

AN EFFICIENT AVF ESTIMATION TECHNIQUE

USING CIRCUIT PARTITIONING

By

Jugantor Chetia

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Electrical Engineering

May 2012

Nashville, Tennessee

Approved:

Professor Lloyd W. Massengill

Professor Bharat L. Bhuva

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ETD - Electronic Theses & Dissertations

https://core.ac.uk/display/216050831?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

ACKNOWLEDGEMENTS

 First of all, I would like to thank my advisor, Dr. Lloyd W. Massengill for giving me the

opportunity to work on this project. I would like to thank Dr. Massengill for his patience and moral

support during the course of this project. I would also like to thank Dr. Massengill for guiding me in

every step of this project, without which it would have been difficult to successfully complete this

project. Next, I would like to thank Dr. Bharat Bhuva for his guidance and assistance during this

project. I would like to thank Andrew Sternberg, Brian Sierawski, Daniel Loveless and Corey Toomey

for assisting me in this project with endless technical discussions. I would also like to thank my friends

at Vanderbilt: Srikanth, Tania, Sandeepan, Nihaar, Adeola, Shubhajit, Gaurav, Siladitya, Indranil and

Parikshit, for all their help throughout my stay at Vanderbilt. I would like to thank the Radiation Effects

and Reliability group for providing me with immense guidance and motivation throughout this project.

 I would also like to thank my friends Anuj, Anupam, Dipak, Manash, Deepak and Vaibhav.

Finally I would like to thank my parents and my brother for their immense support and love throughout

all these years.

iii

TABLE OF CONTENTS

 Page

ACKNOWLEDGMENTS ... ii

LIST OF FIGURES ... v

LIST OF TABLES ... vii

Chapter

1. INTRODUCTION .. 1

 2. RADIATION-INDUCED SOFT ERRORS OVERVIEW .. 3

 2.1 Types of radiation particles ... 3

 2.2 Physical origins of single event upsets ... 4

2.2.1 Charge deposition .. 4

2.2.2 Charge collection ... 5

2.3 Concept of single event upset ... 6

 2.3.1 SEUs in DRAM ... 6

 2.3.2 SEUs in latches/SRAM .. 7

 2.3.3 Soft fault ... 8

 2.3.4 Soft error .. 9

 2.3.5 Observability .. 10

2.4 Architectural perspective .. 10

 2.4.1 AVF Overview ... 11

2.5 Motivation behind modular approach .. 12

3. PROBABILITIC APPROACH ... 14

 3.1 Definitions ... 15

 3.2 Assumptions .. 18

 3.3 Methodology ... 20

4. IMPLEMENTATION OF MODULAR TECHNIQUE .. 24

4.1 Input file description .. 25

 4.1.1 Behavioral or algorithmic level ... 25

 4.1.2 Dataflow level .. 25

4.2 Circuit partitioning ... 26

4.3 Logging input data .. 30

iv

4.4 Fault generation phase .. 31

 4.4.1 Verilog programming language interface ... 32

4.5 Fault propagation phase .. 37

4.6 Post simulation AVF calculation .. 39

5. APPLICATIONS ... 41

 5.1 Circuit classification ... 41

 5.1.1 Mathematical interpretation .. 42

 5.1.2 Example partitions ... 42

 5.2 Test circuits ... 45

 5.2.1 Digital signal processing units ... 45

 5.2.1.1 Double precision floating point units .. 45

 5.2.1.2 Forward DCT Unit .. 49

 5.2.1.3 Baseline JPEG encoder ... 53

 5.2.2 Pipelined Processor Unit .. 56

6. CONCLUSIONS ... 59

REFERENCES .. 60

v

LIST OF FIGURES

 Page

1. Thermal neutron reaction generating alpha and gamma particles ... 5

2. Charge collection mechanism and generated transient current .. 6

3. SEUs in DRAMs .. 7

4. SEU in SRAMs .. 8

5. Types of soft fault .. 9

6. Concept of soft error .. 9

7. Example circuit to demonstrate observability concept .. 10

8. Example design to demonstrate the motivation behind modular approach ... 12

9. Example design to develop probability model ... 14

10. Probability of fault generation ... 16

11. Probability of fault propagation ... 17

12. Flowchart of modular approach ... 24

13. Verilog code of a synchronous D flips flop.. 26

14. Top-down design methodology .. 27

15. Bottom-up design methodology ... 27

16. Ripple carry counter ... 28

17. T flip-flop ... 28

18. Verilog description of T flipflop .. 29

19. Verilog description of D flipflop .. 29

vi

20. Verilog description of 4-bit ripple carry counter .. 29

21. Code snippet showing $fdisplay usage .. 30

22. Code snippet showing $dumpvars usage ... 31

23. Fault generation simulation approach .. 32

24. Flowchart for fault generation simulation .. 33

25. PLI function call from inside Verilog code .. 33

26. Fault injection PLI function example .. 34

27. AVF vs injection for 8-bit microprocessor ... 36

28. Example fault propagation simulation ... 37

29. Pseudo-code for fault propagation phase ... 37

30. Verilog code demonstrating $value$plusargs usage .. 38

31. Flowchart for fault propagation simulation ... 39

32. Example design for circuit classification analysis ... 41

33. Canonical clocked logic circuit .. 42

34. Double Precision Floating Point Unit .. 45

35. Forward DCT Unit ... 49

36. DCT unit .. 51

37. Baseline JPEG Encoder ... 54

38. DCT module for JPEG encoder ... 55

39. Five stage pipeline unit .. 57

vii

LIST OF TABLES

Page

1. Time when fault is injected at input and observed at output for fpu_round 47

2. Time when fault is injected at input and observed at output for fpu_exceptions 47

3. Results for floating point unit .. 48

4. Results for DCT unit .. 52

5. Results for JPEG Encoder .. 56

6. Results for pipelined processor unit ... 58

1

CHAPTER I

INTRODUCTION

 Because of the continued device size scaling in CMOS technology, reliability has become an

increasing concern for VLSI designs today. Reduced feature size, increased chip density, reduced

supply voltage, shrinking nodal capacitances have resulted in an increased susceptibility of these

designs to single event effects due to ionizing radiations [1][2][3]. These effects can result in soft

errors, in a design, that can further lead to either malfunctioning of a part of a design or a complete

system failure. Therefore, it is very important to have efficient techniques in place for the research

community that would allow designers to analyze, quantify and mitigate the effects of such events.

 For two broad reasons, it is advantageous at times to look at soft errors from an architectural

perspective [4]. First, many of the soft faults that are seen at the device/circuit level are masked at the

architectural level. This allows the designers to implement fast and low cost solutions for soft errors.

For example, Wang et. al has shown that 85% of the soft faults in a processor are masked at the

architectural level [5]. The primary reason for such a high masking rate is because of relatively low

resource utilization in a modern microprocessor, large number of bits that only affect performance but

not correctness and high logical masking of soft faults [4]. Second, looking at a design from an

architecture point of view helps in understanding the workload behavior of the design, which can

further lead to potentially more efficient soft error mitigation techniques [6]. Thus in order to

implement efficient radiation hardening techniques at an early stage of the design cycle, it is

advantageous to have tools and techniques to analyze the design for its soft error vulnerability at its

architectural level.

2

 This thesis work presents a novel efficient technique to evaluate the soft error vulnerability of

large ASIC designs by employing circuit partitioning and fault propagation techniques. The technique

was tested on four test circuits of considerable size. For comparison purposes, traditional statistical

fault injection was also performed on the test circuits to evaluate their soft error vulnerability. Results

show that our technique estimates the vulnerability within a reasonable accuracy, but takes about a 4X

less computation effort than the traditional statistical fault injection technique.

 This thesis is organized is follows. Chapter II provides a brief overview of the various

mechanisms that cause soft errors and some of the already available methodologies to determine soft

error vulnerability of a design. Also we talk about the motivation for our approach in chapter II.

Chapter III describes the probability model of our approach. Chapter IV describes the implementation

details of our approach. Chapter V talks about circuit characterization and discussion of results. Finally

we conclude this thesis with a summary in Chapter VI.

3

CHAPTER II

RADIATION-INDUCED SOFT ERRORS OVERVIEW

 The universe we live in is filled with different types of radiation particles. These particles can

originate from varying sources and exist in varying forms in the outer space. Until recently, these

particles were a source of concern for space and military electronic applications [7][8]. These particles

interact with the semiconductor device and can cause unwanted changes in the device operation and the

application as a whole. As we are coming down to smaller technology node, the problem gets worse

with these particles interacting with the device in more intricate ways to cause more damage to a

device. Moreover, at such small technology node, terrestrial neutrons, which earlier were not a source

of concern, start to affect commercial electronic applications as well [9].

2.1 Types of radiation particles

 a) Heavy ions: The sources of these particles in the outer environment are the galactic cosmic

rays. Examples of such particles are iron and titanium ions [10].

 b) Protons: The sources of protons are solar event particles and Earth‟s radiation belts, Van

Allen belts [10].

 c) Alpha: These particles appear as contaminants in packaging materials. There are some on-

chip sources of alpha particles as well. For example, on-chip metallization, bonding metallization etc

[10][11].

 d) Neutron: High energy neutrons are produced by the interaction of solar and galactic cosmic

rays, principally protons and heavy ions, in the upper atmosphere [10].

4

2.2 Physical Origins of Single Event Upsets

2.2.1Charge Deposition

Charge deposition due to an ionization radiation particle can take place in two possible ways:

a) Direct ionization:

 This takes place when the ionizing particle passes through the semiconductor material

and loses energy by Rutherford scattering with the lattice nuclei. The energy gets transferred to

the bound electrons which then get activated into the conduction band, thus imparting a dense

track of electron-hole pairs. With decreasing transistor feature size, not only heavy ions but

even lighter particles e.g. protons are able to cause damage to the semiconductor device via

direct ionization [12][13][14].

b) Indirect ionization:

 Light particles like protons and neutrons, which are incapable to produce any effect via

 direct ionization, can produce significant adverse effects via indirect mechanisms. When a high

 energy proton or neutron enters the semiconductor lattice, it may undergo an inelastic collision

 with the target nucleus causing a nuclear reaction. As a result of the reaction, several particles

 may get released which can, in turn, cause single event upsets via direct ionization. An example

 nuclear reaction of a neutron with a Boron atom is shown in figure 1.1. It generates gamma,

 alpha particle and a lithium nucleus [12][15][16].

5

Figure 2.1 Thermal neutron reaction generating alpha and gamma particles

2.2.2 Charge Collection

 The electron-hole pairs generated because of direct or indirect ionization by a charged particle

may recombine and produce no observable adverse effect. But if the ion strike is in a reverse biased p-n

junction of a semiconductor device, then the high electric field present in the reverse biased junction

depletion region can collect the particle-induced charge (by causing separation of electron hole pairs)

through drift processes causing a current flow at the junction contact. Even if the ion strike is not

exactly in the p-n junction but near it, transient carriers can result as the carriers can diffuse into the

vicinity of the diffusion region where they can again be efficiently collected [12]. Thus charge

collection at the IC junctions leads to a circuit response to single events [17][18].

 Figure 2.2 [1] shows the charge collection mechanism. Figure 2.2(a) shows an ion strike and the

resulting ion track created, at the drain of a transistor. Figure 2.2(b) shows the drifting of the electron

hole pairs and creation of a funnel shape extending the high field depletion region deeper into the

substrate. Figure 2.2(c) shows the diffusion dominating the charge collection process. Figure 2.2(d)

shows the result transient current generated as result of the charge collection.

6

Figure 2.2 Charge collection mechanism and generated transient current

2.3 Concept of Single Event Upset

 A single event upset (SEU) is defined as a bit flip or other corruption of stored information

because of deposition or generation of charge due to a single event.

2.3.1 SEUs in DRAM

 DRAMs store static charge passively on a capacitance. The charge is stored on a capacitance

node and there is no active path to keep the charge regenerating. Hence, any disturbance to the stored

information by a particle strike stays forever (unless corrected by an external circuitry) [19]. Thus any

disturbance that can degrade the stored information to a level outside the noise margin associated with

the bit signal is enough to manifest itself as an upset. Figure 2.3 shows this effect [10].

7

 Figure 2.3 SEUs in DRAMs

2.3.2 SEUs in latches/SRAMs

 SRAMs use an active high-gain positive feedback path to continuously regenerate the stored

charge (active charge) [20][21]. Thus, if because of a particle strike at the information node, signal

degrades, it gets regenerated by the active feedback. Hence, in order for an upset to occur, the charge

deposited by the particle strike has to discharge the signal at the output node as well as overcome the

self-compensation current of the circuit. Unlike in the case of DRAMs, here an upset occurs only if the

stable state of the circuit switches completely (from 0->1 or 1->0). Figure 2.4 shows this effect [10].

8

 Figure 2.4 SEU in SRAMs

Before we delve into the system level aspect of single events, we define the following important

concepts:

2.3.3 Soft fault:

 A soft fault is defined as an incorrect state of the outputs of latches at the end of any clock

cycle [22]. There are two ways in which a soft fault can take place:

 Direct latch hit: These are the soft faults that occur when the ionizing particle strikes

 the latch directly, thus flipping the output instantly.

 Combinational node hit: When the ionizing particle strikes a combinational node, it

 generates a transient noise pulse. Depending on logical, temporal or electrical masking,

 [23] if this pulse is travels through its propagation path and gets latched at the

 output of the latch, it results in a soft fault.

These two kinds of soft faults are shown in figure 2.5

9

2.3.4 Soft Error:

 When a soft fault propagates through and becomes observable at the primary output of

the system, we call it a soft error. Figure 2.6 shows a soft error.

Figure 2.6: Concept of soft error

Combinational block

D Q

D Q

Combinational node hit

Pulse

Latches

Direct latch hit

Soft fault

Figure 2.5 Types of soft fault: the red colored path shows the path through which the pulse travels

and shows up at the output of the latch

Synchronous Module

(System or Instance)

Storage

Element

 Soft Fault

Error

Error

Outputs

Inputs

10

2.3.5 Observability:

 It is defined as the ability to observe the logic value of an internal node at a primary output [24].

To test the soft error vulnerability of a node, all combinations of inputs going to that node must be

applied and the output corresponding to each input must be observed. For example, in figure 2.7, to

observe the output of gate 1, we need to set input C to 1 and D to 0. To observe the output of

gate 2, we just need to set input D to 0. This implies that the output of gate 2 is more observable

that that of 1.

Figure 2.7 Example circuit to demonstrate observability concept

 The number of test vectors increases as the number of testable nodes increases, making

observability a difficult task.

2.4 Architectural Perspective

 From an architecture point of view, module soft error reliability can be measured in terms of

MTTF (mean time to failure) and FIT (failure in time). MTTF is defined as the time taken for a system

to see an error for the first time. The reciprocal of MTTF is the rate of errors, generally reported as

errors per billion hours of operation or FIT [25]. FIT can be observed as a measure of the three types of

11

masking (electrical, temporal, logical) that a transient pulse must overcome before it shows up at the

concerned output. We use the Architectural vulnerability Factor (AVF) to quantify the amount of

logical masking in a system [26].

2.4.1 AVF Overview

 AVF is defined as the probability that a soft fault leads to an architecturally observable error.

There are, in general, three ways to estimate the AVF of a system [26][27]: analytical models,

performance models and statistical fault injection.

 Analytical models are useful at an early stage of a design when neither a performance model

nor an RTL (register transfer level) model is available. It computes the AVF using the average number

of architecturally correct execution (ACE) bits in a structure.

 Performance models estimate AVFs based on the fraction of time a bit is un-ACE in its life

time. Although it is more accurate than statistical fault injection techniques, it can be very difficult to

identify the un-ACE components. It often requires the person running the model to have a very good

knowledge about the internal microarchitecture and operation of the design.

 In statistical fault injection (SFI), an RTL model of the system is taken as input and bit flips,

randomized in space and time, are introduced into its internal storage elements of the design. The

model is then run forward and the architectural state of the output is compared to that of an error-free

model of the system. A mismatch between the two is counted as an error. This process is repeated over

until the desired number of errors is observed at the output. AVF is then computed as the ratio of the

number of errors observed at the output to the number of bit flips introduced. SFI has the advantage of

giving very accurate information about the AVF of a system without having to fully comprehend its

internal details, unlike the analytical or performance models that need more human intervention than

SFI. It makes since SFI is a statistical analysis, it is necessary to perform several such fault simulations

with different injection points to obtain a desired confidence level in the AVF. This, in turn, necessitates

12

running thousands of fault simulation runs on the same system, consuming an enormous amount of

simulation time and computational power. This makes SFI unsuitable in situations where we need a fast

AVF approximation. The problem gets worse for a large circuit where a large number of simulation

runs are required to observe the effects of a single fault injection.

 In this thesis, we attempt to investigate a novel modular approach to achieve greater efficiency

in our fault simulations and thus AVF estimation, than would normally be achieved by using only SFI ,

performance model or analytical models. Our modular technique is a hybrid of SFI and error

probability propagation based analytical techniques. It exploits circuit partitioning and error

propagation techniques to estimate the AVF of a design within a reasonable accuracy but taking a lot

fewer simulation runs than a full SFI ran on the same design.

2.5 Motivation behind modular approach

 Consider figure 2.8. TopMod is made up of two sub-modules, m1 and m2, each with 10

registers. m1 has a 4-bit input and a 4-bit output connected to m2 while m2 has a 2-bit output.

 TopMod

 To observe the effect of all the possible faults in TopMod, the minimum number of fault

injections required to cover the total fault population in TopMod would be: 2
20

 * 2
4

* 20 = 335 million,

taking into account the total number of possible states and input combinations. On the other hand, if we

m1

10 regs

m2

10 regs

 Figure 2.8 Example design to demonstrate the motivation behind modular approach

13

perform SFI on m1 and m2 separately, the minimum number of fault injections required to cover the

total fault population in TopMod would now be: (2
10

 * 2
4

* 10) + (2
10

 * 2
4
 * 10) + (2

10
 X 2

4
) = 344064.

The last term accounts for the number of simulations required to propagate faults from m1 to the

primary outputs of TopMod.

 Thus, to estimate the AVF of TopMod within a certain confidence level, the number of

simulation runs required is much less if we perform SFI on m1 and m2 separately than performing SFI

on TopMod at one go. This is the motivation behind our approach presented. In the next chapter, we

present a probabilistic analysis of our technique.

14

CHAPTER III

PROBABILISTIC APPROACH

 In this chapter, we present a probabilistic model of our modular approach. Consider the

example design in figure 3.1. TopMod has three sub-modules, Mod1, Mod2 and Mod3. The number of

registers in Mod1, Mod2 and Mod3 is N1, N2 and N3 respectively. is the primary input stream of

TopMod and is its primary output stream.

Figure 3.1 Example design to develop probability model

Also, in TopMod,

for Mod1: is its 2-bit input stream and is its 3-bit output stream that goes into Mod2

for Mod2: is its 3-bit input stream and is its 3-bit output stream that goes into Mod3

for Mod3: is its 3-bit input stream and is its 2-bit output.

 We denote the scalar components of as w[1] and w[2]. We use similar notations to denote the

scalar components of , and . Now, when put in a radiation environment, registers of TopMod can

get soft faults at their outputs, depending either by a direct hit on the register bit or via latching of

Mod1

N1

Mod2

N2
Mod3

N3

TopMod

2 3 3 2

15

propagating of transient pulses because of combinational node hit. This can happen at any point of time

during the radiation exposure.

3.1 Definitions

 We first create a golden copy, golden[t], of a data stream, either input or output of a sub-module,

at time t. The golden copy represents its state in a non-radiation environment. Now, in a radiation

environment, the data stream, say at time t, may or may not have faults. We define the fault function

Fr (,t) as:

 False if [t] = golden[t]

 Fr (,t) =

 True otherwise … (1)

Equation (1) implies that if at time t, the data stream has the same value as the golden copy, the fault

function evaluates to false indicating that no fault has occurred on it. For all other cases, it evaluates to

true. Similarly, we define the error function Er (, t), if the data stream is from the primary output of

the design. Based on this definition, we define a set of fault probabilities that we are going to use later

on to estimate the AVF of a system.

 Let us denote the set of registers of a sub-module, say Mod2, as Regs(Mod2) and the event

where a register Regi Regs(Mod2) has been injected with a fault as Up(Regi). We define the

following probabilities for Mod2 (and similarly for all the other sub-modules):

1) Probability of fault generation:

 It is defined as the probability that a soft fault in a sub-module propagates through its

internal propagation path and shows up at the output of the sub-module.

16

For example, in figure 3.2, a particle strike causes a bit flip at one of the register bits of Mod2.

 Figure 3.2 Probability of fault generation

Probability of fault generation defines the conditional probability that this bit flip causes the

output to change its original value.

Mathematically, we denote it as: Pr {Fr (, t) | Up(Regi), Regi Regs(Mod2)}, where we

define: Fr (, t) | Up(Regi), Regi Regs(Mod2) as the outcome of the stochastic process, where

a fault in one of the registers, Regi of Mod2 produces a fault on the output stream, at time t.

Similarly, the probability of fault generation for Mod1 is denoted by:

Pr {Fr (, t) | Up(Regi), Regi Regs(Mod1)}. For Mod3, since the outputs of Mod3 are also the

primary outputs of TopMod, any fault that shows up at the output of Mod3 will manifest itself

as an error in . Hence, we represent the probability of fault generation for Mod3 as:

Pr {Er (, t) | Up(Regi), Regi Regs(Mod1)}.

2) Probability of fault propagation:

 It is defined as the probability that a fault at the input of a sub-module propagates

through it and becomes observable at the output of the sub-module. The fault at the input of the

Mod1

N1

Mod2

N2

Mod3

N3

TopMod

2 3 3 2

Bits flip due to particle strike Probability of fault generation

17

sub-module is assumed to have propagated from a previous module in its propagation path.

For example, in figure 3.3, faults generated in the sub-module Mod2 propagate from its output

to the input of Mod3 via the interconnecting data stream . Now, these faults may or may not

propagate to the output stream, , of Mod3, depending on the logical masking as well as register

timing factors. Probability of fault propagation defines the probability of propagation of this

fault from to .

Figure 3.3 Probability of fault propagation

 Mathematically, we denote it as: Pr {Er (, t’) | Fr (, t)}, where {Er (, t’) | Fr (, t)} is the

event where a fault at at time t propagates and shows up as an error at at time t’. Similarly, for

Mod2, the probability of fault propagation is denoted by: Pr {Fr (, t’) | Fr (, t)}. We assume that

there are no faults propagating through the primary inputs, , of TopMod, as we simulate a fault-free

input bit stream.

 In the next section, we lay out the assumptions that we must follow before applying our

proposed modular approach for AVF estimation.

Mod1

N1

Mod2

N2

Mod3

N3

TopMod

2 3 3 2

Probability of fault

generation

Fault propagating from

Mod2 to Mod3 via

18

3.2 Assumptions

We make the following assumptions:

1) Consider TopMod in figure 3.1. Because in statistical fault injection, faults are injected

randomly and uniformly in space, out of Mod1, Mod2 and Mod3, the sub-module with a higher

number of register bits than another has a higher probability of faults getting injected into it

than the one with less number of register bits. Mathematically, the probability that a random

fault will get injected in Mod1 is given by:

 . Similarly, the probability that a random

fault will get injected in Mod2 and Mod3 is:

 and

 .

2) Fault generation and fault propagation are strictly stationary processes. A strictly stationary

process is defined as a stochastic process whose joint probability distribution doesn‟t change

when shifted in time and space. Mathematically, if {Xt} is a stationary process and if

FX (xt1+ τ, …, xtk+ τ) represent the cumulative distribution function of the joint distribution of {Xt}

at times t1+ τ, …, tk+ τ. Then, {Xt} is said to be stationary if, for all k, for all τ, and for all

t1,…,tk,

FX (xt1+ τ, …, xtk+ τ) = FX (xt1, …, xtk)

This gives rise to the following two cases:

a. In the case of the fault generation phase, the probability of a bit flip getting introduced

in a register bit of a sub-module is time-independent. Hence, the probability of fault

generation for that sub-module is time-independent as well. Mathematically, say for

Mod2, we have:

 Pr {Fr (, t) | Up(Regi), Regi Regs(Mod2)} = Pr {Fr (, t+τ) | Up(Regi), Regi Regs(Mod2)}

 where τ > 0. … (2)

19

For simplicity, we get rid of the time variable and represent the probability of fault

generation for Mod2 (and similarly for all other sub-modules) as:

Pr {Fr () | Up(Regi), Regi Regs(Mod2)} …(3)

b. In the case of the fault propagation phase, we assume that the probability of fault

propagation for a sub-module is time-independent. Mathematically, say for Mod2,

we have:

Pr {Fr (, t’) | Fr (, t)} = Pr {Fr (, t’+ τ) | Fr (, t+ τ)}, where τ > 0 …(4)

As with the previous case, we get rid of the time variables for simplicity and represent it

for Mod2 (and similarly for Mod3) as:

Pr {Fr () | Fr ()} …(5)

3) The outputs of a sub-module are correlated to each other and so are the faults associated with

them. This implies that for a sub-module, we should individually take into consideration all the

possible ways in which faults can occur at its output. For example, output of Mod2 is of 3-bits.

Hence, there are total 7 possible ways in which faults can occur at its outputs:

a) Faults at only one output at a time:

i) Fr(y[1]) | Up(Regi), Regi Regs(Mod2)

ii) Fr(y[2]) | Up(Regi), Regi Regs(Mod2)

iii) Fr(y[3]) | Up(Regi), Regi Regs(Mod2)

b) Faults at two outputs simultaneously:

i) {(Fr(y[1]),Fr(y[2])) | Up(Regi), Regi Regs(Mod2)}

ii) {(Fr(y[2]),Fr(y[3])) | Up(Regi), Regi Regs(Mod2)}

iii) {(Fr(y[1]),Fr(y[3])) | Up(Regi), Regi Regs(Mod2)}

20

c) Faults at all the three outputs simultaneously:

{(Fr(y[1]),Fr(y[2]),Fr(y[3])) | Up(Regi), Regi Regs(Mod2)}

3.3 Methodology

 With the above assumptions in mind, we proceed to describe the steps to find the AVF of a

design, in our case, TopMod. Hypothetically, we define the contribution of a sub-module Mod i to the

AVF of TopMod, AVF (TopMod | Mod i), as the AVF of TopMod when faults are injected only in sub-

module Mod i. But because in reality faults occur randomly in space over TopMod, we assign

weighting factors to each of the sub-modules. The weighting factors are derived from assumption 1.

Thus mathematically, we represent the contribution of a Mod i to AVF as:

 AVF (TopMod | Mod i) * (Probability of a fault getting injected in Mod i)

= AVF (TopMod | Mod i) *

 , where i = 1, 2, or 3 for Mod1, Mod2 and Mod3 respectively

 … (6)

Summing over all the three sub-modules, the AVF of TopMod is then given by:

Pr {Er () | Up(Regi), Regi Regs(TopMod)} =

 … (7)

 In the next subsections, we describe the steps to compute the first factor, AVF(TopMod | Mod i)

for each of the sub-modules.

a) Computation of AVF(TopMod | Mod3):

Since the outputs of Mod3 are also the primary outputs of TopMod, we can compute

AVF (TopMod | Mod3) using just the probability of fault generation. Thus, we have:

AVF (TopMod | Mod3) = Pr {Er () | Up(Regi), Regi Regs(Mod3)} … (8)

Also, from assumption 3, we account for each type of errors on and express equation (8) as:

21

AVF (TopMod | Mod3) = Pr {Er (z[1]) | Up(Regi), Regi Regs(Mod3)}

 + Pr {Er (z[2]) | Up(Regi), Regi Regs(Mod3)}

 + Pr {(Er(z[1]),Er(z[2])) | Up(Regi), Regi Regs(Mod3)} … (9)

b) Computation of AVF (TopMod | Mod2):

 To observe the effect of a bit flip injected in Mod2 on , we have to propagate the effect

of this bit flip from to . Also, from assumption 2a and 2b, we conclude that both these

events: fault generation in a sub-module and propagation of these faults through the next sub-

module in the propagation path, are independent events. Hence, to observe the effect of a bit

flip injected in Mod2 on , we apply the multiplication rule of probabilities and evaluate it as a

product of the probability of fault generation (because of the flip) at and probability of fault

propagation from to .

Mathematically,

 AVF (TopMod | Mod2) = Pr {Er () | Up(Regi), Regi Regs(Mod2)}

 = (Pr {Er () | Fr ()}) * (Pr {Fr () | Up(Regi), Regi Regs(Mod2)})

 …(10)

 and are multi bit vectors. Hence, there are more than one way in which the injected bit flip

can generate faults in as well as more than one ways in which the fault can show up in . To

evaluate equation (10), we use probability matrices to represent both the factors, since it is more

convenient to deal with multi bit vectors with matrices.

Probability matrix for fault generation:

 We represent it as K X 1 matrix where K is the total number of possible ways faults can

be observed at the output of Mod2. In our example, the value of K is 7. Hence, we have the

22

following 7X1 probability matrix:

 (Pr {Fr () | Up(Regi), Regi Regs(Mod2)})

=

 … (11)

Probability matrix for fault propagation

 We represent it as a J X K matrix where J is the total number of ways errors can occur in

 and K is the total number of ways faults can propagate through . In this example, the value

of J is 3 and K is 7. Hence we have the following 3X7 probability matrix:

Pr {Er () | Fr ()} =

 …(12)

Thus, by solving equation (10) as a product of equation (11) and equation (12), we get

AVF (TopMod | Mod2) as a 3X1 matrix. Another way to express AVF (TopMod | Mod2) by

adding the elements 3X1 matrix and using assumption 3 is:

Pr {Er (z[1]) | Up(Regi), Regi Regs(Mod3)} + Pr {Er (z[2]) | Up(Regi), Regi Regs(Mod3)}

+ Pr {(Er(z[1]),Er(z[2])) | Up(Regi), Regi Regs(Mod3)} = AVF (TopMod | Mod2) … (13)

23

c) Computation of AVF(TopMod | Mod1)

 AVF(TopMod | Mod1) can be computed in a very similar manner as equation (10). The

effect of a bit flip injected in Mod1 has to be propagated through Mod2 as well as Mod3.

Mathematically,

AVF(TopMod | Mod1) = Pr {Er () | Up(Regi), Regi Regs(Mod1)}

 = Probability of fault propagation through Mod3 * Probability of fault

 propagation through Mod2 * Probability of fault generation in Mod1

 = (Pr {Er () | Fr ()}) * (Pr {Fr () | Fr ()})

 * (Pr {Fr () | Up(Regi), Regi Regs(Mod2)}) …(14)

We use probability matrix multiplication again to evaluate equation (14). The first factor (Pr {Er () |

Fr ()}) can be expressed as a 3X7 matrix, the second factor (Pr {Fr () | Fr ()}), can be expressed as

a 7X7 matrix, since both and are 3-bit. The third factor (Pr {Fr () | Up(Regi), Regi

Regs(Mod2)}) can be expressed as a 7X1 matrix, thus giving us a 3X1 final matrix for AVF(TopMod |

Mod1).

24

CHAPTER IV

IMPLEMENTATION OF MODULAR TECHNIQUE

 In this chapter, we describe how to go about implementing our modular technique. Figure 4.1

shows a high level flowchart view of our technique:

Figure 4.1 Flowchart of modular approach

Original Circuit

Input Stream
Circuit Partition Phase

Fault Generation Phase Fault Propagation Phase

Post Simulation AVF Calculation

System AVF

Input Stream

25

 We take in a Verilog HDL RTL description of a circuit as input and apply a circuit partitioning

algorithm to make partitions of the circuit. We run a predefined testbench on the original circuit and log

the inputs of each partition. Next, we take up each partition and operate fault generation and

propagation simulations on them to find their probabilities of the two. We need not perform fault

propagation through the primary inputs of the circuit as we are using an external fault-free testbench.

Once we perform these two simulations and generate probability matrices, we perform post simulation

calculations using the information about the interconnection between the different partitions/sub-

modules, as described chapter II. In the next sub-sections, we describe RTL file format followed by

techniques to partition circuits, to log input data and to perform fault generation and propagation

simulations.

4.1 Input file description

 Typically, the input file can be either a Verilog or a VHDL description. In our case, we take a

Verilog RTL description. RTL or register transfer language is a term used for a Verilog description that

uses a combination of behavioral and dataflow constructs (described below) and is acceptable to logic

synthesis tools. It describes how data is transformed as it flows from register to register. The

transforming of the data is performed by the combinational logic.

4.1.1 Behavioral or algorithmic level

 This is the highest level of abstraction provided by Verilog HDL. In this level, a design module

can be implemented in terms of the desired design algorithm without concern for the hardware

implementation details. Designing at this level is very similar to C programming [28].

4.1.2 Dataflow level

 At this level, the module is designed by specifying the data flow. The designer is aware of how

data flows between hardware registers and how the data is processed in the design.

26

 Describing a circuit at the register transfer level makes it very convenient and flexible to create

high level representations of a circuit. Also, it gives us the freedom to design technology independent

circuits. In terms of simulation, it takes smaller simulation time and computational effort to simulate a

design described in RTL than a design that is described at a lower level (e.g. gate level or switch level).

Figure 4.2 shows a sample RTL code of a synchronous D flip flop written in Verilog.

Figure 4.2 Verilog code of a synchronous D flips flop

4.2 Circuit Partitioning

 Once we have the input circuit file in RTL format, we create partitions of the circuit. Circuit

partitioning can be accomplished in several ways, based on a given set of criteria (described in Chapter

IV). Typically, it can be done based on the hierarchy of the design. Most RTL Verilog codes are written

in accordance with two most common hierarchical modeling concepts: top-down design methodology

module dff_sync_reset (

data , // Data Input

clk , // Clock Input

reset , // Reset input

q // Q output

);

input data, clk, reset ;

output q;

reg q;

always @ (posedge clk)

if (~reset) begin

q <= 1'b0;

end else begin

q <= data;

end

endmodule //End Of Module dff_sync_reset

27

and bottom-up design methodology [28].

 In a top-down design methodology, we define the top-level block and identify the sub-blocks

necessary to build the top-level block. We further subdivide the sub-blocks until we come to leaf cells,

which are the cells that cannot further be divided. Figure 4.3 shows this methodology.

Figure 4.3 Top-down design methodology

 In a bottom-up design methodology, the building blocks that are available to the designed are

first identified. Using these blocks, bigger cells are built, which are then used to build higher-level

blocks until the top-level block of the design is built. Figure 4.4 shows this methodology.

Figure 4.4 Bottom-up design methodology

Top-level block

Sub-block1

Leaf cell

Sub-block2 Sub-block3

Leaf cell Leaf cell Leaf cell Leaf cell Leaf cell

Top-level block

Sub-block1

Leaf cell

Sub-block2 Sub-block3

Leaf cell Leaf cell Leaf cell Leaf cell Leaf cell

28

 In a typical system design, a combination of top-down and bottom-up methodology is used. To

illustrate circuit partitioning using hierarchical modeling, we consider a 4-bit ripple carry counter as

shown in figure 4.5.

Figure 4.5 Ripple carry counter

The ripple carry counter is made up of 4 T flipflops. Each T flipflop is made up of a D flip flop and an

inverter as shown in figure 4.6

Figure 4.6 T-flipflop

Partitions

29

 Thus the ripple carry counter is built in a hierarchical fashion by using building blocks. Now,

we can safely divide this counter, without losing any functionality, into four partitions, each with one

flipflop as shown by the red ellipses. From RTL point of view, figure 4.7 shows the Verilog description

of the T flipflop using a D flipflop (figure 4.8) and an inverter. Figure 4.9 shows the Verilog description

of the 4-bit ripple carry counter.

Figure 4.7 Verilog description of T flipflop

Figure 4.8 Verilog description of D flipflop

 Figure 4.9 Verilog description of 4-bit ripple carry counter.

module T_FF(q, clk, reset);

output q;

input clk, reset;

wire d;

D_FF dff0(q, d, clk, reset); //instantiate D flip flop

not n1(d, q); //inverter

endmodule

module ripple_carry_counter(q, clk, reset);

output [3:0] q;

input clk, reset;

//instantiate T flipflops

T_FF tff0(q[0], clk, reset);

T_FF tff1(q[1], q[0], reset);

T_FF tff2(q[2], q[1], reset);

T_FF tff3(q[3], q[2], reset);

endmodule

module D_FF(q, d, clk, reset);

output q;

input d, clk, reset;

reg q;

always @(posedge reset or negedge clk)

if (reset)

 q = 1'b0;

else

 q = d;

endmodule

30

Thus, given the Verilog description of figure 4.9, we can take up each of the instances of T flip flop,

t_ff0, t_ff1, t_ff2 and t_ff3, along with the information about their internal interconnections and utilize

them individually for further analyses.

4.3 Logging Input data

 To log the input of each partition, we use two Verilog system tasks depending on the duration of

simulation: $fdisplay and $dumpvars. We incorporate either one of these tasks in the predefined

testbench for the original circuit and invoke them appropriately and Verilog writes their output to user-

defined files.

$fdisplay

 This system task can be used when the design runs for a relatively small number of simulation

cycles. The code snippet below shows how to log the value of a signal and write it to a file.

Figure 4.10 Code snippet showing $fdisplay usage

$dumpvars

 This system task is used to select module instances (or sub-modules) and module instance

integer fP;

initial

begin

 fP = $fopen(“input_log.txt”,”w”); //open the file where

 //you want to write the logged input

end

//at every positive clock edge, log the values of input1 and input2.

//input1 and input2 are the example inputs of a sub-module that we are

//trying to record

always@(posedge clk)

begin

 $fdisplay(fP,”%b%b”,<input1 with hierarchy>,<input2 with hierarchy>);

end

31

signals and dump their values to a VCD file. A VCD (value change dump) file is an ASCII file that

contains information about simulation time, scope, signal definitions and signal value changes in the

simulation run. VCD files can be very handy to store signal values when the design runs for long

simulation cycles or when the signal values change a lot during the simulation. An added advantage of

VCD files is that post processing tools can take the VCD file as input and visually display hierarchical

information, signal values and signal waveforms. Figure 4.11 shows how to use $dumpvars and other

VCD associated system tasks.

Figure 4.11 Code snippet showing $dumpvars usage

4.4 Fault Generation Phase

 Fault generation in the sub-modules as well as the entire original circuit was accomplished

using statistical fault injection (SFI) technique. Figure 4.12 shows the simulation approach for our SFI

technique [29]. Figure 4.13 shows the flowchart of our approach.

//specify name of VCD file

initial

 $dumpfile(myfile.dmp);//simulation info dumped to myfile.dmp

initial

begin

 //dump input signals of the required module instances here

 $dumpvars(0, <input names along with their hierarchy>);

end

initial

begin

 $dumpon; //start the dump process

 #t $dumpoff; //where t is the simulation time after which we stop

 //the dump process. In our case,t would be

 //total simulation time

end

32

Figure 4.12 Fault generation simulation approach

 We provide the RTL description of our partitions (or sub-modules) as the input source code.

Using the input data stream that we had logged in the previous step, we create testbenches for each of

the partitions. These testbenches propagate the logged input data stream into their respective partitions

and record the output data stream as per the requirements, thereby creating a golden copy of a fault-free

output data stream of the partition.

 The next module in figure 4.12 is the fault injection module. Fault injection in our

implementation has been accomplished using the Verilog Programming Language Interface (PLI)

feature [30].

4.4.1 Verilog Programming Language Interface

 PLI provides a set of interface routines that allows the designer to read internal data

representation, write to internal data representation, and extract information about the simulation

environment. Thus, PLI, with their predefined set of interface routines, allows the designer to

customize the capability of the Verilog language by defining their own system tasks and functions.

Designers use high level languages like C or C++ to write their own functions/tasks and then use these

RTL

Description

 Testbench

Fault Injection

Module

RTL Simulator

Error Detection

Module

Golden

Reference

Analysis Module

33

functions/tasks (after compilation and linking) like a normal system function/tasks in their Verilog

testbenches. Figure 4.14 gives a pictorial description.

 Figure 4.13 Flowchart for fault generation simulation

Figure 4.14 PLI function call from inside Verilog code

c/c++ code

void call_this_function()

Verilog code

$call_this_function
Shared object

or static linked

Verilog simulator

34

 In this work, the PLI function for fault injection was written in C++ (and compiled using gcc)

by Brian Sierawski of the Institute for Space and Defense Electronics. The PLI function selects a

register bit randomly and uniformly across the sub-circuit under test and flips the stored value of the

bit. If the value of the bit is undefined, it stores a random value into it. Also, the PLI function gets

invoked at a random and uniform time during the simulation length of the testbench. For example, let‟s

assume our testbench runs for 2000 time units. We invoke the fault injection PLI function at a random

time between the start of simulation and 2000 time units as shown in the code snippet in figure 4.15.

Figure 4.15 Fault injection PLI function example

The $singleEventInit() function sets up the initialization for the fault injection module as well as

generates the random seed which is then used to randomly select time and location of fault injection.

The $pseudoRandom(<value>)function is used to generate a random number between 0 and value.

Using this function after „#‟ in the above code snippet forces the simulator to delay the execution of the

next step by time units equal to the generated random number. The $singleEventUpset(DUT)

function is used to randomly (depending on the seed) select a register bit and simulate a fault by

flipping its value. The DUT argument is the hierarchical path of the sub-module we are trying to inject

fault into. The output of this function, which includes bit flip location, bit flip time with respect to

simulation time and the nature of the flip (e.g. 0 -> 1 or 1-> 0) is logged onto standard output.

 The RTL simulator that we use to perform our simulations is Synopsys VCS. However, this

initial

begin

 $singleEventInit();

 #($pseudoRandom(2000));

 $singleEventUpset(testbench.sub_circuit);

end

35

methodology is independent of RTL simulator and is supposed to work with any standard commercial

RTL simulator.

 The primary purpose of the error detection module is to operate at run time, log the output of

the testbench and compare the output of two different testbenches ran on the same design. This module

has been implemented in C and linked to Verilog using the PLI feature. In our implementation, it

performs a twofold task. First, it is used to create the golden fault free copy by running it along with the

testbench, but without the fault injection module. Second, it is then run on the same design along with

the same testbench but this time with the fault injection module. The error detection module gets

invoked every clock cycle, either positive or negative edge, and records the output of the two

testbenches. Alongside, it also compares the output of the two testbenches every time it gets invoked.

As soon as it finds a mismatch between the two, it writes out a message indicating about the occurrence

of a fault/error to the standard output along with the real time when it occurred. It also writes out the

name of the output bit(s) where the fault (or error) has occurred.

 The analysis module is a post-simulation module that takes in the information generated using

the fault simulation and error detection and processes it according to our requirements. In our case, it

logs out all the output bit locations where faults (or errors) have occurred along with the number of

times the faults (or errors) have occurred at a particular output bit. Also, it logs the various

combinations of faults seen at the output. E.g. if a sub-module has a 3-bit output and bit 0 and bit 2 of

the output has faults while bit 1 doesn‟t have a fault, then it gets recorded as ENE (for error-no error-

error). The analysis module then counts the frequency of such combinations. This information is then

used to create the probability of fault generation matrix (described in Chapter III) for that sub-module.

The analysis module has been implemented using Shell and Python scripts. The Python script also

provides information about the accuracy in our fault generation simulation results along with the

precision of the results. The Python scripts then create a matrix of precisions where the elements of this

36

matrix are the precisions of the corresponding elements of the probability of fault generation matrix.

To determine the number of simulations to perform for the fault generation phase, we adopt a similar

approach as explained in [29]. Sufficient number of simulations is performed until the AVF for the

design starts to saturate as shown in figure 4.16 for an example microprocessor [29].

 Once we determine the number of simulations at which the AVF starts to saturate, we perform

multiple experiments with the same number of simulation runs with same experimental conditions. To

find the true AVF, we take the average of the AVFs computed during each experiment. To find the

precision in our computed AVF, we first find the deviations of the computed AVFs (from each

experiment) from the average AVF.

Absolute deviation = Measured AVF – Mean AVF

We then compute the average of all absolute deviations. Precision is then given by the following

equation: Precision = (Average deviation / Mean AVF) X 100%

 Figure 4.16 AVF vs injection for 8-bit microprocesssor

37

4.5 Fault Propagation Phase

 We perform a second set of fault simulations where we simulate a fault in the input data stream

of the RTL model of the sub-module, run the model forward and compare the output to that of a golden

copy. The golden copy is a fault free simulation of the sub-module.

Figure 4.17 Simulation of a fault at x[0]

 Figure 4.17 shows an example where the input stream at x[0] is flipped, allowing the fault to

propagate and then checking the state of output stream .

 The simulation approach is similar to fault generation phase except the fault injection module,

which is replaced by a fault propagation module. We use the same Synopsys VCS simulator. The

pseudo code below shows an example where, in a sub-circuit, it is performing 1000 fault injections at

random input bits at a random simulation time.

do 1000:

 at rand (i/p bits, time);

 inject fault;

 compare the o/p with golden copy;

 log the o/p combinations with errors;

Figure 4.18 Pseudo-code for fault propagation phase

38

The fault propagation module uses the system task $value$plusargs to select the following three

parameters:

1) Random select a time to simulate the fault at the input.

2) Randomly select the number of input bits to flip.

3) Randomly select the bit location or bit indices.

$value$plusargs provides the capability of conditional execution of the Verilog code by allowing the

user to control variables in the code from outside with the help of flags which can be set on a run-time

basis. Figure 4.19 shows some example code snippets:

 //Conditional execution with $value$plusargs

 module test;

reg [8*128-1:0] test_string;

integer clk_period;

...

...

initial

begin

if($value$plusargs("testname=%s", test_string))

$readmemh(test_string, vectors); //Read test vectors

else

//otherwise display error message

$display("Test name option not specified");

if($value$plusargs("clk_t=%d", clk_period))

forever #(clk_period/2) clk = ~clk; //Set up clock

else

//otherwise display error message

$display("Clock period option name not specified");

end

//For example, to invoke the above options invoke simulator with

//+testname=test1.vec +clk_t=10

//Test name = "test1.vec" and clk_period = 10

 endmodule

Figure 4.19 Verilog code demonstrating $value$plusargs usage

39

 Once the fault propagation simulations are done, the analysis module (consisting of Python and

Shell scripts) looks for all the mismatches detected by the error detection module and prints out the

output bit locations that have errors along with the corresponding input bit locations with errors. Using

the frequency of such output-input combinations, we then create the probability of fault propagation

matrix (chapter III). Also, we build the corresponding matrix of precisions associated with the

probability numbers. Figure 4.20 shows the flowchart for fault propagation simulation.

 Figure 4.20 Flowchart for fault propagation simulation

4.6 Post Simulation AVF Calculation

 Python scripts are used to take the two probabilities created in the previous step: probability of

fault propagation and probability of fault generation and perform matrix multiplication as described in

40

Chapter III. The Python scripts use the open source numpy package to automate the multiplication

process [31].

 The multiplication of the standard deviation matrices is done using similar Python scripts, but

the multiplication rules, apart from normal matrix multiplication, also follow the rules for propagation

of standard deviations as described in [32]:

If A, B are real variables with standard deviations of σA and σB, then:

1) For F = A + B,

Standard deviation of F is given by σ
2

F = σ
2

A + σ
2

B

2) For F = AB

Standard deviation of F is given by

The correlation coefficient terms are set to zero (described in detail in chapter V).

41

CHAPTER V

APPLICATIONS

 In this chapter, we present the basic criteria required to identify the class of circuits on which

modular technique could be employed to estimate their AVFs. We then discuss some applications on

which we had tested our technique and present their results.

5.1 Circuit Classification

 Consider our example design again (figure 5.1).

Figure 5.1 Example design for circuit classification analysis

 During fault generation phase of Mod1, the probabilities of faults observed for the seven

different output combinations of Mod1 are recorded. Now ideally, if Mod1 and Mod2 are assumed to

be uncorrelated sub-modules, then these faults from Mod1 can be propagated through Mod2 by

introducing bit flips - randomized over time - at the corresponding inputs of Mod2. Similarly, if Mod2

and Mod3 are uncorrelated, faults can be propagated through Mod3 independent of time. Under such a

condition, the systematic error introduced in the AVF estimation using modular approach is going to be

Mod1

N1

Mod2

N2
Mod3

N3

TopMod

2 3 3 2

42

ideally zero and no loss in accuracy of AVF would be introduced. Practically, modular approach can be

applied on circuits where it is possible to create weakly correlated partitions.

5.1.1 Mathematical Interpretation

 Let‟s say it takes τ time units to propagate a signal through Mod2. Hence, for a simulation

period from t = 1 to t = n time units, we have:

Pr {Fr (, i + τ) | Fr (, i)} = Pr {Fr (, j + τ) | Fr (, j)} , where 1 < i, j < n … (1)

Similarly for Mod3,

Pr {Fr (, i + τ’) | Fr (, i)} = Pr {Fr (, j + τ’) | Fr (, j)} , where 1 < i, j < n … (2)

where τ‟ is the time required to propagate a signal through Mod3.

5.1.2 Example partitions

 Example partitions that satisfy (1) or (2) include Canonical Clocked Logic Circuits (CCLC) and

their variations.

Figure 5.2 Canonical clocked logic circuit

43

 Consider the CCLC shown in figure 5.2, composed of a combinational block with latches at its

primary inputs and outputs. A chip can be considered as a network of CCLCs [33]. A soft error is said

to have occurred in a CCLC if a DFF captures the single event transient (SET) generated by a particle

hit.

The upper bound on the soft error rate, SER (number of soft errors per unit time), of a chip is given by

 SERchip
 CCLC,k …(3)

where Nc is the number of CCLCs on the chip. The above equation becomes tight bound when all the

CCLCs are independent from each other.

 Suppose that a fault is observed at the input DFFs: Di_1 and Di_3, but not in Di_2 (outputs of a

previous module(s) in the propagation path) at time t = i < n. Depending on the logical state of the

combinational block, the error may or may not show up at its outputs Do_1 and Do_2. Let‟s assume

that it shows up only at Do_1 at t = i + 1(neglecting the propagation delay of the combinational block).

It would then show up at Qo_1 at t = i + 2 (after one clock cycle). The operation of the combinational

logic is independent of time. So, irrespective of the time it receives its input data, the combinational

block is always going to produce the same output throughout the entire simulation period. Hence, the

behavior of CCLC is constant for any value of i and hence time-independent.

 Mathematically, for all t = i, 1 < i < n, in this circuit for the mentioned scenario,

Pr{Er(Qo_1, i+2) | Er(Di_1, Di_3, i)} = 1 and

Pr{Er(Qo_2, i+2) | Er(Di_1, Di_3, i)} = 0 … (4)

This is going to hold true for any variation of CCLC as well. Hence, circuits where it is possible to

create such time independent CCLC or variations of CCLC partitions are going to yield accurate results

with modular approach.

 A second method to determine if modular approach is applicable on a circuit is through fault

44

propagation simulations. Let‟s consider that in figure 5.1, Fb represents the set of combinations in

which faults occur at (can be determined from fault generation phase of Mod1) during a simulation

period from t = 1 to t = n. E.g. Fb = {Fx[1], Fx[2], Fx[3], Fx[1][2]} showing that faults occur at only

x[1], only x[2], only x[3] and, x[1] and x[2] simultaneously. We pick an element of the set, say Fx[1]

and propagate a fault through Mod2 by flipping only x[1] at a random time i (i < n) and then

monitoring (Mod2's output) for the rest of the simulation period. This process is repeated for different

values of i: e.g. i1, i2, i3 etc. Now, for these different i‟s, we record the following as well:

When the fault occurs at t = i1,

record: {Fr(, i1 + 1) | Fr(x[1], i1) }, {Fr(, i1 + 2) | Fr(x[1], i1) } …

 {Fr(, i1 + n) | Fr(x[1], i1) } … (5)

When the fault occurs at t = i2,

record: {Fr(, i2 + 1) | Fr(x[1], i2) }, {Fr(, i2 + 2) | Fr(x[1], i2) } …

 {Fr(, i2 + n) | Fr(x[1], i2) } … (6)

Similarly, we repeat this process for other values of i.

If (5), (6) etc. follow similar pattern, it implies that fault propagation through Mod2 follow a similar

pattern for faults propagating through x[1], irrespective of when it occurs during the simulation. This

process should be repeated for all other combination of faults present in the set Fb. Once we ensure that

all of those fault combinations propagate through Mod2 irrespective of the time they are simulated, we

can be sure that the partition Mod2 agrees with our conditions (1) and (2). It is recommended to neglect

i's that are either too early or too late in the simulation period.

 Also, this has to be repeated for every partition through which errors can possibly propagate to

make sure all of them agree with the conditions (1) and (2).

45

5.2 Test Circuits

 In this section, we discuss two applications we tested our approach on. All the circuits are

implemented in RTL Verilog and are available at [35]. All the simulations were performed using

Synopsys VCS on a dual core 8GB RAM AMD Opteron processor running Redhat Linux.

5.2.1 Digital signal processing units

 We tested our modular approach on three DSP units: double precision floating point unit,

forward discrete cosine transform unit and a jpeg encoder unit. In this section, we will take up each of

these one by one further discussion.

5.2.1.1 Double Precision Floating Point Unit (DPFPU)

 Figure 5.3 shows the hierarchy of the DPFPU.

Figure 5.3. Double Precision Floating Point Unit

46

 The DPFPU has 6 major sub-units. Hence, we partition into the corresponding 6 sub-modules.

The unit can be broadly divided into three stages: arithmetic unit (consisting of fpu_add, fpu_sub,

fpu_mul & fpu_div), rounding unit and the exceptions module. The inputs signals consist of two 64-bit

operands, 3-bit opcode, rounding mode along with clock, reset and enable signals. The output signals

primarily consist of the 64-bit output from the operation along with a ready signal that goes high when

the output is available. Depending on the opcode, the appropriate arithmetic operation is performed on

the operands in stage 1. The top level, fpu_double, runs a counter to count the number of clock cycles

required for the specific operation that is being performed. The output signals of this stage are the three

components that make up a floating point number: sign, mantissa and exponent. These are then passed

to the rounding stage where rounding of the mantissa is performed, based on the four possible rounding

modes (round to nearest, round to zero, round to positive infinity and round to negative infinity). The

rounding unit generates the final mantissa. The 64-bit output from the rounding unit is then passed to

the exceptions unit. In the exception unit, all of the special cases are checked for, and if they are found,

the appropriate output is created, and the individual output signals of underflow, overflow, inexact,

exception, and invalid are accordingly asserted.

 Because of the nature of operation, the three stages of DPFPU operate independently. For a

particular set of inputs, only one stage is active at a time, thus making the stages weakly correlated with

each other. We perform SFIs on all the 6 sub-modules to find the probability of fault generation. We

perform fault propagation simulations on the sub-modules fpu_round and fpu_exceptions. It is not

required to perform fault propagation simulations on the stage 1 sub-modules as we use a fixed

testbench assuming no errors to be propagating from the primary inputs.

 To show that faults propagate through fpu_round and fpu_exceptions regardless of when they

occur and hence agree with our assumption 2b, we evaluate equation (5) and (6) for these two sub-

modules. This is shown in table 5.1 and 5.2. The first column shows the different times at which faults

47

have been injected into the input stream. The second column shows the times at which the first fault

shows up in the output stream as a result of the fault propagating from the input. It can be seen that the

first fault always takes the same time (w.r.t. the time when the fault is injected in the input stream) to

show up in the output stream.

Time of fault injection in the input stream

(in ns)

Time at which first fault was observed in the output stream

(in ns)

1000 2500

3000 4500

8000 9500

12000 13500

15000 16500

Table 5.1 Table showing the time when fault is injected in input and observed at output for module

fpu_round

Time of fault injection in the input stream

(in ns)

Time at which first fault was observed in the output stream

(in ns)

1000 2500

3000 4500

8000 9500

12000 13500

15000 16500

Table 5.2 Table showing the time when fault is injected in input and observed at output for

module fpu_exceptions

48

Circuit Statistical

Parameters

Full

Circuit

SFI

Modular Approach

Double

Precision

Floating

point

Unit

Sub-

circuits

 1 2 3 4 5 6

Registers 5254 627 696 1741 1004 406 780

Faults

injected

4830 300 332 810 720 194 354

Faults

propagated

 - - - - 100 100

CPU Time

(in mins)

163.4 10.1 10.3 17.3 16.1 4.3 10.5

68.6

AVF (%) 22.1 1 23.3 0.4 24.3 0.4 33.6 0.4 28.2 0.4 19.9 0.4 22.4 0.4

21.5 1

Table 5.3 Results table comparing SFI and our technique for DPFPU

 Table 5.3 shows the results of modular approach tested on the DPFPU. Also, we ran SFI on the

entire circuit for comparison purposes. The table shows the number of registers in an entire circuit as

well as in every of the sub-circuits. It shows the faults injected in the entire circuit as well as in the

sub-circuits. It also shows the faults propagated through different sub-circuits. The next row shows the

CPU time taken to perform the fault generation and propagation simulations. The last row shows the

percentage AVF of the entire circuit as well as that of the sub-circuits along with their percentage

standard deviations.

 It can be seen from the results table 5.3 that with our proposed approach, for the same standard

deviation, we estimate the AVF within approximately 3% of that estimated using a full circuit SFI. But,

in case of modular approach, the number of simulations that we need to run is

300+332+810+720+194+354+100+100 = 2910 while we have to run 4830 simulations in case of a full

circuit SFI. Thus, we achieve a reduction factor of roughly 2X in terms of number of total number of

49

simulation runs required. Also, the total time required for our modular approach is 68.6 mins while it

takes 163.4 mins in case of full circuit SFI, giving us a computational speed up of about 2.4X.

 In a second set of analysis, the number of simulation runs was kept same (2910) for traditional

SFI and modular approach and comparisons of speed and accuracy were performed. It was found that

the AVF computed using traditional SFI is (12.2 1) %. The decrease in AVF shows that because of

the decreased observability of the design, less number of injected faults makes it to the primary output

of the design. Thus, the number of simulations is not sufficient to make an accurate decision about the

AVF. This results in a decrease in accuracy of the AVF (to 4%) estimated using modular approach.

Because the number of simulations ran is the same, the speed in AVF estimation remains approximately

the same for both cases.

 A final analysis was done where for a given AVF (21.5% in this case), the number of

simulations and the speed of experiments for the two approaches were compared. It was found that we

need to perform about 1.5X times more simulations for traditional SFI than modular approach. As a

result, the CPU time is about 2.1X times more in case of traditional SFI than modular approach.

5.2.1.2 Forward Discrete Cosine Transform Unit

 Figure 5.6 shows the hierarchical diagram of the forward discrete cosine transform unit we

tested our modular approach on.

Figure 5.6 Forward DCT Unit

1-D DCT

Transpose

Buffer

1-D DCT

Quantizer

Zigzag

Buffer

50

 The DCT blocks have 8 input/output points and an 8-bit input data is inserted into the system

through the first DCT in a sequential manner. As a result, it takes 8 clock cycles for each input and

output process. In total, each of the 8-point 1-DCT blocks takes 22 clock cycles for computation. The

first DCT block performs 1-D discrete cosine transform on row-wise input samples. Results of this

computation stage are stored into the Transpose Memory. This processing stage comprises a set of

multiply accumulate units as well as cosine lookup table for respective DCT computation. The 2
nd

 DCT

block performs 1-D Discrete Cosine Transform on column-wise data stored in Transpose Memory by

1
st
 stage. More information on the DCT computation process can be found at [34].

 The DCT blocks are extensions of CCLCs as shown in figure 5.7, hence they tend to agree with

our conditions (1) and (2).

 The transpose buffer is a static RAM, designed with two set of data and address bus, acts as a

temporal barrier between the first and the second DCT. Input address is generated in normal sequence

but output address is generated in transposed sequence.

 The quantizer divides each and every 2DDCT coefficient by quantizing values from a

quantization table. Varying levels of image compression and quality are obtainable through selection of

specific quantization matrices. The quantizer module consists of ROM and divider. The quantizing

values are first stored in ROM and the divider carries out division in a pipelined manner.

51

Figure 5.7 DCT unit

 Zigzag buffer is made from static RAM. Its construction is similar to that of the transpose

buffer. It has two sets of data-address bus. Input address bus is accessed by normal sequence, but

output address is given some zigzag sequence. Zigzag address is generated by a zigzag RAM. The

sequence is stored in the RAM. When the RAM address bus is accessed by normal address sequence,

RAM data bus will emit zigzag value. Table 5.4 shows the results.

52

Circuit Statistical

Parameters

Full

Circuit

SFI

Modular Approach

Forward

Discrete

Cosine

Transform

Unit

Sub-

circuits

 1 2 3 4 5

Registers 3945 771 771 740 526 1106

Faults

injected

2720 210 210 190 160 350

Faults

propagated

 - 50 120 100 100

CPU Time

(in mins)

116.7 6.3 6.3 6.2 6.5 8.7

34

AVF (%) 17.3 2 24.3 1 23.7 1 22.9 1 10.8 1 19.2 1

16.6 2

Table 5.4 Table showing the results for the forward discrete cosine transform unit

 It can be seen that with our proposed approach, for the same standard deviation, we estimate the

AVF within approximately 4% of that estimated using a full circuit SFI. But, in case of modular

approach, we achieve a reduction factor of 1.8X in terms of number of total number of simulation runs

required. Also, we gain a computational speedup of 3.4X using our approach.

 With the number of simulation runs kept same (1490) for traditional SFI and modular approach,

it was found that the AVF computed using traditional SFI is (10.8 2) %. The decrease in AVF shows

that because of the decreased observability of the design, less number of injected faults makes it to the

primary output of the design. Thus, the number of simulations is not sufficient to make an accurate

decision about the AVF. This results in a decrease in accuracy of the AVF (to 5.4%) estimated using

modular approach. Because the number of simulations ran is the same, the speed in AVF estimation

remains approximately the same for both cases.

 For the third analysis, for an AVF of 16.6% the number of simulations and the speed of

53

experiments for the two approaches were compared. It was found that we need to perform about 1.3X

times more simulations for traditional SFI than modular approach. As a result, the CPU time is about

2X times more in case of traditional SFI than modular approach.

5.2.1.3 Baseline JPEG encoder

 The architecture of the JPEG encoder that we tested on is shown in figure 5.3. The entire

architecture is organized as a linear multistage pipeline in order to achieve high throughput. This figure

reflects the sequence of computation in the JPEG Baseline process. The image to be compressed is

provided as input to the system at one pixel per clock cycle rate, which is then processed by the various

internal modules in a linear fashion. The compressed data is then output by the system at a variable rate

depending on the amount of compression achieved.

 The first module in the JPEG encoder is the DCT (discrete cosine transform) module. The 2-D

DCT (8 x 8 DCT) is implemented by the row-column decomposition technique. It first computes the 1-

D DCT (8 x 1 DCT) of each column of the input data matrix. After appropriate rounding or truncation,

the transpose of the resulting matrix is stored in an intermediate memory. It then computes another 1-D

DCT (8 x 1 DCT) of each row of the resulting matrix to yield the desired 2-D DCT. A block diagram of

the design is shown in Figure 5.4.

54

 Figure 5.3 Baseline JPEG Encoder

DCT Module

Quantization module

Reordering Logic

Zero-runlength

encoder

Category Selection

Circuit

Huffman Encoder

Data Packer

Huffman

Table

Q-table

55

 Figure 5.4 DCT module for the JPEG Encoder

 The quantization module consists of a ROM to store the quantization table and an 11 x 8 bit

multiplier. The quantization step in the JPEG algorithm involves multiplying the output of the DCT

stage with a set of predefined values from a quantization table. The 8-bit multiplier value is retrieved

from the quantization table each clock cycle, and the coefficient values from the DCT stage are input as

the 12-bit multiplicands.

 The reordering logic consists of a zigzag buffer that reorders each block of data that is output by

the quantization module zigzag fashion before being forwarded to the entropy encoder. This reordering

is achieved using an 8 x 8 array of register pairs organized in a fashion similar to the transpose buffer.

The zero-runlength coder module performs the functions as described in the earlier part of this section.

The module consists of three stages and thus a latency of 3 cycles. The first stage consists of logic for

computing ∆DC (the difference between the current DC coefficient and the DC coefficient of the

previous block) while the second stage derives the runlength count and the third stage is used for

decrementing negative coefficients.

 The category selection unit associates each DC and AC coefficient with a corresponding

Timing and Control

16x1

DCT

Transposition Memory

(8X8X2 Words of RAM)

16x1

DCT

56

category depending on the magnitude of the coefficient.

 The Huffman encoder consists of Huffman code tables stored in random access memory

modules and logic for replacing the category, runlength count pairs with the corresponding Huffman

codes.

Circuit Statistical

Parameters

Full

Circuit

SFI

Modular Approach

Baseline

JPEG

Encoder

Sub-

circuits

 1 2 3 4 5 6 7

Registers 52995 3893 3840 8394 9009 9191 4201 14467

Faults

injected

21000 240 240 770 860 860 320 1570

Faults

propagated

 80 80 120 100 100 120 -

CPU Time

(in mins)

580 12.8 12.8 17.1 18.3 18.3 14.0 28.2

121.5

AVF (%) 11.7 2.4 13.4 1 14.2 1 16.3 1 15.1 1 15.7 1 14 1 17.2 1

12.4 2.4

Table 5.5 Table showing the results for the JPEG encoder

In this case, with our proposed approach, for the same standard deviation, we estimate the AVF within

approximately 6% of that estimated using a full circuit SFI. But, in case of modular approach, we

achieve a reduction factor of 4X in terms of number of total number of simulation runs required. Also,

we gain a computational speedup of roughly 5X using our approach. The results are shown in table 5.5.

5.2.2 Pipelined Processor Unit

 We tested our modular approach on the data path of a 5-stage MIPS pipelined processor unit as

well. In this unit, each stage is processing a different instruction at any given point of time, making

57

them operate independent of each other. Furthermore, pipelining the data path requires that values

passed from one pipeline stage to the next must be placed in registers called pipelined registers. Any

instruction is active in exactly one stage of the pipeline at a time; therefore, any actions taken on behalf

of an instruction occur between a pair of pipeline registers. Hence, we can look at the activities of the

pipeline by examining what has to happen on any pipeline stage. This allows us to slice the pipelined

unit along the peripherals of the pipelined registers, thus partitioning them into variations of CCLCs.

Figure 5.6 Five stage pipeline unit

 Consider an example, where a fault injected into an internal register in the instruction decode

stage at time t shows up as an error at the output of the decode stage at time t+1. To observe if it

propagates through the next stage in the pipeline (execution stage), we need not simulate this fault at

the input of the execution stage at exactly t+1, as it‟s a whole new instruction for it. Hence, this makes

our partitions to be in conformity with equations (5) and (6).

 From the results table 5.6, it can be seen that with our proposed approach, for the same standard

deviation, we estimate the AVF within approximately 6% of that estimated using a full circuit SFI. But,

in case of modular approach, we achieve a reduction factor of 2.8X in terms of number of total number

of simulation runs required. Also, we gain a computational speed of 3.7X using our approach.

Instruction

Fetch

Instruction

Decode

Execution

Cycle

Memory

Access

Write Back

58

Circuit Statistical

Parameters

Full

Circuit

SFI

Modular Approach

Pipelined

processor

Unit

Sub-

circuits

 1 2 3 4 5

Registers 4420 1131 936 1255 721 377

Faults

injected

6970 510 420 625 370 190

Faults

propagated

 100 90 90 90

CPU Time

(in mins)

230.2 14.6 13.4 16.1 10.5 8.5

30.9

AVF (%) 24.3 3 26.2 2 25.2 2 28.1 2 22.4 2 25.1 2

22.8 3

Table 5.6 Table showing the results for the pipeline unit

 With the number of simulation runs kept same (2485) for traditional SFI and modular approach,

it was found that the AVF computed using traditional SFI is (12.8 3) %. The decrease in AVF shows

that because of the decreased observability of the design, less number of injected faults makes it to the

primary output of the design. Thus, the number of simulations is not sufficient to make an accurate

decision about the AVF. This results in a decrease in accuracy of the AVF (to 7.8%) estimated using

modular approach. Because the number of simulations ran is the same, the speed in AVF estimation

remains approximately the same for both cases.

 For the third analysis, for an AVF of 22.8% the number of simulations and the speed of

experiments for the two approaches were compared. It was found that we need to perform about 2.1X

times more simulations for traditional SFI than modular approach. As a result, the CPU time is about

3.2X times more in case of traditional SFI than modular approach.

59

CHAPTER V

CONCLUSION

 This thesis presented a novel technique for efficient fault simulations that can further be used to

assess the soft error vulnerability of a design. Fault simulation efficiency is accomplished by enhancing

node observability using circuit partitioning. Detailed analysis of creating optimum size partitions was

also done. This work also identified the class of circuits on which this methodology can be used

efficiently for AVF estimation. Experiments performed on four test circuits show that our technique

works reasonably well on them and we achieve benefits in terms of simulation speed and number of

simulations runs. This methodology can be used not only for commercial applications but for space

applications as well.

 To further validate the approach, hardware radiation experiments could be performed and the

results could be compared with that of our simulation results. This work could also be extended to

include analogue effects like SET propagation etc. This would require synthesizing the test circuit,

targeted to a technology library, and generating its gate-level description.

60

REFERENCES

[1] R. Baumann, “Soft errors in advanced computer systems,” IEEE D&T, 22 (3), May 2005.

[2] P. Shivakumar, et al., “Modeling the effect of technology trends on the soft error rate of

combinational logic,” DSN 2002.

[3] T. Karnik, et al., “Scaling trends of cosmic ray induced soft errors in static latches beyond 0.18u,”

VLSI Symposium, 2001.

[4] Xiaodong Li , et. al, “SoftArch: An Architecture-Level Tool for Modeling and Analyzing Soft

Errors,” Proc. International Conference on Dependable Systems and Networks, 2005. DSN 2005.

[5] N. Wang et al. Characterizing the Effects of Transient Faults on a Modern High-Performance

Processor Pipeline. In Proc. Intl. Conf. on Dependable Systems and Networks, 2004.

[6] C. Weaver et al. Techniques to Reduce the Soft Error Rate of a High-Performance Microprocessor.

In Proc. 31st Intl. Symp. on Computer Architecture, 2004.

[7] J. R. Srour, J. M. McGarrity, "Radiation effects on microelectronics in space", Proceedings of the

IEEE, vol. 76, pp. 1443-1469, 1988.

[8] M. Santarini, "Cosmic radiation comes to ASIC and SOC design", EDN, 2005.

[9] E. Normand, “Single event upset at ground level,” IEEE Trans. Nucl. Sci., vol. 43, pp. 2742–2750,

Dec. 1996.

[10] IEEE NSREC Short Course 1993

[11] T. C. May and M. H. Woods, “Alpha-particle-induced soft errors in dynamic memories”, IEEE

Trans. Electron. Devices, vol. 26, pp. 2-9, Feb. 1979.

[12] P. E. Dodd, L. W. Massengill, "Basic mechanisms and modeling of single-event upset in digital

microelectronics", IEEE Transactions on Nuclear Science, vol.50, no.3, pp. 583-602, June 2003.

[13] J. Barak, J. Levinson, M. Victoria, and W. Hajdas, “Direct processes in the energy deposition of

protons in silicon,” IEEE Trans. Nucl. Sci., vol. 43, pp. 2820–2826, Dec. 1996.

[14] S. Duzellier, R. Ecoffet, D. Falguère, T. Nuns, L. Guibert, W. Hajdas, and M. C. Calvet, “Low

energy proton induced SEE in memories,” IEEE Trans. Nucl. Sci., vol. 44, pp. 2306–2310, Dec. 1997.

[15] E. Petersen, “Soft errors due to protons in the radiation belt,” IEEE Trans. Nucl. Sci., vol. 28, pp.

3981–3986, Dec. 1981.

61

[16] F. Wrobel, J.-M. Palau, M. C. Calvet, O. Bersillon, and H. Duarte, “Incidence of multi-particle

events on soft error rates caused by n-Si nuclear reactions,” IEEE Trans. Nucl. Sci., vol. 47, pp. 2580–

2585, Dec. 2000.

[17] C. M. Hsieh, P. C. Murley, and R. R. O‟Brien, “A field-funneling effect on the collection of alpha-

particle-generated carriers in silicon devices,” IEEE Electron. Device Lett., vol. 2, pp. 103–105, Dec.

1981.

[18] C. M. Hsieh, P. C. Murley, and R. R. O‟Brien, “Collection of charge from alpha-particle tracks in

silicon devices,” IEEE Trans. Electron. Devices, vol. 30, pp. 686–693, Dec. 1983

[19] L. W. Massengill, “Cosmic and terrestrial single-event radiation effects in dynamic random access

memories,” IEEE Trans. Nucl. Sci., vol. 43, pp. 576–593, Apr. 1996.

[20] P. E. Dodd, F. W. Sexton, G. L. Hash, M. R. Shaneyfelt, B. L. Draper, A. J. Farino, and R. S.

Flores, “Impact of technology trends on SEU in CMOS SRAMs,” IEEE Trans. Nucl. Sci., vol. 43, pp.

2797–2804, Dec. 1996.

[21] H. T. Weaver, “Soft error stability of p-well versus n-well CMOS latches derived from 2D,

transient simulations,” in IEDM Tech. Dig., 1988, pp. 512–515.

[22] Jie Meng MS Thesis, Vanderbilt University, May 2000

[23] L. W. Massengill et. al., “Analysis of Single-Event Effects in Combinational Logic – Simulation

of the AM2901 Bitslice Processor”, IEEE Trans. On Nucl. Science, vol. 47, no. 6, Dec 2000

[24] Mark Zwolinksi, Digital Systems Design using VHDL

[25] J. L. Hannessy and D. A. Patterson, Computer Architecture: A quantitative approach

[26] S.S. Mukherjee, et al., “The soft error problem: an architectural perspective,” Proceedings of the

11th International Symposium on High-Performance Computer Architecture (HPCA-11 2005), pp. 243-

247, Feb. 2005.

[27] S.S. Mukherjee, et al., “A systematic methodology to compute the architectural vulnerability

factors for a high-performance microprocessor,” 36th Annual International Symposium on

Microarchitecture (MICRO), December 2003.

[28] Samir Palnitkar, Verilog HDL: A guide to digital design and synthesis

[29] Corey Toomey, MS Thesis, Vanderbilt University, 2010

[30] Stuart Sutherland, The Verilog PLI Handbook

[31] Python scientific numpy package: http://numpy.scipy.org/

[32] Propagation of standard deviation: http://en.wikipedia.org/wiki/Propagation_of_uncertainty

http://en.wikipedia.org/wiki/Propagation_of_uncertainty

62

[33] Ming Zhang and Naresh R. Shanhhag , “ A soft error rate analysis (SERA) methodology”, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

[34] Ming-tung-sun et. al., “VLSI implementation of a 16X16 discrete cosine transform”, IEEE

transactions on circuits and systems, vol. 36, no. 4, April 1989

[35] All test circuits source codes available at: www.opencores.org

