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CHAPTER I 

 

INTRODUCTION 

 

Cytoarchitectural foundations of forebrain circuit organization and function: focus on the 

neocortical minicolumn 

 

Planning, calculation, and the assimilation of current sensory input and emotional 

states with prior experience are among the most sophisticated functions of the 

mammalian forebrain, and no forebrain structure has been more sculpted by evolution 

than the neocortex to facilitate these exquisitely complex forms of information 

processing.  Remarkably, over the last 100 million years, the surface area of this 

laminated tissue has expanded by a factor of ~1,000 in the human as compared to the 

mouse, while the lamination architecture itself has remained relatively unchanged (Rakic, 

2009).  From this observation and advances in the understanding of neocortical ontogeny 

has emerged the concept of the minicolumn- a radially organized, minimal component of 

neocortical information processing whose numerical expansion is positively correlated 

with increasingly sophisticated forebrain function throughout mammalian evolution.      

The neocortical minicolumn has been championed by Mountcastle as the basic 

information processing module within the neocortex (Mountcastle, 1997).  These 

functional units are comprised of 100-150 neurons arranged in a vertical column that 

spans the six horizontal neocortical laminae (Fig. 1A), and they are innervated by 

specific input modalities (Mountcastle, 1997; Markram, 2008).  In primary sensory 

cortex, excitatory, glutamatergic pyramidal neurons within layer 2/3 of the minicolumn 
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receive modality-specific, ascending thalamic information via feed-forward connections 

from the granule cells in layer 4.  Within these neurons, this information is integrated 

with coincident cortical inputs and thalamic feedback, allowing for higher-order,  

 

 

 

associative processes such as attention (Jones, 2002; Rubio-Garrido et al., 2009).  Layer 

2/3 pyramidal neurons predominantly project their intra-columnar axons to pyramidal 

neurons in layer 5 to propagate the descending flow of information through the 

minicolumn.  Layer 5 pyramidal neurons, in turn, distribute resultant minicolumnar 

outputs to other cortical areas and important subcortical forebrain centers including the 
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striatum and thalamus.  A schematic summarizing basic excitatory connectivity within 

the neocortical minicolumn can be viewed in Figure 2. 

From a qualitative observation of pyramidal cell dendritic morphology alone (Fig. 

3), one can infer that these neurons are able to integrate information entering the  

 

 

 

minicolumn at different vertical levels.  Dendritic compartmentalization is an important 

morphological feature that supports this capacity.  For example, using a high-resolution 



4 

 

approach, Petreanu and colleagues revealed that afferents from both ascending peripheral 

sources and descending central sources impinge upon discrete but overlapping domains 

of the pyramidal cell dendritic arbor, according to layer-specific patterns (Petreanu et al., 

2009).  At the molecular level, varied distributions of voltage-dependent ion channels can  
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influence local dendritic excitability and affect input-output relationships in neurons 

(Hausser et al., 2000).  For example, a recent study implicated a down-regulation of 

Kv4.2 K
+
 channels in the potentiation of local dendritic branch strength (Losonczy et al., 

2008), and modeling studies indicate that nonuniform ion channel distributions best 

explain the backpropagation of action potentials within the basal dendritic arbors of 

pyramidal neurons (Nevian et al., 2007; Acker and Antic, 2009).  Collectively, these 

findings indicate that minicolumnar pyramidal neurons may be able to simultaneously 

process and store unique combinations of circuit-level information within specific 

dendritic domains.     

How does cytoarchitecture contribute to the cohesive activation of excitatory 

neurons and the vertically constrained flow of information within the minicolumn?  First, 

axo-dendritic overlap is maximal among excitatory neurons located directly above or 

below one another within a minicolumn.  Second, columnar boundaries of axo-dendritic 

overlap predict functional connectivity (Shepherd et al., 2005).  Third, the inputs to a 

mincolumn, whether ascending or descending, tend to be highly focused (Mountcastle, 

1997; Mountcastle, 2003; Markram, 2008).  However, neurons in neighboring 

minicolumns are certainly not completely disconnected from each other, either 

anatomically or functionally, allowing for the spread of activation among them.  

Inhibitory interneurons are integral in controlling excitation both across and within 

minicolumns.  

Minicolumnar inhibitory interneurons mediate inhibitory neurotransmission by 

releasing gamma-amino butyric acid (GABA) onto their target neurons.  They are fully 

intercalated within all layers of the neocortex (Fig. 1A; Fig. 2) and they exhibit diverse 
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axonal morphologies, which relate to their ability to mediate inhibition across (lateral 

inhibition) or within (intrinsic inhibition) minicolumns (Markram et al., 2004).  For 

example, parvalbumin-expressing basket interneurons in the superficial cortical layers are 

particularly suited to mediate inhibition across mincolumns, considering their 

horizontally aligned axonal arbors and perisomal targeting of pyramidal neurons (Fig. 2).  

The lateral extent and the efficacy of this inhibition are dictated by the axonal arbor width 

and the ratio of pyramidal neurons to other interneurons contacted, respectively (Krimer 

and Goldman-Rakic, 2001).  Layer II calbindin- and calretinin-expressing double-

bouquet interneurons also facilitate lateral inhibition.  However, they do so via vertically 

oriented axonal arbors, which effectively form an inhibitory curtain within the neuropil 

surrounding each minicolumn (DeFelipe et al., 1990; Buxhoeveden and Casanova, 2002; 

Yanez et al., 2005) (Fig. 2).  In addition to different patterns of synaptic connections, 

interneuron subtypes within a minicolumn also exhibit different thresholds for excitation. 

Therefore, the amplitude and frequency of an incoming excitatory stimulus will 

determine the subset of interneurons that become activated within the minicolumn and, 

thus, the quality of the information processed therein (Porter et al., 2001; Markram et al., 

2004). 

  The minicolumn is the basic unit of neocortical information processing, and 

groups of minicolumns enable increasingly complex computations.  Provided they share 

common inputs and are linked by short-range horizontal connections, as many as 70-80 

neighboring minicolumns can be locally and cohesively activated.  These so-called 

macrocolumns (Fig. 1B) provide an anatomical basis for information processing modules 

in sensory and association cortices that share similar functional properties (Mountcastle, 
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1997; Mountcastle, 2003).  Long-range axonal projections connect functionally related 

macrocolumns in distant neocortical areas and also link them to lower centers (Fig. 1C).  

In this way, information processed in local circuits throughout the forebrain can be bound 

together to support the most sophisticated cognitive functions.   

 

The developmental basis of neocortical circuit formation: from neurogenesis 

to synaptic pruning and in-between 

 

Neurogenesis and migration of minicolumnar neurons  

The cytoarchitectural framework of the neocortical minicolumn is determined 

developmentally by modes of neurogenesis and neuronal migration in the dorsal 

forebrain that are conserved across all mammals.  Both symmetrical and asymmetrical 

divisions of radial glial progenitor cells within the proliferative zones of the dorsal 

pallium are essential to neocortical neurogenesis.  During the earliest phases of 

neurogenesis, symmetrical divisions predominate and amplify the radial glial progenitor 

cell pool (Takahashi et al., 1996; Takahashi et al., 1997; Kornack and Rakic, 1998).  

Subsequently, each radial glial precursor undergoes iterative asymmetrical divisions to 

generate a lineage of daughter neurons that migrate along their radially oriented processes 

to populate the overlaying layers of the incipient neocortex in an inside-out fashion.  That 

is, more recently born neurons populate increasingly superficial neocortical layers 

(Angevine and Sidman, 1961; Sidman and Rakic, 1973).  Because each radial glial 

progenitor cell seeds only one or a few minicolumns, they are referred to as radial 

ontogenetic units (Rakic, 1988).  It logically follows then that numbers of asymmetric 

radial glial divisions dictate the radial extent of the minicolumn, and thus, the thickness 

of the neocortex, while numbers of symmetric divisions dictate the available pool of 
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radial ontogenetic units, and thus, the surface area of the neocortex.  Therefore, 

mechanisms enhancing symmetric radial glial progenitor cell divisions have likely 

evolved to support the massive expansion of neocortical surface area in higher mammals 

(Rakic, 1988; Kornack and Rakic, 1998; Rakic, 2009). 

   Approximately 85% of neurons in the neocortical minicolumn arise from the 

dorsal pallial mechanisms of neurogenesis and radial migration described above, and they 

are exclusively excitatory projection neurons.  The remaining 15% are local inhibitory 

interneurons, which take a far more circuitous path to their minicolumnar residences.  It 

was once thought that inhibitory and excitatory neurons migrate in tandem to the cortex 

from within a common region of the dorsal pallial proliferative zone, but this concept 

began to unravel during the past two decades.  Initial dye labeling and time-lapse 

microscopy experiments in developing ferret brain slices showed some postmitotic 

neurons to migrate orthogonally to radial glia processes across very long distances within 

the cortical intermediate zone (O'Rourke et al., 1992).  Further experiments in the rodent 

brain confirmed that these tangentially migrating cells originate in the ganglionic 

eminences (GE) of the ventral forebrain (de Carlos et al., 1996).  Finally, Anderson and 

colleagues demonstrated the restricted expression of Dlx 1/2 transcription factors in the 

GE, the ablation of which prevented the tangential migration of nearly all GABA-ergic 

interneurons to the neocortex (Anderson et al., 1997).  In rodents, these findings meshed 

well with previous data that cortical and subcortical proliferative zones contain 

immiscible progenitor cell populations (Fishell et al., 1993; Neyt et al., 1997); since they 

are not generated amongst the precursors of cortical pyramidal cells, inhibitory 

interneurons necessarily take a tangential migration from the GE to the dorsal pallium in 
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order to form local circuits within columns of cortical pyramidal cells (Fig. 4).  More 

recent studies in the developing human forebrain have demonstrated a conserved mode of 

tangential migration for interneurons, albeit from expanded zones of origin, which 

include the dorsal pallium in addition to the GE (Letinic et al., 2002).  

 

 

 

 

Axon and dendrite outgrowth and guidance: morphological scaffolding for intrinsic 

and extrinsic minicolumnar connections 

 

Following neurogenesis, the initiation of neuronal migration coincides with 

relatively undifferentiated minicolumnar neurons establishing polarity, the precursor to 
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developing their characteristic dendritic and axonal morphologies, and consequently, the 

assembly of the initial framework for intrinsic and extrinsic minicolumnar connectivity.  

Connectivity between any two neurons, minicolumnar or otherwise, depends on the 

interaction between their presynaptic (i.e., axonal) and postsynaptic (i.e., dendritic) 

elements, which are developmentally specified.  Growing, differentiating neurons 

initially extend a symmetrical array of short neurites from their cell bodies, each of which 

possesses a highly dynamic growth cone structure at its distal end.  A single neurite is 

then specified to become the neuron’s sole axon.  This selective transformation requires 

changes in cytoskeletal actin and microtubule stability that result in a dramatic increase in 

both neurite growth rate and growth cone size (Bradke and Dotti, 1999; Gonzalez-Billault 

et al., 2001; Witte et al., 2008).  An equally selective, though less dramatic, increase in 

neurite growth rate may also underlie the specification of an apical dendrite among 

basilar dendrites in the arbors of neocortical pyramidal neurons (Horton et al., 2006).  

Though still unclear, the inductive mechanisms of neuronal polarity are at least partly 

cell-autonomous in nature, as even dissociated neurons cultured at low-density develop 

axons and asymmetrical dendritic arbors (Dotti et al., 1988; Horton et al., 2006).              

Newly specified axons and dendrites undergo further outgrowth and branching, 

which is carefully organized to yield characteristic pyramidal neuron and interneuron 

morphologies.  Numerous soluble and extracellular matrix- or membrane-bound 

molecules serve as growth and/or guidance cues for developing axons and dendrites.  

While neurons could conceivably receive growth signals broadly across their axonal and 

dendritic membranes, attractive and repulsive guidance signals are sensed by their growth 

cones (O'Donnell et al., 2009).  Guidance molecule receptors at the growth cone cell 
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membrane are poised to transduce directional cues into intracellular signaling cascades 

that, whether attractive or repulsive, culminate in the local recruitment or dispersion of 

actin and microtubles, respectively (Quinn and Wadsworth, 2008).  Such asymmetrical 

rearrangements of the cytoskeleton effectively steer the growing axon or dendrite through 

the developing forebrain. 

There is a great diversity of families of membrane-bound and secreted axon 

guidance molecules expressed by mammalian species (Chilton, 2006; O'Donnell et al., 

2009), which reflects the complexity of establishing precise connections between neurons 

that are separated by great distances within the developing forebrain.  Even in the 

smallest mammalian forebrain, long-projecting axons navigate tortuous paths that are 

thousands of microns long, and they make numerous intermediate guidance “decisions” 

en route to reaching their targets.  For example, commissural corticocortically projecting 

pyramidal neurons in layer 2/3 likely depend upon attractive Netrin-1 signaling through 

DCC receptors for outgrowth and guidance toward the midline, as Netrin-1 knockout 

mice exhibit agenesis of the corpus callosum and other forebrain commissures (Serafini 

et al., 1996).  At the midline, glial populations both superior to (i.e., the indusium 

griseum) and inferior to (i.e., the glial wedge) the callosum secrete repulsive guidance 

cues, which callosal axons avoid by coursing through the body of this incipient tract 

toward their target areas in contralateral cortex (Fig. 5).  These molecules include Slits, 

which are sensed by Robo receptors expressed on the callosal axon growth cones (Shu et 

al., 2003), and even Wnts signaling through noncanonical pathways (Yoshikawa et al., 

2003).   
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Comparatively little, however, is known about the cues that guide callosal axons 

to their targets within homotopic neocortical areas once they cross the midline (Lindwall 

et al., 2007).  Our current understanding of inter-areal and intra-areal targeting 

mechanisms is primarily based on studies of the thalamocortical and corticothalamic 

projection systems.  Aspects of inter-areal targeting are likely to be set up by axon sorting  
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events before potential target areas are even encountered.  Dufour and colleagues 

demonstrated complementary gradients of Ephrin-A5 ligand and EphA4/EphA5 receptor  

expression within the thalamus and ventral forebreain, respectively, which proved to 

dictate both the path of thalamocortical axons to the neocortex and their inter-areal 

targeting therein.  For example, because Ephrin-A5 is a repulsive guidance cue, anterior 

dorsal thalamic neurons that express high Eph receptor levels project their axons through 

the anterior ventral forebrain where Ephrin-A5 levels are low, and consequently, target 

anterior neocortical areas (Dufour et al., 2003).  Recent studies showing that serotonin 

can modulate Netrin-1-mediated thalamocortical trajectories through the ventral forebrain 

indicate that the sorting of long-projecting forebrain axons is a highly complex and 

regulated process (Bonnin et al., 2007).   

Ephrin/Eph systems also play a role in intra-areal targeting.  Remarkably, in the 

study described above, Dufour and colleagues also showed that a neocortical Ephrin-A5 

expression gradient emerges perinatally to complement the expression of EphA4/EphA5 

receptors in the somatosensory thalamus and preserve the somatotopic organization of the 

thalamocortical afferents (Dufour et al., 2003).  Deletion of ephrin-A5 results in the 

misguidance of specific thalamic axons to cortical areas which they normally do not 

target (Uziel et al., 2002).  Reciprocal intra-areal targeting of corticothalamic projections 

within the thalamus was shown to depend on neocortical gradients of yet another Ephrin-

A5 receptor, EphA7.  However, unlike EphA4/EphA5 disruptions, manipulations of 

EphA7 were shown not to affect corticothalamic axon sorting or guidance en route to the 

target (Torii and Levitt, 2005).  
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The axon guidance events discussed thus far serve to organize connectivity in the 

tangential neocortical domain- that is, the specific neocortical areas, and therein, the 

specific minicolumns or groups of minicolumns to be innervated.  How then is 

connectivity organized in the radial neocortical domain, across the vertical structure of 

the minicolumn?  Studies of the ascending thalamocortical projection to layer 4 have 

yielded the majority of progress toward answering this question.  The initial step in the 

process concerns the ability of the thalamocortical axons to breach the neocortical-

subcortical boundary.  Upon arriving at the neocortex, thalamocortical axons interact 

with a transient population of neurons called subplate neurons, which are located just 

inferior to the deepest neocortical layers (Lund and Mustari, 1977; Rakic, 1977; Shatz 

and Luskin, 1986).  Subplate neurons themselves project axons to layers 4 and 1 of the 

neocortex (Friauf et al., 1990); it has been suggested that they pioneer a path used by 

thalamocortical axons to invade the neocortex in the radial dimension (Allendoerfer and 

Shatz, 1994).  Consistent with this hypothesis is the observation that ascending axons 

from visual thalamus pass over their preferred target regions when the subplate neurons 

beneath visual neocortex are specifically ablated (Ghosh and Shatz, 1992).  

  Stop signals are thought to instruct the invading thalamocortical axons to cease 

their radial progress through the cortical laminae once they reach layer 4.  The exact 

nature of these signals has yet to be elucidated, but it is known that thalamocortical axons 

are likely sensing a change in the levels of a guidance cue across layers (i.e., a gradient), 

rather than the absolute presence or absence of one.  In culture, thalamocortical axons 

will only stop and connect with layer 4 neurons if their growth is oriented perpendicular 

to the cortical laminae; thalamocortical axons that encounter layer 4 parallel to the 
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cortical laminae will grow within it without stopping (Yamamoto, 2002).  Importantly, 

lamina-specific targeting and lamina-specific growth and connectivity may not be 

interdependent processes.  For example, Ephrin-A5 knockout mice exhibit normal 

laminar targeting, but severely reduced axonal branching, of thalamocortical afferents 

within layer 4 (Uziel et al., 2002). 

Dendrite guidance is also essential to establishing forebrain connectivity, and this 

process is regulated by some of the same guidance molecules that regulate axon 

guidance.  For example, Whitford and colleagues demonstrated that Slit signaling 

through Robo receptors can promote the outgrowth and branching of cortical neurons in 

culture (Whitford et al., 2002).  Another study showed that Semaphorin-3A expression in 

superficial layers of neocortex may attract the apical dendrites of pyramidal neurons and 

orient them perpendicularly to the pial surface (Polleux et al., 2000).  Axon and dendrite 

growth and guidance can be differentially mediated by conserved classes of signaling 

molecules, presumably because of distinct downstream signal transduction mechanisms 

that are specific to each cellular compartment (Jan and Jan, 2003).  Similarly, distinct 

pyramidal neuron subtypes may signal divergently downstream of dendritic neurotrophin 

receptor activation, perhaps explaining the opposing effects BDNF and NT-3 on dendritic 

growth and branching in different neocortical layers (McAllister et al., 1997).  

   Through a developmental process known as “tiling”, neurons with similar 

functional properties communicate with each other through their dendritic arbors to 

ensure a complete but nonredundant occupation of receptive space in nervous system 

tissues.  Specifically, contact-mediated and/or short-range guidance cues emitted from a 

dendrite are thought to repel the growth of any encroaching dendrites if they are from the 
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same functional class.  This rule applies to dendrites that originate from either the same 

neuron (i.e., isoneural repulsion) or different neurons (i.e., heteroneural repulsion) (Jan 

and Jan, 2003).  Though best studied in drosophila and the mammalian retina (Wassle et 

al., 1981; Grueber et al., 2002; Grueber et al., 2003; Huckfeldt et al., 2009), tiling could 

also underlie the function of neocortical circuits.  For example, for a given visual 

stimulus feature such as orientation, layer 4 granule cells in primary visual cortex exhibit 

shifts in receptive field properties at a periodicity that conforms to the physical 

dimensions of the minicolumn (Mountcastle, 1997); dendritic tiling could support a 

morphological basis for this phenomenon by minimizing the overlap of dendritic arbors 

that originate from orientation-sensitive granule cells in neighboring minicolumns. 

 

Synaptogenesis and activity-dependent refinement of minicolumnar connectivity 

 

Carefully orchestrated outgrowth and guidance events succeed in bringing 

specific axonal and dendritic elements into close proximity so that the appropriate 

intrinsic and extrinsic connections of the neocortical minicolumn can be made.  

Synaptogenesis is the process by which focal junctions are made between these elements 

to facilitate the transmission of information between them.  The axonal, or presynaptic, 

side of the junction consists of calcium-sensitive protein complexes, which trigger the 

fusion of neurotransmitter vesicles with the cell membrane upon receipt of anterogradely 

propagated information from the cell body, encoded as an electrical impulse (Kandel et 

al., 2000).  Released neurotransmitter diffuses freely across a narrow synaptic cleft to be 

bound by ionotropic receptors at a postsynaptic dendritic site.  Neurotransmitter binding 

allows the selective flow of ions through these receptors, thus transducing the chemical 
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signal into an electrical current and propagating the flow of information through the 

postsynaptic neuron (Kandel et al., 2000).  Biochemical and ultra-structural studies have 

revealed complex networks of membrane and scaffolding proteins, which are integrated 

with the cytoskeleton through equally complex networks of linker proteins, both pre- and 

postsynaptically (McGee and Bredt, 2003; Okabe, 2007; Siksou et al., 2009).  The 

observation of such an elaborate architecture evokes some basic questions about synapse 

development: 1) how is synaptic contact initially made? 2) is synaptogenesis induced 

from the pre- or postsynaptic side? 3) can any axonal or dendritic site form a synapse? 

and 4) how are synapses stabilized? 

 Synaptic contact between developing axons and dendrites is either initiated 

passively, through en passant contacts of their overlapping branches, or directly, through 

the extension of long, thin filapodial branches or their growth cones (McAllister, 2007).  

These initial contacts are extremely transient in nature, and very few become stabilized as 

synaptic sites (Niell et al., 2004).  At least two reasons could explain why some contacts 

yield synapses and others do not: 1) highly specific mechanisms of axon and dendrite 

guidance are at play, which allow stereotyped circuit partners to seek each other out using 

soluble cues and/or cell adhesion molecules that stabilize contact and allow the 

recruitment of synaptic proteins, and/or 2) synaptogenesis occurs at those contacts where 

an a priori organization of either pre- or postsynaptic elements transcellularly induces the 

recruitment of their respective counterparts.  Regarding the former postulate, there is 

abundant evidence that transynaptic, bidirectional signaling between cell adhesion 

molecules supports selective synaptogenic events (Barbe and Levitt, 1992; Fannon and 

Colman, 1996; Graf et al., 2004).  Evidence supporting the latter postulate has recently 
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been obtained from experiments utilizing time-lapse imaging of fluorescently tagged pre- 

and postsynaptic proteins in culture models of synaptogenesis.  For example, Sabo and 

colleagues demonstrated that vescicles containing machinery for neurotransmitter vesicle 

release pause and cycle repeatedly with the axonal cell membrane, and that stable 

contacts with dendritic filopodia were preferentially made at these pause sites (Sabo et 

al., 2006).  A similar experimental design was also used to show that stationary clusters 

of postsynaptic proteins, including the scaffolding protein Neuroligin-1, transcellularly 

recruit actively recycling neurotransmitter vesicles to directly apposed foci in contacted 

axons (Gerrow et al., 2006).  Collectively, these findings indicate that synaptogenesis can 

be induced both pre- and postsynaptically, and that specific axonal and dendritic sites 

become “predestined” to form synapses (Fig. 6A,B) (McAllister, 2007). 

What factors contribute to the stabilization and maturation of a newly formed 

synapse?  In purely descriptive, morphological terms, the maturation of a nascent 

excitatory synapse requires the transformation of axonal elements into presynaptic 

terminals and dendritic elements into dendritic spines.  Marked increases in pre- and 

postsynaptic protein localization are necessary, but beyond the initial recruitment of the 

presynaptic release machinery and postsynaptic neurotransmitter receptors, the precise 

blueprint for constructing (or deconstructing) a mature synapse is unknown (McAllister, 

2007).  What is known is that synapse maturation correlates with increases in synaptic 

size and strength (i.e., the efficacy of neurotransmission), whereas opposing changes 

occur in a synapse that is being eliminated or “pruned”.  In all nervous systems, including 

the mammalian forebrain, the total synaptic population at any single time-point is 

comprised of strong/stabilizing and weak/destabilizing types of synapses, with the 
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relative capacity for change toward either type described as “plasticity”.  Robust periods 

of plasticity in the developing mammalian forebrain are essential to translating 

experience-driven neuronal activity into changes in connectivity that will support 

adaptive behavioral responses in a maturing individual (Hensch, 2003; Knudsen, 2004).   

Ocular dominance plasticity is by far the best characterized example of adaptive 

plasticity within columnar modules of the mammalian neocortex.  In the primary visual 

cortex of carnivores and primates, thalamocortical axons transducing right-eye and left-

eye visual information target segregated populations of layer 4 granule cells in arrays of 

adjacent macrocolumns (Katz and Crowley, 2002).  The thalamocortical inputs 

representing each eye typically impinge upon neocortical territories of equivalent size, 
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but this can change dramatically should an eye become deprived of visual input during 

developmental periods of heightened neocortical plasticity.  In their seminal work, Hubel 

and Wiesel demonstrated that monocular deprivation (MD) in cats, when applied within a 

critical 3-4 week period postnatally, results in a large increase in the proportion of visual 

cortical neurons responding to inputs from the intact (i.e., dominant) eye and a 

concomitant decrease in that responding to deprived eye inputs (Hubel and Wiesel, 1970; 

Sawtell et al., 2003).  Moreover, they reported that the recovery of deprived eye vision 

subsequent to the removal of the (MD) was minimal if it occurred beyond the critical 

period.  This does not mean that mature, adult animals lack a capacity for cortical 

plasticity.  In fact, though mechanistically distinct from juvenile plasticity, adult ocular 

dominance plasticity has recently been demonstrated in mice (Sawtell et al., 2003; Hofer 

et al., 2006).  Plasticity later in life, however, is most certainly constrained by the 

outcomes of preceding critical periods (Knudsen, 2004).  For example using the feline 

MD paradigm, Shatz and Stryker showed expansions in the dominant eye thalamocortical 

projection and corresponding retractions in the deprived eye projection, indicating that 

the poor deprived eye recovery seen in mature animals after the cessation of MD is in 

large part due to there being too few remaining connections to strengthen (Shatz and 

Stryker, 1978).  The rearrangement of thalamocortical projections subsequent to MD 

exemplifies a very common theme in the development of connectivity.  That is, patterned 

activity strengthens strong connections and results in a further weakening or elimination 

of weak connections.  However, decreased activity does sometimes result in paradoxical, 

homeostatic increases in growth and connectivity, and vice versa.  Such responses may 

be most relevant to earlier developmental periods when pre- and postsynaptic elements 
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are still making initial contact (Lund et al., 1991; McAllister et al., 1996; Tripodi et al., 

2008).        

 

Forebrain circuit abnormalities in neurodevelopmental disorders: focus on 

autism spectrum disorders 

 

Down’s syndrome, Rett Syndrome, autism spectrum disorders (ASD) and 

virtually all neurodevelopmental disorders are defined by deficits in higher-order 

forebrain functions that unfold as an individual develops.  Because appropriate forebrain 

function depends on the integrity of the underlying forebrain circuitry, it is accepted that 

neurodevelopmental disorders share in common an aberrant or insufficient establishment 

of forebrain connectivity.  Presumably, the ontogeny of disrupted forebrain connectivity- 

that is, when, how, and which specific circuits are affected- dictates the presentation of 

clinical phenotypes that characterize each neurodevelopmental disorder.  

 Connectivity-based etiological hypotheses for ASD are rooted in the earliest 

clinical history of the disorder.  In 1943, Kanner first published a clinical description of 

the related disorders we now know as ASD, which led to the identification of a defining 

triad of core features that includes impaired social interaction, communication deficits, 

and repetitive and restricted interests and behaviors (Kanner and Eisenberg, 1957; 

American Psychiatric Association. and American Psychiatric Association. Task Force on 

DSM-IV., 2000).  Kanner’s descriptions also evoked conceptualizations relating to the 

causes of the disorder.  For instance, he noted in affected individuals, “the inability to 

experience wholes without full attention to the constituent parts”, which seems to 

comport with Frith’s weak central coherence theory that states that individuals with ASD 

tend to process detailed situational elements without recognizing relationships between 
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them (Happe and Frith, 1996).  For example, as compared to typically developing or 

intellectually disabled children, individuals with ASD are expert at remembering random 

word strings, but poor at recalling meaningful sentences of a similar length (Tager-

Flusberg, 1996).  Recognition of this cognitive style prompted a testable hypothesis 

concerning the state of forebrain circuitry in ASD.  Namely, that local connectivity (e.g., 

synapses within or between nearby minicolumns) is enhanced at the expense of long-

range connectivity (e.g., synapses linking distant, functionally related minicolumns to 

each other or other forebrain structures) (Fig. 1F). 

 Recent functional data support predictions of global hypo-connectivity in 

forebrain circuits in ASD.  Functional magnetic resonance imaging (fMRI) during either 

face processing or sentence comprehension tasks revealed reduced prefrontal activation 

relative to other cortical areas in the brains of individuals with autism (Just et al., 2004; 

Koshino et al., 2008).  More recent magnetoencephalographic analyses of high-

functioning children with ASD showed they have enhanced parietal lobe synchrony and 

decreased prefrontal lobe synchrony relative to typically developing children during the 

performance of executive function tasks (Perez Velazquez et al., 2009).  Collectively, 

these and other studies indicate that long-range circuits between the frontal cortices and 

other brain regions are functionally disconnected in ASD (Geschwind and Levitt, 2007). 

High-resolution structural imaging and postmortem anatomical analyses have 

been applied to assess morphological correlates of local hyper-connectivity and global 

hypo-connectivity in ASD.  Morphological evidence of abnormal local circuitry in ASD 

has come almost exclusively from post mortem anatomical studies, which show 

minicolumns to be narrower and more numerous in several cortical areas within autistic 
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brains (Casanova et al., 2002) (Fig. 1D,E).  This pathological feature is consistent with 

the local bias in neocortical activation in ASD as revealed by fMRI, and it also portends 

structural abnormalities at the single cell level, including reduced pyramidal dendritic 

arbor size, which lend themselves to further postmortem study (Amaral et al., 2008).  

Volumetric MRI and diffusion tensor imaging (DTI) of the corpus callosum indicate 

fewer and less organized interhemispheric connections in ASD.  Studies employing MRI-

based volumetry have revealed varying decreases in callosal volume along the rostro-

caudal extent of the structure (Piven et al., 1997; Just et al., 2007; Frazier and Hardan, 

2009; Hardan et al., 2009), consistent both with disruptions in long-range connectivity in 

ASD and the heterogeneity of the disorder (Geschwind and Levitt, 2007).  In general, 

these callosal volumetric deficits are corroborated by DTI data, which show increased 

ratios of radial to longitudinal diffusion within this fiber tract in affected individuals 

(Alexander et al., 2007; Keller et al., 2007).  Structural studies of the corpus callosum in 

ASD have thus far predominated, but fMRI data indicate that similar studies of 

intrahemispheric long-range projections also are warranted (Folstein and Rutter, 1977; 

Steffenburg et al., 1989; Just et al., 2007).          

 

ASD-associated genes: understanding etiological mechanisms at the level of 

forebrain connectivity 

 

Heritability and heterogeneity are two defining characteristics of ASD.  Strong 

genetic heritability in ASD is evident from traditional twin studies, which have 

demonstrated concordance values between 50-91% for monozygotic twins and 0% for 

dizygotic twins (Folstein and Rutter, 1977; Steffenburg et al., 1989).  However, in both 

general and extreme populations, bivariate concordance among individual traits of the 
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ASD triad (e.g., social impairment and communication impairment or social impairment 

and restrictive and repetitive behaviors and interests) has proven to be modest, indicating 

that distinct groups of genes may influence each trait (Ronald et al., 2006a; Ronald et al., 

2006b).  This is consistent with heterogeneity in both the severity of core deficits and the 

comorbidity of disorders such as mental retardation and seizures in ASD (Geschwind and 

Levitt, 2007).  Understanding how different groups of ASD risk genes yield the 

developmental disruptions in forebrain connectivity that result in distinct subtypes of 

ASD is an outstanding challenge.   

Two genetic models, which do not exclude each other, may be useful in 

conceptualizing etiological mechanisms of ASD that account for the heterogeneity of the 

disorder.  First, risk genes may selectively confer vulnerability to developing circuitry 

that relates to a specific ASD core deficit.  In this case, enhanced vulnerability to ASD 

would require the inheritance or de novo occurrence of risk genes related to each of the 

three core features of the disorder; vulnerability to a specific subtype of ASD would 

depend on the degree of risk incurred for one core deficit relative to the others as well as 

the co-occurrence of exacerbating genetic and/or environmental factors that might 

otherwise more broadly impact forebrain connectivity.  A second model dictates that 

large groups of ASD-associated gene variants and mutations may, through epistatic 

relationships, converge on signaling pathways that generally impact the social and 

emotional circuits that are affected in autism.  Phenotypic heterogeneity in this model 

results from the pleiotropic functions of the risk genes in various other pathways (Bill and 

Geschwind, 2009).  Finally, both models allow for the introduction of even further 

heterogeneity related to the timing of the genetic insult.  For example, in the context of 



25 

 

the first model, two risk genes may specifically impact circuits related to social 

interaction but do so during distinct developmental epochs.  If the expression of one gene 

is related to neurogenesis and expression of the other is related to a later process such as 

synaptogenesis, the qualitative nature of their impact on that circuitry may be quite 

different.  

Regardless of the genetic model that is favored, significant progress in 

understanding the etiology of ASD will surely come from directly relating the 

neurobiological functions of ASD risk alleles to the development of circuits that are 

disrupted in the disorder.  Progress in this endeavor is only just beginning to be realized.  

Rare mutations found to be enriched in ASD compared to controls, such as NLGN3, 

NLGN4, NRXN1, NRXN3, and SHANK3, are particularly exciting because of their 

clearly established roles in synaptogenesis and the maintenance of synaptic connectivity 

(Varoqueaux et al., 2006; Tabuchi et al., 2007; Hung et al., 2008; Gibson et al., 2009).  

However, to date, expression studies of these genes (Lim et al., 1999; Varoqueaux et al., 

2006) have not provided the resolution required to understand their potential relationships 

to the development of forebrain circuits affected in ASD.  Moreover, because the 

mutations are rare, expressed by only a few individuals with ASD, it is unlikely that the 

mutations are associated with specific subtypes of ASD. Further confusing the issue is the 

fact that the rare mutations of these genes have been associated with both mental 

retardation and ASD in the same family (Laumonnier et al., 2004).  Thus, although the 

findings provide clues to neurobiological etiology, the contribution of these specific 

genes broadly to ASD, which affects 1 in 150 children, is minimal. 
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An example of a strong link between an ASD risk allele and potential etiological 

mechanisms has come from studies of the PTEN locus.  In 2005, Butler and colleagues 

found rare loss of function mutations in the PTEN gene to associate with a subset of 

individuals with ASD and comorbid macrocephaly (Butler et al., 2005).  Remarkably, 

subsequent studies in a mouse model of postnatal, forebrain-specific PTEN loss of 

function revealed ethologically relevant deficits in social behavior as well as 

macrocephaly that was due to increased dendritic and axonal arborization (Kwon et al., 

2006).  Excitement concerning this finding, however, is tempered by the fact that germ-

line PTEN mutations are rare (>1 in 10,000) and relevant to only a few ASD cases.  

Etiological mechanisms that are more broadly relevant to ideopathic cases of ASD will 

necessarily come from studies of common ASD risk alleles.                    

 

The emergence of the Met receptor tyrosine kinase as an ASD risk gene 

 

Allelic variants of the gene encoding the MET receptor tyrosine kinase (MET) 

have recently been identified as ASD risk factors, in the truest sense of the term.  Over 

the past three years, four independent studies, using 7 independent family cohorts, have 

demonstrated the association of two allelic variants of the MET gene with ASD 

(Campbell et al., 2006; Campbell et al., 2008; Jackson et al., 2009; Sousa et al., 2009). 

The rs1858830-C and rs38845-A ASD-associated MET alleles are remarkably common, 

with population frequencies ranging from approximately .35-.55.  Also, each allele 

results from a single nucleotide variation in the 5’ regulatory region of the gene, which 

suggests that they influence ASD risk at the level of gene expression.  Thus far, in vitro 

assays have shown the rs1858830-C allele to recruit different transcriptional complexes 

to the MET promoter than its ASD-protective rs1858830-G allele counterpart; with the 
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result being reduced MET transcriptional efficiency (Campbell et al., 2006).  This finding 

is consistent with the reported 2-fold decrease in neocortical MET expression in ASD 

postmortem cases (Campbell et al., 2007).  Moreover, two other genes encoding genes in 

the Met signaling pathway carry common alleles associated with ASD (Campbell et al., 

2008).  Considering that ASD is a neurodevelopmental disorder, a very basic mechanistic 

hypothesis concerning the relationship of MET and ASD risk has emerged: decreased 

MET expression during development increases the chance that forebrain circuit miswiring 

events characteristic of ASD will occur.  Because the process of wiring together forebrain 

connections during development is extremely complex, further refinement of this 

hypothesis will require a detailed understanding of the MET gene products (i.e., MET 

proteins) and their molecular functions.  A current synopsis of MET protein function in 

the context of neurodevelopment is presented below.  General experimental directives for 

elucidating mechanistic relationships between MET signaling and ASD etiology and risk 

are also presented. 

 The human MET gene encodes the transmembrane MET receptor tyrosine kinase.  

This signaling enzyme is initially translated as an inactive precursor of approximately 

190 kD that, via furin-dependent proteolysis, is cleaved into an  (45 kD) and chain 

(145 kD) within late endosomes en route to the cell membrane (Komada et al., 1993).  

Disulfide bridges subsequently form between the - and -chains to yield a mature, 

heavily glycosylated transmembrane protein capable of transducing extracellular signals 

into intracellular signaling events.  Specifically, MET signaling commences upon the 

binding of its polypeptide ligand, hepatocyte growth factor (HGF), in the extracellular 

space.  Although HGF is a soluble protein, its local concentration, and therefore, its 
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availability to bind Met can be influenced by extracellular matrix molecules such as 

heparin sulphate (Kemp et al., 2006).  HGF binding induces MET receptor 

oligomerization and the autophosphorylation of intracellular tyrosine residues that serve 

as multi-substrate docking sites for signaling adaptor proteins (Ponzetto et al., 1994).  

These adaptor proteins in turn facilitate the activation of several major signaling cascades 

including the PI3K, Erk, and P38 systems (Stefan et al., 2001; Xiao et al., 2001).  The 

nature of MET signaling is extremely context- and cell type-dependent and reflects the 

pleiotropic functions of this receptor in cellular development.  

Although first discovered as a proto-oncogene (Cooper et al., 1984), MET was 

soon after found to be involved in a variety of normal cell developmental processes 

including cell proliferation, migration, differentiation, and survival.  MET signaling also 

influences development at the tissue-level.  For example, the formation of duct systems 

within the developing pancreas, kidney, and liver is dependent upon MET signaling 

(Rosario and Birchmeier, 2003; Zhang and Vande Woude, 2003).  Duct formation is 

based on the process of epithelial tubulogenesis, which requires the organization of 

complex interactions among many polarized cells.  The exquisite coordination of 

interactions among polarized cells is also a dominant theme in the development of 

forebrain connectivity, and in vitro studies have recently implicated MET signaling in 

this process as well. 

MET signaling in cells grown in vitro has been shown to potentiate virtually 

every aspect of neurodevelopment that is required to establish connections between 

forebrain neurons.  Nearly all of this work has been done on neurons and tissues 

harvested from rodent species where, by convention, the gene and mRNA molecules are 
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designated as “Met” and the protein is designated as “Met”.  HGF stimulation enhances 

the motility of olfactory and neocortical interneurons (Powell et al., 2001; Garzotto et al., 

2008) as well as that of gonadotropin hormone releasing neurons of the hypothalamus 

(Giacobini et al., 2007), indicating that Met signaling may regulate the migration of 

forebrain neurons.  Met signaling also has been shown to promote the axonal outgrowth 

of thalamic neurons (Powell et al., 2003) and the dendritic outgrowth of neocortical and 

hippocampal pyramidal neurons (Gutierrez et al., 2004; Lim and Walikonis, 2008) in 

vitro.  Finally, evidence that Met may influence the actual formation (Tyndall and 

Walikonis, 2006; Tyndall et al., 2007) and function (Akimoto et al., 2004) of synaptic 

connections between forebrain neurons has recently been demonstrated in dissociated 

hippocampal neurons and acute hippocampal slices, respectively.  As discussed above, 

deficits in any of these processes can yield pathological alterations in forebrain patterning 

and circuitry.  However, incorporating such a wide range of potential deficits into a 

conceptualization of MET-associated ASD risk is a daunting task- especially when the 

neurodevelopmental capacity of MET signaling to influence forebrain connectivity in 

vivo is largely unknown.  

Comprehensive spatiotemporal MET expression mapping in the developing 

forebrain will provide an essential foundation upon which to build an understanding of 

MET signaling in the context of typical forebrain development as well as ASD 

susceptibility.  Because neurodevelopment occurs in a logical, stereotyped sequence (e.g., 

migration necessarily occurs before synaptogenesis), knowing when the receptor is 

expressed during rodent and primate forebrain development will help to identify the 

processes to which MET signaling is most relevant.  Knowing the spatial patterns of 
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MET expression during forebrain development is also crucial.  Although the in vitro 

literature seems to indicate that MET is expressed in every neuronal subtype in the 

forebrain, stressful environments, perhaps like those in tissue culture systems, are known 

to induce and/or enhance MET expression (Honda et al., 1995; Su et al., 2007).  Thus, the 

distribution of the receptor in vivo may be much more restricted.  In fact, an enriched 

association of the rs1858830-C allele with social and communication phenotypes of ASD 

was recently discovered (Campbell et al., 2009), suggesting that MET signaling may be 

especially important for the development of forebrain circuits governing social and 

emotional dimensions of behavior.  If this is true, a further prediction would be that 

comparative studies of MET receptor distribution in the developing forebrain will reflect 

species-specific requirements for communication and social interaction.   

MET expression mapping studies also will serve to focus functional studies aimed 

at elucidating the consequences of developmental MET signaling disruptions on forebrain 

circuit development in vivo.  For example, MET is likely expressed in both axonal and 

dendritic compartments, so forebrain neurons which do not express the receptor, but 

receive MET-expressing axonal afferents, would constitute a useful population in which 

to study isolated circuit-level influences of MET signaling.  Mouse models that allow for 

the genetic ablation of Met signaling from specific populations of forebrain neurons will 

of course be essential to these studies.  Such models also will provide an in vivo platform 

for studying Met signaling mechanisms that are pertinent to forebrain circuit 

development, as the protein complexes that allow Met to engage specific downstream 

pathways should be intact. 

 



31 

 

Literature Cited 

Acker CD, Antic SD. 2009. Quantitative assessment of the distributions of membrane 

conductances involved in action potential backpropagation along basal dendrites. 

J Neurophysiol 101(3):1524-1541. 

Akimoto M, Baba A, Ikeda-Matsuo Y, Yamada MK, Itamura R, Nishiyama N, Ikegaya 

Y, Matsuki N. 2004. Hepatocyte growth factor as an enhancer of nmda currents 

and synaptic plasticity in the hippocampus. Neuroscience 128(1):155-162. 

Alexander AL, Lee JE, Lazar M, Boudos R, DuBray MB, Oakes TR, Miller JN, Lu J, 

Jeong EK, McMahon WM, Bigler ED, Lainhart JE. 2007. Diffusion tensor 

imaging of the corpus callosum in Autism. Neuroimage 34(1):61-73. 

Allendoerfer KL, Shatz CJ. 1994. The subplate, a transient neocortical structure: its role 

in the development of connections between thalamus and cortex. Annu Rev 

Neurosci 17:185-218. 

Amaral DG, Schumann CM, Nordahl CW. 2008. Neuroanatomy of autism. Trends 

Neurosci 31(3):137-145. 

American Psychiatric Association., American Psychiatric Association. Task Force on 

DSM-IV. 2000. Diagnostic and statistical manual of mental disorders: DSM-IV-

TR. Washington, DC: American Psychiatric Association. xxxvii, 943 p. p. 

Anderson SA, Eisenstat DD, Shi L, Rubenstein JL. 1997. Interneuron migration from 

basal forebrain to neocortex: dependence on Dlx genes. Science 278(5337):474-

476. 

Angevine JB, Jr., Sidman RL. 1961. Autoradiographic study of cell migration during 

histogenesis of cerebral cortex in the mouse. Nature 192:766-768. 

Barbe MF, Levitt P. 1992. Attraction of specific thalamic input by cerebral grafts 

depends on the molecular identity of the implant. Proc Natl Acad Sci U S A 

89(9):3706-3710. 

Bill BR, Geschwind DH. 2009. Genetic advances in autism: heterogeneity and 

convergence on shared pathways. Curr Opin Genet Dev 19(3):271-278. 

Bonnin A, Torii M, Wang L, Rakic P, Levitt P. 2007. Serotonin modulates the response 

of embryonic thalamocortical axons to netrin-1. Nat Neurosci 10(5):588-597. 

Bradke F, Dotti CG. 1999. The role of local actin instability in axon formation. Science 

283(5409):1931-1934. 

Butler MG, Dasouki MJ, Zhou XP, Talebizadeh Z, Brown M, Takahashi TN, Miles JH, 

Wang CH, Stratton R, Pilarski R, Eng C. 2005. Subset of individuals with autism 

spectrum disorders and extreme macrocephaly associated with germline PTEN 

tumour suppressor gene mutations. J Med Genet 42(4):318-321. 

Buxhoeveden DP, Casanova MF. 2002. The minicolumn hypothesis in neuroscience. 

Brain 125(Pt 5):935-951. 

Campbell DB, D'Oronzio R, Garbett K, Ebert PJ, Mirnics K, Levitt P, Persico AM. 2007. 

Disruption of cerebral cortex MET signaling in autism spectrum disorder. Ann 

Neurol 62(3):243-250. 

Campbell DB, Li C, Sutcliffe JS, Persico AM, Levitt P. 2008. Genetic evidence 

implicating multiple genes in the MET receptor tyrosine kinase pathway in autism 

spectrum disorder. Autism Res 1(3):159-168. 



32 

 

Campbell DB, Sutcliffe JS, Ebert PJ, Militerni R, Bravaccio C, Trillo S, Elia M, 

Schneider C, Melmed R, Sacco R, Persico AM, Levitt P. 2006. A genetic variant 

that disrupts MET transcription is associated with autism. Proc Natl Acad Sci U S 

A 103(45):16834-16839. 

Campbell DB, Warren D, Sutcliffe JS, Lee EB, Levitt P. 2009. Association of MET with 

social and communication phenotypes in individuals with autism spectrum 

disorder. Am J Med Genet B Neuropsychiatr Genet. 

Casanova MF, Buxhoeveden DP, Switala AE, Roy E. 2002. Minicolumnar pathology in 

autism. Neurology 58(3):428-432. 

Chilton JK. 2006. Molecular mechanisms of axon guidance. Dev Biol 292(1):13-24. 

Cooper CS, Park M, Blair DG, Tainsky MA, Huebner K, Croce CM, Vande Woude GF. 

1984. Molecular cloning of a new transforming gene from a chemically 

transformed human cell line. Nature 311(5981):29-33. 

de Carlos JA, Lopez-Mascaraque L, Valverde F. 1996. Dynamics of cell migration from 

the lateral ganglionic eminence in the rat. J Neurosci 16(19):6146-6156. 

DeFelipe J, Hendry SH, Hashikawa T, Molinari M, Jones EG. 1990. A microcolumnar 

structure of monkey cerebral cortex revealed by immunocytochemical studies of 

double bouquet cell axons. Neuroscience 37(3):655-673. 

Dotti CG, Sullivan CA, Banker GA. 1988. The establishment of polarity by hippocampal 

neurons in culture. J Neurosci 8(4):1454-1468. 

Dufour A, Seibt J, Passante L, Depaepe V, Ciossek T, Frisen J, Kullander K, Flanagan 

JG, Polleux F, Vanderhaeghen P. 2003. Area specificity and topography of 

thalamocortical projections are controlled by ephrin/Eph genes. Neuron 

39(3):453-465. 

Fannon AM, Colman DR. 1996. A model for central synaptic junctional complex 

formation based on the differential adhesive specificities of the cadherins. Neuron 

17(3):423-434. 

Fishell G, Mason CA, Hatten ME. 1993. Dispersion of neural progenitors within the 

germinal zones of the forebrain. Nature 362(6421):636-638. 

Folstein S, Rutter M. 1977. Infantile autism: a genetic study of 21 twin pairs. J Child 

Psychol Psychiatry 18(4):297-321. 

Frazier TW, Hardan AY. 2009. A meta-analysis of the corpus callosum in autism. Biol 

Psychiatry 66(10):935-941. 

Friauf E, McConnell SK, Shatz CJ. 1990. Functional synaptic circuits in the subplate 

during fetal and early postnatal development of cat visual cortex. J Neurosci 

10(8):2601-2613. 

Garzotto D, Giacobini P, Crepaldi T, Fasolo A, De Marchis S. 2008. Hepatocyte growth 

factor regulates migration of olfactory interneuron precursors in the rostral 

migratory stream through Met-Grb2 coupling. J Neurosci 28(23):5901-5909. 

Gerrow K, Romorini S, Nabi SM, Colicos MA, Sala C, El-Husseini A. 2006. A 

preformed complex of postsynaptic proteins is involved in excitatory synapse 

development. Neuron 49(4):547-562. 

Geschwind DH, Levitt P. 2007. Autism spectrum disorders: developmental disconnection 

syndromes. Curr Opin Neurobiol 17(1):103-111. 

Ghosh A, Shatz CJ. 1992. Pathfinding and target selection by developing geniculocortical 

axons. J Neurosci 12(1):39-55. 



33 

 

Giacobini P, Messina A, Wray S, Giampietro C, Crepaldi T, Carmeliet P, Fasolo A. 2007. 

Hepatocyte growth factor acts as a motogen and guidance signal for gonadotropin 

hormone-releasing hormone-1 neuronal migration. J Neurosci 27(2):431-445. 

Gibson JR, Huber KM, Sudhof TC. 2009. Neuroligin-2 deletion selectively decreases 

inhibitory synaptic transmission originating from fast-spiking but not from 

somatostatin-positive interneurons. J Neurosci 29(44):13883-13897. 

Gonzalez-Billault C, Avila J, Caceres A. 2001. Evidence for the role of MAP1B in axon 

formation. Mol Biol Cell 12(7):2087-2098. 

Graf ER, Zhang X, Jin SX, Linhoff MW, Craig AM. 2004. Neurexins induce 

differentiation of GABA and glutamate postsynaptic specializations via 

neuroligins. Cell 119(7):1013-1026. 

Grueber WB, Jan LY, Jan YN. 2002. Tiling of the Drosophila epidermis by 

multidendritic sensory neurons. Development 129(12):2867-2878. 

Grueber WB, Ye B, Moore AW, Jan LY, Jan YN. 2003. Dendrites of distinct classes of 

Drosophila sensory neurons show different capacities for homotypic repulsion. 

Curr Biol 13(8):618-626. 

Gutierrez H, Dolcet X, Tolcos M, Davies A. 2004. HGF regulates the development of 

cortical pyramidal dendrites. Development 131(15):3717-3726. 

Happe F, Frith U. 1996. The neuropsychology of autism. Brain 119 (Pt 4):1377-1400. 

Hardan AY, Pabalan M, Gupta N, Bansal R, Melhem NM, Fedorov S, Keshavan MS, 

Minshew NJ. 2009. Corpus callosum volume in children with autism. Psychiatry 

Res 174(1):57-61. 

Hausser M, Spruston N, Stuart GJ. 2000. Diversity and dynamics of dendritic signaling. 

Science 290(5492):739-744. 

Hensch TK. 2003. Controlling the critical period. Neurosci Res 47(1):17-22. 

Hofer SB, Mrsic-Flogel TD, Bonhoeffer T, Hubener M. 2006. Lifelong learning: ocular 

dominance plasticity in mouse visual cortex. Curr Opin Neurobiol 16(4):451-459. 

Honda S, Kagoshima M, Wanaka A, Tohyama M, Matsumoto K, Nakamura T. 1995. 

Localization and functional coupling of HGF and c-Met/HGF receptor in rat 

brain: implication as neurotrophic factor. Brain Res Mol Brain Res 32(2):197-

210. 

Horton AC, Yi JJ, Ehlers MD. 2006. Cell type-specific dendritic polarity in the absence 

of spatially organized external cues. Brain Cell Biol 35(1):29-38. 

Hubel DH, Wiesel TN. 1970. The period of susceptibility to the physiological effects of 

unilateral eye closure in kittens. J Physiol 206(2):419-436. 

Huckfeldt RM, Schubert T, Morgan JL, Godinho L, Di Cristo G, Huang ZJ, Wong RO. 

2009. Transient neurites of retinal horizontal cells exhibit columnar tiling via 

homotypic interactions. Nat Neurosci 12(1):35-43. 

Hung AY, Futai K, Sala C, Valtschanoff JG, Ryu J, Woodworth MA, Kidd FL, Sung CC, 

Miyakawa T, Bear MF, Weinberg RJ, Sheng M. 2008. Smaller dendritic spines, 

weaker synaptic transmission, but enhanced spatial learning in mice lacking 

Shank1. J Neurosci 28(7):1697-1708. 

Jackson PB, Boccuto L, Skinner C, Collins JS, Neri G, Gurrieri F, Schwartz CE. 2009. 

Further evidence that the rs1858830 C variant in the promoter region of the MET 

gene is associated with autistic disorder. Autism Res 2(4):232-236. 

Jan YN, Jan LY. 2003. The control of dendrite development. Neuron 40(2):229-242. 



34 

 

Jones EG. 2002. Thalamic circuitry and thalamocortical synchrony. Philos Trans R Soc 

Lond B Biol Sci 357(1428):1659-1673. 

Just MA, Cherkassky VL, Keller TA, Kana RK, Minshew NJ. 2007. Functional and 

anatomical cortical underconnectivity in autism: evidence from an FMRI study of 

an executive function task and corpus callosum morphometry. Cereb Cortex 

17(4):951-961. 

Just MA, Cherkassky VL, Keller TA, Minshew NJ. 2004. Cortical activation and 

synchronization during sentence comprehension in high-functioning autism: 

evidence of underconnectivity. Brain 127(Pt 8):1811-1821. 

Kandel ER, Schwartz JH, Jessell TM. 2000. Principles of neural science. New York: 

McGraw-Hill, Health Professions Division. xli, 1414 p. p. 

Kanner L, Eisenberg L. 1957. Early infantile autism, 1943-1955. Psychiatr Res Rep Am 

Psychiatr Assoc(7):55-65. 

Katz LC, Crowley JC. 2002. Development of cortical circuits: lessons from ocular 

dominance columns. Nat Rev Neurosci 3(1):34-42. 

Keller TA, Kana RK, Just MA. 2007. A developmental study of the structural integrity of 

white matter in autism. Neuroreport 18(1):23-27. 

Kemp LE, Mulloy B, Gherardi E. 2006. Signalling by HGF/SF and Met: the role of 

heparan sulphate co-receptors. Biochem Soc Trans 34(Pt 3):414-417. 

Knudsen EI. 2004. Sensitive periods in the development of the brain and behavior. J 

Cogn Neurosci 16(8):1412-1425. 

Komada M, Hatsuzawa K, Shibamoto S, Ito F, Nakayama K, Kitamura N. 1993. 

Proteolytic processing of the hepatocyte growth factor/scatter factor receptor by 

furin. FEBS Lett 328(1-2):25-29. 

Kornack DR, Rakic P. 1998. Changes in cell-cycle kinetics during the development and 

evolution of primate neocortex. Proc Natl Acad Sci U S A 95(3):1242-1246. 

Koshino H, Kana RK, Keller TA, Cherkassky VL, Minshew NJ, Just MA. 2008. fMRI 

investigation of working memory for faces in autism: visual coding and 

underconnectivity with frontal areas. Cereb Cortex 18(2):289-300. 

Krimer LS, Goldman-Rakic PS. 2001. Prefrontal microcircuits: membrane properties and 

excitatory input of local, medium, and wide arbor interneurons. J Neurosci 

21(11):3788-3796. 

Kwon CH, Luikart BW, Powell CM, Zhou J, Matheny SA, Zhang W, Li Y, Baker SJ, 

Parada LF. 2006. Pten regulates neuronal arborization and social interaction in 

mice. Neuron 50(3):377-388. 

Laumonnier F, Bonnet-Brilhault F, Gomot M, Blanc R, David A, Moizard MP, Raynaud 

M, Ronce N, Lemonnier E, Calvas P, Laudier B, Chelly J, Fryns JP, Ropers HH, 

Hamel BC, Andres C, Barthelemy C, Moraine C, Briault S. 2004. X-linked 

mental retardation and autism are associated with a mutation in the NLGN4 gene, 

a member of the neuroligin family. Am J Hum Genet 74(3):552-557. 

Letinic K, Zoncu R, Rakic P. 2002. Origin of GABAergic neurons in the human 

neocortex. Nature 417(6889):645-649. 

Lim CS, Walikonis RS. 2008. Hepatocyte growth factor and c-Met promote dendritic 

maturation during hippocampal neuron differentiation via the Akt pathway. Cell 

Signal 20(5):825-835. 



35 

 

Lim S, Naisbitt S, Yoon J, Hwang JI, Suh PG, Sheng M, Kim E. 1999. Characterization 

of the Shank family of synaptic proteins. Multiple genes, alternative splicing, and 

differential expression in brain and development. J Biol Chem 274(41):29510-

29518. 

Lindwall C, Fothergill T, Richards LJ. 2007. Commissure formation in the mammalian 

forebrain. Curr Opin Neurobiol 17(1):3-14. 

Losonczy A, Makara JK, Magee JC. 2008. Compartmentalized dendritic plasticity and 

input feature storage in neurons. Nature 452(7186):436-441. 

Lund JS, Holbach SM, Chung WW. 1991. Postnatal development of thalamic recipient 

neurons in the monkey striate cortex: II. Influence of afferent driving on spine 

acquisition and dendritic growth of layer 4C spiny stellate neurons. J Comp 

Neurol 309(1):129-140. 

Lund RD, Mustari MJ. 1977. Development of the geniculocortical pathway in rats. J 

Comp Neurol 173(2):289-306. 

Markram H. 2008. Fixing the location and dimensions of functional neocortical columns. 

Hfsp J 2(3):132-135. 

Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C. 2004. 

Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5(10):793-

807. 

McAllister AK. 2007. Dynamic aspects of CNS synapse formation. Annu Rev Neurosci 

30:425-450. 

McAllister AK, Katz LC, Lo DC. 1996. Neurotrophin regulation of cortical dendritic 

growth requires activity. Neuron 17(6):1057-1064. 

McAllister AK, Katz LC, Lo DC. 1997. Opposing roles for endogenous BDNF and NT-3 

in regulating cortical dendritic growth. Neuron 18(5):767-778. 

McGee AW, Bredt DS. 2003. Assembly and plasticity of the glutamatergic postsynaptic 

specialization. Curr Opin Neurobiol 13(1):111-118. 

Mountcastle VB. 1997. The columnar organization of the neocortex. Brain 120 (Pt 

4):701-722. 

Mountcastle VB. 2003. Introduction. Computation in cortical columns. Cereb Cortex 

13(1):2-4. 

Nevian T, Larkum ME, Polsky A, Schiller J. 2007. Properties of basal dendrites of layer 

5 pyramidal neurons: a direct patch-clamp recording study. Nat Neurosci 

10(2):206-214. 

Neyt C, Welch M, Langston A, Kohtz J, Fishell G. 1997. A short-range signal restricts 

cell movement between telencephalic proliferative zones. J Neurosci 

17(23):9194-9203. 

Niell CM, Meyer MP, Smith SJ. 2004. In vivo imaging of synapse formation on a 

growing dendritic arbor. Nat Neurosci 7(3):254-260. 

O'Donnell M, Chance RK, Bashaw GJ. 2009. Axon growth and guidance: receptor 

regulation and signal transduction. Annu Rev Neurosci 32:383-412. 

O'Rourke NA, Dailey ME, Smith SJ, McConnell SK. 1992. Diverse migratory pathways 

in the developing cerebral cortex. Science 258(5080):299-302. 

Okabe S. 2007. Molecular anatomy of the postsynaptic density. Mol Cell Neurosci 

34(4):503-518. 



36 

 

Perez Velazquez JL, Barcelo F, Hung Y, Leshchenko Y, Nenadovic V, Belkas J, 

Raghavan V, Brian J, Garcia Dominguez L. 2009. Decreased brain coordinated 

activity in autism spectrum disorders during executive tasks: reduced long-range 

synchronization in the fronto-parietal networks. Int J Psychophysiol 73(3):341-

349. 

Petreanu L, Mao T, Sternson SM, Svoboda K. 2009. The subcellular organization of 

neocortical excitatory connections. Nature 457(7233):1142-1145. 

Piven J, Bailey J, Ranson BJ, Arndt S. 1997. An MRI study of the corpus callosum in 

autism. Am J Psychiatry 154(8):1051-1056. 

Polleux F, Morrow T, Ghosh A. 2000. Semaphorin 3A is a chemoattractant for cortical 

apical dendrites. Nature 404(6778):567-573. 

Ponzetto C, Bardelli A, Zhen Z, Maina F, dalla Zonca P, Giordano S, Graziani A, 

Panayotou G, Comoglio PM. 1994. A multifunctional docking site mediates 

signaling and transformation by the hepatocyte growth factor/scatter factor 

receptor family. Cell 77(2):261-271. 

Porter JT, Johnson CK, Agmon A. 2001. Diverse types of interneurons generate 

thalamus-evoked feedforward inhibition in the mouse barrel cortex. J Neurosci 

21(8):2699-2710. 

Powell EM, Mars WM, Levitt P. 2001. Hepatocyte growth factor/scatter factor is a 

motogen for interneurons migrating from the ventral to dorsal telencephalon. 

Neuron 30(1):79-89. 

Powell EM, Muhlfriedel S, Bolz J, Levitt P. 2003. Differential regulation of thalamic and 

cortical axonal growth by hepatocyte growth factor/scatter factor. Dev Neurosci 

25(2-4):197-206. 

Quinn CC, Wadsworth WG. 2008. Axon guidance: asymmetric signaling orients 

polarized outgrowth. Trends Cell Biol 18(12):597-603. 

Rakic P. 1977. Prenatal development of the visual system in rhesus monkey. Philos Trans 

R Soc Lond B Biol Sci 278(961):245-260. 

Rakic P. 1988. Specification of cerebral cortical areas. Science 241(4862):170-176. 

Rakic P. 2009. Evolution of the neocortex: a perspective from developmental biology. 

Nat Rev Neurosci 10(10):724-735. 

Ronald A, Happe F, Bolton P, Butcher LM, Price TS, Wheelwright S, Baron-Cohen S, 

Plomin R. 2006a. Genetic heterogeneity between the three components of the 

autism spectrum: a twin study. J Am Acad Child Adolesc Psychiatry 45(6):691-

699. 

Ronald A, Happe F, Price TS, Baron-Cohen S, Plomin R. 2006b. Phenotypic and genetic 

overlap between autistic traits at the extremes of the general population. J Am 

Acad Child Adolesc Psychiatry 45(10):1206-1214. 

Rosario M, Birchmeier W. 2003. How to make tubes: signaling by the Met receptor 

tyrosine kinase. Trends Cell Biol 13(6):328-335. 

Rubio-Garrido P, Perez-de-Manzo F, Porrero C, Galazo MJ, Clasca F. 2009. Thalamic 

input to distal apical dendrites in neocortical layer 1 is massive and highly 

convergent. Cereb Cortex 19(10):2380-2395. 

Sabo SL, Gomes RA, McAllister AK. 2006. Formation of presynaptic terminals at 

predefined sites along axons. J Neurosci 26(42):10813-10825. 



37 

 

Sawtell NB, Frenkel MY, Philpot BD, Nakazawa K, Tonegawa S, Bear MF. 2003. 

NMDA receptor-dependent ocular dominance plasticity in adult visual cortex. 

Neuron 38(6):977-985. 

Serafini T, Colamarino SA, Leonardo ED, Wang H, Beddington R, Skarnes WC, Tessier-

Lavigne M. 1996. Netrin-1 is required for commissural axon guidance in the 

developing vertebrate nervous system. Cell 87(6):1001-1014. 

Shatz CJ, Luskin MB. 1986. The relationship between the geniculocortical afferents and 

their cortical target cells during development of the cat's primary visual cortex. J 

Neurosci 6(12):3655-3668. 

Shatz CJ, Stryker MP. 1978. Ocular dominance in layer IV of the cat's visual cortex and 

the effects of monocular deprivation. J Physiol 281:267-283. 

Shepherd GM, Stepanyants A, Bureau I, Chklovskii D, Svoboda K. 2005. Geometric and 

functional organization of cortical circuits. Nat Neurosci 8(6):782-790. 

Shu T, Sundaresan V, McCarthy MM, Richards LJ. 2003. Slit2 guides both precrossing 

and postcrossing callosal axons at the midline in vivo. J Neurosci 23(22):8176-

8184. 

Sidman RL, Rakic P. 1973. Neuronal migration, with special reference to developing 

human brain: a review. Brain Res 62(1):1-35. 

Siksou L, Triller A, Marty S. 2009. An emerging view of presynaptic structure from 

electron microscopic studies. J Neurochem 108(6):1336-1342. 

Sousa I, Clark TG, Toma C, Kobayashi K, Choma M, Holt R, Sykes NH, Lamb JA, 

Bailey AJ, Battaglia A, Maestrini E, Monaco AP. 2009. MET and autism 

susceptibility: family and case-control studies. Eur J Hum Genet 17(6):749-758. 

Stefan M, Koch A, Mancini A, Mohr A, Weidner KM, Niemann H, Tamura T. 2001. Src 

homology 2-containing inositol 5-phosphatase 1 binds to the multifunctional 

docking site of c-Met and potentiates hepatocyte growth factor-induced branching 

tubulogenesis. J Biol Chem 276(5):3017-3023. 

Steffenburg S, Gillberg C, Hellgren L, Andersson L, Gillberg IC, Jakobsson G, Bohman 

M. 1989. A twin study of autism in Denmark, Finland, Iceland, Norway and 

Sweden. J Child Psychol Psychiatry 30(3):405-416. 

Su W, Xing R, Guha A, Gutmann DH, Sherman LS. 2007. Mice with GFAP-targeted loss 

of neurofibromin demonstrate increased axonal MET expression with aging. Glia 

55(7):723-733. 

Tabuchi K, Blundell J, Etherton MR, Hammer RE, Liu X, Powell CM, Sudhof TC. 2007. 

A neuroligin-3 mutation implicated in autism increases inhibitory synaptic 

transmission in mice. Science 318(5847):71-76. 

Tager-Flusberg H. 1996. Brief report: current theory and research on language and 

communication in autism. J Autism Dev Disord 26(2):169-172. 

Takahashi T, Nowakowski RS, Caviness VS, Jr. 1996. The leaving or Q fraction of the 

murine cerebral proliferative epithelium: a general model of neocortical 

neuronogenesis. J Neurosci 16(19):6183-6196. 

Takahashi T, Nowakowski RS, Caviness VS, Jr. 1997. The mathematics of neocortical 

neuronogenesis. Dev Neurosci 19(1):17-22. 

Torii M, Levitt P. 2005. Dissociation of corticothalamic and thalamocortical axon 

targeting by an EphA7-mediated mechanism. Neuron 48(4):563-575. 



38 

 

Tripodi M, Evers JF, Mauss A, Bate M, Landgraf M. 2008. Structural homeostasis: 

compensatory adjustments of dendritic arbor geometry in response to variations of 

synaptic input. PLoS Biol 6(10):e260. 

Tyndall SJ, Patel SJ, Walikonis RS. 2007. Hepatocyte growth factor-induced 

enhancement of dendritic branching is blocked by inhibitors of N-methyl-D-

aspartate receptors and calcium/calmodulin-dependent kinases. J Neurosci Res 

85(11):2343-2351. 

Tyndall SJ, Walikonis RS. 2006. The receptor tyrosine kinase Met and its ligand 

hepatocyte growth factor are clustered at excitatory synapses and can enhance 

clustering of synaptic proteins. Cell Cycle 5(14):1560-1568. 

Uziel D, Muhlfriedel S, Zarbalis K, Wurst W, Levitt P, Bolz J. 2002. Miswiring of limbic 

thalamocortical projections in the absence of ephrin-A5. J Neurosci 22(21):9352-

9357. 

Varoqueaux F, Aramuni G, Rawson RL, Mohrmann R, Missler M, Gottmann K, Zhang 

W, Sudhof TC, Brose N. 2006. Neuroligins determine synapse maturation and 

function. Neuron 51(6):741-754. 

Wassle H, Peichl L, Boycott BB. 1981. Dendritic territories of cat retinal ganglion cells. 

Nature 292(5821):344-345. 

Whitford KL, Marillat V, Stein E, Goodman CS, Tessier-Lavigne M, Chedotal A, Ghosh 

A. 2002. Regulation of cortical dendrite development by Slit-Robo interactions. 

Neuron 33(1):47-61. 

Witte H, Neukirchen D, Bradke F. 2008. Microtubule stabilization specifies initial 

neuronal polarization. J Cell Biol 180(3):619-632. 

Xiao GH, Jeffers M, Bellacosa A, Mitsuuchi Y, Vande Woude GF, Testa JR. 2001. Anti-

apoptotic signaling by hepatocyte growth factor/Met via the phosphatidylinositol 

3-kinase/Akt and mitogen-activated protein kinase pathways. Proc Natl Acad Sci 

U S A 98(1):247-252. 

Yamamoto N. 2002. Cellular and molecular basis for the formation of lamina-specific 

thalamocortical projections. Neurosci Res 42(3):167-173. 

Yanez IB, Munoz A, Contreras J, Gonzalez J, Rodriguez-Veiga E, DeFelipe J. 2005. 

Double bouquet cell in the human cerebral cortex and a comparison with other 

mammals. J Comp Neurol 486(4):344-360. 

Yoshikawa S, McKinnon RD, Kokel M, Thomas JB. 2003. Wnt-mediated axon guidance 

via the Drosophila Derailed receptor. Nature 422(6932):583-588. 

Zhang YW, Vande Woude GF. 2003. HGF/SF-met signaling in the control of branching 

morphogenesis and invasion. J Cell Biochem 88(2):408-417. 

 
 



 39  

 

CHAPTER II 

 

DYNAMIC GENE AND PROTEIN EXPRESSION PATTERNS OF THE 
AUTISM-ASSOCIATED MET RECEPTOR TYROSINE KINASE IN THE 

DEVELOPING MOUSE FOREBRAIN 
 
 
 

Matthew C. Judson3,*, Mica Y. Bergman3,*, Daniel B. Campbell1,2, Kathie L. Eagleson1,2 
and Pat Levitt1,2 

 
1Vanderbilt Kennedy Center for Research on Human Development, 2Department of 

Pharmacology and 3Graduate Program in Neuroscience 
 

Vanderbilt University Medical Center 
Nashville, TN  37203 

 
*These authors contributed equally to this work 

 
 

 
Correspondence to: 
Pat Levitt, Ph.D. 
Vanderbilt Kennedy Center for Research on Human Development 
PO Box 40 Peabody 
Nashville, TN  37203 
615-322-8242 
615-322-5910 (fax) 
pat.levitt@vanderbilt.edu 

 
 

Grant sponsor: National Institutes of Health (NIH)/National Insitute of Mental Health 
(NIMH); Grant number MH67842 (PL); Grant Sponsor: NIH/National Institute of Child 
Health and Human Development; Grant number: P30 HD15052; Grant sponsor: 
NIH/NIMH; Grant number MH083474 (MYB); and Funds from the Annette Schaffer 
Eskind Endowed Chair (PL). 

 

 

 



 40

Abstract 

The establishment of appropriate neural circuitry depends upon the coordination 

of multiple developmental events across space and time.  These events include 

proliferation, migration, differentiation, and survival - all of which can be mediated by 

hepatocyte growth factor (HGF) signaling through the Met receptor tyrosine kinase.  We 

previously found a functional promoter variant of the MET gene to be associated with 

autism spectrum disorder, suggesting that forebrain circuits governing social and 

emotional function may be especially vulnerable to developmental disruptions in 

HGF/Met signaling.  However, little is known about the spatiotemporal distribution of 

Met expression in the forebrain during the development of such circuits.  To advance our 

understanding of the neurodevelopmental influences of Met activation, we employed 

complementary Western blotting, in situ hybridization and immunohistochemistry to 

comprehensively map Met transcript and protein expression throughout perinatal and 

postnatal development of the mouse forebrain.  Our studies reveal complex and dynamic 

spatiotemporal patterns of expression during this period.  Spatially, Met transcript is 

localized primarily to specific populations of projection neurons within the neocortex and 

in structures of the limbic system, including the amygdala, hippocampus and septum.  

Met protein appears to be principally located in axon tracts.  Temporally, peak expression 

of transcript and protein occurs during the second postnatal week.  This period is 

characterized by extensive neurite outgrowth and synaptogenesis, supporting a role for 

the receptor in these processes. Collectively, these data suggest that Met signaling may be 

necessary for the appropriate wiring of forebrain circuits with particular relevance to 

social and emotional dimensions of behavior.   
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Introduction 

The Met receptor tyrosine kinase is a pleiotropic, α,β-heterodimeric 

transmembrane protein that was first discovered as a proto-oncogene (Cooper et al., 

1984), and soon after found to be involved in a number of normal physiological 

processes.  The Met receptor and its endogenous ligand, hepatocyte growth factor (HGF), 

are expressed in the developing and adult nervous systems, and signal to mediate multiple 

neurodevelopmental and neurophysiological processes, including peripheral and central 

neuron survival (Hamanoue et al., 1996; Zhang et al., 2000), migration (Powell et al., 

2001; Giacobini et al., 2007; Garzotto et al., 2008), axon guidance (Ebens et al., 1996; 

Caton et al., 2000; Powell et al., 2003), dendritic arborization (Gutierrez et al., 2004; Lim 

and Walikonis, 2008), and synapse maturation and activity (Akimoto et al., 2004; Tyndall 

and Walikonis, 2006; Tyndall et al., 2007).  Deficits in any of these processes can yield 

pathological alterations in brain patterning and circuitry.  It is of particular note, 

therefore, that the human orthologue, MET, is located on chromosome 7q31, a region 

implicated in autism spectrum disorder (ASD) (IMGSAC, 1998; Ashley-Koch et al., 

1999; Barrett et al., 1999; Yonan et al., 2003), and a large family-based genetic analysis 

determined that an allelic variant in the 5’ promoter region of MET is associated with 

ASD, increasing risk approximately 2.25 fold (Campbell et al., 2006).  Furthermore, 

postmortem tissue analyses revealed an approximately two-fold reduction in MET protein 

expression in the temporal neocortex of ASD subjects compared to unaffected controls 

(Campbell et al., 2007). 

Roles for Met in the development of the diencephalon and telencephalon have 

been demonstrated in vitro.  In the diencephalon, Met signaling is required for migration 
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of gonadotropin hormone-releasing hormone-1 neurons from the nasal placode to the 

hypothalamus (Giacobini et al., 2007), and HGF has both growth-promoting and 

chemoattractive influences on axons from thalamic explants (Powell et al., 2003).  In the 

telencephalon, Met disruption diminishes the elaboration of dendritic arbors in cortical 

organotypic cultures (Gutierrez et al., 2004), while HGF enhances dendritic outgrowth 

and excitatory synaptic development of dissociated hippocampal neurons (Tyndall and 

Walikonis, 2006; Nakano et al., 2007; Tyndall et al., 2007; Lim and Walikonis, 2008), 

and stimulates the motility of developing interneurons from basal forebrain explants 

(Powell et al., 2001). 

 These in vitro studies illustrate the developmental capacities of Met, but the 

extent to which they represent the neurodevelopmental roles of Met in vivo is unclear.  To 

date, only two in vivo studies have attempted to examine the consequences of direct Met 

signaling manipulations in the context of mammalian forebrain development (Martins et 

al., 2007; Ohya et al., 2007).  To place the human genetic studies in perspective and to 

advance our understanding of the putative neurodevelopmental influences of Met 

activation, we used complementary Western blotting, in situ hybridization and 

immunohistochemical approaches to comprehensively map Met transcript and protein 

expression throughout late embryonic and postnatal development of the mouse forebrain 

(E17.5– P35).  We also examined protein expression patterns in mutant mice in which 

Met was conditionally deleted from structures originating from the dorsal pallium.  We 

show here that Met is expressed by discrete subtypes of long-projecting neurons of the 

forebrain, particularly, though not exclusively, of dorsal pallial origin, and that Met 

protein is enriched in the developing axons of these cells.  Moreover, we demonstrate that 
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the peak of Met expression in these cell populations coincides with principal periods of 

axon outgrowth and synaptogenesis, supporting a functional role for Met signaling in the 

development of forebrain connectivity. 

 

Materials and Methods 

Breeding and genotyping mice 

 C57BL/6J mice were purchased from the Jackson Laboratory (Bar Harbor, ME, 

USA). Conditional Met mutant mice (Emx1cre/Metfx/fx) were generated by mating mice 

homozygous for a Met allele, in which exon 16 is flanked by loxP sites (Huh et al., 2004) 

(Metfx/fx, courtesy of Dr. Snorri Thorgeirsson, NIH/Center for Cancer Research, 

Bethesda, MD) to Emx1-cre mice (Gorski et al., 2002) (courtesy of Dr. Kevin Jones, 

University of Colorado, Boulder, CO) that were also heterozygous for the floxed allele 

(Emx1cre/Metfx/+). Both Metfx/fx and Emx1cre/Metfx/+ breeding lines were back-crossed 

onto the C57BL/6J background for greater than 10 generations, and their progeny (i.e., 

Emx1cre/Metfx/fx and littermate control mice), were genotyped via polymerase chain 

reaction (PCR).  The PCR primer sets were as follows: Emx1cre forward 5’-

TTCGGCTATACGTAACAGGG-3’ and reverse 5’-TGCATGCAACGAGTGATGAG-

3’; Metfx forward 5’-GCAACTGTCTTTTGATCCCTGC-3’  and reverse 5’-

TGTCCAGCAAAGTCCCATGATAG-3’.  For the Emx1cre reaction, DNA samples are 

submitted to an initial denaturation step of 5 minutes at 94oC, then 35 amplification 

cycles [(denaturation: 94oC for 45 seconds), (annealing: 55oC for 30 seconds), 

(elongation: 72oC for 1 minute)], and then a final elongation step of 5 minutes at 72oC.  

The expected PCR product size is 350 bp.  For the Metfx reaction, DNA samples are 
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submitted to an initial denaturation step of 5 minutes at 94oC, then 35 amplification 

cycles [(denaturation: 94oC for 45 seconds), (annealing: 60oC for 1 minute), (elongation: 

72oC for 2 minutes)], and then a final elongation step of 5 minutes at 72oC.  The expected 

PCR product size is 500 bp for the wild type Met allele and 580 bp for the Metfx allele.      

            A cross-sectional approach was employed to assess patterns of Met transcript and 

total Met protein expression in the developing mouse forebrain.  For each experimental 

methodology described, forebrains from at least 3 mice from at least two independent 

litters were analyzed at each developmental time point of interest.  In the case of 

immunohistochemical studies requiring comparisons of Emx1cre/Metfx/fx and littermates, 

at least 3 experimental pairs from independent litters were analyzed per time point.  

           All research procedures using mice were approved by the Institutional Animal 

Care and Use Committee at Vanderbilt University and conformed to NIH guide-lines. All 

efforts were made to minimize animal suffering and to reduce the number of animals 

used.  

In situ hybridization 

In situ hybridization was performed as previously described (Campbell and 

Levitt, 2003), with modification.  Two cDNA probe templates specific to the mouse Met 

gene were generated by RT-PCR: a 1,387 bp fragment corresponding to nucleotides 

2665-4051 of NM_008591 and a 1,404 bp fragment corresponding to nucleotides 37-

1440 of NM_008591.  Antisense and sense cRNA probes were transcribed from these 

templates with incorporation of 35S-CTP.  

Pregnant dams were deeply anesthetized with isofluorane, fetuses were harvested 

and the dissected brain rapidly removed, frozen in isopentane, and stored at -80o C until 
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cryosectioning at 20 µm.  Cryosections were thaw-mounted onto Superfrost Plus glass 

slides (Fisher) and stored at -80oC.    

Slide-mounted sections were postfixed in buffered 4% paraformaldehyde for 15 

minutes, washed in 0.1 M phosphate-buffered saline (PBS) for 5 minutes, acetylated with 

0.25% acetic anhydride in 0.1M triethanolamine-HCl/0.15 M NaCl with 0.16%HCl for 

10 minutes, and washed in 2X standard saline citrate (SSC; 0.15 M NaCl, 0.015 M 

sodium citrate) for 1 minute.  Tissue was then dehydrated in graded alcohols (50%, 70%, 

95%, 100%; 1 minute incubation each), delipidated in chloroform (two 5 minute 

incubations), and incubated in 100% and 95% ethanol (1 minute each).  Slides were dried 

at 37oC for at least 2 hours. 

Each slide was hybridized with 3 ng radiolabeled probe in 100 µl hybridization 

buffer (50% formamide, 0.75 M NaCl, 20 mM 1,4-piperazine diethane sulfonic acid, 10 

mM EDTA, 10% dextran sulfate, 5X Denhardt’s solution, 50 mM DTT, 0.2% sodium 

dodecyl sulfate, 100 µg/ml sonicated salmon sperm DNA, and 10 µg/ml yeast tRNA) per 

slide.  Hybridization was performed at 55°C for 16 hours in a humid chamber. 

Following hybridization, coverslips were removed in 4X SSC plus 390mM 2-

mercaptoethanol and slides were incubated in this solution for 15 minutes at room 

temperature followed by 4X SSC without 2-mercaptoethanol for 15 minutes at room 

temperature.  Sections were then treated with 1:1 formamide/buffer (0.6M NaCl, 40 mM 

Tris base, 2 mM EDTA, 0.06% HCl) at 60oC for 30 minutes and washed in room 

temperature 2X SSC for 5 minutes.  Sections were then treated with 20ug/ml RNase A in 

0.5 M NaCl, 10 mM Tris, pH 8.0, and 1 mM EDTA at 37oC for 30 minutes.  The slides 

were then washed in graded salt solutions (2X, 1X, and 0.5X SSC each for 5 minutes at 
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room temperature, and 0.1X SSC at 65oC for 30 minutes).  Slides were cooled to room 

temperature in 0.1X SSC for 5 minutes and dipped in 60% ethanol with 0.33 M 

ammonium acetate.  Slides were dried at 37oC for 3-6 hours and exposed to X-ray film 

(Biomax MR; Eastman Kodak, Rochester, NY) for 3-15 days.  A subset of sections were 

prepared for emulsion dipping, following the protocol noted in (Campbell and Levitt, 

2003) and exposed for 3-6 days prior to development. 

Immunohistochemistry 

 The primary antibody used for Met immunohistochemical study was mouse anti-

Met (Met, B-2; sc-8057; lot No. C2807; Santa Cruz Biotechnology, Santa Cruz, CA; 

immunogen: peptide corresponding to amino acids 1330-1379 of mouse Met (NCBI# NP 

032617)).  Using immunoblotting methods, the antibody recognizes the recombinant Met 

protein (Santa Cruz), and a minor band at 170 kD and a major band at 140 kD in brain 

tissue homogenates (see below).  These bands represent pre-processed and processed 

forms, respectively, of the Met receptor.  Only the pre-processed band was detected in 

homogenates prepared from mouse neocortex in which the Met gene was deleted from 

the dorsal pallium (data not shown). A mouse monoclonal antibody, 1G9, generated in 

the laboratory against adult mouse hippocampal homogenates, cross-reacts specifically 

with phosphorylated neurofilament-H (NF-H) (Pennypacker et al., 1991), and was used to 

stain developing axons. 

         Postnatal mice were deeply anesthetized with sodium pentobarbital (60 mg/kg i.p.) 

prior to transcardial perfusion with room temperature phosphate-buffered 4% 

paraformaldehyde (pH 7.3) containing 1.3% L-lysine and 0.24% sodium periodate.  After 

postfixation overnight at 4oC, brains were cryoprotected via sequential 12-hour 
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incubations in 10%, 20%, and 30% sucrose in PBS, pH 7.5.  Fetal brains were harvested 

and immersion-fixed overnight at 4oC prior to cryoprotection.  

          Fetal and P0 fixed brains were frozen in embedding medium (Triangle Biomedical 

Sciences; Durham, NC) over liquid nitrogen vapors and stored at -80oC until sectioned 

with a cryostat at 20 µM.  Sections were collected on gelatin-subbed slides and stored at -

80oC until processed.  Fixed brains from P7 through P35 were frozen, cut at 40 µM with 

a sliding microtome (Leica, Bannockburn, IL) and free-floating sections were stored in a 

cryopreservative solution at -20oC until processed. One series of sections from selected 

brains were stained with Cresyl Violet as previously described (Hockfield, 1993).   

           For Met immunohistochemical processing, both cryostat and free-floating sections 

were rinsed in PBS and then incubated for 5 minutes in 0.5% H202 in PBS to quench 

endogenous peroxidases.  The sections were then rinsed in PBS before 25 min incubation 

in 0.1 M Tris-glycine (pH 7.4). Several more PBS rinses preceded a 1.5 hr incubation in 

unlabeled donkey anti-mouse IgG (Fab; Jackson Immunoresearch, West Grove, PA) to 

block endogenous mouse immunoglobulins. Sections were further blocked in several 

rinses of Blotto-T (4% Carnation dried milk in PBS containing 0.2% Triton-X-100).  

Blocked sections were incubated in primary mouse anti-Met antibody diluted 1:250 in 

Blotto-T.  Cryosections were incubated for 2-4 hours at room temperature; free-floating 

sections were incubated for 48-72 hours at 4oC.  Following washes in Blotto-T, sections 

were incubated for 1 hour at room temperature in 1:1000 biotin-SP-conjugated donkey 

anti-mouse IgG (Jackson Immunoresearch) diluted in Blotto-T.  Sections then were 

rinsed several times in PBS and processed by the ABC Elite histochemical method 

(Vector, Burlingame, CA).  Met-specific antibody complexes were visualized by 
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incubating the sections for 2-4 minutes at room temperature in 0.05% 3’3’-

diaminobenzidine (DAB) with 0.015% H202.  The stained sections were rinsed in PBS, 

and free-floating sections were mounted on gelatin coated slides.  Finally, sections were 

dehydrated with ethanol, cleared with xylene, and coverslipped in DPX (Fisher, 

Pittsburgh, PA) for microscopic analysis.  Phosphorylated NF-H staining was performed 

using a similar immunohistochemical protocol for free-floating sections, but with the 

following specific parameters: 1) The 1G9 primary antibody was diluted 1:200 in Blotto-

T, 2) biotin –SP-conjugated donkey anti-mouse IgM secondary antibodies were diluted 

1:1,000 in Blotto-T, and 3) antigen/antibody complexes were visualized using standard 

ABC reagents (Vector), followed by DAB histochemistry.  

Western blotting 

 The following primary antibodies were used for Western blotting studies: rabbit 

anti-Met (Met; # 07-283; lot No. 27208; Millipore (Upstate), Billerica, MA; immunogen: 

peptide corresponding to amino acids 1361-1379 of mouse Met (NCBI# NP 032617)), 

mouse anti-Met (Santa Cruz, sc-8057), mouse anti-alpha-tubulin loading control (alpha-

tubulin, Ab-1; # CP06; lot No. D16509-5; Oncogene Research Products, San Diego, CA; 

immunogen: native chick brain microtubules), mouse anti-GAPDH loading control 

(GAPDH; #AM4300; lot No. 08608176A; Ambion, Austin, TX; immunogen: purified 

rabbit muscle GAPDH).  

          Mice were deeply anesthetized with sodium pentobarbital (60 mg/kg i.p.) prior to 

decapitation and brain removal.  Harvested brains were immediately immersed in room 

temperature Hanks’ balanced salt solution (Sigma, Saint Louis, MO).  With the aid of an 

MZ-6 stereozoom microscope (Leica), the cerebral cortex from each hemisphere was 
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divided evenly midway along the antero-posterior axis to generate two tissue samples.  

The underlying striatum also was rapidly dissected before all samples were snap-frozen 

on liquid nitrogen and stored at -80oC.  

           P0 through >P90 cortical and striatal samples were prepared by homogenizing 

frozen tissue samples in a glass tissue homogenizer (Wheaton, Millville, NJ) with ice-

cold homogenization buffer (50 mM Tris HCl, pH 8.0, 150 mM NaCl, 1% Nonidet P-40, 

0.1% SDS, 0.5% deoxycholate,  0.5mM DTT , 2 mM EDTA, pH 8.0, 2 mM EGTA,  

0.2mM PMSF) containing a protease inhibitor cocktail (Sigma), 50 mM activated 

Na3VO4, 100 nM microcystin, and 0.5 nM cypermethrin.  E16 tissue was sonicated 

briefly in the same buffer.  Tissue homogenates were cleared by a 16,000 x g 

centrifugation for 20 minutes at 4oC, and protein concentrations of the supernatants were 

determined using the Dc protein assay (Bio-Rad, Hercules, CA).  

 Protein samples (35 µg protein per lane) were fractionated by SDS-PAGE and 

transferred to supported nitrocellulose membranes.  The membranes were then blocked 

for 1 hr at room temperature in Blotto (3% Carnation dried milk in PBS) before being 

incubated with primary antibodies.  Polyclonal rabbit anti-Met antibodies and alpha-

tubulin antibodies were diluted 1:2500 and 1:100,000, respectively, in Blotto containing 

0.05% Tween-20.  Monoclonal mouse anti-Met antibodies were diluted 1:500 in Blotto 

alone, and GAPDH antibodies were diluted 1:200,000 in Blotto + 0.02% Tween-20.  The 

membranes were then rinsed repeatedly in PBS and incubated for 1.5 hr at room 

temperature with anti-rabbit and anti-mouse horseradish peroxidase-conjugated 

secondary antibodies (Jackson Immunoresearch).  Following several more rinses in PBS, 

the membranes were reacted with enhanced chemiluminescence reagents (GE/Amersham 
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ECL) and detected with autoradiography film (GE/Amersham hyperfilm).  

Autoradiographic films were imaged with a high resolution scanner and subjected to 

densitometric quantification using IMAGE-J.   

Digital illustrations 

 Microscopy was performed with the aid of an Axioplan II microscope (Zeiss, 

Jena, Germany), and micrographs were acquired with a Zeiss AxioCam HRc camera 

(Zeiss) in Axiovision 4.1 software (Zeiss).  No image alteration other than re-sizing was 

performed. Figures were prepared digitally in Microsoft Office Powerpoint 2003 

(Microsoft Incorporated, Redmond, WA). 

Abbreviations used in the figures 

3V 3rd ventricle 
AB accessory basal amygdaloid nucleus 
aca anterior commissure, anterior 
aci anterior commissure, intrabulbar 
acp anterior commissure, posterior 
AD anterodorsal thalamic nucleus 
AV anteroventral thalamic nucleus 
alv alveus 
AOM anterior olfactory nucleus, medial 
AOL anterior olfactory nucleus, lateral 
B basal amygdaloid nucleus 
BST bed nucleus of stria terminalis 
CA1 cornu ammonis 1 of hippocampus 
CA3 cornu ammonis 3 of hippocampus 
cg cingulum 
Cg cingulate cortex 
COa anterior cortical amygdaloid nucleus 
COp posterior cortical amygdaloid nucleus 
cp cerebral peduncle 
CP cortical plate 
CPu caudate putamen (striatum) 
DG dentate gyrus 
dhc dorsal hippocampal commissure 
DL dorsolateral thalamic nuclei 
ec external capsule 
En endopiriform nucleus 
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fi fimbria of hippocampus 
GrDG granule layer of dentate gyrus 
hbc habenular commissure 
HDB nucleus of the diagonal band, horizontal limb 
ic internal capsule 
IP interpeduncular nucleus 
L lateral amygdaloid nucleus 
LEnt lateral entorhinal cortex 
LGP lateral globus pallidus 
LHb lateral habenula 
LM lateral mammillary nucleus 
LSD lateral septal nucleus, dorsal part 
LSI lateral septal nucleus, intermediate 
LSV lateral septal nucleus, ventral part 
LV lateral ventricle 
M medial amygdaloid nucleus 
MHb medial habenula 
MM medial mammillary nucleus 
Mol molecular layer of hippocampus 
MPO medial preoptic nucleus 
MS medial septal nucleus 
mt mammillothalamic tract 
mtg mammillotegmental tract 
NLOT nucleus of lateral olfactory tract 
opt optic tract 
Or oriens layer of hippocampus 
Pir piriform cortex 
Py pyramidal cell layer of hippocampus 
Rad stratum radiatum of hippocampus 
RSG retrosplenial granular cortex 
S subiculum 
SHy septohypothalamic nucleus 
SI substantia innominata 
sm stria medullaris 
SP subplate 
st stria terminalis 
SuM supramammillary nucleus 
SVZ subventricular zone, striatum 
SVZC subventricular zone, cortex 
vhc ventral hippocampal commissure 
VL ventrolateral thalamic nuclei 
VTM ventral tuberomammillary nucleu
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Results 

Temporal patterns of Met expression during forebrain development 

Met signaling has been implicated in vitro in diverse neurodevelopmental 

processes in the forebrain, including cell migration (Powell et al., 2001; Giacobini et al., 

2007; Garzotto et al., 2008), neurite outgrowth (Powell et al., 2003; Gutierrez et al., 

2004; Lim and Walikonis, 2008), and synaptogenesis (Madhavan and Peng, 2006; 

Tyndall and Walikonis, 2006; Nakano et al., 2007), each of which occurs in vivo during 

well defined, though overlapping, temporal windows.  As a first step in identifying the 

neurodevelopmental processes for which Met signaling may be most relevant in vivo, we 

utilized Western blotting to assess Met receptor protein expression levels in three 

forebrain regions across development.  Anterior cortex, posterior cortex, and striatum 

exhibit strikingly similar temporal patterns of Met expression (Fig. 1).  Total Met protein 

levels in these regions are relatively low from peak to late periods of neurogenesis 

(E16.5).  There is a marked increase in expression levels during the perinatal period (P0), 

corresponding to a time when most cortical and striatal neurons have finished their 

migration and are actively extending both axonal and dendritic processes (Parnavelas and 

Uylings, 1980; Miller and Peters, 1981; Miller, 1986; Tepper and Trent, 1993; Tepper et 

al., 1998).  Met protein expression increases dramatically between P0 and P7 (Fig. 1), 

peaking at a period coincident with extensive neurite outgrowth and the onset of 

synaptogenesis (Blue and Parnavelas, 1983; Micheva and Beaulieu, 1996; De Felipe et 

al., 1997).  This is followed by a gradual decrease in Met expression during the peak 

period of synaptogenesis (Aghajanian and Bloom, 1967; Dyson and Jones, 1980; Blue 

and Parnavelas, 1983; Markus and Petit, 1987; Micheva and Beaulieu,  
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1996; De Felipe et al., 1997) (P14, P21).  Met levels continue to decrease through the 

onset of puberty (P35) to reach a low baseline of expression in the adult (P90).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  Western blotting analysis of Met protein expression during forebrain development in wild type 
mice.  The temporal profile of Met expression is strikingly similar regardless of the forebrain region 
assayed: protein levels are relatively low embryonically (E16), but increase dramatically during perinatal 
development (P0) to reach a peak at P7.  Levels remain high through the second postnatal week (P14), but 
decline dramatically thereafter (P21) to relatively low levels in the adolescent (P35) and adult (>P90).  Note 
that peak periods of Met expression overlap with principal periods of neurite outgrowth and synaptogenesis 
in the mouse forebrain. Samples from each forebrain region were probed on separate blots and optimal film 
exposure times were independently determined.   
 
 

 The Western blotting data are consistent with a hypothesized role in vivo for Met 

signaling during multiple neurodevelopmental events, but especially neurite outgrowth 

and synaptogenesis.  To gain complementary, spatially-resolved data regarding Met 

receptor expression, we undertook detailed in situ hybridization and 

immunohistochemistry studies.  We also present immunohistochemical mapping data 

using tissue from Emx1cre/Metfx/fx mice, in which the targeted deletion preferentially 

ablates the processed, membrane-bound form of the Met receptor from all cells arising 

from the dorsal pallium, including the projection neurons of the cerebral cortex, 

hippocampus, and select amygdaloid nuclei, by E10.5 (Gorski et al., 2002). Unlike 
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constitutive Met knockout mice, which exhibit early embryonic lethality (Bladt et al., 

1995), Emx1cre/Metfx/fx mice are indistinguishable from wild type mice with regard to 

survival and reproductive capacity.  Gross analyses also show Emx1cre/Metfx/fx mice to 

have normal cortical lamination and thickness, and normal fiber tract development 

(Supplemental Fig. 1).   Thus, this targeted deletion provides an opportunity to 1) 

establish Met antibody specificity and 2) define more accurately the cellular origin of 

Met expression in axons and neuropil elements.   The results of the in situ hybridization 

and immunohistochemical mapping studies are organized by neuroanatomical region in 

two epochs: 1) during (E17.5-P16) and 2) after (P21-P35) the rise and peak of Met 

expression in the forebrain.  By convention, and to distinguish between mRNA and 

protein products, we italicize when referring to the transcript (“Met”) and do not italicize 

when referring to the protein (“Met”). 

 

Expression of Met in developing projection neurons of the cerebral cortex (E17.5-P16) 

 We readily observed Met transcript to be present in the somites as well as the 

primordial heart, kidney, and liver as early as E11.5.  However, using the specific 

hybridization conditions noted above, we did not reliably observe Met in the forebrain 

until E15, when low levels in the cerebral cortex were first detected.  Therefore, detailed 

Met expression analyses prior to E15 are most relevant to the periphery and extra-

forebrain regions of the central nervous system, and thus, are beyond the focus of the 

present study.  At all postnatal ages examined, there was little, if any, Met detected in 

developing or mature fiber tracts.  In contrast, Met protein localization revealed dense 

staining of developing axons in forebrain tracts (see below). 
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Supplemental Figure 1.  Qualitative histological and cytoarchitectural analyses in the early postnatal 
forebrain of Emx1cre/Metfx/fx mice.  A and A’: Low-magnification photomicrographs of Cresyl Violet-
stained coronal sections demonstrate grossly similar anatomical structure in wild type (A) and 
Emx1cre/Metfx/fx (A’) forebrains at P8.  B and B’: High-magnification photomicrographs of the boxed 
regions in A and A’ show comparable cortical lamination and cytoarchitecture in wild type and 
Emx1cre/Metfx/fx mice, respectively.  C and C’: Low-magnification photomicrographs of phosphorylated 
neurofilament-H immunoreactivity in coronal sections illustrate the grossly normal development of major 
axon tracts in Emx1cre/Metfx/fx (C’) mice as compared to wild type mice (C) at P7.  Scale bar = 1.1 mm for 
A, A’, C, and C’; 275 µm for B and B’.  

 
 

At birth, Western blot analysis reveals a more than three-fold increase in the total 

level of Met protein in the posterior cortex compared to the anterior cortex (Fig. 2E).  

This finding is corroborated by both in situ hybridization and immunohistochemical 

staining (Fig. 2A,C).  Thus, Met expression in the dorsal pallium exhibits a posterior 

(high) to anterior (low) gradient, which is most evident in the cortical plate.  Met is also 

expressed in the subplate, but is relatively uniform throughout its posterior-anterior 

extent.  Immunohistochemical staining reveals that Met expression in the cortex is 

localized to more posterior white matter tracts underlying the cortical plate (Fig. 2C).  By 

P7, the posterior-anterior gradient of cortical Met expression abates (Fig. 2B,D,E).   

The radial distribution of Met expression in the cortex can be observed more clearly in 

the coronal plane.  At birth, there is an emerging bi-laminar pattern of labeling (Fig. 3A-



56 
 

C), which becomes more evident by P7 (Fig. 3D-F).  At the transcript level, Met 

expression is most dense in layers II/III and in deeper layers V and VI, but essentially 

absent in layer IV (Fig. 3D,E).  Met protein is also expressed in a bilaminar pattern, with 

maximal signal in the deepest portion of the cortex, where it appears to be localized to the 

coalescing fibers of subcortically and cortico-cortically projecting axons from throughout 

the cortex (Fig. 3F).   The paucity of Met expression in layer IV is most evident in 

primary sensory cortices, particularly the somatosensory barrel fields; this is not 

surprising given the low levels of Met transcript in the dorsal thalamus (see below), and 

its absence in layer IV itself.  Though the bilaminar pattern of Met transcript expression 

remains similar at P14 compared to P7,  Met immunoreactivity at the later time point is 

substantially reduced (Fig. 3G-I).  

 

Cortically Projecting Fiber Tracts (P0 – P16) 
 

Immunohistochemical analysis during the first two weeks postnatal reveals Met 

protein expression in several fiber tracts, including the corpus callosum, cingulum, 

anterior commissure, internal capsule, and external capsule, which arise from cerebral 

cortical neurons expressing Met transcript.  The level of Met expression in these tracts is 

dynamic over this period, as described below. 

Corpus Callosum  

During the perinatal period, the corpus callosum exhibits intense Met staining, though 

expression is limited in its rostro-caudal extent (Fig. 4A,B).  At the most anterior level, 

staining of callosal fibers is sparse, but increases in density posteriorly.  At P7, the 

corpus callosum exhibits dense staining throughout its rostro-caudal extent (Fig. 4C,D).   
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Figure 2.  A transient tangential gradient of Met transcript and protein expression in the early postnatal 
neocortex.  In situ hybridization analysis of Met in sagittal sections of wild type forebrain reveals a strong 
posterior (high) to anterior (low) gradient of signal in the neocortex, which is present at E18.5 (A), but 
normalizes by P7 (B).  DIC photomicrographs of Met immunoreactivity in wild type sagittal sections show 
increased axonal labeling (arrows) in the posterior neocortex at E17.5 (C), but distributed axonal (arrows) 
and neuropil labeling throughout the anteroposterior extent by P7 (D).  Semiquantitative Western blotting 
confirms the protein gradient revealed by immunohistochemistry; Met protein levels are found on average 
to be approximately three-fold greater in posterior versus anterior neocortex at P0 but not P7 (E). Error bars 
in E represent reflect standard error of the mean, N = 3 in each group. Scale bar = 925µm for A, 1.75mm 
for B, 550 µm for C and 1.1 mm for D. 
 
 

By P14, and even more evident at P16, Met immunoreactivity in this tract becomes less 

Fig. 4E-H), and an additional pattern is observed; Met immunoreactivity is present in 

more dorsally situated axons at rostral levels (Fig. 4E,G), whereas stained fibers are 

localized ventrally at more caudal levels (Fig. 4F,H).  These staining patterns may reflect 
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unique patterns of maturation of distinct subpopulations of cortico-cortical projection 

neurons during this time period. 

 

 

Figure 3.  Laminar patterning of Met transcript and protein expression in the neocortex.  A, D, G: 
Autoradiographic images of Met transcript in coronal sections from wild type mice, scanned from film.  B, 
E, H:  DIC photomicrographs of coronal sections from wild type mice after processing for autoradiography 
and emulsion-dipping.  C, F, I: DIC photomicrographs of Met immunoreactivity in coronal sections from 
wild type mice.  At birth, low levels of Met transcript (A,B) and protein (C) are present throughout the 
extent of the neocortex, but a bi-laminar pattern of expression is emerging.  By P7 (D,E,F), laminar 
patterning is apparent, with a distinct absence of Met signal in layer IV.  This pattern of transcript 
expression is maintained at P14 (G,H), but immunohistochemical signal is reduced at this age (I).  Scale 
bar = 1.55mm for A,D,G; 275µm for B,C,F,I; 550µm for E,H. 
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Figure 4.  Met protein expression in the corpus callosum.  DIC photomicrographs show Met 
immunoreactivity in coronal sections from wild type mice.  At P0 (A, B), Met immunoreactivity is 
observed in the caudal portion of the corpus callosum, but not in the rostral region.  By P7 (C, D), Met 
expression is intense throughout the rostro-caudal extent of the tract.  Expression remains high, but 
gradually declines at P14 (E,F) and P16 (G,H).  Note that at P14 and P16, Met immunoreactivity is 
enriched in dorsally situated axons at rostral levels (arrows) and ventrally situated axons at caudal levels 
(arrowheads).  Scale bar = 275µm for all panels. 
 
 

Cingulum  

Met immunoreactivity is observed in the cingulum during postnatal development, 

particularly at P7 (Supplemental Fig. 2D).  This tract contains corticothalamic and 

thalamocortical projections that originate and terminate, respectively, in the cingulate 
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cortex, is a major pathway connecting the cingulate cortices and anterior thalamic nuclei 

to parahippocampal structures, and carries interhemispherically projecting axons of 

 

 

 
Supplemental Figure 2.  Met transcript and protein expression in the cingulate cortex and cingulum.  A-C: 
Autoradiographic images of cingulate cortex at E18.5, P7, and P14 show Met transcript expression.  DIC 
photomicrographs of Met immunoreactivity demonstrate expression of the protein in the wild type (D), but 
not in the Emx1cre/Metfx/fx (E) cingulum at P7.  By P16 (F), expression is virtually absent in the wild type 
cingulum.  Scale bar = 1.1mm for A-C; 275µm for D-F. 
 
 

neurons in association cortices (White, 1959; Domesick, 1970; Mufson and Pandya, 

1984; Shibata, 1993).  Comparison of matched sections from wild type and 

Emx1cre/Metfx/fx conditional null mice reveals an absence of cingulum staining in the 

mutant mice (Supplemental Fig. 2E), indicating that cortical efferents, not afferents, 

express Met in this tract.  This is consistent with Met transcript expression in neurons of 

the cingulate cortex (Supplemental Fig. 2A-C), and its absence in primary dorsal 

thalamic nuclei, throughout the same developmental period.  As observed in the corpus 

callosum, there is reduced Met immunostaining in the cingulum at later ages (P16, 

Supplemental Fig. 2F).   



61 
 

Anterior Commissure 

The anterior commissure and the neurons that give rise to its axons exhibit 

substantial Met protein and transcript expression, respectively (Fig. 5).  Met 

immunohistochemical labeling is apparent in both the anterior and posterior limbs of the 

anterior commissure, though staining is much more intense in the posterior limb, as 

demonstrated in coronal sections (Fig. 5D-F).  The heavily Met-expressing axons of the 

posterior limb can be seen in horizontal sections coursing out of the posterior temporal 

cortices (Supplemental Fig. 3A).  Staining is much lighter in fibers 

of the anterior limb, which emanate from the olfactory bulbs and anterior temporal 

cortices (Supplemental Fig. 3B) (Gurdjian, 1925; Brodal, 1948; Jouandet and 

Hartenstein, 1983).  Comparison of anterior commissure staining between wild type and 

Emx1cre/Metfx/fx mice confirms that the Met-expressing axons are mostly of dorsal pallial 

origin (Fig. 5D’-F’).  We note, however, the presence of some residual Met-

immunostained fibers in the P0 and P7 Emx1cre/Metfx/fx posterior limb (Fig. 5D’).  These 

fibers likely originate in the ventral endopiriform cortex, a region in which Met is not 

deleted due to low rates of Emx1-driven Cre recombination (Gorski et al., 2002).  

Met staining in the anterior commissure is reduced dramatically by P16 (Fig. 5F), despite 

continued transcript expression in the piriform cortex (Fig 5C).  Little, if any, protein is 

detected in the structure’s anterior limb, whereas low levels of expression persist in the 

posterior limb.  Comparison between staining patterns in the wild type and 

Emx1cre/Metfx/fx tissue indicates that this residual expression in the posterior limb is 

authentic (Fig. 5F’). 
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Internal Capsule   

From P0 through P7, Met protein expression is apparent in the fasciculated fibers 

of the internal capsule (Fig. 6A,C).   The virtual absence of Met immunoreactivity in 
  
 
   

  
Figure 5.  Met transcript and protein expression in the piriform cortex and anterior commissure.  A-C:  
Autoradiographic images of piriform cortex at E18.5, P7, and P14 show Met transcript expression.  DIC 
photomicrographs show Met immunoreactivity in coronal sections from wild type (D,E,F) and 
Emx1cre/Metfx/fx (D’, E’, F’) mice.  In the wild type sections, Met is expressed in both the anterior and 
posterior limbs of the commissure, though the staining is more intense in the posterior limb.  Met 
immunoreactivity is largely depleted in both limbs in the Emx1cre/Metfx/fx sections, owing to their dorsal 
pallial origin.  We note residual staining in the P0 and P7 posterior limb (D’,E’), likely due to a 
contribution from fibers originating in the ventral endopiriform cortex in which Emx1-mediated Cre 
recombination rates are low.  Scale bar = 825µm for A-C; 275µm for D-F and D’-F’. 
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Supplemental Figure 3.  Differential Met protein expression in the anterior commissure.  DIC 
photomicrographs illustrate Met immunohistochemistry in the posterior and anterior limbs of the anterior 
commissure in horizontal sections from P7 wild type mice.  Heavily stained axons within the posterior limb 
course between posterior piriform cortices (A).  In a more dorsal section, lightly stained axons within the 
intrabulbar and anterior subdivisions of the anterior limb emanate from the olfactory bulbs and anterior 
piriform cortex (B).  Scale bar = 550 µm for A and B. 
 
 

these fibers in Emx1cre/Metfx/fx mice at P0 and P7 (Fig. 6A’,C’), together with very low 

Met expression in primary sensory and motor nuclei in the dorsal thalamus, indicates that 

cortical efferents, rather than thalamocortical fibers, are labeled.  Futhermore, in wild 

type animals, Met staining in the cerebral peduncle is minimal (Fig. 6B,D,G,H), 

suggesting that cortico-tectal, -bulbar and -spinal fibers contribute little to the  Met 

staining.  Therefore, corticothalamic and corticostriatal projections seem to comprise the 

greatest proportion of Met-immunoreactive axons in the internal capsule.   

By P7, additional, moderately intense Met immunnostaining appears throughout 

the striatal and dorsal thalamic neuropil (Fig. 6C), coinciding with active periods of axon 

branching and collateralization of cortico-striatal and cortico-thalamic axons (Frassoni et 

al., 1995; Nisenbaum et al., 1998; Sheth et al., 1998).  This neuropil staining remains 

(albeit at lower intensity) through P14 and P16 (Fig. 6E,F), although by this time the 

internal capsule fibers are devoid of Met staining.  At all ages, Met expression is absent 
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Figure 6.  Met protein expression in the internal capsule and cerebral peduncle.  DIC photomicrographs 
illustrate Met immunohistochemistry in the internal capsule and cerebral peduncle in coronal sections from 
wild type and Emx1cre/Metfx/fx mice.  Staining of internal capsule fibers is apparent in P0 and P7 wild type 
mice (A,C) but essentially absent in matched sections from Emx1cre/Metfx/fx mice (A’,C’).  At P7, note the 
increase in Met immunoreactivity in the underlying striatal neuropil but the absence of such staining in the 
globus pallidus.  By P14 (E) and P16 (F), the internal capsule fibers are nearly devoid of Met staining, but 
there is remaining immunoreactivity in the striatal neuropil.  The paucity of Met labeling in the cerebral 
peduncle at all ages examined (P0, B; P7, D; P14, G; P16, H) suggests that cortico-tectal, -bulbar, and -
spinal fibers contribute minimally to the Met immunoreactivity in the internal capsule.  (Scale bar = 410µm 
for A,A’,B,C,C’,D; 550µm for E-H.  

 
 

in the neuropil of the globus pallidus, consistent with the lack of Met transcript in the 

caudatoputamen, the primary contributor of afferents to this structure (Preston et al., 

1980; Chang et al., 1981; Wilson and Phelan, 1982).  Met-immunopositive fibers in the 

globus pallidus appear to be corticofugal fibers of passage.   
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External Capsule  
 

The external capsule is a conduit for axons projecting between multiple cortical 

areas and the lateral, and other, subnuclei of the amygdaloid complex (Brothers and 

Finch, 1985; Faulkner and Brown, 1999; Weisskopf and LeDoux, 1999; Heinbockel and 

Pape, 2000; Szinyei et al., 2000).  This tract contains fibers that are densely stained for 

Met during the first two postnatal weeks (Supplemental Fig. 4).  As expected, there is a 

near-complete absence of Met expression in the external capsule in Emx1cre/Metfx/fx mice 

(Supplemental Fig. 4A’).  By P16, consistent with a decrease in Met expression in both 

the cortex and amygdala, only low levels of Met staining are observed in the external 

capsule (Supplemental Fig. 4B). 

 

Expression of Met in developing projection neurons of the hippocampus (E18.5-P16) 

In the hippocampus, Met transcript is expressed by pyramidal cells of the 

subiculum, CA1 and a subdomain of CA3 from birth through P14 (Fig. 7A-C).  As in the 

cerebral cortex, Met protein expression in hippocampal neurons is localized to long 

projection neurons.  At P0 and P7, immunohistochemical staining of Met reveals intense 

labeling of axons in the alveus and fimbria/fornix (Fig. 7D,E), which are comprised in 

part of the extrinsically projecting axons of the hippocampus.  Specifically, Met 

immunostaining is dense in the precommissural and postcommissural divisions of the 

fornix (Fig. 7J,K), which project to the septum and hypothalamus, respectively.  The 

dorsal and ventral aspects of the hippocampal commissural division of the fornix also 

express Met protein (Fig. 7I,J).  All fornix divisions in the Emx1cre/Metfx/fx mouse are 

devoid of Met protein (Fig. 7M,N,O), demonstrating that Met-expressing axons in this 
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fiber tract originate from dorsally derived hippocampal pyramidal neurons, rather than 

from the various subcortical targets to which they are reciprocally connected.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplemental Figure 4.  DIC photomicrographs illustrate Met immunohistochemistry in the external 
capsule (arrows) in coronal sections.  At P7, Met immunoreactivity is present in the external capsule in 
wild type (A), but not Emx1cre/Metfx/fx (A’), mice.  By P16, Met staining is not observed in the external 
capsule of wild type (B) or Emx1cre/Metfx/fx (B’) mice.  Scale bar = 400µm for all panels. 
 
 

Throughout development, Met transcript is conspicuously absent in the dentate 

granule neurons of the hippocampus (Fig. 7A-C).  Consistent with this, axons projecting 

from these cells to CA3 via the mossy fiber pathway are not Met-immunoreactive.  In 

contrast, Met immunolabeling is observed in the stratum moleculare of wild type (Fig. 

7H), but not Emx1cre/Metfx/fx, mice (Fig. 7L), mostly likely representing perforant path 

fibers originating from layer II entorhinal cortex (Steward and Scoville, 1976; Dolorfo 

and Amaral, 1998; van Groen et al., 2002).  The lighter immunostaining observed in the 

strata radiatum and oriens of CA1 and CA3 also is absent in Emx1cre/Metfx/fx mice (Fig. 

7H,L), consistent with Met-expression in the terminal fields of a subpopulation of  

bilaterally projecting CA3 neurons (Gottlieb and Cowan, 1973; Swanson et al., 1978).  
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We note, however, that this terminal axon Met staining cannot be differentiated from 

staining in the apical and distal dendrites of CA3, CA1, and subicular pyramidal neurons.  

Similar to the cerebral cortex, Met immunolabeling in the hippocampus and associated 

axon tracts is greatly reduced at P14 and P16 (Fig. 7F,G). 

 
 

Figure 7.  Met transcript and protein expression in the hippocampus.  A-C: Autoradiographic images of Met 
transcript in coronal sections from wild type mice, scanned from film.  At all ages, autoradiographic signal 
is observed in the stratum pyramidale of the subiculum, CA1, and a subregion of CA3. Signal is absent in 
the dentate gyrus (DG).  D-O: DIC photomicrographs of Met immunoreactivity in coronal sections from 
wild type (D-K) and Emx1cre/Metfx/fx (L-O) mice.    D and E: DIC images of Met immunoreactivity from 
wild type mice show robust staining of the alveus and fimbria/fornix at P0 (D) and P7 (E), indicating that 
efferent axons of hippocampal pyramidal cells express Met.  This staining decreases at later ages (P14, F; 
P16, G).  Light staining in the strata oriens and radiatum and heavier staining in the stratum moleculare is 
observed in wild type (H), but not Emx1cre/Metfx/fx (L), mice at P7. Heavy Met staining is present in the 
dorsal hippocampal commissure (I), ventral hippocampal commissure (J), precommissural fornix (J), and 
postcommissural fornix (K).  This staining is completely absent in corresponding axon tracts in the 
Emx1cre/Metfx/fx mouse (M, N, and O).  Scale bar = 1mm for A-C; 275 µm for D-O.  
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Expression of Met in developing projection neurons of the septum (E18.5-P16) 
 

Met transcript expression in the septum is robustly detected perinatally (Fig. 8A), 

with dense labeling restricted to dorsolateral neurons and lighter labeling in the medial 

nucleus.  This pattern persists throughout the first two postnatal weeks (Fig. 8B,C).  Met 

immunolabeling in the dorsolateral septum is considerable, and the pattern of staining is 

equivalent in wild type and Emx1cre/Metfx/fx mice.  This suggests localization to cell 

bodies or terminating afferent axons of a subpallial origin (Fig. 8H,L), but distinguishing 

between cell body and neuropil localization is difficult at the light microscopic level.  In 

contrast, axonal Met immunoreactivity clearly predominates in the intermediate lateral 

and medial septal nuclei (Fig. 8I).  This staining is greatly reduced in the Emx1cre/Metfx/fx 

mouse (Fig. 8M), consistent with a loss of Met-expressing septal afferents of a dorsal 

pallial origin.  Axons of dorsally derived hippocampal pyramidal neurons innervate both 

dorsal and intermediate lateral nuclei, and, to a lesser extent, the medial septal nucleus 

(Swanson and Cowan, 1979; Staiger and Nurnberger, 1991; Phelan et al., 1996), and a 

substantial proportion of these axons express Met (Fig. 7). Therefore, Met-expressing 

hippocampal neurons may selectively target specific septal nuclei. 

Select septal efferents also express Met.  For example, dorsolateral septum 

contributes a robust intra-septal projection to the nucleus of the horizontal diagonal band 

(Swanson and Cowan, 1979; Staiger and Nurnberger, 1991; Phelan et al., 1996), in which 

some terminal fibers appear to be Met-immunopositive in wild type mice.  A lack of Met 

transcript labeling in the nucleus of the horizontal diagonal band, (see Fig. 8A,B,C) and a 

maintenance of Met-immunostained axons in the nucleus of the diagonal band in the 

Emx1cre/Metfx/fx mouse (Fig. 8M) are consistent with this observation.   
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Figure 8.  Met transcript and protein expression in the septum in coronal sections from wild type and 
Emx1cre/Metfx/fx mice.  A-C: In situ hybridization analysis of Met in wild type septum across perinatal 
(E18.5, A) and early postnatal development (P7, B; P14, C).  At all ages, autoradiographic signal is 
observed specifically in dorsolateral and medial subnuclei.  D-G: DIC photomicrographs of Met 
immunoreactivity from wild type mice show labeling throughout the septum (outlined regions) at P0 (D) 
and P7 (E), which is decreased by P14 (F) and hardly detectable above background levels at P16 (G).  At 
P7, all Met staining of the dorsolateral septum (H) and partial staining of the nucleus of the diagonal band 
(I) of wild type mice is preserved in Emx1cre/Metfx/fx mice (L and M).  Stained afferents in the medial and   
intermediate septal nuclei (I) and the anteromedial hypothalamus (K) of wild type mice are absent in 
Emx1cre/Metfx/fx mice (M and O) at P7, indicating a dorsal pallial rather than septal origin for Figure 8—
cont.  these fibers.  Septo-habenular axons do not express Met as evidenced by a lack of staining in the stria 
medullaris in both wild type (J) and Emx1cre/Metfx/fx (N) mice at P7.  Scale bar = 1.35mm for A-C; 550 µm 
for D-O.  
 
          

Neurons in the lateral and medial septal nuclei contribute descending projections 

to the medial preoptic area of the hypothalamus and ascending projections to the 

hippocampus, respectively (Swanson and Cowan, 1979; Chiba and Murata, 1985; Risold 
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and Swanson, 1997), but Met-expressing axons in these regions are undetectable in 

Emx1cre/Metfx/fx mice (Figs. 8O and 7L).  This suggests that the fibers originate from 

projection neurons of the Emx1-expressing lineage, and not septal neurons.  Additionally, 

though septal neurons are known to contribute efferents to the habenula via the stria 

medullaris, these cells predominantly reside in the septofimbrial and triangular nuclei 

(Herkenham and Nauta, 1977; Swanson and Cowan, 1979; Kawaja et al., 1990), where 

Met transcript is not detected (data not shown).  Axons in the stria medullaris are also 

devoid of Met protein expression in both wild type and Emx1cre/Metfx/fx mice (Fig. 8J,N).  

 Though some Met immunohistochemical signal is evident on afferent axons 

within the medial and intermediate lateral nuclei of the septum at P14 and P16 (Fig. 

8F,G), in contrast to earlier ages (Fig. 8D,E), staining is difficult to distinguish from 

background.  There is also a concomitant reduction of Met staining on axons likely to be 

dorsolateral septal efferents to the nucleus of the diagonal band (data not shown).  This 

downregulation of axonal Met expression mirrors that observed in both cerebral cortical 

and hippocampal projection neurons after the second postnatal week.   

 

Expression of Met in developing projection neurons of the amygdala (E18.5-P16) 
 

Of the 13 commonly recognized nuclei within the amygdaloid complex 

(Aggleton, 2000), 5 express Met during postnatal development.  From caudal to rostral, 

these are the posterior cortical amygdala, basal amygdala, lateral amygdala, medial 

amygdala, and the nucleus of the lateral olfactory tract.  Met transcript is detected within 

these nuclei perinatally (Fig. 9A,B,C), at P7 (Fig. 9D,E,F), and at P14 (Fig. 9G,H,I).  
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During this same period, Met protein expression is particularly dense in amygdalofugal 

axons of the stria terminalis.  

At P7, there is intense Met immunostaining in the posterior cortical amygdaloid 

nucleus, from which Met-immunostained axons appear to project anteriorly via the stria 

terminalis (Canteras et al., 1992) (Fig. 10A,B).  More rostrally, Met-expressing axons 

from the basal amygdaloid nucleus appear to join the stria terminalis (Fig. 10C) as it 

courses into the ventral forebrain to target the bed nucleus of the stria terminalis (Fig. 

10E,F).  Met-expressing axons in more medial aspects of the stria terminalis emanate 

from the medial amygdala (Fig. 10C), which contributes dense projections to the bed 

nucleus of the stria terminalis (Canteras et al., 1995).  Intensely labeled axons are also 

present within the decussation of the stria terminalis, coursing beneath the 

precommissural fornix, directly superior to the anterior commissure (Fig. 10F).   

Therefore, in addition to ipsilateral projections, Met appears to be expressed on 

contralateral amygdalofugal projections to the bed nucleus of the stria terminalis, which  

most likely arise from the posterior cortical nucleus (Dong et al., 2001).  The lateral 

amygdala, which contains Met-expressing neurons, projects to prefrontal cortex, other 

amygdaloid nuclei, and the nucleus accumbens (McDonald, 1991b; Aggleton, 2000).  Of 

these, only the prefrontal cortex and posterior cortical amygdaloid nucleus exhibit robust 

Met immunostaining, which is lost in Emx1cre/Metfx/fx mice (Fig. 10A,A’, data not 

shown).  However, because both of these regions receive numerous afferents of dorsal 

pallial origin, it is not possible to trace the origin of Met-expressing axons within these 

two regions to the lateral amygdala.  Though likely, it is not absolutely certain that Met is 

expressed on efferents of the lateral amygdala.  
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Figure 9.  In situ hybridization analysis of Met in the rostro-caudal extent of the amygdala during 
development.  Autoradiographic images of E18.5 coronal sections show signal in the posterior cortical 
amygdala (A), the lateral, basal, and medial amygdala (B), and the nucleus of the lateral olfactory tract at 
the most rostral extent of the structure (C).  Signal is observed in these same amygdaloid nuclei at both P7 
(D, E, and F) and P14 (G, H, and I).  Scale bar = 925µm for all panels.  
 
 

Based on recombination patterns in the Emx1-cre reporter mouse (Gorski et al., 

2002), we expected only those Met-positive axons originating from medial amygdaloid 

neurons to remain immunoreactive in the stria terminalis of the Emx1cre/Metfx/fx mouse.  

Indeed, this appears to be the case (Fig. 10A’-F’).  Interestingly, immunohistochemical 

analysis in the null mouse indicates that only a subpopulation of medial amygdaloid 
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Figure 10.  Met protein expression in the amygdala.  DIC photomicrographs illustrate Met 
immunohistochemistry in coronal sections through the caudo-rostral extent of the amygdala and stria 
terminalis (st) in wild type (A, B, C, D, E, F) and Emx1cre/Metfx/fx (A’, B’, C’, D’, E’, F’) mice at P7.  Met-
expressing neurons in the posterior cortical amygdala (A) project labeled axons anteriorly in the st (B).  
More anteriorly, Met-expressing axons from the basal and medial amygdala (MeA) join the vertical limb of 
the st, course over the internal capsule (C, upper panel D, and E), and terminate in the ipsilateral bed 
nucleus of the stria terminalis (BST) and the contralateral BST via decussation at the midline (dashed line) 
(F).  In Emx1cre/Metfx/fx mice, Met staining persists in a subset of st axons that originate from the MeA 
(arrows in C’, D’, E’, and F’).  Met staining is also present in the nucleus of the lateral olfactory tract in the 
rostral extent of the amygdala in both wild type and Emx1cre/Metfx/fx mice (lower panel D and D’).  Scale 
bar = 550 µm for all panels.  
 

 

efferents express Met; although the medial amygdala projects to both the bed nucleus of 

the stria terminalis and the medial preoptic area of the hypothalamus (Canteras et al., 

1995), only Met-stained axons in the latter are ablated in the Emx1cre/Metfx/fx mouse, 

indicating that these axons arise from neurons derived from the dorsal pallium rather than 

the medial amygdala (Fig. 8O). 

At the most anterior extent of the amygdala, dense Met immunostaining is evident 

in the nucleus of the lateral olfactory tract in both wild type (Fig. 10D) and 

Emx1cre/Metfx/fx mice (Fig. 10D’).  Thus, axonal staining in this nucleus likely arises from 
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a non-Emx1-cre expressing subcortical or intra-amygdaloid region.  Considering the data 

from anterograde labeling studies (Santiago and Shammah-Lagnado, 2004),  and reported 

minor potential for Emx1-cre-mediated recombination within the nucleus of the lateral 

olfactory tract (Gorski et al., 2002), the staining pattern is consistent with the nucleus of 

the lateral olfactory tract receiving Met-immunoreactive input primarily from its 

contralateral counterpart. 

Consistent with other forebrain areas, there is a significant decrease in Met 

expression in the amygdaloid complex after P7.  Specifically, Met immunostaining is 

reduced between P14-16 in the stria terminalis (Supplemental Fig. 5E,F) and various 

targets of amygdaloid projections, including the bed nucleus of the stria terminalis 

(Supplemental Fig. 5G,H), the nucleus of the lateral olfactory tract (Supplemental Fig. 

5C,D), and the posterior cortical amydaloid nucleus (Supplemental Fig. 5A,B).   

 

Expression of Met in developing projection neurons of the diencephalon (P0-P16) 

Met mRNA expression is evident in the thalamic reticular nucleus, but no other 

dorsal thalamic nuclei, at P7 (Fig. 11A) and P14 (Fig. 11B).  However, Met protein is 

expressed in the neuropil in several thalamic nuclei, including the reticular, dorsolateral, 

ventrolateral, and anterior thalamic nuclei.  In most regions, this immunostaining is 

virtually absent in the Emx1cre/Metfx/fx mouse (Fig. 11D), indicating corticofugal 

projections as the primary source of Met labeling.  In contrast, Met immunostaining is 

equivalent in the anterior thalamic nucleus in wild type and Emx1cre/Metfx/fx mice (Fig. 

11E,F), particularly in its anteroventral division, and appears to be localized to axons.  

Continued expression of Met in these processes in the Emx1cre/Metfx/fx mouse is somewhat 
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unexpected, considering that Met is dramatically downregulated in Emx1cre/Metfx/fx 

cingulate cortical neurons, which send projections to the anterior nucleus of the thalamus 

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplemental Figure 5.  Decreased postnatal Met expression in the amygdala.  DIC photomicrographs 
illustrate Met immunoreactivity in coronal sections through the caudo-rostral extent of the amygdala and 
stria terminalis (st) in wild type mice at P14 and P16.  Met staining in the posterior cortical amygdala (A), 
nucleus of the lateral olfactory tract (C), and st before (E)   and after (G) decussation at the midline (dashed 
line), is light at P14 and is further reduced in intensity in these same structures just two days later, as shown 
at P16 (B, D, F, and H).  Scale bar = 550 µm for all panels.  
 
 

 (Supplemental Fig. 2D,E).  However, the mammillary nuclei of the posteromedial 

hypothalamus also contribute a major population of afferents to this structure via the 
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mamillothalamic tract, which, along with the mammillotegmental tract, heavily express 

Met protein (Fig. 12A,B).  Moreover, Met immunoreactivity is present in the 

anteroventral, but not the anterodorsal subnuclei of the anterior thalamus (Fig. 11E,F), 

consistent with the selective patterns of innervation within this nucleus by the medial 

mammillary nuclei (Guillery, 1957; Cruce, 1975; Watanabe and Kawana, 1980; Seki and 

Zyo, 1984).  The medial mammillary nuclei themselves receive prominent input from  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11.  Met transcript and protein expression in the thalamus in coronal sections from wild type and 
Emx1cre/Metfx/fx mice.  A and B: In situ hybridization analysis of Met in wild type thalamus at P7 (A) and 
P14 (B).  Autoradiographic signal is detected specifically in the thalamic reticular nucleus (Rt) at these 
ages.  DIC images of Met immunoreactivity at P7 show that neuropil staining in the Rt and dorsolateral and 
ventrolateral thalamic nuclei in wild type mice (C) is greatly reduced in corresponding regions of 
Emx1cre/Metfx/fx mice (D).  Conversely, neuropil staining in specific anterior thalamic nuclei is equivalent in 
wild type (E) and Emx1cre/Metfx/fx (F) mice.  Scale bar = 900µm for A,B; 550 µm for C, D, E, and F.  
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subicular projection neurons at the septal pole of the hippocampus (Swanson and Cowan, 

1977; Allen and Hopkins, 1989; Gonzalo-Ruiz et al., 1992).  These fibers course via the 

postcommissural division of the fornix to terminate specifically within the medial 

mammillary nuclei, and are Met-immunopositive in wild type (Fig. 12C), but not 

Emx1cre/Metfx/fx, mice (Fig. 12D).  The dense axonal staining observed in the ventral 

tuberomammillary nucleus (Fig. 12C) may be contributed by projection neurons in 

infralimbic cortex, ventral CA1 or the subiculum (Ericson et al., 1991; Canteras and 

Swanson, 1992; Cenquizca and Swanson, 2006).  

 In the anterior hypothalamus, there is no Met expression in the anterodorsal or 

medial preoptic nuclei at any stage of postnatal development, but Met immunoreactivity 

is observed in a sparse, but notable, population of axons in both regions (Figs. 8K and 

12E).  This staining is ablated in the Emx1cre/Metfx/fx mouse (Figs. 8O and 12F).  While 

the data do not definitively elucidate the sources of these Met-expressing fibers, likely 

candidates include CA1 and subicular pyramidal cells at the ventral pole of the 

hippocampus (Canteras and Swanson, 1992; Kishi et al., 2000; Cenquizca and Swanson, 

2006).  An intranuclear source for these stained axons is unlikely, as we do not detect Met 

mRNA in the anterodorsal nucleus or medial preoptic nucleus.  

In the habenula, Met transcript and protein are expressed by projection neurons.  

In situ hybridization analysis from E18.5 to P14 reveals modest Met transcript expression 

of the medial, but not the lateral, nucleus (Fig. 13A,B).  Over this period, the fasciculus 

retroflexus axons coursing between the habenula and interpeduncular nucleus (Akagi and 

Powell, 1968; Herkenham and Nauta, 1977) are also Met-immunoreactive (Fig. 13C,E).  

Light axonal staining in the habenular commissure is also observed (Fig. 13C).  
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Consistent with the subpallial origin of the medial habenula, comparable levels of Met 

protein are observed in the fasciculus retroflexus, habenular commissure, and 

interpeduncular nucleus of the wild type and Emx1cre/Metfx/fx mice throughout postnatal 

development (Fig. 13D,F).  In general, decreased axonal Met staining is observed 

throughout the diencephalon soon after the end of the second postnatal week 

(Supplemental Fig. 6), mirroring the decline in other forebrain regions.  A notable 

exception, however, is the relative preservation of Met staining in the fasciculus 

retroflexus and interpeduncular nucleus (Supplemental Fig. 6C,D).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12.  Met protein expression in the hypothalamus.  DIC photomicrographs illustrate Met 
immunoreactivity in coronal sections of the hypothalamus and associated axon tracts in wild type (A, C, 
and E) and Emx1cre/Metfx/fx (B, D, and F) mice at P7.  Intense Met staining in the mammillothalamic and 
mammillotegmental tracts of wild type mice (A) is maintained at equivalent levels in Emx1cre/Metfx/fx mice 
(D).  Notable Met staining on afferents within specific mammillary nuclei (C) and the medial preoptic 
nucleus (E) in wild type mice is absent in Emx1cre/Metfx/fx mice (D and F), indicating a dorsal pallial origin 
for these fibers.  Scale bar = 550 µm for A, B, C, and D; 275 µm for E and F.  
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Expression of Met (P21 – P35) 

It is clear from in situ hybridization analysis that, after P21, Met transcript 

continues to be expressed in the forebrain, though at reduced intensity (Fig. 14A).  Even 

more dramatic reductions in immunohistochemical staining are observed at these later 

postnatal ages, as demonstrated by a lack of differential staining in wild type and 

Emx1cre/Metfx/fx mice (Fig. 14B).  This contrasts with the observation that Met protein is 

detected by Western blot analysis in wild type but not Emx1cre/Metfx/fx cortex (Fig. 14C), 

suggesting that the lack of detectable Met protein expression in tissue sections at P21 

may be due to technical limitations.  For example, subcellular redistribution of Met may 

reduce local protein concentration to levels beneath the threshold for 

immunohistochemical detection. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 13.  Met transcript and protein expression in the epithalamus in coronal sections from wild type and 
Emx1cre/Metfx/fx mice.  A and B: In situ hybridization analysis of Met in wild type habenula at P7 and P14.  
Autoradiographic signal at both ages is specific to the medial but not the lateral habenula.  DIC 
photomicrographs of Met immunoreactivity show equivalent, dense staining of axons in the habenular 
commissure and fasciculus retroflexus (fr) in wild type (C) and Emx1cre/Metfx/fx (D) mice at P7.  Levels of 
axon staining also are equal within target areas of the fr, such as the interpeduncular nucleus, in wild type 
(E) and Emx1cre/Metfx/fx (F) mice at this age.  Scale bar = 1.9mm for A,B; 275 µm for C, D, E and F.  
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Discussion 

The data in the present study provide a comprehensive map of Met receptor 

mRNA and proteinlabeling in the developing mouse forebrain, revealing a surprisingly 

restricted pattern of expression in functionally related circuits.  The in situ hybridization 

data are consistent with, but significantly extend, findings from previous mapping studies 

(Jung et al., 1994; Thewke and Seeds, 1999).  Previous studies reporting Met 

immunohistochemistry in the forebrain have had a limited neuroanatomical and 

developmental scope (Thewke and Seeds, 1999; Korhonen et al., 2000; Sun et al., 2002; 

Ohya et al., 2007), and the antibody reagents used yielded suboptimal and nonspecific 

labeling in our hands.  We employed a novel immunohistochemical approach to localize 

Met receptor protein, providing compelling evidence that Met is expressed in specific 

developing axonal projections that reach select terminal regions in the forebrain.  

Furthermore, our Met immunohistochemical analyses in the Emx1cre/Metfx/fx conditional 

knockout mouse provide an opportunity to attribute sources of Met labeling within a 

specific forebrain region as pallial or subpallial in origin.  

Our complementary expression mapping tools allowed us to determine that Met 

receptor expression during forebrain development is restricted mainly to specific 

populations of projection neurons within the cortex and some classically defined limbic 

system components.  Moreover, Met protein is localized primarily to the axons of these 

cells during peak periods of axon growth and synapse formation, consistent with a 

putative role for Met in regulating these functions.  These data suggest that circuitry 

underlying socio-emotional processing may be selectively vulnerable to disrupted Met 

signaling or expression during development.  This is consistent with data demonstrating 
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Supplemental Figure 6.  Decreased postnatal Met expression in the diencephalon.  DIC photomicrographs 
illustrate Met immunoreactivity in coronal sections through the diencephalon of wild type mice at P16.  
Previously robust Met staining in the thalamic reticular nucleus and dorsolateral and ventrolateral thalamus 
(A) and mammillothalamic tract (B) is scarcely detectable above background at P16.  Axonal Met staining 
is comparatively preserved in the fasciculus retroflexus (C) and interpeduncular nucleus (D) at this same 
age.  Scale bar = 550 µm for all panels.  
 
 

that a MET allelic variant increases risk for ASD, a disorder with core disruptions in 

social behavior (Campbell et al., 2006). 

 

Restricted cell types express Met in the developing forebrain 
 

The present study identifies specific subsets of projection neurons expressing Met 

transcript and provides evidence that these developing neurons traffic Met protein 

predominantly to their axonal compartments.  This is consistent with the reported growth-

promoting and attractive nature of HGF/Met signaling on axons in the spinal cord and 

thalamus in vitro (Ebens et al., 1996; Powell et al., 2003).  However, here we 

demonstrate in vivo that the peak of axonal Met expression occurs after the initial 

establishment of fiber pathways, suggesting that Met may play a preferential role in 

collateralization and terminal field growth, rather than axon guidance - a distinction that 
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was previously unappreciated.  This hypothesis is further supported by the appearance of 

Met immunoreactivity in the striatal and thalamic neuropil during periods of robust 

corticostriatal and corticothalamic axon collateralization (Frassoni et al., 1995; 

Nisenbaum et al., 1998; Sheth et al., 1998).   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14.  Analysis of Met transcript and protein expression in the developing mouse forebrain at P21 and 
P35.  A:  In situ hybridization analysis of Met in coronal sections from wild type mice at P21 and P35 
shows equivalent patterns of expression to those observed in early postnatal development (P0 – P14).  B: 
DIC photomicrographs of coronal sections from wild type (left) and Emx1cre/Metrx/fx (right) mice 
demonstrate that at P21 (shown here) and later, no differences in Met immunoreactivity are observed.  C: 
Western blot analysis of total Met protein in P21 wild type and Emx1cre/Metfx/fx mice.  Levels of Met in wild 
type mice (1,3,5) remain much higher than those in null mice (2,4,6) despite a lack of 
immunohistochemical staining as shown in B.  Scale bar = 1.3 mm for both panels in A; 1.1 mm for both 
panels in B. 
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The general subsidence of Met protein expression in forebrain axons after the end 

of the second postnatal week coincides with a transition from axon outgrowth and 

elaboration to pruning and arbor refinement in most murine forebrain circuits (Stanfield 

et al., 1982; Stanfield et al., 1987; Gomez-Di Cesare et al., 1997; Portera-Cailliau et al., 

2005).  In the corpus callosum and stria terminalis, however, Met expression persists later 

and is detected through P21. This may reflect, relative to other axon tracts, more 

protracted periods of development, which, for the corpus callosum, have been determined 

by measurements of myelination (Jacobson, 1963; Tanaka et al., 2003; Vincze et al., 

2008).   

 Though we found Met to be expressed predominantly by axons of projection 

neurons during forebrain development, our data do not preclude this receptor from being 

expressed at lower levels within dendrites and postsynaptic compartments, and even by 

other neuronal cell types.  For example, though Met mRNA was not evident at any time 

in the ganglionic eminence and maturing striatum, Met protein labeling is seen on 

interneurons in explant cultures from the ganglionic eminence (Powell et al., 2001).  

Additionally, cultured dorsal thalamic neurons respond to HGF (Powell et al., 2003), 

indicating that either in vitro conditions may induce Met expression on neurons that 

normally do not express the transcript and protein during development, or the receptor is 

expressed below the limits of detection on certain cell types in vivo. 

At the subcellular level, a shift to a predominantly synaptic localization after P14 

may result in a more evenly distributed Met receptor population throughout the neuropil, 

which would be less readily detected by immunohistochemistry than axon fascicles and 

tracts, where protein levels are more concentrated.  This may explain the discrepancy 



84 
 

between robust biochemical detection of Met protein at P21 and the lack of 

immunostaining in tissue sections.  This interpretation is consistent with 

electrophysiological, biochemical and immuno-electron microscopy studies in the 

hippocampus that indicate Met to be present and functional at excitatory synapses in 

mature animals (Akimoto et al., 2004; Tyndall and Walikonis, 2006). Furthermore, there 

is emerging evidence that Met plays a developmental role in synaptic organization, as 

recent in vitro studies have demonstrated that HGF/Met signaling results in the enhanced 

expression and clustering of synaptic components (Madhavan and Peng, 2006; Tyndall 

and Walikonis, 2006; Nakano et al., 2007).  

By adolescence and into adulthood, Met protein expression is low throughout the 

forebrain.  Despite this dramatic down-regulation, however, patterns of transcript 

expression remain similar across early and late postnatal development, suggesting that the 

same populations of forebrain projection neurons express Met even during late 

developmental periods.  This may reflect additional roles for Met in response to stress.  

For instance, Met is dramatically upregulated in cortical and hippocampal axons in adult 

animals with genetically compromised astrocytic populations (Su et al., 2007).  HGF and 

Met are also upregulated in the cerebral cortex subsequent to a transient ischemic insult, 

though it is not known if Met protein levels specifically increase in cortical axons in this 

case (Honda et al., 1995).  

  In addition, there are reports of Met expression by non-neuronal cells of the CNS, 

including astrocytes, oligodendrocytes and microglia.  Many of these studies report 

expression by these glial subtypes in vitro (Machide et al., 2000; Yan and Rivkees, 2002) 

or in injury or disease states (Lalive et al., 2005; Kitamura et al., 2007; Shimamura et al., 
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2007), which may induce or enhance expression of the transcript and protein.  In a 

developmental context, Ohya and colleagues report that striatal oligodendrocyte 

precursor cells (OPCs) express Met in vivo and respond to intrastriatal injections of HGF 

by remaining in a proliferative, immature state, delaying myelination (Ohya et al., 2007).  

However, we do not observe Met mRNA in cell bodies within either the gray matter or 

fiber tracts of the developing striatum, suggesting that the reported effects of HGF on 

OPC maturation may be axonally derived.  While we cannot eliminate the possibility of 

Met expression by non-neuronal cells in the striatum and other forebrain regions, the 

patterns of labeling are not consistent with such expression during forebrain 

development.   

 

Limbic system correlates of Met expression 

While analysis of the spatio-temporal dynamics of Met expression provides 

insight into its cellular roles during development, analysis at the neural systems level 

lends insight into potential roles for Met signaling in the development of specific 

forebrain circuits.  Patterns of Met expression overlap remarkably with classically 

defined limbic structures and their interconnecting fiber pathways (Broca, 1878; Papez, 

1937; MacLean, 1955).  It seems likely, therefore, that this receptor may be particularly 

important to the establishment of circuits that mediate social and emotional information 

processing.  In the cortex, Met is expressed in multiple areas that have roles in processing 

limbic information, including the cingulate, prefrontal, orbitofrontal, temporal, and 

sensory association cortices.  Additionally, Met is expressed in limbic structures involved 

in learning and memory, including the hippocampal formation and the mammillary 
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bodies of the hypothalamus.  Finally, Met is expressed in amygdaloid subnuclei, which 

attach emotional valence to the processes of learning and memory (Davis and Whalen, 

2001; Phelps and LeDoux, 2005), and the septum, which has roles in emotional 

regulation and the control of impulses (Gray and McNaughton, 1982; Menard and Treit, 

1999).   

Substantial Met expression is also present in axon pathways interconnecting 

principal limbic circuit nodes. For example, Met is expressed heavily in the cingulum, 

fornix, mammillothalamic tract, and internal capsule, all considered to be classic limbic 

pathways (Broca, 1878; Papez, 1937; MacLean, 1955).  Additionally, Met expression is 

observed in the anterior commissure, which transmits information between temporal 

cortical areas, and tracts connecting the amygdala to other forebrain areas including the 

external capsule and the stria terminalis.  Temporally, expression of Met in these fibers 

coincides with the period of maximal axonal outgrowth and collateralization, suggesting 

that Met is involved in these processes, and, therefore, in the development of limbic 

connections.  As a corollary, aberrant Met signaling would likely result in deficient 

formation and subsequent function of these circuits.  This is consistent with the first 

reported association of MET with a human, brain-based disorder, ASD (Campbell et al., 

2006).   

 

A role for Met in neurodevelopmental and neuropsychiatric disorders 

 Given the prevalence of Met in the forebrain structures discussed above, we 

hypothesize that this protein, or elements of its signaling pathway, may play a role in the 

etiology and/or pathophysiology of neurodevelopmental and psychiatric disorders with 
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socio-emotional valence.  Three lines of evidence support this hypothesis.  First, MET, 

the human homolog of Met, has been identified as an ASD susceptibility gene (Campbell 

et al., 2006).  Second, MET protein expression is reduced in the superior temporal gyrus 

of individuals with autism (Campbell et al., 2007), whereas transcripts encoding other 

proteins in the MET signaling pathway are increased significantly.   Third, an analysis of 

MET pathway genes reveals an association of an allelic variant of PLAUR with ASD 

(Campbell et al., 2008).  PLAUR encodes the urokinase plasminogen activator receptor, 

which enhances HGF activation and signaling (Pepper et al., 1992; Mars et al., 1993). 

 At a cellular level, too, our findings suggest that disruption of MET may underlie 

or contribute to the pathophysiology of neuropsychiatric disorders.  It has been suggested 

that many disorders, including ASD and schizophrenia, result from aberrant formation of 

neuronal connections during development (Rubenstein and Merzenich, 2003; Frith, 2004; 

Courchesne and Pierce, 2005; Geschwind and Levitt, 2007; Connors et al., 2008).  The 

timing of expression, and the cellular compartmentalization of Met expression in the 

mouse suggests that the protein may have a larger than previously appreciated role in 

establishing and facilitating the maturation of appropriate connections.  Consequently, 

errant Met signaling is likely to result in disruption of normal patterns of connectivity in 

the forebrain.  Disrupted Met signaling could result from alterations in the regulation, 

timing, or levels of receptor expression.  Ongoing analysis of the Emx1cre/Metfx/fx mouse 

and other models of disrupted Met signaling will help to elucidate the roles of Met in 

developing forebrain connectivity. 
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Abstract 

             Two lines of evidence support the hypothesis that MET receptor tyrosine kinase 

signaling regulates the wiring of socially and emotionally relevant forebrain circuits.  

First, a functional MET promoter variant is associated with the social and communication 

phenotypes of autism spectrum disorders (ASD).  Second, the homologous murine 

receptor, Met, is expressed most heavily in long-projecting axons of the neocortex and 

limbic system during the developmental period when connections between these 

structures are being established.  This study tests the hypothesis that MET forebrain 

expression reflects species-specific specialization of circuits that underlie social 

interaction, a core behavior that is disrupted in ASD.  We compared patterns of Met/MET 

protein expression in the developing mouse and rhesus macaque forebrain.  There was a 

strong temporal conservation of expression during the time of rapid axon pathway 

development and the onset of terminal growth and robust synapse formation.  Moreover, 

expression patterns of Met/MET in limbic-related structures were almost identical in both 

species.  These conserved patterns were in marked contrast to the highly divergent 

expression that was evident in the neocortex.  In mouse, Met was broadly distributed 

throughout neocortex. In the macaque, only selective regions of anterior cingulate, 

inferior temporal, posterior parietal and visual cortices expressed MET, including face 

processing regions.  Overall, the pattern is consistent with the importance of vision in the 

social repertoire of the primate.  These data suggest an evolutionarily conserved, 

developmental function of the MET receptor in wiring together limbic and neocortical 

circuits that facilitate species-appropriate social behaviors.                    
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Introduction 

 Current etiological theories of autism spectrum disorders (ASD), defined in part 

by deficits in social interaction and communication, are based on the concept of 

developmental disruptions in forebrain connectivity (Frith, 2004; Geschwind and Levitt, 

2007; Levy, 2007).  Evidence supporting these theories has largely come from genetic 

susceptibility, correlated clinical phenotypes, and functional imaging studies. The latter 

have revealed altered patterns of brain activity and synchronization in individuals with 

ASD during social information processing and communication tasks (Just et al., 2004; 

Koshino et al., 2008; Acker and Antic, 2009).  However, a mechanistic understanding of 

the development of aberrant social circuitry is currently limited. 

 One approach to elucidating etiological mechanisms of ASD is to study the 

developmental functions of associated, variant genes.  Independent genetic studies of 

ASD have revealed CNVs (Marshall et al., 2008), rare mutations (Campbell, et al, 2006) 

and the association of two common allelic variants (rs1858830-C and rs38845-A) of the 

MET receptor tyrosine kinase gene (Campbell et al., 2006; Campbell et al., 2008; Jackson 

et al., 2009; Sousa et al., 2009).  Moreover, an enriched association of the rs1858830-C 

allele with social and communication phenotypes of ASD was recently demonstrated 

(Campbell et al., 2009).  Because Met signaling in vitro potentiates axon outgrowth, 

dendritogenesis, and synaptogenesis (Ebens et al., 1996; Gutierrez et al., 2004; Madhavan 

and Peng, 2006; Tyndall and Walikonis, 2006; Nakano et al., 2007), a basic mechanistic 

hypothesis relating MET gene function and ASD risk has emerged: decreased MET 

protein expression during development increases the risk of ASD-relevant circuit 

miswiring.  Met is expressed in selective patterns in the mouse forebrain that include 
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circuitry involved in social behavior (Judson et al., 2009), but how this translates to 

relevant at-risk primate circuitry is unknown.   

 Mammalian conspecifics, including primates, exchange information concerning 

fitness, mating status, and other factors influencing individual or group survival.  

Stereotyped forebrain circuitry has evolved to support the cognitive processing that 

underlies this conserved social behavior.  For example, circuits involving the 

hippocampal formation and mammillary nuclei facilitate the encoding of socially relevant 

spatial cues and social recognition (Steckler et al., 1998; Sanchez-Andrade et al., 2005).  

The emotional quality of social stimuli is processed by the amygdala in all mammalian 

species (Phelps and LeDoux, 2005).  The input pathways that route social information to 

these conserved cognitive circuits, however, are divergent across mammalian taxa, 

reflecting the various communication modes utilized within this class of animals (Hauser, 

1996).  Primates, for instance, communicate primarily by issuing physical gestures and 

vocalizations, the receipt of which requires visual and auditory system function, 

respectively.  In contrast, rodents depend more heavily on somatosensation and olfaction 

to communicate.  Appropriate species-specific social behavior, therefore, necessarily 

depends on the wiring together of relevant sensory and cognitive circuitry during 

development.  

 Here we test a prediction of the hypothesis that Met/MET receptor signaling 

regulates the development of socially relevant forebrain circuitry: Met/MET expression 

patterns will reflect species-specific requirements for social interaction.  Specifically, we 

compare Met receptor expression in the mouse forebrain with that of its homologue, 
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MET, in the macaque forebrain across corresponding periods of development related to 

circuit formation.   

 

Materials and Methods 

Preparation of fixed brain sections 

Wild type C57BL/6J mice were either purchased from the Jackson Laboratory 

(Bar Harbor, ME) or harvested from Emx1
cre

/ Met
fx/+  

X Emx1
+
/ Met

fx/fx
 matings using 

previously described mouse husbandry and genotyping strategies (Judson et al., 2009).  

In the latter case, mice with a Met
fx/fx

 or Met
fx/+

 genotype were considered wild type if 

they did not have cre recombinase knocked-in to the 3’ untranslated region of either 

Emx1 allele.  Mice aged between postnatal (P) day 0 and 21 were deeply anesthetized 

with sodium pentobarbital (60 mg/kg i.p.) prior to transcardial perfusion with room 

temperature phosphate-buffered 4% paraformaldehyde (pH 7.3) containing 1.3% L-lysine 

and 0.24% sodium periodate.  After postfixation overnight at 4°C, brains were 

cryoprotected via sequential 12-hour incubations in 10%, 20%, and 30% sucrose in PBS, 

pH 7.5.  Fixed brains were then sectioned as previously described (Judson et al., 2009).  

Briefly, P0 brains were sectioned at 20 M with a cryostat and P7-P21 brains were 

sectioned at 40 M with a sliding microtome (Leica, Bannockburn, IL).  Prior to 

immunohistochemical processing, P0 sections were stored at -80°C on gelatin-coated 

slides and P7-P21 sections were stored at -20°C, free-floating in a cryopreservative 

solution.   
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 Series of pre- and postnatal macaque (Macaca mulatta) brain sections (N = 2, 

each age) were from animals housed at the California National Primate Research Center 

(University of California, Davis, Davis, CA), and were prepared as previously described. 

All research procedures using mice and macaques conformed to NIH guidelines 

and were approved by the Institutional Animal Care and Use Committees at Vanderbilt 

University and the University of California at Davis, respectively.  All efforts were made 

to minimize animal suffering and to reduce the number of animals used. 

Met/MET immunohistochemistry 

Two different monoclonal antibodies were used for Met/MET 

immunohistochemical study: 1) mouse anti-Met (Met, B-2; sc-8057; Lot No. C2807; 

Santa Cruz Biotechnology, Santa Cruz, CA), and 2) mouse anti-Met (Met, 25H2; #3127; 

Lot No. 3; Cell Signaling Technology, Beverly, MA).  Met immunohistochemistry was 

performed as previously described (Judson et al., 2009).  Briefly, free-floating mouse or 

macaque brain sections were rinsed several times in PBS before the following blocking 

procedures were applied: 1) 5 minutes in 0.3% H202 in methanol, 2) 25 minutes in 0.1 M 

Tris-glycine (pH 7.4), and 3) 25 minutes in Blotto-T (4% Carnation dried milk in PBS 

containing 0.2% Triton-X-100).  PBS rinses preceded both the Tris-Glycine and Blotto-T 

blocking steps.  For mouse tissue, an additional 1.5-hour incubation in unlabeled donkey 

anti-mouse IgG (Fab; Jackson Immunoresearch, West Grove, PA) was performed 

immediately before the Blotto-T step in order to block endogenous immunoglobulins.  

After blocking, brain sections were incubated in primary anti-Met antibodies for 48 hours 

at 4°C.  Specifically, sections were incubated in either 1:250 anti-Met (Santa Cruz sc-

8057, mouse sections only) or 1:400 anti-Met (Cell Signaling #3127, some mouse 
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sections and all macaque sections) diluted in Blotto-T.  Following washes in Blotto-T, 

sections were then incubated for 1 hour at room temperature in 1:1,000 biotin-SP-

conjugated donkey antimouse IgG (Jackson Immunoresearch) diluted in Blotto-T.  

Sections were then rinsed several times in PBS and processed by the ABC Elite 

histochemical method (Vector, Burlingame, CA).  Met-specific antibody complexes were 

visualized by incubating the sections for 2–4 minutes at room temperature in 0.05% 3’3’-

diaminobenzidine (DAB) with 0.015% H202. 

Cross-species use of antibodies 

We examined the cross-species reactivity of the two commercially available 

mouse monoclonal antibodies used to immunohistochemically label mouse Met protein 

and homologous monkey MET protein in the present study.  These antibodies were 

generated against synthetic peptides corresponding to evolutionarily conserved 

intracellular domains of the mouse (Santa Cruz #8057; immunogen: peptide 

corresponding to amino acids 1330–1379 of mouse Met [NCBI No. NP 032617) and 

human (Cell Signaling #3127; immunogen: peptide corresponding to C-terminal amino 

acids of human Met [NCBI No. AAA59591) receptors, and they exhibited remarkably 

high species cross-reactivity when substituted for each other in a previously described 

immunohistochemical staining protocol (see ―Met/MET immunohistochemistry‖ 

subsection of Materials and Methods)(Judson et al., 2009).  For example, these antibodies 

yielded indistinguishable staining patterns in comparable regions of the somatosensory 

cortex (Supplemental Fig. 1A,B) and hippocampus (Supplemental Fig. 1C,D) in 

postnatal day (P) 7 mice.   
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Supplemental Figure 1.  Equivalent specificity of commercially available Met/MET antibodies.  DIC 

photomicrographs illustrate Met immunohistochemistry in coronal sections (A and C, Santa Cruz mouse 

anti-mouse Met #8057) and sagittal sections (B and D, Cell Signaling mouse anti-human MET #3127) from 

P7 mice.  Identical staining patterns are obtained with both antibodies as shown in the somatosensory 

cortex (A and B) and the hippocampus (C and D).  II-VI, neocortical layers 2 through 6; CA1, cornu 

ammonis 1 of hippocampus; CA3, cornu ammonis 3 of hippocampus; DG, dentate gyrus; S, subiculum.  

Scale bar = 275 M for all images.  

 

 

Digital illustrations 

Microscopy was performed with the aid of an Axioplan II microscope (Zeiss, 

Jena, Germany), and micrographs were acquired with a Zeiss AxioCam HRc camera 

(Zeiss) in Axiovision 4.1 software (Zeiss).  Low-magnification, montage images of 

macaque brain sections were prepared and linearly adjusted for brightness and contrast 

using Adobe Photoshop (Version 7.0, Adobe, San Jose, CA).  No other image alterations 

other than resizing were performed.  All figures were prepared digitally in Microsoft 

Office Powerpoint 2003 (Redmond, WA). 
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Results 

Conserved temporal patterns of Met/MET expression 

Beginning in late neurogenesis and persisting through the first postnatal week in 

the mouse, neocortical Met expression increases dramatically, and the receptor is readily 

detected by immunohistochemical methods first in the efferent axons, and later in the 

neuropil, of the neocortex (Judson et al., 2009).  By the end of the second postnatal week, 

corresponding with a winding down of axonal outgrowth and the beginning of the peak 

synaptogenic period, neocortical Met expression begins to decline.  In fact, by P21, Met 

is only detected sparsely in the neocortical neuropil (Judson et al., 2009).  Collectively, 

these data are consistent with a preferential role for the receptor in orchestrating aspects 

of forebrain development such as axon terminal arborization and the initiation of 

connectivity between circuit-related neurons.   

To address the possibility of an evolutionary conserved role for the homologous 

MET receptor in the developing forebrain, we performed MET immunohistochemistry at 

corresponding developmental time-points in the macaque.  These included gestational 

day (GD) 100 during late neocortical neurogenesis (Rakic, 1974) and GD150 and P21, 

which mark the rise and plateau, respectively, of the peak synaptogenic phase in the 

macaque (Bourgeois and Rakic, 1993; Bourgeois et al., 1994).  MET 

immunohistochemical staining in the GD100 macaque was restricted to select regions of 

the neocortex.  Here, receptor localization was evident in outgrowing axons of projection 

neurons and, though more broadly distributed across the radial dimension of the cortex, 

closely resembled the pattern of Met-labeling observed in the mouse at P0 (Fig. 1A,D),.  

At the cellular level by GD150, the pattern of MET labeling expanded to include the  
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Figure 1.  Conserved temporal patterns of Met/MET expression in mouse and macaque neocortex.  DIC 

photomicrographs illustrate Met/MET immunohistochemistry in coronal brain sections during 

development.  Labeling is predominantly seen in the outgrowing axons of cortical projection neurons in the 

cortex of the P0 mouse (A) and GD100 macaque (D).  During axon collateralization and the onset of 

synaptogenesis, Met/MET labeling is readily observed in neuropil compartments in both species (B,E).  

Note especially the emergence of heavy expression in the marginal zone (mz) and the relative paucity of 

labeling in neocortical layer IV at this developmental stage.  By three weeks of age (C,F), early periods of 

axon wiring have past in both mice and macaques, corresponding with drastically decreased 

immunohistochemical detection of Met/MET.  Scale bar = 138 M for all images.      

 

 

neocortical neuropil in a manner similar to that observed in the mouse at P7.  Membrane 

staining within the neuropil yielded salient patterns including images of cell bodies in 

negative relief, a noticeable increase in marginal zone labeling, and a relative paucity of 

layer IV labeling in both species during this developmental period (Fig. 1B,E).  Whereas 

cortical neuropil labeling increased toward the onset of peak synaptogenesis, staining in 

forebrain axon tracts that carry corticocortically-projecting axons, such as the anterior 

commissure, concomitantly declined (Fig. 2A,B and D,E).   
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Figure 2.  Conserved temporal patterns of Met/MET expression in major forebrain fiber tracts in the mouse 

and macaque.   DIC photomicrographs illustrate Met/MET immunohistochemistry in coronal brain sections 

during development.  In both the mouse (A) and macaque (D), intense Met/MET staining of corticofugal 

axons within the anterior commissure (ac) is observed at time-points just after the end of cortical 

neurogenesis.  Axon staining within this structure gradually decreases in intensity throughout 

perinatal/early postnatal development in both species (mouse B and C; macaque E and F).  The body of the 

ac, located just inferior to a commissural division of the stria terminalis (arrows), is depicted in mouse 

panels A-C, whereas the temporal limb of the ac is depicted in macaque panels D-F.   Met/MET staining in 

efferent fibers of the hippocampus also decreases developmentally in the mouse (G-I) and macaque (J-L).  

Axons of the postcommissural fornix (f) are shown in cross-section in mouse panels G-I.  The macaque f, 

inferior to the corpus callosum (cc), is depicted in J-L.  Examples of select, intensely stained axon bundles 

are indicated by arrows (J and K).  3V, third ventricle.  Scale bar = 275 M for A-C and G-L; 1.1 mm for 

D-F.     
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Figure 3.  Conserved temporal patterns of Met/MET expression in the corticothalamic projection.  DIC 

photomicrographs illustrate Met/MET immunohistochemistry in coronal brain sections during 

development.  Axonal Met staining is evident in the internal capsule (ic, A) but not corticothalamic 

terminal fields (B, boxed region in A) in the dorsal thalamus in the P0 mouse.  A similar pattern of 

expression is observed in low- (E) and high-magnification (F) images of the pulvinar in the GD100 

macaque.  Corresponding images in the P7 mouse (C and D) and GD150 macaque (G and H) show 

dramatically increased Met-labeling of the thalamic neuropil, concurrent with robust periods of 

corticothalamic terminal arborization in each species.  3V, third ventricle; CA1, cornu ammonis 1 of 

hippocampus; cc, corpus callosum; fi, fimbria of hippocampus; LGP, lateral globus pallidus; S1BF, barrel 

field of primary somatosensory cortex.  Scale bar = 550 M for A and C; 825 M for E and G; 138 M for 

B,D,F, and H. 

 

 

There were comparable temporal dynamics of Met/MET expression within the 

terminal fields of subcortically-projecting neocortical axons.  In the mouse at P0 and in 

the monkey at GD100, Met/MET was expressed in developing principle fiber tracts 

including the internal capsule (Fig. 3A; Supplemental Fig. 2A,B) and anterior 

commissure (Fig. 2A,D), which contain corticofugal projections to the thalamus and 

striatum.  However, there was no apparent neuropil labeling in either the corticothalamic  
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Supplemental Figure 2.  Conserved temporal patterns of Met/MET expression in the corticostriatal 

projection.  DIC photomicrographs illustrate Met/MET immunohistochemistry in coronal brain sections 

during development.  Met- labeled axon fascicles pass through the striatum while the corticostriatal 

neuropil is unlabeled (B, boxed region in A).  A similar pattern of expression is observed in low- (E) and 

high-magnification (F) images of the ventromedial striatum in the GD100 macaque.  Corresponding images 

in the P7 mouse (C and D) and GD150 macaque (G and H) show a dramatic increase in Met-labeling of the 

striatal neuropil, concurrent with robust periods of corticostriatal terminal arborization in each species.  cc, 

corpus callosum; fi, fimbria of hippocampus; LGP, lateral globus pallidus; S1BF, barrel field of primary 

somatosensory cortex; vhc, ventral hippocampal commissure.  Scale bar = 550 M for A and C; 825 M 

for E and G; 138 M for B,D,F, and H. 

 

 

(Fig. 3A,B,E,F) or the corticostriatal terminal fields (Supplemental Fig. 2A,B,E,F) at 

this developmental stage.  Robust Met/MET staining in the thalamic (Fig. 3C,D,G,H) 

and striatal (Supplemental Fig. 2C,D,G,H) neuropil became evident by P7 in the mouse 

and GD150 in the macaque, and, as shown in high-magnification images (Fig. 1B,E; Fig. 

3D,H; Supplemental Fig. 2D,H), the pattern of labeling was reminiscent of that seen in 

the neocortex at this same stage of development.  Finally, as in the mouse, 

immunohistochemical detection of MET was dramatically reduced in major forebrain 
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axon tracts as well as neocortical and subcortical axon terminal fields at P21, the plateau 

of the peak synaptogenic period (Fig. 1C,F; Fig. 2C,F). 

 

Expression of Met/MET in the limbic system 

In both the P7 mouse and GD150 macaque, Met/MET staining was evident throughout 

the anteroposterior extent of the amygdala, but the intensity of the staining varied within 

individual amygdaloid nuclei at each level.  We observed robust neuropil staining in the 

P7 mouse amygdala in the nucleus of the lateral olfactory tract, anteriorly (Fig. 4A), and 

the posterior cortical nucleus, posteriorly (Fig. 4C).  These two nuclei of the olfactory 

amygdala, as per (Swanson and Petrovich, 1998), were apparently devoid of labeling in 

the macaque (data not shown).  More moderate staining in the lateral (LA), basolateral 

(BLA), and basomedial (BMA) nuclei at intermediate levels of the amygdala was 

generally conserved between the two species (Fig. 4B,D-F).  Moreover, there was a 

conserved LA (high) to BMA (low) gradient of Met/MET staining across these 

contiguous deep amygdaloid nuclei, although the difference was more pronounced in the 

monkey.  This pattern suggests that the majority of MET-expressing afferents within the 

basolateral complex of the amygdala have origins in the inferior temporal and perirhinal 

cortices of the macaque (Stefanacci et al., 1996; Stefanacci and Amaral, 2002).      

The efferent projections of the immunolabeled neurons in select amygdala nuclei 

in both species expressed Met/MET.  The stria terminalis (st), which is the principle fiber 

tract carrying amygdalofugal axons within the mammalian forebrain, was densely labeled 

in the mouse at P7 at the level of the anterior commissure (Fig. 5A).  At a comparable 

anteroposterior level, we observed MET labeling of relatively modest intensity within  
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Figure 4.  Conserved Met/Met expression in amydaloid and hippocampal afferents.  DIC photomicrographs 

illustrate Met/MET immunohistochemistry at various anteroposterior levels of the amygdala and 

hippocampus in coronal brain sections from the P7 mouse and GD150 macaque.  Though Met expression is 

widespread in the mouse amygdala during axon collateralization, subnuclei such as the nucleus of the 

lateral olfactory tract (NLOT, A) and the posterior cortical nucleus (PCo, C) exhibit exceptionally heavy 

Met-labeling as compared to basolateral (BLA), basomedial (BMA), and central (Ce) amygdaloid 

subnuclei (B).  In the macaque, MET staining is enriched in the BLA and especially the lateral (LA) 

subnucleus (D and E) as compared to the BMA and amygdalohippocampal (AHi) subnuclei (E and F), 

indicating that, as in the mouse, MET is expressed by select amygdaloid afferents during development.  In 

both the developing mouse (G-I) and macaque (J-L) forebrain, Met/MET staining is observed in entorhinal 

cortical efferents within the molecular layer (identified by perforated boundary).  However, MET labeling 

in the macaque is focused in the molecular layer region overlaying the stratum radiatum at the 

subiculum/CA1 boundary (arrows in J, K, and L).  Staining is enriched in posterior (mouse H and I; 

macaque K and L) as opposed to anterior (mouse G; macaque J) levels of the molecular layer in both 

species.  AA, anterior amygdaloid nucleus; CA1, cornu ammonis 1 of hippocampus; CA3, cornu ammonis 

3 of hippocampus; CA4, cornu ammonis 4 of hippocampus; DG, dendtate gyrus; ec, external capsule; or, 
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Figure 4—cont.  stratum oriens of hippocampus; pyr, pyramidal cell layer of hippocampus; rad, stratum 

radiatum of hippocampus; S, subiculum; st, stria terminalis.  Scale bar = 275 M for A-C and G-I; 770 M 

for D-F and J-L.  

 

 

 
Figure 5.  Conserved Met/MET expression in amygdaloid and hippocampal efferents.  DIC 

photomicrographs illustrate Met/MET immunohistochemistry in fiber tracts and axon terminal fields in 

coronal forebrain sections from the P7 mouse and GD150 macaque.  A and D: Examples of Met staining in 

the stria terminalis (green asterisk), posterior limb of the anterior commissure (blue asterisk), 

precommissural fornix (orange asterisk), and mammillary bodies (red asterisk) in the developing mouse 

forebrain.  Asterisks of the same color mark corresponding MET-stained structures in the macaque during a 

similar developmental period (B,C,E, and F).  3V, third ventricle; LV, lateral ventricle.  Scale bar = 550 

M for all images.    

 

 

this fiber tract in the GD150 macaque (Fig. 5E).  Despite this apparent quantitative 

difference in st staining, it was evident at more posterior levels of the tract that only 

select populations of amygdalofugal axons are stained in each species (Supplemental 

Fig. 3B,E).  Moreover, decremental staining was observed within these axon 

subpopulations with increasing developmental age (Supplemental Fig. 3A-C and D-F), 

mirroring the conserved temporal pattern of expression for corticocortical and 

corticofugal axon tracts.  Efferent amygdala fibers also course within the external capsule  
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Supplemental Figure 3.  Conserved temporal patterns of Met/MET expression in axons of the amygdala but 

not the indusium griseum in the mouse and macaque.  DIC photomicrographs illustrate Met/MET 

immunohistochemistry in coronal brain sections during development.  Select bundles of presumably 

amygdalofugal axons are heavily stained (white asterisks) within the stria terminalis (st) in the mouse at P0 

(A) and P7 (B), but this labeling is greatly diminished by P21 (C).  Black asterisks indicated unstained 

axons within this tract (A-C).  A similar temporal pattern of staining is observed in medially coursing axons 

(black arrowheads, D-F) of the macaque st.  Met-stained fibers are absent bilaterally in the mouse indusium 

griseum (arrows, IG) at P0 (G), P7 (H), or P21 (I) time-points.  However, distinct, heavily labeled IG axon 

bundles are readily observed in the macaque at GD100 (J).  This staining is dramatically reduced by 

GD150 (K) and undetectable by P21 (L cc, corpus callosum; Cd, tail of the caudate; ic, internal 

capsule. Scale bar 275 M for all images. 
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and the anterior commissure, both of which are heavily stained in the mouse (Fig. 5A; 

Fig. 8A,C, and E) and macaque (Fig. 5B; Fig. 8G,H) forebrain at this developmental 

age. 

Patterns of Met/MET expression within the mouse and macaque hippocampus 

were generally conserved.  The molecular layer of the dendate gyrus and CA fields of the 

hippocampus, throughout the anteroposterior extent, contained Met/MET 

immunoreactivity in both the P7 mouse (Fig. 4G-I) and GD150 macaque (Fig. 4J-L), 

consistent with Met/MET expression in hippocampal afferents from entorhinal cortex in 

both species. However, there were two key differences in this expression feature between 

the mouse and the macaque: 1) the intensity of Met/MET staining in the molecular layer 

was relatively stronger in the mouse compared to the macaque, and 2) while staining 

appeared to be evenly distributed throughout the mouse molecular layer, it was 

concentrated in regions of the molecular layer apposed to the stratum radiatum near the 

subiculum/CA1 boundary in the macaque.  

Met/MET labeling was intense at P7 in the mouse and GD150 in the monkey in 

the fiber tracts that contain, and the target regions that receive, hippocampal efferent 

projections.  For example, immunnostaining was observed in the precommissural fornix 

(Fig. 5A,C) and the hippocampal commissure (Supplemental Fig. 4I,L).  However, a 

subset of axon fascicles in the indusium griseum (IG), a structure considered an extension 

of the hippocampus (Wyss and Sripanidkulchai, 1983), was densely labeled in the 

macaque (Supplemental Figs. 3J; 4D-F ) but not the mouse (Supplemental Figs. 3G-I; 

4A-C and G-I).  Moreover, the staining was much less intense at GD150 than GD100, 

and was undetectable by P21 (Supplemental Fig. 3J-L).  As shown in coronal sections  
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that include the postcommissural fornix, a similar temporal dynamic of MET expression 

was observed in hippocampal efferents of the macaque (Fig. 3J-L), a pattern that also 

was evident in the mouse (Fig. 3G-I).  One of the most robust projections of the 

hippocampus via the postcommissural fornix is that to the medial mammillary bodies.  

Met/MET labeling was extremely dense in the medial mammiallary bodies in both the P7 

mouse (Fig. 5D) and GD150 macaque (Fig. 5F), consistent with high expression levels of 

the receptor in axons of this hippocampal efferent pathway.  Collectively, these data 

demonstrate that Met/MET is expressed transiently at high levels in afferents and 

efferents of the amygdala and hippocampus during early periods of circuit wiring in the 

mouse and macaque forebrain, followed by a significant reduction later postnatally. 

 

Comparative analysis of tangential patterns of neocortical Met/MET expression 

Mice and primates depend differentially on specific sensory modalities for 

communicating with conspecifics.  Thus, we extended our analysis to interspecies 

comparisons of Met/MET expression within sensory and associative neocortical areas 

during forebrain circuit development.  As shown in low-magnification images 

representing the anteroposterior extent of the P0 mouse forebrain (Fig. 6A-D), Met 

immunohistochemical staining was broadly distributed across the tangential domain of 

the mouse neocortex, with particularly robust labeling throughout the extent of the major 

axon tracts carrying corticocoritical and corticofugal projections, including the corpus 

callosum, anterior commissure, and internal capsule.  This broad tangential distribution of 

neocortical Met expression was more readily apparent in a similar anteroposterior array 

of Met-stained sections at P7 (Fig. 7A-D), when neuropil expression of the receptor  
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Figure 6.  Divergent spatial patterns of neocortical Met/MET expression in the developing mouse and 

macaque forebrain.  DIC photomicrographs illustrate the anterior (A) to posterior (D) progression of 

Met/MET immunohistochemistry in coronal forebrain sections from the P0 mouse and GD100 macaque.  

Notably, all major fiber tracts that carry corticofugal projections as well as the subplate exhibit intense Met 

staining in the mouse forebrain (inset images, A-D).  Robust MET expression in the macaque is largely 

confined to the subplate underlying cortices inferior to the superior temporal sulcus (sts) and in select 

corticofugal fiber tracts of the incipient temporal lobe including, most notably, the anterior commissure (ac, 

B) as well as the external (ec) and extreme (ex) capusules anteriorly (A).  Additional staining in the 

cingulum (cg, A-D) likely reflects MET expression in the efferent fibers of the posterior cingulate cortex, 

whereas labeled axons of the corpus callosum (cc, A-D) may originate in the posterior cingulate and/or 

cortices inferior to the intraparietal sulcus (ips).  24, cortical area 24; 25, cortical area 25; Aq, cerebral 
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Figure 6—cont.  aquaduct; Cd, caudate; ips, intraparietal sulcus; lf, lateral fissure; LV, lateral ventricle; Pu, 

putamen; Pul, pulvinar; vhc, ventral hippocampal commissure.  Scale bar = 3.15 mm for all macaque 

images; 3.6 mm for inset mouse images.    

 

 

proved to be at its peak.  Moreover, the patterns of staining within major subcortical, 

corticofugal terminal fields reflected the widespread Met expression in the neocortical 

neuropil and fiber tracts containing corticofugal efferents (e.g., the internal capsule).  As 

shown at P7, Met-labeled neuropil was evident both throughout the striatum (Fig. 

8A,C,E) and within many nuclei of the thalamus (Fig. 8B,D,F). 

In contrast, there was a remarkably restricted pattern of MET expression in the 

macaque neocortex at GD100 and GD150.  MET labeling was largely absent in the 

frontal lobes, except for low expression in medial areas that included the anterior 

cingulate and subgenual cortices (Figs. 6A; 7A).  While still modest in staining intensity, 

there was a progressive increase in the intensity of MET labeling at increasingly posterior 

levels of the cinguate cortex (areas 24 and 23).  This pattern was marked most saliently 

by staining in the cingulum at GD100 and in the cortical neuropil at GD150 (Figs. 6A-D; 

7A-D).  The most robust staining for MET at GD100 was evident in the subplate and 

neocortical white matter underlying extrastriate visual and auditory cortices of the 

temporal, inferior parietal, and occipital lobes across anteroposterior levels of the 

macaque forebrain (Fig. 6B-D).  By GD150, expression had expanded to include the 

neuropil within these selective neocortical regions (Fig. 7B-D).  Staining patterns at 

GD150 also were highly complex within these regions, especially in the temporal lobe.  

Labeling was most intense inferior to the superior temporal sulcus (sts) in high-order, 

unimodal visual areas, which contain neurons that are responsive to complex stimuli 

including scenes, objects, and primate faces (Baylis et al., 1987; Tsao et al., 2006)      
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Figure 7.  Divergent spatial patterns of neocortical Met/MET expression in the developing mouse and 

macaque forebrain.  DIC photomicrographs illustrate the anterior (A) to posterior (D) progression of 

Met/MET immunohistochemistry in coronal forebrain sections from the P7 mouse and GD150 macaque.  

While Met expression in the mouse (inset images, A-D) is broadly distributed throughout the tangential 

domain of the neocortex, MET expression in the macaque is largely restricted to the temporal cortices 

(white and black asterisks, B-D) and midline cortices including the anterior cingulate cortex (cortical area 

24, A-C; area 23, D) and subgenual cortex (area 25, A).  MET is also differentially expressed within the 

macaque temporal lobe; staining is strong inferior to (white asterisks, B-D), and of modest intensity 

superior to (black asterisks, B-D), the superior temporal sulcus (sts).  Axon staining within the cingulum 

(cg, A-D), anterior commissure (ac, B), and posterior regions of the corpus callosum (cc, C and D) reflect 

the restricted populations of neocorticocortical projection neurons that express MET.  Aq, cerebral 

aquaduct; Cd, caudate; cs, central sulcus; ec, external capsule; ex, extreme capsule; lf, lateral fissure; LV, 
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Figure 7—cont.  lateral ventricle; ox, optic chiasm; Pu, putamen; Pul, pulvinar; vhc, ventral hippocampal 

commissure.  Scale bar = 4.6 mm for all macaque images; 4.2 mm for inset mouse images.   

 

 

 
Figure 8.  Met/MET expression in neocortical efferents in the developing mouse and macaque forebrain.  

DIC photomicrographs illustrate Met/MET immunohistochemistry in forebrain sections from the P7 mouse 

and GD150 macaque.  Widespread Met labeling is observed in the neuropil of the caudatoputamen (CPu) 

(A, C, and E) and lateral thalamus (B,D, and F) in coronal (A and B), sagittal (C and D), and horizontal (E 

and F) brain sections of the develping mouse forebrain, consistent with widespread Met expression in long-

projecting axons of the neocortex.  The distribution of MET-labeled neocortical efferents in the developing 

macaque striatum is much more restricted, as robust staining is observed only in the nucleus accumbens 

(NAc) and fundus striari (Fstr) (G), and the ventral putamen (Pu) and caudate (Cd) (H).  Restricted areas of 

lighter striatal MET staining are observed in the dorsal Cd (I).  MET-labeled neocortical efferents to the 

macaque thalamus are predominantly restricted to the reticular nucleus (Rt) (J), lateral (LPul) and inferior 

(IPul) pulvinar nuclei (J) and limbic thalamic nuclei including the anteroventral nucleus (AV) (I).  3V, 

third ventricle; AD, ; cp, cerebral peduncle; DLG, dorsolateral geniculate nucleus; EGP, external globus 

palidus; ec, external capsule; eml, external medullary lamina; f, fornix; fi, fimbria of hippocampus; fr, 

fasciculus retroflexus; HDB, horizontal limb of the diagonal band; ic, internal capsule; IGP, internal globus 

palidus; LD, laterodorsal thalamic nucleus; LGP, lateral globus palidus; LV; lateral ventricle; LSI, 

intermediate lateral septal nucleus; MGD, medial geniculate nucleus, dorsal part; MPul, medial pulvinar 

nucleus; mt, mammillothalamic tract; ot, optic tract; Po, posterior thalamic nuclear group; PV, 

paraventricular thalamic nucleus; SC, superior colliculus; SNR, substantia nigra pars reticulata; st, stria 

terminalis; VAL, ventral anterior thalamic nucleus, lateral part; VLM, ventrolateral thalamic nucleus, 

medial part; VPM, ventral posteromedial thalamic nucleus.  Scale bar = 550 M for A-F; 2.48 mm for G-J. 
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(Fig. 7B-D).  Less intense MET staining was present superior to the STS in polysensory 

and associative auditory cortices within the superior temporal gyri (Fig. 7B-D) and 

inferior parietal lobes (Fig. 7C,D). 

The limited tangential extent of MET expression in the developing macaque 

neocortex was reflected in the restricted subsets of forebrain fiber tracts and cortical 

efferent target areas in the striatum and dorsal thalamus that contained MET-stained 

axons.  Dense MET labeling in the anterior commissure was evident, consistent with 

receptor expression in cortico-cortically projecting neurons within the temporal lobes 

(Figs. 6B; 7B).  MET staining also was present in the external and extreme capsules 

within the ventral forebrain, which presumably distribute MET-expressing axons 

ipsilaterally among interconnected temporal cortices and to highly specific regions of the 

striatum (Figs. 6A; 7A;  8G,H).  Ventral striatal areas, including the nucleus accumbens, 

fundus striari, and the ventral putamen and tail of the caudate nucleus, constituted the 

most notable target areas of MET-labeled axons (Fig. 8H,I).  There also was very light 

and spatially limited staining in the dorsal caudate nucleus (Fig. 8G,I), with all other 

striatal areas consistently devoid of MET staining (Fig. 8G-I).  This pattern of staining is 

highly divergent from the mouse.   

 There also was MET expression in a small subgroup of presumed corticothalamic 

efferents, consistent again with the highly restricted staining in the neocortex.  For 

example, moderate staining in the laterodorsal superficial (data not shown) and 

anteroventral (Fig. 8I) thalamic nuclei are consistent with the observation of MET 

expression in the cingulate cortices.  The most robust MET staining in the dorsal 

thalamus was found in subnuclei of the pulvinar.  Specifically, the staining was 
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concentrated in the inferior and lateral subdivisions of the pulvinar, with much reduced 

labeling in the medial subdivsion (Fig. 8J).  This pattern reflects the foci of MET 

expression in the temporal and inferior parietal lobes.  Finally, like in mouse, the 

posterior reticular nucleus has MET-labeled neuropil in the monkey (Fig. 8J).  All other 

thalamic nuclei in the developing macaque were devoid of MET staining. 

 

Interspecies conservation of anatomical expression gradients 

 Despite the general observation of widespread Met expression in the mouse 

neocortex and highly restricted neocortical MET expression in the macaque, there was a 

clearly conserved anterior (low) to posterior (high) expression gradient in cortically-

associated structures in both species.  This gradient was best appreciated in 

anteroposterior images of the corpus callosum from the P0 (Supplemental Fig. 4A-C) 

and P7 (Supplemental Fig. 4G-I) mouse and the GD100 (Supplemental Fig. 4D-F) and 

GD150 (Supplemental Fig. 4J-L) macaque.  There also was a similar gradient in the 

hippocampus in both species (Fig. 4G-H and J-L).  Finally, in the macaque, increased 

posterior staining was readily apparent in the cingulate cortex, as previously mentioned 

(Figs. 6A-D; 7A-D), as well as the thalamic reticular nucleus (Fig. 8J).   

 

Discussion 

Here we present comparative forebrain expression mapping data that are 

consistent with an evolutionarily conserved role for the Met/MET receptor tyrosine 

kinase in the wiring of circuits governing social and emotional dimensions of behavior.  

We propose a shared function for mouse Met and the macaque homologue, MET, in  
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Supplemental Figure 4.  Conserved anterior (low) to posterior (high) gradient of Met/MET expression in 

the tangential domain of neocortex.  DIC photomicrographs illustrate Met/MET immunohistochemistry in 

coronal forebrain sections from the developing mouse and macaque.  Met immunoreactivity is observed to 

gradually intensify in increasingly posterior regions of the mouse corpus callosum (cc) at both P0 (A-C) 

and P7 (G-I), consistent with increased Met expression within projection neurons of the posterior 

neocortex.  An even sharper gradient in MET immunoreactivity is seen in this fiber tract at corresponding 

time-points in macaque development including GD100 (D-F) and GD150 (J-L).  A similar anterior (low) 

to posterior (high) gradient of axonal MET expression is a unique feature of the developing macaque 

indusium griseum (IG) and is largely a phenomenon of the GD100 time-point (D-F).  dhc, dorsal 

hippocampal commissure; f, fornix; vhc, ventral hippocampal commissure.  Scale bar = 275 M for A-C 

and G-I; 620 M for D-F and J-L.  
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forebrain circuit wiring, which is supported by the striking temporal and subcellular 

similarities in expression that we observed in these species.  In both the mouse and 

macaque, Met/MET was enriched in the axons of projection neurons within the 

neocortex, hippocampus, and amygdala as early as the end of neurogenesis.  Prior to the 

plateau phase of peak synaptogenesis, receptor expression expanded within the cortical 

and subcortical neuropil, coinciding with the robust collateralization of these axons 

within their terminal fields.  These data suggest a presynaptically-derived influence of 

Met/MET signaling in the initial establishment of forebrain circuits important for social 

and emotional behavior.  Consistent with this, we have recently demonstrated that the 

ablation of Met signaling from corticostriatal axons results in cell-nonautonomous 

changes in the dendritic morphology of medium spiny neurons (M. Judson, K. Eagleson, 

P. Levitt, unpublished observations).   

 Despite the remarkable similarity in subcellular receptor distributions discussed 

above, it should be noted that our Met/MET immunohistochemical stain provides 

inadequate resolution to distinguish either the staining of axonal versus dendritic 

elements, or to differentiate between multiple sources of axonal afferents, within the 

neuropil.  We previously circumvented this issue in the mouse by additionally analyzing 

wild type patterns of Met transcript expression as well as Met staining patterns in a dorsal 

pallium-specific conditional Met knockout mouse.  This approach allowed us to 

determine that nearly all Met staining in the subcortical neuropil is localized to axonal 

afferents of a dorsal pallial origin.  In order to determine the extent to which this finding 

applies to similar MET staining patterns in the macaque forebrain, we would ultimately 

need to analyze developmental MET transcript expression.  There is, however, 
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considerable indirect evidence supporting the preferential localization of MET to 

dorsally-derived axonal compartments in the subcortical neuropil.  For example, the 

ventral (high) to dorsal (low) gradient of MET staining in the temporal cortex is reflected 

with remarkable fidelity in the ventrolateral (high) to dorsomedial (low)) gradient of 

staining in the pulvinar, constistent with the topographical organization of temporal 

corticothalmic axon projections within this nucleus (Romanski et al., 1997; Yeterian and 

Pandya, 1997; Shipp, 2003).  

 

Spatial patterns of Met/MET expression reflect species-specific modes of social 

communication 

 

This study has revealed two themes concerning spatial patterns of Met/MET 

expression and its putative developmental role in the wiring of socially relevant forebrain 

circuitry: 1) receptor expression is highly conserved within limbic structures that are 

essential for social cognition and memory, including the hippocampus, amygdala, and 

cingulate cortices, and 2) receptor expression patterns diverge within sensory and 

associative neocortical areas according to species-specific requirements for the 

perception of socially relevant stimuli.  Evidence supporting the first theme comes from 

the observation of shared Met/MET expression in the structures and fiber pathways that 

constitute core limbic circuitry (Papez, 1937; MacLean, 1955).  Both the mouse and 

macaque exhibited significant developmental Met/MET expression in hippocampal 

efferent fibers projecting to the medial mammillary bodies, in axon terminals within the 

anteroventral thalamic nucleus, in cingulate cortex and axons within the cingulum, and in 

the hippocampal complex, effectively completing the classically defined circuit of Papez 

(Papez, 1937).  Met/MET expression also was shared in the main efferent pathway of the 
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amygdala, the stria terminalis, indicating conserved receptor function in the development 

of more broadly defined limbic circuits (MacLean, 1955).  This evolutionary 

conservation of Met/MET expression is not necessarily surprising; the limbic brain is 

phylogenetically old, and conserved expression of other molecules that participate in 

limbic circuit wiring has been reported (Horton and Levitt, 1988; Chesselet et al., 1991; 

Pimenta et al., 1996).  Approximately 50 million years of evolution has, though, allowed 

for at least some redefinition of Met/MET receptor roles in the development of limbic 

circuitry in monkeys as compared to mice.  For example, MET expression in the 

indusium griseum appeared to be a unique feature of the developing primate limbic 

system, whereas Met-labeled afferents of a presumed olfactory origin were uniquely 

detected in the nucleus of the lateral olfactory tract and posterior cortical nucleus of the 

mouse amygdala.  Additionally, MET staining in the ventromedial striatum may be 

localized in part to afferents originating in the basolateral amygdala and/or hippocampal 

formation (Friedman et al., 2002), a pattern not detected in the mouse (Judson et al., 

2009).  However, as demonstrated in the present study, the greatest interspecies 

divergence in patterns of Met/MET expression during social circuit development is at the 

level of the neocortex.   

 In the context of social circuit integration, structures such as the basolateral 

amygdala, cingulate cortex, perirhinal cortex, and entorhinal cortex are critical, because 

they are broadly interconnected with the neocortex, and thus, serve as an interface 

between the circuits required for social perception and downstream limbic circuits that 

facilitate social cognitive processes such as social recognition, arousal, and awareness 

(Adolphs, 2001; Amaral, 2003; Phelps and LeDoux, 2005).  We observed Met/MET 
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staining within the neuropil of each of these areas in the mouse and the macaque, strongly 

suggesting that this receptor is involved in establishing connections between neocortical 

and limbic circuits.  Because the neocortical expression patterns overlap functional areas 

required for the receipt of social stimuli characteristic of each species, we reason that 

Met/MET signaling may have been evolutionarily co-opted to integrate circuits 

governing social perception and social cognition. 

 In primate species such as the macaque, sensory faculties such as vision and 

audition are critically important for the perception of socially relevant stimuli, and they 

are largely rooted in neocortical areas of the temporal, occipital, and inferior parietal 

lobes.  Remarkably, during the period of social circuit wiring, we observed a nearly 

exclusive localization of MET to the axons of projection neurons within these select 

neocortical areas.  MET expression was particularly dense in the inferior temporal gyrus, 

which houses cortical areas in the ventral visual stream that facilitate the processing of 

complex socially-relevant visual features including body parts and faces (Pinsk et al., 

2005; Pinsk et al., 2009).  Because we also observed MET staining of presumed 

inferotemporocortical efferent axons within the perirhinal and entorhinal cortices of the 

hippocampal complex, we suggest that the receptor may regulate the development of 

circuits required for social recognition (Malkova et al., 1995; Thornton et al., 1997) – an 

essential cognitive process supporting social interaction among primate conspecifics.  

Additionally, staining was observed in the ventral putamen and caudate nucleus of the 

striatum, indicating that the development of circuits governing the formation of socially 

adaptive visual habits also may depend on intact MET signaling (Fernandez-Ruiz et al., 

2001). We hypothesize that genetic variation that impacts MET expression may disrupt 
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the formation of these circuits and contribute to social interaction phenotypes 

characteristic of ASD. 

 Whereas neocortical MET expression was spatially restricted in the tangential 

domain, Met expression in the mouse neocortex was broadly distributed, perhaps 

reflecting the relatively full employment by this species of its sensory faculties for social 

behavior.  Excepting sexual behavior, olfaction and somatosensation are minor tools in 

the social repertoire of the primate, but mice and other rodent species depend on these 

senses in order to communicate with conspecifics.  In fact, social recognition in mice is 

almost exclusively mediated by olfaction (Brennan and Kendrick, 2006; Spehr et al., 

2006).  Yet mice also rely on vision and audition in order to extract socially relevant 

information from their environment.  Langford and colleagues recently demonstrated that 

the visual observation of pain-related behavior in a conspecific subject can modulate pain 

responses in an observer mouse through an empathy-like process (Langford et al., 2006).  

A more recent study employed a fear-conditioning paradigm to show that auditory cues 

can also facilitate empathy-like social behavior in mice (Chen et al., 2009). Tail-rattling, 

which has been shown to be an important behavioral trait associated with mouse 

aggression (St John, 1973), also is perceived by the auditory and/or visual senses. 

 Though the present study supports our hypothesis that Met/MET signaling 

regulates the development of species-specific social circuits in the developing forebrain, 

much can be gained by further Met/MET expression studies comparing other species.  

Two specific experimental approaches may prove useful: 1) patterns of developmental 

Met/MET forebrain staining could be compared in genetically distant mammalian species 

with convergent social ethologies, and/or 2) staining patterns could be compared in 
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genetically related species with divergent social ethologies.  A comparison of 

developmental forebrain Met staining in solitary versus eusocial African naked mole rats 

(Bathyergidae) would constitute an extreme example of the second approach.  

Fortunately, such experiments are possible owing to the evolutionarily conserved 

epitopes recognized by immunohistochemistry-compatible Met/MET antibodies.     

  

MET expression patterns and circuit vulnerability in autism 

 

Recent studies have served to establish human MET gene promoter variants as 

causative risk alleles for ASD.  The MET rs1858830-C allele in particular has been 

shown to promote less efficient MET transcription in in vitro assays (Campbell et al., 

2006)), consistent with the observed 2-fold reduction in the temporal cortex of 

postmortem ASD brains (Campbell et al., 2007).  We also recently demonstrated 

presynaptically-derived alterations in forebrain circuitry in a mouse model of 

developmentally abrogated Met signaling (M. Judson, K. Eagleson, P. Levitt, 

unpublished observations), indicating a possible causal link between reduced MET 

expression and circuit malformation in ASD.  However, as indicated by the findings of 

the present study, alterations in the spatial distribution of MET expression may be as 

important to consider as absolute levels of expression in regard to the wiring of social 

circuitry and ASD risk.   

MET protein expression mapping in the developing human forebrain is currently 

the best available approach to gain knowledge of the specific social circuits that may be 

vulnerable in MET-related cases of idiopathic ASD.  Moreover, considering the 

population frequencies (.35-.55) of ASD-associated MET alleles (Campbell et al., 2006; 
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Campbell et al., 2008; Jackson et al., 2009; Sousa et al., 2009), mapping studies of brains 

with MET risk allele genotypes may help to elucidate broadly relevant etiological 

mechanisms of the disorder.  However, these studies are necessarily hindered by the 

ethical and practical considerations that are associated with any approach requiring 

postmortem human tissue of embryonic origin. Comparative analysis of conserved and 

divergent regulatory elements within the murine and primate genes may thus constitute a 

useful alternative approach.   

Considering the posterior (high) to anterior (low) neocortical gradient of 

Met/MET expression shared by the mouse and macaque, conserved Met/MET regulatory 

elements may contain binding sites for transcription factors known to exhibit anterior-

posterior gradients of expression during cortical development (Kudo et al., 2007).  

Divergent regulatory elements, on the other hand, may contribute to the remarkable areal 

restriction of MET expression within the primate neocortex.  Recombineered mice that 

carry the 5’ regulatory region of the human MET gene in place of the homologous murine 

sequence could be generated to test this possibility.  Furthermore, inclusion of the various 

single nucleotide variations that are associated with ASD risk could potentially yield 

animal models of ASD-relevant circuit vulnerability with high external validity.  Studies 

of such ―humanized‖ Met mice would, however, be limited by certain neuroanatomical 

constraints.  For example, mice possess only an evolutionary rudiment of the pulvinar, 

which receives heavily MET-labeled projections from the temporal cortex in the 

developing macaque.  
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Abstract 

             Human genetic findings and murine neuroanatomical expression mapping have 

intersected to implicate Met receptor tyrosine kinase signaling in the development of 

forebrain circuits controlling social and emotional behaviors that are atypical in autism 

spectrum disorders (ASD).  To clarify roles for Met signaling during forebrain circuit 

development in vivo, we generated mutant mice (Emx1
Cre

/Met
fx/fx

) with an Emx1-Cre-

driven deletion of signaling-competent Met in dorsal pallially-derived forebrain neurons.  

Morphometric analyses of Lucifer Yellow-injected pyramidal neurons in postnatal day 40 

anterior cingulate cortex (ACC) revealed no statistically significant changes in total 

dendritic length, but a selective reduction in apical arbor length distal to the soma in 

Emx1
Cre

/Met
fx/fx

 neurons relative to wild type, consistent with a decrease in the total 

tissue volume sampled by individual arbors in the cortex.  The effects on dendritic 

structure appear to be circuit-selective, as basal arbor length was increased in 

Emx1
Cre

/Met
fx/fx

 layer 2/3 neurons.  Spine number was not altered on Emx1
Cre

/Met
fx/fx

 

pyramidal cell populations studied, but spine head diameter was increased modestly (4-

8%).  Cell-nonautonomous, circuit-level influences of Met signaling on dendritic 

development were confirmed by studies of medium spiny neurons (MSN), which do not 

express Met, but receive Met-expressing corticostriatal afferents during development.  

Emx1
Cre

/Met
fx/fx

 MSN exhibited robust increases in total arbor length (~20%). Like in the 

neocortex, average spine head diameter increased modestly (~5%).  These data 

demonstrate that a developmental loss of presynaptic Met receptor signaling can affect 

postsynaptic morphogenesis and suggest a mechanism whereby attenuated Met signaling 

could disrupt both local and long-range connectivity within circuits relevant to ASD.  
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Introduction 

             The -heterodimeric, transmembrane Met receptor tyrosine kinase binds its 

endogenous ligand, hepatocyte growth factor (HGF), and signals to promote a variety of 

developmental processes in epithelially-derived tissues.  At the single-cell level these 

include cell proliferation, migration, differentiation, and survival (Ebens et al., 1996; 

Hamanoue et al., 1996; Caton et al., 2000; Ieraci et al., 2002; Gutierrez et al., 2004; 

Giacobini et al., 2007; Garzotto et al., 2008; Lim and Walikonis, 2008).  HGF-Met 

signaling also plays a critical role in higher-order developmental processes such as 

epithelial tubulugenesis and duct formation, which requires the organization of complex 

interactions among many polarized cells (Rosario and Birchmeier, 2003; Zhang and 

Vande Woude, 2003).     

          Circuit wiring and synaptogenesis in the nervous system also require the exquisite 

control and coordination of interactions among polarized cells.  Recent evidence indicates 

that HGF-Met signaling may help regulate these processes within specific circuits of the 

mammalian forebrain.  Met expression mapping during the period of forebrain wiring and 

synaptogenesis reveals a striking enrichment of the receptor in the neuropil and long-

projecting axons of the cerebral cortex, hippocampus and amygdala, suggesting that 

disrupted Met signaling could result in aberrant connectivity between these structures 

(Judson et al., 2009).  Such a disruption would be predicted to impact the function of 

circuits governing social and emotional dimensions of behavior, consistent with recent 

genetic findings from ours and two other laboratories that two different alleles of the 

human MET gene are associated with autism spectrum disorders (ASD) (Campbell et al., 

2006; Campbell et al., 2008; Jackson et al., 2009; Sousa et al., 2009).  One variant 
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reduces transcriptional efficiency, consistent with the reported 2-fold decrease in 

neocortical MET protein expression in ASD postmortem cases (Campbell et al., 2007).  

Moreover, further family-based analyses have revealed an enriched association of this 

same promoter variant with social and communication phenotypes of ASD (Campbell et 

al., 2009).   

           There are a number of studies of neurons in vitro that demonstrate the importance 

of Met signaling for neuronal differentiation and synapse organization (Powell et al., 

2003; Gutierrez et al., 2004; Madhavan and Peng, 2006; Tyndall and Walikonis, 2006; 

Nakano et al., 2007; David et al., 2008; Lim and Walikonis, 2008).  However, despite 

these converging lines of evidence supporting a role for Met signaling in the proper 

wiring of circuits which in human may be vulnerable in ASD, precisely how disrupted 

Met signaling might affect in vivo circuit development has yet to be addressed 

experimentally.  In the present study, we applied our neuroanatomically-based 

understanding of developmental forebrain Met expression to the study of dendritic 

morphology in neurons from wild type mice and conditional mutant mice in which Met 

receptors are functionally deleted in forebrain structures originating from the dorsal 

pallium.  Specifically, we describe the dendritic morphometry of Lucifer Yellow-injected 

wild type and mutant projection neurons in both the anterior cingulate cortex (ACC) and 

the dorsolateral striatum.  ACC pyramidal neurons are of interest due to their important 

roles in limbic circuit function and the shared expression of Met in these cells in mouse 

and primate cortex (M. Judson, D. Amaral, P. Levitt, unpublished observations).  To 

address possible non-cell autonomous effects of deleting Met, we examined medium 

spiny neurons (MSN) of the dorsolateral striatum. These neurons do not express Met 
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transcript or protein, but receive abundant Met-expressing corticostriatal afferents during 

development (Judson et al., 2009).  

 

Materials and Methods 

Breeding and genotyping mice 

Conditional Met mutant mice (Emx1
Cre

/Met
fx/fx

) were generated and genotyped using 

previously described strategies (Judson et al., 2009).  Briefly, homozygous Met floxed 

(Met
fx/fx

) mice were crossed to heterozygous Emx1-Cre knock-in mice that were also 

heterozygous for the floxed Met allele (Emx1
Cre

/ Met
fx/+

).  All resultant progeny were 

genotyped by polymerase chain reaction (PCR) using the following PCR primer sets: 

Emx1
Cre

 forward 5_-TTCGGCTATACGTAACAGGG-3_ and reverse 5_-

TCGATGCAACGAGTGATGAG-3_; Met
fx
 forward 5_-

GCAACTGTCTTTTGATCCCTGC-3_ and reverse 

5_TGTCCAGCAAAGTCCCATGATAG-3_.   Met
fx

 (Courtesy of Snorri Thorgeirsson, 

NIH/ Center for Cancer Research, Bethesda, MD) and Emx1
Cre

 breeding lines (courtesy 

of Dr. Kevin Jones, University of Colorado, Boulder, CO) were backcrossed onto the 

C57BL/6J background for greater than 10 generations.  All research procedures using 

mice were approved by the Institutional Animal Care and Use Committee at Vanderbilt 

University and conformed to NIH guidelines.  All efforts were made to minimize animal 

suffering and to reduce the number of animals used.   

Immunoprecipitation 

             The primary antibody used to immunoprecipitate (IP) the Met receptor was 

mouse anti-Met (Met, 25H2; #3127; Lot No. 3; Cell Signaling Technology, Beverly, MA; 
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immunogen: peptide corresponding to C-terminal amino acids of human Met [NCBI No. 

AAA59591]).  Control immunoprecipitation experiments were conducted using anti-

mouse IgG, whole molecule (Chroma Pure; #015000003; Lot No. 82958; Jackson 

Immunoresearch, West Grove, PA).  Each IP antibody was covalently linked to magnetic 

M-280 Tosylactivated Dynabeads (Invitrogen, Carlsbad, CA) as per manufacturer’s 

instructions. 

 Postnatal day 7 (P7) mice were deeply anesthetized with isofluorane prior to 

decapitation and brain removal.  Each brain was immediately immersed in room 

temperature Hanks’ balanced salt solution (Sigma, St. Louis, MO), and the cerebral 

cortex was rapidly dissected from each hemisphere with the aid of an MZ-6 stereozoom 

microscope (Leica, Bannockburn, IL).  Harvested cerebral cortices were immediately 

snap-frozen in liquid nitrogen and stored at -80°C to await IP analysis.  

 Lysates for IP were prepared by homogenizing frozen P7 cerebral cortices in a 

glass tissue homogenizer (Wheaton, Millville, NJ) with ice-cold IP buffer (50 mM Tris 

HCl, pH 8.0, 150 mM NaCl, 1% Nonidet P-40) containing a protease inhibitor cocktail 

(Sigma), both serine/threonine and tyrosine phosphatase inhibitor cocktails (Sigma), 10 

mM activated Na3VO4, 1mM EDTA, and 1mM EGTA.  The lysates were cleared by a 

16,000g centrifugation for 20 minutes at 4°C, and protein concentrations of the 

supernatants were determined using the Dc protein assay (Bio-Rad, Hercules, CA).  Wild 

type and Emx1
Cre

/Met
fx/fx

 cortical lysates were diluted to a concentration of 2 mg/ml with 

IP buffer, and 1ml of 2 mg/ml lysate was incubated for 12 hours at 4°C with 75 l of 

either anti-Met or anti mouse IgG IP antibodies linked to magnetic beads.  Subsequently, 

the IP beads were pelleted with the application of a magnetic field, and washed 3 times 
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for 5 minutes each at 4°C in phosphate-buffered saline (PBS) containing protease and 

phosphatase inhibitors and 0.005% Nonidet P-40 detergent.  The washed IP beads were 

then resuspended in 60 ul of Laemmli buffer containing 5% 2-Mercaptoethanol and 

incubated at 75°C for 5 minutes to elute the IP complexes.  IP eluates were stored at -20C 

prior to SDS-PAGE and Western blotting.   

HGF stimulation of cortical synaptosomes 

Frozen cortices from P7 wild type and Emx1
Cre

/Met
fx/fx

 mice were thawed in ice-

cold fractionation buffer (320 mM sucrose in 7mM Tris-HCL, pH 7.5, containing 

protease inhibitors (Sigma)) and then fractionated using a glass tissue homogenizer 

(Wheaton).  One ml of fractionation buffer per whole cortex was used.  The fractionated 

samples were then centrifuged at 4°C at 900g for 15 minutes to pellet nuclei and blood 

vessels.  The nuclear pellets were discarded and the supernatants were further centrifuged 

at 14,500g for 15 minutes to yield pellets containing crude cell membranes and 

synaptosomes.  Each crude synaptosomal pellet was then resuspended in ice-cold 

artificial cerebral spinal fluid (12.4 mM NaCl, 0.4 mM KCl, 0.1 mM KH2PO4, 0.25 mM 

CaCl2, 0.1 mM MgCl2, 1 mM dextrose, and 2.6 mM NaHCO3), freshly bubbled with 95% 

O2/5% CO2.  At this stage, human recombinant HGF (R&D Systems, Minneapolis, MN) 

was added to some of the resuspended synaptosomes at a final concentration of 50 ng/ml 

to stimulate Met receptor phosphorylation.  After a 5 minute incubation on ice, both 

stimulated and unstimulated synaptosomes were centrifuged at 14,500g for 15 minutes at 

4°C, and the resulting pellets were lysed with 100 l of IP buffer and vigorous mixing.  

Synaptosomal lysates were cleared by a 16,000g centrifugation for 20 minutes at 4°C, 

and protein concentrations of the supernatants were determined using the Dc protein 
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assay (Bio-Rad).  Samples were stored at -80°C prior to SDS-PAGE and Western 

blotting.  

Western blotting   

The following primary antibodies were used in Western blotting analyses: mouse 

anti-Met (Met, B-2; sc-8057; Lot No. C2807; Santa Cruz Biotechnology, Santa Cruz, 

CA; immunogen: peptide corresponding to amino acids 1330–1379 of mouse Met [NCBI 

No. NP 032617]), rabbit anti-phosphorylated Met (pMet
Y1234/1235

, D26; #3077; Lot No. 2; 

Cell Signaling Technology; immunogen: synthetic, KLH-coupled phosphopeptide 

corresponding to C-terminal amino acids of human Met [NCBI No. AAA59591]), and 

mouse anti-phosphotyrosine (pY, 4G10; #05-321; Lot No. DAM1503375; Millipore, 

Billerica, MA; immunogen: KLH-coupled phosphotyramine).  

 Protein samples (15 l of IP eluate per lane or 20 g synaptosomal protein per 

lane) were fractionated by SDS-PAGE and transferred to supported nitrocellulose 

membranes. Western blotting was then performed as described previously (Judson et al., 

2009), using the following primary antibody dilutions: rabbit anti-pMet and mouse anti-

pY were diluted 1:1,000 in Blotto (3% Carnation dried milk in PBS) containing 0.1% 

Tween-20; mouse anti-Met was diluted 1:500 in Blotto alone.  Anti-mouse and anti-

rabbit horseradish peroxidase-conjugated secondary antibodies (Jackson 

Immunoresearch) were diluted to 1:5,000 with the same diluent as the primary antibody.   

Intracellular injections, lucifer yellow immunohistochemistry, and morphometric 

reconstructions 

 

A total of 11 P39-41 male mice (7 wild type and 4 Emx1
Cre

/Met
fx/fx

) were deeply 

anesthetized with sodium pentobarbital (60 mg/kg i.p.) prior to transcardial perfusion. To 

clear blood from the vasculature and facilitate more efficient tissue fixation, mice were 



141 

 

first perfused with ~10mls of 37°C PBS, which was immediately followed by ~100 mls 

of room-temperature phosphate-buffered 4% paraformaldehyde (pH 7.3).  Each fixed 

brain was then removed from the skull and post-fixed for 2 hours at 4°C before being 

sectioned coronally at a thickness of 200 M with a vibratome (Vibratome, Saint Louis, 

MO).  Fixed vibratome sections were then post-fixed for an additional 2 hours at 4°C 

before being rinsed and stored in cold PBS.  Sections were stored in PBS at 4°C for up to 

5 days prior to intracellular injections of Lucifer Yellow dye.  Equivalent intervals 

between post-fixation and intracellular injection were maintained across animals for each 

anatomical region of interest.   

 The cell bodies of layer 5 and layer 2/3 pyramidal neurons in anterior cingulate 

cortex (at the level of the genu of the corpus callosum) and medium spiny neurons in 

dorsolateral striatum (at the level of the body of the anterior commissure) were targeted 

for injection with the aid of an Axioskop2 microscope and 40x immersion objective 

(Zeiss, Jena, Germany).  The injected cells were within 3 focal planes of the upper 

surface of the brain section and evenly spaced from previously injected cells.  Then, a 

glass micropipette containing Lucifer Yellow dye (8% in 0.05 M Tris buffer, pH 7.4) was 

gently inserted into each targeted cell body using a micromanipulator, and a continuous 

current (5-15 nA) was applied until the tips of the most distal dendrites were brightly 

fluorescent.   

Lucifer Yellow immunohistochemistry was used to yield a more photostable 

product within injected cells.  Briefly, sections containing injected cells were placed in a 

stock solution (2% bovine serum albumin, 1% Triton X-100, and 5% sucrose in PBS) 

containing a 1:5,000 dilution of rabbit anti-Lucifer Yellow antibody (#L9163; Sigma).  
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Sections were incubated in the primary antibody solution at 4°C for 3-4 days before 

being rinsed several times in stock solution and incubated 2 hours at room-temperature in 

biotinylated anti-rabbit secondary antibody (RPN1004; GE/Amersham, Pittsburgh, PA).  

Several rinses in PBS followed, and sections were subjected to a final 2 hour room-

temperature incubation in Alexa Fluor 488-conjugated streptavidin (Invitrogen) diluted 

1:1,000 in PBS.  After several more rinses in PBS, sections were mounted on uncoated 

glass slides and coverslipped with ProLong Gold mounting medium (Invitrogen).  

An Olympus microscope with a motorized stage and Neurolucida software 

(Microbrightfield, Williston, VT) were used to three-dimensionally reconstruct the 

dendritic arbors of neurons whose dendrites were completely filled to the distal tips.  

Between 3 and 6 cells per anatomical region per animal were analyzed.  Dendrites were 

frequently transected by the coronal plane of section, which severely limited the study of 

pyramidal apical dendritic arbors whenever the primary apical dendrite was cut off 

proximal to the cell body.  Therefore, we chose to only analyze the arbors of layer 5 and 

layer 2/3 pyramidal cells with total apical dendritic lengths at least half that of their 

respective genotypic means.  Seven wild type (3 layer 5 and 4 layer 2/3) and 6 

Emx1
Cre

/Met
fx/fx

 (5 layer 2/3 and 1 layer 5) pyramidal cells were excluded from analysis 

based on this criterion.  Investigators were blind to the genotypic identities of the samples 

from the time of animal perfusion through the morphometric analysis of dendritic arbor 

structure.    

Confocal microscopy and semi-automated analysis of dendritic spines 

            Using an approach based on previously described methods (Shen et al., 2008), 

dendrites of the same neurons subjected to Neurolucida analyses were imaged by 
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confocal microscopy, and three-dimensional renderings of the images were used to 

facilitate semi-automated quantification of dendritic spine density and dendritic spine 

head diameter.  Usually 2, but occasionally 1 or 3, dendritic segments located 60-120 M 

(2
nd

, 3
rd

, or 4
th

 order) from the cell body were analyzed per cell.  Briefly, a Zeiss LSM 

510 confocal microscope (Zeiss, Jena, Germany) with 63x oil immersion objective, 4x 

digital cropping, and a frame size of 1024 x 1024 pixels was used to capture high-

resolution images of dendritic segments with 0.035 M x 0.035 M pixel dimensions.  

Segments were scanned at 0.38 M intervals along the Z axis. 

          Confocal images of dendritic segments were viewed using Imaris software 

(Version 6.3-64 bit, Bitplane, Saint Paul, MN) in the Surpass view.  The Filament module 

(Autopath, no loops), was then used to generate a three-dimensional, segmented 

rendering of each dendritic segment that was between 30 M and 35 M in length on 

average.  The minimum end-point diameter (smallest detected spine head) was set at 

0.143 M, and the fluorescence contrast threshold was set > to 3.  Renderings were 

subsequently edited for accuracy relative to the actual confocal image, and data 

concerning spine density and end-segment diameter were exported to Microsoft Excel 

2003 (Microsoft Incorporated, Redmond, WA) for summary statistical analyses.  

Investigators were unaware of sample genotypes both during the imaging and three-

dimensional rendering of dendritic segments.           

Digital illustrations 

 Optical fluorescence microscopy was performed with the aid of an Axioplan II 

microscope (Zeiss), and low-power micrographs depicting fields of Lucifer Yellow-

injected neurons were acquired with a Zeiss AxioCam HRc camera (Zeiss) in Axiovision 
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4.1 software (Zeiss).  Alterations to contrast levels in these low-power images were 

performed using Adobe Photoshop (Version 7.0, Adobe, San Jose, CA).  Figures were 

prepared digitally in Microsoft Office Powerpoint 2003 (Microsoft Incorporated).  

Statistical analyses 

All morphological data in the present study are summarized as means+SEM. 

Genotypic group differences in gross dendritic structure (e.g., total dendritic length and 

dendritic arbor volume) were assessed using the two-sample, two-tailed t-test within 

GraphPad Prism (Version 4.0, GraphPad Software, La Jolla, CA), the software program 

used for the production of all data graphs.  P-values less than 0.05 were considered 

significant.  

Sholl analysis data, which describe changes in dendritic structure that occur as a 

function of radial distance from a neuronal cell body (Sholl, 1953), were analyzed within 

SAS (version 9.1.3, SAS institute, Cary, NC) Procedure GLIMMIX.  Specifically, 

genotypic group differences within each anatomical region of interest were analyzed 

using a linear mixed model with dendritic length as the outcome, fixed effects group, 

radius, group x radius interaction, and random effects animals. The random animal 

effects, along with an autoregressive covariance structure for each neuron within an 

animal account for correlations of repeated measurements from the same animal. Because 

both fixed and random effects are included, this model is a mixed effects model.  To 

compare dendritic length at each radius for the two groups, parameters from the mixed 

model were estimated and compared.  We used the Kenward-Roger’s adjusted degrees of 

freedom solution (option DDFM=KR in Procedure GLIMMIX) for statistical inference 

(Kenward and Roger, 1997), an approach specifically proposed for small sample settings. 
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Normality of residuals from the mixed models was assessed using the Shapiro-Wilk test, 

and a Box-Cox transformed (Box and Cox, 1964) outcome variable for dendritic length 

was used when departure from normality was detected.  Owing to the relatively small 

number of animals sampled, genotypic differences at each radius were considered 

statistically significant if the raw p-value was less than 0.05.  All tests were two-tailed.  

 

Results 

Demonstration of Met signaling deficiency in the cortex of Emx1
Cre

/Met
fx/fx 

mice 

A previous study reporting a Cre recombinase-driven deletion of the Met
fx 

allele from 

heaptocytes demonstrated successful removal of the ATP-binding site from the Met 

tyrosine kinase domain, and consequently, dramatic reductions in levels of signaling-

competent Met protein, receptor activation and downstream signaling (Huh et al., 2004).  

We confirmed similar Met signaling deficiencies in forebrain tissues derived from the 

dorsal pallium in Emx1
Cre

/Met
fx/fx 

mice during the period of peak receptor expression in 

the postnatal mouse forebrain (Judson et al., 2009).  First, a dramatically reduced ratio of 

processed (140 kD), presumably signaling-competent Met to unprocessed (170 kD) 

precursor protein was immunoprecipitated from lysates of Emx1
Cre

/Met
fx/fx 

postnatal day 

(P) 7 neocortex relative to wild type (Fig. 1A).  Second, we observed a robust induction 

of Met receptor phosphorylation in HGF-stimulated synaptosomes prepared from P7 wild 

type but not Emx1
Cre

/Met
fx/fx 

synaptosomes (Fig. 1B).  Collectively, these data 

demonstrate the utility of the Emx1
Cre

/Met
fx/fx 

mouse as a model in which to study the 

consequences of Met signaling deficiency during forebrain circuit development.    
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Figure 1.  Met signaling deficiency in the Emx1

cre
/Met

fx/fx 
mouse.  A: Total Met Western blotting of Met 

and control mouse IgG immunoprecipitates from P7 wild type (WT) and Emx1
cre

/Met
fx/fx 

(-/-) cortical 

lysates.  Note the drastically reduced ratio of processed, signaling-competent Met receptor (140 kD band) 

to unprocessed receptor precursor (170 kD band) that is immunoprecipitated from the -/- lysate.  No Met 

protein of either form was immunprecipitated with control mouse pre-immune IgG.  B: Stimulation of P7 

crude cortical synaptosomes with 50 ng/ml HGF. Western blotting for phosphorylated Met (pMet) 

demonstrates that HGF induces substantial Met receptor activation in WT but not -/- synaptosomes. 

Western blotting for total tyrosine phosphorylated protein (4G10) demonstrates equivalent protein loading 

across samples.  

 

 

Met-dependent changes in layer- and compartment-specific dendritic arbors in 

pyramidal neurons of anterior cingulate cortex 

 

To begin to understand the effects of attenuated Met signaling on forebrain circuit 

development, we focused on comparisons of dendritic morphology in wild type and 

Emx1
Cre

/Met
fx/fx 

pyramidal neurons of the anterior cingulate cortex (ACC) at a time-point 

(P40) just subsequent to the most robust periods of circuit connectivity and refinement.  

ACC pyramidal neurons presented as a compelling population for study for 3 reasons: 1) 

these neurons act as key integrators and processors of limbic circuit information, 2) these 

neurons constitute a Met-expressing population shared by mouse and non-human primate 

cortex (M. Judson, D. Amaral, P. Levitt, unpublished observations ) and 3) corticocortical  
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Figure 2.  Analysis of layer 5 pyramidal cell morphometry in postnatal day 40 wild type (WT) versus 

Emx1
cre

/Met
fx/fx 

(-/-) anterior cingulate cortex (ACC).  A: Representative fluorescence micrograph of  

lucifer yellow immunoreactivity in microinjected pyramidal cells in both left and right anterior cingulate 

cortex in a coronal brain section. Pyramidal cell injections could be precisely targeted within Layer 5 

(arrow, left hemisphere).  The dashed lines represent the anatomical boundary between ACC and primary 

motor cortex (M1) in each hemisphere. The median fissure (mf, double arrows) marks the boundary 

between hemispheres.  B: Representative Neurolucida traces of layer 5 WT and -/- ACC pyramidal 

neurons.  The neurons depicted have dendritic arbor morphometries approximate to the mean values of 

their genotypic group. C-H: Dendritic morphometry summary statistics.  Though the average total dendritic 

arbor lengths are statistically equivalent (C), -/- arbors exhibit reduced dendritic length distal to the cell 

body (D). Sholl analysis indicates a corroborating reduction in -/- branching complexity in the same distal 

arbor regions (E). Subcomponent analyses for arbor length indicate that reductions in distal length in -/- 

layer 5 neurons are due to changes in the apical (G) but not the basilar (F) arbor.  Three-dimensional 

convex hull analysis shows that reduced apical arbor length translates into reduced arbor volume in -/- layer 

5 pyramidal neurons (H).  Scale bar = 275 M for A and 100 M for B. *p < 0.05.    
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afferents to ACC pyramidal neurons express abundant levels of Met during limbic circuit 

formation, raising the possibility that dendritic morphologies of these neurons in 

Emx1
Cre

/Met
fx/fx 

mice would reflect both cell-autonomous and circuit-level effects of Met 

signaling disruption.  To visualize and study ACC pyramidal dendrites, we employed the 

Lucifer Yellow microinjection technique, which allowed for the reliable sampling of both 

layer 5 and layer 2/3 pyramidals (Figs. 2A and 3A) as well as the faithful three-

dimensional (3D) reconstruction of dendritic arbors and analysis of several morphometric 

parameters. 

 Contrary to the reported growth-promoting effects of HGF-signaling in vitro, but 

consistent with grossly normal ACC cytoarchitecture and histology (Judson et al., 2009), 

no statistically significant difference was found in either the number of primary dendrites 

(Suppl. Fig. 1A,B) or total dendritic arbor length (Figs. 2C, 3C) between wild type and 

Emx1
Cre

/Met
fx/fx 

ACC pyramidal neurons.  However, both qualitative (Figs. 2B, 3B) and 

quantitative (Figs. 2D, 3D) comparisons revealed altered distributions of dendritic length 

within the arbors of layer 5 and layer 2/3 Emx1
Cre

/Met
fx/fx 

pyramidal neurons as 

compared to wild type.  The reduction in distal arbor length was shared by layer 5 and 

layer 2/3 Emx1
Cre

/Met
fx/fx 

pyramidal neurons, and was corroborated by decreases in 

branching complexity in the same distal arbor regions (Figs. 2E, 3E).  Moreover, these 

changes were specific to the apical dendritic compartment (Figs. 2G, 3G).  Finally, as 

demonstrated by 3D convex hull analysis, which measures the volume contained within 

the arbor’s most outward lying dendritic end-points (Suppl. Fig. 2A-D), the loss in distal 

apical length translated into an approximate 20% reduction in the average cortical volume 

sampled by Emx1
Cre

/Met
fx/fx 

ACC pyramidal neurons (Figs. 2H, 3H).  Interestingly,   
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Figure 3.  Analysis of layer 2/3 pyramidal cell morphometry in postnatal day 40 wild type (WT) versus 

Emx1
cre

/Met
fx/fx 

(-/-) anterior cingulate cortex (ACC).  A: Representative fluorescence micrograph of 

lucifer yellow immunoreactivity in microinjected pyramidal cells in both left and right anterior cingulate 

cortex in a coronal brain section. Injections of Layer 2/3 pyramidal cells (arrow, left hemisphere) were 

highly reproducible across animals in terms of radial distance from the pial surface/median fissure (mf). 

The dashed lines represent the anatomical boundary between ACC and primary motor cortex (M1) in each 

hemisphere.  B: Representative Neurolucida traces of layer 2/3 WT and -/- ACC pyramidal neurons.  The 

neurons depicted have dendritic arbor morphometries approximate to the mean values of their genotypic 

group. C-H: Dendritic morphometry summary statistics.  Though the average total dendritic arbor lengths 

are statistically equivalent (C), -/- arbors exhibit increased dendritic length proximal to, but decreased 

dendritic length distal to, the cell body (D). Sholl analysis shows that changes in branching complexity in   

-/- arbors mirror changes in dendritic length as a function of distance from the cell body (E). Subcomponent 

analyses for arbor length indicate that proximal increases in -/- arbor length reflect changes in the basilar 

arbor (F), while the apical arbor (G) accounts for decreases in distal arbor length.  Three-dimensional 

convex hull analysis reveals a strong trend toward reduced arbor volume in -/- layer 2/3 pyramidal neurons 

(H), consistent with reduced apical arbor length distal to the cell body.  Scale bar = 275 M for A and 100 

M for B. *p < 0.05.    
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Supplementary Figure 1.  Comparison of average primary dendrite number between postnatal day 40 wild 

type (WT) and Emx1
cre

/Met
fx/fx 

(-/-) neurons.  No genotypic difference in primary dendrite number was 

detected within the basilar dendritic arbors of either layer 5 (A) or layer 2/3 (B) pyramidal neurons in 

anterior cingulate cortex.  The number of primary dendrites within the arbors of medium spiny neurons was 

also equivalent between the WT and -/- groups (C).  

 

 

despite these broad phenotypic similarities, there were different causes underlying the 

apical arbor deficits in these two groups of Emx1
Cre

/Met
fx/fx 

ACC pyramidal neurons.  

Specifically, the reduction in apical arbor length in layer 5 mutant
 
pyramidal neurons 

were primarily a function of reduced dendritic segment length (Suppl. Fig. 3A,C), 

wheseas those in layer 2/3 pyramidal neurons were caused by reduced branching in select 

regions of the apical arbor (Suppl. Fig. 4A,C). 

Emx1
Cre

/Met
fx/fx 

layer 5 and layer 2/3 ACC pyramidal neurons differed with 

regard to dendritic length proximal to the cell body (Figs. 2D, 3D).  Proximal dendritic 

length and branching complexity (Fig. 3D,E) was significantly increased in 

Emx1
Cre

/Met
fx/fx 

layer 2/3 pyramidal neurons due to robust increases in branching.  This 

occurred despite a trend toward modestly reduced dendritic segment length in the basal 

arbors of these cells (Fig. 3F; Suppl. Fig. 4A,B).  The distribution of dendritic length 

both proximal to the cell body and within the basal arbors of Emx1
Cre

/Met
fx/fx 

layer 5 

pyramidal neurons was statistically indistinguishable from that in wild type neurons (Fig. 

2D,F).  There was, however, a trend toward reduced basal dendritic segment length in   
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Supplementary Figure 2.  Explanation of 3-dimensional (3D) convex hull analysis of dendritic arbor 

structures.  First, the distal most dendritic end-points of a 3D reconstructed dendritic arbor (A) are 

identified (B, red circles).  These distal end-points are then connected with line segments (C) to form a 3D 

polyhedron, or “convex hull”, which bounds the extremities of the dendritic arbor.  The volume contained 

within the convex hull (D) is the morphometric parameter of interest.  This analysis is automatically 

performed within Neurolucida (Microbrightfield).           

 

 

these cells (Suppl. Fig. 3B).  These data suggest that in the absence of Met signaling, 

there are different adaptive changes in distinct neuronal compartments that may reflect 

circuit-specific influences.    

 

Met-dependent changes in spine head size on ACC pyramidal neurons 

 Changes in the dendritic morphology of Emx1
Cre

/Met
fx/fx 

ACC pyramidal neurons 

were layer-specific in nature, prompting us to determine whether or not dendritic spine 

morphology across layers might also be differentially susceptible to Met signaling 

deficiency.  Using high resolution 3D-renderings of confocal image stacks, we quantified  
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Supplementary Figure 3.  Branching details of postnatal day 40 wild type (WT) and Emx1

cre
/Met

fx/fx 
(-/-) 

layer 5 pyramidal neurons in anterior cingulate cortex.  Analysis of branch number as a function of distance 

from the cell body reveals equivalent branching between genotypic groups proximal to the cell body and a 

modest decrease in branching in distal regions of -/- dendritic arbors (A).  Measures of dendritic length per 

branch node in layer 5 basilar arbors are not statistically different between WT and -/- groups (B).  

However, similar analyses in layer 5 apical arbors reveal an ~20% decrease in dendritic segment length in -

/- neurons (C).  *p < 0.05.       

 

 

 

 
Supplementary Figure 4.  Branching details of postnatal day 40 wild type (WT) and Emx1

cre
/Met

fx/fx 
(-/-) 

layer 2/3 pyramidal neurons in anterior cingulate cortex.  Analysis of branch number as a function of 

distance from the cell body reveals increased branching in -/- neurons proximal to the cell body but a 

decrease in branching in more distal dendritic regions in these same cells (A).  Measures of dendritic length 

per branch node show a trend toward modestly reduced dendritic length in the basilar dendritic segments of 

-/- layer 2/3 neurons (B), but there is no statistically significant difference between genotypic groups in 

regard to the length of apical dendritic segments (C). 

 

 

dendritic spine density and spine head diameter within dendritic segments from the basal 

arbors of layer 5 and layer 2/3 ACC pyramidal neurons.  Neither layer 5 (Fig. 4A) nor 

layer 2/3 (Fig. 5A) neurons exhibited changes in basal dendritic spine density in the  
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Figure 4.  Analysis of basilar dendritic spines in P40 wild type (WT) versus Emx1

cre
/Met

fx/fx 
(-/-) layer 5 

pyramidal cells.  Confocal projection images of WT and -/- layer 5 pyramidal basilar dendritic segments 

(top row) and associated three-dimensional (3-D) segmented renderings shown in overlay (middle row) and 

apart (bottom row).  The images depict portions of analyzed full-length segments with spine density and 

spine head diameter values similar to the mean values of their genotypic group.  A-C:  Quantification of 

spine density and spine head diameter based on 3-D renderings.  No difference in spine density was 

observed between genotypic groups (A), but an ~8% increase in average spine head diameter was found for 

-/- layer 5 basilar dendritic segments as compared with WT (B).  The frequency distribution of spine head 

diameters reveals greater numbers of larger spines and fewer thinner spines in -/- layer 5 basilar dendritic 

segments (C).  Scale bar = 4 M for all images.  *p < 0.05.         

 

 

Emx1
Cre

/Met
fx/fx 

as compared to wild type ACC.  However, modest, but statistically 

significant, increases in basal dendritic spine head diameter were detected in both 

populations of Emx1
Cre

/Met
fx/fx 

cells (Figs. 4B, 5B).  The data also revealed a leftward 

shift in the frequency distribution of Emx1
Cre

/Met
fx/fx 

versus wild type layer 5 basal 
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Figure 5.  Analysis of basilar dendritic spines in P40 wild type (WT) versus Emx1

cre
/Met

fx/fx 
(-/-) layer 2/3 

pyramidal cells.  Confocal projection images of WT and -/- layer 2/3 pyramidal basilar dendritic segments 

(top row) and associated three-dimensional (3-D) segmented renderings shown in overlay (middle row) and 

apart (bottom row).  The images depict portions of analyzed full-length segments with spine density and 

spine head diameter values similar to the mean values of their genotypic group.  A-C:  Quantification of 

spine density and spine head diameter based on 3-D renderings.  No difference in spine density was 

observed between genotypic groups (A), but an ~5% increase in average spine head diameter was found for 

-/- layer 2/3 basilar dendritic segments as compared with WT (B).  The frequency distribution of spine head 

diameters reveals a rightward shift toward larger spines in -/- layer 2/3 basilar dendritic segments (C).  

Scale bar = 4 M for all images.  *p < 0.05.          

 

 

dendritic spine head diameters (Fig. 4C).  Whereas an analysis of layer 2/3 pyramidal 

neurons revealed a similar increase in the frequency of larger basal dendritic spine head 

diameters, there was no obvious reduction in the frequency of thinner spines (Fig. 5C).  

Collectively, these data demonstrate similar alterations in dendritic spine morphology on 
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arbors whose branching morphologies are differentially affected by disrupted Met 

signaling.  

 

Met-dependent changes in dendritic arbors and spine morphology in striatal medium 

spiny neurons  

 

We analyzed the dendritic morphology of Lucifer Yellow-injected dorsolateral 

MSNs from the same wild type and Emx1
Cre

/Met
fx/fx 

mice used to study the morphology 

of ACC pyramidal neurons.  Measures of total dendritic length revealed an approximate 

20% increase in the dendritic arbors of MSNs in Emx1
Cre

/Met
fx/fx 

mice compared to wild 

type (Fig. 6C).  This difference in dendritic growth is robust and readily appreciated 

qualitatively in two-dimensional projections of Neurolucida tracings (Fig. 6B).  Sholl 

analysis of the distribution of dendritic length (Fig. 6D) revealed increases in the 

Emx1
Cre

/Met
fx/fx 

arbors beginning approximately 50 M from the cell body and spanning 

the extent of the arbor.  This finding is consistent with there being equivalent numbers of 

primary dendrites (Suppl. Fig. 1C), but increased branching (Fig. 6F) and branching 

complexity (Fig 6E) of higher order dendrites, in the Emx1
Cre

/Met
fx/fx 

arbors relative to 

wild type.  Furthermore, we found that the approximate 20% increase in Emx1
Cre

/Met
fx/fx 

MSN dendritic arbor volume (Fig. 6H) was related to increased branching, and not from 

an increase in average length of dendritic segments (Fig. 6G).   

 At the level of the dendritic spine, we detected morphological differences 

in the Emx1
Cre

/Met
fx/fx 

MSN arbors that were more modest in nature.  Relative to wild 

type MSN dendrites, MSN dendritic spine density was normal (Fig. 7A).  Average spine 

head diameter was increased by approximately 5% (Fig. 7B).  The frequency distribution 

of spine head size revealed reductions in thinner spines and extremely large spines in the 
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Figure 6.  Analysis of medium spiny neuron (MSN) morphometry in the dorsolateral caudate putamen 

(CPu) of postnatal day 40 wild type (WT) versus Emx1
cre

/Met
fx/fx 

(-/-) mice.  A: Representative 

fluorescence micrograph of lucifer yellow immunoreactivity in microinjected medium spiny neurons in 

dorsolateral CPu in a coronal section. The dashed line represents the white matter boundary between 

striatum and overlying somatosensory barrel cortex (S1BF).  B: Representative Neurolucida traces of 

MSNs.  The neurons depicted have dendritic arbor morphometries approximate to the mean values of their 

genotypic group.  C-H: Dendritic morphometry summary statistics.  -/- MSNs exhibit an ~25% increase in 

total dendritic arbor length relative to their WT counterparts (C).  Further analyses shows that increases in   

-/- dendritic length (D) and branching complexity (E) are distributed throughout the arbor and are due to 

increases in the number of dendritic branches (F) rather than an increase in the length of each branch 

segment (G).  Three-dimensional convex hull analysis indicates an ~20% increase in -/- MSN arbor volume 

(H).  Scale bar = 275 M for A and 167 M for B. **p < 0.01, *p < 0.05.      

 

 

Emx1
Cre

/Met
fx/fx 

arbors, whereas the frequency of intermediately sized spines was 

increased (Fig. 7C).  Consequently, the overall dendritic phenotype of Emx1
Cre

/Met
fx/fx 

MSNs, which do not express Met, is reminiscent of the basal dendrites of layer 2/3 ACC 
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Figure 7.  Analysis of dendritic spines in P40 wild type (WT) versus Emx1

cre
/Met

fx/fx 
(-/-) dorsolateral 

medium spiny neurons (MSNs).  Confocal projection images of WT and -/- MSN dendritic segments (top 

row) and associated three-dimensional (3-D) segmented renderings shown in overlay (middle row) and 

apart (bottom row).  The images depict portions of analyzed full-length segments with spine density and 

spine head diameter values similar to the mean values of their genotypic group.  A-C:  Quantification of 

spine density and spine head diameter based on 3-D renderings.  No difference in spine density was 

observed between genotypic groups (A), but an ~4% increase in average spine head diameter was found for 

-/- MSN dendritic segments as compared with WT (B).  The frequency distribution of spine head diameters 

reveals an increase in larger spines and a decrease in thinner spines in -/- MSN dendritic segments (C).  

Scale bar = 4 M for all images.  *p < 0.05.            

 

 

pyramidal neurons.  The collective data from neocortex and striatum suggest that 

disruption of Met signaling influences developing forebrain neurons in a circuit-

dependent fashion.  
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Discussion 

The major finding of this study is that the constitutive elimination of Met receptor 

tyrosine kinase signaling during development in vivo results in modest cell-

nonautonomous changes in dendrite and dendritic spine morphology in forebrain 

neurons.  Two critical features of our experimental approach allowed us to dissociate 

these changes from cell-autonomous effects on dendritic structure- a considerable 

challenge considering the well-documented roles for Met signaling in dendritic (Gutierrez 

et al., 2004; Tyndall et al., 2007; Lim and Walikonis, 2008) and axonal outgrowth in vitro 

(Ebens et al., 1996; David et al., 2008) as well as the localization of Met to both dendritic 

and axonal compartments in vivo (Tyndall and Walikonis, 2006; Judson et al., 2009).  

First, based on transcript and protein expression, Met expression is absent or expressed at 

very low levels in medium spiny neurons (MSN) in the developing pre- and postnatal 

striatum (Judson et al., 2009), suggesting that any alterations in their dendritic 

morphology subsequent to an ablation of Met signaling is not cell-autonomous in nature.  

Second, in the Emx1
Cre

/Met
fx/fx 

mouse, Met signaling is ablated from nearly all Met-

expressing MSN afferents during development (Judson et al., 2009), rendering these cells 

vulnerable to cell-nonautonomous, presynaptically-derived changes in dendritic 

morphology. We documented such changes in Emx1
Cre

/Met
fx/fx 

MSN dendritic 

morphology using the Lucifer Yellow microinjection technique to visualize and assess 

dendritic morphology.  Specifically, we detected a marked increase in dendritic 

branching and total dendritic length and a small, statistically significant increase in 

dendritic spine head diameter in Emx1
Cre

/Met
fx/fx 

MSN neurons relative to their wild type 

counterparts.  Because similar changes in dendritic morphology were detected in the 
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basal arbors of Emx1
Cre

/Met
fx/fx 

ACC pyramidal neurons, it is possible that these circuit-

level influences affect all dendritic compartments that receive Met-expressing axonal 

afferents.  

 

Mechanisms of altered dendrite and dendritic spine morphology in the Emx1
Cre

/Met
fx/fx 

forebrain 
 

This study provides, to our knowledge, the first evidence that Met signaling can 

influence the development of dendrites on select forebrain neurons in a circuit-related 

fashion.  However, the mechanistic nature of the influences is unclear.  One possibility is 

that Met signals directly within the developing preterminal axon to impact postsynaptic 

neuronal development.  Though this signaling capacity has yet to be directly 

demonstrated, its potential is supported by observations of upregulated Met expression in 

the terminal fields of forebrain axons during, but not prior to, robust periods of axon 

collateralization and the beginning of synaptogenesis (Judson et al., 2009).  Recently, an 

absence of presynaptically localized Met receptor was reported in the rat via immuno-

electron microscopy (Tyndall and Walikonis, 2006), but this finding was limited to 

circumscribed regions of the hippocampus in adult animals.  Assuming that Met signals 

within presynaptic compartments, elucidating its role in regulating presynaptic function 

will require additional morphological and electrophysiological analyses.   

There are examples in the literature that would be consistent with the resultant 

MSN adaptive changes due to either increased or reduced presynaptic signaling.  For 

example, both broad (Dierssen et al., 2003; Gelfo et al., 2009) and focal (Russell and 

Moore, 1999; Sorensen and Rubel, 2006) manipulations of afferent activity have been 

shown to positively correlate with changes in dendritic structure, suggesting that the 
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enhanced branching in Emx1
Cre

/Met
fx/fx 

MSN dendritic arbors could result from increased 

corticostriatal afferent activity.  This would imply that Met signaling normally serves to 

limit corticostriatal activity and neurotransmitter release.  Alternatively, reduced afferent 

activity or a mistargeting of presynaptic elements can sometimes evoke paradoxical 

increases in dendritic growth (Lund et al., 1991; McAllister et al., 1996; Tripodi et al., 

2008).  Such a scenario would require Met signaling to potentiate corticostriatal activity,  

perhaps during earlier developmental periods when pre- and postsynaptic elements are 

establishing initial contact (McAllister, 2000).  Presynaptic roles for Met signaling are 

similarly difficult to predict from changes in Emx1
Cre

/Met
fx/fx 

MSN dendritic spine 

morphology.  Larger spine heads predict stronger synapses (Schikorski and Stevens, 

1997; Murthy et al., 2001), which could have been sculpted by modest increases in 

corticostriatal afferent activity and trophic support in Emx1
Cre

/Met
fx/fx 

mice.  

Alternatively, increased spine size may reflect a homeostatic scaling up of 

Emx1
Cre

/Met
fx/fx 

MSN excitability in response to decreased excitatory drive from 

corticostriatal afferents.  Complimentary morphometric and electrophysiological studies 

of corticostriatal connectivity in the Emx1
Cre

/Met
fx/fx 

mouse are ongoing, and will clarify 

Met signaling roles in axonal and presynaptic development. 

 The distinct laminar- and compartment-specific changes expressed by ACC 

pyramidal neurons following disruption of Met signaling suggest circuit-level influences 

on dendritic growth.  Because cortical afferents, efferents and intrinsic neurons express 

Met, however, distinguishing between cell-autonomous and presynaptically-driven 

effects of Met signaling will be challenging.  There is additional complexity concerning 

these mechanisms in cortical neurons.  For instance, it is known that other growth factor 
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receptors (McAllister et al., 1997) and distinct intracellular signaling pathways (Chow et 

al., 2009) can either promote or inhibit pyramidal dendritic growth in a layer- and/or 

compartment-specific manner.  In addition, Met-expressing, corticocortically projecting 

afferents likely target different dendritic compartments within each ACC pyramidal 

neuron, depending on the radial position of its cell body within the cortex (Petreanu et al., 

2009).  That stated, reductions in tissue volume occupied by Emx1
Cre

/Met
fx/fx 

ACC apical 

arbors are most consistent with cell-autonomous effects of attenuated Met signaling on 

pyramidal dendritic growth as defined in vitro (Gutierrez et al., 2004).  In contrast, the 

phenotypes of ACC basal pyramidal and MSN dendrites are similar to each other in 

Emx1
Cre

/Met
fx/fx 

mice, consistent with cell-nonautonomous influences. 

 

Implications of Emx1
Cre

/Met
fx/fx 

dendrite and dendritic spine phenotypes for cellular 

and circuit function 

 

The dendritic phenotypes of the Emx1
Cre

/Met
fx/fx 

neurons offer insight regarding 

the effects of Met signaling disruptions at the single cell- and circuit-levels.  Rightward 

shifted frequency distributions of dendritic spine head diameter were observed for both 

ACC pyramidal and striatal MSN dendrites, indicating a gain of large, stable spines at the 

expense of thinner, more labile varieties.  This is consistent with a possible impact on 

neuronal plasticity.  Increases in dendritic spine size accompany the induction of long-

term potentiation (LTP) (Engert and Bonhoeffer, 1999; Park et al., 2006; Roberts et al., 

2009).  In Emx1
Cre

/Met
fx/fx 

neurons, in which spine size is already shifted toward 

maximal levels, there may be a reduced potential to induce, or further increase, LTP.  In 

fact, this is consistent with preliminary findings in hippocampal slices from 
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Emx1
Cre

/Met
fx/fx

 mice in which the induction and sustainability of LTP is reduced (S. Qiu 

and P. Levitt, unpublished observations).   

Developmentally, Met expression begins to decline during the second postnatal 

week (Judson et al., 2009), coinciding with changes in presynaptic release probability 

(Bolshakov and Siegelbaum, 1995; Chavis and Westbrook, 2001) and postsynaptic 

excitability (Sheng et al., 1994; Petralia et al., 1999; Elias et al., 2008).  This raises the 

possibility that Met signals to maintain developing synapses in an immature, labile state 

and that the ablation of Met signaling in Emx1
Cre

/Met
fx/fx 

mice might result in a 

precocious maturation of synaptic connections- a postulate tentatively supported by our 

observation of modestly increased spine head diameters in the dendrites of P40 

Emx1
Cre

/Met
fx/fx 

neurons.  An early onset of robust LTP induction (Harris and Teyler, 

1984; Muller et al., 1989), premature gains in postsynaptic density size and thickness 

(Welch et al., 2007; Hung et al., 2008; Roberts et al., 2009), and shifts in NMDAR 

subunit composition (Sheng et al., 1994; Flint et al., 1997; Roberts et al., 2009) constitute 

logical phenotypic predictions for these mice if they indeed mature precociously.  Of 

course, considering the potential for Met to signal in both postsynaptic and presynaptic 

compartments, these hypotheses will be addressed best by electrophysiological and 

biochemical studies of corticocortical as well as corticostriatal synapses. 

 The approximate 20% reduction in Emx1
Cre

/Met
fx/fx 

ACC pyramidal dendritic 

arbor volume indicates potentially significant alterations in information processing at the 

circuit-level.  This reduction was due to decreases in dendritic length at approximately 

150-175 M in radial distance from the cell body, changes that were restricted to the 

apical arbor.  Importantly, in layer 5 Emx1
Cre

/Met
fx/fx 

ACC pyramidal neurons, this 
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phenotype is explained entirely by shorter oblique apical branches, because the apical 

dendrite of these neurons was always transected before the bifurcation node and apical 

tuft.  This change could be functionally significant for several reasons.  For example, 

topographical mapping of inputs to layer 5 neurons in somatosensory cortex suggests that 

oblique branches of the apical arbor are an important convergence point of ascending 

thalamic and descending cortical information (Petreanu et al., 2009).  In addition, in 

general terms, a loss of distal relative to proximal dendritic length should restrict the 

cortical territory sampled by a pyramidal neuron, which could limit the integration of 

information across the tangential domain.  This functional consequence would be most 

relevant to the apical dendritic tuft, which receives highly convergent inputs from both 

the cortex (Kuhn et al., 2008; Petreanu et al., 2009) and the thalamus (Jones, 2002; 

Rubio-Garrido et al., 2009) that facilitate attention and associative processing. 

Contrary to ACC pyramidal neurons, striatal MSNs exhibited an approximate 

25% increase in dendrite arbor volume in Emx1
Cre

/Met
fx/fx 

mice, implying that they are 

capable of receiving more broadly distributed striatal afferents.  Considering the patch-

matrix compartmental organization of the striatum, this change could affect the quality of 

discrete information processing.  MSN dendritic arbors are largely confined to the 

compartment of their cell body of origin (Gerfen, 1992), so without concomitant 

decreases in striatal cell density, the larger arbors of Emx1
Cre

/Met
fx/fx 

MSNs would be 

expected to extend beyond their compartmental boundaries.  This might result in an 

atypical mixing of afferent sensorimotor and limbic information that usually is routed 

through the matrix and patch compartments, respectively (Gerfen, 1992). 
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Relevance of Met signaling disruptions to circuit vulnerability in ASD 

Neurobiological hypotheses of ASD pathophysiology propose that forebrain 

connectivity is altered fundamentally, impacting the quality of simple and complex 

information processing (Frith, 2004; Geschwind and Levitt, 2007; Levy, 2007).   These 

concepts have emerged primarily from anatomical and functional studies demonstrating 

the potential for, or examples of, local hyper-connectivity and global hypo-connectivity 

in forebrain circuits.  For example, functional magnetic resonance imaging during either 

face processing or sentence comprehension tasks revealed reduced prefrontal activation 

relative to other cortical areas in the brains of individuals with autism (Just et al., 2004; 

Koshino et al., 2008).  More recent magnetoencephalographic analyses of high-

functioning children with ASD showed enhanced parietal lobe synchrony and decreased 

prefrontal lobe synchrony relative to typically developing children during the 

performance of tasks probing executive function (Perez Velazquez et al., 2009).  

Collectively, these and other studies indicate that long-range circuits between the 

neocortex and other brain regions are functionally disconnected.  Evidence for local 

circuit abnormalities in ASD has come from post mortem anatomical studies, which show 

minicolumns to be narrower and more numerous in several cortical areas from subjects 

with ASD (Casanova et al., 2002).  Interestingly, a bias toward an increased spread in 

local activation has been predicted from this pathological feature (Casanova, 2006). 

Here, we present evidence that the mouse homologue of the ASD-associated MET 

gene can impact the development of both local and long-range forebrain circuits, 

consistent with connectivity-based theories of the disorder.  Importantly, we wish to 

emphasize that the constitutive deletion in mice does not phenocopy the human clinical 
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findings of altered transcriptional regulation of MET due to the ASD-associated allele 

(Campbell et al., 2006).  Thus, the moderate circuit-level phenotypes in the 

Emx1
Cre

/Met
fx/fx 

forebrain may be even less pronounced in the heterozygous condition, 

which is probably more relevant to ASD etiology.   We suggest that even mild 

disruptions in Met signaling may render select forebrain circuits vulnerable to further 

genetic and environmental insults that would otherwise more broadly impact connectivity 

(Campbell et al., 2008; Bill and Geschwind, 2009; Judson et al., 2009).  Behavioral 

analyses of Emx1
Cre

/Met
fx/+

 mice in compound genetic and/or environmental models of 

forebrain circuit disruption will constitute a useful, further test of this hypothesis.  

Additionally, mapping the expression of MET during the development of the human and 

nonhuman primate forebrain may promote a further understanding of the specific circuits 

that are vulnerable in ASD.  
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CHAPTER V 

 

 

 

FUTURE DIRECTIONS 

 

Following strong leads provided by human genetic studies of autism spectrum 

disorders (ASD), the overarching goal of this research project was to clarify the 

relationship of MET receptor tyrosine kinase function to the development of forebrain 

circuits which govern socioemotional dimensions of behavior.  On two distinct fronts, our 

developmental Met/MET expression mapping studies in the mouse and nonhuman 

primate macaque forebrain (Judson et al., 2009; M. Judson, K. Eagleson, D. Amaral, P. 

Levitt, unpublished observations) provided the first real progress toward this end: 1) in 

both species, the temporal and subcellular profiles of expression were highly consistent 

with a preferential role for this pleiotropic receptor in axon outgrowth, collateralization 

and otherwise presynaptically-derived elements of circuit wiring, and 2) spatial patterns 

of Met/MET expression during forebrain development overlapped circuits involved in 

species-appropriate social behavior.  Together, these findings support the idea that this 

receptor plays an evolutionarily conserved role in wiring socioemotionally-relevant 

forebrain circuits.  They are also consistent with the recent human genetic finding that the 

rs1858830-C allele variant of the MET promoter exhibits an enriched association with 

social and communication phenotypes of ASD (Campbell et al., 2009).  

 Functional in vitro studies indicate that the rs1858830-C allele, as opposed to the 

ASD-protective rs1858830-G allele, reduces transcriptional efficiency from the MET 
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promoter (Campbell et al., 2006), which is consistent with the finding of 2-fold 

reductions in neocortical MET protein expression in postmortem ASD cases.  Therefore, 

our studies of dendritic morphology in mice with forebrain-specific Met signaling 

deficiency may provide insight into the etiology of MET-associated cases of ASD.  For 

example, through these studies, we revealed firm evidence that Met signaling influences 

both local and long-range circuit development through axonal, presynaptically-derived 

mechanisms (M. Judson, K. Eagleson, P. Levitt, unpublished observations).  This finding 

relates to the local and global information processing deficits that characterize ASD 

(Frith, 2004; Levy, 2007; Levitt and Geschwind, 2007).    

 These considerable gains in relating the neurodevelopmental function of 

Met/MET signaling to the wiring of socially-relevant circuits have led to two immediate 

questions of further interest at the cellular and molecular levels: 1) Considering that this 

receptor may be expressed in both the axonal and dendritic compartments of forebrain 

projection neurons, are there cell-nonautonomous (i.e., axonal) as well as cell 

autonomous (i.e., dendritic) consequences of Met/MET signaling disruption for the 

development of forebrain circuit architecture?, and  2) how does the Met/MET receptor 

signal to regulate aspects of forebrain circuit wiring? 

   

Strategies to distinguish cell-autonomous versus cell-nonautonomous influences of 

Met signaling during forebrain circuit development 

 

A multitude of  in vitro studies have implicated murine Met signaling in both 

axonal (Ebens et al., 1996; Powell et al., 2003; David et al., 2008) and dendritic 

(Gutierrez et al., 2004; Tyndall et al., 2007; Lim and Walikonis, 2008) development or 

growth, and evidence that this receptor is localized to both axonal and dendritic 
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compartments in vivo has recently emerged (Tyndall and Walikonis, 2006; Judson et al., 

2009).  Therefore, attributing cellular phenotypes to the influence of Met signaling in one 

neuronal compartment or the other is an unavoidable challenge- especially within an 

intact circuit where presynaptic and postsynaptic elements influence each other 

throughout development.  We recently encountered this obstacle in our studies of 

dendritic morphology in the Emx1
cre

/Met
fx/fx 

mouse, a model of developmental, 

forebrain-specific Met signaling disruption.   

In Emx1
cre

/Met
fx/fx 

mouse, we could reliably determine if alterations in dendritic 

structure were of a presynaptically-derived, cell-nonautonomous origin if they occurred 

in cell populations such as striatal medium spiny neurons, which do not express Met but 

receive Met-expressing axonal afferents during development (M. Judson, K. Eagleson, P. 

Levitt, unpublished observations).  Conversely, pyramidal neurons of the anterior 

cingulate cortex (ACC) express Met and are contacted extensively by Met-expressing 

corticocortically projecting axons throughout the early postnatal period.  Thus, it was 

impossible to determine if the dendritic phenotypes that we observed in Emx1
cre

/Met
fx/fx 

ACC pyramidal neurons were due to cell autonomous and/or cell-nonautonomous effects 

of disrupted Met signaling.  Further confusing the issue is the fact that we observed both 

layer- and compartment-specific changes in the dendritic morphology of this pyramidal 

cell population in Emx1
cre

/Met
fx/fx 

mice (M. Judson, K. Eagleson, P. Levitt, unpublished 

observations).   

Neurobiological precedent dictates that both cell-autonomous and cell-

nonautonomous effects of developmental Met signaling disruption could contribute to the 

layer- and compartment-specific changes in dendritic morphology that we observe in 
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Emx1
cre

/Met
fx/fx 

ACC pyramidal neurons.  First, cell-autonomous dendritic growth in 

layer 5 and layer 2/3 ACC pyramidal neurons may be differentially regulated by Met 

signaling, perhaps due to unique subcellular distributions of the receptor and its signaling 

partners.  Consistent with this, McAllister and colleagues previously demonstrated that 

neurotrophin receptor signaling influences the dendritic growth of pyramidal neurons 

differentially in layers 4 and 6 of the developing visual cortex (McAllister et al., 1997).  

Also, forebrain-specific deletion of the gene encoding the signaling phosphatase PTEN 

results in a dramatic induction of dendritic growth that is restricted to the apical 

compartment of layer 2/3, but not layer 5, pyramidal neurons (Chow et al., 2009).  

Second, attenuated Met signaling within axonal compartments may compromise 

presynaptic integrity and induce compensatory changes in dendritic development that, 

within the ACC, reflect layer- and compartment-specific projection topographies of Met-

expressing cortico-cortical afferents (Petreanu et al., 2009). 

Advances in technology that allow for subcellular, compartment-specific 

manipulations of Met signaling will prove invaluable in dissecting these complex 

phenotypes within intact circuits.  In the meantime, cell autonomous effects could be 

specifically dissected with the use of genetic approaches such as SLICK (Single-neuron 

Labeling with Inducible Cre-mediated Knockout) (Young et al., 2008) and MADM 

(Mosaic Analysis with Double Markers) (Zong et al., 2005) to disrupt Met signaling in 

just a few neurons within a typically developing cortical milieu.  Conversely, a lentiviral-

mediated mosaic rescue of Met signaling within select pyramidal cells of the 

Emx1
cre

/Met
fx/fx 

cortex could further our understanding of circuit-level, cell-

nonautonomous influences of Met signaling on the development of pyramidal cell 
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dendritic morphology.   Finally, it will be essential to directly determine the nature of 

aberrant axonal development in Emx1
cre

/Met
fx/fx 

forebrain.  Considering the layer- and 

compartment-specific dendritic phenotypes of Emx1
cre

/Met
fx/fx 

ACC pyramidal neurons, 

determining whether the corticocortical afferents therein conform to typical 

compartmental and topographical input patterns is of the utmost importance.  Subcellular 

channelrhodopsin-2 (ChR2)-assisted circuit mapping (Petreanu et al., 2007; Petreanu et 

al., 2009) is a cutting-edge technique that is suited to compare the topographies of local 

circuit connections made by long-projecting corticocortical axons in wild type and 

Emx1
cre

/Met
fx/fx 

mice.  

 

Elucidating molecular mechanisms of Met signaling during forebrain circuit 

development 

 

From the simple observation that Met is an extremely pleiotropic signaling 

molecule it can be inferred that this receptor is capable of engaging a variety downstream 

signaling pathways upon binding its constitutive endogenous ligand, hepatocyte growth 

factor (HGF).  The specific pathways that are engaged as well as the amplitude and 

kinetics of the downstream signaling are likely to dictate the specific developmental 

response that HGF/Met signaling will mediate in a given context.  For example, 

HGF/Met-mediated enhancement of nasopharyngeal cancer cell invasiveness has been 

shown to depend on downstream activation of the PI3K and JNK pathways but not the 

erk 1/2 or p38 MAPK pathways (Zhou et al., 2008), whereas the migration of rat 

mammary fibroblasts in response to HGF stimulation is dependent on the mutual 

activation of both the erk 1/2 and PI3K pathways (Delehedde et al., 2001).  How an 

activated Met receptor engages one downstream signaling cascade versus another is an 
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important mechanistic question concerning any developmental process in which Met 

signaling plays a part.      

What signaling pathways are engaged downstream of HGF/Met signaling in the 

context of forebrain circuit development?  To our knowledge, this question had yet to be  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  HGF stimulation of Met signaling ex vivo.  Immunoblotting for Met and relevant Met signaling 

pathway proteins in lysates prepared from P7 wild type mouse cortical synaptosomes that were treated with 

50 ng/ml HGF at sub-physiologic  (4C) or physiologic temperature (37C) for periods of variable duration.  

A: Immunoblotting for phosphorylated (p-Met) and total Met receptor indicates that robust receptor 

phosphorylation occurs even at sub-physiologic temperature.  Progressively decreased levels of total Met 

and especially p-Met are observed as the duration of HGF stimulation at physiologic temperature increases, 

consistent with energy-dependent mechanisms of receptor desensitization.  B:  Immunoblotting for 

phosphorylated erk 1/2 (p-erk 1/2) demonstrates that HGF stimulation of Met for as little as 5 minutes at 

37C results in a dramatic increase in MAPK pathway signaling as compared to sub-physiologic baseline 

(see red bracket).  MAPK signaling is only slightly attenuated over time as shown out to 30 minutes at 37C.  

C: Immunoblotting for phosphorylated Akt (p-Akt
Thr308

 and p-Akt
Ser473

) demonstrates a surprising decrease 

in PI3K pathway stimulation downstream of HGF-stimulated Met receptor activation.  Note that the levels 

of p-Akt
Thr308

 seem to decrease much more rapidly (blue bracket) than the levels of p-Akt
Ser473 

(green 

bracket).   
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addressed by any study employing native forebrain tissues.  Therefore, we recently 

developed an ex vivo system to evaluate Met signaling in suspensions of crude 

synaptosomes prepared from postnatal day (P) 7 mouse neocortex  subsequent to 

stimulation with physiologic concentrations of HGF (i.e., 50 ng/ml) (see Chapter IV 

Materials and Methods for protocol details).  Using this system, we discovered two 

surprising features of HGF-stimulated Met signaling, which may be relevant to forebrain 

circuit wiring in vivo: 1) though downstream signaling is only engaged at physiologic 

temperature, Met receptor phosphorylation occurs robustly in the presence of HGF, even 

at sub-physiologic temperature (Fig. 1A), and 2) Met signals downstream to robustly 

potentiate the MAPK pathway but inhibit the PI3K pathway subsequent to HGF 

stimulation as evidenced by immunoblotting for phosphorylated erk 1/2 (Fig. 1B) and 

Akt proteins (Fig. 1C), respectively.  We hypothesize that this opposing influence of Met 

signaling on downstream MAPK and PI3K pathway activation, which, to our knowledge, 

is a phenomenon unique to the Met receptor in this specific context, results from 

interactions with specific co-receptors and signaling adaptor proteins.  Below, briefly 

outline and discuss a tandem immunoprecipitation/mass spectrometry approach designed 

to determine the identity of interacting proteins that facilitate the role of Met in forebrain 

circuit wiring.   

Though conceptually straightforward, tandem immunoprecipitation/mass 

spectrometry experiments are technically challenging, and whether or not they are 

successful largely depends on the development of an optimized immunoprecipitation 

protocol and the availability of appropriate negative controls.  Using a paramagnetic 

bead-based approach (see Chapter IV Materials and Methods for protocol details), 
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which is schematized in Figure 2, we have optimized an immunoprecipitation protocol 

that is suitable for purifying Met and associated proteins from native forebrain lysates.  

Moreover, the monoclonal Met antibody used in this protocol is capable of purifying 

HGF-stimulated, tyrosine-phosphoryalated forms of the Met receptor as well (Fig. 3), 

which will serve our ultimate goal of identifying the protein partners that facilitate Met 

signaling during forebrain circuit development.       

 However, the capacity to immunoprecipitate phosphorylated Met receptors 

alone will not ensure our success in purifying signaling partners of Met.  Protein-protein 

interactions can be fleeting and of low affinity, especially when they pertain to signaling 

mechanisms with rapid on/off kinetics.  Furthermore, even when immunoprecipitation 

conditions permit the co-purification of transient or weakly interacting proteins, at later  

steps in the process, such as washing (Fig. 2, step 4), the loss of these interactions may 

equate to the price of eliminating background.  We plan to employ two general, non-

mutually exclusive experimental strategies to maximize the chance of trapping weak or 

transient Met interactions with protein signaling partners.  The first strategy requires that 

Met and phosphorylated Met be immunoprecipitated at multiple time-points subsequent 

to HGF-stimulation; increased experimental sampling should increase the chance of 

catching transient protein-protein interactions.  The second strategy would incorporate 

the use of a chemical such as dithiobis-succinimidylpropionate to covalently cross-link 

Met to its directly and indirectly interacting signaling partners at pre-determined intervals 

following HGF-stimulation.  This method succeeds in effectively cementing weak                           

protein-protein interactions into place, and it has been used to identify weakly interacting 

TrkB signaling partners subsequent to stimulation with BDNF (Arevalo et al., 2004).  
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However, a potential pitfall of this approach is that cross-linking can change epitope 

structures and thus reduce or eliminate the affinity of the immunoprecipitation antibody 

for the target protein.  

 

Figure 2.  General Met immunoprecipitation approach.  Step1: solubilized protein lysates are prepared 

from native forebrain tissues of interest.  These include Met receptors (red circles), direct Met binding 

partner proteins (green squares), and indirect Met binding partner proteins (purple circles).  All non-partner 

proteins are represented by yellow triangles.  Step 2: Soluble Met protein complexes are made insoluble by 

the addition of high-affinity Met antibodies that have been covalently linked to insoluble paramagnetic 

beads.  Step 3: The now insoluble Met protein complexes are precipitated out of solution by the application 

of a magnetic field.  Step 4: The immunoprecipitated (IP’d) Met protein complexes are washed repeatedly 

to remove background, non-partner proteins.  Step 5: Met protein complexes are removed from the beads, 

and thus resolubilized, in a reducing elution buffer.  Step 6: Met partner proteins within the IP’d complexes 

can be identified via mass spectrometric analysis.  
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Figure 3.  Immunoprecipitation of phosphorylated (p-Met) and total Met protein.  Input lysates (left 3 

lanes) were prepared from P7 wild type mouse cortical synaptosomes that were unstimulated (--, far left 

lane) or stimulated (+, right two lanes) with 50 ng/ml HGF for 5 minutes at 37C.  As per immunoblotting, 

p-Met bands were only detected in the input lysates prepared from HGF-stimulated synaptosomes.  

Immunoprecipitation (IP) was performed using each of the 3 input lysate samples (right 3 lanes).  As per 

immunoblotting, total Met protein was clearly detected in both Met IP (Met, left two lanes) samples, but p-

Met was only detected in the Met IP sample prepared using HGF-stimulated input lysate (middle lane).  No 

p-Met or Met was detected in the control (ctrl) IP sample prepared using HGF-stimulated input lysate (far 

right lane).  

 

 

 No amount of optimization will ever result in an immunoprecipitation protocol 

that allows for the perfect co-purification of a target protein and its interacting partners.  

Some amount of background protein will always co-elute with the protein complexes of 

interest, and, unfortunately, a mass spectrometer cannot tell the difference between them.  

Therefore, the implementation of appropriate negative controls is an important safeguard 

against excessive false-positive identifications of candidate partner proteins in any 

tandem immunoprecipitation/mass spectrometry approach.  Succinctly, if the 

experimental and negative control immunoprecipitates are analyzed in the same mass 

spectrometer run, any identified proteins that they share in common can be eliminated 

from consideration as candidate partner proteins.   
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 To reliably identify protein partners of the Met receptor in both signaling and 

non-signaling states, we plan to perform Met and control IgG antibody precipitations of 

lysates prepared from P7 wild type mouse cortical synaptosomes that have either been 

untreated or stimulated with HGF.  Parallel mass spectrometric analyses comparing the 

control immunoprecipitates with either Met immunoprecipitation sample should allow for 

a broad identification of Met-specific protein partner candidates.  Further comparisons 

between the unstimulated and HGF-stimulated Met immunoprecipitates may reveal 

protein interactions that are gained and/or lost subsequent to Met receptor activation.  An 

even more sophisticated level of analysis would involve the mass spectrometric 

comparison of Met immunoprecipitates prepared from synaptosomes that have been 

HGF-treated at sub-physiologic versus physiologic temperatures.  In the former  

condition, Met receptors are phosphorylated but apparently not engaging downstream 

signaling pathways (Fig. 1A), which could reflect an intermediate or incomplete 

recruitment of signaling adaptor proteins at this stage.  A basic outline of our 

immunoprecipitation strategy to identify signaling Met signaling partners that are 

relevant to forebrain circuit development can be viewed in Figure 4.  We have chosen to 

experiment initially with synaptosomes prepared from wild type P7 mouse cortex, 

primarily because Met is robustly expressed in cortical neuropil compartments during this 

early period of forebrain circuit wiring (Judson et al., 2009).  Additionally, because the 

cortex is the largest forebrain structure, fewer animals will be required to satisfy these 

preliminary experimental aims.  Pending the satisfactory identification of Met signaling 

partners within the P7 cortical neuropil, subsequent experiments will seek to determine if 

Met signaling complexes are differentially composed in forebrain structures such as the 
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Figure 4.  Immunoprecipitation strategy to identify Met signaling partners during forebrain circuit 

development.  Top row: P7 wild type mouse cortical synaptosomes are treated with 0 (left column) or 50 

(middle and right columns) ng/ml HGF.  Colored shapes represent cortical synaptosomal proteins.  All 

columns: inactive Met (red circle) interacts with a constitutive partner (green square) and its inactive state 

partner (purple circle).  Middle and right columns: active, phosphorylated Met (p-Met, blue circle) still 

interacts with the green square but ceases interacting with the purple circle.  p-Met also gains interactions 

with two new partners (yellow triangle, strong interaction; olive square, weak interaction).  Middle row: 

DSP cross-linker (red bar) is added to all synaptosomal samples in order to trap weakly associated Met 

signaling partners (red bar now connects olive square to p-Met complexes).  Lysis follows to solubilize all 

Figure 4—cont.  synaptosomal proteins.  Bottow row: lysed synaptosomal proteins are incubated with 

either specific Met immunoprecipitation antibodies (left and middle columns, black Fab region) or control 

antibodies (right column, red Fab region).  Met-associated proteins are immunoprecipitated only by Met 

antibodies (left and middle columns), and p-Met-associated proteins are immunoprecipitated only by Met 

antibodies incubated lysates prepared from HGF-stimulated synaptosomes (middle column).  
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P7 striatum where the subcellular localization of Met is exclusively axonal (Judson et al., 

2009).  Temporal comparisons of immunoprecipitates prepared from corresponding 

forebrain structures at P7 and P21 will also be informative considering the evidence for a 

subcellular shift in Met localization that occurs between these ages (Judson et al., 2009).    
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