View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by ETD - Electronic Theses & Dissertations

ADAPTIVE DEPLOYMENT AND CONFIGURATION FRAMEWORKS FOR
COMPONENT-BASED APPLICATIONS

By
William R. Otte
Dissertation
Submitted to the Faculty of the
Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY
in
Computer Science
December, 2011

Nashville, Tennessee

Approved:
Professor Douglas C. Schmidt
Professor Aniruddha Gokhale
Professor Janos Sztipanovits
Professor Gabor Karsai

Professor Jeff Gray

https://core.ac.uk/display/216050756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To my mother, father, and wife Lindsay, for their uncondiidove, encouragement, and
support

ACKNOWLEDGMENTS

First and foremost, | would like to extend my profound grat# to my co-advisors
through my tenure as a graduate student, Dr. Douglas C. StlamédDr. Aniruddha
Gokhale. I joined the DOC Group after an undergraduate elétbsDr. Schmidt piqued
my interest, and was immediately involved in several higpaot and interesting projects.
Under Dr. Schmidt’s leadership, the DOC Group, in additomientoring and technical
education, provided me with opportunities not availablenemy other graduate students to
travel and meet and work directly with sponsors. His insigttt emerging trends and belief
in producing practical solutions to real-world problems leen essential in developing
my research vision. When Dr. Schmidt took a leave of absenceGDkhale took over
and worked very closely with me to develop publish my ideas|, #nally to develop my
proposal and dissertation. His tireless efforts to prowseguidance and insight into this
process and to review these documents were essential aattygnepreciated.

| would like to thank the remainder of my committee members, Babor Karsai,
Dr. Janos Sztipanvits, and Dr. Gabor Karsai for serving onguglifying examination
and dissertation committees. In particular, the insighgfuestions asked by Dr. Karsai
during both examinations helped me to refine my ideas and them in a new light. |
am especially grateful to Dr. Gray for the time he took to jdewdetailed feedback on my
proposal and dissertation — his insightful comments helpedto significantly improve
the quality of this dissertation.

Over the years, my work has been supported by a number of i@gearad companies,
who provided the funding necessary to do my work as well aliestging motivating sce-
narios. First, | would like to thank Patrick Lardieri, Gaotd hacker, and Tom Damiano
of Lockheed-Martin Advanced Technology Laboratories. rikeal with these three gen-
tlemen on the DARPA ARMS project, and they gave me an oppoytaaijoin them for

a summer as an intern. Second, | am especially grateful ta Bipi of Lockheed-Martin

Advanced Technology Center with whom | had the opportunitwtok for several years
on what eventually became the MACRO project. Finally, | wdikd to thank my sponsors
at the Northrup-Grumman corporation — in particular Markyhh@n, and Trent Nadeau
who provided key technical and conceptual insights thattxaly led to what | feel is the
most important contribution of this dissertation, the LidgaManager.

I would like to thank Johnny Willemsen and Martin Corino of Reiné€T who, over the
years, have provided valuable mentoring and technicajlimisi Their advice and support
were instrumental in developing the ideas that eventu@bame the LocalityManager and
DDS4CIAO.

Of course, none of this would have happened had | taken adliffeourse more than a
decade ago and pursued a different course of study. Whilelakld was always fascinated
by computers (mostly the computer games), | fell in love watmputer science at the
age of 17 while a senior at Jesuit College Preparatory Schobhilas, Texas. There, a
teacher by the name of Peter Billingham convinced me that llghtake his brand new
AP Computer Science course. In this class, | quickly excedled outpaced most of the
other students. Peter did his best to keep up, and took tleettimeally challenge me, and
eventually convinced me that I'd be a fool to go to law school.

While at ISIS, I've had the opportunity to work with and becofriends with a num-
ber of incredibly talented individuals. First and foremd&t like to thank Jeff Parsons
whose assistance and advice has been an integral part of rkydwong my tenure with
the DOC Group. Balachandran Natarajan, a former I1SIS engaregeDOC Group mem-
ber provided much of my early technical education and mextane during my first years
with the group. Dr. Jaiganesh Balasubramanian, a gradudte @OC Group, helped me
to improve my research ideas and helped me understand hogvdsbccessful graduate
student. Finally, Dr. Gan Deng and Dr. Nanbor Wang, who damed the initial imple-
mentations of the deployment tools and component middkewrzat formed the basis of

my research.

Last, but certainly under no circumstances least, my fafailyheir unconditional love,
encouragement, and support. My mother, Dr. Hollon Meadedsfather, Calvin C. Otte
always provided the means, opportunity, and encourageimemie to pursue my interests.
My wife, Lindsay Gail Johnson, for putting up with a stressed graduate student who

didn’t always have time to clean or do laundry.

TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS e e e iii
LISTOFTABLES e e e e X
LISTOFFIGURES e e e e e X
Chapter
l. Introduction L 1
I.1. New Demands on Distributed, Real-time and Embeddec8yst 1
l.2. Overview of ResearchNeeds 2
[.2.1. Focus Area 1: Deployment and Configuration for Reseurce
ConstrainedSystems 3
[.2.2. Focus Area 2. Heterogeneous and Adaptable Deploy-
ment and Configuration Frameworks 4
[.2.3. Focus Area 3: Efficient and Deterministic Deployment
Latency 5
[.2.4. Focus Area 4: Design Approaches to Extensible Com-
ponent Middleware 6
[.3. Dissertation Organization 7
Il. Deployment and Configuration for Resource Constrained@ensbs . . 8
[I.L1. Motivation 10
[1.1.1. Overview of SEAMONSTER 10
[1.1.2. Distributed Deployment and Adaptation Challenges i
SEAMONSTER 11
[1.1.3. Challenge 1: Standardized Execution of Planned Low-
Level Actionsand DataTasks 12
[1.1.4. Challenge 2: Automated Agent Provisioning for a Va-
riety of Field Hardware 13
[1.1.5. Challenge 3: Minimizing Deployment Infrastructure
Overhead 13
[1.1.6. Challenge 4: Local power management with sleep/wake
cycles 14
[I.2. Minimizing Infrastructure Overhead in MACRO 15
[1.2.1. Overviewof MACRO 15
[1.2.2. Overview of MACRO’s QoS-enabled Component Mid-
dleware 17
11.2.3. Applying MACRO to Address SEAMONSTER Chal-
lenges 19

Vi

[I.3. ExperimentalResults. 26
[1.3.1. Hardware/Software Testbed and Experiment Method-

ology 26
[1.3.2. Initial Footprint Reduction 27

[1.3.3. Impact of Action/Effector Framework on MACRO EXx-
ecutionOverhead 29
4. RelatedWork 30
II.5. Summary and Lessons Learned 31

I1. Heterogeneous and Adaptive Deployment and Configunadii@meworks . 34

[11.1. D&C Standard Overview 35
[11.1.1. Runtime D&C Architecture 35
[11.1.2. D&C Deployment DataModel 36

[11.2. Adaptive D&C Challenges in Component-based DRE Systems38
[11.2.1. Challenge 1: Support for Heterogeneous Deploysent39
[11.2.2. Challenge 2: Customized Behavior During Deploymed
[11.2.3. Challenge 3: Customization of Behavior at Run-time 41

[11.3. Decoupling the D&C Specification from Target Compohbtodel 42

[11.3.1. Instance Installation Handlers 43
[11.3.2. Deployment Portable Interceptors 45
[11.3.3. Configuration of Handlers and Interceptors 46
ll.4. RelatedWork a7
[Il.5. Summary and Lessons Learned 49
V. Deterministic and Efficient Deployment in Component-d&a<£nterprise

Distributed Real-time and Embedded Systems 50
IV.1. Impediments to Efficient and Deterministic Deployrheatency 52
IV.1.1. OMG D&C DeploymentProcess 52
IV.1.2. Sources of Deployment Latency Overheads 53
IV.1.3. Challenge 1: Parsing DeploymentPlans 54

IV.1.4. Challenge 2: Serialized Execution of Deployment Ac-
tions 55
IV.2. Overcoming Deployment Latency Bottlenecks in LE-DANCE. 58
IV.2.1. Improving Runtime Plan Processing. 58
IV.2.2. Parallelizing Deployment Activity 59
IV.3. ExperimentalResults 62
IV.3.1. Overview of Hardware and Software Testbed 63

IV.3.2. Experiment 1. Measuring XML Processing Overhead 63
IV.3.3. Experiment 2: Measuring Application DeploymentLa

tency 65

IV.3.4. Experiment 3: Measuring the Predictability of Deyp!
mentlLatency 66
IV.4. Related Work 67
IV.5. Summary and Lessons Learned 69

Vil

V. Extending Middleware Capabilities Using Connectors 71

V.1. Impediments to Integrating LWCCMand DDS 73
V.1.1. Overview of the OMG Data Distribution Service (DDSY4
V.1.2. Addressing Limitations in the LwCCM Port System

viaDDS4CCM 74
V.1.3. Challenges in Integrating LWCCM and DDS 79
V.2. Resolving LwWCCM and DDS Integration Challenges in DDS4-
CIAO e 82
V.2.1. Accurate Indication of Successful Connector Configu-
ration 82
V.2.2. Avoiding D&C-related Memory Footprint 84
V.2.3. Reducing Connector-Related Memory Footprint . . 85
V.2.4. Supporting LocalFacets 86
V.2.5. Ensuring Portability of DDS4CIAO Implementation . 87
V.2.6. Connector Code Generation 38
V.3. ExperimentalResults. 90
V.3.1. Experimental Scenario 90
V.3.2. Evaluation of Code Generation 90
V.3.3. Evaluation of the Overhead of DDS4CIAO 91
V4. RelatedWork 95
V.5. Summary and Lessons Learned 96
VI. Future Research Directions 99
VI.1. Deployment and Configuration of Cloud-based Applicagia . . 99
VI.1.1. Unresolved Challenges 100
VI.1.2. Solution Approach 101
VI.2. Real-Time Extensionfor CCM 104
VII. ConcludingRemarks 106
Appendix
A. Listof Publications 108
B. IDLListings e 111
B.1. LocalityManagerIDL 111
REFERENCES e 113

viii

Table

I.1.
1.2.

1.3.

IV.1.
V.2

IV.3.

V.1.

V.2.

LIST OF TABLES

Page
Results of Initial Footprint Optimization 27
Action/Effector Footprint 29
Action/Effector Footprint L 29
CDP Sizesand ConversionTimes 64
Deployment Times (Seconds) for Plans withNo Delay 65
Deployment Latency Results for 600 iterations of a 1@@@ponent
deployment. 67
Comparison of Source LinesofCode 91
Standard Deviation For All Experiments 93

Figure

I.1.
1.2.
1.3.
1.4.

I.5.

I.1.
l.2.

l.3.

IV.1.
IV.2.
IV.3.
IV.4.

IV.5.

V.1.
V.2.
V.3.
V4.

V.5.

VI.1.

VI.2.

LIST OF FIGURES

Page
SEAMONSTER field sensors and UAS servers10
MACRO Agent Architecture, 16
The MACRO Architecture 17
DANCE Daemons e 19
The Action/Effector Framework 23
OMG D&C Architectural Overview and Separation of Cemgs 36
Locality Manager 42
Typical CCM Component Lifecycle 44
Simplified DANCE Architecture 56
DANCE NodeApplication Implementation 57
LocalityManager Startup Sequence 61
DANCE Deployment Scheduler 62
Latency Jitter for 1000 Component Deployment 66
LwCCM Component and Connector Lifecycle Stages 83
Ping Latency AveragewithUDP 92
Ping Latency MinimumwithUDP 93
Ping Latency Average with Shared Memory 94
Ping Latency Minimum with Shared Memory 94
Locality-Based View of Deployment 102
Locality-Based View of a Cloud Deployment 103

CHAPTERI|

INTRODUCTION

.1 New Demands on Distributed, Real-time and Embedded Systes

Component-Based Software Engineering (CBSH] [s increasingly used as a para-
digm for developing applications in both the enterprigeand embedded, severely resource-
constrained applicationg§]. CBSE facilitates systematic software reuse by encouraging
developers to create black box components that interabtegith other and their environ-
ment through well-defined interfaces. This allows appiae of greater complexity to be
composed from smaller units of functionalig.g.,commercial off-the-shelf components,
and preexisting applications. These applications aregupazk along with descriptive and
configuration meta-data, and made available for deployméma production environment.

Managing deployment and configuration of component-bapgtications in general
is an extremely complex and challenging problem for theofeihg reasons. First, there
may be complex requirements and relationships amongstich@il components. Compo-
nents may depend on one another for proper operation, oifispélg require or exclude
particular versions. If these relationships are not deedriand enforced, component appli-
cations may fail to deploy properly; even worse, malfunctiosubtle and pernicious ways.
Second, a component might expose configuration hooks tlaaigehits behavior, and the
deployment system must manage and apply any required caatiigu information. Fur-
thermore, several components in a deployment may havedetainfiguration properties,
and the deployment infrastructure should ensure that thes@erties remain consistent
across an entire application. Third, in the case of entsg@ystems, components must be
installed and have their connection and activation managaeémote hosts.

Distributed, real-time and embedded (DRE) systems are argemgeclass of applica-

tions which share properties of both enterprise systemsawerely resource-constrained

systems. DRE applications are similar to the enterprise kiritiat they are distributed
across a large domain. Like embedded systems, DRE appfisatice often mission-
critical and carry stringent safety, reliability, and gtiabf service (QoS) requirements.
Deployment of DRE systems, in addition to the complexitiescdeed above, carry their
own set of unique challenges. First, applications in the DREBa&@ins may have particular
dependencies on the target environment, such as particatdware/softwares(g, GPS,
sensors, actuators, particular operating systems). 8etloa deployment infrastructure
must contend with strict resource requirements in enviremswith finite resource®(g,
CPU, RAM, network bandwidth).

The deployment infrastructure must ensure that these researe present and avail-
able in an environment that is changing due to a number difaatcluding loss or damage
to nodes, changing availability of resources such as n&twandwidth, and contention
from other applications. Third, these applications oft@wehchanging goals and QoS
requirements in response to new situations in the envirobmaed the deployment infras-
tructure must be able to react and modify the deployed agudic accordingly. Finally,
real-world applications do not live in a vacuum and in manyesabe homogeneous with
respect to their distribution middleware, and must oftéerfiace with either legacy systems
or applications from different vendors. Such heteroggreinnot be foreseen by the com-
ponent middleware developers, so a mechanism to inject newnzinication mechanisms

is desireable.

.2 Overview of Research Needs
In this section we list the research needs that arise in theexbof deployment and
configuration of different varieties of DRE systems. Thess& deections of research are

organized according to research focus areas that makesugisisertation.

[.2.1 Focus Area 1. Deployment and Configuration for Resoure-Constrained Sys-

tems

Resource-constrained systems present unique challendgmghicomponent middle-
ware and deployment and configuration infrastructure nadan other DRE systems. An
example of such a resource-constrained system include®thain of sensor webs. Sensor
webs are large-scale, networked systems often made uperybgenheous computing plat-
forms that include commodity servers and DRE systems. Wnfately, the configuration
and operation of individual sensor webs are often performeh ad hocmanner, which
impedes adding new sensors, updating and modifying théwace, and reconfiguring
them to accommodate evolving conditions and changing seiereds. These challenges
include standardized execution of low-level hardwareethelgnt actions and on-going data
tasks, automated provisioning of agents for heterogengeldshardware, and minimizing
deployment infrastructure overhead.

Traditional heavyweight component middleware, while amaative solution for the
reasons outlined above, can be inappropriate for all elesr@rthe sensor web software
due to extremely limited resources. First, severely cairstid available memory limits the
number of components that may be deployed to each node. &dweavyweight compo-
nents may take a comparatively long time to deploy and coalde the sensor web to not
react quickly enough to changes in the environment or mmssinal violate QoS guarantees.

While other approaches to component-based developmenttfensely embedded ap-
plications, such as Programming in the Many (PitM}]| effectively meet the stringent
footprint requirements, they lack the interoperabilitydaich ecosystem of CORBA ser-
vices provided by CCM. Moreover, it limits the communicatiorchanisms to simple
message passing, lacking the rich datatype descriptichghggrface communication pro-
vided by a more expressive component model. Chalptelescribes the integration of
more advanced component middleware and deployment andyuooatibn techniques to

a representative sensor web called SEAMONSTER. This chagtmnines in detail the

challenges inherent in applying component middleware tbestded sensor web platforms
and presents the Action/Effector framework, an extremigligtiveight component model

for encapsulating low-level hardware dependent tasks.

1.2.2 Focus Area 2: Heterogeneous and Adaptable Deploymeand Configuration

Frameworks

Production-quality, large-scale distributed computiggtems often cannot be limited
to a single component model, particularly if they must inég and interface with legacy
systems. While it is possible to use multiple individual dgphent frameworks to de-
ploy and configure applications, this approach can comglitae planning process«.,
assigning instances to nodes, ensuring that sufficientiress exist, performing static ver-
ification, etc.), thereby leading to problems during systataegration. These problems
stem from potentially incompatible tooling, meta-datariats, and problems coordinating
the activity of disparate deployment infrastructures.

In addition to the need to potentially support multiple asphent targets, our experi-
ence with the development of large-scale DRE systems deslogirlier in this section has
demonstrated that applications and/or users may haveywdltferent expectations of the
behavior of the D&C infrastructure based on (1) domain nesyaents €.g, safety critical-
ity or domain requirements), (2) the stage of the developmprtess€.g, development/-
testing vs. deployment/operation). Examples of such hehadaptation include cus-
tomized error handling semantics, differing models of agaion liveness monitoring, or
customized discovery services for connecting disparatigops of the application.

Some frameworks for heterogeneous deployment do alreasly levt are inappropriate
for DRE systems. One such tool, DeployWa2d][provides a way to create “personali-
ties” that allow for the deployment of multiple componentdets. DeployWare, however,
provides anemic support for meta-data that can be shareaighout the lifecycle of a com-

ponent application, which can make it difficult to use in Ergrojects in which multiple,

independent teams must collaborate. Another tool, ADAGH provides heterogeneous
deployment for grid environments. It, however, is inappiaie because it is not possible
to capture specific component/node pairings, which aressacg in DRE systems to en-
sure that components are properly allocated to domain reaedim order to provide QoS
guarantees. Neither tool provides a standard mechanisomstornize the behavior of the
deployment toolchain.

Chapterll describes the LocalityManager, a novel framework for ¢ngedt heteroge-
neous and adaptable deployment infrastructure, baseceddMG Deployment and Con-
figuration specification which provides robust meta-datdifees. The LocalityManager
provides mechanisms whereby thpecific deployment logig.e., the target component
model for deployment, may be augmented through plug-ingaahstallation Handlers
that are loaded at run-timeGeneric deployment logigortions of the deployment pro-
cess that are component middleware agnostic, may also bengasd through the use of

Deployment Portable Interceptors.

1.2.3 Focus Area 3: Efficient and Deterministic Deployment Laéncy

Domains that feature DRE applications are often charaei@@s “open” since appli-
cations in these domains must contend not only with changiviyonmental conditions
(such as changing power levels, operational nodes, or mietstatus), but also evolving
operational requirements and mission objecti&8.[To adapt to changing environments
and operational requirements, it may be necessary to ctibagieployment and configu-
ration characteristics of these DRE systems at runtime. Riesmof potential adaptations
include deployment or tear down of individual componentanses, changing connection
configuration, or altering QoS properties in the target congmt runtime. As a result of
stringentquality of servicgQoS) requirements in these domains, it is important thgt an
changes to DRE system deployment and configuration occurieldyjand predictably as

possiblej.e., DRE systems expect short and bounded deployment latencies.

Not only are timely and dependable runtime deployment andigration changes
essential in DRE systems; even initial application starie tcan be an important metric.
For example, in extremely energy-constrained systemg,asidistributed sensor networks,
a common power saving strategy may involve completely desotg field hardware and
periodically restarting it to take new measurements owatgi actuatorsg4]. In such
environments, deployments must be fast and time-bounded.

Other contemporary deployment infrastructure toolingdoge-scale domains, such as
GODIET [77] or DeployWare R1], are optmized for computational grids, with relatively
homogeneous hardware and networks, as well as relativelycéenponent instances on
large numbers of nodes. Some DRE domains such as shipboaplittoghenvironments,
however, have very high component density on relativelyriedes. ChaptdV describes
in detail sources of deployment latency in DRE componentayepént infrastructure, and

steps taken in the LocalityManager to overcome these diitsu

1.2.4 Focus Area 4: Design Approaches to Extensible Componeliddieware

Existing and planned enterprise DRE systems must incrdgssupport large data
spaces generated by thousands of collaborating nodegrseasid actuators that must
exchange information to detect changes in the operationalament, make sense of that
information, and effect changes. These capabilities recuaialable publish/subscribe (pub-
/sub) semanticslf] that support a range of QoS properties, that control ptegsersuch as
liveliness, latency, deadlines, timing, and reliabilitynfortunately, the conventional com-
ponent technologies used to develop enterprise DRE systiéhes do not provide first
class support for pub/sub semantics or do so in an inefeeatianner that is not scalable
and does not support real-time QoS properties.

A standardized, QoS-enabled pub/sub technology calle®1& Data Distribution
Service (DDS) 53] has emerged as a promising pub/sub technology to suporétfuire-

ments of enterprise DRE systems. DDS includes standard Qa$epand mechanisms

to handle data (de)marshaling, node discovery and comme@nd configuration. Middle-
ware based on the DDS standard has been applied successfulsion-critical domains,
such as air traffic management syste§] pnd tactical information system2§.
Integration of new distribution middleware and features icomponent models is not
a straightforward process. First, interfaces providedhgydomponent container and stan-
dardized generated code may lack the expressivity negetsstully take advantage of the
new middleware. Second, proper integration often requdexp knowledge of both the
new distribution middleware and the component containgementation — developers
with such dual expertise may not exist. Chaptedescribes DDS4CIAO, a framework
that combines key advantages of the DDS middleware, sudwdaiency communication
and extensive QoS policy support, with the strengths of airmatomponent model, such
as simplified application composition and automatic deplegt and configuration. This

integration is accomplished via entities called connectioat live outside the container.

I.3 Dissertation Organization

The remainder of this dissertation describes each of theedlocus areas and research
challenges incurred within each area in more detail andribeschow this dissertation
resolves these challenges. Chagteputlines the application of D&C frameworks to
resource-constrained sensor webs. Next, Chdftalescribes the LocalityManager, a
framework for heterogeneous and adaptive deployment anfigooation infrastructure.
ChapterV presents the design principles and substantial empinedéece that illustrates
performance optimizations to deployment latency in thedliogManager. Chaptev de-
scribes DDS4CIAO, a connector-based integration of DDS inghtweight CCM that
makes it possible to realize the missing pub/sub capasiiithin CCM without breaking
the original component programming model. Finally, Chaffiérdescribes future research

directions and concluding remarks.

CHAPTER I

DEPLOYMENT AND CONFIGURATION FOR RESOURCE CONSTRAINED
SENSOR WEBS

A variety of sensor webslB] can now provide data in near real-time to help scientists
study and predict weather, natural disasters, and clinfetege. Modern sensor webs pro-
vide capabilities for information to be gathered from seaswound the globe and quickly
transmitted to local or remote servers where significantpugational resources are avail-
able for model building, data analysis, and prediction.nWiite appropriate infrastructure,
these systems can facilitate the real-time collection avadyais of sensor data even under
changing environmental conditions and multiple concurserence objectives.

Sensor webs are large-scale, networked systems often rpaafeheterogeneous com-
puting platforms that include commodity servers and disted real-time embedded (DRE)
systems. Unfortunately, the configuration and operatioinai’idual sensor webs are of-
ten performed in arad hocmanner, which impedes adding new sensors, updating and
modifying their software, and reconfiguring them to accordate evolving conditions and
changing science needs.

Like other DRE systems, the field subsystems of sensor webberaafit from recent
advances in middleware infrastructures. The usguallity-of-service (QoS)-enabled com-
ponent middlewarbelps automate remoting, life-cycle management, systeauree man-
agement, deployment, and configuration in DRE systems. @aS8lked component mid-
dleware supports explicit configuration of QoS aspe&ts, (priority and threading models),
and provides many desirable real-time featueeg,(priority propagation, scheduling ser-

vices, and explicit binding of network connections). Iremtated, adaptive sensor webs,

QoS-enabled component middleware helps address the laetgrogeneous set of sen-
sor assets and computational resources that must be catadiand managed to address
weather, climate change, and disaster prediction/managgmnoblems.

Sensor web hardware is also increasingly configurable arst operate iropenen-
vironments where operating conditions, workload, resewaneailability, and connectivity
cannot be accurately characterizedriori. Our previous work described the design of the
Multi-agent Architecture for Coordinated Responsive Obagons(MACRO) [75], which
provides a QoS-enabled component middleware platfornattaimates many system con-
figuration and management tasks for sensor web applicatiocisding dynamic system
management and autonomous operation of configurable serfsrin open DRE system
environments. This chapter addresses new distributedyg®eint challenges that result
from applying the MACRO platform to th8outh East Alaska MOnitoring Network for
Science, Telecommunications, Education, and Res¢ SEEAMONSTER) R0, which is a
representative sensor web for monitoring glacial changenatershed effects.

The remainder of this chapter is organized as follows: 8atitil summarizes adaptive
sensor web challenges in SEAMONSTER that include stanzizddixecution of low-level
hardware-dependent actions and on-going data tasks, atgdiprovisioning of agents for
heterogeneous field hardware, and minimizing deploymdrastructure overhead; Sec-
tion 1.2 describes how we addressed these challenges by extendi@REAo include
an Action/Effector framework that standardizes the exeoutf lightweight actions, auto-
mates the provisioning of MACRO agents, and optimizes thépfaat of the underlying
QoS-enabled component middleware; Sectidhempirically evaluates how these exten-

sions address deployment challenges; Sedtidrcompares MACRO with related work.

1.1 Motivation
[1.1.1 Overview of SEAMONSTER

SEAMONSTER is a glacier and watershed sensor web at the tditiveof Alaska
Southeast (UAS)Z0]. This sensor web monitors and collects data regardingeglaty-
namics and mass balance, watershed hydrology, coastatenecblogy, and human im-
pact/hazards in and around the Lemon Creek watershed andiL@taoier. The collected
data is used to study the correlations between glacier wglagacial lake formation and
drainage, watershed hydrology, and temperature variation

The SEAMONSTER sensor web, as shown in Figluk includes sensors and weath-
erized computer platforms that are deployed on the glacetl@roughout the watershed to
collect data of scientific interest. The data collected k& sbnsors is relayed via wire-
less networks to a cluster of servers that filter, correlate] analyze the data. These
data collection and processing applications are beingitraned to run on top of a QoS-
enabled component middleware platform consisting of @menponent-Integrated ACE
ORB(CIAO) [80Q], which is open-source, QoS-enabled, component middewsat im-
plements the OMG Lightweight CORBA Component Model (CCBljj[and Deployment

and Configuration49] specifications.

g= —y i
SN
(o b .
X \ o
wf ——) i, o I| i i\
| UAS Campus _J:'.IJ.‘ - i \ |" |
T e
e BB, o) | f v |
i vh | U Leman
y X of il 8~ ¥ Glacies
UAS Halural Saences g™ ity R |
Ressarch Labosatory || o
[l :‘I) o \.
T n
] L] ™ -y
\ |k b,
' ') e S
|1/ >\ s
{1 b i Cairn Peak
* S |

Figure I.1: SEAMONSTER field sensors and UAS servers

10

11.L1.2 Distributed Deployment and Adaptation Challenges n SEAMONSTER

Effective deployment of data collection and filtering apptions on SEAMONSTER
field hardware and dynamic adaptation to changing enviromaheonditions and resource
availability present significant software challenges ffficeent operation of SEAMON-
STER. While SEAMONSTER servers provide significant compateti resources, the
field hardware is computationally constrained. The sebased MACRO agents perform
extensive planning and scheduling to provide direction emordination of tasks to be
performed by the computationally limited field resourcestHhe field, the limited compu-
tational resources require software solutions with snaatgrints and low computational
complexity.

Field nodes in a sensor web often have a large number of adderphenomena in
their area of interest. The type, duration, and frequenobsetrvation of these phenomena
may change over time, based on changes in the environmentrence of transient events
in the environment, and changing goals and objectives irstience mission of the sen-
sor web. Moreover, limited power, processing capabilityrage, and network bandwidth
constrain the ability of these nodes to continually perfafmservations at the desired fre-
guency and fidelity. Dynamic changes in environmental domis coupled with limited
resource availability requires individual nodes of theseerweb to rapidly revise current
operations and future plans to make the best use of theiuress.

To handle dynamic changes effectively, sensor web nodes Ipeusapable of goal-
driven, functional adaptation. Moreover, they must haedhpability to adapt the local
system in light of resource constraints and fluctuationsughout the sensor web to main-
tain efficient and correct operation of the overall systemorRvork [35] describes how
MACRO addresses these challenges by combining the plannohgesource management
services of its server agents with the template plan schefssfield agents. This chapter

extends our prior work by focusing on the following unexpldchallenges associated with

11

providing a flexible deployment infrastructure to suppggtem management and dynamic

adaptation of the SEAMONSTER field nodes.

[1.L1.3 Challenge 1: Standardized Execution of Planned Low-Legl Actions and Data

Tasks

Most tasks performed by MACRO agents on the SEAMONSTER setuster involve
on-going data processing and analysis that are impleméaytedmponents selected and
configured during planning/scheduling. A scheduled plarttie deployment and opera-
tion of these configured components is passed to a resouncag@@ent service, which
allocates them to individual server nodes and adjusts aaafiign settings and operating
system parameters to handle fluctuations in resource usabavailability. The resource
management service employs the deployment infrastrutdureordinate the deployment,
configuration, connection, and execution of the specifiedpaments. This provides a
standardized, flexible system for implementing tasks afgared components.

Data collection and transmission tasks on field nodes areemgnted as components
for the same reasons as data processing tasks on the sétoeeser, many of the other ac-
tivities that MACRO agents plan and perform on field nodes isbo$low-level, hardware-
dependent actions that execute only briefly to configuremsrs the power management
hardware subsystem. Implementing these short-duratiotiotes” as components would
incur disproportionate amounts of overhead for their daplent and execution than for
data processing “tasks” that typically execute over lomggiods of time and have to trans-
mit data streams to other components. Given the limited coatipnal resources available
on field nodes, the overhead for implementing brief, loneleactions as components is
unacceptable.

Lower levels of granularity are needed for efficient exemutf many planned activities
on field nodes. Agents could implement these actions dyrdailk this would require hard-

coding of hardware-dependent actions into each field agdtarnatively, grouping these

12

actions into larger pre-planned sets of actions execusrag@mponent would proportion-
ally reduce the overhead. However, this would negativelyaot maintainability through
duplication of action code segments and constrain theahailoptions for planning. In-
stead, a standardized deployment and execution framesuch,as that provided by a mid-
dleware infrastructure for components, but with lower ée&d, would greatly enhance the
maintainability of the system and simplify initial systereveélopment. Sectioh.2.3.1de-
scribes how such a framework has been designed and inctedaraMACRO to address

this challenge.

I1.1.4 Challenge 2: Automated Agent Provisioning for a Variety of Field Hardware
Field nodes in a sensor web may have a large number of possibfegurations, due
to a variety of sensors, software, and situations that thay be tasked to observe and
appropriately react. Consequently, the agents that mahage hodes must be as flexible
as possible. Hard-coding available tasks into agent cagiéres that new versions of each
agent be created as nodes add new responsibilities or hardWae solution developed to
address the previous challenge should include integratiinthe deployment infrastruc-
ture to download and load at runtime appropriate action@mentations. Sectidh?2.3.2
describes how the deployment infrastructure may be leeerag dynamically provision

agents with available, context-specific actions at deplyrtime.

I1.1.5 Challenge 3: Minimizing Deployment Infrastructure O verhead

The SEAMONSTER sensor web, described in Sediidnl, includes many field nodes
operating with extremely limited computational resourceEAMONSTER includes two
types of computational platforms for field nodé&gl]

e Primary Microservers. These units are weatherized single board computers (SBC)

that are designed to have very limited power consumption@rdise control over the

13

power consumption of the SBC and attached devices. The SBCasmercial off-the--
shelf (COTS) product that has a 200 MHz low-power ARM processgithh 64 MB of
built-in RAM.

¢ Adjunct Microservers. These units are re-purposed COTS Linksys NSLU-2 network
attached storage devices that are essentially inexpeS88@s. These computers consist
of a 133 Mhz (with simple hardware modifications possible gach 266 MHz) ARM
processor with 32 MB of built-in RAM. These units provide a loast alternative to using
Primary Microservers for some field nodes. However, thek famver control capabilities
and have even more limited computational power primarilg ttuthe minimal amount of
RAM.

Each platform presents an environment where the residetyriat of the middleware
infrastructure and component implementations is criycahportant. Excessive footprint
will at best cause excessive memory swapping to occur, feignily degrading perfor-
mance and shortening the life of attached flash drives, andt cause deployment fail-
ure due to exhaustion of memory, as happened occasionaityduitial trials of MACRO
software in the SEAMONSTER testbed. Sectlb8.3.3describes initial efforts to reduce

the footprint of the middleware.

[1.L1.6 Challenge 4: Local power management with sleep/wakeycles

SEAMONSTER'’s need for power management is motivated by dichdvailability of
power, due to variable weather conditions limiting theiptb recharge the batteries. The
available power is often insufficient for continuous operabf the processor, requiring the
system to periodically power down completely. Moreoverptotect against “wedging”
(which is a situation where the operating system becomessponsive), it is useful to
periodically hard-reset the microservers, which are diffito physically access in the field.

When a microserver returns from one of these sleep/wakes;yelewhen the boot process

14

completes, local agents and applications must be corresttleployed and connections

between nodes must be correctly re-established. Sdtiiod.4

[I.2 Minimizing Infrastructure Overhead in MACRO

This section explains how MACRO addresses the challengesied in Sectioril.1.
This chapter begins with an overview of the agent-baseasysteveloped in our previ-
ous work, along with a description of its middleware infrasture. The new MACRO
Action/Effector framework is introduced, which addrestes deployment infrastructure

challenges encountered in the SEAMONSTER project.

[1.2.1 Overview of MACRO

The MACRO platform provides a powerful computational infrasture for enabling
the deployment, configuration, and operation of largeessahsor webs that are composed
of many constituent sensor webs. Figuk2 shows how MACRO supports intelligent
autonomy via agents at the following two levels of abstracti

e Mission level where agents interact with users to allocate high-leviehse tasks to
sensor webs and coordinate scheduled plans to achievegbalse and

e Resource level where local server and field agents achieve mission gosedsigh
functional adaptation of a sensor web in light of currentiemmental conditions and
resource availability.

The work presented in this chapter focuses on the resowreedEMACRO, which is
applicable to individual sensor webs, such as SEAMONSTER.

System adaptation for current conditions and science gdatscribed as a set of de-
sired data products and results, is directed by MACRO sdrased agents with func-
tional knowledge of the sensor web system and availablevaoét components and ac-
tions. MACRO server-based agents employ novel services, asitheSpreading Activa-

tion Partial Order Plannef(SA-POP) B4] and theResource Allocation and Control Engine

15

Mission Level Resource Level

User Server sunconde Field Node
Agent L2903
User g Exec Feedbadk Science
Agent Y, Agent) Data Stre
S

m Agent %

0"’\\%
>

Broker Agents
(Contract Net
Allocation)

Mission
Agent

Goals &
Feedback
Component
Application

Feedback

eployme;
Feedback

SA-POP, RACE

CIAO | CIAO

Figure I1.2: MACRO Agent Architecture

(RACE) [70]. These agents use the SA-POP service to (1) decomposeigimessibgoals
that are achieved at the server or by individual field nodeis(2h plan/schedule for their
achievement.

With information from field agents about current conditi@rsl local activities, SA-
POP produces scheduled, high expected utility plans teeael@in optimized set of current
goals. These scheduled plans are also broken into subpya884°OP. These subplans
describe (1) the selection/configuration of server-basdivare components, which are
allocated and managed by the RACE service on the servers, ahdr(®vare-dependent
actions on individual field nodes, as well as additional congnt deployments.

Although the sub-plans generated by SA-POP on the servergroaide an important
starting point for deployments and actions on the field npdeanging local conditions
may invalidate those plans or require modification to themeféective, rapid reaction to
environmental phenomena and changing resource avajaldince local field agents have
limited computational resources, extensive planning aheéduling, such as that provided
by SA-POP, is not possible for rapid reaction to local chandgestead, field agents use a
set of template plan schemas that cover a range of condgiotisocal subgoals to which
they are applicable.

Server-based agents provide the field agents with the dusetrof local subgoals to

16

pursue and suggested schema instantiations correspotadihg sub-plans produced by
SA-POP. The task of the field agent is therefore the simplercehof an appropriate set
of schemas to instantiate as local conditions evolve. Thenswe planning/scheduling
performed by MACRO server agents using SA-POP—together thighchoice of plan
schemas to instantiate by MACRO field agents—provide effecdystem adaptation to
achieve science goals in light of changing environmentatldtmns and resource availabil-
ity.

The implementation of agents in MACRO is based on the CI8@ QoS-enabled com-
ponent middleware (described in Sectib2.2 to ensure interoperability across heteroge-
neous computing platforms, reduce development costsapiebve overall robustness and

scalability. The agents operate on the CIAO middleware tumenthat a diverse set of

MACRO Agents

RACE SA-POP

CIAO

oS

Hardware

Figure I1.3: The MACRO Architecture

science objectives can be met, as shown in FigluBe This architecture helps facilitate

real-time, adaptive data acquisition, analysis, fusiowl, distribution.

[1.2.2 Overview of MACRO’s QoS-enabled Component Middleware

The MACRO middleware infrastructure is based on the CORBA CorapbModel
(CCM) [52], which is an extension to the Common Request Broker ArchiteQORBA) ;8]
that supports Component Based Software Engineering. CCM eetaaaisability by al-

lowing developers to focus only on application businesglagpstracting away the details

17

of communication and configuration. Components interadt wite another only through
well-defined ports, which includiacets(provided interfacesyeceptaclegrequired inter-
faces), anekvent sources and sinkasynchronous publish/subscribe transport).

The CCM middleware used in MACRO is t@®mponent Integrated ACE ORBIAO) [78].
CIAO is a QoS-enabled implementation of the Lightweight CCM (LWCQB] specifi-
cation built on top ofThe ACE ORETAOQO). CIAO provides a clear separation of concerns
betweernconfiguration logi¢ specified at deployment time via XML-based meta-data, and
business logic

CIAQO’s deployment and configuration capabilities are predithy theDeployment and
Configuration of Component Based SystéBsC) [59] specification, which was created
by the OMG in response to the need for generic and standarbdanistns for deploying
component-based applications. The DnC standard incluatesadata mode(i.e., descrip-
tions of components, component compositions, target dmnand associated configura-
tion meta-data) and auntime modeli.e., a set of interfaces used to manage application
life-cycles).

The DnCruntime modein CIAO is implemented by thBeployment And Configuration
Engine (DANCE) [14]. DANCE is a set of daemons executing in ttiemain which is
the collection of nodes and communication methods that cisefhe target environment.
Important elements of the runtime model are shown in Fidgjudeand include:

e Node Manager, which is a daemon that runs on all nodes in the domain and is re
sponsible for deploying, configuring, and managing all congnts deployed to that node.
This daemon also supports the monitors necessary to réy@ore$ource status on the node
to the MACRO agents. Each node in the sensor web will have angriNode Manager.

e Execution Manager, which is a daemon that coordinates the activities ofNaltle
Managersin a given domain. This daemon is the primary point of contoolthe life-
cycle of all component applications. Primary microserweith direct connections to the

SEAMONSTER server cluster will have Execution Managers.

18

Repository Execution Target
Manager Manager Manager
Node Node Node
Manager Manager Manager

Node Node Node

Figure I.4: DANCE Daemons

e Target Manager, which is a daemon that collates and reports resource hildjlan a
given domain. Information is collected from resource mansiinstalled in individuaNode
Managers Like the Execution Managerthis daemon will run on primary microservers
with direct connections to the servers.

¢ Repository Manager, which is a daemon that maintains a collection of component
meta-data and binary implementations. Individdlde Managersnay contact nearby
repositories to download binaries for components theyasked to deploy, and MACRO
agents may query the repository for information about camepts available for deploy-
ment. An instance of thRepository Managewill run on the primary server for use by the
MACRO server agents and server deployments. Another instasitreside on primary
microservers with direct connections to the SEAMONSTEResecluster for use by nodes

in the field.

11.2.3 Applying MACRO to Address SEAMONSTER Challenges

The remainder of this section explains how MACRO applies arthaces the CIAO
and DAnCE middleware described above addresses the senschaenges identified in

Sectionll.1.2.

19

struct Property {
string name;
any value;
b
typedef sequence<Property> Properties;
valuetype Action_Info {
public string id;
public Properties resource_requirements;
public Properties init_arguments;
10 public Properties exec_arguments;
11 public Properties reference_requirements;

O©oo~NOUlh,WNPE

Listing 11.1: Action_Info Data Structure Example.

[1.2.3.1 Addressing Challenge 1: MACRO's Action/Effector Framework

MACRO'’s Action/Effector framework has been developed tovme a standardized
mechanism that has two primary benefits for implementingtdhed, lightweight “ac-
tions,” as opposed to on-going “tasks” implemented as corapts. First, it allows the
MACRO agents with their SA-POP planning service and plan maseto use a common
vocabulary for describing preconditions, dependencied, effects of individual actions,
as well as resource requirements of the associated actgenmentations. Second, it pro-
vides a clear separation of concerns between invoking ttensand the business logic of
the action, similar to that of componeni®,, it provides a mechanism that agents can use
to execute a set of actions without knowledge at compilentirtime of the implementation
of those actions.

Action meta-data.

Listing I1.1 describes théction_Info data structure which allows an action to pro-

vide meta-data about itself to the system/agents.

This meta-data describes propertiegy(a unique identifier, argument identifiers and

20

local interface Action {
readonly attribute Action_Info info;
void initialize (in ObjSeq references);
void execute (in any arguments,
out any result);
void release ();

~NOoO ok WNBE

Listing 11.2: Action Interface

types, return value identifier and type) and requiremestg. CPU and memory require-
ments, hardware/sensor resources, and component or tddggeinces). This data structure
is implemented as a CORBA valuetype, which will leave open tesibility for deriva-
tion though inheritance should additional fields need to deed later without breaking
backwards compatibility with the interfaces describedhel

Action interface. Listing I.2 describes the interface for the Action itself.

This interface provides a vehicle for provision of metaadand operations to manage
the full life-cycle of an Action. To provide lightweight aohs with minimal overhead,
this interface is specified adacal interface, which instructs the CORBA IDL compiler to
omit generation of code that allows for remote invocatiothef object, creating a locality
constrained object. This design substantially reducegheasl, as shown in Sectidn3.3.
While this locality constraint prevents MACRO agents fronmedtty accessing Action ob-
jects, the framework provides a mechanism which does ndéteain their use by those
agents. This framework allows MACRO agents to access andugxections while hid-
ing the complexities of action deployment and executiomugh the Effector interface
described in Sectioh.2.3.1

The Action attributenfo allows the Action implementation to self-describe its meta
data, ultimately providing information to the agents alitautequirements and capabilities.

This information is also used by an implementation of the=é&tfbr interface to determine

21

1 extern “*C’"’ {
2 Action_ptr create_action \Joid);
3

}

Listing 11.3: Action Factory

which object references and arguments are to be passedapéhations contained in this
Action interface.

These operations allow the Effector to manage the lifeecpélActions. Thanit-
ialize operation is invoked upon creation of the Action, providibhgvith object ref-
erences to deployed components and objects that the bsisogegs may need in order to
successfully execute. Thexecute operation implements the business logic of the Ac-
tion. This operation accepts two parameters, both of type CORMB/, which is a generic
container which may contain any valid CORBA data type, allgatime Actions to accept
arguments or provide results in a flexible, but standardimethner. Finally, theelease
operation informs the Action that it is about to be dealledaso that it may release any
resources that it holds.

Each Action implementation provides a factory method (aangxe of which is found
in Listing 11.3) that is used by the Effector to construct instances of thiemat runtime.
Similar to the method used by the DnC specificati®®| fo construct component instances,
this factory method is declared estern “C” , which will allow the Effector interface to
load actions at runtime using methods similadtopen anddlsym , which are POSIX
APIs for dynamically loading shared libraries.

Effector interface. Listing 1.4 describes the Effector interface, which is used by the
MACRO agents to load and execute actions. This interfaceasiged as either a facet
or a supported interface on a component. It is used by MACR@tade execute plans or
schemas and interact with the components providing altistnsmf the available hardware,
as shown in Figurd.5. For example, thibad_action method may be used by an agent

or other Effector client to load a new action from a named ethdibrary that contains a

22

1 interface Effector {

2 Action_Info load_action (in string library_name,
3 in string factory_name);
4 void unload_action (in string id);

5 Action_Info query_action (in string id);

6 StringSeq list_actions ();

7 void execute_action (in string id,

8 in any arguments,

9 out any result);

0

10 };

Listing 11.4: Effector Interface

provided factory symbol. The operations on the Effectagrifsice allow MACRO agents to
(1) manage the life-cycle of Actions installed in the Effac(2) determine which Actions
have been loaded and query their meta-data, and (3) ingtredEffector to execute an

Action.

MACRO
Agent

Implementation

execute_action

Effector Implementation

Figure 11.5: The Action/Effector Framework

11.2.3.2 Addressing Challenge 2: Providing Flexible AgenProvisioning

The Action/Effector framework described in Sectitir2.3.2 provides a mechanism
through which MACRO agent implementations may be dynamjgatbvisioned at de-
ployment time with Action objects apropos to the particlardware configuration, in-

cluding its suite of available sensors, on which the agesities. Component interface

23

component EffectorProvider {
provides Effector effect;
attribute Action_Factories factories;

A OWN P

h

Listing 11.5: Example Component with Effector

descriptions, similar to standard CORBA object descriptionay have attributes of ar-
bitrary types. As seen in Listing.5, the example component has an attribute of type
Action_Factories , Which is a sequence of structures containing a pair ofgstriam-

ber variables indicating a library name and factory symlaoha.

Component deployments are described via XML files that ceptformation about
component configuration, topology, and connections. TK&4ke descriptors may be used
to populate the value of this attribute with desired libragme/factory name pairs at de-
ployment time. Moreover, through the mechanism used toribesthe implementation
dependencies of componeni®(shared libraries implementing a component), it is pos-
sible to indicate to the Node Manager that shared librargdementing Actions also be
downloaded from the RepositoryManager, as described inddeiti2.2. This approach
allows the component providing the Effector interface twke theload_action oper-

ation for each library/entrypoint pair provided duringieation.

11.2.3.3 Addressing Challenge 3: Reducing Middleware Footpnt

Initial efforts to run MACRO (and the associated middlewanfeastructure) presented
difficulties and, in some cases, failures due to the largipfod of the default configuration
of CIAO and the limited memory capacity of the SEAMONSTER r&dEo reduce mem-
ory footprint, the initial application of the deploymenffiastructure to SEAMONSTER

field hardware included two straightforward modifications:

24

e Leverage compiler optimizations.Most compilers have the ability to provide space-
saving optimizations to most code, which an experiencedraramer can easily leverage
to provide footprint reduction.

e Leverage mechanisms present in underlying middleware.The build system of
the middleware underpinning of CIAO provides configuratiettings that allow one to
strip unneeded features from compiled binaries, such asaghportions of the ACE and
TAO libraries, which can provide also provide substant@itprint savings in resource-
constrained environments.

While these steps are relatively straightforward and ndtqadarly novel, Sectiol.3.2
shows that they were sufficient to reduce the static footjmfinthe middleware stack to a

level that allowed successful use of the MACRO platform on SEONSTER hardware.

11.2.3.4 Addressing Challenge 4: Ensuring Correct Re-Deplgment After Reboot

The MACRO approach to resolving this challenge involvestangaall deployments as
locality-constrained deployments. Locality-constraideployments describe only compo-
nents that reside on a single node and refer to connectighsamponents on other nodes
using external references. This approach is in contrastedase of a global deployment
plan, which can include components deployed to several)adiescribing connections
across nodes by referring to the connected componentdlgirédth locality-constrained
deployments each node must execute both the gkntdlocal deployment entities, rather
than only the local ones. Although this increases local rmaghead, it allows the mid-
dleware to correctly reconstitute its agent and other swivdeployments upon reboot.

Correctly executing these locality constrained plans oh @acle requires that connec-
tions external to each individual node be correctly redisthed. By default, DANCE only
supports connections between components within the cbofex single global deploy-
ment plan. Since we are using multiple “global” deploymedanp that have been locality

constrained and deployed using a DANCE stack unique to eat#) norrect re-connection

25

cannot be achieved using only inter-plan connections. Wais resolved by enhancing
DANCE to be able to make use of external directory servicet) as the CORBA Naming
Service, to resolve these external connections at deplotytinee.

Future work includes extensions to the deployment infoastire to allow reconsti-
tution of local deployments from global deployment plaigreby reducing middleware

overhead on the field nodes.

I1.3 Experimental Results
This section presents the results of experiments that @el{l) the effectiveness of
MACRO'’s Action/Effector framework for lightweight, hardwedependent actions and (2)
the reduction of middleware footprint described in Sectib®.3.4. These results show
that the efforts described reduced the total static footgrf MACRO and its underlying
middleware stack. They also show the reduction in overheadkeed by implementing
short-lived actions in the Action/Effector framework dissed in Sectiol.2.3.2, rather

than using heavier-weight components.

11.3.1 Hardware/Software Testbed and Experiment Methodoloy

The static footprint results were obtained via a cross-atanool-chain used to build
software for the SEAMONSTER hardware. This tool-chain ¢stisofg++ 4.1.2 andd
2.17, which are hosted on Debian Linux 4.0 and taayet-linux-gnu . The CIAO
middleware platform was version 0.6.6.

For the initial baseline results, this platform was conmpilsing default options, with
debugging symbols disabled and the compiler optimizateerllat03, which instructs the
g++ compiler to optimize for speed. For the results based on ptimization efforts, the
middleware was compiled using built-in methods for redgdmotprint and the compiler
was instructed to optimize usin@s, which instructs theg++ compiler to optimize for

space. In all cases, we used the GHiidp utility to remove any debugging symbols

26

from the compiled binaries to ensure the footprint metrict measured the size of the
executables.

Executable footprint sizes were determined by staticatlgihg all required symbols
from the underlying middleware into the final binary, ensgrthat all necessary symbols
from the underlying middleware are present, while not idolg any unnecessary symbols.
For the purposes of calculating the size of a component, wenas that any symbols
necessary from the underlying middleware were alreadyeptda the component server,
and thus the calculation of the component footprint sizesatdained by summing the size
of thesharedibraries that implement the component. This size inclU@@RBA stubs and
skeletons, the servant (the component specific portionseofdntainer), and the executor
(business logic) implementation.

Run-time results were obtained using a primary microsergsciibed in Sectioh.1.6.
This microserver consists of a 266 Mhz ARM processor with 64 dfiBuilt-in RAM. The
operating system is a derivative of the Debian Sarge run@Ng/Linux kernel 2.4.26,
which was provided by the manufacturer of the microserveckifologic Systems).

[1.3.2 Initial Footprint Reduction

The results of the efforts described in Sectlb@2.3.4 are summarized in Tablé.1.

TheExecutionManager andNodeManager (which were described in Sectidin2.2)

Table 11.1: Results of Initial Footprint Optimization

| Entity | Default | Optimized| Savings |
ExecutionManagef 12,203 KB| 11,136 KB| 1,067 KB
NodeManager 13,865 KB | 12,623 KB | 1,242 KB
NodeApplication || 12,710 KB| 11,460 KB | 1,250 KB
Null Component 670 KB 605 KB 65 KB

27

and theNodeApplication (which is a component server spawned during the deploy-
ment process) each experienced a reduction in footprirtlomegabyte. The combined
savings reduced the footprint of node-local infrastruet(ue., the NodeManager and
NodeApplication) from 26.5 MB to 24 MB. Although this reduction allowed us to
deploy and operate a prototype MACRO-based application e SEBAMONSTER hard-
ware, this deployment consumed nearly all available playsitemory on the primary
microservers, and resulted in frequent thrashing on the angigonstrained adjunct mi-
croservers.

These results show that largest consumers of memory in thdleavare stack are the
DANCE daemons, in particular tliexecutionManager andNodeManager . The foot-
print of the newer deployment and configuration aspectsaffitidleware has been largely
overlooked until now and needs to be addressed. Perhapsimuooetantly is the latency
experienced during deployment, which has been observe#fieéass long as several minutes
on SEAMONSTER hardware. Moreover, the DAnNCE implementatisad in MACRO
tangles concerns of deployment and configuration with théme elements of the compo-
nent server in thé&odeApplication . This entanglement increases footprint by repli-
cating large swathes of deployment logic in each comporeanes Careful analysis and
re-factoring of the deployment infrastructure is therefoeeded to substantially decrease
footprint and deployment latency.

This serves in part as motivation for our work on the Locaignager framework de-
scribed in Chaptelll, which outlines our efforts to re-factor the DANCE framewarkd

address deployment latency issues.

28

[1.3.3 Impact of Action/Effector Framework on MACRO Execution Overhead

MACRO'’s Action/Effector framework (described ih2.3.2) substantially reduces foot-
print overhead compared to using CIAO’s complete compomepkementations to encap-
sulate SEAMONSTER tasks and actions. Tdblesummarizes the differences in footprint

size between these two approaches.

Table 11.2: Action/Effector Footprint

| Implementation Type || Size |

Component 623 KB
Action Implementation| 23 KB
Effector 123 KB

When implemented as a component, the action has a footpraventhalf a megabyte,
substantially limiting the number of action implementasahat could simultaneously be
deployed to a single resource-limited field node.

When the action was implemented in MACRO’s new Action/Effeétamework, how-
ever, its footprint was only 23 KB, which is a fraction of themmary required by an execut-
ing component. Moreover, an implementation of the Effeétamework as a component
facet adds only 123 KB to the footprint of an existing MACRO r@igeomponent, one of

which is required per node.

Table 11.3: Action/Effector Footprint

| Deployment Latency| Average Time (Seconds)

Component 218.96
Action/Effector 3.23

A more important result, moreover, is the deployment lagemxperienced by a compo-
nent compared against the latency experienced by an Actipfementation. In this case,

deployment latency refers to the amount of time from the mundeployment is started

29

(e.g.,load_action in the Action/Effector framework) until deployment is colefed
and the component or Action is ready for invocation. As shawfablell.3, which docu-
ments the average of twenty runs of each, the differenceplogment latency is dramatic,
with component deployment requiring over three minutedevain Action is deployed in
only three seconds. These results do not include the timersztito download the compo-
nent implementation from thRepositoryManager , which could be substantial over a
bandwidth-limited wireless connection, but is only reedithe first time a component is

used on the microserver.

1.4 Related Work

This section compares the work on MACRO with related work.

Resource-Constrained Component ModelsProgramming in the Many (PitMY[1] is
anarchitectural styleaimed at the domain of distributed, highly mobile, severesource
constrained embedded systems. While this component moagsiie stringent footprint
requirements of SEAMONSTER, it lacks the interoperabilitg aich ecosystem of ser-
vices offered by CORBA and CCM. PitM also limits communicatiotween components
to message-passing, lacking the rich interface-based comcation possible with CIAO.
The SOFtware Architectures (SOFA) component mo@8] pased orArchitecture Defi-
nition Languageswhich view applications as hierarchies of connected campts. This
component model provides capability for runtime modificas that may be lighter weight
than CIAO components, but which must be describedesign timg29], thereby limiting
flexibility compared with MACRO.

Decision-theoretic planning and schedulingThe planning service used by MACRO
server-based agents — SA-POP — is a decision-theoretingri@tiowing uncertainty both
in environmental conditions and action outcome, like C-SH@Rhat does so with hi-
erarchical planning and Drip2§] that produces conditional plans. However, to enable

planning with resource constraints, such as those of semsbs, many have chosen to

30

separate the planning and scheduling/resource aspetts pfdablem €.g, [71] and [17]).
This approach works well when the resource/time conssaire relatively loose or there
are relatively few alternatives in the planning process toald use fewer or different re-
sources. However, with tight resource constraints, as #iem @resent in sensor webs,
others have chosen to integrate planning and scheduling-#C8 does. For example, Ix-
TeT [37] uses partial-order planning like SA-POP and allows ig@ving resource conflict
resolution with the planning process, but does not perfagnision-theoretic planning and
incorporates scheduling/timing information directlyarthe action representation.

Plan schemas for resource-constrained planning and schetilng. The MACRO field
agents use plan schemas (also called template plans otaskadens) R2], which have also
been used in other situations where complete planning veasn@ consuming for appro-
priate responses. MACRO’s plan schemas have been enhanitesicweduling informa-
tion, such as in42], and generated through partial order planning technigies [31].
The combination of MACRO server-based agents using the SR-pl@nning/scheduling
service with generated schemas used by MACRO field agentsdgsoa uniquely flex-
ible solution for autonomy in sensor webs with a server elusbnnected to DRE field

systems.

.5 Summary and Lessons Learned

The lessons learned from our extensions to the MACRO disethdeployment infras-
tructure include:

e Feasible integration of non-component entities.The Action/Effector framework
has demonstrated the feasibility of integrating non-conemb entities into component as-
semblies where footprint, latency, or lifetime rules out tse of a full component. In
fact, the Action/Effector framework could be seen as a senggmponent framework. In
this case, Actions are themselves components and Effeateis simplified container that

provides only lifecycle services and no built-in distrilout middleware.

31

e Unitary Effector may limit framework flexibility. A unitary Effector {.e., one
which is incapable of operating in a hierarchical mannehwither effectors) may limit
flexibility in dynamic sensor web environments. Extending Effector interface to support
hierarchical and peer behavior with other Effectors depiitp the same node(s) potentially
has two advantages: (1) it allows Effectors to expand thedabulary as nearby nodes
and devices power up/down in response to changing powelabidy and (2) it allows
the creation of “meta-Actions,” which are ordered composg of one or more concrete
actions across one or more Effectors.

e A synchronous Effector interface may cause unacceptable dmls. If an Action
hangs or takes longer to complete than expected, the pgwitronous interface will also
cause the agent plan execution code to hang. This behawiadesirable, however, since
it may cause the agent to miss other important deadlines icuitrent plan of execution.
Asynchronous Effector and Action interfaces can allevihig concern.

e CIAO footprint is too large for resource constrained systens. The stringent re-
source constraints.€., 32-64 MB RAM and processors operating at 266 MHz or less) of
SEAMONSTER field hardware were a significant hurdle due tootverhead (especially
memory footprint) of CIAO components and deployment infiaciure. Previous CIAO
developments focused on environments with significangater resources,g, more than
a gigabyte of RAM and processors faster than two gigahertz.|eAZ1AO is operational
on the SEAMONSTER hardware, as indicated in Sectid®) further work is needed to
make the middleware efficient under tight resource congsai

e DANCE footprint and deployment latency is too high for resouce constrained
systems. As shown in Sectiorll.3, the largest consumers of memory in the middle-
ware stack are the DANCE daemons, in particularBkecutionManager andNode-
Manager . The footprint of the newer deployment and configuratioreatpof the mid-
dleware has been largely overlooked until now and needs tubeessed. Perhaps more

importantly is the latency experienced during deploymehich has been observed to take

32

as long as several minutes on SEAMONSTER hardware. Impremtnn the deployment
latency for DANCE are further discussed in Chaptér

To further reduce the overhead of CIAO components and the DAdé€ffoyment in-
frastructure, we are working on multiple approaches, idiclg context-aware generative
techniques to prune unnecessary code/features:

e Generative component specializationThe CCM specification includes several fea-
tures and capabilities in the component definition that naaye necessary in all situations,
such as generic navigation, introspection, and securéufes, which contribute to foot-
print bloat. Generative techniques could be used to prussetfeatures on a case-by-case
basis.

e Generative container specialization.The CIAO container is intended to be a generic
solution providing a large feature set to satisfy user néeasost situations. As such, it
contains features and services that may not be necessgqmgaifis deployments, and could
be pruned by generating scenario-specific container imgrations.

An avenue for simplication of both the component logic andtamer implementation
are discussed in Chaptérand ChapteW|.

e Improve separation of concerns in DAnNCE.The current DAnNCE implementation
tangles concerns of deployment and configuration with thetirme elements of the com-
ponent server in thlodeApplication . This entanglement increases footprint by repli-
cating large swathes of deployment logic in each compormnes Careful analysis and
re-factoring is therefore needed to substantially deeréastprint and deployment latency.

Work that significantly improves the separation of concenni3AnCE and largely ad-

dresses this item is discussed in Chapiter

33

CHAPTER IlI

HETEROGENEOUS AND ADAPTIVE DEPLOYMENT AND CONFIGURATION
FRAMEWORKS

Large-scale distributed real-time and embedded (DRE) ctingpsystems, such as
shipboard computing environment¥9] and air-traffic managemen1§ systems, are in-
creasingly being developed with the use of component-besfddare technologies. Comp-
onent-based development not only offers useful abstrestar developing large systenis]]
by encouraging systematic reuse and composition, theysaitgalify the deployment and
configuration process at runtime. The CORBA Component Model (C[B&])along with
the Deployment and Configuration Specification (D&C) from thiejeg@t Management
Group p9], and the SOFA component moddl(] assist in the deployment and configu-
ration of component-based applications.

Production large-scale distributed computing systemenofnnot be limited to a sin-
gle component model, particularly if they must integrate amterface with legacy sys-
tems. While it is possible to use multiple individual deplaymhframeworks to deploy and
configure applications, this approach can complicate therphg process.g., assigning
instances to nodes, ensuring that sufficient resourcet prigorming static verification,
etc.), thereby leading to problems during system integmnatiThese problems stem from
potentially incompatible tooling, meta-data formats, prablems coordinating the activity
of disparate deployment infrastructures.

The originalDeployment and Configuration EngitBANCE) framework provides an
offline deployment and configuration for t@®mponent Integrated ACE ORB (CIACS(]
CCM implementation. The Locality-Enhanced (LE-DANCE) vensitescribed in this pa-
per provides a deployment tool-chain that can handle hgéeeous deployments and adapt

its behavior dynamically to meet changes in the requireseithe applications it deploys.

34

The remainder of this chapter will be organized as followsct®nlll.1 provides an
overview of the Deployment and Configuration SpecificationGomponent Based Ap-
plications. Next, Sectioml.2 discusses the research challenges addressed herein. Sec-
tion I11.3 describes solutions to these challenges. Finally, Sestighwill describe future

enhancements to the LE-DANCE framework and Sedtioh will describe related work.

1.1 D&C Standard Overview

The OMG D&C specification provides standard interchangenéds for meta-data used
throughout the component application development lifexyas well as runtime interfaces
used for packaging and planning. Below we focus on the intesameta-data, and archi-

tecture used for runtime deployment and configuration.

I11.1.1 Runtime D&C Architecture

The runtime interfaces defined by the OMG D&C specificationdeployment and
configuration consists of the two-tier architecture showfigurelll.1. This architecture
consists of a set of global entities used to coordinate gepot and a set of node-level
entities used to instantiate component instances and coaftgeir connections and QoS
properties. Each entity in these global and local tiersespond to one of the following

three major roles:

* Manager. The Manager role, found at the global level as EhecutionManager
and at the node-level as tiNodeManagercorresponds to a singleton daemon that
manages all deployment entities in a single context. Thedganserves as the entry
point for all deployment activity and serves as a factoryifioplementations of the

ApplicationManagerole.

» ApplicationManager. The ApplicationManager serves as a lifecycle manager for

running instances of a component application. The globttyeis known as the

35

Execution Manager

Domain Application Manager

‘ Domain Application ’

1 1
Y 1

Node Manager

Node Application Manager

‘ Node Application ’

Figure IlIl.1: OMG D&C Architectural Overview and Separation of C ~ oncerns

DomainApplicationManageand the node-level entity is known as thedeApplication-
Manager Each ApplicationManager represents exactly one compapgiication
and is used to initiate deployment and teardown of the agipdis. This role serves

as a factory for implementations of tigplicationrole.

» Application. This role represents a deployed instance of a componentapph,
and is used to finalize the configuration of the associatedbooent instances and
to begin execution of the deployed component applicationthA global level, this
entity is called th&omainApplicationwhile the node-level entity is called tiNode-

Application

111.L1.2 D&C Deployment Data Model

In addition to the runtime entities described above, the D&g€cification also con-
tains an extensive data model that is used to describe canpapplications throughout
their deployment lifecycle. The meta-data created by tleeifipation is intended for use
as (1) an interchange format between various toelg,(development tools, application
modeling and packaging applications, and deployment phartools) applied to create the

applications and (2) directives that describe the configamand deployment used by the

36

runtime infrastructure. Most entities in the D&C meta-dedbatains a section where arbi-
trary configuration information may be included in the forfracsequence of name/value
pairs, where the value may be an arbitrary data type. Thifigumation information is
used to describe everything from basic configuration iniram (such as shared library
entrypoints and component/container associations) temomplex configuration infor-
mation (such as QoS properties or initialization of compuratributes with user-defined
data types).

This meta-data is broadly grouped into three categorieskggng, domain, and de-
ployment. Packaging descriptors are used from the begirofiapplication development
to specify component interfaces, capabilities, and reguants. After implementations
have been created, this meta-data is further used to graoljpdnal components into as-
semblies, describe pairings with implementation artgdiot., shared libraries), and create
packages that contain both meta-data and implementatiansray be installed into the
target environment. Domain descriptors are used by haeladministrators to describe
the capabilities €.g, CPU, memory, disk space, and special hardware such as GPS re-
ceivers) present in the domain.

Both the domain and packaging meta-data are then used by @mjaagent (either a
human or automated software tool) to map the described coempanstances into physi-
cal reality through the creation of the third type of metéadaupported by the OMG D&C
standard: theomponent deployment plg¢&@DP), which contains the following informa-

tion:

* Implementation Artifact Descriptions (IAD) .
The IAD section of the deployment plan describes the varastifacts that must be
present on a node for successful component deploymentaétdiinclude—but are
not limited to—executable files and shared libraries thatigie binary implementa-

tions of components.

* Monolithic Deployment Descriptions (MDD). The MDD section references all

37

IAD entries necessary for one particular component typalstt contains additional
configuration information that is necessary for all insemof that typee.g. entry-

points and factory functions used to load the implememétiom shared libraries.

* Instance Deployment Descriptions (IDD) DD entries represent concrete instances
deployed into the domain. This section of the meta-datartescthe node in which
a particular component should be instantiated and congaldgional configuration
properties that should be applied to that instamcg, QoS configuration informa-

tion.

» Plan Connection Descriptions (PCD) The PCD section describes all connections
that must be established as part of the deployment. Thesesrgference appli-
cation IDD entries that are part of a particular connectiod aontains additional
information (such as port names and QoS configuration) tlzgt Ine necessary for

the connection to be successfully established.

The OMG D&C standard suggests that all meta-data be sexhtiz an XML format
for on-disk storage and for use as an interchange formatdegtihe various tools used
for application development and planning. This XML formatshbe converted into the
native binary format used in the interfaces of the runtinfeastructure, however, so the

deployment infrastructure can use it.

[11.2 Adaptive D&C Challenges in Component-based DRE Systms
The LE-DANCE deployment framework is motivated by a desireawee a deployment
framework that is able to both deploy heterogeneous apita(consisting of potentially
multiple component frameworks in DRE systems) and adaptitsbior to meet changing
requirement and expectations.

This section describes the key challenges of creating adggreous and adaptive

38

D&C tool that have motivated the key features of LE-DANCE taed described in Sec-

tion 11.3.

[11.2.1 Challenge 1: Support for Heterogeneous Deploymerst

The process of applying the PSM to the OMG D&C specificaticecsdizes the PIM
using a particular component model (such as CCM or EJB) as thetttr deployment.
Transforming the model with the deployment targeg, the component model we wish to
deploy, as the object of the transformation has the follgwimo categories of important
categories specialization of the UML model and semantiaadan the PIM:

(1) Data Model and runtime model transformation. The data and runtime model that
results from the PIM to PSM transformation is mapped to a &irsnited to the deployment
of the target component model. Transforming an OMG D&C-basedel to CCM, for
example, results in the creation of a data model and runtieefaces that are specified in
the OMG interface definition language (IDL). This transfation itself does not pose an
inherent problem for supporting heterogeneous deploysnept, deployments consisting
of more than one deployment target). This is due to the feat dtmost all of the the
IDL data structures that are created are agnostic to theyegint target in that they can
easily represent non-CCM entities. However, some of the IDia déructures contain
concrete data elements that are specific to CCM. For examlelata structures used to
communicate connection meta-data contains CORBA Objeateraes. If an attempt was
made to reuse the same transformation (including the IDLtla@data structures) for other
non-CCM component models these data structures might nonhengieally meaningful.

(2) Configuration property language. The transformation defines a particuf@aop-
erty languagehat communicates target-specific meta-data (such ascshiarary names,
entry points, and component model specific configuratioa)datthe D&C deployment
plan. This property language consists of standard-defiaedefvalue pairs that are en-

coded in property fields that decorate most entries in a gepat plan. These fields are

39

used by a D&C framework to describe meta-data specific to gpooent model that is
needed to deploy and configure instances.

Sectionlll.3.1 describes how LE-DANCE addresses the challenge of supgdnitero-
geneous deployments by introducing an Installation Hapdlerell-defined interface used

by D&C infrastructure to manage instance life-cycles.

[11.2.2 Challenge 2: Customized Behavior During Deployment

Our experience with the DRE system domains described inddttihas demonstrated
that applications may have different expectations of thebi®r of the D&C infrastructure
based on (1) the domain requiremergsy(safety-criticality, QoS requirements), or (2)
the stage in the development procesg(development/testing vs. deployment/operation).
These differences in behavior include the following:

Customized error handling semantics. The deployment process for an application
may result in many types errors, ranging from incorrect gurtion data that may cause
components to initialize improperly to application fauliat cause runtime entities to crash.
While some applicationse(g, in safety-critical domains) should only be activated itlan
only if they have error-free deployments, other appliaai.e., applications that are fault
tolerant) may want their applications activated with “beffort” deployment semantics,
whereby deployment errors may be suppressed so as to nbitisticcessful deployment
and activation. Moreover, some end-users may want to igrertain classes of errors.(,
an invalid CPU affinity setting) or errors from individual tasces in a deployment.

Application liveness/status monitoring. End-users may want to leverage customized
mechanisms to monitor the liveness/status of particuktamces in their applications, par-
ticularly in “best-effort” deployment scenarios. Such tacisms may be constrained by
the types of information end-users want to capture, or thadb and/or transport used to

deliver system events. This information may be useful atajyglication layer €.g, to

40

ensure that certain services are available and to glearmatimn about their configura-
tion) or to a runtime planner/system management seeigeto enable automatic failure
detection/recovery).

Customized discovery.Proper deployment and functioning of applications often de
pends on discovery services that can locate elements ofeghleyament infrastructure or
to accomplish connections between instances in a depldymean Certain domaine@.,
security critical) many have stringent requirements ate these discovery services must
secure and manage access to these services that cannoedeefoby the D&C imple-
menter

Sectionlll.3.2 describes how LE-DANCE addresses the challenge of provieasgy
customized behavior during deployment by creating a welfiréd interfaces users can

leverage to provide customizations invoked during depleym

[11.2.3 Challenge 3: Customization of Behavior at Run-time

D&C infrastructure intended for long-running systems—aended to provide deploy-
ment services to a variety of applications in DRE systems—tmiisn adapt to changing
conditions and requirements at runtime.

One use-case for adaptive behavior in D&C framework is thityabo select deploy-
ment-time behavior customizations (see Sectlbf.2) since not all customizations may
be appropriate for a particular deployment. Moreover, iymat be possible to know
priori, i.e. before the deployment tools are distributed to a targeipeiting environment,
which component models a D&C infrastructure may need toaegdfor example, an ap-
plication may be assembled from components implemented several different CCM
implementations, which while compatible at runtime, hawiedng interfaces for deploy-
ment. Ideally, the D&C infrastructure should be able to @olgrat runtime its capability to
deploy different versions of component models without reg recompiling or restarting

the infrastructure.

41

Sectionlll.3.3 describes how LE-DANCE addresses the challenge custonzhgv-
ior at runtime by providing a facility to deploy installatichandlers and interceptors at

runtime.

l11.3 Decoupling the D&C Specification from Target Component Model

To address the challenges described in Sedtldh, the existing DANCE D&C frame-
work was enhanced with a novel infrastructure entity catleelLocalityManager The
LocalityManager represents a key change in how the OMG Dé&&eifipation transforms
platform-independent D&C models to target specific componedels. Rather than map-
ping the entire specification to a particuammponent modgle map the data and runtime
model to a particuladistribution middlewarehat is used only to represent and communi-
cate deployment meta-data and deployment directives aitmenUsing such an approach
for mapping the D&C PIM to concrete language elements allasvio reuse much of the

data model which, as outlined in Sectibin2.1 is largely agnostic to the deployment target.

NodeApplication

Process Localities
<<spawn>>
LocalityManager

callback —

I
]
e
i Configuration Plugins
b >
! configuration_complete
<
]
preparePlan 1
pre_process_plan
<>
startLaunch —
pre_install_instance
>
install_instance
-

post_install_instance

Connection Information
>

Figure II1.2: Locality Manager

42

The LocalityManager, a key feature in our Locality-Enhah&8AnCE (LE-DANCE),
is an entity spawned by the NodeApplication entity desctilpeSectionlll.1.1. The Lo-
calityManager entity is intended to be a generic applicagerver, maintaining a strict
separation of concerns betwegeanericdeployment logic and thepecificruntime logic
necessary to deploy a particular deployment target. Toigeoa well-defined interface
between the NodeApplication and the LocalityManager, weiaused elements from the
D&C specification by including operations from tManagerinterface and inheriting from
the ApplicationManagerndApplicationinterfaces.

Figurelll.2 shows the initial start up sequence of the LocalityManager.

The remainder of this section describes the structure ametifinality of the Locality-

Manager.

[11.3.1 Instance Installation Handlers

To address the challenge described in Sedtidh 1, the implementation of the Locali-
tyManager is entirely agnostic to the particular compomendel it is attempting to deploy,
delegating alcomponent model specifite-cycle management operations to pluggable In-
stance Installation Handlers, which we describe below.

Instance installation handlers represent a well-definefacce that is used by the Lo-
calityManager to manage the life-cycle of all entities thiad installed during deployment.
The operations that are included in this interface were iheafluenced by the typical
CCM Component life-cycle, which is shown in Figuité3. The included operations al-
low the LocalityManager to install/remove an instanceatggemove a connection, indi-
cate that configuration is complete, and to activate/passian instance. The operations
in this interface are currently used by the locality managegoerform all initial deploy-
ment actions, and can be used in the future to provide forcaifmn re-deployment and
re-configuration in the future.

It is important to note that not all instance types will reguevery lifecycle operation

43

Configurable

(i

Removed

o
4

Unloaded

Figure I11.3: Typical CCM Component Lifecycle

in the installation handlers to be implemented. For exangletal of four installation han-

dlers were created to support the installation and manageoh€IAO components. First,

it is necessary to instantiate a CIAO container to host anypoorants hence an installa-
tion handler was created that initializes the CIAO runtimd ancapable of instantiating

containers.

Second, an installation handler was created to supporngtaliation of CCM Homes.
Neither of these first two entities have the same numberexdyifle states as a CCM com-
ponent. For example, neither have connections nor distioive/passive states, so the
relevant operations in the handler remain unimplementa&adkllly, handlers were created
that are able to load components directly from a dynamidadiged shared library or from
an appropriate factory operation on a CCM Home. These hanifgiement all of the
lifecycle operations in the installation handler.

Despite the differences in how each of these entities iglilestand behaves at runtime,
the common interface for managing their lifecycle allows ttocalityManager to treat
each as an abstract instance. More importantly, it allowd ticalityManager to easily be
configured to deploy entirely new instance types providga@pmiate installation handlers
are loaded.

For example, assume an application is made of only CIAO comapsn To accomplish
this deployment, the LocalityManager would require twaatied installation handlers -

one for the containers that will host the components, a skawstallation handler that

44

manages the life-cycle of the components. In this case,gpbyment plan would contain
a instance that represents a container, and other instémeerepresent the components
to be installed. The LocalityManager would first select @shen meta-data in the plan)
the installation handler for the container and invoke thmestall” operation, which causes
the container handler to bootstrap the CIAO infrastructukext, the LocalityManager
will select the handler for CIAO Components, and invoke “itistaperations for each
component instance, which will cause the handler to intenaih the already installed
container to create a component.

As a further example, lets assume that we now wish to intrecheterogeneity into
this deployment example by also including non-CCM componestances. This can be
accomplished by annotating the instances with an apptegdantification string and pro-

viding appropriate installation handlers for the new comgad model.

[11.3.2 Deployment Portable Interceptors

Addressing the challenge described in Sectib2.2, by providing a mechanism for
end-users to customize the behavior of the middleware, tdvalityManager also imple-
ments a mechanism which can be used to modify the elemertte deployment plan both
before and after invocation of each life-cycle managemeetation. This mechanism,
which we call “Deployment Portable Interceptors”, was insg by CORBA Portable In-
terceptors46], and is described below.

The Deployment Portable Interceptor (DPI) facility in thedalityManager allows end-
users to supplement or modify behavior during deploymerite @perations in the DPI
interface derived from the operations present in the Ilagtah Handler interface. Each
operation in the Installation Handler interface resultetivo operations added to the DPI
interface — one which is invokeloeforethe lifecycle operation, and another which is in-
voked after.

In Figurelll.2, for example, the LocalityManager invokes a DPI hook bef@arere

45

hook) and after (posthook) theinstall_instancdifecycle operation. All of the “pre” in-
terceptors receive the same parameters as their assolcistedce Handler operation, and
are allowed to manipulate those parameters to change tlaibebf the operation. For ex-
ample, an alternative discovery service for connectiong lbeaimplemented by overriding
thepre_connecinterception point with logic that would retrieve the appriate connection
reference and modify the parameters passed todhaect_instanceperation.

The “post” interceptors generally receive the same pararmef the lifecycle operation
that preceded them, in addition to an additional paramétgr ¢contains any error result
(i.e., exception) that may have arisen during execution. Unlie“pre” interceptor, the
“post” event is only allowed to manipulate the error paramet present. This parameter
allows the interceptor to, for example, log success or faibf the eventi(e., for a system
health and status service), or to clear the error statusjrgthat error to be overlooked by
the LocalityManager implementationd,, for implementation of best-effort deployment

semantics).

[11.3.3 Configuration of Handlers and Interceptors

Finally, to address the challenge outlined in Sectlb@.3 and provide a mechanism to
provision both Installation Handlers and Deployment loggtors at runtime, the Locality-
Manager is capable of installing these entities duringagpknt as they would any other
instance as described below.

Allowing runtime adaptation of the deployment frameworluies the ability to dy-
namically add or remove instance installation handlersadamoyment interceptors on a
per-deployment basis. In the LocalityManager, we have @ddéacility which invokes
user-supplied configuration plug-ins during start-up tiglo a well-defined interface. In
Figurelll.2, this process takes place after the LocalityManager Ihit@alls back to the
NodeApplication to receive configuration meta-data thatésent in the deployment plan.

Meta-data provided to the LocalityManager consists of g&esesf name/value pairs.

46

The name of each property is used to select an appropriafgemtion plug-in to which
the value is provided. By including both a property on the Libgdslanager instance in the
plan that describes the desired Instance Handlers and yeptd Interceptors for the plan,
and a configuration plug-in that is able to interpret thapprty, it is possible to load them
before the LocalityManager attempts to install any instsno the plan.

This facility has utility outside the configuration of Haeds and Interceptors. For ex-
ample, we used these plug-ins to change QoS parametersaspciority or CPU affinity)
of the LocalityManager instance at deployment time withotroducing platform-specific

code into the LocalityManager.

1.4 Related Work

DeployWare [21] is a framework for managing heterogeneous software demoys
in grid environments. Deployments in this system are dbedrusing a domain-specific
modeling language that captures deployment meta-data ana@n agnostic to the eventual
deployment target. Heterogeneous deployments are them@atished by using appropri-
ate “personalities”, which are hierarchies of Fractal congnts that implement parts of the
deployment process. Unlike the OMG D&C specification, Dgiare does not provide a
well-defined set of meta-data that can be used throughoajbiecation development life-
cycle nor does it provide a way to model hardware resourctgeicomputational domain.
Such meta-data is desirable for fostering both reuse andraryi of COTS component
applications. As a result, DeployWare can be harder to udarger projects in which
multiple, independent teams must collaborate.

ADAGE [38] is another grid deployment tool that is capable of hetemeges deploy-
ment capable of deploying both CCM and MPI applications. Is #yistem, applications
are described in a middleware-specific description languwegch is provided to a “trans-
lator” that converts that description into a middleware @gjic format called the Generic

Application Description (GADe) model. Like the OMG D&C spication, it provides a

a7

description language for hardware resources, but doegowitie an expressive vehicle for
component meta-data. For example, it is not possible taicaspecific component/node
pairings, which are decided by the deployment tool, or totw@pQoS attributes, such
as Processor/Core affinity or process priority. While thioomatic planner included in
ADAGE makes the planning process easier for the grid enmemnts for which this tool is
intended, it is not desirable for DRE systems in which specdiatrol over the application
topology may be required to provide sufficient quality ofvées for the application.

SOFA [10] is a component model with its own D&C framework that proadeany
advanced features for component-based software, ingumihavior specification and ver-
ification, software connectors for supporting many comroation middleware platforms,
and a robust redeployment mechanism. While SOFA's companedel and D&C frame-
work have many advanced and interesting features, it stgppeither heterogeneous de-
ployment nor adaptation of the behavior of the D&C framewioiknd in DANCE.

The work that comes close to the goals of LE-DANCE is describ§a7]. The authors
also use hierarchical separation of concerns to providewoent, and hence faster deploy-
ments. A major difference of this work with that of LE-DAnCEtisat the former does not
consider the OMG D&C specification but rather some genenmatepts of deployment and
configuration. One of the primary goals of LE-DANCE is to pdw®/solutions to standard-
ized technologies for wide applicability. Naturally, in HBANCE we seek solutions that
will not break the standards, yet enable us to provide elggeriormance optimizations.

The work presented in3p] seeks to find deployment solutions in dynamic environ-
ments. While the goal of dynamic environments is similar &t tf LE-DANCE, the focus
of this related research is mostly on deploying a hierastliomponent — essentially an
assembly of components treated as a single unit — while imgstivat the deployment of
individual monolithic units do not violate architecturalrestraints of the platform and the

network before deploying that component.

48

.5 Summary and Lessons Learned

This chapter described the LocalityManager, which is arresibn to the OMG D&C
specification and key feature of LE-DANCE, that adds threeontamt capabilities to the
original standardized deployment framework to supporetogieneous deployment and
adaptation. First, the LocalityManager udestance Installation Handler deploy ap-
plications that use heterogeneous component models bpsulaesing middleware-specific
deployment logic in a well-defined interface that handledifaicycle events. Second, it
can adapt the behavior of the deployment tool-chain atmethrough the use @eploy-
ment Portable Interceptord hird, the D&C tool-chain can adapt more readily to chaggin
requirements by having the ability to load both installatitandlers and interceptors at
runtime.

The implementation of heterogeneous deployment and eypéocs found in the Local-
ityManager described in this chapter is complicated by #ut that the deployment plan
meta-data defined by the D&C specification is poorly suitedaoture deployment order-
ing or dependencies. It is therefore hard to determine tderon which instances should
be installed when there are implicit dependenageg, CIAO containers must be installed
prior to the components they host. This challenge was adglédeén the LocalityManager by
following a FIFO approach to select the order of installingtance types. While sufficient
for current end-users, this approach will not scale as timebau of installed interceptors
and/or installation handlers increase.

This this issue could be addressed by adapting the hiecalatéployment specifica-
tion techniques in the DeployWare and SOFA component modielgarticular, this prior
work could be leveraged to build robust redeployment andniguration capabilities into
DANCE to support adaptive deployment behavior in applicetimanaged by this frame-
work. Moreover, as we gain a complete understanding of tbhet@mings of the OMG
D&C specification and the associated PIM to PSM mapping m®ose will work within

the OMG to produce an updated specification.

49

CHAPTER IV

DETERMINISTIC AND EFFICIENT DEPLOYMENT IN COMPONENT-BASED
ENTERPRISE DISTRIBUTED REAL-TIME AND EMBEDDED SYSTEMS

Component-based software engineering techniques arasiogly applied to develop
large-scalddistributed real-time and embedd€B@RE) systems, such as air-traffic man-
agement 18], shipboard computing environment39, and distributed sensor webgj|.
These domains are often characterized as “open” sincecagiphs in these domains must
contend not only with changing environmental conditionscfsas changing power lev-
els, operational nodes, or network status), but also ewgleperational requirements and
mission objectivesZ4].

To adapt to changing environments and operational reqeinésnit may be necessary
to change the deployment and configuration characterisfitsese DRE systems at run-
time. Examples of potential adaptations include deploynoertear down of individual
component instances, changing connection configuratraadfering QoS properties in the
target component runtime. As a result of stringguality of servicQoS) requirements
in these domains, it is important that any changes to DRE sydeployment and config-
uration occur as quickly and predictably as possibée, DRE systems expect short and
bounded deployment latencies.

Not only are timely and dependable runtime deployment andigration changes
essential in DRE systems; even initial application stariione ttan be an important metric.
For example, in extremely energy-constrained systemgb,asidistributed sensor networks,
a common power saving strategy may involve completely destg field hardware and
periodically restarting it to take new measurements owatgi actuatorsg4]. In such

environments, deployments must be fast and time-bounded.

50

To support these requirements, the efficiency and QoS prdwg the deployment in-
frastructure should be considered alongside the compangaltieware used to develop
DRE systems. Standards, such as the ODM&ployment and Configuratioiid&C) speci-
fication [59] for component-based applications, have emerged in rgeamst The OMG
D&C specification provides comprehensive developmenkggiog, and deployment frame-
works for a wide range of component middleware.

In the OMG D&C specification, deployment instructions aréveeed to the deploy-
ment infrastructure via eomponent deployment pl@&8DP), which contains the complete
set of deployment and configuration information for compuanastances and their asso-
ciated connection information. During DRE system initiation, such information must
be parsed, components deployed on the nodes, and the sydieatea in a timely and
deterministic manner. In this chapter, the timeliness efdlployment infrastructure to
execute the deployment plan is referred to as the “deploytatancy,” which includes the
time starting when a CDP is provided to the deployment infugstire to the time at which
all deployment instructions have been executed and thersyattivated.

This chapter motivates and describes architectural emagicts made to the OMG
D&C specification to achieve determinstic deployment letes for large-scale DRE sys-
tems. The solution is called tHepcality-Enhanced Deployment and Configuration En-
gine (LE-DANCE), which extends the earli€eployment and Configuration EngigBA-
nCE) [14]. LE-DANnCE was developed with the sole aim of cleanly sepagatoncerns
defined by the OMG D&C specification and demonstrating itsitehty. After applying
DANCE to a range of representative DRE systeB%; p4], however, the lack of appro-
priate optimizations and architectural limitations of (&G D&C specification yielded
performance bottlenecks that adversely impacted deploytatencies. Moreover, these

performance bottlenecks stemmed from more than just lifaita with the original DAnCE

L Although originally developed for th€ ORBA Component ModéCCM) [56], the OMG D&C specifi-
cation is defined via a UML metamodel that is applicable toyrather component models.

51

implementation, but involve inherent architectural liatibns with the OMG D&C specifi-
cation itself. This paper explains how LE-DANCE overcomeséhlimitations.

The remainder of this chapter is organized as follows: $rdW.1 summarizes the
OMG D&C specification and analyzes key sources of overheadrsing from architec-
tural limitations with the OMG D&C specification and naiveplamentation techniques
adopted in DANCE; SectiolV.2 describes how these sources of overhead were addressed,
focusing on deployment latency; Sectitvi3 analyzes the results of experiments con-
ducted to compare LE-DANCE with DANCE; Sectitvi4 compares this research with
related work on deploying and configuring large-scale itlisted applications; and Sec-

tion IV.5 presents concluding remarks and lessons learned.

IV.1 Impediments to Efficient and Deterministic Deployment Latency

This section presents an overview of the process used by M@ Deployment and
Configuration(D&C) specification for component-based applications arsh thescribes
how an implementation of this specification called Beployment and Configuration En-
gine(DANCE) [14] supports the separation of concerns espoused in the D&€ifgadion.
Key sources of overhead are exposed that impact deployratanicies in DRE systems
and pinpoint the architectural limitations in the D&C sgmeition that exacerbate these
overheads. An overview of the meta-data and interfaceseatefay the standard may be

found in Sectiodll.1.

IV.1.1 OMG D&C Deployment Process

Component application deployments are performed in a foas@lprocess that is cod-
ified in the OMG D&C standard. Th®lanagerandApplicationManagerare responsible
for the first two phases and ttgplicationis responsible for the final two phases, all of

which are described below:

1. Plan preparation. In this phase, a CDP is provided to thgecutionManagemwhich

52

(1) analyzes the plan to determine which nodes are involvedd deployment and
(2) splits the plans into “locality-constrained” plans,eofor each node containing
only information for each node. These locality-constrdiptans have only instance
and connection information for a single node. EalddeManageis then contacted
and provided with its locality-constrained plan, which sasithe creation dflode-
ApplicationManagersvhose reference is returned. Finally, thgecutionManager

creates @omainApplicationManagewith these references.

. Start launch. When theDomainApplicationManagereceives the start launch in-
struction, it delegates work to tiéodeApplicationManagersn each node. Each
NodeApplicationManagecreates aNodeApplicationthat loads all component in-
stances into memory, performs preliminary configuratiow, eollects references for
all endpoints described in the CDP. These references arectued by omain-

Applicationinstance created by ti@omainApplicationManager

. Finish launch. This phase is started by an operation on B@mmainApplication
instance, which apportions its collected object refersrfoem the previous phase
to eachNodeApplicatiorand causes them to initiate this phase. All component in-

stances receive final configurations and all connectiontharecreated.

. Start. This phase is again initiated on t®mainApplication which delegates to
the NodeApplicationnstances and causes them to instruct all installed conmone

instances to begin execution.

IV.1.2 Sources of Deployment Latency Overheads

The remainder of this section discusses the sources of @eadshthat impact deploy-

ment latencies in the context of the architecture definechbyQMG D&C specification.

The existing DAnNCE 14] OMG D&C implementation is used as a vehicle to demonstrate

these sources of overhead. The major sources of latencheagrstem from multiple

53

complexities in the OMG D&C standard, including the progegsf deployment meta-
data from disk in XML format and an architectural ambiguitytihe runtime infrastructure

that encourages sub-optimal implementations.

IV.1.3 Challenge 1: Parsing Deployment Plans

Component application deployments for OMG D&C are descried data structure
that contains all the relevant configuration meta-data lierdomponent instances, their
mappings to individual nodes, and any connection inforomatequired. This CDP is seri-
alized on disk in a XML file whose structure is described by anlXSchema defined by
the OMG D&C standard. This XML document format for CDP filesgaets significant
advantages by providing a simple interchange format betweadeling tools 25|, is easy
to generate and manipulate using widely available XML medtibr popular programming
languages, and enables simple modification and data miitgxbprocessing tools, such
as perl, grep, sed, and awk.

Processing these CDP files during deployment and even runtiomesver, can lead to
substantial deployment latency costs, as shown in Set#@m2. This increased latency

stems from the following sources:

» XML CDP file sizes grow substantially as the number of compomaestances and
connections in the deployment increases, which causesgisag 1/0O overhead to
load the plan into memory and to validate the structure agdive schema to ensure

that it is well-formed.

» The XML document format cannot be directly used by the dgplent infrastructure,
so it must first be converted into the native OMterface Definition LanguaggDL)

format used by the runtime interfaces of the deployment énaark.

In many enterprise DRE systems, component deploymentsuhaier in the thousands

are not uncommon, and component instances in these domdliexbit a high degree

54

of connectivity. Given the structure of CDPs outlined in 8ttll.1.2, both these factors
contribute to large plans. While the above latency sourceastnmmediately applicable
to initial application deployment, it can also present angigant problem during potential
re-deployment activities at application runtime that ineosignificant changes to the ap-
plication configuration. While CDP files that represent relogment or re-configuration
instructions may not be as large as for the initial deployintre responsiveness of the
deployment infrastructure during these activities is eveme important to ensure that the
application continues to meet its stringent QoS and erehtb-deadlines during online
modifications.
SectionlV.2.1 describes how LE-DANCE resolves Challenge 1 by pre-procgésige

deployment plans offline into a portable binary represéorat

IV.1.4 Challenge 2: Serialized Execution of Deployment Actins

The complexities presented in this section involve theatémion-parallel) execution of
deployment tasks. The related sources of latency in DANCE&t exiboth the global and
node level. At the global level, this lack of parallelismutts from the underlying CORBA
transport used by DANCE. The lack of parallelism at the logatl, however, results from
the lack of specificity in terms of the interface of the D&C ilmmentation with the target
component model that is contained in the D&C specification.

The D&C deployment process presented in Sect\dt.1 enables global entities to
divide the deployment process into a number of node-spestifitasks. Each subtask is
dispatched to individual nodes using a single remote invacawith any data produced
by the nodes passed back to the global entities via “out’matears that are part of the
operation signature described in IDL. Due to the synchremaiure of the CORBA mes-
saging protocol used to implement DANCE, the conventionai@gch is to dispatch these
subtasks serially to each node. This approach is simple ptement, in contrast to the

complexity of using the CORBAsynchronous method invocatiohMI) mechanism 6].

55

To minimize initial implementation complexity, synchrareinvocation was used in
an (admittedly shortsighted) design choice in an earligglé@mentation of DANCE. This
global synchronicity did not cause problems for relativatyall deployments (less than 100
components). As the number of both nodes and instancesaddig those nodes begin to
scale up, however, this global/local serialization imgogesubstantial cost in deployment
latency.

This serialization problem, however, is not limited onlythe global/local task dis-
patching and exists in the node-specific portion of the siftecture as well. The D&C
specification provides no guidance in terms of how the Nogidation should interface
with the target component model (in this case, CCM), insteadg such an interface as
an implementation detail. Early versions of DANCE directigtantiated the CCM con-
tainer and components directly in the address space of tideAuplication. To alleviate
the resulting tedious and error-prone deployment logiclater separated the CCM con-
tainer into a separate process. In DANCE, the D&C architeciwas implemented using

three processes, as shown in Figlvd..

Execution
Manager

|
l l

Node Node
Manager Manager

e

Server Server Server Server
Process Process Process Process

Ci C

Figure IV.1: Simplified DAnCE Architecture

The ExecutionManager and NodeManager processes inséatiter associated App-
licationManager and Application instances in their adslggmace. When the NodeApplication

installs concrete component instances it spawns one (og)rseparate component server

56

processes as needed. The component server processes ngerfasd derived from an
older version of the CCM specification that allows the NodeAggpion to individually
instantiate containers and component instances. Thi®agpris similar to that taken by
CARDAMOM [58], which is another CCM implementation tailored for enterpri3RE
systems, such as air-traffic management systems.

While the DANCE architecture shown in Figukél improved upon the original imple-
mentation that collocated all CCM entities in NodeApplicatexddress space, it was still
problematic with respect to parallelization. Rather thariquening only some processing
and delegating the remainder of the concrete deploymeitt togghe component server
process, the DANCE NodeApplication implementation insteéegrates all logic neces-

sary for installing, configuring, and connecting instandiesctly, as shown in Figur/.2.

(" N

(Locality processing logic

(Component Server Launching Logic

(CCM Home Installation Logic

(CCM Component Installation Logic

(CCM Component Connection Logic

(CIAO Local Facet Connection Logic

N7 N7 N7 A 70 N7 N

(CIAO Teardown Logic

NodeApplication Implementation
\ y,

Figure 1V.2: DANCE NodeApplication Implementation

This tight integration made it hard to optimize the nodeelanstallation process for

the following reasons:

» The amount of data shared by tipeneric deployment logithe portion of the Node-
Application implementation that interprets the plan) ahd $pecific deployment

logic (the portion which has specific knowledge of how to maniguEmponents)

57

made it hard to parallelize their installation in the comtek a single component

server since that data must be modified during installation.

 Since groups of components installed to separate compseerers can be consid-

ered separate deployment sub-tasks, these groupingstm®aldo parallelized.

SectionlV.2.2 describes how LE-DANCE resolves Challenge 2 by leveraging-asy

chronous features of the underlying CORBA middleware to péiz¢ at the global level.

IV.2 Overcoming Deployment Latency Bottlenecks in LE-DANCE
This section describes the enhancements we developéddatity Enhanced DANCE
(LE-DANCE), which is a new implementation of the OMG D&C standl that addresses
the challenges outlined in Sectidv.1.2. SectionlV.2.1 describes how we reduced de-
ployment latency arising from the challenge of processieg¥ML-based deployment de-
scriptors outlined in Sectiolv.1.3. SectionlV.2.2 then introduces techniques LE-DANCE
uses to increase deployment and configuration parallelisovércome the challenge of

deployment latency bottlenecks in DANCE outlined in Sectgth.4.

IV.2.1 Improving Runtime Plan Processing

There are two approaches to resolving the challenge of XMkipg outlined in Sec-
tion IV.1.3.

1. Optimize the XML to IDL processing capability. DANCE uses a vocabulary-
specific XML data binding§3] tool called theXML Schema CompilgXSC). XSC reads
D&C XML schemas and generates a C++-based interface to XMumeats built atop
theDocument Object ModéDOM) XML programming API. In general, DOM is a time/-
space-intensive approach since the entire document msisbérprocessed to fully con-
struct a tree-like representation of the document bef@&ML-to-IDL translation process

can occur.

58

An alternative is to use th8imple API for XML(SAX), which uses an event-based
processing model to process XML files as they are read frokn dighile a SAX-based
parser would reduce the time/space spent building the imaong representation of the
XML document, the performance gains may be too small to tnvessubstantial develop-
ment time required to re-factor the DANCE configuration hargjlwhich serve as a bridge
between the XSC generated code and IDL. In particular, a a3ed approach would still
require a substantial amount of runtime text-based prawgs#loreover, CDP files have
substantial amounts of internal cross-referencing, wivatld require the entire document
be processed before any actual XML-to-IDL conversion cawalclur.

2. Pre-process the XML files for latency-critical deploymens. This optimization ap-
proach (used by LE-DANCE) is accomplished via a tool thatrimyes the existing DOM-
based XML-to-IDL conversion handlers in DANCE to (1) conwed CDP into its runtime
IDL representation and (2) serialize the result to disk gigshe Common Data Represen-
tation (CDR) [55] binary format defined by the CORBA specification. This platfer
independent binary format used to store the CDP on disk isaime $ormat used to trans-
mit the plan over the network at runtime. The advantage sfdhproach is that it leverages
the heavily optimized de-serialization handlers providgdhe underlying CORBA imple-
mentation (TAO) to create an in-memory representation®fQDP data structure from the

on-disk binary stream.

IV.2.2 Parallelizing Deployment Activity

To support parallelized dispatch of deployment activityhat node level, OMG D&C
standard was enhanced by adding a LocalityManager to LEEBAM he LocalityManager
unifies all three deployment roles outlined in Sectidri.1, and functions as a replacement
for the component server in Figuhé.1. An overview of LE-DANCE’s LocalityManager

appears ing5).
The LE-DANCE node-level architecture.¢, NodeManager, NodeApplicationManager,

59

and NodeApplication) now functions as a node-constrairgsion of the global portion of
the OMG D&C architecture. Rather than having the NodeAppbeedirectly causing the
installation of concrete component instances, this resipdity is now entirely delegated
to LocalityManager instances. The node-level infrastrteperforms a second “split” of
the plan it receives from the global level by grouping congagnnstances into one or more
component servers. The NodeApplication then spawns a nuoflh®calityManager pro-
cesses and delegates these “process-constrained’cpntaining only components and
connections apropos to a single process) plans to eachgsrocparallel.

Unlike the previous DANCE NodeApplication implementatitme LE-DANCE Local-
ityManager functions as a generic application server thaihtains a strict separation of
concerns between the general deployment logic requiredatyze the plan and the spe-
cific deployment logic required to actually install and mgedhe lifecycle of concrete
component middleware instances. This separation is aathigsing entities callelshstance
Installation Handlerswhich provide a well-defined interface for managing thedyfcle of
a component instance, including installation, removahnsztion, disconnection, and acti-
vation. Installation Handlers are also used in the contitkteoNodeApplication to manage
the life-cycle of LocalityManager processes.

FigurelV.3 shows the startup process for a LocalityManager instanoend the start
launch phase of deployment, an Installation Handler haatdee NodeApplication spawns
a LocalityManager process and handles the initial handstogirovide configuration infor-
mation. The NodeApplication then instructs the Localitylger to begin deployment by
invoking preparePlan() andstartLaunch() . During this process, the Locality-
Manager will examine the plan to determine what instancegsypust be installece(g,
container, component, or home). After loading the appatprinstallation Handlers, the
LocalityManager will delegate the actual installation gass for these instances via the
install_instance() method on the Installation Handler.

The new LE-DANCE LocalityManager and Installation Handlexake it substantially

60

NodeApplication

Process Localities
<<spawn>>
LocalityManager

callback

A

Configuration Plugins

onfiguration_complete

preparePlan |
pre_process_plan
startLaunch D. < !
pre_install_instance

<>

install_instance

EEEEE—

post_install_instance

Connection Information

Figure IV.3: LocalityManager Startup Sequence

easier to parallelize than in DANCE. Parallelism in both tleedlityManager and Node-
Application is achieved using an entity called beployment Schedulaewhich is shown in
FigurelV.4. The Deployment Scheduler combines the Command pa®&trand the Ac-
tive Object patterng9]. Individual deployment action®(g, instance installation, instance
connectiongetc) are encased inside an Action object, along with any reduimeta-data.
Each individual deployment action is an invocation of a rodthn an Installation Handler,
so these actions need not be re-written for each potenfgd@aent target. Error handling
and logging logic is also fully contained within individuattions, further simplifying the
LocalityManager.

Individual actionse.g, install a component or create a connection, are schedated f
execution by a configurable thread pool, which can provide-aslected single-threaded
or multi-threaded behavior, depending on the requiremeiitse application. This thread
pool could also be used to implement more sophisticatedisiing behavior. For example,
it might be desirable to implement a priority-based scheduhlgorithm that dynamically
reorders the installation of component instances basedeba-data present in the plan.

During deployment, the LocalityManager determines whictioas to perform during

each particular phase and creates one Action object for ieattuction. These actions

61

Deployment
Scheduler

[Configurable Thread Pool]

Action

Dispatch Logic Error Handling

Logging

Action Queue

Deployment Logic

Figure IV.4: DANCE Deployment Scheduler

are then passed to the deployment scheduler for executida thle main thread of con-
trol waits on a completion signal from the Deployment ScheduJpon completion, the
LocalityManager reaps either return values or error coo®s the completed actions and
completes the deployment phase.

To provide parallelism between LocalityManager instarmeshe same node, the LE-
DANCE Deployment Scheduler is also used in the implememtatiohe NodeApplication,
along with an Installation Handler for LocalityManager pesses. Using the Deployment
Scheduler at this level also helps to overcome a significante of latency whilst conduct-
ing node-level deployments. Spawning LocalityManagetainses can take a significant
amount of time compared to the deployment time required dongonent instances, so
parallelizing this process can achieve significant latesasyngs when application deploy-

ments have many LocalityManager processes per node.

IV.3 Experimental Results

This section analyzes the results of experiments we coaduotempirically evaluate
LE-DANCE’s ability to overcome the deployment latency batcks we encountered in

DANCE, as described in Sectidv. 2.

62

IV.3.1 Overview of Hardware and Software Testbed

These experiments were conducted in ISISha\.isislab.vanderbilt.edu),
which consists of 4 IBM Blade centers consisting of 14 blade$ ebndividual blades are
equipped with dual 2.8 GHz Intel Xeon CPUs, 1GB of RAM, and 4 Gigaetwork in-
terface cards. Connectivity is provided by 6 Cisco 3750G-24W8ches and a single
3750G-48TS switch. ISISLab leverages the Emu&#) onfiguration software to provide
customized system configurations and virtual network togiels.

For the following experiments, a deployment of 11 nodes weated with Fedora Core
8 with G++ 4.1.2 used to compile the 1.0 release of DANCE and QiAddleware frame-
works. The default Linux kernel included with Fedora Core &weplaced with a vanilla
Linux kernel version 2.6.23 patched with the latest Real€lfPne-Emption patchset J].
The component application deployed as part of these teslsded a single component
type with one provided port (‘facet’) and one required paedgeptacle’). The component
application itself is intentionally simplég. the component implementations contain mini-
mal application logic to emphasize sources of latency irdg@oyment framework due to
the, rather than latencies due to implementation detailsefpplication components.

All results reported below are the average of 15 repetitadribe experiment.

IV.3.2 Experiment 1. Measuring XML Processing Overhead

Experiment design. A python script was used to generate XML deployment descrip-
tors for applications containing 500, 1,000, 5,000, 10,600000, and 100,000 component
instances equally distributed over 10 nodes. Each comp®asra single connection to one
other component. Each of these XML-based deployment plasstiaen converted to an
in-memory IDL representation using the same methods usedgda normal LE-DANCE

deployment.

63

www.isislab.vanderbilt.edu

Experiment results. TablelV.1 contains the results for the plans described at the be-

ginning of this section, and the timing results for the pregessing described in Sec-

tion1V.2.1.

Table IV.1: CDP Sizes and Conversion Times

| Components| XML Size | CDR Size| Conversion | CDR Read |
500 112 KB 48 KB 0.196 Sec | .001982 Sec
1000 304 KB 120 KB 0.323 Sec | .003602 Sec
5000 1.4 MB 608 KB 3.974 Sec | .015747 Sec
10000 2.7 MB 1.2 MB 9.543 Sec | .030199 Sec
50000 13.1 MB 5.8 MB 540.003 Sec| .147542 Seq
100000 27 MB 12 MB | 1038.288 Sec .285286 Sec

This table shows that the time taken to parse an XML deploymlan and convert it to
IDL can be significant. It is worth noting that the plans gexted as part of this experiment
contain the absolute minimum meta-data necessary to sfattgsleploy the components.
If additional configuration information is included — such attribute initialization (es-
pecially involving user-defined complex data types), Qoffigoirations, or densely con-
nected plans — the amount of XML that must be converted fovargcomponent count
can increase quickly. In this case, we are attempting to shsethe lower bound on the
bottleneck — any additional meta-data included in a plahatiways be larger than the test
case excercised here.

While the on-disk sizes of the various CDP files are somewhaitasting, of particular
interest are the conversion times from the on-disk form#teéon-memory IDL format used
by the deployment tools. The results in Tablel demonstrate that the CDR encoding is
an improvement of several orders of magnitude over runtifii Xrocessing. Moreover,
the approach described in Sectidh2.1 exhibits a linear increase in the plan processing
time as a function of the number of instances, rather thaexpenential behavior shown

by runtime XML conversion.

64

IV.3.3 Experiment 2: Measuring Application Deployment Latency

Table IV.2: Deployment Times (Seconds) for Plans with No Delay

| Components| Total Time | Prepare Plan Start Launch| Finish Launch| Start |

1000 1.925 1.761 0.1426 0.0135 0.0061
5000 41.163 40.130 0.2870 0.0255 0.0179
10000 165.623 165.092 0.4576 0.0409 0.0316

Experiment design. To gauge the deployment latency incurred by LE-DANCE across
a wide range of deployment plan sizes, the component apiplicdeployments generated
for the experiment in Sectiolv.3.2 were executed. Each plan was executed a total of 25
times, and the reported measurements represent the atithmesan of all executions.

Experiment results. TablelV.2 shows the results from this experiment. These results
demonstrate the substantial deployment latency savinggraflel deployment compared to
serialized deployments. If we disregard the plan prepamdimings, the remaining phases
of the deployment would require ten times the amount takethéyemaining phases.g.,
the 1,000 component deployment would require at least 1s628nds additional time).

The timing results for the plan preparation phase reveaagether source of deploy-
ment latency. The plan preparation phase includes two itaposteps, as discussed in
SectionlV.1.1. The first is a split plan operation to divide the global platoilocality-
constrained plans for each node. Next, each node in the ylapltt performs its own
local split to determine how many LocalityManager instanmestart, as discussed in Sec-
tion IV.2.2. The nonlinear growth of the time required for this phaseashin TablelV.2
makes extremely large deployments infeasible, which iseason why results for 50,000

and 100,000 components are not included.

65

IV.3.4 Experiment 3: Measuring the Predictability of Deployment Latency

Experiment design.This experiment characterizes the predictability of thelogment
latency performance of LE-DANCE. To accomplish this, we edpdly deployed the test
application with 1,000 components and analyzed the pedoo®a metrics over 500 itera-
tions. After each deployment, the testbed was reset andERBANCE daemons restarted
on each node. For this experiment, all DAnCE executable wereuted as root and placed
in the round robirSCHERR scheduling class with the highest possible priority.

Experiment results. The results for this experiment are shown in Figiué.

7108 |-

6x10° |-

&

=)
>
T

4x10° [

3x108 -

6 |-
2010° = A SRV VUGV WU [NPT W T e o o 1
1108 =

[) 100 200 300 400 500 600
Iteration

Time in Microseconds

Figure IV.5: Latency Jitter for 1000 Component Deployment

This figure represents the deployment latencies over theseaaf 500 iterations for
the total deployment latency and the two most time consurphses: plan preparation
and start launch. The top line of the figure represents tred katency, the middle line
represents plan preparation, and the bottom represergtatiéaunch phase (the remaining
two phases of deployment took too little time to graph). Tigsire shows that the LE-
DANCE latency results are relatively stable.

Of particular interest in FigurdV.5 is identifying the source of most jitter in these
results. Most spikes in the total deployment latency are atcompanied by spikes in the

plan preparation deployment phase. This is likely due terjilue to network access, as

66

control messages to individual nodes in this phase contaitiops of a large deployment

plan and are substantially larger than the messages far phlases.

Table 1V.3: Deployment Latency Results for 600 iterations of a 10

00 component

deployment.
| | Total Time | Prepare Plan Start Launch| Finish Launch| Start |
Mean 1.9311 1.7476 0.16548 0.01275 0.0049
Max 2.2874 2.0043 0.41976 0.05526 0.0127
Min 1.8503 1.6890 0.13752 0.01072 0.0045
Std. Dev. 0.0780 0.0402 0.05581 0.00559 0.00098

IV.4 Related Work

This section compares our research on LE-DANCE with relateckw the area of
deploying and configuring large-scale distributed appbces.

GoDIET [77] is a deployment framework intended for grid-based disted applica-
tions. GoDIET uses XML meta-data defined by a UML model to @9atibe applications
and their requirements and (2) wrap applications they wastiefploy inside components
based on the Fracta8] component model. They propose a hierarchical approacleto d
ployment that addresses deployment latency challengesdfbgsed distributed systems.
Their approach first partitions nodes present in the donmantivo or more segments and
then spawns separate deployment processes for those don@DIET is optimized for
deployment of applications to grid domains with hundredeades but an extremely lim-
ited number of components per node, and performs best whigsrave a mapped NFS
mount point in the local file system.

In contrast, LE-DANCE focuses on applications with high comgnt densitye.g.,such
deployments will often have hundreds or thousands of compisnper node, often de-

ployed across tens or hundreds of processes within that odeldition, applications in

67

DRE domains often cannot use a shared file system to distrdomgponent implementa-
tions due to inherent complexities in the network topolagggurity concerns, or hetero-
geneity of the target domain. Moreover, LE-DANCE automéliiceoordinates connec-
tions between components, whereas the connections mustioerped programmatically
via GoDIET.

DeployWare [21]] is another framework for managing deployments in grid emw
ments based on the Fract8] fomponent model. It supports heterogeneous deployments
and currently supports middleware intended for the gridrenment, such as MPB] and
GridCCM [66]. Like LE-DANCE, DeployWare captures deployment meta-agatamanner
that is relatively agnostic to the eventual deploymentatargnlike LE-DANCE, however,
DeployWare does not capture more complex deployment nata{guch as connection
information and QoS metadata) required for DRE systems. G&BIET, DeployWare is
optimized for delivering relatively few instances/compats to a large number of nodes,
and thus uses a similar approach to optimizing deploymésndg by partitioning the node
into subgroups. In contrast, LE-DANCE provides a more geri2giC solution by support-
ing low deployment latencies across a large number of plessdrdware and component
application sizes and configurations.

The work that comes close to the goals of LE-DANCE is describ¢@7], which uses
hierarchical separation of concerns to provide concurremd hence faster—deployments.
This work differs from LE-DANCE since it does not focus on anstard €.g, the OMG
D&C specification), but rather some general concepts ofayepént and configuration. In
contrast, LE-DANCE is aimed at providing a standardizedtgmiuto enhance applicability
while also optimizing performance and minimizing/bourgliatency.

The work presented in3p] seeks to find deployment solutions in dynamic environ-
ments. The focus is on deploying a hierarchical componehicfwis an assembly of com-

ponents treated as a single unit), while ensuring the deptoy of individual monolithic

68

units do not violate architectural constraints of the platf and the network before de-
ploying that component. While the goal of their deploymentison is similar to that of
LE-DANCE, their approach differs in its focus on the deploytnef hierarchical compo-
nents {.e. amalgamations of primitive components with other hieren@hcomponents),
which they represent at runtime via “membrane” compondms &ct as proxies for in-
ternal primitive components. In contrast, the meta-da¢sent in the D&C specification
supports such hierarchies at design time, but is flatten@dEbPANCE for runtime deploy-
ment to avoid the overhead of additional component ins&implemented as membranes
at a per-process level.

CaDANCE [15] was an earlier effort we conducted to reduce latency ane:ase pre-
dictability of DRE system D&C operations. It focused on sitankeous deployment of mul-
tiple applications from a single deployment plan in whiclta® components are shared
among multiple sub-applications. CaDANCE demonstratedidyaéndencies among these
sub-applications can yield deployment-order priorityersions where low-priority ap-
plications may complete their deployments ahead of a mmssiitical sub-application.
CaDANCE solved this problem using priority-inheritance tsue determinstic deploy-
ment for high-priority sub-applications that are deploggtaultaneously with other low-
priority sub-applications and with which they share congras. The goals and approach
of CaDANCE are orthogonal to the goals of LE-DANCE since CaDAnGfudes on re-
ordering component deployment and installation of paldicacomponents within the con-
text of a single application, whereas LE-DANCE focuses omicgd) overall deployment

latency for an entire application.

IV.5 Summary and Lessons Learned

This chapter described the OM@eployment and ConfiguratiofD&C) specification
for component-based applications and explored sourcesmbyiment latency overhead

that degraded the responsiveness ofllleployment And Configuration EngigBAnCE),

69

which is an open-source implementation of the D&C specificat Key features of the
Locality-Enhanced Deployment and Configuration EngibE-DANCE) were described
that improved DANCE to alleviate key sources of deploymetaney overhead asssoci-
ated with XML pre-processing arldcalityManagerarchitecture. The effectiveness of the
LE-DANCE LocalityManagerarchitecture was then empirically evaluated by (1) deploy-
ing a number of high component-density applications to destrate the performance of
the toolchain as the number of components grows and (2) megdhe predictability of
these performance results by repeatedly deploying the satog on a 1,000 component
deployment.

The following lessons were learned conducting this re$earc
Split Plan process incurs significant deployment latencyThe results presented in Sec-
tion 1V.3 showed that the plan preparation phase of deployment isga Eource of de-
ployment latency, due in large part to inefficiency in the DBACE “split plan” algorithm.
To alleviate this inefficiency our future work will deternanf this algorithm can further
be optimized or investigate ways that the plan can be spldarbedeployment to reduce
runtime deployment latency.
The startLaunch operation is a significant source of jitter. The start launch phase of de-
ployment produces the largest amount of jitter in the LE-D&deployment process. Prior
experimentsT3] conducted on DANCE showed this jitter stemmed from the dyodmad-
ing of component implementations at runtime and can beiatiest by directly compiling
component implementations and plan meta-data into theogey@nt infrastructure74.
While this approach reduces jitter and latency, it is alsasixe to the D&C implementa-
tion, hard to maintain, and removes much of the flexibilignfrthe D&C toolchain. Our
future work is exploring more flexible ways to reduce thigjitvia work that builds on these
previous efforts at static configuration of not only the camgnt middleware (CIAQO), but

also the plug-in architecture of LE-DANCE.

70

CHAPTER V

EXTENDING MIDDLEWARE CAPABILITIES USING CONNECTORS

The trend towards realizing enterprise distributed reaétand embedded (DRE) sys-
tems motivates the use of component-based middleware,asuttte OMG’s Lightweight
CORBA Component Model (LWCCM)47]. Component-based middleware offers DRE
system developers significant flexibility in modularizirigeir system functionalities into
reusable units, simplifies the deployment and configuratiothhe systems, and supports
dynamic adaptation of system capabilities. Deploymentamdiguration standards, such
as the OMG’s Deployment and Configuration (D&C) specificatia®,[play a major role
in realizing these capabilities.

Existing and planned enterprise DRE systems must incrdgssupport large data
spaces generated by thousands of collaborating nodegrseasd actuators that must
exchange information to detect changes in the operationaament, make sense of that
information, and effect changes. These capabilities recpaialable publish/subscribe (pub-
/sub) semanticslP] that support a range of QoS properties, that control pt@rsuch as
liveliness, latency, deadlines, timing, and reliabilitnfortunately, the conventional com-
ponent technologies used to develop enterprise DRE systiéhes do not provide first
class support for pub/sub semantics or do so in an inefeeati@nner that is not scalable
and does not support real-time QoS properties.

A standardized, QoS-enabled pub/sub technology calle@& Data Distribution
Service (DDS) 3] has emerged as a promising pub/sub technology to suporétjuire-
ments of enterprise DRE systems. DDS includes standard Qa$epand mechanisms
to handle data (de)marshaling, node discovery and commeeind configuration. Middle-
ware based on the DDS standard has been applied succegsfaision-critical domains,

such as air traffic management systefif§] pnd tactical information system2§j.

71

While the DDS specification simplifies key implementationextp of pub/sub appli-
cation, these benefits come at price of increased complexkitpnfiguration glue code
that must be written and maintained. Moreover, this conéiion boilerplate code tightly
couples the QoS configuration of a DDS application at corpite, unless application
developers create ad hoc methods of specifying the middéewe@nfiguration at runtime.
Analysis P] has shown that as 80% percent of DDS-related code in a tygogdications
is associated with configuring the middleware. Likewisegravalf of the DDS API that
developers must learn is configuration-related.

Addressing these deployment and configuration requiresrifnmhodern DRE systems
calls for component-based middleware, such as LwCCM, to geofiist-class support for
QoS-enabled, pub/sub technologies, such as DDS. This rmedalen recognized and doc-
umented through the efforts of industry and academic cotktiors in the OM@DS for
Lightweight CCM(DDS4CCM) 7] specification. Implementing this specification is hard,
however, due to inherent and accidental complexities iegirgting LWCCM and DDS.
The inherent complexities stem from (1) differences in #regguage bindings and memory
management strategies of the two middleware technolo@ggcompatibilities between
the various specifications, (3) deployment and configunatimallenges to recognize DDS
abstractions within LwWCCM, and supporting variants of DDS sirsgle LWCCM imple-
mentation. The accidental complexities stem from (1) mhapproaches to creating the
deployment and configuration meta-data for DDS elementsinvitwCCM, and (2) the
need to minimize runtime overhead imposed by both the depdoy and configuration
meta-data, and the additional abstraction atop native DDS.

This chapter describes how LWCCM and DDS have been integratedidress the

inherent and accidental complexities described abovellasvi

1. Systematic use of the extensible interface pattern irfdhma of mixins to extend
existing interfaces as well as the deployment and configuraheta-data to bridge

the incompatibilities between the two technologies.

72

2. A template-driven code generation approach that maeisnize potential for porta-

bility between various DDS implementations and maximizesmainability.

3. Options to customize the integration are provided, wienbures that the runtime

footprint of the resulting system does not pay unwanted nmgriamtprint penalties.
4. Improvements to the D&C approach mandated by the DDS4CCHhIfgadion.

These contributions enable the realization of a produet-bf DDS4CCM systems
where it is possible to vary the implementations of the DD&t®logy used as well as
support a wide range of port types for the LWCCM component teldgy. Empirical
evaluations of our approach demonstrate that our implestientof the DDS4CCM spec-
ification, which is called DDS4CIAQO, substantially easesdegelopment of DDS-based
applications while providing performance almost ideritioanative DDS applications.

The remainder of this chapter is organized as follows. 8mdtil summarizes key
challenges encountered when integrating DDS within LwWCCMiSe V.2 describes the
design of DDS4CIAO that resolves the challenges describ&bationV.1.3; SectionV.3
examines the code generation of DDS4CIAO and analyzes thése$ experiments that
evaluate the performance of DDS4CIAQO; and Seckighcompares DDS4CIAO with re-

lated work.

V.1 Impediments to Integrating LwWCCM and DDS

In this section both the inherent and accidental challengesoviding first class sup-
port for Data Distribution Service (DDS) within the Lightiwwbat CORBA Component
Model (LWCCM) is presented. To better appreciate these challenges, first provide an
overview is provided of LwCCM and DDS, and the deployment anafigaration stan-

dard. Subsequently these challenges are elaborated.

1The LWCCM is a subset of the OMG CORBA Component Model. In # of this paper LWCCM is
references because of the focus on DRE systems but the msplg=qually well to CCM.

73

V.1.1 Overview of the OMG Data Distribution Service (DDS)

The OMG DDS specification5f3] defines a standard architecture for exchanging data
in pub/sub systems. DDS provides a global data store in whittishers and subscribers
write and read data, respectively. DDS provides flexibiit/d modular structure by de-
coupling: (1)location via anonymous publish/subscribe, (@ylundancyby allowing any
numbers of readers and writers, {8ne by providing asynchronous, time-independent
data distribution, and (4platform by supporting a platform-independent model that can
be mapped to different platform-specific models, such as Qmtting on VxWorks or Java
running on Real-time Linux.

DDS entities includeéopics which describe the type of data to be written or redata
readers which subscribe to the values or instances of particulpicsy anddata writ-
ers which publish values or instances for particular topicorébver,publishersmanage
groups of data writers arglibscribersnanage groups of data readers.

Properties of these entities can be configured using cortibisaof DDS-supported
QoS policies. Each QoS policy hag parameters, with the bulk of the parameters having
a large number of possible valuesg, a parameter of type long or character string. DDS
provides a wide range of QoS capabilities that can be cothiar meet the needs of topic-
based distributed systems with diverse QoS requiremenixS’ Blexible configurability,
however, requires careful management of interactions dmtwarious QoS policies so
that the system behaves as expected. It is incumbent upafettedoper to use the QoS

policies appropriately and judiciously.

V.1.2 Addressing Limitations in the LwWCCM Port System via DDS4CCM

The OMG’s DDS4CCM %7] specification was developed to overcome the following
limitations in LWCCM and DDS while still preserving the inhateadvantages of each

technology.

74

Limitation 1: Support for event-based pub/sub communication in LWCCM is ex-
tremely limited. LWCCM does not specify a particular distribution middlewarattmust
be used inside the container for communicating events. Whik approach allows a
substantial amount of flexibility on the part of implemerdatauthors, allowing them
to choose to implement this support using, for example, th&B&A Event Service or
CORBA Notification Service, has two important drawbacks. tFtfse integration of new
pub/sub middleware requires modification of not only theeamsntainer implementation,
but potentially also the deployment and configuration istitacture in order to properly
operate. As a result, this is an extremely complex tasknafguiring that the integrator
be an expert in both the LWCCM implementation and the desirgttilolition middleware.

Second, in order to remain completely generic, the interfagilable to component
developers for event-based communication consists of twibyoperations: 1) a single
method per port that allows for a single event to be publishiea time, and 2) a single
callback operation that provides an event to the comporeeittaarives. This prevents the
component from taking advantage of many features of pubrsegsaging middleware that
provide for status notifications and per-message QoS okt

Limitation 2: Grouping of related services must be done in an @-hoc manner.
In many cases, services offered by a component require rharedne interface in or-
der to provide correct operation. As a simple example, dansa scenario in which two
components expect to cooperate via mutually connectedacts. In this scenario, one
component provides an interface “A’ and requires an interfa8”, while another com-
ponent provides complementary pori® provides “B” but requires “A’). In order for
semantically correct operation, the connections for béthahd “B” must go to the same
component, but there exists no way in LwCCM to indicate thisst@mnt on an interface

level. To accomplish this goal, developers must rely on ecl4aming conventions and

75

documentation. This approach has the unfortunate sideteffecomplicating the plan-
ning process and potentially causing subtle and perniagionsme errors if connections
are mis-configured.

The DDS4CCM specification addresses these limitations byliegdbwCCM to lever-
age the powerful pub/sub mechanisms of DDS. First, it pewial substantially simplified
API to the application developer that completely removesdbnfiguration of the DDS
middleware from the scope of the application developeroB8ecit provides a set of ready-
to-use ports that hide the complexity and groups data wyaiccess API with the appro-
priate callback and status interfaces. Third, by providimggration with the LwCCM
container, DDS applications are now able to take advanthgebast and mature deploy-
ment and configuration technologies that obviates the reeedite boilerplate application
startup code, runtime configuration of QoS policies, anddaioated startup and teardown
of applications across multiple nodes.

In particular, DDS4CCM proposes two new constructe&xtended portswvhich allow
for the grouping of related services, aodnnectorswhich allow for flexible integration
of new distribution middleware. These new entities are @efinsing an extension of the
IDL language for components (IDL3) called IDL3+. It is pddsito map each of these new
IDL3+ language constructs back to basic IDL3 using simplepiag rules to enable insep-
arability with older CCM implementations. Next, a brief oview of these enhancements
is provided.

Extended Ports: Extended ports provide a mechanism whereby componentragsig
can group semantically related ports to create coherewicssroffered by a component.
These extended ports, defined using a new IDL keywpanditype , are defined outside
the scope of components. Extended ports are allowed toincamig number of standard
LwWCCM ports in either direction. While these ports are alloweddrms of the speci-
fication to contain standard LWCCM event ports, in practice thihighly unlikely due

to the limitations outlined earlier. Moreover, in combioat with connectors (described

76

interface Data_Source {
Data pull (in long uuid);
b
interface Notifier {
void data_ready (in long uuid);
b
porttype NotifiedData {
provides Data_Source data_source;
10 uses Notifier data_ready;
1 K
12 component Sender {
13 port NotifiedData data_out;
14 };
15 component Receiver {
16 mirrorport NotifiedData data_in;
17 1

O©oo~NOUlh,WNPE

Listing V.1: Extended Port IDL

next), these extended port definitions could be used toatztbe behavior of the existing
standard CCM event infrastructure.

Listing V.1 shows IDL for an example extended port. In this example, @s®is cre-
ated whereby one component may notify another of data thaady to be sent, and the
destination component may optionally choose to pull th&éd éf@am the source component.
Since each of the interfac&ata_Source andNotifier are semantically linked,e.,
operation of the component application would be fundamigribeoken if these ports are
not pairwise connected, they are grouped into a sipglitype . This is an indication
to both high level modeling tools and the component runtinas these ports must be con-
nected as a pair, and can generate appropriate deploynaeningta-data to connect them
at runtime. Extended ports are assigned to components tvgingew IDL3+ keywords.
Theport keyword indicates that the component supports the extepdeds described
The mirrorport keyword indicates that the componemtertsthe direction of the ex-

tended porti.e., facets become receptacles.

77

Some extended ports may vary only in the data type used ampters. In order to
avoid the necessity of re-defining an extended port for eaghdata type, IDL3+ offers
a new template syntax that may be used to define servicesrthgeaeric with respect to
data type.

Connectors: While the extended port feature described above is quiteuljsieir
power is most suited to providing novel communications nagdms to components that
provide/use those interfaces. In order for the extendets poprovide a coherent interface
to a new distribution middleware, such as DDS or the CORBA E&envice, the business
logic that supports that abstraction must be containednmesentity. This unit of business
logic is called aconnector Connectors combine one or more extended ports to provide
well-defined interfaces to new distribution middleware omenunication techniques be-
tween components. In many cases, a single connector witlstipt least two extended
ports, one intended for each “side” of the communicatioracel. By separating the core
communications business logic, these connectors can theisdrl as COTS components
across several applications without requiring modificatbbthe core container code.

Connectors are defined in similar fashion to a componentgusi& new IDL3+ key-
word connector . Connectors may contain, of course, one or more extended. plort
addition, they may also support attributes which are ingertd be used to assist in runtime
configuration,i.e. topic names, port numbers, QoS parametets, Finally, connectors
also support inheritance which can be used to extend egistinnectors with new capabil-
ities. At runtime, instead of creating a new IDL type struettor the connector infrastruc-
ture, they are defined as components, deriving their interfilom the sam€CMODbject
used by regular components. Indeed, in the IDL3+ to IDL3 nragppthe connector
keyword becomesomponent . This approach is much desirable in that no additional

work is necessary in the D&C toolchain to support the depleytrand configuration of

78

connectors. Moreover, connector implementations canadkantage of the same Com-
ponent Implementation Framework that is available to steschiwCCM components and

thus can take advantage of advances in services offerecelmptitainer.

V.1.3 Challenges in Integrating LwCCM and DDS

Although the DDS4CCM specification attempts to address thidiions of individual
technologies, realizing an implementation of the DDS4CCMHjpation is fraught with
multiple inherent and accidental complexities explainekby:

Challenge 1: Indicating that a connector implementation ha been fully config-
ured, and should be made ready for execution After a connector implementation has
received all necessary configuration information, it musicped to create the underly-
ing low-level DDS entities€.g.,DomainParticipant , DataWriter and/orData-
Reader) that are necessary for correct operation. To accomplistiabk, the specification
mandates the use of an operation caltedfiguration_complete on the external
connector interface. This operation, however, is not dgekjto the connector business
logic and thus is insufficient to fully inform the connectonplementation of completed
configuration. SectioN.2.1 discusses our approach to resolve this challenge.

Challenge 2: Reducing D&C-related runtime memory footprint. The DDS4CCM
specification mandates the use of LwWCCM Homes (which nomiradtyas factories for
component instances) as the primary vehicle for passinfgroation information from
the deployment plan to individual connector implementatituring deployment. While
this approach is certainly functional and sound (and in keewith the spirit of the Lw-
CCM specification), our experience developing componentiegdmns with LWCCM re-
veals that the home entity often adds very little value todbefiguration of individual
component, or in this case connector, instances. In mosscdse home implementation is
little more than a simple factory that directly instantsatbe component and nothing else.

Meanwhile, the home instance carries a non-negligible atotiruntime footprint due

79

to the CORBA interface and accompanying home-specific gestcaintainer code that is
necessary. Sectiovi2.2 discusses our approach to resolve this challenge.

Challenge 3: Reducing Connector-related runtime memory fotprint. The deci-
sion to treat connectors for all intents and purposes ad. twTCM components greatly
simplifies the implementation by substantially reducing flumber of changes in the core
container necessary to support the specification. A comseguof this decision, however,
is that the runtime footprint of a LwWCCM application using centors could substantially
increase. For example, assuming a deployment where eachooemt instance has an
associated connector instance, the number of actual “coems’ in the deployment is
doubled. In memory-constrained DRE systems, this can bendisant impediment. Sec-
tion V.2.3discusses our approach to resolve this challenge.

Challenge 4: Supporting Local Interfaces as Facetéll of the extended ports con-
tained in the DDS4CCM specification are defined as “local iat=$”. Local interfaces
are significantly different from standard CORBA interfaceg do the fact that they are
not generated with any of the infrastructure necessary pp@t remote invocation. As
a result, any invocation on these interfaces does not ttaveugh the CORBA internal
infrastructure and as such only incurs overhead nominallglved in a virtual method in-
vocation. The problem this strategy causes with the depdoyrand configuration aspect
of LWCCM is very subtle: since these local interfaces lack theassary remoting code, it
is impossible to pass references to these local objectsghra standard CORBA interface.
Indeed, this behavior is undefined; any attempt to do so wiilland cause an exception
to be propagated to the caller. Unfortunately, all of thedéad-defined connection meth-
ods, including the Component Navigation interfaces usedhbyli&C tooling to make
connections between components rely on being able tovetolject references to Facets
over a standard CORBA interface and pass these references tedéptacle component

over a similar interface. Not having an object referencetierextended port implies that

80

the existing D&C tooling cannot be leveraged in a straightBrd manner. Sectiow.2.4
discusses our approach to resolve this challenge.

Challenge 5: Supporting Multiple DDS ImplementationsOne significant benefit of
writing DDS applications using the DDS4CCM API is that it pdtaeltly makes it substan-
tially easier to switch between various DDS implementatioArior work B4] has shown
that differences in the architecture between these diffaneplementations cause them to
have different strengths depending on the architecturbeofpplication and hardware en-
vironment. Moreover, due to the proprietary nature of ma3SDmplementations and the
different licensing requirements of each implementattbe, ability to quickly and easily
switch the targeted implementation would greatly fadiitdne development of COTS DDS
components. While it is currently possible to target muétipDS implementationat com-
pile timedue to the presence of a standard API, subtle differencégimtplementations of
these APIs can make this difficult to accomplish. Ideally, emplementation of the DDS-
4CCM specification would be architected in such a way that tine loosiness logic of the
connector is shielded from the differences between DDSemphtations. In addition, the
connector architecture could make it possible to delay Huéce of DDS implementation
from compile time to deployment time. SectidP.5 discusses our approach to resolve
this challenge.

Challenge 6: Making it easy for users to define their own connéors The DDS-
4CCM specification provides for two connector types that gmoad to common DDS
usage patterns. The first provides for a state transferrpati@d is intended to connect
“Observable” components that publish state to other “Oles&icomponents that consume
that state. The second provides for event transfer comestipplier components to con-
sumer components. These two connectors, however, areteatled to be the only ones
that are supported in the context of the specification. Toethd, two “base” connectors are
provided that collect the various configuration meta-datatiributes. It is intended that

users be able to define their own connectors that are bettedga their usage cases. To

81

support this capability, the code generation techniquesldibe extensible such that it is
easy for users to create their own connectors without hawingodify the code generators.

SectionV.2.6 discusses our approach to resolve this challenge.

V.2 Resolving LwCCM and DDS Integration Challenges in DDS4CAO

This section describes how the challenges in integratinGCM with DDS described
in SectionV.1.3 by are resolved presenting the architectural and desigicehionade for
DDS4CIAO, which is our implementation of the DDS for Lightygat CCM specification

outlined in SectiorV.1.2.

V.2.1 Accurate Indication of Successful Connector Configuation

The central difficulty outlined irChallenge 1from SectionV.1.3 revolves around the
final configuration stage of the D&C process. In this casegthes a crucial phase before
the application is “activated”, but after it is fully configed. In this portion of the D&C
process, the connector business logic must make themseladyg for execution by, for
example, instantiating various DDS entities. In Figure which shows the lifecycle stages
that connectors and components go through, this is repexbdry the “Passive” state.
Unfortunately, the LwWCCM specification currently providesmechanism to communicate
to the connector that it has entered this state; the onlyication that is received when the
component/connector becomes passive is when the prienstest “Active”. To understand
the reason for this, it is best to have a grasp of the layoubohectors and components at
runtime.

Instantiated connectors consist of two primary piecestHinere is a “Servant”, which
consists of the external CORBA interface and connector-Bpecintainer code. The Ser-
vant has two primary parts to its interface: (1) operatiammsimmon to all connectors which
come from the LwWCCM specification (called t#CMODbject interface), and (2) opera-

tions that result from the ports specified in the IDL declarabf the connector. Second

82

o

Configurable

Removed
- Unloaded

Figure V.1: LwCCM Component and Connector Lifecycle Stages

'
4

is the “Executor”, which contains the actual business Itigat implements the connector.
Operations on this interface result from two sources: (gr#gEation-defined lifecycle op-
erations (called th&essionComponent interface), and (2) operations that result from
the ports defined for the connector.

The configuration_complete operation mentioned in Sectionl.3is part of
the CCMODbject interface but is not, however, present on BessionComponent in-
terface so it cannot be directly delegafetinfortunately, the first lifecycle operation that
is invoked on the Executor interface after its construcéisrmefined by the LWCCM speci-
fication isccm_activate . This lifecycle operation, however, must be disjoint fronda
occur later tharonfiguration_complete

One approach to work around this problem is to delay the ioraif the DDS en-
tities until the activation phase of the application lifel®; This is problematic, however,
because there exists no guarantee that a connector fragnlidog activatedoeforeits con-
nected component. If a component is activated before ita@ctor and attempts to initiate
outbound communication, that communication would nalyrtlil, potentially causing

pernicious and difficult to reproduce errors. The ability f@mponent business logic to

2This artifact results from the standards specification.

83

receive a notification upon configuration completion butobefactivation has proven to
be useful for components as well as connectors becauseaormare anyway treated as
components.

As a result, a new interface that may be optionally used terekthe behavior of
component executors to be able to receive these notificatias been created. This in-
terface, which theConfigurableComponent is called, uses a variation of the ex-
tension interface pattern to avoid changing the standafithe&d SessionComponent
interface. This new interface is intended to act as a mixithsed the component imple-
mentations wishing to receiveonfiguration_complete will inherit from this in
addition to the standar8essionComponent interface. The container, then, when it
receivesconfiguration_complete from the D&C tooling, will attempt a dynamic
cast on the component implementation to determine if theadipe should be delegated

on a per-component basis.

V.2.2 Avoiding D&C-related Memory Footprint

Challenge 2 described in Sectiok.1.3, deals with eliminating unnecessary footprint
from the specification-defined deployment and configuratémuirements of connectors.
DDS4CCM connectors are configured via attributes presenteinRh interfaces defined
by the specification, which allow for the fragment to be asted with a particular DDS
domain and topic as well as the QoS policies.

Many hardware platforms commonly used for DRE systems remxdiemely memory-
constrained, so the additional runtime memory footprirpased by the CCM home is at
best undesirable. To avoid this additional overhead, DD8@Qprovides the capability
to install “un-homed” components and connectors. Theskamed components are allo-
cated from simple factory functions exported from their lempentation libraries in much

the same manner that Homes are already constructed. Contyspesmific container code,

84

which is generated automatically from IDL, is then able teipret the D&C plan meta-

data and individually invoke the attribute setter methadshe component.

V.2.3 Reducing Connector-Related Memory Footprint

The solutionChallenge 3 described in Sectiok.1.3, attempts to reduce the runtime
footprint of connector implementations. In order to accsfpthis goal, it must be deter-
mined which, if any services that a component requires tteatat necessary for connector
implementations. Given the limitations of the standard LwCé&Wnt ports described in
SectionV.1.2, it is highly unlikely that these inflexible port types woubg used in the
context of a connector — indeed, the extended port/connadtastructure could be used
to fabricate replacement infrastructure. Moreover, theSBDCM specification makes no
use of the existing event infrastructure, making it an aptic#ate for removal.

As a result, the event infrastructure was removed from timmector infrastructure in
such a way that it would still be present for standard comptaiat may need to interface
with legacy systems. In this case, there are two pieces tewvet support in DDS4CIAQO:
(1) the base classes that provide support to the compopenifis generated container
code, and (2) the component-specific generated contairter iteelf, which includes a
component-specific context that provides services to timepoment business logic. The
first portion of the event support — the base classes descabeve were split into two
pieces — aconnectorbase and aomponenbase. The container base contains all neces-
sary functionality for component and connectors minus tthw€CM event support. The
necessary plumbing LWCCM event support is contained in thepoorent base, which de-
rives from the connector base. This way the code generatioastructure can choose to
omit support for the event infrastructure if desired by sy a different base class for the

generated code. Our approach makes this artifact configurab

85

V.2.4 Supporting Local Facets

The solution toChallenge 4outlined in SectionV.1.3 is threefold. First, and most
obviously, the Navigation and Introspection implemewtasi generated for components
with local facets and receptacles had to be modified to sgpmry knowledge of these
local ports. While this approach solves the issue of undefrdtavior from trying to
marshal one of these local object references, it also cdeipleemoves any standards-
based mechanism by which a connection can be made by eith&&K tooling or any
user attempting to use the Navigation interfaces. To addies undesired effect, a new
connection API was created in the private interface to theGCtantainer (which is our
LwCCM implementation) that is used directly by the D&C toolinghis APl accepts as
arguments the string identifiers of two component endpaistaell as port names, and is
able to use these to obtain references to the local Execbjects directly and create a
connection without needing to marshal any local referepges standard interfaces.

In order to make use of this new API, however, the D&C toolirgas an annotation
on the connection meta-data so that it can be made award #imtuld not attempt to use
the standard Navigation API to make the connection. Thestatature in the deployment
plan that contains connection information encodes the ¢f®nnection €.g, Facet vs.
Receptacle) as an enumerated value. While this enumeratie loe extended to identify
a new connection type.€., LocalFacet), the changes to specification-defined types we
minimized. The connection data structure does contain @osewhere requirements for
deployments can be described using name/value pairs. @bi®s would ordinarily be
used to enumerate hardware capabilities or resourceseedoy the connection. In this
case, it is required that any local facet connected be atewbwith a requirement on the
container, namely that it provide support for local facetsvhen the D&C tooling encoun-

ters this annotation it assumes the connection to be local.

86

V.2.5 Ensuring Portability of DDS4CIAO Implementation

As described irChallenge 5from SectionV.1.3, it is important to ensure that the de-
sign of the infrastructure is maximally portable in ordeetsily support implementations
from multiple DDS vendors. This goal is complicated by thet that despite the presence
of a standard C++ language mapping, there are subtle anccpermdifferences between
the actual implementations of these mappings. Moreovergtkxist also subtle behav-
ioral differences between implementations that commicaiurce-level compatibility,e.,
generated type-specific constructs sucbawWriters andDataReaders may have
different namespaces and naming conventions, and indeesatine may be true of the
entire API.

These challenges were addressed by using three approatiesfirst approach targets
the API that is implemented in the DDS4CCM basic ports agaiftse. DDS specification,
in addition to the widely supported C/C++ language bindingpdias a language binding
that maps the API into IDL interface definitions. This lange&binding is not widely
implemented, but provides a promising vehicle for impletimgnportable DDS business
logic in the context of the DDS4CCM basic ports. Since the sdbhedode generator is
used as with the rest of the CIAO infrastructure, that the ARIsd to implement these
ports are consistent.

Much of the work for supporting different DDS implementaisothen can be accom-
plished by providing an implementation of this IDL langudmgeding. At first glance, this
may seem a daunting proposition — however, this binding istef only about 36 in-
terfaces, many of whose functions may be directly delegatéice native implementation.
The remaining problem with using this IDL-based approaalec®nciling the differences
between the CORBA types that are part of the IDL language mgpgia the data types
used natively by the DDS implementation. While this convarsiould be handled inside
the vendor-specific implementation of the IDL language ligdthis approach would in-

cur potentially expensive data copies. Fortunately, mabysbmplementations provide a

87

CORBA compatibility layer that allows them to directly use égpgenerated by the IDL

compiler.

V.2.6 Connector Code Generation

Generating code for user-defined connectors is the focu@haflenge 6from Sec-
tion V.1.3. Our experience developing code generators for our CORBA av@dM im-
plementations has shown us that it is eminently undesirmbkmbed large amounts of
business logic in generated code. This is largely due to iffieudty of maintaining and
extending the code generators themselves. If there is anbodification, or extension to
be made, this effort often involves at least two engineersne-who is familiar with the
middleware or problem at hand, and another who is familidin Wie process of extending
and modifying the code generator. In addition to the extraqenel requirements, it often
substantially increases the amount of time to test thesegeta as not only does the ini-
tial proposed modification needs to be be tested (typicaibpbed to the code generation
engineer as a handcrafted generated file), but also the fiaales to the code generator
and resulting modified output. For the same reason, thislental complexity of the code
generation process impedes the ability of users to createdivn DDS4CCM connectors.

In order to avoid these accidental complexities, the desfgihe code generation in-
frastructure from the outset to contain zero DDS4CCM busiloggs and to be extensible
without the need to modify the code generator to add new connectdemgmtations.
The first, and most obvious step given the presence of paesizesd modules from Sec-
tionV.1.2, was to leverage C++ templates for the implementations didlsec and extended
DDS4CCM port types. Using C++ templates in this case allowed usake generic two
very important parts of the implementation — first, the col@SACCM business logic

contained in the basic and extended DDS4CCM ports, but ald®therrapper (described

88

in SectionV.2.5) around our target DDS implementation. These IDL wrappeagsiire ac-
cess to type-specific DDS entities.§. DataWriters andData Readers) that are
created by the code generation infrastructure that is paneddDS implementation itself.

Connector implementations, then, are really a collectioteofplate instantiations for
the various basic and extended ports that are containectinititerface definition along
with some configuration glue code. While source code for thesaector implementations
could be genreated, that would still represent an obstagiewtel connector creation. Con-
nectors themselves may contain a nontrivial amount of cardigpn business logic that
interprets the values of attributes on the connector iatexf As a result, if a user were to
define a new connector with new configuration attributes; theuld be required to modify
the code generator to be able to use their new connector.

To address this concern, the connector implementationsl&ewas made into classes
as well. This allows the code generator for DDS4CCM to be exeéhgrsimple. In effect,
the result of the code generation process is a header filedhtdins a set of C++ traitgd 4]
which specify the properties necessary to use a particDladata type. These properties
largely consist of the names of type-specific entities tihatgenerated from the DDS in-
frastructure. These traits are then used to create cone@glate instantiations of any
required connector implementations. By default, instaéiotis of the standard DDS4CCM
connectors are generated — the State and Event connecsarsbael in Sectiov.1.3. If a
user defines their own connector in IDL, the code generatdsem include of a header file
whose name derives from the name of the connector in IDL, amherete instantiation of
a template class whose name is similarly derived. While tlee nnsist then provide an im-
plementation of this template class, this is substantiellg effort than would be required

to modify the code generator.

89

V.3 Experimental Results
This section outlines two key empirical observations ofdEs4CIAO implementation
described in Sectiov.2 which cover two important goals outlined in Sectign First,
in SectionV.3.2, the impact that the code generation capabilities of DDS4Chave on
the development and maintenance of DDS-enabled applisatsoquantified. Second, in
SectionV.3.3, we characterize the overhead that DDS-enabled applisatiaust pay in

terms of latency when using the DDS4CIAQO abstraction versugyithe DDS API directly.

V.3.1 Experimental Scenario

All results described below were obtained using a simplaedgiong” application. A
simple example was chosen since the business logic of theaiin is not important
to evaluate the qualities of DDS4CIAO. Rather, understanthiegoverhead associated is
interesting, if any, of the integration of LwWCCM with DDS. Inighapplication, an instance
struct containing an octet sequence of a configured lengthaesequence number would
be written to the DDS data space by a “Sender”. The instancédrarive at a “Receiver”
entity, after which a new instance of the struct would be shield on a separate topic with
an identical sequence number but a zero length octet segLi€he “Sender”, upon receipt
of the second message, repeats the process with a new sequenber up to a specified
number of iterations.

Two versions of this application were produced. The firssube native C++ DDS
API, with all customary error checking included. In the setersion, the “Sender” and
“Receiver” were each implemented as CIAO components and uB&#DIAO to interface

with the DDS middleware.

V.3.2 Evaluation of Code Generation

To evaluate the effectiveness of the code generation tgehsidescribed in Sectid®.6,

the implementation source files from the experimental stemaitlined in Sectiorv.3.1

90

were analyzed with the SLOCCour@]] tool. This is a program which counts physical
Source Lines of Code (SLOC), and uses a number of heuristids¢ard any whitespace
and commenting present. For the purposes of this evalyatidy implementation source
files were counted, discarding header files containing dalysadefinitions. The reason for
this is that header files for the DDS4CIAO implementation argély generated automati-
cally based on the class interfaces.

The results from this tool are summarized in Taldlé. If only the total SLOC for the
native programs and the component implementations are a@dpDDS4CIAO shows
only a nominal improvement over that of the native impleragan. It is important to con-
sider, however, that the DDS4CIAO implementation contaitesge amount of generated
class skeletons which are created from the IDL interfacerg@gons from the component
automatically (SLOC for which is shown in the “DDS4CIAO Geaied” column of the
table). When these lines of code are subtracted from the fimtdahe DDS4CIAO im-
plementation, the improvement becomes substantially damatic. In the case of the
Sender component, the improvement is on the order of 50%faarttie receiver the dif-
ference is an order of magnitude. The reason for this distr@pis the Sender programs
— both native and DDS4CIAO — contains a substantial amountbdedn common to

measure latencies and calculate/display results.

Table V.1: Comparison of Source Lines of Code

[Component[[Native Lines [DDS4CIAO Total | DDS4CIAO Generated DDSA4CIAO Actual |

Sender 643 560 211 349
Receiver 293 128 118 10

V.3.3 Evaluation of the Overhead of DDS4CIAO

To evaluate the overhead due to abstraction over the naid& APl introduced by the

DDS4CIAO implementation, the experimental scenario dbedriearlier in SectioV.3.1

91

was used to evaluate the latency performance using a rem@mbercial DDS implementa-
tion and DDS4CIAO 0.8.3. Each configuration was executed fa@@ iterations each with
payload sizes along powers 2, from 16 to 8192 bytes. Eaclriexpeatal run was executed
in two transport configurations: once using UDP and againguShared Memory trans-
port. The experimental testbed consisted of Dell Optiplé®s ¢omputers, with an Intel
E4400 CPU, 2GB of RAM, and gigabit network connections.

The results for the experimental runs with the UDP transpastocol are shown in
Figure V.2, which compares the average latency for each payload seeFgureV.3,
which compares the minimum latency results for each paytizel These results show
that for this transport protocol, the average latencienaeely identical. Figur&.4 shows
the results from the experimental runs configured with tregesth memory transport. This
average latency result shows that the DDS4CIAO abstraativaduces approximately a
four percent overhead over the native implementation ®stiared memory transport. The

best case results for the shared memory experiment are shdvigureV.5.

180

160 -

140 -
120 -
100 7 -
80 - - B ndds avg

60 B ddsd4ccm avg
40 - -

Round Trip Time (us)

20 -

16 32 64 128 256 512 1024204840968192
Sample Size (Bytes)

Figure V.2: Ping Latency Average with UDP

92

180
160

=
B
o

=
P
o

Round-Trip Latency (us)
[
o
o

80 - — M ndds min
60 - B dds4ccm min
40 - —

20 7 B

0 - . - .

16 32 64 128 256 512 1024204840968192
Sample Size (Bytes)

Figure V.3: Ping Latency Minimum with UDP

Table V.2 summarizes the standard deviation of the experimental fiamisoth UDP
and shared memory. These results show that the DDS4CIACaabetr does not introduce

additional jitter over the native implementation.

Table V.2: Standard Deviation For All Experiments

| Size || UDP | CIAO UDP | Shared| CIAO Shared|

16 11.3 12.4 17.7 18.4
32 12.4 9.4 15 14.2
64 12.5 12.6 15.5 9.9
128 | 13.3 9.3 16 10.4
256 6.2 13.1 15.9 12.6
512 || 12.3 11.2 11.6 8.8
1024 | 14.7 8.1 15.7 12.1
2048 || 12.7 4.3 15.5 14.8
4096 | 7.1 13.7 15.3 10.8
8192 | 12.1 17.7 15.1 14.4

93

145

140

=
¥
wu

=
w
o

Roud Trip Time (us)
[
[
o

=

[

o
|

115 -

110 -

M ndds ave

“ ddsdccm ave

16 32 64 128 256 512 1024204840968192

Sample Size

Figure V.4: Ping Latency Average with Shared Memory

Round Trip Time (us)

B ndds min

 ddsd4ccm min

16 32 64 128 256 512 1024204840968192
Sample Size (bytes)

Figure V.5: Ping Latency Minimum with Shared Memory

94

V.4 Related Work

This section compares our research on component-based i &Vated work.

PocoCapsulg33] is an Inversion of Control container based on the Dependbrey-
tion (DI) design pattern. This component framework alloweselopers to use “Plain Old
C++ Objects” (POCO) that have been decorated with PocoCapsadeomthat allow the
loading of these C++ classes into a PocoCapsule container4DDBl and DDS4CIAO
differ in several important aspects from PocoCapsule. AIBIS4CCM—and LwCCM
in general—are industry standards that have languagengsadiefined for many program-
ming languages. Second, PocoCapsule still requires someraimidow-level glue code in
the component business logic. Third, the DDS for PocoCapsy&mentation currently
only uses CORBA local interfaces to simulate small parts oDBS API, and hence is
not operable with standard-compliant DDS implementations

Simple API for DDS (SimD) [4] uses C++ templates and template meta-programming
to provide a simpler API for DDS that reduces the amount afastfucture-related code
required for DDS applications by an order of magnitude. gs$imD, a simple DDS
application can be written in only 4 source hand-writtere$irof code, instead of dozens
lines of code using the native API. While SimD reduces the derity of the boilerplate
code required for DDS applications, it differs substaititbm DDS4CIAQO in that it does
not address runtime deployment and configuration capeisilgrovided by DDS4CIAO.
Moreover, it has not yet been proposed as a standard.

Researchers at Real-Time Innovations, Rjgfropose extensions to the DDS API to al-
low declarative configuration of DDS entities via an XML fitet is interpreted at runtime.
The application then queries the DDS middleware to obtaiariqularDataReader or
DataWriter that has been configured already with a domain and topicrgraind QoS
settings. While their work improves the state-of-the-pracin standards-based DDS ap-

plication configuration, its capabilities are not as exitemas DDS4CCM and DDS4CIAO.

95

First, our existing D&C tooling provides coordinated inkstaon of application implemen-
tations and startup across multiple nodes. Second, theectominfrastructure developed
for DDS4CIAO allows integration with other distribution nailgware, such as CORBA,
TENA, JMS, or even socket based network programs. Thirdddo®upling provided by
the DDS4CIAO implementation enables the selection of DDSemgentation at deploy-
ment time.

SOFA[9, 10] is a component model with an integrated D&C framework thavples
remote communication capabilities via a connector inftecstire similar in spirit to that
which is part of the DDS4CCM specification. SOFA, however, gmgvides connectors
for CORBA and RMI distribution middleware. Our approach déférom that taken by
SOFA in that the connectors implemented by DDS4CIAO are tleéras lightweight com-
ponents. The advantage of our approach is that any imprawsnethe QoS capabilities
of the CIAO container can be automatically applied not onlpalt@womponents deployed,

but also connectors as well.

V.5 Summary and Lessons Learned

The experience developing applications with DDS4CIAO pled the basis for the

following lessons learned:

1. Substantially reduced DDS application complexity. Tests and example applica-
tions developed with DDS4CIAO have shown that the simplifiegrface to the
underlying DDS middleware, provided by the DDS4CCM speciiicgtprovides a

platform that easier to write and develop DDS applications.

2. Automatic configuration of DDS middleware. By providing a strict separation

of concerns between configuration-based aspects of DDScapph development

96

and configuration aspects, users can automatically coefitperunderlying middle-
ware at deployment time using standards-based deployrtemtipscriptors already

available with LWCCM.

. Deployment-time binding of DDS implementation may ease agdjgation bench-
marking. It is also possible that the DDS implementation used by threpoment
application could be chosen at deployment time, rather ttmanpile time. This
enhancement will allow developers to evaluate the meritsparformance charac-

teristics of different DDS implementations rapidly.

. Increased reliance on tooling. A consequence of developing with DDS4CIAO is
the increased reliance on tooling, especially modelindstoé/hile writing the IDL
and business logic for DDS4CIAO components is straightfodwavriting the de-
ployment descriptors by hand is a difficult task that reqgiegpert knowledge of
the D&C specification. While the use of modeling tools — sucloas CoSMIC
toolsuite B0] or commercial tools that have emerged — can substantiaigliarate
this concern, their use may not always be practical (CoSMICefample requires
Windows while the commercial tools may be costly). A domaedfic language
(DSL) for describing deployments, configuration, and cong packaging would

substantially reduce the modeling requirement.

. Applying connectors to the CCM CORBA infrastructure. The connector-based
approach to integrating the DDS distribution middlewate iGIAO has shown sub-
stantial promise. Unfortunately, however, the CORBA infnastiure that underlies
CIAO/CCM still remains tightly integrated into the containerglementation. There
are many users and applications who find this situation uradde for political, se-

curity, and runtime footprint of the middleware.

97

A similar connector based approach could be used to conwei@M into a “Com-
mon Component Model”, which is completely agnostic to thearlyihg commu-
nications middleware, by moving all of the extant CORBA comimations func-
tions to connectors themselves. This approach has the tdvaof not only being
able to remove the CORBA infrastructure currently used forchByonous two-way
communication, but also makes it possible to, for exampl@psin an alternative

non-CORBA based connector implementation, if desired.

98

CHAPTER VI

FUTURE RESEARCH DIRECTIONS

VI.1 Deployment and Configuration of Cloud-based Applicatons

Cloud computing, a paradigm whereby computing resources (BRI, disk space)
are provisioned on-the-fly and on-demand, and in a poténékstic manner, is an increas-
ingly popular deployment environment for large-scale mapions fL1, 45]. An attractive
feature of cloud computing is that it both increases fleiiplby allowing the virtualiza-
tion of the hardware resources and enabling on-demanchgazlapplication performance
while at the same time relieving the administrative ovednessociated with managing and
administering the associated physical hardware and sdtvesources that are required
for an application. These qualities provide a compellingy weaexpand the capabilities of
DRE systems and applications where it may be practically st gmhibitive to provision
physical resources for intermittently needed resourtensive computing.

Deployment and configuration solutions for the Cloud enwvinent are an active area
of research and development, however, many existing solsitire inappropriate for DRE
systems. Commercial cloud providers such as Amazon Web ®sr{AWS) B] and
Rackspace Cloud Hosting§| provide one of three options for deploying applications
into cloud environments. The first option, such as the AWStiel&eanstalk, require ap-
plications to use either special APIs or application corges provided by the service to
achieve automatic deployment. Moreover, these APIs anticafipn containers tend to
be specialized for web services and not DRE-type applicatibmally, the second option
is to use purpose built grid/cloud computing APIs such as MPbr Map-Reduce 12,
which are not appropriate for all applications and requed the applications themselves

be written specifically to be used in cloud environments.

99

The final option provided for application configuration isgmvision a virtual ma-
chine instance with the application software required aadsfer that image to the cloud
provider. The application then, is required to perform aogfiguration on its own, poten-
tially relying on a proprietary, ad-hoc mechanism. This bara problematic approach for
two important reasons. First, provisioning a virtual maehtan be problematic, at the mo-
ment often requiring some level of human intervention amgdamounts of data transfer
to the cloud provider. Second, proprietary ad-hoc deployraed configuration systems

must constantly re-invent the wheel and are not easily uséabother applications.

VI.1.1 Unresolved Challenges

This section will outline two unresolved challenges théewhen applying a generic

deployment and configuration toolchain to a Cloud-basedenmient.

VI.1.1.1 Hierarchical Domains

In the context of deployment and configuration systems teatielement of the frame-
work is the characterization of the “domain” in which it opgrs. “Domain” in this case
refers to the collection of hardware resources in whichiappbns are deployed — this
includes especially the physical hardware on which apptina run, but also includes el-
ements such as interconnects and bridges that make up theatmity resources used by
applications. Many D&C toolchains, including the OMG Degirent and Configuration
specification, the SOFA component mod&0], and deployment solutions for the Enter-
prise Java Beand] maintain only a flat representation in which the global astructure
not only has full knowledge of all nodes in the domain, buteisponsible for coordinating
all deployment activity amongst them.

This flattened representation causes two significant pneblehen these D&C frame-

works are applied to Cloud domains. First, due to the natut@lafid infrastructure, the

100

requested hardware resources will not be collocated welptaces of the global infras-
tructure used to initiate deployment, and such requestshaag to traverse a wide area
network such as the commodity Internet. This can cause @mudtic spikes in deployment
latency due to communications latency and bandwidth limois that may be present over
a WAN. Second, since it may be difficult to ascertaipriori the hardware resources that
are required or even available to the application, it may@oissible to properly configure

the global infrastructure to discover these resources.

VI.1.1.2 Deployment Toolchain Installation

As discussed in Sectio¥l.1, the current best practice for managing deployment of
software into Cloud environments is to create a virtual maehimage with all required
software. This virtual machine is then transferred to theu@lprovider which uses this
image to provision all allocated nodes. Managing such &irtnachine images can be
a challenging task, not only from the standpoint of ensutivgg all required component
implementations are available in the image, but also enguhat the required version of
the deployment infrastructure is present, along with areded plugin functionalityd.g,
Installation Handlers and Deployment Portable Intercepto

While LE-DANCE currently has functionality that allows it t@wnload implementa-
tion artifacts (.e., shared libraries that implement components) that arenedjat deploy-
ment time, it is currently not possible to use LE-DANCE to lst@tp itself by copying its

binaries and invoking the appropriate daemon processes.

VI.1.2 Solution Approach

The LocalityManager framework provides a different aretitiral way to visualize the
deployment process from the one outlined in Sectlbd.1. Instead of viewing the pro-

cess of application deployment as the concrete establishaiecomponent instances on

101

individual nodes as the primary goal for application depieynt, we can view the deploy-
ment process as the establishment of variogslities in different contexts This view
of deployment, shown in Figurél.1, represents a novel way of viewing the deployment

process.

()\ ()
Process Locality) | [lProcess Locality
O g0 O

Process Locality) | [lProcess Locality

L Node Locality J | Node Locality |

Global Locality

Figure VI.1: Locality-Based View of Deployment

While the architecture illustrated by this figure appearsaaimilar to the current LE-
DANCE architecture, it contains an important distinctionstead of viewing the ultimate
object of deployment action as a “component instance,” el éavel we view the estab-
lishment of the next level of localities in the hierarchy. gt it another way, under the
current methodology the only instances that appear in tae pte concrete component
instances. Under the proposed view of the deployment pspeesrything is represented
as an instancelnstead of having only eight instances in the plan for Fegtir1 for each
of the four yellow boxes that represent components, we wbale instead 14 described
instances in the plan.

Eight of the instances, as before, would represent compendimese component in-

stances would then be grouped (based on meta-data taggithggamwappropriate instance

102

representing thprocess localitywhich could have its own configuration directives to load
appropriate installation handlers or QoS configurationcheaf theseprocess localityin-
stances would be grouped with one of twode localityinstances, which again could be
individually configured. This approach allows more flextygiin how domains are assem-
bled by allowing to not have any knowledge of how the remairafehe application is
deployed (or how the domain is structured) beyond how the Ioezlity level needs to be
established.

A natural implementation approach for this new domain vieauld be to use the
LocalityManager at all levels of the deployment hierardRgther than have purpose built
daemons that implement the rolesEfecutionManageand NodeManagera Locality-
Managerinstance could be configured with an appropriate Instaltetiandler implemen-
tation that provided the appropriate knowledge of how talgsth the next level of the
domain hierarchy. In the case of tlxecutionManagerthis would include knowledge
of how to contact d.ocalityManagerdaemon running on a particular node to pass off the
appropriate locality-constrained plan. In the case ofNbedeManagerthis would include
the process of spawning nelvocalityManagerinstances that would manage the process

localities.

.

J O =)
Process Locality) D D
Cloud Node Locality

D D Locality W

Process Locality

Y

Node Locality
L Node Locality)) | Cloud Locality |

Global Locality

Figure VI.2: Locality-Based View of a Cloud Deployment

103

FigureVI.2 shows how this new domain hierarchy might be used in the gbofea
mixed standard/cloud deployment. In this case, there wbaltlvo localities considered
by the global deployment infrastructure: (1) a standardenlodality instance, and (2) a
cloud locality with the configuration information necessty dynamically request Cloud
infrastructure be provisioned. An installation handleuldathen be loaded that would be
able to use this configuration meta-data along with web sendiPls exposed by many
commercial cloud providers to automatically provision tleeessary infrastructure.

Moreover, this approach can also be used in concert withrtamce Installation Han-
dlers (IIH) and the LocalityManager architecture desatilmeSectionll.3.1 to address the
challenge outlined in Sectiovil.1.1.2 By treating individual nodes required for a deploy-
ment as instances in the deployment plan, we are then abketanullH to perform any
installation measures required. For example, an IIH coaldrkeated that would first check
to see if any DANCE infrastructure was present on the targeéén& no infrastructure is
detected, it would be able to then use readily available aatlira remote management
interfacese.g. SSH, to transfer the appropriate binary implementationAfOE and start

up the necessary infrastructure.

VI.2 Real-Time Extension for CCM
Developing complex component applications for the domdescribed in the intro-
duction is a very complex task due to the stringent Qualit$eivice requirements found
in Open DRE environments. Prior work conducted by our resegrroup [78, 79, 80] has
demonstrated the need for configurable QoS properties totégrated into both the com-
ponent middleware used to implement the applications aadi#ployment infrastructure
used to deploy and configure the application. Ideally, suaifigurable QoS properties

should be configured in such a way that (1) systemic aspectsing these QoS properties

104

are explicitly separated from application business logia] (2) such properties are explic-
itly configurable outside the application at runtime in ortteallow tuning and adaptation
of the application.

Prior implementations of RT-CCM produced in the context of Cl&@ DAnCE were
very tightly integrated into both the DANCE tooling and thetantiation and installation
process of CIAO containers and components. This approaatolidgmatic for three rea-
sons. First, such tight integration in the critical path ptinates the implementation of the
D&C toolchain, markedly increasing the difficulty of maiiteng the functionality —e.g.,
due to this tight integration and complex maintenance, RT-G@hdtionality was unable
to be transitioned to the LE-DANCE infrastructure. This gngion also increases the diffi-
culty of applying the paralellization optimizations dissed earlier in this chapter. Second,
this approach makes it markedly more difficult to integraiafigurability for other mid-
dleware services into the D&C toolchaire., infrastructure level load balancing or fault
tolerance services. Finally, its presence in the critiegahpnakes it impossible to remove
this functionality during deploy applications for which RInctionality is neither required
nor appropriatei,e.,deployments of non-CCM based applications.

Ideally, such QoS configuration should be accomplishedyusipluggable architecture
that uses standard interfaces to extend the functiondlhpth the component middleware
implementation and the deployment infrastructure to sa@poS configuration. While the
Quality of Service for CCM specificatiorbfl] (QoS4CCM) has emerged to provide some
extensibility to the CCM container in order to support somesllef QoS configuration
and could be used to also implement other extensions suacasty controls and fault
tolerance, the specification falls short in at least one @b area. The pluggable in-
frastructure provided by the QoS4CCM specification is entifetused on modifying the
behavior of the container and components at runtiree after the application has been ac-
tivated, and makes no provision for influencing the initiahfiguration during installation

and configuration by the D&C framework.

105

CHAPTER VII

CONCLUDING REMARKS

This dissertation has presented deployment and configaragisearch challenges in
three areas: 1) resource constrained sensor webs, 2)\adapti heterogeneous deploy-
ment in distributed real-time and embedded systems, 3jrdatistic and efficient deploy-
ment and configuration of large-scale systems, and 4) diegbintegration of distribution
middleware into component middleware.

The challenges in the area of resource constrained sendxs neeolved around the
deployment and configuration of tihulti-agent Architecture for Coordinated Responsive
ObservationfMACRO), an agent-based middleware platform implementdd sompo-
nent middleware. In particular, these challenges invothedbility of the MACRO frame-
work to 1) be able to execute low-level hardware dependekistaand 2) be provisioned
with the necessary business logic to be able to effect thetg®a at runtime. The solution
to these two challenges, the Action/Effector frameworks wascribed. Moreover, the se-
vere resource limitations in this domain — especially CPUmmoe/, and power — caused
challenges in the context of DAnCE, particularly the abibfyDANCE to deal with power
saving measures that involved completely shutting dowdware and the ability to cor-
rectly recover a correct deployment upon reboot. Findikg,ffort to resolve the CPU and
memory constraints in this domain in part motivated the taneaof the LocalityManager
framework in an effort to address footprint and deploymatercy challenges.

The LocalityManager framework is part of an improved vemsih the DANCE frame-
work called Locality-Enhanced DANnCE (LE-DANCE). LE-DANCE ¢aims a number of
compelling contributions to the state of the art for depleytrand configuration toolchains
for DRE systems. First, it allows for deployment of hetercgmrs applications via the

Instance Installation Handler (IIH) facility,e., allowing for multiple component models

106

to be part of a single deployment. Second, it allows userocuigtation of the deploy-
ment toolchain through a well-defined interface via the Dgpient Portable Interceptor
(DPI) facility. Third, it allows for these extensions (lIlHhd DPI implementations) to be
loaded dynamically at runtime as needed. Finally, due tcsthet separation of concerns
enabled by the IIH and DPI infrastructure, it contains a Dgpient Scheduler that allows
for maintainable and extensible parallel scheduling ofagpent events. The strict sepa-
ration of concerns provided by the LocalityManager alsovedl for a number of important
performance optimizations that allow it to scale to vergéscale deployments.

Finally, DDS4CIAQ is a novel generative approach for devielg@oDS-based comp-
onent-oriented DRE systems. This approach combines keyntayes of the DDS mid-
dleware, such as low latency communication and extensiv@ gadicy support, with the
strengths of a mature component model, such as simplifieticappn composition and
automatic deployment and configuration. The approach hexs pp@totyped and evaluated
via the DDS4CIAO middleware platform, which implements thghtweight CCM (DDS-
4CCM) specification, while addressing a number of inherentawidental complexities
in integrating the DDS and LwCCM technologies. In particuktensive use of variants
of the extensible interface pattern have been made to exttenelxisting standard-defined
LwCCM interface and deployment meta-data to overcome inctibifiiges between DDS
and LwWCCM and overcome oversights in the DDS4CCM specificatiodditfonally, a
template driven code generation technique has been deddhlt maximizes portability
amongst DDS implementations while allowing users to extBm54CCM by defining
their own connector types without having to modify the codaayator.

CIAO, LE-DANCE, and DDS4CIAO are all open source software arel aailable

from download.dre.vanderbilt.edu

107

download.dre.vanderbilt.edu

APPENDIX A

LIST OF PUBLICATIONS

Refereed Journal Publications

J2 M. Stal, D. C. Schmidt, and W. R. Otte. Efficiently and transparently autogsdaiable on-
demand activation and deactivation of services with the activator paefitware Practice
and Experience, Special Issue on Pattern Languages: Address$ialie@ges 41(10), Oct.
2011

J1 V. Subramonian, G. Deng, C. Gill, J. Balasubramanian, L.-J. She@{té/.D. C. Schmidt,
A. Gokhale, and N. Wang. The Design and Performance of Componieatéware for QoS-
enabled Deployment and Conguration of DRE Systefksevier Journal of Systems and
Software, Special Issue Component-Based Software Engineeringstwérthy Embedded

Systems80(5):668—677, Mar. 2007
Refereed Conference Publications

C9 A. Dubey, W. Emfinger, A. Gokhale, G. Karsai, W. R. Otte, J. PasGnSzabo A. Coglio,
E. Smith, and P. Bose. A software platform for fractionated spacedrafierospace Con-

ference, 2012 IEEEmarch 2012. to appear

C8 W. R. Otte, A. Gokhale, and D. C. Schmidt. Predictable deployment in coempdoased
enterprise distributed real-time and embedded systemBroceedings of the 14th interna-
tional ACM Sigsoft symposium on Component based software enging€B&de '11, pages
21-30, New York, NY, USA, 2011. ACM

C7 W.R. Otte, A. Gokhale, D. C. Schmidt, and J. Willemsen. Infrastructuredmponent-based
dds application development. Rroceedings of the 10th ACM international conference on
Generative programming and component engineerBgCE '11, pages 53—-62, New York,

NY, USA, 2011. ACM

108

C6 J. S.Kinnebrew, W. R. Otte, N. Shankaran, G. Biswas, and D.f@nf8lt. Intelligent resource
management and dynamic adaptation in a distributed real-time and embeddedveelns
system. IrProceedings of the 2009 IEEE International Symposium on Object/Quenp&ervice-
Oriented Real-Time Distributed ComputingORC '09, pages 135-142, Washington, DC,
USA, 2009. IEEE Computer Society

C5 W. Otte, J. Kinnebrew, D. Schmidt, and G. Biswas. A flexible infrastinector distributed
deployment in adaptive sensor webs. Aarospace conference, 2009 IEHgages 1 —12,

march 2009

C4 W. R. Otte, J. S. Kinnebrew, D. C. Schmidt, G. Biswas, and D. Suri.liégtpn of Mid-
dleware and Agent Technologies to a Representative Sensor Netiwd?koceedings of the
Eighth Annual NASA Earth Science Technology Conferddo@ersity of Maryland, June
2008

C3 D. Suri, A. Howell, N. Shankaran, J. Kinnebrew, W. Otte, D. C. Schnaidd G. Biswas.
Onboard Processing using the Adaptive Network Architectureé?réiceedings of the Sixth

Annual NASA Earth Science Technology Confere@odlege Park, MD, June 2006

C2 D. Suri, A. Howell, D. C. Schmidt, G. Biswas, J. Kinnebrew, W. Otte, In&hankaran. A
Multi-agent Architecture for Smart Sensing in the NASA Sensor WelPrateedings of the
2007 IEEE Aerospace Conferen@g Sky, Montana, Mar. 2007

C1 G. Deng, J. Balasubramanian, W. Otte, D. C. Schmidt, and A. GokhaaCPB: A QoS-
enabled Component Deployment and Configuration EnginBrdoeedings of the 3rd Work-
ing Conference on Component Deployment (CD 2008&jes 67—82, Grenoble, France, Nov.
2005

109

Refereed Workshop Publications

W1 W. R. Otte, D. C. Schmidt, and A. Gokhale. Towards an Adaptive Depéoy and Con-
figuration Framework for Component-based Distributed SystemBrdoeedings of the 9th

Workshop on Adaptive and Reflective Middleware (ARM, Béngaluru, India, Nov. 2010
Book Chapters

BC1 W. Otte and D. C. Schmidt. Labor-Saving Architcture: an Object-OrieRtamework for
Networked Software. IBeautiful Code: Leading Programmers Explain How They Think

(Theory in Practice (O’Reilly))O’Reilly Media, 1st edition, July 2007
Submitted for Publication

S1 William R. Otte, Aniruddha Gokhale, and Douglbas C. Schmidt. EfficiethCaterministic
Application Deployment in Component-based, Enterprise Distributed, Real-dnteEm-

bedded Systems. Submitted to the Elsevier Information and Software Techjmlogal.

110

© © N o g~ W N B

A B B B B B W OW W W W W W W W WRNNNDNDNDNDNDNDNDNRE PR RERR PR R R
g A W N P O © © N O g & W N P O O© © N O O & W N P O © © N O 0o W N P O

APPENDIX B

IDL LISTINGS

B.1 LocalityManager IDL

module DANCE

{

.

*

*

*

*

*

@interface InstanceDeploymentHandler

@brief Interface used to manage the

lifecyclef instances.

This interface is used by the LocalityManager to manage thiéetycle

of various instance types. Each instance type requires a sa&ieeiDH.

*/

local interface InstanceDeploymentHandler

{

readonly attribute string instance_type

readonly attribute ::CORBA::StringSeq dependencies

void configure (in ::Deployment:: Properties config)

void install_instance (in ::Deployment:: DeploymenaRl plan,

in unsigned long

instanceRef ,

out any instance_reference)

raises (Deployment:: StartError ,

Deployment:: InvalidProperty

Deployment::InvalidNodeExecParameter,

Deployment::InvalidComponentExecParametgr)

void provide_endpoint_reference (in

:: Deployment::@eymentPlan plan,

in unsigned long connectionRef,

out any endpoint_reference)

raises (Deployment:: StartError ,

Deployment:: InvalidProperty;

)

void connect_instance (in ::Deployment:: Deploymera®lplan,

in unsigned long connectionRef,

in any provided_reference)

raises (Deployment:: StartError ,

Deployment:: InvalidConnection)

void disconnect_instance (in ::Deployment::DeploymRlan plan,

in unsigned

raises (::Deployment:: StopError)

long

connectionRef)

void instance_configured (in ::Deployment:: DeployniBtan plan,

in unsigned

raises (Deployment:: StartError)

long

instanceRef)

111

46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

H

void activate_instance (in ::Deployment:: Deploymeka® plan,

in unsigned long instanceRef,

in any instance_reference)

raises (Deployment:: StartError)

void passivate_instance (in ::Deployment:: Deploynmlan plan,

in unsigned long instanceRef,

in any instance_reference)

raises (Deployment:: StopError)

void remove_instance (in ::Deployment:: Deployment®lalan,

in unsigned long instanceRef,

in any instance_reference)

raises (::Deployment:: StopError)

/1l Instruct the handler to release any resources prior deallocation.

void close ()

interface LocalityManager

H

Deployment:: Application ,

Deployment:: ApplicationManager

readonly attribute ::Deployment:: Properties configuion;

Deployment:: ApplicationManager

preparePlan (in Deployment:: DeploymentPlan

in Deployment:: ResourceCommitmentManager resourae@étment)

raises (Deployment:: StartError ,

Deployment:: PlanError;)

void destroyManager (in ::Deployment:: ApplicationMager manager)

raises (Deployment:: StopError)

oneway void shutdown ()

local interface LocalityConfiguration

{

H

readonly attribute string type

plan,

void configure (in ::Deployment:: Property prop)

interface LocalityManagerActivator

{

H

void locality_manager_callback (in LocalityManagerfre

in string uuid,

out Deployment

void configuration_complete (in string uuid)

;i Properties config)

112

REFERENCES

[1] A. Akkerman, A. Totok, and V. Karamcheti. Infrastructufor Automatic Dynamic
Deployment of J2EE Applications in Distributed Environrteenin 3rd International
Working Conference on Component Deployment (CD 2(&#ges 17-32, Grenoble,
France, Nov. 2005.

[2] Alejandro de Campos Ruiz and Gerardo Pardo-Castellote @nuR@ro Napoli and
Fernando Crespo-Sanchez and Javier Sanchez Monederoledée*rogramming of
DDS Systems. IProceedings of the OMG Annual Real-time and Embedded System
Workshop (RTWSArlington, VA, Mar. 2011.

[3] Amazon.com. Amazon Web Servicemwys.amazon.com , 2010.
[4] Angelo Corsaro. Simple API for DD3ttp://code.google.com/p/simd-cxx/

[5] Argonne National Laboratory. The Message Passingfieter(MPI) standard. www-

unix.mcs.anl.gov/mpi/.

[6] A. B. Arulanthu, C. O’'Ryan, D. C. Schmidt, M. Kircher, and Jr&ans. The Design
and Performance of a Scalable ORB Architecture for CORBA Assorabus Mes-
saging. InProceedings of the Middleware 2000 Conferers€M/IFIP, Apr. 2000.

[7] A. Bouguerra and L. Karlsson. Hierarchical Task Plannigder Uncertainty.3rd
Italian Workshop on Planning and Scheduling (Al* 1A 2004rdRia, Italy, 2004.

[8] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-Bfaite An open com-
ponent model and its support in Java. Gomponent-Based Software Engineering

pages 7-22, 2004.

113

aws.amazon.com
http://code.google.com/p/simd-cxx/

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

L. Bulej and T. Bures. A connector model suitable for auttimgeneration of con-

nectors. Technical report, 2003.

T. Bures, P. Hnetynka, and F. Plasil. Sofa 2.0: Balancthgaaced features in a hier-
archical component model. Proceedings of the Fourth International Conference on
Software Engineering Research, Management and Appliaii@yes 40-48, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandiou€IComputing and
Emerging IT platforms: Vision, Hype, and Reality for Deliireg Computing as the
5th Utility. Future Generation Computer Syster5(6):599 — 616, 2009.

J. Dean and S. Ghemawat. MapReduce: Simplified Data Bsoweon Large Clus-

ters. http://labs.google.com/papers/mapreduce.html , 2004.

K. Delin and S. Jackson. Sensor web for in situ explorabf gaseous biosignatures.
In Aerospace Conference Proceedings, 2000 IEEi#ImMe 7, pages 465 —472 vol.7,
2000.

G. Deng, J. Balasubramanian, W. Otte, D. C. Schmidt, an@G&khale. DANCE:
A QoS-enabled Component Deployment and Configuration Endm@roceedings
of the 3rd Working Conference on Component Deployment (CD 2p8§gs 67-82,

Grenoble, France, Nov. 2005.

G. Deng, D. C. Schmidt, and A. Gokhale. Cadance: A critigalware deployment
and configuration engine. Proceedings of the 2008 11th IEEE Symposium on Object
Oriented Real-Time Distributed Computinmages 317-321, Washington, DC, USA,
2008. IEEE Computer Society.

A. Dubey, W. Emfinger, A. Gokhale, G. Karsai, W. R. Otte Parsons, C. Szabd

A. Coglio, E. Smith, and P. Bose. A software platform for franated spacecraft. In

114

http://labs.google.com/papers/mapreduce.html

Aerospace Conference, 2012 IEERarch 2012. to appear.

[17] A. EI-Kholy and B. Richards. Temporal and Resource ReagpmirPlanning: The
parcPLAN Approach. pages 614-618. Wile¥ Sons, 1996.

[18] C. Esposito and D. Cotroneo. Resilient and timely evergedignation in publish/-
subscribe middlewardJARAS 1(1):1-20, 2010.

[19] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kem@@ The many faces of
publish/subscribeACM Computer Survey5:114-131, June 2003.

[20] D. R. Fatland, M. J. Heavner, E. Hood, and C. Connor. The SBASTER Sensor
Web: Lessons and Opportunities after One YeédeU Fall Meeting Abstractages
A3+, Dec. 2007.

[21] A.Flissi, J. Dubus, N. Dolet, and P. Merle. Deployingtbe grid with deployware. In
Proceedings of the 2008 Eighth IEEE International Sympan Cluster Computing
and the Grid pages 177-184, Washington, DC, USA, 2008. IEEE Computee§oci

[22] P. Friedland and Y. lwasaki. The concept and implementaf skeletal plansJour-
nal of Automated Reasoning)(2):161-208, 1985.

[23] E. Gamma, R. Helm, R. Johnson, and J. Vlissid&esign Patterns: Elements of
Reusable Object-Oriented Softwakddison-Wesley, Reading, MA, 1995.

[24] C. D. Gill, J. M. Gossett, D. Corman, J. P. Loyall, R. E. SdlzaM. Atighetchi, and
D. C. Schmidt. Integrated adaptive qos management in migaEwA case study.
Real-Time Syst29:101-130, March 2005.

[25] A. Gokhale, B. Natarajan, D. C. Schmidt, A. NechypurenBo,Gray, N. Wang,

115

[26]

[27]

[28]

[29]

[30]

[31]

[32]

S. Neema, T. Bapty, and J. Parsons. CoSMIC: An MDA Generativé foodis-
tributed Real-time and Embedded Component Middleware andiggtions. InPro-
ceedings of the OOPSLA 2002 Workshop on Generative Tedwmigthe Context of
Model Driven ArchitectureSeattle, WA, Nov. 2002. ACM.

P. Haddawy, A. Doan, and R. Goodwin. Efficient decisibadretic planning: Tech-
niques and empirical analysis. In Proceedings of the Eleventh Conference on Un-

certainty in Artificial Intelligencepages 229-236. Morgan Kaufmann, 1995.

G. T. Heineman and B. T. CouncifComponent-Based Software Engineering: Putting

the Pieces TogetheAddison-Wesley, Reading, Massachusetts, 2001.

J. Hill, D. C. Schmidt, J. Slaby, and A. Porter. CICUTS: Combg System Execution
Modeling Tools with Continuous Integration Environments Proceedings of the
15th Annual IEEE International Conference and WorkshopshenEngineering of

Computer Based Systems (ECEB)Ifast, Northern Ireland, Apr. 2008.

P. HnAZtynka and F. PIAaAail. Dynamic reconfiguration and ascesservices in
hierarchical component models. Rroceedings of CBSE 2006, Vasteras, Sweden,

LNCS 4063pages 352—-359. Springer-Verlag, 2006.

D. Hoareau and Y. Mahéo. Middleware support for the dgmient of ubiquitous

software component$fersonal and Ubiquitous Computing2(2):167-178, 2008.

L. H. lhrig and S. Kambhampati. Design and implemewotatf a replay framework
based on a partial order planner.Rroceedings of the thirteenth national conference

on Artificial intelligence - Volume,JAAAI'96, pages 849-854. AAAI Press, 1996.

T. Kalibera and P. Tuma. Distributed component systeseld on architecture de-
scription: The sofa experience. @n the Move to Meaningful Internet Systems, 2002

- DOA/CooplIS/ODBASE 2002 Confederated International Contere DOA, CooplS

116

and ODBASE 20Q2%ages 981-994, London, UK, UK, 2002. Springer-Verlag.

[33] Ke Jin. Component-Based CORBA+DDS Applications in PocoGkgpss CCM.

http://www.pocomatic.com/docs/whitepapers/corba/

[34] J. S. Kinnebrew, A. Gupta, N. Shankaran, G. Biswas, and.[5chmidt. A decision-
theoretic planner with dynamic component reconfiguratmndistributed real-time
applications. InProceedings of the Eighth International Symposium on Awrtoyus
Decentralized Systempages 461-472, Washington, DC, USA, 2007. IEEE Com-

puter Society.

[35] J. S. Kinnebrew, W. R. Otte, N. Shankaran, G. Biswas, and.[3chmidt. Intelligent
Resource Management and Dynamic Adaptation in a DistribResd-time and Em-
bedded Sensor Web System. Technical Report 1SIS-08-90&ievhitt University,
2008.

[36] J. S. Kinnebrew, W. R. Otte, N. Shankaran, G. Biswas, and.[3chmidt. Intelligent
resource management and dynamic adaptation in a distiibest-time and embed-
ded sensor web system.Pnoceedings of the 2009 IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distrith@emputing ISORC "09,
pages 135-142, Washington, DC, USA, 2009. IEEE Computer §ocie

[37] P. Labone and M. Ghallab. Planning with sharable resmaonstraints. liProceed-
ings of the 14th international joint conference on Artificiatelligence - Volume 2

pages 1643-1649, San Francisco, CA, USA, 1995. Morgan KaufiRablishers Inc.

[38] S. Lacour, C. Perez, and T. Priol. Generic applicatioscdption model: Toward
automatic deployment of applications on computationalgrinProceedings of the
6th IEEE/ACM International Workshop on Grid ComputirigRID '05, pages 284—
287, Washington, DC, USA, 2005. IEEE Computer Society.

117

http://www.pocomatic.com/docs/whitepapers/corba/

[39]

[40]

[41]

[42]

[43]

[44]

[45]

P. Lardieri, J. Balasubramanian, D. C. Schmidt, G. ThakeGokhale, and T. Dami-
ano. A Multi-layered Resource Management Framework for Dyin&esource Man-
agement in Enterprise DRE Systendsurnal of Systems and Software: Special Issue
on Dynamic Resource Management in Distributed Real-tinsee8)580(7):984-996,
July 2007.

T. Lu, E. Turkay, A. Gokhale, and D. C. Schmidt. CoSMIC: An MDOool suite
for Application Deployment and Configuration. Broceedings of the OOPSLA 2003
Workshop on Generative Techniques in the Context of ModeleDriArchitecture

Anaheim, CA, Oct. 2003. ACM.

M. Mikic-Rakic and N. Medvidovic. Architecture-leveupport for software compo-
nent deployment in resource constrained environment$£0r02: Proceedings of
the IFIP/ACM Working Conference on Component Deploymeages 31-50, Lon-
don, UK, 2002. Springer-Verlag.

S. Miksch, Y. Shahar, and P. Johnson. Asbru: A Task-Bipemtention-Based, and
Time-Oriented Language for Representing Skeletal Plan®rdneedings of the 7th

Workshop on Knowledge Engineering: Methods & Languages (KBF)Lpages 9—

19, 1997.

l. Molnar. Linux with Real-time Pre-emption Patches.
http://lwww.kernel.org/pub/linux/kernel/projects/rt/ , Sep
2006.

N. C. Myers. Traits: a new and useful template technidqtiet Report, June 1995.

R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-Clouds: Mgimg Performance In-
terference Effects for QoS-Aware Clouds. Pnoceedings of EuroSys 201pages
237-250, Paris, France, Apr. 2010.

118

http://www.kernel.org/pub/linux/kernel/projects/rt/

[46] Object Management Groupnterceptors FTF Final Published DrafOMG Docu-
ment ptc/00-04-05 edition, Apr. 2000.

[47] Object Management Group. Lightweight CORBA Component Model RFP
realtime/02-11-27 edition, Nov. 2002.

[48] Object Management Grouprfhe Common Object Request Broker: Architecture and

Specification3.0.2 edition, Dec. 2002.

[49] Object Management GroupDeployment and Configuration Adopted Submission
OMG Document mars/03-05-08 edition, July 2003.

[50] Object Management Group.ight Weight CORBA Component Model Revised Sub-
mission OMG Document realtime/03-05-05 edition, May 2003.

[51] Object Management Groupightweight CCM FTF Convenience Documgptic/04-
06-10 edition, June 2004.

[52] Object Management Group. CORBA Components v4.00MG Document
formal/2006-04-01 edition, Apr. 2006.

[53] Object Management Grou@ata Distribution Service for Real-time Systems Specifi-

cation 1.2 edition, Jan. 2007.

[54] Object Management Grouguality of Service For CCM Specificatip@MG Docu-
ment formal/2008-10-02 edition, Oct. 2008.

[55] Object Management Group.The Common Object Request Broker: Architecture
and Specification Version 3.1, Part 2. CORBA InteroperapillDMG Document
formal/2008-01-07 edition, Jan. 2008.

[56] Object Management Group.The Common Object Request Broker: Architecture

119

and Specification Version 3.1, Part 3: CORBA Component Mdd®lG Document
formal/2008-01-08 edition, Jan. 2008.

[57] Object Management Grou®DS for Lightweight CCM Version 1.0 Beta Dbject

[58]

[59]

[60]

[61]

[62]

[63]

Management Group, OMG Document ptc/2009-10-25 edition, Z0O9.

ObjectWeb Consortium. CARDAMOM - An Enterprise Middlewafor Building

Mission and Safety Critical Applicationsardamom.objectweb.org , 2006.

OMG. Deployment and Configuration of Component-based Distrib&fgalications,
v4.0, Document formal/2006-04-02 edition, Apr. 2006.

W. Otte, J. Kinnebrew, D. Schmidt, and G. Biswas. A flegilnhfrastructure for
distributed deployment in adaptive sensor web#\drospace conference, 2009 IEEE

pages 1 —-12, march 2009.

W. Otte and D. C. Schmidt. Labor-Saving Architcture: abj€at-Oriented Frame-
work for Networked Software. IBeautiful Code: Leading Programmers Explain
How They Think (Theory in Practice (O’Reilly)p’Reilly Media, 1st edition, July
2007.

W. R. Otte, A. Gokhale, and D. C. Schmidt. Predictable dgplent in component-
based enterprise distributed real-time and embeddednsysti Proceedings of the
14th international ACM Sigsoft symposium on Component basiédase engineer-

ing, CBSE '11, pages 21-30, New York, NY, USA, 2011. ACM.

W. R. Otte, A. Gokhale, D. C. Schmidt, and J. Willemsen. rdsfructure for
component-based dds application development.Proceedings of the 10th ACM
international conference on Generative programming anchjgonent engineering

GPCE '11, pages 53-62, New York, NY, USA, 2011. ACM.

120

cardamom.objectweb.org

[64]

[65]

[66]

[67]

[68]

[69]

[70]

W. R. Otte, J. S. Kinnebrew, D. C. Schmidt, G. Biswas, and i.SApplication of
Middleware and Agent Technologies to a Representative $déhestwork. InPro-
ceedings of the Eighth Annual NASA Earth Science Techn@ogferenceUniver-
sity of Maryland, June 2008.

W. R. Otte, D. C. Schmidt, and A. Gokhale. Towards an Adapbeployment and
Configuration Framework for Component-based Distributede®ys. InProceedings
of the 9th Workshop on Adaptive and Reflective Middleware (ARW) Bengaluru,
India, Nov. 2010.

C. Pérez, T. Priol, and A. Ribes. A Parallel CORBA Componend&dor Nu-
merical Code Coupling. In M. Parashar, edit@rjd Computing-GRID 2002pages
88-99. Springer Berlin / Heidelberg, PARIS research group ARIMRIA Campus
de Beaulieu 35042 Rennes Cedex France, 2002. 10.1007/3-383-269.

V. Quéma, R. Balter, L. Bellissard, D. Féliot, A. Freysdjrend S. Lacourte. Asyn-
chronous, hierarchical, and scalable deployment of compbased applications.
In Proceedings of Second International Working Conference angidment Deploy-

ment pages 50—-64, Edinburgh, UK, May 2004.

Rackspace Hosting. Rackspace Cloud Hostragkspacecloud.com , 2010.

D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmamattern-Oriented Software
Architecture: Patterns for Concurrent and Networked Objedtdume 2 Wiley &
Sons, New York, 2000.

N. Shankaran, D. C. Schmidt, Y. Chen, X. Koutsoukous, anduC.The Design and
Performance of Configurable Component Middleware for EnB+id-Adaptation of
Distributed Real-time Embedded Systems.Phoc. of the 10th IEEE International

Symposium on Object/Component/Service-oriented RealRistributed Computing

121

rackspacecloud.com

[71]

[72]

[73]

[74]

[75]

[76]

(ISORC 2007)Santorini Island, Greece, May 2007.

B. Srivastava and S. Kambhampati. Scaling up plannindeaging out resource
scheduling. InProceedings of the 5th European Conference on Planning: iRece

Advances in Al Planningpages 172-186, London, UK, 2000. Springer-Verlag.

M. Stal, D. C. Schmidt, and W. R. Otte. Efficiently and trpagently automating
scalable on-demand activation and deactivation of seswidth the activator pattern.
Software Practice and Experience, Special Issue on Pattangliages: Addressing

Challenges41(10), Oct. 2011.

V. Subramonian, G. Deng, C. Gill, J. Balasubramanian).LShen, W. Otte, D. C.
Schmidt, A. Gokhale, and N. Wang. The Design and Performahcomponent
Middleware for QoS-enabled Deployment and Conguration of [3y&tems. El-

sevier Journal of Systems and Software, Special Issue ComipBased Software

Engineering of Trustworthy Embedded Syste80$5):668—-677, Mar. 2007.

V. Subramonian, L.-J. Shen, C. Gill, and N. Wang. The Desand Performance
of Configurable Component Middleware for Distributed Real-@iand Embedded
Systems. IRTSS '04: Proceedings of the 25th IEEE International RealeTSys-
tems Symposium (RTSS’Ogages 252-261, Lisbon, Portugal, 2004. IEEE Computer

Society.

D. Suri, A. Howell, D. C. Schmidt, G. Biswas, J. Kinnebrewy. Otte, and
N. Shankaran. A Multi-agent Architecture for Smart Sensmghe NASA Sensor
Web. InProceedings of the 2007 IEEE Aerospace ConfereBag Sky, Montana,
Mar. 2007.

D. Suri, A. Howell, N. Shankaran, J. Kinnebrew, W. Otf®@, C. Schmidt, and

122

[77]

[78]

[79]

[80]

[81]

[82]

[83]

G. Biswas. Onboard Processing using the Adaptive Networkifecture. InPro-
ceedings of the Sixth Annual NASA Earth Science Technologfe@ace College
Park, MD, June 2006.

M. Toure, P. Stolf, D. Hagimont, and L. Broto. Large scdéployment. IrAutonomic
and Autonomous Systems (ICAS), 2010 Sixth Internationalke@orde onpages 78
—-83, Mar. 2010.

N. Wang, K. Balasubramanian, and C. Gill. Towards a remétcorba component
model. INnOMG Workshop On Embedded & Real-time Distributed Objecte8ys
Washington, D.C., July 2002. Object Management Group.

N. Wang and C. Gill. Improving real-time system configioa via a gos-aware corba
component model. IHICSS '04: Proceedings of the Proceedings of the 37th Annual
Hawaii International Conference on System Sciences (HIC$S'04ack 9 page

90273.2, Washington, DC, USA, 2004. IEEE Computer Society.

N. Wang, D. C. Schmidt, A. Gokhale, C. Rodrigues, B. NatarajaP. Loyall, R. E.
Schantz, and C. D. Gill. QoS-enabled Middleware. In Q. Mahthedlitor,Middle-

ware for Communicationgages 131-162. Wiley and Sons, New York, 2004.

D. A. Wheeler. Sloccount, a set of tools for counting pbgksource lines of code,
20009.
B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,Ndwbold, M. Hibler,

C. Barb, and A. Joglekar. An integrated experimental envirmnfor distributed
systems and networks. Rroc. of the Fifth Symposium on Operating Systems Design

and Implementatiarpages 255-270, Boston, MA, Dec. 2002. USENIX Association.

J. White, B. Kolpackov, B. Natarajan, and D. C. Schmidt. Reuy@pplication
Code Complexity with Vocabulary-specific XML language Bindingh ACM-SE 43:

123

Proceedings of the 43rd annual Southeast regional conéer&005.

[84] M. Xiong, J. Parsons, J. Edmondson, H. Nguyen, and D. fgit. Evaluating Tech-
nologies for Tactical Information Management in Net-Cen8ystems. IrProceed-
ings of the Defense Transformation and Net-Centric Systemigremce Orlando,

Florida, Apr. 2007.

124

	Acknowledgments
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	New Demands on Distributed, Real-time and Embedded Systems
	Overview of Research Needs
	Focus Area 1: Deployment and Configuration for Resource-Constrained Systems
	Focus Area 2: Heterogeneous and Adaptable Deployment and Configuration Frameworks
	Focus Area 3: Efficient and Deterministic Deployment Latency
	Focus Area 4: Design Approaches to Extensible Component Middleware

	Dissertation Organization

	Deployment and Configuration for Resource Constrained Sensor Webs
	Motivation
	Overview of SEAMONSTER
	Distributed Deployment and Adaptation Challenges in SEAMONSTER
	Challenge 1: Standardized Execution of Planned Low-Level Actions and Data Tasks
	Challenge 2: Automated Agent Provisioning for a Variety of Field Hardware
	Challenge 3: Minimizing Deployment Infrastructure Overhead
	Challenge 4: Local power management with sleep/wake cycles

	Minimizing Infrastructure Overhead in MACRO
	Overview of MACRO
	Overview of MACRO's QoS-enabled Component Middleware
	Applying MACRO to Address SEAMONSTER Challenges

	Experimental Results
	Hardware/Software Testbed and Experiment Methodology
	Initial Footprint Reduction
	Impact of Action/Effector Framework on MACRO Execution Overhead

	Related Work
	Summary and Lessons Learned

	Heterogeneous and Adaptive Deployment and Configuration Frameworks
	D&C Standard Overview
	Runtime D&C Architecture
	D&C Deployment Data Model

	Adaptive D&C Challenges in Component-based DRE Systems
	Challenge 1: Support for Heterogeneous Deployments
	Challenge 2: Customized Behavior During Deployment
	Challenge 3: Customization of Behavior at Run-time

	Decoupling the D&C Specification from Target Component Model
	Instance Installation Handlers
	Deployment Portable Interceptors
	Configuration of Handlers and Interceptors

	Related Work
	Summary and Lessons Learned

	Deterministic and Efficient Deployment in Component-based Enterprise Distributed Real-time and Embedded Systems
	Impediments to Efficient and Deterministic Deployment Latency
	OMG D&C Deployment Process
	Sources of Deployment Latency Overheads
	Challenge 1: Parsing Deployment Plans
	Challenge 2: Serialized Execution of Deployment Actions

	Overcoming Deployment Latency Bottlenecks in LE-DAnCE
	Improving Runtime Plan Processing
	Parallelizing Deployment Activity

	Experimental Results
	Overview of Hardware and Software Testbed
	Experiment 1: Measuring XML Processing Overhead
	Experiment 2: Measuring Application Deployment Latency
	Experiment 3: Measuring the Predictability of Deployment Latency

	Related Work
	Summary and Lessons Learned

	Extending Middleware Capabilities Using Connectors
	Impediments to Integrating LwCCM and DDS
	Overview of the OMG Data Distribution Service (DDS)
	Addressing Limitations in the LwCCM Port System via DDS4CCM
	Challenges in Integrating LwCCM and DDS

	Resolving LwCCM and DDS Integration Challenges in DDS4CIAO
	Accurate Indication of Successful Connector Configuration
	Avoiding D&C-related Memory Footprint
	Reducing Connector-Related Memory Footprint
	Supporting Local Facets
	Ensuring Portability of DDS4CIAO Implementation
	Connector Code Generation

	Experimental Results
	Experimental Scenario
	Evaluation of Code Generation
	Evaluation of the Overhead of DDS4CIAO

	Related Work
	Summary and Lessons Learned

	Future Research Directions
	Deployment and Configuration of Cloud-based Applications
	Unresolved Challenges
	Solution Approach

	Real-Time Extension for CCM

	Concluding Remarks
	List of Publications
	IDL Listings
	LocalityManager IDL

	REFERENCES

