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CHAPTER I 

 

INTRODUCTION 

 

Biomarker Discovery 

 The NIH defined biomarkers as characteristics that are objectively 

measured and evaluated as indicators of normal biological processes, 

pathogenic processes, or pharmacologic responses to therapeutic interventions.1  

In a disease such as cancer the identification of a molecule or molecular 

signature that is accurately indicative of these processes will be of extraordinary 

benefit to clinicians and patients.2   

The main hypothesis driving the search for cancer biomarkers is the 

concept that organs secrete a specific set of proteins representing a molecular 

signature indicative of its physiological state.3  In cancer patients this set of 

secreted proteins should alter to reflect the genetic mutations and other 

processes that contribute to the cancer phenotype.3  Detection and 

characterization of these molecular fingerprints has begun to provide a unique 

view of the proteomic changes associated with disease status.  The potential use 

of biomarkers for the early detection of cancer has compelled significant research 

in this field.2, 4   

 Another advantage of biomarkers is the potential to aid clinicians in 

selecting patients to undergo certain treatments.  This research is conducted 

based on previous evaluations of treatment efficacy and safety from patients 
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exhibiting a specific biomarker.  These markers may also be used to monitor 

response to treatment and disease progression.5  

Various biological specimens, including blood, urine, and saliva, have 

been analyzed for the discovery of potential biomarker candidates.  One of the 

major goals in this field of research is the development of a blood-based assay 

for the detection of biomarkers, due to the relatively easy and non-invasive 

manner in which blood can be collected.  Blood, however, poses many significant 

challenges to researchers during the discovery phase.  The range of protein 

concentrations in blood is extensive, ranging from albumin at ~40 mg/mL, to 

cytokines at ~5 pg/mL.2  Moreover, a set of 22 proteins account for 99% of the 

total protein content in blood.6, 7  This compositional complexity makes the 

detection of low abundance proteins extremely difficult when using common 

separation techniques such as 2-DIGE and HPLC. 

 Immunodepletion technologies were developed to reduce the presence of 

the high abundance proteins in complex samples.6   Although these depletion 

strategies have proven effective, they are not without limitations.  For example, 

immunodepletion of albumin from serum with a removal efficiency of 99% leaves 

a remaining concentration of approximately 50 μg/mL, which is still significantly 

higher than most proteins of interest.  Furthermore, non-specific removal of 

proteins other than the target and possible binding of target proteins to other 

proteins, like albumin, will inevitably result in concomitant depletion of potentially 

useful markers.  The extremely dynamic nature of the plasma proteome adds yet 

another variable to consider when profiling these samples.  Factors such as 
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genetic polymorphisms, gender, age, ethnicity, and lifestyle can significantly alter 

the protein species detected in blood.  Variations arising from inconsistent 

sample collection and storage procedures (e.g. processing time, storage 

temperature) may further exacerbate these fluctuations in the proteome.     

 These shortcomings have encouraged research looking at alternative 

sources, such as tumor biopsy tissues, for biomarker discovery.  In theory, the 

concentrations of potential biomarkers are expected to be highest in the tumor 

and the microenvironment of the surrounding tissue.  Upon entry into circulation 

via the lymphatic system, these markers will be significantly diluted into the 

complex matrix of the blood.  Therefore, the direct analysis of the tumor and 

surrounding tissue should be the most logical source to carry out the discovery 

phase of biomarkers.  The markers identified in this way could then be detected 

in blood using highly specific technologies such as multiple reaction monitoring 

(MRM) or immunoassays.    

 

Imaging Mass Spectrometry 

 Molecular imaging has played a pivotal role in our understanding of the 

spatial complexity of biological systems at the tissue and cellular level.8  Several 

different approaches are commonly used to examine the spatial distribution of 

molecules in biological samples including fluorescence9, immunohistochemistry 

(IHC)10, positron emission topography11, and magnetic resonance imaging 

(MRI)12.  Although these technologies represent powerful and well-established 

imaging tools, there are several limitations present with these approaches.  Most 



 

4 

 

notably, these methodologies generally employ a targeted approach that requires 

an a priori knowledge of the molecule(s) of interest, thus limiting their 

effectiveness as true discovery tools.  Furthermore, these techniques are only 

capable of analyzing a small number of components simultaneously and 

therefore provide a limited, albeit valuable, view of the biological system.   

Over the past several years, imaging mass spectrometry (IMS) has 

emerged as a powerful tool for studying the spatial arrangement of proteins, 

peptides, lipids, and small molecules in tissues.13-15  The multichannel detection 

capability of mass spectrometry enables the position sensitive analysis of 

hundreds of different molecules in a single experiment.13, 14  This is achieved by 

acquiring mass spectra across a sample at precisely defined geometrical 

coordinates. Post acquisition processing compiles the mass spectra into a format 

in which any of the detected species can be viewed as an ion density map, 

where the relative abundance of the selected ion across the sample is displayed 

on a color intensity scale at each coordinate location (pixel) (Figure 1). Unlike 

other molecular visualization techniques, IMS does not require a target specific 

reagent and it is therefore a valuable discovery tool. 

 

History 

 IMS has been conducted on a wide range of analytes using a variety of 

different ionization and mass analyzer combinations.  As early as the 1960s, 

secondary ion mass spectrometry (SIMS) was used to examine the distribution of  
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light elements (Na+, K+, Ca2+) or exogenous, isotopically labeled elements.16  The 

desorption and ionization process in SIMS is a highly energetic process that 

results in extensive molecular fragmentation, thereby limiting the practical mass 

range to small molecule analysis.  During the 1990s, polyatomic primary ion 

beams and the liquid metal ion gun were developed to extend the effective mass 

range of SIMS by providing a softer ionization process, which allowed analysis of 

cholesterol, lipids, and other small molecules up to ~1,000 Da.17-19  Despite 

significant advances in the ion generation process in SIMS instruments, larger 

biological molecules such as peptides, proteins, and oligonucleotides cannot be 

effectively analyzed using this technique.  It should be noted, however, that for 

small molecule imaging experiments SIMS provides superior spatial resolution 

relative to alternative techniques and is capable of imaging sub-cellular 

components.20 

 With the introduction of matrix-assisted laser desorption/ionization 

(MALDI) in the mid 1980s 21, 22 intact high molecular weight analytes could be 

efficiently desorbed and ionized for detection in a mass spectrometer.  Along with 

electrospray ionization23 (ESI), these soft ionization techniques would become 

the basis for a revolution in bioanalytical mass spectrometry and advance the 

field into a new era.   

 In 1997, Caprioli et al.24 demonstrated that MALDI MS could be used to 

map the location and relative intensity of proteins and peptides in a tissue 

section.  In the years since this pioneering work, IMS has evolved into a highly 

versatile technique with a broad range of functionality and applications.14, 25, 26 
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The Technology 

 A brief description of the general workflow for an imaging experiment will 

be described in the following text; more detailed information can be found in 

several previously published works. 27, 28  It should be noted that a complimentary 

technique termed direct tissue profiling, is carried out in exactly the same manner 

as an imaging experiment with the exception that the data is not necessarily 

acquired in an arrayed pattern for generating ion density maps.  Profiling 

experiments are carried out when the desired area of analysis is small, and mass 

spectra acquisition is only necessary at a limited number of positions.  

 

Tissue Collection 

 To begin, a fresh frozen or formalin-fixed paraffin-embedded (FFPE) 

tissue specimen (e.g. tumor biopsy) is cut into thin sections (~12 μm for frozen; 

~5 μm for FFPE) and mounted onto a conductive MALDI target, typically a gold 

coated plate or indium tin oxide (ITO) coated microscope slide.  Frozen tissues 

are sectioned in a cryostat and are thaw mounted onto the target.  The tissues 

and MALDI target are slowly equilibrated to room temperature and then dried in a 

vacuum desiccator. For protein and peptide IMS experiments, these adhered 

sections are typically washed using a series of graded ethanol solutions to 

remove salts, lipids, and other contaminants that may result in ion suppression.29  

Some IMS experiments, such as those specifically targeting lipids, do not employ 

these wash steps because they may remove the molecules of interest.30  
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FFPE tissues are sectioned at room temperature using a microtome. The 

sections are floated in a temperature controlled water bath (37° C) and then 

mounted onto the MALDI target.  The FFPE sections are then deparaffinized and 

antigen retrieved prior to MS analysis (these steps will be described in more 

detail in Chapter 3).  

 

Matrix Application 

 The most commonly used MALDI matrices include 3,5-dimethoxy-4-

hydroxy-cinnamic acid (sinnapinic acid, SA), 2,5-dihydroxybenzoic acid (DHB), 

and α-cyano-4-hydroxycinnamic acid (CHCA).  The matrix and solvent 

composition used will vary depending on the specific molecule and/or tissue 

being investigated.  For example, SA is the most suitable matrix to be used in 

protein imaging experiments (m/z > 2000); whereas, DHB and CHCA provide 

superior performance in the low molecular weight mass range of peptides, lipids, 

and small molecules (m/z 100-2000).  These findings have been mostly empirical 

and the fundamental mechanism behind the performance of the different 

matrices is not well understood, yet more information regarding this topic can be 

found in several recently published articles.31-34 

 Matrix application can be carried out using several different approaches.  

The two most commonly used approaches are spray coating, which applies a 

homogenous layer of matrix across the tissue, or spotting, which generates an 

array of discrete matrix spots across the sample.  The advantage of spray 

coating is that the matrix is applied as a homogenous coating across the sample 
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allowing mass spectrometric acquisition to be carried out at high spatial 

resolutions limited only by the spot size of the laser.  Spray coated matrix 

applications, however, often result in poor signal quality due to insufficient 

analyte extraction from the tissue during the relatively short solvent drying time.  

Furthermore, replication of exact spray conditions (e.g. humidity) and volumes, 

especially when carried out manually, can be difficult to achieve resulting in poor 

reproducibility between samples. 

 Alternatively, microspotting can be used to apply discrete droplets of 

matrix into defined arrays across a sample.  Microspotting enables precise 

volumes to be reproducibly deposited at each position over several iterations.  

This is important when comparing the relative ion intensities across a sample, 

because inconsistencies in the matrix application will lead to artificial variation in 

signal intensities.   

  Two commercially available robotic spotters were used in this research.  

The Portrait 630 (Labcyte; Sunnyvale, CA), shown in Figure 2a,  uses acoustic 

droplet ejection technology to emit a sound wave at a precisely defined power 

and focus into a solution reservoir, ejecting a ~170 pL droplet onto the adjacent 

sample surface.  This instrument is nozzle-free and droplets can be ejected at a 

frequency of up to 200 Hz.  The Portrait offers two separate working modes: 

start/stop mode, which can be used to deposit multiple drops at each position, 

and flyby mode, which moves the sample stage in a continuous motion while 

depositing a single drop at each position.  When printing in flyby mode, a single  
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droplet ejection pattern covering approximately 1 cm2 can be completed in less 

than 2 min.   

 The other instrument is a piezoelectric based chemical inkjet printer (ChIP; 

Shimadzu; Kyoto, Japan), shown in Figure 2b, that ejects ~80 pL droplets from a 

print head nozzle at up to 200 Hz.  The ChIP only operates in start/stop mode 

and, as a result, printing can take significantly longer compared to the Portrait.  

For example, printing a grid pattern of spots with 250 μm center-to-center 

spacing covering 1 cm2 would take approximately 6 min. with the ChIP compared 

to 2 min. with the Portrait.  In flyby mode the printing time for a given area using 

the Portrait is constant, regardless of the spot to spot distance, because the 

stage motion is constant and the drop ejection frequency is varied.  Because the 

ChIP only operates in start/stop mode, the printing time for a given area using 

this instrument will increase as the spot-to-spot distance decreases.  Therefore, 

the major advantage of the Portrait is speed and the ability to use high matrix 

concentrations.  Although the nozzle-free setup circumvents the risk of clogging, 

it allows the droplets to follow a slightly more variable trajectory onto the sample 

target resulting in slightly decreased accuracy and precision.  The major 

advantage of the ChIP is that the nozzle based ejection provides a well-defined 

droplet trajectory onto the sample resulting in a high precision and high accuracy 

placement  Also, the drop size on the ChIP is around half that of the Portrait, 

which enables arrays to be printed with closer spacing without droplet pooling.  

However, the piezoelectric droplet ejection parameters on the ChIP, such as 

voltage and pulse timing, can vary greatly between different solutions and tuning 
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can be very tedious.  Furthermore, the nozzle can easily become clogged due to 

matrix crystallization and/or contaminants present in the matrix solution resulting 

in erratic drop ejection 

In the experiments reported in this work, the ChIP was used for 

developing the in situ digestion method and the Portrait was used for applying 

this method to the lung cancer FFPE-TMA samples.  As discussed in further 

detail in the following chapters, the robotic spotters are integral to this work. This 

is because when printing enzyme and matrix solutions, it is extremely important 

that precisely the same volume of solution is deposited at each position to ensure 

the resulting protein digestion is accurately representative of the protein content 

at each position. 

  

Instrumentation 

 The most commonly used IMS platform is the MALDI-TOF mass 

spectrometer.  Several other types of instruments including ion trap, FT-ICR, q-

TOF, ion mobility, and DESI mass spectrometers have been used to perform 

imaging experiments and more information on these can be found in several 

recent publications.26, 35, 36  The research presented in this work was performed 

using a MALDI-TOF and MALDI-TOF/TOF MS and therefore these will be the 

focus of the introduction. 

 MALDI, as it is currently used, was first reported by Karas and Hillenkamp 

in 1987.37  In this seminal work, the matrix effect for enhancing the laser 

desorption ionization (LDI) of nonvolatile compounds was demonstrated using an 
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organic acid (nicotinic acid) that exhibited strong resonance absorption at the 

wavelength of the laser used.  The ability of MALDI to produce high mass ions for 

mass spectrometry has led to its application in a broad range of biomolecular 

analyses including proteomics38, oligonucleotides39, 40, polysaccharides41, 

glycoproteins42-44, and synthetic polymers45, 46.   

Despite the widespread use of this technology, the exact role of the matrix 

is not fully understood.  However, three key functions of the matrix were 

proposed in early papers47: 1) incorporation of the analyte molecules into the 

matrix crystals; 2) a collective laser absorption and desorption event; 3) analyte 

ionization through matrix interaction.  Current models describing the UV-MALDI 

ionization mechanism are based on a 2-step framework involving an initial 

(primary) ion formation followed by ion-molecule reactions in the 

desorption/ablation plume that give rise to secondary ions.  Several reviews are 

available which discuss these mechanisms in detail.47-50   

 The MALDI-TOF ionization/mass analyzer combination is well-suited for 

IMS for several reasons.  Most importantly, the duty cycle of the TOF mass 

spectrometer is ideal to be coupled to the pulsed laser process of MALDI. 

MALDI, which uses laser ablation to carry out desorption/ionization of analytes, 

can be carried out at high repetition rates (up 5 kHz) due to the short pulse 

widths of solid state lasers (e.g. Nd:YAG) and the availability of high speed 

instrument electronics.  This pulsed configuration provides enhanced sensitivity 

as compared to a scanning mass analyzer, such as an ion trap, because all ions 

are detected virtually simultaneously in each laser pulse.  Other reasons 
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including a wide detectable mass range, high ion transmission efficiency, and 

simplicity in instrument design and maintenance make MALDI-TOF instruments 

ideal for most imaging experiments.  

 In MALDI-TOF instruments, ions formed following each laser pulse are 

accelerated by an electric field to the same kinetic energy into a field free drift 

region.  Ions of different m/z values are separated according to differences in 

their resulting velocity, based on the equation: 

 

where T is time-of-flight, m is mass, q is charge, and k is proportionality constant 

related to instrument dimensions and operating potentials.  Therefore, for two 

ions with the same charge but different masses, the ion with the smaller mass 

will travel at a higher velocity than the one with the larger mass resulting in a 

separation in space and subsequent time of detection, as illustrated in Figure 3.  

Through instrument calibration using a set of standards these times can be 

accurately converted to precise m/z values.     

 Several important developments in the MALDI-TOF MS instrument design 

over the past two decades have enhanced the quality (resolution/sensitivity) of 

data that can be acquired using these instruments.  The development and 

implementation of high-speed computers and electronics have undoubtedly 

played a major role in these improvements, but the most significant technological  
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advancements are the development of delayed extraction 51-53 and the reflectron 

(ion mirror)54.   

Delayed extraction functions by introducing a time delay between the 

ionization and acceleration steps.  The desorption process in MALDI results in a 

distribution spread of the kinetic energies of the resulting ions.  When a 

considering a collection of ions with the same m/z (isobaric), the ions ejected 

from the sample surface with greater kinetic energy have a higher velocity and 

therefore travel farther from the sample surface prior to application of the 

accelerating potential.  Those ions ejected with less kinetic energy, and therefore 

decreased velocity, will be positioned closer to the target surface.  Upon 

application of the accelerating voltage, ions closer to the target surface will 

experience a greater accelerating potential relative to the ions farther from the 

surface.  With the appropriate delay time, the slower ions will obtain enough 

additional potential energy to account for the positional discrepancy and as a 

result all of the ions will be focused at a certain plane in space (such as the 

detector or entrance to the reflectron).  Additionally, delayed extraction allows for 

the plume (ions + neutrals) to expand prior to extraction therefore reducing the 

number of collisions that occur between the accelerating ions and the relatively 

immobile neutral molecules once the voltage is applied. 

 A reflectron consists of a series of evenly spaced electrodes at the end of 

the linear flight tube.  An electric field gradient of the same polarity as the ions is 

applied across the reflectron and therefore upon entry into the reflectron, ions are 

decelerated to zero velocity and then reaccelerated in the opposite direction 
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towards the reflectron detector.54  This has a two-fold effect on improving mass 

resolution: first, the effective length of the flight path is increased, and, second, 

the flight paths of ions with the same m/z but different kinetic energies are altered 

such that those with higher kinetic energy penetrate deeper into the reflectron, 

increasing their flight time relative to the slower ions and therefore focusing the 

timing at which the ions reach the detector.54       

 For protein imaging (> m/z 3000) the TOF MS is typically operated in 

linear mode (Figure 3), which provides a wide functional mass range of detection 

and high sensitivity.  For lower molecular weight species (< m/z 3000), the TOF 

MS is operated in reflectron mode (Figure 4), which uses an ion mirror, or 

reflectron, to compensate for the initial velocity/energy distribution and 

significantly improves mass resolution.  

 A MALDI-TOF/TOF instrument55 (Ultraflex III; Bruker Daltonics; Bremen, 

Germany) can be used to generate tandem MS data on ions directly from a 

tissue sample.  In this instrument, ion fragmentation occurs through a mechanism 

called post source metastable decay.  Ions generated by MALDI can naturally 

undergo metastable decay through unimolecular decomposition, resulting in 

single or double backbone cleavages as illustrated in Figure 5.56   

The MALDI-TOF/TOF instrument has the same basic design of a 

reflectron mass spectrometer, but it uses several additional components to 

facilitate ion fragmentation and subsequent detection as a tandem MS spectrum. 
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Following ion formation and acceleration to 8 kV, all ions have a velocity 

corresponding to E=1/2mv2.  The fragments that form post acceleration through 

metastable decay maintain the velocity of the corresponding precursor forming 

an “ion family”.  A timed ion selector (TIS) is placed in the flight tube and is used 

to select only the precursor ion of interest, as shown in Figure 6.  This is 

achieved by applying a potential across the flight path to deflect all of the passing 

ions other than the precursor.  At the precise timing when the selected precursor 

ion is present in the TIS the potential difference across the TIS is brought to zero 

and the ion family continues to traverse the flight tube unimpeded.     

The selected ion family leaves the TIS and enters the LIFT device to 

undergo velocity focusing and further acceleration.  The LIFT device is 

comprised of four electronic grids with 3 stages of operation.  In stage 1, the 

potential energy of the selected ion family is rapidly lifted, hence LIFT, an 

additional 19 kV.  As the ions enter stage 2, which is held at 19 kV as well, they 

continue to travel at the same velocity and the potential on the third grid is then 

reduced by 2-3 kV.  This accelerates the ions towards Stage 3 where the ions 

are then accelerated to full speed by dropping the voltage on the fourth grid to 

ground (analogous to delayed extraction in a regular MALDI ion source)  and 

time-focused onto the detector as illustrated in Figure 7. 

 An additional device called a post lift metastable suppressor (PLMS) is 

placed between the LIFT cell and the reflectron.  The PLMS is similar in design 

and function to the TIS and serves to deflect the remaining intact precursor ions 

leaving the LIFT cell.  This helps to eliminate undesired fragment ion formation  



 

21 

 

 

  

 

Fi
gu

re
 6

.  
S

ch
em

at
ic

 o
f t

he
 in

iti
al

 s
te

ps
 o

f a
 M

A
LD

I-T
O

F/
TO

F 
M

S
 e

xp
er

im
en

t w
he

re
 th

e 
tim

ed
 io

n 
se

le
ct

or
 is

 
us

ed
 to

 is
ol

at
e 

th
e 

pr
ec

ur
so

r i
on

 o
f i

nt
er

es
t b

y 
de

fle
ct

in
g 

al
l o

th
er

 io
ns

. 



 

22 

 

 

 

 

Fi
gu

re
 7

.  
S

ch
em

at
ic

 il
lu

st
ra

tin
g 

th
e 

re
ac

ce
le

ra
tio

n 
of

 th
e 

se
le

ct
ed

 p
re

cu
rs

or
 io

n 
fa

m
ily

.  
Th

is
 e

na
bl

es
 th

es
e 

io
ns

 to
 

be
 fu

rth
er

 s
ep

ar
at

ed
 b

as
ed

 o
n 

th
ei

r m
/z

 v
al

ue
s 

to
 g

en
er

at
e 

a 
M

S
/M

S
 s

pe
ct

ru
m

. 



 

23 

 

post-acceleration into the second TOF, which can cause significant chemical 

background noise in the fragmentation spectrum.   

 The fragment ion spectra acquired using a MALDI-TOF/TOF resembles 

those generated using other instruments, such as an ion trap, in that the major 

ions detected are a, b, and y ions.  Interpretation of these spectra is carried out 

using commercial software which generates a proposed amino acid sequence 

based on the detected fragments and precursor ion mass.  This sequence is then 

searched against a protein database to determine the representative intact 

protein.   

 

Data Processing and Analysis 

 IMS experiments often result in very large datasets consisting of several 

thousand mass spectra, each of which contains hundreds of peaks.  There are 

several software packages that can efficiently manage IMS data and these 

programs automate several functions including setup and acquisition, spectral 

processing, image generation, and statistical analysis. 

 Following acquisition, several spectral processing steps are typically 

carried out including baseline subtraction, smoothing, peak picking, and 

normalization.  Baseline subtraction uses an iterative algorithm to remove the 

baseline slope and offset that is caused mainly by background chemical and 

electronic noise.  Smoothing a mass spectrum averages neighboring data points 

to increase the signal/noise ratio and enhance the peak shapes.  Peak picking 

algorithms analyze the data points in a spectrum and differentiate peaks 
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corresponding to real analyte ions from those attributed to noise and background.  

Thresholding parameters, such as a S/N cutoff value, are typically used to control 

and limit the peak selection process.  In reflectron mode, the TOF MS is capable 

of resolving the isotopes of an individual peptide or lipid species, which naturally 

result from the presence of one or more 13C atoms (Figure 4).  Peak picking 

algorithms, such as the SNAP algorithm developed by Bruker Daltonics, are able 

to recognize these isotopic clusters and assign a representative mass only to the 

monoisotopic peak, which is the peak from the molecule containing only 12C 

atoms and no 13C atoms.  This can be an extremely important step in processing 

peptide and lipid spectra, because it results in a significant reduction in data 

complexity.  For statistical analysis, monoisotopic peak picking generates a 

single peak to represent each biomolecule, as opposed to several isotopes, and 

can be used as the comparative value.    

 Another important aspect of data processing is spectra normalization.  

This is typically carried out by evaluating the total ion current (TIC) of all spectra 

in a dataset.  The TIC is defined as the sum of the intensities of all data points in 

a spectrum.  Notwithstanding certain assumptions, it is expected that this value 

should be similar between all spectra in a dataset.  Deviations in the TIC likely 

result from slight day-to-day fluctuations in instrument performance, variations in 

sample preparation, and differing chemical microenvironments in tissues.  When 

normalizing on a spectrum to spectrum basis, all data points are adjusted by the 

same increment so that the resulting TIC of each independent spectrum is equal 

to a normalized value.   
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 Other normalization functions are also used, including the division of each 

data point in a spectrum by the TIC of the entire spectrum to bring all data point 

values within the range of [0,1].  This type of normalization is independent of the 

other spectra in a dataset, because each data point is essentially normalized 

based on its relative contribution to the TIC.    

 

Biological Applications of IMS 

 Over the past decade IMS and direct tissue profiling experiments have 

been conducted on a wide variety of biological samples and have provided 

investigators with valuable insight into the underlying biology.  IMS has the ability 

to provide a comprehensive view of a subset of a tissues proteome in an 

extraordinarily short amount of time.  As a result, examining the differences 

between a set of normal and diseased tissues is a particularly useful application 

of this technology. For example, IMS has been used to examine the proteomic 

changes involved in the development and progression of numerous cancers 

including gliomas13, 57, 58, breast cancer59, 60, prostate cancer61, 62, colon cancer63, 

and lung cancer64, 65.  These experiments revealed numerous differential protein 

expression patterns between cancerous and normal tissues.   

 Recently, Caldwell et al.66 examined soft tissue sarcomas using IMS and 

determined that tissue adjacent to the tumor that appeared histologically normal, 

actually exhibited changes at the molecular level consistent with the cancerous 

regions.  These tumor associated proteins showed a gradient effect across the 

histologically defined tumor margin into the normal tissue at distances up to 1.5 
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cm.  A larger study that performed a similar analysis on tumors from patients with 

clear cell renal cell carcinoma showed comparable results (Stacey R. 

Oppenheimer, Unpublished Data).  Statistical analysis of the data revealed 

several interesting patterns, including proteins that dropped off sharply at the 

margin, those that extended beyond the tumor margin into the normal, and those 

that appeared only in the normal.  These results demonstrate that changes are 

likely taking place at the molecular level that cannot be detected using 

histopathological analysis alone.  The implications of this are important not only 

from a cancer biology perspective, but also in the context of surgical removal of 

tumors.  For example, during the surgical removal of tumors it is imperative that 

all cancerous cells are removed in their entirety to improve a patient’s chance of 

survival and prevent local recurrence.  This data suggests that cancer cells may 

be invasive beyond the histological tumor margin and could likely play a role in 

tumor recurrence at these sites. 

Other research has focused on the use of mass spectrometry data 

acquired through imaging and profiling studies to differentiate and classify 

different tissue histologies.  For histological classification, pathologists typically 

use light microscopy to examine cellular morphology and various antibody stains 

to assess the presence or absence of histology specific proteins.  The advantage 

of incorporating IMS into this workflow is that the spatial distribution of hundreds 

of protein species can be visualized simultaneously, adding an extraordinary 

amount of additional information. 
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 Histology directed imaging and profiling refers to the application of IMS to 

the molecular analysis of targeted regions of clinical samples.  In this workflow, a  

pathologist reviews a tissue section serial to the section used for MS analysis to 

determine specific areas of interest.67  In-house software was developed to guide 

the MS analysis to only acquire mass spectra from these pathologically relevant 

regions, which can significantly reduce the overall time of the MS analysis by 

analyzing only specific regions of interest.67  Furthermore, each mass spectrum 

can be directly associated with a specific histological region.   

Rahman et al. applied this workflow to lung cancer tissues and were able 

to classify normal epithelium, pre-invasive, and invasive lung lesions with 90% 

accuracy based on proteomic differences.68  Additionally, Schwartz et al. showed 

that this technology could effectively classify the grade of different human 

gliomas and predict survival of the patients.69   

 

Summary and Research Objectives 

 Biological systems are extremely complex and new tools are necessary to 

effectively enhance our knowledge and understanding of their underlying 

mechanisms.  Mass spectrometry has proven to be an essential technology for 

the analysis of biological samples due to its unparalleled throughput, sensitivity, 

and specificity.  IMS combines the power of MS with the inherent spatial 

information contained in a biological sample revealing biomolecular distributions 

on a scale unattainable by other techniques.    
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 The work presented here has two main focuses.  First, chapter 2 details 

the development of a method to carry out in situ chemical reactions to enhance 

the proteomic information that can be detected in a tissue sample.  This method, 

referred to as in situ digestion, uses an enzyme to digest the proteins present in 

discrete regions of a tissue prior to matrix application and MS analysis.  The 

enzymatically digested proteins result in a large collection of proteolytic peptides 

in the range of m/z 700-3000.  This collection of peptides can be sequenced and 

identified directly from the tissue using tandem MS and then linked back to their 

respective intact protein.  The spatial information for these ions can be used to 

validate their identification because all peptides from the same protein should 

exhibit the same spatial distribution.  In situ digestion also enables the indirect 

detection of high molecular weight proteins (> m/z 30,000) that are not detected 

in a standard protein imaging experiment by mapping the peptides generated 

from these species.  Finally, this method enables the analysis of formalin-fixed 

paraffin-embedded (FFPE) tissues.  FFPE tissues are a valuable and extensive 

source of clinical samples which are not compatible for use in standard protein 

imaging experiments.   

 Second, chapters 3 and 4 detail the application of this method to FFPE 

lung cancer tissue microarrays (TMA).  We show that in situ digestion coupled 

with imaging mass spectrometry can be used to reproducibly map numerous 

protein species in a large population of lung cancer patients.  Several of these 

proteins correspond to previously reported markers of lung cancer, while others 

have not yet been associated with this disease.  Furthermore, we discovered 
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patterns of protein expression that can be used to accurately distinguish and 

classify the histological subtypes present in the sample cohort.   

In summary, this work shows that when IMS is performed on a large set of 

tissues in parallel with a pathological evaluation, the combined histological and 

molecular information provides a depth of information that has the potential to 

revolutionize disease diagnosis, prediction of prognosis, and course of therapy. 
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CHAPTER II 
 
 
 

 IDENTIFICATION OF PROTEINS DIRECTLY FROM TISSUE: IN SITU 
TRYPTIC DIGESTIONS COUPLED WITH IMAGING MASS SPECTROMETRY 

 
 
 

Abstract 
 

 A novel method for on-tissue identification of proteins in spatially discrete 

regions is described using tryptic digestion followed by MALDI Imaging Mass 

Spectrometry (IMS) with MS/MS analysis.  IMS is first used to reveal the protein 

and peptide spatial distribution in a tissue section and then a serial section is 

robotically spotted with small volumes of trypsin solution to carry out in situ 

protease digestion.  After hydrolysis, matrix solution is applied to the digested 

spots with subsequent analysis by IMS to reveal the spatial distribution of the 

various tryptic fragments.  Sequence determination of the tryptic fragments is 

performed using MALDI MS/MS analysis on-tissue directly from the individual 

digest spots. This protocol enables protein identification directly from tissue while 

preserving the spatial integrity of the tissue sample. The procedure is 

demonstrated with the identification of several proteins in coronal sections of a 

rat brain. 

 

Introduction 

 Desorption of proteins and subsequent analysis by MALDI MS provides a 

measurement of molecular weight, but not the identification of the protein.  
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Protein databases do not generally include the sometimes extensive post-

translational modifications of most proteins: indeed such modifications are still 

unknown in most cases.  Further, nominal molecular weight redundancies to 

within the mass measurement accuracy of the experiment can be problematic. 

Current protein identification techniques are based on extraction, proteolysis, and 

LC/MS/MS techniques.  Although these procedures are effective, they can be 

tedious, require relatively large amounts of sample, and result in loss of spatial 

information.  Nonetheless, this procedure remains an effective means of 

identification of an unknown peak in a spectrum.  Several recent papers have 

attempted to address some of these problems through automation.  For example, 

a molecular scanner approach involving tissue blotting onto a trypsin membrane, 

followed by capture of the resulting peptides onto a second membrane can be 

used to digest proteins while maintaining some degree of spatial resolution 70-72.  

In addition, several studies 73-82 have reported MS/MS data directly obtained from 

tissue samples. 

 In the current work, we show that automated deposition of a trypsin 

solution can be effectively used to carry out digestion of proteins and peptides 

directly on thin tissue sections in well-defined micro-spotted arrays.83  These 

arrays can then be automatically spotted with matrix solution for subsequent 

MALDI MS and MALDI MS/MS analyses to obtain sequence information for the 

tryptic peptides and thereby enable protein identification.  The array printer used 

for reagent deposition ensures accurate and precise droplet placement to enable 

well-controlled and reproducible digestion conditions and is an essential part of 
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the process.  Confining the digestion enzyme to within discrete spots on the 

order of ~200 μm in diameter reduces the complexity of the analysis because the 

proteins digested are representative of only a limited number of cells and 

extracellular space.  Spotted arrays have been found to be much more 

reproducible and compatible with automation than spray coating and other matrix 

deposition techniques 84.  Individual droplet placement allows for a micro-

extraction process to occur on the tissue surface at each position over several 

deposition iterations.  This enhances the efficiency of the protein digestion and 

subsequent matrix crystallization process, thereby improving sensitivity and 

signal quality.  The bilateral symmetry of the coronal brain sections used in this 

report provide a measure of the reproducibility of the spot-to-spot digestion 

efficiency, since the relative intensity of the tryptic peptides generated from the 

proteins present in the substructures of each hemisphere should be equivalent.   

The novel aspect of this technique lies in its capability to not only visualize, but to 

also identify proteins from discrete areas of a tissue section encompassing areas 

of about 200 μm diameter.  This technique is optimal for the verification of protein 

identities where specific proteins are suspected to be present.  In these cases, 

the digest spot can be searched for known tryptic fragments of a protein and the 

peptide sequenced by MS/MS if found.  The ability to robotically carry out 

controlled and reproducible trypsin digestions within thousands of discrete spots 

throughout a tissue section enables positive identification of numerous protein 

species with high spatial localization and a relatively small amount of sample 

preparation and time requirement.   
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 The advantage of this method over traditional protein visualization 

techniques, such as immunohistochemical staining, is that in a single analysis it 

is possible to examine the distribution of numerous proteins and peptides while 

simultaneously obtaining in situ identification.  The digest data can be examined 

in parallel with the information generated by the peptide and protein imaging 

experiments to provide a comprehensive analysis of a tissue section.  This 

approach is ideal for discovery since it does not require specific reagents for 

molecular detection (such as an antibody). 

 

Results 

 The spectra generated at each spot on the digested tissue typically 

contain several hundred distinct peaks with a S/N > 5 (Figure 8).  The signal 

intensity of the tryptic peptides vary widely due to several factors, i.e. different 

expression levels of proteins, variations in digestion efficiency, and differences in 

desorption and ionization efficiencies of different peptides.  Nevertheless, clearly 

resolved molecular species are easily identified in these digest spectra as shown 

in the inset in the upper left of Figure 8.  Myelin basic protein (MBP), which is 

expressed regionally in the brain at relatively high levels and is essential for the 

formation of central nervous system (CNS) myelin and neuronal transmission 85, 

was among the proteins identified using the workflow shown in Figure 9.  There 

are several molecular forms of MBP expressed in the CNS including a number of 

splice variants and numerous post translational modifications 85. The major 

isoform in adult rats has been reported to have a molecular weight of 14.2 kDa 85.   
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The distribution of this intact protein was determined using IMS on a coronal 

section of rat brain tissue as shown in Figure 10.  After digestion, a total of 8 

tryptic peptides from MBP were detected (Figure 11) and sequenced directly 

from the tissue (Figure 12).  Other tryptic peptides were also generated and 

detected from MBP, although it was not necessary to sequence them since there 

was already sufficient data for a high confidence identification of this protein.  

Proteins identified in this way were further validated by comparison of the spatial 

distribution of a given parent protein with sequenced peptides generated from 

that protein.  Internal calibration of the acquired spectra using the masses of 

trypsin autolysis fragments as well as several other known tryptic peptides 

sequenced with high confidence through MS/MS from proteins present 

throughout the rat brain were used to achieve mass accuracies of about 10 ppm.   

As expected, the MBP tryptic peptides show an ion density distribution consistent 

with that of the intact protein.  It is noted that other isoforms of MBP were present 

in the protein analysis at lower intensity. 

 As further examples, other proteins identified in the same process from a 

different region of a rat brain include neurogranin, a 7496 Da brain-specific 

protein kinase C (PKC) substrate 86 and brain-specific polypeptide (PEP-19), a 

6676 Da neuron specific protein 87 (Figure 13).  Each of the four tryptic peptides 

displayed for each protein were sequenced by MS/MS and linked to their 

respective parent protein through database matching and spatial distribution 

correlation.  Neurogranin was distributed with highest intensity throughout the 

cerebral cortex and with a lesser intensity in the striatum, which is in accordance 
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with the findings of Represa et al. 86 who examined the distribution of this protein 

in the adult rat brain through immunohistochemistry.  PEP-19 is shown to be 

distributed with highest intensity throughout the striatum, and with lower 

intensities in the globus pallidus.  These findings also correlate well with previous 

studies that have determined, through immunohistochemistry, that PEP-19 is 

highly expressed in the basal ganglia 87.  These data further demonstrate the 

ability of this method to confidently identify proteins using both digest and MS/MS 

data in parallel with IMS.  The data obtained for the identification of these three 

proteins is summarized in Table 1.        

 An initial step in these experiments involves determination of peptides 

present throughout the tissue prior to digestion.  This not only provides a higher 

level of confidence in assessing those peaks in the digest spectra as being 

generated from proteolysis, but also provides information about the presence of 

endogenous peptides in different regions of a tissue.  For example, the structure 

of the globus pallidus, which is a major element of the basal ganglia system, can 

be distinguished in the native peptide image from several ion density maps of the 

in vivo processing products of the proenkephalin A precursor into its propeptide 

and active peptide forms (Figure 14).  The propeptide corresponding to the 143-

185 region of this protein is detected in the non-digest analysis at m/z 4594.  

Digestion of this peptide generates several tryptic fragments including m/z 

2619.24 and 2818.37 which are detected in the digest images and lie in a mass 

range more amenable to MS/MS analysis.  Several of these peptides do not 

contain lysine or arginine residues and therefore do not undergo digestion from  
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the trypsin enzyme.  Consequently, although these peaks are detected in the 

digest spectra, they can be categorized as non-tryptic peptides. 

Signals corresponding to only a few pixels in the ion maps can be used to 

characterize species localized to isolated regions of a tissue section.  For 

example, Arg-vasopressin and copeptin, two peptide hormones generated from 

the processing of the vasopressin-neurophysin 2-copeptin precursor, were 

detected solely in the supraoptic nucleus, which is consistent with previous 

studies 88.  Mass spectra acquired at this position in the non-digest analysis 

indicate that this precursor is fully processed in this region due to the presence of 

the active form of Arg-vasopressin as shown in Figure 15.  The calculated mass 

of Arg-vasopressin is 1086.44, yet experimentally it is detected in this region with 

a mass of 1083.44.  As previously described 89, this mass shift suggests that the 

C-terminus glycine is amidated and the disulfide bond is intact, the latter of which 

was further confirmed in the present study by MS/MS analysis.  The calculated 

mass of copeptin is 4281.80 Da, yet it has been shown that this peptide is N-

glycosylated 90-92 at an asparagine residue. Two tryptic peptides found at m/z 

1798.96 and 2061.09 corresponded to the 21-37 and 21-39 regions, respectively, 

of the non-glycosylated segment of the copeptin sequence.  These peptides were 

sequenced by MS/MS on a digested tissue section to confirm the sequence.  Ivell 

et al. used tritium labeled sugars to determine that the glycosylation side chain 

on copeptin contained mannose, glucosamine, and fucose 93. A peak found at 

m/z 5930 in the non-digested image is localized to the supraoptic nucleus, 

identical to that of Arg-vasopressin.  This corresponds to a mass shift of 1648.5  
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Da from the calculated mass of copeptin, which is consistent with a carbohydrate 

chain composed of Man3GlcNAc5Fuc1.  This mass shift is also apparent in the 

digest analysis on the copeptin tryptic peptides consisting of residues 1-20 and 1-

15, both of which contain the glycosylated residue. Application of trypsin followed 

by treatment with peptide N-Glycosidase F (PNGase F) to the posterior region of 

a rat pituitary section where copeptin is stored 94, resulted in removal of this 

polysaccharide chain and the tryptic peptides from residues 1-20 and 1-15 were 

detected at their expected masses.  Intact copeptin was also detected at its 

expected mass in a section treated only with PNGase F.       

 Tryptic peptides from the digestion of higher molecular weight proteins 

including actin, a 41 kDa globular structural protein, tubulin, a 55 kDa protein 

which dimerizes to form microtubules, and synapsin-1, a 74 kDa neuronal protein 

were identified using this method (Figure 16).  Generally, low abundance 

proteins within the m/z range of these relatively high molecular weight species 

are difficult to analyze using MALDI-TOF MS.  Proteolysis of these high 

molecular weight proteins directly on tissue and image analysis of unique 

peptides enables visualization of their distribution throughout a tissue section.   

 

Discussion 

 MALDI IMS is a unique tool for analyzing the spatial distribution of 

peptides and proteins throughout tissue sections, providing an enormous amount 

of data with minimal sample preparation time.  Molecular analysis directly on-

tissue for identification of specific proteins offers an alternative to the time 
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consuming separation and labeling steps commonly used in proteomics with the 

advantage of preserving the spatial distribution of the detected species.   

Technological advancements in instrumentation including high speed 

electronics, solid state lasers with high repetition rates, enhanced computer 

processing capabilities, and unique imaging software, continue to make this 

technology more practical and capable.  The development of automated devices 

for sample preparation 84, 95 has enabled accurate and precise reagent deposition 

onto microscopic regions of a tissue sample.  The ability to digest these protein 

species and carry out MS/MS analysis directly on tissue allows one to achieve 

protein identification with high confidence within localized regions of a tissue 

section without separation or homogenization.  The consistent ion intensities 

within and between separate images indicates that well-controlled and 

reproducible digestion has been achieved, providing an increased confidence in 

comparative studies.  Digestion also presents possibilities for the detection of 

certain high molecular weight proteins which are not easily detected in MALDI 

experiments due to their low abundance and poor ionization and detection 

efficiency in this mass region.   

 The identification of proteins directly from tissue combining in situ 

digestion and MALDI MS is most effective in the validation process, i.e., verifying 

the presence of a protein whose I.D. has either been previously established in 

other like tissues or is tentatively assigned due to known biology or from other 

data.  The process consists of 5 steps: 1.) establishing the distribution of one or 

more proteins by molecular weight using imaging MALDI MS, 2.) tryptic 
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hydrolysis of discrete spots where proteins of interest are located, 3.) acquiring 

mass spectra from these digested spots using MALDI MS, noting those peptides 

that correlate with the theoretical peptides that should be generated from a given 

protein or proteins, 4.) MS/MS sequence analysis and protein database matching 

for identification of the proteins, and 5.) correlation of the images for each tryptic 

peptides to that of the intact protein in the tissue specimen.  

 Although the proteins identified in this work are generally expressed at 

high abundance, current work towards further optimization of the current protocol 

is focused on the analysis of lower abundance proteins.  For example, the time 

dependence of on-tissue digestions is an area of much interest that needs further 

investigation.  Ericsson et al.96 have shown that the downsizing the enzymatic 

digestion process to nL volumes results in a decrease in the time required to 

achieve sufficient digestion due to a decrease in the diffusion distance between 

the enzyme and substrate.  A systematic study will need to be performed to 

determine optimal spotting conditions for digestions that vary enzyme 

concentration, time, volume, and solvent composition.  Other steps such as 

denaturing of proteins and reducing cysteine-cysteine disulfide bonds prior to 

digestion could result in more complete digestion.  Additionally, other enzymes or 

combinations of enzymes could be applied to tissues in an effort to carry out 

more targeted analyses for specific proteins.  For example, Figure 17 shows the 

distribution of three peptides identified from myelin basic protein in separate rat  

brain sections using three different proteases: trypsin, chymotrypsin, and 

subtilisin.  For the analysis of complex mixtures such as a protein digest, Fourier 
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transform ion cyclotron resonance mass spectrometry (FTICR-MS) will be of 

significant advantage in resolving species in these samples by providing high 

mass accuracy information.   

 On-tissue proteomic technologies present enormous potential for the 

discovery of new protein and peptide species, or modifications of those already 

known, since it does not require protein-specific reagents such as antibodies.  

The protocols and technology cited in this paper offer a viable alternative to 

tissue extraction and separation procedures that nicely complements traditional 

protein identification and characterization techniques.  By combining the 

extensive amount of data obtained from each of the protein, peptide, and digest 

imaging experiments, it is possible to carry out an in-depth characterization of a 

tissue for those proteins amenable to this process.  We believe analysis of a 

tissue in this manner will prove essential in studying disease because it enables 

the tissue to be examined in its native state.  

 

Materials and Methods 

Material.  HPLC grade methanol, trifluoroacetic acid (TFA), glacial acetic acid, 

and reagent grade ethanol were purchased from Fisher Scientific (Pittsburgh, 

PA).  DHB (2, 5-Dihydroxybenzoic acid, 99% purity) was purchased from Acros 

Organics (New Jersey, USA) and used without further purification.  Sinapinic acid 

(3, 5-dimethoxy-4-hydroxycinnamic acid, 99% purity) was purchased from Fluka 

(Buchs, Switzerland) and used without further purification.  Trypsin Gold was 

purchased from Promega (Madison, WI) and diluted in 200 μL of 50 mM acetic 
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acid to obtain a final concentration of 0.5 μg/μL  for the stock solution.  A 40 μL 

aliquot of this stock solution was activated by adding 200 μL of 100 mM 

ammonium bicarbonate to reach a pH of ~8 and a final trypsin concentration of 

0.083 μg/μL.   Peptide: N-Glycosidase F (PNGase F) was purchased from New 

England BioLabs (Ipswich, MA).  

 

Tissue Preparation.  Brains and pituitary glands from adult Sprauge-Dawley rats 

were dissected and stored at -80º C until analysis.  Thin (12 μm) tissue sections 

were prepared and thaw mounted onto a gold plated MALDI target using a 

procedure described by Schwartz et al.27.  The targets were placed in a 

desiccator for 30 min to allow the tissue sections to dry and equilibrate to room 

temperature.  Tissue fixation and removal of salts and other contaminants was 

carried out through a series of ethanol/water wash steps as described by Aerni et 

al.84  An additional final tissue wash step similar to that described by Kutz et al. 76 

was used which consisted of submersion of the tissue sections into a solution of 

90% ethanol, 9% glacial acetic acid, and 1% deionized water for 30s.  The tissue 

sections were then dried and stored in a vacuum desiccator until analysis.   

   This tissue preparation procedure removes interfering species, such as 

salts and phospholipids, that can promote adduct formation, ion suppression, and 

poor matrix crystallization.  Additionally, signals generated from the 

phospholipids on an un-washed tissue section may result in significant spectral 

interference with low molecular weight tryptic peptides. 
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Imaging Mass Spectrometry of Proteins and Peptides.    A piezoelectric 

based chemical inkjet printer (ChIP-1000, Shimadzu Co., Kyoto, Japan) was 

used for deposition of both the trypsin and matrix solutions.  A modified sample 

holder was used to place gold coated MALDI plates containing tissue sections 

directly into the robotic printer.  Matrix solutions consisting of 15 mg/mL of 

sinapinic acid in 60:40 ACN:H20 / 0.5% TFA (aq.) for proteins and 25 mg/mL of 

DHB in 50:50 MeOH/H2O / 0.5% TFA (aq.) for peptides were printed onto 

sections serial to the section used for on-tissue digestion.  The arrays of 

approximately 2500 spots consisted of 250 μm  center-to-center spacing and a 

total matrix volume of ~10 nL at each spot was deposited over a series of 20 

iterations at 5 drops per iteration.  The images were acquired using an Ultraflex II 

MALDI-TOF TOF instrument (Bruker-Daltonics Billerica, MA).   

For protein imaging, the mass spectrometer was operated with positive 

polarity in linear mode and spectra were acquired in the range of m/z 1500-

30,000.  For peptides, the mass spectrometer was operated with positive polarity 

in reflectron mode and spectra were acquired in the range of m/z 600-10000.  A 

total of 600 spectra were acquired at each spot position at a laser frequency of 

200 Hz.  Specifically developed software was then used to convert the spectral 

information into image files compatible with Biomap imaging software (Novartis, 

Basel, Switzerland) that was used to visualize ion density maps.   

 

On-Tissue Digestion.  A solution containing 0.083 μg/μL of trypsin was spotted 

onto the rat brain tissue sections using the automated printer in an array 
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incorporating 250 μm center to center spacing between individual spots, each of 

which were approximately 200 μm in diameter.  The trypsin was spotted over a 

series of 30 iterations while depositing 5 drops (100 pL per drop) each iteration to 

achieve a total spot volume of 15 nL (5 drops of the trypsin solution were 

deposited at each position in 8 min. time intervals).    Each digest spot appeared 

to dry completely between each subsequent spotting iteration.   The trypsin 

spotting proceeded at room temperature (~21 °C) over a time period of ~4 h, 

allowing ample time for digestion to take place.  Following digestion, a solution 

consisting of 25 mg/mL of DHB in 1:1 methanol/0.5% TFA (aq). was spotted 

directly onto the array of tryptic spots over 20 iterations at 5 drops per iteration to 

give a total matrix spot volume of 10 nL.   

 

Imaging Mass Spectrometry and MS/MS of Digested Tissue Section.  The 

printed arrays were analyzed using a Ultraflex II MALDI-TOF TOF equipped with 

a smart beam laser97 and controlled by the Flex Control 2.4 software package.  

The mass spectrometer was operated with positive polarity in reflectron mode 

and spectra acquired in the range of m/z 500-6000.  A timed ion gate was used 

for precursor ion selection and the fragments generated were further accelerated 

with 19 kV in the LIFT cell, and detected following passage through the 

reflectron.  Image acquisition of the spotted arrays was carried out using the Flex 

Imaging 1.1 software package.  A total of 1350 spectra were acquired at each 

spot position in a customized spiral raster pattern in 50 shot increments at a laser 

frequency of 200 Hz.  The customized spiral raster pattern was used to 
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accommodate any edge-biased crystal formation characteristic of DHB matrix 

spots that may have occurred. Ion images were created as described above. 

 

Glycopeptide Analysis.  The posterior region of a 12 μm section of a rat 

pituitary gland was spotted 3 consecutive times with 500 nL of a 0.083 μg/μL of 

trypsin using a micropipette, with each drop being allowed to dry before spotting 

the next.  Next, 500 nL of the amidase PNGase F was spotted 3 consecutive 

times at a concentration of 500,000 U/mL directly onto the trypsin spots, with 

each spot being allowed to dry before placing the next.  Upon drying, 2 drops of 

500 nL DHB in 1:1 methanol/0.5% TFA (aq). were deposited at these positions 

and the tissues were analyzed using a Ultraflex II MALDI-TOF TOF.      

 

Data Analysis.  The MS/MS spectra generated were submitted into a MASCOT 

(Matrix Science, Boston MA) database search engine to match tryptic peptide 

sequences to their respective intact proteins.  The MS/MS spectrum search was 

performed with a peptide tolerance of ± 0.3 Da and a fragment tolerance of ± 0.5 

Da.  The search criteria also included up to 2 missed cleavages and variable 

modifications including lysine acetylation, N-terminus acetylation, C-terminus 

amidation, and methionine oxidation. 
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CHAPTER III 
 
 
 

HIGH-THROUGHPUT PROTEOMIC ANALYSIS OF FORMALIN-FIXED 
PARAFFIN-EMBEDDED TISSUE MICROARRAYS USING MALDI IMAGING 

MASS SPECTROMETRY 
 
 
 

Abstract 
 

 A novel method for high-throughput proteomic analysis of formalin-fixed 

paraffin-embedded (FFPE) tissue microarrays (TMA) is described using on-tissue 

tryptic digestion followed by MALDI imaging mass spectrometry.  A TMA section 

containing needle core biopsies from lung tumor patients was analyzed using 

mass spectrometry and the data correlated to a serial H&E stained section 

having various histological regions marked including cancer, non-cancer, and 

normal.  By associating each mass spectrum with a defined histological region, 

statistical classification models were generated that can sufficiently distinguish 

adenocarcinoma biopsies from squamous cell carcinoma biopsies.  These 

classification models were built using a training set of biopsies in the TMA and 

were then validated on the remaining biopsies.  Peptide markers of interest were 

identified directly from the TMA section using MALDI MS/MS sequence analysis.  

The ability to detect and characterize tumor marker proteins for a large cohort of 

FFPE samples in a high throughput approach will be of significant benefit not 

only to investigators studying tumor biology, but also to clinicians for diagnostic 

and prognostic purposes. 
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Introduction 

 IMS has been successfully used to identify subsets of markers that 

correlate with cancer progression.65, 67, 69, 98-100  For example, in earlier studies, 

protein markers were obtained from the direct MALDI IMS proteomic analysis of 

glioma biopsies that could differentiate stage including the most aggressive form, 

glioblastoma multiforms, and also with patient outcomes.69 Our laboratory has 

also investigated a large cohort of human non-small cell lung cancer biopsies.65, 

68 In this study, sections from fresh frozen biopsies were cut and spotted with 

matrix on areas identified as cancerous. From the resulting protein profiles, 

statistical analyses identified markers that could be correlated with histological 

assessment and patient outcomes. These patterns precisely distinguished 

healthy versus cancerous tissue, and also distinguished various sub types of 

non-small cell cancer, such as adenocarcinoma, squamous cell carcinoma and 

large cell carcinoma.  Further, these patterns could be correlated with patient 

survival. From this latter cohort, several of the proteins of the survival signature 

were identified. These results highlight the use of this technology for the rapid 

characterization of disease at the protein level to confirm diagnosis and 

potentially aid in therapeutic management.101  

 MALDI IMS is usually carried out on fresh frozen tissue because these 

samples are highly representative of a tissue in its native state. However, the 

vast majority of clinical specimens stored in hospital tissue banks are formalin-

fixed paraffin embedded (FFPE), representing an expansive archive of diseased 

tissues. Formalin fixation stabilizes proteins by inducing chemical cross-linking 
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throughout a tissue section therefore preventing postmortem enzymatic 

proteolysis while maintaining the cellular histology.102  However, the major 

drawback of formalin fixation is that it renders a tissue unsuitable to undergo 

routine biochemical protein extraction and subsequent proteomic analysis.103   

 Over the past two decades, several methods have been reported that 

attempt to reverse formalin-fixation, a process commonly referred to as antigen 

retrieval.104-106 Antigen retrieval typically involves the application of high 

temperature treatment along with the use of a buffer solution, in an effort to 

reverse the protein cross-linking and return a tissue to its native state.104  

Development of methods to effectively and reproducibly carry out antigen 

retrieval on FFPE tissue specimens has allowed for the standardization of IHC 

protocols and has recently opened the door to a vast collection of archival clinical 

samples to be analyzed for genomic and proteomic information. For protein 

identification, approaches using either liquid chromatography coupled to tandem 

mass spectrometry (LC-MS/MS) 106-109 or 2D gel electrophoresis110 have been 

reported. Recently, a 2D gel based study showed that the same proteins can be 

identified independently of the type of preservation used.111  These authors 

reported that when the appropriate antigen retrieval protocol is applied, the level 

of protein identification was found comparable to that of fresh frozen tissues.  

 In order to comprehensively evaluate the diagnostic, prognostic, and 

therapeutic value of gene and/or protein expression in clinical tissue specimens, 

it is necessary to analyze a large number of samples from patients in different 

stages of disease.112 In this regard, tissue microarrays (TMA) were originally 
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developed to facilitate the molecular and pathological analysis of tissues in a 

massively parallel and high-throughput approach.112-114 A TMA consists of a 

paraffin block in which as many as 1000 cylindrical tissue biopsies from individual 

tumors are distributed into a precise array.112 Sections cut from this array enable 

investigation of DNA by fluorescence in situ hybridization (FISH), RNA by mRNA 

in situ hybridization, or proteins by IHC, from each of the biopsy samples.  

 We have developed an IMS method incorporating antigen retrieval and in 

situ enzymatic digestion to analyze the protein content of tissue microarrays 

(TMA) containing FFPE non-small-cell lung cancer (NSCLC) biopsies.115  The 

TMAs used in this study contained various types of non-small-cell lung cancer 

(NSCLC) biopsies including squamous cell carcinoma, adenocarcinoma, and 

bronchioloalveolar carcinoma as well as non-cancer tissue from matched 

individuals.  MALDI IMS was used to analyze these samples in a high-throughput 

fashion providing proteomic data from discrete regions of each biopsy. We 

demonstrate, as previously observed at the protein level from fresh frozen tissue 

65, that a histological classification of lung cancer can be effectively accomplished 

at the peptide level on FFPE tissues. The ability to detect and characterize tumor 

marker proteins for a large cohort of samples in a high throughput approach will 

be of significant benefit not only to investigators studying tumor biology, but also 

to clinicians for diagnostic and prognostic purposes. 
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Results 

 The antigen retrieval protocol used in these studies enables the analysis 

of FFPE tissues using the in situ digest methodology.  Figure 18 shows the 

spectra generated on two serial FFPE TMA sections where one section was 

subjected to the antigen retrieval protocol and the other was not (control).  It is 

clear from these results that antigen retrieval is necessary and effective in 

allowing the enzyme access to the proteins in these tissues.  The spectra 

generated from the section that underwent antigen retrieval shows hundreds of 

tryptic peptide peaks while only trypsin autolysis peaks were detected from the 

control section.  Autolysis refers to the process where the trypsin enzyme begins 

to digest other trypsin molecules.  A small degree of autolysis is expected, as in 

Figure 18 b.), however the excessive amount of autolysis shown in Figure 18 a.) 

is indicative of virtually no proteins being accessible to the enzyme.   

The FFPE TMA analyzed in this study contains 1 mm needle core 

biopsies from lung tumors diagnosed as adenocarcinoma and squamous cell 

carcinoma, as well as adjacent normal control tissue and other NSCLC tumors.  

This study only considers the adenocarcinoma and squamous cell carcinoma 

biopsies due to the limited number of samples for the other cancer types.  The 

layout of the TMA analyzed is such that there are duplicate and, in some cases, 

triplicate needle core punches for several of the biopsies.  Therefore, the TMA 

contains a total of 24 squamous cell carcinoma needle cores from 15 different 

patients (7 unpaired, 7 duplicates, and 1 triplicate) and 19 adenocarcinoma 
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needle cores from 11 different patients (3 unpaired and 8 duplicates) that contain 

cancerous regions and are considered in the study.     

In the discovery and protocol development process, a hematoxylin and 

eosin (H&E) stained section of the TMA was first analyzed using light microscopy 

and the cancer, non-cancer, and normal regions were marked in each biopsy 

based on histology.  Non-cancer regions consist of tissue that is not cancerous 

but is not normal either, including areas of inflammation, scar tissue, etc. The 

cellular regions that were not able to be clearly identified were not marked and 

therefore were not used in the statistical model generation step. This annotated 

tissue section was then co-registered with a serial TMA section analyzed by 

MALDI IMS, (Figure 19), enabling individual mass spectra obtained from each 

coordinate position on the tissue (pixel) to be linked to that same precise 

histological region in the TMA. 

The mass spectrum generated at each spot on the digested tissue 

typically contain many hundreds of peaks with a signal-to-noise (S/N) > 5 (Figure 

20 (a)). The ensemble of tryptic peptides at each position represents a variety of 

proteins with a broad range of functionality and molecular weights. The signal 

intensities of the tryptic peptides are mediated by several factors, i.e. protein 

concentration differences, variations in enzymatic digestion efficiency, and 

differences in desorption and ionization efficiencies.  Nonetheless, mass spectra 

from similar histological regions contain peak profiles with a high degree of 

concordance, demonstrating a consistent and reproducible methodology as 

shown in Figure 21.  This figure illustrates, as expected, that the average spectra 
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generated from the cancer regions of two duplicate biopsies are extremely 

similar.  This reproducibility is further exhibited using a t-test and minimum 1.6-

fold intensity difference comparison for the 200 most intense peaks in the 

average spectrum from the cancer regions of each biopsy.  Based on these 

criteria, it was determined that there were no statistically significant differences in 

any of the peak intensities between the two biopsies.  It should be noted that 

these are two different needle cores form the same biopsy and thus are not 

identical pieces of tissue. 

The protease hydrolysis step is essential to generate peptide fragments 

derived from non-crosslinked domains and enable identification directly from their 

location in the tissue. Typically, the process generates hundreds of tryptic 

peptides in a mass range (m/z 500-3000) amenable for sequence analysis using 

a MALDI-TOF/TOF instrument.  Thus, selected peptides are desorbed and 

sequenced directly from the tissue and subsequently linked to the respective 

intact proteins originally present.  

Currently, we have identified ~50 proteins directly from the lung tumor 

TMA using MALDI MS/MS sequence analysis (Appendix A). An example of an 

MS/MS spectrum acquired directly from the FFPE-TMA and sequenced as a 

peptide from the protein S100-A9 is shown in Figure 20 (b).  Additionally, five 

fully annotated MS/MS spectra are included in the Appendix B to provide a 

detailed illustration of the spectral quality that can be obtained from carrying out 

MS/MS with a MALDI-TOF/TOF instrument directly from a tissue.  
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The ability to visualize the spatial localization of a set of tryptic peptides 

generated from a single parent protein provides an additional level of validation, 

given that the distribution of these species should be identical. For example, heat 

shock protein beta-1 was found to be localized almost exclusively to the cancer 

regions of a subset of the squamous cell carcinoma biopsies.  Three tryptic 

peptides from this protein were detected and sequenced using MS/MS sequence 

analysis, including m/z 987.60, 1163.62, and 1905.99.  Figure 22(a) shows the 

average spectra for three different squamous cell carcinoma biopsies, including 

two from which the tryptic peptides for heat shock protein beta-1 were was 

detected and identified, and using MS/MS sequence analysis, as well as a third 

biopsy where this protein was not detected.  The zoomed spectra view for the 

three tryptic peptides from this heat shock protein beta-1 show the consistent 

peak distributions for proteins detected at similar levels in different tissue 

samples.  Furthermore, Figure 22(b) illustrates the similar ion density distribution 

of these three peptides across the TMA. 

The layout of the TMA used in these analyses is shown in Figure 23(a). 

This TMA was constructed to contain duplicate needle cores from several of the 

tumor biopsies along with unpaired biopsies and a set of biopsies from adjacent  

non-involved normal lung tissue. For statistical analysis, the duplicate biopsies 

are separated into two datasets; set 1 is used as a training set to build the 

classification models and set 2 is used to evaluate the accuracy of this model 

through cross-validation.  The first step in analyzing the data set generated from 

the imaging experiment is to develop a classification model that can 
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differentiate the different cancer regions from the non-cancer and normal regions. 

The classification models are generated by first grouping together the spectra 

from each of the cancer and non-cancer regions into separate folders for each 

biopsy in the TMA. This is completed using the cancer diagnoses and marked 

histological regions on each biopsy as shown in Figure 23(b).  Since the average 

size of a matrix spot in these analyses is ~175 μm, it is possible that some matrix 

spots are positioned across multiple histological regions, creating a mass 

spectrum partially representative of each of the underlying cell types. In the 

training phase, only spectra that are clearly located within a single histological 

region are included for generating the statistical classification models.  The 

spectra which meet this positional criterion in set 1 of the TMA patient biopsies  

are exported into the appropriate adenocarcinoma, squamous cell carcinoma, 

non-cancer, or normal class groupings to be used for model generation. For 

example, Figure 24 shows the average spectra for a squamous cell carcinoma 

needle core biopsy overlaid with the average spectra from a needle core biopsy 

taken from adjacent normal tissue from same patient.  The peak distributions in 

these two spectra are very different and there are clearly a large number of 

peptides present that can be used as class identifiers.  Several approaches can 

be used to systematically identify peaks that sufficiently distinguish the various 

tumor classes from each other.  The most straightforward way to do this is to 

combine the spectra in each group to create an average spectrum representative 

of a class identified through histology. The peaks present in these average 

spectra can then be compared through statistical analysis to identify a subset of  
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peaks that are significantly different between each group and can therefore be 

used as the class identifiers.  To do this, the statistical software (ClinPro Tools, 

Bruker Daltonics) was used to create a table of average intensity and standard 

deviations for a set of the 200 most intense peaks in the average spectrum for 

both the adenocarcinoma and squamous cell carcinoma samples.  The set of 

200 peaks were evaluated between samples using a t-test and minimum three-

fold intensity difference average comparison to determine a list of class 

identifiers.  The limitation of this method is that it is possible that peaks which 

may be significant among a small subset of spectra in a group will become 

insignificant when averaged with the other spectra in that group.  For example, 

the peptide at m/z 1410.7, a tryptic peptide from keratin, type II cytoskeletal 5 

(KRT5), shows a distribution localized exclusively to a subset of the squamous 

cell carcinoma biopsies (Figure 25).  This is further illustrated when a statistical 

comparison of the average peak intensity in the squamous cell carcinoma 

biopsies for m/z 1410.7 is compared to the set of adenocarcinoma biopsies.  A 

significance analysis using a minimum two-fold intensity difference threshold and 

a t-test shows that when all spectra from each of the adenocarcinoma and 

squamous cell carcinoma biopsies in the training set are combined into two 

average spectra, m/z 1410.7 is not a significant class identifier.  However, when 

a subgroup of squamous cell carcinoma biopsies which do express cytokeratin 5 

are averaged and compared to the adenocarcinoma biopsies, this peak is a 

significant classifier.   
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To address the heterogeneity of peak distributions for biopsies with the 

same diagnosis, it may be necessary to first cluster the samples within each 

histology class based on a similarity criteria.  This is done by comparing the 

average intensity and standard deviation calculated in the average spectrum for 

each individual adenocarcinoma sample in the TMA to the values in the average 

spectrum for each individual squamous cell carcinoma sample and vice versa.   

A similarity value for each comparison was calculated by assessing the number 

of peaks out of the 200 that were determined to be significantly different between 

the two samples.  This value is used to evaluate the heterogeneity of peak 

distributions within a class (i.e. adenocarcinoma) and between classes (i.e. 

adenocarcinoma vs. squamous cell carcinoma).  This similarity value is used as 

a general measure of the reproducibility for this method by comparing the peak 

distributions of two different needle core biopsies that were taken from the same 

patient sample.  A list of class identifiers was developed by tabulating the 

frequency that each peak is determined to be statistically different between the 

individual adenocarcinoma and squamous cell carcinoma samples.  These peaks 

are used to cluster patient samples with the same pathological diagnosis into 

subclasses with other samples having a similar peak distribution. 

It was also possible to classify the adenocarcinoma and squamous cell 

carcinoma regions successfully using the combined average spectra for each 

group to develop a peak list of class identifiers.  The classification models were 

built using a support vector machine (SVM) algorithm which can then classify 

spectra based on the supervised learning from the training set.  The SVM 
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algorithm used in these experiments incorporated 73 peaks, determined through 

statistical comparison of the peaks in the training sets for both adenocarcinoma 

and squamous cell carcinoma as described above.  The SVM model was run 

against all spectra in the data set and the outcome of each classification was 

visualized using the class imaging function in FlexImaging 2.0. For example, 

Figure 26 displays the statistical classification of four TMA biopsies that are in 

agreement with the diagnosis made based on histology.  This model classified 

the spectra from regions marked as adenocarcinoma with an accuracy of 97.9% 

(140/143 spectra) and squamous cell carcinoma with an accuracy of 98.6% 

(141/143 spectra).  Another way to evaluate these data is a comparison of 

individual patients and on this basis, all 19 of the adenocarcinoma biopsies and 

all 24 of the squamous cell carcinoma biopsies were classified correctly.  In the 

adenocarcinoma, the 3 misclassified spectra were dispersed randomly 

throughout the dataset as single occurrences and therefore had little effect on the 

overall patient classifications.  In the squamous cell carcinoma dataset, the two 

misclassified spectra came from a single biopsy in which the remaining 9 out of 

the total 11 spectra were classified correctly as squamous cell carcinoma.  It is 

noted that the MS data was compared to normal histology/pathology, itself not a 

gold standard.   
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Discussion 

A comprehensive understanding of the mechanisms behind 

carcinogenesis, tumor progression, and metastasis will require an in-depth 

analysis of not only the genome, but also the proteome, that direct central 

components in the signaling pathways that drive neoplasia.116 Whereas 

mutations in the genomic contents of cells are known to be the principal cause of 

the onset of carcinogenesis, detecting the changes induced at the protein 

expression level should prove invaluable in characterizing the molecular 

machinery responsible for neoplasia.116 These protein patterns should provide 

information of the underlying cellular processes that control the development of 

cancer and subsequent metastasis. Although mRNA patterns can be used to 

define subclasses and prognostic subsets of lung carcinomas 65, 117-119, they 

generally are not able to identify the proteins expressed in a tissue and how 

these proteins are modulated.  Therefore, direct analysis of the proteome in 

cancer tissues may provide a more accurate representation of the current 

pathological state.   

In this work we provide evidence that using on-tissue digestion coupled 

with imaging mass spectrometry (IMS) and statistical classification distinguishes 

different lung cancer histology’s and sub-classify individual cancer types.  Protein 

expression and relative quantification data can be generated for multiple patient 

tissue samples in a single experiment.  This creates a platform for comparison 

which could be valuable in determining protein markers indicative of various 
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disease states and other clinical information such as prognosis and treatment 

effectiveness.  

The data presented is based on a single TMA for a small patient cohort.  

The experiments described in this work were aimed at demonstrating the 

feasibility of classification of tumor samples in a TMA at the molecular level using 

MALDI IMS.  In order to carry out a more systematic biomarker discovery, it will 

be necessary to evaluate the classification models built using this sample group 

on a much larger set (>100) of patient biopsies.  This will also be essential in 

determining the true diagnostic and prognostic value this method of tissue 

analysis can offer.  In order to effectively manage the enormous dataset 

generated in such experiments, new bioinformatics tools and workflows will need 

to be developed that better allow the user to evaluate model generation and 

classification process. 

One of the primary advantages of IMS is the visualization of the molecular 

content of a sample while maintaining the spatial integrity.  This aspect proves 

essential for the analysis of samples which contain a heterogeneous distribution 

of cell types.  For example, resected lung tumor biopsies exhibit a wide range of 

cellular morphologies, often containing areas of cancer cells dispersed within 

normal and preneoplastic tissue regions.  Analysis of the proteome from these 

various regions requires that the cellular structure of the tissue be maintained.  In 

situ trypsin digestion provides this distinct capability and, when coupled with IMS, 

provides a descriptive analysis of a tissue’s protein contents relatively quickly in a 

single experiment.  Protein identification directly from tissue is not always 
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straightforward because of the large number of peptides generated from 

proteolysis.  We have recently begun analyzing these samples using a Fourier 

transform ion cyclotron resonance mass spectrometer (FT-ICR MS) in an effort to 

address the complexity of the spectra through high resolution and high mass 

accuracy detection.  Although the time-of-flight (TOF) mass analyzer has 

extraordinary analysis speed and throughput, it lacks the mass resolution needed 

to resolve all off the detected ions.  Nonetheless, the advantage of maintaining 

the spatial location of the identified species is critical in achieving a 

comprehensive analysis of these highly heterogeneous tissue samples.    

 

Materials and Methods 

Materials. HPLC grade acetonitrile (ACN) and trifluoroacetic acid (TFA) were 

purchased from Fisher Scientific (Pittsburgh, PA). Alpha-cyano-4-hydroxy-

cinnamic acid (CHCA) was purchased from Fluka (Buchs, Switzerland) and used 

without further purification. Trypsin Gold was purchased from Promega (Madison, 

WI). ITO-coated conductive slides were purchased from Delta-Technologies 

(Stillwater, MN).  Tissue microarray (TMA) consisting of 100 duplicate needle 

core biopsies (1 mm) from 50 patients diagnosed with non-small cell lung cancer 

and 10 adjacent normal lung tissue punches.  The layout of the TMA includes 

duplicate needle core punches from 21 adenocarcinoma biopsies, 21 squamous 

cell carcinoma biopsies, 4 bronchioloalveolar  carcinoma biopsies, 2 metastatic 

colon cancer biopsies, 1 carcinoid biopsy, and 1 plasma cell granuloma biopsy.  

Due to limited numbers for the other cancer types only the adenocarcinoma and 
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squamous cell carcinoma biopsies are considered in these experiments.  Several 

of the needle cores from the adenocarcinoma and squamous cell carcinoma 

biopsies did not contain a sufficient amount of tissue or did not contain regions of 

cancer.  Therefore, the TMA contains a total of 24 squamous cell carcinoma 

needle cores from 15 different patients (7 unpaired, 7 duplicates, and 1 triplicate) 

and 19 adenocarcinoma needle cores from 11 different patients (7 unpaired and 

7 duplicates) that contain cancerous regions and are considered in the study.      

  

Tissue Preparation. Serial 5 µm thick sections were cut from all TMA blocks 

using a microtome. Sections from the TMAs were either mounted onto ITO-

coated conductive slides for MALDI MS analysis 57, or onto regular glass 

microscope slides for H&E staining. Paraffin removal was carried out using 

washes in xylene (100%, twice for 20 min) and graded ethanol washes (100% 

twice for 5 min and in successive washes in 95, 80 and 70% for 5 min each). The 

slides were then allowed to fully dry in an oven for 1 h at 65 °C. Antigen retrieval 

was performed by heating the section in a tris-EDTA buffer at pH 9 at 95°C for 

20 min in a sealed vessel. 

 

On-Tissue Digestion. Trypsin (100 μg) was dissolved in 200 μL of 50 mM acetic 

acid to obtain a stock solution with a concentration of 0.5 μg/μL. A 50 μL aliquot 

of this stock solution was activated by adding 500 μL of 100 mM ammonium 

bicarbonate to reach a pH of ~8 and a final trypsin concentration of 0.045 μg/μL. 

This trypsin solution was automatically spotted onto the TMA tissue sections 
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using a Portrait 630 reagent multi-spotter (Labcyte, Sunnyvale, CA) into an array 

incorporating 250 μm center to center spacing between individual spots, each of 

which were approximately 175 μm in diameter. The trypsin was spotted over a 

series of 30 iterations while depositing 1 drop (~160 pL per drop) each iteration to 

achieve a total spot volume of ~4.8 nL. Between each iteration, the deposited 

trypsin solution was allowed to dry (~5 min time intervals per iteration). The 

trypsin spotting proceeded at room temperature (~21°C) over a time period of 

~2.5 h, allowing ample time for digestion to take place. Following digestion, a 

solution consisting of 10 mg/mL of CHCA in 1:1 ACN/0.5% TFA (aq.) was 

spotted directly onto the array of tryptic spots over 30 iterations at 1 drop per 

iteration.  

 

Imaging Mass Spectrometry of Digested TMA Section. The printed arrays 

were analyzed using an Ultraflex II MALDI TOF/TOF mass spectrometer (Bruker 

Daltonics, Billerica, MA)  equipped with a smart beam laser 97 and controlled by 

the Flex Control 3.0 software package. The mass spectrometer was operated 

with positive polarity in reflectron mode and spectra acquired in the range of m/z 

700-5000. Image acquisition of the spotted arrays was carried out using the Flex 

Imaging 2.0 (Bruker Daltonics, Billerica, MA) software package. A total of 1600 

spectra were acquired at each spot position in a customized spiral raster pattern 

in 200 shot increments at a laser frequency of 200 Hz. The customized raster 

pattern was used to sample the entire spot area. Ion images were assembled 

using the Flex Imaging 2.0 software package.  
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MS/MS Sequence Analysis of Tryptic Peptides.  MALDI MS/MS 

measurements of selected peptides were acquired using TOF/TOF fragmentation 

directly from the digested TMA sections.  Each tryptic peptide sequenced was 

selected and fragmented manually and the generated spectra were processed in 

Flex Analysis 3.0 (Bruker Daltonics, Billerica, MA).  Processing included 25 

cycles of a Savitzky-Golay smoothing algorithm with a width of .15 and baseline 

subtraction using a median algorithm with a flatness value of .5 and a median 

value of .3.  Monoisotopic peaks with a S/N > 8 were selected in each MS/MS 

spectrum using the SNAP peak picking algorithm.  All MS/MS spectra were 

loaded into Biotools 3.0 (Bruker Daltonics, Billerica, MA) and converted into a 

single mascot generic format (.mgf) data file.  This file was submitted into a 

MASCOT (Matrix Science, Boston MA) search engine and run against the Swiss-

Prot database to match tryptic peptide sequences to their respective intact 

proteins. The MS/MS spectrum search was performed with a parent ion tolerance 

of 200 ppm and a fragment ion tolerance of ±0.4 Da. The search criteria also 

included up to 3 missed cleavages and variable modifications including, protein 

N-terminus acetylation, histidine/tryptophan oxidation, and methionine oxidation.  

 

Data Analysis. Statistical analyses of MS profiles were carried out using ClinPro 

Tools 2.0 (Bruker Daltonics, Billerica, MA).  Classes of spectra were loaded into 

the software and baseline correction was achieved using a top hat algorithm with 

a 10% minimal baseline width.  ClinPro Tools automatically normalizes all 

spectra to their own total ion count (TIC). Thus, for each spectrum the TIC is 
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determined as the sum of intensities from all data points in the spectrum. 

Subsequently all data point intensities of this spectrum are divided by the 

obtained TIC value bringing all intensities into the range of [0,1].  Peaks in the 

spectra were selected manually and the maximum intensity within each of the 

defined peak integration areas was used as the comparative value.  The 

classification model used in this analysis was built using a support vector 

machine algorithm (SVM) using 73 peaks determined through statistical 

comparison by means of a t-test and minimum three-fold intensity difference 

average.  The number of neighbors for the K-NN classification parameter in the 

SVM settings was set to 3. 
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CHAPTER IV 
 
 
 

HIGH-THROUGHPUT PROTEOMIC ANALYSIS AND STATISTICAL 
COMPARISON OF MULTIPLE FORMALIN-FIXED PARAFFIN-EMBEDDED 

LUNG CANCER TISSUE MICROARRAYS  
 
 
 

Abstract 
 

 We have previously shown that in situ digestion coupled with imaging 

mass spectrometry can be used to map protein distributions in a large number of 

patient samples compiled into an FFPE-TMA.  However, to elucidate the full 

potential of this technology for the proteomic analysis of FFPE clinical specimens 

it will need to be validated on a sufficiently large sample set.  Here we use this 

method to analyze a set of four TMAs containing samples from 115 different 

NSCLC patients diagnosed with adenocarcinoma and squamous cell carcinoma.  

Statistical analysis of the peptide distributions is conducted to reveal peaks that 

can distinguish the adenocarcinoma patients from the squamous cell carcinoma 

patients with high sensitivity and specificity.  Using these peaks, classification 

models are generated that can accurately identify these NSCLC sub-histologies.  

Several disease relevant proteins were identified directly from histopathological 

regions of interest in these analyses.  Importantly, many of these proteins and 

distributions correlate with results previously reported in the literature.  The data 

presented in this work reveals the potential of this method to aid pathologists in 

differentiating various tissue histologies and elucidating new cancer phenotypes. 
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Introduction 
 

 Pulmonary carcinomas are typically divided into two groups, small cell 

lung cancer (SCLC) and non-small cell lung cancer (NSCLC).  NSCLC is further 

divided into three main histological subtypes: squamous cell carcinoma (SCC), 

adenocarcinoma (AC), and large cell carcinoma (LCC).  The accurate pathologic 

classification of lung cancers to distinguish NSCLC from SCLC is critically 

important as a prognostic factor and in the evaluation of treatment modalities.120  

For example, the biological characteristics and responsiveness to chemotherapy 

is profoundly different for patients with NSCLC (unresponsive) and SCLC 

(responsive).  In many cases, pathologists are able to sufficiently distinguish 

these classes of lung cancer by evaluating the histological features of a biopsy 

with light microscopy.  However, several factors including poorly differentiated 

cells, crush artifact, tumor necrosis, and limited tumor representation can 

preclude making a differential diagnosis using morphological examination 

alone.120   

 In the past, it was generally thought that specific sub-classification of 

NSCLC cases was unnecessary because all subtypes were considered to have 

the same prognosis and were therefore treated in a similar manner.121  However, 

recent advances in targeted molecular based therapies have made the 

recognition and sub-typing of NSCLC increasingly important.  For example, the 

anti-VEGF monoclonal antibody bevacizumab (Avastin; Genentech, South San 

Francisco, CA) is FDA approved for treatment of unresectable, locally advanced, 

recurrent, or metastatic, non-squamous NSCLC.  However, patients with 
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squamous cell carcinoma cannot be administered Avastin because a 30% 

mortality rate has been observed in these individuals due to pulmonary 

hemorrhaging.122, 123   

As with differentiating NSCLC and SCLC, making the distinction in NSCLC 

patients between glandular (AC) and squamous (SCC) differentiation can be 

challenging in poorly differentiated carcinomas, especially in small biopsy tissues 

obtained by bronchoscopy.120  For example, Stang et al. examined the 

agreement in the histopathological evaluation of 688 lung cancer patient tissues 

between two independent pathologists.  The observed agreement was 65% with 

a kappa value of .54 (95% CI: 0.49-0.58).  The kappa statistic is an index which 

compares the agreement against that which might be expected by chance. When 

this value is broken down based on the different histologies examined, it is clear 

that the agreement is highest for the diagnosis of small cell carcinoma (0.94; κ = 

0.82) and significantly lower for squamous cell carcinoma (0.81; κ = 0.55) and 

adenocarcinoma (0.81; κ = 0.55).  Based on these values, the authors concluded 

that “if histological typing of lung cancer beyond the distinction between small-cell 

versus non-small-cell carcinoma is critical in a study, we would suggest to 

generally add ancillary techniques including histochemistry, 

immunohistochemistry, electron microscopy, and other molecular biological 

methods that may increase the reliability of the histopathological evaluation...”  

These limitations have motivated research initiatives which focus on identifying 

molecular markers that could aid pathologists in accurately making a differential 

diagnosis when morphological examination alone is not adequate.   
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 In the previous chapter we demonstrated that in situ digestion followed by 

MALDI IMS analysis could effectively be used to map protein distributions in 

FFPE TMA samples.  In a single experiment, this method was used to 

reproducibly detect hundreds of peptide peaks simultaneously in tissues from 

several different NSCLC patients.  By combining the MS information with the 

histological assessment carried out by the pathologist, the resulting dataset was 

used to determine peak signatures that could sufficiently distinguish the 

adenocarcinoma and squamous cell carcinoma patients.  The potential of this 

technology was clearly established, however further validation of its applicability 

to clinical samples will require analysis of a large number of patient samples 

across multiple TMAs.  Here we apply this method for the proteomic analysis of a 

set of cross institutional TMAs containing a total of 115 different NSCLC patients.  

Peak distributions unique to the different cancer subtypes are identified through 

statistical comparison and used to build classification models.  The biological 

relevance of the proteins detected in these samples is discussed and compared 

to literature reports.        

 

Results 

  In situ tryptic digestion followed by MALDI IMS was conducted on four 

separate FFPE lung cancer TMAs.  A total of 160 separate tissues were 

analyzed in these experiments from 115 NSCLC patients, including 52 diagnosed 

with adenocarcinoma and 63 diagnosed with squamous cell carcinoma.  For 

each TMA section analyzed by mass spectrometry, a serial section was collected 
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and stained with H&E.  The stained sections were reviewed by a pathologist and 

the relevant pathological regions of each tissue were marked accordingly.  These 

annotated images were then overlaid with the sections analyzed using mass 

spectrometry enabling each mass spectrum to be assigned to a specific patient 

and histological region.   

Spectra acquired from regions marked as either adenocarcinoma or 

squamous cell carcinomas were grouped together for statistical analysis.  Each 

spectrum contains several hundred peaks representing a diverse population of 

tryptic peptides.  The monoisotopic peaks present in each spectrum were 

identified and extracted as a peak list containing m/z values and their respective 

intensities.  For statistical analysis, all spectra acquired from each individual 

patient were averaged into a single spectrum and peak distributions in these 

average spectra were then compared. 

  A total of 335 unique monoisotopic peaks were detected in these datasets 

using a S/N 5 cutoff.  It is noted that this value increases to 602 when a S/N of 3 

cutoff is used.  For statistical analysis and classification, it was determined that 

the set of 335 peaks included a sufficient number of classifiers to distinguish the 

two cancer classes and that use of the larger peak lists (602) did not increase the 

accuracy.  However, it is likely that the peak information contained in the 

expanded peak lists generated using a lower S/N threshold does contain 

valuable information and may be especially useful in revealing subtypes within a 

specific histology. 
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Significance analysis of microarrays (SAM) was conducted on the set of 

335 peaks to determine m/z values that were significantly different between the 

two cancers and therefore could be used to distinguish the patient classes.  

Briefly, SAM is a statistical technique originally developed for determining 

significant genes in a set of microarray experiments.124  This method can be 

easily adapted to evaluate protein/peptide expression data in a set of patients 

because the general concept of the two analyses is the same, in that an 

expression level of a specific attribute (gene or protein) is measured.  The input 

to SAM is the peak intensity values across all patients, as well as a class defining 

variable, which in these studies was either squamous cell carcinoma or 

adenocarcinoma.  SAM conducted a two-class unpaired comparison using a t-

statistic over 5000 permutations.  SAM permutes the data by scrambling the label 

of samples and therefore assumes that all null hypotheses are true and there are 

no differences in the peptide expression levels between the two cancer classes.  

For each permutation, SAM assigns a score of relative difference for each peak 

and ranks these by their magnitude.  This value is compared to the expected 

relative difference under the null hypothesis, which is defined as the average of 

the ranked scores of relative difference over all permuted data.  The peaks that 

show relative difference levels deviating from the expected value under the null 

hypothesis by an amount greater than a thresholding parameter, Δ, are 

considered significant.  A minimum fold intensity change value is also used to 

define the significance cutoff value.   
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 The SAM comparison determined a set of 84 peaks out of the set of 335 

that were significantly different between the adenocarcinoma and squamous cell 

carcinoma patients with a minimum 2-fold intensity change and a false discovery 

rate <1 (Figure 27).  In terms of distribution, 58 of these markers were 

significantly higher in the squamous cell carcinoma patients and 26 were higher 

in the adenocarcinoma patients. 

From this set of 84 peaks, a subset of 29 peaks was determined to be 

optimal for distinguishing the two histological classes using a feature selection 

function and was used to build an SVM classification model.  However, through 

careful evaluation of the peaks present across the patients in these datasets it 

became clear that a small percentage of patients diagnosed with 

adenocarcinoma exhibited peak distributions highly consistent with squamous 

cell carcinoma patients and vice versa.  In other words, the spectra from these 

patients’ showed high intensity values for the peaks determined through SAM to 

be significant for the cancer subtype contrary to their diagnosis.  This is clearly 

seen when all patients are clustered based on these 29 peaks, as shown in 

Figure 28.   An even smaller percentage of patients did not express (above 

threshold) any of the 29 peaks used in the model.  In total, 10 patients (3 

adenocarcinoma and 7 squamous cell carcinoma) exhibited peak distributions 

consistent with the opposite class and 6 patients were unclassifiable using these  
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peaks.  Therefore, these outlier patients were excluded from the model 

generation and classification steps. 

Using these 29 peaks, a set of SVM classification models were built that 

could classify the remaining 99 patients with a high degree of accuracy, as 

shown in Table 2.  Models a) and b) are based on an iterative train/test workflow 

where the dataset is split into a training set and a test set.  The SVM model is 

built on a training set using the 29 peaks then used to classify the remaining test 

set.  For model a) the training set consisted of 80% of the patients and the 

remaining 20% were used as the test set.  This splitting process for the training 

and test sets was randomly repeated 100 times and the average classification 

accuracy using this model was 99.3%.  To further demonstrate the robustness of 

these 29 peaks as classifiers, a second SVM model, b), was built using a 50/50 

split for the training and test sets and the average classification accuracy over 

100 repetitions was 98.2%.  Model c) was built using a slightly different 

approach, where the SVM was trained using a set of adenocarcinoma and 

squamous cell carcinoma template spectra.  The template spectra were built 

based on the average value for each peak across all patients from that class.  

The SVM model was then generated using these template spectra and used to 

classify the entire dataset.  This model was able to classify the patients with 

100% accuracy. 

The template model was also used to conduct a spectrum based 

classification, where each individual spectrum from each patient was classified 

without averaging.  The results of this analysis are outlined in d).   
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Discussion 

Here we show that the analysis of FFPE TMAs using on-tissue digestion 

coupled with MALDI IMS can simultaneously reveal the distribution of numerous 

proteins across a large number of patient samples.  One important aspect of this 

technology is that it can be applied to tissues acquired at different institutions, 

and therefore assembled into different TMA blocks, and the results generated 

from these separate analyses can be effectively compared.  We applied this 

methodology to four separate TMAs including two containing NSCLC patient 

samples from Vanderbilt University Medical Center and two assembled by an 

independent biotechnology company (Folio Biosciences; Columbus, OH).     

Several hundred different peptide distributions were detected in these 

samples using IMS.  By combining the MS information with the histological 

evaluation carried out by the pathologist, these distributions can be linked to 

specific cellular regions of interest.  This workflow can discover peak patterns 

that are specific to the squamous cell carcinoma or adenocarcinoma subtypes.  

These peak distributions are then used to develop statistical classification models 

capable of assigning an unknown spectrum from a test set to the appropriate 

class.   

As outlined in Table 2, the models generated were able to classify the 

selected test data with remarkable accuracy using 3 different approaches.  

However, the reported accuracies were contingent upon the removal of a 

relatively small subset of patient outliers from each class.  These patients were 

removed from the dataset prior to conducting the model train/test workflow 
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because they either exhibited peak profiles consistent with the histology contrary 

to that reported during the histological evaluation by the pathologist or they did 

not express any of the peaks used for classification above the threshold levels.   

A number of factors may explain this observation.  For one, the diagnoses 

made by the pathologist, to which the observed peak distributions are compared 

to, are not necessarily a “gold standard”.  As mentioned in the introduction, 

several studies comparing the diagnoses made by independent pathologists on 

NSCLC tissues reported a high level of disagreement.  The subjectivity of using 

morphological examination alone is likely compounded by factors such as poorly 

differentiated cells and limited tissue quantities.  Our method provides an 

objective measurement of protein expression in these patients and therefore 

should not be limited by factors such as a small quantity of tissue or 

undifferentiated cells (provided the underlying biology has not changed).  This 

assertion is backed by the fact that the vast majority of patients in each class 

exhibit a peak profile that can be accurately identified using a panel of 29 peaks.  

However, it is possible that some tumors exhibiting cellular differentiation 

attributed to a specific NSCLC histological subtype, such as adenocarcinoma or 

squamous cell carcinoma, may exhibit proteins that are typically unique to a 

different histology.  This appears to be the case for the patient outliers in our 

dataset seeing that the histological diagnosis assigned to these tissues were 

agreed upon by at least two lung cancer experts. 

These results are very interesting, though not completely unexpected 

when considering the well-known heterogeneity of lung cancer.125  The 
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hierarchical clustering displayed in Figure 28 clearly shows the presence of 

subgroups within the major histological subtypes of squamous cell carcinoma 

and adenocarcinoma.  This elucidates the complexity involved in the 

classification of squamous cell carcinoma and adenocarcinoma subhistologies in 

NSCLC and further highlights the potential of using MS data to go beyond a 

simple two class distinction.  Determining the relevance of these subgroups in 

terms of clinical characteristics will require analysis of a large patient cohort 

where detailed treatment and follow-up information is available.  

The amount of information contained in these NSCLC patient datasets is 

extraordinary.  The combined MS and histological analysis provides an optimal 

platform to compare proteomic distributions between the patients.  For example, 

many of the proteins identified in these analyses are from the cytokeratin family.  

Cytokeratins (CK) are intermediate filament proteins which make up part of the 

integrated cytoskeleton of both normal and malignant epithelial cells.126  

Cytokeratins are grouped into a type I (acidic, CK9 through CK20) and a type II 

(neutral basic, CK1-CK8) gene family.  The individual cytokeratin proteins 

assemble into non-covalent heterodimers containing one type I species and one 

type II species.  These heterodimers are then organized further into filamentous 

structures that in turn provide structural and mechanical stability to cells and their 

respective tissues.126  The expression of cytokeratins in cells is remarkably tissue 

specific and differentiation dependent, suggesting that the pattern of cytokeratin 

species present in cells is related to their biological function.127, 128   
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 Cytokeratin 8 (CK8) and 18 (CK18) are the major components of all 

simple or single layer epithelial tissues.  The carcinomas that arise from these 

tissues typically continue to express CK8 and CK18 and therefore these proteins 

are commonly used as markers of epithelial derived cancers.  Given the 

specialized functions of CK8 and CK18 in the tissues of different organs, such as 

albumin production in liver cells and casein production in mature mammary gland 

cells, it would be expected that their expression would discontinue in parallel to 

other differentiated functions during malignant conversion and progression.129  

However, detection of CK8 and CK18 has commonly been reported in both well 

and poorly differentiated carcinomas.  Oshima et al.129 thoroughly review the 

oncogenic regulation and function of CK8 and CK18 and provide many 

interesting mechanisms behind this continued expression.  In addition to these 

considerations, several reports have shown the presence of CK8/CK18 in tumors 

derived from tissues that do not naturally express these simple epithelial keratins.  

For example, CK8 and CK18 are not found in stratified epithelia.  However, 

squamous cell carcinomas originating from stratified epithelia do show 

anomalous expression of the CK 8/18 pair.129-132   

    In accordance with the aforementioned IHC studies, CK 8 and CK 18 are 

co-expressed in many of the lung tumor biopsies analyzed in these studies, 

including several cases of squamous cell carcinoma.  For example, Figure 29 

shows the corresponding distributions of a CK 8 peptide and a CK 18 peptide in  

3 squamous cell carcinoma biopsies and 1 adenocarcinoma biopsy from a lung 
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Figure 29 a) H&E stained tissues from 3 squamous cell carcinoma (SCC) patients 
and an adenocarcinoma (AC) patient. b) and c) show the co-expression of a peptide 
from CK18 and a peptide from CK8 across the different patient samples. 
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cancer FFPE-TMA.  Currently, we have identified five peptides specific for CK 8 

and four peptides specific for CK 18 in these tissues.  Interestingly, in correlation 

with the IHC studies, three different patterns of CK 8 and CK 18 expression are 

present in this dataset: 1.) CK 8+/CK 18+ 2.) CK 8-/CK 18+ 3.) CK 8+/CK 18-. 

Recently, these proteins have been associated with several important tumor 

characteristics including invasiveness, metastasis, and drug resistance.133  The 

ability of this method to quickly and specifically detect their presence and map 

their distributions in tissues will facilitate future studies of these proteins.  

 In addition to CK8 and CK18, we have identified 12 different cytokeratin 

species in the lung cancer TMAs.  The results of the SAM evaluation clearly 

illustrate the presence of histology dependent cytokeratin distributions with 

distinctly different levels of expression between the two cancer classes.  For 

example, peptides from cytokeratin 5 and 6 (CK5 and CK6) showed highly 

increased expression levels in the squamous cell carcinoma patients.  In terms of 

patients, detectable levels of CK5 were present in 60 (88%) squamous cell 

carcinoma patients and 27 (51%) adenocarcinoma patients and CK6 in 43 (63%) 

squamous cell carcinoma patients and 2 (3%) adenocarcinoma patients. 

These results are interesting when considering the literature reports on the 

distributions of CK5 and CK6.  CK 5/6 is widely used in modern surgical 

pathology because it characteristically stains squamous carcinomas strongly and 

diffusively.  A recent literature report134   argued that a lung tumor that is not CK 

5/6 positive is not squamous cell carcinoma, although this study was carried out 

on a relatively small set of patients (45 NSCLCs: 24 adenocarcinomas and 21 
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squamous cell carcinomas).  Numerous other studies have also shown the ability 

to use a CK 5/6 antibody for distinguishing pulmonary squamous cell carcinomas 

from adenocarcinomas, yet the reported specificity of this marker in 

distinguishing these histologies varies significantly between studies.120, 134-138 

  We conducted a comparison between the peptide distributions from 

these proteins and the IHC distributions using the CK 5/6 antibody.  One 

important aspect of the antibody used in the abovementioned studies and our 

analyses is that it is a mixture of mouse monoclonal antibodies raised against 

purified CK proteins that shows non-specific reactivity against CK5 and CK6.  For 

clarification in the following figure, it should be noted that the TMA used in these 

experiments consists of triplicate needle core biopsies from each patient and 

therefore the layout is such that each row contains 9 tissue cores (3 cores from 3 

different patients).  Interestingly, when the localizations of CK5 and CK6 are 

mapped using peptides unique to each protein it is clear that their distributions 

are not identical.  For example, Figure 30 a.) shows the distribution of the CK 5/6 

antibody using IHC on triplicate biopsies from two patients diagnosed with 

squamous cell carcinoma.  Figures c and b show the distributions of a peptide  

specific for CK5 and CK6, respectively.  These ion density maps show that the 

distributions of CK5 (m/z 1410.7) and CK6 (m/z 1407.7) are not identical, yet due 

to the non-specific binding of the CK5/6 antibody this cannot be readily 

determined using IHC.   
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These results are significant for several reasons.  First, it is important to 

show that the general ion distributions observed in IMS experiments can be 

validated using alternative methods such as IHC.  Furthermore, this scenario 

highlights the superior molecular specificity that can be achieved using mass 

spectrometry as compared to other imaging methods.   

Other ions, such as peptides from the protein cytokeratin 7 (CK7) showed 

intensity fold-change values of up to 15 times higher in the adenocarcinoma 

patients.  Detectable levels of CK7 were present in 49 (95%) of the 

adenocarcinoma patients and 22 (33%) of the squamous cell carcinoma patients.   

CK7 is commonly used in pathology in combination with CK20 to 

discriminate between metastatic and primary tumors from several different 

organs.139  This highlights another potential application of this method: using the 

protein expression patterns detected in a metastatic tumor to determine primary 

sites of origin.  Unfortunately, metastatic cancer with an unknown primary is one 

of the 10 most common cancer diagnoses, with 3-5% of all cancer patients 

presenting with this condition.140  Determining the primary site of tumor origin is 

important for disease management and prognosis in that a more precise cancer 

diagnosis will lead to a more effective course of treatment and ultimately improve 

the overall outcome.   

Adenocarcinomas are the most common malignant neoplasms of 

unknown primary origin, making up about 60% of all cases.140  Determining the 

tissue origin of metastatic adenocarcinoma can be extremely difficult because the 

microscopic appearance of histological features in these neoplasms is not 
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distinctive enough to make a confident diagnosis.  Therefore, a panel of 

molecular markers is needed to assist in evaluating these tumors and identifying 

their tissue of origin.  This method has the ability to quickly detect a phenotype in 

a tissue and therefore could potentially be an extremely powerful way to discern 

the primary sites for malignant tumors.     

 Cytokeratin fragments detected in the sera of cancer patients have shown 

promise to be a simple, cheap, non-invasive and reliable tool for determining 

prognosis and effectiveness of therapy for certain cancers.  The mechanism 

responsible for the release of cytokeratins or cytokeratin fragments into the 

serum is not completely understood, but is thought to involve multiple pathways 

including proteolytic degradation from dying cells, abnormal mitosis, spillover of 

monomeric cytokeratin peptides from proliferating cells, apoptosis, etc.126, 141-143  

Cytokeratin fragments have been detected in a number of body fluids including 

blood, urine, cyst fluids, ascites, pleural effusions, and cerebrospinal fluid 

following release from cancer cells.126  The fact that in normal, apparently healthy 

individuals, the level of cytokeratin fragments detected in circulation is low and 

increases significantly in patients with carcinomas highlights the significance of 

these results. 

Currently, there are three cytokeratin markers which are commonly used 

as prognostic markers in lung cancer: tissue polypeptide antigen (TPA) for CK8, 

18, and19; tissue polypeptide specific antigen (TPS) for CK18; cytokeratin 

fragments 21-1 (Cyfra 21-1) and CK19.  The level of these markers in serum is 

quantified using various commercially available serological assays.  Analysis of 
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the detected levels of these markers in serum has been demonstrated to assist in 

the early detection of recurrence and to enable a rapid assessment of a patient’s 

response to therapy. 

Several studies have reported that these cytokeratins are prognostically 

significant markers in patients with NSCLC.144-146  Most notably, Cyfra 21-1has 

been shown to be an independent predictor of prognosis in NSCLC 147-150, the 

most widely used serum marker for screening and monitoring of lung cancer145, 

149, 151-155, post therapeutic evaluation 153, 156, and indicator of advanced 

disease.155, 157, 158 

Although promising, the current set of serum tumor markers lack the 

reliable specificity and sensitivity necessary to gain wide acceptance as clinical 

tools.  The clinically relevant data that has been collected using a relatively small 

set of tumor markers makes it reasonable to assume that there are additional 

tumor markers present that have yet to be discovered.  As discussed previously 

(Chapter 1), the extreme complexity of blood makes discovery of tumor markers 

difficult.  This limitation has encouraged research focusing on the direct analysis 

of the resected tumor or tumor biopsy to carry out the biomarker discovery 

phase.  It is logical to hypothesize that the concentration of potential biomarkers 

will be highest in the tumor and its adjacent microenvironment.    

 Our work has revealed a complex pattern of cytokeratin expression in 

NSCLC tumors that may account for the inconsistencies in the literature reports 

regarding these tumor markers.  It would be valuable to assess the correlation 

between the levels of these markers in a patient’s serum and the tumor tissue. 
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Most of the previously reported studies looking at NSCLC serum biomarkers 

have been driven under the assumption that these tumors should express similar 

markers during progression.  However, our results indicate that the protein 

expression patterns of these tumors can be markedly different and it is therefore 

likely that a panel of markers will need to be employed to sufficiently detect these 

tumors.   

 In addition to cytokeratins, many other proteins were identified that 

showed histology specific distributions.  Several of these proteins have 

previously been reported to play a role in lung cancer including apolipoprotein A-

I159, carbonyl reductase160, carcinoembryonic antigen161, aldo-keto reductase 

family 1 C1162, alpha enolase162, glutathione s-transferase162, and annexin A2163 

(Figure 31).  These images were all generated simultaneously in a single 

imaging experiment.  This figure helps put into perspective the extraordinary 

amount of information that can be generated in a single FFPE-TMA imaging 

experiment when it is considered that to generate similar information using IHC, 

seven separate experiments would have to be conducted including controls.  
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Figure 31.  Distribution of the peptides identified from 
7 different proteins that have previously been 
associated with NSCLC. 
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Materials and Methods 

Materials. HPLC grade acetonitrile (ACN) and trifluoroacetic acid (TFA) were 

purchased from Fisher Scientific (Pittsburgh, PA). Alpha-cyano-4-hydroxy-

cinnamic acid (CHCA) was purchased from Fluka (Buchs, Switzerland) and used 

without further purification. Trypsin Gold was purchased from Promega (Madison, 

WI). ITO-coated conductive slides were purchased from Delta-Technologies 

(Stillwater, MN).  Four TMAs containing needle core biopsies from NSCLC 

patients were used in these studies.  Two of the TMAs were assembled at 

Vanderbilt University Medical Center and two were assembled by an 

independent biotech company (Folio Biosciences, Columbus OH).  These four 

TMAs consisted of a total of 157 tissues from 115 different patients diagnosed 

with squamous cell carcinoma or adenocarcinoma by a pathologist.  The tissue 

cores in the Folio Biosciences TMAs were 1.5 mm in diameter and the cores in 

the Vanderbilt TMAs were 1 mm in diameter. 

 

Tissue Preparation. Serial 5 µm thick sections were cut from all TMA blocks 

using a microtome. Sections from the TMAs were either mounted onto ITO-

coated conductive slides for MALDI MS analysis 57, or onto regular glass 

microscope slides for H&E staining. Paraffin removal was carried out using 

washes in xylene (100%, twice for 20 min) and graded ethanol washes (100% 

twice for 5 min and in successive washes in 95, 80 and 70% for 5 min each). The 

slides were then allowed to fully dry in an oven for 1 h at 65 °C. Antigen retrieval 
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was performed by heating the section in a tris-EDTA buffer at pH 9 at 95°C for 

20 min. 

 

On-Tissue Digestion. Trypsin (100 μg) was dissolved in 200 μL of 50 mM acetic 

acid to obtain a stock solution with a concentration of 0.5 μg/μL. A 50 μL aliquot 

of this stock solution was activated by adding 500 μL of 100 mM ammonium 

bicarbonate to reach a pH of ~8 and a final trypsin concentration of 0.045 μg/μL. 

This trypsin solution was automatically spotted onto the TMA tissue sections 

using a Portrait 630 reagent multi-spotter (Labcyte, Sunnyvale, CA) into an array 

incorporating 250 μm center to center spacing between individual spots, each of 

which were approximately 175 μm in diameter. The trypsin was spotted over a 

series of 30 iterations while depositing 1 drop (~160 pL per drop) each iteration to 

achieve a total spot volume of ~4.8 nL. Between each iteration, the deposited 

trypsin solution was allowed to dry (~5 min time intervals per iteration). The 

trypsin spotting proceeded at room temperature (~21°C) over a time period of 

~2.5 h, allowing ample time for digestion to take place. Following digestion, a 

solution consisting of 10 mg/mL of CHCA in 1:1 ACN/0.5% TFA (aq.) was 

spotted directly onto the array of tryptic spots over 30 iterations at 1 drop per 

iteration.  

 

Imaging Mass Spectrometry of Digested TMA Section. The printed arrays 

were analyzed using an Ultraflex II MALDI TOF/TOF mass spectrometer (Bruker 

Daltonics, Billerica, MA)  equipped with a smart beam laser 97 and controlled by 
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the Flex Control 3.0 software package. The mass spectrometer was operated 

with positive polarity in reflectron mode and spectra acquired in the range of m/z 

700-5000. Image acquisition of the spotted arrays was carried out using the Flex 

Imaging 2.0 (Bruker Daltonics, Billerica, MA) software package. A total of 1600 

spectra were acquired at each spot position in a customized spiral raster pattern 

in 200 shot increments at a laser frequency of 200 Hz. The customized raster 

pattern was used to sample the entire spot area. Ion images were assembled 

using the Flex Imaging 2.0 software package.  

 

MS/MS Sequence Analysis of Tryptic Peptides.  MALDI MS/MS 

measurements of selected peptides were acquired using TOF/TOF fragmentation 

directly from the digested TMA sections.  Each tryptic peptide sequenced was 

selected and fragmented manually and the generated spectra were processed in 

Flex Analysis 3.0 (Bruker Daltonics, Billerica, MA).  Processing included 25 

cycles of a Savitzky-Golay smoothing algorithm with a width of .15 and baseline 

subtraction using a median algorithm with a flatness value of .5 and a median 

value of .3.  Monoisotopic peaks with a S/N > 8 were selected in each MS/MS 

spectrum using the SNAP peak picking algorithm.  All MS/MS spectra were 

loaded into Biotools 3.0 (Bruker Daltonics, Billerica, MA) and converted into a 

single mascot generic format (.mgf) data file.  This file was submitted into a 

MASCOT (Matrix Science, Boston MA) search engine and run against the Swiss-

Prot database to match tryptic peptide sequences to their respective intact 

proteins. The MS/MS spectrum search was performed with a parent ion tolerance 
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of 200 ppm and a fragment ion tolerance of ±0.4 Da. The search criteria also 

included up to 3 missed cleavages and variable modifications including, protein 

N-terminus acetylation, histidine/tryptophan oxidation, and methionine oxidation.  

 

Spectra Processing.  All spectra were processed using FlexAnalysis 3.0 (Bruker 

Daltonics; Billerica, MA).  Baseline subtraction was carried out using the median 

algorithm with a flatness of .9 and a median level of .5.  The Savitzky-Golay 

smoothing algorithm was used with a width of .2 m/z and 15 cycles.  

Monoisotopic peak picking was performed using the SNAP algorithm with a S/N 

cutoff of 5 and a quality factor threshold of 150.  Within the processing script a 

function was included to perform a statistical internal calibration (mass error ∆ 50 

ppm) and a background peak removal based on a custom list of pre-determined 

peaks (e.g. trypsin autolysis peaks).  

 

Data Processing.  The monoisotopic peak lists were exported from the 

processed spectra using in-house software (Peak List Exporter, Vanderbilt 

MSRC Bioinformatics Core).  These peak lists were then zero-padded (m/z 700-

3000) at a bin interval of .1 Da to create full spectra containing only the 

monoisotopic peaks chosen by the processing software.  Arrayed peak list 

spreadsheets were generated for all patients using ClinPro Tools 2.0 (Bruker 

Daltonics, Billerica, MA).  All spectra from each individual patient were loaded 

into the software as a single class and the peak statistic export function was used 

to generate a spreadsheet containing all peaks and the respective average 
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intensity values of these peaks for each of the 115 patients.  ClinPro Tools 

automatically normalizes all spectra to their own total ion count (TIC). Thus, for 

each spectrum the TIC is determined as the sum of intensities from all data 

points in the spectrum. Subsequently all data point intensities of this spectrum 

are divided by the obtained TIC value bringing all intensities into the range of 

[0,1]. 

 

Statistical Analysis.  Tanagra data mining software164 was used to build and 

evaluate the statistical classification models.  Support vector machine models 

were built using the following parameter settings: Kernel: Normalized Polynomial; 

Polynomial exponent: 3; Gamma for RBF: 0.01; Complexity parameter: 1.00; 

Attribute transformation: Normalization; Kernel for rounding: 1 x 10-12; Tolerance 

for accuracy: .001.  Using the instance selection feature two different types of 

models were built using the train/test function to conduct an iterative training and 

testing workflow.  The models were generated using different proportions to train 

the SVM model (80% and 50%) and the remainder of the dataset was used to 

evaluate the accuracy.  A third model was built using template spectra for the 

adenocarcinoma and squamous cell carcinoma phenotypes.  These spectra 

consisted of the average intensity values for each peak across the respective 

class of patients.  This model was then used to classify all patients in the dataset. 

Hierarchical clustering was carried out using the software program Hierarchical 

Clustering Explorer 3.5 (HCE 3.5).165  The data was clustered without 
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normalization using the complete linkage method and the Pearson correlation 

coefficient similarity/distance measure.    

 

CK 5/6 Immunohistochemistry.  Five micron TMA sections were placed on 

charged slides.  The sections were rehydrated and placed in a heated Target 

Retrieval Solution (Labvision, Fremont, CA). Endogenous peroxidase was 

neutralized with 0.03% hydrogen peroxide followed by a casein-based protein 

block (DakoCytomation, Carpinteria, CA) to minimize nonspecific staining.  The 

sections were incubated with Cytokeratin 5/6 (Catalog ab17133, abcam, 

Cambridge, MA) diluted 1:50 overnight. The Dako Envision+ HRP/DAB System 

(DakoCytomation) was used to produce localized, visible staining.  The slides 

were lightly counterstained with Mayer’s hematoxylin, dehydrated and 

coverslipped. 
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Chapter V 
 
 
 

CONCLUSIONS AND PERSPECTIVES 
 
 
 

A single thin tissue section contains an enormous amount of molecular 

information including proteins, peptides, lipids, and small molecules.  These 

basic entities of biological systems are further arranged into an extensive and 

complex network of spatial arrangements governed by the function and 

physiological state of the underlying cellular components.  IMS has the 

extraordinary ability to effectively detect a wide range of these biomolecules from 

a tissue with minimal sample preparation while maintaining the spatial 

orientation.  However, in its current state, this technology is only capable of 

detecting a subset of species from these classes of molecules.  There are 

several reasons for these limitations ranging from the physical and chemical 

properties of different molecular species (e.g. ionization efficiency, solubility, 

molecular weight...etc.), to the design and detection capability of the mass 

spectrometers used in these analyses.  Therefore, to expand the applicability of 

this technology to a broader assortment of molecules, novel methodologies need 

to be developed.     

One way to enhance the range of detectable species is to implement 

chemical reactions on the tissue prior to the standard sample preparation 

protocols.  Chapter 2 outlines the development of a technique called in situ 

digestion, where an enzyme is used to digest the proteins at precisely defined 
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locations in a tissue prior to MS analysis.  We showed that this process can be 

carried out efficiently and reproducibly using robotic spotters.  The advantages 

and contributions of in situ digestion to this technology are several fold: 1) it 

enables high molecular weight proteins > 30 kDa to be indirectly mapped by 

detecting the distribution of their tryptic peptides; 2) proteins can be identified 

directly from a tissue by MS/MS sequence analysis of the tryptic peptides; 3) It 

enables the analysis of FFPE tissues opening the door to a vast archive of 

clinical samples.   

In summary, the work outlined in Chapter 2 shows the feasibility of 

carrying out on-tissue chemistry prior to an MS analysis to expand the proteomic 

information detected.  Our experiments focused on the use of trypsin; however a 

number of other proteases were successfully tested and could potentially be 

used to target different subsets of analytes.  Furthermore, we were able to use a 

combination of enzymes, PNGase F and trypsin, to cleave and identify the 

carbohydrate constituent of the glycoprotein Copeptin.  These results highlight 

the enormous potential that exists to further develop novel tissue chemical 

treatment methodologies prior to IMS analysis. 

Experiments involving FFPE tissues are complicated by the very nature of 

the fixation process itself, in that the chemical modifications that preserve these 

samples render them unsuitable for routine proteomic analysis.  The 

development of antigen retrieval techniques over the past decade was a vital 

step in making these samples accessible to different molecular analysis 

techniques including mass spectrometry.  However, in terms of IMS experiments 
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where a tissue section is kept intact, it is highly unlikely that antigen retrieval 

completely de-crosslinks the proteins.  This makes protein extraction directly 

from the surface of a tissue difficult and helps explain the fact that protein 

imaging experiments conducted on antigen retrieved FFPE sections have 

generally produced low quality data.  Interestingly, we show in Chapter 3 and 4 

that in situ digestion coupled with IMS has the ability to generate high quality 

tryptic peptide profiles comparable to those observed using fresh frozen tissues.  

Without antigen retrieval, in situ digestion is not possible, in that no tryptic 

peptides are observed in the MS analysis.  This seems to indicate that the 

antigen retrieval step serves to provide a partial protein de-crosslinking as well as 

a denaturing effect that enables the enzyme access to carry out digestion.  

Further systematic studies are needed to elucidate the details of this mechanism 

but our results show that these analyses can be carried out reproducibly and 

provide meaningful data. 

One distinct advantage of working with FFPE specimens is the ability to 

compile numerous patient tissues into a single TMA.  A TMA takes a relatively 

small representative region from each individual patient and enables a high-

throughput comparison to be performed.  This provides an unparalleled platform 

for examining different protein distributions between patients in a large sample 

cohort.  Working with a TMA, as opposed to each patient sample individually, 

avoids the effects of day-to-day fluctuations in the sample preparation and mass 

spectrometric analysis steps.  It can be assumed that each sample in the TMA 

underwent nearly identical preparation (e.g. trypsin/ matrix application) and that 
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the working order of the mass spectrometer was constant during the analysis.  

Analysis of a large number of individual patient samples may take several days 

or even weeks to complete.  This is an important consideration due to the 

sensitivity of the mass spectrometer, where even slight fluctuations in sample 

preparation or instrument status can create bias in the acquired data.   

  However, there are cases, including analysis of highly heterogeneous 

samples, where it may be necessary to acquire data from the entire patient tissue 

to accurately assess the molecular profile.  In general though, the typical 500-

1500 μm core taken for a TMA should provide a sufficient representation of the 

bulk sample, and usually duplicate cores are taken from each sample in order to 

evaluate the consistency.   

In summary, we have shown the potential of using in situ digestion 

coupled with IMS for the high-throughput proteomic analysis of TMAs.  The 

relative intensity and distribution of hundreds of proteins can be simultaneously 

mapped in a single experiment.  We showed that these experiments are 

reproducible within and between TMAs and therefore the results from multiple 

analyses can be effectively compared.  This platform provides a degree of speed 

and depth that cannot be achieved using any alternative technique, and therefore 

has the potential to revolutionize the molecular analysis of clinical samples. 
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Appendix A 

Protein Identification 

Search Parameters 
Type of search: MS/MS Ion Search 

Enzyme: Trypsin 
Variable modifications: N-Acetyl, Ox. (M/H/W) 

Mass values: Monoisotopic 
Protein Mass: Unrestricted 

Peptide Mass Tolerance : ± 200 ppm 
Fragment Mass Tolerance: ± 0.4 Da 

Max Missed Cleavages: 3 
Instrument type: MALDI-TOF-TOF 

Number of queries: 123 

SwissProt Decoy False discovery rate 
Matches above identity threshold 94 0 0 

Matches above homology or identity threshold 102 1 0.98 

Keratin, type II cytoskeletal 6A  Score (233) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1016.5420 1015.5347 1015.5298 4.83 0 41 0.0094 R.QLDSIVGER.G 
1165.5830 1164.5757 1164.5775 -1.51 0 62 5.7e-05 K.YEELQVTAGR.H 
1263.6915 1262.6842 1262.687 -2.22 0 81 9.2e-07 K.LALDVEIATYR.K 
1407.7100 1406.7027 1406.7041 -1.01 0 34 0.044 K.ADTLTDEINFLR.A 
1890.9550 1889.9477 1889.9635 -8.36 0 92 7.1e-08 R.QNLEPLFEQYINNLR.R 
2047.0294 2046.0221 2046.0646 -20.77 1 21 0.88 R.QNLEPLFEQYINNLRR.Q 
2471.1831 2470.1758 2470.1798 -1.61 3 82 7.1e-07 R.GMQDLVEDFKNKYEDEINKR.T 

Keratin, type II cytoskeletal 5  Score (198) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1016.5420 1015.5347 1015.5298 4.83 0 41 0.0094 R.QLDSIVGER.G 
1093.5220 1092.5147 1092.5199 -4.78 0 21 0.67 K.AQYEEIANR.S 
1263.6915 1262.6842 1262.687 -2.22 0 81 9.2e-07 K.LALDVEIATYR.K 
1410.7325 1409.7252 1409.7151 7.21 0 44 0.0042 R.SFSTASAITPSVSR.T 
1439.7126 1438.7053 1438.7053 0.04 0 66 2.6e-05 R.GLGVGFGSGGGSSSSVK.F 
1890.9550 1889.9477 1889.9635 -8.36 0 92 7.1e-08 R.QNLEPLFEQYINNLR.R 
2047.0294 2046.0221 2046.0646 -20.77 1 21 0.88 R.QNLEPLFEQYINNLRR.Q 

Keratin, type II cytoskeletal 8  Score (144) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1129.6152 1128.6079 1128.6138 -5.25 0 48 0.0019 K.LSELEAALQR.A 
1277.6904 1276.6831 1276.7027 -15.31 0 22 0.7 K.LALDIEIATYR.K 
1419.7931 1418.7858 1418.7405 31.9 0 64 4.7e-05 R.LEGLTDEINFLR.Q 
1847.8475 1846.8402 1846.7978 23.0 0 83 5.8e-07 R.SNMDNMFESYINNLR.R 
1863.8770 1862.8697 1862.7927 41.4 0 (49) 0.0013 R.SNMDNMFESYINNLR.R + Oxidation (M) 

Histone H2A  Score (146) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
944.5400 943.5327 943.524 9.27 0 17 2.1 R.AGLQFPVGR.V 
2915.5000 2914.4927 2914.5804 -30.07 0 146 2.8e-13 R.VGAGAPVYLAAVLEYLTAEILELAGNAAR.D 

Alpha-enolase  Score (122) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1129.6152 1128.6079 1128.6138 -5.25 0 48 0.0019 K.LSELEAALQR.A 
1277.6904 1276.6831 1276.7027 -15.31 0 22 0.7 K.LALDIEIATYR.K 
1419.7931 1418.7858 1418.7405 31.9 0 64 4.7e-05 R.LEGLTDEINFLR.Q 
1847.8475 1846.8402 1846.7978 23.0 0 83 5.8e-07 R.SNMDNMFESYINNLR.R 
1863.8770 1862.8697 1862.7927 41.4 0 (49) 0.0013 R.SNMDNMFESYINNLR.R + Oxidation (M) 

Keratin, type I cytoskeletal 19  Score (105) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1082.5175 1081.5102 1081.4829 25.3 0 27 0.16 K.DAEAWFTSR.T 
1122.5560 1121.5487 1121.5717 -20.45 0 40 0.01 R.LEQEIATYR.S 
1210.6031 1209.5958 1209.5778 14.9 1 32 0.06 R.KDAEAWFTSR.T 
1222.6390 1221.6317 1221.6353 -2.95 1 55 0.00033 R.TKFETEQALR.M 
1354.6100 1353.6027 1353.5983 3.28 0 37 0.018 R.SQYEVMAEQNR.K 
1554.7480 1553.7407 1553.7434 -1.74 0 42 0.0065 R.QSSATSSFGGLGGGSVR.F 
1674.8083 1673.8010 1673.7685 19.4 0 50 0.001 R.DYSHYYTTIQDLR.D 
2407.2258 2406.2185 2406.3019 -34.66 0 30 0.12 R.FGAQLAHIQALISGIEAQLGDVR.A 
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Tubulin beta-2C chain  Score (118) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1130.6021 1129.5948 1129.588 6.04 0 64 4.2e-05 R.FPGQLNADLR.K 
1143.6100 1142.6027 1142.627 -21.27 0 29 0.15 K.LAVNMVPFPR.L 
1601.8101 1600.8028 1600.8131 -6.40 0 75 3.8e-06 R.AVLVDLEPGTMDSVR.S 
1620.8260 1619.8187 1619.8283 -5.89 0 31 0.086 R.LHFFMPGFAPLTSR.G 
2798.4248 2797.4175 2797.3361 29.1 0 37 0.023 R.SGPFGQIFRPDNFVFGQSGAGNNWAK.G 

Serum albumin precursor  Score (113) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
927.4923 926.4850 926.4861 -1.18 0 24 0.34 K.YLYEIAR.R 
1467.8109 1466.8036 1466.8358 -21.92 1 33 0.051 R.RHPDYSVVLLLR.L 
1511.7955 1510.7882 1510.8355 -31.31 0 55 0.00038 K.VPQVSTPTLVEVSR.N 
1623.7710 1622.7637 1622.7803 -10.21 0 59 0.00014 K.DVFLGMFLYEYAR.R 
1639.7600 1638.7527 1638.7752 -13.72 0 (47) 0.0021 K.DVFLGMFLYEYAR.R + Oxidation (M) 
1898.9000 1897.8927 1897.9879 -50.15 1 30 0.11 R.RHPYFYAPELLFFAK.R 

Keratin, type II cytoskeletal 75  Score (110) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1165.5830 1164.5757 1164.5775 -1.51 0 62 5.7e-05 K.YEELQVTAGR.H 
1263.6915 1262.6842 1262.6870 -2.22 0 81 9.2e-07 K.LALDVEIATYR.K 

Keratin, type II cytoskeletal 2 epidermal  Score (103) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1263.6915 1262.6842 1262.687 -2.22 0 81 9.2e-07 K.LALDVEIATYR.K 
1320.6698 1319.6625 1319.5756 65.9 0 53 0.00057 R.HGGGGGGFGGGGFGSR.S 
1475.7600 1474.7527 1474.778 -17.13 0 21 0.83 R.FLEQQNQVLQTK.W 

Keratin, type I cytoskeletal 16  Score (94) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1036.5272 1035.5199 1035.525 -4.90 1 29 0.11 K.IRDWYQR.Q 
1122.5560 1121.5487 1121.5717 -20.45 0 40 0.01 R.LEQEIATYR.R 
1241.5970 1240.5897 1240.587 2.22 0 35 0.031 K.NHEEEMLALR.G 
1259.6740 1258.6667 1258.6669 -0.18 1 41 0.0082 R.TKYEHELALR.Q 
1757.8680 1756.8607 1756.8784 -10.06 1 34 0.045 R.QRPSEIKDYSPYFK.T 
2064.1130 2063.1057 2063.1375 -15.38 0 67 2.4e-05 K.IIAATIENAQPILQIDNAR.L 

Vimentin  Score (88) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1428.7123 1427.7050 1427.7045 0.38 0 77 2.4e-06 R.SLYASSPGGVYATR.S 
2497.2173 2496.2100 2496.2496 -15.86 1 41 0.0089 R.LLQDSVDFSLADAINTEFKNTR.T 

Keratin, type I cytoskeletal 15  Score (108) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1122.5560 1121.5487 1121.5717 -20.45 0 40 0.01 R.LEQEIATYR.S 
1248.6610 1247.6537 1247.6873 -26.94 1 45 0.0037 R.LKYENELALR.Q 
1821.8787 1820.8714 1820.8766 -2.84 0 77 2.4e-06 R.GGSLLAGGGGFGGGSLSGGGGSR.S 
1877.8959 1876.8886 1876.8803 4.42 0 41 0.0079 M.TTTFLQTSSSTFGGGSTR.G + Acetyl (N-term) 

Ferritin light chain  Score (101) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1607.7820 1606.7747 1606.7991 -15.17 0 84 4.5e-07 R.LGGPEAGLGEYLFER.L 
1719.9220 1718.9147 1718.9791 -37.46 1 49 0.0014 K.KLNQALLDLHALGSAR.T 

Protein S100-A9  Score (72) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1455.7142 1454.7069 1454.7154 -5.82 0 18 1.6 K.LGHPDTLNQGEFK.E 
1614.7900 1613.7827 1613.7945 -7.32 0 53 0.00062 K.QLSFEEFIMLMAR.L 
1806.9113 1805.9040 1805.9312 -15.04 0 51 0.00087 R.NIETIINTFHQYSVK.L 

Keratin, type I cytoskeletal 13  Score (71) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1122.5560 1121.5487 1121.5717 -20.45 0 40 0.01 R.LEQEIATYR.S 
1248.6610 1247.6537 1247.6873 -26.94 1 45 0.0037 R.LKYENELALR.Q 
1392.6880 1391.6807 1391.6867 -4.32 0 51 0.00082 K.MIGFPSSAGSVSPR.S 

78 kDa glucose-regulated protein precursor  Score (78) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1566.7791 1565.7718 1565.7726 -0.48 0 51 0.00078 R.ITPSYVAFTPEGER.L 
1999.0770 1998.0697 1998.0786 -4.44 0 58 0.0002 R.GVPQIEVTFEIDVNGILR. 

Keratin, type I cytoskeletal 17  Score (62) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1036.5272 1035.5199 1035.5250 -4.90 1 29 0.11 K.IRDWYQR.Q 
1122.5560 1121.5487 1121.5717 -20.45 0 40 0.01 R.LEQEIATYR.R 
1222.6390 1221.6317 1221.6353 -2.95 1 55 0.00033 R.TKFETEQALR.L 
2114.0249 2113.0176 2113.011 3.14 0 26 0.32 R.GQVGGEINVEMDAAPGVDLSR.I 
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Pulmonary surfactant-associated protein A1 precursor  Score (103) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1447.7350 1446.7277 1446.699 19.8 0 52 0.00069 R.NPEENEAIASFVK.K 
1506.8000 1505.7927 1505.7759 11.1 0 23 0.51 R.GALSLQGSIMTVGEK.V + Ox.(M) 
1984.0176 1983.0103 1983.0425 -16.22 1 37 0.023 R.IAVPRNPEENEAIASFVK.K 
2106.9856 2105.9783 2105.9694 4.22 0 48 0.002 K.YNTYAYVGLTEGPSPGDFR.Y 
2329.1340 2328.1267 2328.1499 -9.94 0 61 8.4e-05 R.GPPGLPAHLDEELQATLHDFR.H + Ox. (HW) 

Tubulin beta-2A chain  Score (74) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1130.6021 1129.5948 1129.588 6.04 0 64 4.2e-05 R.FPGQLNADLR.K 
1143.6100 1142.6027 1142.627 -21.27 0 29 0.15 K.LAVNMVPFPR.L 
1615.8186 1614.8113 1614.8287 -10.76 0 20 1.1 R.AILVDLEPGTMDSVR.S 
1620.8260 1619.8187 1619.8283 -5.89 0 31 0.086 R.LHFFMPGFAPLTSR.G 
2798.4248 2797.4175 2797.3361 29.1 0 37 0.023 R.SGPFGQIFRPDNFVFGQSGAGNNWAK.G 

Histone H4  Score (57) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
989.5700 988.5627 988.5706 -7.91 0 36 0.025 K.VFLENVIR.D 
1325.7233 1324.7160 1324.7463 -22.84 0 54 0.00044 R.DNIQGITKPAIR.R 

Keratin, type I cytoskeletal 18  Score (82) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
965.4800 964.4727 964.4614 11.7 0 36 0.024 R.AQYDELAR.K 
975.4492 974.4419 974.4458 -3.91 0 31 0.085 R.STFSTNYR.S 
2670.3108 2669.3035 2669.3846 -30.38 0 48 0.0018 R.YALQMEQLNGILLHLESELAQTR.A 
2854.3882 2853.3809 2853.4005 -6.88 0 50 0.0012 R.SLGSVQAPSYGARPVSSAASVYAGAGGSGSR.I 

Actin, cytoplasmic  Score (90) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
976.4540 975.4467 975.441 5.84 0 30 0.1 K.AGFAGDDAPR.A 
1515.6600 1514.6527 1514.7419 -58.85 0 59 0.00014 K.IWHHTFYNELR.V 
1790.8907 1789.8834 1789.8846 -0.67 0 61 8.9e-05 K.SYELPDGQVITIGNER.F 
2215.0000 2213.9927 2214.0627 -31.60 0 28 0.19 K.DLYANTVLSGGTTMYPGIADR.M 

Vitronectin precursor  Score (56) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1314.6980 1313.6907 1313.6728 13.6 1 29 0.14 R.RVDTVDPPYPR.S 
1646.8475 1645.8402 1645.81 18.3 0 54 0.00042 R.DVWGIEGPIDAAFTR.I 
1666.7800 1665.7727 1665.7682 2.72 0 30 0.11 R.DWHGVPGQVDAAMAGR.I 

Glutathione S-transferase P  Score (46) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1337.7000 1336.6927 1336.718 -18.89 0 29 0.13 M.PPYTVVYFPVR.G 
1883.9390 1882.9317 1882.9425 -5.72 0 46 0.0031 K.FQDGDLTLYQSNTILR.H 

Keratin, type II cytoskeletal 7  Score (61) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1277.6904 1276.6831 1276.7027 -15.31 0 22 0.7 K.LALDIEIATYR.K 
1406.7100 1405.7027 1405.699 2.63 0 61 7.9e-05 M.SIHFSSPVFTSR.S + Acetyl (N-term) 
1442.7550 1441.7477 1441.7929 -31.33 0 21 0.89 R.LPDIFEAQIAGLR.G 
1453.8199 1452.8126 1452.83 -11.96 0 28 0.16 R.EVTINQSLLAPLR.L 

Ig alpha chain C region  Score (63) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1213.6259 1212.6186 1212.6251 -5.35 0 32 0.064 R.WLQGSQELPR.E 
1835.9080 1834.9007 1834.9425 -22.77 0 63 5.4e-05 R.QEPSQGTTTFAVTSILR.V 

Pyruvate kinase isozymes M1/M2  Score (68) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1859.8700 1858.8627 1858.8924 -15.96 0 46 0.0026 K.FGVEQDVDMVFASFIR.K 
2465.2520 2464.2447 2464.2849 -16.32 0 55 0.00036 R.TATESFASDPILYRPVAVALDTK.G 

Fibrinogen beta chain precursor  Score (50) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
980.4486 979.4413 979.4359 5.50 0 39 0.011 R.QDGSVDFGR.K 
1239.5300 1238.5227 1238.5105 9.88 0 25 0.26 K.EDGGGWWYNR.C 
1950.9750 1949.9677 1949.9959 -14.45 0 39 0.015 R.EEAPSLRPAPPPISGGGYR.A 

Fibrinogen gamma chain precursor  Score (47) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1117.5070 1116.4997 1116.52 -18.14 0 38 0.019 R.VELEDWNGR.T 
1682.9268 1681.9195 1681.9515 -19.02 0 40 0.0099 K.IHLISTQSAIPYALR.V 

Heat shock protein beta-1 Score (50) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
987.5430 986.5358 986.6025 -67.68 1 42 0.0069 R.RVPFSLLR.G 
1163.6035 1162.5962 1162.6135 -14.86 0 20 0.94 R.LFDQAFGLPR.L 
1905.9900 1904.9827 1904.9843 -0.85 0 41 0.0095 K.LATQSNEITIPVTFESR.A 
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Proteins Identified with De Novo Sequencing 
 

Collagen alpha-1(I) chain precursor 

Observed Mr(expt) Mr(calc) ppm Miss Peptide 

1105.578 1104.570 1104.567 2.8 0 GVQGPPGPAGPR (Hydroxylated) 

1459.711 1458.703 1458.759 38.4 0 GSAGPPGATGFPGAAGR (Hydroxylated) 

898.484 897.476 897.502 29.5 0 GVVGLPGQR (Hydroxylated) 

2705.260 2704.252 2704.247 1.9 0 GFSGLQGPPGPPGSPGEQGPSGASGPAGPR (Hydroxylated) 

2869.418 2868.410 2868.399 3.7 1 GLTGPIGPPGPAGAPGDKGESGPSGPAGPTGAR (Hydroxylated) 

Collagen alpha-2(I) chain precursor 

Observed Mr(expt) Mr(calc) ppm Miss Peptide 

1477.760 1476.752 1476.747 3.7 0 GLHGEFGLPGPAGPR (Hydroxylated) 

1562.804 1561.796 1561.781 9.9 0 GETGPSGPVGPAGAVGPR 

1493.771 1492.763 1492.742 14.4 0 GLHGEFGLPGPAGPR (Hydroxylated) 

1533.719 1532.711 1532.667 28.7 0 GDGGPPGMTGFPGAAGR (Hydroxylated) 

1655.823 1654.815 1654.806 5.7 1 GFPGADGVAGPKGPAGER  (Hydroxylated) 

2959.415 2958.407 2958.348 19.8 0 GPPGAAGAPGPQGFQGPAGEPGEPGQTGPAGAR (Hydroxylated) 
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Tentative Protein Identifications (<2 Peptides) 

 
Protein disulfide-isomerase precursor  Score (50) 

Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1780.8400 1779.8327 1779.8275 2.93 0 50 0.001 K.VDATEESDLAQQYGVR.G 

Fibrinogen alpha chain precursor  Score (78) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1520.7173 1519.7100 1519.7267 -10.96 0 78 1.7e-06 K.GLIDEVNQDFTNR.I 

Aldo-keto reductase family 1 member C1  Score (85) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
2179.0750 2178.0677 2178.0817 -6.44 0 85 3.8e-07 R.HIDSAHLYNNEEQVGLAIR.S 

Glyceraldehyde-3-phosphate dehydrogenase  Score (79) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1763.8364 1762.8291 1762.7951 19.3 0 79 1.5e-06 K.LISWYDNEFGYSNR.V 

Carbonyl reductase [NADPH] 1  Score (72) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1652.8300 1651.8227 1651.8642 -25.09 0 72 8e-06 R.GQAAVQQLQAEGLSPR.F 

Hemoglobin subunit alpha  Score (69) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1833.9000 1832.8927 1832.8846 4.43 0 69 1.6e-05 K.TYFPHFDLSHGSAQVK.G 

Annexin A1  Score (63) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1702.8875 1701.8802 1701.8785 1.03 0 63 6e-05 K.GLGTDEDTLIEILASR.T 

Carcinoembryonic antigen-related cell adhesion molecule 5  Score (69) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
2177.0930 2176.0857 2176.1277 -19.28 0 69 1.4e-05 R.QIIGYVIGTQQATPGPAYSGR.E 

Apolipoprotein A-I precursor  Score (53) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1301.6510 1300.6437 1300.6411 1.98 0 53 0.00059 R.THLAPYSDELR.Q 

Histone H2B  Score (47) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1759.8075 1758.8002 1758.8069 -3.80 0 47 0.0015 K.AMGIMNSFVNDIFER.I + Ox. (M) 

Annexin A2  Score (47) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1111.5660 1110.5587 1110.5458 11.6 0 47 0.0019 R.QDIAFAYQR.R 

Macrophage migration inhibitory factor  Score (50) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1287.6816 1286.6743 1286.6805 -4.82 0 50 0.001 M.PMFIVNTNVPR.A 

Serum amyloid P-component precursor  Score (45) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1156.5970 1155.5897 1155.5924 -2.32 0 45 0.0034 R.VGEYSLYIGR.H 

Tubulin alpha-1A chain  Score (45) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1701.8616 1700.8543 1700.8985 -25.98 0 45 0.0037 R.AVFVDLEPTVIDEVR.T 

Stathmin  Score (49) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1388.7150 1387.7077 1387.7459 -27.54 0 49 0.0012 R.ASGQAFELILSPR.S 

Peptidyl-prolyl cis-trans isomerase A  Score (46) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1987.9899 1986.9826 1987.0051 -11.32 0 46 0.0029 M.VNPTVFFDIAVDGEPLGR.V + Acetyl (N-term) 

Protein disulfide-isomerase A3 precursor  Score (46) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1370.7358 1369.7285 1369.6878 29.8 0 46 0.0024 R.ELSDFISYLQR.E 

Histone H3-like  Score (45) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
788.4709 787.4636 787.4704 -8.67 1 45 0.0035 R.KLPFQR.L 

Polymeric immunoglobulin receptor precursor  Score (48) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1228.7552 1227.7479 1227.7551 -5.82 0 48 0.0019 R.LVSLTLNLVTR.A 
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Heterogeneous nuclear ribonucleoproteins A2/B1  Score (46) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1377.6200 1376.6127 1376.6222 -6.88 0 46 0.0024 R.GGGGNFGPGPGSNFR.G 

Protein S100-P  Score (47) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1854.8900 1853.8827 1853.8903 -4.09 0 47 0.0023 M.TELETAMGMIIDVFSR.Y + Acetyl (N-term) 

Myosin-9 - Homo sapiens (Human)  Score (43) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1869.9500 1868.9427 1868.9592 -8.80 0 43 0.005 K.ANLQIDQINTDLNLER.S 

Keratin, type II cytoskeletal 3  Score (81) 
Observed Mr(expt) Mr(calc) ppm Miss Score Expect Peptide 
1263.6915 1262.6842 1262.6870 -2.22 0 81 9.2e-07 K.LALDVEIATYR.K 

Hemoglobin subunit beta  Score (66) 
1274.7000 1273.6927 1273.7183 -20.07 0 66 2.9e-05 R.LLVVYPWTQR.F 
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Fully Annotated MS/MS Spectra 
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