Display jitter values using SafeMAT over

vanilla ACM-SHM and therefore the response times remained largely unaffected while at

the same time failure recovery was superior. Moreover, there were no missed real-time

deadlines for the application tasks. Moreover, SafeMAT adds negligible runtime failover

overhead thereby maintaining the predictability of the overall system Thus, these results

illustrate that SafeMAT maintains the safety of the system and also the predictability.

Figure 33: Application Display Jitter (Hyperperiod = 1 sec)

VI.5 Conclusion

Mission-critical hard real-time applications being in-service for many years, have too

rigid execution schedules to incorporate additional evolving domain requirements in the

form of new functionalities and better failure adaptation techniques even if their resources

are over-provisioned to ensure their safety and predictability. While, existing SHM tech-

niques are predictable, they are too static and do not offer the best case failure adaptation

in real-time. In order to evolve these systems and improve their predictability, reliability

121

and resource utilizations, it is necessary to discover the existing slack within their exe-

cution schedules and utilize it to safely provision additional and efficient dynamic failure

adaptation mechanisms.

In this chapter, we presented a dynamic, safe middleware adaption technique and a per-

formance metric evaluation framework that provided a fast and adaptive failover through

flexible and configurable fine-grained resource monitoring and an hierarchical failure adap-

tation algorithm that is not only resource-aware but also took into account the failure type,

failure granularity, the relative component replica placements. Our approach manifested

in the form of the SafeMAT middleware and the PME framework. We also rigorously

evaluated our adaptive middleware by measuring the runtime utilization and the execution

overhead for different replica deployments as well as an increasing number of components.

122

CHAPTER VII

FUTURE WORK – DEPLOYMENT AND COMPOSITION OF SPECIALIZED
MIDDLEWARE

The past chapters focused on developing a taxonomy for categorizing and reasoning

about middleware specializations and realized a feature-oriented, automated and genera-

tive process for inferring middleware features, deducing application invariants, and ulti-

mately synthesizing the middleware specializations, respectively. Although the presented

techniques significantly reduce the developer efforts involved in driving and synthesizing

middleware specializations, they do not adequately address the runtime issues that arise

when multiple specialized middleware forms are synthesized by the middleware special-

ization process applied to satisfy the requirements of DRE systems.

VII.1 Side-effects of Specializations on System Composition and Deployment

The generation of specialized forms of general-purpose middleware will impact the way

the middleware is utilized by the application components at runtime. This directly impacts

the overall runtime system composition and the deployment of its applications. In order

to utilize the features of the specialized middleware forms correctly and seamlessly over

the entire application operational string, the specialized forms need to be composed and

configured correctly within the existing middleware runtime infrastructures.

1.Composition of the Specialized Middleware Forms within the Middleware Archi-

tecture - Specialization of general-purpose middleware generates multiple middleware

forms that specifically cater to the feature requirements of the components. Hence, this

gives rise to a new problem where the specialized middleware components need to be

composed with the application server fabric. Even if the interfaces that compose the

123

application server and the specialized middleware components are not modified, the re-

duced features provided by the middleware will finally impact the QoS provided by the

container. Therefore, it is necessary to ensure the features and QoS provided by the

specialized middleware is utilized consistently throughout the application server. More-

over, as multiple components are composed together it is necessary to ensure that the

corresponding application servers on which the components are hosted work seamlessly

and correctly. Not only the components need to work correctly between neighboring

components but over the entire operational string that consists of a chain of application

components.

2.Deployment of the Specialized Middleware Forms - As the application servers are

composed/specialized, the corresponding deployment infrastructure needs to be able to

pre-install them onto the target nodes and prepared to be ready to host the application

components. Moreover, the deployment infrastructure needs to be oblivious to the fact

that there are multiple specialized middleware servers being installed. The D&C infras-

tructure should deploy the application servers the same way as application components.

Additionally, the components and the application servers need to configured according to

the specialized functionality supported/required by them.

Let us understand the genesis of this runtime problem first. Component-based DRE

applications are often installed across different target machines utilizing a deployment and

configuration (D&C) infrastructure. Each target node (machine) has the necessary in-

frastructure machinery pre-installed to be able to host the application components. This

runtime infrastructure is known as the middleware Application Server (AS), which hosts

the application components as shown in Figure 34. The application server stack is com-

prised of multiple middleware framework layers. For example, in a CORBA Component

Model-based application server, it comprises: (1) a communication substrate in the form

of a Object Request Broker (ORB), (2) one or more component hosting entities known

as containers, (3) a framework known as Portable Object Adapter (POA) that provides the

124

Figure 34: A Generic Application Server and its components

common services and, (4) a set of configuration handlers that provide hooks for configuring

the application server entities.

Research to date on the middleware specialization process as shown in Chapter V has

concentrated on specializing the individual application server framework layers thereby

generating their multiple forms, which specifically cater to the feature requirements of the

components hosted on that application server. However, individual frameworks alone do

not provide a fully operational application server capability. In the traditional application

server, these unspecialized frameworks seamlessly compose with each other. Hence, the

next logical step is to how to compose individually specialized frameworks together to syn-

thesize the application server stack? Assuming that these application servers are composed

on a per-component basis, it yields a trivial component deployment scenario as shown in

Figure 35. As shown in the figure, each of target nodes (1..N) have specialized applica-

tion servers (1..N) deployed that host their respective components (1..N). Each specialized

server is composed of individual specialized frameworks (ORB, POA, Container).

125

Figure 35: Deployment of Non-homogenous Specialized Application Servers

An important aspect of a component-based DRE system is that the D&C infrastructure

should work coherently with the application server stack installed on each target node in

order to be able to correctly provision the required resources and desired middleware fea-

tures to the running DRE system components. The traditional D&C infrastructure assumes

that the application server installed on each target node offers the same feature set i.e., they

are homogenous. However, as shown in the figure 35, the application servers on each tar-

get node differ in the features provided. This is an undesirable side effect of middleware

specializations, if it expected that the deployed system is to be able to operate correctly and

predictably.

Thus middleware specialization of the application server stack directly impacts the

overall runtime system composition and the deployment of its applications. In order to

utilize the features of the specialized middleware frameworks correctly and seamlessly

across the application server framework layers, the specialized frameworks need to be

126

composed and configured correctly within the existing application server runtime infras-

tructures. Hence, this gives rise to a new problem where the specialized middleware frame-

works need to be safely composed within the application server fabric.

VII.2 Related Research

We survey the existing body of research on middleware composition in two categories.

First, we look at works that involve developing compositional middleware designs that

are highly modular and configurable. Second, we discuss the one-off middleware server

customizations that were performed to satisfy a certain QoS requirement. Next we survey

the past research on deployment optimizations.

VII.2.1 Flexible Middleware Composition

Middleware researchers have perennially tried to improve the modularity and flexibil-

ity of middleware designs. However, they are constantly faced with the design tension

between generality and specificity while architecting middleware designs. In order to have

generality they have used well known patterns and frameworks but to maintain perfor-

mance have avoided using highly dynamic service composition techniques. Advantage of

dynamic service composition is services are loaded into the memory only when needed

thereby minimizing footprint but incur dynamic loading overhead.

ZEN [65] uses a flexible and extensible micro-ORB design (rather than monolithic-

ORB design) for all CORBA services by generalizing TAO’s pluggable protocol framework

to other modular services within the ORB so that they need not be loaded until they are

used. It identifies each core ORB service whose behavior may vary and moves it out of

the ORB by applying the Virtual Component pattern [24] to make each service pluggable

dynamically.

JBoss [41] is an extensible, reflective, and dynamically reconfigurable Java application

server that is itself built in a component-based out of dynamically deployable components

127

that provide middleware services to application components. On such a server, extensible

and dynamically reconfigurable, two general kinds of components can be deployed: de-

ployed: middleware components and application components. Due to the differences be-

tween middleware components and application components, multiple component models

are likely to coexist in a component-based application server: component-based applica-

tion server: a model for middleware components, plus one or more models for application

components.

PAM [9] provides a model-driven, deployment time optimization technique that tries

to minimize the application footprint and invocation latency through a novel assembly fu-

sion algorithm that composes the collocated application component’s glue code (stubs and

skeletons) into an single component assembly.

Modelware [142] advocates the use of models and views to separate intrinsic function-

alities of middleware from extrinsic ones. Modelware considerably reduces coding efforts

in supporting the functional evolution of middleware along different application domains.

The authors use the term intrinsic to characterize middleware architectural elements that

are essential, invariant, and repeatedly used despite the variations in the application do-

mains. They use the term extrinsic to denote elements that are vulnerable to refinements or

can become optional when the application domains change.

FACET [51] identifies the core functionality of a middleware framework and then cod-

ifies all additional functionality into separate aspects. To support functionality not found

in the base code, FACET provides a set of features that can be enabled and combined sub-

ject to some dependency constraints. By using AOP techniques, the code for each of these

features can be weaved at the appropriate place in the base code.

VII.2.2 QoS-specific Middleware Customizations

Wolf et al. [137] developed a custom component middleware server - CORFU which

provides first class support for group failover and recovery based on component replication

128

along with support for real-time state dissemination among the group while providing au-

tomated deployment and configuration for group semantics. It addressing key challenges

of component-based fault-tolerance, including the need for efficient synchronization of in-

ternal component state, failure correlation across groups of components, and configuration

of fault-tolerance properties at the component granularity level.

Balasubramanian et al. [7] developed SwapCIAO, which is a QoS-enabled component

middleware framework that enables application developers to create multiple implementa-

tions of a component and update (i.e. ŞswapŤ) them dynamically. SwapCIAO provides

techniques for updating component implementations dynamically and transparently (i.e.,

without incurring system downtime) to optimize system behavior under diverse operating

contexts and mode changes. SwapCIAO extends CIAO, which is an open-source imple-

mentation of the OMG Lightweight CCM [93], Deployment and Configuration (D&C)

[97], and Real-time CORBA [94] specifications The key capabilities that SwapCIAO adds

to CIAO include (1) mechanisms for updating component implementations dynamically

without incurring system downtime and (2) mechanisms that transparently redirect clients

of an existing component to the new updated component implementation.

Wang et al. [134] describes how CIAO is augmenting the standard CCM specification

to support static QoS provisioning that pre-allocates resources for DRE application and

how dynamic QoS provisioning and adaptation can be addressed using middleware capa-

bilities called Qoskets, which are collections of reusable software modules of the Quality

Objects (QuO). They particularly focus on realtime QoS. They integrate CIAO and Qoskets

to enable composition of both static QoS provisioning and dynamic adaptive QoS assur-

ance in DRE applications. In particular, they focus on how CIAO uses Qoskets to weave in

the software elements to create an integrated QoS-enabled component model that offers a

total QoS provisioning solution for DRE applications.

129

Figure 36: Application Server Stack

VII.3 Unresolved Challenges

We have identified three major challenges that impede the deployment and composition

of specialized middleware frameworks layers within the application servers which arise

mainly due to the large amount of general-purpose component middleware already being

developed and not having the ability to support high pluggability of its own constituents.

VII.3.1 Challenge 1: Preserving Operational Correctness of Specialized Middleware

Stack

The specialization of the individual framework layers of the application server stack re-

sults into inconsistencies in the features provided among the different layers. This creates a

problem where it becomes difficult to compose the layers together to synthesize the appli-

cation server stack as shown in the figure 36. It is important to ensure that the features are

utilized consistently across the entire middleware stack. It is not only important to ensure

130

that the inter-layer interfaces are unchanged but their behaviors are also consistent. For

example, an ORB specialized to support only Select Reactor cannot be composed

with a POA configured with Thread Pool policy. Therefore, the framework composi-

tion techniques to ensure that the feature and configurations match across layers and are

being consistently used to preserve the overall operational correctness of the specialized

middleware stack.

VII.3.2 Challenge 2: Preserving Deployment Transparency during Middleware Com-

position

As the application servers are composed/specialized, the corresponding deployment in-

frastructure needs to be able to pre-install them onto the target nodes and prepared to be

ready to host the application components. The design goals of a D&C infrastructure is to

be transparent to the technology and feature composition of the application components

being deployed. The application servers that host these components on the target nodes

implement the standard hooks required to install, configure, run and uninstall the compo-

nents. Therefore, application servers need to be composed from specialized middleware

frameworks in a way that preserves these interfaces and their expected behavior in order to

preserve the deployment transparency expected by the D&C infrastructures.

Preserving deployment transparency becomes even more paramount when the compo-

nent allocation is controlled by an offline task allocation algorithm as shown in the figure

37. Depending upon the allocation decisions taken by the algorithm, the granularity of the

composition may change from composing application server skeletons, to composing con-

tainers, and finally to composing component glue code [9]. The way the application server

entities are composed should be transparent to the D&C infrastructure.

131

Figure 37: Component Allocation Example

VII.3.3 Challenge 3: Determining Middleware Composition Granularity

The figure 38 showcases the different application server composition granularity when

any two components are collocated and hence deployed on the same target node. The chal-

lenge here is to determine what is the best composition granularity in order to keep footprint

and invocation latencies at a minimum. Therefore, there is a need to devise optimization

techniques that can help resolve these composition decisions.

132

Figure 38: Composition Granularity

VII.4 Proposed Research: Safe Composition and Transparent Deployment of

Specialized Middleware (DeCoM)

Addressing the challenges presented in section VII.3 requires solutions that satisfy two

hypotheses. First, rethinking of alternatives to requiring application server redesign. Sec-

ond, ensuring that the implementing the composition granularity due to collocation does

not worsen per-component footprint and feature reduction by maximum 20

VII.4.1 Hypothesis 1: "Do No Harm"

Solution Approach: Safely Composing Application Server Frameworks Application

servers frameworks are traditionally designed to be not only be syntactically composable

through standard interfaces but also be semantically composable by providing expected be-

haviors to the layers above them. Therefore, as the constituent ORB and POA features are

133

pruned and specialized through the specialization process, it is not only necessary to en-

sure that the interfaces remain the same but it is also necessary to ensure that their expected

behaviors match. It also necessary to ensure that the other server constituents that are de-

pendent on the specialized entities function normally. However, redesigning the application

server is not feasible.

In order to safely compose the specialized middleware frameworks (Container, POA,

ORB, etc) within the application server stack, it is necessary to investigate new server spe-

cialization patterns. Dynamic patterns like Virtual Component can be leveraged to enable

pluggability of the specialized constituents. It is also important to investigate techniques

that can ensure end-to-end seamless operation of the entire operational string .Additionally,

as described in section VII.2, to avoid the isolated, redundant and one-off customizations

of the server for each QoS, it is necessary to develop a unified composition framework

that will enable integration of different QoS in the same container (components swapping,

realtime, fault tolerance, etc).

Even if the interfaces that compose the application server and the specialized middle-

ware components are not modified, the reduced features provided by the middleware will

finally impact the QoS provided by the container. Therefore, it is necessary to ensure the

features and QoS provided by the specialized middleware is utilized consistently through-

out the application server. Moreover, as multiple components are composed together it is

necessary to ensure that the corresponding application servers on which the components

are hosted work seamlessly and correctly. Not only the components need to work correctly

between neighboring components but over the entire operational string that consists of a

chain of application components.

VII.4.2 Hypothesis 2: "Whole does not exceed the Parts by 20%"

As shown in the figure 37, the task allocation [71] planning may mandate placing two or

more components on the same target node. This will mandate composing the specialized

134

application server stacks for each component. The advantage of composition is that the

overall footprint will be reduced drastically as there are no more dedicated middleware

stacks running on a per-component basis.

Solution Approach: Transparent Augmentation of the Deployment Infrastructure

Support Specialized Middleware The D&C infrastructure should deploy the application

servers the same way as application components. Additionally, the components and the

application servers need to configured according to the specialized functionality support-

ed/required by them. Section VII.3.2 emphasizes how a deployment and configuration

infrastructure should ideally be oblivious of the type of the application servers that host

the components being deployed. Therefore, in order to support the transparent deployment

of specialized application servers, the D&C infrastructure needs to be specialized with the

necessary functionality and additional metadata. The D&C Plan Launcher and Execution

Managers can be specialized with installation handlers that can transparently install the

specialized application servers on the target nodes.

However, even if the overall system footprint reduces due to application server compo-

sition, the performance and feature overhead per component will be hampered. Therefore,

it is necessary to investigate this trade off between composition and specialization. By de-

termining the right composition granularity for the given component allocation, it maybe

possible to alleviate this overhead and keep it within 20% for the composite compared

to the individually specialized case. Constraint Optimization theory [49] can lend useful

insights in this regard.

VII.5 Evaluation Criteria

To validate our hypotheses, our approach needs to be evaluated for safety and per-

formance. While the application server is specialized, it is necessary to ensure that it’s

framework layers work seamlessly not only between themselves but also when the server

135

interacts with other application servers over the application operational string. The spe-

cialization approach needs to ensure application server composition and deployment are

customized coherently while minimizing static and dynamic footprint while maintaining

throughput and minimizing runtime overhead.

• Offer improved resource utilization

• Continue to support middleware design goals

• Extensive test cases to test inter-layer operations

• Minimizing static and dynamic footprint while maintaining throughput and minimiz-

ing runtime overhead

• Use RT-CCM as the specialization case study

136

CHAPTER VIII

CONCLUDING REMARKS

General-purpose middleware has been incrementally optimized over the period of time

to efficiently handle the expected application functionality as well as provide the flexibility

and adaptability to handle changing requirements and changing runtime conditions. How-

ever, the primary goal behind middleware design being generality and portability, it lacks

finer customization and tunability to specific application requirements. To resolve this gen-

erality and specificity tension, middleware is usually specialized (customized and adapted)

on a case-by-case basis. However this process becomes tedious and non-repeatable as the

application requirements change as well as underlying platforms evolve. It is important

that any modification to the middleware sources be retrofitted with minimal to no changes

to the middleware portability, standard APIs interfaces, application software implementa-

tions, while preserving interoperability wherever possible. Otherwise such specialization

approaches obviate the benefits accrued from using standards-based middleware. Addition-

ally the accidental complexity from manually applying such approaches to mature middle-

ware implementations renders the specializations tedious and error prone to implement.

In this PhD dissertation, we presented the research challenges involved in automat-

ing middleware specializations for component-based DRE systems. First, we discussed

the challenge of tackling horizontal decomposition in traditional general-purpose middle-

ware. Second, we motivated the need for a taxonomy for categorizing and reasoning about

middleware specialization techniques. Third, we discussed the need for automating the

middleware specialization process that reasons the application requirements in terms of

middleware features and synthesizes the specializations directives using algorithms that

transform the general-purpose middleware code into their optimized and specialized forms

137

with minimum developer intervention. We presented a multi-stage feature-oriented reason-

ing approach that infers middleware features from application requirements and determines

the middleware specializations that are applicable. Next we presented an automated and

generative process that uses novel and intuitive algorithms that generate the specialization

directives to transform the middleware source and build configurations.

While an automated middleware specialization process addresses the traditional hori-

zontal decomposition issues in general-purpose middleware and provides a systematic pro-

cess of specializing middleware, run-time issues such as adapting the middleware safely

and predictively to failures while improving resource utilization are not addressed ade-

quately by current research. We sketched a solution in the form of a safe specialization

methodology that would ensure safe adaptation of real-time middleware without adversely

affecting other performance concerns such as application jitter and runtime processing

overhead requirements of DRE systems while improving resource utilizations.

138

Table 8: Summary Of Research Contributions
Category Contributions

Assessing
Contemporary
Middleware
Specialization
Techniques

Taxonomy of Middleware Specializations: A catalog that categorizes
and reasons contemporary middleware specializing techniques along three
dimensions of feature manipulation, development lifecycle and
development paradigms.

Feature Oriented
Reverse
Engineering based
Middleware
Specializations

FORMS: A generic, feature oriented reasoning and specialization process
for specializing middleware to reduce the footprint and amount of features
being used. Can be adapted to work with any other kind of application and
extended to work with other programming language platforms.

Generative
Middleware
Specializations

GeMS: A generative algorithm-based approach to automate the deduction
of application invariants to infer specializations that are applicable and
subsequently generating the specialization directives to transform the
middleware sources.

Weaving
Dependability
Concerns in
System Artifacts

GRAFT: An aspect-oriented transformation approach that generates the
fault handling and masking code necessary for fault-tolerance
provisioning

Safe Middleware
Adaptation for
Real-Time
Fault-Tolerance

SafeMAT: A safe specialization methodology that would ensure safe
adaptation of real-time middleware without adversely affecting other
performance concerns such as application jitter and runtime processing
overhead requirements of DRE systems while improving resource
utilizations.

139

APPENDIX A

UNDERLYING TECHNOLOGIES

This appendix summarizes the various technologies that are used to build the middle-

ware specialization techniques and the fault-tolerant middleware adaptation solutions that

are described in this thesis.

A.1 Aspect Oriented Programming (AOP) Terminologies

Aspects modularize crosscutting concerns, coding concerns that are not localized, hence,

not modularized. Aspect-oriented programming (AOP) allows the developer to cleanly en-

capsulated crosscutting concerns in separate modules [63]. Aspect-oriented languages,

such as AspectJ, defines a set of new language constructs to support two kinds of cross-

cutting: dynamic crosscutting and static crosscutting. Dynamic crosscutting is defined by

means of join points that denote well-defined points in the execution of a program. A Point-

cut refers to a collection of join points and parameters associated with these join points. A

method-like construct, referred to as an advice, is used to define aspect code executed be-

fore, after or in place of a join point. Static crosscutting affects the static structure of a

program, such as classes, interfaces, and the type hierarchy whereas dynamic crosscut-

ting affects the runtime behavior. Inter-type declarations are used to introduce new fields

and methods into classes or interfaces. The declare parents construct is used to modify

the existing type hierarchy. An aspect module includes pointcuts, the associated advices,

inter-type declarations, and declare parents constructs.

A.2 Model-Driven Development (MDD)

Model-driven development refers to a software development process that is based on

models of the software synthesized code. The Model Driven Architecture process (MDA)

140

ClassMethod1 Method1

Pre Code

Post Code

Aspect

Figure 39: Aspect Oriented Programming (AOP)

is one prominent examples of a model-driven development approach. MDA advocates de-

veloping complex systems through multiple and hierarchical viewpoints. The Platform

Independent Viewpoint and the associated Platform Independent Model (PIM) does not

specify the details necessary for running the system on a particular platform, which makes

it suitable for abstracting the essential functionality of a system across a number of mid-

dleware platforms. By combining the specifications of the PIM with the details of how to

use a particular type of platform, a Platform Specific Model (PSM) is established. A set

of mapping rules relate a PIM to its PSM that lays out the details with respect to a given

middleware platform. How mappings can be effectively realized is still in question. The

approach suggested in this paper is one possible realization for automating the mapping

between different views and models.

A.3 Overview of Lightweight CCM

The OMG Lightweight CCM (LwCCM) [89] specification standardizes the develop-

ment, configuration, and deployment of component-based applications. LwCCM uses

CORBA’s distributed object computing (DOC) model as its underlying architecture, so

applications are not tied to any particular language or platform for their implementations.

Components in LwCCM are the implementation entities that export a set of interfaces us-

able by conventional middleware clients as well as other components. Components can

141

also express their intent to collaborate with other components by defining ports, including

(1) facets, which define an interface that accepts point-to-point method invocations from

other components, (2) receptacles, which indicate a dependency on point-to-point method

interface provided by another component, and (3) event sources/sinks, which indicate a

willingness to exchange typed messages with one or more components. Homes are fac-

tories that shield clients from the details of component creation strategies and subsequent

queries to locate component instances.

Figure 40: Layered LwCCM Architecture

Figure 40 illustrates the layered architecture of LwCCM, which includes the following

entities:

• LwCCM sits atop an object request broker (ORB) and provides containers that

encapsulate and enhance the CORBA portable object adapter (POA) demultiplexing

mechanisms. Containers support various pre-defined hooks and strategies, such as

142

persistence, event notification, transaction, and security, to the components it man-

ages.

• A component server plays the role of a process that manages the homes, containers,

and components.

• Each container manages one type of component and is responsible for initializing

instances of this component type and connecting them to other components and com-

mon middleware services.

• The component implementation framework (CIF) consists of patterns, languages

and tools that simplify and automate the development of component implementations

which are called as executors. Executors actually provide the component’s business

logic.

• Component Implementation Definition Language (CIDL) is a text-based declarative

language that defines the behavior of the components. In order to shield the compo-

nent application developers from many complexities associated with programming

POAs like servant activation and deactivation, a CIDL compiler generates infras-

tructure glue code called servants. Servants (1) activate components within the con-

tainer’s POA, (2) manage the interconnection of a component’s ports to the ports of

other components, (3) provide implementations for operations that allow navigation

of component facets, and (4) intercept invocations on executors to transparently enact

various policies, such as component activation, security, transactions, load balancing,

and persistence.

• To initialize an instance of a component type, a container creates a component home.

The component home creates instances of servants and executors and combines them

to export component implementations to the external world.

• Executors use servants to communicate with the underlying middleware and servants

143

delegate business logic requests to executors. Client invocations made on the com-

ponent are intercepted by the servants, which then delegate the invocations to the

executors. Moreover, the containers can configure the underlying middleware to add

more specialized services, such as integrating an event channel to allow components

to communicate and add Portable Interceptors to intercept component requests.

A.4 Overview of Component Middleware Deployment and Configuration

After components are developed and component assemblies are defined, they must

be deployed and configured properly by deployment and configuration (D&C) services.

The D&C process of component-based systems usually involves a number of service ob-

jects that must collaborate with each other. Figure 41 gives an overview of the OMG

D&C model, which is standardized by OMG through the Deployment and Configuration

(D&C) [90] specification to promote component reuse and allow complex applications to

be built by assembling existing components. As shown in the figure, since a component-

based system often consists of many components that are distributed across multiple nodes,

in order to automate the D&C process, these service objects must be distributed across the

targeted infrastructure and collaborate remotely.

The run-time of the OMG D&C model standardizes the D&C process into a number of

serialized phases. The OMG D&C Model defines the D&C process as a two-level architec-

ture, one at the domain level and one at the node level. Since each deployment task involves

a number of subtasks that have explicit dependencies with each other, these subtasks must

be serialized and finished in different phases. Meanwhile, each deployment task involves a

number of node-specific tasks, so each task is distributed.

144

Figure 41: An Overview of OMG Deployment and Configuration Model

A.5 The ARINC-653 Component Model (ACM)

ACM combines the CORBA Component Model [133] with ARINC-653 [6]. ACM

components interact with each other via well-defined patterns, facilitated by ports: asyn-

chronous connections (event publishers & consumers) and/or synchronous provided/re-

quired interfaces (facets/receptacles). ACM allows the developers to group a number of

ARINC-653 processes into a reusable component. Since this framework is geared for hard

real-time systems, it is required that each port is statically allocated to an ARINC-653

process whereas every method of a facet interface is allocated to a separate process.

1.The ACM Modeling Environment

The ACM modeling environment captures (1) the component’s interaction ports, condi-

tions associated with the ports, (2) the real-time properties (priority, periodicity, deadline,

worst case execution time etc.) and resource requirements (CPU, stack size) of the ports

and the component, the data and control flow within the component, and (optionally) the

local component level health management strategy (CLHM) part of the two-level Health

145

Management [33] using a domain specific modeling language and associated tools. The

modeling tool allows the specification of the platform in terms of the modules (proces-

sors) and the partitions (processes) within each module. The integrator can specify the

deployment of each component (group of threads) into an appropriate partition such that

the temporal partitioning concerns are satisfied. Lastly, integrator can specify whether

a Software Health Management (SHM) module should be generated for the assembly or

not. Tools included with the modeling environment generate glue code that is responsi-

ble for implementing the ports, binding each port with an ARINC-653 process and the

integration code and configuration files.

2.The ACM Middleware

The ACM middleware is composed of layers that are instantiated and configured for run-

time. These layers are described next.

The Module Manager (MM) is the main controller responsible for providing temporal

partitioning among partitions (i.e., Linux processes). For this purpose, each module is

bound to a single core of the host processor. The module manager is configured with

a fixed cyclic schedule computed from the specified partition periods and durations. It

is specified as offsets from the start of the hyper period, duration and the partition to

run in that window. Once configured and validated, the module manager implements the

schedule using the SCHED_FIFO policy of the Linux kernel and manages the execution

and preemption of the partitions. The module manager is also responsible for transferring

the inter-partition messages across the configured channels. Figure 42 shows the example

execution time line of a module with two partitions and a hyper period of 2 seconds.

In case of a distributed system, there can be multiple module managers each bound to a

processor core that are controlled hierarchically by a system level module manager.

The APEX Partition Scheduler is instantiated for each partition using the APEX ser-

vices emulation library that implements a priority-driven preemptive scheduling algo-

rithm using Linux SCHED_FIFO scheduler. It initializes and schedules the ARINC-653

146

Figure 42: A module configuration and the time line of events as they occur.

processes inside the partition based on their periodicity and priority. It ensures that all

processes, periodic as well as aperiodic, finish their execution within the specified dead-

line.

TAO Object Request Broker (ORB) The main TAO [56] ORB thread is executed as

an aperiodic ARINC-653 process within the respective partition. For controllability, the

ORB runs at a lower priority than the partition scheduler does. Since ARINC does not

allow dynamic creation of processes at run-time, the ORB is configured to use a pre-

defined number of worker threads (i.e. ARINC-653 Processes) that are created during

initialization.

Component and Process Layers This layer provides the glue code, generated from the

definitions of components and their interfaces specified in the modeling environment in

order to map the concepts of component model into the concepts exposed by the ARINC

Emulator layer and the TAO ORB layer. The system developer provides the functional

code. This layer also consists of CLHMs that are special processes that can take mitiga-

tion actions, if required.

3.Software Health Management (SHM) in ACM

Software Health Management (SHM) in ACM happens at two levels. The first level of

protection is provided by a component level health management (CLHM) strategy, which

is implemented in all components. It provides a localized timed state machine with state

147

transitions triggered either by a local anomaly or by timeouts, and actions that perform the

local mitigation. The System Level Health Manager (SLHM) is at the second, top level

in our health management strategy. The deployment of the SLHM requires the addition

of three special SLHM components to an ACM assembly: the Alarm Aggregator, The

Diagnosis Engine, and the Deliberative Reasoner, as shown in Figure 43.

Commands
Alarms

System

ComponentsComponentsComponents

CLHM CLHM CLHM

System-Level Health Manager

Alarm
Aggregator

Deliberative
Reasoner

Diagnoser

Figure 43: SHM architecture.

The Alarm Aggregator is responsible for collecting and aggregating inputs from the com-

ponent level health managers (local alarms and the corresponding mitigation actions).

This information is collected using a moving window two hyperperiods long. The events

are sorted based on their time of occurrence and then sent to the Diagnosis Engine. The

Diagnosis Engine is initialized by a Timed Failure Propagation Graph (TFPG) [1] model

that captures the failure-modes, discrepancies (possibly indicated by the alarms), and the

failure propagations from failure modes to discrepancies and from discrepancies to other

discrepancies, across the entire system [35, 73]. The reasoner uses this model to isolate

148

the most plausible failure source: a software component that could explain the observa-

tions, i.e., the alarms triggered and the CLHM commands issued. The result, i.e., the list

of faulty components is reported to the next component that provides the system level

mitigation: the Deliberative Reasoner.

149

APPENDIX B

LIST OF PUBLICATIONS

Research on FORMS, GeMS, GRAFT, and SafeMAT has led to the following journal,

conference, and workshop publications.

B.1 Refereed Journal Publications

1. Akshay Dabholkar, Abhishek Dubey, and Aniruddha Gokhale, “SafeMAT: Safe Mid-

dleware Adaptation for Predictable Fault-Tolerant Distributed Real-time and Embed-

ded Systems,” (In submission), 2012.

2. Akshay Dabholkar, and Aniruddha Gokhale, “AutoGeMS: An Automated and Gen-

erative Middleware Specializations Process for Distributed Real-time and Embedded

Systems,” (Submitted to) Elsevier Journal of Software Architecture (JSA), 2012

3. Akshay Dabholkar, and Aniruddha Gokhale, “FORMS: Feature-Oriented Reverse

Engineering-based Middleware Specialization for Product-Lines,” Journal of Soft-

ware Special Issue on Middleware and Network Application (JSW), Vol.6, No.4, 2011

B.2 Refereed Conference Publications

1. Akshay Dabholkar, Abhishek Dubey, and Aniruddha Gokhale, “Reliable Distributed

Real-time and Embedded Systems Through Safe Middleware Adaptation,” (In sub-

mission to) 31st International Symposium on Reliable Distributed Systems (SRDS),

2012.

2. Akshay Dabholkar, and Aniruddha Gokhale, “A Generative Middleware Special-

ization Process for Distributed Real-time and Embedded Systems,” Proceedings of

150

theă14th IEEE International Symposium on Object/Component/Service-oriented Real-

time Distributed Computing (ISORC), 2011.

3. Akshay Dabholkar, and Aniruddha Gokhale, “Middleware Specialization for Product-

lines using Feature Oriented Reverse Engineering,” Proceedings of theă7th Interna-

tional Conference on Information Technology : New Generations (ITNG), 2010.

4. Sumant Tambe, Akshay Dabholkar, and Aniruddha Gokhale, “MoPED: A Model-

based Provisioning Engine for Dependability in Component-based Distributed Real-

time Embedded Systems,” Proceedings of theă18th IEEE International Conference

and Workshops on the Engineering of Computer Based Systems (ECBS), 2011.

5. Sumant Tambe, Akshay Dabholkar, Aniruddha Gokhale, “CQML: Aspect-oriented

Modeling for Modularizing and Weaving QoS Concerns in Component-based Sys-

tems,” Proceedings of the 16th Annual IEEE International Conference and Workshop

on the Engineering of Computer Based Systems (ECBS), 2009.

6. Sumant Tambe, Akshay Dabholkar, and Aniruddha Gokhale, “Fault-tolerance for

Component-based Systems - An Automated Middleware Specialization Approach,”

Proceedings of the International Symposium on Object/component/service-oriented

Real-time distributed Computing (ISORC), 2009.

7. Nilabja Roy,ăAkshay Dabholkar, Nathan Hamm, Larry Dowdy, and Douglas Schmidt,

“Modeling Software Contention using Colored Petri Nets,” Proceedings of theă16th

Annual Meeting of the IEEE International Symposium on Modeling, Analysis, and

Simulation of Computer and Telecommunication Systems (MASCOTS), 2008.

B.3 Refereed Workshop Publications

1. Akshay Dabholkar, and Aniruddha Gokhale, “Safe Specialization of the LwCCM

Container for Simultaneous Provisioning of Multiple QoS,” Proceedings of OMGŠs

151

Workshop on Real-time, Embedded and Enterprise-Scale Time-Critical Systems (OMG

RTWS), 2011.

2. Akshay Dabholkar, andăAniruddha Gokhale, “An Approach to Middleware Special-

ization for Cyber Physical Systems,” Proceedings ofăThe 2nd International Work-

shop on Cyber-Physical Systems (WCPS),ăCo-located withăICDCS pp. 73Ű79, 2009.

3. Akshay Dabholkar, and Aniruddha Gokhale, “Developing and Evaluating a Taxon-

omy of Modularization Techniques for Middleware Specialization,” Proceedings of

theă2nd OOPSLAăWorkshop on Assessment of Contemporary Modularization Tech-

niques (ACoM), 2007.

4. Sumant Tambe, Akshay Dabholkar, Aniruddha Gokhale, Amogh Kavimandan, “To-

wards A QoS Modeling and Modularization Framework for Component-based Sys-

tems,” EDOC workshop on Advances in Quality of Service Management (AQuSerM)

2008.

5. Aniruddha Gokhale, Akshay Dabholkar, and Sumant Tambe, “Towards a Holis-

tic Approach for Integrating Middleware with Software Product Lines Research,”

Proceedings of the GPCE/OOPSLA workshop on Modularization, Composition and

Generative Techniques in Product Line Engineering (McGPLE), 2008.

B.4 Technical Reports

1. Sumant Tambe, Aniruddha Gokhale, “Toward Native XML Processing Using Multi-

paradigm Design in C++,” Technical Report ISIS-10-105, Institute for Software Inte-

grated Systems, Vanderbilt University, April 2010.

152

B.5 Poster Publications

1. Akshay Dabholkar, and Aniruddha Gokhale, “Architecture-Driven Context-Specific

Middleware Specializations for Distributed Real-time and Embedded Systems,” Pro-

ceedings of theăACM SIGPLAN/SIGBED Conference on Languages, Compilers and

Tools for Embedded Systems (LCTES-WIP-PS), 2010.

2. Akshay Dabholkar, Sumant Tambe andăAniruddha Gokhale , “An Systematic Ap-

proach to Middleware Specialization for Cyber Physical Systems,” Published in

theăProceedings of the Cyber Physical Systems Week (CPS-Week), 2009.

3. Akshay Dabholkar, and Aniruddha Gokhale, “Towards Employing End-to-End Mid-

dleware Specialization Techniques,” Proceedings of OMGŠs Annual Real-time and

Embedded Systems workshop (OMG RTWS), 2008.

4. Joe Hoffert, Akshay Dabholkar, Aniruddha Gokhale, and Douglas Schmidt, ‘Enhanc-

ing Security in Ultra-Large Scale (ULS) Systems using Domain-specific Modeling,”

Spring Conference for Team for Research in Ubiquitous Secure Technology (TRUST),

2007.

153

REFERENCES

[1] S. Abdelwahed, G. Karsai, N. Mahadevan, and S. C. Ofsthun. Practical considera-
tions in systems diagnosis using timed failure propagation graph models. Instrumen-
tation and Measurement, IEEE Transactions on, 58(2):240–247, February 2009.

[2] Francisco Afonso, Carlos Silva, Nuno Brito, Sergio Montenegro, and Adriano
Tavares. Aspect-Oriented Fault Tolerance for Real-Time Embedded Systems. In
ACP4IS ’08: Proceedings of the 7th workshop on Aspects, components, and pat-
terns for infrastructure software, 2008. doi: http://doi.acm.org/10.1145/1233901.
1233908.

[3] Gul A. Agha. Introduction. Communications of the ACM, 45(6):30–32, 2002. ISSN
0001-0782. doi: http://doi.acm.org/10.1145/508448.508469.

[4] Ruben Alexandersson and Peter Ohman. Implementing Fault Tolerance Using As-
pect Oriented Programming. In Latin American Symposium on Dependable Com-
puting (LADC), volume 4746, pages 57–74. Springer, 2007.

[5] S. Apel, T. Leich, and G. Saake. Aspectual feature modules. Software Engineering,
IEEE Transactions on, 34(2):162–180, March-April 2008. ISSN 0098-5589. doi:
10.1109/TSE.2007.70770.

[6] ARINC. ARINC specification 653-2: Avionics application software standard inter-
face part 1 - required services. Technical report, ARINC Incorporated, Annapolis,
Maryland, USA, May 2010.

[7] Jaiganesh Balasubramanian, Balachandran Natarajan, Douglas C. Schmidt, Anirud-
dha Gokhale, Gan Deng, and Jeff Parsons. Middleware Support for Dynamic Com-
ponent Updating. In International Symposium on Distributed Objects and Applica-
tions (DOA 2005), Agia Napa, Cyprus, October 2005.

[8] Jaiganesh Balasubramanian, Sumant Tambe, Chenyang Lu, Aniruddha Gokhale,
Christopher Gill, and Douglas C. Schmidt. Adaptive Failover for Real-time Mid-
dleware with Passive Replication. In Proceedings of the 15th Real-time and Embed-
ded Applications Symposium (RTAS ’09), pages 118–127, San Francisco, CA, April
2009.

[9] Krishnakumar Balasubramanian and Douglas C. Schmidt. Physical Assembly Map-
per: A Model-driven Optimization Tool for QoS-enabled Component Middleware.
In Proceedings of the 14th IEEE Real-time and Embedded Technology and Applica-
tions Symposium, pages 123–134, St. Louis, MO, USA, April 2008.

154

[10] Krishnakumar Balasubramanian, Jaiganesh Balasubramanian, Jeff Parsons, Anirud-
dha Gokhale, and Douglas C. Schmidt. A Platform-Independent Component Mod-
eling Language for Distributed Real-Time and Embedded Systems. In RTAS ’05:
Proceedings of the 11th IEEE Real Time on Embedded Technology and Applications
Symposium, pages 190–199, Washington, DC, USA, 2005. IEEE Computer Society.
ISBN 0-7695-2302-1. doi: http://dx.doi.org/10.1109/RTAS.2005.4.

[11] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling Step-Wise Re-
finement. IEEE Transactions on Software Engineering, 30(6):355–371, 2004. ISSN
0098-5589. doi: doi.ieeecomputersociety.org/10.1109/TSE.2004.23.

[12] BEA Systems, et al. CORBA Component Model Joint Revised Submission. Object
Management Group, OMG Document orbos/99-07-01 edition, July 1999.

[13] Andrey Berlizev, Alfredo Capozucca, Barbara Gallina, Nicolas Guelfi, Patrizio Pel-
liccione, and Alexander. CORRECT Project Annual Activity Report 2005. Tech-
nical report, Faculty of Science, Technology and Communication, Luxembourg-
Kirchberg, 2006.

[14] A. D. Birrell and B. J. Nelson. Implementing Remote Procedure Calls. ACM Trans-
actions on Computer Systems, 2(1):39–59, February 1984.

[15] U. Black. OSI: A Model for Computer Communications Standards. Prentice-Hall,
Englewood Cliffs, NJ, 1991.

[16] Gordon S. Blair, G. Coulson, P. Robin, and M. Papathomas. An Architecture for
Next Generation Middleware. In Proceedings of the IFIP International Conference
on Distributed Systems Platforms and Open Distributed Processing, pages 191–206,
London, 1998. Springer-Verlag.

[17] Greg Bollella, James Gosling, Ben Brosgol, Peter Dibble, Steve Furr, David Hardin,
and Mark Turnbull. The Real-time Specification for Java. Addison-Wesley, 2000.

[18] Frederick P. Brooks. No Silver Bullet: Essence and Accidents of Software Engi-
neering. IEEE Computer, 20(4):10–19, April 1987.

[19] Nélio Cacho and Thaís Vasconcelos Batista. Using AOP to Customize a Reflective
Middleware. In OTM Conferences (2), volume 3761 of Lecture Notes in Computer
Science, pages 1133–1150. Springer, 2005. ISBN 3-540-29738-3.

[20] Zhongtang Cai, Vibhore Kumar, Brian F. Cooper, Greg Eisenhauer, Karsten Schwan,
and Robert E. Strom. Utility-Driven Proactive Management of Availability in
Enterprise-Scale Information Flows. In Proceedings of ACM/Usenix/IFIP Middle-
ware, pages 382–403, 2006.

[21] Alfredo Capozucca, Barbara Gallina, Nicolas Guelfi, Patrizio Pelliccione, and

155

Alexander Romanovsky. CORRECT - Developing Fault-Tolerant Distributed Sys-
tems. European Research Consortium for Informatics and Mathematics (ERCIM)
News, 64(1), 2006. URL www.ercim.org/publication/Ercim_News/
enw64/guelfi.html.

[22] Venkat Chakravarthy, John Regehr, and Eric Eide. Edicts: Implementing Features
with Flexible Binding Times. In AOSD ’08: Proceedings of the 7th International
Conference on Aspect-oriented Software Development, pages 108–119, New York,
NY, USA, 2008. ACM. ISBN 978-1-60558-044-9. doi: http://doi.acm.org/10.1145/
1353482.1353496.

[23] Denis Conan, Erik Putrycz, Nicolas Farcet, and Miguel DeMiguel. Integration of
Non-Functional Properties in Containers. Proceedings of the Sixth International
Workshop on Component-Oriented Programming (WCOP), 2001.

[24] Angelo Corsaro, Douglas C. Schmidt, Raymond Klefstad, and Carlos O’Ryan. Vir-
tual Component: a Design Pattern for Memory-Constrained Embedded Applica-
tions. In Proceedings of the 9th Annual Conference on the Pattern Languages of
Programs, Monticello, IL, September 2002.

[25] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, Reading, Massachusetts, 2000.

[26] Akshay Dabholkar and Aniruddha Gokhale. FORMS: Feature-Oriented Reverse
Engineering-based Middleware Specialization for Product-Lines. Journal of Soft-
ware (JSW) - Special Issue on Recent Advances in Middleware and Network Appli-
cations, 6(4):519–527, 2011. ISSN 1796-217X.

[27] Pierre-Charles David, Thomas Ledoux, and Noury M.N. Bouraqadi-Saadani. Two-
step Weaving with Reflection using AspectJ. OOPSLA 2001 Workshop on Ad-
vanced Separation of Concerns in Object-Oriented Systems, October 2001.

[28] Linda DeMichiel and Michael Keith. Enterprise Java Beans 3.0 Specifica-
tion: Simplified API. jcp.org/aboutJava/communityprocess/final/
jsr220/index.html, May 2006.

[29] Ömer Erdem Demir, Premkumar T. Devanbu, Eric Wohlstadter, and Stefan Tai. An
aspect-oriented approach to bypassing middleware layers. In Brian M. Barry and
Oege de Moor, editors, AOSD, volume 208 of ACM International Conference Pro-
ceeding Series, pages 25–35. ACM, 2007. ISBN 1-59593-615-7.

[30] A. M. Déplanche, P. Y. Théaudière, and Y. Trinquet. Implementing a semi-active
replication strategy in chorus/classix, a distributed real-time executive. In SRDS ’99:
Proceedings of the 18th IEEE Symposium on Reliable Distributed Systems, page 90,
Washington, DC, USA, 1999. IEEE Computer Society. ISBN 0-7695-0290-3.

156

www.ercim.org/publication/Ercim_News/enw64/guelfi.html
www.ercim.org/publication/Ercim_News/enw64/guelfi.html
jcp.org/aboutJava/communityprocess/final/jsr220/index.html
jcp.org/aboutJava/communityprocess/final/jsr220/index.html

[31] BerliOS Developer. The source-navigatorT M ide. http://sourcenav.
sourceforge.net/, 2007.

[32] Jing Dong, Yajing Zhao, and Tu Peng. Architecture and design pattern discovery
techniques - a review. In Hamid R. Arabnia and Hassan Reza, editors, Software
Engineering Research and Practice, pages 621–627. CSREA Press, 2007. ISBN
1-60132-034-5.

[33] Abhishek Dubey, Gabor Karsai, and Nagabhushan Mahadevan. Towards model-
based software health management for real-time systems. Technical Report ISIS-10-
106, Institute for Software Integrated Systems, Vanderbilt University, August 2010.
URL http://isis.vanderbilt.edu/node/4196.

[34] Abhishek Dubey, Gabor Karsai, and Nagabhushan Mahadevan. A component model
for hard real-time systems: CCM with ARINC-653. Software: Practice and Expe-
rience, 41(12):1517–1550, 2011. ISSN 1097-024X. doi: 10.1002/spe.1083. URL
http://dx.doi.org/10.1002/spe.1083.

[35] Abhishek Dubey, Gabor Karsai, and Nagabhushan Mahadevan. Model-based soft-
ware health management for real-time systems. In Aerospace Conference, 2011
IEEE, march 2011. to appear. Draft available at http://isis.vanderbilt.
edu/sites/default/files/PaperSubmission.pdf.

[36] Abhishek Dubey, Nagabhushan Mahadevan, and Gabor Karsai. A deliberative
reasoner for model-based software health management. In The Eighth Interna-
tional Conference on Autonomic and Autonomous Systems, 2012. doi: http://doi.
ieeecomputersociety.org/10.1109/ISORC.2010.39. to appear.

[37] Abhishek Dubey, Nagabhushan Mahadevan, and Gabor Karsai. The inertial mea-
surement unit example: A software health management case study. Technical report,
Institute for Software Integrated Systems, Vanderbilt University, 02/2012 2012.

[38] Chad Elliott. The makefile, project, and workspace creator (mpc). www.ociweb.
com/products/mpc, Sep 2007.

[39] Wolfgang Emmerich. Software engineering and middleware: a roadmap. In ICSE
’00: Proceedings of the Conference on The Future of Software Engineering, pages
117–129, New York, NY, USA, 2000. ACM. ISBN 1-58113-253-0. doi: http://doi.
acm.org/10.1145/336512.336542.

[40] Fábio M. Costa and Gordon S. Blair. A Reflective Architecture for Middleware:
Design and Implementation. In ECOOP’99, Workshop for PhD Students in Object
Oriented Systems, June 1999.

[41] Marc Fleury and Francisco Reverbel. The JBoss Extensible Server. In Proceed-
ings of the ACM/IFIP/USENIX International Middleware Conference (Middleware

157

http://sourcenav.sourceforge.net/
http://sourcenav.sourceforge.net/
http://isis.vanderbilt.edu/node/4196
http://dx.doi.org/10.1002/spe.1083
http://isis.vanderbilt.edu/sites/default/files/PaperSubmission.pdf
http://isis.vanderbilt.edu/sites/default/files/PaperSubmission.pdf
www.ociweb.com/products/mpc
www.ociweb.com/products/mpc

2003), Rio De Janeiro, Brazil, pages 344–373, 2003.

[42] Lorenz Froihofer, Karl M. Goeschka, and Johannes Osrael. Middleware support for
adaptive dependability. In Middleware, pages 308–327, 2007.

[43] Aniruddha Gokhale, Dimple Kaul, Arundhati Kogekar, Jeff Gray, and Swapna
Gokhale. POSAML: A Visual Modeling Language for Managing Variability in Mid-
dleware Provisioning. Elsevier Journal of Visual Languages and Computing (JVLC)
2007, 18(4):359–377, 2007.

[44] O. Gonzalez, H. Shrikumar, J. A. Stankovic, and K. Ramamritham. Adaptive fault
tolerance and graceful degradation under dynamic hard real-time scheduling. In
RTSS ’97, page 79, San Francisco, CA, USA, 1997. ISBN 0-8186-8268-X.

[45] Georg Gottlob, Michael Schrefl, and Brigitte Röck. Extending object-oriented sys-
tems with roles. ACM Trans. Inf. Syst., 14(3):268–296, 1996. ISSN 1046-8188. doi:
http://doi.acm.org/10.1145/230538.230540.

[46] Carl L. Hall. Building client/server applications using TUXEDO. John Wiley &
Sons, Inc., New York, NY, USA, 1996. ISBN 0-471-12958-5.

[47] William Harrison and Harold Ossher. Subject-oriented Programming: A Critique
of Pure Objects. In OOPSLA ’93: Proceedings of the eighth annual conference
on Object-oriented programming systems, languages, and applications, pages 411–
428, New York, NY, USA, 1993. ACM. ISBN 0-89791-587-9. doi: http://doi.acm.
org/10.1145/165854.165932.

[48] J. Herrero, F. Sanchez, and M. Toro. Fault tolerance AOP approach. In Workshop
on Aspect-Oriented Programming and Separation of Concerns, 2001.

[49] J. Hooker, G. Ottosson, E.S. Thorsteinsson, and H.J. Kim. A scheme for unifying
optimization and constraint satisfaction methods. Knowledge Engineering Review,
15(1):11–30, 2000.

[50] Eugene S. Hudders. CICS: a guide to internal structure. Wiley-QED Publishing,
Somerset, NJ, USA, 1994. ISBN 0-471-52172-8.

[51] Frank Hunleth and Ron K. Cytron. Footprint and Feature Management Using
Aspect-oriented Programming Techniques. In Proceedings of the Joint Confer-
ence on Languages, Compilers and Tools for Embedded Systems (LCTES 02),
pages 38–45, Berlin, Germany, 2002. ACM Press. ISBN 1-58113-527-0. doi:
doi.acm.org/10.1145/513829.513838.

[52] IBM. MQSeries Family. www-4.ibm.com/software/ts/mqseries/,
1999.

[53] Software Engineering Institute. Ultra-Large-Scale Systems: Software Challenge of

158

www-4.ibm.com/software/ts/mqseries/

the Future. Technical report, Carnegie Mellon University, Pittsburgh, PA, USA, June
2006.

[54] Institute for Software Integrated Systems. The ADAPTIVE Communication Envi-
ronment (ACE). www.dre.vanderbilt.edu/ACE/, Vanderbilt University.

[55] Institute for Software Integrated Systems. Component-Integrated ACE ORB
(CIAO). www.dre.vanderbilt.edu/CIAO, Vanderbilt University.

[56] Institute for Software Integrated Systems. The ACE ORB (TAO).
www.dre.vanderbilt.edu/TAO/, Vanderbilt University.

[57] Jingwen Jin and Klara Nahrstedt. On Exploring Performance Optimizations in Web
Service Composition. In Middleware, pages 115–134, 2004.

[58] V. Kalogeraki, P. M. Melliar-Smith, and L. E. Moser. Dynamic Scheduling of Dis-
tributed Method Invocations. In 21st IEEE Real-time Systems Symposium, Orlando,
FL, November 2000. IEEE.

[59] Vana Kalogeraki, P. M. Melliar-Smith, L. E. Moser, and Y. Drougas. Resource Man-
agement Using Multiple Feedback Loops in Soft Real-time Distributed Systems.
Journal of Systems and Software, 2007.

[60] Christian Kästner, Sven Apel, and Martin Kuhlemann. Granularity in Software
Product Lines. In Proceedings of the 30th international conference on Software
engineering, ICSE ’08, pages 311–320, New York, NY, USA, 2008. ACM. ISBN
978-1-60558-079-1. doi: http://doi.acm.org/10.1145/1368088.1368131.

[61] Panagiotis Katsaros and Constantine Lazos. Optimal object state transfer - recovery
policies for fault tolerant distributed systems. In Proc. of DSN. (2004).

[62] Gregor Kiczales, Jim des Rivières, and Daniel G. Bobrow. The art of metaobject
protocol. MIT Press, Cambridge, MA, USA, 1991. ISBN 0-262-61074-4.

[63] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In
Proceedings of the 11th European Conference on Object-Oriented Programming
(ECOOP’97), pages 220–242, June 1997.

[64] K. H. (Kane) Kim and Chittur Subbaraman. The pstr/sns scheme for real-time fault
tolerance via active object replication and network surveillance. IEEE Trans. on
Know. and Data Engg., 12(2), 2000. ISSN 1041-4347. doi: dx.doi.org/10.1109/69.
842258.

[65] Raymond Klefstad, Arvind S. Krishna, and Douglas C. Schmidt. Design and Perfor-
mance of a Modular Portable Object Adapter for Distributed, Real-time, and Embed-
ded CORBA Applications. In Proceedings of the 4th International Symposium on

159

Distributed Objects and Applications, Irvine, CA, October/November 2002. OMG.

[66] Raymond Klefstad, Douglas C. Schmidt, and Carlos O’Ryan. Towards Highly Con-
figurable Real-time Object Request Brokers. In Proceedings of the International
Symposium on Object-Oriented Real-time Distributed Computing (ISORC), New-
port Beach, CA, March 2002. IEEE/IFIP.

[67] F. Kon, M. Roman, P. Liu, J. Mao, T Yamane, L. Magalhaes, and R. Campbell.
Monitoring, Security, and Dynamic Configuration with the dynamicTAO Reflective
ORB. In Proceedings of the Middleware 2000 Conference. ACM/IFIP, April 2000.

[68] Arvind Krishna, Aniruddha Gokhale, Douglas C. Schmidt, John Hatcliff, and
Venkatesh Ranganath. Context-Specific Middleware Specialization Techniques for
Optimizing Software Product-line Architectures. In Proceedings of EuroSys 2006,
pages 205–218, Leuven, Belgium, April 2006.

[69] Sudha Krishnamurthy, William H. Sanders, and Michel Cukier. An Adaptive Qual-
ity of Service Aware Middleware for Replicated Services. IEEE Transactions on
Parallel and Distributed Systems, 14(11):1112–1125, 2003. ISSN 1045-9219. doi:
http://doi.ieeecomputersociety.org/10.1109/TPDS.2003.1247672.

[70] Daniel Lohmann, Olaf Spinczyk, and Wolfgang Schröder-Preikschat. Lean and Ef-
ficient System Software Product Lines: Where Aspects Beat Objects. Transactions
on AOSD II, 4242:227–255, 2006.

[71] Perng-Yi Richard Ma, E. Y. S. Lee, and M. Tsuchiya. A task allocation model for
distributed computing systems. IEEE Trans. Comput., 31(1):41–47, January 1982.
ISSN 0018-9340. doi: 10.1109/TC.1982.1675884. URL http://dx.doi.org/
10.1109/TC.1982.1675884.

[72] Pattie Maes. Concepts and experiments in computational reflection. SIGPLAN Not.,
22(12):147–155, 1987. ISSN 0362-1340. doi: http://doi.acm.org/10.1145/38807.
38821.

[73] Nagabhushan Mahadevan, Abhishek Dubey, and Gabor Karsai. Application of soft-
ware health management techniques. In Proceedings of the 2011 ICSE Workshop on
Software Engineering for Adaptive and Self-Managing Systems, SEAMS ’11, New
York, NY, USA, 2011. ACM, ACM.

[74] Olivier Marin, Marin Bertier, and Pierre Sens. Darx: A framework for the fault-
tolerant support of agent software. In ISSRE ’03: Proceedings of the 14th Interna-
tional Symposium on Software Reliability Engineering, page 406, Washington, DC,
USA, 2003. IEEE Computer Society. ISBN 0-7695-2007-3.

[75] Renaud Marlet, Scott Thibault, and Charles Consel. Efficient Implementations of
Software Architectures via Partial Evaluation. Automated Software Engineering:

160

http://dx.doi.org/10.1109/TC.1982.1675884
http://dx.doi.org/10.1109/TC.1982.1675884

An International Journal, 6(4):411–440, October 1999. URL citeseer.csail.
mit.edu/marlet99efficient.html.

[76] M.D.W. McIntyre and C.A. Gossett. The boeing 777 fault tolerant air data and
inertial reference system-a new venture in working together. In Digital Avionics
Systems Conference, 1995., 14th DASC, pages 178 –183, November 1995. doi:
10.1109/DASC.1995.482827.

[77] Mira Mezini and Klaus Ostermann. Conquering aspects with caesar. In AOSD
’03: Proceedings of the 2nd international conference on Aspect-oriented software
development, pages 90–99, New York, NY, USA, 2003. ACM. ISBN 1-58113-660-
9. doi: http://doi.acm.org/10.1145/643603.643613.

[78] Mira Mezinia and Klaus Ostermann. Variability Management with Feature-oriented
Programming and Aspects. SIGSOFT Softw. Eng. Notes, 29(6):127–136, 2004.
ISSN 0163-5948. doi: doi.acm.org/10.1145/1041685.1029915.

[79] Distributed Component Object Model Protocol (DCOM). Microsoft Corporation,
1.0 edition, January 1998.

[80] Shivajit Mohapatra, Radu Cornea, Hyunok Oh, Kyoungwoo Lee, Minyoung Kim,
Nikil D. Dutt, Rajesh Gupta, Alexandru Nicolau, Sandeep K. Shukla, and Nalini
Venkatasubramanian. A Cross-Layer Approach for Power-Performance Optimiza-
tion in Distributed Mobile Systems. In Proceedings of International Parallel and
Distributed Processing Symposium, 2005.

[81] Priya Narasimhan. MEAD: Support for Real-time Fault-Tolerant Middleware. In
OMG Workshop on Distributed Object Computing for Real-time and Embedded Sys-
tems, Washington, DC, July 2003. Object Management Group.

[82] Angela Nicoara, Gustavo Alonso, and Timothy Roscoe. Controlled, systematic, and
efficient code replacement for running java programs. SIGOPS Oper. Syst. Rev.,
42(4):233–246, 2008. ISSN 0163-5980. doi: http://doi.acm.org/10.1145/1357010.
1352617.

[83] Bashar Nuseibeh, Jeff Kramer, and Anthony Finkelstein. A framework for ex-
pressing the relationships between multiple views in requirements specification.
IEEE Trans. Softw. Eng., 20(10):760–773, 1994. ISSN 0098-5589. doi: http:
//dx.doi.org/10.1109/32.328995.

[84] Interceptors FTF Final Published Draft. Object Management Group, OMG Docu-
ment ptc/00-04-05 edition, April 2000.

[85] Object Management Group. The Common Object Request Broker: Architecture and
Specification, Revision 2.6. Object Management Group, December 2001.

161

citeseer.csail.mit.edu/marlet99efficient.html
citeseer.csail.mit.edu/marlet99efficient.html

[86] Object Management Group. The Common Object Request Broker: Architecture and
Specification, Version 3.0. Object Management Group, July 2001.

[87] Model Driven Architecture (MDA). Object Management Group, OMG Document
ormsc/2001-07-01 edition, July 2001.

[88] Object Management Group. Real-time CORBA Specification. Object Management
Group, OMG Document formal/05-01-04 edition, August 2002.

[89] Light Weight CORBA Component Model Revised Submission. Object Management
Group, OMG Document realtime/03-05-05 edition, May 2003.

[90] Deployment and Configuration Adopted Submission. Object Management Group,
OMG Document mars/03-05-08 edition, July 2003.

[91] Model Driven Architecture (MDA) Guide V1.0.1. Object Management Group, OMG
Document omg/03-06-01 edition, June 2003.

[92] Object Management Group. Fault Tolerant CORBA, Chapter 23, CORBA v3.0.3.
Object Management Group, OMG Document formal/04-03-10 edition, March 2004.

[93] Object Management Group. Lightweight CCM FTF Convenience Document. Object
Management Group, ptc/04-06-10 edition, June 2004.

[94] Object Management Group. Real-time CORBA Specification. Object Management
Group, 1.2 edition, January 2005.

[95] Object Management Group. The Common Object Request Broker: Architecture and
Specification Version 3.1, Part 3: CORBA Component Model. Object Management
Group, OMG Document formal/2008-01-08 edition, January 2008.

[96] Ömer Erdem Demir, Prémkumar Dévanbu, Eric Wohlstadter, and Stefan Tai. An
Aspect-oriented Approach to Bypassing Middleware Layers. In AOSD ’07: Pro-
ceedings of the 6th international conference on Aspect-oriented software develop-
ment, pages 25–35, Vancouver, British Columbia, Canada, 2007. ACM Press. ISBN
1-59593-615-7. doi: doi.acm.org/10.1145/1218563.1218567.

[97] Deployment and Configuration of Component-based Distributed Applications, v4.0.
OMG, Document formal/2006-04-02 edition, April 2006.

[98] openArchitectureWare. openArchitectureWare. www.
openarchitectureware.org, 2007.

[99] David L. Parnas. On the Criteria To Be Used in Decomposing Systems into Modules.
Communications of the ACM, 15(12), December 1972.

162

www.openarchitectureware.org
www.openarchitectureware.org

[100] Terry Pearson. Save time and money with COTS middleware for network equip-
ment. www.commsdesign.com/printableArticle/?articleID=
174402378, November 2005.

[101] Soila Pertet and Priya Narasimhan. Proactive recovery in distributed corba applica-
tions. In DSN ’04: Proceedings of the 2004 International Conference on Dependable
Systems and Networks, page 357, Washington, DC, USA, 2004. IEEE Computer So-
ciety. ISBN 0-7695-2052-9.

[102] Andreas Polze, Janek Schwarz, and Miroslaw Malek. Automatic Generation of
Fault-Tolerant CORBA-Services. In Proceedings of the Technology of Object-
Oriented Languages and Systems (TOOLS), 2000.

[103] Andrei Popovici, Gustavo Alonso, and Thomas Gross. Just-in-time Aspects: Ef-
ficient Dynamic Weaving for Java. In Proceedings of the 2nd International Con-
ference on Aspect-oriented Software Development, pages 100–109, Boston, Mas-
sachusetts, 2003.

[104] David Powell. Distributed Fault Tolerance: Lessons from Delta-4. IEEE Micro, 14
(1):36–47, 1994. ISSN 0272-1732. doi: dx.doi.org/10.1109/40.259898.

[105] Christian Prehofer. Feature-Oriented Programming: A Fresh Look at Objects. In
Mehmet Aksit and Satoshi Matsuoka, editors, ECOOP’97—Object-Oriented Pro-
gramming, 11th European Conference, volume 1241, pages 419–443, Jyväskylä,
Finland, 9–13 1997. Springer. ISBN ISBN 3-540-63089-9. URL citeseer.nj.
nec.com/195556.html.

[106] Manuel Roman, Roy H. Campbell, and Fabio Kon. Reflective Middleware: From
Your Desk to Your Hand. IEEE Distributed Systems Online, 2(5), July 2001.

[107] Ward Rosenberry, David Kenney, and Gerry Fischer. Understanding DCE. O’Reilly
and Associates, Inc., 1992.

[108] Juan Carlos Ruiz, Marc-Olivier Killijian, Jean-Charles Fabre, and Pascale
Thévenod-Fosse. Reflective Fault-Tolerant Systems: From Experience to Chal-
lenges. IEEE Transaction on Computers, 52(2):237–254, 2003. ISSN 0018-9340.
doi: http://dx.doi.org/10.1109/TC.2003.1176989.

[109] S. Sadjadi, P. McKinley, and E. Kasten. Architecture and operation of an
adaptable communication substrate, 2003. URL citeseer.ist.psu.edu/
sadjadi03architecture.html.

[110] Douglas C. Schmidt. The ADAPTIVE Communication Environment (ACE).
www.cs.wustl.edu/∼schmidt/ACE.html, 1997.

[111] Douglas C. Schmidt. Model-Driven Engineering. IEEE Computer, 39(2):25–31,

163

www.commsdesign.com/printableArticle/?articleID=174402378
www.commsdesign.com/printableArticle/?articleID=174402378
citeseer.nj.nec.com/195556.html
citeseer.nj.nec.com/195556.html
citeseer.ist.psu.edu/sadjadi03architecture.html
citeseer.ist.psu.edu/sadjadi03architecture.html

2006.

[112] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-
Oriented Software Architecture: Patterns for Concurrent and Networked Objects,
Volume 2. Wiley & Sons, New York, 2000.

[113] Douglas C. Schmidt, Rick Schantz, Mike Masters, Joseph Cross, David Sharp, and
Lou DiPalma. Towards Adaptive and Reflective Middleware for Network-Centric
Combat Systems. In CrossTalk - The Journal of Defense Software Engineering,
pages 10–16, Hill AFB, Utah, USA, nov 2001. Software Technology Support Center.

[114] Douglas C. Schmidt, Bala Natarajan, Aniruddha Gokhale, Nanbor Wang, and
Christopher Gill. TAO: A Pattern-Oriented Object Request Broker for Distributed
Real-time and Embedded Systems. IEEE Distributed Systems Online, 3(2), February
2002.

[115] Diego Sevilla, Jose Garcia, and Antonio Gomez. Aspect-Oriented Programing
Techniques to support Distribution, Fault Tolerance, and Load Balancing in the
CORBA(LC) Component Model. International Symposium on Network Comput-
ing and Applications (NCA 2007), 00:195–204, 2007.

[116] David C. Sharp and Wendy C. Roll. Model-Based Integration of Reusable
Component-Based Avionics System. Proceedings of the Workshop on Model-Driven
Embedded Systems in RTAS 2003, May 2003.

[117] Olaf Spinczyk, Andreas Gal, and Wolfgang Schröder-Preikschat. AspectC++: An
Aspect-Oriented Extension to C++. In Proceedings of the 40th International Con-
ference on Technology of Object-Oriented Languages and Systems (TOOLS Pacific
2002), 2002.

[118] A.N. Srivastava and J. Schumann. The case for software health management. In
Space Mission Challenges for Information Technology (SMC-IT), 2011 IEEE Fourth
International Conference on, pages 3–9. IEEE, 2011.

[119] Gregory T. Sullivan. Aspect-oriented programming using reflection and metaobject
protocols. Commun. ACM, 44(10):95–97, 2001. ISSN 0001-0782. doi: http://doi.
acm.org/10.1145/383845.383865.

[120] SUN. Java Messaging Service Specification. java.sun.com/products/
jms/, 2002.

[121] Java Remote Method Invocation Specification (RMI). Sun Microsystems, Inc, Octo-
ber 1998.

164

java.sun.com/products/jms/
java.sun.com/products/jms/

[122] Dipa Suri, Adam Howell, Nishanth Shankaran, John Kinnebrew, Will Otte, Dou-
glas C. Schmidt, and Gautam Biswas. Onboard Processing using the Adaptive Net-
work Architecture. In Proceedings of the Sixth Annual NASA Earth Science Tech-
nology Conference, College Park, MD, June 2006.

[123] Diana Szentivany and Simin Nadjm-Tehrani. Aspects for improvement of perfor-
mance in fault-tolerant software. In Proceedings of the 10th IEEE Pacific Rim In-
ternational Symposium on Dependable Computing (PRDC), pages 283–291. IEEE
Computer Society, 2004.

[124] Clemens Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Professional, December 1997. ISBN 0201178885.

[125] Francois Taiani and Jean-Charles Fabre. A Multi-Level Meta-Object Protocol for
Fault-Tolerance in Complex Architectures. In DSN ’05: Proceedings of the 2005
International Conference on Dependable Systems and Networks, pages 270–279,
2005.

[126] Sumant Tambe, Akshay Dabholkar, and Aniruddha Gokhale. Generative Techniques
to Specialize Middleware for Fault Tolerance. In Proceedings of the 12th IEEE In-
ternational Symposium on Object-oriented Real-time distributed Computing (ISORC
2009), Tokyo, Japan, March 2009. IEEE Computer Society.

[127] Peri Tarr, Harold Ossher, William Harrison, and Jr. Stanley M. Sutton. N Degrees
of Separation: Multi-Dimensional Separation of Concerns. In ICSE ’99: Proceed-
ings of the International Conference on Software Engineering, pages 107–119, May
1999.

[128] Anand Tripathi. Challenges Designing Next-Generation Middleware Systems. Com-
munications of the ACM, 45(6):39–42, June 2002.

[129] Salvador Trujillo, Don Batory, and Oscar Diaz. Feature oriented model driven de-
velopment: A case study for portlets. In ICSE ’07: Proceedings of the 29th inter-
national conference on Software Engineering, pages 44–53, Washington, DC, USA,
2007. IEEE Computer Society. ISBN 0-7695-2828-7. doi: http://dx.doi.org/10.
1109/ICSE.2007.36.

[130] Wim Vanderperren, Davy Suvée, Bart Verheecke, María Agustina Cibrán, and Vi-
viane Jonckers. Adaptive Programming in JAsCo. In AOSD ’05: Proceedings of
the 4th International Conference on Aspect-oriented Software Development, pages
75–86, Chicago, Illinois, 2005.

[131] George Varghese. Network Algorithmics: An Interdisciplinary Approach to Design-
ing Fast Networked Devices. Morgan Kaufmann Publishers (Elsevier), San Fran-
cisco, CA, 2005.

165

[132] Bart Verheecke and María Agustina Cibrán. Aop for dynamic configuration and
management of web services. In In Proceedings of 2003 International Conference
on Web Services, page 2004, 2003.

[133] Nanbor Wang, Douglas C. Schmidt, and Carlos O’Ryan. An Overview of
the CORBA Component Model. In George Heineman and Bill Councill, ed-
itors, Component-Based Software Engineering. Addison-Wesley, Reading, Mas-
sachusetts, 2000.

[134] Nanbor Wang, Douglas C. Schmidt, Aniruddha Gokhale, Craig Rodrigues, Bal-
achandran Natarajan, Joseph P. Loyall, Richard E. Schantz, and Christopher D. Gill.
QoS-enabled Middleware. In Qusay Mahmoud, editor, Middleware for Communi-
cations, pages 131–162. Wiley and Sons, New York, 2004.

[135] Xiaorui Wang, Yingming Chen, Chenyang Lu, and Xenofon Koutsoukos. FC-ORB:
A robust distributed real-time embedded middleware with end-to-end utilization
controlstar, open. Journal of Systems and Software, 80(7):938–950, 2007.

[136] Eric Wohlstadler, Stoney Jackson, and Premkumar Devanbu. DADO: Enhancing
Middleware to Support Crosscutting Features in Distributed, Heterogeneous Sys-
tems . In Proceedings of the International Conference on Software Engineering,
Portland, OR, May 2003.

[137] Friedhelm Wolf, Jaiganesh Balasubramanian, Sumant Tambe, Aniruddha Gokhale,
and Douglas C. Schmidt. Supporting Component-based Failover Units in Middle-
ware for Distributed Real-time and Embedded Systems. Journal of Software Archi-
tectures: Embedded Software Design, Special Issue on Embedded and Real-time,
57(6):597–613, August 2010. ISSN 1383-7621. doi: DOI:10.1016/j.sysarc.2010.
07.006. URL http://www.sciencedirect.com/science/article/
B6V1F-50RP25M-1/2/ce8f29d70c51c80a123a38186dcd362c.

[138] W. Wolf. Cyber-Physical Systems. Computer, 42(3):88–89, 2009. ISSN 0018-9162.

[139] Z. Yang, B. H. C. Cheng, R. E. K. Stirewalt, J. Sowell, S. M. Sadjadi, and P. K.
McKinley. An aspect-oriented approach to dynamic adaptation. In WOSS ’02: Pro-
ceedings of the first workshop on Self-healing systems, pages 85–92, New York, NY,
USA, 2002. ACM. ISBN 1-58113-609-9. doi: http://doi.acm.org/10.1145/582128.
582144.

[140] Charles Zhang and Hans-Arno Jacobsen. Resolving Feature Convolution in Mid-
dleware Systems. In OOPSLA ’04: Proceedings of the 19th annual ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and Applica-
tions, pages 188–205, New York, NY, USA, 2004. ACM. ISBN 1-58113-831-9.
doi: http://doi.acm.org/10.1145/1028976.1028992.

166

http://www.sciencedirect.com/science/article/B6V1F-50RP25M-1/2/ce8f29d70c51c80a123a38186dcd362c
http://www.sciencedirect.com/science/article/B6V1F-50RP25M-1/2/ce8f29d70c51c80a123a38186dcd362c

[141] Charles Zhang, Dapeng Gao, and Hans-Arno Jacobsen. Towards Just-in-time Mid-
dleware Architectures. In AOSD ’05: Proceedings of the 4th international con-
ference on Aspect-oriented software development, pages 63–74, Chicago, Illinois,
2005. ACM Press. ISBN 1-59593-042-6. doi: doi.acm.org/10.1145/1052898.
1052904.

[142] Charles Zhang, Dapeng Gao, and Hans-Arno Jacobsen. Generic Middleware
Substrate Through Modelware. In Proceedings of the 6th International ACM/I-
FIP/USENIX Middleware Conference, pages 314–333, Grenoble, France, 2005.

[143] Ronghua Zhang, Chenyang Lu, Tarek F. Abdelzaher, and John A. Stankovic. Con-
trolWare: A Middleware Architecture for Feedback Control of Software Perfor-
mance. In Proceedings of the International Conference on Distributed Computing
Systems (ICDCS), Vienna, Austria, July 2002.

[144] John A. Zinky, David E. Bakken, and Richard Schantz. Architectural Support for
Quality of Service for CORBA Objects. Theory and Practice of Object Systems, 3
(1):1–20, 1997.

167

	Dedication
	Acknowledgments
	Abstract
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Emerging Trends and Technologies
	Overview of Research Challenges
	Spatial disparity between horizontally decomposed middleware and vertical domain-level concerns
	Lack of a priori knowledge of specialization requirements due to temporal separation of application lifecycle phases
	Lack of mechanisms for reusing specializations
	Lack of mechanisms for transparent provisioning of domain-specific semantics
	Achieving Safe Adaptability To Runtime Failures While Maintaining The Hard Real-Time

	Research Approach
	Dissertation Organization

	Taxonomy of Contemporary Middleware Specialization Techniques
	Middleware Background
	Definition
	Traditional Middleware Specialization

	Taxonomy of Middleware Specialization Techniques
	Feature-Dependent Specialization
	Lifetime-Dependent Specialization
	Paradigms-Dependent Specialization

	Assessment of Modularization Techniques for Middleware Specialization
	Qualitative Evaluation of the Middleware Specialization Taxonomy
	Guidelines for Middleware Specialization

	Discussion

	The Automated Middleware Specialization Process
	Unresolved Challenges
	Challenge 1: Inference of the Middleware Features
	Challenge 2: Determination of the Specialization Context
	Challenge 3: Inferring the Specializations from the Specialization Context
	Challenge 4: Identifying the Specialization Points within the Middleware
	Challenge 5: Generating the Specialization Transformations
	Challenge 6: Executing the Specialization Transformations on Middleware Source

	Process Overview

	Feature-oriented Reasoning Techniques to Drive the Middleware Specializations
	Related Research
	Forward Engineering Approaches
	Reverse Engineering Approaches

	Unresolved Challenges
	Challenge 1: Identifying Opportunities to Drive Middleware Specializations

	Feature Oriented Reasoning
	Feature Mapping Wizard
	Deducing the Specialization Context from System Models
	Inferring Specializations from Specialization Context

	Automated Realization of Middleware Specializations
	Related Research
	Aspect-oriented programming (AOP) for modularizing crosscutting concerns
	Higher-level abstractions and generative mechanisms
	Limitations in related research

	Unresolved Challenges
	Challenge 1: Reducing Manual Effort in devising Specializations
	Challenge 2: Lack of middleware support for domain-specific recovery semantics

	Automated Realization of Middleware Specializations
	Identifying Specialization Points
	Generation and Execution of Specialization Advice
	Discovering Closure Sets
	Transparent Augmentation of Domain-specific Semantics in System Architecture
	Middleware Composition Synthesis through Build Specialization

	Evaluation
	Logging Server Case Study
	Evaluation of the Closure Computation Algorithm
	Additional Insights provided by the algorithm
	Validation of the Algorithm
	Evaluation of the Generative Middleware Specialization Algorithms
	Illustrating the generative algorithms on a DRE Case Study
	Evaluation of GRAFT

	Reliable Distributed Real-time and Embedded Systems Through Safe Middleware Adaptation
	Related Research
	Dynamic Scheduling
	Resource-aware Adaptations
	Real-time fault-tolerant systems
	Need for Safe Fault Tolerance

	Unresolved Challenges
	Challenge 1: Identifying the Opportunities for Slack in the DRE System
	Challenge 2: Designing Safe and Predictable Dynamic Failure Adaptation
	Challenge 3: Validating System Safety in the Context of DRE System Fault Tolerance

	Design of SafeMAT
	The ARINC-653 Component Model Middleware
	SafeMAT Architecture
	Distributed Resource Monitoring
	Resource-Aware Adaptive Failure Mitigation
	Pre-deployment Application Performance Evaluation
	SafeMAT Implementation

	Empirical Evaluation of SafeMAT
	Evaluating SafeMAT's Utilization Overhead
	Evaluating SafeMAT-induced Failover Overhead Times
	Discussion: System Safety and Predictability

	Conclusion

	Future Work – Deployment and Composition of Specialized Middleware
	Side-effects of Specializations on System Composition and Deployment
	Related Research
	Flexible Middleware Composition
	QoS-specific Middleware Customizations

	Unresolved Challenges
	Challenge 1: Preserving Operational Correctness of Specialized Middleware Stack
	Challenge 2: Preserving Deployment Transparency during Middleware Composition
	Challenge 3: Determining Middleware Composition Granularity

	Proposed Research: Safe Composition and Transparent Deployment of Specialized Middleware (DeCoM)
	Hypothesis 1: "Do No Harm"
	Hypothesis 2: "Whole does not exceed the Parts by 20%"

	Evaluation Criteria

	Concluding Remarks
	Underlying Technologies
	Aspect Oriented Programming (AOP) Terminologies
	Model-Driven Development (MDD)
	Overview of Lightweight CCM
	Overview of Component Middleware Deployment and Configuration
	The ARINC-653 Component Model (ACM)

	List of Publications
	Refereed Journal Publications
	Refereed Conference Publications
	Refereed Workshop Publications
	Technical Reports
	Poster Publications

	REFERENCES

