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CHAPTER I 

 

INTRODUCTION 

 

 Because of the continued device size scaling in CMOS technology, reliability has become an 

increasing concern for VLSI designs today. Reduced feature size, increased chip density, reduced 

supply voltage, shrinking nodal capacitances have resulted in an increased susceptibility of these 

designs to single event effects due to ionizing radiations [1][2][3]. These effects can result in soft 

errors, in a design, that can further lead to either malfunctioning of a part of a design or a complete 

system failure.  Therefore, it is very important to have efficient techniques in place for the research 

community that would allow designers to analyze, quantify and mitigate the effects of such events.  

 For two broad reasons, it is advantageous at times to look at soft errors from an architectural 

perspective [4]. First, many of the soft faults that are seen at the device/circuit level are masked at the 

architectural level. This allows the designers to implement fast and low cost solutions for soft errors. 

For example, Wang et. al has shown that 85% of the soft faults in a processor are masked at the 

architectural level [5]. The primary reason for such a high masking rate is because of relatively low 

resource utilization in a modern microprocessor, large number of bits that only affect performance but 

not correctness and high logical masking of soft faults [4]. Second, looking at a design from an 

architecture point of view helps in understanding the workload behavior of the design, which can 

further lead to potentially more efficient soft error mitigation techniques [6]. Thus in order to 

implement efficient radiation hardening techniques at an early stage of the design cycle, it is 

advantageous to have tools and techniques to analyze the design for its soft error vulnerability at its 

architectural level. 
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 This thesis work presents a novel efficient technique to evaluate the soft error vulnerability of 

large ASIC designs by employing circuit partitioning and fault propagation techniques. The technique 

was tested on four test circuits of considerable size. For comparison purposes, traditional statistical 

fault injection was also performed on the test circuits to evaluate their soft error vulnerability. Results 

show that our technique estimates the vulnerability within a reasonable accuracy, but takes about a 4X 

less computation effort than the traditional statistical fault injection technique.  

 This thesis is organized is follows. Chapter II provides a brief overview of the various 

mechanisms that cause soft errors and some of the already available methodologies to determine soft 

error vulnerability of a design. Also we talk about the motivation for our approach in chapter II. 

Chapter III describes the probability model of our approach. Chapter IV describes the implementation 

details of our approach. Chapter V talks about circuit characterization and discussion of results. Finally 

we conclude this thesis with a summary in Chapter VI. 
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CHAPTER II 

 

RADIATION-INDUCED SOFT ERRORS OVERVIEW 

 

 The universe we live in is filled with different types of radiation particles. These particles can 

originate from varying sources and exist in varying forms in the outer space. Until recently, these 

particles were a source of concern for space and military electronic applications [7][8]. These particles 

interact with the semiconductor device and can cause unwanted changes in the device operation and the 

application as a whole. As we are coming down to smaller technology node, the problem gets worse 

with these particles interacting with the device in more intricate ways to cause more damage to a 

device. Moreover, at such small technology node, terrestrial neutrons, which earlier were not a source 

of concern, start to affect commercial electronic applications as well [9].  

 

2.1 Types of radiation particles 

 a) Heavy ions:  The sources of these particles in the outer environment are the galactic cosmic 

rays. Examples of such particles are iron and titanium ions [10]. 

 b) Protons: The sources of protons are solar event particles and Earth‟s radiation belts, Van 

Allen belts [10].  

 c) Alpha: These particles appear as contaminants in packaging materials. There are some on-

chip sources of alpha particles as well. For example, on-chip metallization, bonding metallization etc 

[10][11].  

 d) Neutron: High energy neutrons are produced by the interaction of solar and galactic cosmic 

rays, principally protons and heavy ions, in the upper atmosphere [10].  
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2.2 Physical Origins of Single Event Upsets 

2.2.1Charge Deposition 

Charge deposition due to an ionization radiation particle can take place in two possible ways:  

a) Direct ionization:  

  This takes place when the ionizing particle passes through the semiconductor material 

and loses energy by Rutherford scattering with the lattice nuclei. The energy gets transferred to 

the bound electrons which then get activated into the conduction band, thus imparting a dense 

track of electron-hole pairs. With decreasing transistor feature size, not only heavy ions but 

even lighter particles e.g. protons are able to cause damage to the semiconductor device via 

direct ionization [12][13][14].  

b) Indirect ionization: 

  Light particles like protons and neutrons, which are incapable to produce any effect via 

 direct ionization, can produce significant adverse effects via indirect mechanisms. When a high 

 energy proton or neutron enters the semiconductor lattice, it may undergo an inelastic collision 

 with the target nucleus causing a nuclear reaction. As a result of the reaction, several particles 

 may get released which can, in turn, cause single event upsets via direct ionization. An example 

 nuclear reaction of a neutron  with a  Boron atom is shown in figure 1.1. It generates gamma, 

 alpha particle and a lithium nucleus [12][15][16].  
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Figure 2.1 Thermal neutron reaction generating alpha and gamma particles 

 

2.2.2 Charge Collection 

 The electron-hole pairs generated because of direct or indirect ionization by a charged particle 

may recombine and produce no observable adverse effect. But if the ion strike is in a reverse biased p-n 

junction of a semiconductor device, then the high electric field present in the reverse biased junction 

depletion region can collect the particle-induced charge (by causing separation of electron hole pairs) 

through drift processes causing a current flow at the junction contact. Even if the ion strike is not 

exactly in the p-n junction but near it, transient carriers can result as the carriers can diffuse into the 

vicinity of the diffusion region where they can again be efficiently collected [12]. Thus charge 

collection at the IC junctions leads to a circuit response to single events [17][18].  

 Figure 2.2 [1] shows the charge collection mechanism. Figure 2.2(a) shows an ion strike and the 

resulting ion track created, at the drain of a transistor. Figure 2.2(b) shows the drifting of the electron 

hole pairs and creation of a funnel shape extending the high field depletion region deeper into the 

substrate. Figure 2.2(c) shows the diffusion dominating the charge collection process. Figure 2.2(d) 

shows the result transient current generated as result of the charge collection.  
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Figure 2.2 Charge collection mechanism and generated transient current 

 

2.3 Concept of Single Event Upset 

 A single event upset (SEU) is defined as a bit flip or other corruption of stored information 

because of deposition or generation of charge due to a single event.   

2.3.1 SEUs in DRAM 

 DRAMs store static charge passively on a capacitance. The charge is stored on a  capacitance 

node and there is no active path to keep the charge regenerating. Hence, any disturbance to the stored 

information by a particle strike stays forever (unless corrected by an external circuitry) [19]. Thus any 

disturbance that can degrade the stored information to a level outside the noise margin associated with 

the bit signal is enough to manifest itself as an upset. Figure 2.3 shows this effect [10].   
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    Figure 2.3 SEUs in DRAMs 

 

2.3.2 SEUs in latches/SRAMs 

 SRAMs use an active high-gain positive feedback path to continuously regenerate the stored 

charge (active charge) [20][21]. Thus, if because of a particle strike at the information node, signal 

degrades, it gets regenerated by the active feedback. Hence, in order for an upset to occur, the charge 

deposited by the particle strike has to discharge the signal at the output node as well as overcome the 

self-compensation current of the circuit. Unlike in the case of DRAMs, here an upset occurs only if the 

stable state of the circuit switches completely (from 0->1 or 1->0). Figure 2.4 shows this effect [10].  
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    Figure 2.4 SEU in SRAMs 

 

Before we delve into the system level aspect of single events, we define the following important 

concepts: 

2.3.3 Soft fault: 

 A soft fault is defined as an incorrect state of the outputs of latches at the end of any  clock 

cycle [22]. There are two ways in which a soft fault can take place: 

  Direct latch hit:   These are the soft faults that occur when the ionizing particle strikes       

      the latch directly, thus flipping the output instantly. 

  Combinational node hit: When the ionizing particle strikes a combinational node, it 

 generates a transient noise pulse. Depending on logical, temporal or electrical masking, 

 [23] if this pulse is travels through its propagation path and gets latched at the 

 output of the latch, it results in a soft fault.  

These two kinds of soft faults are shown in figure 2.5  
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2.3.4 Soft Error: 

 When a soft fault propagates through and becomes observable at the primary output of      

the system, we call it a soft error. Figure 2.6 shows a soft error.  

 

 

 

 

 

 

 

 

Figure 2.6: Concept of soft error 
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2.3.5 Observability:    

 It is defined as the ability to observe the logic value of an internal node at a primary output [24]. 

To test the soft error vulnerability of a node, all combinations of inputs going to  that node must be 

applied and the output corresponding to each input must be observed.  For  example, in figure 2.7, to 

observe the output of gate 1, we need to set input C to 1 and D to 0.  To observe the output of 

gate 2, we just need to set input D to 0. This implies that the output of  gate 2 is more observable 

that that of 1.  

                        

Figure 2.7 Example circuit to demonstrate observability concept 

 

 The number of test vectors increases as the number of testable nodes increases, making 

observability a difficult task.  

 

2.4 Architectural Perspective 

 From an architecture point of view, module soft error reliability can be measured in terms of 

MTTF (mean time to failure) and FIT (failure in time). MTTF is defined as the time taken for a system 

to see an error for the first time. The reciprocal of MTTF is the rate of errors, generally reported as 

errors per billion hours of operation or FIT [25]. FIT can be observed as a measure of the three types of 
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masking (electrical, temporal, logical) that a transient pulse must overcome before it shows up at the 

concerned output. We use the Architectural vulnerability Factor (AVF) to quantify the amount of 

logical masking in a system [26].  

2.4.1 AVF Overview 

 AVF is defined as the probability that a soft fault leads to an architecturally observable error. 

There are, in general, three ways to estimate the AVF of a system [26][27]: analytical models, 

performance models and statistical fault injection.  

 Analytical models are useful at an early stage of a design when neither a performance model 

nor an RTL (register transfer level) model is available. It computes the AVF using the average number 

of architecturally correct execution (ACE) bits in a structure.  

 Performance models estimate AVFs based on the fraction of time a bit is un-ACE in its life 

time. Although it is more accurate than statistical fault injection techniques, it can be very difficult to 

identify the un-ACE components. It often requires the person running the model to have a very good 

knowledge about the internal microarchitecture and operation of the design.   

 In statistical fault injection (SFI), an RTL model of the system is taken as input and bit flips, 

randomized in space and time, are introduced into its internal storage elements of the design. The 

model is then run forward and the architectural state of the output is compared to that of an error-free 

model of the system. A mismatch between the two is counted as an error.  This process is repeated over 

until the desired number of errors is observed at the output. AVF is then computed as the ratio of the 

number of errors observed at the output to the number of bit flips introduced. SFI has the advantage of 

giving very accurate information about the AVF of a system without having to fully comprehend its 

internal details, unlike the analytical or performance models that need more human intervention than 

SFI. It makes since SFI is a statistical analysis, it is necessary to perform several such fault simulations 

with different injection points to obtain a desired confidence level in the AVF. This, in turn, necessitates 
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running thousands of fault simulation runs on the same system, consuming an enormous amount of 

simulation time and computational power. This makes SFI unsuitable in situations where we need a fast 

AVF approximation. The problem gets worse for a large circuit where a large number of simulation 

runs are required to observe the effects of a single fault injection.  

 In this thesis, we attempt to investigate a novel modular approach to achieve greater efficiency 

in our fault simulations and thus AVF estimation, than would normally be achieved by using only SFI , 

performance model or analytical models. Our modular technique is a hybrid of SFI and error 

probability propagation based analytical techniques. It exploits circuit partitioning and error 

propagation techniques to estimate the AVF of a design within a reasonable accuracy but taking a lot 

fewer simulation runs than a full SFI ran on the same design.  

 

2.5 Motivation behind modular approach 

 Consider figure 2.8. TopMod is made up of two sub-modules, m1 and m2, each  with 10 

registers. m1 has a 4-bit input and a 4-bit output connected to m2 while m2 has a 2-bit output. 

  

            TopMod 

     

     

 

     

  

 To observe the effect of all the possible faults in TopMod, the minimum number of fault 

injections required to cover the total fault population in TopMod would be: 2 
20

 * 2
4 

* 20 = 335 million, 

taking into account the total number of possible states and input combinations. On the other hand, if we 

m1 

10 regs 

m2 

10 regs 

      Figure 2.8 Example design to demonstrate the motivation behind modular approach 
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perform SFI on m1 and m2 separately, the minimum number of fault injections required to cover the 

total fault population in TopMod would now be: (2
10

 * 2
4 

* 10) + (2
10

 * 2
4
 * 10) +  (2

10
 X 2

4
) = 344064. 

The last term accounts for the number of simulations required to propagate faults from m1 to the 

primary outputs of TopMod.  

 Thus, to estimate the AVF of TopMod within a certain confidence level, the number of 

simulation runs required is much less if we perform SFI on m1 and m2 separately than performing SFI 

on TopMod at one go. This is the motivation behind our approach presented. In the next chapter, we 

present a probabilistic analysis of our technique.  
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CHAPTER III 

 

PROBABILISTIC APPROACH 

 

 In this chapter, we present a probabilistic model of our modular approach. Consider the 

example design in figure 3.1. TopMod has three sub-modules, Mod1, Mod2 and Mod3. The number of 

registers in Mod1, Mod2 and Mod3 is N1, N2 and N3 respectively.       is the primary input stream of 

TopMod and    is its primary output stream.    

 

 

 

 

 

 

 

 

 

    

Figure 3.1 Example design to develop probability model 

 

 
Also, in TopMod, 

 

for Mod1:       is its 2-bit input stream and    is its 3-bit output stream that goes into Mod2 

  

for Mod2:      is its 3-bit input stream and    is its 3-bit output stream that goes into Mod3 

 

for Mod3:     is its 3-bit input stream and    is its 2-bit output.  

 

 We denote the scalar components of      as w[1] and w[2]. We use similar notations to denote the 

scalar components of   ,    and   .  Now, when put in a radiation environment, registers of TopMod can 

get soft faults at their outputs, depending either by a direct hit on the register bit or via latching of 

Mod1 

N1 

Mod2 

N2 
Mod3 

N3 

TopMod 

     

 

         

 
2 3 3 2 
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propagating of transient pulses because of combinational node hit. This can happen at any point of time 

during the radiation exposure. 

 

3.1 Definitions 

 We first create a golden copy,   golden[t], of a data stream, either input or output of a sub-module, 

at time t. The golden copy represents its state in a non-radiation environment. Now, in a radiation 

environment, the data stream, say    at time t, may or may not have faults. We define the fault function 

Fr (  ,t) as: 

                                           False if   [t] =   golden[t] 

  Fr (  ,t)  =            

          True otherwise                                              … (1) 

 

Equation (1) implies that if at time t, the data stream has the same value as the golden copy, the fault 

function evaluates to false indicating that no fault has occurred on it. For all other cases, it evaluates to 

true. Similarly, we define the error function Er (  , t), if the data stream    is from the primary output of 

the design. Based on this definition, we define a set of fault probabilities that we are going to use later 

on to estimate the AVF of a system.  

 Let us denote the set of registers of a sub-module, say Mod2, as Regs(Mod2) and the event 

where a register Regi   Regs(Mod2) has been injected with a fault as Up(Regi).  We define the 

following probabilities for Mod2 (and similarly for all the other sub-modules):  

1) Probability of fault generation:  

 It is defined as the probability that a soft fault in a sub-module propagates through its 

internal propagation path and shows up at the output of the sub-module.  
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For example, in figure 3.2, a particle strike causes a bit flip at one of the register bits of Mod2.  

       

 

 

 

 

 

 

 Figure 3.2 Probability of fault generation  

 

Probability of fault generation defines the conditional probability that this bit flip causes the 

output    to change its original value.  

Mathematically, we denote it as: Pr {Fr (  , t) | Up(Regi), Regi   Regs(Mod2)}, where we 

define: Fr (  , t) | Up(Regi), Regi   Regs(Mod2) as the outcome of the stochastic process, where 

a fault in one of the registers, Regi of Mod2 produces a fault on the output stream,    at time t. 

Similarly, the probability of fault generation for Mod1 is denoted by:                                        

Pr {Fr (  , t) | Up(Regi), Regi   Regs(Mod1)}. For Mod3, since the outputs of Mod3 are also the 

primary outputs of TopMod, any fault that shows up at the output of Mod3 will manifest itself 

as an error in   . Hence, we represent the probability of fault generation for Mod3 as:                

Pr {Er (  , t) | Up(Regi), Regi   Regs(Mod1)}. 

2) Probability of fault propagation:  

 It is defined as the probability that a fault at the input of a sub-module propagates 

through it and becomes observable at the output of the sub-module. The fault at the input of the 

Mod1 

N1 

 

 

Mod2 

N2 

Mod3 

N3 

TopMod 

     

 

         

 
2 3 3 2 

Bits flip due to particle strike Probability of fault generation 
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sub-module is assumed to have propagated from a previous module in its propagation path.  

For example, in figure 3.3, faults generated in the sub-module Mod2 propagate from its output 

to the input of Mod3 via the interconnecting data stream   . Now, these faults may or may not 

propagate to the output stream,   , of Mod3, depending on the logical masking as well as register 

timing factors. Probability of fault propagation defines the probability of propagation of this 

fault from    to   .  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Probability of fault propagation 

 

 

 Mathematically, we denote it as: Pr {Er (  , t’) | Fr (  , t)}, where {Er (  , t’) | Fr (  , t)} is the 

event where a fault at    at time t propagates and shows up as an error at    at time t’.  Similarly, for 

Mod2, the probability of fault propagation is denoted by: Pr {Fr (  , t’) | Fr (  , t)}. We assume that 

there are no faults propagating through the primary inputs,     , of TopMod, as we simulate a fault-free 

input bit stream.  

 In the next section, we lay out the assumptions that we must follow before applying our 

proposed modular approach for AVF estimation.  

Mod1 

N1 

 

Mod2 

N2 

 

 

Mod3 

N3 

TopMod 

     

 

         

 
2 3 3 2 

Probability of fault 

generation 

Fault propagating from 

Mod2 to Mod3 via    
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3.2 Assumptions 

We make the following assumptions: 

1) Consider TopMod in figure 3.1. Because in statistical fault injection, faults are injected 

randomly and uniformly in space, out of Mod1, Mod2 and Mod3, the sub-module with a higher 

number of register bits than another has a higher probability of faults getting injected into it 

than the one with less number of register bits. Mathematically, the probability that a random 

fault will get injected in Mod1 is given by: 
  

        
 . Similarly, the probability that a random 

fault will get injected in Mod2 and Mod3 is: 
  

        
 and 

  

        
 . 

2) Fault generation and fault propagation are strictly stationary processes. A strictly stationary 

process is defined as a stochastic process whose joint probability distribution doesn‟t change 

when shifted in time and space. Mathematically, if {Xt} is a stationary process and if               

FX (xt1+ τ, …, xtk+ τ) represent the cumulative distribution function of the joint distribution of {Xt} 

at times t1+ τ, …, tk+ τ. Then, {Xt} is said to be stationary if, for all k, for all τ, and for all 

t1,…,tk,  

FX (xt1+ τ, …, xtk+ τ) = FX (xt1, …, xtk) 

This gives rise to the following two cases: 

a. In the case of the fault generation phase, the probability of a bit flip getting introduced 

in a register bit of a sub-module is time-independent. Hence, the probability of fault 

generation for that sub-module is time-independent as well. Mathematically, say for 

Mod2, we have: 

            Pr {Fr (  , t) | Up(Regi), Regi   Regs(Mod2)} = Pr {Fr (  , t+τ) | Up(Regi), Regi   Regs(Mod2)} 

  where τ > 0.                                                                                                      … (2) 
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For simplicity, we get rid of the time variable and represent the probability of fault 

generation for Mod2 (and similarly for all other sub-modules) as: 

Pr {Fr (  ) | Up(Regi), Regi   Regs(Mod2)}        …(3) 

b. In the case of the fault propagation phase, we assume that the probability of fault 

propagation for a sub-module is time-independent. Mathematically, say for Mod2,      

we have:  

Pr {Fr (  , t’) | Fr (  , t)} = Pr {Fr (  , t’+ τ) | Fr (  , t+ τ)}, where τ > 0     …(4) 

As with the previous case, we get rid of the time variables for simplicity and represent it 

for Mod2 (and similarly for Mod3) as: 

Pr {Fr (  ) | Fr (  )}                      …(5) 

3) The outputs of a sub-module are correlated to each other and so are the faults associated with 

them. This implies that for a sub-module, we should individually take into consideration all the 

possible ways in which faults can occur at its output. For example, output of Mod2 is of 3-bits. 

Hence, there are total 7 possible ways in which faults can occur at its outputs:  

a) Faults at only one output at a time:  

i) Fr(y[1]) | Up(Regi), Regi   Regs(Mod2) 

ii) Fr(y[2]) | Up(Regi), Regi   Regs(Mod2) 

iii) Fr(y[3]) | Up(Regi), Regi   Regs(Mod2) 

b) Faults at two outputs simultaneously: 

i) {(Fr(y[1]),Fr(y[2])) | Up(Regi), Regi   Regs(Mod2)} 

 

ii) {(Fr(y[2]),Fr(y[3])) | Up(Regi), Regi   Regs(Mod2)}  

iii) {(Fr(y[1]),Fr(y[3])) | Up(Regi), Regi   Regs(Mod2)} 
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c) Faults at all the three outputs simultaneously:  

{(Fr(y[1]),Fr(y[2]),Fr(y[3])) | Up(Regi), Regi   Regs(Mod2)} 

 

3.3 Methodology 

 With the above assumptions in mind, we proceed to describe the steps to find the AVF of a 

design, in our case, TopMod.  Hypothetically, we define the contribution of a sub-module Mod i to the 

AVF of TopMod, AVF (TopMod | Mod i), as the AVF of TopMod when faults are injected only in sub-

module Mod i. But because in reality faults occur randomly in space over TopMod, we assign 

weighting factors to each of the sub-modules. The weighting factors are derived from assumption 1.  

Thus mathematically, we represent the contribution of a Mod i to AVF as: 

 AVF (TopMod | Mod i) * (Probability of a fault getting injected in Mod i) 

= AVF (TopMod | Mod i) * 
  

        
 , where i = 1, 2, or 3 for Mod1, Mod2 and Mod3 respectively 

                        … (6) 

Summing over all the three sub-modules, the AVF of TopMod is then given by:  

Pr {Er (  ) | Up(Regi), Regi   Regs(TopMod)} =   
                        

    
   

 
                        … (7) 

 In the next subsections, we describe the steps to compute the first factor, AVF(TopMod | Mod i) 

for each of the sub-modules. 

a) Computation of AVF(TopMod | Mod3):  

Since the outputs of Mod3 are also the primary outputs of TopMod, we can compute            

AVF (TopMod | Mod3) using just the probability of fault generation. Thus, we have: 

AVF (TopMod | Mod3) =  Pr {Er (  ) | Up(Regi), Regi   Regs(Mod3)}      … (8) 

Also, from assumption 3, we account for each type of errors on    and express equation (8) as: 
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AVF (TopMod | Mod3) =  Pr {Er (z[1]) | Up(Regi), Regi   Regs(Mod3)}  

   +   Pr {Er (z[2]) | Up(Regi), Regi   Regs(Mod3)}  

    + Pr {(Er(z[1]),Er(z[2])) | Up(Regi), Regi   Regs(Mod3)}            …  (9)  

b) Computation of AVF (TopMod | Mod2): 

 To observe the effect of a bit flip injected in Mod2 on   , we have to propagate the effect 

of this bit flip from    to   . Also, from assumption 2a and 2b, we conclude that both these 

events: fault generation in a sub-module and propagation of these faults through the next sub-

module in the propagation path, are independent events. Hence, to observe the effect of a bit 

flip injected in Mod2 on   , we apply the multiplication rule of probabilities and evaluate it as a 

product of the probability of fault generation (because of the flip) at    and probability of fault 

propagation from    to   .  

Mathematically,  

 AVF (TopMod | Mod2) = Pr {Er (  ) | Up(Regi), Regi   Regs(Mod2)}    

              = (Pr {Er (  ) | Fr (  )}) * (Pr {Fr (  ) | Up(Regi), Regi   Regs(Mod2)})    

                                 …(10)  

    and    are multi bit vectors. Hence, there are more than one way in which the injected bit flip 

can generate faults in    as well as more than one ways in which the fault can show up in   . To 

evaluate equation (10), we use probability matrices to represent both the factors, since it is more 

convenient to deal with multi bit vectors with matrices. 

Probability matrix for fault generation:            

 We represent it as K X 1 matrix where K is the total number of possible ways faults can 

be observed at the output of Mod2. In our example, the value of K is 7. Hence, we have the 
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following 7X1 probability matrix: 

   (Pr {Fr (  ) | Up(Regi), Regi   Regs(Mod2)})    

=        

 
 
 
 
 
 
 
 
 
 
 
 
 

                              
             

                              
             

                              
             

                                         
             

                                         
             

                                         
             

                                                  
              

 
 
 
 
 
 
 
 
 
 
 
 

    … (11)

              

Probability matrix for fault propagation 

 We represent it as a J X K matrix where J is the total number of ways errors can occur in 

   and K is the total number of ways faults can propagate through   . In this example, the value 

of J is 3 and K is 7. Hence we have the following 3X7 probability matrix: 

Pr {Er (  ) | Fr (  )} =  

 

                                                                                

                                                                                

                                                                                                                 

  

                       …(12) 

Thus, by solving equation (10) as a product of equation (11) and equation (12), we get                     

AVF (TopMod | Mod2) as a 3X1 matrix. Another way to express AVF (TopMod | Mod2) by 

adding the elements 3X1 matrix and using assumption 3 is:  

Pr {Er (z[1]) | Up(Regi), Regi   Regs(Mod3)} + Pr {Er (z[2]) | Up(Regi), Regi   Regs(Mod3)}  

+ Pr {(Er(z[1]),Er(z[2])) | Up(Regi), Regi   Regs(Mod3)} = AVF (TopMod | Mod2)        … (13) 
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c) Computation of AVF(TopMod | Mod1)  

 

 AVF(TopMod | Mod1) can be computed in a very similar manner as equation (10). The 

effect of a bit flip injected in Mod1 has to be propagated through Mod2 as well as Mod3. 

Mathematically,  

AVF(TopMod | Mod1) = Pr {Er (  ) | Up(Regi), Regi   Regs(Mod1)} 

   = Probability of fault propagation through Mod3 * Probability of fault 

      propagation through Mod2 * Probability of fault generation in Mod1   

   = (Pr {Er (  ) | Fr (  )}) * (Pr {Fr (  ) | Fr (  )})  

      

    * (Pr {Fr (  ) | Up(Regi), Regi   Regs(Mod2)})                …(14) 

 

We use probability matrix multiplication again to evaluate equation (14). The first factor (Pr {Er (  ) | 

Fr (  )}) can be expressed as a 3X7 matrix, the second factor (Pr {Fr (  ) | Fr (  )}), can be expressed as 

a 7X7 matrix, since both    and    are 3-bit. The third factor (Pr {Fr (  ) | Up(Regi), Regi   

Regs(Mod2)}) can be expressed as a 7X1 matrix, thus giving us a 3X1 final matrix for AVF(TopMod | 

Mod1).  
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CHAPTER IV 

 

IMPLEMENTATION OF MODULAR TECHNIQUE 

 

 In this chapter, we describe how to go about implementing our modular technique. Figure 4.1 

shows a high level flowchart view of our technique: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Flowchart of modular approach 

 

Original Circuit 

Input Stream 
Circuit Partition Phase 

Fault Generation Phase Fault Propagation Phase 

Post Simulation AVF Calculation 

System AVF 

Input Stream 



25 

 

 We take in a Verilog HDL RTL description of a circuit as input and apply a circuit partitioning 

algorithm to make partitions of the circuit. We run a predefined testbench on the original circuit and log 

the inputs of each partition. Next, we take up each partition and operate fault generation and 

propagation simulations on them to find their probabilities of the two. We need not perform fault 

propagation through the primary inputs of the circuit as we are using an external fault-free testbench. 

Once we perform these two simulations and generate probability matrices, we perform post simulation 

calculations using the information about the interconnection between the different partitions/sub-

modules, as described chapter II. In the next sub-sections, we describe RTL file format followed by 

techniques to partition circuits, to log input data and to perform fault generation and propagation 

simulations.  

 

4.1 Input file description 

 Typically, the input file can be either a Verilog or a VHDL description. In our case, we take a 

Verilog RTL description. RTL or register transfer language is a term used for a Verilog description that 

uses a combination of behavioral and dataflow constructs (described below) and is acceptable to logic 

synthesis tools. It describes how data is transformed as it flows from register to register. The 

transforming of the data is performed by the combinational logic.  

4.1.1 Behavioral or algorithmic level  

 This is the highest level of abstraction provided by Verilog HDL. In this level, a design module 

can be implemented in terms of the desired design algorithm without concern for the hardware 

implementation details. Designing at this level is very similar to C programming [28]. 

4.1.2 Dataflow level  

 At this level, the module is designed by specifying the data flow. The designer is aware of how 

data flows between hardware registers and how the data is processed in the design.  
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  Describing a circuit at the register transfer level makes it very convenient and flexible to create 

high level representations of a circuit. Also, it gives us the freedom to design technology independent 

circuits. In terms of simulation, it takes smaller simulation time and computational effort to simulate a 

design described in RTL than a design that is described at a lower level (e.g. gate level or switch level).  

Figure 4.2 shows a sample RTL code of a synchronous D flip flop written in Verilog.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Verilog code of a synchronous D flips flop 

 

4.2 Circuit Partitioning 

 Once we have the input circuit file in RTL format, we create partitions of the circuit. Circuit 

partitioning can be accomplished in several ways, based on a given set of criteria (described in Chapter 

IV). Typically, it can be done based on the hierarchy of the design. Most RTL Verilog codes are written 

in accordance with two most common hierarchical modeling concepts: top-down design methodology 

module dff_sync_reset ( 

data   , // Data Input 

clk    , // Clock Input 

reset  , // Reset input 

q        // Q output 

); 

input data, clk, reset ; 

output q; 

 

reg q; 

 

always @ ( posedge clk) 

if (~reset) begin 

q <= 1'b0; 

end  else begin 

q <= data; 

end 

 

endmodule //End Of Module dff_sync_reset 
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and bottom-up design methodology [28].  

 In a top-down design methodology, we define the top-level block and identify the sub-blocks 

necessary to build the top-level block. We further subdivide the sub-blocks until we come to leaf cells, 

which are the cells that cannot further be divided. Figure 4.3 shows this methodology.  

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Top-down design methodology 

 

 In a bottom-up design methodology, the building blocks that are available to the designed are 

first identified. Using these blocks, bigger cells are built, which are then used to build higher-level 

blocks until the top-level block of the design is built. Figure 4.4 shows this methodology.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Bottom-up design methodology 
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 In a typical system design, a combination of top-down and bottom-up methodology is used. To 

illustrate circuit partitioning using hierarchical modeling, we consider a 4-bit ripple carry counter as 

shown in figure 4.5. 

 

               

        

Figure 4.5 Ripple carry counter 

 

The ripple carry counter is made up of 4 T flipflops. Each T flipflop is made up of a D flip flop and an 

inverter as shown in figure 4.6 

                                              

Figure 4.6 T-flipflop 

Partitions 
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 Thus the ripple carry counter is built in a hierarchical fashion by using building blocks. Now, 

we can safely divide this counter, without losing any functionality, into four partitions, each with one 

flipflop as shown by the red ellipses. From RTL point of view, figure 4.7 shows the Verilog description 

of the T flipflop using a D flipflop (figure 4.8) and an inverter. Figure 4.9 shows the Verilog description 

of the 4-bit ripple carry counter.  

 

                           

 

 

 

 

 

     

Figure 4.7 Verilog description of T flipflop 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Verilog description of D flipflop 

 

 

 

 

 

 

 

 

 

 

 

       Figure 4.9 Verilog description of 4-bit ripple carry counter. 

 

module T_FF(q, clk, reset); 

output q; 

input clk, reset; 

wire d; 

D_FF dff0(q, d, clk, reset); //instantiate D flip flop 

not n1(d, q); //inverter 

endmodule 

module ripple_carry_counter(q, clk, reset); 

output [3:0] q; 

input clk, reset; 

//instantiate T flipflops 

T_FF tff0(q[0], clk, reset); 

T_FF tff1(q[1], q[0], reset); 

T_FF tff2(q[2], q[1], reset); 

T_FF tff3(q[3], q[2], reset); 

endmodule 

module D_FF(q, d, clk, reset); 

output q; 

input d, clk, reset; 

reg q;  

always @(posedge reset or negedge clk) 

if (reset) 

 q = 1'b0; 

else 

 q = d; 

endmodule 
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Thus, given the Verilog description of figure 4.9, we can take up each of the instances of T flip flop, 

t_ff0, t_ff1, t_ff2 and t_ff3, along with the information about their internal interconnections and utilize 

them individually for further analyses.  

 

4.3 Logging Input data 

 To log the input of each partition, we use two Verilog system tasks depending on the duration of 

simulation: $fdisplay and $dumpvars. We incorporate either one of these tasks in the predefined 

testbench for the original circuit and invoke them appropriately and Verilog writes their output to user-

defined files.  

$fdisplay 

 This system task can be used when the design runs for a relatively small number of simulation 

cycles.  The code snippet below shows how to log the value of a signal and write it to a file. 

 

 

 

 

 

 

 

 

Figure 4.10 Code snippet showing $fdisplay usage 

 

$dumpvars 

 This system task is used to select module instances (or sub-modules) and module instance 

integer fP; 

initial  

begin 

 fP = $fopen(“input_log.txt”,”w”); //open the file where  

          //you want to write the logged input 

end  

 

//at every positive clock edge, log the values of input1 and input2. 

//input1 and input2 are the example inputs of a sub-module that we are  

//trying to record 

always@(posedge clk) 

begin 

 $fdisplay(fP,”%b%b”,<input1 with hierarchy>,<input2 with hierarchy>); 

end 
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signals and dump their values to a VCD file. A VCD (value change dump) file is an ASCII file that 

contains information about simulation time, scope, signal definitions and signal value changes in the 

simulation run. VCD files can be very handy to store signal values when the design runs for long 

simulation cycles or when the signal values change a lot during the simulation. An added advantage of 

VCD files is that post processing tools can take the VCD file as input and visually display hierarchical 

information, signal values and signal waveforms. Figure 4.11 shows how to use $dumpvars and other 

VCD associated system tasks.  

 

 

 

 

 

 

 

 

 

 

Figure 4.11 Code snippet showing $dumpvars usage 

 

4.4 Fault Generation Phase 

 Fault generation in the sub-modules as well as the entire original circuit was accomplished 

using statistical fault injection (SFI) technique. Figure 4.12 shows the simulation approach for our SFI 

technique [29]. Figure 4.13 shows the flowchart of our approach. 

 

//specify name of VCD file 

initial 

 $dumpfile(myfile.dmp);//simulation info dumped to myfile.dmp 

 

initial  

begin 

 //dump input signals of the required module instances here 

 $dumpvars(0, <input names along with their hierarchy>); 

end 

 

initial 

begin 

 $dumpon; //start the dump process 

 #t $dumpoff; //where t is the simulation time after which we stop 

    //the dump process. In our case,t would be  

    //total simulation time 

end  
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Figure 4.12 Fault generation simulation approach 

 

 We provide the RTL description of our partitions (or sub-modules) as the input source code. 

Using the input data stream that we had logged in the previous step, we create testbenches for each of 

the partitions. These testbenches propagate the logged input data stream into their respective partitions 

and record the output data stream as per the requirements, thereby creating a golden copy of a fault-free 

output data stream of the partition.  

 The next module in figure 4.12 is the fault injection module. Fault injection in our 

implementation has been accomplished using the Verilog Programming Language Interface (PLI) 

feature [30].  

4.4.1 Verilog Programming Language Interface  

 PLI provides a set of interface routines that allows the designer to read internal data 

representation, write to internal data representation, and extract information about the simulation 

environment. Thus, PLI, with their predefined set of interface routines, allows the designer to 

customize the capability of the Verilog language by defining their own system tasks and functions. 

Designers use high level languages like C or C++ to write their own functions/tasks and then use these 
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functions/tasks (after compilation and linking) like a normal system function/tasks in their Verilog 

testbenches. Figure 4.14 gives a pictorial description. 

 

                                       

                               Figure 4.13 Flowchart for fault generation simulation 

 

 

 

 

 

 

 

   

Figure 4.14 PLI function call from inside Verilog code 
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 In this work, the PLI function for fault injection was written in C++ (and compiled using gcc) 

by Brian Sierawski of the Institute for Space and Defense Electronics. The PLI function selects a 

register bit randomly and uniformly across the sub-circuit under test and flips the stored value of the 

bit. If the value of the bit is undefined, it stores a random value into it. Also, the PLI function gets 

invoked at a random and uniform time during the simulation length of the testbench. For example, let‟s 

assume our testbench runs for 2000 time units. We invoke the fault injection PLI function at a random 

time between the start of simulation and 2000 time units as shown in the code snippet in figure 4.15. 

 

 

 

 

Figure 4.15 Fault injection PLI function example 

 

The $singleEventInit() function sets up the initialization for the fault injection module as well as 

generates the random seed which is then used to randomly select time and location of fault injection.  

The  $pseudoRandom(<value>)function is used to generate a random number between 0 and value. 

Using this function after „#‟ in the above code snippet forces the simulator to delay the execution of the 

next step by time units equal to the generated random number. The  $singleEventUpset(DUT) 

function is used to randomly (depending on the seed) select a register bit and simulate a fault by 

flipping its value. The DUT argument is the hierarchical path of the sub-module we are trying to inject 

fault into. The output of this function, which includes bit flip location, bit flip time with respect to 

simulation time and the nature of the flip (e.g. 0 -> 1 or 1-> 0) is logged onto standard output.  

 The RTL simulator that we use to perform our simulations is Synopsys VCS. However, this 

initial  

begin 

 $singleEventInit(); 

 #($pseudoRandom(2000)); 

 $singleEventUpset(testbench.sub_circuit); 

end 
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methodology is independent of RTL simulator and is supposed to work with any standard commercial 

RTL simulator. 

 The primary purpose of the error detection module is to operate at run time, log the output of 

the testbench and compare the output of two different testbenches ran on the same design. This module 

has been implemented in C and linked to Verilog using the PLI feature. In our implementation, it 

performs a twofold task. First, it is used to create the golden fault free copy by running it along with the 

testbench, but without the fault injection module. Second, it is then run on the same design along with 

the same testbench but this time with the fault injection module. The error detection module gets 

invoked every clock cycle, either positive or negative edge, and records the output of the two 

testbenches. Alongside, it also compares the output of the two testbenches every time it gets invoked. 

As soon as it finds a mismatch between the two, it writes out a message indicating about the occurrence 

of a fault/error to the standard output along with the real time when it occurred. It also writes out the 

name of the output bit(s) where the fault (or error) has occurred.  

 The analysis module is a post-simulation module that takes in the information generated using 

the fault simulation and error detection and processes it according to our requirements. In our case, it 

logs out all the output bit locations where faults (or errors) have occurred along with the number of 

times the faults (or errors) have occurred at a particular output bit. Also, it logs the various 

combinations of faults seen at the output. E.g. if a sub-module has a 3-bit output and bit 0 and bit 2 of 

the output has faults while bit 1 doesn‟t have a fault, then it gets recorded as ENE (for error-no error-

error). The analysis module then counts the frequency of such combinations. This information is then 

used to create the probability of fault generation matrix (described in Chapter III) for that sub-module. 

The analysis module has been implemented using Shell and Python scripts. The Python script also 

provides information about the accuracy in our fault generation simulation results along with the 

precision of the results. The Python scripts then create a matrix of precisions where the elements of this 
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matrix are the precisions of the corresponding elements of the probability of fault generation matrix. 

To determine the number of simulations to perform for the fault generation phase, we adopt a similar 

approach as explained in [29]. Sufficient number of simulations is performed until the AVF for the 

design starts to saturate as shown in figure 4.16 for an example microprocessor [29]. 

 Once we determine the number of simulations at which the AVF starts to saturate, we perform 

multiple experiments with the same number of simulation runs with same experimental conditions. To 

find the true AVF, we take the average of the AVFs computed during each experiment. To find the 

precision in our computed AVF, we first find the deviations of the computed AVFs (from each 

experiment) from the average AVF.  

 

 

 

Absolute deviation = Measured AVF – Mean AVF 

We then compute the average of all absolute deviations. Precision is then given by the following 

equation: Precision = (Average deviation / Mean AVF) X 100% 

 

        Figure 4.16 AVF vs injection for 8-bit microprocesssor 
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4.5 Fault Propagation Phase 

 We perform a second set of fault simulations where we simulate a fault in the input data stream 

of the RTL model of the sub-module, run the model forward and compare the output to that of a golden 

copy. The golden copy is a fault free simulation of the sub-module.  

 

                                            

Figure 4.17 Simulation of a fault at x[0] 

 

 Figure 4.17 shows an example where the input stream at x[0] is flipped, allowing the fault to 

propagate and then checking the state of output stream   .   

 The simulation approach is similar to fault generation phase except the fault injection module, 

which is replaced by a fault propagation module. We use the same Synopsys VCS simulator. The 

pseudo code below shows an example where, in a sub-circuit, it is performing 1000 fault injections at 

random input bits at a random simulation time. 

 

 

do 1000: 

  at rand (i/p bits, time); 

   inject fault; 

  compare the o/p with golden copy; 

  log the o/p combinations with errors; 

 

Figure 4.18 Pseudo-code for fault propagation phase 
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The fault propagation module uses the system task $value$plusargs to select the following three 

parameters:  

1) Random select a time to simulate the fault at the input.  

2) Randomly select the number of input bits to flip. 

3) Randomly select the bit location or bit indices.  

$value$plusargs provides the capability of conditional execution of the Verilog code by allowing the 

user to control variables in the code from outside with the help of flags which can be set on a run-time 

basis. Figure 4.19 shows some example code snippets: 

 

   //Conditional execution with $value$plusargs 

   module test; 

reg [8*128-1:0] test_string; 

integer clk_period; 

... 

... 

initial 

begin 

if($value$plusargs("testname=%s", test_string)) 

$readmemh(test_string, vectors); //Read test vectors 

else 

//otherwise display error message 

$display("Test name option not specified"); 

 

if($value$plusargs("clk_t=%d", clk_period)) 

forever #(clk_period/2) clk = ~clk; //Set up clock 

else 

//otherwise display error message 

$display("Clock period option name not specified"); 

end 

 

//For example, to invoke the above options invoke simulator with 

//+testname=test1.vec +clk_t=10 

//Test name = "test1.vec" and clk_period = 10 

   endmodule 

 

Figure 4.19 Verilog code demonstrating $value$plusargs usage 
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 Once the fault propagation simulations are done, the analysis module (consisting of Python and 

Shell scripts) looks for all the mismatches detected by the error detection module and prints out the 

output bit locations that have errors along with the corresponding input bit locations with errors. Using 

the frequency of such output-input combinations, we then create the probability of fault propagation 

matrix (chapter III). Also, we build the corresponding matrix of precisions associated with the 

probability numbers. Figure 4.20 shows the flowchart for fault propagation simulation. 

 

                                            

                            Figure 4.20 Flowchart for fault propagation simulation 

 

4.6 Post Simulation AVF Calculation 

 Python scripts are used to take the two probabilities created in the previous step: probability of 

fault propagation and probability of fault generation and perform matrix multiplication as described in 
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Chapter III. The Python scripts use the open source numpy package to automate the multiplication 

process [31].   

 The multiplication of the standard deviation matrices is done using similar Python scripts, but 

the multiplication rules, apart from normal matrix multiplication, also follow the rules for propagation 

of standard deviations as described in [32]: 

If A, B are real variables with standard deviations of σA and σB, then: 

1) For F = A + B, 

Standard deviation of F is given by σ
2

F = σ
2

A + σ
2

B 

2) For F = AB 

Standard deviation of F is given by  
  

 
 
 

   
  

 
 
 

   
  

 
 
 

  

The correlation coefficient terms are set to zero (described in detail in chapter V). 
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CHAPTER V 

 

APPLICATIONS 

 

 In this chapter, we present the basic criteria required to identify the class of circuits on which 

modular technique could be employed to estimate their AVFs. We then discuss some applications on 

which we had tested our technique and present their results. 

  

5.1 Circuit Classification 

 Consider our example design again (figure 5.1).  

 

 

 

 

 

Figure 5.1 Example design for circuit classification analysis 

 

 During fault generation phase of Mod1, the probabilities of faults observed for the seven 

different output combinations of Mod1 are recorded. Now ideally, if Mod1 and Mod2 are assumed to 

be uncorrelated sub-modules, then these faults from Mod1 can be propagated through Mod2 by 

introducing bit flips - randomized over time - at the corresponding inputs of Mod2. Similarly, if Mod2 

and Mod3 are uncorrelated, faults can be propagated through Mod3 independent of time. Under such a 

condition, the systematic error introduced in the AVF estimation using modular approach is going to be 
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ideally zero and no loss in accuracy of AVF would be introduced. Practically, modular approach can be 

applied on circuits where it is possible to create weakly correlated partitions.  

5.1.1 Mathematical Interpretation 

 Let‟s say it takes τ time units to propagate a signal through Mod2. Hence, for a simulation 

period from t = 1 to t = n time units, we have:  

Pr {Fr (  , i + τ) | Fr (  , i)} = Pr {Fr (  , j + τ) | Fr (  , j)} , where 1 < i, j < n                     … (1) 

Similarly for Mod3,  

Pr {Fr (  , i + τ’) | Fr (  , i)} = Pr {Fr (  , j + τ’) | Fr (  , j)} , where 1 < i, j < n                   … (2) 

where τ‟ is the time required to propagate a signal through Mod3.  

5.1.2 Example partitions 

 Example partitions that satisfy (1) or (2) include Canonical Clocked Logic Circuits (CCLC) and 

their variations. 

  

                         

Figure 5.2 Canonical clocked logic circuit 
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 Consider the CCLC shown in figure 5.2, composed of a combinational block with latches at its 

primary inputs and outputs. A chip can be considered as a network of CCLCs [33]. A soft error is said 

to have occurred in a CCLC if a DFF captures the single event transient (SET) generated by a particle 

hit.  

The upper bound on the soft error rate, SER (number of soft errors per unit time), of a chip is given by  

                                              SERchip         
   CCLC,k            …(3) 

where Nc is the number of CCLCs on the chip. The above equation becomes tight bound when all the 

CCLCs are independent from each other.  

  Suppose that a fault is observed at the input DFFs: Di_1 and Di_3, but not in Di_2 (outputs of a 

previous module(s) in the propagation path) at time t = i < n. Depending on the logical state of the 

combinational block, the error may or may not show up at its outputs Do_1 and Do_2. Let‟s assume 

that it shows up only at Do_1 at t = i + 1(neglecting the propagation delay of the combinational block). 

It would then show up at Qo_1 at t = i + 2 (after one clock cycle).  The operation of the combinational 

logic is independent of time. So, irrespective of the time it receives its input data, the combinational 

block is always going to produce the same output throughout the entire simulation period. Hence, the 

behavior of CCLC is constant for any value of i and hence time-independent. 

 Mathematically, for all t = i, 1 < i < n, in this circuit for the mentioned scenario,  

Pr{Er(Qo_1, i+2) | Er(Di_1, Di_3, i)} = 1  and                             

Pr{Er(Qo_2, i+2) | Er(Di_1, Di_3, i)} = 0                                                   … (4) 

This is going to hold true for any variation of CCLC as well. Hence, circuits where it is possible to 

create such time independent CCLC or variations of CCLC partitions are going to yield accurate results 

with modular approach.  

 A second method to determine if modular approach is applicable on a circuit is through fault 
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propagation simulations. Let‟s consider that in figure 5.1, Fb represents the set of combinations in 

which faults occur at    (can be determined from fault generation phase of Mod1) during a simulation  

period from t = 1 to t = n. E.g. Fb = {Fx[1], Fx[2], Fx[3], Fx[1][2]} showing that faults occur at only 

x[1], only x[2], only x[3] and, x[1] and x[2] simultaneously. We pick an element of the set, say Fx[1] 

and propagate a fault through Mod2 by flipping only x[1] at a random time i (i < n) and then 

monitoring    (Mod2's output) for the rest of the simulation period. This process is repeated for different 

values of i: e.g. i1, i2, i3 etc. Now, for these different i‟s, we record the following as well:  

When the fault occurs at t = i1,  

record: {Fr(  , i1 + 1) | Fr(x[1], i1) }, {Fr(  , i1 + 2) | Fr(x[1], i1) } …  

            {Fr(  , i1 + n) | Fr(x[1], i1) }                                                                   … (5) 

When the fault occurs at t = i2,  

record: {Fr(  , i2 + 1) | Fr(x[1], i2) }, {Fr(  , i2 + 2) | Fr(x[1], i2) } …  

            {Fr(  , i2 + n) | Fr(x[1], i2) }                                                                   … (6) 

Similarly, we repeat this process for other values of i.  

If (5), (6) etc. follow similar pattern, it implies that fault propagation through Mod2 follow a similar 

pattern for faults propagating through x[1], irrespective of when it occurs during the simulation. This 

process should be repeated for all other combination of faults present in the set Fb. Once we ensure that 

all of those fault combinations propagate through Mod2 irrespective of the time they are simulated, we 

can be sure that the partition Mod2 agrees with our conditions (1) and (2). It is recommended to neglect 

i's that are either too early or too late in the simulation period.  

 Also, this has to be repeated for every partition through which errors can possibly propagate to 

make sure all of them agree with the conditions (1) and (2). 
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5.2 Test Circuits 

 In this section, we discuss two applications we tested our approach on. All the circuits are 

implemented in RTL Verilog and are available at [35]. All the simulations were performed using 

Synopsys VCS on a dual core 8GB RAM AMD Opteron processor running Redhat Linux.  

5.2.1 Digital signal processing units 

 We tested our modular approach on three DSP units: double precision floating point unit, 

forward discrete cosine transform unit and a jpeg encoder unit. In this section, we will take up each of 

these one by one further discussion.  

5.2.1.1 Double Precision Floating Point Unit (DPFPU) 

 Figure 5.3 shows the hierarchy of the DPFPU.   

 

               

Figure 5.3. Double Precision Floating Point Unit 
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 The DPFPU has 6 major sub-units. Hence, we partition into the corresponding 6 sub-modules. 

The unit can be broadly divided into three stages: arithmetic unit (consisting of fpu_add, fpu_sub, 

fpu_mul & fpu_div), rounding unit and the exceptions module. The inputs signals consist of two 64-bit 

operands, 3-bit opcode, rounding mode along with clock, reset and enable signals. The output signals 

primarily consist of the 64-bit output from the operation along with a ready signal that goes high when 

the output is available. Depending on the opcode, the appropriate arithmetic operation is performed on 

the operands in stage 1. The top level, fpu_double, runs a counter to count the number of clock cycles 

required for the specific operation that is being performed. The output signals of this stage are the three 

components that make up a floating point number: sign, mantissa and exponent. These are then passed 

to the rounding stage where rounding of the mantissa is performed, based on the four possible rounding 

modes (round to nearest, round to zero, round to positive infinity and round to negative infinity). The 

rounding unit generates the final mantissa. The 64-bit output from the rounding unit is then passed to 

the exceptions unit. In the exception unit, all of the special cases are checked for, and if they are found, 

the appropriate output is created, and the individual output signals of underflow, overflow, inexact, 

exception, and invalid are accordingly asserted.  

 Because of the nature of operation, the three stages of DPFPU operate independently. For a 

particular set of inputs, only one stage is active at a time, thus making the stages weakly correlated with 

each other. We perform SFIs on all the 6 sub-modules to find the probability of fault generation. We 

perform fault propagation simulations on the sub-modules fpu_round and fpu_exceptions. It is not 

required to perform fault propagation simulations on the stage 1 sub-modules as we use a fixed 

testbench assuming no errors to be propagating from the primary inputs. 

 To show that faults propagate through fpu_round and fpu_exceptions regardless of when they 

occur and hence agree with our assumption 2b, we evaluate equation (5) and (6) for these two sub-

modules. This is shown in table 5.1 and 5.2. The first column shows the different times at which faults 
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have been injected into the input stream. The second column shows the times at which the first fault 

shows up in the output stream as a result of the fault propagating from the input. It can be seen that the 

first fault always takes the same time (w.r.t. the time when the fault is injected in the input stream) to 

show up in the output stream. 

 

Time of fault injection in the input stream 

(in ns) 

Time at which first fault was observed in the output stream 

(in ns) 

1000 2500 

3000 4500 

8000 9500 

12000 13500 

15000 16500 

Table 5.1 Table showing the time when fault is injected in input and observed at output for module 

fpu_round 

 

Time of fault injection in the input stream 

(in ns) 

Time at which first fault was observed in the output stream 

(in ns) 

1000 2500 

3000 4500 

8000 9500 

12000 13500 

15000 16500 

Table 5.2 Table showing the time when fault is injected in input and observed at output for 

module fpu_exceptions 
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Circuit Statistical 

Parameters 

Full 

Circuit 

SFI 

Modular Approach 

 

 

Double 

Precision 

Floating 

point 

Unit 

Sub-

circuits 

 1 2 3 4 5 6 

Registers 5254 627 696 1741 1004 406 780 

Faults 

injected 

4830 300 332 810 720 194 354 

Faults 

propagated 

 - - - - 100 100 

CPU Time 

(in mins) 

163.4 10.1 10.3 17.3 16.1 4.3 10.5 

68.6 

AVF (%) 22.1  1 23.3 0.4 24.3 0.4 33.6 0.4 28.2 0.4 19.9 0.4 22.4 0.4 

21.5 1 

Table 5.3 Results table comparing SFI and our technique for DPFPU 

 

 Table 5.3 shows the results of modular approach tested on the DPFPU. Also, we ran SFI on the 

entire circuit for comparison purposes. The table shows the number of registers in an entire circuit as 

well as in every of the sub-circuits.  It shows the faults injected in the entire circuit as well as in the 

sub-circuits. It also shows the faults propagated through different sub-circuits. The next row shows the 

CPU time taken to perform the fault generation and propagation simulations. The last row shows the 

percentage AVF of the entire circuit as well as that of the sub-circuits along with their percentage 

standard deviations. 

 It can be seen from the results table 5.3 that with our proposed approach, for the same standard 

deviation, we estimate the AVF within approximately 3% of that estimated using a full circuit SFI. But, 

in case of modular approach, the number of simulations that we need to run is 

300+332+810+720+194+354+100+100 = 2910 while we have to run 4830 simulations in case of a full 

circuit SFI. Thus, we achieve a reduction factor of roughly 2X in terms of number of total number of 
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simulation runs required. Also, the total time required for our modular approach is 68.6 mins while it 

takes 163.4 mins in case of full circuit SFI, giving us a computational speed up of about 2.4X. 

 In a second set of analysis, the number of simulation runs was kept same (2910) for traditional 

SFI and modular approach and comparisons of speed and accuracy were performed. It was found that 

the AVF computed using traditional SFI is (12.2   1) %. The decrease in AVF shows that because of 

the decreased observability of the design, less number of injected faults makes it to the primary output 

of the design. Thus, the number of simulations is not sufficient to make an accurate decision about the 

AVF. This results in a decrease in accuracy of the AVF (to 4%) estimated using modular approach. 

Because the number of simulations ran is the same, the speed in AVF estimation remains approximately 

the same for both cases. 

 A final analysis was done where for a given AVF (21.5% in this case), the number of 

simulations and the speed of experiments for the two approaches were compared. It was found that we 

need to perform about 1.5X times more simulations for traditional SFI than modular approach. As a 

result, the CPU time is about 2.1X times more in case of traditional SFI than modular approach.    

5.2.1.2 Forward Discrete Cosine Transform Unit 

 Figure 5.6 shows the hierarchical diagram of the forward discrete cosine transform unit we 

tested our modular approach on. 

  

 

 

 

 

 

 

Figure 5.6 Forward DCT Unit 
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 The DCT blocks have 8 input/output points and an 8-bit input data is inserted into the system 

through the first DCT in a sequential manner. As a result, it takes 8 clock cycles for each input and 

output process. In total, each of the 8-point 1-DCT blocks takes 22 clock cycles for computation. The 

first DCT block performs 1-D discrete cosine transform on row-wise input samples. Results of this 

computation stage are stored into the Transpose Memory. This processing stage comprises a set of 

multiply accumulate units as well as cosine lookup table for respective DCT computation. The 2
nd

 DCT 

block performs 1-D Discrete Cosine Transform on column-wise data stored in Transpose Memory by 

1
st
 stage. More information on the DCT computation process can be found at [34].  

 The DCT blocks are extensions of CCLCs as shown in figure 5.7, hence they tend to agree with 

our conditions (1) and (2). 

 The transpose buffer is a static RAM, designed with two set of data and address bus, acts as a 

temporal barrier between the first and the second DCT. Input address is generated in normal sequence 

but output address is generated in transposed sequence. 

 The quantizer divides each and every 2DDCT coefficient by quantizing values from a 

quantization table. Varying levels of image compression and quality are obtainable through selection of 

specific quantization matrices. The quantizer module consists of ROM and divider. The quantizing 

values are first stored in ROM and the divider carries out division in a pipelined manner.  
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Figure 5.7 DCT unit 

 

 Zigzag buffer is made from static RAM. Its construction is similar to that of the transpose 

buffer. It has two sets of data-address bus. Input address bus is accessed by normal sequence, but 

output address is given some zigzag sequence. Zigzag address is generated by a zigzag RAM. The 

sequence is stored in the RAM. When the RAM address bus is accessed by normal address sequence, 

RAM data bus will emit zigzag value. Table 5.4 shows the results. 
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Circuit Statistical 

Parameters 

Full 

Circuit 

SFI 

Modular Approach 

 

 

Forward 

Discrete 

Cosine 

Transform 

Unit 

Sub-

circuits 

 1 2 3 4 5 

Registers 3945 771 771 740 526 1106 

Faults 

injected 

2720 210 210 190 160 350 

Faults 

propagated 

 - 50 120 100 100 

CPU Time 

(in mins) 

116.7 6.3 6.3 6.2 6.5 8.7 

34 

AVF (%) 17.3 2 24.3 1 23.7 1 22.9 1 10.8 1 19.2 1 

16.6 2 

Table 5.4 Table showing the results for the forward discrete cosine transform unit 

 

 It can be seen that with our proposed approach, for the same standard deviation, we estimate the 

AVF within approximately 4% of that estimated using a full circuit SFI. But, in case of modular 

approach, we achieve a reduction factor of 1.8X in terms of number of total number of simulation runs 

required. Also, we gain a computational speedup of 3.4X using our approach.  

 With the number of simulation runs kept same (1490) for traditional SFI and modular approach, 

it was found that the AVF computed using traditional SFI is (10.8   2) %. The decrease in AVF shows 

that because of the decreased observability of the design, less number of injected faults makes it to the 

primary output of the design. Thus, the number of simulations is not sufficient to make an accurate 

decision about the AVF. This results in a decrease in accuracy of the AVF (to 5.4%) estimated using 

modular approach. Because the number of simulations ran is the same, the speed in AVF estimation 

remains approximately the same for both cases. 

 For the third analysis, for an AVF of 16.6% the number of simulations and the speed of 
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experiments for the two approaches were compared. It was found that we need to perform about 1.3X 

times more simulations for traditional SFI than modular approach. As a result, the CPU time is about 

2X times more in case of traditional SFI than modular approach.    

5.2.1.3 Baseline JPEG encoder 

 The architecture of the JPEG encoder that we tested on is shown in figure 5.3. The entire 

architecture is organized as a linear multistage pipeline in order to achieve high throughput. This figure 

reflects the sequence of computation in the JPEG Baseline process. The image to be compressed is 

provided as input to the system at one pixel per clock cycle rate, which is then processed by the various 

internal modules in a linear fashion. The compressed data is then output by the system at a variable rate 

depending on the amount of compression achieved.  

 The first module in the JPEG encoder is the DCT (discrete cosine transform) module. The 2-D 

DCT (8 x 8 DCT) is implemented by the row-column decomposition technique. It first computes the 1-

D DCT (8 x 1 DCT) of each column of the input data matrix. After appropriate rounding or truncation, 

the transpose of the resulting matrix is stored in an intermediate memory. It then computes another 1-D 

DCT (8 x 1 DCT) of each row of the resulting matrix to yield the desired 2-D DCT. A block diagram of 

the design is shown in Figure 5.4. 
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  Figure 5.3 Baseline JPEG Encoder  
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 Figure 5.4 DCT module for the JPEG Encoder 

 

 The quantization module consists of a ROM to store the quantization table and an 11 x 8 bit 

multiplier. The quantization step in the JPEG algorithm involves multiplying the output of the DCT 

stage with a set of predefined values from a quantization table. The 8-bit multiplier value is retrieved 

from the quantization table each clock cycle, and the coefficient values from the DCT stage are input as 

the 12-bit multiplicands. 

 The reordering logic consists of a zigzag buffer that reorders each block of data that is output by 

the quantization module zigzag fashion before being forwarded to the entropy encoder. This reordering 

is achieved using an 8 x 8 array of register pairs organized in a fashion similar to the transpose buffer.  

The zero-runlength coder module performs the functions as described in the earlier part of this section. 

The module consists of three stages and thus a latency of 3 cycles. The first stage consists of logic for 

computing ∆DC (the difference between the current DC coefficient and the DC coefficient of the 

previous block) while the second stage derives the runlength count and the third stage is used for 

decrementing negative coefficients.  

 The category selection unit associates each DC and AC coefficient with a corresponding 
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category depending on the magnitude of the coefficient.  

 The Huffman encoder consists of Huffman code tables stored in random access memory 

modules and logic for replacing the category, runlength count pairs with the corresponding Huffman 

codes.  

 

Circuit Statistical 

Parameters 

Full 

Circuit 

SFI 

Modular Approach 

 

 

Baseline 

JPEG 

Encoder 

Sub-

circuits 

 1 2 3 4 5 6 7 

Registers 52995 3893 3840 8394 9009 9191 4201 14467 

Faults 

injected 

21000 240 240 770 860 860 320 1570 

Faults 

propagated 

 80 80 120 100 100 120 - 

CPU Time 

(in mins) 

580 12.8 12.8 17.1 18.3 18.3 14.0 28.2 

121.5 

AVF (%) 11.7 2.4 13.4 1 14.2 1 16.3 1 15.1 1 15.7 1 14 1 17.2 1 

12.4 2.4 

Table 5.5 Table showing the results for the JPEG encoder 

 

In this case, with our proposed approach, for the same standard deviation, we estimate the AVF within 

approximately 6% of that estimated using a full circuit SFI. But, in case of modular approach, we 

achieve a reduction factor of 4X in terms of number of total number of simulation runs required. Also, 

we gain a computational speedup of roughly 5X using our approach. The results are shown in table 5.5. 

5.2.2 Pipelined Processor Unit 

 We tested our modular approach on the data path of a 5-stage MIPS pipelined processor unit as 

well. In this unit, each stage is processing a different instruction at any given point of time, making 
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them operate independent of each other.  Furthermore, pipelining the data path requires that values 

passed from one pipeline stage to the next must be placed in registers called pipelined registers. Any 

instruction is active in exactly one stage of the pipeline at a time; therefore, any actions taken on behalf 

of an instruction occur between a pair of pipeline registers. Hence, we can look at the activities of the 

pipeline by examining what has to happen on any pipeline stage. This allows us to slice the pipelined 

unit along the peripherals of the pipelined registers, thus partitioning them into variations of CCLCs.  

 

  

 

 

 

 

 

Figure 5.6 Five stage pipeline unit 

 

 Consider an example, where a fault injected into an internal register in the instruction decode 

stage at time t shows up as an error at the output of the decode stage at time t+1. To observe if it 

propagates through the next stage in the pipeline (execution stage), we need not simulate this fault at 

the input of the execution stage at exactly t+1, as it‟s a whole new instruction for it. Hence, this makes 

our partitions to be in conformity with equations (5) and (6).    

 From the results table 5.6, it can be seen that with our proposed approach, for the same standard 

deviation, we estimate the AVF within approximately 6% of that estimated using a full circuit SFI. But, 

in case of modular approach, we achieve a reduction factor of 2.8X in terms of number of total number 

of simulation runs required. Also, we gain a computational speed of 3.7X using our approach.  
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Circuit Statistical 

Parameters 

Full 

Circuit 

SFI 

Modular Approach 

 

 

Pipelined 

processor 

Unit 

Sub-

circuits 

 1 2 3 4 5 

Registers 4420 1131 936 1255 721 377 

Faults 

injected 

6970 510 420 625 370 190 

Faults 

propagated 

  100 90 90 90 

CPU Time 

(in mins) 

230.2 14.6 13.4 16.1 10.5 8.5 

30.9 

AVF (%) 24.3 3 26.2 2 25.2 2 28.1 2 22.4 2 25.1 2 

22.8 3 

Table 5.6 Table showing the results for the pipeline unit 

 

 With the number of simulation runs kept same (2485) for traditional SFI and modular approach, 

it was found that the AVF computed using traditional SFI is (12.8   3) %. The decrease in AVF shows 

that because of the decreased observability of the design, less number of injected faults makes it to the 

primary output of the design. Thus, the number of simulations is not sufficient to make an accurate 

decision about the AVF. This results in a decrease in accuracy of the AVF (to 7.8%) estimated using 

modular approach. Because the number of simulations ran is the same, the speed in AVF estimation 

remains approximately the same for both cases. 

 For the third analysis, for an AVF of 22.8% the number of simulations and the speed of 

experiments for the two approaches were compared. It was found that we need to perform about 2.1X 

times more simulations for traditional SFI than modular approach. As a result, the CPU time is about 

3.2X times more in case of traditional SFI than modular approach.    
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CHAPTER V 

 

CONCLUSION 

 

 This thesis presented a novel technique for efficient fault simulations that can further be used to 

assess the soft error vulnerability of a design. Fault simulation efficiency is accomplished by enhancing 

node observability using circuit partitioning. Detailed analysis of creating optimum size partitions was 

also done. This work also identified the class of circuits on which this methodology can be used 

efficiently for AVF estimation. Experiments performed on four test circuits show that our technique 

works reasonably well on them and we achieve benefits in terms of simulation speed and number of 

simulations runs. This methodology can be used not only for commercial applications but for space 

applications as well. 

 To further validate the approach, hardware radiation experiments could be performed and the 

results could be compared with that of our simulation results. This work could also be extended to 

include analogue effects like SET propagation etc. This would require synthesizing the test circuit, 

targeted to a technology library, and generating its gate-level description.  
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