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INTRODUCTION 

 

Part I Computational Biology Study of Mitochondrial DNA Replication 

 

Mitochondria are essential for energy production through oxidative phosphorylation 

and have their own genome, which is maternally inherited and harbors 37 genes in a circular 

molecule of approximately 16.6 kb that is present in hundreds to thousands of copies per cell. 

The proteins involved in mtDNA replication, which are all encoded by the nuclear DNA, include 

the DNA polymerase gamma (pol γ) and its accessory protein POLG2, the single stranded DNA 

binding protein (mtSSB), the mtDNA helicase (Twinkle), and a number of accessory proteins and 

transcription factors (Graziewicz et al. 2004). The minimal protein set required to replicate 

mtDNA in vitro includes the two subunits of pol γ, the mitochondrial helicase and mtSSB 

(Korhonen et al. 2004). However, typically in experiments measuring the kinetics of pol γ, 

neither Twinkle nor mtSSB are added in the assay (Johnson and Johnson 2001; Johnson and 

Johnson 2001). Generally, these proteins are unnecessary since the kinetics assays only involve 

the replication of a short length of DNA. 

The holoenzyme of human pol γ consists of a catalytic subunit (encoded by POLG at 

chromosomal locus 15q25) and a homodimer of its accessory subunit (encoded by POLG2 at 

chromosomal locus 17q24.1) (Yakubovskaya et al. 2006). The catalytic subunit is a 140 kDa 

enzyme (p140) that has DNA polymerase, 3’-5’ exonuclease and 5’ dRP lyase activities. The 

accessory subunit is a 55 kDa protein (p55) required for tight DNA binding (Lim et al. 1999).  

The function of pol γ is far more complicated than the function of a typical enzyme that 

converts a substrate into a product. For this reason, the analysis of the enzyme kinetics of pol γ 

must also be far more complicated. The function of pol γ is the replication of a complete 
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mitochondrial DNA molecule, while the enzyme kinetics data for pol γ are at the level of 

individual reactions at the base-pair level. One tool that can be used to bridge that large gap 

between the enzyme kinetics data and the final product of a replicated DNA molecule is 

simulation. A computational simulation can reproduce each individual reaction of the 

polymerase activity, at the lowest level for which we have experimental data on the relevant 

reaction kinetics of the polymerase. The simulation can tirelessly repeat this process for the 

several tens of thousands of reactions necessary for the replication of a single strand of human 

mtDNA.  Since mutations introduced through polymerase errors are of great practical interest, 

we need to use a stochastic simulation approach that will allow such replication errors to occur 

with probabilities that are calculated from the experimentally measured enzyme kinetics. 

 

Create mtDNA Replication Model of Pol γ Using The Gillespie Algorithm 

The Gillespie algorithm (or Stochastic Simulation Algorithm) is a well-known Monte 

Carlo simulation method for chemical reactions (Gillespie 1976). This algorithm takes a defined 

list of possible reactions and uses the reaction rates, based on the measured enzyme kinetics 

data and the substrate concentrations, to calculate the probability of each reaction on the list. 

These probabilities are then used to randomly choose the sequence of reactions that occur. The 

original Gillespie algorithm is particularly useful for simulating reactions involving a small 

number of molecules, while more elaborate and approximate versions of the basic algorithm 

have been created in order to handle large numbers of molecules (Cao and Samuels 2009). For 

modeling pol γ activity we are generally concerned with only a single enzyme molecule, the one 

molecule of pol γ that is replicating a particular strand of mtDNA. In this special case, the original 

Gillespie algorithm is the preferred simulation method. 
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mtDNA deletion/depletion 

The replication of DNA by a polymerase may not progress at a steady rate. How do 

replication pauses of pol γ relate to the commonly observed pathological phenotypes of mtDNA 

deletions and depletion? In theory, once a replication fork pauses, it can restart to continue the 

replication process without problems. However, if a pause is lengthy enough it might allow time 

for low-probability events such as double strand breaks. A double strand break can be repaired 

through blunt-ended rejoining, or homologous annealing of 5’- and 3’-repeat sequences 

(Krishnan et al. 2008), or nonhomologous end-joining (Graziewicz et al. 2006) that will form 

deleted mtDNA. If the double strand break cannot be repaired, it will cause a failed replication. 

Repeated failed replications eventually would lead to depletion of the amount of mtDNA within 

the cell. These concepts are illustrated in Figure 1. Under this hypothetical mechanism, mtDNA 

deletions and depletion may both be possible outcomes from the same initial event, the pausing 

of the polymerase. Of course, other mechanisms for deletion formation are also possible 

(Krishnan et al. 2008). 

 

 

 
 

Figure 1. Possible consequences after mtDNA replication fork pauses. 
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Pathogenic Mutated Pol γ 

Pathogenic mutations in POLG have been identified in patients with neurological or 

muscular diseases including progressive external ophthalmoplegia (PEO), Alpers syndrome, 

ataxia-neuropathy syndromes, idiopathic Parkinsonism, and nucleoside reverse-transcriptase 

inhibitor (NRTI) toxicity (Copeland 2008; Hudson and Chinnery 2006). All these diseases were 

characterized by mtDNA deletions and/or depletion in symptomatic tissues (Chan and Copeland 

2009). PEO, as a mitochondrial disorder, is associated with the depletion of mtDNA and/or the 

accumulation of point mutations and deletions within mtDNA, caused by autosomal dominant 

mutations in POLG (Longley et al. 2005). In Alpers syndrome, the identified pol γ mutations are 

either homozygous A467T (MIM 174763.0002) or heterozygous A467T paired in trans with other 

mutations in POLG (Ferrari et al. 2005; Naviaux and Nguyen 2004). 

The A467T mutation has been found in all of the major POLG related diseases, i.e. Alpers 

syndrome, ataxia-neuropathy syndromes and PEO (Chan and Copeland 2009). The frequency of 

the A467T mutation varies from less than 0.2% to approximately 1% in different European 

control populations (Horvath et al. 2006; Luoma et al. 2005; Van Goethem et al. 2001; 

Winterthun et al. 2005). In mitochondrial disease populations, however, the A467T allele was 

estimated to be the most common alleles associated with POLG diseases (Chan and Copeland 

2009). Even the homozygous A467T substitution of POLG has been found in patients with highly 

varied phenotypes. For example, in Alpers syndrome (Boes et al. 2009; Utzig et al. 2007), two 

unrelated teenage boys with homozygous A467T POLG had ataxia and severe epilepsy. In 

contrast, in a case of concurrent progressive sensory ataxia, dysarthria, and ophthalmoparesis 

(McHugh et al. 2010), two siblings also homozygous for POLG A467T developed disease 

symptoms only late in life, with onset in their 40s. The kinetic parameters of the A467T mutant 

for both polymerase and exonuclease activity have been measured experimentally (Chan et al. 
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2005). Compared to the wild-type catalytic subunit, the A467T substitution increased the Km of 

the enzyme 5-fold while also reducing the kpol value approximately 5-fold for DNA synthesis. As 

determined by the ratio of kpol/Km, the A467T substitution reduces DNA synthesis efficiency to 4% 

of the wild-type activity. In contrast, the exonuclease activity of the A467T variant is only 

decreased 2-fold compared to the wild-type (Chan et al. 2005). Besides altering the kinetics of 

pol γ, the A467T variant in POLG also decreases the protein’s physical association of the POLG2 

subunit (Chan et al. 2005). 

In addition to the identified pathogenic A467T substitution of pol γ in human, proof-

reading deficient versions of the catalytic subunit of mtDNA polymerases have been created in 

two independent homozygous knock-in mouse models, one published in 2004 (Trifunovic et al. 

2004) and the other one in 2005 (Kujoth et al. 2005). For simplicity, the first will be referred as 

Stockholm mouse model and the second will be referred as Madison mouse model. Both mouse 

models showed similar progeria-like phenotypes and shared the same D257A mutation on the 

second exonuclease domain of PolgA (the mouse homolog of POLG) that caused a profound 

reduction of the exonuclease activity but no decrease in DNA polymerase activity. Both mouse 

models (Kujoth et al. 2005; Trifunovic et al. 2004) were reported to have accumulated mtDNA 

point mutations. Using these two mouse models, other mitochondrial genome variations 

besides point mutation have been studied. For the Stockholm mouse model, after Trifunovic et 

al. (Trifunovic et al. 2004) reported increased mtDNA deletion, Bailey et al. (Bailey et al. 2009) 

using one- and two-dimensional agarose gel electrophoresis interpreted these non-replicating 

linear mtDNAs as the result of double-strand breaks of cyclic mtDNA caused by stalled 

replication intermediates. Ameur et al. (Ameur A. et al. 2011) further stated that mutator mice 

have abundant linear deleted mtDNA molecules but extremely low levels of circular mtDNA 

molecules with large deletions. For the Madison mouse model, Williams et al. (Williams et al. 
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2010) applying next-generation sequencing to native mtDNA did not observe the accumulation 

of mtDNA deletions but instead reported multiple copies of the mtDNA control region in brain 

or heart. However, Vermulst et al. (Vermulst et al. 2008; Vermulst et al. 2009) have identified 

mtDNA deletions as a critical driving factor behind the premature aging phenotype in Madison 

mouse models and have suggested there is a homology-directed DNA repair mechanism directly 

linked to mtDNA deletion formation. As this description shows, the data on the amount of 

deletions in these two mouse models is currently mixed and this is a research area that is rapidly 

developing. 

 

Pol γ Dependent Toxicity of NRTI Drugs in HIV Treatment 

In their activated tri-phosphorylated forms, each NRTI (nucleoside reverse transcriptase 

inhibitor) drug acts as a nucleotide analog interacting with the HIV viral reverse transcriptase 

(Anderson et al. 2004; Ray 2005). NRTIs are an alternative substrate to the natural nucleotides, 

which lacks the 3’ OH group necessary for incorporation of the next nucleotide thereby 

terminating viral DNA strand elongation. Although NRTIs are effective drugs and have helped 

usher HIV into the category of a controllable chronic disease, they are also often toxic, inducing 

side effects such as lactic acidosis, peripheral neuropathy, lipoatrophy, and pancreatitis in 

patients. Intolerance of such side effects is a common reason for treatment discontinuation 

(d'Arminio Monforte et al. 2000). Any decrease in patient compliance to the treatment regimen 

is a serious concern that can lead to poor HIV virologic control, the increased potential for the 

development of HIV-1 genotypic drug resistance, and ultimately treatment failure. The first step 

in ameliorating these side effects and preventing them in future antiviral treatments is to 

understand the mechanisms behind the mitochondrial toxicity of the NRTIs that are in use today. 

As we discuss below, many mechanisms of the mitochondrial toxicity have been proposed. In 
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this paper we specifically consider the plausibility of the most widely accepted hypothesis for 

the toxicity mechanism for this class of drugs; interference of mitochondrial DNA replication by 

the activated drug. 

In a study conducted by Martin et al. (Martin et al. 1994) the approved NRTIs were 

shown to inhibit various host DNA polymerases. After the HIV Reverse Transcriptase, the highest 

affinity of the NRTIs was for pol γ. This, along with the fact that many of the NRTI side-effects 

resemble symptoms of mitochondrial genetic disorders, implicated interaction with pol γ and 

subsequent depletion of mtDNA as a potential cause of NRTI toxicity giving rise to the pol γ 

hypothesis (Lewis et al. 2003). Indeed, experiments have demonstrated decreased mtDNA 

amounts in various tissue types of NRTI-treated HIV positive patients (Cherry et al. 2002; Cote et 

al. 2002; Haugaard et al. 2005; Walker et al. 2004). In addition, mtDNA depletion was observed 

in parallel with cell death, mitochondrial morphological changes, and increased lactate 

production in liver, heart, neuron, skeletal muscle, adipose, and blood cell cultures after 

incubation with different NRTIs (Azzam et al. 2006; Benbrik et al. 1997; Biesecker et al. 2003; 

Birkus et al. 2002; Cui et al. 1997; Galluzzi et al. 2005; Pan-Zhou et al. 2000; Setzer et al. 2005; 

Walker et al. 2002). 

There are three possible pol γ dependent toxicity mechanisms that comprise the pol γ 

hypothesis: 1) direct inhibition of pol γ by NRTI-triphosphate without incorporation into the 

mtDNA, 2) chain termination of mtDNA replication following incorporation of the NRTI 

triphosphate, and 3) incorporation of the analog triphosphate into mtDNA without chain-

termination allowing the NRTI to continue as a point mutation in mtDNA (Lewis et al. 2006). 

However, there also exists a substantial body of data that are not consistent with 

toxicity mechanisms resulting in depletion of mtDNA and indicate a weak relationship between 

mtDNA copy number and nucleoside analog toxicity. Martin et al. (Martin et al. 1994) showed 
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no association between inhibition of pol γ by NRTIs and mtDNA depletion. Mitochondrial 

dysfunction has been observed in vitro in mouse muscle, white adipose, brain, liver, and heart 

tissue (Note et al. 2003), hepatoma cell lines (Walker et al. 2002) as well as CD4 cells (Setzer et 

al. 2005) after incubation with NRTIs although no significant decrease in mtDNA amount was 

observed. In clinical settings mtDNA depletion has been seen in parallel with normal cytochrome 

c oxidase activity, a sign of correct mitochondrial function (Piechota et al. 2006), and was not 

associated with lipoatrophy (McComsey et al. 2005) (although that study measured mtDNA 

depletion in blood samples, not fat cells). This warrants a deeper look at the data concerning the 

interaction of different NRTIs with pol γ. 

To this end, we have simulated the DNA replication process of mitochondria. Using 

enzyme kinetics data gathered from Johnson et al. (Johnson et al. 2001), Feng et al. (Feng et al. 

2004), and Hanes et al. (Hanes and Johnson 2007; Hanes et al. 2007) we have carried out a 

series of simulations of mtDNA replication in the presence of various nucleoside analogs that 

interact with pol γ (Table 3.2). These simulations bridge the gap between the basic enzyme 

kinetics data and the probability of failure of the mtDNA replication process. 

 

Related Chapters 

Chapter I describes the computational stochastic model of the replication of pol γ in 

detail, which is the 1st model on the single nucleotide incorporation level. This model could be a 

great tool for the analysis of enzyme kinetic data for mtDNA replication, which is capable of 

dealing with different substrates - natural nucleotide and nucleotide analogs and both wild-type 

and pathogenic mutated pol γ. 

Chapter II studies replication pauses of pol γ. The stochastic model made it possible to 

quantify the pause lengths for the wild-type pol γ and for the pathogenic A467T and the 
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exonuclease deficient pol γ variants. Our model of the exo- polymerase had extremely long 

pauses, with a 30 to 300-fold increase in the time required for the longest single forward step 

compared to the wild-type, while the naturally occurring A467T variant showed at most a 

doubling in the length of the pauses compared to the wild-type. We identified the cause of 

these differences in the polymerase pausing time to be the number of disassociations occurring 

in each forward step of the polymerase. 

Chapter III studies pol γ dependent side effect of NRTI drugs. The model has been used 

to analyze the inhibition of pol γ replication and toxicity caused by nucleoside analogs in 

antiretroviral treatment. The model predicts an approximate 1000 fold difference in the 

activated drug concentration required for a 50% probability of mtDNA strand termination 

between the activated di-deoxy analogs stavudine (d4T), zalcitabine (ddC), and didanosine (ddI) 

and the activated forms of the analogs lamuvidine (3TC), tenofovir (TDF), zidovudine (AZT/ZDV), 

emtricitabine (FTC), and abacavir (ABC). These predictions are supported by experimental and 

clinical data showing significantly greater mtDNA depletion in cell culture and patient samples 

caused by the di-deoxy analog drugs. 
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Part II Methodology for Sequencing Data Analysis 

 

Enrich Rare Disease Alleles in GWAS Samples 

In genetic epidemiology, a genome-wide association study (GWAS) is based on the 

premise that densely genotyped common alleles will have statistical power to detect causal 

associations with traits at nearby, ungenotyped common variants, through short-range linkage 

disequilibrium (LD). The foundation for this strategy is the common disease common variant 

(CDCV) hypothesis (Reich and Lander 2001). This approach has been proven to be very effective 

in different scenarios for mapping small genomic regions to traits (see the National Human 

Genome Research Institute Catalog of Published Genome-Wide Association Studies) (Manolio et 

al. 2008; McCarthy et al. 2008). However, the predominantly small effect sizes encountered thus 

far in investigations of most traits do not provide an explanation for a large proportion of the 

trait variance attributable to heritable factors (Maher 2008; Manolio et al. 2009). This 

phenomenon has been described by Purcell et al. who suggested that hundreds or thousands of 

SNPs may each have a very subtle influence on the risk of some psychiatric traits (Purcell et al. 

2009). These observations seem to support an adjustment of the CDCV model to allow for the 

probability that rare alleles might also exert a major influence on common traits (Bodmer and 

Bonilla 2008; Pritchard 2001; Schork et al. 2009). 

The common disease rare variant (CDRV), derived from CDCV, assumes that alleles with 

strong effects on traits are likely to be rare due to purifying selective pressure and recent time 

to coalescence due to the rapid expansion of human populations (Pritchard 2001). In addition, it 

has been shown in simulations that multiple rare alleles with strong effects can stochastically 

aggregate onto the haplotypic background of a common allele and produce genome-wide 

significant association signals, a scenario termed synthetic association (Dickson et al. 2010). The 
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CDRV hypothesis has further support coming from observational studies where the average 

allele frequency of SNPs with predicted effects on proteins was smaller than the average allele 

frequency of intronic or synonymous variants (Cargill et al. 1999; Gorlov et al. 2008; Wong et al. 

2003). Estimates from human Mendelian traits, human–chimpanzee divergence data and human 

genetic variation suggested that ~53% of new missense mutations have mildly deleterious 

effects, and that up to 70% of low-frequency missense alleles are mildly deleterious (Kryukov et 

al. 2007). 

A rare trait allele may not be annotated in the databases of common variants 

maintained by either dbSNP or the International HapMap Organization. As a consequence, the 

possibility of detecting that SNP will be excluded through imputation and subsequent 

association analysis. The constellation of causal alleles may also be unique for each population 

of human subjects, where sensitive functional gene or regulatory regions are perturbed by 

independent sets of rare mutations that occurred after geographic or cultural barriers led to 

increased genetic distance (Tishkoff et al. 2009). Thus, the same associated allele from GWAS 

across multiple ethnic groups does not necessarily imply the same underlying architecture of 

causal alleles in LD. Then resequencing becomes the best available means of discovering these 

rare SNPs in a GWAS sample and ultimately detecting the relationship between these alleles and 

traits. 

To successfully discover the variants that determine trait susceptibility, it is necessary to 

directly capture all genetic mutations in a region (Cirulli and Goldstein 2010). This can be 

accomplished most efficiently by using next-generation sequencing technology to resequence 

subjects for the implicated loci (Service 2006), which has substantially decreased the financial 

cost of resequencing large genomic regions relative to Sanger sequencing technology. However, 

next-generation sequencing technologies are still not generally feasible for resequencing all the 
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subjects that were used to isolate a genomic region via GWAS. Thus, some strategies are 

necessary for employing sequencing technology that is cost-effective. One possibility is to 

resequence a small number of cases and controls or persons with extreme trait values and 

evaluate the observed genetic variation for association with traits to screen rare variants prior 

to larger genotyping experiments. This approach, however, will suffer from low statistical power 

at the screening step due to the infrequent exposure rate of rare alleles, and potentially suffer 

from inflated type I error rates (Li and Leal 2009) as a result of ascertainment bias in cases. 

Another alternative approach is not to attempt to associate alleles from resequencing data with 

the trait, but instead, to discover rare alleles by resequencing and then examine these SNPs with 

conventional genotyping methods in the entire available pool of study subjects. The limitation of 

this approach is the power to capture rare alleles in the targeted loci, which is directly related to 

the selection of subjects for the resequencing experiment (Li and Leal 2009). Using the 

information available at nearby trait-associated SNPs, targeted resequencing study designs can 

be tailored for efficient capture of rare disease alleles in small samples. 

 

Detect Tumor Somatic Mutations in Sequencing Data 

Cancer, as a class of complex genetic diseases, is responsible for one in eight deaths 

worldwide (Blecher et al. 2008). It is characterized by uncontrolled proliferation of malignant 

cells that can intrude into surrounding tissues and metastasize to distant organs because of 

somatically accumulated mutations and epigenetic changes (Esteller 2007; Stratton et al. 2009). 

Somatic genomic abnormalities of cancer encompass distinct classes of DNA and chromosomal 

changes, including base substitutions, insertions and deletions (indels), copy number variants 

(CNVs), and inter- and intra-chromosomal rearrangements. Exogenous DNA from viruses may 

also have been obtained in cells of some cancer types (Talbot and Crawford 2004). 
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Somatic mutations are distributed across all the genome (Stratton 2011). Only a small 

subset of them has been implicated in oncogenesis. The rate of somatic mutations may vary by 

cell type and can be influenced by mutagenesis exposures endogenously and exogenously. 

Generally, different cancer types have different mutation profiles. Some cancers display very 

disordered genomes while others have few genomic aberrations (Stratton 2011). It is crucial to 

understand the overall mutation profiles for different cancer types and in different patient 

individuals as mutation profiles may influence choice of treatments and a patient’s reaction to a 

treatment. In early cytogenetic studies of cancer, most genomic abnormalities found were 

chromosomal translocations and CNVs. Thanks to the development of next-generation 

sequencing (NGS) technologies, we are on the edge of creating a complete catalogue of 

mutations for each cancer type (Singer 2011) by screening the cancer genome at the finest 

resolution. 

Recently, the NGS technologies have been used to study somatic mutations in cancers, 

including melanoma (Pleasance et al. 2010), lung cancer (Lee et al. 2010; Pleasance et al. 2010), 

colorectal cancer (Timmermann et al. 2010), renal carcinoma (Varela et al. 2011), breast cancer 

(Ding et al. 2010; Shah et al. 2009), acute myeloid leukemia (Mardis et al. 2009), mesothelioma 

(Bueno et al. 2010), and prostate cancer (Berger et al. 2011). 

In these studies, sequencing was typically carried out on high-throughput sequencers to 

generate billions of single-end or paired-end reads that are then aligned to the reference 

genome. Figure 2 shows short reads (paired-end) aligned against the reference genome. The 

number of reads that cover one site is defined as the depth or coverage of that site. The 

genotype of each site can be called using the information of the bases on the reads mapped that 

site. 
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Figure 2. Paired-end reads aligned to the reference genome. 
 

 

Although the methods for mutation detection differ in details, these studies all relied on 

comparing SNP calls across samples in their primary mutation screening. Several efficient 

analysis tools for NGS data have been developed. For example, the Genome Analysis Toolkit 

(GATK) (McKenna et al. 2010), is a suite of tools for sequence data processing and genotype 

calling, which provides a rich software library for developing additional analysis tools. The GATK 

Unified Genotyper and other SNP calling programs perform well on calling genotypes for 

homogeneous samples such as blood and normal tissues. However, in cancer genomes, sample 

cells taken from a tumor tissue may include non-cancer cells. Additionally, cancer cells in a 

tumor sample can be heterogeneous with respect to somatic mutations. Therefore, a somatic 

mutation may exist only in a fraction of cells in a tumor sample, decreasing the likelihood of 

detecting it through genotype calls. The resulting allelic imbalance may also lead to tumor 

genotype calls being flagged as problematic and excluded from analysis.  

There are a few existing tools for detecting somatic mutations. However, they mostly 

rely on genotype calls for tumor samples. For instance, VarScan (Koboldt et al. 2009) screens 

data for mutation sites by comparing genotype calls between normal and tumor samples, and 
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SomaticSniper (Mardis et al. 2009) uses a genotype likelihood model (Li et al. 2009) to calculate 

the probability that the tumor and normal genotypes are different. VarScan (Koboldt et al. 2009) 

does use allele frequency information to evaluate significance, but only for sites that show 

genotype difference between normal and tumor samples. 

 

Related Chapters 

Chapter IV presents SampleSeq, an algorithm for enriching the yield of rare or 

uncommon disease alleles in a sample of unrelated study subjects by choosing subjects 

according to their observed associated alleles and trait information. When multiple regions are 

to be sequenced, SampleSeq selects subjects with a balanced representation of all the regions. 

SampleSeq can also estimate the sample size required to detect a hypothetical disease allele, 

and thus can optimize a resequencing study to preserve resources for subsequent genotyping or 

other investigations. 

Chapter V introduces two novel algorithms for detecting two major types of somatic 

mutations, base substitution and loss of heterozygosity (LOH), by directly examining the 

sequence reads of tumor samples. We applied our methods, named Somatic Mutation Gleaner 

(SMUG), to whole exome sequencing data of eight breast cancer tumors and their matched 

blood samples, and detected somatic mutations that are missed by comparison of genotype 

calls between normal and tumor samples. 
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CHAPTER I 

 

ANALYSIS OF ENZYME KINETIC DATA FOR mtDNA REPLICATION1 

 

Introduction 

 

The Function of Polymerase Gamma 

Mitochondrial polymerase gamma is the sole DNA polymerase active in mitochondria 

(Kaguni 2004) and is responsible for the replication of mitochondrial DNA (mtDNA). Vertebrate 

polymerase gamma is composed of two subunits: a catalytic core, Pol γ-α, that contains the DNA 

polymerase and 3’-5’ exonuclease activities, and an accessory subunit, Pol γ-β, which enhances 

catalytic activity and serves as a processivity factor during DNA synthesis (Fan et al. 2006). 

The function of polymerase gamma is the replication of a complete mitochondrial DNA 

molecule, while the enzyme kinetics data for polymerase gamma are at the level of individual 

reactions at the base-pair level. To bridge the large gap between the enzyme kinetics data and 

the final product of a replicated DNA molecule, I build a computational simulation that can 

reproduce each individual reaction of the polymerase activity at the lowest level for which we 

have experimental data on the relevant reaction kinetics of the polymerase. The simulation can 

repeat this process for the several tens of thousands of reactions necessary for the replication of 

a single strand of human mtDNA. Since mutations introduced through polymerase errors are of 

great practical interest, we need to use a stochastic simulation approach that will allow such 

                                                           

1 Song, Z., and Samuels, D. C. (2010). Analysis of enzyme kinetic data for mtDNA replication. 
Methods 51(4), 385-391. Author contributions: Conceived and designed the experiments: ZS DCS. 
Performed the experiments: ZS. Analyzed the data: ZS DCS. Wrote the paper: ZS DCS. 
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replication errors to occur with probabilities that are calculated from the experimentally 

measured enzyme kinetics. 

 

The Gillespie Algorithm 

The Gillespie algorithm is a well-known Monte Carlo simulation method for chemical 

reactions (Gillespie 1976). This algorithm takes a defined list of possible reactions and uses the 

reaction rates, based on the measured enzyme kinetics data and the substrate concentrations, 

to calculate the probability of each reaction on the list. These probabilities are then used to 

randomly choose the sequence of reactions which occur. The original Gillespie algorithm is 

particularly useful for simulating reactions involving a small number of molecules, while more 

elaborate and approximate versions of the basic algorithm have been created in order to handle 

large numbers of molecules (Cao and Samuels 2009). 

Traditional continuous and deterministic biochemical rate equations are modeled as a 

set of coupled ordinary differential equations but these methods rely on bulk reactions that 

require the interactions of millions of molecules. In contrast, the Gillespie algorithm allows a 

discrete and stochastic simulation of a system with few reactants because every individual 

reaction is explicitly simulated. The physical basis of the Gillespie algorithm is the collision of 

molecules within a reaction vessel where the reaction environment is assumed to be well mixed. 

The general Gillespie algorithm can be summarized by the following series of steps: 

Step 1, Initialization: Initialize the number of molecules in the system, the reaction 

kinetics constants, and the random number generators. 

Step 2, Calculate Reaction Probabilities From Reaction Rates: Based on the substrate 

concentrations and the enzyme kinetics data, reaction rates Ri are calculated for each possible 

reaction, where i is an index denoting the particular reaction from the reaction list. The 
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probability Pi for each reaction is then calculated from the list of n reaction rates through the 

following equation. 

/i i totalP R R   (1) 

The parameter Rtotal is the sum of all of the reaction rates, as follows. 

1

n

total j

j

R R


   (2) 

Note that the sum of the probabilities is 1, with this definition. 

Step 3, Choose A Reaction: Use a pseudo-random number generator to generate a 

uniform random number rreaction in the range [0,1] and use this random number to choose the 

one reaction that occurs from the list of n possible reactions. The reaction number j is chosen if 

it satisfies the following condition. 

1

1 1

j j

i reaction i

i i

P r P


 

     (3) 

Then a second uniform random number rtime, also in the range [0,1] is chosen. This 

random number is used to set the time τ required for this reaction by the following equation. 

   1/ lntotal timeR r     (4) 

It is important to note here that the sum of all of the reaction rates is used in defining 

the time τ, not just the rate of the one particular reaction that was chosen. 

Step 4, Update the Variables: Increase the time by τ. Update the molecule count based 

on the reaction that occurred. 

Step 5, Iterate the Process: Check to see if any stopping condition has been met. If not, 

return to step 2 to recalculate the reaction rates, which may have changed due to the reaction 

chosen and carried out in steps 3-4. 
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These five steps define the basic Gillespie method for stochastic simulation. For 

applications of the stochastic simulation that involve large numbers of interacting molecules this 

basic method is inefficient in many ways, though it is an exact solution of the relevant stochastic 

master equation. In those cases more advanced and efficient methods should be used (Cao and 

Samuels 2009). However, for modeling polymerase gamma activity we are generally concerned 

with only a single enzyme molecule, the one molecule of polymerase gamma that is replicating a 

particular strand of mtDNA. In this special case, the simple Gillespie algorithm outlined above is 

the preferred simulation method. 

 

Applying the Gillespie Algorithm to Polymerase Gamma 

 

The Gillespie algorithm is fundamentally a way of analyzing the outcome of a set of 

defined reactions which are competing with each other. The heart of this method is the 

definition of the reaction list. As we stated above, the function of polymerase gamma is 

complicated, and the reaction list could conceivably be defined in many different ways. 

However, our purpose is the analysis of the measured enzyme kinetics data, and for that 

purpose the available kinetics data are the primary determinant of the level of the reaction that 

can be modeled. There is no doubt that many of these kinetics values actually represent the 

cumulative effect of a number of subreactions. But unless there are enzyme kinetics data 

available for these subreactions, it is futile to attempt to model the subreactions. The available 

experimental kinetics data determine the lowest level of reactions which can be modeled 

reasonably. 

Some DNA polymerases, such as the bacteriophage T7 DNA polymerase, have had their 

kinetics examined in great detail by transient-state analysis of single nucleotide incorporation 
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(Patel et al. 1991). However, the kinetics of the mitochondrial DNA polymerase gamma have not 

been measured in that high level of detail. A series of papers from the Johnson group (Johnson 

and Johnson 2001; Johnson and Johnson 2001; Johnson et al. 2001; Johnson et al. 2000) have 

reported kinetic parameters for polymerase gamma at the level of polymerization, exonuclease 

and the disassociation of the polymerase gamma holoenzyme from the mtDNA molecule. Based 

on these experiments, we have developed a stochastic model to simulate the replication of an 

individual strand of mtDNA based on the Gillespie algorithm (Wendelsdorf et al. 2009). This 

model operates at the level of individual nucleotide insertions in the new DNA strand, using a 

reference mtDNA sequence (generally the human reference sequence) for the template strand.  

Of course, polymerase gamma does not operate in a vacuum. It uses 

deoxyribonucleoside triphosphates (dNTPs) as substrates and these chemicals are created 

through some combination of a salvage pathway within mitochondria and the transport of 

substrates or their precursors into mitochondria from the cytoplasm (Bradshaw and Samuels 

2005; Saada 2004). One must choose an artificial boundary for every computational model and 

events outside of that boundary are ignored in the model. In the following description we will 

assume that only the actions of polymerase gamma are modeled and that the concentrations of 

the dNTPs within the mitochondria are held constant. Alternatively, one could reasonably 

extend the model to include the reactions of the salvage pathway. A practical limitation on this 

extension of the model is our current lack of knowledge of the correct transport kinetics of 

deoxyribonucleotides between the cytoplasm and the mitochondrial matrix (Kang and Samuels 

2008). Another alternative would be to extend the model to include the function of other 

proteins critical to mtDNA replication, such as the helicase (Kaguni 2004). All such extensions of 

the model are limited by the availability of kinetics data for the relevant enzymes. 
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Definition of the Reaction List for Polymerase Gamma 

In this model, polymerase gamma carries out four basic classes of reactions: DNA 

polymerase activity (inserting a correct or incorrect nucleotide into the new DNA strand), 

exonuclease activity (removing a nucleotide from the new DNA strand), disassociation of the 

polymerase from the DNA, and reassociation of the polymerase with the DNA molecule. In the 

DNA polymerase reaction a single nucleotide is added to the new DNA strand. This nucleotide 

may be the correct base indicated by the template strand, or it may be an incorrect one which 

does not complement the template. In the exonuclease reaction one nucleotide is removed 

from the new DNA strand. Again the removed nucleotide may be either a correct match to the 

template strand or an incorrect match. The exonuclease reaction is an error correction 

mechanism, as the rate for removal of incorrectly incorporated nucleotides is faster than that 

for correctly incorporated nucleotides. In the disassociation reaction the polymerase 

holoenzyme separates from the DNA molecule. The reassociation reaction re-attaches the 

polymerase to the DNA molecule after a disassociation event occurs. 

In our basic model of polymerase gamma function at each position on the replicating 

mtDNA strand polymerase gamma will randomly undergo one of a set of six reactions; one 

correct polymerase reaction, three incorrect polymerase reactions, the exonuclease reaction, or 

disassociation (Figure I.1). Which reaction polymerase gamma undergoes at each time is 

determined by the probability of each reaction, calculated using the reactions rates as 

introduced in the Gillespie algorithm (Gillespie 1976) and described above. The probability for 

each possible reaction is proportional to the reaction rate, so that fast reactions occur more 

often than slow reactions. Currently, kinetics data for the reassociation reaction rate for 

polymerase gamma are not available to the best of our knowledge. For this model we assume 

that once disassociation occurs the only possible reaction is then reassociation of the 
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polymerase with the DNA template. Considering the lack of kinetics for the reassociation 

reaction, we make the choice to immediately reassociate the polymerase to the DNA after a 

disassociation event. This choice neglects the time that this reassociation event requires, but 

without kinetics data for this reaction little else can be done. 

 

 

 
 

Figure I.1. Diagram of the six basic competing reaction of the mitochondrial DNA polymerase. 
 

 

Michaelis-Menten kinetics were used for all of the DNA polymerization reactions. The 

exonuclease reaction and the disassociation reaction were set to have constant reaction rates 

based on the experimental data. For the two scenarios of a correctly inserted and incorrectly 

inserted previous nucleotide we have separate sets of kinetic parameters from Lee and Johnson 

(Lee and Johnson 2006) and Johnson and Johnson (Johnson and Johnson 2001; Johnson and 

Johnson 2001). These studies have reported an increase in exonuclease and disassociation rates, 

but a decrease in incorporation rates by polymerase gamma following an incorrect 
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incorporation. This is included in the simulation model by using two sets of enzyme kinetics 

parameters, one set for reactions following a correct incorporation and another set for reactions 

following an incorrect incorporation. The full set of enzyme kinetics data used in the model is 

listed in Tables I.1-I.5, which are reproduced from reference (Wendelsdorf et al. 2009). Details 

of how the parameter values were set or estimated based on experiments are given in the next 

section “Enzyme Kinetics Data” on pages 26-32. 

 

 

Table I.1. Kinetic parameters kcat (s
-1) for base pairings when the previously inserted nucleotide 

pair is a correct Watson-Crick pair ordered by template strand (rows) and the new strand 
(columns). 
 

Base pairings T G C A 

A 25 0.08 0.1 0.0036 
C 0.012 37 0.003 0.1 
G 0.16 0.066 43 0.042 
T 0.013 1.16 0.038 45 

 
Table I.2. Kinetic parameters Km (μM) for base pairings when the previously inserted 
nucleotide is a correct Watson-Crick pair. The array order is the same as in Table I.1. 
 

Base pairings T G C A 

A 0.6 800 540 25 
C 180 0.8 140 160 
G 200 150 0.9 250 
T 57 70 360 0.8 
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Table I.3. Estimated kcat (s
-1) kinetic parameters for base pairings when the previously inserted 

nucleotide forms a non-Watson-Crick pair. The array order is the same as in Table I.1. 
 

Base pairings T G C A 

A 0.52 0.00052 0.00052 0.00052 

C 0.00052 0.52 0.00052 0.00052 

G 0.00052 0.00052 0.52 0.00052 

T 0.00052 0.00052 0.00052 0.52 

 
Table I.4. Estimated Km (μM) kinetic parameters for base pairings when the previously inserted 
nucleotide forms a non-Watson-Crick pair. The array order is the same as in Table I.1. 
 

Base pairings T G C A 

A 404 40400 40400 40400 

C 40400 404 40400 40400 

G 40400 40400 404 40400 

T 40400 40400 40400 404 

 
Table I.5. Reaction rates for the exonuclease and disassociation reactions of polymerase 
gamma when the previous base pair is a Watson-Crick pair or a non-Watson-Crick pair. 
 

Previous base pairs Exonuclease rate (s-1) Disassociation rate (s-1) 

Watson-Crick pair 0.05 0.02 
Non-Watson-Crick pair 0.4 0.2 

 

 

Modified Nucleotide Reactions 

The reaction list illustrated in Figure I.1 may be considered as a minimum list of 

reactions needed to model the activity of polymerase gamma. This list can be extended in a 

number of different ways. In addition to the four natural deoxyribonucleotide tri-phosphate 

substrates, several chemically altered forms of these substrates can also interact with 

polymerase gamma, albeit with altered, and generally poorer, enzyme kinetics. One important 

class of these chemically altered substrates is the nucleoside analogs commonly used in the 

treatment of HIV infection. Many of these medications have mitochondrial toxicity (Anderson et 

al. 2004; Lewis et al. 2003) which may be due to their interaction with polymerase gamma 

(Hanes et al. 2007; Johnson et al. 2001; Kaguni 2004; Martin et al. 1994; Wendelsdorf et al. 2009) 
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and their subsequent incorporation into mtDNA, generally causing the disruption of the mtDNA 

replication event. Due to this toxicity, which is very important in the long-term treatment of HIV 

infection, the kinetics data for the interaction of many nucleotide analog drugs have been 

measured (Feng et al. 2004; Hanes and Johnson 2007; Hanes et al. 2007; Johnson et al. 2001) 

(see Table I.6, reproduced in part from reference (Wendelsdorf et al. 2009). Details on how the 

parameter values were set or estimated based on experiments are given in the next section 

“Enzyme Kinetics Data” on pages 32-33). 

 

 

Table I.6. Enzyme kinetics parameter values used for polymerase gamma reactions with 
clinically relevant nucleoside analog drugs. 
 

NRTI Km (μM) Kcat (s
-1) Exonuclease rate (s-1) Disassociation rate (s-1) 

ddC 0.041 0.660 <0.00002 0.02 
ddA 0.022 0.310 0.0005 0.02 
FIAU 2.9 24 0.06 0.02 
d4T 0.045 0.24 0.0004 0.02 
FTC(+) 0.79 0.84 0.0048 0.02 
3TC(-) 9.2 0.125 0.015 0.02 
3TC(+) 1.5 0.35 0.02 0.02 
Acyclovir 6 1.03 0.0021 0.02 
ddI 6.3 0.15 0.0007 0.02 
TDF 40.3 0.21 0.0007 0.02 
ABC 13 0.0018 0.0016 0.02 
AZT2001 187 0.2 0.001 0.02 
AZT2007 280 0.001 Not reported 0.02 
FTC(-) 62.9 0.0086 0.0048 0.02 
Enzyme kinetics data taken from references (Feng et al. 2004; Hanes and Johnson 2007; Hanes 
et al. 2007; Johnson et al. 2001). 
 

 

Based on these data, we have included these alternate substrates in a model of 

polymerase gamma function (Wendelsdorf et al. 2009). Other naturally occurring alternative 

substrates could also be modeled. The most important of these are arguably ribonucleotide tri-
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phosphates (Yasukawa et al. 2006) or oxidatively damaged substrates such as 8-oxo-dGTP 

(Pursell et al. 2008). The only practical limitation to the additional reactions that could be 

modeled is the availability of the reaction kinetics data for the new reaction. 

 

Enzyme Kinetics Data 

 

Michaelis-Menten kinetics for incorporation rates after a matched or an unmatched base pair 

The reaction kinetics for polymerization reactions are given in Tables I.1-I.4. The 

reaction rates for the polymerization are calculated using a standard Michaelis-Menten 

equation, using assumed values for the four dNTP substrate concentrations. The dNTP 

concentrations are the major parameters for the simulation, and the results of the simulation 

depend greatly on the pattern of these four concentrations. 

Given the complexity of polymerase gamma activity, it should not be surprising 

that even with the large set of kinetic parameters that have been measured our 

knowledge of the relevant enzyme kinetics parameters for this enzyme is still 

incomplete. For example, the data used in Tables I.1 and I.2 was measured only in the 

case where the previous base pair was an A:T pair. In principle the reaction rates could 

be different for other preceding bases, however in the absence of this data we have 

applied these reaction kinetics to all cases where the previous base pair is a standard 

Watson-Crick pairing. The data on kinetics following a non-Watson-Crick base pair are 

even more limited. The kcat and Km values reported by reference (Johnson and Johnson 

2001) for this case were only determined for the correct pairing of a C opposite to a G in 

the template strand, where the previous base pairing was an incorrect T:T pairing. The 

kinetics values for other pairings, such as an A opposite to a T, are not available, and the 
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kinetics for any incorporations following incorrect pairings other than T:T are also not 

available. The last point is of perhaps great practical importance since the incorrect T:T 

pairing represents an A to T (or T to A) transversion, which is actually a rare event in 

mitochondrial DNA. It would be far more valuable to have kinetics after a G:T incorrect 

pairing, as this represents the very common A to G transition mutation. One important 

application of this analysis of the kinetics data for polymerase gamma is to discover such 

limitations in the experimental data. 

Since there are holes in the available experimental data for polymerase gamma, we 

must make some practical assumptions to fill these holes. We defined an approximate model by 

setting the kinetic coefficients for all correct incorporations following an incorrect incorporation 

to be equal (Table I.3 and I.4) to the values reported for the C:G pairing. Reaction kinetics for the 

incorporation of an incorrect nucleotide following an incorrect nucleotide are not available at all, 

to the best of our knowledge. To fill this gap we chose to assume values for these missing 

parameters (Table I.3, off-diagonal elements) based on the observation from Table I.1 that kcat 

values were approximately 1000 times less for non-Watson-Crick pairing compared to regular 

Watson-Crick pairings. Similarly, based on Table I.2 Km values were estimated to be 

approximately 100 times greater for the non-Watson-Crick pairings and this was used to 

estimate Km values in Table I.4 for the off-diagonal elements. 

 

Reaction rates for the exonuclease and disassociation reactions 

Reaction rates for the exonuclease and disassociation reactions of polymerase gamma 

are listed in Table I.5. As with the polymerase reaction, the exonuclease and disassociation 

reaction rates were measured for the two DNA template conditions where the previous base 

pair was a Watson-Crick pair or a non-Watson-Crick pair. 
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Reassociation of the polymerase with the DNA 

Data regarding the reassociation reaction rate is not available to the best of our 

knowledge. For this model we assume that once disassociation occurs the only possible reaction 

is reassociation of the polymerase with the DNA template. That reassociation is modeled as 

occurring immediately, since we lack any experimental data on this process. 

 

Details of the Experiments Measuring the Enzyme Kinetics of Polymerase Gamma 

 

One must take care to consider the idealized conditions under which the experiments 

measuring the enzyme kinetics of polymerase gamma were conducted. Differences between 

these idealized conditions and the real in-vivo conditions must always be kept in mind. In this 

section we summarize the conditions of the experiments as described in references (Johnson 

and Johnson 2001; Johnson and Johnson 2001; Johnson et al. 2001; Johnson et al. 2000; Lee and 

Johnson 2006). 

 

The polymerization rate kinetics 

Lee and Johnson examined each incorporation of a nucleotide into the new mtDNA 

strand by polymerase gamma under all possible 16-base pair combinations conditions using 

synthetic DNA oligonucleotides and a recombinant holoenzyme of human mitochondrial DNA 

polymerase gamma. The recombinant holoenzyme consisted of a catalytic subunit containing a 

29-amino acid truncation and an accessory subunit containing a His6 tag and a 56-amino acid 

terminal truncation. The catalytic and accessory subunits were combined at a molar ratio of 1:5 

to saturate the binding to reconstitute the holoenzyme. The kinetics of incorporation for all 

correct nucleotides were similar, with an average Kd of 0.8 μM and an average kpol of 37 s-1. 
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However, the kinetics of misincorporation varied widely. The ground state binding Kd of 

incorrect bases ranged from a low of 25 μM for an A:A mispair to a high of 360 μM for a C:T 

mispair. The rates of incorporation of incorrect bases varied from a low of 0.0031 s-1 for a C:C 

mispair to a high of 1.16 s-1 for a G:T mispair. (Lee and Johnson 2006) 

Johnson and Johnson created an exonuclease-deficient (EXO−) catalytic subunit to allow 

examination of the polymerization reaction in the absence of proofreading. Mutagenesis of Glu-

200 to alanine (E200A) produced a modified enzyme with reduced exonuclease activity of single 

base excision from duplex DNA, but this was shown to bind DNA and to catalyze the correct 

base pair insertion with kinetics identical to the wild type enzyme. This mutant polymerase 

gamma enzyme was treated identically to the wild type for purification and experimental 

purposes. The wild-type polymerase was used to determine polymerization parameters for 

correct incorporation after a correct Watson-Crick match, for exonuclease experiments, and for 

the disassociation kinetics measurements following mismatched DNA. The exonuclease deficient 

mutant polymerase gamma was used for measuring the enzyme kinetics for the correct 

incorporations after a Watson-Crick mismatch and for the enzyme kinetics of incorrect 

incorporations (Johnson and Johnson 2001). 

Johnson and Johnson preformed single nucleotide incorporation assays at various 

concentrations of the nucleotide substrates to examine the effects of nucleotide concentration 

on the incorporation rate. Burst conditions and a range of deoxyribonucleoside tri-phosphate 

(dNTP) concentrations were used to examine the enzyme kinetics for correct nucleotide 

incorporations. A reaction time course was determined for each concentration of nucleotide, 

and the product formation rate was plotted against time and fit to a burst equation. The burst 

rates (k) were then plotted against dNTP concentration and fit to a hyperbola to obtain the Kd 
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and the maximum rate of polymerization, kpol, for each correct dNTP (Johnson and Johnson 

2001). 

Because the rate of incorporation after a non-Watson-Crick pair was comparable to the 

rate of exonuclease by polymerase gamma, Johnson and Johnson used the EXO− polymerase to 

perform the experiment to determine the enzyme kinetics of a correct polymerization following 

an incorrect pairing. Incorporation of a dCTP was examined opposite a template G, following a 

T:T mismatch. The rate of the single turnover correct incorporation of dCTP was measured and 

the data were fit to a hyperbola, providing a Kd of 404 ± 51 μM and maximum incorporation rate 

of kpol = 0.52 ± 0.03 s-1 (Johnson and Johnson 2001). 

The wild-type human polymerase gamma cannot be used to measure the enzyme 

kinetics for incorrect polymerizations because the misincorporation is almost always corrected 

by the efficient exonuclease function. Therefore, Johnson and Johnson used EXO− polymerase 

gamma to measure the kinetics of incorrect polymerizations. In order to limit the effects of 

disassociation these experiments were carried out with high polymerase gamma concentrations 

in excess of the template concentrations so that whenever disassociations did occur a rapid 

reassociation of another polymerase molecule was likely to occur, “canceling out” the 

disassociation event (Johnson and Johnson 2001). For each incorrect nucleotide, Lee and 

Johnson plotted the reaction product formation against time and fit to a single exponential. 

They plotted rates of polymerization determined from the single exponential against nucleotide 

concentration and fit to a hyperbola to determine the disassociation constant, Kd, and the 

maximum rate of polymerization, kpol (Lee and Johnson 2006). 
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The exonuclease rate kinetics 

To measure the exonuclease reaction rate, Johnson and Johnson reconstituted the wild-

type polymerase gamma holoenzyme by mixing catalytic and accessory subunits in a 1:5 ratio. 

To quantify the excision reaction, the loss of full-length substrate primer due to exonuclease 

hydrolysis was plotted against time and fit to a single exponential (Johnson and Johnson 2001). 

To measure the exonuclease rate of polymerase gamma following a Watson-Crick matched base 

pair excision of the 3’-end base from the primer strand of correctly base-paired DNA was 

examined. The rate was obtained by fitting to a single exponential defining the kinetics of 

excision of the first base from the 3’-terminal of the primer and yielded a rate of 0.05 s-1 

(Johnson and Johnson 2001). 

To determine the effect of a mismatched non-Watson-Crick base pair on the 

exonuclease rate, Johnson and Johnson used three DNA substrates (containing a T:T, C:T or G:T 

mismatch) under conditions of excess polymerase concentration compared to template 

concentration. The decreases in concentrations of DNA were fit to single exponential curves. 

Excision of DNA containing the T:T, C:T and G:T mismatches occurred at rates of 0.40 ± 0.04 s-1, 

0.31 ± 0.01 s-1, and 0.57 ± 0.03 s-1 respectively (Johnson and Johnson 2001). Since these values 

are similar and kinetics data were not available for all possible mismatched pairs, in our 

simulations we have chosen the value 0.4 s-1 to represent the exonuclease rate for all 

mismatched base pairs. 

 

The disassociation rate kinetics 

The rate-limiting step of single nucleotide incorporation is presumably the 

disassociation of the polymerase enzyme from the DNA. The steady-state rate is determined by 

the slowest step during polymerization, which must occur after the chemical reaction to account 
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for the observation of a pre-steady-state burst. Therefore the DNA disassociation rate of 

polymerase gamma holoenzyme is assumed to equal its steady-state rate of polymerization. The 

reported disassociation rate of polymerase gamma after a correct Watson-Crick base pair is 0.02 

± 0.001 s-1 (Johnson et al. 2000). 

Johnson and Johnson used the EXO− polymerase to examine the rate of release of 

polymerase gamma from a mismatched DNA substrate. The data was fit to a single exponential 

and yield a koff of 0.18 ± 0.02 s-1 for DNA containing a 3’ T:T mismatch (Johnson and Johnson 

2001). This value is very close to the data listed in another paper (Johnson and Johnson 2001) 

that gave the disassociation rate of polymerase gamma after an incorrect non-Watson-Crick 

base pair as 0.2 s-1. 

 

Kinetics for nucleoside analogs substrates 

To measure Kd and kpol for each nucleoside analog triphosphate, Johnson et al. used an 

exonuclease-deficient (E200A) to reconstitute the human polymerase gamma holoenzyme. As in 

the previous sections, an excess of the polymerase was used in comparison to the template 

concentration. The kinetics of incorporation of nucleoside analog triphosphates were measured 

using this mutant, which was selected based upon studies showing that this single point 

mutation did not alter the kinetics of normal nucleotide incorporation (Johnson et al. 2001). To 

measure the exonuclease kinetics of polymerase gamma for nucleoside analog triphosphates, 

the wild-type polymerase holoenzyme was preincubated with DNA containing a 3’-terminal 

nucleoside analog to initiate the hydrolysis reaction (Johnson et al. 2001). No published study 

that we are aware of has been done to measure the disassociation rate of polymerase gamma 

following the incorporation of an analog triphosphate into the new mtDNA strand. With no 
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experimental data available, we assumed that the disassociation rates following an incorporated 

nucleoside analog were equal to the disassociation rates after a matched Watson-Crick pair. 

The lack of experimental data on the disassociation rate of polymerase gamma following 

the incorporation of a nucleoside analog into the mtDNA may seem like a trivial limitation, but 

the analysis of the enzyme kinetics data through the stochastic simulation shows that this rate is 

actually critical to our understanding of the mitochondrial toxicity of these drugs (Wendelsdorf 

et al. 2009). Since the chemical alteration of these drugs prevents further polymerization after 

the nucleotide analog is incorporated into the DNA strand (“chain termination”), only two 

competing reactions are left, the exonuclease reaction which removes the nucleoside analog 

and the disassociation reaction which ends the mtDNA replication and defines the chain 

termination event. Therefore the disassociation rate following the analog is a fundamental 

determinant of the chain termination probability of the drug. 

 

Problems 

 

As the previous two sections illustrate, the primary problem with using a stochastic 

simulation to analyze the enzyme kinetics of polymerase gamma is the incomplete reaction 

kinetics data. The function of the polymerase, as represented in this simulation model, depends 

on the competition between different reactions which have different reaction rates. The 

outcome of that competition depends on the complete set of reaction rates. A change in the 

reaction rate of any single reaction alters the probability of all of the reactions (see equation 1). 

While this is an explicit feature of the simulation method, it is also a very realistic one and we 

should expect that the same principle should hold for the function of the real polymerase 

enzyme. Lack of knowledge about one reaction does not just affect that one aspect of the 
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polymerase function. It can in principle affect the balance between all of the other reactions 

which compete with that reaction. One very important practical exception to this problem is if 

the reaction with missing enzyme kinetics data is expected to have a very slow reaction rate in 

comparison to the reactions competing with it. In that case, uncertainty in the reaction kinetics 

of that relatively very slow reaction may cause negligible alterations in the probabilities of the 

competing reactions. 

One important example of the limited kinetics data is that there is little data on how the 

template sequence may affect the reaction kinetics of polymerase gamma. As discussed earlier 

in section 3.1, the kinetics data that are currently available were taken from a very limited 

template of either a A:T pair or a T:T pair (to represent kinetics following a non-Watson-Crick 

pair). The lack of experimental data for other templates limits the ability of the model to analyze 

the potential effect of flanking sequences on mtDNA mutation rates, for example. 

 

Equipment 

 

No specialized hardware is required for carrying out these simulations. We have run the 

simulation code on both a relatively standard desktop PC under LINUX with a 4400 Intel CPU 

(dual core, 2.0 GHz with 2.0 GB of RAM) and on a central server (Intel Xeon CPU, 2.33 GHz). 

Typically, we simulate the replication of a single strand of mtDNA and repeat that simulate 

10,000 times in order to gather statistics on rare events, such as specific point mutations. On the 

central server a set of 10,000 simulated mtDNA strand replications would take approximately 10 

minutes of CPU time, and on the desktop PC would take approximately 20 minutes. The 

simulation that we wrote requires less than 7 MB of memory to run.  
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For software development, anyone wishing to carry out this model is faced with the 

basic choice of coding the algorithm in a standard programming language, or using one of 

several packages that exist for developing stochastic biochemical simulations. Two examples of 

these packages are StochKit (Li et al. 2008) and StochSim (Le Novere and Shimizu 2001). The 

advantage of using a prepared package such as these is that the basic algorithm is already 

written and debugged, and no programming knowledge is needed. However, much of the 

capabilities of the advanced packages, such as the relatively new StochKit, are aimed at 

developing approximate methods to handle simulations with large numbers of reacting 

molecules or to include spatial effects. These capabilities are not needed yet for a model of the 

polymerase gamma enzyme kinetics. Anyone using these packages must be careful to use the 

options which are relevant to this particular simulation, which will require at least some 

familiarity with the principles of stochastic simulations. We made the choice to write our own 

simulation code in C++. The decision to write our own code was based on the need for 

maximum flexibility in our definition of the model and in controlling the data output. 

The Gillespie algorithm yields a series of reaction events, chosen from the reaction list of 

the model. For complete information about the simulation, one can choose to save this data in a 

number of ways. One simple choice of format is illustrated in Table I.7. Each line in the file 

represents one reaction event. Column 1 gives the event number. Column 2 gives the sequence 

position of the polymerase. Column 3 gives the template base at that position, Column 4 gives 

the reaction event chosen by the Gillespie algorithm, where and “A”, “C”, “G”, or “T” means the 

insertion of that nucleotide into the new DNA strand, a “^” indicates a disassociation event, and 

a “<” indicates an exonuclease reaction. Column 5 gives the time τ for that step, as defined by 

equation 4. Finally, column 6 gives the sequence context of the event in the format “template / 
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new strand”. The total space needed for the file varies depending on the number of incorrect 

polymerization events which occur, but is generally in the range 0.5 to 1.0 MB. 

 

 

Table I.7. Example format for output file of the simulation. 
 

Event # Sequence position Template Reaction Reaction time, τ (s) Sequence context 

1012 990 T A 0.017525 AGT/TC 
1013 991 T G 0.0809195 GTT/CA 
1014 992 G ^ 3.73018 TTG/AG 
1015 992 G ^ 0.491668 TTG/AG 
1016 992 G < 0.82397 TTG/AG 
1017 991 T A 0.0055691 GTT/CA 
1018 992 G C 0.0246826 TTG/AA 

 

 

Carefully controlling the IO (the storage of data from the program onto the physical 

hard drive of the computer) is an important factor in the final speed of the code. This is a basic 

point, but it is also a common error. We chose to save in the RAM memory a time ordered list of 

every single reaction event that occurred in the simulation of the mtDNA strand, and then we 

analyzed that list for specific properties with a different analysis code, separate from the 

simulation code. It is a mistake to save each reaction event to a file on the hard drive as it is 

calculated in the simulation, as that process of initiating access to the file on the hard drive 

repeatedly a large number of times takes a very substantial amount of time. Instead, the list of 

reactions that occurred in a simulated mtDNA replication should be kept within the memory of 

the program and either downloaded to the hard drive in one piece at the end of the complete 

simulation run of a single strand replication or analyzed at the end of the simulation so that only 

summary statistics are saved to the hard drive. 
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In order to generate reliable statistics on rare events we run large numbers of repeated 

replications of a full mtDNA strand, typically 10,000 repetitions. Since a set of 10,000 mtDNA 

strand replications only takes about 10 minutes to run, and the disk space necessary for saving 

the 10,000 output files would be approximately 10 GB, we analyze the output of each simulated 

strand replication as it finishes, and then we save only the summary statistics for the specified 

quantity of interest for the full set of 10,000 simulated strand replications. These analysis 

programs were written in Perl, as the best choice for programs handling character data. 

 

Troubleshooting 

 

It is necessary to have quantitative and qualitative predictions against which the 

simulation output can be compared. There are statistical properties which the output data of 

the simulation must have, based on the assumptions of the algorithm. These properties should 

be used as checks to see if the algorithm has been properly implemented. 

 

The distribution of reaction times 

The simplest property to check is the distribution of the reaction times. From equation 4, 

the Gillespie algorithm assumes that the reaction times have an exponential distribution with a 

mean value of 1/Rtotal, where Rtotal is the sum of all of the competing reaction rates. If you have 

chosen to keep the dNTP concentrations constant, then the Rtotal will also be constant and the 

distribution of the reaction times calculated by the simulation should have an exponential 

distribution with a mean value of 1/Rtotal. We actually have two sets of reaction rates in this 

model, depending on whether the previous base was a correct Watson-Crick pairing or an 

incorrect Watson-Crick pairing. So for this test the reaction times should be separated into two 
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lists depending on whether the previous pairing was a Watson-Crick pairing or not. Each list of 

reaction times should have an exponential distribution with different means corresponding to 

the correct 1/Rtotal for that list, which can be calculated. 

 

The mutation pattern under equal dNTP concentrations 

When the four substrate dNTP concentrations are equal, it is easy to see from the 

experimental kinetics data in Table I.1 and I.2 that the incorrect polymerization event with the 

highest rate (and thus the greatest probability) is the polymerization of a G opposite to a T, 

forming an A to G transition mutation in the new strand. The second most common 

polymerization error should be the insertion of a T opposite to a G, forming the C to T transition 

on the new strand. All of the transversion mutations should occur at far lower rates than these 

two transition mutations, under equimolar dNTP concentration conditions. This can serve as a 

qualitative test of the accuracy of the simulation of the rare mutation events. Of course, if a 

different set of kinetics values are used than those given in Tables I.1 and I.2, then the 

prediction of the mutation pattern should change based on that data. 

 

Using the Simulation to Analyze Polymerase Gamma Enzyme Kinetics Data 

 

The process of the complete replication of a single strand of mitochondrial DNA by 

polymerase gamma is the result of tens of thousands of individual reactions. The exact sequence 

of reactions that occurs, the number and pattern of the point mutations introduced through 

polymerase errors, the number of exonuclease events and the number of disassociation events 

all have strong random components. The dependence of all of these important quantities on the 

basic measured kinetics of polymerase gamma is complex, and a direct stochastic simulation of 
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the polymerase activity, as described in this paper, is a thorough way of determining the end 

consequences of the measured kinetics values. This simulation should be thought of simply as 

an ordered way of determining the end result of a set of competing reaction rates. This process 

is of particular importance when one is considering the measured kinetics of a variant form of 

the polymerase gamma protein, which may be pathogenic. Many polymerase gamma variants 

are likely to have altered kinetics for more than one of the reactions illustrated in Figure I.1. The 

ultimate effect of multiple changes in the kinetic parameters of the polymerase may be quite 

difficult to predict correctly without the use of a simulation as a tool to test and examine 

hypotheses. 

 

Future Works 

 

Combined the pol γ replication model with a mitochondrial deoxynucleotide metabolism model 

A computational model of mitochondrial deoxynucleotide metabolism and mtDNA 

synthesis has been built (Bradshaw and Samuels 2005). The model includes the transport of 

deoxynucleosides and deoxynucleotides into the mitochondrial matrix space, as well as their 

phosphorylation and polymerization into mtDNA. Different cytoplasmic deoxynucleotide 

concentrations are used to represent different simulated cell types (cancer, rapidly dividing, 

slowly dividing, and postmitotic cells). In our pol γ replication model, the mitochondrial dNTP 

concentrations are fixed values which are not change during the replication. Considering that 

the mitochondrial dNTP pools are fairly stable, it’s a reasonable assumption. However, there are 

much less published data on concentrations of mitochondrial dNTP pools in patients. Most dNTP 

concentrations data were measured in cytoplasm. Therefore, in order to take the advantage of 

these available cytoplasmic dNTP pools data, we need to combine the two models together. By 
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building a combined model, we can analyze the effect of fluctuations of cytoplasmic dNTP pools 

on the replication fidelity of pol γ. 

 

Generalizing this stochastic replication model to other polymerases 

This computational stochastic model of replication of polymerase was designed for 

mitochondria pol γ. However, the model can be generalized to any replication process involving 

polymerase kinetics. One example is to simulate the template replication in Ion Torrent 

sequencer platform. 

Ion Torrent uses the simple sequencing chemistry including natural nucleotides, with no 

enzymatic cascade, no fluorescence, no chemiluminescence, no optics, and no light involved in 

reactions. Briefly, when a nucleotide is incorporated into a strand of DNA by a polymerase, a 

hydrogen ion is released as a byproduct. The charge from that ion will change the pH of the 

solution, which can be detected by ion sensor. Ion Torrent sequencer uses the world's smallest 

solid-state pH meter to transfer chemical information to digital information, and then call the 

base. 

Since there is no terminator, the replication of template strand by polymerase will 

continue without interruption. However, as more and more flow cycles occur, there will be 

more and more leading or lagging templates because replication is a dynamic process. Leading 

or lagging templates are those not in the same ‘phase’, which will cause signal noise called 

‘phase error’. To distinguish the real signal out of background noise and accumulated ‘phase 

error’ noise as the read length gets longer is a real challenge. Ideally, in each time period, if 

there is way to know how many percentage of signal coming from ‘phase error’, that will be 

much helpful to analyze the signal. And this is exactly what a stochastic simulation of replication 

can help us. 
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CHAPTER II 

 

REPLICATION PAUSES OF THE WILD-TYPE AND MUTANT MITOCHONDRIAL DNA POLYMERASE 

GAMMA: A SIMULATION STUDY2 

 

Introduction 

 

The holoenzyme of human pol γ consists of a catalytic subunit and a homodimer of its 

accessory subunit (Yakubovskaya et al. 2006). The catalytic subunit has DNA polymerase, 3’-5’ 

exonuclease and 5’ dRP lyase activities. The accessory subunit is required for tight DNA binding 

and processive DNA synthesis (Lim et al. 1999). Two modes of mtDNA replication have been 

proposed; an asynchronous strand displacement model (Brown et al. 2005; Shadel and Clayton 

1997) and a strand-coupled bidirectional replication model (Holt et al. 2000). 

The replication rate of DNA by a polymerase may not be stable. What is the relationship 

between replication pauses of pol γ and the commonly observed pathological phenotypes of 

mtDNA deletions and depletion? Theoretically, once a replication fork pauses, it can restart to 

continue the replication process without problems. But, a long pause might allow time for low-

probability events such as double strand breaks. A double strand break can be repaired through 

blunt-ended rejoining, or homologous annealing of 5’- and 3’-repeat sequences (Krishnan et al. 

2008), or nonhomologous end-joining (Graziewicz et al. 2006) that will form deleted mtDNA. If 

the double strand break cannot be fixed, it will cause a failed replication. Repeated failed 

                                                           

2 Song, Z., Cao, Y., and Samuels, D. C. (2011). Replication Pauses of the Wild-Type and Mutant 
Mitochondrial DNA Polymerase Gamma: A Simulation Study. PLoS Comput Biol 7(11). Author 
contributions: Conceived and designed the experiments: ZS DCS. Performed the experiments: ZS. 
Analyzed the data: ZS DCS. Contributed reagents/materials/analysis tools: YC. Wrote the paper: 
ZS DCS. Algorithm design: YC ZS. Software: ZS. 
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replications would eventually lead to depletion of mtDNA within the cell. These concepts are 

illustrated in Figure 1 of Introduction Section (page 3). Under the mentioned hypothetical 

mechanism, mtDNA deletions and depletion may both be potential outcomes from the same 

initial event, the pausing of the polymerase. Certainly, other mechanisms for deletion formation 

are also possible (Krishnan et al. 2008). 

Pathogenic mutations in POLG have been identified in patients with many neurological 

or muscular diseases (progressive external ophthalmoplegia (PEO), Alpers syndrome, ataxia-

neuropathy syndromes, idiopathic parkinsonism) and nucleoside reverse-transcriptase inhibitor 

(NRTI) toxicity (Copeland 2008; Hudson and Chinnery 2006). All these diseases were 

characterized by mtDNA deletions and/or depletion in symptomatic tissues (Chan and Copeland 

2009). 

Longley reported that PEO is associated with the depletion of mtDNA and/or the 

accumulation of point mutations and deletions within mtDNA, caused by autosomal dominant 

mutations in POLG (Longley et al. 2005). Nearly all of the autosomal dominant PEO (adPEO) 

mutations in POLG were located in the polymerase domain of pol γ. 

Alpers syndrome is a fatal early onset mitochondrial disorder characterized by tissue-

specific mtDNA depletion (Chan et al. 2005). People identified pol γ mutations in Alpers 

syndrome are either homozygous A467T (MIM 174763.0002) or heterozygous A467T paired in 

trans with other mutations in POLG (Ferrari et al. 2005; Naviaux and Nguyen 2004). 

The A467T mutation has been found in all of the major POLG related diseases (Chan and 

Copeland 2009). The frequency of the A467T mutation varies from less than 0.2% to 

approximately 1% in different European control populations (Horvath et al. 2006; Luoma et al. 

2005; Van Goethem et al. 2001; Winterthun et al. 2005). However in mitochondrial disease 

populations, the A467T allele was estimated to be the most common alleles associated with 
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POLG diseases (Chan and Copeland 2009). People have found the homozygous A467T 

substitution of POLG in several mitochondrial disorders with highly varied phenotypes. For 

example, in Alpers syndrome (Boes et al. 2009; Utzig et al. 2007), two unrelated teenage boys 

with homozygous A467T POLG had ataxia and severe epilepsy. In contrast, in a case of 

concurrent progressive sensory ataxia, dysarthria, and ophthalmoparesis (McHugh et al. 2010), 

two siblings also homozygous for POLG A467T developed disease symptoms only late in life, 

with onset in their 40s. 

The kinetic parameters of the A467T mutant for both polymerase and exonuclease 

activity have been measured experimentally (Chan et al. 2005). Compared to the wild-type 

catalytic subunit, the A467T substitution increased the Km of the enzyme 5-fold while also 

reducing the kpol value approximately 5-fold for DNA synthesis. As determined by the ratio of 

kpol/Km, the A467T substitution reduces DNA synthesis efficiency to 4% of the wild-type activity. 

In contrast, the exonuclease activity of the A467T variant is only decreased 2-fold compared to 

the wild-type (Chan et al. 2005). Besides altering the kinetics of polymerase γ, the A467T variant 

in POLG also decreases the protein’s physical association of the POLG2 subunit (Chan et al. 

2005). 

People created two independent homozygous knock-in mouse models with proof-

reading deficient versions of the catalytic subunit of mtDNA polymerases. One published in 2004 

(Trifunovic et al. 2004) and the other one in 2005 (Kujoth et al. 2005). Both mouse models 

showed similar progeria-like phenotypes and shared the same D257A mutation on the second 

exonuclease domain of PolgA (the mouse homolog of POLG) that caused a profound reduction 

of the exonuclease activity but no decrease in DNA polymerase activity. Both mouse models 

(Kujoth et al. 2005; Trifunovic et al. 2004) were reported to have accumulated mtDNA point 

mutations. 
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Using these two mouse models, other mitochondrial genome variations besides point 

mutation have been studied. For the first mouse model, after Trifunovic et al. (Trifunovic et al. 

2004) reported increased mtDNA deletion, Bailey et al. (Bailey et al. 2009) using one- and two-

dimensional agarose gel electrophoresis interpreted these non-replicating linear mtDNAs as the 

result of double-strand breaks of cyclic mtDNA caused by stalled replication intermediates. 

Ameur et al. (Ameur A. et al. 2011) further stated that mutator mice have abundant linear 

deleted mtDNA molecules but extremely low levels of circular mtDNA molecules with large 

deletions. For the second mouse model, Williams et al. (Williams et al. 2010) applying next-

generation sequencing to native mtDNA did not observe the accumulation of mtDNA deletions 

but instead reported multiple copies of the mtDNA control region in brain or heart. However, 

Vermulst et al. (Vermulst et al. 2008; Vermulst et al. 2009) have identified mtDNA deletions as a 

critical driving factor behind the premature aging phenotype in these mouse models and have 

suggested there is a homology-directed DNA repair mechanism directly linked to mtDNA 

deletion formation. As this description shows, the data on the amount of deletions in these two 

mouse models is currently mixed and this is a research area that is rapidly developing.  

To study the replication process of pol γ, we have built a computational model of the 

activity of pol γ (Song and Samuels 2010; Wendelsdorf et al. 2009) (Figure II.1), based on the 

experimental kinetic data. Our computational model of the mitochondrial DNA replication 

process was based on the Stochastic Simulation Algorithm (Gillespie 1976; Gillespie 1977), a 

well-known Monte Carlo simulation method for chemical reactions. Using this stochastic 

simulation, we were able to quantify the pause lengths for the wild-type polymerase and for the 

pathogenic A467T and the exonuclease deficient pol γ variants. 

 

 



 

45 

 

 
 

Figure II.1. Diagrams of the six competing reactions of pol γ. Example reaction rates are given 
below each reaction name. The line size approximately represents the reaction rate. The bigger 
the reaction rate, the wider the line. (A) For a correct previous base pair, the highest reaction 
rate by far is the correct polymerization. (B) For an incorrect previous base pair, the highest 
reaction rate is the exonuclease reaction, allowing proofreading. All reaction rates in this 
diagram are calculated for dNTP pool levels equimolar at 10 μM. 
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Methods 

 

Pol γ replication model 

In this model, pol γ carries out four basic types of reactions: DNA polymerase activity, 

exonuclease activity, disassociation of the polymerase from the DNA, and reassociation of the 

polymerase with the DNA molecule (Figure II.1). In the DNA polymerase reaction, pol γ adds one 

nucleotide to the new DNA strand. This nucleotide could be either a correct or incorrect (point 

mutation) base. In the exonuclease reaction, pol γ removes one nucleotide from the new DNA 

strand. The exonuclease reaction is an error correction mechanism, as the rate for removal of 

incorrectly incorporated nucleotides is much faster than that of correctly incorporated 

nucleotides, though the removal of both correct and incorrect nucleotides is allowed in the 

model. In the disassociation reaction, the polymerase separates from the DNA molecule. In the 

reassociation reaction (not shown in Figure II.1), the polymerase re-attaches to the DNA 

molecule after disassociation. 

At each position on the replicating mtDNA strand, pol γ randomly undergoes one of a 

series of six possible competing reactions: one correct polymerase reaction, three incorrect 

polymerase reactions, the exonuclease reaction, or disassociation (Figure II.1). Which reaction 

pol γ undergoes at each time is determined by the propensity of each reaction, calculated using 

the reaction rates following the selection formulae as introduced in Gillespie (Gillespie 1976; 

Gillespie 1977). The simulation was implemented in C++ and run under LINUX. 

Michaelis-Menten kinetics was used for all of the DNA polymerization reactions. The 

exonuclease reaction and the pol γ disassociation reaction were set to have constant reaction 

rates. For the two scenarios of a correctly inserted and incorrectly inserted previous nucleotide 

we had separate sets of kinetic parameters for each of the pol γ reactions taken from Lee and 
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Johnson (Lee and Johnson 2006) and Johnson and Johnson (Johnson and Johnson 2001; Johnson 

and Johnson 2001) (Tables 1.1-1.5). These studies have reported an increase in exonuclease and 

disassociation rates, but a decrease in incorporation rates by pol γ following an incorrect 

incorporation. This was included in the simulation model by using two sets of enzyme kinetics 

parameters, one set for reactions following a correct incorporation and another set for reactions 

following an incorrect incorporation. For an extended description of the simulation model, 

please see the Methods paper by Song and Samuels (Song and Samuels 2010). 

 

Simulation method 

In each simulation step, this algorithm calculates the propensity of each reaction and 

generates two random numbers to determine the time between reactions and the identity of 

the next reaction. The original Gillespie algorithm (Gillespie 1976; Gillespie 1977) calculates 

propensities based purely on the substrate species’ population (i.e. integer copy number). In our 

method, since we are only concerned with the dynamics of pol γ, we do not have to convert the 

state variable of every species to its copy number. In this way, the propensity functions are 

calculated from the same formula as the reaction rates for the involved competing reactions. 

These propensities were then used to randomly choose the sequence of reactions that occur, at 

the level of individual molecular reactions following the Gillespie algorithm. 

 

Pol γ kinetics parameters 

Given the complexity of pol γ activity, it should not be surprising that even the large set 

of pol γ kinetic parameters that have been measured is still incomplete. The data used in Tables 

1.1 and 1.2 was measured only in the case where the previous base pair was an A:T. In principle 

the reaction rates could be different for other preceding bases, however in the absence of this 
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data we have applied the measured reaction kinetics to all cases where the previous base pair is 

a standard Watson-Crick pairing. The data on kinetics following a non-Watson-Crick base pair 

are even more limited. The kpol and Km values reported (Johnson and Johnson 2001) for this case 

were only determined for the correct pairing of a C opposite to a G in the template strand, 

where the previous incorrect base pairing was a T:T. We define an approximate model by setting 

the kinetic coefficients for all correct incorporations following an incorrect incorporation to be 

equal to this reported value (Tables 1.3 and 1.4). Reaction kinetics for the incorporation of an 

incorrect nucleotide following an incorrect nucleotide are not available, to the best of our 

knowledge. Values for these parameters in the model (Table 1.3, off diagonal elements) were 

based on the observation from Table 1.1 that kpol values were approximately 1000 times less for 

non-Watson-Crick pairing compared to regular Watson-Crick pairings. Similarly, based on Table 

1.2 Km values were estimated to be approximately 100 times greater for the non-Watson-Crick 

pairings and this was used to estimate Km values in Table 1.4 for the off-diagonal elements. 

There are currently two main groups (Chan et al. 2005; Johnson and Johnson 2001) that 

have independently measured the kinetics of wild-type polymerase γ. One (Johnson and 

Johnson 2001) employed pre-steady state measurement using single-turnover analysis to 

determine dNTP incorporation rate kpol and the dissociation constant Kd of dNTP to bind to the 

polymerase-primer-template complex. The other one (Chan et al. 2005) employed steady state 

kinetic measurement that assumes that the complex of polymerase, primer and template 

behaves as a single enzyme and fit the data to Michaelis-Menten function to determine its kcat 

and Km. There are some disagreements of kinetic values between these two measurements and 

this inconsistency has recently been further addressed in the literature (Estep and Johnson 

2011). We chose not to mix values of wild-type polymerase γ from different measurement 
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techniques, and instead we chose to continue to use the pre-steady state values (Johnson and 

Johnson 2001), as we have in several previous publications. 

However, the A467T variant kinetics have only been published using the steady state 

measurement technique (Chan et al. 2005). To make the most reasonable estimation of the 

A467T kinetics based on published values consistent with the experimental methods (Johnson 

and Johnson 2001; Johnson and Johnson 2001) used to determine the wild-type POLG kinetics, 

we followed the observation of Bertram et al (Bertram et al. 2010) that even when polymerase 

enzyme kinetics measurements from different measurements were not in agreement, the 

dimensionless ratios of those kinetics constants often were in agreement. The A467T mutant 

enzyme is reported to have only 4% of wild-type DNA polymerase activity (the kcat decreased 5-

fold and Km increased 5-fold compared to the wild-type) and 50% of the wild-type exonuclease 

activity (Chan et al. 2005). We used these proportions to estimate the A467T variant kinetics 

based on the wild-type kinetics measured by pre-steady state methods (Johnson and Johnson 

2001; Johnson and Johnson 2001). Finally, we modeled an idealized exonuclease deficient 

polymerase by setting the exonuclease activity to zero and keeping the other kinetics values at 

the wild-type values. The exonuclease deficient mice are reported to have normal DNA synthesis 

capacity, but no detectable exonuclease activity (Trifunovic et al. 2004). 

Data regarding the reassociation reaction rate is not available to the best of our 

knowledge. For this model we assume that once disassociation occurs the only possible reaction 

is then reassociation of the polymerase with the DNA template. Without reaction kinetics, the 

time required for this reaction cannot be calculated and is not included in this model. This 

approximation is not important to our results reported here on point mutation rates. The time 

required for reassociation would extend even further the pol γ pausing times that we estimate 

based on the computational model. 
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Substrate Concentrations 

The polymerization reaction rates are functions of the deoxyribonucleotide triphosphate 

(dNTP) concentrations. However, concentrations of dNTP pools in mitochondria vary in different 

species, tissues, cell types and cell cycle phases. Measured dNTP pools in mitochondria of 

quiescent and cycling human fibroblasts are listed in Table II.1 (Ferraro et al. 2005). The units of 

picomoles per 106 cells were converted to μM by using an assumed 200 femtoliters of 

mitochondrial volume per cell (0.2 femtoliters each mitochondria, 1000 mitochondria per cell) 

(Pollak and Munn 1970). The four dNTP concentrations can be set individually in the model. In 

all cases reported here we have kept the four dNTP levels equal at concentrations of either 1 or 

10 μM to approximately represent the conditions of postmitotic and dividing cells respectively 

(Ferraro et al. 2005). The dNTP levels were held constant throughout the simulated mtDNA 

replication. 

 

 

Table II.1. Concentrations of dNTP pools in mitochondria of different human cells.  
 

dNTP (μM) Quiescent skin fibroblasts Cycling skin fibroblasts 

dATP 5.6 14.3 
dCTP 2.5 20.4 
dGTP 1.3 4.6 
dTTP 1.5 19.9 

Data taken from references (Ferraro et al. 2005) 
 

 

mtDNA sequence 

Vertebrate mitochondrial DNA has a highly asymmetric G content. The low-G strand is 

labeled the light strand, with the complement strand called the heavy strand. Sets of simulations 

were carried out separately for the light strand sequence (GenBank NC_001807) and the heavy 
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strand sequence, formed by inverting and complimenting the light strand sequence. We found 

no significant difference in the results reported in this paper between the light strand and the 

heavy strand. The data reported here are based on replication of the heavy strand, which takes 

the light strand as the template. 

 

The time required for a single forward step 

We define the time for pol γ to move from sequence position i to the next position i+1, 

which could include multiple intermediate reaction events, as the “single forward step time”. 

For each simulated mtDNA strand replication, there are 16,570 single forward steps and 16,570 

time intervals. We choose the longest single forward step time to represent the worst 

polymerase pausing event that happened in the strand replication simulation. 

 

The number of simulations 

We have three types of pol γ (the wild-type, A467T and exo-) and two cell type 

conditions (dividing and postmitotic). Since the model is stochastic, the results vary between 

runs with identical parameter values. For each one of the six scenarios, we ran the simulation 

10,000 times to determine the probability distribution of the model results. 
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Results 

 

We modeled three types of pol γ, the wild type and two mutants (the human 

pathogenic variation A467T and the completely exonuclease deficient form exo-). With 

frequencies of the A467T variant in different European control populations of 0.2-1% (Horvath 

et al. 2006; Luoma et al. 2005; Van Goethem et al. 2001; Winterthun et al. 2005), the naturally 

occurring heterozygous A467T alone, without paring in trans with other mutations in POLG, 

causes only mild, if any, pathogenic phenotypes (Ferrari et al. 2005; Naviaux and Nguyen 2004; 

Nguyen et al. 2005; Van Goethem et al. 2004). An exonuclease deficient POLG has never been 

reported naturally in humans or mice This severe POLG variant only occurs in the genetically 

engineered mouse models (Kujoth et al. 2005; Trifunovic et al. 2004). Our hypothesis is that the 

pathogenic severity of a mutated pol γ depends on its susceptibility to replication fork pauses, 

not just its rate of point mutation formation. 

 

The single strand replication time 
We began by measuring the full replication time of a single strand of mtDNA in this 

computational model. The replication time of a single strand is defined simply as the time 

needed for the simulation model to complete the replication of all 16,571 base pairs in the 

mtDNA reference sequence. 

 

 



 

53 

 

 
Figure II.2. Probability distribution of the replication time of a single strand of mtDNA. In these 
examples, the light strand was used as the template. (A) dNTP pool levels equimolar at 10 µM, 
representing dividing cells. The median values of the replication time distributions of the wild 
type (WT, black dots), exo- (magenta open circles), and the A467T variation (blue open triangles) 
are 563 s, 1837 s, and 3355 s respectively. (B) Equimolar 1 µM dNTP concentrations. The median 
values of the distributions of the WT, exo-, and A467T variant are 849 s, 2946 s, and 11465 s 
respectively. 
 

 

After running 10,000 simulations of replication of a single strand, the probability 

distributions of the replication time of wild-type and mutated pol γ are calculated (Figure II.2).As 

expected from the enzyme kinetics, the naturally occurring mutant A467T simulation had a 

much longer replication time than the wild-type pol γ simulation. However, surprisingly, the 

severe pathogenic mutant exo- had a highly variable replication time, ranging from times only 

slightly longer than that of the wild-type to replications taking longer than the A467T mutant 
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simulation. In contrast, both the wild-type and A467T simulations had very tight distributions, 

meaning that the replication time had little random variation. Under the condition of dividing 

cells (Figure II.2A, dNTP = 10 μM), the polymerase reaction rate of the A467T variant is 

approximately 7 times slower than the reaction rate of the wild-type pol γ. Considering the 

difference of kinetics values, the median strand replication time of 564 seconds for the wild-

type and 3355 seconds for the A467T variant were reasonable. 

Compared to dividing cells, postmitotic cells have lower dNTP levels and therefore pol γ 

in these cells has a lower polymerization rate and the replication process proceeds more slowly. 

Under this condition, we expected to see longer strand replication time (Figure II.2B, dNTP = 1 

μM). The median of strand replication time of wild-type pol γ increased 1.5-fold to 849 seconds, 

compared to the rate at dNTP = 10 μM. For the exo- variant, the median replication time 

increased similarly from 1837 to 2946 seconds. For the A467T variant, the median replication 

time increased 3.4-fold to 11,465 seconds (3.2 hours). 

 

The time required for the slowest single forward step of the polymerase 

The total replication time (Figure II.2) is an average quantity, representing the summed 

effect of often tens of thousands of reactions. Pathogenic effects, such as deletion formation, 

may be more directly related to extreme single events that occur during the replication process 

than to this average quantity. To measure this, for each simulated mtDNA strand replication we 

recorded the time required for the longest single forward step of the polymerase (Figure II.3). 

See the Methods section for a precise definition of this measure. We interpret these slowest 

forward steps in the polymerase activity as polymerase pauses. 
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Figure II.3. Frequency distribution of the time required for the longest single forward 
step. The median values of each curve are shown. (A) High dNTP level representing 
dividing cells. (B) Low dNTP levels representing postmitotic cells. 
 

 

The exo- simulation had extremely lengthy maximum single forward step times, 

corresponding to pol γ pauses (Figure II.3). Compared to the wild-type, the exo- polymerase had 

a 30 (Figure II.3A) to 300-fold (Figure II.3B) longer median of the longest single forward step 

time. However, the median of the A467T variant’s longest single forward step time only 

increased slightly compared to the wild-type. This is reasonable because the slow polymerase 

reaction rate of A467T slowed down every forward step of the polymerase, without 

preferentially affecting the extremes. 



 

56 

 

For dividing cell conditions (Figure II.3A, dNTP = 10 μM), the median time of pausing of 

the wild-type polymerase was 7.9 seconds, while it was a similar value of 8.7 seconds for the 

A467T variant. However, the median time of pausing of the exo- polymerase was much longer at 

260 seconds. For postmitotic cell conditions (Figure II.3B, dNTP = 1 μM), the median time of 

pausing of the wild-type polymerase decreased to 3.9 seconds. The median time of pausing of 

the A467T variant increased slightly to 10.1 seconds, however, the exo- pol γ had a dramatically 

increased median pausing time of 1200 seconds. Under both dNTP concentration conditions, the 

exo- polymerase had the slowest “longest single forward step time”, implying the longest pauses 

and the greatest opportunity of deletions to occur. 

 

The reaction events in the longest single forward step 

We further identified what reaction events actually occurred in the longest single 

pausing step (Figure II.4 and II.5). The longest pausing steps usually occurred after incorrect 

polymerase events (Table II.2), which inserted a non-Watson-Crick paired nucleotide into the 

new DNA strand. The exceptions to this (i.e., pauses after correct incorporations) were always 

very brief pauses, which can be seen as the small peaks to the extreme left side in Figure II.3. In 

most of the cases of pausing after the incorrect nucleotide insertion, for both the wild-type and 

A467T variant, the longest single forward time step has one exonuclease reaction (to remove 

the incorrect nucleotide), two polymerase reaction (one to replace the removed nucleotide and 

a later one to move the polymerase forward to the next step), and a variable number of 

dissociation events (Figure II.4).  
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Figure II.4. Events in the longest single forward step. For each pol γ variant, 10,000 simulations 
were carried out and the probability distributions of the events were calculated. Symbol colors 
represent the pol γ variants (black = wild-type, magenta = exonuclease deficient, blue = A467T). 
Symbols represent the reaction events (star = disassociation, triangle = exonuclease, circle = 
polymerization). 
 



 

58 

 

 
 

Figure II.5. An example of events in a typical longest forward step of the polymerase. For the 
wild-type (WT) and the pathogenic A467T pol γ variant, a typical single forward step includes 
several dissociations and reassociations, one exonuclease reaction and two polymerizations. 
 
Table II.2. Strand replication time statistics. 
 

Simulation 
template 

dNTP 
(μM) 

Mean 
replication time 
(s) 

Probability of incorrect 
previous base pair 

Median longest single 
forward step time (s) 

Light strand 1 849.4 92.69% 3.9 
Heavy strand 1 813.2 95.80% 4.4 
Light strand 10 563.8 100.00% 7.9 
Heavy strand 10 542.7 100.00% 8.4 

 

 

For the exo- polymerase, there was one polymerase reaction and a variable but large 

number of dissociation events. In very rare cases, where pol γ replicated the whole strand 

without any error ever occurring, the longest single forward step time was very short and there 

was only one polymerase event and very few dissociation events. 
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We found that the pausing time of pol γ was roughly proportional to the number of 

disassociations events occurring within that pause (Figure II.4). The exo- pol γ had extremely 

long polymerase pauses, with a 30 to 300-fold increase in the time required for the longest 

single forward step of the polymerase compared to the wild-type polymerase, while the 

naturally occurring A467T pol γ variant had only a slight increase in the length of the pauses 

compared to the wild-type pol γ. It is the number of polymerase disassociations occurring in 

each forward step of the polymerase that causes the differences. Due to the lack of competition 

of the exonuclease activity in the exo- pol γ to remove the incorrect incorporation, 

disassociations of pol γ repeatedly recurred in each longest single forward step. The variation in 

the pausing time was almost completely due to variation in the number of disassociation events 

occurring during the pause (Figure II.4).  

 

The effect of a partial loss of pol γ exonuclease activity 

The exo- mutant is an extreme alteration of the polymerase function, which we have 

modeled as the complete loss of exonuclease activity. What if a mutated pol γ lost exonuclease 

activity only partially, not completely? To answer this question, we decreased the exonuclease 

reaction rate in the simulation gradually from 100% activity, equivalent to the wild-type, to 0%, 

equivalent to the exo- mutant simulation (Figure II.6). We calculated the median longest single 

forward step time (Figure II.6A) and the point mutation rate (Figure II.6B) for both dividing and 

postmitotic cell conditions. These two quantities were chosen to represent the two main 

mechanisms for generating mtDNA damage from a defective polymerase: deletions driven by 

polymerase pausing and point mutations. Surprisingly, pol γ has to lose approximately 50 to 90% 

of its wild-type exonuclease activity before there are significant consequences shifting either of 

these measures by more than a factor of two. 



 

60 

 

 

 

 
Figure II.6. The effect of varied exonuclease activity. (A) Median longest forward time step 
occurring within a replication from the mtDNA light strand template (taken over 10,000 
repeated simulations). (B) Point mutation rate per strand replication. With the decreasing of 
exonuclease activity from 100% activity to zero, both the median value of longest forward single 
step time and point mutation rate increased nonlinearly. 
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Discussion 

 

The mitochondrial DNA replication time has been measured in dividing cells in cell 

culture, and approximately one hour is required for replication of both strands (Clayton 1982). 

In our simulation, the light strand replication time under dividing cell condition (dNTP = 10 μM) 

was less than 10 minutes (Figure II.2A), and the heavy strand replication required a similar time 

(Table II.2). The standard asynchronous strand displacement replication model makes the 

double strand replication time (1 + 2/3) fold longer than that of single strand, where the 2/3 

represents the fraction of the mtDNA sequence in the major arc between the heavy strand 

origin and light strand origin. Based on this estimate, the full mitochondrial genome replication 

time in our simulation was only 17 minutes. The simulated double strands replication time is 3-5 

fold less than what has been reported in experiments (Clayton 1982). This fast replication time is 

a direct consequence of the measured enzyme kinetics values for pol γ. However, the kinetic 

parameters we used were measured in vitro (Johnson and Johnson 2001; Johnson and Johnson 

2001), and the actual values in vivo may be different. Another reason why our simulated 

replication time is shorter than expected is that we could not include the reassociation time of 

pol γ with the DNA following a disassociation event, since there is no data on the reassociation 

rate. In addition, we cannot include the effect of the proteins mtSSB, Twinkle and other 

accessory proteins on the replication time, since these accessory proteins were not included in 

the basic experiments measuring the polymerase enzyme kinetics. All replication time in our 

simulation were underestimated for these reasons, which would make the pausing of pol γ in 

reality even worse than calculated from these simulations. Another relevant feature that cannot 

be included in this simulation is the role of DNA secondary structure in polymerase pausing. 
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These secondary structures would cause additional pausing of the polymerase, beyond that 

calculated in this simulation. 

The simulation results gave us a clear picture of how pol γ pauses may happen. For wild-

type and the A467T pol γ variant, the longest single forward step always starts with an incorrect 

nucleotide incorporation. For example if this happens at position i along the DNA strand then an 

exonuclease event will happen with high probability at position i, removing the incorrect 

nucleotide, and the pol γ moves backward one step. After this, two following polymerase events 

are needed to move the polymerase forward to the position i+1. In this case, the longest single 

forward time step from position i to i+1 requires at least three reaction events, one exonuclease 

reaction and two correct polymerizations, as well as any disassociation and reassociation events 

that may have happened between these events (Figure II.5). In principle, there could be N 

exonuclease events and N+1 polymerase events in each single forward step. However, 10,000 

repeated simulations showed that there were almost always only one exonuclease event and 

two polymerase events (Figure II.4). For the exo- polymerase, once an incorrect incorporation 

happens at position i, the polymerase keeps repeating a disassociation-and-reassociation cycle 

until a polymerization happens and moves the polymerase forward to position i+1 (leaving 

behind a point mutation). The disassociation-and-reassociation cycle repeats because the rate of 

polymerization following the incorrect nucleotide incorporation is very low. In the wild-type 

polymerase, the slow polymerization following an incorrect nucleotide incorporation allows 

time for the exonuclease reaction to occur with high probability, repairing the DNA replication 

error. 

Several experiments (Chan et al. 2005; Fan et al. 2006; Johnson et al. 2000) have 

measured the processivity of polymerase gamma. However, there is a fundamental difference 

between processivity as measured in these experiments and the concept of “polymerase 
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pausing” as defined in our simulation. The polymerase processivity experiments (Chan et al. 

2005; Fan et al. 2006; Johnson et al. 2000) always use an unlabeled DNA trap to deliberately 

limit the polymerase to the very first disassociation event. At the first disassociation event the 

polymerase is captured by the DNA trap with very high probability and the polymerase 

reassociation is prevented, ending the DNA replication. In contrast, we define pausing as the 

longest time required to move the polymerase forward one nucleotide along the DNA strand, a 

process that we show in the simulation often includes several polymerase disassociation-

reassociation cycles. Those extreme cases where multiple disassociation-reassociation cycles 

occur (by random chance) are the slowest step in the full mtDNA replication, which we take as a 

representation of polymerase pausing. As we show in Figure II.4, the difference between the 

wild-type POLG and the exonuclease deficient POLG comes in the number of polymerase 

disassociation-reassociation cycles that occur in the slowest forward step of the polymerase on 

the DNA strand. This difference would not be seen in the processivity experiments where 

reassociation is deliberately prevented by the experimental design. Because of this fundamental 

difference, the processivity experiments are not in disagreement with this simulation model. A 

further difference between the processivity experiments and the polymerase pausing is that the 

processivity experiments only measure the behavior of the polymerase over hundreds to a few 

thousand bases (Fan et al. 2006; Johnson et al. 2000), while the polymerase pausing (as we 

define it) is a measure of the most extreme replication event (the slowest forward step) over 

16,600 bases. Those rare events simply could not be observed in the much shorter processivity 

experiments. 

A recent study (Williams et al. 2010) reported at least two orders of magnitude increase 

of point mutations in exo- mice compared to controls in postmitotic tissues – brain and heart. In 

Figure II.6B, under the postmitotic cell condition (dNTP = 1 μM), the point mutation rate with 



 

64 

 

100% wild-type exonuclease activity was 0.01 (number of uncorrected errors per strand 

replication) and the rate increased to 3.2 for the completely exonuclease deficient polymerase 

simulation. This is consistent with the experimentally measured difference between the 

exonuclease deficient mouse and the wild-type mouse (Williams et al. 2010). In an exo- mouse 

model (Trifunovic et al. 2004), the measured mutation load of the exo- polymerase γ was 3-13 

mutations per 10 Kb (approximates to 5-21 mutations per replication) for brain and heart cells 

(which can be taken as postmitotic) and liver cells (which can be taken as mainly mitotic). This 

experimental data is consistent with our simulation results (Figure II.6B), which shows 3.2 

mutations per replication for postmitotic cells (dNTP = 1 μM) and 17 mutations per replication 

for mitotic cells (dNTP = 10 μM). 

Based on this simulation model, a reduced DNA binding effect caused by variants in the 

accessory subunit might also be another reason to cause pausing of the polymerase. There is 

growing interest in variants in POLG2, the gene that encodes accessory subunit p55 of 

polymerase gamma (Young et al. 2009). Reduced DNA binding is not obviously related to mtDNA 

depletion, but our simulations clearly showed that the number of disassociation events that 

occur during the pause directly determines the length of the polymerase pause. Thus, based on 

this simulation model, reduced DNA binding of the polymerase to the mtDNA molecule could 

greatly increase the length of pauses of the polymerase both by increasing the probability of 

disassociation events and by slowing the rate of the reassociation reaction. 

In addition to the altered mtDNA polymerization kinetics, the A467T variant in POLG 

also has altered kinetics in the formation of the protein complex with POLG2 (Chan et al. 2005). 

We deliberately chose to model just the process of replication of the mtDNA, and not the 

preceding process of the formation of the polymerase protein complex from POLG and POLG2. 

Extending the model to include the stage of formation of the polymerase complex would greatly 
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extend the complexity of the model, and would distract from the purpose of the model, which 

was to represent the process of mtDNA replication after replication is initiated. The kinetics 

values used in this model are from experiments (Chan et al. 2005; Johnson and Johnson 2001; 

Johnson and Johnson 2001; Johnson et al. 2000) using POLG and POLG2 together. 

Several presumably pathogenic amino acid substitutions in pol γ have been identified in 

PEO patients, including G923D, R943H (neither are currently in OMIM) and A957S (MIM 

174763.0014). Although all of these have been characterized biochemically (Graziewicz et al. 

2004; Ponamarev et al. 2002) with some limited kinetics, none of them has had its exonuclease 

activity measured yet. Without that critical data, we cannot simulate these variants. Recently, 

the pathogenic pol γ mutation Y955C (MIM 174763.0001), identified in Autosomal Dominant 

Progressive External Ophthalmoplegia, was reported to stall at dATP insertion sites (Atanassova 

et al. 2011). Unfortunately, many important kinetic values of the Y955C pol γ variant are not 

available, such as the exonuclease and dissociation reaction rates, although its polymerization 

kinetics have been reported (Estep and Johnson 2011; Ponamarev et al. 2002). 

 

Future Works 

 

Other pathogenic pol γ mutators 

Y955C mutation was the first adPEO mutations to be discovered(Ponamarev et al. 2002). 

It has been analyzed the effects of the mutation on the kinetics and fidelity of DNA synthesis by 

the purified human mutant polymerase in complex with its accessory subunit(Ponamarev et al. 

2002). As compared with the wild-type enzyme in the presence of the accessory subunit, the 

Y955C pol γ exhibited a 4-fold reduction in overall DNA polymerase activity in a standard DNA 

polymerase assay. Steady state kinetic analyses indicated that the Y955C enzyme retains a wild-
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type catalytic rate (kcat) but suffers a 45-fold decrease in apparent binding affinity for the 

incoming nucleoside triphosphate (Km). The full mutator effect of the Y955C substitution was 

revealed by genetic inactivation of the exonuclease, and error rates for certain mismatches were 

elevated by 10–100-fold. This enhanced mutagenesis is mitigated by a functional intrinsic 

exonuclease activity resulting in only a 2-fold mutator effect for base pair substitutions by the 

exonuclease proficient Y955C enzyme. 

After A467T, the Y955C is the next valuable pol γ mutator to be analyzed. Because its Km 

value decreased dramatically, Y955C is expected to more sensitive to the substrate 

concentrations. It will be interested to simulate and compare the point mutation rate and the 

longest single forward step time of Y955C to wild-type pol γ. Though the exonuclease reaction 

rate of the Y955C mutation has not been measured, we still can make reasonable assumptions 

about this rate to explore its pathogenic effect in adPEO. 
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CHAPTER III 

 

AN ANALYSIS OF ENZYME KINETICS DATA FOR MITOCHONDRIAL DNA STRAND TERMINATION 

BY NUCLEOSIDE REVERSE TRANSCRIPTION INHIBITORS3 

 

Introduction 

 

Recent guidelines for highly active anti-retroviral treatment (HAART) regimens of HIV-

positive patients recommend two drugs of the nucleoside reverse transcriptase inhibitor (NRTI) 

class (Table III.1) (Antiretroviral_Guidelines_for_Adults_and_Adolescents_Panel 2006). This class 

currently consists of: stavudine (d4T), lamivudine (3TC), zidovudine (AZT), zalcitabine (ddC), 

didanosine (ddI), abacavir (ABC), emtricitabine (FTC) and tenofovir (TDF, a nucleotide analog). 

Though zalcitabine (ddC) is still technically approved for treatment its distribution in the United 

States was discontinued by Roche in 2006. In their activated tri-phosphorylated forms, each 

NRTI acts as a nucleotide analog interacting with the HIV viral reverse transcriptase as an 

alternative substrate to the natural nucleotides (Anderson et al. 2004; Ray 2005). Each of these 

analogs lacks the 3’ OH group necessary for incorporation of the next nucleotide thereby 

terminating viral DNA strand elongation. 

  

                                                           

3 Wendelsdorf, K. V., Song, Z., Cao, Y., and Samuels, D. C. (2009). An Analysis of Enzyme Kinetics 
Data for Mitochondrial DNA Strand Termination by Nucleoside Reverse Transcription Inhibitors. 
PLoS Comput Biol 5(1). Author contributions: Conceived and designed the experiments: YC DCS. 
Performed the experiments: KVW ZS. Analyzed the data: KVW ZS. Contributed 
reagents/materials/analysis tools: YC. Wrote the paper: KVW ZS DCS. 
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Table III.1. Nucleoside and nucleotide analogs used in this study. 
 

Drug Abbreviation 
Natural 
nucleoside 

Comment 

Abacavir ABC dG The activated form is CBV-TP 

Acyclovir ACV dG 
Used in treatment against Herpes viruses 
including HSV1 and 2, chickenpox and 
herpes zoster. 

Didanosine ddI dA 

Must be aminated to become ddA, which is 
activated form. The nonactivated form, 
however, has also been shown to 
incorporate into mtDNA.  

Dideoxyadenosine ddA dA The active form of ddI. 

Emtricitabine FTC(-) dC 
The unnatural enantiomer that is approved 
for treatment of HIV. 

Emtricitabine FTC(+) dC 
The natural enantiomer that is more toxic 
and not approved for treatment. 

Lamivudine 3TC(+) dC 

This natural enantiomer of 3TC is not used in 
treatment, but is used in studies that look at 
effects of configuration on toxicity and 
efficacy.  

Lamivudine 3TC(-) dC 
The unnatural enantiomer that is approved 
for treatment of HIV. 

Stavudine d4T T  
Tenofovir PMPA, TDF dAMP A nucleotide analog 
Zalcitabine ddC dC Not currently recommended for clinical use. 
Zidovudine AZT T  

 

 

NRTIs are effective drugs that have helped usher HIV into the category of a controllable 

chronic disease, however, they are also often toxic, inducing side effects such as lactic acidosis, 

peripheral neuropathy, peripheral lipoatrophy, and pancreatitis in patients. Intolerance of such 

side effects is a common reason for treatment discontinuation (d'Arminio Monforte et al. 2000). 

It is a serious concern that any decrease in patient compliance to the treatment regimen can 

lead to an increase in viral resistance and ultimately to treatment failure. The 1st step in 

ameliorating these side effects and preventing them in future antiviral treatments is to 

understand the mechanisms behind the mitochondrial toxicity of the NRTIs that are in use today. 

People have proposed many mechanisms of mitochondrial toxicity which we discuss below. In 
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this paper we specifically consider the plausibility of the most widely accepted hypothesis for 

the NRTIs’ toxicity mechanism - interference of mitochondrial DNA replication. 

 

The polymerase γ hypothesis 

Polymerase γ (pol γ) is the only polymerase responsible for mitochondrial DNA 

replication. While pol γ is not believed to directly regulate mtDNA levels, pathogenic mutations 

in the gene POLG do affect the stability of mtDNA and cause mtDNA depletion (Copeland 2008). 

Polymorphisms found in the POLG gene in the human population may cause a natural variability 

in the activity of this complex enzyme and may conceivably play a role in patient variability in 

NRTI drug toxicities. 

Martin et al. (Martin et al. 1994) reported that the approved NRTIs inhibited various 

host DNA polymerases. Behind the HIV Reverse Transcriptase, the highest affinity of the NRTIs 

was for polymerase γ. Moreover, many of the NRTI side-effects resemble symptoms of 

mitochondrial genetic disorders. All these facts implicated interaction with polymerase γ and 

subsequent depletion of mtDNA as a potential cause of NRTI toxicity giving rise to the 

polymerase γ hypothesis (Lewis et al. 2003). 

Several groups have conducted experiments that demonstrate decreased mtDNA 

amounts in various tissue types of NRTI-treated HIV positive patients (Cherry et al. 2002; Cote et 

al. 2002; Haugaard et al. 2005; Walker et al. 2004). In addition, people observed mtDNA 

depletion in parallel with cell death, mitochondrial morphological changes, and increased 

lactate production in liver, heart, neuron, skeletal muscle, adipose, and blood cell cultures after 

incubation with different NRTIs (Azzam et al. 2006; Benbrik et al. 1997; Biesecker et al. 2003; 

Birkus et al. 2002; Cui et al. 1997; Galluzzi et al. 2005; Pan-Zhou et al. 2000; Setzer et al. 2005; 

Walker et al. 2002). 
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However, other groups published a substantial body of data that are not consistent with 

toxicity mechanisms resulting in depletion of mtDNA. Martin et al. (Martin et al. 1994) showed 

no association between inhibition of polymerase γ by NRTIs and mtDNA depletion. 

Mitochondrial dysfunction has been observed in vitro in mouse muscle, white adipose, brain, 

liver, and heart tissue (Note et al. 2003), hepatoma cell lines (Walker et al. 2002) as well as CD4 

cells (Setzer et al. 2005) after incubation with NRTIs although no significant decrease in mtDNA 

amount was observed. Particularly, incubation of liver and skeletal muscle cells with ddC, ddI, 

d4T, and AZT show a higher rate of lactate production in the presence of AZT, but the least 

amount of mtDNA depletion (Birkus et al. 2002; Pan-Zhou et al. 2000). In clinical practices 

mtDNA depletion has been seen in parallel with normal cytochrome c oxidase activity, a sign of 

correct mitochondrial function (Piechota et al. 2006), and was not associated with lipoatrophy 

(McComsey et al. 2005) (although that study measured mtDNA depletion in blood samples, not 

fat cells). All these findings indicate a weak relationship between mtDNA copy number and 

nucleoside analog toxicity, which warrants a deeper look at the data concerning the interaction 

of different NRTIs with polymerase γ. 

 Lewis et al. suggested three possible polymerase γ dependent toxicity mechanisms that 

comprise the polymerase γ hypothesis, which are (1) direct inhibition of polymerase γ by NRTI-

triphosphate without incorporation into the mtDNA, (2) chain termination of mtDNA replication 

following incorporation of the NRTI triphosphate, and (3) incorporation of the analog 

triphosphate into mtDNA without chain-termination allowing the NRTI to continue as a point 

mutation in mtDNA (Lewis et al. 2006). 

To study the polymerase γ toxicity, we have simulated the DNA replication process of 

mitochondria to examine the impact of NRTIs. Using enzyme kinetics data gathered from 

Johnson et al. (Johnson et al. 2001), Feng et al. (Feng et al. 2004), and Hanes et al. (Hanes and 
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Johnson 2007; Hanes et al. 2007) we have carried out a series of simulations of mtDNA 

replication in the presence of various nucleoside analogs that interact with polymerase γ (Table 

I.6). These simulations bridge the gap between the basic enzyme kinetics data and the 

probability of failure of the mtDNA replication process. 

 

Methods 

 

The drugs included in this study 

Thirteen analogs were used in the simulations (Table III.1). These included eight drugs of 

the NRTI class currently approved for human treatment- stavudine (d4T), lamivudine (3TC(-)), 

zidovudine (AZT), zalcitabine (ddC), didanosine (ddI) (whose active form is dideoxyadenosine 

(ddA) triphosphate) , abacavir (ABC), emtricitabine (FTC(-)) and tenofovir (TDF) 

(Antiretroviral_Guidelines_for_Adults_and_Adolescents_Panel 2006), and one anti-herpes drug, 

acyclovir (ACV). In addition we modeled the effects of the natural enantiomers of FTC(+) and 

3TC(+) that have been used to explore a possible role of stereochemistry in the efficacy of 

strand termination (Feng and Anderson 1999), and ddI in its non-activated form. Since this study 

focuses on strand termination, we have not included FIAU, an anti-hepatitis B drug that 

tragically resulted in the deaths of five patients in phase 2 trials and whose toxicity is believed to 

be due to errors in mtDNA replication (Colacino 1996; Lewis et al. 1996), though not necessarily 

through strand termination (Johnson et al. 2001; Lewis et al. 1996). 
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Computational Model 

Our computational model of the mitochondrial DNA replication process is based on the 

Stochastic Simulation Algorithm (Gillespie 1976; Gillespie 1977). The model is based on four 

reactions; DNA polymerase activity, exonuclease activity, disassociation of the polymerase from 

the DNA, and reassociation of the polymerase with the DNA molecule (Figure III.1). In the DNA 

polymerase reaction pol γ adds one nucleotide to the new DNA strand. This nucleotide may be 

the correct or incorrect (point mutation) base indicated by the template strand. In this model 

this includes the incorporation of nucleoside analog triphosphates. In the exonuclease reaction 

pol γ removes one nucleotide from the new DNA strand. This includes the removal of nucleoside 

analogs from the DNA strand. The exonuclease reaction is an error correction mechanism, as the 

rate for removal of incorrectly incorporated nucleotides is typically faster than that of correctly 

incorporated nucleotides. In the disassociation reaction the polymerase separates from the DNA 

molecule. In the reassociation reaction the polymerase re-attaches to the DNA molecule after 

disassociation. At each position on the replicating mtDNA strand, pol γ will randomly undergo 

one of the first three reactions (polymerase, exonuclease, or dissociation). Which reaction pol γ 

undergoes is determined by the probability of each reaction, calculated using the reactions rates 

and Michaelis-Menten kinetics. 

 

 



 

73 

 

 
 

Figure III.1. Schematic diagrams of the polymerase γ reactions in this model. A. The four 
reactions possible following a correct incorporation. DNA Polymerase: polymerase γ adds one 
nucleotide to the new DNA strand. This nucleotide may be the correct or incorrect (point 
mutation) base pair for template strand, or a nucleotide analog. Exonuclease: polymerase γ 
removes one nucleotide (correct or incorrect match) from the new DNA strand. This is an error 
correction mechanism. Disassociation: The DNA polymerase can separate from the DNA 
molecule. Reassociation: The DNA polymerase re-attaches to the DNA molecule after 
disassociation. B. The possible reactions after insertion of analog (Z to represent AZT in this 
example): exonuclease activity or dissociation. Our model does not allow further polymerization 
or reassociation once an analog is inserted and not removed by an exonuclease reaction. 
 

 

For the two scenarios of a correctly inserted and incorrectly inserted previous 

nucleotide we have separate sets of kinetic parameters for each of the pol γ reactions (Johnson 

and Johnson 2001; Johnson and Johnson 2001; Lee and Johnson 2006). These studies have 

reported an increase in exonuclease and disassociation rates, but a decrease in incorporation 

rates by pol γ following an incorrect incorporation. This is included in the simulation model by 

using two sets of enzyme kinetics parameters, one set for reactions following a correct 
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incorporation and another set for reactions following an incorrect incorporation. Kinetic 

parameters for the natural nucleotide (dNTP) interaction with pol γ are available in Tables I.1-I.5. 

As data regarding the reassociation reaction rate are not available our model assumes that after 

a disassociation event occurs the reassociation reaction follows, except in the special case 

discussed immediately below. Since the rate for the reassociation reaction is not available, the 

time required for that reaction is not calculated in this model. This approximation is not 

important to our results reported here which focus on strand termination probabilities. 

Upon incorporation of an analog into the new DNA strand the next polymerase reaction 

is blocked. The exonuclease reaction can still occur, removing the analog molecule. However, if 

a disassociation reaction occurs before the analog can be removed, we assume that 

reassociation of the DNA polymerase is also blocked and the mtDNA replication event is 

disrupted resulting in strand termination (Figure III.1). There has been some speculation that the 

drugs, in particular AZT, may be inserted into a replicating mtDNA strand without causing strand 

termination. In this model we take the conservative assumption that all NRTIs that are inserted 

in the mtDNA strand and not subsequently removed cause strand termination. 

Parameters included in the model for incorporation of each analog by pol γ were the 

concentration necessary for binding of 50% of available pol γ (Km), the rate of polymerization 

(kpol),, and the rate of excision (Vexo) of each analog by pol γ. The parameters kpol and Km were 

estimated from the maximum rate of incorporation by pol γ (kcat) and the dissociation constant 

from pol γ (Kd), respectively, obtained under pre-steady state conditions (Feng et al. 2004; 

Hanes and Johnson 2007; Johnson et al. 2001). A recent publication shows that pyrophosphate 

release from AZT is uniquely slow during polymerization and that kinetics measured during 

steady-state conditions give a more accurate kpol estimation (Hanes and Johnson 2007). These 

measurements were carried out on AZT due to the fact that under pre-steady state conditions a 
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decrease in incorporation rate was observed with increased AZT concentration indicating 

reversible binding. This pattern was not seen with any of the other analogs studied (d4T, 3TC(-), 

AZT, ddC, ddI, ddA, ABC, TDF, and 3TC(+)) and for this reason reanalysis of the enzyme kinetics 

for those drugs was not performed in that experiment. Given this continuing evolution in our 

understanding of the AZT kinetics we carried out two simulations for AZT insertion using the two 

available published sets of parameters determined under steady-state conditions in the 2007 

paper by Hanes and Johnson (Hanes and Johnson 2007) and pre-steady state conditions 

published in the 2001 paper by Johnson et al. (Johnson et al. 2001). We distinguished the results 

using these two parameter sets as AZT2001 and AZT2007. These parameter values, as well as those 

for the other analogs, are given in Table I.6.  

 

Triphosphorylated mitochondrial natural nucleotide (dNTP) levels 

The polymerization reaction rates are functions of the dNTP concentrations. For this 

calculation we consider three sets of dNTP concentrations, representing high, medium and low 

concentration conditions. Mitochondrial dNTP levels were estimated following the observations 

of Rampazzo et al and Ferraro et al (Ferraro et al. 2005; Rampazzo et al. 2004) (Table III.2). The 

units of picomole of mitochondrial dNTP per mg of mitochondria or picomoles per 106 cells were 

converted to μM by using an assumed mitochondrial volume of 0.2 femtoliters and density 

measurements from Pollak and Munn (Pollak and Munn 1970). It should be noted that these 

density measurements considered mitochondria as discrete entities not taking in to account any 

change in mitochondrial size due to organelle fission and fusion processes. We use these values 

only as estimates, in order to define the three categories of dNTP concentrations given below. 
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Table III.2. Mitochondrial dNTP concentrations and Km values 
 

dNTP level dATP (μM) dCTP (μM) dGTP (μM) dTTP (μM) 

high 22.5 28 19.5 26 

medium 1.675 1.644 0.47 0.76 

low 0.1675 0.1644 0.047 0.076 

Km with polymerase γ* 0.8 0.9 0.8 0.6 

*from reference (Lee and Johnson 2006). 
 

 

High dNTP levels: As an estimate for the natural nucleotide concentrations within 

mitochondria of actively dividing cells, concentrations of natural nucleotides in mitochondrial 

pools from a cycling cell culture of 3T3-L1TK1+ (a mouse fibroblast line) were used. (Rampazzo 

et al. 2004). The units of dNTP measurement were converted to μM units by estimating the 

volume of a 3T3-L1 cell from images in Friis et al. (Friis et al. 2005). 

Medium dNTP Levels: As an estimate of the natural nucleotide concentrations within 

mitochondria of resting or slowly dividing cells values for rat liver cells were used (Ferraro et al. 

2006). 

Low dNTP levels: A third set of simulations were carried out using natural nucleotide 

levels at 1/10th those estimated for the liver cells. This is meant to represent the low dNTP 

concentrations in postmitotic cells. 

 

Simulation sets 

Vertebrate mitochondrial DNA has a highly asymmetric G content. The low-G strand is 

labeled the light strand, with the complement strand called the heavy strand. Sets of simulations 

were carried out separately for the light strand sequence (NCBI, gi 17981852) and the heavy 

strand sequence. On each template three separate simulation sets were carried out using the 
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high, medium, or low natural nucleotide concentrations described above and varying the 

concentration of activated triphosphorylated analog. Each simulation was repeated 1000 times. 

The number of simulated mtDNA strand replications ending in a strand termination event 

(caused by a nucleoside analog incorporation) was recorded. The concentrations of the four 

dNTP pools and the activated analog were held constant throughout each simulated replication. 

 

Results 

 

The purpose of this study was to explore the plausibility of the pol γ hypothesis by 

calculating the probability of insertion of the nucleotide analog into the replicating mtDNA 

strand, leading to strand termination. We constructed a model based on the mitochondrial 

genome length and sequence, mitochondrial dNTP concentrations, and the measured enzyme 

kinetics of pol γ. With this model we simulated mitochondrial DNA replication in the presence of 

different analogs determining the dose response curves and the IC50 values of DNA termination 

for each drug. The simulation results were compared to reports of mitochondrial toxicity, and 

specifically to reports of mtDNA depletion. 

 

Dose response curves and IC50 values 

By measuring the probability of strand termination in the simulation as a function of the 

activated drug concentration, dose response curves for each drug were calculated. Figure III.2 

shows the dose response curves obtained for the strand termination probability of each 

clinically approved analog as a function of the analog mitochondrial concentrations. The 

concentration at which these dose response curves passed 50% defined the IC50 values for each 

activated drug (Table III.3). In our model, replication was terminated once an analog was 
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inserted and failed to be removed by exonuclease activity. Based on these simulated IC50 values 

the list of analogs in the order of decreasing probability of mtDNA strand termination on the 

light strand was:  

ddC = ddA = d4T > FTC(+) > 3TC(+) > ACV > ddI > 3TC(-) = TDF >= AZT2001 >> FTC(-) > ABC = AZT2007, 

in which “>>” indicates a 10 fold difference or more, “>” indicates a 2 to 10 fold difference and 

“=” indicates a less than 2 fold difference. Note that ddA is the activated form of ddI. Of this list 

only d4T, ddI, ddC, 3TC(-), TDF, AZT, ABC, ACV and FTC(-) are approved for therapeutic use. The 

IC50 list showed that the “di-deoxy drugs”, meaning ddC, d4T, and ddA, had the highest 

probability of causing mtDNA strand termination during replication while FTC(-), ABC and AZT2007 

showed the least. Of those drugs approved for HIV treatment there was an observed difference 

of more than 800 fold between the di-deoxy drugs (ddC, ddA, and d4T) and other approved 

drugs (3TC, TDF, AZT, ABC, and FTC(-)) in the activated drug concentration necessary for 50% 

probability of mtDNA strand termination. 

The only difference seen in the simulation of heavy strand replication (Table III.4) was 

that acyclovir had a slightly higher probability of termination than 3TC(+) and ABC had 

approximately equal probability of termination as FTC(-). Since there was little difference in the 

results for the two strands of the mtDNA molecule, we concentrated on results from the light 

strand. For the readers’ convenience in interpreting these IC50 values, reported ranges of 

intracellular concentrations (Barry et al. 1996; Becher et al. 2004; Becher et al. 2002; Kewn et al. 

2002; Moore et al. 1999; Piliero 2004; Pruvost et al. 2005) for activated nucleoside analog drugs 

measured in peripheral blood mononuclear cells in patients are given in Table III.5. Where 

necessary, values were converted to units of μM using the conversion of Kewn et al (Kewn et al. 

2002). However it should be kept in mind that these concentrations are intracellular values, not 

the concentration values in the mitochondria which may be different. 
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Figure III.2. The dose-response curves for incorporation probability of analogs approved for 
treatment. Circles are the probability of strand termination calculated from a set of 1000 
simulations for each point and the curves are dose-response curves fit to the data points. There 
is a large difference of incorporation probability between the di-deoxy drugs (ddC, ddI, and d4T) 
and other approved anti-retrovirals (3TC, TDF, AZT, ABC, and FTC). The anti-herpes drug, 
acyclovir, falls in the middle of these two extremes, but shows little mitochondrial toxicity in 
clinical use possibly due to the fact it is dependent upon viral proteins for activation. AZT2001 
probabilities were determined using kinetic parameters from reference (Johnson et al. 2001) 
and AZT2007

 probabilities were determined using newly reported kinetic parameters from 
reference (Hanes and Johnson 2007). 
 
Table III.3. IC50 values for light strand termination calculated from the simulation. Analogs are 
listed in order of increasing IC50. IC50 values are calculated for three different sets of 
mitochondrial dNTP levels; high, medium and low, as defined in Table III.2. NA – not applicable. 
 

Analog triphosphate 
IC50 values (μM) 

Reported mtDNA depletion 
High dNTP Medium dNTP Low dNTP 

ddC-TP 3.42x10-4 2.38x10-4 5.80x10-5 Yes 
ddA-TP 4.42x10-4 2.89x10-4 7.47x10-5 Yes 
d4T-TP 7.92x10-4 4.65x10-4 9.76x10-5 Yes 
FTC(+)-TP 5.90x10-3 4.20x10-3 9.80x10-4 No data 
3TC(+)-TP 3.54x10-2 2.26x10-2 6.30x10-3 No data 
Acyclovir-TP 6.78x10-2 2.58x10-2 3.81x10-3 No data 
ddI-TP 0.25 0.17 4.60x10-2 No data  
3TC(-)-TP 0.56 0.40 8.40x10-2 No 
TDF-TP 1.18 0.87 0.22 No 
AZT2001-TP 3.95 2.38 0.50 No 
FTC(-)-TP 778.9 58.59 7.57 No 
ABC-TP NA NA 8.10 No 
AZT2007-TP NA NA NA No 
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Table III.4. IC50 values (μM) for the strand termination on the mtDNA heavy strand. NA – not 
applicable, meaning that the probability of strand termination never exceeded 50%. 
 

Analog triphosphate 
IC50 values (μM) 

High dNTP Medium dNTP Low dNTP 

d4T-TP 6.75x10-4 3.60x10-4 7.50x10-5 

ddA-TP 5.20x10-4 4.00x10-4 9.80x10-5 

ddC-TP 8.90x10-4 5.80x10-4 1.30x10-4 

FIAU-TP 1.44x10-3 8.30x10-4 1.60x10-4 

FTC(+)-TP 1.40x10-2 1.00x10-2 2.20x10-3 

acyclovir-TP 2.85x10-2 1.14x10-2 1.79x10-3 

3TC(+)-TP 8.8x10-2 5.60x10-2 1.36x10-2 

ddI-TP 0.33 0.23 5.75x10-2 

3TC(-)-TP 1.50 1.00 0.19 

TDF-TP 1.45 1.06 0.26 

AZT2001-TP 3.00 1.94 0.37 

AZT2007-TP NA NA 143 

CBV-TP NA NA 2.22 

FTC(-)-TP NA NA 30.9 

 
Table III.5: Reported intracellular concentrations of the activated (triphosphate) form of the 
nucleoside and nucleotide analogs, measured in peripheral blood mononuclear cells in 
patients. 
 

Analog triphosphate Intracellular concentration range (mM) 

3TC-TP 35.4 - 51.2 
FTC(-)-TP 0.40 - 4.50 
AZT-TP 0.84 - 1.2 
ABC-TP 0.04 - 0.75 
TDF-TP 0.27 - 0.39 
ddA-TP 0.013 – 0.078 
d4T-TP 0.016 – 0.082 
Acyclovir-TP Not available 
ddC-TP Not available 

 

 

  



 

81 

 

Abacavir, Emtricitabine, and Zidovudine2007 

For most analogs, the simulated dose response curve increases to 100% probability of 

strand termination if the analog concentration is raised high enough. AZT2007, ABC and FTC(-) 

behaved differently from the other analogs in that they reached the point of saturation below 

100% probability of strand termination (Figure III.2), and in some cases the strand termination 

probability saturated below 50%, meaning that no IC50 values could be defined in those cases 

(the blank entries in Table III.3). These three analogs interact so poorly with pol γ that over the 

finite length of the mtDNA sequence (approximately 16,600 base pairs) these analogs have too 

few chances to incorporate into the growing mtDNA strand for the probability of strand 

termination to approach 100%, even with very large concentrations of the activated drug in the 

mitochondrion. 

When the recently revised steady-state derived parameters for kcat and Km for AZT 

(Hanes and Johnson 2007) were used in the simulation, AZT2007 did not reach a 50% probability 

of strand termination in the presence of normal to high dTTP levels, instead saturating at a 23% 

probability. This grouped AZT2007 with ABC as having the least probability of causing termination 

of the replicating mtDNA. 

 

Specificity constant 

A common measurement for the relative likelihood of strand termination by each 

analog is the specificity constant (Johnson et al. 2001) determined by the ratio kcat/Km for the 

incorporation of an analog by pol γ. This is a common measurement used for predicting the 

discrimination of analogs by pol γ over the natural nucleotide substrate (Feng et al. 2004; Hanes 

and Johnson 2007; Hanes et al. 2007; Johnson et al. 2001). The drawback in taking this 

measurement of direct interaction with pol γ as a predictor for the actual incorporation into the 
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replicating mtDNA strand is that the specificity constant does not consider exonuclease activity, 

mitochondrial dNTP levels, nor strand length, all of which can affect the probability that an 

analog will be incorporated. All of these factors of the system are integrated into our 

computational model and the resulting IC50 values. Previous studies (Feng et al. 2004; Hanes and 

Johnson 2007; Hanes et al. 2007; Johnson et al. 2001) provide a list of increasing specificity 

constants of: ddC > ddA > d4T >> ACV > 3TC(-) > TDF > AZT >> ABC = FTC(-). The order of this list 

agreed quite well with our list given above based on simulated mtDNA strand termination. This 

agreement validates the use of kcat/Km values as an appropriate proxy for the relative probability 

of incorporation of these NRTIs by pol γ. A quantitative comparison between the specificity 

constant and our calculated IC50 for strand termination is given in Figure III.3. 

 

 

 
Figure III.3. The relationship between the IC50 values and the specificity constant, kcat/Km. The 
specificity constant is a measurement of direct interaction with polymerase γ often used as 
prediction for analog incorporation. The IC50 values are a more direct measure of incorporation 
probability taking exonuclease activity and other features into account. This relationship shows 
that the specificity constant is a useful proxy for incorporation probability. 
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Removal of nucleoside analogs from the mtDNA 

The very low exonuclease reaction rate for each analog is the primary reason why the 

specificity constant serves as a reasonable prediction of mtDNA strand termination. The 

exonuclease reaction rates used in this study were taken from Johnson et al. (Johnson et al. 

2001). Low excision rates for NRTIs have also been documented in the case of ddC (Longley and 

Mosbaugh 1991) and using yeast mtDNA polymerase with ddC and AZT (Eriksson et al. 1995). 

However, 3TC has a non-negligible measured exonuclease rates (Table I.6) (Johnson et al. 2001). 

Whenever an analog is inserted into the DNA strand, our pol γ model assumed that only the 

exonuclease and pol γ dissociation reactions can occur. Based on this model, in Table III.6 we 

give the predicted probability Pexo of the analog removal  

 /exo exo exo disP V V V   

where Vexo is the rate of exonuclease reaction for the analog and Vdis is the rate of disassociation 

of the polymerase. To test these predictions, we carried out a set of simulations with the analog 

exonuclease reactions removed. The ratio of the IC50 value in the full model to the IC50 value in 

the exonuclease deficient model was in very good agreement with the 1-Pexo values (Table III.6). 

As predicted, only the two 3TC forms showed significant effects from the removal of the analog 

exonuclease reaction. Even in these cases the effect of the exonuclease reaction only shifted the 

IC50 value by a factor of 2 or less. 
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Table III.6. The effect of the exonuclease reaction for each nucleoside or nucleotide analog, in 
order of increasing Vexo. 
 

Analog Vexo (s
-1) Pexo 1-Pexo IC50 / IC50(exo-) 

ddC 0.00002 0.00040 0.9996 1 
d4T 0.0004 0.0079 0.9921 0.98 
AZT2001 0.0004 0.0079 0.9921 1.038 
AZT2007 Not reported - - - 
ddA 0.0005 0.01 0.99 1.086 
ddI 0.0007 0.014 0.986 1.059 
TDF 0.0007 0.014 0.986 0.942 
ABC 0.0016 0.031 0.969 - 
Acyclovir 0.0021 0.040 0.96 0.919 
FTC(-) 0.0048 0.088 0.912 0.964 
FTC(+) 0.0048 0.088 0.912 0.867 
3TC(-) 0.015 0.23 0.77 0.725 
3TC(+) 0.02 0.29 0.71 0.69 

 

 

Effects of multiple nucleoside analogs 

The current therapy for HIV infections involves a combination of nucleoside analog 

drugs, along with another class of drug such as a protease inhibitor. It has been reported that 

combining nucleoside analogs increases toxicity (Chan et al. 2007; Venhoff et al. 2007). The pol γ 

model is a series of reactions occurring as the DNA polymerase moves along the template strand. 

At each position on the DNA strand different nucleoside analogs would be able to be 

incorporated into the DNA strand. For example, AZT triphosphate molecules would only have a 

reasonable rate of incorporation opposite an A on the template strand, while 3TC triphosphate 

molecules would only have a reasonable rate of incorporation opposite a G on the template. 

Considering this, it is unlikely that there could be a combined effect of two analogs of different 

nucleosides on strand termination through the pol γ interaction alone. To test this, we modeled 

the effects of two analogs, AZT and 3TC, separately and in combination (Figure III.3). The 

combination of AZT and 3TC has been shown to have enhanced toxicity (Chan et al. 2007; 

Venhoff et al. 2007), though neither of these two studies found any significant mtDNA depletion 
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associated with this toxicity. If we define PAZT as the probability of strand termination from a 

given concentration of AZT triphosphate and P3TC as the probability from a given 3TC 

triphosphate concentration, then the combination of the two drugs should result in a strand 

termination probability of  

)1)(1(1 33 TCAZTTCAZT PPP   

This equation assumes there is no interaction between the two nucleoside analog drugs (this is 

known as the Webb fractional effect (Martinez-Irujo et al. 1998)). Note that PAZT+3TC is here 

defined as one minus the probability that neither AZT nor 3TC independently cause strand 

termination. A set of 1000 simulations was repeated 10 times, using the medium dNTP 

concentrations defined in Table III.2, and mean and standard deviations for the probabilities PAZT, 

P3TC and PAZT+3TC were measured. The results for PAZT+3TC were consistent with the probability 

expected assuming no interaction between the two drugs (Figure III.4). This indicates that any 

synergistic effects of multiple NRTIs on mitochondrial toxicity are not consequences of direct 

strand termination. Alternative explanations for synergistic effects may include competitive 

inhibition of deoxynucleotide phosphorylation, which is outside the limits of this computational 

model. 
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Figure III.4. The computed probability of strand termination for an AZT and 3TC combination. 
Computed probabilities are shown for AZT-TP alone (at 0.5 μM), 3TC-TP alone (at 0.1 μM) and 
the combination of both drugs at those concentrations (solid bars).  The error bars represent 
standard deviations from 10 repeated sets of 1000 simulations. Also shown is the predicted 
probability of strand termination for the combined drugs (hatched bar) with the assumption of 
no interaction between the two drugs, calculated from the equation given in the text. 
 

 

Discussion 

 

Our simulated IC50 values of mtDNA strand termination for AZT-TP, CBV-TP (ABC), FTC(-)-

TP and TDF-DP were approximately 1,000-fold or more higher than those of the di-deoxy drugs. 

This agrees with the lack of observed mtDNA depletion in liver, fat, and PBMC samples from 

patients on regimens comprised of NRTIs that are not di-deoxy analogs (Cherry et al. 2002; Cote 

et al. 2002; Walker et al. 2004). The herpes drug Acyclovir (ACV) fell between the di-deoxy drugs 

and the others in terms of probability of causing mtDNA strand termination. ACV is not 

associated with mitochondrial toxicity clinically. This is believed to be due to the fact that the 

drug must be activated by a viral-encoded kinase (Coen and Schaffer 1980). As herpes 
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replication tends to occur in waves with long latent periods, this may not lead to the long term 

effects on mitochondria seen with NRTI use for HIV treatment. 

 

The dideoxy drugs 

The dideoxy NRTIs (ddC, ddA, and d4T) showed the greatest risk of strand termination in 

our simulations, indicated by their predicted low IC50 values. This agrees with previous studies 

showing they are the NRTIs most associated with mtDNA depletion in vitro (Biesecker et al. 2003; 

Birkus et al. 2002; Cote et al. 2003; Cui et al. 1997; Pan-Zhou et al. 2000; Setzer et al. 2005) and 

mitochondria-related toxicities clinically placing them as alternative drugs for adults and 

adolescents in the federal guidelines 

(Antiretroviral_Guidelines_for_Adults_and_Adolescents_Panel 2006). In both muscle and 

subcutaneous fat biopsies of HIV+ patients, mtDNA levels were significantly lower in those on 

dideoxy drug regimens as opposed to those on non-dideoxy NRTI regimens (Cherry et al. 2002; 

Walker et al. 2004). Even though the toxic side effects of dideoxy drugs are well known and the 

in vitro effects on tissue mtDNA levels of these drugs are in agreement with our simulation 

results, the very low IC50 values for these drugs of approximately 3 x 10-4 μM warrant discussion. 

The low IC50 value for ddC is in agreement with findings that this drug is not readily metabolized 

in the cell to its active form (Cui et al. 1997; Piliero 2004), implying that the concentrations of 

the activated drug in the cell may be quite small. There is evidence, however, that d4T and ddI 

are activated to a significant degree as the concentration of their triphosphorylated forms in 

patient peripheral blood mononuclear cells are above the predicted IC50 values by 

approximately 100-fold (Becher et al. 2004; Becher et al. 2002) (Table III.5, note that the 

experimentally measured value is the activated drug concentration in the cytoplasm, not in the 

mitochondria). Given that d4T and ddI are still recommended drugs for HAART 
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(Antiretroviral_Guidelines_for_Adults_and_Adolescents_Panel 2006) they are obviously 

tolerable to a large number of patients who do not experience the serious side-effects of lactic 

acidosis and neuropathy. One plausible explanation for this tolerance in the face of the striking 

affinity of these drugs for pol γ is that there exists a significant barrier to dideoxy drug entry into 

the mitochondrion or drug activation within the mitochondrion allowing activated dideoxy drug 

mitochondrial concentrations to remain low in the majority of patients treated with these drugs. 

We know of no reports of measured levels of the triphosphate form of these dideoxy drugs 

within mitochondria. 

 

AZT 

The experimental data indicates that AZT interacts poorly with pol γ as shown by the 

high Km and low kcat values (Table I.6) for this drug. An explanation for the slow rate of 

incorporation of AZT was recently published (Hanes and Johnson 2007). AZT demonstrates 

unusually slow pyrophosphate release upon incorporation by pol γ rendering polymerization 

readily reversible even upon binding to the template:primer molecule. In the cases of natural 

nucleotides this subreaction is fast enough to be considered negligible indicating that pre-steady 

state kpol values are a good approximation for kcat. Yet, in the case of AZT, this slow 

pyrophosphate release rate has a significant effect on kcat so that a measurement of kpol during 

steady-state conditions is more appropriate for estimating kcat. The kpol and Kd determined in the 

recent Hanes and Johnson study (Hanes and Johnson 2007) with steady-state conditions, that 

theoretically take the slow pyrophosphate release rate in to account, indicate a kcat 100-fold 

lower than that determined from the kpol calculated under pre-steady state conditions (Johnson 

et al. 2001). We carried out the simulation for both sets of parameters separately and in both 

cases AZT shows a poor probability of mtDNA strand termination (Figure III.2). The IC50 values 
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generated by this study show that AZT should not be toxic through mtDNA strand termination as 

it has a higher IC50 value than 3TC(-) and TDF, neither of which are associated with mitochondrial 

toxicity. 

The low probability of strand termination by AZT is supported by the fact that although 

AZT has consistently been associated with positive markers for mitochondrial toxicity, 

substantial evidence exists that the extent of AZT-induced mitochondrial toxicity is 

disproportional to the amount of mtDNA depletion it causes. The analogs ddC, d4T and ddI 

(activated to ddA) cause significantly more mtDNA depletion and decreased protein subunit 

expression of various electron transfer chain proteins with essential subunits encoded in the 

mtDNA, as would be expected from their increased interaction with pol γ compared to other 

analogs (Figure III.2). Yet AZT still manages to demonstrate a cytotoxicity that is equal to or 

greater than ddA, ddC, and d4T at comparable concentrations in various studies. In human liver 

and cardiac muscle cells incubation with AZT lead to cytotoxicity and increased lactate levels 

with no sign of mtDNA depletion (Cihlar et al. 2002; Lund et al. 2007; Pan-Zhou et al. 2000). 

Similar results are seen in blood cells and adipose cells (Mallon et al. 2005; Setzer et al. 2005; 

Stankov et al. 2007). Szabados et al. (Szabados et al. 1999) showed significant toxic effects on 

cardiac muscle cells including increased ROS, abnormal mitochondrial structure, and decreased 

ATP/ADP ratio after two weeks of exposure of cells in medium with no effects on mtDNA levels. 

In fact, AZT is actually associated with slight increase in mtDNA levels in cell culture (de Baar et 

al. 2007; Hobbs et al. 1995), PBMCs (Cote et al. 2002), and liver tissue samples (Walker et al. 

2004). Our model, however, does not address subreactions that influence pol γ binding of the 

analog, meaning our results cannot disprove the possibility that AZT toxicity is due to 

deactivating pol γ either through irreversible binding or induction of a conformational change in 

the enzyme. However, the high Kd determined by both Hanes and Johnson and Johnson et al. 
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(Hanes and Johnson 2007; Johnson et al. 2001), along with the cited studies showing toxicity 

independent of mtDNA depletion, make this an improbable mode of toxicity. It is our conclusion 

that based on the measured kinetic coefficients of AZT with pol γ that AZT toxicity is not 

dependent upon mtDNA strand termination. Indeed, various pol γ independent hypotheses 

have been proposed for AZT mitochondrial toxicity. These include inhibition of the enzymes of 

the mitochondrial salvage pathway causing nucleotide pool imbalances (Lynx et al. 2006), 

binding to ADP-ATP translocator (Valenti et al. 2000), and direct inhibition of components of the 

electron transport chain (Pereira et al. 1998). 

 

TDF 

Tenofovir is associated with renal dysfunction without significant mtDNA depletion 

(Karras et al. 2003; Zimmermann et al. 2006). In a retrospective study of HIV positive patients 

taking TDF and those not taking TDF, no significant differences in mtDNA levels of kidney 

biopsies were observed (Cote et al. 2006). Similarly, in human renal proximal tubule cells (Vidal 

et al. 2006), TDF was not associated with cytotoxicity, mtDNA depletion, or COII mRNA depletion. 

In our simulations mitochondrial TDF triphosphate IC50 values were in the range 0.2 to 1.2 μM, 

depending on the natural dNTP levels. Since these concentrations are not unusually high, our 

conclusion is that Tenofovir might be able to cause some moderate mtDNA depletion, 

depending on how well the activated drug is concentrated within the mitochondrion. 

 

Conclusions 

 

A number of hypothesis with supporting evidence have been proposed for NRTI toxicity 

experienced during HAART. Possible pol γ mediated pathways include the direct inhibition of pol 
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γ by NRTI-triphosphate without incorporation of the analog; chain termination by incorporation 

of NRTI triphosphate into mtDNA; and incorporation without chain termination of the analog-

triphosphate allowing it to remain as a point mutation in mtDNA. Our model only addresses the 

case of chain termination. There is not enough data on the subreactions that comprise analog 

binding to pol γ for this model to explore the possibility that some analogs cause toxicity 

through inhibition of the pol γ enzyme directly, either by irreversible binding or induction of 

conformational change, as opposed to strand termination. 

The specificity constant, kcat/Km, (Johnson et al. 2001) is commonly used as an 

approximate indicator of mitochondrial toxicity through strand termination of mtDNA. Before 

this model, this has been a bit of a leap as the specificity constant does not take genome length, 

exonuclease activity, nor dNTP concentration into account, and no direct predictions or 

measurements of strand termination probabilities have previously been given. We fill this gap in 

our understanding by providing a model that includes all of these factors and that predicts 

strand termination probabilities. The consistence between our simulation model results and the 

qualitative ordered list of NRTI drug toxicity based on the specificity constant is a validation of 

the model results. However, the simulation model goes far beyond the specificity constant by 

predicting IC50 values and quantitative dose-response curves (Fig. 2) for these drugs. 

Furthermore, the specific definition of strand termination used in this model raises the 

hypothesis that dissociation of Polymerase γ after an NRTI is incorporated into the mtDNA 

strand is a critical step in strand termination. In this particular model we chose to define strand 

termination as the dissociation of Polymerase-γ after the incorporation of an NRTI, under the 

assumption that re-association of the polymerase after the NRTI could not occur. Of course, it is 

possible that in-vivo there may be other currently unknown factors which may alter the 

polymerase γ dissociation kinetics (or any other kinetics for that matter) from the measured 
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values. If our assumption that pol γ re-association is blocked after NRTI incorporation was 

changed, and re-association of the polymerase was to be allowed, then more exonuclease 

events of the NRTIs would occur. However, it is not clear to us then what the definition of 

“strand termination” would be since the exonuclease activity would eventually remove all 

incorporated NRTIs given enough time. Johnson et al (Johnson et al. 2001) used that assumption, 

where all NRTIs incorporated into the mtDNA were eventually removed by exonuclease activity, 

to define a toxicity index based on a calculation of the amount of additional time required for 

these NRTI exonuclease events. Based on this definition of a toxicity index, Johnson et al 

(Johnson et al. 2001) also defined an ordered list of NRTI drug toxicity which was similar to our 

list and similar to the lists based on the specificity constants. An important use of any 

computational model is to raise questions for further experimental study. This simulation raises 

the following questions. Is strand termination defined by the dissociation of the polymerase 

after insertion of an activated NRTI? If not, what is the proper definition of strand termination? 

NRTI toxicity appears perplexingly specific to cell type 

(Antiretroviral_Guidelines_for_Adults_and_Adolescents_Panel 2006) and the mechanism for 

this tissue specificity is currently unclear. As natural nucleotide concentrations within the 

mitochondrion can differ greatly across cell types, we sought to observe how incorporation of 

NRTIs may differ in the presence of varying mitochondrial dNTP levels, which we broke down 

into three sample categories; high dNTP levels, medium dNTP levels and low dNTP levels (Table 

III.2). Although the IC50 values for strand termination measured in this simulation did depend on 

the concentrations of the natural nucleotide triphosphates, the relative ordering of the 

nucleoside analogs by IC50 was the same for all three dNTP conditions (Table III.3). The 

simulations made with low dNTP concentrations, representing post-mitotic tissues, did have 

lower IC50 values, consistent with a greater sensitivity of these tissues to damage by nucleoside 
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analog drugs. However, these results would not explain why some tissues are susceptible to 

toxicity from a particular analog. We have limited this simulation model to the activity of the 

mitochondrial DNA polymerase acting on the tri-phosphate form of the four natural 

deoxyribonucleosides and the tri-phosphate form of the drugs. Since the tissue dependence of 

the toxicity of the drugs was not reproduced in this model, this implies that the source of this 

tissue dependence lies outside the bounds of this particular model. This includes the possible 

interference of the various phosphate states of the drugs with the metabolism within the 

mitochondria that produces the natural deoxyribonucleoside tri-phosphates, potentially altering 

the relative levels of the four natural dNTPs. 

Although mitochondrial toxicity from NRTIs is common, the more severe forms of this 

toxicity are certainly not universal. Current research is revealing that the gene for polymerase γ 

is the site of a large number of mutations and polymorphisms that alter its enzyme kinetics and 

function (Graziewicz et al. 2007; Graziewicz et al. 2006; Horvath et al. 2006; Hudson and 

Chinnery 2006). The natural variability in this crucial gene may be an important source of the 

individual variation in the susceptibility of patients to this toxicity, and perhaps to the 

phenotypic variation which occurs. Although the interaction of nucleoside analogs with 

polymerase γ has been recognized for almost 15 years now (Martin et al. 1994), we still know 

surprisingly little about the levels of activated drugs within mitochondria (Lynx et al. 2006) or 

about the transport mechanism by which these drugs enter the mitochondrion (Kang and 

Samuels 2008; Lindhurst et al. 2006). 
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CHAPTER IV 

 

ENRICHING TARGETED SEQUENCING EXPERIMENTS FOR RARE DISEASE ALLELES4 

 

Introduction 

 

Genome-wide association studies (GWAS) are based on the premise that densely 

genotyped common alleles will have statistical power to detect causal associations with traits at 

nearby, ungenotyped common mutations through short-range linkage disequilibrium (LD). The 

basis for this strategy is the common disease common variant (CDCV) hypothesis (Reich and 

Lander 2001). This approach has been proven to be effective in many scenarios for mapping 

small genomic regions to traits (see the National Human Genome Research Institute Catalog of 

Published Genome-Wide Association Studies) (Manolio et al. 2008; McCarthy et al. 2008). 

However, the predominantly small effect sizes encountered thus far in investigations of most 

traits have provided no explanation for a large proportion of the trait variance attributable to 

heritable factors (Maher 2008; Manolio et al. 2009). Some effort to describe this phenomenon 

has suggested that hundreds or thousands of SNPs may each have a very subtle influence on the 

risk of some psychiatric traits (Purcell et al. 2009). These observations seem to support an 

adjustment of the CDCV model to allow for the possibility that rare alleles might also exert a 

major influence on common traits (Bodmer and Bonilla 2008; Pritchard 2001; Schork et al. 2009). 

This modification of CDCV, known as common disease rare variant (CDRV), postulates that 

                                                           

4 Edwards, T. L., Song, Z., and Li, C. (2011). Enriching targeted sequencing experiments for rare 
disease alleles. Bioinformatics 27(15), 2112-2118. Author contributions: Conceived and designed 
the experiments: TLE CL. Performed the experiments: ZS. Analyzed the data: ZS TLE. Contributed 
reagents/materials/analysis tools: TLE CL. Wrote the paper: TLE CL. Algorithm design: TLE CL 
Software: ZS. 
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alleles with strong effects on traits are likely to be rare due to purifying selective pressure and 

recent time to coalescence due to the rapid expansion of human populations (Pritchard 2001). 

Additionally, it has been shown in simulations that multiple rare alleles with strong effects can 

stochastically aggregate onto the haplotypic background of a common allele and produce 

genome-wide significant association signals, a scenario termed synthetic association (Dickson et 

al. 2010). Further support for the CDRV hypothesis comes from observational studies where the 

average allele frequency of SNPs with predicted effects on proteins was smaller than the 

average allele frequency of intronic or synonymous variants (Cargill et al. 1999; Gorlov et al. 

2008; Wong et al. 2003). Estimates from human Mendelian traits, human–chimpanzee 

divergence data and human genetic variation suggested that ~53% of new missense mutations 

have mildly deleterious effects, and that up to 70% of low-frequency missense alleles are mildly 

deleterious (Kryukov et al. 2007). 

A rare trait allele may not be annotated in the databases of common variants 

maintained by the International HapMap Organization or dbSNP, thereby excluding the 

possibility of detecting that SNP through imputation and subsequent association analysis. The 

constellation of causal alleles may also be unique for each population of human subjects, where 

sensitive functional gene or regulatory regions are perturbed by independent sets of rare 

mutations that occurred after geographic or cultural barriers led to increased genetic distance 

(Tishkoff et al. 2009). Thus, the same associated allele from GWAS across multiple ethnic groups 

does not necessarily imply the same underlying architecture of causal alleles in LD. Furthermore, 

our simulations suggest that rare disease-causing variants may not be captured at all by the 

modest samples of each population isolate from the 1000 Genomes Project, regardless of the 

high error rates for rare genotype calls from that study due to low coverage. Resequencing is 
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then the best available means of discovering these rare SNPs in a GWAS sample and ultimately 

detecting the relationship between these alleles and traits. 

To successfully discover the mutations that determine trait susceptibility, detailed 

assays that directly capture all genetic variation in a region are required (Cirulli and Goldstein 

2010). This can be accomplished most efficiently using next-generation sequencing technology 

to resequence subjects for the implicated loci (Service 2006). While next-generation sequencing 

technologies have substantially decreased the financial cost of resequencing large genomic 

regions relative to Sanger sequencing technology, it is still not generally feasible to resequence 

all the subjects that were used to isolate a genomic region via GWAS. Thereby, some strategy is 

necessary for employing sequencing technology that is cost-effective. One possibility is to 

resequence a small number of cases and controls or persons with extreme trait values and 

evaluate the observed genetic variation for association with traits to screen rare variants prior 

to larger genotyping experiments; however, this approach will suffer from low statistical power 

at the screening step due to the infrequent exposure rate of rare alleles, and potentially suffer 

from inflated type I error rates (Li and Leal 2009) as a result of ascertainment bias in cases. An 

alternative approach is not to attempt to associate alleles from resequencing data with the trait, 

but to discover rare alleles by resequencing, and then assay these SNPs with conventional 

genotyping methods in the entire available pool of study subjects. The effectiveness of this 

approach will be limited by the power to capture rare alleles in the targeted loci, which is 

directly related to the selection of subjects for the resequencing experiment (Li and Leal 2009). 

For SNP discovery, targeted resequencing study designs can be tailored for efficient capture of 

rare disease alleles in small samples, by using the information available at nearby trait-

associated SNPs. 
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In this chapter, we present SampleSeq, an algorithm for enriching the yield of rare or 

uncommon disease alleles in a sample of unrelated study subjects by choosing subjects 

according to their observed associated alleles and trait information. When multiple regions are 

to be sequenced, SampleSeq selects subjects with a balanced representation of all the regions. 

SampleSeq can also estimate the sample size required to detect a hypothetical disease allele, 

and thus can optimize a resequencing study to preserve resources for subsequent genotyping or 

other investigations. 

 

Methods 

 

We first describe our method for selecting subjects for sequencing a single region. We 

then extend the method to sequencing multiple regions. Finally, we describe simulation 

strategies for evaluating our method. 

 

Sequencing a single region 

Let A be a disease-associated common SNP, with alleles A and a and allele frequencies 

pA and pa, respectively. Let D be the true disease SNP close to SNP A, with alleles D and d and 

allele frequencies pD and pd, respectively. SNP D may not have been genotyped in previous 

stages of the investigation, and the common SNP A serves as a proxy for SNP D. The assumption 

of a single disease SNP simplifies the derivation, but it does not appear to be necessary as will be 

shown in our simulation results. As our method seeks to calculate the expected count of disease 

variants for each subject by conditioning on his SNP A genotype and affection status, we assume 

genotypes at SNP A are available for all subjects, and further that resequencing will be 

performed at sufficient depth to accurately call rare genotypes in small sample sizes. Suppose 
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allele a is the ‘risk’ allele, in positive LD with allele d and is either the major or minor allele at 

SNP A, and allele d is the real disease variant. When d is a rare variant, it is reasonable to 

assume that it originated on the background of allele a and almost no recombination has since 

occurred between them; we describe the rationale for this assumption in section Discussion. 

Then pd<pa, and the four haplotype frequencies are pdA, pda=pd−pdA, pDa=pa−pd+pdA and 

pDA=pA−pdA. Since almost no recombination has occurred between the two loci, it is reasonable 

to assume pdA is much smaller than pd, otherwise the LD between the two loci would be too 

weak to make SNP A a good proxy and be identified in a GWAS. When pdA≈0 , we have pda≈pd, 

pDa≈pa−pd and pDA≈pA. This assumption is not required for the calculations below, although it is 

implemented in the current version of our software for ease of computation. Our simulations 

did not have this requirement either (see section Simulation strategy). Let Ga and Gd be the 

genotypes at the loci: Ga=0,1,2 for AA, Aa, aa and Gd=0,1,2 for DD, Dd, dd, respectively. We 

assume Hardy–Weinberg equilibrium (HWE) at the SNPs in the population. Let Y be the disease 

status, 1 for cases and 0 for controls. Let fi=P(Y=1|Gd=i) (i=0,1,2) be the penetrances for 

genotypes DD,Dd and dd, respectively, and K be the disease prevalence in the population. 

Our goal is to calculate the expected count of allele d, E(Gd|Ga,Y), given each subject's 

genotype at SNP A and affection status, and select subjects accordingly. To achieve this, we first 

calculate P(Gd=g|Ga,Y) for g=0,1,2. Note that  

( , , )
( | , )

( , )

d a
d a

a

P G G Y
P G G Y

P G Y
   

where the denominator is P(Ga,Y)=∑GdP(Gd,Ga,Y) and the numerator is 

P(Gd,Ga,Y)=P(Gd,Ga)P(Y|Gd,Ga)=P(Gd,Ga)P(Y|Gd). The genotype probabilityP(Gd,Ga) is a function of 

haplotype frequencies under HWE. The probabilityP(Y|Gd=i)=fi when Y=1, and 1−fi when Y=0. We 

now show how to obtain fi. Note that  
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where P(Ga=i|Y=1) is the case frequency for genotype Ga=i. Since  
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and can solve for f0, f1, f2 using these linear equations. 

In the above calculation, the case genotype frequencies P(Ga=i|Y=1) can be estimated 

from the data at hand. The haplotype frequencies depend on the allele frequencies at SNPs A 

and D. The SNP A allele frequencies pA and pa can be estimated as weighted averages of case 

and control allele frequencies; for example, 
, ,

ˆ ˆ ˆ(1 )A A case A controlp Kp K p   , where 
,

ˆ
A casep  and 

,
ˆ

A controlp  are the frequencies of allele A in the cases and controls, respectively. When the 

disease prevalence is very low, 
,

ˆ ˆ
A A controlp p . The investigator needs to specify pd, for which we 

will show that often a range is sufficient. We also need the information on disease prevalence K, 

which often is available from external sources and also can be specified as a range. 

Once we have calculated P(Gd|Ga,Y), the expected count of allele d can be easily 

calculated as ( | , ) ( | , ) ( 1| , ) 2 ( 2 | , )d a d a d a d a

g

E G G Y E G g G Y g P G G Y P G G Y      . 

If we focus on a single region, then the subjects can be ranked according to their 

expected count of allele d. The top ranked subjects can be selected for sequencing to ensure the 
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highest chance of detecting rare disease variants. We will discuss stopping criteria and sample 

size determination at the end of the next section. 

 

Sequencing multiple regions 

In practice, investigators may want to fine map multiple regions simultaneously. Our 

method can be extended for this scenario. We assume there are M regions to sequence and 

they are unlinked to each other. For subject i and region j (i=1,…,n and j=1,…,M), let Gijd and Gija 

be the genotypes at the real disease SNP and the reported associated common SNP, respectively. 

Because the regions are unlinked, the above calculations can be carried out separately for each 

region, with Eij=E(Gijd|Gija,Yi). One might want to rank the subjects according to the expected 

number of disease variants over all regions, 
1

M

i ik

k

E E


  and select top ranked subjects. 

However, as the regions can differ in key characteristics such as risk allele frequency and 

strength of disease association, the top ranked subjects may contribute unevenly to the regions. 

As a result, this selection strategy may lead to overrepresentation of one region and lack of 

representation for another. A more efficient procedure is to select the top ranked subjects one 

at a time, each time tallying the cumulative expected count of disease variants for each region, 

denoted by Cj for region j. Once a region j has reached Cj≥c, a prespecified target number of 

disease variants, we re-rank the remaining subjects based on 
: k

ikk C c
E

 , calculated by 

excluding the region, and continue to select top ranked subjects. This process is repeated every 

time a region reaches C≥c. 

We may stop the process when all regions have reached C≥c. The number of selected 

subjects is the sample size needed to have C≥c for all regions. If the number of selected subjects 

is fewer than planned, the resources could be preserved for subsequent follow-up. If the 
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investigator wants to select more subjects, he may either raise the target value c and redo the 

selection or continue selecting from the remaining subjects according to their Ei. Although this 

algorithm allows investigators to determine the sample size needed to reach C≥c for all regions, 

as the disease variant frequency pd that is used in calculation of Eik may be different than the 

real disease variant frequency, the target value c may be far from the true number of disease 

variants in the selected subjects, as will be seen in our simulation results. However, our 

simulations also showed that even when pd was misspecified, SampleSeq performed well 

compared to the alternative approaches we simulated. 

 

Missing and imputed genotypes 

In practice, missing genotypes exist due to various reasons. In SampleSeq, when 

genotype Gija is unavailable, Eij is calculated as a weighted average  

( | , ) ( | )j ijd ija i ija i

g

Ei E G G g Y P G g Y   , 

where P(Gija=g|Yi) is the estimated genotype frequency of g in cases or controls, depending on 

the value of Yi. Similarly, a missing genotype may be imputed from the haplotype distribution of 

the population and observed haplotypes in the study subjects. When genotype Gija is imputed, 

Eij can be calculated as a weighted average using the posterior probabilities of the imputed SNP 

as weights: 

( | , ) ( | )j ijd ija i ija F

g

Ei E G G g Y P G g G   , 

where GF denotes flanking marker genotypes. 
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Simulation strategy 

We simulated case–control data with one or multiple disease regions, each harboring 

one or multiple disease variants with additive effects on trait risk. For rare variants, additive 

effect is practically equivalent to dominant effect as there are mostly only two genotypes, DD 

and Dd. To simulate realistic sequence-level genetic data from human populations, we 

employed the coalescent simulation software cosi, with parameters developed to calibrate the 

LD profile of simulated data to the observed LD profile from human populations (Schaffner et al. 

2005). Additionally, we used the recombination map from the International HapMap Project to 

model the probability of recombination in specified genomic regions. We randomly chose five 

disease regions between 125 kb and 250 kb in length, and for each region, we used cosi to 

generate a pool of 25 000 haplotypes. It is possible that associations between rare variants and 

common proxies might extend over longer physical distances than 250 kb; however, these 

simulations were computationally intensive to perform on a large scale. We note that there is 

no size limitation for our method and software. 

We simulated three scenarios: (i) CDRV with one rare disease variant per region; (ii) 

synthetic association (Dickson et al. 2010) with 10 rare disease variants per region; and (iii) 

CDCV with one common disease variant per region. For the CDRV scenario, we simulated various 

settings of prevalence (K=0.01, 0.05, 0.1, 0.2) and disease variant minor allele frequencies (MAFs, 

range 0.0025–0.01, denoted as MAFmin and MAFmax), with odds ratios (ORs) in the range 2–6 

(denoted by ORmin and ORmax). The OR of a disease variant was determined according to its MAF 

through the following formula: 

min
min max min

max min

MAF -MAF
OR =OR +(1- )(OR -OR )

MAF -MAF

i
i . 
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For the synthetic association scenario, we simulated one level of prevalence (K=0.01), and 

placed 10 random rare disease alleles with MAF in the range 0.0025–0.01 in each of five 

independent genomic regions, with OR in the range 2–6. For the CDCV scenario, we simulated 

one prevalence (K=0.01) with OR in the range 1.1–1.5, and various disease allele frequencies 

(0.01, 0.05, 0.15, 0.25). 

For each combination of prevalence and ORs, a disease model was established with 

0 1 1 2 2

0 1 1 2 2

...

1 2 ...
( 1| , ,..., )

1

M M

M M

G G G

M G G G

e
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e
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   

   
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 


, 

where (G1,G2,…,GM) is an individual's joint genotype at the M disease SNPs, and the coefficients 

βj were determined based on the prevalence and ORs. 

To simulate a control, a pair of haplotypes from each region was randomly drawn, and a 

random number in (0, 1) was drawn and compared to the penetrance from the disease model to 

determine if the subject is a control. To simulate cases, the probability of a having a multilocus 

genotype conditional on being a case was calculated for all possible genotypes from the M 

disease SNPs using the equation: 

1 2 1 2
1 2

( 1| , ,..., ) ( , ,..., )
( , ,..., | 1)

( 1)

M M
M

P Y G G G P G G G
P G G G Y

P Y


 


. 

A multilocus genotype across all disease SNPs was then randomly selected according to this 

conditional distribution, and haplotypes consistent with that genotype were randomly chosen 

from the haplotype pools simulated by cosi. 

For each scenario and each prevalence level, we generated 100 replicates of 2000 cases 

and 2000 controls. We then identified a proxy marker (i.e. SNP A) for each region with 

1.1<OR<1.5 and 0.2<MAF<0.4. These criteria were chosen to emulate typical associations from 

GWAS, and to allow the association between disease and SNP A to arise naturally as a result of 

LD between SNPs A and D, which were calibrated to resemble the LD profile of European-
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ancestry populations. On average the D′  between SNPs A and D was 0.88, with a range of 0.8–

1 across all CDRV simulations; in other words, pdA could be non-zero in our simulated data. For 

the synthetic association scenario, we did not impose any restrictions on the relationship 

between SNP A and the real trait SNPs, so that some of the risk alleles might fall on the low-risk 

background of SNP A. 

In addition to SampleSeq, we also considered other approaches to selecting the same 

number of subjects, including (i) random selection of controls; (ii) random selection of cases; (iii) 

selection of subjects ranked by dosage of proxy marker risk alleles; and (iv) selection of cases 

ranked by dosage of proxy marker risk alleles. For all these approaches, we counted the total 

number of disease variants per region that were captured in the selected subjects for sample 

sizes from 50 to 500 in increments of 50 subjects. For the simulated data, we also counted the 

maximum number of disease variants that can be carried for each given sample size. 

 

Results 

 

For all simulated scenarios, we calculated the number of rare disease alleles captured. 

For the CDRV scenarios, where the allele frequency of the trait locus is well-estimated, the 

SampleSeq algorithm consistently provided higher yields of captured disease alleles than the 

other methods for all sample size thresholds (Figures IV.1-IV.4, Tables IV.1-IV.4). These results 

demonstrate the benefit in efficiency that SampleSeq can provide over the other alternatives. 

The yield of rare disease alleles provided by SampleSeq is a little higher over all sample sizes 

than by ranking case subjects by their burden of risk alleles. The other three alternative 

approaches were less efficient than SampleSeq by large percentages. Among the four 

alternative approaches, those relying on the burden of the proxy marker risk alleles were better 
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than those not using this information, and those focusing on cases were better than those not 

limited to cases. These results are as expected as both the burden of marker risk alleles and 

disease status are informative for the likelihood of carrying real disease variants. As SampleSeq 

is able to appropriately combine these two pieces of information, it often results in a more 

efficient selection of subjects than the alternatives. When only one piece of information was 

used, using the burden of proxy marker alleles performed similarly to the random selection of 

cases, with the former being slightly better when the prevalence was K=0.01 and 0.05 and the 

latter slightly better when K=0.1 and 0.2. We also observed that as trait prevalence increased, 

the total number of captured rare disease alleles decreased (Tables IV.1-IV.4). This was due to 

the fact that the same number of disease variants with similar effects would account for a high 

fraction of heritability for a low prevalence disease than for a high prevalence disease, which 

resulted in a higher likelihood for a patient of a low prevalence disease to carry a disease variant 

in the targeted regions in our simulations. We also simulated a single region of size 1 Mb with a 

single disease variant; the results followed the same pattern (data not shown). 
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Figure IV.1. (CDRV) Percent change of disease alleles captured compared to SampleSeq using 
alternative methods, K=0.01, assuming a disease allele frequency of 0.01 in calculation of Eik. 
 
Table IV.1 (CDRV) Ratio of average counts of disease alleles captured to the average maximum 
possible disease alleles (percent change relative to SampleSeq), K=0.01, assuming pd=0.01 in 
calculation of Eik 
 

Size SampleSeq Case Burden Proxy Burden Random Cases Random Controls 

50 0.31 0.31(-0.61) 0.19(-38.20) 0.15(-51.43) 0.04(-86.93) 
100 0.33 0.33(0.52) 0.21(-35.34) 0.17(-47.78) 0.05(-85.95) 
150 0.37 0.37(-0.11) 0.25(-32.41) 0.20(-45.43) 0.05(-85.32) 
200 0.40 0.40(-1.33) 0.27(-32.96) 0.22(-43.67) 0.06(-84.84) 
250 0.41 0.41(-1.98) 0.27(-34.40) 0.24(-42.16) 0.06(-84.44) 
300 0.42 0.41(-2.56) 0.27(-34.99) 0.25(-40.86) 0.07(-84.09) 
350 0.43 0.41(-2.93) 0.28(-34.99) 0.26(-39.69) 0.07(-83.77) 
400 0.43 0.41(-3.46) 0.28(-34.77) 0.26(-38.53) 0.07(-83.46) 
450 0.43 0.41(-3.65) 0.28(-34.25) 0.27(-37.44) 0.07(-83.16) 
500 0.43 0.41(-4.06) 0.28(-34.03) 0.27(-36.68) 0.07(-82.96) 
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Figure IV.2. (CDRV) Percent change of disease alleles captured compared to SampleSeq using 
alternative methods, K=0.05, assuming a disease allele frequency of 0.01 in calculation of Eik. 
 
Table IV.2 (CDRV) Ratio of average counts of disease alleles captured to the average maximum 
possible disease alleles (percent change relative to SampleSeq), K=0.05, assuming pd=0.01 in 
calculation of Eik 
 

Size SampleSeq Case Burden Proxy Burden Random Cases Random Controls 

50 0.28 0.27(-2.70) 0.17(-41.18) 0.13(-53.60) 0.04(-87.09) 
100 0.34 0.33(-3.35) 0.22(-34.89) 0.17(-49.94) 0.05(-86.07) 
150 0.37 0.35(-4.96) 0.23(-36.96) 0.19(-48.25) 0.05(-85.60) 
200 0.38 0.36(-4.60) 0.24(-37.13) 0.20(-45.65) 0.06(-84.87) 
250 0.38 0.36(-3.90) 0.24(-37.21) 0.21(-43.84) 0.06(-84.37) 
300 0.38 0.36(-4.06) 0.24(-35.75) 0.22(-42.16) 0.06(-83.90) 
350 0.38 0.36(-4.71) 0.25(-34.44) 0.22(-41.07) 0.06(-83.60) 
400 0.38 0.36(-4.44) 0.25(-34.11) 0.23(-39.82) 0.06(-83.25) 
450 0.38 0.36(-5.33) 0.25(-34.21) 0.23(-38.95) 0.06(-83.01) 
500 0.37 0.35(-5.03) 0.24(-34.27) 0.23(-37.72) 0.06(-82.67) 
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Figure IV.3. (CDRV) Percent change of disease alleles captured compared to SampleSeq using 
alternative methods, K=0.1, assuming a disease allele frequency of 0.01 in calculation of Eik. 
 
Table IV.3 (CDRV) Ratio of average counts of disease alleles captured to the average maximum 
possible disease alleles (percent change relative to SampleSeq), K=0.1, assuming pd=0.01 in 
calculation of Eik 
 

Size SampleSeq Case Burden Proxy Burden Random Cases Random Controls 

50 0.24 0.24(-0.41) 0.14(-42.71) 0.13(-43.79) 0.03(-86.22) 
100 0.27 0.26(-0.83) 0.16(-41.74) 0.16(-41.02) 0.04(-85.54) 
150 0.27 0.27(-2.04) 0.16(-39.88) 0.17(-38.98) 0.04(-85.04) 
200 0.28 0.27(-1.68) 0.16(-40.30) 0.17(-37.46) 0.04(-84.67) 
250 0.28 0.27(-2.33) 0.16(-40.49) 0.18(-36.29) 0.04(-84.38) 
300 0.28 0.27(-2.76) 0.16(-41.03) 0.18(-35.44) 0.04(-84.17) 
350 0.28 0.27(-3.59) 0.16(-40.24) 0.18(-34.51) 0.04(-83.94) 
400 0.27 0.26(-3.53) 0.16(-39.47) 0.18(-33.18) 0.04(-83.62) 
450 0.27 0.26(-4.08) 0.17(-38.85) 0.18(-32.41) 0.05(-83.43) 
500 0.29 0.28(-3.64) 0.18(-37.29) 0.20(-31.05) 0.05(-83.10) 
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Figure IV.4. (CDRV) Percent change of disease alleles captured compared to SampleSeq using 
alternative methods, K=0.2, assuming a disease allele frequency of 0.01 in calculation of Eik. 
 
Table IV.4 (CDRV) Ratio of average counts of disease alleles captured to the average maximum 
possible disease alleles (percent change relative to SampleSeq), K=0.2, assuming pd=0.01 in 
calculation of Eik 
 

Size SampleSeq Case Burden Proxy Burden Random Cases Random Controls 

50 0.20 0.20(3.01) 0.11(-43.57) 0.13(-35.88) 0.03(-83.38) 
100 0.22 0.22(0.76) 0.13(-43.18) 0.15(-35.03) 0.04(-83.16) 
150 0.23 0.23(-0.81) 0.14(-40.73) 0.15(-33.51) 0.04(-82.76) 
200 0.23 0.23(-0.16) 0.14(-40.10) 0.16(-31.34) 0.04(-82.20) 
250 0.23 0.23(-0.92) 0.14(-38.93) 0.16(-30.15) 0.04(-81.89) 
300 0.23 0.22(-2.06) 0.14(-39.29) 0.16(-29.22) 0.04(-81.65) 
350 0.23 0.22(-2.56) 0.14(-39.07) 0.16(-28.40) 0.04(-81.44) 
400 0.23 0.22(-2.53) 0.14(-38.59) 0.16(-27.55) 0.04(-81.22) 
450 0.24 0.24(-2.09) 0.15(-38.03) 0.18(-26.61) 0.05(-80.98) 
500 0.27 0.26(-2.01) 0.17(-37.42) 0.20(-25.69) 0.05(-80.74) 
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We note that SampleSeq is sensitive to very low values of pd as the algorithm is involved 

with solving linear equations, for which the solutions will be highly variable due to nearly 

singular matrices at very small values of pd Our experience is that pd should be at least

20

2( )case controln n
. For example, to select subjects from a pool of 2000case controln n   subjects, 

setting pd =0.005 is good but the performance will become less optimal for pd <0.005. This 

limitation is computational. Our simulations showed that assuming pd =0.01 was relatively 

robust to misspecification of the true frequency of d within the range we simulated, and 

performed well over all scenarios (data not shown). 

When we simulated the synthetic association (SA) scenario (Figure IV.5, Table IV.5), we 

observed similar patterns as for the CDRV scenario, although all methods captured a higher 

proportion of the maximum number of possible disease alleles than the CDRV scenario. 

SampleSeq captured an average of 75% of the maximum possible disease alleles over all sample 

sizes. In our simulated scenario, the random selection of cases performed much better than 

using the burden of proxy marker alleles. This is most likely due to the large number of disease 

alleles to be found among the cases on both allelic backgrounds of SNP A compared to the 

number of causal alleles in controls. 
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Figure IV.5. (SA) Percent change of disease alleles captured compared to SampleSeq using 
alternative methods, K=0.01, assuming a disease allele frequency of 0.01 in calculation of Eik. 
 
Table IV.5 (SA) Ratio of average counts of disease alleles captured to the average maximum 
possible disease alleles (percent change relative to SampleSeq), K=0.01, assuming pd=0.01 in 
calculation of Eik 
 

Size SampleSeq Case Burden Proxy Burden Random Cases Random Controls 

50 0.66 0.66(-0.11) 0.54(-18.58) 0.63(-4.95) 0.14(-78.65) 
100 0.69 0.69(-0.08) 0.54(-21.58) 0.65(-4.58) 0.15(-78.57) 
150 0.72 0.72(-0.18) 0.58(-19.79) 0.69(-4.30) 0.15(-78.51) 
200 0.74 0.74(-0.33) 0.59(-20.40) 0.71(-4.08) 0.16(-78.46) 
250 0.76 0.75(-0.40) 0.58(-22.80) 0.73(-3.88) 0.16(-78.41) 
300 0.77 0.76(-0.28) 0.57(-25.03) 0.74(-3.69) 0.17(-78.37) 
350 0.77 0.77(-0.31) 0.58(-25.22) 0.75(-3.52) 0.17(-78.33) 
400 0.78 0.78(-0.26) 0.59(-24.47) 0.76(-3.32) 0.17(-78.29) 
450 0.80 0.80(-0.21) 0.61(-23.69) 0.78(-3.15) 0.17(-78.25) 
500 0.82 0.81(-0.32) 0.62(-23.58) 0.79(-3.08) 0.17(-78.23) 
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For the CDCV scenario, we compared SampleSeq to the alternative methods when the 

disease alleles were not rare, but we assumed that pd =0.01 in our calculations. In these 

experiments, SampleSeq was slightly more efficient than the burden of proxy alleles in cases, 

and was slightly less efficient than the burden of proxy risk alleles regardless of case status 

(Figure IV.6, Table IV.6). This was also true when pd was close to the true frequency of d. Also 

notable was the generally smaller magnitude of differences among the other three methods. 

These results are due to the presence of many disease alleles in both cases and controls, as a 

result of the subtle effect sizes simulated in this scenario. 

We further summarized the results of these simulations by comparing the average 

expected counts of disease alleles as determined by SampleSeq, E(d), to the average count of 

observed disease alleles, d, for each scenario and sample size (Table IV.7). As the calculation of 

Eik is based on a hypothetical disease variant frequency (pd=0.01 in our calculations), E(d) may 

not match the true number of disease alleles. For the CDRV scenarios, where the frequency of d 

was between 0.0025 and 0.01, the ratio of the average expected to observed alleles across 

sample sizes were 1.7 for K=0.01, 2.0 for K=0.05, 2.9 for K=0.1, and 2.7 for K=0.2. When the 

allele frequency of d was constrained to fall within the range 0.009–0.011, and pd was set to 

0.01, the ratio of E(d) to d was 1.3 for K=0.01. However, for the SA scenario, the ratio of average 

E(d) to d was 0.41, although this value is counting the observation of all disease alleles in a 

region, where there were 10 disease alleles in the simulation per region. Also for the CDCV 

scenario, the ratio of average E(d) to d was 0.27, demonstrating that our method is based on 

finding rare disease alleles, and that if the disease alleles are common, they will occur much 

more often than expected by SampleSeq assuming a rare pd. 
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Figure IV.6. (CDCV) Percent change of disease alleles captured compared to SampleSeq using 
alternative methods, K=0.01, assuming a disease allele frequency of 0.01 in calculation of Eik. 
 
Table IV.6 (CDCV) Ratio of average counts of disease alleles captured to the average maximum 
possible disease alleles (percent change relative to SampleSeq), K=0.01, assuming pd=0.01 in 
calculation of Eik 
 

Size SampleSeq Case Burden Proxy Burden Random Cases Random Controls 

50 0.9 0.90(-0.13) 0.91(1.22) 0.48(-46.88) 0.40(-55.27) 
100 0.91 0.92(0.26) 0.93(1.82) 0.51(-43.86) 0.43(-52.72) 
150 0.91 0.91(-0.18) 0.94(2.45) 0.53(-41.74) 0.45(-50.94) 
200 0.91 0.90(-0.92) 0.93(2.13) 0.54(-40.22) 0.46(-49.66) 
250 0.9 0.89(-1.35) 0.92(1.57) 0.55(-39.06) 0.46(-48.68) 
300 0.91 0.90(-1.66) 0.92(1.21) 0.57(-38.06) 0.48(-47.84) 
350 0.92 0.90(-1.95) 0.93(1.28) 0.58(-37.04) 0.49(-46.98) 
400 0.93 0.91(-2.48) 0.94(1.41) 0.59(-36.13) 0.50(-46.21) 
450 0.93 0.90(-2.90) 0.94(1.62) 0.60(-35.17) 0.51(-45.40) 
500 0.93 0.90(-3.15) 0.95(1.92) 0.61(-34.18) 0.51(-44.57) 
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Table IV.7. The average cumulative expected count of disease alleles, denoted E(d), and the 
actual observed average count of disease alleles, denoted d, for each scenario in Figures IV.1–
IV.6, denoted IV.1–IV.6, for each of 10 sample sizes. 
 

Size 
CDRV 

IV.1 E(d) IV.1 d IV.2 E(d) IV.2 d IV.3 E(d) IV.3 d IV.4 E(d) IV.4 d 

50 60.61 33.01 57.77 27.37 54.19 17.20 41.11 13.29 
100 112.43 61.40 106.16 50.73 100.19 32.44 76.66 26.24 
150 159.77 88.14 150.05 73.62 142.48 47.04 109.77 38.54 
200 203.92 113.85 190.93 93.46 182.28 61.19 140.98 49.65 
250 245.86 138.59 229.21 113.05 219.95 75.08 170.25 61.00 
300 286.01 162.67 266.24 131.73 256.05 88.91 197.91 72.24 
350 323.93 186.10 302.01 150.83 290.30 102.26 225.60 83.32 
400 360.35 208.67 335.85 168.82 322.98 114.54 252.02 94.10 
450 394.54 230.64 376.42 187.19 353.79 127.40 276.51 104.51 
500 429.20 253.22 398.36 203.89 385.89 138.76 300.98 114.68 

 

Size 
SA CDCV 

IV.5 E(d) IV.5 d IV.6 E(d) IV.6 d 

50 126.25 250.83 91.49 326.19 
100 236.61 499.71 171.66 617.27 
150 339.02 747.42 249.07 892.26 
200 433.72 994.22 318.45 1159.36 
250 523.99 1240.19 385.29 1421.55 
300 611.43 1485.35 449.50 1678.27 
350 696.42 1729.79 509.24 1926.32 
400 779.41 1972.88 569.92 2170.27 
450 859.65 2215.47 634.62 2405.16 
500 936.72 2459.95 676.23 2632.34 

 

 

Although Eik changes as the hypothetical disease variant frequency changes, using these 

estimates to rank subjects when an incorrect allele frequency is used in the calculation is still an 

effective means of selecting subjects. To demonstrate this, we calculated E(d) under pd =0.1, 

0.01 and 0.001, using the simulation parameters from the experiment in Figure IV.1, and present 

their correlation coefficients in Table IV.8. While the magnitude of the value of E(d) is 

proportional to the assumed value of pd, the ranking of subjects is similar even when pd is 

misspecified. 
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Table IV.8. Correlation coefficient between E(d) from three settings of pd. 
 

 pd=0.1 pd=0.01 pd=0.001 

pd=0.1 - 0.908 0.841 
pd=0.01 0.938 - 0.988 
pd=0.001 0.928 0.999 - 

Five regions, one rare disease variant per region, K=0.01. Correlations for cases are in the upper 
triangle and those for controls are in the lower triangle. 
 

 

Discussion 

 

Targeted resequencing using next-generation sequencing technology allows 

investigators to fine map regions identified in GWAS to localize true variants. Since it is generally 

not feasible for an investigator to sequence everybody in a large GWAS, questions arise as to the 

optimal design of follow-up studies aimed at identifying novel, particularly rare, variants that 

may explain the GWAS signals: the optimal balance between numbers of subjects, depth of 

sequencing and sizes of regions; follow-up by further sequencing of selected variants or 

imputation; whether to use DNA pooling or family-based designs; choice of specific subjects for 

sequencing, etc. (D.Thomas and F.Yang, personal communication). We developed SampleSeq to 

address the last issue. 

We have conducted a simulation study of several scenarios that have been postulated 

to represent the genetic architecture of common complex traits in human populations. We 

explored individual rare variants with strong effects, the synthetic association scenario with 

multiple rare variants per region and the CDCV model to evaluate our approach for capturing 

causal alleles. We demonstrated that SampleSeq can estimate the count of rare causal alleles in 

a sample of subjects from a case–control study, estimate the sample size required to capture a 
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specified number of alleles in each region of interest and select subjects to optimize and balance 

the capture of alleles across an arbitrary number of regions. 

When designing a next-generation resequencing study, a compromise must be struck 

between read depth and sample size. Regardless of the balance between these parameters, the 

allele frequency in the sample will be the primary determinant of whether genotypes are called 

accurately. By increasing the frequency of a disease allele in a sample of subjects, the accuracy 

of genotype calls and the chance that any resequencing study design will detect the presence of 

that allele will be improved. To increase the chance of detecting disease variants in a targeted 

resequencing study, an intuitive strategy is to select cases according to the dosage of risk alleles 

at the reported associated SNP (Thomas et al. 2009). Our results showed that this is indeed a 

good strategy compared to random selection of cases or controls. However, because of 

incomplete penetrance, a control subject homozygous for risk alleles at several loci may have a 

higher chance of carrying a real disease variant than a case subject who is heterozygous for 

some of those risk alleles. SampleSeq allows us to quantify their probabilities of carrying real 

disease variants and then select subjects accordingly. 

We observe that compared to random controls, samples of random cases have much 

better performance for discovering rare disease alleles, which is consistent with previous studies 

(Li and Leal 2009). Some investigators may choose to evaluate a set of controls in order to 

perform screening with association tests before proceeding to large-scale variant-based 

genotyping. This is likely the most effective strategy when resources are abundant for 

resequencing studies and sample sizes are large. However, when sample sizes are small, we 

would expect most of the ability to detect the presence of rare disease alleles in the population 

to come from the cases. As the majority of samples selected by SampleSeq will be cases, in 

some situations, it may be reasonable to resequence some controls to augment the SampleSeq 



 

117 

 

selection. The control subjects could then be used to screen variants for frequency differences 

and prioritize for genotyping. This comparison would be biased due to the frequency 

enrichment achieved by SampleSeq, but could help discern the SNPs that should be tested for 

association with the trait with unbiased approaches, such as genotyping in the full cohort. 

However, reallocating resources to sequence additional controls would also lower the chance of 

seeing real disease variants in the cases. If the number of subjects that can be resequenced is 

small, we advocate also using the sequence context and putative biological impact of variants to 

prioritize SNPs for genotyping, as there will not be a large amount of statistical information for 

comparing rare variant frequencies in small samples. 

Some recent research has shown that association testing from sequence data may 

provide slightly more statistical power than variant-based genotyping on a per-subject basis (Liu 

and Leal 2010) using two recently developed tests of association (Li and Leal 2009; Madsen and 

Browning 2009). However, we note that due to the large difference in the cost of resequencing 

to the cost of variant-based genotyping, on a per-unit of resources basis, many more subjects 

could be genotyped with variant-based methods than could be resequenced. Thereby, the 

statistical power to detect an association might be considerably better in a large sample of 

variant-based genotypes than in a small sample of sequence-based genotypes, utilizing the same 

resources. The goal of this work is to optimize the resources expended for resequencing studies, 

preserving DNA samples and financial assets for subsequent steps in investigations. 

The key element of the model that provides SampleSeq with a performance advantage 

over counting common risk alleles is the assumption of rare ancestral recombination between 

SNPs A and D. We assumed that disease variant d originated on the ‘risk’ allele a background, 

which resulted in three haplotypes, AD, aD and ad. To break up the LD between the SNPs 

through recombination, the recombination event needs to occur in the double heterogyzotes, 
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for which the frequency is quite low as d is rare. Moreover, if the two SNPs are close enough to 

have very low recombination fraction between them, then the chance of breaking up the LD 

between the SNPs will be small. This is supported by our simulation data; the recombinant 

haplotype frequency averaged 3.7×10−4 across all our CDRV haplotype pools, suggesting pdA≈0 

is a reasonable assumption. It is implemented in our software for the ease of computation. In 

simulations where this assumption was badly violated, such as the CDCV scenario, the 

performance of SampleSeq was still competitive with the burden of risk alleles in cases. 

We also noted that as the prevalence in our simulations increased, but the ORs of rare 

disease variants was held constant, the proportion of cases not carrying any risk alleles at any of 

the target disease loci increased. This observation is a result of our simulation strategy, but it is 

perhaps worthy of note that high-prevalence traits may require many more rare risk alleles than 

low-prevalence traits for the CDRV model to account for most of the trait heritability for a highly 

heritable common trait. Thereby, if there are not a large number of associated regions identified 

for a high-prevalence trait, it is possible that the yield of rare disease alleles from a resequencing 

study of that trait may be small, as additional trait variation may be due to untargeted regions 

or environmental influences. 

As next-generation sequencing technology matures, the need for targeted resequencing 

of association study-implicated regions for fine-mapping of mutations may eventually expire. 

However, for researchers who do not have access to tremendous financial resources or the most 

current sequencing platforms, targeted resequencing followed by variant-based genotyping of 

candidate SNPs is likely the most direct and cost-efficient means of fine-mapping of causal rare 

mutations. Additionally, this approach capitalizes on previous discoveries, rather than pursuing 

agnostic resequencing of whole genomes or exomes. While agnostic approaches to discovery 

will and should be taken, we believe there is also a role for hypothesis-based resequencing 
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studies in human genetic epidemiology in the foreseeable future. The SampleSeq software is 

available at http://biostat.mc.vanderbilt.edu/SampleSeq 

  

http://biostat.mc.vanderbilt.edu/SampleSeq
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CHAPTER V 

 

EFFICIENT DETECTION OF TUMOR SOMATIC MUTATIONS USING NEXT-GENERATION 

SEQUENCING DATA5 

 

Introduction 

 

Cancer is a class of complex genetic diseases that are responsible for one in eight deaths 

worldwide (Blecher et al. 2008). It is characterized by uncontrolled proliferation of malignant 

cells that can intrude into surrounding tissues and metastasize to distant organs because of 

somatically accumulated mutations and epigenetic changes (Esteller 2007; Stratton et al. 2009). 

Cancer somatic mutations encompass distinct classes of DNA and chromosomal changes, 

including base substitutions, insertions and deletions (indels), copy number variants (CNVs), and 

inter- and intra-chromosomal rearrangements. Cells in some cancer types may also have 

obtained exogenous DNA from viruses (Talbot and Crawford 2004). 

Somatic mutations are distributed across the genome (Stratton 2011). Only a small 

subset of mutations has been implicated in oncogenesis. The type and rate of somatic mutations 

may vary by cell type and can be influenced by mutagenesis exposures endogenously and 

exogenously. As a result, different cancer types have different mutation profiles. Some cancer 

types display very disordered genomes while others have few genomic aberrations (Stratton 

2011). It is important to understand the overall mutation profiles for different cancer types and 

                                                           

5 Song, Z., Long, J. He, J., Shi, J., Shu, X., Cai, Q., Zheng. W., and Li, C. (2011). Efficient Detection 
of Tumor Somatic Mutations using Next-Generation Sequencing Data. (submitted). Author 
contributions: Conceived and designed the experiments: ZS CL. Performed the experiments: ZS. 
Analyzed the data: ZS CL. Contributed reagents/materials/analysis tools: JL JH JS XS QC WZ. 
Wrote the paper: ZS CL. Algorithm design: ZS CL Software: ZS. 
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in different patients as they may influence choice of treatment as well as a patient’s reaction to 

a treatment. In early cytogenetic studies of cancer, most mutations found were chromosomal 

translocations and CNVs. Thanks to the development of next-generation sequencing (NGS) 

technologies, we are on the edge of creating a complete catalogue of mutations for each cancer 

type (Singer 2011) by screening the cancer genome at the finest resolution. 

The NGS technologies have recently been used to study somatic mutations in melanoma 

(Pleasance et al. 2010), lung cancer (Lee et al. 2010; Pleasance et al. 2010), colorectal cancer 

(Timmermann et al. 2010), renal carcinoma (Varela et al. 2011), breast cancer (Ding et al. 2010; 

Shah et al. 2009), acute myeloid leukemia (Mardis et al. 2009), mesothelioma (Bueno et al. 

2010), and prostate cancer (Berger et al. 2011). Although the methods for mutation detection 

differ in details, these studies all relied on comparing SNP calls across samples in their primary 

mutation screening. 

Efficient analysis tools for NGS data have been developed. The Genome Analysis Toolkit 

(GATK) (McKenna et al. 2010), for example, is a suite of tools for sequence data processing and 

genotype calling, and provides a rich software library for developing additional analysis tools. 

The GATK Unified Genotyper and some other SNP calling programs do an excellent job of calling 

genotypes for homogeneous samples such as blood and normal tissues. In cancer genomes, 

however, cells taken from a tumor tissue may include non-cancer cells. In addition, cancer cells 

in a tumor sample can be heterogeneous with respect to somatic mutations. As a result, a 

somatic mutation may exist only in a fraction of cells in a tumor sample, lowering the likelihood 

of detecting it through genotype calls. The resulting allelic imbalance may also lead to tumor 

genotype calls being flagged as problematic and excluded from analysis. However, existing tools 

for detecting somatic mutations mostly rely on genotype calls for tumor samples. For example, 

VarScan (Koboldt et al. 2009) screens data for mutation sites by comparing genotype calls 
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between normal and tumor samples, and SomaticSniper (Mardis et al. 2009) uses a genotype 

likelihood model (Li et al. 2009) to calculate the probability that the tumor and normal 

genotypes are different. VarScan (Koboldt et al. 2009) does use allele frequency information to 

evaluate significance, but only for sites that show genotype difference between normal and 

tumor samples. 

We develop and implement novel algorithms for detecting two major types of somatic 

mutations, base substitution and loss of heterozygosity (LOH), by directly examining the 

sequence reads of tumor samples. We applied our methods, named Somatic Mutation Gleaner 

(SMUG), to whole exome sequencing data of eight breast cancer tumors and their matched 

blood samples, and detected somatic mutations that are missed by comparison of genotype 

calls between normal and tumor samples. 

 

Method 

 

We consider patients of the same type of cancer, each with NGS data available for a 

tumor sample and a normal sample (e.g., from blood or normal tissue). In SMUG, we first 

process each normal-tumor sample pair and then aggregate information across patients. Before 

applying our methods, general filtering criteria can be employed such as setting thresholds for 

base, mapping, and genotype quality scores. The depth for a site is defined as the number of 

remaining bases at the site after filtering. 
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Detection of Base Substitutions 

We seek to identify sites that are homozygous in the normal sample but have mutant 

alleles in the tumor sample. For each patient, we first walk through the tumor sequence data to 

look for sites with more than one type of nucleotide bases, and then check normal sample 

genotypes and keep the sites that are homozygous in the normal sample. As base substitutions 

can appear as an artifact during sample preparation (e.g., PCR error), sequencing (e.g., reading 

error), and data processing (e.g., alignment error), one may want to ignore sites with very few 

copies or very low fraction of “mutant” alleles; this will reduce noise as well as the amount of 

computation down the road. To obtain genotypes in the normal sample, forced calling may be 

necessary as SNP callers often do not output results for sites deemed monomorphic. 

For each selected site j, the fraction of mutant alleles could be estimated as xj/nj, where 

nj is the depth at the site and xj is the number of bases at the site that are different from the 

allele in the normal sample homozygous genotype. Both nj and xj are counts of bases after 

filtering. However, this ratio can have very different accuracy depending on the denominator; 

for example, a site with x = 30 and n = 200 may be more likely to carry a real somatic mutation 

than a site with x = 3 and n = 20 although they have the same fraction of mutant alleles. This 

issue can be addressed by employing an empirical Bayes (EB) approach, in which the mutant 

allele count is assumed to follow a binomial distribution, xj ~ Bin(nj, θj), where θj is the true 

fraction of mutant alleles and follows a prior distribution Beta(α, β). The posterior distribution 

for θj is Beta(xj + α, nj – xj + β) and the EB-estimate of the fraction of mutant alleles is the 

posterior mean rj = (xj + α)/(nj + α + β). The adjustment will be small for sites with high depth and 

relatively high for sites with low depth. As a result, the EB-estimate for a site with x = 30 and n = 

200 is often higher than that for a site with x = 3 and n = 20. The parameters α and β are 

obtained as the maximum likelihood estimates of the marginal likelihood function, 
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             ,where              
 
 
           

      

        
               and the 

product is over all the selected sites. The parameters α and β may vary across samples. 

A site identified by this approach may also carry “mutant” alleles in the normal sample 

even if it is called homozygous with a genotype quality score high enough to pass filtering. For 

example, for one of our patients (patient 8), position 28241838 on chromosome 20 was called 

homozygous C/C in blood but there were 55 copies of C and 7 copies of T after filtering by base, 

mapping, and genotype quality scores. The presence of multiple copies of T could be due to 

contamination, somatic mutation in the normal sample, sequencing error, or alignment error. 

We implement two filters for removing these sites. One is to apply the procedure described 

above to the normal sample and calculate the adjusted EB-estimate, r1j – r0j, where r1j and r0j are 

the EB-estimates for the tumor and normal samples, respectively, at site j. Another is to 

calculate the p-value for a t-statistic for each site,         
  

 
  
  

    
 

  
 

 

  
       , where x1 is the 

number of mutant alleles and n1 is the depth in the tumor sample, x0 and n0 are their 

counterparts for the normal sample, and p = (x1 + x0)/(n1 + n0). Our experience shows that the 

former works reasonably well while the latter can result in a misleadingly significant p-value for 

a site with high depth. 

A somatic mutation that occurs in multiple patients is likely to be relevant to tumor 

development or progression. We thus aggregate information across patients for each base 

substitution site. One measure is the total adjusted EB-estimates across the patients for whom 

the site was selected. Another measure is the p-value for the composite t-statistic       , 

where the sums are over the patients for whom the site was selected. These measures are 

analogous to the filters developed above. Our program can output sorted site- and gene-level 

summaries that are ready for further annotation using programs such as ANNOVAR (Wang et al. 

2010) or PolyPhen-2 (Adzhubei et al. 2010). 
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The results will be useful for selection of sites for further replication; for example, one 

may select sites that have adjusted EB-estimate ≥0.1 in ≥20% of the patients. Its false discovery 

rate (FDR), the fraction of false positives among the selected sites, can be estimated using a 

permutation procedure. Let Si be the set of qualifying sites (e.g., sites with adjusted EB-estimate 

≥0.1) for patient i. Let S be the union of Si over all patients. For each patient, we permute the 

sites in S; different patients are permuted independently. Then we apply the same selection 

criterion (e.g., qualifying sites in ≥20% of the patients) to the permuted data. This procedure is 

repeated multiple times, and the average number of selected sites across permutation 

replicates is an estimate of the number of false positive sites. The FDR can then be estimated as 

the number of false positive sites divided by the number of sites selected from the real data. 

 

Detection of Regions with Loss of Heterozygosity 

Ideally, LOH could be detected by looking for sites that are heterozygous in the normal 

sample and homozygous in the tumor sample. However, as for base substitutions, a tumor 

sample may be a mixture of tumor and non-tumor cells, and loss of an allele may not occur in all 

tumor cells. As a result, an LOH region may not manifest a total loss of an allele in the tumor 

sample, and thus may not be detectable through comparison of genotype calls between normal 

and tumor samples. A partial loss of an allele will result in a departure of allele counts from 

50:50. We develop a method to capture this information. 

For each patient, we focus on sites that are heterozygous in the normal sample. If there 

is no LOH, the tumor sample base counts should follow a binomial distribution with probability 

0.5 for each of the two alleles in the normal sample. A significant departure from this 

distribution is evidence of LOH, which can be quantified by defining an LOH score. We first 

compute a two-tailed p-value for the observed base counts and convert it to the Phred scale, Ph 
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= –10log(p), rounded to the nearest integer and capped at 99. The LOH score is defined as Ph – 

E(Ph | d), where E(Ph | d) is the expected Phred score under no LOH given depth d at the site. 

The expected Phred score depends on depth because the distribution of Phred scores varies as 

the depth changes. At depth d, there are d + 1 possible outcomes, x = 0, …, d, each having a 

probability px and a Phred score Phx under no LOH. The expected Phred score is the weighted 

average of these d + 1 scores, E(Ph | d) = p0Ph0 + … + pdPhd. 

The LOH score defined above allows us to identify potential LOH sites and regions. For 

example, one may apply a threshold sLOH to LOH scores and select sites with LOH score ≥ sLOH as 

potential LOH sites. An LOH region can then be defined as a contiguous region that contains ≥ 

nLOH LOH sites without interruption, that is, all normal sample heterozygous sites in the region 

have an LOH score ≥ sLOH. Higher values of the thresholds sLOH and nLOH result in more stringent 

criteria. The boundaries of an LOH region can be conservatively defined as the positions of its 

first and last LOH sites. We note that correct identification of an LOH region relies both on 

successful detection of normal sample heterozygous sites inside the region and on strong 

evidence of LOH in the tumor sample. When there is not enough information (e.g., due to low or 

no coverage), a normal sample heterozygous site may not be reliably called or the evidence of 

LOH may not be strong enough in the tumor sample. In this situation, an LOH region may not be 

detected due to a lack of supporting LOH sites, and multiple LOH regions may be identified as a 

single one due to a lack of sites breaking them apart. 

The overall evidence of LOH for a site can be obtained by adding individual LOH scores 

over patients heterozygous in the normal sample. This is justified by the fact that the p-values 

are independent across subjects and under no LOH, –2ln(p) ~   
 , a chi-squared distribution with 

two degrees of freedom. Since –10log(p) = –2ln(p)×(5/ln10) and the sum of k independent   
  

statistics follows    
 , the sum of Phred scores over k patients is expected to follow  
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  under no LOH. Thus the total LOH score can reflect the overall evidence of LOH. 

Our program can output sorted site- and gene-level LOH results that are ready for further 

annotation. 

 

Results from the Shanghai Breast Cancer Study 

 

We applied SMUG to whole exome sequencing data for blood and tumor samples from 

eight breast cancer patients. We evaluated the performance of SMUG and the approach of 

comparing genotype calls between normal and tumor samples; the latter will be referred to as 

CALL for brevity. The same filtering criteria were used in both SMUG and CALL: mapping quality 

score ≥ 20, base quality score ≥ 20, and genotype quality score ≥ 20. Similar patterns of results 

were observed when alternative threshold values were used. 

 

Samples and Exome Sequencing 

We selected eight breast cancer patients from the Shanghai Breast Cancer Study (SBCS) 

for whole exome sequencing of their blood and tumor DNA samples. The SBCS is a large-scale, 

population-based case-control study conducted in urban Shanghai (Gao et al. 2000). Seven 

patients have early-onset (28-32 years old) breast cancer and one has early-onset (39 years old) 

plus first-degree family history of breast cancer. Their breast cancer TNM (Tumor, Node, 

Metastasis) stages ranged from I to III (Table V.1). Tumor DNA was extracted from buffy coat 

and snap frozen breast cancer tissue using QIAmp DNA Kit (Qiagen, Valencia, CA) following the 

manufacturer’s protocols. 
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Table V.1. Data summary. Patient characteristics: age (years old), family history, tumor stage. Exome data: number of aligned reads, median 
depth in target regions, α and β. Blood genotypes: overall and heterozygous consistency rate with chip-based SNP calls. 
 

Patient Age 
Family 
history 

TNM 
stage 

Blood  Tumor 

#aligned 
(×106) 

Depth 
Consistency 
rate (%) 

Het 
consistency 
rate (%) 

α β  
#aligned 
(×106) 

Depth α β 

1 31 0 IIa 29.7 43 99.31 97.99 1.22 28.14  10.6 16 4.41 29.80 

2 28 0 III 34.6 46 99.71 99.35 1.56 33.19  16.9 25 7.66 67.98 

3 31 0 IIa 31.5 44 99.51 98.58 1.22 31.95  16.3 22 4.13 29.10 

4 32 0 IIb 36.9 48 99.51 98.72 1.28 27.50  10.1 15 6.04 44.20 

5 32 0 IIb 34.4 48 99.65 99.06 0.88 21.91  15.8 23 6.46 52.77 

6 30 0 I 35.7 49 99.58 98.85 0.75 20.48  18.7 27 5.88 49.39 

7 28 0 IIa 32.6 43 99.63 99.08 0.61 17.14  12.5 19 9.93 84.08 

8 39 1 III 31.3 43 99.22 98.75 1.06 28.94  16.4 23 3.59 25.19 
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DNA enrichment was done using Agilent SureSelect Human All Exon kit v1 (Gnirke et al. 

2009), which was designed to target 165,637 genomic regions (37.8 million bases, or 1.22% of 

the human genome). The consensus coding sequence database has 27.8 million bases, 97.4% of 

which are covered by the assay’s target regions. Exome sequencing was conducted at the 

HudsonAlpha Institute for Biotechnology. The data were 72-base paired-end reads generated 

from Illumina GA IIx machines (Bentley et al. 2008). Each sample was run on a single lane of a 

flow cell. The median depth in target regions was on average 45x for the blood samples and 21x 

for the tumor samples (Table V.1). 

We shifted the Illumina base quality score to the Sanger scale and performed initial 

alignment to the NCBI human reference genome version 36 using BWA (Li and Durbin 2009). We 

then marked duplicates with Picard, carried out regional realignment and quality score 

recalibration using GATK (McKenna et al. 2010). We used GATK Unified Genotyper to call SNPs, 

which were then filtered to remove low quality calls. The blood and tumor samples were 

processed separately. The blood DNA samples were also genotyped using the Affymetrix 6.0 

chip in our previous genome-wide association study (Zheng et al. 2009). The chip-based and 

sequence-based SNP calls were compared for SNPs overlapping the two platforms, and the 

consistency rate was over 99% for all samples, suggesting very good quality of our sequencing 

data (Table V.1). 

 

Detection of Base Substitutions 

For the CALL approach, we obtained genotype calls for the blood and tumor samples. 

Sites that were heterozygous in a tumor sample but had no call in the corresponding blood 

sample were force-called in the blood sample to check if the blood genotype was homozygous 
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with high quality. For each patient, the CALL list of base substitutions consisted of sites that 

were homozygous in blood and heterozygous in tumor after filtering. 

For the SMUG approach, we screened each tumor sample for sites that had depth ≥5, at 

least 3 “mutant” alleles with fraction ≥ 0.05. These putative mutation sites were force-called in 

blood samples. For each patient, her SMUG list consisted of the putative mutation sites that 

were homozygous in blood after filtering. The parameters α and β were estimated (Table V.1) 

and the EB-estimates of the fraction of mutant alleles were calculated for all SMUG sites. 

In both approaches, we focused on mutation sites that were observed in at least two 

patients. For SMUG sites, we required ≥ 0.15 total adjusted EB-estimates over mutant carriers. 

SMUG identified 1,111 sites and CALL found 614. Among the 465 sites that were identified by 

both methods, 221 had the same number of supporting patients, 228 had more supporting 

patients in SMUG, and only 16 had more supporting patients in CALL. SMUG identified 646 

additional sites that were missed by CALL. There were also 149 sites that were identified by CALL 

but not by SMUG; all these sites had either very few mutant alleles or very low adjusted fraction 

of mutant alleles. 

Further examination of the base counts at the identified sites provided some insight on 

why SMUG performed differently from CALL. Table V.2 contains a few examples. (1) Position 

180434779 on chromosome 3 is a well-known non-synonymous breast cancer somatic mutation 

site in the PIK3CA gene. Both SMUG and CALL identified evidence of base substitution at this site 

in three patients. (2) In many situations, a low fraction of mutant alleles makes it difficult to 

detect mutations through genotype calls. For position 42589657 on chromosome 17 in the 

CDC27 gene, SMUG found evidence of non-synonymous somatic mutation in six patients while 

CALL could detect only three of them. This is because the tumor samples of the other three 

patients were called homozygous, although they each had multiple copies of the putative 
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mutant alleles. (3) A low fraction of mutant alleles can also result in allelic imbalance, which can 

lead to low quality genotype calls for tumor samples. One example is position 132744647 on 

chromosome 2, for which CALL had low quality genotype calls for two tumor samples. (4) We 

also examined the sites that were identified by CALL but missed by SMUG. These sites failed the 

criteria we used in SMUG due to either too few “mutant” alleles or very small adjusted EB-

estimate; one example is position 30958603 on chromosome 10 (Table V.2). 

We also compared the results from SMUG and CALL with the Catalogue of Somatic 

Mutations in Cancer (COSMIC) database (Bamford et al. 2004; Forbes et al. 2011) release v52, 

which contains 19,224 sites and 8,951 genes related to human cancers, among which 1,638 sites 

and 1,030 genes were related to breast cancer. SMUG identified two COSMIC sites and one in 

breast cancer, the PIK3CA site described above; CALL only identified the PIK3CA site. At the gene 

level, the SMUG sites were inside 67 COSMIC genes (10 breast cancer genes), while the CALL 

sites hit 41 COSMIC genes (7 breast cancer genes) (Table V.3). We further stratified the 

identified sites by their annotated functions. SMUG consistently hit more COSMIC genes than 

CALL did for non-synonymous, synonymous, and stop gain mutations. We did not find any stop 

loss substitution in COSMIC genes (Table V.3). 
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Table V.2. Examples of sites for comparison between SMUG and CALL for detection of base substitutions. Base counts and genotype calls for 
both blood and tumor samples for all identified base substitutions are shown. 
 

Chr Position Total EB-estimate Pt. 1 Pt. 2 Pt. 3 Pt. 4 Pt. 5 Pt. 6 Pt. 7 Pt. 8 

3 180434779 0.5932 86,0,0,0 112,0,0,0 80,0,0,0      
 (PIK3CA)  15,0,7,0 40,0,12,0 19,0,34,0      

 (nonsyn)  A/A;A/G A/A;A/G A/A;A/G      
17 42589657 0.6168   0,0,0,68 0,0,0,81 0,0,0,74 0,0,0,87 0,0,0,70 0,0,0,70 
 (CDC27)    0,0,7,40 0,0,4,16 0,0,7,45 0,0,3,53 0,0,3,39 0,0,5,55 

 (nonsyn)    T/T;T/G T/T;T/G T/T;T/G T/T;T/T T/T;T/T T/T;T/T 
2 132744647 0.5615  0,0,15,0  0,0,26,0 0,0,25,0 0,0,12,0 1,0,30,0 0,0,14,0 
    3,0,36,0  6,0,26,0 7,0,40,0 3,0,21,0 9,0,43,0 3,0,30,0 

    G/G;G/G  G/G;A/G G/G;A/G G/G;./. G/G;A/G G/G;./. 
10 30958603 - 0,1,0,67  1,5,0,56      
   0,2,0,11  0,6,0,22      

   T/T;C/T  T/T;C/T      
SNP1 0.4108   0,1,0,27 0,0,0,48 0,3,0,41    
     0,6,0,13 0,5,0,17 0,9,0,21    

     T/T;C/T T/T;C/T T/T;C/T    
SNP2 0.3252    0,0,30,1   0,0,28,2 0,0,34,1 
      0,0,8,3   0,0,21,3 0,0,15,6 

      G/G;G/T   G/G;./. G/G;G/T 
SNP3 0.2885    2,0,26,0 1,0,29,0    
      9,0,11,0 7,0,14,0    

      G/G;A/G G/G;A/G    

Under patients: Row 1: counts of bases A, C, G, T, respectively, in blood; Row 2: base counts in tumor; Row 3: blood genotype followed by 
tumor genotype. No call is denoted as “./.”. Base counts and genotypes are after filtering. Base substitutions identified by CALL are marked by 
a line above genotypes. Base substitutions missed by SMUG are in italics. 
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Table V.3. Comparison of SMUG and CALL for detection of base substitutions at COSMIC sites 
and genes. 
 

 CALL  SMUG 
 Total Breast cancer  Total Breast cancer 

COSMIC sites 1 1  2 1 
COSMIC genes: 41 7  67 10 
Non-synonymous 25 5  45 6 
Synonymous  41 7  67 10 
Stop gain  0 0  2 0 
Stop loss  0 0  0 0 

 

 

Base Substitution Result Validation and Replication 

We collected DNA samples for normal breast tissue and tumor breast tissue for 3 

patients (patients 1-3) in this study and 104 additional patients in the Shanghai breast cancer 

study. These samples were genotyped for a set of SNPs in a different study. Three SNPs were in 

the top list of our SMUG results (called SNP1, SNP2, and SNP3, respectively in Table V.2). We 

evaluated these three SNPs to see if our results could be validated for patients 1-3 and 

replicated in the independent set of 104 patients. 

Genotyping was performed using the iPLEX Sequenom MassArray platform (Cai et al. 

2011; Long et al. 2010; Zheng et al. 2009). Polymerase chain reaction (PCR) and extension 

primers were designed using the MassARRAY Assay Design software (Sequenom, Inc). PCR and 

extension reactions were performed according to the manufacturer’s instructions, and 

extension product sizes were determined by mass spectrometry using the Sequenom iPLEX 

system. On each 96-well plate, two negative controls (water), two blinded duplicates, and two 

HapMap samples were included. The median consistency rate was 100% for both the duplicate 

samples and the HapMap samples when compared with their genotypes in the HapMap 

database. 
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After quality control filtering, 93 of the 104 patients had genotype at SNP1 for both 

normal and tumor breast tissues. Among them, 11 patients were homozygous in normal tissue 

and heterozygous in tumor tissue, resulting in an estimated mutation incidence rate of 11.8%. 

For SNP2, 67 patients had genotype available for both tissues and 5 (7.5%) had different 

genotypes between tissues. For SNP3, 81 patients had genotype available for both tissues and 9 

(11.1%) had different genotypes between tissues. We note that a mutation incidence rate is 

calculated across patients, which is different from the fraction of mutant alleles calculated 

within a patient. Since the normal and tumor tissues from a patient may be genetically more 

similar than between her blood and tumor tissue, the number of differences in genotype 

between blood and tumor tissue could be higher than those observed above. Therefore these 

replication results are encouraging and show the potential of our method. 

The Sequenom genotype data also allowed us to see if our results at SNP1-SNP3 for 

patients 1-3 could be validated. As shown in Table V.2, only patient 3 had a base substitution 

detected at SNP1. This was validated by our Sequenom data: patient 3 was homozygous in the 

normal tissue and heterozygous in the tumor tissue. For all the other eight combinations of 

patient and SNP, both normal and tumor tissues were homozygous. 

 

Allelic Imbalance for Base Substitution Sites 

As we explained earlier, a tumor sample may contain a mixture of tumor and non-tumor 

cells, and a somatic mutation may not be present in all tumor cells. Thus, a somatic mutation 

may be present in only a fraction of cells in a tumor sample. The resulting allelic imbalance can 

make it inefficient to identify somatic mutations through genotype calls, as was previously 

shown. We evaluated the extent of allelic imbalance by comparing two types of sites that were 

called heterozygous in tumor: those with the same heterozygous genotype in blood and those 
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homozygous in blood. The former should mostly be genuinely heterozygous in tumor with no 

allelic imbalance. The latter were base substitutions identified by the CALL approach, and should 

mostly display allelic imbalance if the phenomenon we described above was present. 

We calculated the p-value for allelic departure from 50:50 at these sites in tumor. The p-

value should follow a uniform distribution over the interval [0,1] if there is no allelic imbalance 

and should be near zero if allelic imbalance exists. Figure V.1 contains the results for tumor 

heterozygous sites with depth ≥ 20 for patient 2; the results for the other patients were similar. 

The distribution for the base substitution sites (right panel) shows strong allelic imbalance, with 

p ≤ 0.05 for 87% of the sites. In contrast, among the genuinely heterozygous sites (left panel), 

only 26% had p ≤ 0.05; the distribution was consistent with a mixture of sites with no allelic 

imbalance (78%) and sites with allelic imbalance (22%). We expect these allelic imbalance sites 

are potential LOH sites, although their LOH scores might not be high enough to pass our LOH 

detection threshold. 

 

 

 
 

Figure V.1. Allelic imbalance at base substitution sites in tumor samples. 
These results demonstrate that most base substitution sites can manifest significant 

allelic imbalance in tumor samples, at least in our tumor DNA samples. This may generate a 
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dilemma for the CALL approach since allelic imbalance has been a commonly used tool for 

genotype quality control. Filtering genotypes based on allelic imbalance may lower the chance 

of detecting base substitutions by CALL. We have shown that CALL identified 614 base 

substitution sites in our data. When an allelic balance filter (AB ≤ 0.75) was used, only 310 sites 

remained. When the allelic balance filter was applied only to blood samples but not tumor 

samples, 395 sites were identified by CALL. 

 

Detection of Regions with Loss of Heterozygosity 

For exome sequencing data, heterozygous sites outside exons may not be reliably called 

due to gaps of coverage for many genomic regions. In this situation, as was explained in the 

Methods section, an LOH region may not be detectable due to a lack of supporting sites, and 

multiple LOH regions may be identified as a single one due to a lack of sites breaking it apart. 

This is true for both SMUG and CALL. Nonetheless we applied both approaches to our exome 

data and compared their performance. 

For the CALL approach, we first obtained genotype calls for blood and tumor samples. 

For each patient, her CALL list of LOH sites consisted of sites that were heterozygous in blood 

and homozygous in tumor. A CALL LOH region was defined as a contiguous region that 

contained at least two LOH sites and no interrupting site (i.e., sites heterozygous in both blood 

and tumor) in the region. The boundaries of an LOH region were the positions of its first and last 

LOH sites. 

For the SMUG approach, we first obtained genotype calls for blood samples using the 

same filtering criteria as in the CALL approach. For each patient, we calculated the tumor LOH 

score for every site heterozygous in blood, and generated her SMUG list of LOH sites as those 

sites with LOH score ≥30. A SMUG LOH region was defined as a contiguous region that contained 
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at least two LOH sites and no interrupting site (i.e., sites heterozygous in blood but with LOH 

score <30). Its boundaries were defined similarly as above. 

SMUG reported an average of 354 LOH regions per patient, while CALL reported 51 

(Table V.4). SMUG also reported more LOH regions covering the COSMIC genes (Table V.4). LOH 

has been widely reported in breast cancer. 

 

 

Table V.4. Comparison of SMUG and CALL for detection of LOH regions. 
 

Patient 

Call  SMUG 

# of 
LOH 
regions 

Inside  
COSMIC 
genes 

Inside 
support 
intervals 

 
# of 
LOH 
regions 

Inside COSMIC 
genes 

Inside 
support 
intervals 

1 34 3 4  234 28 10 
2 37 4 2  314 34 15 
3 59 8 5  519 130 30 
4 33 3 2  230 26 8 
5 43 7 3  321 28 21 
6 58 6 4  399 45 21 
7 55 4 3  265 23 13 
8 87 16 4  554 118 27 

Average 50.8 6.4 3.4  354.5 54 18.1 

 

 

Compiling data from 151 LOH studies of breast cancer, Miller et al. (Miller et al. 2003) 

developed a likelihood-based approach to identify loci with preferential loss. They reported 19 

support intervals (Table V.5) that had strong evidence for LOH in breast cancer, and stated that 

the list was not exhaustive due to the limited resolution of LOH mapping. SMUG identified more 

LOH regions falling in these intervals than CALL did (Table V.4). As detailed in Table V.5, SMUG 

identified a total of 145 LOH regions that fell in 12 of the 19 support intervals, while CALL found 

27 LOH regions that hit 4 support intervals. For all the support intervals with at least one 
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identified LOH region, SMUG identified more patients with LOH regions falling in the interval. 

These results suggested that SMUG is more powerful than CALL at detecting LOH regions. 
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Table V.5. Comparison of SMUG and CALL for detection of LOH regions in the 19 support 
intervals reported in Miller et al. 
 

 

Support 
interval 
(position 
in Mb) 

CALL  SMUG 
Candidate TSGs 
(position in Mb) #Patients 

#LOH 
regions 

 #Patients 
#LOH 
regions 

1p36.3 0-10.5      SKI (1.5), TP73 (3.5) 

2q22.1 
134.5-
137.7 

     
FLJ11857 (135.5), LRP1B 
(138.5) 

3p24.1 22.1-40.4 1 1  4 8 TGFBR2 (32.6) 

3p14.2 59.3-63.6    1 1 FHIT (63.5) 

4q35.1 
182.9-
189.2 

   3 3 FAT (187.6) 

6q25.1 
151.8-
170.3 

2 2  5 5 
ESR1 (159.3), IGF2R 
(167.3) 

7q31.2 
115.7-
119.0 

     
TES (116.2), CAV1 
(116.5), ST7/MET 
(117.0) 

8p21.3 18.5-23.0      

N33 (15.6), PDGFRL 
(17.8), LZTS1 (18.6), 
FGF17 (20.4), DBC2 
(23.2) 

9p21.3 26.2-27.5    1 1 
CDKN2A/p16 (23.8), 
IFNA (24.5) 

13q14.11 38.8-42.1    2 2 BRCA2 (38.2), AS3 (38.5) 

16q22.1 69.4-72.2    4 6 
CDH3 (71.3), CDH1 
(71.5) 

16q24.1 72.9-89.8    4 8 WWOX (83.9) 

16q24.3 90.3-94.3      
CDH13 (88.5), CBFA2T3 
(92.5), CDH15 (92.7), 
FANCA (93.2) 

17p13.3 0-1.5      
ABR (.8), OVCA1 (1.7), 
HIC1(1.7) 

17p13.2 0-22.8 6 8  8 49 
TP53 (8.0), MAP2K4 
(13.6) 

18p11.32 0-3.0 7 16  8 60 DAL1/EPBB41L3 (5.8) 

18q21.2 51.7-54.8      DPC4 (51.1), DCC (53.3) 

19p13.3 4.6-6.9    1 1 SAFB (7.6) 

21q11.1 15.5-18.8    1 1 BTG3 (15.6) 
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Discussion 

 

We have developed SMUG, a set of methods for detecting base substitutions and LOH 

regions using NGS data for normal-tumor pairs. The methods are applicable to both whole 

genome and whole exome sequencing designs. We demonstrated application of SMUG using 

whole exome data for blood and tumor samples from eight breast cancer patients, and showed 

that SMUG detected more somatic mutations than the conventional approach that relies on 

comparing genotype calls between normal and tumor samples. For three base substitution sites 

identified by SMUG, we had genotypes for the normal and tumor breast tissues from an 

independent set of breast cancer patients, which replicated our finding that these sites may be 

breast cancer somatic mutation sites. The result is encouraging, although further investigation is 

warranted. We are following them up in a separate study. 

Somatic mutations may not be detectable through genotype comparison because a 

tumor sample may contain a significant fraction of non-tumor cells and a somatic mutation may 

not be present in all tumor cells of a tumor sample. Although laser capture microdissection can 

be used to purify the selection of tumor cells in sample preparation, its usage may be limited for 

certain tissues and the selected tumor cells may still be heterogeneous with respect to somatic 

mutations. 

With multiple sequence reads at each position, the NGS technologies allow a 

quantitative examination of mutations. While we take advantage of the quantitative nature of 

NGS data for tumor samples, our methods rely on genotype calls for normal samples. This 

probably is a good choice when the normal samples are homogeneous. For a homogeneous 

diploid sample with only three genotypes underlying sequencing data, genotype calling may 
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serve as a de-noising tool. In fact, current genotype callers such as that in GATK can achieve a 

very good accuracy. 

For detection of base substitutions, we proposed an empirical Bayes approach to 

remove the effect of depth on estimation of the fraction of mutant alleles. Since systemic 

sequencing and alignment errors may also appear as base substitutions in tumor, we developed 

filters that use the normal sample data as a baseline. We also showed that strong allelic 

imbalance can exist for base substitution sites. This raises an issue for the conventional CALL 

approach of comparing genotype calls because allelic imbalance has been a common tool for 

filtering genotypes. If one chooses to use the CALL approach, it might be more effective not to 

use allelic imbalance as a filtering criterion, at least not for tumor samples. Other genotype 

filtering tools developed for homogeneous samples also may not work well for tumor samples. 

One example is transition/transversion ratio, which may have different target values for tumor 

mutations than those established for germ line polymorphisms. 

For detection of LOH regions, we proposed to calculate LOH scores to facilitate 

identification of LOH regions. Our method focuses on sites that are heterozygous in the normal 

sample. This probably works well for large LOH regions that harbor multiple heterozygous sites 

in the normal sample, but it may not be as powerful at detecting short LOH regions. Short LOH 

regions could be detected by studying depth using algorithms similar to those for detecting 

CNVs. However, as depth varies along the genome and across samples, appropriate 

normalization will be needed. We plan to extend our method to take depth into account for 

detecting LOH regions. The incorporation of depth information may also allow us to distinguish 

deletion LOH and copy-neutral LOH. 

Our methods are especially useful for non-purified tumor samples that contain non-

tumor cells. The fraction of non-tumor cells in a tumor sample is often unknown but could be 
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estimated. Methods have been proposed to use SNP chip data to estimate the fraction of non-

tumor cells in a tumor sample. We plan to develop methods for estimating tumor cell fraction 

using NGS data and to incorporate this information into our mutation detection algorithms. 

We have focused on two major types of somatic mutations: base substitution and LOH. 

Other types of mutations such as indels, inter- and intra-chromosomal rearrangements, and 

CNVs, can also be similarly detected quantitatively. We are developing methods for detecting 

these types of mutations. The methods described in the paper have been implemented in 

software Somatic Mutation Gleaner (SMUG), which is publicly available at 

http://biostat.mc.vanderbilt.edu/SMUG. 

 

Future Works 

 

There are some limitations of the current implementation of SMUG. For detection of 

base substitutions, at this point, SMUG cannot detect sites that are homozygous in normal but 

also homozygous in tumor with different allele. We plan to improve and extend SMUG to deal 

with this situation. 

The detected LOH regions could be incorrect as well. Due to lack of supporting sites that 

are heterozygous in blood sample and has high LOH score in tumor sample, an LOH region may 

not be detected. On the other hand, multiple LOH regions may be identified as a single one due 

to lack of supporting sites breaking them apart. We plan to extend SMUG to take depth into 

account for detecting LOH regions. The incorporation of local depth information may also allow 

us to distinguish deletion LOH and copy-neutral LOH regions.  

http://biostat.mc.vanderbilt.edu/SMUG
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