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CHAPTER I

INTRODUCTION

A model is a formal structure that represents selected aspects of an engineering arti-

fact and its environment. That is, models provide abstractions of real-world objects

that allow certain details to be ignored. In doing so, models allow humans and com-

puters to focus on the relevant features for the task at hand. For example, a model

of a cruise controller for a car might capture properties such as the gear-ratios and

weight, while ignoring irrelevant details, such as color and style. Using a model allows

the cruise controller to be simulated, tested and veri�ed without requiring an auto-

mobile. Physical systems, such as buildings and bridges, are modeled before they are

built so that they can be rigorously analyzed to ensure their stability in the physical

world. Thus, modeling can provide signi�cant bene�ts in terms of time, cost and

safety.

Software system modeling languages provide abstractions that are used to cope

with the rising complexity of modern software. They allow designers to ignore imple-

mentation details and instead focus on the system at a high level. Software system

models are used for a variety of purposes, including testing, simulation and perfor-

mance analysis. They can also be re�ned and transformed, providing the ability to

automatically synthesize certain parts of the implementation [1].

Increasingly, domain-speci�c languages (DSLs), specialized languages with con-

cepts and features that are speci�c to a particular problem domain, are being used

to model software systems [2]. DSLs raise the abstraction level by providing a lan-

guage that is tailored to a speci�c area. By exposing high-level features and con-

cepts, DSLs can express domain-speci�c information in a direct and compact way.

When a domain-speci�c language is used for modeling, it is usually referred to as a
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domain-speci�c modeling language, or DSML. Several commercial tools are based on

the concept of a DSML, including Matlab/Simulink, Modelica and LabVIEW. Each

of these tools has a DSML component that allows physical systems to be modeled at a

high-level using features and concepts found directly in the physical systems domain.

Custom DSMLs are used to bring the advantages of high abstraction levels to

other target environments. There are a number of di�erent tools for creating DSMLs,

including the Generic Modeling Environment (GME) [3], Kermeta [4] and the Mi-

crosoft DSL Tools [5]. The creation of a DSML typically involves the de�nition of

abstract and concrete syntax, along with structural constraints that reject erroneous

instances of the DSML syntax [6]. Models conforming to a DSML can then be created.

DSMLs provide a number of bene�ts, but they still have issues that are largely

unresolved. One of these is the di�culty of applying formal veri�cation to DSMLs.

Formal veri�cation methods attempt to mechanically prove that a model's execu-

tion is correct with respect to a given speci�cation. Examples of formal veri�cation

methods include deductive methods, model checking and static program analysis [7].

However, using any of these formal analysis methods to prove properties about a

model's execution �rst requires a suitable method to describe the execution.

A major challenge in applying formal analysis to modeling languages is that there

is no standardized way to assign behavioral semantics to a modeling language. The

behavioral semantics of a language are used to describe a model's execution. Analysis

tools use the description of the execution provided by the behavioral semantics to

check properties. Without a precise, behavioral semantics that describes the execution

of the model, one cannot perform analysis. Contrast this to traditional programming

languages, such as Java, which have a well-established and standardized execution

semantics [8]. Further, languages such as Java evolve very slowly, whereas modeling

languages tend to be developed quickly and evolve rapidly. This rapid evolution adds

an additional challenge when considering methods for assigning semantics.
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Another challenge when applying formal analysis to modeling languages is the

mismatch between the input languages of veri�cation tools and modeling languages.

Using an existing veri�cation tool to analyze a modeling language requires a transla-

tion of the behavioral semantics into a form that the analysis tool understands, as well

as a speci�cation of properties to check in a language the analysis tools understands.

These are both hard problems [9,10]. Several types of veri�cation methods exist, but

in practice, implementing these from scratch so that they are e�cient and scalable is

very di�cult [11].

With these considerations and challenges in mind, the thesis of this dissertation is

that modeling languages should support behavioral semantics that make them directly

amenable to formal veri�cation methods. These methods should be automated as

much as possible and should allow the semantics to serve as executable speci�cations

that clarify ambiguities found in informal documentation.

Motivation and Challenges

This work is motivated in-part by a real-world problem faced by engineers at NASA.

Distributed teams of engineers there use di�erent variants of Statecharts [12] to de-

scribe interacting pieces of a single system. Statecharts is a modeling language for

describing reactive systems, which are systems that maintain an ongoing interaction

with their environment. The di�erent variants of Statecharts are similar, but have

small, crucial semantic di�erences. These slight semantic di�erences across the vari-

ants mean that a model created by one team and executed with one semantics may

behave very di�erently when executed by a di�erent team using another semantics.

To ensure that interacting models behave as expected, a uni�ed environment in

which models of each di�erent semantic variant can be executed and veri�ed is needed.

In considering such an environment, two relevant questions arise, both of which are

directly related to the thesis statement above.
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1. How can the behavioral semantics of the di�erent variants be described pre-

cisely?

2. How can formal analysis methods be applied to verify the execution of the

models?

Another motivation and separate piece of this work came from an interest in

extending Formula [6,13], a modeling language and analysis tool, with the capability

to compute and store execution traces of models. An execution trace is a sequence

of models that shows how the state of a model evolves during the model's execution.

Computing execution traces allows one to reason about the possible behaviors of a

model, even when the behavior can be non-deterministic.

One challenge that had to be addressed to add this capability to Formula was

creating a separate execution trace for each possible choice of applicable actions at a

given step. Behavioral semantics in Formula are de�ned as a set of model transfor-

mations, each of which takes one model as input and produces one model as output.

Each transformation represents one discrete and atomic �step� of execution. At a

given point in execution, there may be multiple transformations that can be applied

to an input model. For instance, in a modeling language for distributed systems, one

atomic execution step might consist of adding a node to the network, while another

atomic step might consist of �ring a node. This can be modeled in Formula using two

di�erent transformations: one that adds a node to the network and another that �res

a node. Both of these transformations could potentially be applied to the same input

model, making the choice of which atomic action to take non-deterministic. When

computing the execution traces of this language, a separate trace needs to be created

for each of these choices to re�ect the non-determinism.

Another challenge and di�erent source of non-determinism in the semantics is

found in the pattern matching of the transformation rules. The module that computes
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the execution traces needs to know which choices in the pattern matching are non-

deterministic so that a new trace can be computed for each such choice. The di�culty

is specifying this non-determinism in a way that is modeling language agnostic.

A third challenge that was addressed is how to store execution traces e�ciently.

The static structure of a model that does not change during execution can represent

a signi�cant portion of large models. Instead, a rather small portion representing the

current state of the model may be the only thing that changes between execution

steps. In these cases, a naive mechanism for storing the individual execution steps

that does not leverage this knowledge can introduce signi�cant storage overhead.

Contributions

This dissertation makes the following contributions. The �rst is a uni�ed framework

in which Statechart models of di�erent semantic variants can be de�ned, simulated

and veri�ed. The framework is integrated with an analysis tool to perform veri�-

cation. The key idea is that the user describes only the structure of a Statechart

model. The structure is then automatically translated into equivalent Java code, and

the semantics are selected from a set of pluggable Java components. Components

implementing the semantics of three di�erent variants of Statecharts were de�ned:

Matlab/State�ow, UML and Rhapsody. By decoupling the structure from the se-

mantics, a single model can be easily executed using multiple semantics, and a sys-

tem comprised of interacting models using di�erent semantics can be simulated and

veri�ed in a single environment. The interaction between models is captured through

the input/output interface of the models.

To perform analysis, the framework is integrated with Java Path�nder [14], a soft-

ware model checker, along with Symbolic Path�nder [15], its symbolic execution en-

gine. Symbolic execution allows both test-vector generation and reachability analysis,

which can be di�cult with reactive systems that read inputs from their environment.
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Additionally, an initial port of the framework to the C# language was done so that

the symbolic execution engine Pex [16] could be evaluated on the models.

A lightweight method to specify properties that should be monitored was also

implemented. The method is based on the property speci�cation pattern system

described in [10]. Properties are speci�ed through an intuitive user interface, from

which Java code to monitor these properties is generated. This allows the user to

specify a wide-range of commonly occurring properties very quickly.

The second major contribution is an extension to Formula that calculates execu-

tion traces of models using the behavioral semantics, which are de�ned as described

above. The module to calculate execution traces consists of three components. The

�rst is a component that applies all applicable transformations to an input model

at a given step and creates a separate trace for each such application. The second

component is used to create a separate trace for each non-deterministic choice of the

input parameters that are passed to a transformation. This makes non-determinism

inside a single execution step explicit to the trace computing module. The third com-

ponent is a tool that stores the execution traces e�ciently by computing and storing

only the di�erences between consecutive steps in a trace when possible. Additionally,

a prototype tool for visualizing the execution traces was also developed.

Outline

The rest of this dissertation is structured as follows. Background material on mod-

eling languages, semantics, analysis and Statecharts is presented in Chapter II. The

Statechart analysis framework is described in Chapter III. The analysis extensions to

Formula are presented in Chapter IV. Chapter V concludes and give directions for

future extensions.
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CHAPTER II

BACKGROUND

This chapter presents background material on modeling languages, semantics, formal

analysis and Statecharts. Unless stated otherwise, the term modeling language refers

to a software-system modeling language.

Modeling languages

As de�ned in [3], a model is a formal structure that represents selected aspects of an

engineering artifact and its environment. The phrase "selected aspects" means that

a model is an abstraction of some real-world object. Models can be used for many

di�erent purposes, including design, validation, testing, simulation and analysis.

In order to build a model, a modeling language is used. A modeling language

consists of the following elements.

1. A set of concepts and associated attributes, along with the relationships be-

tween those concepts. This is referred to as the abstract syntax of the modeling

language.

2. A set of rules de�ning the notations used to express models. This is referred to

as the concrete syntax.

3. A set of rules de�ning what a model means. This is referred to as the semantics

of the model.

Traditional programming languages are sometimes divided into just two compo-

nents: syntax and semantics. In this view, the �rst two items in the list above can

be thought of as the syntax.
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Models can provide numerous advantages in software development. Besides pro-

viding an abstraction mechanism that can alleviate the fundamental limiting factors

of human cognition [17], models are also helpful when a full system description is too

complex for even a computer to reason about [18]. Models can also be used for a

variety of other purposes, including helping developers and customers communicate,

test-case generation or derivation of the developed system [19].

Modeling languages can be general, in which case they can be used to describe a

wide variety of systems, or speci�c, in which case they contain concepts for describing

a narrow �eld of systems. A modeling language of the second type is referred to as a

domain-speci�c modeling language (DSML). In either case, the �rst step in creating

a modeling language is to de�ne the syntax, which involves two steps.

1. De�ning the abstract syntax (including well-formedness rules).

2. De�ning the concrete syntax (either textual or visual).

The abstract syntax is de�ned using a meta-language: a language for describing

languages. Examples of such meta-languages include MetaGME [3], MOF [20] and

UML Class Diagrams [21].

Additionally, the abstract syntax often requires the use of another language to

specify well-formedness constraints on models. This is a di�erence between modeling

languages and traditional programming languages. With traditional programming

languages, context-free grammars [22] are su�cient to express the allowable constructs

of the language, while non-context free constraints (e.g., ensuring a variable is declared

before it is used) are left to the semantic analysis phase. One advantage of using

modeling languages, especially DSMLs, is that the syntax can restrict the allowed

constructs and prune away invalid models without relying on a separate semantic

analysis phase to guide users away from modeling inconsistencies.
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The di�culty is that meta-languages such as UML Class Diagrams do not o�er

su�cient expressiveness to check all of these types of constraints. For example, sup-

pose one wishes to de�ne a modeling language for directed graphs. In addition to

the concept of nodes and edges, a constraint that forbids cycles in the graph may be

desired. That is, it should not be possible to start at any node in the model and,

following outgoing edges, reach the original node. This constraint is not expressible in

MetaGME, MOF or UML Class Diagrams without the use of an additional constraint

language.

A common language for encoding additional well-formedness rules is the Object-

Constraint Language (OCL) [23]. However, it has been argued that OCL is not an

ideal solution to this problem for various reasons. An alternative solution which also

provides analysis over the structural semantics of a language is described in [6].

The concrete syntax provides a way to render a model, either for human users or

for use by a computer. Traditional programming languages usually have a textual

de�nition, while modeling languages can be either textual or visual.

Semantics

The term "semantics" refers to the meaning of a language. The purpose of a semantics

is to give meaning to the legal sentences of a language. Stated di�erently, a semantic

de�nition of a language provides an interpretation that provides legal sentences of the

language with a meaning. How this meaning is assigned will be discussed shortly.

There has been much confusion regarding the meaning of the term "semantics"

as applied to modeling languages; a thorough description and background is given

in [24]. Some of the reasons listed there include the misconceptions that (1) the syntax

(abstract or concrete) provides the semantics, (2) the semantics must be executable,

and (3) semantics can be de�ned by the meaning of individual constructs rather than

the entire language.
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One term in particular that sometimes causes confusion is structural semantics.

Structural semantics describe the meaning of models in terms of the structure of model

instances [25]. Hence, structural semantics refer to the meaning of models in terms

of the abstract-syntax and well-formedness rules and is a specialization of the more

general term semantics. Structural semantics can also be thought of as a decision

procedure that examines a model and determines whether the model's structure is

correct with respect to the rules that de�ne allowable model structure.

Semantics assign a meaning to a language by providing two things.

1. A semantic domain that is well-de�ned and well-understood.

2. A semantic mapping from the syntactic elements of the language to the semantic

domain.

As an example, consider a traditional programming language, such as C [26]. The

ultimate "meaning" of an individual C program is de�ned by the execution of a set

of machine level instructions by some particular computing platform. The semantic

domain here consists of a set of machine level instructions and the platform that

executes these machine level instructions. The semantic mapping is de�ned by a

compiler and assembler that translate programs written in C into the set of machine

level instructions.

In order to describe and reason about languages at a higher level, broad methods

for de�ning semantics of a language have been proposed, each with a di�erent set

of merits. The next section describes these broad frameworks. Most approaches to

de�ning semantics fall within one of these categories or a combination of them.

There are three broad categories of semantic description languages.

1. Denotational semantics [27] are based on mathematical foundations; they map

programs to mathematical functions.
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2. Operational semantics [28] are based on the concept of an abstract machine;

they map programs to this abstract machine.

3. Axiomatic semantics [29] are based on treating properties of programs as as-

sertions (predicates); programs transform these assertions.

A description of each of these is given presently, along with examples.

Denotational Semantics

Denotational semantics [27], [30] are a formal method for de�ning the semantics of

programming languages in terms of mathematical functions. A mathematical function

is de�ned which maps the syntax of the program to its semantic value, or denotation.

That is, it maps a program to the function denoted. The denotations are speci�ed

using lambda notation, a variant of the lambda calculus [31] that handles data-types.

The semantic functions are de�ned compositionally. First, a denotation for each

basis element in the syntactic category is de�ned. The semantic functions for compos-

ite elements of the syntax are then built by applying the functions to the immediate

constituents of the composite element.

A complete description of denotational semantics is far beyond the scope of this

survey; a good treatment with examples can be found in [27].

Denotational semantics have been used to aid language designers by serving as a

way to specify the language unambiguously. They have also been used to reason about

programs and even generate compilers [32], [33]. However, the compilers generated

from denotational description of a language are almost always too slow to be used in

practice, and often serve as a proof of concept or prototype.
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Operational Semantics

Operational semantics [34] regards a program as running on an abstract machine.

The semantics is de�ned by providing a translation from the programming language

to the abstract machine, along with rules governing the execution of this abstract

machine. The actual abstract machine can be high-level, which makes translation

easy, or low-level, which makes precise reasoning easier.

There are di�erent approaches to operational semantics. The following sections

describe two: structural operational semantics [28] and abstract state machines [35].

Structural Operational Semantics

Structural operational semantics (SOS) [28], also called small-step operational seman-

tics, is concerned with describing how the individual steps of a program's computa-

tions take place. It provides this description using transition systems, which are a

structure < Γ,→> where Γ is a set of elements, called con�gurations, and→⊆ R×R

is the transition relation. The transition relation is given by de�ning a set of axioms

and inference rules.

Examples of languages that have been described using SOS include a large sub-

language of Java [36] and several variants of Statecharts [37]. SOS has been used in

program analysis in [38] and in program veri�cation in [39].

Abstract State Machines

Abstract state machines (ASM) [35] were originally called evolving algebras [40].

They treat the static structure of a language as terms over an arbitrary algebra (i.e.,

a set of elements along with operations on those elements) and capture the dynamic

behavior by rules which may update the operations; thus the algebra evolves because

the operations may change with time. The abstract state of an ASM is a set of
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arbitrary data structures, and the operations are those that can be performed by a

�nite-state machine over these arbitrary data structures.

ASMs began as an attempt to bridge the gap between formal models of compu-

tation and practical speci�cation methods. As a speci�cation language, ASMs o�er

some advantages over other formal methods and semantic description languages. ASM

programs use a simple syntax that is almost like pseudo-code. This is in contrast to

methods such as denotational semantics (described above) which use a complex syn-

tax. ASM speci�cations are also executable, another added bene�t compared to other

speci�cation languages that are not directly executable.

Examples of approaches that have used ASM for specifying the semantics of mod-

eling languages include semantic anchoring [25] and the model checking approach [41]

in which ASM is used as an intermediate language.

Axiomatic Semantics

The axiomatic approach to de�ning semantics [42], [29] is based on the view that

properties of programs can be viewed as assertions, or predicates over a program's

data. A predicate is a statement that is either true or false depending on the values

of its variables. Thus, a predicate over a computer program's data is true or false

depending on the values assigned to the program's data at a given time. Axiomatic

semantics view a program as transforming these predicates, or equivalently, as a

predicate transformer.

A common formalism of axiomatic semantics is called Hoare logic. A Hoare triple,

P {Q} R, states the connection between a precondition (P), a program (Q) and a

description of the result of its execution (R). A set of axioms describing the logical

inferences that can be made using the triples is presented in [29].

One major limitation in the original description found in [29] is that it lacks axioms

and rules to deal with goto (jump) statements. Some have argued that this is a reason
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against such constructs in programming languages [43]. [44] provides details on how

to augment Hoare logic to deal with such statements.

Axiomatic semantics are the most abstract of the three methods described. For

this reason, they are primarily useful for proving properties and assertions about

small programs or algorithms, and are not well-suited for other analysis techniques,

such as simulation.

Behavioral Semantics

Behavioral semantics are not considered a broad framework or method for de�ning

semantics. Rather, the term behavioral semantics refers to the semantics of languages

and systems that have a behavior that one wishes to study or observe. Behavioral

semantics de�ne the dynamic evolution of a system's state along some model of time.

For a modeling language, this means that behavioral semantics describe how the state

of a model evolves over time. The mechanism used to describe this evolution can be

any of the three methods above, although the operational and denotational approach

are the most common due to the fact that axiomatic semantics are primarily used for

proving properties.

When considering the behavioral semantics for a modeling language, one can come

to the incorrect notion that the lack of a behavioral semantics for a particular language

implies that the language does not have a semantics. The lack of behavioral semantics

does not imply that a language does not have a semantic meaning [24]. Rather, this

means that the particular language in question does not have a semantics that is

dynamic in nature. A good example is UML Class Diagrams [21]. A UML class

diagram is not dynamic in nature, but it does have a meaning that is re�ected in

its static structure. The same is true for any modeling languages whose meaning is

described in terms of its static structure.
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In this paper, the focus is on the analysis of modeling languages that have an

associated behavioral semantics. For a treatment on the analysis of languages that

deal with static structure, see [45] or [46].

Formal analysis methods

Formal methods and automated veri�cation [47] provide ways of ensuring that soft-

ware is correct with respect to a speci�cation and free from speci�c types of �aws.

These methods can be static, in which case they compute compute information about

the behavior of a program without having to execute it, or dynamic, in which case

they analyze the program through an execution.

The following sections describe three methods for analysis. Abstract interpretation

deals with the formalization of approximation. By approximating the execution of a

program, it can provide sound guarantees about program execution e�ciently. Model

checking determines whether a model of a system satis�es a speci�cation. Theorem

proving attempts to determine if a sentence of a theory is provable using the axioms

and inference rules of that theory. Test input generation is also described, because

even though it is not a formal analysis technique, it does provide a useful and practical

way to reason about code, and recent extensions can help determine reachability

properties of code. It is also relevant to modeling languages for reactive systems [48]

whose dynamic behavior is driven through an interaction with the environment.

Abstract Interpretation

Abstract interpretation [49] is a broad framework in which many formal methods can

be framed. The theory of abstract interpretation formalizes the notion of approxima-

tion. Mechanical program veri�cation tools are all similar in the sense that they make

a choice regarding the approximation of the behavior of a system and then reason
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over that choice. Hence, they di�er only in the choices they must make to cope with

undecidability or complexity [50].

Abstract interpretation makes the distinction between concrete semantics and

abstract semantics. The concrete semantics of a program formalizes the set of all

possible executions of this program in all possible execution environments. Because

this set of all possible executions is not computable, all non-trivial questions about

the concrete semantics of a program are undecidable [50].

The abstract semantics of a program are a superset of the concrete program seman-

tics. That is, they are an over-approximation of the actual behavior of the program.

The implication is that if the abstract semantics are correct with respect to a speci�ca-

tion, then the concrete semantics will also adhere to the speci�cation. For this reason,

abstract interpretation is said to provide sound approximations. An approximation

is sound if its correctness implies the correctness of the original system.

Static analysis methods based on abstract interpretation work by relating abstract

analysis to program execution. The key concept is that of an abstract domain: an

abstraction of the concrete semantics in the form of (1) abstract properties, and (2)

abstract operations.

The following sections illustrate with some examples of abstract domains.

Numerical Domains

Numerical domains are used to express properties about the numerical values assigned

to variables during program execution. In general, the more precise a domain is with

respect to the information it re�ects about actual program execution, the slower it

performs.

One example of a numerical domain is that of intervals. A numeric interval domain

can capture information about the range of values that a variable can take during

execution. For instance, consider the following C program.
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int x = 0; // A

while (x < 5) // B

x = x + 2; // C

An interval domain applied to this program to analyze the possible values that

the variable x can take during program execution would assign the interval [0,0] to

location A, the interval [0,6] to location B and the interval [0,4] to location C. A

less powerful domain (in the sense that it loses more information than the interval

domain) is that of Signs. The Signs domain has three values, {Pos, Neg, Zero},

indicating that a variable has a positive, negative or zero-value, respectively. In the

example above, the variable x can have the value {Zero} at location A, while it has

{Pos, Zero} at locations B and C.

Relational numerical domains express relationships between the values of vari-

ables; examples include di�erence bound matrices, octagons, octahedra and polyhe-

dra [47]. Other typical domains are concerned with shape analysis ; these domains

are used for analyzing properties of the heap and pointers. A succinct description of

each of these is available in [47].

Tool Support

Automated tool support for static analysis methods based on abstract interpretation

has grown signi�cantly in recent years. An abstract interpretation tool developed at

INRIA found the error in the software for Ariane 5 rocket [51]. The software model

checker BLAST [52] uses abstract interpretation techniques as part of its analysis

for C programs. The code contracts library provided by the .NET framework has a

general abstract interpretation framework [53]. The Clang compiler also has a static

analysis library [54] for analyzing C and Objective-C programs.
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Model Checking

Model checking was proposed independently in both [55] and [56]. In its original de�-

nition, the word "model" did not refer to an abstraction of the actual system, but was

used because the goal was to check whether a Kripke structure M was a model for a

temporal formula f [18]. Currently, the term generally refers to checking an abstrac-

tion of a system. Software model checking usually refers to checking implementation

level code.

At its core, model checking is a method for performing state-space exploration. A

state-space is represented by a directed graph in which the nodes represent the system

state, and the edges between nodes represent transitions between states. Thus, the

state-space gives a description of how a system evolves. A model checker takes as

input a description of a system in its modeling language, computes the state space,

and then explores this state space to determine properties of interest. Properties

that can be discovered by model checkers include the presence of deadlocks, dead

code, and violations of user-speci�ed assertions. The speci�c format in which the

user speci�ed assertions are written depends on the particular model checker, but

temporal logic [48] is a frequently used format.

Model checking has been used extensively in the veri�cation of both hardware [57],

[58] and software [59], [60]. Both hardware and software model checking share the fact

that they both perform state space exploration, but they di�er in that veri�cation

systems for the two areas have evolved in slightly di�erent directions, leading to

two di�erent sets of tools based on di�erent logics and that use di�erent types of

search and optimization algorithms [59]. One of these di�erences is illustrated with

a description of the state explosion problem.

The biggest drawback to model checking is the state explosion problem [61]. The

problem is that a model is often described implicitly as a synchronized product of

several components; when this structure is �attened, it results in a state space that is
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exponentially larger than the size of the implicit description. Model checkers designed

for hardware applications often deal with this problem by using symbolic methods to

represent the state space as opposed to an explicit representation such as a list or

table. The �rst demonstration of this technique was done in [62], which used binary

decision diagrams (introduced in [63]) to represent the state space; this allowed an

increase in the practical size of state spaces that could be searched from 108 to 1020.

Software model checkers usually deal with the state explosion di�erently. State

explosion for software systems often occurs when checking a concurrent system (i.e.,

one with multiple processes executing simultaneously). This concurrency is modeled

by representing it as the interleaving of the processes, leading to a combinatorial

explosion in the state space. One approach to deal with this is called partial order

reduction [64]. Partial order reduction works by building an automaton to represent

the system and property one wishes to verify that is much smaller than the usual

product automaton. Partial order reduction eliminates the need to build an automa-

ton that represents the program and thus has a head start over methods that require

the automaton representing the state graph of the program to be built �rst. For a

complete description, see [64].

In the event that a model does not satisfy a speci�cation, model checking can pro-

duce a diagnostic counterexample execution trace that shows how the model violates

the property. This is one of the biggest strengths of the model checking approach and

can be invaluable when debugging complex systems [18]. Other advantages of model

checking include its speed, lack of need for proofs and its ability to handle partial

speci�cations.

Model checking has been applied extensively to concurrent systems and protocol

veri�cation [65]. The later work is especially interesting because it is a probabilistic

approach. It describes a program called Supertrace that takes the full information

for each state of the system under analysis and hashes the information to generate
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the address of a single bit in memory. If that bit is on, then the state has been seen

before, otherwise, it has not been seen. The probabilistic nature arises because if two

di�erent states hash to the same value, the program will not notice. Model checking

has also been applied to systems which are probabilistic in nature [66] as early as the

mid-1980s and more recently in [67].

As noted in [9], there is a continuing shift from verifying manually constructed

models of code to the direct veri�cation of the implementation level code. This is also

evidenced in the growing number of software model checkers [68], [69], [70].

Theorem Proving

Theorem proving [71] is a technique to determine whether a sentence of a theory is

provable using the axioms and inference rules of the theory. If the sentence can be

proven, then it is called a theorem. There are two categories of theorem provers:

automated and interactive. Automated theorem provers [71] require no interaction

from the user, while interactive theorem provers [72] can interact with a user during

their execution to receive guidance about how to proceed with a proof.

Theorem provers are often used in program veri�cation frameworks to prove veri-

�cation conditions, logical formulas whose validity implies that the program satis�es

the properties under consideration. Because veri�cation frameworks encompass sev-

eral di�erent areas (i.e., the program, a theorem prover and the framework itself),

many tools use intermediate languages to separate the concerns. In these cases, an

intermediate language for generating veri�cation conditions can be used to generate

the formulas that are given directly as input to theorem provers [73].

A good discussion about the relationship of theorem provers and satis�ability

modulo theories (SMT) solvers [74] is found in [75]. There is some overlap between

theorem provers and SMT solvers: both check the satis�ability of �rst-order formulas.

The di�erence is that theorem provers mainly consider plain �rst-order logic, while
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SMT solvers deal mainly with quanti�er free problems and usually include several

built-in theories (i.e., axioms and rules) that allow problems from di�erent domains

to be encoded naturally. For instance, the theory of arrays allows problems about

array accesses in a program to be encoded in a natural way, while the theory of bit-

vectors allows one to reason precisely about the computer representation of numbers

and arithmetic operations on this representation. SMT solvers are also referred to as

automatic theorem provers.

When program veri�cation frameworks generate veri�cation conditions, they gen-

erate a formula whose validity implies that the program is correct. One way to do

this is by �rst negating the original formula and then giving it to the theorem prover,

which attempts to �nd a solution. A solution to this negated formula means that

the original program is not correct. Thus, if the theorem prover �nds a solution to

the veri�cation conditions, this solution can be presented to the user as an instance

of why the program is not correct. In the case that the formula is not negated and

the theorem prover fails to �nd a proof, reporting reasons for this failure can be dif-

�cult; [71] presents two methods that a theorem prover can use to give feedback to

the user.

In comparison to model checking, theorem provers provide a low level way of

determining if a logical formula is valid. Theorem provers are often used as the

underlying tool to check veri�cation conditions generated by program veri�cation

frameworks [73]. In contrast, model checkers compute a state transition graph of a

program and perform state space exploration on this graph. Model checkers have the

advantage that if they determine that a model does not satisfy a speci�cation, they

can generate a diagnostic counterexample trace that shows exactly what lead to the

problem. Theorem provers su�er from the drawback that they cannot always give a

concise reason for a failed proof attempt, while model checkers su�er from the state

explosion problem. One advantage theorem provers have over model checkers is the

21



ability to handle models of arbitrary size. Model checkers are limited in this respect

because they can only work with models of �nite size.

Test-Case Generation

Although it is not considered a veri�cation technique, test-case generation [76] is a

useful method in the design process that enables testing. Testing cannot exhaustively

prove the absence of errors in a system like veri�cation methods, but is a useful

technique that is widely used in industrial settings.

There are two main issues with which test-case generation is concerned. The �rst

is how to choose a good sample of inputs. The second is how to exercise di�erent

branches of a program. The goal is to �nd sets of inputs that drive a program through

di�erent execution paths. For instance, consider the following C function.

void test(int x) {

int y;

if (x > 0)

y = 1;

else

y = 0;

}

The function test has two possible paths of execution: one path is taken if the

value of the parameter x is greater than zero (in which case y is assigned a value of

1), and the other path is taken if x is not greater than 0 (in which case y is assigned a

value of 0). A test-case generation method applied to the function test above attempts

to �nd values of x which drive the execution of the program down each of these two

paths. In this case, a suitable set of assignments would be x = 0 and x = 1.

As the complexity of code increases, manually performing such an analysis be-

comes infeasible for two reasons. The �rst is that the set of constraints that bind a
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certain set of input variables to a particular path grows very large. The second is

that the number of variables that have a constraint associated with them can also

grow very large. For instance, consider a modi�ed version of the code above.

void test(int x) {

int y, z;

z = x + 1; // z now depends on a symbolic input variable

if (z > 0 && x < 1)

y = 1;

else

y = 0;

}

A new variable z has been introduced that is assigned a value of x + 1. The

two feasible paths through the function now depend on the values of both x and z.

In this case, there exists only one value for x that will drive execution through the

"if" branch (x = 0). All other values of x drive the execution through the "else"

branch. This simple modi�cation to the code requires our analysis to keep track of

the variable z because its value depends on an input variable, and also increases the

set of constraints that must be solved in order to �nd input values that exercise both

branches of code.

Symbolic Execution

In the simple code listings above, inputs can be easily determined by hand. Symbolic

execution [77] was introduced in 1976 to provide an automated way of performing

this analysis. The goal is to allow a computer to analyze code for interesting sets of

inputs that exercise as much of the code as possible. Symbolic execution works much

like a normal program execution, except that the input variables are not assigned a
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concrete value. Instead, they are treated as symbolic variables. Program execution

proceeds as normal until an instruction involving an input variable is encountered.

This instruction can be either an expression involving an input variable or a condi-

tional statement involving an input variable. In the �rst case, the symbolic value

assigned to the input variable is used in the evaluation of the expression, which may

entail assigning a symbolic value to variables that are not explicit inputs or attaching

additional constraints to an input variable. In the second case, a conditional state-

ment (e.g., an "if" statement) which depends on the value of an input variable is

evaluated. Symbolic execution "forks" its execution and attempts to perform both

branches of the conditional statement. It does this by determining for each branch

whether the current set of constraints on the variables used in the conditional are

satis�able.

When it was introduced in the late 1970s, symbolic execution was intractable for

analyzing large, complex code because constraint solvers were not powerful enough to

solve large sets of constraints quickly. In the past ten years, symbolic execution has

become feasible for analyzing complex code, largely due to the performance improve-

ments of constraint solvers. In addition, tool support has greatly matured in recent

years [68], [16].

Test-case generation is especially useful for analyzing reactive systems [48] that

take input from their environment and perform computation based on this input.

Test-case generation can be used in these cases to �nd inputs that an environment

could provide to a system that would cause invalid behavior.

Statecharts

Statecharts were introduced by Harel in [12] as an extension of traditional �nite-state

machines (FSMs) to deal with reactive systems [48]. Intuitively, Statecharts extend

FSMs with three major concepts:
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1. Depth: states can be nested.

2. Orthogonality: multiple states can be active at one time.

3. Broadcast communication: states can send messages to other sets of states.

Since their original introduction, numerous dialects of Statecharts, each with their

own particular semantics, have been proposed. A full description of any of these

semantic variants is too lengthy to present here; for a survey of the various dialects,

see [78]. Here, a small description of the basic semantics is presented which each

variant extends and modi�es in its own way, followed by an intuitive example that

should give a feel for the language.

Statecharts operate in a series of discrete steps. At the beginning of a step, inputs

and events can be read from the environment. During a step, the hierarchy of the

current state con�guration is traversed and transitions can be �red if they are enabled.

A transition is enabled if its triggering event is the same as the current input event and

if its guard condition, a predicate over the data of the Statechart and current state

con�guration, is true. A transition can have associated actions that are performed

when it is �red or tested to see if it is enabled. The �ring of transitions can cause states

to be exited and others to be entered, each of which may have associated actions. The

exiting and entering of states causes the state con�guration to be updated. At the

end of a step, outputs can be emitted to the environment.

Figure 1 shows an example of a Statechart with two states labeled A and B, and

one input variable, x, an integer. There are two transitions, one from A to B guarded

by the condition x > 0, and another from B to A guarded by the condition x < 0;

in order for a transition to be valid, its guard condition must evaluate to true. Chart

execution works in the following way. When the chart is initially activated, State A

is entered. Execution then proceeds in a series of discrete steps. At the beginning

of each step, the value of the input variable x is read from the environment. If the
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A B
int x

[x > 0]

[x < 0]

Figure 1: An example Statechart.

Statechart is in State A and the value of x read from the environment is greater than

0, then the transition from A to B is taken, State A is exited, and State B is entered.

If the Statechart is in State B and the value of x read from the environment is less

than 0, then the transition from B to A is taken, State B is exited, and State A is

entered.

Statecharts are used to describe a class of systems called reactive systems [48]. A

reactive system is one which maintains an ongoing interaction with its environment.

During an execution step, a Statechart model reads inputs from its environment,

updates its state con�guration and emit outputs back to the environment. Most

Statechart variants are based on the clocked synchronous model of computation: dur-

ing each tick of a global clock, all inputs are considered, and updating the state

con�guration and outputting events to the environment is assumed to take zero time.

Given a modeling language for Statecharts and a behavioral semantics that re�ects

the intuitive description of dynamic behavior given above, one can ask questions about

Statecharts such as the following.

• Is a certain state reachable?

• Is it always the case that a certain state is reachable after the occurrence of a

given condition?

The �rst question is one of reachability. The second question is a speci�cation

against which a Statechart can be checked for conformance: does the Statechart

satisfy the speci�cation? Such speci�cations can be described precisely in languages

such as temporal logic [48] and the Statechart checked for conformance.
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CHAPTER III

STATECHART ANALYSIS FRAMEWORK

This chapter describes the Statechart analysis framework. This work was motivated

by a real-world problem faced by engineers at NASA. Distributed teams there use

di�erent variants of Statecharts to describe interacting pieces of a single system. The

di�erences between the variants are primarily in the rules describing the dynamic

behavior of a model, but there are small structural di�erences as well. Although the

di�erences between the variants are slight, they are crucial and can result in a single

model behaving very di�erently across Statechart variants.

One implication of these di�erences is that a single model can have a di�erent

meaning to di�erent teams. In order to verify that a model has the same dynamic

behavior across variants, this property must be checked using each di�erent execution

semantics. Without automated support, this can become a laborious task.

Using di�erent variants also complicates system integration when there is com-

munication between models written by two di�erent teams. In this case, none of

the environments used to create the individual models can be used to simulate the

entire system due to the fact that each tool implements only a single execution se-

mantics. For example, the Matlab/State�ow environment cannot be used to simulate

a Statechart model with the execution semantics used by the Rhapsody modeling

tool, nor can the Rhapsody tool simulate a model with the execution semantics of

Matlab/State�ow. This makes veri�cation di�cult to perform at the model-level be-

cause of the lack of a single environment in which all of the di�erent models can be

executed simultaneously.

To address these limitations, a uni�ed environment for Statecharts was designed

and implemented. This environment allows multiple, interacting Statechart models,
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each using di�erent execution semantics, to be simulated and veri�ed. The key point

of the approach is that the structure of a model is decoupled from its execution. This

allows a model's structure to be de�ned independently of its behavior. Behavioral

semantics for di�erent Statechart variants were de�ned as Java modules. To use the

framework, the structure of a model is �rst translated into equivalent Java code. This

structure code is then combined with a semantic module to provide execution. In this

way, a single model can be simulated with di�erent execution semantics very easily:

simply plug a di�erent semantic module into the structure code. The approach also

provides a single, uni�ed environment in which interacting models executing under

di�erent semantics can be simulated and veri�ed.

One related approach is the template semantics described in [79]. The template

approach describes the semantics of a particular model-based notation, or in this

case, Statechart notation, using parameterized templates. This allows the di�erences

in behavior between the di�erent variants, such as the state hierarchy traversal order

for transition paths, to be captured. The description of the semantics given by the

templates can potentially be used by a code generator to automatically generate

automated tools to analyze the behavior of models that use the semantics. According

to [79], for instance, given a particular template-based semantics, an analysis tool

that answers reachability questions about models using these semantics could be

generated. Cast in this light, the uni�ed framework described in this chapter can be

seen as an instance of three such analysis tools: one for analyzing Statecharts that

use Rhapsody semantics, one for analyzing Statecharts that use the Matlab/State�ow

semantics and one for analyzing Statecharts that use UML semantics.

This work is also concerned with how model properties that one wishes to verify

can be speci�ed and checked. Research has shown that one impediment to more

widespread application of formal methods to real-world systems is the cumbersome

nature of property speci�cation [10]. For this reason, a property speci�cation method
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based on the pattern system described in [10] was built. The key idea is that the

most commonly occurring properties used in speci�cations come from a relatively

small set which can be divided into two parameterizable pieces. This method allows

the user to specify these two pieces through an intuitive interface and automatically

translates these into Java code that is used with the execution engine to provide

property checking.

To perform veri�cation, the uni�ed Statechart framework is integrated with Java

Path�nder (JPF), a software model checker for Java, as well as its symbolic execu-

tion module, Symbolic Path�nder (SPF). JPF is implemented as a backtrackable Java

Virtual Machine that can check properties such as arithmetic over�ows, unchecked ex-

ceptions and race conditions between threads. The SPF module implements symbolic

execution over Java bytecode and can perform test-vector generation.

Symbolic execution (Chapter II) can be used to �nd inputs that an environment

could provide to a Statechart model that would cause erroneous behavior, and is a

good choice to analyze the behavior of a Statechart model for at least two reasons.

• The inputs may range over large domains, such as the reals.

• The inputs at a given step may impact the subsequent behavior of the system.

The challenge is to choose input values that drive the system through distinct

sequences of states with the two points above in mind. This is di�erent than a simple

search problem because in a typical search problem, a single value is chosen at each

step. If the value chosen at a given step does not terminate at the desired state, then

the system backtracks to a previous step and selects a new value. If the search values

range over an in�nite domain, such as the set of real numbers, a search that selects

one value at a time can be very ine�cient.

The second point above means that at a given step, input values to a Statechart

can be stored internally by the Statechart and used to control behavior at a later
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A B
int x

[x > 0] / y = x; 
…

T[y > 10]

Figure 2: Example in which simple search is ine�cient.

time. Consider the example in Figure 2. Assume that x is an integer input, y is an

internal integer variable, and that the goal is to �nd a sequence of input values to x

so that starting from the initial state A, the state T is eventually reached (the �...�

in the Figure indicates that there is some number of states in between B and T ). A

simple search might look at the guard condition on the transition from A to B and

correctly determine that any value of x greater than zero will enable the transition.

However, the subtlety here is that this input value is stored in the value of y, which is

not taken into consideration by a simple search. The value of y is not used until much

later, where it guards the �nal transition to state T. From a simple search's point

of view, picking any value for the input x during the �rst step causes the search to

proceed to a large depth. However, state T will not be reached until an initial value

greater than 10 is chosen for x. Symbolic execution overcomes this problem by not

assigning a concrete input to x initially; rather it attaches to x a constraint saying

that it is greater than 0. It also uses this constraint when assigning the value of x to

y as part of the transition action. When the guard of the transition to T is tested,

the symbolic constraint attached to y is used, and in order for the guard condition

to evaluate to true, an additional constraint is attached to y, which states that it

should also be greater than 10. A constraint solver is then used to check whether the

conjunction of the two constraints y > 0 and y > 10 is satis�able.
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Java was chosen as the language in which the framework is implemented for two

reasons. First, the variants of Statecharts, especially State�ow, have large data and

action languages. The action language is used to perform actions during model exe-

cution, such as when a transition is taken or a state is entered. Most of the features

of the action language are also found directly in Java. Using a simpler language in

which features of the action language do not have a corresponding concept would

have required an non-native encoding.

The second reason Java was chosen is because there is a powerful model checker

for it, Java Path�nder. While this particular case study is concerned with how to

analyze Statecharts, the more general question of interest is how modeling languages

can be assigned semantics in a way that makes them amenable to analysis. Part of

the goal of this work is to see how well-suited Java is to this task.

One alternative to this approach of analyzing Statecharts is a direct symbolic

encoding, which works in the following way. First, a symbolic method is chosen.

For instance, a SAT based encoding [80] represents each relevant feature of the lan-

guage as a propositional variable, while an SMT based encoding [74] can use both

propositional variables and additional theories such as linear arithmetic. Second, a

translation from the Statechart model into the symbolic representation is performed.

Third, the semantics of the particular Statechart variant are used to encode addi-

tional symbolic clauses representing the state of the Statechart model as successive

steps are performed. All of these symbolic clauses are then given as input to a solver.

A satisfying solution to these clauses is interpreted as a way to drive the initial model

to a particular state.

While a direct symbolic encoding can be more e�cient than de�ning the semantics

in Java and using JPF and SPF to analyze the models, this approach was not taken

for two main reasons. First, the ability to simulate a model with di�erent semantic

variants is important. The interface to the framework allows users to interactively ex-
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plore a model's behavior. Interaction with a direct symbolic encoding is very di�cult.

Second, the semantic variants of Statecharts have small details that are sometimes

di�cult to see when one is �rst de�ning them, and an interactive debugger is helpful

in uncovering these details. Debugging a direct symbolic encoding is a more di�cult

task.

The Java method was also chosen over a direct symbolic encoding to investigate

how well modern program analysis tools perform when analyzing code that should be

interpreted with a di�erent semantics than the underlying language in which it is writ-

ten. The Java programming language has a well-de�ned execution semantics, which

is de�ned by the Java language speci�cation [8]. In the case of the Statechart analysis

framework, JPF and SPF are analyzing the code, which represents the semantics of

the variants of Statecharts, with respect to the semantics of the Java because that is

the language in which the semantics are de�ned. Ideally, the analysis tools could be

con�gured to interpret the code not using the full semantics of Java, but using the

semantics of the Statechart variants. That is, the code could be veri�ed on a di�erent

level of abstraction than the level in which it is written. This is addressed further in

Chapter V.

Overview

An overall view of the framework is shown in Figure 3. The process includes the

following steps.

1. Create a Statechart model.

2. Translate into the intermediate language.

3. Generate the Java code representing the structure of a Statechart.

4. Combine the structure code with a semantic module.
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Rhapsody

IMPORT
Simulink/Stateflow

2

Pluggable Semantics

Generic Execution Environment

UML Rhapsody

State machine model in Java

EXPORT

Java Pathfinder

Stateflow

Data interface

Modeling / 
Intermediate Representation

Figure 3: Statechart analysis framework.

5. Analyze with Java Path�nder.

The �rst step can be performed with tool support. One method is to use a

modeling tool called the Generic Modeling Environment (GME) [3], in which case a

Statechart model is created directly in the intermediate language (described below).

Another method is to use either the State�ow or Rhapsody environment for model

creation. Translators exist from both of these tools into the intermediate language

used by the framework.

The second step, translating the Statechart model into an intermediate representa-

tion, uses a language called ESMoL: Embedded Systems Modeling Language [81]. ES-

MoL was originally designed as an intermediate language into which Matlab/Simulink

models can be translated, and from which both Java and C implementation level code

can be generated. An intermediate language is needed for the framework for two rea-

sons. First, it simpli�es the translation to Java by requiring only one translator

targeting Java to be built and maintained. Second, additional information, such as

property speci�cations (described below) can be attached to model elements. The
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intermediate language provides a place for this additional information to be persisted

and analyzed before it is translated into Java.

From the ESMoL intermediate representation, Java code representing the struc-

ture of the Statechart model is generated. In addition to translating basic features,

such as states and transitions, there are additional features such as graphical functions

in State�ow that make this translation process non-trivial. The process is described

in detail later in this chapter.

The fourth step combines the generated structure code with a semantic module.

Semantic modules were de�ned for three variants of Statecharts: Matlab/State�ow,

Rational Rhapsody and UML State Machines. These three variants were chosen

because of their popularity.

The Matlab/State�ow semantics were implemented using the o�cial State�ow

reference manual. The Rhapsody semantics were implemented using [82]. The UML

semantics were implemented using the OMG UML Superstructure speci�cation [21].

To further ensure that the correct semantics were implemented, the parametric SOS-

style description found in [37] was used as an additional reference.

In addition to running a Statechart with a given semantics, the execution engine

also exposes a data interface that is used to set the inputs and read the outputs of a

Statechart. The interface enables the inputs and outputs to be accessed in di�erent

ways, including access by JPF during analysis. Its design is described later in this

chapter.

The last step of the process is to perform analysis using JPF and SPF. There are

two parts to performing analysis: (1) specifying properties, and (2) verifying these

properties. For the �rst part, it was mentioned previously that a large number of

commonly occurring speci�cation properties can be captured through two parame-

terizable pieces of data. These two pieces are, (1) a scope, which describes when the

property should hold, and (2) a pattern, describing the conditions that should hold
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while the scope is valid. These two pieces of data can be de�ned on models directly in

the intermediate language, or they can be de�ned inside the Matlab/State�ow mod-

eling environment using a custom user interface that was de�ned. In the later case,

they are automatically carried over to the intermediate language. From ESMoL, the

properties are transformed into Java code that is used by the execution engine and

checked by JPF.

Analysis with JPF can be performed using the Eclipse IDE, which includes a plug-

in component for JPF and SPF. JPF and SPF are driven through con�guration �les

in which options and parameters are speci�ed. JPF can check the user speci�ed prop-

erties, and SPF can perform test-vector generation. The test-vectors are sequences

of inputs to a Statechart that cause it to be driven through a certain sequence of

states. State reachability is closely related to the nature of symbolic execution, in

which the goal is to �nd inputs to the system that cause a high-percentage of code

to be executed.

The following sections describe individual pieces of the framework in more detail.

Translation of structure

Translating the structure of a Statechart model to corresponding Java code is done

in a top-down fashion along the state hierarchy. Starting with the highest level in

the state hierarchy, all states at a given level are translated, and then the next lower

level in the hierarchy is translated.

Data and scopes

Most Statechart variants allow states to contain internal data variables. The allowed

data types depend on the particular variant. Further, access to a variable in a state

is scoped in such a way that substates can access the variable as well. Figure 4 shows

an example Statechart with two states, A and B. Note that A contains two variables,
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A
en: x++;

B
en: y++;

Parent

int x, y;

Figure 4: Example Statechart with data used by substate.

x and y, which are used by its substate B. B has access to these variables because

they are de�ne in an ancestor state.

Statecharts also allows many behaviors of a model to be customized. For instance,

a state has the ability to perform actions at various times during execution, such as

when it is entered or exited. In Figure 4, state A has an entry action that increments

the value of x, and state B has an exit action that increments the value of y.

This ability to de�ne custom behaviors on model elements in�uenced the design

of the structural Java code to represent Statecharts. First, a set of base classes were

de�ned for the main concepts found across the Statechart variants. A class digram

for these main concepts is shown in Figure 5. These main concepts include states,

transitions, events, regions and pseudostates. States are used to describe a mode

of the system. Transitions link two objects, such as states, together. A transition

begins at a source and ends at a destination. Transitions can have a transition label

that describes the circumstances under which the system moves between the source

and destination of the transition. Events are used to indicate that some event has

occurred and can be used to trigger transitions. Regions are a concept from the UML

36



Figure 5: Class diagram of main Statechart features.

semantics and are used to distinguish between states with an exclusive decomposition

and states with a parallel decomposition. The idea is that states are contained inside

regions, with the constraint that at most one state in a region is part of the active

state con�guration at any given time. Pseudostates refer to objects which are not

states, but that can be the source and target of transitions. Junctions are an example

of a pseudostate.

The base classes for these main Statechart concepts de�ne methods corresponding

to the functionality provided by the concept they represent. For instance, states can

perform actions when they are entered, exited and during their execution. Thus,

the base class State de�nes three di�erent methods for performing these actions:

entryAction, exitAction and duringAction, each of which contains no implementation.

The structure code for a Statechart is generated by extending these base classes

and overriding the virtual methods for base functionality with custom behavior when

needed. Instances of these extended classes are created and connected to represent

the Statechart. For instance, the generated class for state A in Figure 6 extends the
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Generated Code

class StateA extends State {
public void entryAction() {
x++;

}
}
public StateA A = new StateA();

Semantic Library

class State {
public void entryAction() {}
public void exitAction() {}
public void duringAction() {}

}

A
en: x++

Figure 6: Translation of a basic state.

base class State and overrides the entryAction method with code to increment the

value of x.

Generating custom Java classes that extend the base functionality classes provides

a clean solution for handling data and scoping as well. Data de�ned in a state

is generated as a public data variable inside the class corresponding to that state.

Scoping is addressed by using nested, inner class. When a child state C is contained

hierarchically inside a parent state P, the generated Java class for C is generated

inside the generated Java class for P, and the instance of C is created inside the class

for P. This allows the Java object representing state C to access all of the public data

variables de�ned in the class for state P and also those de�ned in the ancestor states

of P.

States

Figure 6 shows the translation of a basic state into Java. The state A, shown at the

top of the Figure, contains one data member, an integer x, and an entry action that

increments the value of x : en: x++. The base class, State, found in the semantic

library, is shown on the right of the Figure and contains three virtual methods: en-

tryAction, exitAction and duringAction. These are overwritten to perform custom
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A B

Generated Code

class RegionAB extends Region {
class StateA extends State {
…

}
public StateA A = new StateA();

class StateB extends State {
…
}
public StateB B = new StateB();

}
RegionAB AB = new RegionAB(0);

Semantic Library

class Region {
private int order;
public Region(int order) {
this.order = order;

}
}

Figure 7: Translation of a orthogonal states.

behavior when a state is entered, exited or executed, respectively. The execution

engine is responsible for calling these methods at the appropriate time. For instance,

when a state is exited, the execution engine will call that state's exitAction method

to perform the action associated with exiting that state.

The left side of Figure 6 shows the generated code for state A. A unique name, in

this case StateA, is given to the generated class, which extends the base State class.

To perform the entry action of state A, the virtual method entryAction is overridden

to increment the value of x. This method is called by the execution engine whenever

this state is entered.

Orthogonal states

Orthogonal states are states at the same level of hierarchy. The semantics of State-

charts say that a state with an orthogonal decomposition have at most one of their

states active at a given time. In order to deal with orthogonal and parallel states,

regions are used. The idea is that states are contained inside a region, with the con-

dition that at most one state inside each region is active at a given time. Regions are
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also contained inside states. A state with one region has an orthogonal, or sequential,

decomposition, and a state with more than one region has a parallel decomposition.

Regions were chosen because they are a concept found directly in the UML State Ma-

chine speci�cation and they can be used across the variants to represent orthogonal

and parallel states in a modular way.

The top of Figure 7 shows a state with an orthogonal decomposition that contains

two substates, A and B. On the right of the Figure is the base class Region, whose

constructor takes one parameter telling the activation priority for a region. This

priority is used by variants such as State�ow that allow the order in which parallel

states should be entered. Orthogonal states contain only one region, so the priority

is not used. The left of Figure 7 shows that state A and state B are both generated

inside the same region, which means that when their parent state is active, exactly

one of the two states is active.

Parallel states

A state with a parallel decomposition means that when the state is active, all of its

substates are also active. This is re�ected in the generated code by placing each

parallel state in a separate region. The constructor parameter to the region is used

to give the activation order between the parallel states in variants that support this

feature.

Figure 8 shows an example of how a parallel state is transformed. The state

named Parent has a parallel decomposition and two child states, A and B. The left

of the Figure shows the generated code. Note that states A and B are generated

inside di�erent regions, and that the activation order for the regions is preserved in

the translation (a lower number is a higher priority).
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Generated Code

class StateParent extends State {
class RegionA extends Region {
class StateA extends State {
public void entryAction() {
x++; 

}
}

}
RegionA regionA = new RegionA(1);

class RegionB extends Region {
class StateB extends State {

public void exitAction() {
y++; 

}
} 

}
RegionB regionB = new RegionB(2);

}

Semantic Library

class State {
public void entryAction() {}
public void exitAction() {}
public void duringAction() {}

}
class Region {
int order;
public Region(int order) {
this.order = order;

}
}

A
en: x++

B
ex: y++;

1 2

Parent

Figure 8: Translation of parallel states.
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Generated Code

class StateParent extends State {
int x;
…
class RegionAB extends Region {
class T extends Transition {
public boolean guard() {
return x == 2;

}
public void action() { x++; }

}
public T transition = new T();

}
}

Semantic Library

class Transition {
List<String> triggers;
public Transition(List<string> triggers) {
this.triggers = triggers;

}
public boolean trigger(String event) { 
return triggers.contains(event);

}
public boolean guard ()  { 
return true;

}
public void action() {}
public void conditionAction() {}

}

A Be [x == 2] / x++

Parent

Figure 9: Translation of a transition.
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Transitions

Transitions can have multiple triggering events, an optional guard which is a predicate

evaluated over data values and the current state con�guration, as well as actions. In

order for a transition to be enabled, at least one of its triggering events must be

present and its guard must evaluate to true.

The top of Figure 9 shows a transition from state A to state B. Its trigger is the

event e, its guard is the condition x == 2 and its action increments the value of x

(x++). Triggers are implemented as strings, and checking the triggering condition

of a transition is done using string comparisons: the base class Transition contains a

method named trigger that takes a string (representing an event) and returns true if

this event is a trigger for the transition. Implementing events as strings was done for

simplicity, although a class to wrap the strings could have also been used. Figure 9

also shows how the scoping allows the transition to access the variable x de�ned in

state Parent through the use of nested inner classes.

Pseudostates

Pseudostates represent objects that can be the source and target of transitions but

that are not considered part of the state con�guration. Derived classes are not used

in the generated code for pseudostates. Instead, an instance of the Pseudostate class,

de�ned in the semantic library, is created and its kind is given by an enumeration

value.

Figure 10 shows a model with two pseudostates: an initial pseudostate with a

transition to state A, and a junction pseudostate in between states A and B. The

base class Pseudostate is shown on the right, along with the enumeration listing all

the possible types of pseudostates. The generated code for the model is shown on the

left of the Figure.
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Generated Code

class RegionAB extends Region {
class StateA extends State {

…
}
StateA A = new StateA();

Pseudostate initial = new
Pseudostate(Kind.INITIAL);
Pseudostate junction = new
Pseudostate(Kind.JUNCTION);

}

Semantic Library

class Pseudostate {
Kind kind;
public Pseudostate(Kind kind) {
this.kind = kind;

}
public enum Kind {
INITIAL, JUNCTION, CHOICE, FORK,
ENTRYPOINT, EXITPOINT, JOIN,
SHALLOWHISTORY, DEEPHISTORY

}
}

A B

Parent

Figure 10: Translation of a pseudostate.

State�ow graphical functions

One feature unique to State�ow that requires special care when translating is the

concept of a graphical function. A graphical function is a program written with �ow

graphs using junctions and transitions. Graphical functions can accept arguments and

can have multiple return values. A graphical function can be called in the actions of

transitions and states. The advantage of graphical functions is that they allow C and

Matlab style functions to be de�ned using junctions and transitions instead of using

native code.

Figure 11 shows an example of a graphical function named F that takes two

integer arguments, a and b, and returns their di�erence. Like all graphical functions,

Figure 11 consists of only junctions and transitions. The transitions have guards and

actions that implement the logic of a di�erence function. The transition loop in the

upper part of the Figure handles the case where a is greater than b, and accumulates

the di�erence by iteratively comparing a to b, decrementing a if it is greater and

incrementing x. The transition loop in the lower part of the Figure handles the case
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function [x] = F(a,b)

[a > b]1

2

[a > b] / x++; a--;

/ x = 0;

[b > a] / x++; b--;

j1 j2

j3

Figure 11: A graphical function state named F that takes two arguments, a and b,
and returns their di�erence. The three junctions are named j1, j2 and j3.

in which b is greater than a in an analogous way. A graphical function terminates

when control reaches a junction that has no enabled outgoing transitions.

Figure 12 shows the generated Java code for the graphical function in Figure 11.

For each graphical function, a Java class is generated. The function is called using

the init(int a, int b) method. The �rst thing the init method does is initialize the

parameters, which are stored as class instance variables so that all the methods in the

class representing the graphical function can access them. Next, the action on the

initial transition is performed. In this case, x is initialized to 0. Finally, the method

representing the target junction of the initial transition is called, which in this case is

the method j1. For each junction in a graphical function, a method is generated. This

method is called whenever a transition is taken which has the corresponding junction

as its destination. The code inside the methods that correspond to junctions contains

a conditional for each guard condition on the outgoing transitions of the junction. If

this conditional is true, then the action on the corresponding transition is performed

and the method representing the junction target of the transition is called.
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class F extends State {

/* One instance variable and two inputs to the Function */
int x, a, b;

/* The method used to invoke the graphical function */
public void init(int a, int b) {

this.a = a;
this.b = b;

/* Perform the initial transition action */
x = 0;

/* Call the method for the target of the initial transition */
j1();

}

public void j1() {  /* Method for junction j1 */
if (a > b)

j2();
else

j3();
}

public void j2() {  /* Method for junction j2 */
if (a > b) {

x++;
a--;
j2();

}
}

public void j3() {    /* Method for junction j3 */
if (b > a) {

x++;
b--;
j3();

}
}

public int getReturn1() {  /* Method to get the return value */
return this.x;

}
}

Figure 12: The generated Java code for the graphical function in Figure 11.
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In the example of Figure 12, in the method for junction j1, the �rst conditional

is if(a>b), corresponding to the guard on the �rst outgoing transition from j1. If

this condition is true, then because the transition contains no action, the method for

junction j2 is called because it is the target of the �rst outgoing transition of junction

j1. If the �rst condition in the method for junction j1 is not true, then the method

for junction j3 is called because j3 is the target of the second outgoing transition

of j1. Execution is complete when a junction with no enabled outgoing transitions

is reached. In order to get the return value of the graphical function, the method

getReturn1() is called. Because a graphical function can have multiple return values,

one method is generated for each return value. Whenever a return value is used in a

Statechart model, the corresponding generated Java code substitutes a method call

to the method to get that particular return value.

Data interface

The data interface allows the generated code representing a model to read input

variables from the environment and send outputs to the environment. This feature

allows a model to be driven manually by the user, non-deterministically by JPF or

symbolically by SPF. The semantic interpreters execute a Statechart by performing

the loop shown in Algorithm 1. The execution engine is responsible for reading and

setting the inputs at the correct time. The reason for this is that the model mainly

acts as a passive structure that is used by the execution engine during execution.

Thus, the time at which inputs should be read and sent to the machine is known only

by the execution engine.

The data interface is generated using the the same strategy as the generation

of the model structure: the core concepts are found in pre-de�ned base classes, and

custom functionality is implemented by over-riding virtual methods and implementing

interfaces. The interface to read data must be partially generated because the number
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Algorithm 1 Execution loop
while !executionComplete do
read event
read inputs
set model inputs
step model
check properties

of inputs and their data types is speci�c to each model, and these inputs must be

type-checked and passed in the correct order to the model. In order for the execution

engine to call a generic method to perform the reading, type-checking and setting of

inputs, it uses an interface. For each individual model, a custom class is generated

that implements this interface with functionality speci�c to the model.

Figure 13 shows an example of a generated data interface and how it is used. At

the top of the Figure is a Statechart with two inputs, an integer x and a boolean

b. The generated structure code is shown in the middle of the Figure on the right

side. The generated class for the top-level state, Parent, contains a method called

setInputs, which is called to set the values of the input variables (marked with a

comment 1 in the Figure).

The IDataReader interface, used by the execution engine to call the setInputs

method, is shown at the bottom right of Figure 13. The generated class (ChartReader)

implementing the IDataReader interface for this model is shown in the middle of the

Figure on the left side. Notice that the ChartReader class contains an instance of the

top-level state ParentState. This instance allows ChartReader to call the setInputs

method with the correct types for the model's inputs.

The generic execution engine is shown at the bottom of Figure 13 on the left

side. In this example, an instance of the ChartReader class is passed as the second

parameter to the constructor of the execution engine. In the execution engine's execu-

tionLoop method, the method call reader.setInput() results in a call to the generated

ChartReader class in the middle of Figure 13 on the left side. This method reads two
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Generated DataReader

class ChartReader implements IDataReader { 
private ParentState state;
private IDataProvider dataProvider;
public void setInput() {                                  // 2

// read inputs from IDataProvider
String a = dataProvider.readData();
String b = dataProvider.readData();
// parse inputs to correct types
Int aInt = Integer.parseInt(a);
boolean bBool = Boolean.parseBoolean(b);
state.setInputs(aInt, bBool);

}
}

Generated Structure Code

class Chart extends Statechart {
class RegionA extends Region {

class ParentState extends State {  // Highest-level state
int x; // x and b are inputs
boolean b;
public void setInputs(int x, boolean b) {       // 1

this.x = x;
this.b = b;

}
}

}
}

A Bint x

boolean b

Parent

int y

boolean c

Generated code

Generic execution engine

class Interpreter {  // Base interpreter class
Statechart chart; // Instance of our chart
IDataReader reader; // Instance of custom reader for chart
public void executionLoop() {

reader.readEvent();
reader.setInput();
this.step();  // step the Statechart
checkProperties();

}
public Interpreter(Statechart chart, IDataReader reader) {

this.chart = chart;
this.reader = reader;

}
}

IDataReader Interface

interface IDataReader {
public void setInput();
public boolean hasData();
public String readEvent();
public void writeOutput();

}

IDataProvider Interface

interface IDataProvider {
public String readData();
public boolean hasData();
public String readEvent();
public void advance();

}

Base library components

Figure 13: A Statechart and its generated data interface.
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string inputs using an instance of the IDataProvider interface. The IDataProvider

interface is used to allow the string inputs to come from a �le, from the user or from

the analysis tool. After these two string inputs are read, they are parsed to the cor-

rect types, which in this example is an integer and a boolean. Finally, the setInputs

method is called on the ParentState instance to set the model's inputs.

Execution engine

The execution engine is the component responsible for executing a Statechart. Three

di�erent execution engines were implemented: one for Rhapsody semantics, one for

State�ow semantics and one for UML semantics.

Algorithm 2 Step algorithm
bool traversalDone = false
while !traversalDone do
level l = selectHierarchyLevel // semantic variant
if l == endOfHierarchy then
traversalDone = true

for all parallelState p in l do
if computeTransitionPath(p) then
traversalDone = true // terminate the search if there is a path from any
state

processTransitions() // semantic variant

Algorithm 3 computeTransitionPath(State s)

for all Transition t in s.outgoing do
if t.guard() && t.event() == currentEvent then
if validTarget(t.target) then
push(t) // semantic variant
return true

Algorithm 2 shows the step method at a high-level. The outer while-loop is respon-

sible for traversing the hierarchy in the correct order for each variant. For instance,

Matlab/State�ow performs the hierarchy traversal top-down, while Rhapsody and

UML are both bottom-up. At each level of hierarchy, the algorithm iterates over all
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of the parallel states found that the current level (the for-all loop in Algorithm 2)

and tries to �nd valid outgoing transition paths from these states (computeTransi-

tionPath()).

Most of the details and complexities of the various Statechart semantics are found

in the algorithm to compute a transition path (Algorithm 3). A transition path is a

sequence of enabled transitions starting from a state in the current state con�guration

and ending at a valid target. One example of the complexity is the large number of

di�erent types of pseudostates found in the Rhapsody semantics, which requires a

large number of special cases to handle. The semantic variants also di�er in when

they perform various actions, such as actions associated with transitions or states.

For instance, in Rhapsody, the results of a transition action during a logical step can

be seen immediately in that same step, whereas in UML semantics, the results of a

transition action are not visible until the next logical time step. State�ow, on the

other hand, can perform transition actions in two di�erent ways. Due to the large

number of special cases between the three variants, high-level pseudocode is shown

and the places where the semantic variants are encountered are noted.

Algorithm 4 validTarget(Target t)

if t is State then
if t is parallel state then
for all State s in t do
if !validTarget(s.getInitial()) then
return false;

else

return true;
else

process pseudostate // depends on particular kind of pseudostate

The computeTransitionPath(State s) method shown in Algorithm 3 works in the

following way. The outer loop iterates over all of the outgoing transitions of s. The

�rst if statement tests whether the transition's guard and triggering event are en-

abled. If they are enabled, then the validTarget method is called to test whether
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there is a valid transition path to the target of the transition. If validTarget is true,

the transition is added to a stack that stores the transitions on the current transition

path. When these are used and processed is dependent on the semantic variant.

The algorithm to check whether a state or pseudostate is a valid target of a tran-

sition is shown in Algorithm 4. The �rst if statement checks whether the parameter

t is a state or a pseudostate. If it is a state, then the next part depends on the

particular semantic variant. In UML, it must be checked whether t is a parallel state,

and, if it is a parallel state, then it must be checked that each of t's substates are

valid targets. In State�ow and Rhapsody, whether t is parallel does not have to be

checked; rather, a value of true is returned to indicate that the target is valid. The

outermost else is responsible for the case where the parameter t is a pseudostate. All

of the variants deal with pseudostates di�erently; a comparison can be found in [37].

Property speci�cation

Formal analysis methods provide guarantees about system behavior. The prerequisite

to using these methods is a description of relevant system properties in a speci�cation

language. The property speci�cation tells the analysis tool which system properties

it should check. A large number of languages for describing properties, or prop-

erty speci�cation languages, exist, including regular expressions and temporal logic,

such as LTL and CTL. However, the drawback to using temporal logics for property

speci�cation is their steep learning curve for industrial practitioners. Consequently,

designers and developers will be less likely to use veri�cation tools if they must devote

large amounts of time to learning a speci�cation language.

For this reason, a di�erent method for property speci�cation was integrated into

the framework. This approach to specifying properties uses the pattern-based system

introduced in [10]. In that work, the authors studied a large body of existing property
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Figure 14: A class diagram for properties represented as scopes and patterns.

speci�cations and found that the majority of them were instances of a small set of

parameterizable patterns: reusable solutions to recurring problems.

Patterns can be entered into the system using a custom interface that was in-

tegrated directly into the Simulink/State�ow environment, or they can be entered

directly in the intermediate modeling language. After the parameters have been spec-

i�ed, the framework generates Java code implementing the semantics of the patterns.

This code is automatically connected to the execution engine to provide analysis.

To illustrate the pattern-based approach to property speci�cation, consider the

property that throughout a system's execution the value of a certain variable should

always be greater than zero. There are two basic parts to this property that commonly

occur. The �rst tells when the property should hold (in this case, at all times during

execution), and the second tells what condition should be satis�ed during this time

(here, the variable should be greater than zero).

A property consists of precisely those two pieces: a scope and a pattern. The

scope de�nes when a particular property should hold during program execution, and

the pattern de�nes the conditions that must be satis�ed. There are �ve basic kinds

of scopes, described below and shown in Figure 15.

• Global: the entire execution.
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Global

Before Q

After Q

Between Q and R

After Q until R

Figure 15: Pattern scopes.

• Before: execution up to a given state.

• After: execution after a state.

• Between: execution from one state to another.

• Until: execution from one state to another even if the second never occurs.

There are two main categories of patterns, occurrence and order, as shown in

Figure 16. The occurrence group contains the absence (never true), universality

(always true), existence (true at least once) and bounded existence (true for a �nite

number of times) patterns. The order group contains the response (a state must be
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Occurrence Order
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Universality Existence

Bounded
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Precedence Response Chain 
Precedence

Chain 
Response

Figure 16: Pattern hierarchy.

followed by another state), precedence (a state must be preceded by another state),

chain precedence and chain response patterns.

Scopes

The Java interface representing scopes is shown at the top of Figure 17. The four

static integers indicate the status of a scope. An unknown value for a scope means

that future information is needed to determine whether the scope should apply. This

is used by scopes such as the Before scope, in which a scope may or may not be

active depending on whether another event happens on a later time. A scope with

a status value of post-active means that the scope was active at an earlier time but

is currently no longer active. This is used by the Before pattern to indicate that

the �before� condition has been met and that conditions which depended upon this

knowledge in previous steps now know it was true.

The Java class for patterns is shown at the bottom of Figure 17. The Pattern

class is intended to be extended twice. The �rst extension is by classes implementing

the logic of the concrete patterns listed above. The second extension is by generated

code for property speci�cations for speci�c Statecharts. The Pattern class contains an

instance of a class that implements the Scope interface, as well as two virtual methods
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Scope interface

interface Scope {
public static int INACTIVE = 0;
public static int ACTIVE = 1;
public static int UNKNOWN = 2;
public static int POST_ACTIVE = 3;

/* Returns one of the above values */
public int isActive(Interpreter interpreter); 

}

Base Pattern class

class Pattern {
public Scope scope;

/* Virtual method to be over-written in concrete pattern classes */
public boolean checkProperty(Interpreter interpreter) { return true; }

/* Virtual method to be over-written in generated code */
public boolean checkExpression(Interpreter interpreter) { return false; }

}

Figure 17: The Scope interface and base Pattern class.
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Global scope class

class GlobalScope implements Scope {

/* Global scope is always active */
public int isActive(Interpreter interpreter) { return ACTIVE; }

}

Figure 18: The Java class for the global scope.

that are intended to be overridden. The checkProperty method is overridden by the

�rst extension and is called by the framework to determine if a property has been

violated. This method implements the logic of a general pattern. A return value

of true from the checkProperty indicates that the property has been violated. The

checkExpression method is overridden by the second extension and implements the

logic of a pattern instance in the context of a particular Statechart.

Global scope

The global scope is active at all times during the execution of a Statechart. The Java

class for the global scope is shown in Figure 18.

After scope

The after scope is active after the occurrence of some condition. The Java class for

this scope is shown in Figure 19. Initially, this scope is inactive. The condition after

whose occurrence the scope becomes active is checked using the checkAfterExpression

method. As soon as this method returns true, the scope is active.

Before scope

The before scope is active before the occurrence of a condition that may or may not

occur during the execution of a Statechart. If the condition occurs, then the scope
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After scope class

public class AfterScope implements Scope {

private int active = INACTIVE;

public int isActive(Interpreter interpreter) {

/*We are in scope after the occurrence of the condition upon which we are waiting */
if (active == INACTIVE && checkAfterExpression(interpreter)) { active = ACTIVE; }

return active;
}

/* Holds the status of the condition upon which we are waiting */
public boolean checkAfterExpression(Interpreter interpreter) { return true; }

}

Figure 19: The Java class for the after scope.
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Before scope class

public class BeforeScope implements Scope {

/* Initially we do not know if the condition upon which we are waiting will occur or not */
private int active = UNKNOWN;

public int isActive(Interpreter interpreter) {

/* Transition from post_active to inactive if the condition occurred */
if (active == POST_ACTIVE) { active = INACTIVE; }

/* Transition to post_active if the condition upon which we are waiting occurs */
if (active == UNKNOWN && checkBeforeExpression(interpreter)) { active = POST_ACTIVE; }

return active;
}

/* Describes the condition upon which we are waiting */
public boolean checkBeforeExpression(Interpreter interpreter) { return true; }

}

Figure 20: The Java class for the before scope.

was active at all times prior to the condition's occurrence. If the condition does not

occur, then the scope is considered to have never been active. Figure 20 shows the

Java class for this scope. Initially, the status of the scope is unknown because it is

not known if the condition upon which the property is waiting will occur. The status

is set to POST_ACTIVE, meaning that the scope was active at all times previous to

the current time, if the condition occurs. The occurrence of the condition is detected

by the method call to checkBeforeExpression.

Until scope

The until scope is active from the occurrence of one condition to the occurence of

another condition, even if the second condition never occurs. The Java class imple-

menting this scope is shown in Figure 21. Initially, that status is inactive. Upon the

occurrence of the �rst condition, which is checked by calling the method checkAfter-
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Until scope class

public class UntilScope implements Scope {

private int active = INACTIVE;

public int isActive(Interpreter interpreter) {

/* We are active beginning when checkAfterExpression is true */
if (active == INACTIVE && checkAfterExpression(interpreter)) { active = ACTIVE; }

/* Transition from active to inactive when checkBeforeExpression is false */
if (active == ACTIVE && checkBeforeExpression(interpreter)) { active = INACTIVE; }

return active;
}

/* Overwritten in generated code */
public boolean checkBeforeExpression(Interpreter interpreter) { return true; }

/* Overwritten in generated code */
public boolean checkAfterExpression(Interpreter interpreter) { return true; }

}

Figure 21: The Java class for the until scope.

Expression, the status becomes active. The status remains active until the second

condition occurs, which is detected by calling the checkBeforeExpression.

Between scope

The between scope is almost identical to the until scope, with the di�erence that

the status of the former is active only if the second condition occurs. Figure 22

shows the Java class implementing the between scope. Initially, the status of the

scope is inactive. Upon the occurrence of the �rst event (detected by calling the

method checkAfterExpression), the status is set to unknown. The reason for this is

that the scope should not be considered active unless the second condition occurs at

some point. If the second condition does occur, the status is set to POST_ACTIVE,
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meaning that the status of the scope was active during most recent period during

which the status of the scope was listed as unknown. After this, the status is set

to inactive if the �rst condition does not occur. Otherwise, it is set to unknown,

meaning that the the status is true if the second condition occurs in the future.

Patterns

The previous sections explained that the base class for patterns, shown at the bottom

of Figure 17, is intended to be extended twice: once by modules included with the

framework that implement the logic of a general pattern, and a second time by gener-

ated code implementing the logic of a patterns in the context of a speci�c Statechart.

This section shows some of the classes implementing the �rst extension.

Universality pattern

The universality pattern is shown in Figure 23. This pattern is used to represent

the requirement that a condition is true at all times while its scope is active. The

comments in the code of Figure 23 describe the code intuitively. Notice the two

boolean variables propertyViolated and propertyPotentiallyViolated. These indicate,

respectively, whether the pattern has de�nitely been violated or whether the pattern

will be violated if the scope is active. The later is needed to handle scopes such as

the until scope which can depend on future information.

Existence pattern

Figure 24 shows the Java class for the existence pattern. This pattern represents the

requirement that a condition holds at some point while its scope is active. That is, the

condition must occur at least once. The checkProperty method begins by checking

the status of the scope. If the scope is active or unknown (i.e., it may be active)

then the call to checkExpression determines if the property has been seen. If so, the
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Between scope class

public class BetweenScope implements Scope {

/* Initially inactive */
private int active = INACTIVE;

public int isActive(Interpreter interpreter) {

if (active == POST_ACTIVE) {
if (checkAfterExpression(interpreter)) {

active = UNKNOWN;
} else {

active = INACTIVE;
}

}

/* Transition from inactive to unknown if checkAfterExpression is true */
if (active == INACTIVE && checkAfterExpression(interpreter)) { active = UNKNOWN; }

/* Transition from unknown to post_active it checkBeforeExpression is true */
if (active == UNKNOWN && checkBeforeExpression(interpreter)) { active = POST_ACTIVE; }

return active;
}

/* Overwritten in generated code */
public boolean checkBeforeExpression(Interpreter interpreter) { return true; }

/* Overwritten in generated code */
public boolean checkAfterExpression(Interpreter interpreter) { return true; }

}

Figure 22: The Java class for the between scope.
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Universality pattern class

public class Universality extends Pattern {

/* Tells whether the property is violated */
protected boolean propertyViolated = false;

/* Tells whether the property might be violated depending on the scope */
protected boolean propertyPotentiallyViolated = false;

public boolean checkProperty(Interpreter interpreter) {

int scopeIsActive = scope.isActive(interpreter);

/* If the scope is active and the expression is false, the property is violated */
if (scopeIsActive == Scope.ACTIVE && !checkExpression(interpreter))

propertyViolated = true;

/* If the scope is unknown and the expression is false, we have potentially violated the property */
if (scopeIsActive == Scope.UNKNOWN && !checkExpression(interpreter))

propertyPotentiallyViolated = true;

/* If a previously unknown scope becomes true and we had potentially violated
the property during that time, then we have now definitely violated the property */

if (scopeIsActive == Scope.POST_ACTIVE) {
if (propertyPotentiallyViolated)

propertyViolated = true;
propertyPotentiallyViolated = false;

}

return propertyViolated;
}

}

Figure 23: The Java class for the universality pattern.
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variable propertyEncountered is set to true. Otherwise, the scope is checked to see

if it was previously active and during that time the condition was not true at least

once. In this case, the property is violated, and the value of propertyViolated is set

to true, indicating that the property has been violated.

Precedence pattern

The Java class for the precedence pattern is shown in Figure 25. This pattern ex-

presses the requirement that while its scope is active, the occurence of one condition

(detected by the method checkExpression2 ) requires another condition (detected by

the method checkExpression) to precede it in occurrence. The checkProperty method

implements this logic by �rst determining the status of the scope. If the scope is

active or unknown, it is checked whether the second condition has held before the

�rst condition. If so, the property is violated. If the scope was previously active, it

is checked whether it was previously determined that the property may have been

violated by checking the value of propertyPotentiallyViolated. If this is true, then

the property has de�nitely been violated and this is signaled by setting the value of

propertyViolated to true.

Statechart analysis with Java Path�nder

The framework analyzes Statechart models using JPF and SPF to perform state

exploration. The feature of Statecharts that makes their exploration particularly

amenable to symbolic execution by SPF is the combination of a large action language

and complex data types. For instance, multi-dimensional arrays can be de�ned inside

a Statechart and used as part of the action language. Reasoning over data types

like these can be di�cult for some analysis tools, such as those that used a SAT-

based [80] or BDD [62] encoding. SPF uses a satis�ability modulo theories (SMT)
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Existence pattern class

public class Existence extends Pattern {

private boolean propertyViolated = false;

private boolean propertyEncountered = false;

private boolean scopeWasActive = false;

public boolean checkProperty(Interpreter interpreter) {
int scopeIsActive = scope.isActive(interpreter);

/* If the scope is active or unknown and the condition occurs, the property holds*/
if (scopeIsActive == Scope.ACTIVE || scopeIsActive == Scope.UNKNOWN) {

scopeWasActive = true;
if (checkExpression(interpreter))

propertyEncountered = true;
}

/* If the scope occured and the condition didn't occur, the property was violated */
if (scopeIsActive == Scope.POST_ACTIVE || (scopeIsActive == Scope.INACTIVE && scopeWasActive)) {

if (!propertyEncountered)
propertyViolated = true;

propertyEncountered = false;
scopeWasActive = false;

}

return propertyViolated;
}

}

Figure 24: The Java class for the existence pattern.
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Precedence pattern class

public class Precedence extends Pattern {

private boolean propertyViolated = false;
private boolean propertyPotentiallyViolated = false;
private boolean firstPropertyEncountered = false;
private boolean scopeWasActive = false;

public boolean checkProperty(Interpreter sm) {
int scopeIsActive = scope.isActive(sm);

/* If the status of the scope is active or unknown, check if we have encountered the conditions */
if (scopeIsActive == Scope.ACTIVE || scopeIsActive == Scope.UNKNOWN) {

scopeWasActive = true;

/* If the first condition is true, mark that we have seen it */
if (checkExpression(sm))

firstPropertyEncountered = true;

/* If the second condition is true and the first didn't happen yet, we may have violated the property */
if (checkExpression2(sm) && !firstPropertyEncountered)

if (scopeIsActive == Scope.ACTIVE)
propertyViolated = true;

else
propertyPotentiallyViolated = true;

}

/* If the scope was active, check to see if we violated the property during that time */
if (scopeIsActive == Scope.POST_ACTIVE || (scopeIsActive == Scope.INACTIVE && scopeWasActive)) {

if (scopeIsActive == Scope.POST_ACTIVE && propertyPotentiallyViolated)
propertyViolated = true;

propertyPotentiallyViolated = false;
firstPropertyEncountered = false;
scopeWasActive = false;

}
return propertyViolated;

}
protected boolean checkExpression(Interpreter interpreter) { return false; }
protected boolean checkExpression2(Interpreter interpreter) {return false; }

}

Figure 25: The Java class for the precedence pattern.
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[x == 0 && i == 4]

/ i = 0;

Figure 26: Sample chart for symbolic execution.

based encoding, which can e�ciently reason over data types found in languages like

Java and Statecharts.

This section shows how SPF performs symbolic execution over the code to �nd

sequences of inputs that will drive a Statechart through a series of states and how

this can be used to perform bounded model checking of Statecharts.

Figure 26 shows a Statechart with three states, A, B and C. Starting from the

initial state, A, the goal is to �nd a sequence of inputs that will cause the Statechart

to enter state C. Thus, the goal is to �nd a sequence of values for the input variable

x such that if the model were to use this sequence of values as its inputs, the model

would reach state C. The guards on the transitions from A to B and B to C use the

input variable x and the internal variable i, while the transition from B to A uses

only the input variable x.

The generated structure code for this Statechart is shown in Figure 27. The

generated class for the state Parent is named StateParent and contains an integer

variable x that represents the input to the Statechart. The setInput method is used

to set the value of the input variable, as described in earlier in this chapter.

Symbolic exploration of this model is done the following way. First, a con�guration

�le is created that tells SPF which methods and which parameters to those methods
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class StateParent extends State {

/* One input variable to the Statechart */
int x;

/* The symbolic method */
public void setInput(int x) {

this.x = x;
}

class RegionA extends Region {

/* Declare and instaniate the states */
class StateA extends State {…}  StateA stateA = new StateA();
class StateB extends State {…}  StateB stateB = new StateB();
class StateC extends State {…}  StateC stateC = new StateC();

/* Create the initial pseudostate */
Pseudostate p1 = new Pseudostate(Kind.INITIAL);

/* Create transitions and connect */
}
RegionA regionA = new RegionA(1);

}

/* Create the transitions, insert guards and actions, and connect */
class Transition1 extends Transition {  // From initial pseudostate to A

public void action() { i = 0; }
}
Transition1 t1 = new Transition1(p1, stateA); // source = p1, target = stateA

class Transition2 extends Transition {  // From A to B
public boolean guard() { return x > 0; }
public void action() { i++; }

}
Transition2 t2 = new Transition2(stateA, stateB); // source = stateA, target  = stateB

class Transition3 extends Transition {  // From B to A
public boolean guard() { return x < 0; }

}
Transition3 t3 = new Transition3(StateB, stateA); // source = stateB, target  = stateA

class Transition4 extends Transition {  // From B to C
public boolean guard() { return x == 0 && i == 4; }

}
Transition3 t3 = new Transition3(StateB, stateC); // source = stateB, target  = stateC

Generated Code

Figure 27: Generated structure code for the Statechart in Figure 26.

should be treated symbolically. In this example, the symbolic method is the setInput

method of the StateParent class, and all of its inputs are set to be symbolic. This

instructs SPF intercept any concrete invocations of the setInput method and replace

the parameters with symbolic values. Thus, any use of the symbolic parameters inside

the method results in a symbolic value being used instead of a concrete value.

The symbolic values are used during program execution when a branching con-

dition, such as an �if� statement, that depends on a symbolic value is encountered.

When such a branching condition is executed, SPF attempts to �nd two sets of values

for all of the symbolic variables used by the branching condition: one set that will

cause the �true� branch to be executed, and another set that will cause the �false�

branch to be executed. SPF �nds these sets of values by invoking an SMT solver,

which may attach additional constraints to the symbolic variables.
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After creating the con�guration �le, execution begins. The model is initialized

and enters its default state, A. Then, the execution loop of Algorithm 1 begins. This

example uses data rather than events to drive the execution, so the �rst step, �read

event,� can be ignored. The next step of the execution loop, setting the inputs,

results in a call to the symbolic method setInput of the StateParent class. The value

of the parameter to the setInput method is assigned to the instance variable x in the

StateParent class, which results in this instance variable getting a symbolic value.

The next part of the execution loop steps the model, which eventually results

in a call to computeTransitionPath (Algorithm 3). This algorithm tests the outgoing

transitions of current state set, in this case, the outgoing transitions of A. This results

in a call to the guard method of the Transition2 class in Figure 27. The transition is

enabled if the value of x is greater than 0, which causes the guard method to return

true. Otherwise, the transition is not enabled. The previous part of the execution

loop assigned a symbolic value to x. Because a variable with a symbolic value is used

in the conditional statement (return x > 0;), SPF invokes a constraint solver to �nd

values for x that will cause both branches to be executed. In this case, to explore the

true part of the branch and enable the transition, SPF will attach the constraint x >

0 to x. To explore the false part of the branch in which the transition is not enabled,

SPF will attach the constraint x <= 0 to x. By exploring the true part of the branch

and enabling the transition, the transition action is executed (i++), state A is exited

and state B is entered.

The execution loop then continues with another iteration. Because SPF explored

both branches of the conditional described above, there are now two executions main-

tained by SPF: one in which the current state is A (because the transition was not

enabled) and another in which the current state is B (because the transition was

enabled). To �nd inputs that will drive the model to state C, the model must tran-

sition from state A to state B four times so that the value of the internal Statechart
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variable i has the value required to enable the guard from state B to state C. When

state B has been entered four times and the execution engine tests the guard on the

transition from B to C, SPF tries to �nd a satisfying assignment to the constraint (x

== 0 && i == 4 ). Because i has a concrete value of four, the satisfying assignment

(x = 0 ) enables the transition and causes the model to enter state C.

Execution proceeds in this manner until a �xed-point or depth-limit is reached. At

the end of execution, SPF reports the input sequences that drive the model through

di�erent sequences of states. Two examples of SPF's output are shown in Figure

28. The top of Figure 28 shows sequences of calls to the symbolic method, which

in this case is the setInput method of the StateParent class. The third sequence

at the top of Figure 28, for instance, causes the model to go through the states

A,B,A,B,A,B,A,B,C,C by providing the inputs 1,−10, 1,−10, 1,−10, 1, 0, 0. The

bottom of the Figure shows the generated unit test corresponding to this test sequence

(the instance of the StateParent class is named state).

These test sequences produced by SPF can be used as inputs to drive the simu-

lation inside the original modeling tools. Alternatively, the generated test sequences

can be played back in the Statechart framework because the translation preserves the

syntax and hierarchy of the original model, and the state con�gurations can be seen

through the console output.

Case Study

This section describes the application of the Statechart analysis framework to a sim-

pli�ed model of the Mars Exploration Rover (MER). The MER contains a number of

di�erent physical devices, such as video cameras and motors, and a number of di�er-

ent software processes, or users, that periodically use the physical devices. To ensure

mutual exclusion, the users are not allowed to directly access the physical devices.
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Sample SPF Log File
[setInput(1), setInput(-10), setInput(1), setInput(-10), setInput(1), setInput(-10), setInput(1), setInput(-10), setInput(-10)]
[setInput(1), setInput(-10), setInput(1), setInput(-10), setInput(1), setInput(-10), setInput(1), setInput(0), setInput(0), setInput(0)]
[setInput(1), setInput(-10), setInput(1), setInput(-10), setInput(1), setInput(-10), setInput(1), setInput(0), setInput(0)]
[setInput(1), setInput(-10), setInput(1), setInput(-10), setInput(1), setInput(-10), setInput(1), setInput(1), setInput(-10), setInput(0)]
[setInput(1), setInput(-10), setInput(1), setInput(-10), setInput(1), setInput(-10), setInput(1), setInput(1), setInput(0), setInput(0)]

Sample Generated Unit Test
@Test
public void test3() {
state.setInput(1);
state.setInput(-10);
state.setInput(1);
state.setInput(-10);
state.setInput(1);
state.setInput(-10);
state.setInput(1);
state.setInput(0);
state.setInput(0);

}

Figure 28: Sample output log from Symbolic Path�nder's analysis of the model in
Figure 26.

Instead, the users request access to the devices through an arbiter module, which

ensures fairness and mutual exclusion.

Figure 29 shows a Simulink model with three Statechart diagrams named Arbiter,

User1 and User2. The Arbiter Statechart models the arbiter module, and the two

other Statecharts represent the software processes in the MER arbiter. The model

works in the following way. The two users request one of the �ve resources from the

arbiter and wait for a response from the arbiter that tells whether or not access to

the resource is granted. Once a resource is granted, the users use it for a period of

time and then give control of the resource back to the arbiter. The arbiter reads

the resource requests from the users, and, depending on the priority of the requested

resources and their current status (available or unavailable), sends a signal to the users

that indicates whether the request is granted or denied. Additionally, the arbiter may

rescind a user's access to a resource if it receives a request for a con�icting resource

with a higher priority from the other user.
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Figure 29: High-level view of the MER Arbiter.

Figure 30 shows the internals of the User1 Statechart; User2 is modeled the same

way. Initially, the model is in the Idle state. A transition to the Busy state occurs

when one of the �ve resources is requested (which resource is requested is determined

by an external source, shown in Figure 29 as a constant input to User1 ). Upon

taking the transition to the Busy state, the resourceOut variable is set to the value

of the requested resource and the cancel variable (which indicates whether User1 is

returning control of the resource to the arbiter) is false. These are then passed as

inputs to the Arbiter module, which decides whether the resource request is granted

or denied. The Arbiter can also rescind a previously granted request if it receives

a request for a higher priority, con�icting resource. User1 also contains a boolean

input named reset. The intent is that whenever this input is true, it causes User1 to

cancel both its resource and request and transition to the Idle state.

As Figure 30 shows, the intent of having the reset command take priority over all

other inputs is captured by placing the transition guarded by the reset command at
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Idle

Busy

Init

Pending

Granted

[resourceIn >= 0 && resourceIn < 5]
{resourceOut = resourceIn; cancel = false;}

{request = true} [deny == true]
{request = false}

1

[grant == true]

[rescind == true]
{cancel = true}

[reset == true]
{cancel = true; request = false;}

{cancel = true; 
request = false;}

2

1

2

Figure 30: Statechart for User1 from Figure 29.

the highest level of hierarchy (i.e., its source is the Busy state). Thus, the property

that the transition from state Pending to state Granted should never be taken when

the value of reset is true should be satis�ed by the model. For a system modeled

entirely in State�ow, the property is satis�ed because transitions at higher levels of

hierarchy have precedence over transitions at lower levels of hierarchy: when User1

is in the Busy state, if the value of reset is true, then the transition from state Busy

to state Idle is taken. However, if either User1 or User2 is executed using Rhapsody

or UML semantics instead of State�ow semantics, the system model does not satisfy

the property due to the fact that transitions at lower levels of hierarchy are given

priority over transitions at a higher level of hierarchy.

The Statechart analysis framework was used to verify whether the property is

satis�ed depending on the semantics used for User1. The �rst step in applying the

framework was to generate Java code representing the structure of the model. The

arbiter Statechart contains 33 pseudostates (junctions), 15 atomic states, 2 orthogonal

states and 58 transitions, for a total of 108 elements. The generated Java code for
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the arbiter Statechart is 1788 lines, which corresponds to roughly 16.56 lines of code

per element in the Statechart. The Statecharts for the two users each contain 2

pseudostates, 4 atomic states, 1 compound state and 9 transitions, for a total of 16

elements. The generated Java code for each user is 259 lines, yielding approximately

16.19 lines of code per element in the Statechart. The Java translation is linear in the

size of the number of Statechart elements due to the fact that it simply the re�ects

the structure of the Statechart.

The second step in applying the framework was to use SPF to analyze the code and

check if there exists a sequence of inputs that will cause the property to be violated.

To encode the property that the transition from Pending to Granted should never be

taken if the value of reset is true, an assertion stating that the value of reset should be

false was added to the generated Java code representing the transition action between

states Pending and Granted. SPF searches for input sequences that will cause the

assertion to be violated.

Table 1 lists the results of the analysis performed by SPF. Each run is on a

di�erent row in the table. The Arbiter and User2 were always executed with State�ow

semantics, while the semantics with which User1 was executed varied (the semantics

used for each experiment are listed in the �rst column). As the last six rows of Table

1 shows, the property violation was detected by SPF when User1 was executed with

either Rhapsody or UML semantics. The reason that the property can be violated

with these semantics is that they both give priority to transitions at lower levels of

hierarchy, which is the opposite of the State�ow semantics.
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Table 1: Analysis results for the MER arbiter case study.
Semantics, Seq. size Total # Test Cases Property Memory, Time

User1 State�ow, 4 125 true 20 M, 43 s
User1 State�ow, 5 412 true 22 M, 2 m 04 s
User1 State�ow, 6 1343 true 24 M, 6 m 46 s

User1 UML, 4 57 false 21 MB, 21 s
User1 UML, 5 155 false 21 MB, 53 s
User1 UML, 6 579 false 23 MB, 2 m 50 s

User1 Rhapsody, 4 57 false 21 MB, 21 s
User1 Rhapsody, 5 155 false 21 MB, 55 s
User1 Rhapsody, 6 579 false 23 MB, 2 m 45 s
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CHAPTER IV

SEMANTICS WITH FORMULA

This chapter describes an extension to Formula for calculating the execution traces

of models. Formula is a modeling language and tool from Microsoft Research that is

based on logic-programming, and is used to de�ne, compose and explore DSMLs [83].

The Formula language supports common manipulations of DSMLs such as composi-

tions and extensions, and the analysis tool has a built-in model �nding procedure as

its formal method.

An execution trace is a sequence of steps that shows how the state of a model

evolves during the model's execution. Note the important di�erence between a model

and the state of a model. A model combined with a set of rules describing the

behavior of the model gives a �nite description of a possibly in�nite set of states

that the initial model can reach when it is executed according to the rules that

describe its behavior. Execution traces provide a form of simulation and allow one

to view a model's reachable states, which can be very helpful for reasoning about

non-determinism in languages.

Behavioral semantics in Formula are de�ned using a set of model transformations.

Each transformation takes one input model, produces one output model, and rep-

resents one atomic step of execution. Using multiple transformations to de�ne the

semantics allows non-concurrent actions to be separated and speci�ed as di�erent

atomic steps. A model m is executed using the semantics by giving it to the set of

transformations, applying all transformations that take as input a model from the

same DSML as m, and then using the output models as the next set of inputs to the

transformations. Execution completes when no new outputs are produced.
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There were three main problems that had to be addressed when building a tool to

compute execution traces. The �rst is the non-determinism that arises when multiple

transformations can be applied to the same input model. For instance, in a modeling

language for distributed systems, a transformation TAdd might be used to add a

node to the system and another transformation TRem used to remove a node. Using

two transformations means that one execution step cannot add and remove a node.

However, given an input model MIn, TAdd and TRem may both be applicable, and the

choice of which one to apply is non-deterministic. The trace calculation tool must be

able to: (1) determine all transformations that can be applied to an input model at

a given step, and (2) create a separate trace for each applicable transformation.

The second problem that was addressed and another source of non-determinism in

the semantics is the pattern matching matching inside individual transformations. For

instance, the behavioral semantics of Petri nets (formally de�ned in the next section)

state that during a step, one enabled transition may �re. If multiple transitions

are enabled during a step, then the choice of which one to �re is non-deterministic.

This non-determinism must be made explicit to the trace calculation tool so that a

separate trace can be created for each non-deterministic choice. The di�culty lies

in doing this in a way that does not rely on any particular DSML. This problem

was solved by using a model transformation's parameters to explicitly indicate which

parts of a transformation are non-deterministic. The trace calculation tool interprets

the parameters to a transformation as ranging over the data instances of the input

model to the transformation, which allows a separate trace to be created for each

non-deterministic choice made during execution.

The third problem that was addressed deals with storing execution traces after

they are computed. The execution traces capture the evolution of a model's state

during execution, but from a practical viewpoint, the model itself may also need to

be stored along with the trace. Storing a large model at each step of an execution
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trace can introduce signi�cant storage overhead if a naive approach is used. This

problem was solved by designing a component that stores execution traces e�ciently

by storing only the di�erences between execution steps whenever possible.

Additionally, a tool for visualizing execution traces was designed. This facilitates

an intuitive interpretation of execution traces by allowing users to assign a visual

representation to the elements of the DSML and automatically generating a layout

of the steps of the trace using these visual representations.

The next section gives examples of execution traces using Petri nets. This is

followed by an introduction to the Formula language and a description of the imple-

mentation of the trace calculation tool.

Execution traces

An execution trace is a sequence of steps that shows how the state of a model evolves

during the model's execution. This section uses Petri nets to show examples of exe-

cution traces.

Petri nets

Petri nets [84] are a modeling language especially suited for distributed and concurrent

systems because non-determinism can be expressed. They provide a nice combination

of simplicity and expressiveness. The formal de�nition of a basic Petri net is given as

a 5-tuple, PN = (P, T, F,W,M0) where:

• P = {p1, p2, ..., pm} is a �nite set of places.

• T = {t1, t2, ..., tm} is a �nite set of transitions.

• F ⊆ (P × T ) ∪ (T × P ) is a set of arcs.

• W : F → {0, 1, 2, 3, ...} is a weight function.
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• M0 : P → {0, 1, 2, 3, ...} is the initial marking.

The dynamic behavior is given by the following rules.

• A transition t is enabled if each input place p of t is marked with at least w(p, t)

tokens, where w(p, t) is the weight of the arc from p to t.

• An enabled transition may or may not fire.

• When an enabled transition t �res, w(p, t) tokens are removed from each input

place p of t, and w(t, p) tokens are added to each output place p of t.

Figure 31 shows a graphical representation of a Petri net. Circles are used to

represent places, rectangles represent transitions and arrows represent arcs. Small

solid dots inside a place represent tokens. Assume that W (f) = 1∀fεF , i.e., the

weight of all arcs is 1. Given a Petri net with the initial marking on the left side of

Figure 31, the transitions labeled T1 and T2 are both enabled. The marking that

results if T1 �res is shown on the upper right of Figure 31, while the lower right

portion of the Figure shows the resulting marking if T2 �res. Thus, given the initial

marking on the left side of Figure 31, there are two possible execution traces, as shown

in Figure 32.

Note that the basic de�nition of a Petri net given above contains no concept to

describe any markings other than the initial marking. Figures 31 and 32 graphically

depict the markings after either transition T1 or T2 �res using small solid dots

to represent the number of tokens in a place. In order for execution traces to be

computed, information about the state of a model must be available. The next

section shows how a DSML can be extended to include such information.
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Figure 31: A sample Petri net. Places are represented by circles, transitions by
rectangles. A solid dot represents a token. Given the initial marking on the left,
transition T1 �ring results in the Petri net on the upper right, while the model on
the bottom right is the result if transition T2 �res.

Introduction to Formula

Formula, �rst introduced in [85], is a modeling language and analysis tool for model-

based abstractions. A Formula speci�cation consists of a set of data types and declar-

ative rules that de�ne constraints on the data types. Behavioral semantics (next

section) are de�ned using model transformations.

The basic unit of abstraction for de�ning a DSML is called a domain. A domain

consists of data types and associated constraints. Figure 33 shows a Formula domain

for Petri nets. Line 3 declares a new data type called Place for creating places. This

declaration can be read like a structure type in C or C++. Each instance of a Place

has one argument of type Basic named id. The Basic type in Formula is a built-in

type and includes all of the basic types in Formula: strings, integers and reals. A
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Figure 32: The two execution traces of the Petri net shown in Figure 31.
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Place is instantiated by calling the Place constructor with an argument of type Basic

for its id. For instance, Place(0) and Place(“p′′) instantiate two places with ids of

0 and �p�, respectively. Two instances are equal if and only if they were created by

the same constructor applied to the same arguments. Line 4 declares a data type

named Transition for representing transitions in a Petri net; Transition also has

one argument of type Basic.

Line 6 declares a data type named TransToP lace for representing the arcs be-

tween a Transition and a Place. The �rst argument has type Transition and is

named src, and the second argument has type Place and is named dst. The third

argument has type Real and is named produces; this argument represents the number

of tokens that are put in the Place speci�ed by the second argument if the Transition

speci�ed by the �rst argument �res. The TransToP lace data type also has the rela-

tion annotation attached to it. This attaches the constraint that both the �rst and

second arguments to this type must be de�ned. Formula checks that these constraints

are satis�ed by instances of the domain.

The PlaceToTrans data type (line 8) is used to represent an arc from a Place

to a Transition and works in an analogous way. The LoopToP lace data type (line

10) is used to represent two arcs: one from its �rst argument (a Place) to its second

argument (a Transition) that requires a number of tokens given by the third argument

(of type Real) in order for the Transition to �re, and a second arc from the second

argument (a Transition) back to the �rst argument (a Place) that produces the

number of tokens given by the fourth argument (of type Real). The LoopToP lace

data type is used to reduce the size of models and ease the de�nition of the semantics;

it is syntactic sugar that can be used in place of using both a PlaceToTrans and

TransToP lace.

The basic PetriNet domain in Figure 33 does not contain a way to store the

marking of a Petri net. This domain can be extended to include a type to hold in-
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1. domain PetriNet
2. {

3. Place ::= (id: Basic).
4. Transition ::= (id: Basic).
5. [relation]
6. TransToPlace ::= (src: Transition, dst: Place, produces: Real).
7. [relation]
8. PlaceToTrans ::= (src: Place, dst: Transition, requires: Real).
9. [relation]
10. LoopToPlace ::= (src: Place, dst: Transition, requires: Real, produces: Real).

11. }

Figure 33: Formula de�nition of a domain for Petri nets.

1. domain MarkedPetriNet includes PetriNet
2. {

3. [function]
4. Marking ::= (place: Place, cnt: Real).

5. }

Figure 34: Extended domain that includes Markings.

formation about a marking, as shown in Figure 34. Line 1 declares a new domain

named MarkedPetriNet that includes the PetriNet domain. The �includes� key-

word means that the MarkedPetriNet domain includes all of the data types and

constraints de�ned in the PetriNet domain. TheMarkedPetriNet domain adds one

new data type called Marking, which has two arguments: a Place and a Real. A

Marking is used to hold information about the state of a Petri net by indicating that

its �rst argument (a Place) contains the number of tokens speci�ed by its second

argument (a Real).

A Formula model is a �nite set of data type instances that satisfy all of the

constraints of its associated domain. Figure 35 shows the Formula representation of

the Petri net model on the left side of Figure 31. Line 1 declares a model named

m1 whose domain is MarkedPetriNet. The notation p1isP lace(“p1′′) assigns a place

named �p1� to the identi�er p1. This is syntactic sugar that allows instances to be

used across a model without repeatedly constructing them. The �ve Place data type
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1. model m1 of MarkedPetriNet
2. {

3. p1 is Place(�p1�)
4. p2 is Place(�p2�)
5. p3 is Place(�p3�)
6. p4 is Place(�p4�)
7. p5 is Place(�p5�)
8. Marking(p1, 1)
9. Marking(p2, 0)
10. Marking(p3, 0)
11. Marking(p4, 0)
12. Marking(p5, 0)
13. t1 is Transition(�t1�)
14. t2 is Transition(�t2�)
15. PlaceToTrans(p1, t1, 1)
16. PlaceToTrans(p1, t2, 1)
17. TransToPlace(t1, p2, 1)
18. TransToPlace(t1, p3, 1)
19. TransToPlace(t2, p4, 1)
20. TransToPlace(t2, p5, 1)

21. }

Figure 35: Formula encoding of the Petri net on the left side of Figure 31.

instances de�ned on lines 3 through 7 are used throughout the rest of the model.

Lines 8 through 12 construct �ve Marking data type instances, one for each Place.

Place p1 has one token, while the other Places have zero tokens. Lines 13 and 14

create two Transition data type instances and assign them to the identi�ers t1 and

t1, respectively. Lines 15 through 20 create the arcs, all of which have a weight of

one.

Behavioral semantics in Formula

Behavioral semantics in Formula are de�ned as a set of model transformations, each

of which takes one model as input and produces one model as output. Addition-

ally, a transformation can have input parameters, which are named and typed, and

can be referenced and used in the transformation. Each transformation represents

one discrete and atomic step of execution. Inside a transformation are rules that

84



describe patterns that should be matched and actions that should be taken when a

match is found. All of the computation that takes place inside a single transforma-

tion is considered to be atomic, and the output model produced by executing this

transformation represents one atomic step of execution applied to the input model.

A model is executed according to the semantics de�ned by a set of model trans-

formations by providing an input model to the set, applying all compatible transfor-

mations from the set, and then using the output models produced by these trans-

formations as the next set of inputs to the set. A transformation T is said to be

compatible with a model M if the domain of the input of T is the same as the do-

main ofM. Execution completes when a �xpoint is reached: either all of the applicable

transformations produce no output or the outputs are identical to the inputs.

At a given point in execution, there may be multiple transformations that are

compatible with an input model. Each transformation represents an atomic step of

execution, so this means that there are multiple atomic steps of execution that can

be performed on the input model. Cast in this light, using multiple transformations

to de�ne the semantics provides a way to control the granularity of concurrency in

the modeling language. Placing a large number of rules in a transformation pro-

vides a coarse-grained model of concurrency, while placing relatively few rules in a

transformation provides a �ne-grained model. In terms of execution traces, when an

input model is compatible with multiple transformations at a given step, the trace

computing tool must run all of the compatible transformations with the input model

and create a separate trace for each.

Figure 36 shows an example of a transformation speci�ed in Formula named Cre-

ateMarkings. The purpose of this transformation is to create a Marking initialized

to 0 for any Places in the input model that do not have a corresponding Marking.

The �from� keyword indicates that the input model belongs to the MarkedPetriNet

domain and the �to� keyword indicates that the output model belongs to the Marked-
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PetriNet domain. The �as� keyword on line 1 provides a unique renaming used during

the transformation to resolve any naming con�icts between the domains of the input

and output models. That is, the �as� keyword allows the elements in the input and

output models to be uniquely addressed. The line �MarkedPetriNet as In� prepends

an �In� to all of the elements in the input model, thus providing a unique name with

which elements in the input model can be referenced.

Transformations consist of a set of rules. Each rule consists of a head and a tail.

The tail portion of a rule describes the pattern that must be matched, and the head

describes what is created upon each successful match. For instance, the tail of the

rule in line 4 of Figure 36 is �In.Place(x)�, which �nds instances of the Place data type

in the input model. The id of each Place is stored in the variable x. For each such

Place that is found in the input model, the head of the rule, �Out.Place(x)�, states

that a Place with the same id is created in the output model. Lines 5 through 8 do a

similar matching of data instances in the input model and creation of corresponding

data instances in the output model.

The interesting rule in the transformation of Figure 36 is on lines 9 through 11.

The tail of the rule does three things. First, it searches for Place instances in the

input model and binds each to the variable p (the rightmost portion of line 9). Line

11 assigns the id of this Place to the variable x. Line 10 uses the fail keyword:

the pattern speci�ed by the tail of this rule only matches if there does not exist a

Marking in the input model with the Place assigned to the variable p as its �rst

parameter. Intuitively, this rule searches the input model for Places for which there

is not a Marking. For each such match, the head of the rule on line 9 creates a

Marking for this Place in the output model using the id of this Place and a value

of 0 for the number of tokens. Given the input model m0 in Figure 37, applying

the transformation in Figure 36 results in an output model identical to model m1 in

Figure 35.
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1. transform CreateMarkings from MarkedPetriNet as In
2. to MarkedPetriNet as Out
3. {

4. Out.Place(x) :- In.Place(x).

5. Out.Transition(x) :- In.Transition(x).

6. Out.TransToPlace(x, y, z) :- In.TransToPlace(x, y, z).

7. Out.PlaceToTrans(x, y, z) :- In.PlaceToTrans(x, y, z).

8. Out.LoopToPlace(w, x, y, z) :- In.LoopToPlace(w, x, y, z).

9. Out.Marking(Out.Place(x), 0) :- p is In.Place,

10. fail In.Marking(p, _),
11. x = p.id.

12. }

Figure 36: Example transformation in Formula.

1. model m0 of MarkedPetriNet
2. {

3. p1 is Place(�p1�)
4. p2 is Place(�p2�)
5. p3 is Place(�p3�)
6. p4 is Place(�p4�)
7. p5 is Place(�p5�)
8. Marking(p1, 1)
9. t1 is Transition(�t1�)
10. t2 is Transition(�t2�)
11. PlaceToTrans(p1, t1, 1)
12. PlaceToTrans(p1, t2, 1)
13. TransToPlace(t1, p2, 1)
14. TransToPlace(t1, p3, 1)
15. TransToPlace(t2, p4, 1)
16. TransToPlace(t2, p5, 1)

17. }

Figure 37: A model named m0, which when given as input to the transformation
CreateMarkings in Figure 36 results in the model m1 in Figure 35.
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Execution traces with Formula

The overall algorithm to compute execution traces is shown in Figure 38. It is shown

as part of a class named TraceCalculator ; the algorithm is presented in an object

oriented style for clarity. The TraceCalculator class contains four instance variables:

a set representing the transformations de�ning the semantics, a FIFO queue that

holds the execution traces, the original input model to the semantics, and an integer

representing the maximum number of steps to execute. The method calculateTraces

begins by pushing a new trace containing only the input model onto the queue of

traces. The while loop checks whether the queue of execution traces is empty. If it is

not, the top of the queue is popped and the depth limit is checked against this queue.

If the depth limit has not been reached, then the last model of the trace is assigned

to the variable inputModel. Next, all transformations that are compatible with input-

Model are retrieved; this algorithm is shown in Figure 39 and described in the next

section. This is the piece of the trace calculation tool responsible for applying each

compatible transformation to the input model. For each compatible transformation,

all of the combinations of non-deterministic choices used in that transformation are

retrieved from the input model; this algorithm is shown in Figure 40. The transforma-

tion is then executed using each combination of non-deterministic choices and using

inputModel as the input model. If the output of the transformation is non-empty

and is not equal to the input, then the output model is added as an extension to

the current trace and this new trace is pushed onto the queue of traces. Execution

proceeds until the user-speci�ed maximum trace length is reached for all traces or a

�xpoint is reached.

Sequencing transformations

The sections above discussed the situations in which multiple transformations can be

applied to an input model at a given step. When this situation arises, a separate
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class TraceCalculator {
/* The transformations defining the semantics */
set<Transformation> transforms; 

/* A FIFO queue of traces */
queue<Trace> traces;

/* The input model */
Model input; 

/* The maximum depth to explore */
int max;

calculateTraces() {
// Create new trace with the input model as its only element
traces.push(new Trace(input));
while (!traces.empty()) {
Trace curr = traces.pop();
if (curr.count < max) {  // check depth limit

Model inputModel = curr.lastModel;

/* Apply all applicable transformations to the input model */
foreach (Transformation t in getCompatibleTransformations(inputModel)) {

/* Create a new trace for each non-deterministic choice */
list<Combination<DataInstance>> params = getNondeterministicChoices(t, inputModel);

/* Run the transformation with each combination of inputs */
foreach (Combination<DataInstance> currparams in params) {

t.doTransformation(inputModel, currparams);
if (t.output != inputModel && t.output != empty) {
Trace result = curr;    // Create a new trace if the transformation produced output
result.add(t.output);
traces.add(result);

}
} } } } } }

Figure 38: Trace calculation algorithm.
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set<Transformation> getCompatibleTransformations(Model m) {
set<Transformation> compatible;
foreach (Transformation t in transforms) {

// If the domain of the input model to t is the same 
// as the domain of Model m, add to compatible
if (t.input.domain == m.domain)
compatible.add(t);

}

return compatible;
}

Figure 39: Algorithm to get all valid transformations for an input model.

execution trace needs to be created for each di�erent transformation that can be

applied to an input model.

The trace calculation algorithm in Figure 38 does this by iterating over each trans-

formation that is compatible with a given input model. The algorithm to �nd all of

the compatible transformations for a given model is shown in Figure 39. The method

is straightforward: for a given model m, iterate over the set of all transformations

that de�ne the behavioral semantics. If the domain of the input model to the trans-

formation is the same as the domain of m, the transformation is compatible with

m.

Specifying non-determinism in transformations

The second source of non-determinism in the behavioral semantics is the pattern

matching inside individual transformations. For example, in the Petri net semantics,

multiple transitions can be enabled during a given step, but only one transition is

allowed to �re during a single step of execution. In this case, the non-deterministic

choice is which enabled transition �res.

The non-deterministic choices must be made explicit to the trace calculating tool

so that a separate trace can be created for each such choice. In Formula, this is

done by interpreting the parameters to a transformation as ranging over the data
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instances of the input model. When a variable of type T is speci�ed as a parameter

to a transformation, the trace calculation algorithm interprets this variable as a non-

deterministic choice that ranges over the data instances in the input model. The trace

calculation algorithm in Figure 38 calls the getNondeterministicChoices method to

get all combinations of non-determinism.

Figure 40 shows the getNonDeterministicChoices algorithm, which takes two pa-

rameters: a Transformation t and a Model m. The algorithm returns all of the

combinations of data instances found in the model m that can be used as the param-

eters to t. The algorithm iterates over each parameter p in the input parameters of t

and saves a list of data instances found in m that have the same type as p. Then, all

of the possible combinations of these lists of data instances are created and returned.

Storing traces

Once a set of execution traces is computed, they may need to be persisted for later

use. Because the models representing the steps of an execution trace may include not

only the state of a model but also its structure, signi�cant storage overhead can be in-

troduced if every step of a trace stores both the state (that generally changes between

steps) and the structure (which generally remains the same during execution).

To address this issue, a component was built to store execution traces e�ciently

by storing only the di�erences between execution steps whenever possible. The main

algorithm to perform this storage is shown in Figure 41. The method storeTrace

takes as input a Trace t and iterates over each model (i.e., step) of the trace. At

each step, the algorithm checks if the model of the previous step belongs the same

domain as the model of the current step. If so, the storeDi�erence method is used

to store only the di�erence between these two models. First, header information is

stored that speci�es the current step is being saved as a di�erence from the previous

step. Next, the model elements that were deleted from the previous step are stored,
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// Algorithm to return all combinations of data instances in the model m that can be used as
// input parameters to the Transformation t
list<Combination<DataInstance>> getNondeterministicChoices(Transformation t, Model m) {

/* The parameters to the transformation*/
set<Parameter> parameters = t.parameters; 

/* For each parameter, store a list of the data instances of that type */
list<list<DataInstance>> datalist;

/* List of all of the valid combinations of data instance */
list<Combination<DataInstance>> combinations;

foreach (Parameter p in parameters) {
Datatype dt = p.type;
list<DataInstance> curr;
foreach (DataInstance d in m with type dt) {

curr.add(d);
}
datalist.add(curr); // A list of data instances for each parameter

}

foreach (list<DataInstance> currlist in datalist) {
combinations.Add(makeCombo(currlist));

}
}

Figure 40: Algorithm to get the non-deterministic choices in a model.
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/* Algorithm to store an execution trace */
storeTrace(Trace t) {
list<Model> sequence = t.models;
Model prev = none;
foreach (Model m in sequence) {
if (m.domain == prev.domain) {
storeDifference(m, prev);

}
else {
storeModel(m);

}
prev = m;

}
}

/* Stores an entire model */
storeModel(Model m) {
//Store header

foreach (DataInstance d in m) 
store(d);

}

/* Stores the differences between the Model m and the Model prev */
storeDifference(Model m, Model prev) {
// Store header

/* Record which terms were deleted */
foreach (DataInstance d in (m – prev))
storeDeleted(d);

/* Record which terms were added */
foreach (DataInstance d in (prev – m)) */
storeAdded(d);

}

Figure 41: Algorithm to store traces.
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and then the model elements that were added to the previous step are stored. When

traces are loaded from storage, steps that are stored as di�erences are loaded using

their previous step and the information describing which data instances were added

and deleted.

Visualizing execution traces

To visualize execution traces, a prototype tool was implemented that allows the user

to assign a visual element to the concepts in the DSML. These assignments are then

used to produce a visual layout of the execution traces. The exact placement of

elements is handled by an automatic graph layout library [86].

Figure 42 shows one way the tool can be used to visualize the �rst execution trace

in Figure 32. A label on a Place such as “p1′′ : 1 indicates that the Place has an id

of �p1� and contains one token. The top of Figure 42 shows the initial Petri net, and

the bottom of Figure 42 shows the Petri net and marking that results if Transition t1

�res. In the visualization tool, only one step of a trace is shown at a time. The next

step in a sequence of traces can be viewed by selecting the �Next step� option in the

tool. Figure 43 shows the visualization of the second execution trace in Figure 32.

Initial experiences using the tool to visualize traces have been positive. A wide

variety of languages can be intuitively expressed using a small set of visualization

primitives, such as circles and squares, along with text labels describing attribute

values of elements. This especially includes state-transition type languages, for which

the automatic graph layout library [86] was originally designed. Currently, the tool

is limited to viewing traces, and there is no mechanism to search for a step of a given

trace that satis�es a particular property. This would be a useful addition, as users

often want to �nd the speci�c step of a trace that satis�es a certain property and

then visually examine the previous steps, e.g., for checking how a deadlocked state is

reached.
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Figure 42: Screenshot of how the trace tool visualizes execution trace 1 in Figure 32.
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Figure 43: Screenshot of how the trace tool visualizes execution trace 2 in Figure 32.

96



CHAPTER V

CONCLUSION

This dissertation has described two contributions. The �rst is a uni�ed framework

in which Statechart models of di�erent semantic variants can be de�ned, simulated

and veri�ed. The key idea is that the user describes only the structure of a Stat-

echart model. The structure is then automatically translated into equivalent Java

code, and the semantics are selected from a set of pluggable Java components. Com-

ponents implementing the semantics of three di�erent variants of Statecharts were

de�ned: Matlab/State�ow, UML and Rhapsody. By decoupling the structure from

the semantics, a single model can be executed using multiple semantics, and a sys-

tem comprised of interacting models using di�erent semantics can be simulated and

veri�ed in a single environment. The interaction between models is captured through

the input/output interface of the models.

A lightweight method to specify properties that should be monitored was also de-

scribed. The method is based on the property speci�cation pattern system described

in [10]. Properties are speci�ed through an intuitive user interface, from which Java

code to monitor these properties is automatically generated. This allows the user to

specify a wide-range of commonly occurring properties very quickly.

Analysis and veri�cation is performed using Java Path�nder, a software model

checker, along with Symbolic Path�nder [15], its symbolic execution engine. The

result of the symbolic execution is a set of test-vectors, which represent sequences

of inputs that can be given as inputs to a Statechart model to cause its execution

to proceed through a certain series of states. Symbolic execution provides a good

method of analysis because it allows state exploration to be performed even though

system behavior depends on inputs from the environment.
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The second contribution described in this dissertation is an extension to Formula,

a modeling language and analysis tool, that calculates execution traces of models.

The extension consists of three components. The �rst is a component that applies all

applicable transformations to an input model at a given step and creates a separate

trace for each such application. The second component is used to create a separate

trace for each non-deterministic choice of the input parameters that are passed to a

transformation. This makes non-determinism inside a single execution step explicit to

the trace computing module. The third component is a tool that stores the execution

traces e�ciently by computing and storing only the di�erences between consecutive

steps in a trace when possible. Additionally, a prototype tool for visualizing the

execution traces was also developed.

Future directions

Both pieces of this work can be extended in several ways. In the Statechart analysis

framework, the communication between Statechart models could be modeled in a

more complex way to allow analysis under di�erent network conditions. Currently,

the Actor model [87] is being investigated as a way of implementing more complex

communication. The Actor model of programming uses concurrent, autonomous en-

tities called actors which communicate with one another by sending messages.

The method used for analysis in the Statechart framework, symbolic execution,

works well for small to medium sized models, but can have di�culty scaling to large

models. This can vary based on the types of constraints involving the symbolic

inputs. Statechart models that make heavy use of non-linear constraints, for instance,

might bene�t from a di�erent solver than models that do not contain these kinds of

constraints. The biggest source of overhead, though, is the fact that the symbolic

execution engine analyzes the code with respect to the semantics of the full Java
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programming language. Ideally, the symbolic engine would be able to reason about

the code using the semantics of the di�erent variants of Statecharts.

An initial port of the Statechart analysis framework from Java to C# has been

completed so that the performance of the symbolic execution engine Pex [16] could

be evaluated. In some instances, Pex is able to �nd interesting sequences of inputs

on Statechart models for which SPF cannot solve the associated constraints. Further

investigation is needed to determine whether this is solely a re�ection of the choice

of SMT solver being used by each tool.

Generating feedback from the analysis tool that can be easily interpreted on the

original model level is a hard problem. Currently, execution traces can either be

played back directly in the Statechart framework, or the generated test-sequences can

be given as inputs to the original modeling environment and the execution trace can

be displayed there. Ideally, the feedback from the analysis tool could be interpreted

directly in terms of the original model. The Statechart framework does preserve the

syntax and hierarchical structure of a model, but the correspondence between the

analysis and the original model can be di�cult to see. Ongoing work is attempting

to make this correspondence clearer.

For the Formula work, one possible extension is to create a method for de�ning

predicates that are evaluated over the execution traces to provide a way for users to

query a set of traces and see which ones satisfy certain properties. The challenge with

this and similar problems is de�ning a speci�cation language that is both powerful

and easy to use.

Another extension is to integrate the method of specifying behavioral semantics

de�ned here with Formula's model �nding procedure. This would allow users to

generate models that are guaranteed to satisfy speci�ed execution conditions in a

very e�cient way. For instance, the speci�cation could forbid certain states as being

reachable, and the symbolic execution would use the de�nition of the behavioral
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semantics de�ned by the transformations to automatically �nd models satisfying the

speci�cation.
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APPENDIX A

DIFFERENCES BETWEEN SEMANTIC VARIANTS

Table 2 lists some of the major di�erences between the variants of Statecharts. In

addition to the di�erences listed in the table, both UML and Rhapsody contain several

types of pseudostates, which complicates the calculation of transition paths.

Table 2: Di�erences between Statechart variants.

State�ow UML Rhapsody

Transition hierarchy testing Top-down Bottom-up Bottom-up
Transition action execution End of path End of path Immediately
Condition action execution Immediately N/A N/A
Condition action execution Immediately N/A N/A
Graphical functions Available N/A N/A
Transition priorities Available N/A Available
Parallel state priorities Available N/A Available
Visibility of transition ac-
tions

Immediate End of transi-
tion path

Immediate

Internally generated events Early-return
logic

Run to com-
pletion

Run to com-
pletion
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APPENDIX B

BEHAVIORAL SEMANTICS OF PETRI NETS IN FORMULA

1. domain PetriNet

2. {

3. Place ::= (id: Basic).

4. Transition ::= (id: Basic).

5. [relation]

6. TransToPlace ::= (src: Transition, dst: Place, produces: Real).

7. [relation]

8. PlaceToTrans ::= (src: Place, dst: Transition, requires: Real).

9. [relation]

10. LoopToPlace ::= (src: Place, dst: Transition, requires: Real, produces: Real).

11. }

1. domain MarkedPetriNet includes PetriNet

2. {

3. [function]

4. Marking ::= (place: Place, cnt: Real).

5. }
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1. transform FireTransition <�ring : In.Transition> from MarkedPetriNet as In
2. to MarkedPetriNet as Out
3. {

4. Out.Place(x) :- In.Place(x).
5. Out.Transition(x) :- In.Transition(x).
6. Out.TransToPlace(x, y, z) :- In.TransToPlace(x, y, z).
7. Out.PlaceToTrans(x, y, z) :- In.PlaceToTrans(x, y, z).
8. Out.LoopToPlace(w, x, y, z) :- In.LoopToPlace(w, x, y, z).
9. disabled(trans) :- trans is In.Transition, trans = �ring,
10. In.PlaceToTrans(x, trans, req),
11. In.Marking(x, y), req > y.
12. disabled(trans) :- trans is In.Transition, trans =
13. �ring, In.LoopToPlace(x, trans, req, _),
14. In.Marking(x, y), req > y.
15. Out.Marking(p2, IncCnt)
16. Out.Marking(p2, IncCnt) :- trans is In.Transition, trans =
17. �ring, fail disabled(trans),
18. In.PlaceToTrans(p1, trans, req),
19. In.Marking(p1, y),
20. DecCnt = y - req,
21. In.TransToPlace(trans, p2, prod),
22. In.Marking(p2, w), IncCnt = w + prod.
23. Out.Marking(x, cnt) :- trans is In.Transition, trans =
24. �ring, fail disabled(trans),
25. In.LoopToPlace(x, trans, req, prod),
26. In.Marking(x, curr),
27. cnt = curr - req + prod.
28. Out.Marking(x, y) :- trans is In.Transition, trans =
29. �ring, disabled(trans),
30. In.PlaceToTrans(x, trans, _), In.Marking(x, y).
31. Out.Marking(x, y) :- trans is In.Transition, trans =
32. �ring, disabled(trans),
33. In.TransToPlace(trans, x, _), In.Marking(x, y).
34. Out.Marking(x, y) :- trans is In.Transition, trans =
35. �ring, disabled(trans),
36. In.LoopToPlace(x, trans, _, _), In.Marking(x, y).
37. Out.Marking(p, z) :- In.Marking(p, z), trans is In.Transition,
38. trans = �ring,
39. fail In.PlaceToTrans(p, trans, _),
40. fail In.TransToPlace(trans, p, _),
41. fail In.LoopToPlace(p, trans, _, _).

42. }

Figure 44: The behavioral semantics for Petri nets using the MarkedPetriNet domain.
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