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CHAPTER I 

 

BACKGROUND AND SIGNIFICANCE 

 

Introduction 

 

With the first examples isolated in the 1950`s, the diazo group containing family 

of secondary metabolites currently consists of more than 30 structures.
1
 As opposed to 

broadly studied synthetic analogs, mostly prepared from hydrazine and its derivatives, 

diazo compounds and other N-N bond containing natural products (hydrazines, 

hydrazones, nitramines, nitroamines, azoxy and heterocyclic compounds) have been a 

subject of limited research. In terms of structural complexity and physical properties, 

diazo group containing kinamycins and lomaiviticins (diazoparaquinone antibiotics) can 

be easily depicted as one of the most interesting family of natural products. The 

following chapter describes recent efforts toward the synthesis, evaluation of biological 

properties and biosynthetic origin of both the kinamycins and lomaiviticins.  

 

Isolation and Structure Elucidation 

 

The first kinamycins were isolated as orange, crystalline solids from a 

fermentation culture broth of the soil bacterium Streptomyces murayamaensis in 

1970.
2-5

 A combination of chemical, spectroscopic and crystallographic methods were 



2 

 

used to assign the structure of 1.1a-d as benzo[b]carbazoloquinone cyanamides with a 

highly oxygenated D ring (Figure 1.1). Although tentative assignment of the cyanamide 

functionality could not be fully supported by 
13

C NMR data, an unexpected resonance at 

δ 78 ppm instead of the predicted δ 110-120 ppm was tentatively explained by the 

magnetic influence of the benzo[b]carbazoloquinone ring system. Additionally, the 

infrared absorbance (2150 cm
-1

) and detection of ammonia under hydrolytic conditions - 

were used as evidence in favor of the cyanamide group. Biosynthetic studies and 

attempts to synthesize biosynthetic precursors to 1.1 revealed poor agreement of 

collected data with the initial structural assignment.
6
  

The reexamination of 
1
H and 

13
C NMR, IR, high resolution X-ray led to the reevaluation 

and final identification of the kinamycins as diazobenzo[b]fluorenes 1.2a-d (i.e. 

exchange N-CN to C=N=N).
7. 8

 

 

 

Figure 1.1. Benzo[b]carbazolquinone cyanamides and Diazobenzo[b]fluorenes. 

 

Thirty years after isolation of the kinamycins (1.2a-d), the fermentation broth of 

a new species Micromonospora lomaivitiensis found in the inner core of a marine 

ascidian Polysyncraton lithostrotum, delivered red, amorphous lomaiviticins A (1.3a) and 



3 

 

B (1.3b) (Figure 1.2).
9
 High-resolution Fourier transform ion cyclotron resonance mass 

spectrometry was applied to determine the molecular formula of lomaiviticin A as 

C68H80N6O24 and lomaiviticin B as C54H56N6O18. Analysis of spectroscopic data revealed 

that the number of carbons and protons corresponded to half of these values suggesting 

the symmetrical dimeric structure of both metabolites. Further evaluation of two-

dimensional spectroscopic experiments led to identification of 1.3a as a C2-symmetric 

diazobenzo[b]fluorene equipped with a highly functionalized central core and four 

sugars attached to the aglycon – two N,N-dimethyl derivatives of a rare amino sugar 

pyrrolosamine and two oleandroses. Detailed analysis of the structure of 1.3b revealed 

a fused furanol moiety in the central region of the molecule and therefore, the presence 

of only two N,N-dimethyl pyrrolosamines. The absolute stereochemistry of 1.3a and 

1.3b was not determined but tentatively assigned based on analogy to the kinamycins. 

 

 

Figure 1.2. Lomaiviticins A (1.3a) and B (1.3b). 
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Biosynthesis 

 

The initial incorrect assignment of the structure of the kinamycins as N-

cyanamides strongly influenced the first period of biosynthetic studies of 1.2. At that 

time a series of isotope experiments revealed that the kinamycins were synthesized 

from a polyketide synthase.
10,11

 Further studies showed that dehydrorabelomycin (1.4, 

Scheme 1.1), identified as a precursor of many other aromatic polyketides (see 

rebelomycin-like structure, Figure 1.3), is an early intermediate in the biosynthesis of 

1.2.
12

 

 

 

Figure 1.3. Secondary metabolites originated from rabelomycin. 

 

A series of feeding studies and genetic experiments conducted in late 1980`s and 

early 1990`s led to the isolation of further metabolites and resulted in the proposal of a 
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plausible biosynthetic pathway for the formation of 1.2 (Scheme 1.1).
13 

As suggested, 

the formation of 1.2 starts with the oxidative ring cleavage of dehydrorabelomycin (1.4). 

Ring contraction then leads to generation of the benzo[b]fluorene skeleton of 

kinobscurinone (1.7). Reductive amination of the carbonyl group of 1.7 provides primary 

amino group-containing stealthin C (1.8). Subsequent diazotization gives prekinamycin 

(1.9), the common precursor to all kinamycins characterized by the presence of a diazo 

functionality. Finally, a series of oxidative manipulations of the D ring of 1.9 affords 

different kinamycins. 
 

 

O
H

 

Scheme 1.1. Speculative biosynthesis of kinamycin D (1.2d). 
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Despite being published in 1997, this proposal has not been challenged nor 

validated. Therefore, the unanswered questions: 1. Of the origin of the diazo group in 

the structure of prekinamycin and the kinamycins; 2. The source of the second nitrogen 

for formation of the diazo functionality; and 3. Identification of the enzyme responsible 

for conversion of the amino group of 1.8 to the diazo group of 1.9, still await 

explanation. 

Similarly, the question of the biosynthetic origin of lomaiviticins remains to be 

addressed. Known examples of biosynthetic studies of C2-symmetric aromatic 

polyketides seem to suggest that the aglycons of 1.3a and 1.3b could be formed via 

dimerization of two monomeric kinamycin-like units.
14

 Identification of an enzyme 

catalyzing this transformation will enable validation of this hypothesis. 

As mentioned previously, the kinamycins and dimeric lomaiviticins are not the 

only diazo group containing secondary metabolites isolated from bacterial sources.
1
 

However, the only other biosynthetic study was reported for the 

diazopyranonaphtoquinone SF2415A3 (1.15) a biosynthetic precursor to azamerone 

(Scheme 1.2).
15

 As reported, production of 1.15 involves stepwise introduction of the 

diazo functionality through formation of an aminodihydroquinone intermediate 1.14. 
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Scheme 1.2. Hypothetical biosynthesis of SF2415A3. 

 

Intrigued by previous findings and even more by unaddressed questions of the 

biosynthetic origin of 1.2 and 1.3, we have hypothesized that the formation of the diazo 

group in the structure of prekinamycin could originate from the reaction of the amino 

group of stealthin C (1.8) with a nitrosonium ion (NO
+
) source (Scheme 1.3). This 

synthetically well-established transformation may be achieved by use of NaNO3 and 

involves loss of a water molecule.
16

 In biological systems NO
+
 can be delivered from 

oxidation of nitric oxide (NO) produced during the conversion of arginine into citrullinic 

acid catalyzed by the enzyme nitric oxide synthase (NOS). The mammalian NOS and the 

function of NO have been the subject of intense studies.
17

 In contrast, the roles of both 

bacterial nitric oxide synthase and bacterial NO remain poorly understood.
18

 A recent 

report has shown the contribution of this protein to the production of the secondary 

metabolite thaxtomin (1.16), in which the NOS is responsible for production of NO2
+
 

incorporated in the structure of the aromatic dipeptide (Scheme 1.4).
19

 NOS was also 

suggested to be involved in the development of bacterial antibiotic resistance 

mechanism as a consequence of modification by small molecule antibiotics.
20

 It remains 

to be answered if a similar process is involved in the biosynthetic pathway to 1.2 and 



8 

 

1.3. Observations made during biosynthetic studies of azamerone seem to be in favor of 

this hypothesis. 

 

 

Scheme 1.3. Hypothetical formation of prekinamycin (1.9). 

 

 

Scheme 1.4. Biosynthetic pathway to thaxtomin. 

 

Reactivity and Biological Activity 

 

Kinamycin isolation was a part of an effort to identify compounds active against 

Gram-positive bacteria.
2
 Subsequent tests revealed antitumor properties of kinamycins 

(1.2).
21

 But the cellular mechanistic behavior of the diazofluorene chemotype was not 

subjected to any studies until the 1990`s, when the first report by Jebaratnam and Arya 

was published.
22

 In this study very simple analogs of diazobenzo[a]fluorenes (1.17) were 
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shown to undergo under reductive conditions formation of radical species (1.18) with 

the ability to nick plasmid DNA in the presence of oxygen. The suggestion was made that 

similar reactivity could be responsible for the biological properties of kinamycins. 

 

 

Scheme 1.5. Jebaratnam`s studies. 

 

The lomaivitcin isolation paper, published in 2001, contained information about 

the potent antibacterial and anticancer properties of 1.3a.
9
 Its activity was tested 

against Gram-positive bacteria: Staphylococcus aureus and Enterococcus faecium (MIC`s 

6-25 ng/spot in a plate assay). Examination of 1.3a against panel of 24-cancer cell lines 

showed potent cytotoxicity with IC50 values ranging from pico to nanomolar values (IC50 

= 0.007 – 72 nM). With use of biochemical induction assay (BIA) lomaiviticin A was 

demonstrated to possess DNA-damaging properties - compound 1.3a cleaved double 

stranded DNA under reducing conditions. Although no follow-up study was reported, 

the initial report triggered a new wave of interest in the diazobenzo[b]fluorene family of 

antiobitics.  

In 2002, Dmitrienko and coworkers used diazobenzo[a]fluorene-isoprekinamycin 

(1.19) as a model system and tested its reactivity toward nucleophiles.
23

 They showed 

that the enhanced electrophilic properties of the diazo group of 1.19 being, as it was 

suggested, a result of hydrogen bond formation could lead to greater reactivity of 1.19 
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towards nucleophiles. It was proposed that the consequence of greater electrophilicity 

of 1.19 could be formation of adduct (1.21) which would further undergo fragmentation 

and formation of DNA-damaging radicals (1.22). 
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Scheme 1.6. Dmitrienko`s isoprekinamycin (1.19) studies. 

 

The first study which fully took advantage of the diazobenzo[b]fluorene structure 

was published by Feldman and Eastman in 2005.
24,25

 The focus of this work was the 

examination of reactivity of a model molecule prekinamycin (1.9). The study`s starting 

point was the report that under reducing conditions lomaiviticin A expressed the ability 

to cleave DNA.
9
 As a part of the study, prekinamycin (1.9) was treated with Bu3SnH and 

AIBN in benzene in the presence of Ph2Se2 and PhCH2SH. Formation of different 

aromatic adducts (compounds 1.29-1.31) was observed. This finding led to formulation 

of a proposal for the mechanism of the reactivity of diazobenzo[b]fluorenes (Scheme 

1.7). It was suggested that one electron reduction of 1.9 could lead to generation of 

semiquinone 1.26. Further loss of the nitrogen moiety could be a consequence of 
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formation of reactive radical species 1.27 possessing DNA-damaging properties. Soon 

after publication this very general proposal was put into question.
27

 The critics 

highlighted the ambiguity of a mechanism based on one electron reduction in the 

context of biological systems. In contrast to chemical reagents, known cellular 

reductants act only via two electron transfer.   

 

 

Scheme 1.7. Feldman and Eastman`s prekinamycin`s studies. 

 

The reactivity of prekinamycin-like compounds was also studied by Khodour and 

Skibo.
26

 In their hands compound 1.32 was subjected to anaerobic reduction followed 

by aerobic workup (Scheme 1.8). The result of this sequence was isolation of 

compounds 1.33-1.35. Consequently, the hypothesis was set that the generation of 

quinone methide intermediates was required for products 1.33-1.35 to be formed. 
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Confirmation came with use of spectral global fitting experiments. Additionally, the 

examination of activity of different prekinamycin derived quinone methides showed 

that molecules with the more energetically stable keto form 1.37 were less potent 

against cancer cell lines. In a more general context it was proposed that the reactivity of 

diazobenzo[b]fluorenes was the consequence of their transformation into 

hydroquinones 1.38 via 2-electron reduction. Elimination of the nitrogen moiety could 

lead to formation of electrophilic quinone methides of 1.40 prone to react with cellular 

nucleophiles (1.41). 

 

 

Scheme 1.8. Skibo`s prekinamycin studies. 



13 

 

 

The focus of a program led by Christopher Melander has been the DNA-cleavage 

properties of diazobenzo[b]fluorenes.
27

 Initially working with diazo group-containing 

analogs of kinamycins and later testing properties of kinamycin D (1.2d), Melander`s 

team observed the ability of examined compounds to cleave DNA in the presence of 

cellular reductants (glutathione, DTT). Kinamycin D (1.2d) damaged DNA at physiological 

temperature, under acidic pH, at a minimal concentration of 1 μM. Not supported by 

any additional evidence, Melander and coworkers suggested two plausible explanations 

for the observed behavior of 1.2d. The first potential route involved 2–electron 

reduction of the quinone functionality of 1.2d to hydroquinone 1.42. Generation of 1.42 

could be followed by attack of a nucleophile to form adduct 1.43. Subsequently, 

fragmentation of 1.43 would give radical 1.44 with the potential to cleave DNA. A 

second plausible route also involved formation of hydroquinone 1.42 via the 2-electron 

reduction process. Protonation of 1.42 could lead to loss of the nitrogen moiety and 

formation of reactive quinone methide 1.46. As it was suggested, the second 

explanation was less valid as a result of lack of evidence for the DNA-cleaving properties 

of quinone methides. 
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Scheme 1.9. Melander`s proposal for the mechanism of action of kinamycins. 

 

The laboratories of Gary Dmitrienko and Brian Hasinoff conducted a series of 

target identification studies of 1.2.
21,28,29

 Although, explicit identification of the cellular 

target of 1.2 has not been accomplished, several potential targets have been excluded. 

Additionally, the suggestion was made that kinamycin F could be involved in direct or 

indirect regulation of activity of cytokine D, a protein involved in cell cycle regulation. 
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Synthetic approaches toward diazobenzo[b]fluorenes 

 

Total Synthesis of Kinamycins 

 

Inspired by the complex structure and biological properties many research 

groups have attempted to synthesize compounds kinamycins and lomaiviticins with 

early efforts leading to the reassignment of the structure of the kinamycins.
6,7,8

 

However, it took more than 30 years for the first syntheses of a kinamycin to be 

accomplished. In 2006 Porco`s group along with Nicolaou`s group reported 

stereoselective syntheses of kinamycin C (1.2c) and kinamycins C, F, J. (1.2c, f, j), 

respectively.
30,31

 Their routes were based on the late stage formation of the 

cyclopentadiene ring of the benzofluorene moiety (Figure 1.4). Shortly after, Ishikawa 

and coworkers published a synthesis of racemic methyl-kinamycin C.
32

 This approach 

utilized a Diels-Alder reaction to install the highly oxidized D-ring subunit. Most recently, 

Herzon`s group developed a route for the synthesis of kinamycin F. The strategy 

involved disconnection of the cyclopentadiene ring of the benzofluorene as well.
33

 

However, in comparison to the work of Porco and Nicolaou, Herzon`s team based its 

design of an annulation sequence on a reversed bond formation order. 
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Figure 1.4. Overview of synthetic approaches to the kinamycins. 

 

Recognizing the labile nature of the diazo group, Porco`s group decided to install 

this functionality at a late stage of the synthesis using ketone 1.47 as an advanced 

precursor (Scheme 1.10). A Friedel-Crafts cyclization was chosen to complete the 

cyclopentadienone ring formation and generate the benzofluorene skeleton of 1.2c. 

Arylstannane 1.49 and bromoenone 1.50 were designed as two key building blocks to be 

utilized in an annulation sequence. 

  

 

Scheme 1.10. Porco`s retrosynthetic analysis of kinamycin C (1.2c). 
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Conversion of known bromodiphenol 1.51 into quinone monoketal 1.52 with a 

key hypervalent iodine-mediated oxidation and tranketalization was a starting point for 

the synthesis of α-bromoenone 1.50 (Scheme 1.11). Baylis-Hillman reaction, followed by 

a carefully optimized tartrate-mediated nucleophilic epoxidation delivered epoxyalcohol 

1.53 in 90% ee.  A sequence of reductions and selective removal of the cyclic ketal with 

use of K-10 clay provided bromoenone 1.50.  
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Scheme 1.11. Synthesis of bromoenone 1.50. 

 

Palladium catalyzed Stille coupling between 1.50 and arylstannane 1.49, 

delivered in four steps from monobrominated juglone, was used as a first step in the 

annulation sequence (Scheme 1.12). Following a series of transformations of the 

complex epoxyketone 1.50 subunit produced a carboxylic acid, which was subsequently 

subjected to TFAA-mediated Friedel-Crafts cyclisation. As a result enone 1.56 was 

produced. Introduction of the quinone, followed by condensation with 1,2-bis(tert-
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butyldimethylsilyl)hydrazine gave hydrazone 1.57. Oxidation of 1.57 with PhIF2 and 2-

chloropyridine generated kinamycin C (1.2c) in 22 steps in the longest linear sequence. 
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Scheme 1.12. Porco`s synthesis of kinamycin C. 

 

Similar disconnections and late stage introduction of the diazo group were 

designed and applied by Nicolaou`s group in their syntheses of kinamycins C, F and J 

(1.2 c, f, j). Synthesis of arylbromide 1.59 and iodoenone 1.61 as key building blocks 

was followed by the application of a modified Ullmann reaction as a first step of the 

annulation sequence (Scheme 1.13). Suprisingly, treatment of coupling product 1.62 

under Strecker reaction conditions did not produce enone 1.63, but led to formation 

of ketone 1.64 as a result of benzoin–type transformation. A series of oxidation state 

changes on the right portion of the molecule involving base-mediated migration of a 
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double bond and SeO2-induced allylic oxidation provided enone 1.65.  Similar to 

Porco`s approach, introduction of the diazo functionality was performed through the 

formation of a hydrazone and subsequent oxidation, in this case mediated by CAN. 

Controlled removal of protecting groups and acetylation produced different 

kinamycins C, F and J (1.2c, f, j). 
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Scheme 1.13. Nicolaou`s synthesis of kinamycin C, F, J (1.2c, f, j). 
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Scheme 1.14. Herzon`s retrosynthetic analysis of kinamycin F (1.2f). 

 

The strategy chosen by the Herzon group led to development of a 3-step 

annulation sequence for the formation of the diazobenzo[b]fluoroene unit and allowed 

for preparation of kinamycin F (1.2f) in only 14 linear steps (Scheme 1.14). The starting 

point of the synthesis was the formation of acetonide 1.69 via Birch reduction of 1.68, 

which was followed by regioselective asymmetric dihydroxylation and protection of the 

resultant vicinal alcohols (Scheme 1.15). Conversion of 1.69 into enone 1.70 was 

achieved in four steps involving Michael addition of the in situ generated cuprate of 

trimethylsilylmethamagnesium chloride and Saegusa oxidation. The first step of the 

annulation sequence was carried out in the presence of tris(diethylamino)sulfonium 

trimethyldisulforosilicate [TASF(Et)]. Treatment of allylic silane 1.70 with TASF(Et) in the 

presence of quinone 1.71 provided bromoquinone 1.72. As reported, use of the 

methoxy substituted quinone 1.71 was key to the success of this transformation. With 

use of dibromoquinone 1.67, formation of a product of 1,2-addition onto carbonyl 

groups could not be avoided. Completion of the annulation sequence was achieved by 

utilization of a Pd-mediated intramolecular Heck coupling. Production of quinone 

methide 1.66 was followed by treatment with azide triflate and Hunigs base. By taking 

advantage of the nucleophilic character of 1.66, diazoquinone 1.73 was generated. Only 
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three more steps - α-oxidation, carbonyl reduction, and global deprotection - were 

required to generate target molecule kinamycin F (1.2f). 
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Scheme 1.15. Herzon`s synthesis of kinamycin F (1.2f). 
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Total Synthesis of Lomaiviticins 

 

The structural complexity found in the structure of the kinamycins is, in the case 

of lomaiviticins, magnified by the dimeric nature of both compounds. Challenges 

associated with C-C bond formation between two monomeric units and the presence of 

sugars attached to the aglycon further complicate attempted synthesis.  

Two general strategies are common for synthesis of molecules with C2-

symmetric character.
34

 The first utilizes formation of a monomer followed by 

dimerization, and the second involves generation and further expansion of a central 

core. Both strategies were considered in the design of synthetic pathways to 

lomaiviticins.  

Initial work of Nicolaou`s group toward the preparation of lomaiviticin A was 

based on the core expansion strategy and involved a 16-step synthesis of bis-ketone 

1.75 from enone 1.74 (Scheme 1.16).
35

  

 

 

Scheme 1.16. Nicolaou`s lomaiviticin A central core synthesis. 

 

In their most recent report (2010) the same group described generation of a 

monomer of lomaiviticin A 1.76 through application of a synthetic pathway developed 



24 

 

earlier for the synthesis of kinamycins C, F and J.
31,36

 Retrosynthetically, compound  1.76 

was designed to be generated through coupling of two key building blocks, aryl 

aldehyde 1.77 and iodoenone 1.78 (Scheme 1.17).  

 

 

Scheme 1.17. Nicolaou`s retrosynthetic analysis of lomaiviticin A monomer. 

 

A hypervalent iodine mediated oxidation of aldehyde 1.79 (previously used in the 

synthesis of kinamycins) was a key transformation in the synthesis of compound 1.77 

(Scheme 1.18), and iodoenone 1.78 was prepared in four steps from enone 1.80. The 

fragments were coupled via a palladium catalyzed Ullmann reaction to deliver aldehyde 

1.81. Benzoin-type transformation afforded ketone 1.82. Treatment of 1.82 with SmI2, 

Na2S2O4 with O2 bubbled through the reaction mixture led to formation of allylic alcohol 

1.83. Similar to the previous work, introduction of the diazo group was performed 

through the formation of a tosylhydrazone and subsequent oxidation. The synthesis of 

monomer 1.76 was achieved in the longest linear sequence of 9 steps. No attempts to 

form a dimer of 1.76 were discussed. 
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Scheme 1.18. Nicolaou`s synthesis of lomaiviticin A monomer (1.76). 

 

Dimerization as a way to increase efficiency by minimization of double 

processing (being characteristic of two directional strategy) was chosen by Shair and 

coworkers.
37,38

 7-oxabornanone 1.94 was designed as an advanced precursor for the key 

oxidative enolate coupling (Scheme 1.19). According to Shair`s team, application of 1.94 

could be beneficial for two reasons: use of 1.94 could lead to dimerization 

stereoselectivity with central bond formation occurring from the convex faces of the 
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molecules, and potential β-elimination, which could take place if ketone enolate 1.97 

was used could be prevented. 

 Shair`s initial studies were reported in 2008,
37

 and involved generation of the 

central core of lomaiviticin A with use of [Cp2Fe]PF6 as a promotor in the coupling step. 

Two years later the work was expanded to preparation of a full carbon skeleton of the 

lomaiviticin aglycon (1.98) (Scheme 1.20).
38

  

Synthesis of the monomeric unit 1.94 began with Michael addition of a lithium 

enolate of furanone 1.86 to oxazilidinone 1.85. A six step sequence involving Evans 

protocol based aldol reaction and intramolecular furan Diels-Alder cycloaddition 

provided ketone 1.87. With the goal of generating oxabornanone 1.89, ketone 1.87 

underwent a series of oxidation state changes, removal of protecting groups and 

introduction of the enone functionality via formation of phenylselenyl derivative and 

further H2O2 oxidation. Use of Kraus`s cyanophthalide method and treatment of 1.89 

with the anion of hydroquinone 1.91 resulted in generation of hydroquinone 1.93. 

Monoprotection of 1.93 as the allyl ether, reductive removal of pivaloyl group, and 

oxidation with TPAP provided oxidative enolate precursor ketone 1.94. Unfortunately, 

application of previously developed conditions for the oxidative coupling of 1.94 based 

on the use of LHMDS and [Cp2FePF6] did not lead to generation of the desired dimer of 

1.94 but resulted only in decomposition or recovery of starting material. Shair`s group 

rationalized that nonbonded interactions occurring in the transition state could be 

responsible for inhibition of the dimerization step. To examine this hypothesis, ketone 

1.96 was prepared via a Hauser-type annulation between enone 1.89 and sulfoxide 
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1.90. This time [Cp2FePF6] mediated oxidative coupling of 1.96 led to successful 

formation of phenol 1.98, obtained as a single diastereoisomer. This result and further 

analysis of X-ray data confirmed Shair`s group hypothesis. With 1.98 in hand, the full 

carbon skeleton of lomaiviticin A aglycone was prepared. The challenge of synthesis of 

the fully oxidized lomaiviticins A aglycone remain to be addressed. 
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Scheme 1.19. Shair`s lomaiviticin A monomer synthesis. 
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Earlier this year, Herzon and coworkers addressed the long-standing challenge of 

lomaiviticin B aglycon synthesis.
39

 Driven by the assumption that compounds 1.3a and 

1.3b are formed biosynthetically via oxidative coupling of two monomeric units, 

Herzon`s group decided to apply this strategy to their approach to 1.3b. The effort 

resulted in the report of an 11-step sequence synthesis with many steps successfully 

executed on a gram scale. The route was based on their pathway developed previously 

for the preparation of kinamcin F (1.2f). The critical modifications resulted from a 

realization that tertiary alcohols present in compounds such as 1.100 are prone to 

undergo β-elimination leading to aromatization, a problem previously described and 

addressed by Shair and coworkers (Scheme 1.21). 

The synthesis of 1.109 started with Birch reduction of silylated 3-ethylphenol, 

stereoselective dihydroxylation and Pd(OAc)2 catalyzed oxidation to deliver enone 

1.100. Protection of the diol of 1.100 prevented β-elimination of the tertriary hydroxy 

group, and Michael addition of in situ formed cuprate of trimethylsilylmethyl group gave 

enone 1.101. Coupling of 1.101 and dibromoquinone 1.102 mediated by 

tris(diethylamino)sulfonium trimethyldifluorosilicate afforded quinone 1.103. Similarly, 
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as in the synthesis of kinamycin F (1.2f), a Heck coupling was used to produce the 

cyclopentadienone-containing quinone methide which subsequently was treated with 

with TfN3 to generate diazobenzofluorenes 1.104 and 1.105 as a separable mixture of 

diastereoisomers. Identification of unique reaction conditions for the oxidative coupling, 

preceded by performing more than 1500 experiments, resulted in conversion of 1.104 

into the enoxysilene and further dimerization to produce two diastereoisomers 1.107 

and 1.108 (Scheme 1.22). The transformation was mediated by a rarely used manganese 

tris(hexafluoroacetylacetonate) (in the presence of CAN or CuCl2 the enoxysilane 

underwent aromatization). Deprotection of the major and desired dimer 1.107 afforded 

lomaiviticin B aglycon - compound 1.109.  

 

Et

OTIPS
O

Et

TMS
OR O

O

Br

Br

OR

O

O O

O

O

Br

OR

O

O

O

O

O

N2

1. Li, NH3, (98%)
2. (DHQD)2PHAL, K2OsO4

TASF(Et) (81%)

1. Pd(OAc)2, PPh3
2. TfN3, DIPEA (51%)

O

OH
OH

Et

TMS

O
O

Mes

1. PPTS (85%)
2. TMSCH2MgCl, TMSCl

OR

TASF(Et) = Si

F

CH2

F
H3C
H3C

S
Et2N NEt2

NEt2

OR

1.102 R = MOM

OR

Mes

Mes

1.104 R = MOM

OR

O

O

O

O

O

N2

OR

Mes

1.105 R = MOM

1.99 1.100 1.101

1.103 R = MOM

1:1 dr

3. O2, Pd(OAc)2, (92%) Pd(OAc)2, (82%)
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Conclusion 

 

Many years of research devoted to studies of diazobenzofluorene antibiotics 

resulted in numerous findings and better understanding of this family of compounds. 

Despite this, the most fascinating questions of the biosynthetic origin of the diazo 

group, reactivity and cellular target identification still need to be addressed. One can 

only hope that with recent successes in the field of total synthesis, ergo better access to 

molecules of interest, our curiosity will be soon satisfied.  
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CHAPTER II 

 

SYNTHESIS OF THE CENTRAL CORE OF LOMAIVITICINONE 

 

Synthetic analysis 

 

Aromatic polyketides containing a quinone functionality have long been the 

subject of significant interest due to their complex structure and unique reactivity, 

which often imparts interesting biological properties.
1
 Many members of this family 

have found clinical use, most often in the role of anticancer agents. Some, too toxic for 

clinical applications, have been utilized as research tools in mechanistic studies and in 

the context of biological systems. As a part of a program focused on total synthesis and 

ultimately biological and mechanistic studies of aromatic secondary metabolites, we set 

a goal of preparing 3,3`- dideoxy lomaiviticinone 2.1 (Scheme 2.1). 

 3,3`- Dideoxy lomaiviticinone, as an analog of the aglycone of lomaiviticin A (2.2) 

differs from the latter by the lack of two tertiary hydroxy groups in the central portion of 

the molecule. The decision to develop a synthetic approach for the preparation of 2.1 

was two-fold: generation of 2.1 would be a starting point in an effort to prepare the 

more structurally challenging lomaiviticin A, and we anticipated that generation of the 

dideoxy analog of 2.2 could be advantageous in terms of biological studies. The 

hypothesis was made, later partially confirmed by Herzon`s observations,
2 

that the 

aglycon of 1.3a did not exist in its open-chained form, but with the lack of sugars 
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attached to it spontaneously cyclized to form the bis-hemiketal aglycon of lomaviticin B 

(2.3). Consequently, in contrast to the flat aglycone of lomaiviticin A, the aglycone of 

lomaiviticin B (2.3) existed in a bent form. At this point one can only speculate on the 

influence of these differences on the biological properties of 1.3a and 1.3b.  We 

envisioned that the lack of tertiary alcohols in the central core of 2.1 would prevent 

formation of the bis-hemiketals and resemblance of 2.1 to the aglycone of lomaiviticin A 

would be ensured. 

In contemplating a synthetic pathway to 2.1 we considered several factors: the 

labile nature of the diazo functionality, reactivity of the quinone ring and high functional 

density of the central core. In order to address these challenges the decision was made 

to examine a two-directional strategy involving preparation and further expansion of a 

central portion of the molecule. We anticipated that early-stage construction of the bis-

cyclohexenone unit would have the advantage of stereocontrol about the key C2-C2` 

bond between two monomeric fragments. Toward preparation of advanced 

intermediate 2.5: bis-iodoenone 2.7 would be coupled with arylstannane 2.6 as 

protected quinone. Inspired by the findings in the biosynthetic studies of kinamycins, we 

envisioned conversion of bis-enone 2.5 into bis-amine 2.4. The structure of 2.4 

resembled the structure of stealthin C (1.8), the biosynthetic precursor to kinamycins 

(Chapter 1). With preparation of 2.4 we envisioned examination of our biosynthetic 

hypothesis (Chapter 1) and conversion of 2.4 into 2.1 in a reaction with a nitrosonium 

ion source (NO
+
). 
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Scheme 2.1. Retrosynthetic analysis. 

 

Construction of the Central Core Skeleton 

 

Application of the Danishefsky protocol for preparation of enone 2.13 starting 

from (-)-quinic acid (2.10) was the starting point for the synthesis of the central core of 

dideoxy lomaiviticinone (Scheme 2.2).
3
 Reduction of quinic acid 2.10 into triol 2.11, 

followed by NaIO4-mediated oxidative cleavage led to formation of β-hydroxy ketone 

2.12. Treatment of 2.9 with MsCl under basic conditions produced enone 2.13, and a 

modification of Johnson`s α-halogenation procedure delivered base-sensitive α-iodo 

enone 2.9 in yields varying between 50 and 60%.
4,5

 With cyclohexanone 2.9 in hand, 
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identification of appropriate homocoupling conditions was undertaken to generate the 

skeleton of the central core. 
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Scheme 2.2. Synthesis of α-iodoenone 2.9.3,4,5 

 

Examples of homocoupling of α-substituted enones and their analogs are rather 

rare and limited to few reports. In 1991, Liebeskind described successful palladium-

catalyzed homocoupling of stannylquinone 2.14 (Scheme 2.3).
6
 The first example of a 

Negishi-type homocoupling of α-iodoenone 2.16 was reported by Knochel, and involved 

in situ generation of the zinc derivative of α-iodoenone 2.16 by the application of excess 

amount of zinc dust.
7
 Subsequent addition of a palladium catalyst or copper reagent 

resulted in the formation of homocoupling product 2.17. In 2005, a method based on 

use of a palladium catalyst and indium as a reducing agent was described.
8
 As reported, 

desired products could be obtained in excellent yields (80-92%). 
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Scheme 2.3. Methods for homocoupling of α-substituted enones. 

 

We decided to evaluate an unusual set of conditions developed by Ling and Hong 

for Ullmann homocoupling of aryl halides and α-iodoenones (Scheme 2.3).
9
 Treatment 

of 2.9 with a nickel catalyst, Zn dust and NaH in toluene, the first example of this specific 

reductive system led to formation of desired dimer 2.8 (Scheme 2.4).  

 

 

Scheme 2.4. Formation of bis-enone 2.8. 

 

Mechanistic aspects of this transformation remain vague. Although literature 

examples of similar transformations were suggested to involve a free radical mechanism 



 

 
41 

similar to the one shown in Scheme 2.5, experimental observations did not support the 

generation of radical intermediates.
10

 The authors proposed formation of an 

intermediate complex 2.18 as a part of the mechanistic pathway; however, no further 

details have been reported. 
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Scheme 2.5. Proposed mechanistic explanation for Ni-catalyzed couplings. 

 

We next turned our attention to introduction of the ethyl groups by treatment of 

bis-enone 2.8 with vinyl cuprate to stereoselectively deliver ketone 2.19 (Scheme 2.6). 

Hydrogenation of 2.19 over palladium-carbon completed installation of the ethyl groups 

to give diketone 2.20. With the objective to produce bis-alcohol 2.22, the central core of 

dideoxy lomaiviticinone, ketone 2.20 was subjected to base-mediated elimination of the 

acetonide units. Suprisingly, treatment of 2.20 with DBU or aqueous NaOH did not give 

bis-alcohol 2.22, but instead led to tetracyclic ketone 2.21 as assigned by extensive 2D-



 

 
42 

NMR analysis. Generation of 2.21 could be explained by following reaction pathway. 

Single elimination of an acetonide ring of 2.20 leads to formation of the unsymmetrical 

enone 2.23. The C4` hydroxyl group then adds to neighboring keto group to give 

hemiketal 2.25. The addition is followed by addition of the hemiketal group in a 1,4-

fashion to the neighboring enone.  Examination of the same type of transformation with 

use of bis-vinyl ketone 2.19 also failed to produce the desired diol 2.27, but instead 

formed alcohol 2.26, the product of epimerisation.  

 

 

Scheme 2.6. Attempts to synthesize bis-enone 2.22. 
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At this stage, formation of the allyl derivative of bis-enone 2.8 was examined in 

hope of changing the reaction pathway (Scheme 2.7). To this end, bis-enone 2.8 was 

treated with allyltributylstannane in the presence of TBSOTf to successfully provide bis-

silyl enol ether 2.28.
11

 Hydrogenation of 2.28 gave bis-propyl analog 2.29 in near 

quantitative yield. We were pleased to observe that treatment of 2.29 with TBAF led to 

formation of diol 2.30 as a result of removal of both silyl and acetonide protecting 

groups. After protection of the secondary hydroxy groups and double α-iodination, bis-

iodoenone 2.33 was produced. X-ray analysis of 2.33 confirmed the desired relative 

stereochemistry about the C-C bond between two cyclohexenone units of the 

molecule.
12 
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Scheme 2.7. Synthesis of bis-enones 2.33/2.34 and 2.36/2.37. 
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Fortunately, we were also able to apply a developed sequence of reactions to 

provide bis-allylenone 2.36 from silylenol ether 2.28 in ~50% yield (Scheme 2.7). 

Development of a pathway to produce 2.33 and 2.36 was initially seen as a distraction 

from our actual studies but turned out to be very helpful in continuation of our effort to 

prepare bis-ethylenone 2.22. With 2.36/2.37 in hand, we envisioned that desired 

2.42/2.43 could be generated through the formation of bis-aldehyde 2.38/2.39 and its 

further reduction (Scheme 2.8). After investigation of several different conditions for 

the oxidative cleavage of terminal olefins, we found that bis-acetyl enone 2.36 could be 

converted into desired aldehyde 2.38 under Johnson-Lemieux conditions,
13

 and bis-

MOM aldehyde 2.39 was obtained when treated with a buffered solution of OsO4 and 

HIO4.
14

 Unfortunately, none of the aldehydes could be successfully converted into 

desired alcohol 2.41. These results prompted us to reexamine our approach. 

 

 

Scheme 2.8. Early approach to the synthesis of bis-enone 2.42/2.43. 
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After some consideration, the decision was made to continue our studies with 

use of silyl enol ether 2.28 as a starting point for the cleavage of the allyl groups and 

introduction of the ethyl groups. To realize our goal, compound 2.28 was treated with 

OsO4 in dioxane–water solution to form the bis-diol (Scheme 2.9). Following oxidative 

cleavage with Pb(OAc)4 in dichloroethane, NaBH4 reduction of the requisite bisaldehyde 

generated alcohol 2.43 in 80-90% yield over three steps. Mesylation of diol 2.44, 

followed by iodide substitution under Finkelstein conditions gave bis-iodide 2.46 in 70-

75%. After examination of several different conditions for the reduction of primary 

iodides of 2.46 to the desired ethyl groups (Et3SiH/PdCl2, Bu3SnH/AIBN, NaBH4) we 

found that hydrogenation (H2, (atm), Pd/C, Et3N) of 2.46 gave 2.47.
15

 The previously 

examined fragmentation–elimination sequence triggered by treatment of 2.47 with 

TBAF afforded diol 2.22 as the desired isomer with no epimerisation observed. 

Protection of the secondary hydroxy groups of 2.22 as MOM ethers provided bis-enone 

2.43.  Iodination of 2.43 gave the core of dideoxy lomaiviticinone, bis-iodoenone 2.7, in 

55% yield over three steps.
12 
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Scheme 2.9. Synthesis of bis-iodoenone 2.7. 

 

Core Expansion Studies 

 

With successful formation of the central core we turned our attention to its 

expansion and incorporation of BCD/B`C`D` ring units. We envisioned generation of bis-

α-iodo-β-cyano enone 2.48/2.49 which could be coupled to the aromatic portion of the 

molecule to produce 2.52 (Scheme 2.10). We planned to incorporate the cyano group as 

the central carbon of the fluorene ring. Disappointingly, application of Nicolaou`s 2-step 

protocol for the formation of β-cyano enones based on IBX oxidation of the initially 

formed silyl enol ether did not give desired enones 2.48-2.51 but led to decomposition 

of substrates 2.31-2.34.
15
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Scheme 2.10. Failed introduction of cyano group. 

 

At this point, we decided to turn our attention to the synthesis of bis-dienone 

2.54 and its further conversion into desired bis-nitrile 2.49 (Scheme 2.11). Michael 

addition of in situ generated vinyl cuprate led to bis-ketone 2.53 in high yield of 80%. 

Although further attempts to oxidize 2.53 failed to produce 2.54, the desired bis-enone 

could be obtained in two steps from enone 2.32 via formation of silylenol ether 2.55. 

Unfortunately, unsatisfactory yields, failed α-iodination and unsuccessful oxidative 

cleavage of terminal olefins led to the termination of this route. 
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Scheme 2.11. Failed synthesis of bis-iodoenone 2.49. 

 

Conclusion 

 

Presented in this chapter is the successful synthesis of the central core of 

dideoxy lomaiviticinone. The key transformations used to achieve this goal were a 

Nickel-catalyzed Ullmann coupling to build the skeleton of 2.8 and a TBAF-mediated 

fragmentation-elimination sequence which produced the stereochemically desired diol 

2.22. The described work set the course for the next chapter of our studies toward the 

synthesis of dideoxy lomaiviticinone. 

 

 

 

 

 

 



 

 
49 

Experimental methods 

 

General. All non-aqueous reactions were conducted under an argon atmosphere in 

oven-dried glassware. Reagents were purchased at the highest commercial quality and, 

unless otherwise stated, used without further purification. Toluene (CH3Ph), 

dichloromethane (CH2Cl2), diethyl ether (Et2O) were obtained through purification of 

commercially available solvents with use of activated alumina columns (MBraun MB-SPS 

solvent system). Tetrahydrofuran (THF) was purified by distillation from Na metal with 

benzophenone indicator. Triethylamine (Et3N) and N,N-diisopropylethylamine (iPr2NEt) 

were distilled from CaH2 and stored over KOH. Thin-layer chromatography was 

performed on E.Merck precoated silica gel 60 F524 plates. The plates were visualized 

with UV light and aqueous stain (KMnO4 or CAM). Liquid chromatography (flash 

chromatography) was conducted using indicated solvents and Dynamic Adsorbents silica 

gel 60 (230-240 mesh). Thermo Electron IR100 series instrument was used to record 

infrared spectra as thin films on NaCl plates. 
1
H and 

13
C NMR were recorded on Bruker 

300, 400, 500, 600 spectrometers at ambient temperature and are reported relative to 

deuterated solvent signals. n-BuLi was titrated with use of the Suffert method.  
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Preparative Procedures 

 

 

To a solution of 2.13 (2.0 g, 11.9 mmol) in pyridine/CH2Cl2 (1:2, 37.5 mL) at 0 

⁰
C was added a solution of iodine (7.55 g, 29.7 mmol) in pyridine/CH2Cl2 (1:1, 

25.0 mL) over a period of 3 h. Upon complete addition, DMAP (0.29 g, 2.38 mmol) was 

added and the ice bath was removed. After 3 h the reaction mixture was diluted with 

Et2O (500 mL), washed with water (100 mL), 1 N HCl (2 x 100 mL), water (100 mL), 20% 

Na2S2O3 (100 mL), and brine. The organic layer was dried (Na2SO4) and concentrated in 

vacuo. The residue was subjected to flash chromatography (2:1, hexanes/EtOAc) to 

afford iodoenone 2.9 (2.2 g, 63%; 74% BRSM) as a pale yellow solid. The 
1
H and 

13
C data 

for the prepared compounds are fully consistent with those reported in the literature.
4,5

 

 

To a suspension of NaH (544 mg, 13.6 mmol, 60% in mineral oil, washed 

with hexanes prior to use) in toluene (50.0 mL) were added NiCl2(PPh3)2 

(556 mg, 0.850 mmol), PPh3 (446 mg, 1.70 mmol), zinc dust (333 mg, 5.10 

mmol) and 2.9 (500 mg, 1.70 mmol) simultaneously. The mixture was immediately 

evacuated and flushed with Ar (4 x). The reaction mixture was placed in 88 
⁰
C oil bath. 

After 4 h the oil bath was removed and the mixture was cooled to 0 
⁰
C by ice bath. A 

solution of 1 N HCl (2 mL) was added to reaction mixture. The organic layer was 

separated and the aqueous layer was extracted with CH2Cl2 (3 x 30 mL). The combined 

organic extracts were washed with brine (30 mL) and dried (Na2SO4). The solvent was 

concentrated in vacuo and the residue was subjected to flash chromatography (1:1, 

O
O

O
O

O

O

2.8

O
O

I
O

2.9
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hexanes/EtOAc) to give dimer 2.8 (182 mg, 64%) as a white solid: [α]20
  

D
  –48.7

⁰
 (c 1.0, 

CHCl3); IR (neat) ν 1684, 1230, 1060, 1040 cm
-1

; 
1
H NMR (300 MHz, CDCl3) δ 6.45 (s, 2H), 

4.79 (s, 2H), 4.68 (s, 2H), 2.93 (dd, J = 2.4, 16.8 Hz, 2H), 2.83 (dd, J = 3.3, 16.8 Hz, 2 H), 

1.36 (s, 12H); 
13

C NMR (75 MHz, CDCl3) δ 193.4, 142.8, 135.9, 109.8, 73.83, 71.28, 39.49, 

27.97, 26.50; HRMS (ESI) calcd for C18H22O6Li [(M+Li)
+
] 341.1576 found 341.1582. 

 

To a solution of enone 2.19 (200 mg, 0.598 mmol) and allyltributyltin 

(792 mg, 2.39 mmol) in CH2Cl2 (20.0 mL) at –78 
⁰
C was added TBSOTf 

(632 mg, 2.39 mmol) dropwise. After 4 h the 5% aqueous solution of 

NaHCO3 was added and the cold bath was removed. The organic layer was separated 

and the aqueous layer was extracted with CH2Cl2 (3 x 30 mL). The combined organic 

extracts were washed with brine and dried (Na2SO4). The solvent was concentrated in 

vacuo and the residue was subjected to flash chromatography (10:1, hexanes/EtOAc) to 

give silylenol ether 2.28 (375 mg, 97%) as a colorless, thick oil: [α]20
  

D
  +30.6

⁰
 (c 1.06, 

CHCl3); IR (neat) ν 2931, 1373, 1246, 1200, 1043, 835, 777 cm
-1

; 
1
H NMR (400 MHz, 

CDCl3) δ 5.84-5.71 (m, 2H), 5.02-4.94 (m, 4H), 4.50-4.43 (m, 2H), 4.25 (d, J = 6.8 Hz, 2H), 

2.44 (dd, J = 4.8, 16.0 Hz, 4H), 2.25 (d, J = 14.8 Hz, 4H), 1.88 (q, J = 11.6 Hz, 2H), 1.34 (s, 

6H), 1.26 (s, 6H), 0.86 (s, 18H), 0.14 (s, 6H), 0.12 (s, 6H); 
13

C NMR (75 MHz, CDCl3) δ 

142.0, 137.8, 115.8, 112.1, 107.3, 74.6, 74.0, 40.1, 34.6, 33.5, 26.4, 26.1, 24.2, 18.1, –

2.5, –3.4; HRMS (ESI) calcd for C36H62O6Si2Li [(M+Li)
+
] 653.4245, found 653.4222. 
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A mixture of 2.28 (430 mg, 0.665 mmol) and 10% Pd/C (150 mg) in 

EtOAc (30.0 mL) was applied to the atmosphere of H2. After 2 h the 

suspension was filtered through celite pad. The solvent was removed in 

vacuo and the residue was subjected to flash chromatography (10:1, hexanes/EtOAc) to 

give silylenol ether 2.29 (420 mg, 97%) as a white solid: [α]20
  

D
  +30.4

⁰
 (c 1.04, CHCl3); IR 

(neat) ν 1370, 1245, 1203, 1046, 901, 773 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 4.53-4.41 

(m, 2H), 4.33-4.20 (m, 2H), 2.44 (dd, J = 5.2, 16.8 Hz, 2H), 2.35-2.28 (m, 2H), 2.20 (dd, J = 

1.6, 16.4 Hz, 2H), 1.47-1.21 (m, 6H), 1.34 (s, 6H), 1.28 (s, 6H), 1.17-1.07 (m, 2H), 0.83 (t, J 

= 6.8 Hz, 6H), 0.85 (s, 18H), 0.13 (s, 6H), 0.12 (s, 6H); 
13

C NMR (75 MHz, CDCl3) δ 141.0, 

113.0, 107.1, 75.4, 74.1, 40.3, 33.4, 32.7, 26.2, 26.1, 24.1, 21.5, 18.1, 14.3, –2.4, –3.5; 

HRMS (ESI) calcd for C36H66O6Si2Na [(M+Na)
+
] 673.4290, found 673.4283. 

 

To a solution of enol ether 2.29 (200 mg, 0.31 mmol) in THF (16 mL) at 0 
⁰
C 

was added TBAF (0.92 mL, 1.0 M in THF) dropwise. After 1 h H2O (15 mL) was 

added to the reaction mixture. The organic layer was separated and the 

aqueous layer was extracted with EtOAc (5x 25 mL). The combined organic layers were 

washed with brine (30 mL) and dried (Na2SO4). The solvent was removed in vacuo and 

the residue was subjected to flash chromatography (EtOAc) to give diol 2.30 (62 mg) 

which was taken to the next step. 

To a solution of diol 2.30 (62 mg, 0.20 mmol) and pyridine (80 mg, 1.0 

mmol) in CH2Cl2 (12.0 mL) at 0 ⁰C were added Ac2O (103 mg, 1.0 mmol), 
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DMAP (cat). The ice bath was removed. After 2 h the solution of 1 N HCl (20 mL) was 

added to the reaction mixture. The organic layer was separated and the aqueous layer 

was extracted with CH2Cl2 (3 x 25 mL). The combined organic layers were dried (Na2SO4). 

The solvent was removed in vacuo and the residue was subjected to flash 

chromatography (3:1, hexanes/EtOAc) to give bis-acetate 2.31 (59 mg, 50% for two 

steps) as a thick oil: [α]20
  

D
  –141.4

⁰
 (c 0.73, CHCl3); IR (neat) ν 1739, 1674, 1231, 1028 cm

-1
; 

1
H NMR (400 MHz, CDCl3) δ 6.69 (dd, J = 2.4, 10.4 Hz, 2H), 6.02 (dd, J = 2.4, 10.4 Hz, 2H), 

5.53 (td, J = 2.4, 9.6 Hz, 2H), 2.95-2.83 (m, 2H), 2.75-2.64 (m, 2H), 2.14 (s, 6H), 1.53-1.42 

(m, 2H), 1.38-1.20 (m, 6H), 0.88 (t, J = 6.8 Hz, 6H); 
13

C NMR (75 MHz, CDCl3) δ 198.8, 

170.5, 146.6, 129.8, 71.6, 47.9, 42.3, 31.6, 21.0, 18.8, 14.4; HRMS (ESI) calcd for 

C22H30O6Li [(M+Li)
+
] 397.2202, found 397.2195. 

 

To a solution of enone 2.31 (59 mg, 0.15 mmol) in pyridine-CH2Cl2 (1:2, 

3.0 mL) at ambient temperature was added the solution of iodine (192 

mg, 0.756 mmol) in pyridine-CH2Cl2 (1:1, 4.0 mL) dropwise. Upon 

complete addition, DMAP (cat.) was added. After 24 h the reaction mixture was diluted 

with Et2O (100 mL), washed with water (30 mL), 1 N HCl (2 x 30 mL), water (30 mL), 20% 

Na2S2O3 (30 mL), and brine (30 mL). The organic layer was dried (Na2SO4) and 

concentrated in vacuo. The residue was subjected to flash chromatography (3:1, 

hexanes/EtOAc) to afford iodoenone 2.33 (61 mg, 63%) as a white  solid: [α]20
  

D
  –140.2

⁰
 (c 

1.29, CHCl3); IR (neat) ν 1739, 1686, 1227, 1031, 737 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 

7.46 (d, J = 2.4 Hz, 2H), 5.47 (dd, J = 2.4, 9.6 Hz, 2H), 3.03-2.88 (m, 2H), 2.85-2.71 (m, 

O

O

O

O

H

H
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2H), 2.14 (s, 6H), 1.54-1.44 (m, 2H), 1.36-1.15 (m, 6H), 0.88 (t, J = 6.8 Hz, 6H); 
13

C NMR 

(75 MHz, CDCl3) δ 191.8, 170.3, 155.3, 104.3, 72.9, 46.8, 42.4, 31.1, 20.8, 18.4, 14.3; 

HRMS (ESI) calcd for C22H28I2O6Li [(M+Li)
+
] 649.0135, found 649.0105. 

 

 To a solution of 2.28 (100 mg, 0.15 mmol) in t-BuOH/H2O (2:1, 22.5 mL) 

at ambient temperature were added OsO4 (0.002 mg, 0.0093 mmol), 

NMO (42.0 mg, 0.31 mmol). After 24 h the solution was transferred to 

the mixture of Na2SO3 (20%) and ethyl acetate (1:1, 20 mL). The organic layer was 

separated and the aqueous layer was extracted with EtOAc (4 x 20 mL). The organic 

layers were combined and dried (MgSO4). The solvent was concentrated in vacuo.  

The crude residue was dissolved in dichloroethane (10 mL) and Pb(OAc)4 (0.14 g, 0.32 

mmol) was added. After 30 min the solution was diluted with Et2O (20 ml). The organic 

layer was washed with NaHCO3 (15 ml), brine (15ml), dried (MgSO4). The solvent was 

concentrated in vacuo to provide the crude residue - aldehyde that was taken to the 

next step. 

To a solution of the aldehyde in EtOH (10 ml) at 0
 ⁰

C was added NaBH4 (12 mg, 0.31 

mmol).  After 30 min at 0
 ⁰

C MeOH was added to the reaction mixture and the ice bath 

was removed. The solvent was evaporated in vacuo. The residue was purified by flash 

chromatography (1:1, hexanes/EtOAc) to provide the alcohol 2.44 (76 mg, 75% over 

three steps) as a thick oil: [α]20
  

D
  -18.6

⁰
 (c 0.01, CHCl3); IR (neat) ν 3424, 2930, 2856, 1652, 

1464 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 4.50 (t, J = 6.1 Hz, 2 H), 4.30 (d, J = 5.5 Hz, 2 H), 

O
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O
O

OH

HO

OTBS
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3.79 – 3.65 (m, 2 H), 3.62 – 3.51 (m, 2 H), 3.07 – 2.96 (m, 2 H), 2.94 – 2.86 (m, 2 H), 2.55 

(dd, J = 16.8 Hz, J = 6 Hz , 2 H), 2.29 (d, J = 16.8 Hz, 2 H), 1.60 – 1.50 (m, 4 H), 1.49 (s, 6 

H), 1.36 (s, 6 H), 0.88 (s, 18 H), 0.21 (s, 6 H), 0.19 (s, 6 H); 
13

C NMR (150 MHz, CDCl3) δ 

142.8, 110.8, 107.6, 77.6, 73.9, 59.7, 34.5, 34.4, 33.7, 26.1, 25.9, 24.0, 18.0, -2.2, -3.1; 

HRMS (ESI) calcd for C34H63O8Si2 [(M+H)
+
] 655.4062, found 655.4037. 

 

 To a solution of 2.44 (200 mg, 0.30 mmol) in dichloromethane (10 mL) 

at 0
 ⁰

C was added Et3N (106 mg, 1.05 mmol), MsCl (0.90, 100 mg). After 

30 min H2O (2 mL) was added. The ice bath was removed. The aqueous 

layer was extracted with dichloromethane (3 x 15 mL).The combined organic layers 

were dried (MgSO4). The solvent was concentrated in vacuo. The residue was purified by 

flash chromatography (1:1, hexanes/EtOAc) to provide the title compound 2.45 (210 

mg, 86%) as a thick oil: [α]20
  

D
  -14.6

⁰
 (0.01, CHCl3); IR (neat) ν 2925, 2851, 1356, 1259 cm

-1
; 

1
H NMR (400 MHz, CDCl3) δ 4.47 – 4.33 (m, 4 H), 4.29 (ddd, J = 16.9 Hz, J = 9.6 Hz, J = 

7.24 Hz, 2 H), 4.22 – 4.08 (m, 2 H), 2.97 (s, 6 H), 2.62 – 2.43 (m, 2 H), 2.38 – 2.23 (m, 4 

H), 2.07 – 1.96 (m, 2 H), 1.8 – 1.65 (m, 2 H), 1.41 (s, 6 H), 1.30 (s, 6 H), 0.87 (s, 18 H), 0.14 

(s, 6 H), 0.12 (s, 6 H) ; 
13

C NMR (100 MHz, CDCl3) δ 143.6, 110.8, 108.1, 80.1, 73.4, 69.2, 

37.8, 37.2, 34.0, 30.6, 26.7, 25.8, 24.2, 17.9, -2.6, -3.4; HRMS (ESI) calcd for 

C36H66O12Si2S2Na [(M+Na)
+
] 833.3432, found 833.3422. 
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 To a solution of 2.46 (193 mg, 0.24 mmol) in acetone (39 mL) were 

added NaI (572 mg, 3.82 mmol), NaHCO3 (320 mg, 3.82 mmol). The 

reaction mixture was placed in 50 
⁰
C oil bath. After 24 h the oil bath was 

removed. The mixture was diluted with dichloromethane (50 mL) and washed with H2O 

(20 mL) and brine (20 mL). The organic layer was dried (MgSO4). The solvent was 

concentrated in vacuo. The residue was purified by flash chromatography (9:1, 

hexanes/EtOAc) to provide the title compound 2.46 (142 mg, 67%) as a thick, yellow oil: 

[α]20
  

D
   +1.74

⁰
 (0.01, CHCl3); IR (neat): ν 2954, 2922, 2852, 1658, 1462 cm

-3
; 

1
H NMR (400 

MHz, CDCl3): δ 5.02 – 4.42 (m, 2 H), 4.28 – 4.18 (m, 2 H), 3.33 – 3.05 (m, 4 H), 2.53 – 2.33 

(m, 4 H), 2.30 (dd, J = 16.4 Hz, J = 2.4 Hz, 2 H), 2.12 – 1.99 (m, 2 H), 1.91 – 1.78 (m, 2 H), 

1.41 (s, 6 H), 1.32 (s, 6 H), 0.90 (s, 18 H), 0.19 (s, 6 H), 0.18 (s, 6 H);
 13

C NMR (100 MHz, 

CDCl3) δ 142.8, 110.7, 107.5, 75.5, 73.6, 42.3, 36.2, 33.4, 26.5, 26.0, 25.6, 18.0, 4.4, -2.3, 

-3.4; HRMS (ESI) calcd for C34H61I2O6Si2 [(M+H)] 875.2096, found 875.2088. 

 

 To a solution of 2.46 (112 mg, 0.13 mmol) in EtOH (54 mL) were added 

Et3N (28 mg, 0.30 mmol), 5% Pd/C (60 mg). The reaction mixture was 

applied to the atmosphere of H2 and placed in 40 
⁰
C oil bath. After 24 h 

the oil bath was removed.  The solution was filtrated through the celite pad. The solvent 

was concentrated in vacuo. The residue was purified by flash chromatography (9:1, 

hexanes/ EtOAc) to provide the title compound 2.47 (81 mg, 95%) as a white solid: [α]20
  

D
  

+34.0
⁰
 (c 0.03, CHCl3); IR (neat) ν 2956, 2927, 2857, 1376, 1253 cm

-1
; 

1
H NMR (400 MHz, 

CDCl3) δ 4.55 - 4.40 (m, 2 H), 4.35 - 4.23 (m, 2H), 2.44 (dd, J = 5.2 Hz, J = 16.4 Hz, 2 H), 

O
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2.29 – 2.20 (m, 4 H), 1.54 – 1.43 (m, 4 H), 1.37 (s, 6 H), 1.31 (s, 6H), 0.95 (t, J = 7.36, 6 H), 

0.88 (s, 18 H), 0.15 (s, 6 H), 0.14 (s, 6 H); 
13

C NMR (100 MHz, CDCl3) δ 141.1, 113.1, 

107.2, 75.2, 74.2, 42.1, 33.4, 26.2, 26.0, 24.1, 23.1, 18.1, 12.8, -2.5, -3.5; HRMS (ESI) 

calcd for C34H63O6Si2 [(M+H)
+
] 623.4160, found 623.4163. 

 

 To a solution of 2.47 (18 mg, 0.03 mmol) in THF (1.8 mL) at 0 
⁰
C was 

added TBAF (0.09 mmol, 1.0 M in THF) dropwise. After 30 min H2O (1 

mL) was added to the reaction mixture. The organic layer was separated 

and the aqueous layer was extracted with EtOAc (4 x 5 mL). The combined organic layers 

were dried (MgSO4). The solvent was removed in vacuo. The residue was purified by 

flash chromatography (EtOAc) to give diol 2.22 (5.4 mg) which was taken to the next 

step. 

To a solution of 2.22 (8.7 mg, 0.03 mmol) and pyridine (12.3 mg, 0.16 mmol) in CH2Cl2 (3 

mL) at 0 
⁰
C was added Ac2O (16 mg, 0.16 mmol), DMAP (cat). The ice bath was removed. 

After 30 min the reaction mixture was cooled to 0 ⁰C by ice bath and the solution of 1 N 

HCl (0.2 mL) was added. The organic layer was separated and the aqueous layer was 

extracted with CH2Cl2 (3 x 5 mL). The combined organic layers were dried (MgSO4). The 

solvent was concentrated in vacuo and the residue was purified by flash 

chromatography (2:1, hexanes/EtOAc) to provide enone 2.42 (8.6 mg, 76%) as a white 

solid: [α]20
  

D
  -30.7

⁰
 (0.01, CHCl3); IR (neat) ν 1738, 1675, 1371, 1231 cm

-1
; 

1
H NMR (400 

MHz, CDCl3) δ 6.71 (dd, J = 2.0 Hz, J = 10.4, 2H), 6.02 (dd, J = 2.4, 10.4 Hz, 2H), 5.58 (d, J = 

10 Hz, 2 H), 2.94 (s, 2 H), 2.73 (d, J = 9.2 Hz, 2 H) 2.14 (s, 6 H) 1.63-1.58 (m, 2H), 1.44-

O
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H

H

O
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1.41 (m, 2H), 0.91 (t, J = 7.6 Hz, 6H); 
13

C NMR (100 MHz, CDCl3) δ 198.6, 170.5, 146.9, 

129.8, 71.0, 46.8, 43.1, 21.2, 20.9, 9.5; HRMS (ESI) calcd for C20H26O6Na [(M+Na)
+
] 

385.1627, found 385.1635. 

 

 To a solution of enone 2.42 (13 mg, 0.03 mmol) in pyridine-CH2Cl2 (1:2, 

0.75 mL) at ambient temperature was added the solution of iodine (45 

mg, 0.18 mmol) in pyridine-CH2Cl2 (1:1, 0.65 ml) dropwise. Upon 

complete addition, DMAP (cat.) was added. After 24 h the solution was diluted with 

Et2O (10 mL), washed with water (5 mL), 1 N HCl (5 mL), water (10 mL), 20% Na2S2O3 (2 x 

5 mL), and brine (5 mL). The organic layer was dried (MgSO4) and the solvent was 

concentrated in vacuo. The residue was subjected to flash chromatography (3:1, 

hexanes/EtOAc) to afford iodoenone 2.7 (14 mg, 73%) as a white solid: [α]20
  

D
  -22.2

⁰
 (c 

0.01, CHCl3); IR (neat) ν 2919, 2850, 1739, 1686, 1462 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 

7.47 (d, J = 2.28, 2 H), 5.51 (dd, J = 2.28, J = 9.96, 2 H), 3.09 - 2.97 (m, 2 H), 2.84 - 2.76 

(m, 2 H), 2.14 (s, 6 H), 1.70 – 1.57 (m, 4 H), 1.46 – 1.35 (m, 4 H), 0.89 (t, J = 10.0 Hz, 6 H); 

13
C NMR (100 MHz, CDCl3) δ 191.9, 170.3, 155.5, 104.3, 72.3, 45.9, 43.4, 29.7, 20.8, 9.2; 

HRMS (ESI) calcd for C20H24O6I2Na [(M+Na)
+
] 636.9560, found 636.9591.  

 

 To a solution of enone 2.30 (28 mg, 0.09 mmol) in CH2Cl2 (1.2 mL) at 0 
⁰
C 

were added MOMCl (60 mg, 0.74 mmol, 57μL) and Hunig base (144 mg, 

1.1 mmol, 195 μL). The ice bath was removed. The mixture was heated up 
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to 40 
⁰
C. After 18 h the solution was cooled to ambient temprature and diluted with 

CH2Cl2. The organic layer was washed with saturated solution of NaHCO3 (x 1), brine (x 

1), dried (MgSO4), filtrated and concentrated in vacuo. The residue was purified by flash 

chromatography (Hexane/EtOAc, 2:1) to provide enone 2.32 as a yellow oil (30 mg, 82 

%): 
1
H NMR (500 MHz, CDCl3): δ 6.88 (dd, J = 2.5 Hz, 10.5 Hz, 2 H), 5.96 (dd, J = 1.5, 10.5 

Hz, 2 H), 4.79 (d, J = 7.0 Hz, 2 H), 4.73 (d, J = 7.0 Hz, 2 H), 4.19 (d, J = 7.5 Hz, 2 H), 3.43 (s, 

6 H), 2.85 (bs, 2 H), 2.65 (s, bs), 1.55-1.48 (m, 2 H), 1.39-1.24 (m, 6 H), 0.87 (t, J = 7.0 Hz, 

6 H); 
13

C NMR (75 MHz, CDCl3): δ 199.75, 147.48, 128.77, 96.17, 75.11, 55.82, 48.92, 

42.05, 32.21, 18.96, 14.28.
 

 

 To a solution of enone 2.32 (38 mg, 0.10 mmol) and DMAP (cat.) in 

CH2Cl2/pyr (2.2 mL/1.1 mL, 2:1) at ambient temperature was added the 

solution of I2 (124 mg, 0.49 mmol) in CH2Cl2/pyr (0.9 mL/0.9 mL, 1:1) via 

syringe for 2 h. After 24 h the reaction mixture was diluted with Et2O. 

The organic layer was washed with H2O (x 2), 1M solution of HCl (x 3), H2O (x 2), 

aqueous solution of Na2S2O3 (20%, x 2) and brine (x 1). The organic layer was dried 

(MgSO4), filtrated and concentrated in vacuo. The residue was purified by flash 

chromatography (Hexane/EtOAc, 3:1) to provide bis-iodoenone 2.34 as a yellow solid 

(59 mg, 93%): IR (thin film, cm
-1

): 2956, 2931, 2824, 1681, 1600, 1464; 
1
H NMR (400 

MHz, CDCl3): δ 7.65 (d, J = 2.8 Hz, 2 H), 4.76 (d, J = 7.2 Hz, 2 H), 4.69 (d, J = 6.8 Hz, 2 H), 

4.16 (dd, J = 2.8 Hz, 8.0 Hz, 2 H), 3.42 (s, 6 H), 3.00 (bs, 2 H), 2.68 (bs, 2 H), 1.54-1.50 (m, 

2 H), 1.32-1.22 (m, 6 H), 0.87 (t, J = 16 Hz, 6 H); 
13

C NMR (100 MHz, CDCl3): δ 192.35, 
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156.81, 103.47, 96.29, 60.30, 56.00, 48.06, 42.46, 31.62, 18.57, 14.25; HRMS (ESI) for 

C22H32O6I2 [M] found 646.0250. 

 

 To a solution of vinylmagnesium bromide (0.76 mmol, 0.76 mL, 1 M 

solution in THF) in THF (0.6 mL) at -50 
⁰
C was added CuBr•Me2S (5.2 

mg, 0.025 mmol). After 15 min solution of bis-enone 2.32 (10 mg, 

0.025 mmol) in THF (0.6 mL) was added. After 30 min saturated 

solution of NH4Cl was added. The aqueous layer was extracted with Et2O (x 4). The 

organic layer was dried (MgSO4), filtrated and concentrated in vacuo. The residue was 

purified by flash chromatography (Hexane/EtOAc, 2:1) to provide bis-vinyl ketone 2.53 

as a yellow oil (9.5 mg, 83%): 
1
H NMR (400 MHz, CDCl3) δ 5.83-5.74 (m, 2 H), 5.10 (t, J = 

18.8, 11.2 Hz, 4 H), 4.74 (d, J = 7.2 Hz, 2 H), 4.63 (d, J = 7.2 Hz, 2 H), 3.52 (t, J = 8.8 Hz, 2 

H), 3.4 (s, 6 H), 2.82-2.79 (m, 2 H), 2.51 (dd, J = 4.0, 15.6 Hz, 2 H), 2.40-2.31 (m, 4 H), 

2.24 (dd, J = 12.0, 15.2 Hz, 2 H), 1.66-1.57 (m, 4 H), 1.45-1.36 (m, 4 H), 0.91 (t, J = 6.8 Hz, 

6 H).  

 

 To a solution of vinylmagnesium bromide (0.76 mmol, 0.76 mL, 1 M 

solution in THF) in THF (0.6 mL) at -78 
⁰
C was added CuBr•Me2S (10 

mg, 0.05 mmol). After 30 min TMEDA (88 mg, 0.75 mmol, 0.114 mL), 

TMSCl (96 mg, 0.88 mmol, 0.112 mL) and solution of enone 2.32 (10 

mg, 0.025 mmol) in THF (0.6 mL) were added. After 5 min cold bath was removed. After 

30 min saturated solution of NH4Cl was added. The aqueous layer was extracted with 
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Et2O (x 4). The combined organic extracts were washed with H2O (x 1) and brine (x 1), 

dried (MgSO4), filtrated and concentrated in vacuo. The residue was purified by flash 

chromatography (Hexane + 1% Et3N changed to Hexane/EtOAc, 9:1 + 1% Et3N) to 

provide bis-silyl enol ether 2.55 as a yellow oil which was taken to the next step. 

To a solution of bis-silyl enol ether 2.55 in CH2Cl2 (1 mL) at ambient temperature were 

added HMDS (16 mg, 0.1 mmol, 0.21 mL) and DDQ (23 mg, 0.1 mmol). After 1.5 h one 

more portion of DDQ (46 mg, 0.2 mmol) was added. After 18 h saturated solution of 

NaHCO3 was added. The aqueous layer was extracted with Et2O (x 4). The organic layer 

was washed with H2O (x 2) and brine (x 1), dried (MgSO4), filtrated and concentrated in 

vacuo. The residue was purified by flash chromatography (Hexane/EtOAc, 3:1) to 

provide bis-enone 2.53 as a pale yellow oil (2.4 mg, 20%): 
1
H NMR (500 MHz, CDCl3) δ 

6.45 (dd, J = 11.0, 17.5 Hz, 2 H), 5.99 (s, 2 H), 5.90 (d, J = 17.5 Hz, 2 H), 5.51 (d, J = 11 Hz, 

2 H), 4.84 (d, J = 7.0 Hz, 2 H), 4.64 (d, J = 6.5 Hz, 2 H), 4.39 (s, 2 H), 3.40 (s, 6 H), 3.13 (s, 2 

H), 2.53 (t, J = 7.0 Hz, 2 H), 1.4-1.18 (m, 8 H), 0.88 (t, J = 7.5 Hz, 6 H). 

 

 Compound 2.36 was prepared from silyl enol ether 2.35 according to 

procedures reported for the synthesis of compounds 2.31 and 2.42: 
1
H 

NMR (400 MHz, CDCl3) δ 6.67 (dd, J = 1.6, 10.0 Hz, 2 H), 5.99 (dd, J = 2.0, 

10.4 Hz, 2 ), 5.80-5.70 (m, 2 H), 5.49 (d, J = 10.4 Hz, 2 H), 5.09-5.01 (m, 4 H), 3.08 (bs, 2 

H), 2.79 (d, J = 8.4 Hz, 2 H), 2.33-2.27 (m, 2 H), 2.17-2.14 (m, 2 H), 2.10 (s, 6 H); 
13

C NMR 

(75 MHz, CDCl3) δ 198.27, 170.48, 147.28, 134.36, 129.79, 117.88, 71.81, 47.35, 42.66, 

33.50, 29.69, 20.99. 
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 Compound 2.37 was prepared from silyl enol ether 2.35 according to 

procedures reported for the synthesis of compounds 2.31 and 2.42: 
1
H 

NMR (300 MHz, CDCl3) δ 6.92 (dd, J = 2.1, 10.5 Hz, 2 H), 5.96 (dd, J = 1.8, 

10.5 Hz, 2 H), 5.90-5.76 (m, 2 H), 5.08 (dd, J = 3.3, 15.0 Hz, 4 H), 4.79 (d, J 

= 7.2 Hz, 2 H), 4.74 (d, J = 7.2 Hz, 2 H), 4.18 (d, J = 6.6 Hz, 2 H), 3.44 (s, 6 H), 2.88 (s, 4 H), 

2.45-2.41 (m, 2 H), 2.24-2.20 (m, 2 H).  

 

 To a solution of bis-ketone 2.36 (50 mg, 0.13 mmol) in dioxane/H2O (4.5 

mL/1.5 mL, 3:1) at ambient temperature was added OsO4 (10 mg, 0.04 

mmol). After 15 min NaIO4 (120 mg, 0.54 mmol) was added portionwise 

for over 30 min. After 1 h 45 min from the completion of addition the reaction mixture 

was diluted with Et2O. The aqueous layer was extracted with Et2O (x 12). The combined 

organic extracts were dried (MgSO4), filtrated and concentrated in vacuo. The residue 

was purified by flash chromatography (Hexane/EtOAc, 1:2) to provide bis-aldehyde 2.38 

as a colorless oil (20 mg, 40%): 
1
H NMR (300 MHz, CDCl3) δ 9.66 (s, 2 H), 9.74 (d, J = 

10.29 Hz, 2 H), 6.05 (d, J = 10.32 Hz, 2 H), 4.10-4.00 (m, 2 H), 3.29 (bs, 2 H), 2.96 (d, J = 

6.5 Hz, 2 H), 2.66-2.51 (m, 4 H), 2.11 (s, 6 H). 

 

 To a solution of bis-ketone 2.37 (20 mg, 0.05 mmol) in EtOAc (1.6 mL) at 

ambient temperature was added 1% solution of OsO4 in H2O (80 μL) and 

buffer solution of LiIO4-Li3PO4 (1.6 mL, pH = 6.5). After 5.5 h the reaction 

mixture was diluted with EtOAc. The layers were separated. The aqueous 
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layer was extracted with EtOAc (x 3). The combined organic extracts were dried 

(MgSO4), filtrated and concentrated in vacuo. The residue was purified by flash 

chromatography (Hexane/EtOAc, 1:5) to provide bis-aldehyde 2.39 as a colourless oil 

(5.4 mg, 27%): 
1
H NMR (300 MHz, CDCl3) δ 9.67 (s, 2 H), 7.00 (d, J = 10.2 Hz, 2 H), 6.02 

(d, J = 10.2 Hz, 2 H), 4.73 (d, J = 7.2 Hz, 2 H), 4.65 (d, J = 7.2 Hz, 2 H), 4.39 (d, J = 9.9 Hz, 2 

H), 3.41 (s, 6 H), 3.17 (s, 2 H), 2.74 (bs, 4 H), 2.49 (d J = 13.5 Hz, 2 H). 
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Appendix A1: 

 

 

 

 

Spectra Relevant to Chapter II: 
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Figure A2.1. 
1
H NMR spectrum (300 MHz, CDCl3) and 

13
C NMR spectrum (75 MHz, CDCl3) of 

compound 2.8. 
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Figure A2.2. 
1
H NMR spectrum (300 MHz, CDCl3) and 

13
C NMR spectrum (75 MHz, CDCl3) of 

compound 2.28. 
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Figure A2.3. 
1
H NMR spectrum (300 MHz, CDCl3) and 

13
C NMR spectrum (75 MHz, CDCl3) of 

compound 2.29. 
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Figure A2.4. 
1
H NMR spectrum (400 MHz, CDCl3) and 

13
C NMR spectrum (75 MHz, CDCl3) of 

compound 2.36. 
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Figure A2.5. 
1
H NMR spectrum (300 MHz, CDCl3) of compound 2.37. 
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Figure A2.6. 
1
H NMR spectrum (400 MHz, CDCl3) and 

13
C NMR spectrum (75 MHz, CDCl3) of 

compound 2.31. 
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Figure A2.7. 
1
H NMR spectrum (400 MHz, CDCl3) and 

13
C NMR spectrum (75 MHz, CDCl3) of 

compound 2.33. 
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Figure A2.8. 
1
H NMR spectrum (400 MHz, CDCl3) of compound 2.44. 
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Figure A2.9. 

1
H NMR spectrum (400 MHz, CDCl3) and 

13
C NMR spectrum (100 MHz, CDCl3) of 

compound 2.45. 
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Figure A2.10. 

1
H NMR spectrum (400 MHz, CDCl3) and 

13
C NMR spectrum (100 MHz, CDCl3) of 

compound 2.46. 
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Figure A2.11. 
1
H NMR spectrum (400 MHz, CDCl3) and 

13
C NMR spectrum (100 MHz, CDCl3) of 

compound 2.47. 
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Figure A2.12. 
1
H NMR spectrum (400 MHz, CDCl3) and 

13
C NMR spectrum (150 MHz, CDCl3) of 

compound 2.42. 
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Figure A2.13. 
1
H NMR spectrum (400 MHz, CDCl3) and 

13
C NMR spectrum (100 MHz, CDCl3) of 

compound 2.7. 
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Figure A2.14. 
1
H NMR spectrum (500 MHz, CDCl3) and 

13
C NMR spectrum (75 MHz, CDCl3) of 

compound 2.32. 
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 Figure A2.15. 

1
H NMR spectrum (400 MHz, CDCl3) and 

13
C NMR spectrum (100 MHz, CDCl3) of 

compound 2.34. 
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Figure A2.16. 

1
H NMR spectrum (400 MHz, CDCl3) of compound 2.35 and 

1
H NMR spectrum (400 

MHz, CDCl3) of compound 2.30. 
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Figure A2.17. 
1
H NMR spectrum (400 MHz, CDCl3) of compound 2.22. 
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Figure A2.18. 

1
H NMR spectrum (400 MHz, CDCl3) of compound 2.53 and 

1
H NMR spectrum (500 

MHz, CDCl3) of compound 2.54. 
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Figure A2.19. 
1
H NMR spectrum (300 MHz, CDCl3) of compound 2.38 and 

1
H NMR spectrum (300 

MHz, CDCl3) of compound 2.39. 
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CHAPTER III 

 

FIRST GENERATION APPROACH 

 

Cyano Group Studies 

 

The addition of a carbon radical to a nitrile resulting in ring formation has been 

employed as key transformation in a number of natural products total syntheses.1,2 

Retrosynthetically, nitriles as compared to alkynes can be considered equivalents of 

carbonyl radical acceptors (O=C). Nitriles and alkynes have found application in 

transformations with radical character since the product of the addition, an imine, can 

be easily hydrolyzed to a ketone.  In terms of reactivity, nitriles are less reactive than 

alkynes, which are even poorer radical acceptors than activated olefins.2 

Simultaneously, application of the cyano group allows fast formation of the desired 

ketone while use of an alkyne requires a two-step sequence (addition/ozonylsis) to give 

the same product. 
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Figure 3.1. Examples of radical cyclizations employing nitriles as radical acceptors. 

 

 Radical cylizations onto nitrile groups have been employed mostly as a method 

for producing cyclopentanone ring systems by way of 5-exo-dig cyclizations (Figure 3.1 

eqns. A and B). A few examples involve formation of larger rings – in the synthesis of 

tetrodoxin (Figure 3.1 eqn. C), generation of a cyclohexanone ring was possible due to 

the favorable rigid structure of bromonitrile 3.5.1a 
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Scheme 3.1. Retrosynthetic analysis. 

 

 When designing our synthetic approach to dideoxy lomaiviticinone (2.1), we 

envisioned that an immediate precursor to 2.1, bis-amine 2.2, could be generated via 

intramolecular radical cyclization of nitrile to afford diketone 3.7 (Scheme 3.1). We 

anticipated that formation of cyclopentyl imines units followed by deprotection would 

lead to tautomerization to quinone methide 2.2.  

With bis-iodoenone 2.32 in hand (Chapter 2), screening of conditions for the 

Stille coupling as a first step of an annulation sequence was initiated. Using model 

system arylstannane 3.11, quickly prepared (3 steps) from commercially available 
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bromoquinone 3.9, we were able to apply a modification of Maier`s conditions based on 

the application of Pd2(dba)3 and AsPh3 (Scheme 3.2).3,4 By this route desired bis-enone 

3.12 could be obtained in a reproducable yield of 75-80%.  

 

 

Scheme 3.2. Synthesis of bis-enone 3.12. 

 

At this point we turned our attention to the synthesis of arylstannane 3.8, the 

equivalent of an aromatic portion of dideoxy lomaivitcinone (2.1) (Scheme 3.4). We 

began with the preparation of naphthoquinone 3.16. In 1971, Brassard reported a 

method for generation of halogenated and non-halogenated naphthoquinones.5 The 

Brassard method employed a mixture of halogenated maleic anhydride derivatives, 

dimethoxybenzene (3.15) and molten AlCl3/NaCl heated to a temperature of 170-190 

⁰C. Immediate hydrolysis using an aqueous solution of 4 M HCl produced desired phenol 

3.16. Methyl ether protection of the phenolic groups of 3.16 occurred in the absence of 

light with the use of a large excess of MeI and Ag2O.5 Use of Ag2O played a key role in 

the success of this transformation, as treatment of 3.16 with standard bases (K2CO3 or 
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NaOH) resulted exclusively in decomposition of starting material. Reduction of 3.17 with 

Na2S2O3 and subsequent protection of the resulting hydroquinone as MOM-ethers was 

achieved in ~70% yield over 2 steps. At this point we envisioned preparation of 

arylstannane 3.8. Its generation via single lithium-halogen exchange followed by 

monosubstitution with a trimethyltin group constituted a significant challenge. Early 

attempts to synthesize 3.8 were rather disappointing as poor yields (20-25% for 3.8) 

were accompanied by isolation of multiple by-products (Scheme 3.4, compounds 3.19-

3.21).  

In 2007, Yoshida and coworkers described successful (yields between 70-80%) 

monosubstitution of ortho-dibromobenzenes (3.22).6 Although the method employed 

microreactors, emphasis of the importance of time control for the successful 

transformation while avoiding formation of the undesired benzyne intermediate (3.25) 

piqued our interest (Scheme 3.3).   

 

 

Scheme 3.3. Lithium-halogen exchange of ortho-dibromides. 
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Applying Yoshida`s observations to our work, we decided to examine addition of 

Me3SnCl in a time-controlled manner. We were delighted to observe that addition of n-

BuLi followed by a solution of Me3SnCl in THF after 30-40 s led to best results and 

compound 3.8 could be delivered in 80-85% yield. Successful application of the 

previously developed Stille coupling conditions led to generation of C2-symmetric bis-

enone 3.26 (Scheme 3.5).  

 

 

Scheme 3.4. Synthesis of arylstannane 3.8. 
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Scheme 3.5. Synthesis of bis-enone 3.26.  

 

The stage was now set to continue our proposed annulation studies. As an easily 

prepared monomeric analog of 3.26, enone 3.29 was generated. We planned to use 

3.29 as a model system to develop conditions for nitrile group introduction followed by 

study of a cyclopentane ring formation by way of radical mediated reaction. After 

several different reaction conditions were screened, we found that 3.30 could be 

obtained through reaction with KCN and a catalytic amount of 18-crown-6 in 75% yield.7 

The same cyanoketone 3.30 could also be delivered in 70% yield via treatment of 3.29 

with acetone cyanohydrin and NaH in DMF.8 With cyanide 3.30 in hand, attention 

shifted towards the key cyclization starting with reintroduction of unsaturation 

(compound 3.32) as required for formation of the core of 2.1. To form enone 3.32 from 

ketone 3.30, various oxidations were examined: direct oxidation (IBX, DDQ, CAN, 

Pd(OAc)2/DMS/TFA), an α-halogenation/elimination sequence (CuBr2/EtOAc, NBS/AIBN, 

NBS/NaH, Br2/NaH), α-phenylselenylation/elimination (PhSeCl/NaH, PhSeCl/LDA, 

PhSeBr/NaH, PhSeBr/NaHMDS, PhSeBr/LDA), formation of a silyl enol ether/oxidation 

(TMSCl/Et3N, TMSCl/HMDS, TBSCl/Et3N), and application of the Mukaiyama reagent (t-

BuPhNSCl/NaH) (Scheme 3.6).9 Unfortunately, none of the attempts provided the 

desired product 3.32. In most experiments, recovery or decomposition of substrate 3.30 



 
 

92 

was observed, while some reactions resulted in the deprotection of the hydroquinone 

unit. Subsequently, silyl enol ether 3.31 as a mixture of diastereoisomers (ratio ~1:1) 

was generated by treatment of 3.29 with TBSCN, KCN, and a catalytic amount of 18-

crown-6 in CH3CN at 50 ⁰C. Again, all attempts to oxidize 3.31 failed to produce enone 

3.32.  

 

 

Scheme 3.6. Synthesis of cyanomodel 3.30.  

 

Simultaneously, the possibility of an intramolecular cyclization under radical 

conditions was examined. Cyanoketone 3.30 was treated with Bu3SnH and AIBN or 

Et3B/O2 as radical initiators (Scheme 3.7). The experiments were conducted at varying 

reaction temperatures (25-110 ⁰C) employing variety of solvents (THF, C6H6, PhMe). 

Disappointingly, only ketone 3.34 the product of dehalogenation, was isolated. We 

deduced that hindered rotation around the C-C bond between the aromatic portion and 

the cyclohexenone unit was likely responsible for the formation of 3.34 instead of 3.33.   
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In 2006, Wähälä reported the Lewis acid-mediated synthesis of 

polyhydroxydeoxybenzoins through electrophilic aromatic substitution of benzilic 

cyanides.10 We decided to examine this type of transformation using dehalogenated 

ketone 3.34 (Scheme 3.7) to effect our desired ring formation. Unfortunately, after 

treatment of 3.34 with different Lewis acids (BF3•Et2O, TiCl4, ZnCl2/HCl, SnCl4), only 

quinone 3.35 could be isolated. These results prompted us to reexamine our approach. 
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Scheme 3.7. Failed annulation studies. 

 

Nitro Group Studies 

 

On the basis of our previous results, we considered the preparation of bis-α-

iodo-β-nitromethylenone 3.37 (Scheme 3.8). We anticipated that 3.37 could be coupled 

to arylstannane 3.8 to give 3.36. Since no Michael addition and enone reintroduction 

would be required after oxidation of 3.36, the coupling reaction between 
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bromoquinone and nitromethane unit could be utilized to form the cyclopentane ring. 

Reduction of the nitro group would then deliver bis-amine 2.2. 

 

 

 
 

Scheme 3.8. Retrosynthetic analysis with nitroenone 3.37. 

 

Synthesized for the first time by Seebach, phenyl(thio)nitromethane 3.39 

(Scheme 3.9) was available by two-step sequence involving chlorination of benzenethiol 

followed by chloride displacement by the sodium nitronate of nitromethane.11 After 

distillation, the blood red product could be isolated in 90-95% yield. 

Phenyl(thio)nitromethane 3.39 has been mostly used in Knoevenagel condensations and 

[2+3] cycloadditions leading the formation of isoxazoles.12,13 To our surprise, it has never 

been applied as a Michael donor, a transformation we were eager to test, and we 

envisioned that 3.39 could be used as a source of the nitromethane unit. After 

appriopriate manipulation of a sulfur fragment the enone functionality in the 

cyclohexanone could be reintroduced. Again, we decided to examine our approach with 
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use of a model system derived from cyclohexenone.  Michael addition of 3.39 was 

achieved by treatment with DBU in CH2Cl2 at ambient temperature. We found that the 

best results were obtained (yields 90-95%) and 1,2-addition was avoided when DBU was 

applied in large excess (20 eq). Oxidation of 3.40 to sulfoxide 3.41 proceeded smoothly 

in the presence of mCPBA, and careful temperature control prevented over-oxidation to 

the sulfone. Exposure of 3.41 to heat for ~14 h led to formation of enone 3.42 in ~65% 

yield making the 3-step sequence a unique method for generation of β-substituted 

nitromethane-enones. Next formation of iodoenone 3.43 was investigated. Multiple 

conditions were tested as α-iodination of a nitro group-containing molecule constituted 

a significant challenge. Finally, the best results were obtained when Johnson`s protocol 

was applied; however, the desired product 3.43 was obtained in unsatisfactory yields 

(30-35%) due to the competing Nef reaction – formation of the corresponding 

aldehyde.14 Despite this difficulty, we began examination of conditions for coupling of 

3.43 to aromatic fragment 3.8. We quickly learned that compound 3.43 was very 

unstable to numerous coupling reaction conditions.  Examination of the previously 

developed Stille coupling led exclusively to formation of destannylated naphthalene 

3.21, and very limited success was observed under Suzuki conditions.15 Two reaction 

products with phenylboronic acid, aldehyde 3.44 and nitroenone 3.45, were isolated. 

Additionally, following attempts to prepare the proper boronic acid or ester derivative 

of dibromide 3.19 for further examination of Suzuki reaction were met only with failure. 
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Scheme 3.9. Synthesis and annulation studies of nitroenone 3.43. 

 

Despite previous failures, we decided to once again evaluate our initial approach 

based on the use of bis-enone 2.5. We envisioned conversion of 2.5 into bis-nitroenone 

3.47 via Michael addition of nitromethane and reintroduction of the enone functionality 

(Scheme 3.10). We anticipated that preparation of both halogenated and non-

halogenated bis-enone 2.5 would create a wide range of possibilities to achieve 

cyclopentane ring formations. 
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Scheme 3.10. Revised retrosynthetic analysis. 

 

In order to prepare the non-halogenated analog of bis-enone 3.29, arylstannane 

3.48 was constructed (Scheme 3.11). Addition of t-BuLi to the solution of 3.8 in THF at -

78ºC followed by quenching with a saturated solution of NH4Cl delivered 3.48 in 

excellent yield of 80-85%. Compound 3.48 could be easily coupled to α-iodoenone 3.28 

under our standard Stille coupling conditions in an average yield of 70%. 

 

 

Scheme 3.11. Synthesis of enone 3.49. 
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Applying both model systems, halogenated enone 3.29 and non-halogenated 

enone 3.49, we subsequently probed conditions for generation of nitroenone 3.53 via 

synthesis of Michael adducts 3.51 or 3.52 (Scheme 3.12). We hoped that 3.51 could be 

prepared through Michael addition of nitromethanephenylsulfoxide 3.50 or via Michael 

addition of phenyl(thio)nitromethane/oxidation sequence. Heat-mediated 

elimination/isomerisation would then provide 3.53. Despite significant effort, sulfoxide 

3.51 was never obtained. Similarly, addition of bromonitromethane was unsuccessful, 

and the product of bromine elimination (3.53) was never generated.  
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Scheme 3.12. Failed synthesis of nitroenone 3.53. 

 

We rationalized that observed reluctancy to conjugate addition were caused by 

the steric hindrance around the cyclohexenone unit: compounds 3.39, 3.50 and 

bromonitromethane were simply too large to undergo Michael addition into the olefin 
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of 3.29 or 3.49. Our explanation was later supported by the successful synthesis of 

nitroketones 3.54 and 3.55 produced through DBU-mediated Michael addition of the 

sterically less demanding nitromethane (Scheme 3.13). With compounds 3.54 and 3.55 

in hand the annulation studies were continued. 
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Scheme 3.13. Synthesis of nitroketones 3.54 and 3.55. 

 

Formation of 1-nitroalkyl radicals as a result of one electron oxidation and their 

addition onto olefins to form cyclic structures is a well established transformation which 

has found multiple applications.16,17,18,19 Following available reports, we envisioned that 

treatment of 3.55 with an oxidant (CAN, Ag2O, K3Fe(CN)6) could lead to removal of the 

MOM-ethers and generation of quinone-nitronate 3.56 (Scheme 3.13). Oxidation of 3.56 

would then afford alkyl radical 3.57, whose 1,4-addition onto the quinone would 

produce semiquinone radical 3.58 and after oxidation would be converted into 
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nitroquinone 3.50. The combinations of CAN/NaH, Ag2O/DBU, Mn(OAc)32H2O/Ac2O, and 

K3Fe(CN)6/NaOH were tested to achieve the conversion of 3.55 into 3.60; however 

nitroquinone 3.60 was not produced. Only the oxidation product (3.59) was isolated. 

Our studies were continued with the synthesis of quinones 3.59 and 3.61, easily 

prepared by treatment of 3.54 and 3.55 with CAN in CH3CN (Scheme 3.14). Despite 

violating Baldwin`s rules (disfavored 5-endo-trig ring formation), we decided to evaluate 

an intramolecular, base induced-cyclization of the nitromethane unit onto the quinone 

of nitroketone 3.59.18 We began this series of experiments using strong bases (DBU, 

NaOH, Et3N) but quickly replaced them with KF or phosphate buffers (pH = 7-10) after 

we learned that compound 3.59 was highly unstable under basic conditions. In the 

presence of strong base, only decomposition of 3.59 was observed.  Phosphate buffer 

experiments produced trace amounts of a new, yellow compound, but all attempts to 

identify its structure were met with failure. Disappointed, we were forced to redesign 

our route. 
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Scheme 3.14. Failed synthesis of nitroquinone 3.60. 

 

A literature search provided a limited number of metal catalyzed coupling 

reactions of nitroalkanes. A few examples, demonstrated by Buchwald, involve reaction 

of simple nitroalkanes (nitromethane, nitroethane) with aromatic halides.20 Muratake 

and coworkers reported a method for intramolecular nitroalkane α-arylation.21 The 

reactions occur under rather harsh conditions: high temperatures > 100 ⁰C, and use of 

strong bases (KOt-Bu, NaOt-Bu).   

Our choice of conditions for the intramolecular coupling of nitroketone 3.59 was 

then determined by its reactivity and stability in the presence of base. Employing a 

procedure developed by Herzon for the synthesis of kinamycin F, we evaluated the 
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possibility of nitroquinone 3.60 generation through use of Pd-mediated C-C bond 

formation between the bromoquinone and nitromethane units (Scheme 3.14).22 

Unfortunately, instead of compound 3.60, furan 3.62 was isolated as a reaction product 

between the in situ formed enol and bromoquinone.  

Continually, our attempts to reintroduce the enone functionality in the 

cyclohexanone portion of 3.61 were unsuccessful (Scheme 3.15). Introduction of an α-

substituent which could later undergo elimination was first tested by exposure of 3.61 

to NBS/hν, but only compound 3.61 was recovered.23 Treatment of 3.61 with PhSeCl in 

THF (no base required) delivered smoothly the undesired regioisomer 3.63, and a similar 

product was produced when 3.61 was reacted with Br2 in AcOH.24 Further examination 

of this route was discontinued. 
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Scheme 3.15. Unsuccessful oxidation of ketone 3.61. 

 

Nitro Group Derivatives Studies 

 

The value of a nitro group as a synthon in the synthetic route design should not 

be overlooked. The list of available transformations this functionality can undergo 
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includes formations of aldehydes, ketones, carboxylic acids (Nef reaction), reductions to 

amines, hydroxylamines or oximes, reductive denitrations, formation of 1,3-dipoles, and 

finally elimination of nitrous acid to produce olefins.25 

Taking advantage of the properties of nitroalkanes, we decided to convert 

compound 3.54 into an oxime and then to an oxime ether which could be subjected to 

cyclization under radical conditions. Although, our first attempts failed to produce the 

desired oxime 3.67, yielding only product resulting from hydroquinone deprotection, 

1,2-addition onto the carbonyl group and dehydration (3.66, Scheme 3.16), we were 

pleased to see that a small modification of reaction conditions led to generation of 3.67 

(Scheme 3.17).26,27 Unfortunately, subsequent treatment of 3.67 with MsCl and Et3N did 

not give oxime ether 3.68 but delivered previously synthesized cyanoketone 3.30. 

Accordingly, plans to examine radical cyclization to produce 3.69 were at this point 

terminated. 

 

 

Scheme 3.16. Initial attempts to reduce nitroketone 3.54. 
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Scheme 3.17. Failed synthesis of ketone 3.68. 

 

The study of alternative reactivity modes of nitroalkanes 3.54 and 3.55 was 

considered next. Applying a method reported by Steliou, both 3.54 and 3.55 were 

converted into the analogous aldehydes 3.70 and 3.71 (Scheme 3.18).28 Choice of a Nef 

reaction conditions was not accidental since deprotection (oxidation) of the 

hydroquinone fragment needed to be avoided to minimize base-induced decomposition 

of a potentially formed quinone. Installation of a highly electron withdrawing aldehyde 

generated an opportunity to examine once again methods for reintroduction of 

unsaturation. Therefore, both 3.70 and 3.71 were treated with NaH/KOt-Bu/FeCl3, 

DDQ/C6H6 and CuBr2/EtOAc.29 Eventually it was determined that enone 3.72 could be 

successfully generated (yields 50-60%) when 3.70 was treated with DDQ in C6H6 in the 

presence of a catalytic amount of PTSA.30 Unexpectedly, a similar transformation 

conducted with use of non-halogenated 3.71 provided desired enone 3.73 in only 10% 

yield. 
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Scheme 3.18. Sythesis of aldehydes 3.72 and 3.73. 

 

Once the solution to one of our longstanding problems was established, our 

focus shifted entirely toward the second challenge, cyclopentane ring formation. After 

several possible transformations were quickly excluded (palladium catalyzed ring 

formation, cyclization under radical or photochemical conditions), we envisioned 

conversion of aldehyde 3.72 into hydroquinone 3.74 and its in situ based-mediated 

cyclization onto the carbonyl group to form 3.75 (Scheme 3.19).21,31 Further elimination 

of bromine and reintroduction of the quinone functionality would produce the 

secondary alcohol 3.76. Disappointingly, both acid and based-induced cyclizations did 

not occur and compound 3.76 was not produced. Under basic conditions decomposition 

of 3.72 was observed.  

 

 

Scheme 3.19. Unsuccessful synthesis of alcohol 3.76. 
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Next, we initiated attempts to prepare protected hydroquinone 3.77 to 

investigate radical-mediated cyclizations with a goal of producing alcohol 3.78 (Scheme 

3.20). Interestingly, while treatment of 3.74 under basic conditions led to reintroduction 

of quinone 3.72, reaction with Ac2O, DMAP and pyridine produced alcohol 3.80. A 

plausible mechanistic explanation for this transformation is presented in Scheme 3.20. 

The base-mediated tautomerization of hydroquinone 3.74 to quinone methide 3.79 and 

subsequent protonation of terminal olefin afforded 3.80.   
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Scheme 3.20. Attempts to synthesize alcohol 3.78. 
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Facing lack of any success with use of aldehyde 3.72, derivatization studies were 

continued (Scheme 3.21). Our goal was to identify a method which would allow 

generation of different nitrogen containing analogs of 3.72. To better control the 

regiochemistry of the examined transformations, reduction of 3.72 to hydroquinone 

3.74 was conducted under an H2 atmosphere in the presence of Pd/C, and the 

generated hydroquinone 3.74 was immediately subjected to condensation. The first 

experiments were conducted with use of tosylhydrazide, and various solvents were 

examined (EtOAc, EtOH, PhCH3, CH2Cl2), but only treatment of 3.74 with tosylhydrazide 

and a catalytic amount of p-TSA in toluene at ambient temperature provided desired 

hydrazone 3.81.32 Exposure of compound 3.81 to air led to quick oxidation to 3.82. It 

was later found that 3.82 could be obtained directly from 3.72 in only one step by 

reaction with tosylhydrazide in CHCl3 at ambient temperature. Both procedures 

provided access to different hydrazones, oximes and oxime ethers (compounds 3.82-

3.86). 
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Scheme 3.21. Synthesis of nitrogenated analogs of aldehyde 3.72. 

 

In 1996, Uenishi described a protocol for the reduction of vinyl gem-dibromides 

to Z-bromoolefins.33 The reaction catalyzed by Pd(PPh3)4 occurred in the presence of  a 

stoichiometric amount of Bu3SnH in benzene at ambient temperature. Catalyst choice 

played a key role in the success of this transformation as only Pd(PPh3)4 delivered the 

desired products while other catalysts promoted exclusive formation of H2(gas). Similar to 

studies preformed with aldehyde 3.72, we envisioned formation of the cyclopentane 

ring of 3.89 through the cyclization of the hydroquinone unit onto the electrophilic 

oxime ether group (Scheme 3.22). On the basis of our previous results (Scheme 3.19), 

we anticipated that this transformation would be favored if a sterically bulky bromine 

atom was removed, and the reaction was tested with use of oxime ether 3.87. Thus, 

oxime ether 3.85 was subjected to debromination with the Bu3SnH/Pd(PPh3)4 system to 
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deliver 3.87. This was the only method which produced 3.87 while attempted 

debromination with strong base or under radical conditions failed due to the sensitivity 

of the quinone functionality. Unfortunately, treatment of 3.87 under reductive 

conditions in acidic media afforded only enone 3.90. Similarly, reduction of 3.87 to the 

hydroquinone followed by treatment with BF3•Et2O in CH2Cl2 did not give 3.89 but 

rather decomposition of substrate 3.87 was observed.  

  

 

Scheme 3.22. Oxime ether 3.87 annulation studies. 

 

The tandem Grignard addition/oxidation sequence has often been utilized to 

produce aryl ketones. Seeking alternatives to this standard protocol, Hartwig`s group 

developed a coupling reaction between t-butylhydrazones and aryl halides (Scheme 

3.23).34 The first example of palladium catalyzed C-C bond formation with hydrazones, 

Hartwig`s method relies on the acyl anion properties of 3.92. In the described protocol, 

formation of 3.93 was followed by acid-mediated hydrolysis to give aryl-ketone 3.94.   
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Scheme 3.23. Examination of Hartwig`s method for coupling of t-butylhydrazones. 

 

With quick access to hydrazone 3.83, examination of Hartwig`s method was 

initiated. Applying reported as well as modified conditions we hoped to generate 

hydrazone 3.91; however disappointingly, only decomposition of 3.83 was observed. 

The role of diazo compounds as carbene precursors or metal carbenes is well 

established. Typically, RhII or CuI catalysis is employed to exploit the properties of this 

reactive functional group. Much less attention has been paid to the application of Pd 

catalysis as a consequence of its lower efficiency (higher temperatures and longer 

reaction times are required to promote the similar transformation).35 Despite this fact, 

several distinctive reactions have been developed with use of palladium catalysts. 

Mechanistically, reported transformations have been explained by the sequence of 

steps presented in Scheme 3.24. Initial transmetallation or oxidative addition produces 
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Pd intermediate 3.96, and formation of the Pd carbene 3.98 is then accomplished 

through the dediazotisation of a stabilized diazo substrate 3.97. Subsequent migratory 

insertion leads to the new Pd intermediate 3.99, which in the majority of described 

examples undergoes β-elimination to afford olefins. Reported examples include 

migrations of vinyl, aryl, allyl, acyl and benzyl groups. 

 

 

Scheme 3.24. Pd carbene migratory insertion. 

 

In 2007, Wang and coworkers described a very unique Pd-catalyzed coupling 

reaction between diazoesters and vinyl iodides leading to generation of extended 

diazoesters (Scheme 3.25).36 The lack of carbene moiety formation despite the presence 

of a metal catalyst was striking and previously never reported. The mechanistic 

explanation provided by the authors included regular oxidative addition with the vinyl 

halide, transmetallation with the deprotonated diazoester playing the role of a 

nucleophilic partner, and finally reductive elimination of the metal species to construct 

C-C bond.  
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Scheme 3.25. Wang`s method for preparation of extended diazoesters.  

 

Intrigued by this report, we decided to prepare diazoenone 3.106 and test the 

applicability of Wang`s method to our system (Scheme 3.26), and two pathways with 

access to 3.106 were developed. Initially, the diazoenone was produced via formation of 

hydroquinone 3.74, condensation with TsNHNH2 and oxidation with Ag2CO3 and Et3N. 

Because this 3-step sequence delivered 3.106 in only 30-40% yield, other conditions 

were tested. We were delighted to find that 3.106 could be also generated via a one pot 

condensation/elimination sequence in an excellent yield of 80-90%. Our literature 

search revealed that 3.106 was a first example of a β-substituted diazocyclohexanone. 

As a continuation of our studies, compound 3.106 was then subjected to Pd-catalyzed 

intramolecular coupling to deliver benzo[b]fluorene 3.107. Unfortunately, none of the 

examined conditions provided desired 3.107, only decomposition of substrate 3.106 

was observed.  
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Scheme 3.26. Examination of Wang`s protocol. 

 

While most Pd-catalyzed cross-couplings rely on the application of 

organometallic nucleophilic components reacting with organic halides, recent efforts 

have been devoted to development of protocols not based on utilization of 

stochiometric amounts of organometallic reagents. The list of traditional Pd-catalyzed 

reactions, which includes the Heck reaction, has been gradually growing, and has been 

expanded to include direct C-H activation, α-arylation of ketones, esters, and amides, 

the previously described coupling of diazoesters, or more specific protocols such as 

Hartwig`s method for generation of arylketones from t-butylhydrazones.20c,21c,34,35,37 

Recently, one more type of a transformation has been added to this list. With first 

report published in 2007, tosylhydrazones as nucleophilic components have found 

application in the formation of polysubstituted olefins, silyl enol ethers, enamines and 

substituted alkynes.38 In all of these transformations, tosylhydrazone is believed to be 

converted in situ into a diazo derivative which consequently undergoes migratory 
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insertion to form the C-C bond. Application of tosylhydrazones has enabled coupling of 

compounds where formation of diazo analogs would be challenging (lack of conjugation 

associated stabilisation).  

We have envisioned that by application of our protocol for the generation of 

nitrogenated derivatives, we could quickly prepare tosylhydrazone 3.109 from aldehyde 

3.108 (Scheme 3.27). Tosylhydrazone 3.109, subjected to coupling reaction conditions, 

could be converted in situ into non-stabilized diazoketone 3.110. Oxidative addition, 

followed by Pd carbene formation would give intermediate 3.111 which after reductive 

elimination would produce ketone 3.112. Double isomerisation could provide quinone 

methide 3.114, and following Herzon`s protocol, 3.114 could be converted into 

diazoquinone 3.107 by reaction with TsN3. Unfortunately, although hydrazone 3.109 

could be easily generated from available materials, its further conversion into 3.107 was 

unsuccessful and only decomposition was observed. These results led to termination of 

this route. 
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Scheme 3.27. Failed synthesis of diazoquinone 3.107. 

 

Cascade Experiments 

 

With quick access to quinones 3.115 and 3.116, a number of experiments were 

examined which could be described as attempts to form the cyclopentadienone ring 

through cascade C-C bond formations (Figure 3.28). These experiments were not 

necessarily performed over a specific timeline, rather they were randomly generated 

ideas which in our opinion should not have been overlooked regardless of whether 

assumptions of our general synthetic approach to dideoxy lomiaviticinone were not 

met. 
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 Figure 3.2. Cascade annulation.  

 

Our first attempt involved examination of Pd-catalyzed carbonylation with the 

goal of generating enone 3.117 (Scheme 3.29). Several conditions were tested with CO 

in gaseous form or derived from Mo(CO)6. With no success directly producing 3.117, a 

longer route was designed with quinone 3.118, which was anticipated to be a precursor 

of aldehyde 3.119, and we hoped to convert compound 3.119 into 3.117 via a Strecker 

reaction. In order to deliver 3.118, bromoquinone 3.115 was subjected to Suzuki 

coupling with the (vinyl)3(BO)3 pyridine complex (3.120). Although partially successful 

with no decomposition of starting material, the Suzuki coupling did not produce desired 

3.118 but rather delivered quinone 3.124. We deduced that the initial formation of 

3.118 was followed by an unexpected 6π-electrocyclization (3.121), double 

isomerisation (3.123) and oxidation of the hydroquinone to afford undesired quinone 

3.124. The carbon skeleton of 3.124 strongly resembled the structure of aglycons of the 

angucycline family of antibiotics (rubiginone B1 and rubiginone B2).39 
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Scheme 3.28. Failed carbonylation and unexpected generation of quinone 3.124. 

 

Continuing our studies, we envisioned application of an isocyanide as a source of 

a one carbon unit required for the formation of cyclopentadienone ring from 

bromoquinone 3.115 (Scheme 3.29). Although, no literature example could be 

referenced, we anticipated that an isocyanide could be used as a nucleophilic 

component in a Pd-catalyzed cascade coupling reaction. We envisioned a mechanism 

involving formation of Pd carbene 3.126 followed by Heck reaction between the 
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palladium intermediate and enone unit leading to formation of 3.128. To probe our idea 

and generate imine 3.128, three different isocyanides were tested, and the choice of 

reaction conditions was limited by the character of our model system. Therefore, 

reagents previously used in the reaction with the (vinyl)3(BO)3 pyridine complex 3.120 

were applied; unfortunately, only decomposition of substrate 3.115 was observed.  

 

 

Scheme 3.29. Proposed mechanism for coupling of quinone 3.115 with isocyanides. 

 

As a part of a program directed toward preparation of air- and moisture-stable 

organotrifluoroborates, Molander`s group described the synthesis of potassium 

(bromomethyl)trifluoroborate (3.129) (Scheme 3.30).40 After substitution of the primary 

bromide with amines, alcohols or an azide, derivatized compound 3.129 served as a 

coupling components in Suzuki reactions or [2+3] cycloadditions.41 We envisioned that 

3.129 could be used as a source of one carbon unit for the formation of quinone 
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methide 3.114. The trifluoroborate fragment, converted in situ to the boronic acid, 

would react with the bromoquinone in a Suzuki reaction, and subsequently the bromide 

could react with the enone unit in a Heck-type reaction to give 3.114. Examination of 

this transformation with use of Pd(OAc)2 as a catalyst, polymer bound PPh3, Ag2CO3 in 

an aqueous solution of THF or toluene did not produce 3.114 but led to formation of 

furan 3.130. Further studies were discontinued. 

 

 

Scheme 3.30. Coupling of quinone 3.115 with potassium (bromomethyl)trifluoroborate.  

 

Oxidative addition of electrophilic carbon-centered radicals to alkenes mediated 

by metal salts can be performed inter- or intra-molecularly.42 Mn(OAc)3 and CAN have 

been utilized as promoters of these transformations, most efficiently with β-dicarbonyls 

or β-nitrocarbonyls serving the role of donors. We envisioned that a similar 

transformation could be achieved with use of bromonitromethane or sulfoxide 3.50 

(Scheme 3.31). We hoped that free radical addition of one of these reagents to quinone 

3.116 would generate ketone 3.131 which after elimination of bromine or sulfoxide 

could be converted to enone 3.132. Unfortunately, treatment of 3.116 with CAN or 

Mn(OAc)3 did not produced desired product 3.131, but resulted in recovery of starting 

material.  
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Scheme 3.31. Oxidative addition to quinone 3.116. 

 

Conclusion 

 

The goal of this chapter was to present the scope of first generation annulation 

studies conducted in attempts to produce dideoxy lomaiviticinone (2.1). Although, our 

strategy proved to be ineffective, it allowed us to test multiple ideas, expanding our 

studies far beyond our initial approach. Better understanding of the reactivity of 

fragments constructed to produce 2.1 should result in the fulfillment of our ultimate 

goal, the synthesis of dideoxy lomaiviticinone. 
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Experimental methods 

 

General. All non-aqueous reactions were conducted under an argon atmosphere in 

oven-dried glassware. Reagents were purchased at the highest commercial quality and, 

unless otherwise stated, used without further purification. Toluene (CH3Ph), 

dichloromethane (CH2Cl2), diethyl ether (Et2O) were obtained through purification of 

commercially available solvents with use of activated alumina columns (MBraun MB-SPS 

solvent system). Tetrahydrofuran (THF) was purified by distillation from Na metal with 

benzophenone indicator. Triethylamine (Et3N) and N,N-diisopropylethylamine (iPr2NEt) 

were distilled from CaH2 and stored over KOH. Thin-layer chromatography was 

performed on E.Merck precoated silica gel 60 F524 plates. The plates were visualized 

with UV light and aqueous stain (KMnO4 or CAM). Liquid chromatography (flash 

chromatography) was conducted using indicated solvents and Dynamic Adsorbents silica 

gel 60 (230-240 mesh). Thermo Electron IR100 series instrument was used to record 

infrared spectra as thin films on NaCl plates. 1H and 13C NMR were recorded on Bruker 

300, 400, 500, 600 spectrometers at ambient temperature and are reported relative to 

deuterated solvent signals. n-BuLi was titrated with use of the Suffert method.  
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Preparative Procedures 

 

 To a solution of bromoquinone 3.9 (1 g, 4.22 mmol) in Et2O (40 mL) at 

ambient temperature under argon atmosphere was added the solution of 

Na2S2O4 (5.2 g, 9.3 mmol, 85%) in H2O (20 mL). After 30 min organic layer 

was separated and concentrated in vacuo. The residue was dissolved in CH2Cl2 (10 mL) 

and the mixture was cooled to 0 ⁰C. MOMCl (4.0 g, 42 mmol, 3.2 mL) and Hunig base 

(8.18 g, 63 mmol, 11 mL) were added. The solution was heated up to 35 ⁰C. After 18 h 

the reaction mixture was cooled to 25 ⁰C, washed with aqueous solution of NH4Cl(sat.) (x 

1), brine (x 1). The organic layer was separated, dried (MgSO4), filtrated, concentrated in 

vacuo. The residue was purified by flash chromatography (Hexane/EtOAc, 9:1) to 

provide bromide 3.10 as a white solid (0.85 g, 62%): 1H NMR (400 MHz, CDCl3): δ 8.25 (d, 

J = 8.4 Hz, 1 H), 8.13 (d, J = 8.0 Hz, 1 H), 7.51 (quin, J = 8.4 Hz, 14.3 Hz, 2 H), 5.34 (s, 2 H), 

5.21 (s, 2 H), 3.73 (s, 3 H), 3.54 (s, 3 H); 13C NMR (100 MHz, CDCl3): δ 149.96, 145.22, 

129.79, 127.34, 126.10, 126.04, 122.36, 122.26, 112.23, 112.10, 100.22, 95.10, 58.26, 

56.36. 

 

 To a solution (dried prior to use over 4 Å MS for 1 h) of bromide 3.10 (800 

mg, 2.4 mmol) in THF (24 mL) at -78 ⁰C was added n-BuLi (5.4 mmol, 2.67 

mL, 2 M solution in hexanes). After 45 min solution of Me3SnCl in THF (5.4 

mmol, 5.4 mL, dried prior to use over 4 Å MS for 2 h) was added. The cold bath was 

removed. After 24 h the reaction mixture was diluted with Et2O. The organic layer was 

Br
O

O

O

O
3.10

Sn
O

O

O

O

3.11
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washed with saturated solution of NH4Cl (x 1) and brine (x 1), dried (MgSO4), filtrated 

and concentrated in vacuo. The residue was purified by flash chromatography 

(Hexane/EtOAc, 15:1) to provide arylstannane 3.11 as a yellow solid (674 mg, 67%): IR 

(thin film, cm-1): 2954, 2825, 1580, 1450, 1348; 1H NMR (400 MHz, CDCl3): δ 8.25 (d, J = 

9.2 Hz, 1 H), 8.12 (d, J = 9.2 Hz, 1 H), 7.55-7.47 (m, 2 H), 5.37 (s, 2 H), 5.09 (s, 2 H), 3.64 

(s, 3 H), 3.57 (s, 3 H), 0.40 (s, 9 H); 13C NMR (100 MHz, CDCl3): δ 153.51, 149.58, 130.37, 

128.27, 127.73, 126.32, 125.74, 122.38, 122.26, 114.10, 100.87, 95.30, 57.71, 56.30, -

8.16; HRMS (ESI) calcd for C17H24O4Sn [M+H+] 412.0697, found 412.0680. 

 

To a solution of iodoenone 2.32 (15 mg, 0.02 mmol) in dry 

CH3CN (2 mL) at ambient temperature were added CuCl (14 

mg, 0.14 mmol), AsPh3 (20 mg, 0.07 mmol) and Pd2(dba)3 (13 

mg, 0.02 mmol). The mixture was placed in the oil bath at 70 ⁰C. The solution of 

arylstannane 3.11 (21 mg, 0.05 mmol) in dry CH3CN (1 mL) was added. Hunig base (5.6 

mg, 0.07 mmol, 5.3 μL) was added. After 20.5 h the reaction mixture was cooled to 

ambient temperature, filtrated through small pad of celite/SiO2 and concentrated in 

vacuo. The residue was purified by flash chromatography (Hexane/EtOAc, 3:1) to 

provide enone 3.12 as an yellow oil (14 mg, 69%): 1H NMR (400 MHz, CDCl3): δ 8.20 (d, J 

= 7.6 Hz, 2 H), 8.16 (d J = 7.6 Hz, 2 H), 7.53-7.45 (m, 4 H), 7.05 (d, J = 2.8 Hz, 2 H), 6.85 (s, 

2 H), 5.26 (d,  J = 6.0 Hz, 2 H), 5.20 (d, J = 6.0 Hz, 2 H), 4.95 (d, J = 5.6 Hz, 2 H), 4.93 (d, J = 

5.6 Hz, 2 H), 4.83 (d, J = 7.2 Hz, 2 H), 4.76 (d, J = 6.8 Hz, 2 H), 4.42 (dd, J = 3.2 Hz, 6.8 Hz, 

2 H), 3.48 (s, 6 H), 3.44 (s, 6 H), 3.40 (s, 6 H), 3.11 (bs, 2 H), 2.91 (bs, 2 H), 1.65-1.44 (m, 8 

O
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O

H

H
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H), 0.97 (t, J = 6.8 Hz, 6 H); 13C NMR (100 MHz, CDCl3): δ 198.90, 148.60, 146.08, 145.81, 

136.85, 129.23, 129.12, 126.75, 126.39, 125.83, 124.90, 122.65, 122.02, 110.32, 100.34, 

95.91, 95.09, 74.93, 57.77, 56.37, 55.92, 50.25, 32.91, 19.55, 14.41; HRMS (ESI) calcd for 

C50H62O14 [M] 886.4507, found 886.4104. 

 

 To a solution of dibromoquinone 3.17 (0.7 g, 1.86 mmol) in CH2Cl2 (250 mL) 

at ambient temperature under argon atmosphere was added Adogen 464 

(0.74 g, 0.56 mmol, 0.83 mL). The solution of Na2S2O4 (1.9 g, 9.3 mmol, 85 %) 

in H2O (100 mL) was added. After 30 min organic layer was separated and concentrated 

in vacuo. The residue was dissolved in CH2Cl2 (20 mL) and the mixture was cooled to 0 

⁰C. MOMCl (1.49 g, 18.6 mmol, 1.4 mL) and Hunig base (3.56 g, 27.6 mmol, 4.8 mL) were 

added. The solution was heated up to 35 ⁰C. After 24 h the reaction mixture was cooled 

to 25ºC, washed with aqueous solution of NH4Cl(sat.) (x 1), brine (x 1). The organic layer 

was separated, dried (MgSO4), filtrated, concentrated in vacuo. The residue was purified 

by flash chromatography (Hexane/EtOAc, 2:1) to provide dibromide 3.18 as a white solid 

(0.6 g, 69%): IR (thin film, cm-1) 2957, 2930, 2828, 1606, 1540, 1347; 1H NMR (400 MHz, 

CDCl3): δ 6.84 (s, 2 H), 5.03 (s, 4 H), 3.87 (s, 6 H), 3.71 (s. 6H); 13C NMR (100 MHz, CDCl3): 

δ 149.49, 122.01, 119.58, 108.40, 100.82, 58.49, 56.92; HRMS (ESI) calcd for 

C16H18Br2O6Na [M+Na+] 486.9362, found 486.9359. 

 

To a solution (dried over 4Å MS for 2 h prior to the use) of dibromide 3.18 

(582 mg, 1.25 mmol) in Et2O/THF (42 mL/21 mL) at -78 ⁰C was added 

O

O

O

O

O

O

Br

Br

3.18

O

O

O

O

O

O

SnMe3

Br

3.8



 
 

125

TMEDA (0.218 g, 1.87 mmol, 0.281 mL). The solution of n-BuLi in hexane (1.625 mmol, 

0.7 mL, 2.31 M) was added. After 50 sec solution of Me3SnCl in THF (7.5 mmol, 7.5 mL, 

1M, dried over 4Å MS prior to use for 2 h) was added. After 1.5 h cold bath was 

removed. After additional 2 h saturated solution of NH4Cl was added dropwise. The 

mixture was diluted with Et2O, washed with H2O (x 3) and brine (x 1). The organic layer 

was separated, dried (MgSO4), filtrated, concentrated in vacuo. The residue was purified 

by flash chromatography (Hexane/EtOAc, 4:1) to provide arylstannane 3.8 as a yellow oil 

(600 mg, 88%): IR (thin film, cm-1) 2932, 1605, 1538, 1462; 1H NMR (400 MHz, CDCl3): δ 

6.77 (d, J = 4.4 Hz, 2 H), 5.02 (d, J = 4.4 Hz, 2 H), 4.91 (s, 2 H), 3.87 (s, 3 H), 3.85 (s, 3 H), 

3.70 (s, 3 H), 3.21 (s, 3 H), 0.44 (s, 9 H); 13C NMR (100 MHz, CDCl3): δ 153.62, 149.62, 

145.33, 139.77, 124.86, 123.73, 120.64, 107.98, 107.94, 100.87, 100.51, 58.38, 58.37, 

56.99, 56.74; HRMS (ESI) calcd for C19H28BrO6Sn [M+H+] 551.0078, found 551.0094. 

 

1H NMR (400 MHz, CDCl3): δ 7.04 (s, 2 H), 6.81, (s, 2 H), 5.14, (4 H), 3.89 (s, 6 

H), 3.59 (s, 6 H); 13C NMR (75 MHz, CDCl3): δ 150.7, 149.2, 121.9, 116.2, 107.8, 

97.9, 57.3, 56.3. 

 

 IR (thin film, cm-1): 2937, 2833, 1577, 1454, 1375; 1H NMR (400 MHz, CDCl3): 

δ 7.28 (s, 1 H), 6.86-6.81 (m, 2 H), 5.17 (s, 2 H), 5.03 (s, 2 H), 3.89 (s, 3 H), 

3.88 (s, 3 H), 3.72 (s, 3 H), 3.59 (s, 3 H); 13C NMR (100 MHz, CDCl3): δ 151.1, 

150.3, 149.4, 144.7, 123.2, 121.0, 119.0, 115.2, 108.6, 108.2, 100.6, 97.4; HRMS (ESI) 

calcd for C16H20BrO6 [M+H+] 387.0438, found 387.0422. 
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1H NMR (400 MHz, CDCl3): δ 6.80 (s, 2 H), 4.94 (s, 4 H), 3.87 (s, 6 H), 3.50 

(s, 6 H), 0.39 (s, 18 H); 13C NMR (100 MHz, CDCl3): δ 153.1, 149.7, 144.2, 

121.9, 116.2, 108.4, 101.2, 57.9, 57.4, -4.1. 

 

To a solution of bis-iodoenone 2.32 (27 mg, 0.042 mmol) in 

dry CH3CN (3 mL) at ambient temperature were added CuCl 

(10 mg, 0.1 mmol), AsPh3 (15 mg, 0.05 mmol) and Pd2(dba)3 

(11 mg, 0.012 mmol). The mixture was placed in the oil bath at 70 ⁰C. The solution of 

arylstannane 3.8 (48 mg, 0.087 mmol) in dry CH3CN (1 mL) was added. Hunig base (100 

mg, 0.10 mmol, 13 μL) was added. After 3 h the reaction mixture was cooled to ambient 

temperature, filtrated through small pad of celite/SiO2 and concentrated in vacuo. The 

residue was purified by flash chromatography (Hexane/EtOAc, 1:1) to provide enone 

3.26 as a yellow solid (37 mg, 77%): HRMS (ESI) calcd for C54H68Br2O18Na [M+Na+] 

1185.2665, found 1187.2673. 

 

To a solution of arylstannane 3.9 (629 mg, 1.13 mmol) in THF (93 mL) at -

78 ⁰C was added TMEDA (197 mg, 1.7 mmol, 0.254 mL). The solution of t-

BuLi in hexane (4.5 mmol, 3.34 mL, 1.35 M) was added. After 10 min 

saturated solution of NH4Cl(aq) was added and the cold bath was removed. The mixture 

was diluted with Et2O, washed with NH4Cl(aq) (x 1) and brine (x 1). The organic layer was 

separated, dried (MgSO4), filtrated and concentrated in vacuo. The residue was purified 

by flash chromatography (Hexane/EtOAc, 4:1) to provide arylstannane 3.48 as a yellow 
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oil (415 mg, 78%): IR (thin film, cm-1) 2933, 2831, 1607, 1564, 1451, 1374; 1H NMR (400 

MHz, CDCl3): δ 7.12 (s, 1 H), 6.79 (s 2 H), 5.15 (s, 2 H), 4.93 (s, 2 H), 3.89 (s, 3 H), 3.88 (s, 

3 H), 3.61 (s, 3 H), 3.48 (s, 3 H), 0.38 (s, 9 H); 13C NMR (100 MHz, CDCl3): δ 152.71, 

150.92, 149.66, 149.50, 133.99, 123.35, 122.57, 121.88, 107.59, 107.18, 100.97, 98.20, 

57.82, 57.30, 56.82, 56.40, 8.00. 

 

To a solution of iodocyclohexenone (242 mg, 1.10 mmol) in dry CH3CN (75 

mL) at ambient temperature were added CuCl (129 mg, 1.30 mmol), AsPh3 

(240 mg, 0.78 mmol) and Pd2(dba)3 (150 mg, 0.16 mmol). The mixture was 

placed in the oil bath at 70 ⁰C. The solution of arylstannane 3.9 (600 mg, 1.10 mmol) in 

dry CH3CN (15 mL) was added. Hunig base (100 mg, 0.78 mmol, 95 μL) was added. After 

2.5 h the reaction mixture was cooled to ambient temperature, filtrated through small 

pad of celite/SiO2, concentrated in vacuo. The residue was purified by flash 

chromatography (Hexane/EtOAc, 1:1) to provide enone 3.29 as a yellow solid (487 mg, 

92%): IR (thin film, cm-1) 2937, 2831, 1679, 1605, 1562, 1345; 1H NMR (400 MHz, CDCl3): 

δ 6.97 (t, J = 4 Hz, 1 H), 6.83 (d, J = 8.8 Hz, 1 H), 6.78 (d, J = 8.8 Hz, 1 H), 5.06 (s, 2 H), 4.94 

(d, J = 5.6 Hz, 1 H), 4.77 (d, J = 5.2 Hz, 1 H), 3.89 (s, 3 H), 3.88 (s, 3 H), 3.70 (s, 3 H), 3.47 

(s, 3 H), 2.69-2.57 (m, 4 H), 2.45-2.16 (m, 2 H); 13C NMR (100 MHz, CDCl3): δ 197.13, 

150.28, 149.89, 149.47, 147.40, 145.84, 138.84, 130.84, 122.95, 121.93, 118.82, 108.55, 

107.28, 100.96, 100.51, 58.40, 57.45, 57.20, 56.64, 38.43, 26.25, 22.71; HRMS (ESI) calcd 

for C22H26BrO7 [M+H+] 481.0809, found 481.0856. 
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To a solution of iodocyclohexenone (74 mg, 0.33 mmol) in dry CH3CN (15 

mL) at ambient temperature were added CuCl (40 mg, 0.40 mmol), AsPh3 

(63 mg, 0.20 mmol, 97%) and Pd2(dba)3 (37 mg, 0.04 mmol). The mixture 

was placed in the oil bath at 70 ⁰C. The solution of arylstannane 3.48 (157 mg, 0.33 

mmol) in dry CH3CN (5 mL) was added. Hunig base (26 mg, 0.2 mmol, 35 μL) was added. 

After 2.5 h the reaction mixture was cooled to ambient temperature, filtrated through 

small pad of celite/SiO2 and concentrated in vacuo. The residue was purified by flash 

chromatography (Hexane/EtOAc, 1:1) to provide enone 3.49 as a yellow solid (126 mg, 

94%): IR (thin film, cm-1) 2923, 2831, 1676, 1600, 1453, 1356; 1H NMR (400 MHz, CDCl3): 

δ 7.08 (t, J = 4.4 Hz, 1 H), 6.83 (s, 1 H), 6.79 (s, 1 H), 6.79 (s, 1 H), 5.16 (s, 2 H), 4.83 (s, 2 

H), 3.85 (s, 6 H), 3.56 (s, 3 H), 3.43 (s, 3 H), 2.60 (t, J = 6.4 Hz, 2 H), 2.53 (dd, J = 5.6 Hz, 2 

H), 2.15-2.12 (m, 2 H); 13C NMR (100 MHz, CDCl3): δ 197.23, 150.88, 150.22, 149.50, 

149.45, 145.56, 138.41, 128.62, 122.64, 121.58, 117.28, 108.20, 107.38, 100.71, 97.47, 

57.52, 57.33, 56.73, 56.34, 38.51, 26.23, 22.80; HRMS (ESI) calcd for C22H26O7Na 

[M+Na+] 425.1571, found 425.1564. 

 

To a solution of enone 3.29 (40 mg, 0.08 mmol) in DMF (3 mL) at ambient 

temperature were added acetone cyanohydrine (21 mg, 0.25 mmol, 

23μL), NaH (6 mg, 0.25 mmol). After 3.5 h the mixture was diluted with 

EtOAc, washed with H2O (x 6) and brine (x 1), dried (MgSO4), filtrated, concetrated in 

vacuo. The residue was purified by flash chromatography (Hexane/EtOAc, 1:1) to give 

cyanoketone 3.30 as a white solid (40 mg, 94%): IR (thin film, cm-1) 2932, 2360, 2241, 
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1716, 1606, 1562; 1H NMR (400 MHz, CDCl3): δ 6.85 (s, 2 H), 5.08 (d, J = 4.8 Hz, 1 H), 5.04 

(d, J = 5.2 Hz, 1 H), 4.91 (bs, 2 H), 4.02 (bs, 1 H), 3.91 (s, 3 H), 3.87 (s, 3 H), 3.67 (s, 3 H), 

3.51 (s, 3 H), 2.75 (d, J = 16.8 Hz, 1 H), 2.49-2.41 (m, 2 H), 2.20-2.13 (m, 2 H), 2.11-2.04 

(m, 2 H); 13C NMR (100 MHz, CDCl3): δ 203.37, 150.25, 149.95, 127.91, 123.14, 122.18, 

120.24, 109.04, 100.83, 58.67, 57.80, 57.32, 40.52, 32.98, 29.49, 22.90; HRMS (ESI) calcd 

for C23H26O7Na [M+H+] 508.0965, found 508.0920. 

 

To a solution of enone 3.29 (85 mg, 0.17 mmol) in CH3CN (8.5 mL) at 50ºC 

were added KCN (22 mg, (0.34 mmol), 18-crown-6 (91 mg, 0.34 mmol), 

TBSCN (364 mg, 2.6 mmol). After 2 h the mixture was cooled to ambinet 

temperature, diluted with Et2O, washed with H2O (x 1) and brine (x 1), 

dried (MgSO4), filtrated, concentrated in vacuo. The residue was purified by flash 

chromatography (Hexane/EtOAc, 3:1) to provide silyl enol ether 3.31 as a mixture of 

diastereoisomers (ratio ~1:1) (101 mg, 95%): IR (thin film, cm-1): 2932, 2857, 2234, 1668, 

1606, 1559, 1345; 1H NMR (400 MHz, C6D6): δ 6.58 (d, J = 8.8 Hz, 1 H), 6.54 (d, J = 8.4 Hz, 

1 H), 5.27 (d, J = 4.8 Hz, 1 H), 5.25 (d, J = 4.4 Hz, 1 H), 5.18 (d, J = 4.4 Hz, 1 H), 5.03 (d, J = 

4.0 Hz, 1 H), 4.00 (s, 1 H), 3.74 (s, 3 H), 3.56 (s, 3 H), 3.55 (s, 3 H), 3.48 (s, 3 H), 2.21-2.14 

(m, 1 H), 2.04-1.85 (m, 2 H), 1.82-1.76 (m, 1 H), 1.55-1.46 (m, 2 H); 13C NMR (100 MHz, 

C6D6): δ 150.92, 150.52, 150.15, 147.50, 147.08, 132.62, 128.30, 123.88, 123.05, 121.82, 

120.70. 109.62, 108.58, 101.10, 100.52, 58.19, 57.49, 57.43, 56.85, 31.43, 29.70, 27.22, 

25.50, 20.82, 17.93, -2.85, -3.04; second diastereoisomer: 1H NMR (400 MHz, C6D6): δ 

6.51 (d, J = 8.8 Hz, 1 H), 6.45 (d, J = 8.8 Hz, 1 H), 5.44 (d, J = 4.0 Hz, 1 H), 5.24 (d, J = 4.0 
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Hz, 1 H), 5.17 (d, J = 4.8 Hz, 1 H), 5.14 (d, J = 5.2 Hz, 1 H), 3.75 (s, 3 H), 3.65 (s, 3 H), 3.57 

(s, 3 H), 3.44 (s, 3 H), 3.39-3.37 (m, 1 H), 2.06-1.84 (m, 3 H), 1.77-1.72 (m, 1 H), 1.62-1.41 

(m, 2 H), 0.60 (s, 9 H), 0.02 (s, 3 H), 0.06 (s, 3 H); 13C NMR (100 MHz, C6D6): δ 151.9, 

150.8, 150.7, 149.1, 147.5, 131.8, 128.7, 128.4, 128.2, 124.5, 123.8, 121.4, 120.1, 110.9, 

110.1, 110.0, 101.4, 101.3, 58.4, 58.4, 57.7, 57.6, 32.0, 30.3, 27.8, 21.1, 18.3, -2.6, -2.9; 

HRMS (ESI) calcd for C29H41BrNO7Si [M+H+] 624.1830, found 622.1820. 

 

 To a solution of cyanoketone 3.30 (8.7 mg, 0.017 mmol) in CH3Ph was 

added Bu3SnH (48 mg, 0.17 mmol, 44 μL). The mixture was heated uo to 

40 ⁰C. Et3B (0.083 mmol, 83 μL) was added. After 1.5 h the reaction 

mixture was cooled to ambient temperature and concentrated in vacuo. The residue 

was purified by flash chromatography (Hexane/EtOAc, 1:1) to provide cyanoketone 3.34 

as a yellow oil (6.8 mg, 92%): 1H NMR (400 MHz, CDCl3) δ 6.85 (s, 1 H), 6.83 (s, 2 H), 5.23 

(d, J = 6.4 Hz, 1 H), 5.19 (d, J = 6.4 Hz, 1 H), 5.02 (d, J = 5.6 Hz, 1 H), 4.88 (d, J = 5.6 Hz, 1 

H), 4.69 (d, J = 12.4 Hz, 1 H), 3.89 (s, 3 H), 3.87 (s, 3 H), 3.57 (s, 3 H), 3.48 (s, 3 H), 3.30 

(td, J = 4.0, 12.4, 16.0 Hz, 1 H), 2.64-2.45 (m, 3 H), 2.28-2.21 (m, 2 H), 1.94-1.86 (m, 1 H). 

 

To a solution of cyclohexenone 3.38 (273 mg, 2.8 mmol, 0.288 mL) and 

nitrosulfide 3.39 (1.54 g, 9.1 mmol) in CH2Cl2 (10 mL) at ambient 

temperature was added DBU (648 mg, 4.3 mmol). After 24 h the reaction mixure was 

diluted with CH2Cl2. The organic layer was washed with saturated solution of NH4Cl, 

dried (MgSO4) and concentrated in vacuo. The residue was purified by flash 
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chromatography (Hexane/EtoAc, 3:1) to provide sulfide 3.40  as a mixture of 

diastereoisomers (ratio ~1:1) in the form of an orange oil (708 mg, 94%): IR (thin film, 

cm-1): 3060, 2951, 1715, 1552, 1474, 1440; 1H NMR (400 MHz, CDCl3): δ 7.47-7.45 (m, 4 

H), 7.40-7.37 (m, 6 H), 5.40 (d, J = 6.8 Hz, 1 H), 5.36 (d, J = 8 Hz, 1 H), 2.85-2.80 (m, 1 H), 

2.61-2.56 (m, 2 H), 2.48-2.42 (m, 4 H), 2.38-2.87 (m, 4 H), 2.19-2.10 (m, 2 H), 2.09-1.93 

(m, 1 H), 1.74-1.72 (m, 4 H); 13C NMR (100 MHz, CDCl3): δ 207.88, 207.69, 133.69, 

133.49, 130.48, 130.27, 129.80, 129.73, 99.20, 98.83, 44.02, 43.37, 41.37, 41.08, 40.75, 

40.72, 27.95, 27.38, 24.04, 23.91; HRMS (ESI) calcd for C13H15NO3SNa [M+Na+] 288.0665, 

found 288.0698. 

 

To a solution of sulfide 3.40 (1.14 g, 4.0 mmol) in CH2Cl2 (15 mL) at 0 ⁰C was 

added mCPBA (700 mg, 4.0 mmol, 77%) portionwise for 1.5 h. After 2 h 

saturated solution of NaHCO3 was added. The aqueous layer was extracted with CH2Cl2. 

The organic layer was dried (MgSO4) and concentrated in vacuo. The residue was 

purified by flash chromatography (Hexane/EtOAc, 1:1) to provide sulfoxide 3.41 as an 

inseparable mixture of diastereoisomers (ratio ~2:1) in the form of white solid (922 mg, 

77%): IR (thin film, cm-1): 2927, 1714, 1545, 1445, 1344; 1H NMR (400 MHz, CDCl3): δ 

7.68-7.66 (m, 2 H), 7.60-7.53 (m, 8 H), 5.04 (d, J = 4 Hz, 1 H), 5.01 (d, J = 12 Hz, 1 H), 

2.95-2.89 (m, 4 H), 2.47-2.39 (m, 4 H), 2.36-2.25 (m, 2H), 2.19-2.15 (m, 2 H), 2.11-1.90 

(m, 2 H), 1.77-1.61 (m, 4 H); 13C NMR (100 MHz, CDCl3): δ 206.89, 206.72, 139.56, 

138.28, 133.32, 132.93, 129.84, 129.75, 125.35, 124.25, 107.47, 105.61, 42.58, 42.22, 
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40.83, 40.64, 37.95, 37.18, 27.99, 27.39, 24.20, 23.66; HRMS (ESI) calcd for C13H16NO4S 

[M+H+] 282.0795, found 282.0796. 

 

The solution of sulfoxide 3.41 (422 mg, 1.5 mmol) in C6H6 (6 mL) in a sealed 

tube was heated up to 100 ⁰C. After 15 h the reaction mixture was cooled to 

ambient temperature and concentrated in vacuo. The residue was purified by flash 

chromatography (Hexane/EtOAc, 3:1) to provide enone 3.42 as a yellow oil (156 mg, 

67%): IR (thin film, cm-1): 2924, 2853, 1682, 1557, 1455, 1259; 1H NMR (400 MHz, 

CDCl3): δ 6.06 (s, 1 H), 5.07 (s, 1 H), 2.45-2.41 (m, 4 H), 2.08 (quin, J = 14.8, 6.4 Hz, 2 H); 

13C NMR (100 MHz, CDCl3): δ 198.49, 150.05, 131.43, 80.61, 37.02, 27.41, 22.16; HRMS 

(ESI) calcd for C7H10NO3 [M+H+] 156.0655, found 156.0667. 

 

To a solution of enone 3.42 (30 mg, 0.19 mmol) in CH2Cl2 (2 mL, dried prior to 

use over 4 Å MS for 2.5 h) at 0 ⁰C were added I2, (147 mg, 0.58 mmol), DMAP 

(2.4 mg, 0.02 mmol), pyridine (15 mg, 0.2 mmol, 15 μL). After 25 min the reaction 

mixture was diluted with Et2O. The organic layer was washed with saturated solution of 

NH4Cl (x 1), 10% solution of Na2S2O3 (x 2), brine (x 1), dried (MgSO4), filtrated and 

concentrated in vacuo. The residue was purified by flash chromatography 

(Hexane/EtOAc, 1:1) to provide iodoenone 3.43 as a yellow solid (14 mg, 27%): IR (thin 

film, cm-1): 2954, 1688, 1556, 1424, 1370; 1H NMR (400 MHz, CDCl3): δ 5.44 (s, 2H), 2.68 

(t, J = 6.8 Hz, 2 H), 2.61 (t, J = 6.0 Hz, 2 H), 2.09 (quin, J = 15.6, 6.8 Hz, 2 H); 13C NMR (100 

MHz, CDCl3): δ 191.58, 153.69, 114.48, 86.10, 36.22, 31.29, 21.83. 
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To a solution of sulfide 3.39 (992 mg, 5.8 mmol) in CH3CN (8 mL) at ambient 

temperature was added FeCl3 (95 mg, 0.58 mmol). After 5 min H5IO6 (1.6 g, 7.0 

mmol) was added. After 1 h 15 min saturated solution of Na2S2O3 was added. The 

aqueous layer was extracted with CH2Cl2 (x 5). The organic layer was dried (MgSO4) and 

concentrated in vacuo. The residue was purified by flash chromatography 

(Hexane/EtOAc, 1:1) to provide sulfoxide 3.50 as a white solid (50 mg, 47%): IR (thin 

film, cm-1): 3012, 2929, 1556, 1548, 1444; 1H NMR (400 MHz, C3D6O): δ 7.84-7.82 (m, 2 

H), 7.66-7.65 (m, 3 H), 5.97 (d, J = 12.0, 1 H), 5.67 (d, J = 11.6 Hz, 1 H); 13C NMR (100 

MHz, C3D6O): δ 141.24, 133.45, 130.78, 125.78, 94.71; HRMS (ESI) calcd for C7H18NO3S 

[M+H+] 186.0219, found 186.0234. 

 

To a solution of enone 3.29 (15 mg, 0.03 mmol) in CH2Cl2 (1 mL) at 

ambient temperature were added CH3NO2 (6.5 mg, 0.10 mmol, 6 μL) and 

DBU (95 mg, 0.62 mmol, 93 μL). After 20 h the reaction mixture was 

diluted with CH2Cl2 and washed with saturated solution of NH4Cl. The organic layer was 

separated, dried (MgSO4), filtrated and concentrated in vacuo. The residue was purified 

by flash chromatography (Hexane/EtOAc, 1:1) to provide nitroketone 3.54 as a yellow oil 

(14 mg, 83%): IR (neat) ν 2939, 2833, 1711, 1605, 1552, 1452, 1345 cm-1; 1H NMR (400 

MHz, CDCl3) δ 6.86 (s, 2 H), 5.06 (m, 3 H), 4.79 (bs, 1 H), 4.44 (bs, 1 H), 4.34 (dd, J = 10.4, 

12.4 Hz, 1 H), 4.14 (d, J = 12.0, 1 H), 3.91 (s, 3 H), 3.88 (s, 3 H), 3.69 (s, 3 H), 3.50 (s, 3 H), 

2.77 (d, J = 16.8 Hz, 1 H), 2.40 (m, 1 H), 2.20 (d, J  = 12.4 Hz, 1 H), 2.10 (m, 2 H), 1.67 (m, 

1 H); 13C NMR (100 MHz, C6D6) δ 204.7, 150.9, 150.8, 130.0, 123.9, 109.8, 109.4, 102.4, 
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101.3, 80.1, 58.7, 58.0, 57.5, 54.4, 41.0, 40.5, 29.1, 22.7; HRMS (ESI) calcd for 

C23H28O9BrNNa [(M+Na)+] 564.0840, found 564.0826. 

 

To a solution of enone 3.49 (210 mg, 0.52 mmol) in CH2Cl2 (10 mL) at 

ambient temperature were added CH3NO2 (108 mg, 1.8 mmol, 95 μL) 

and DBU (1.59 g, 10 mmol, 1.56 mL). After 20 h the reaction mixture was 

diluted with CH2Cl2 and washed with saturated solution of NH4Cl. The organic layer was 

separated, dried (MgSO4), filtrated and concentrated in vacuo. The residue was purified 

by flash chromatography (Hexane/EtOAc, 1:1) to provide nitroketone 3.55 as a yellow oil 

(166 mg, 69%): IR (neat) ν 2940, 2833, 1716, 1603, 1551, 1455 cm-1; 1H NMR (400 MHz, 

CDCl3) δ 6.91 (s, 1 H), 6.82 (s, 2 H), 5.22 (d, J = 6.0 Hz, 1 H), 5.18 (d, J = 6.4 Hz, 1 H), 4.99 

(d, J = 6.4 Hz, 1 H), 4.80 (d, J = 6.0 Hz, 1 H), 4.41 (d, J = 12.8 Hz, 1 H), 4.25 (dd, J = 10.8, 

12.8 Hz, 1 H), 4.07 (dd, J = 3.6, 12.8 Hz, 1 H), 3.88 (s, 3 H), 3.87 (s, 1 H), 3.58 (s, 3 H), 3.48 

(s, 3 H), 2.98-2.87 (m, 1 H), 2.62 (d, J = 14.0 Hz, 1 H), 2.51 (td, J = 5.6, 13.2, 19.6 Hz, 1 H), 

2.25-2.14 (m, 2 H), 1.91-1.86 (m, 1 H), 1.81-1.72 (m, 2 H); 13C NMR (100 MHz, CDCl3) δ 

206.8, 151.1, 150.5, 149.8, 147.2, 125.9, 122.4, 121.4, 114.6, 108.5,107.9, 101.6, 97.5, 

79.3, 57.5, 57.0, 56.8, 56.4, 52.7, 42.6, 41.4, 29.5, 24.7; HRMS (ESI) calcd for C23H30O9N 

[(M+H)+] 464.1915, found 464.1900. 

 

To a solution of nitroketone 3.54 (130 mg, 0.24 mmol) in CH3CN (8 mL) 

at ambient temperature was added CAN (263 mg, 0.48 mmol). After 25 

min the reaction mixture was diluted with EtOAc. The organic layer was washed with 
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H2O (x 2), dried (MgSO4), filtrated and concetrated in vauo. The residue was purified by 

flash chromatography (Hexane/EtOAc, 1:3) to provide bromoquinone 3.61 as a red solid 

(93 mg, 86%): IR (neat) ν 3583, 2941, 1708, 1662, 1550, 1476 cm-1; 1H NMR (400 MHz, 

CDCl3) δ 7.23 (s, 2 H), 4.27 (d, J = 6.4 Hz, 2 H), 3.85 (s, 6 H), 3.71 (d, J = 10.8 Hz, 1 H), 

3.37-3.32 (m, 1 H), 2.71-2.66 (m, 1 H), 2.38-2.29 (m, 1 H), 2.11-2.07 (m, 3 H), 1.63-1.60 

(m, 1 H); 13C NMR (100 MHz, CDCl3) δ 203.8, 179.8, 175.7, 154.3, 154.2, 146.9, 142.3, 

128.2, 120.8, 120.5, 119.8, 119.7, 79.1, 56.8, 40.0, 28.3, 22.1; HRMS (ESI) calcd for 

C19H19O7NBr [(M+H)+] 452.0339, found 452.0330. 

 

To a solution of nitroketone 3.55 (34 mg, 0.07 mmol) in CH3CN (4 mL) at 

ambient temperature was added CAN (160 mg, 0.3 mmol). After 30 min 

the reaction mixture was diluted with EtOAc. The organic layer was washed with H2O (x 

2), brine (x 1), dried (MgSO4), filtrated and concentrated in vacuo. The residue was 

purified by flash chromatography (Hexane/EtOAc, 1:3) to provide nitroquinone 3.59 as a 

red solid (28 mg, 94%): IR (neat) ν 2926, 2851, 1712, 1653, 1583, 1550 cm-1; 1H NMR 

(400 MHz, CDCl3) δ 7.32 (s, 2 H), 6.70 (s, 1 H), 4.37-4.27 (m, 2 H), 3.96 (s, 3 H), 3.94 (s, 3 

H), 3.51 (d, J = 12.0 Hz, 1 H), 3.06-2.96 (m, 1 H), 2.64 (dt, J = 2.0, 15.6 hz, 1 H), 2.36 (td, J  

= 5.6, 13.6, 19.6 Hz, 1 H), 2.16-2.12 (m, 2 H), 2.00-1.89 (m, 1 H), 1.71-1.61 (m, 1 H); 13C 

NMR (100 MHz, CDCl3) δ 204.8, 183.6, 154.2, 153.7, 144.9, 138.5, 120.7, 120.3, 78.9, 

56.9, 56.8, 54.2, 40.6, 40.3, 28.4, 23.3; HRMS (ESI) calcd for C19H20O7N [(M+H)+] 

374.1234, found 374.1258. 
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To a solution of nitroketone 3.61 (10 mg, 0.022 mmol) in toluene (1.5 mL) 

at 80 ⁰C were added as a one portion: Pd(OAc)2 (~5 mg, 0.022 mmol), 

Ag2CO3 (12 mg, 0.044 mmol) and polymer-bound PPh3 (22 mg, 0.066 

mmol, 3mmol/1 g). After 1 h the reaction mixutre was cooled to ambient temperature, 

filtrated through small celite/SiO2 pad (washed with EtOAc) and concentrated in vacuo. 

The residue was purified by flash chromatography (Hexane/EtOAc, 1:4) to provide 

nitrofurane 3.62 as a red solid (5.7 mg, 70%):  IR (neat) ν 2926, 1770, 1706, 1654, 1548, 

1473, 1432, 1379 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.35 (s, 2 H), 5.25 (dd, J = 2.8, 10.0 

Hz, 1 H), 4.53 (dd, J = 8.4, 10.0 Hz, 1 H), 3.99 (s, 3 H), 3.98 (s, 3 H), 3.86-3.83 (m, 1 H); 

2.77-2.72 (m, 2 H), 1.94-1.91 (m, 3 H), 1.82-1.80 (m, 1 H); 13C NMR (150 MHz, CDCl3) δ 

181.6, 173.1, 160.0, 155.1, 154.9, 151.0, 127.6, 121.6, 121.3, 121.1, 121.0, 115.6, 57.0, 

56.9, 31.0, 25.2, 23.4, 18.7; HRMS (ESI) calcd for C19H18O7N [(M+H)+] 372.1078, found 

372.1084. 

 

To a solution of nitroketone 3.61 (15 mg, 0.33 mmol) in THF (1.5 mL) at 

ambient temperature was added phenylselenenyl chloride (63 mg, 0.33 

mmol). After 24 h the reaction mixture was concentrated in vacuo. The 

residue was purified by flash chromatography (Hexane/EtOAc, 1:3) to provide ketone 

3.63 as a red solid (20 mg, 98%): IR (neat) ν 2935, 2854, 1695, 1658, 1552, 1475 cm-1; 1H 

NMR (400 MHz, CDCl3) δ 7.55-7.52 (m, 2 H), 7.34-7.27 (m, 5 H), 4.70-4.55 (bs, 1 H), 4.43-

4.34 (m, 2 H), 4.03 (s, 1 H), 3.95 (s, 3 H), 3.91 (s, 3 H), 3.50-3.44 (m, 1 H), 2.59-2.56 (m, 1 

H), 2.38 (dd, J = 2.0, 14.8 Hz, 1 H), 2.04-1.93 (m, 2 H); 13C NMR (150 MHz, CDCl3) δ 200.0, 
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175.7, 175.6, 154.4, 154.3, 135.4, 135.3, 129.3, 129.1, 128.9, 127.9, 127.8, 127.7, 127.6, 

120.9, 120.7, 120.6, 120.5, 120.2, 120.1, 120.0, 119.9, 79.0, 56.9, 56.9, 48.3, 28.6, 28.7, 

28.6, 25.0; HRMS (ESI) calcd for C25H23O7NSeBr [(M+H)+] 607.9816, found 607.9820. 

 

 To a solution of nitroketone 3.61 (19 mg, 0.04 mmol) in AcOH (1.5 mL) 

at ambient temperature was added Br2 (6.8 mg, 0.04 mmol, 2.19 μL). 

After 19 h the reaction mixture was diluted with CH2Cl2. The organic 

layer was washed with H2O (x 2) and saturated solution of NaHCO3 (x 2). The organic 

layer was separated, dried (MgSO4), filtrated and concentrated in vacuo. The residue 

was purified by flash chromatography (Hexane/EtOAc, 1:3) to provide bromoketone 

3.64 as a red solid (14 mg, 63%): 1H NMR (400 MHz, CDCl3) δ 7.34 (s, 2H), 4.59 (d, J = 

2.56 Hz, 1 H), 4.52 (bs, 1 H), 4.41-4.36 (m, 2 H), 3.97 (s, 3 H), 3.96 (s, 3 H), 3.44-3.40 (m, 

1 H), 2.61-2.50 (m, 1 H), 2.35 (dd, J = 2.84, 15.6 Hz, 1 H), 2.22-2.15 (m, 1 H), 2.00 (dd, J = 

3.52, 13.7 Hz, 1 H); 13C NMR (100 MHz, CDCl3, semi-pure sample ) δ 197.4, 176.8, 175.6, 

154.4, 145.7, 143.1, 120.9, 120.8, 119.8, 119.8, 78.8, 56.9, 49.1, 30.9, 29.5, 21.0. 

 

To a solution of nitroketone 3.54 (13.7 mg, 0.0.26 mmol) in EtOH (1.5 

mL) at ambient temperature was added SnCl2•2H2O (29 mg, 0.13 

mmol). The reaction mixture was heated up to 70 ⁰C. After 3 h the solution was cooled 

to ambient temperature and concentrated in vauo. The residue was purified by flash 

chromatography (Hexane/EtOAc, 2:1) to provide furan 3.66 as a yellow oil (7.5 mg, 

66%): IR (neat) ν 3583, 3333, 2932, 1724, 1666, 1607, 1585, 1551, 1450 cm-1; 1H NMR 
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(600 MHz, CDCl3) 10.12 (s, 1 H), 6.71 (d, J  = 8.4 Hz, 1 H), 6.66 (d, J  = 8.4 Hz, 1 H), 4.96 

(dd,  J  = 4.2, 12.6, 1 H), 4.53 (dd, J  = 10.8, 12.0 Hz, 1 H), 4.01 (s, 3 H), 3.89 (s, 3 H), 3.60-

3.56 (m, 2 H), 2.96 (d, J = 9.6 Hz, 1 H), 2.62 (d, J = 13.8 Hz, 1 H), 2.25-2.23 (m, 1 H), 1.88-

1.85 (, 1 H), 1.68-1.60 (m, 1 H); 13C NMR (150 MHz, CDCl3) δ 150.9, 149.3, 145.6, 145.3, 

129.9, 116.0, 115.3, 111.3, 105.2, 105, 1, 102.9, 79.9, 56.8, 56.7, 29.8, 25.7, 20.3, 15.5. 

 

To a solution of nitroketone 3.54 (10 mg, 0.019 mmol) in EtOH (1 mL) at 

ambient temperature was added mixture of PhSH (9.5 mg, 0.085 mmol, 

8.8 μL), Et3N (8.7 mg, 0.085 mmol, 12 μL), SnCl2•2H2O (6.5 mg, 0.028 

mmol) in EtOH (1 mL). After 2 h 15 min the reaction mixture was concentrated in vacuo. 

The residue was purified by flash chromatography (Hexane/ EtOAc, 1:1) to provide 

oxime 3.67 as a yellow oil (4.9 mg, 49%): 1H NMR (400 MHz, CDCl3) δ 7.30 (d, J = 6.8 Hz, 

1 H), 6.83 (s, 2 H), 6.60 (s, 1 H), 5.06-5.02 (m, 3 H), 4.82 (bs, 1 H), 4.64 (bs, 1 H), 3.91 (s, 3 

H), 3.85 (s, 2 H), 3.69 (s, 3 H), 3.52 (s, 3 H), 2.74 (d, J = 18.4 Hz, 1 H), 2.45-2.40 (m, 1 H), 

2.22-2.18 (m, 3 H), 1.87-1.83 (m, 1 H). 

 

To a solution of nitroketone 3.54 (106 mg, 0.2 mmol) in MeOH (5 mL) at 0 

⁰C was added solution of KOH in MeOH (0.215 mL, 0.21 mmol, 1M). After 

15 min mixture of KMnO4 (34 mg, 0.21 mmol) and MgSO4 (21 mg, 0.17 

mmol) in H2O (5 mL) was added. The reaction mixture was allowed to warm up to 

ambient temperature slowly over 1.5 h. After 1.5 h the reaction solution was flitrated 

through small celite/SiO2 pad (washed with EtOAc). The filtrate was concentrated in 
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vacuo. The aqueous layer was extraced with EtOAc/Et2O (x 3). The organic layer was 

separated, dried (MgSO4), filtrated and concetrated in vacuo. The residue was purified 

by flash chromatography (Hexane/EtOAc, 1:1) to provide aldehyde 3.70 as a thick, 

yellow oil (73 mg, 73%): IR (neat) ν 3423, 2937, 2832, 2723, 2081, 1718, 1605, 1559, 

1452 cm-1; 1H NMR (400 MHz, CDCl3) δ 9.50 (d, J = 2.0 Hz, 1 H), 6.83 (s, 2 H), 5.06-5.02 

(m, 3 H), 4.92-4.75 (m, 1 H), 3.88 (s, 3 H), 3.85 s, 3 H), 3.67 (s, 3 H), 3.49 (s, 3 H) 2.73 (d, J 

= 16.8 Hz, 1 H), 2.51-2.39 (m, 1 H), 2.24 (d, J = 5.4 Hz, 1 H), 2.15-2.11 (m, 2 H), 1.84 (q, J = 

2.8, 12.4 Hz, 1 H); 13C NMR (100 MHz, CDCl3) δ 206.1, 201.9, 149.8, 149.5, 129.2, 122.6, 

121.7, 108.5, 100.5, 58.4, 57.6, 57.0, 53.3, 40.7, 25.2; HRMS (ESI) calcd for C23H27O8NaBr 

[(M+Na)+] 533.0782, found 533.0780. 

 

To a solution of nitroketone 3.55 (122 mg, 0.26 mmol) in MeOH (6 mL) at 

0 ⁰C was added solution of KOH in MeOH (0.289 mL, 0.29 mmol, 1M). 

After 15 min mixture of KMnO4 (46 mg, 0.29 mmol) and MgSO4 (28 mg, 

0.23 mmol) in H2O (6 mL) was added. The reaction mixture was allowed to warm up to 

ambient temperature slowly over 1.5 h. After 1 h 45 min the reaction solution was 

flitrated through small celite/SiO2 pad (washed with EtOAc). The filtrate was 

concentrated in vacuo. The aqueous layer was extraced with EtOAc/Et2O (x 3). The 

organic layer was dried (MgSO4), filtrated and concentrated in vacuo. The residue was 

purified by flash chromatography (Hexane/EtOAc, 1:2) to provide aldehyde 3.71 as a 

thick, yellow oil (84 mg, 74%): IR (neat) ν 2937, 2833, 1717, 1603, 1551, 1455 cm-1; 1H 

NMR (400 MHz, CDCl3) δ 9.39 (d, J  = 2.4 Hz, 1 H), 6.87 (s, 1 H), 6.80 (s, 2 H), 5.19 (d, J = 
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6.4 Hz, 1 H), 5.14 (d, J = 6.4 Hz, 1 H), 5.00 (d, J = 6.0 Hz, 1 H), 4.83 (d, J = 6.0 Hz, 1 H), 4.77 

(d, J = 12.8 Hz, 2 H), 3.87 (s, 3 H), 3.86 (s, 3 H), 3.55 (s, 3 H), 2.47 (s, 3 H), 3.06 (t, J =12.0, 

1H), 2.58-2.53 (m, 2 H0, 2.31-2.22 (m, 1 H), 2.21-2.13 (m, 1 H), 1.98-1.88 (m, 2 H); 13C 

NMR (100 MHz, CDCl3) δ 207.5, 201.2, 151.1, 150.3, 149.8, 146.7, 126.6, 122.4, 121.3, 

115.3, 114.6, 108.0, 107.8, 101.0, 97.7, 57.5, 57.1, 57.0, 56.5, , 55.6, 50.8, 41.4, 26.0, 

25.3; HRMS (ESI) calcd for C23H28O8Na [(M+Na)+] 455.1676, found 455.1666. 

 

To a solution of aldehyde 3.70 (238 mg, 0.46 mmol) in CH3Ph (12 mL) at 

ambient temeprature were added DDQ (317 mg, 1.4 mmol) and PTSA (16 

mg, 0.09 mmol). The mixture was heated up to 80 ⁰C. After 15 h the reaction solution 

was cooled to ambient temperature and concentrated in vacuo. The residue was 

purified by flash chromatography (Hexane/EtOAc, 1:2) to provide aldehyde 3.72 as a red 

solid (84 mg, 43%): IR (neat) ν 2941, 2842, 1682, 1665, 1599, 1584, 1562, 1477 cm-1; 1H 

NMR (600 MHz, CDCl3) δ  9.74 (s, 1 H), 7.35 (d, J  = 4.8 Hz, 2 H), 4.09 (s, 3 H), 3.97 (s, 3 

H), 2.68-2.62 (m, 4 H), 2.19-2.12 (m, 2 H); 13C NMR (150 MHz, CDCl3) δ 196.9, 192.0, 

179.8, 175.6, 154.5, 154.3, 149.3, 143.6, 142.1, 140.7, 120.9, 120.8, 120.1, 120.0, 57.0, 

56.8, 38.4, 22.4, 21.2; HRMS (ESI) calcd for C19H16O6Br [(M+H)+] 419.0125, found 

419.0134. 

 

 To a solution of aldehyde 3.55 (20 mg, 0.046 mmol) in CH3Ph (2 mL) at 

ambient temperature were added DDQ (31.4 mg, 0.14 mmol) and PTSA 

(1.6 mg, 0.009 mmol). The mixture was heated up to 40 ⁰C. After 2.5 h the solution was 
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cooled to ambient temperature and concentrated in vacuo. The residue was purified by 

flash chromatography (Hexane/EtOAc, 1:4) to provide enone 3.73 as a red solid (1.5 mg, 

10%): 1H NMR (400 MHz, CDCl3) δ 9.80 (s, 1 H), 7.35 (d, J = 2.64 Hz, 2 H), 6.69 (s, 1 H), 

3.97 (s, 3 H), 3.93 (s, 3 H), 2.67-2.62 (m, 4 H), 2.13-2.09 (m, 2 H). 

 

To a solution of aldehyde 3.72 (11 mg, 0.026 mmol) in EtOAc (1 mL) at 

ambient temperature under H2 atmosphere was added Pd/C (5.5 mg, 

0.003 mmol, 5%). After 30 min the reaction mixture was filtrated through small 

celite/SiO2 pad (washed with EtOAc) and concentrated in vacuo. The crude material was 

immediately used in the next step. 

To a solution of hydroquinone 3.74 (~0.026 mmol) in CH2Cl2 (1.5 mL) at 0 

⁰C were added Ac2O (10.7 mg, 0.10 mmol, ~10 μL), pyridine (8.3 mg, 0.10 

mmol, 8.5 μL) and DMAP (cat.). After 25 min the ice bath was removed. After 4 h the 

reaction mixture was diluted with CH2Cl2. The organic layer was washed with saturated 

solution of NaHCO3 (x 1), brine (x 1), dried (MgSO4), filtrated and concentrated in vacuo. 

The residue was purified by flash chromatography (Hexane/EtOAc, 1:3) to provide 

alcohol 3.80 as a red solid: 1H NMR (600 MHz, CDCl3) 7.33 (s, 2 H), 4.61 (d, J = 3.0 Hz, 2 

H), 3.97 (s, 3 H), 3.92 (s, 3 H), 2.57-2.54 (m, 4 H), 2.17-2.09 (m, 2 H); 13C NMR (150 MHz, 

CDCl3) δ 195. 2, 179.7, 176.4, 170.2, 155.1, 154.3, 154.2, 146.0, 139.4, 132.7, 120.7, 

120.4, 64.4, 57.0, 56.8, 37.5, 29.6, 27.4, 21.7. 
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 To a solution of aldehyde 3.72 (10 mg, 0.024 mmol) in CHCl3 (1 mL) at 

ambient temperature was added H2NNHTs (4.44 mg, 0.024 mmol). 

After 30 min the reaction mixture was concentrated in vacuo. The residue was purified 

by flash chromatography (Hexane/EtOAc, 1:2) to provide hydrazone 3.82 as a red solid 

(12 mg, 86%): 1H NMR (400 MHz, CDCl3) δ 8.91 (s, 1 H), 7.81 (d, J = 8.4 Hz, 2 H), 7.52 (d, J 

= 2.0 Hz, 1 H), 7.31 (d, J = 8.0 Hz, 2 H), 7.19 (s, 2 H), 3.86 (s, 3 H), 3.79 (s, 3 H), 2.87-2.81 

(m, 2 H), 2.79-2.71 (m, 2 H), 2.44 (s, 3 H), 2.17-2.07 (m, 2 H). 

 

To a solution of aldehyde 3.72 (15 mg, 0.036 mmol) in EtOAc (1 mL) at 

ambient temperature under H2 atmosphere was added Pd/C (7.6 mg, 

0.0036 mmol, 5%). After 30 min the solution was filtrated through a small Celite/SiO2 

pad (washed with EtOAc) and concentrated in vacuo. The crude material was dissolved 

in MeOH (1 mL). H2NNHtBuHCl (13 mg, 0.10 mmol) was added. After 1 h the reaction 

mixture was concentrated in vacuo. The residue was purified by flash chromatography 

(Hexane/EtOAc, 1:3) to provide hydroquinone. To the solution of hydroquinone in 

CH2Cl2 (1.5 mL) at ambient temperature were added Ag2CO3/celite (30 mg, 0.053 mmol, 

50%) and Et3N (4.3 mg, 0.043 mmol, 6 μL). After 10 min the mixture was filtrated 

through celite. The filtrate was concentrated in vacuo. The residue was purified by flash 

chromatography (Hexane/EtOAc, 1:4) to provide hydrazone 3.83 as a red solid (8.5 mg, 

49%): 1H NMR (400 MHz, CDCl3) δ 7.30 (s, 1 H), 7.29 (s, 2 H), 7.03 (s, 1 H), 3.95 (s, 3 H), 

3.90 (s, 3 H), 2.90-2.83 (1 H), 2.61-2.52 (m, 3 H), 2.19-2.02 (m, 1 H), 1.20 (s, 9 H).  
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 To a solution of aldehyde 3.72 (8 mg, 0.019 mmol) in EtOAc (1 mL) at 

ambient temperature under H2 atmosphere was added Pd/C (4 mg, 

0.0019 mmol, 5%). After 30 min the reaction mixture was filtrated through small pad of 

celite. The filtrate was concentrated in vacuo. The crude material was dissolved in CH3Ph 

(1 mL). H2NNH2 (~2 μL, 0.02 mmol) was added. After 15 min the solution was 

concentrated in vacuo to provide hydrazone 3.84 as a yellow oil: 1H NMR (400 MHz, 

CDCl3) δ 9.91 (s, 1 H), 9.39 (s, 1 H), 7.92 (s, 2 H), 6.72 (d, J = 8.8 Hz, 1 H), 6.67 (d, J = 8.4 

Hz, 1 H), 4.01 (s, 3 H), 3.94 (s, 3 H), 2.97-2.91 (m, 2 H), 2.72-2.65 (m, 2 H), 2.30-2.12 (m, 2 

H). 

 

1H NMR (400 MHz, CDCl3) δ 9.95 (s, 1 H), 9.43 (s, 1 H), 7.66 (s, 1 H), 7.51 

(s, 1 H), 6.77-6.70 (m, 2 H), 4.04 (s, 3 H), 3.98 (s, 3 H), 2.91-2.80 (m, 2 H), 

2.73-2.69 (m, 2 H), 2.25-2.21 (m, 2 H). 

 

To a solution of aldehyde 3.72 (17.4 mg, 0.04 mmol) in CHCl3 (1.5 mL) 

at ambient temperature was added O-benzylhydroxylamine (5.4 mg, 

0.04 mmol). After 1.5 h the reaction mixture was concentrated in vacuo. The residue 

was purified by flash chromatography (Hexane/EtOAc, 1:4) to provide oxime 3.85 as a 

red, amorphous solid (21 mg, 97%): IR (neat) ν 2938, 2358, 1666, 1584, 1563, 1477, 

1454, 1433 cm-1; 1H NMR (600 MHz, CDCl3) 7.71 (s, 1 H), 7.35-7.30 (m, 7 H), 5.16 (s, 2 H), 

3.95 (s, 3 H), 3.90 (s, 3 H), 2.86-2.79 (, 2 H), 2.61-2.55 (m, 2 H), 2.18-2.05 (m, 2 H); 13C 

NMR (150 MHz, CDCl3, semi-pure sample) δ 195.7, 180.2, 179.7, 176.1, 154.4, 154.2, 
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149.5, 149.1, 147.5, 145.3, 144.2, 141.4, 140.2, 136.3, 135.4, 133.4, 128.4, 128.0, 120.9, 

120.7, 120.2, 57.0, 56.8, 38.1, 24.46, 21.61. 

 

To a solution of of oxime ether 3.85 (15 mg, 0.033 mmol) in CH3Ph 

(1.5 mL) at 45 ⁰C were added Pd(PPh3)4 (3.4 mg, 0.003 mmol) and 

Ag2CO3 (8.3 mg, 0.03 mmol). Bu3SnH (29 mg, 0.10 mmol, 27 μL) was added. After 2 h the 

reaction mixture was filtrated through small celite/SiO2 pad (washed with EtOAc) and 

concentrated in vacuo. The residue was purified by flash chromatography 

(Hexane/EtOAc, 1:1) to provide oxime ether  3.87 as a red, amorphous solid (12 mg, 

80%): IR (neat) ν 2923, 1654, 1584, 1564, 1476, 1406, 1277 cm-1; 1H NMR (600 MHz, 

CDCl3) δ 7.89 (s, 1 H), 7.36-7.10 (m, 5 H), 6.56 (s, 1 H), 5.16 (s, 2 H), 3.95 (s, 3 H), 3.90 (s, 

3 H), 2.82-2.78 (m, 2 H), 2.61-2.54 (m, 2 H), 2.16-2.00 (m, 2 H); 13C NMR (150 MHz, 

CDCl3) δ 197.1, 183.8, 183.0, 154.0, 153.6, 149.3, 147.8, 144.2, 138.3, 136.4, 135.0, 

128.5, 128.2, 128.2, 121.3, 121.1, 120.9, 120.6, 120.5, 120.4, 56.9, 56.8, 38.0, 24.6, 21.5; 

HRMS (ESI) calcd for C26H24O6N [(M+H)+] 446.1598, found 446.1575. 

 

 To a solution of aldehyde 3.54 (10 mg, 0.019 mmol) in CH3CN (1 mL) at 

ambient temperature was added CAN (32 mg, 0.058 mmol). After 30 min 

the reaction mixture was diluted with EtOAc. The organic layer was washed with H2O (x 

2) and brine (x 1), dried (MgSO4), filtrated and concentrated in vacuo. The residue was 

purified by flash chromatography (Hexane/EtOAc, 1:3) to provide aldehyde 3.108 as a 

red solid (7.2 mg, 90%): 1H NMR (400 MHz, CDCl3) δ 9.63 (d, J = 1.6 Hz, 1 H), 7.30 (s, 2 H), 
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4.18 (dd, J = 10.8, 16.8 Hz, 1 H), 3.95 (s, 3 H), 3.94 (s, 3 H), 3.57 (td, J = 8.8, 3.6 Hz, 1 H), 

2.68 (d, J = 16.0 Hz, 1 H), 2.39-2.28 (m, 3 H), 2.22-2.16 (m, 2 H). 

  

To a solution of aldehyde 3.108 (69 mg, 0.16 mmol) in CHCl3 (4 mL) at 

ambient temperature was added H2NNHTs (33 mg, 0.18 mmol). After 

3.5 h the reaction mixture was concentrated in vacuo. The residue was purified by flash 

chromatography (Hexane/EtOAc, 1:5) to provide hydrazone 3.109 as a red, amorphous 

solid (77 mg, 81%): IR (neat) ν 3185, 2941, 2362, 2252, 1708, 1657, 1616, 1563, 1477 

cm-1; 1H NMR (600 MHz, CDCl3) δ 7.97 (bs, 1 H), 7.61 (t, J = 7.8 Hz, 2 H), 7.28 (t, J = 3.6 

Hz, 2 H), 7.11-7.07 (m, 3 H), 3.93 (s, 3 H), 3.90 (s, 3 H), 3.37-3.35 (m, 1 H), 2.61 (d, J = 

16.8 Hz, 1 H), 2.45-2.28 (m, 5 H), 2.07 (d, J = 10.2 Hz, 3 H), 1.74-1.68 (m, 1 H); 13C NMR 

(150 MHz, CDCl3) δ 204.6, 175.7, 154.1, 154.05, 154.0, 150.9, 144.0, 143.3, 135.0, 129.4, 

127.6, 120.7, 120.3, 120.2, 119.7, 56.9, 56.8, 40.3, 40.2, 28.2, 22.8, 22.7, 21.4. 

 

Method A: To a solution of aldehyde 3.72 (15 mg, 0.035 mmol) in EtOAc 

(1 mL) at ambient temperature under H2 atmosphere was added Pd/C 

(0.4 mg, 0.0035 mmol). After 30 min the reaction mixture was filtrated through small 

celite/SiO2 pad (washed with EtOAc). The filtrate was concentrated in vacuo. The crude 

residue was immediately taken to the next step.   

To a solution of hydroquinone 3.74 in CH2Cl2 (1 mL) at ambient temperature was added 

NH2NHTs (14 mg, 0.075 mmol). After 1 h Ag2CO3 (19 mg, 0.075 mmol) and Et3N (3.6 mg, 

0.035 mmol, ~5 μL) were added. After 10 min the reaction solution was filtrated through 
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celite pad (washed with EtOAc). The filtrate was concentrated. The residue was purified 

by flash chromatography (EtOAc, 100%) to provide diazoenone 3.106 as a red, 

amorphous solid (5.7 mg, 37%). 

Method B: To a solution of aldehyde 3.72 (38 mg, 0.09 mmol) in CHCl3 (4 mL) at ambient 

temperature was added H2NNHTs (17 mg, 0.09 mmol). After 50 min Et3N (9.1 mg, 0.09 

mmol, 12.6 μL) was added. After 10 min the reaction mixture was filtrated through 

celite/SiO2 pad (washed with CH2Cl2). The filtrate was concetrated in vacuo to provide 

diazoenone 3.106 as a red, amorphous solid (28 mg, 72.5%): IR (neat) ν 3056, 2939, 

2841, 2252, 2078, 1734, 1662, 1636, 1585, 1560, 1476 cm-1; 1H NMR (600 MHz, CDCl3) δ 

7.28 (s, 2 H), 4.78 (s, 1 H), 3.94 (s, 3 H), 3.90 (s, 3 H), 2.57-2.49 (m, 4 H), 2.21-2.11 (m, 2 

H); 13C NMR (150 MHz, CDCl3, semi-pure sample) δ 192.2, 192.0, 179.9, 176.8, 154.1, 

154.0, 150.0, 149.5, 146.5, 143.2, 142.6, 139.4, 120.5, 120.1, 56.9, 53.4, 36.8, 26.0, 21.5. 

 

To a solution of enone 3.29 (57 mg, 0.12 mmol) in CH3CN (4.5 mL) at 

ambient temperature was added CAN (131 mg, 0.24 mmol). After 30 min 

the reaction mixture was diluted with EtOAc. The organic layer was washed with H2O (x 

2) and brine (x 1), dried (MgSO4), filtrated and concentrated in vacuo. The residue was 

purified by flash chromatography (Hexane/EtOAc, 1:4) to provide enone 3.115 as a red 

solid (42 mg, 90%): IR (neat) ν 2938, 2840, 1665, 1604, 1584, 1562, 1476 cm-1; 1H NMR 

(400 MHz, CDCl3) δ 7.28 (s, 2 H), 6.99 (t, J = 4.0 Hz, 1 H), 3.93 (s, 3 H), 3.89 (s, 3 H), 2.59-

2.54 (m, 4 H), 2.16-2.11 (m, 2 H); 13C NMR (100 MHz, CDCl3) δ 195.5, 180.2, 176.8, 154.0, 
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153.9, 151.3, 146.6, 138.4, 135.8, 120.7, 120.5, 120.2, 120.1, 56.9, 56.8, 38.0, 26.0, 22.4; 

HRMS (ESI) calcd for C18H16O5Br [(M+H)+] 391.0182, found 391.0176. 

 

To a solution of enone 3.49 (15 mg, 0.037 mmol) in CH3CN (1 mL) at 

ambient temperature was added CAN (61 mg, 0.12 mmol). After 20 min 

the reaction mixture was diluted with EtOAc. The organic layer was washed with H2O (x 

2) and brine (x 1), dried (MgSO4), filtrated and concentrated in vacuo. The residue was 

purified by flash chromatography (Hexane/EtOAc, 1:8) to provide enone 3.116 as a red 

solid (8.7 mg, 74%): 1H NMR (400 MHz, CDCl3) δ 7.28 (s, 2 H), 7.08 (t, J = 4.0 Hz, 1 H), 

6.93 (s, 1 H), 3.94 (s, 3 H), 3.92 (s, 3 H), 2.58-2.51 (m, 4 H), 2.11 (qnt, 2 H). 

 

 1H NMR (600 MHz, CDCl3) δ 9.63 (s, 1 H), 7.59 (s, 1 H), 6.85 (d, J = 8.4 Hz, 1 

H), 6.77 (d, J = 9.0 Hz, 1 H), 4.04 (s, 6 H), 3.14 (t, J = 6.6 Hz, 2 H), 2.62 (t, J = 

6.0 Hz, 2 H), 2.29 (t, J = 6.0 Hz, 2 H). 

 

To a solution of enone 3.115 (10 mg, 0.025 mmol) in THF (1 mL) were 

added Pd(OAc)2 (2.87 mg, 0.013 mmol), polymer bound PPh3 (26 mg, 

0.077 mmol), Ag2CO3 (14 mg, 0.051 mmol), (vinyl)3(BO)3 pyridine complex 3.120 (12 mg, 

0.051 mmol) as a one portion. H2O (0.1 mL) was added. The mixture was placed in the 

oil bath at 75 ⁰C. After 1.5 h the solution was cooled to ambient temperature. The 

mixture was filtrated through small celite/SiO2 pad. The filtrate was concentrated in 

vacuo. The residue was purified be flash chromatography (Hexane/EtOAc, 1:4) to 

O
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O
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provide ketone 3.124 as a yellow solid (2.5 mg, 29%): 1H NMR (600 MHz, CDCl3) δ 8.13 

(d, J = 7.8 Hz, 1 H), 7.44 (d, J = 7.8 Hz, 1 H), 7.28 (d, J = 9.6 Hz, 1 H), 7.22 (d, J = 9.0 Hz, 1 

H), 3.98 (s, 3 H), 3.96 (s, 3 H), 2.95 (t, J = 3 H, 2 H), 2.84 (t, J = 6.6 Hz, 2 H), 2.21 (t, J = 6.6 

Hz, 2 H); 13C NMR (150 MHz, CDCl3) δ 197.8, 185.5, 182.2, 153.4, 152.3, 150.2, 138.5, 

134.0, 133.9, 131.9, 129.0, 125.8, 122.2, 120.3, 118.3, 57.3, 56.7, 39.0, 30.0, 22.89. 
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Appendix A2: 

 

 

 

 

Spectra Relevant to Chapter 3: 
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Figure A3.1. 
1
H NMR spectrum (400 MHz, CDCl3) and 

13
C NMR spectrum (100 MHz, CDCl3) of 

compound 3.10. 
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Figure A3.2. 
1
H NMR spectrum (400 MHz, CDCl3) and 

13
C NMR spectrum (100 MHz, CDCl3) of 

compound 3.11. 
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Figure A3.3. 
1
H NMR spectrum (400 MHz, CDCl3) and 

13
C NMR spectrum (100 MHz, CDCl3) of 

compound 3.12. 
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Figure A3.4. 

1
H NMR spectrum (400 MHz, CDCl3) and 

13
C NMR spectrum (100 MHz, CDCl3) of 

compound 3.18. 
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Figure A3.5. 
1
H NMR spectrum (400 MHz, CDCl3) and 

13
C NMR spectrum (100 MHz, CDCl3) of 

compound 3.8. 
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Figure A3.6. 
1
H NMR spectrum (400 MHz, CDCl3) and 

13
C NMR spectrum (75 MHz, CDCl3) of 

compound 3.19. 
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Figure A3.7. 
1
H NMR spectrum (400 MHz, CDCl3) and 

13
C NMR spectrum (100 MHz, CDCl3) of 

compound 3.21. 

 

O

O

O

O

O

O

SnMe3

SnMe3

3.21



161 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A3.8. 
1
H NMR spectrum (400 MHz, CDCl3) and 

13
C NMR spectrum (100 MHz, CDCl3) of 

compound 3.20. 

 

O

O

O

O

O

O

Br

3.20



162 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A3.9. 
1
H NMR spectrum (600 MHz, CDCl3) and 

13
C NMR spectrum (150 MHz, CDCl3) of 

compound 3.26. 
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Figure A3.10. 
1
H NMR spectrum (400 MHz, CDCl3) and 

13
C NMR spectrum (100 MHz, CDCl3) of 

compound 3.48. 
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Figure A3.11. 
1
H NMR spectrum (400 MHz, CDCl3) and 

13
C NMR spectrum (100 MHz, CDCl3) of 

compound 3.29. 
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Figure A3.12. 
1
H NMR spectrum (400 MHz, CDCl3) and 

13
C NMR spectrum (100 MHz, CDCl3) of 

compound 3.49. 
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Figure A3.13. 
1
H NMR spectrum (400 MHz, CDCl3) and 

13
C NMR spectrum (100 MHz, CDCl3) of 

compound 3.30. 
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Figure A3.14. 
1
H NMR spectrum (400 MHz, C6D6) and 

13
C NMR spectrum (100 MHz, C6D6) of 

compound 3.31. 
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Figure A3.15. 
1
H NMR spectrum (400 MHz, C6D6) and 

13
C NMR spectrum (100 MHz, C6D6) of 

compound 3.31. 
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Figure A3.16. 
1
H NMR spectrum (400 MHz, CDCl3) of compound 3.34. 
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Figure A3.17. 
1
H NMR spectrum (400 MHz, CDCl3) and 

13
C NMR spectrum (100 MHz, CDCl3) of 

compound 3.40. 
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Figure A3.18. 
1
H NMR spectrum (400 MHz, CDCl3) and 

13
C NMR spectrum (100 MHz, CDCl3) of 

compound 3.41. 
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Figure A3.19. 
1
H NMR spectrum (400 MHz, CDCl3) and 

13
C NMR spectrum (100 MHz, CDCl3) of 

compound 3.50. 
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Figure A3.20. 
1
H NMR spectrum (400 MHz, CDCl3) and 

13
C NMR spectrum (100 MHz, CDCl3) of 

compound 3.37. 
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Figure A3.21. 
1
H NMR spectrum (400 MHz, CDCl3) and 

13
C NMR spectrum (100 MHz, CDCl3) of 

compound 3.43. 
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Figure A3.22. 
1
H NMR spectrum (400 MHz, CDCl3) and 

13
C NMR spectrum (100 MHz, CDCl3) of 

compound 3.54. 
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Figure A3.23. 
1
H NMR spectrum (400 MHz, CDCl3) and 

13
C NMR spectrum (100 MHz, CDCl3) of 

compound 3.55. 
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Figure A3.24. 
1
H NMR spectrum (400 MHz, CDCl3) and 

13
C NMR spectrum (100 MHz, CDCl3) of 

compound 3.61 
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Figure A3.25. 
1
H NMR spectrum (400 MHz, CDCl3) and 

13
C NMR spectrum (100 MHz, CDCl3) of 

compound 3.59. 
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Figure A3.26. 
1
H NMR spectrum (400 MHz, CDCl3) and 

13
C NMR spectrum (100 MHz, CDCl3) of 

compound 3.62. 
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Figure A3.27. 
1
H NMR spectrum (400 MHz, CDCl3) and 

13
C NMR spectrum (150 MHz, CDCl3) of 

compound 3.63. 
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Figure A3.28. 
1
H NMR spectrum (400 MHz, CDCl3) and 

13
C NMR spectrum (100 MHz, CDCl3) of 

compound 3.64. 
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Figure A3.29. 
1
H NMR spectrum (600 MHz, CDCl3) and 

13
C NMR spectrum (150 MHz, CDCl3) of 

compound 3.66. 
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Figure A3.30. 
1
H NMR spectrum (400 MHz, CDCl3) of compound 3.67. 
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Figure A3.31. 
1
H NMR spectrum (400 MHz, CDCl3) and 

13
C NMR spectrum (100 MHz, CDCl3) of 

compound 3.70. 
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Figure A3.32. 
1
H NMR spectrum (400 MHz, CDCl3) and 

13
C NMR spectrum (100 MHz, CDCl3) of 

compound 3.71. 
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Figure A3.33. 
1
H NMR spectrum (600 MHz, CDCl3) and 

13
C NMR spectrum (150 MHz, CDCl3) of 

compound 3.72. 
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Figure A3.34. 

1
H NMR spectrum (600 MHz, CDCl3) of compound 3.73 and 

1
H NMR spectrum (400 

MHz, CDCl3) of compound 3.108. 
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Figure A3.35. 
1
H NMR spectrum (600 MHz, CDCl3) and 

13
C NMR spectrum (150 MHz, CDCl3) of 

compound 3.80. 
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Figure A3.36. 

1
H NMR spectrum (400 MHz, CDCl3) of compound 3.82 and 

1
H NMR spectrum (400 

MHz, CDCl3) of compound 3.83. 
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Figure A3.37. 

1
H NMR spectrum (400 MHz, CDCl3) of compound 3.84 and 

1
H NMR spectrum (400 

MHz, CDCl3) of compound 3.86. 
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Figure A3.38. 
1
H NMR spectrum (600 MHz, CDCl3) and 

13
C NMR spectrum (150 MHz, CDCl3) of 

compound 3.85. 
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Figure A3.39. 
1
H NMR spectrum (600 MHz, CDCl3) and 

13
C NMR spectrum (150 MHz, CDCl3) of 

compound 3.87. 
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Figure A3.40. 
1
H NMR spectrum (600 MHz, CDCl3) and 

13
C NMR spectrum (150 MHz, CDCl3) of 

compound 3.109. 
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Figure A3.41. 
1
H NMR spectrum (600 MHz, CDCl3) and 

13
C NMR spectrum (150 MHz, CDCl3) of 

compound 3.106. 
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Figure A3.42. 
1
H NMR spectrum (400 MHz, CDCl3) and 

13
C NMR spectrum (100 MHz, CDCl3) of 

compound 3.115. 
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Figure A3.43. 
1
H NMR spectrum (400 MHz, CDCl3) of compound 3.116 and 

1
H NMR spectrum 

(400 MHz, CDCl3) of compound 3.130. 

 

O

O

O

O

O

3.116

OO

O OH

O

3.130



197 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A3.44. 
1
H NMR spectrum (600 MHz, CDCl3) and 

13
C NMR spectrum (150 MHz, CDCl3) of 

compound 3.124. 
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CHAPTER IV 

 

SECOND GENERATION APPROACH 

 

Introduction 

 

We became convinced that the number of possibilities to achieve the synthesis 

of dideoxy lomaiviticinone through our first generation approach had been exhausted, 

and thus we began to design a new route. Simultaneously, we desired to utilize a 

pathway based on our previously synthesized building blocks bis-enone 4.3 and quinone 

3.17 and to continue exploration of a two-directional strategy leading to generation of 

bis-amine 2.2 (Scheme 4.1). Compared to our initial approach, our new plan established 

construction of the cyclopentenone ring of dideoxy lomaiviticinone with the order of 

bond formation reversed. We hoped that with preparation of nitroenone 4.2 we would 

be able to examine the double Michael addition reaction between 4.2 and 

dibromoquinone 3.17 with the goal of generating bis-nitroenone 4.1 or an equivalent 

isomer. A palladium – catalyzed Heck coupling was planned to form the cyclopentenone 

ring of bis-amine 2.2.  This new strategy had two major advantages: late stage study 

continuation from previously synthesized material and examination of our biosynthetic 

hypothesis were ensured. 
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Scheme 4.1. Second generation approach. 

 

Michael Addition Model Studies 

 

We began this series of experiments using nitroenone 3.42 as a model system 

(Scheme 4.2). The assumption was made that Michael addition of 3.42 into 

dibromoquinone 3.17 would result in addition-elimination reaction to give bromoenone 

4.4. A short sequence would then lead to diazoquinone 3.107. A number of conditions 

were evaluated, but unfortunately only decomposition of both 3.17 and 3.42 was 

observed.  
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Scheme 4.2. Failed Michael addition. 

 

In an attempt to understand the reason for the unsuccessful Michael reaction 

shown in Scheme 4.2, a series of experiments aimed at examining base lability were 

undertaken. First nitroenone 3.42 was treated with known quinone 4.6 (Scheme 4.3), 

and while bases with high pKb led to immediate decomposition of both 4.6 and 3.42, 

treatment of 4.6 and 3.42 with Cs2CO3 resulted in recovery of a small amount of 

quinone 4.6.
1
  

 

 

Scheme 4.3. Michael addition to quinone 4.6. 
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These results showed that more than disfavored steric interactions were likely 

responsible for the lack of success in generation of 4.8. Therefore, the masked quinone, 

dimethylketal juglone 4.11 was prepared (Scheme 4.4),
2,3

 and successful DBU- mediated 

addition of nitroenone 3.42 to 4.11 provided enone 4.12. Formation of 4.12 in low yield 

suggested that not only high reactivity and instability of quinones 3.17 and 4.6 or the 

undesired retro-Michael reaction but also sensitivity of 3.42 under basic conditions were 

responsible for the failed synthesis of 4.4 and 4.8. Simultaneously, we rationalized that 

disfavored steric interactions led to the failed attempt at forming iodoenone 4.13.  
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Scheme 4.4. Synthesis of enone 4.12. 

 

Despite limited success, we attempted to synthesize dibromoketal 4.15 (Scheme 

4.5). Although capricious in nature, transformation of 4.14 with PhI(OAc)2 and K2CO3 in 

MeOH (yields between 20-25%) provided the highly unstable product 4.15. 
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Disapointigly, Michael addition of 3.42 into 4.15 failed to produce desired enone 4.16 

and only small amount of 4.15 was recovered. 

 

 

Scheme 4.5. Failed attempt to synthesize quinone 4.4. 

 

As previously mentioned, the high reactivity of quinones 3.17 and 4.6 (through 

oxidation state changes) was believed to be partially responsible for the outcomes of 

experiments shown in Schemes 4.2 and 4.3. To better control its behavior, we decided 

to react 4.6 with nitroenone 3.42 in the presence of CAN (Scheme 4.6), and 

unexpectedly we isolated nitronate 4.25, which contained 6,6,7,6 ring system. A 

thorough literature analysis revealed no precedence for the synthesis of similar 

structures. Mechanistically, we believe that formation of 4.25 results from addition of 

enol 4.19 to quinone 4.6. Isomerisation of 4.20 to give hydroquinone 4.21 followed by 

oxidation provides quinone 4.22. Deprotonation of 4.22, nitronate formation and 1,4-

addition leads to semiquinone 4.24, and subsequent isomerisation and oxidation affords 

nitronate 4.25.  
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Scheme 4.6. Unexpected formation of nitronate 4.25. 

 

Analysis of this mechanistic pathway prompted us to examine the same 

transformation with use of iodoenone 3.43 (Scheme 4.7). We hoped that the presence 

of a blocking element in the form of an α-iodoenone would prevent formation of the 

undesired 7-member ring system and iodoquinone 4.26 would be produced. 

Unfortunately, instead of 4.26, only nitronate 4.33 was isolated. Similar to the previous 

mechanistic pathway, we believe that formation of 4.33 starts with base-induced 

generation of nitronate 4.27. Michael addition of 4.27 into quinone 4.6, isomerisation of 

4.28 and oxidation of 4.29 gives quinone 4.30. A second Michael addition into the 

quinone ring system, this time with an oxygen as the donor, affords semiquinone 4.32, 
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and consequently iodonitronate 4.33 is produced. Again, analysis of available literature 

data revealed a lack of reports describing similar structures. The only known cyclic 5-

member nitronates have been generated via cycloaddition of alkenes which produced 

saturated systems.
4
 

 

 

Scheme 4.7. Unexpected formation of nitronate 4.33. 

 

Simultaneously, formation of bis-nitroenone 4.36 from bis-enone 2.32 was 

tested (Scheme 4.8). While preparation of bis-sulfide 4.34 proceeded smoothly and 

desired product could be obtained in relatively satisfactory yield of 45% (without 

reaction optimization), its oxidation to sulfoxide 4.35 under previously established 
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conditions was met with failure. Similarly, DBU-mediated addition of nitromethane into 

bis-enone 2.31 did not produce the desired 4.37, but rather led to formation of a 

compound whose structure, despite thorough analysis, could not be assigned. The 

described results were more than encouraging to discontinue this portion of our studies. 

 

 

Scheme 4.8. Failed synthesis of nitroketone 4.37 and nitroenone 4.36. 

 

Isoxazole Model Studies 

 

Isoxazoles as key structural elements in the design of natural product precursors 

have found numerous applications.
4,5

 The choice of this functionality can be attributed 

to the simplicity of its introduction, inertness to various chemical manipulations and its 

ability to undergo further modifications leading to a variety of functional motifs 

(Scheme 4.9). Classically, isoxazoles have been derived via 1,3-cycloaddition of alkynes 

and nitrile oxides which can be formed in three general ways: through dehydration of 
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nitroalkanes, dehydrohalogenation of hydroxamoyl halides, or least frequently, 

thermolysis of furoxans. The less popular method relies on the synthesis of isoxazolines 

and their further oxidation.
4,5
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O
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4.42 4.43  

Scheme 4.9. Preparation of isoxazoles. 

 

The appropriate choice of reaction conditions for reductive cleavage of the N-O 

bond enables conversion of isoxazoles into different structural patterns (Scheme 4.10).
5 

Treatment of 4.45 with Na/NH3 and 3 equivalents of t-BuOH gives an access to β-

aminoketones (4.48). When Na/NH3 and 1 equivalent of t-BuOH is used β-

enaminoketones (4.46) can be obtained.   Similar transformation can be achieved with 

application of H2/Raney Ni, Mo(CO)6/H2O or SmI2 as a reducing agent. EtO3
+
BF4

-
 

promoted N-O cleavage of 4.45 leads to formation of 1,3-diketones (4.47). Additionally, 

further modifications can generate β-hydroxyketones (4.53) and α,β-unsaturated 
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ketones (4.52). In this context, the isoxazole ring system can be considered a masked 

form of 1,3-diketone with the ability to undergo selective deprotonation and lack of 

reactivity toward nucleophiles. Additionally, base-induced opening of an isoxazole ring 

system can deliver β-ketonitriles.
6
 Consequently, in the design of the synthesis of 

complex molecules, isoxazoles have played the role of masked new heterocyclic rings, 

masked aromatic rings, masked fused rings or masked aldol reaction products.
5 

 

 

Scheme 4.10. Derivatization of isoxazoles. 

 

Continuing our model annulation studies, we envisioned generation of isoxazole 

4.54 which after determination of appropriate N-O bond reducing conditions could be 

converted into hydroxyquinone 4.55 (Scheme 4.11). Transformation of 4.55 into Heck 
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reaction precursor 4.56 followed by Pd-promoted intramolecular ring closure reaction 

conditions could be converted into amine 4.57. As in our earlier approaches, we 

anticipated that diazoquinone 3.107 would be generated through reaction with NO
+
.
  

While desired isoxazole 4.54 could be generated when nitroketone 3.42 and 

quinone 4.6 were treated with benzenesufonyl chloride and Et3N in dioxane at 85 ⁰C 

(reactions performed in THF, CH3Ph, CHCl3 failed to produce 4.54), its reduction under 

examined conditions proved to be unsuccesful and resulted in complete 

decomposition.
7 
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Scheme 4.11. Preparation and attempted modification of isoxazole 4.54. 

 

Subsequently, an attempt to generate the less reactive isoxazole 4.59 was 

undertaken as a way to increase the yield of cycloaddition. Additionally, this approach 

sought to enable examination of a larger number of N-O reductive bond cleavage 

reaction conditions since carbonyl group modification could be avoided (Scheme 4.12). 
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Protection of enone 3.42 occurred smoothly and compound 4.58 could be provided in a 

very good yield (79%). Treatment of 4.6 and 4.58 under previously developed conditions 

led to formation of 4.59 with yields varying between 40 and 50%. Consequently, 

isoxazole 4.59 was subjected to modification with the goal of generating amine 4.60. 

Multiple conditions were tested; however, unfortunately, desired product was not 

formed. Treatment with phosphines and triethylphopshite resulted in recovery of 

substrate 4.59.
 
Similarly, exposure of 4.59 to light did not lead to any modification. 

When 4.59 was reacted with stronger reducing agents (Zn/AcOH, LAH, Mo(CO)6) only 

decomposition was observed.
8
 Further studies were discontinued.

 

 

 

Scheme 4.12. Synthesis and failed reduction of isoxazole 4.59. 
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Future Directions 

 

Several conclusions can be drawn from our effort to prepare dideoxy 

lomaiviticinone. First, we believe that the ineffectiveness of our strategy for generation 

of 2.1 can be attributed to the sensitivity of fragments we decided to apply in our 

synthesis. In many cases, high or undesired reactivity of quinones and their capricious 

nature (inability to undergo protection – Scheme 3.20) prevented further modifications. 

Numerous times, conducted experiments resulted in decomposition of applied 

substrates, and too often steric hindrance negatively influenced outcome of our studies 

(radical cyclization experiments, Michael additions into quinones 3.17, 4.6, 3.116). 

Taking these considerations into account, we believe that future design of a synthetic 

route to dideoxy lomaiviticinone should avoid introduction of the two most reactive 

functionalities - diazo groups and quinone fragments - until the latest possible stage of 

synthesis. Therefore, with bis-enone 4.3 in hand, its conversion into potentially less 

reactive bis-cyclopentenone 4.62 could be considered (Scheme 4.13). Generation of the 

bis-imine version of 4.62 would allow examination of a unique Hauser annulation to 

introduce the most external portions of the molecule 2.1. This sequence would allow 

formation of a desired bis-amine 2.2 and its conversion into 2.1 by treatment with NO
+
, 

ergo examination of our ‘biosynthetic hypothesis’ would be guaranteed. Additionally, 

application of the advanced key intermediate 4.3 would ensure continuation of our 

previous studies. 
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Scheme 4.13. Proposed synthetic strategy. 

 

Multiple routes to bis-imine/enone 4.62 can be envisioned (Scheme 4.14). Bis-

enone 4.68, generated through Stille coupling between enone 2.7 and ethynylstannane, 

could be used as an intermediate in the formation of radical cyclization precursor bis-

cyanoenone 4.64. Generation of compound 4.68 could be followed by preparation of 

bis-vinyliodide 4.65 with intention of using it in Pd-catalyzed carbonylation. Bis-enone 

4.68 could also be applied in a rather risky Pauson-Khand reaction leading directly to 

bis-enone 4.62, and additional synthetic pathways could be examined. Formation of 

Strecker reaction product bis-vinylbromide 4.66 could be followed by a Heck reaction to 

achieve the bis-cyclopentenone rings construction. Ring-closing methatesis, followed by 

SeO2 mediated oxidation could be applied to bis-allyl enone 4.67 delivered via a Sakurai 

reaction. 
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Scheme 4.14. Possible routes to bis-enone 4.62. 

 

With preparation of bis-enone 4.62, the stage would be set for Hauser 

annulation examination (Scheme 4.15).
9
 Application of the MOM-protected analog of 

known cyanofuranone 4.63 would ensure smooth deprotection in the final steps of the 
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synthesis.
10

 Finally, preparation of a bis-carbonyl version of compound 2.2 would 

require its condensation with NH4OAc to provide the precursor for key diazo group 

formation through the reaction with nitrosonium ion. Unfortunately, the proposed 

synthetic pathway is not free from risk with the biggest involving requirement of double 

processing. However, elimination of the presence of most reactive functionalities until 

the final steps of the synthesis may enable realization of the ultimate goal – synthesis of 

dideoxy lomaiviticinone. 

 

 

Scheme 4.15. Final steps. 

 

Conclusion 

 

The goal of this work was to describe current knowledge about the 

diazoparaquinone family of antibiotics (Chapter I), report our solution to the synthesis 

of advanced dideoxy lomaiviticinone precursors (Chapters II and III) and to offer review 
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of examined routes within the framework of two generations of strategies we have 

envisioned (Chapters II, III, IV). Although the outcome of the undertaken effort to 

prepare dideoxy lomaiviticinone is not fully satisfying, we believe that synthesis of 2.1 

and further examination of its properties could be accomplished with the introduction 

of appriopriate synthetic modifications. At this point one should not underestimate the 

power of organic chemistry and the number of synthetic tools it has to offer.  
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Experimental methods 

 

General. All non-aqueous reactions were conducted under an argon atmosphere in 

oven-dried glassware. Reagents were purchased at the highest commercial quality and, 

unless otherwise stated, used without further purification. Toluene (CH3Ph), 

dichloromethane (CH2Cl2), diethyl ether (Et2O) were obtained through purification of 

commercially available solvents with use of activated alumina columns (MBraun MB-SPS 

solvent system). Tetrahydrofuran (THF) was purified by distillation from Na metal with 

benzophenone indicator. Triethylamine (Et3N) and N,N-diisopropylethylamine (iPr2NEt) 

were distilled from CaH2 and stored over KOH. Thin-layer chromatography was 

performed on E.Merck precoated silica gel 60 F524 plates. The plates were visualized 

with UV light and aqueous stain (KMnO4 or CAM). Liquid chromatography (flash 

chromatography) was conducted using indicated solvents and Dynamic Adsorbents silica 

gel 60 (230-240 mesh). Thermo Electron IR100 series instrument was used to record 

infrared spectra as thin films on NaCl plates. 
1
H and 

13
C NMR were recorded on Bruker 

300, 400, 500, 600 spectrometers at ambient temperature and are reported relative to 

deuterated solvent signals. n-BuLi was titrated with use of the Suffert method.  
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Preparative Procedures 

 

To a solution of phenol 4.10 (100 mg, 0.49 mmol) in MeOH (3.5 mL) at 

ambient temperature were added PhI(OAc)2 (189 mg, 0.59 mmol) and K2CO3 

(142 mg, 1.0 mmol). After 30 min the reaction mixture was diluted with Et2O. The 

organic layer was washed with NaHCO3 (x 1) and brine (x 1). The organic extract was 

dried (MgSO4), filtrated and concentrated in vacuo. The residue was purified by flash 

chromatography (Hexane/EtOAc, 1:1) to provide methylketal 4.11 as a dark solid (35 

mg, 30%): 
1
H NMR (400 MHz, CDCl3) δ 7.62 (t, J = 8.0 Hz, 1 H), 7.38 (d, J = 7.6 Hz, 1 H), 

7.05 (d, J = 8.0 Hz, 1 H), 6.76 (d, J = 10.4 Hz, 1 H), 6.52 (d, J = 10.8 Hz, 1 H), 3.98 (s, 3 H), 

3.18 (s, 6 H). 

 

To a solution of methyl ketal 4.11 (15 mg, 0.064 mmol) and nitroenone 

3.42 (10 mg, 0.064 mmol) in CH2Cl2 (1 mL) at ambient temperature was 

added DBU (10 mg, 0.067 mmol, 0.01 mL). After 16 h the reaction mixture 

was diluted with CH2Cl2. The organic layer was washed with saturated solution of NH4Cl 

(x 1) and brine (x 1). The organic extract was dried (MgSO4), filtrated and concentrated 

in vacuo. The residue was purified by flash chromatography (Hexane/EtOAc, 2:1) to 

provide enone 4.12 as a yellow oil (5 mg, 20%): 
1
H NMR (400 MHz, CDCl3) δ 7.59 (t, J = 

7.6 Hz, 1 H), 7.39 (d, J = 8.0 Hz, 1 H), 7.08 (d, J  = 8.4 Hz, 1 H), 6.08 (d, J = 7.2 Hz, 1 H), 

5.77 (s, 1 H), 6.85 (d, J = 6.4 Hz, 1 H) 3.92 (s, 3 H), 3.74-3.68 (m 1 H), 3.28 (s, 3 H), 3.12 

OMe O

MeO OMe

4.11

OMe O

NO2

O

MeO OMe

4.12
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(dd, J = 7.2 Hz, 18.8 Hz, 1 H), 2.89 (s, 3 H), 2.47-2.41 (m, 2 H) 2.36-2.27 (m, 2 H), 2.12-

1.97 (m, 2 H). 

 

 To a solution of quinone 3.17 (50 mg, 0.13 mmol) in CH2Cl2 (6 mL) at 

ambient temperature were added Adogen 464 (27 mg, 0.027 mmol) and 

solution of Na2S2O4 (115 mg, 0.66 mmol) in H2O (2 mL). The reaction progress was 

monitored by TLC. After reduction of quinone to hydroquinone was completed, Me2SO4 

(24 mg, 0.19 mmol) and NaOH (32 mg, 0.8 mmol) were added. The reaction mixture was 

placed in an oil bath at 35 ⁰C. After 50 min the solution was cooled to ambient 

temperature and diluted with CH2Cl2. The organic layer was washed with saturated 

solution of NH4Cl (x 1) and brine (x 1). The organic extract was dried (MgSO4), filtrated 

and concentrated in vacuo. The residue was purified by flash chromatography 

(Hexane/EtOAc, 2:1) to provide phenol 4.14 as a yellow oil (34 mg, 65%): 
1
H NMR (400 

MHz, CDCl3) δ 10.6 (s, 1 H), 6.82 (s, 2 H), 4.03 (s, 3 H), 3.93 (s, 3 H), 3.80 (s, 3 H). 

 

To a solution of phenol 4.14 (34 mg, 0.087 mmol) in MeOH (4 mL) at ambient 

temperature were added PhI(OAc)2 (30 mg, 0.095 mmol) and K2CO3 (26 mg, 

0.19 mmol). After 1 h saturated solution of NaHCO3 was added. The aqueous layer was 

separated. The organic layer was diluted with Et2O, washed with H2O (x 1) and brine (x 

1). The organic extract was dried (MgSO4), filtrated and concentrated in vacuo. The 

residue was purified by flash chromatography (Hexane/EtOAc, 1:1) to provide methyl 

OMe OH

OMeOMe
Br

Br

4.14

OMe O

(OMe)2OMe
Br

Br

4.15
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ketal 4.15 as a dark solid (13.5 mg, 24.5%): 
1
H NMR (400 MHz, CDCl3) δ 7.27 (d, J = 9.2 

Hz, 1 H), 7.12 (d, J = 9.2 Hz, 1 H), 3.94 (s, 3 H), 3.91 (s, 3 H), 3.06 (s, 6 H). 

 

To the solution of nitroenone 3.42 (11 mg, 0.07 mmol) and quinone 4.6 

(15 mg, 0.07 mmol) in THF (1.5 mL) at ambient temperature were added 

CAN (39 mg, 0.07 mmol) and Cs2CO3 (6.9 mg, 0.02 mmol).The mixture was heated up to 

60 ⁰C. After 4 h the solution was cooled to ambient temperature and concentrated in 

vacuo. The residue was purified by flash chromatography (Hexane/EtoAc, 1:4) to 

provide quinone 4.25  as a pink solid (3.8 mg, 13%): 
1
H NMR (400 MHz, CDCl3): δ 7.46 (d, 

J = 9.6 Hz, 1 H), 7.39 (d, J = 9.6 Hz, 1 H), 7.16 (s, 1 H), 4.03 (s, 3 H), 3.99 (s, 3 H), 2.93 (t, J 

= 7.6 Hz, 2 H), 2.56 (t, J = 6.4 Hz, 2 H), 2.21 (quin, 2 H); 
13

C NMR (150 MHz, CDCl3): δ 

199.15, 177.68, 172.24, 165.24, 160.55, 160.28, 155.62, 155.03, 146.05, 132.45, 123.05, 

121.22, 120.74, 119.40, 57.14, 56.90, 37.61, 27.21, 22.45. 

 

To a solution of nitroenone 3.42 (11 mg, 0.04 mmol) and quinone 4.6 (10 

mg, 0.047 mmol) in THF (1 mL) at ambient temperature were added CAN 

(21 mg, 0.04 mmol) and Cs2CO3 (3.8 mg, 0.01 mmol). The mixture was 

heated up to 60 ⁰C. After 17 h the mixture was cooled to ambient temperature and 

concentrated in vacuo. The residue was purified by flash chromatography 

(Hexane/EtOAc, 1:4) to provide iodoenone 4.33 as a pink/orange solid (8.9 mg, 46%): 
1
H 

NMR (400 MHz, CDCl3): δ 7.47 (d, J = 9.6 Hz, 1 H), 7.43 (d, J = 9.6 Hz, 1 H), 4.04 (s, 3 H), 

4.00 (s, 3 H), 2.84-2.80 (m, 4 H), 2.30 (quin, 2 H); 
13

C NMR (150 MHz, CDCl3): δ 191.25, 
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177.61, 171.94, 164.40, 161.83, 155.99, 155.10, 153.34, 122.61, 121.42, 121.34, 120.96, 

119.01, 110.97, 57.03, 56.98, 36.42, 33.05, 22.51. 

 

 To a solution of bis-enone 2.32 (12 mg, 0.03 mmol) in CH2Cl2 (1 mL) 

at ambient temperature were added PhSCH2NO2 (36 mg, 0.21 

mmol) and DBU (16 mg, 0.01, 16 μL). After 25 h the reaction mixture 

was diluted with CH2Cl2. The organic layer was washed with 

saturated solution of NH4Cl (x 2) and brine (x 1). The organic extract was dried (MgSO4), 

filtrated and concentrated in vacuo. The residue was purified by flash chromatography 

(Hexane/EtOAc, 4:1) to provide bis-nitrosulfide 4.34 as a yellow oil (10 mg, 45%): 
1
H 

NMR (400 MHz, CDCl3) δ 7.50-7.48 (m, 4 H), 7.37-7.35 (m, 6 H), 6.09 (d, J = 2.8 Hz, 2 H), 

4.83 (d, J = 6.4 Hz, 2 H), 4.71 (d, J = 6.4 Hz, 2 H), 3.81-3.77 (m, 2 H), 3.30 (s, 6 H), 3.16-

3.10 (m, 2 H), 2.78 (dd, J = 4.4, 15.6 Hz, 3 H), 2.47-2.40 (m, 4 H), 1.45-1.35 (m, 4 H), 0.97-

0.91 (m, 6 H). 

 

To a solution of nitroenone 3.42 (10 mg, 0.06 mmol) and quinone 4.6 (14 

mg, 0.06 mmol) in dioxane (2 mL) at ambient temperature was added 

benzenesufonyl chloride (23 mg, 0.13 mmol, 16 μL). The mixture was 

heated up to 90 ⁰C. The solution of Et3N (13 mg, 0.13 mmol, 18 μL) in dioxane (0.3 mL) 

was added dropwise for 2.5 h. After 3.5 h the reaction mixture was cooled to ambient 

temperature and concentrated in vacuo. The residue was purified by flash 

chromatography (Hexane/EtOAc, 1:3) to provide isoxazole 4.54 as a pink solid (5.5 mg, 
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24%): 
1
H NMR (600 MHz, CDCl3): δ 7.46 (d, J = 9.6 Hz, 1 H), 7.40 (d, J = 9 Hz, 1 H), 7.16 (s, 

1 H), 4.03 (s, 3 H), 4.00 (s, 3 H), 2.93 (t, J = 5.4 Hz, 2 H), 2.56 (t, J = 6.6 Hz, 2 H), 2.21 

(quin, 2 H); 
13

C NMR (150 MHz, CDCl3): δ 199.30, 177.74, 172.31, 165.23, 160.29, 155.59, 

154.99, 146.13, 132.44, 122.99, 122.23, 120.69, 120.21, 119.41, 57.11, 56.90, 37.63, 

27.20, 22.46. 

 

To a solution of nitroenone 3.42 (139 mg, 0.9 mmol) in toluene (5 mL) at 

ambient temperature were added ethylene glycol (2.23 g, 36 mmol, 2 mL), 

trimethyl orthoformate (285 mg, 2.7 mmol, 295 mL), PTSA (15.4 mg, 0.09 mmol). After 

1.5 h the reaction mixture was diluted with Et2O/EtOAc. The organic layer was washed 

with H2O (x 1), saturated solution of NaHCO3 (x 1) and brine (x 1). The organic extract 

was dried (MgSO4), filtrated and concentrated in vacuo. The residue was purified by 

flash chromatography (Hexane/EtOAc, 2:1) to provide ketal 4.58 as a yellow oil (143 mg, 

80%): IR (thin film, cm
-1

): 3492, 2950, 2886, 1678, 1553, 1372; 
1
H NMR (400 MHz, 

CDCl3): δ 5.76 (s, 1 H), 4.86 (s, 2 H), 4.01 (td, J = 2.0, 4.0, 7.2 Hz, 4 H), 2.13 (t, J = 5.2 Hz, 2 

H), 1.89-1.84 (m, 2 H), 1.83-1.80 (m, 2 H); 
13

C NMR (100 MHz, CDCl3): δ 133.43, 131.77, 

105.21, 81.35, 64.71, 32.76, 26.57, 20.44.  

 

To a solution of quinone 4.6 (44 mg, 0.2 mmol) and nitroalkene 4.58 (40 

mg, 0.2 mmol) in dioxane (3 mL) under air atmosphere was added 

benzenesufonyl chloride (71 mg, 0.4 mmol, 51 μL). The mixture was 

heated up to 70 ⁰C. Et3N (40 mg, 0.4 mmol, 56μL) was added. After 1.5 h the reaction 
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mixture was cooled to ambient temperature and concentrated in vacuo. The residue 

was purified by flash chromatography (Hexane/EtOAc, 1:3) to provide quinone 4.59 as a 

pink/orange solid (41 mg, 51%): 
1
H NMR (400 MHz, CDCl3): δ 7.44 (d, J = 9.6 Hz, 1 H), 

7.36 (d, J = 9.6 Hz, 1 H), 7.14 (s, 1 H), 4.16 (t, J = 3.6 Hz, 2 H), 4.03 (t, J = 2.8 Hz, 2 H), 4.01 

(s, 3 H), 3.98 (s, 3 H), 2.62 (t, J = 4.4, 5.6 Hz, 2 H), 1.97-1.94 (m, 4 H); 
13

C NMR (100 MHz, 

CDCl3): δ 178.00, 172.63, 164.95, 161.06, 155.46, 154.82, 133.81, 132.43, 130.18, 

123.07, 122.97, 120.78, 120.41, 119.39, 105.40, 64.74, 57.21, 56.88, 33.06, 26.22, 20.58. 

HRMS (ESI) calcd for C21H20O7N [M+H
+
] 398.1234, found 398.1218. 
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Appendix A3: 

 

 

 

 

Spectra Relevant to Chapter 4: 
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Figure A4.1. 1H NMR spectrum (400 MHz, CDCl3) and 13C NMR spectrum (100 MHz, CDCl3) of 

compound 4.6. 
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Figure A4.2. 1H NMR spectrum (400 MHz, CDCl3) of compound 4.11 and 1H NMR spectrum (400 

MHz, CDCl3) of compound 4.12. 
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Figure A4.3. 1H NMR spectrum (400 MHz, CDCl3) of compound 4.14 and 1H NMR spectrum (400 

MHz, CDCl3) of compound 4.15. 
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Figure A4.4. 1H NMR spectrum (400 MHz, CDCl3) of compound 4.34. 
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Figure A4.5. 1H NMR spectrum (600 MHz, CDCl3) and 13C NMR spectrum (150 MHz, CDCl3) of 

compound 4.25 and 4.6. 
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Figure A4.6. 1H NMR spectrum (600 MHz, CDCl3) and 13C NMR spectrum (150 MHz, CDCl3) of 

compound 4.33. 
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Figure A4.7. 1H NMR spectrum (400 MHz, CDCl3) and 13C NMR spectrum (100 MHz, CDCl3) of 

compound 4.54 and 4.6. 
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Figure A4.8. 1H NMR spectrum (400 MHz, CDCl3) and 13C NMR spectrum (100 MHz, CDCl3) of 

compound 4.58. 
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Figure A4.9. 1H NMR spectrum (400 MHz, CDCl3) and 13C NMR spectrum (100 MHz, CDCl3) of 

compound 4.59 and 4.6. 
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