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CHAPTER I 

 

INTRODUCTION AND BACKGROUND 

 

Introduction 

Biological tissue mechanical property evaluation is generally concentrated on 

load-bearing tissues such as bone and skin.  However, recent effort has been directed 

toward understanding the mechanical properties of soft tissue due mainly to motivations 

in the areas of modeling and disease evaluation.  In regards to modeling, soft tissue 

models are used in a variety of applications, from predictive strategies such as surgical 

planning, to teaching methodologies such as surgical simulations [1-4].  In order generate 

accurate models, a precise input of the soft tissue properties is required.  Due to this 

recent need for accurate assessment of tissue modulus values, attempts have been made to 

develop robust frameworks for soft tissue measurements.  However, due to the 

difficulties associated with soft tissue mechanical property evaluation, specifically 

regarding sample shape and consistency, standard evaluation techniques have proven 

elusive and highly variable.   

The more prevalent motivating reason for evaluating the mechanical properties of 

soft tissue is in regards to disease assessment.  Disease in soft tissues generally results in 

a restructuring of the normal tissue components, which manifests as a change in the 

elastic modulus (the common mechanical property to observe in evaluation) of the tissue 

[5].  In most cases, the tissue tends to stiffen with disease (an elevated elastic modulus), 

though in some cases it can soften; regardless of directionality, changes in modulus have 
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been observed in many different pathological conditions which could potentially be used 

as a macroscopic evaluation of disease.  A common example of elastic modulus as an 

indicator of disease is in the case of breast and prostate tissue, where a physical exam 

consisting of palpation of the affected area is utilized as a preliminarily evaluation of the 

presence of cancerous tissue [6, 7].  A change in mechanical properties has similarly been 

identified in many other pathological conditions, including hepatic fibrosis, arterial 

disease, myocardial infarction, thyroid disease, and skin cancer, among others [7-21].  

Noninvasive methods of tissue evaluation, which rely on the correspondence between 

tissue modulus and pathological condition, are being devised to mediate the necessity for 

painful, invasive tissue evaluation methods; specifically, methods such as elastography 

have been developed to non-invasively assess tissue modulus [7, 11, 22-28].  However, in 

order for these methods to reach their full diagnostic potential, a baseline „normal‟ value 

for the tissue modulus must be established as well as an understanding of the 

discriminatory power that mechanical properties might provide in characterizing disease.   

As a further consideration, since disease correlates to changes in the 

microstructure, the elastic modulus of a tissue could potentially serve as a biomarker of 

microscopic changes within the tissue.  This prospective correlation is indicated by work 

investigating the biological and molecular mechanisms of metastasis [29-32].  Work of 

this nature has indicated that, in tumors with a propensity to metastasize, there tends to be 

a dysregulation of extracellular matrix (ECM) gene expression [33].  Specifically, 

invasiveness has been associated with degradation of the ECM by enzymes such as 

metalloproteases [34, 35].  Additionally, many procollagen genes have been shown to be 

altered in highly metastatic tumors [33].  These genes have been associated with 
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metastatic progression via remodeling of the tumor microenvironment and in promoting 

cellular adhesion and motility [33, 36-39].  In breast cancer, fibrotic foci and desmoplasia 

have been associated with the transition from localized tumor to invasive tumor [40, 41].  

All of these observed microstructural phenomena could potentially affect the bulk 

modulus of the tumor tissue, thus eliciting the consideration that a change in the tumor 

state, such as the propensity to metastasize, could be observed through noninvasive 

evaluation of the tissue modulus. 

With the increasing interest in soft tissue modulus evaluation, an adaptable and 

consistent soft tissue modulus evaluation technique is desirable.  A system that is 

compatible with noninvasive modulus evaluation techniques for validation purposes yet 

could serve as a standalone parameterization technique would serve to fill a void in the 

link between noninvasive diagnostic procedures and soft tissue modulus evaluation. The 

hypothesis presented here is that an adaptable soft tissue modulus evaluation system can 

be developed that allows for a simple tissue preparation and combines material testing 

with computational modeling which could be amenable to elastographic validation as 

well as independent modulus evaluation.   

 

Specific Aims 

The goal of the work presented here is the development, validation, and rigorous 

examination of a soft tissue modulus evaluation technique developed with the purpose of 

evaluating the elastic modulus of biological tissue samples which were not amenable, 

either due to size, shape, or consistency, to traditional material testing methods.  To this 

avail, the method termed the MGT assay is described, which was developed with specific 
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consideration of the flexibility and practicality of the modulus evaluation procedure.  

Additionally, this work serves to test the feasibility of the assay as a modulus evaluation 

technique.  Towards this end, the specific aims of this research are as follows:  

1. Develop a soft tissue modulus evaluation technique that is amenable to tissue size 

and shape and adaptable in technique, thus allowing validation of non-invasive 

modulus evaluation techniques.   

2. Validate MGT assay relative to traditionally accepted modulus evaluation 

techniques.   

3. Investigate propensity of modulus evaluation as an indicator of microstructural 

differences in tissue.  

4. Utilize the MGT assay to investigate the prospect of tissue elasticity as a 

biomarker for tumor responsiveness.   

5. Examine the sensitivity and repeatability of the MGT testing protocol by 

assessing four different aspects: 

a. Consistency of modulus between gels generated simultaneously. 

b. Effect of background modulus on the evaluated tissue modulus. 

c. Reliability and repeatability of embedded modulus reconstruction. 

d. Embedded specimen interface effect on evaluation.  

 

 

Background 

 Different basic modulus evaluation techniques include indentation, compression, 

torsion, shear, and tension testing.  Of these, the most utilized techniques for soft tissue 
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evaluation evolved in the categories of compression and indentation testing.  When 

considering the body of research that has been conducted concerning the mechanical 

properties of biological soft tissues, one will notice the magnitude of different methods 

for material testing and modulus calculation.  Beyond the initial type of testing performed 

(i.e. compression versus indenter), the testing protocol can vary from simple linear 

compression to sinusoidal excitation to complex variations and combinations of 

approaches, and the model used to describe the tissue behavior can be elastic, viscoelastic 

hyperelastic, or some other more complex category.  The combination of the plethora of 

options leads to a wide variety of testing and characterization approaches, thus creating a 

discrepancy in the literature concerning material testing of biological tissues as well as a 

discord among the resulting modulus values.  

 

Compression Testing 

 Traditional compression testing is a direct compression of the tissue between two 

parallel plates.  If the tissue is assumed to be elastic, isotropic, and near incompressible, 

then the linear response can be characterized solely by the elastic modulus.  However, the 

method requires a uniform sample shape, in that the top and bottom surfaces need to be 

parallel in order to implement standard compression testing.  The sample shape 

stipulation can prove difficult for soft tissues, as they are often hard to cut into a desired 

shape.  Though the shape requirements are tedious, the calculations associated with 

modulus evaluation through compression testing are relatively simple in comparison to 

other techniques, lending to the use of variations of compression testing in literature.   
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Chen et al. utilized uniaxial compression for testing bovine muscle and liver 

tissue samples [42].  The research involved using a cylindrical punch for compression 

that had a diameter that was larger than any given sample diameter, so that uniform 

compression was applied to the surface.  In addition, a lubricant was applied to the 

specimen surface to guarantee unconfined compression during testing and linear elasticity 

was assumed.  The material testing results presented are compared to ultrasound 

measurements made using a transducer with a diameter of 3.18 cm, which was not always 

larger than the sample size.  The authors recognize the inconsistency of using these two 

conflicting testing methods and compensate for the differences using numerical analysis.  

A correction factor is implemented for the ultrasound data that takes into account both the 

radius of the compressor relative to the tissue radius as well as the confined compression 

that is induced by the surrounding tissue on the tissue directly below the compressor.  

The authors note that the soft tissues behave linearly for strains up to 5% and react 

nonlinearly for strains above 10%.  To calculate the average Young‟s modulus, a least 

squares fit to the linear portion (<5% strain) of the curve was used.  The results showed 

an average compression value and ultrasound measurement of 2.12±0.91 kPa and 

1.53±0.31 kPa, respectively, for the muscle tissue and 0.62±0.24 kPa and 0.94±0.65 kPa 

for the liver.   

Yeh et al. also used a compression-based testing system to evaluate the elastic 

modulus of human fibrotic liver tissue [10].  In order to account for the necessary shape 

restrictions, tissue samples were cut into cubes using a surgical blade.  Cyclic 

compression tests were utilized with varying amounts of prestrain (5, 10, and 15%) 

applied prior to the cyclic compression.  A linear evaluation of the upswing of the cyclic 
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stress-strain values was then used to calculate the modulus of the tissue.  The tissue 

samples were subjected to histology after material testing in order to grade the fibrosis of 

the samples.  The authors found that at the 5% prestrain level, the average modulus value 

ranged from 0.640 to 1.650 kPa for the range of fibrosis scores.  For 10% precompression 

the values jumped to 1.080 to 4.930 kPa, and at 15% the values reached 2.000 to 19.980 

kPa.   

Hoyt et al. investigated the viscoelastic properties of human prostate tissue using 

compression testing [43].  Similarly to previously mentioned work, a custom-made 

coring tool was utilized to cut the samples.  Cancerous and normal tissue samples were 

cut into cylinders and then subjected to unconfined compression testing.  The test 

consisted of a compression to 5% strain followed by a dwell for 700 seconds.  The stress-

relaxation curves were fit to a Kelvin-Voigt fractional derivative (KVFD) model by 

nonlinear least squares in order to obtain the three parameters (E0, η, and α), from which 

the frequency-dependent complex Young‟s modulus was calculated.  Results showed a 

contrast of approximately 2 to 1 in the stiffness of cancerous to normal tissue.  At 0.1 Hz, 

the complex Young‟s modulus for normal tissue was 3.8 kPa while the cancerous tissue 

was 7.8 kPa.  At 150 Hz, the normal tissue averaged 16.0 kPa while the cancerous tissue 

was 40.6 kPa. 

Kiss et al. also used the KVFD model to analyze the modulus of canine livers 

[44].  As before, a custom tool was used to cut cylindrical specimen, and then some 

specimen were ablated to create lesions to analyze differences in modulus values.  

Unconfined compression was achieved by applying mineral oil to the platens, and a 2% 

pre-strain was applied.  The samples were then cyclically compressed an additional 2% at 
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frequencies ranging from 0.1 to 400 Hz.   The Levenberg-Marquardt method for 

nonlinear least squares fitting was used to evaluate the KVFD constants.  Results showed 

an average modulus value of 1.995 kPa for normal liver tissue, with lesion values ranging 

from 10.00 kPa to 26.60 kPa.  

This brief review of the compression testing literature illuminates two main 

points.  First, in almost all of the cases, the investigators utilize a specially devised coring 

tool to create a relatively uniform shape of the samples.  This approach is feasible when 

the sample size is large enough or the tissue is stiff enough to allow for the use of the 

coring device.  However, in the case of a small sample, such as that obtained during a 

biopsy, or a soft tissue sample, the tissue manipulation approach could prove difficult if 

not impossible.  The second point of interest is the breadth of approach utilized in 

analyzing the tissue modulus values.  In most cases a precompression is applied, though 

the magnitude of the precompression typically varies.  The testing protocol implemented 

after the initial precompression varies greatly across investigations.  Additionally, the 

model of the tissue domain varies; specifically, some investigators consider the linear 

portion of the testing curve, while some investigators specifically target the viscoelastic 

nature of the tissue.  The approach utilized is investigator dependent, and usually is 

chosen so as to highlight a specific, desired aspect of the tissue.  However, the different 

testing protocols lead to different modulus values for similar tissues; hence for validation 

purposes of a method it would be necessary to maintain a consistent approach across 

testing protocols.    
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Indentation Testing 

Indentation testing is another common testing method for biological tissues.  

Indentation testing is more flexible concerning the shape of the specimen, and thus 

proves easier to implement in soft tissues; however, stipulated dimensional ratios often 

have to be obtained in order to validate the assumptions of the equations associated with 

indentation analysis.  For example, many types of indentation testing assume an infinite 

elastic medium for the soft tissue; hence it is necessary that the tissue diameter be 

significantly larger than the indenter diameter.  Though indentation testing is more 

amenable to irregular tissue shape, the calculations involved in evaluating the modulus 

value can be difficult and tedious, and may change depending on the specifications of the 

testing protocol.  Specifically, different calculations are performed if a cylindrical punch 

indenter is used as opposed to a spherical-tip indenter.   

Krouskop et al. used uniaxial compression to test prostate and breast tissue [7].  

However, the diameter of the compressor was only 4.83 mm, which was smaller than the 

tissue sample radius, necessitating the consideration of the work as indentation.  The 

tissue was assumed to be linear and isotropic and the testing setup was modeled as a 

uniform load applied over a portion of the top boundary of a semi-infinite elastic solid.  

This approach required cutting the tissue into slab-shaped pieces, with height that was no 

more than one-quarter of the diameter.  The excitation pattern was sinusoidal, with three 

different frequencies (0.1, 1.0, and 4.0 Hz) and the tissue was modeled as linear elastic, 

though the cyclic loading was used to characterize any viscoelastic behavior.  The 

researchers found that at the experimental strain rate and strain range (20 to 30 percent), 

the tissue was sufficiently linear.  Two sets of precompression were evaluated for each 
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tissue; for the breast tissue precompression levels of 5 and 20% were evaluated, and for 

the prostate precompression levels of 2 and 4% were used.  For the breast tissue, the 

modulus did not change with applied frequency but did change with precompression 

level.  Normal fat tissue had an average modulus of 19.7 kPa and 21.3 kPa, normal 

glandular tissue was 32 kPa and 57 kPa, and fibrous tissue was 106.3 kPa and 231.3 kPa 

for 5 and 20% precompression, respectively.  Ductal carcinoma in situ was 24.3 kPa and 

299.67 kPa and invasive ductal carcinoma was 73.7 kPa and 502.7 for 5 and 20% 

precompression.  For the prostate tissue, it was also found that modulus did not change 

with loading frequency but did vary with precompression level.  Normal anterior tissue 

had average modulus values of 58.7 kPa and 62 kPa and normal posterior tissue had 

values of 65.3 kPa and 69.7 kPa for 2 and 4% precompression.  Tissue from regions of 

benign prostatic hyperplasia was 37.3 kPa and 39 kPa and tissue from cancerous regions 

was 98.3 kPa and 230.7 kPa for 2 and 4% precompression.  In another paper, Kallel et al. 

used the same testing setup on ovine kidney samples [45].  It was found that the elastic 

modulus of the kidney ranged from about 10 kPa at low strains (<10%) to as high as 55 

kPa at high strains (30%) for tissue obtained from the renal sinus, and from 20 kPa to 70 

kPa for tissue obtained from the renal cortex. 

Erkamp et al. also utilized indentation testing for modulus evaluation of canine 

kidney tissue [46].  In the system, a cylindrical sample was constrained laterally using a 

mold coupled with gelatin-agarose to fill the space between the sample and the mold.  A 

set of single step indentations was performed using a step motor and a cylindrical punch, 

and the resulting data was converted to modulus values by means of a conversion factor 

that was obtained experimentally and validated by finite element modeling.  The resulting 
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modulus values ranged from 10 kPa to 50 kPa depending on the amount of strain applied 

(0 to 9%).  In other work, Carter at al. examined the modulus of pig liver and spleen and 

human liver [47].  The work utilized a round-tip indenter that was 4.5 mm in diameter as 

well as a cylindrical punch which was significantly larger at 30 mm in diameter.  The 

work utilized a nonlinear elasticity description of the tissue in the form of an exponential 

stress-strain law, which contained two tissue parameters, γ and μ.  The round-tip indenter 

was used for basic stress-strain calculations, wherein the force and displacement values 

were converted to stress and strain by dividing by the area of the indenter tip and the 

thickness of the tissue, respectively.  The cylindrical indenter data was used to calculate γ 

and μ.  An average porcine liver modulus of 4 MPa was obtained, and the average 

porcine spleen modulus was 0.11 MPa.  The human liver had an average modulus of 0.27 

MPa.  In comparing the exponential stress-strain description to the data obtained from the 

cylindrical punch, the equation was representative of the physical data, matching the 

curve well.  The resulting parameter values were 0.08 for γ and 0.12 for μ. 

Samani et al. have performed extensive evaluations of breast tissue modulus using 

indentation techniques and an assumed linear elasticity of the tissue [6, 48, 49].  In the 

earlier work, Samani et al. evaluated breast tissue samples using unconfined indentation 

[48].  Tissue specimens were cut into a relative block shape using an apparatus devised 

by the authors that utilized an agarose gel encasement of the tissue to prevent 

deformation during the cutting process.  Cyclic indentation was performed on the tissue 

block using a cylindrical indenter, force-deformation data acquired, and the elastic 

modulus was calculated using a conversion factor determined experimentally and 

validated by finite element evaluation.  Three tissue samples were tested, one of adipose 



12 

tissue, one of fibroglandular tissue, and one of a high grade ductal carcinoma. The 

calculated modulus values were 1.9, 1.8, and 12.0 kPa, respectively.  This system of 

modulus evaluation was adapted for use in ex vivo breast tissue tumors [49].  However, 

in this work, the authors calculated the elastic modulus by means of an iterative inversion 

technique as opposed to the direct conversion factor used previously.  The technique used 

a finite element simulation of the tissue indentation to iteratively calculate a conversion 

factor and consequently modulus of the tumor tissue.  Four different tumor types were 

evaluated: fibroadenoma, high grade ductal carcinoma in situ (DCIS), infiltrating lobular 

carcinoma (LC), and invasive ductal carcinoma (DC).  The average modulus values were 

11.42, 14.15, 18.57, and 22.55 kPa, respectively.  The authors then applied both of the 

previously mentioned methods to investigate normal and pathological breast tissue 

specimens [6].  For normal breast tissue, the average modulus was 3.245 kPa.  For 

diseased samples, the values ranged from 6.41 to 42.52 kPa, depending on the disease.    

As with compression, the indentation literature serves to highlight the lack of data 

available regarding the modulus of various tissue types as well as to indicate the variety 

of approaches attempted by investigators.  In the case of the indentation testing, the 

approach does not vary so much in the actual material testing protocol, but rather in the 

method of interpreting the resulting force-displacement data.  As previously mentioned, 

indentation testing requires a more rigorous evaluation method due to the unusual 

geometries and the interaction of these geometries; the evaluation approach selected can 

vary greatly among investigators.  This again makes it inherently difficult to compare 

results among investigators, and also impedes the use of these results as verification of 

other modulus evaluation techniques.   
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Microstructural Change 

Histological analysis of tissue biopsies has been well established and remains the 

„gold standard‟ for disease evaluation and diagnosis.  However, the methods for biopsy 

collection are inherently invasive and often painful for the patient.  Additionally, 

temporal tracking of the disease requires repetitive evaluations of the tissue, which is 

often not feasible due either to the invasiveness of the procedure or the amount of tissue 

available.  Acknowledgment of this problem has led to the development of diagnostic 

techniques that aim to noninvasively differentiate diseased and normal tissue, often based 

on the elastic modulus.  Assuming a link exists between microstructure and/or 

microstructural environment and macroscopic parameters, such as modulus, it is feasible 

to conceive of a non-invasive modulus evaluation technique as an evaluation of 

microstructural changes that could serve as a predictor of events such as tumor 

progression or tumor invasion.   

Recent research has focused on the microenvironment and changes within it that 

contribute to and/or are driven by tumorigenesis and metastasis.  Specifically, a series of 

recent papers have identified the importance of stress cues on the behavior of the cell and 

the resulting effect on the tissue microstructure.  Paszek and Weaver provide a review of 

mechanical homeostasis, discussing the concept of tensional homeostasis and the effect 

that the tensional state of the tissue microenvironment has on the development and 

potential transformation of the mammary epithelial cells [50]. The paper explores the 

necessary function of physical forces on the development of the embryo and subsequent 

mammary gland development.  The authors then identify ongoing work indicating that 

substrate compliance regulates cell shape, mammary tumor morphogenesis, and 
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endogenous basement membrane assembly.  Considering the situation of perturbed 

homeostasis and the malignant transformation of the breast, the authors indicate that, 

given the changes in tissue tension and the difference in force sensing experienced by 

transformed cells that is associated with tumorigenesis, it is likely that altered 

mechanotransduction and loss of tensional-homeostasis account for a pivotal mechanism 

regulating the pathogenesis of epithelial tumors.  Specifically, the microstructural 

changes that occur during tumorigenesis and the subsequent cellular changes form a 

positive feedback loop wherein the reaction of the cells to the increased forces results in 

responses that perpetuate the diseased state and promote increased tumorigenesis.  This 

paper touches not only on the importance of mechanical reciprocity between the 

microenvironment and the cell in the development of the cell, but also identifies the 

tumorigenic „journey‟ of the collective tissue and how force cues and mechanical changes 

in the microenvironment potentiate cancer progression.   

Regarding the specific changes in the microstructure that result in an altered 

tensional state, a considerable body of research has been performed that explores the 

changes in the extracellular matrix corresponding to tumorigenesis and tumor 

progression.  The paper by Butcher et al. summarizes the observed remodeling of the 

extracellular matrix in tumors [51].  Specifically, the extracellular matrix is affected by 

increased deposition of fibronectin, tenascin, collagen types I, III, and IV, and 

proteoglycans, overexpression of matrix metalloproteinases (MMPs) resulting in MMP-

dependent cleavage, and increased levels of LOX-dependent matrix crosslinking.  These 

factors result in a progressive increase in the stiffness of the tissue and the extracellular 

matrix.  Additionally, the authors indicate that, in both in vitro and in vivo studies, 
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induced stiffening of the matrix promotes mammary epithelial cell transformation and 

associated increased mechanosignalling from the cells, perpetuating the positive-

feedback loop suggested by Paszek and Weaver.   

The paper by Levental et al. also addresses the matrix remodeling associated with 

tumor progression, and, specifically, the effect of collagen crosslinking on the stiffness 

and subsequent signaling [52].  The authors found that the transition of the mammary 

gland from normal to premalignant to invasive cancer was paralleled by an incremental 

stiffening of the tissue, as measured by unconfined compression and rheological testing, 

which could be correlated to increased collagen crosslinking.  The authors also showed 

that ECM stiffening, in the presence of oncogenes such as ErbB2, promotes invasive 

behavior of the mammary epithelium.  Additionally, the authors provide data indicating 

that focal adhesions, which serve as the force signaling pathways between cells and the 

stroma, are elevated in the stiffened tissue state, and that the adhesions promote 

mammary epithelial cell invasion, which resonates with the concept that force plays a 

role in tumor progression.   

Beyond the information available in the literature regarding changes in the tumor 

stroma, an abundance of information also exists regarding the effect of these changes on 

the behavior of the tumor.  A paper by Lo et al. translates the changing stiffness of the 

substrate into a locomotive effect on the cell [53].  Their work shows that ECM stiffness 

affects the migration of cells within the substrate and enhances cell growth and survival.  

In other work, Ramaswamy et al. evaluated the gene-expression profiles of various 

metastatic and primary tumors to identify genes that distinguished the two [31].  In this 

work, the authors found that collagen genes were upregulated in tumors with metastatic 
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potential, indicating that increased expression of collagen is associated with metastatic 

behavior.     

This evaluation of the literatures serves as a brief but salient investigation of the 

many papers concerning the altered conditions of the tumor stroma and the effect that 

these have on tumor progression and potential invasion.  Given the remodeling of the 

extracellular matrix, the deposition and crosslinking of collagen, the overall increase in 

tissue stiffness generally observed, and the subsequent correlation between these changes 

and the behavior of the tumor tissue, it is reasonable to conceptualize that certain events 

(such as progression or invasion) which relate to changes in the microstructure of the 

tissue may potentially be observable though the modulus of the tissue.   

 

Introduction to this Thesis 

The initial goal of this project was to develop an evaluation technique to quantify 

the modulus of soft tissue in a manner which was compatible with non-invasive modulus 

evaluation techniques for verification purposes.  Specifically, the objective was to use a 

mechanically-based modeling evaluation technique to verify the quantification of fibrotic 

liver tissue modulus by means of ultrasound elastography, and thus the modulus 

evaluation technique was conceived as a complementary component of an elastographic 

technique.  As the assay developed, the utility of it as a modulus evaluation technique 

that could be utilized to investigate ex-vivo soft tissue samples became apparent.  Soft 

tissue modulus evaluation has historically proven difficult due to the irregular surfaces of 

the tissue and the difficulty in manipulating the tissue to create a normal shape which is 

generally required for basic mechanical testing techniques.  Further, disease development 
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and progression often affects the microstructure and hence the modulus of the tissue in a 

manner that is discernable from the surrounding, non-diseased tissue.  Hence a modulus 

evaluation method that would allow the tissue to be utilized in its natural, irregular shape 

would prove useful as the correlation between modulus and disease is further 

investigated.  The assay described in this work serves to fill this need as it is an adaptable 

system which could be utilized for soft tissue modulus evaluation under a variety of 

preparation conditions.  The skeleton of the system is a gel-embedding process by which 

the tissue sample is embedded in a polyacrylamide gel.  This coupled with a mechanical 

testing protocol, imaging of the tissue-gel system, and modeling of the system resulted in 

what has been termed the Model-Gel-Tissue (MGT) assay.   

This thesis is the concatenation of work that focuses on the development, 

utilization, and evaluation of the MGT assay.  Chapter II focuses on the details of the 

development of the MGT assay.  This chapter provides information on the experimental 

protocol for using the MGT assay.  Additionally, it contains specifics regarding each 

component of the evaluation of a modulus of interest utilizing the assay.   

The next three chapters explore the application of the MGT assay to soft tissue 

modulus evaluation ex-vivo.  In the Chapter III, murine livers were utilized as the tissue 

of interest, and the testing protocol consisted of 14 fibrotic livers, 3 control livers, and 3 

normal livers.  Two lobes from each liver were submerged in polyacrylamide and 

evaluated using the MGT assay.  A separate liver lobe was utilized in direct indentation 

testing, which provided a baseline comparison for the results of the MGT assay.  The 

model-calculated modulus, though not equivalent to the indenter modulus, demonstrated 

a high correlation to the indenter modulus, indicating a relationship between the two 
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testing methods.  The results also showed a clear difference between non-diseased and 

diseased livers. 

Chapter IV describes the transition from the evaluation of liver tissue to the 

evaluation of tumor tissue.  Though still in the murine environment, this work 

demonstrated the utility of the assay in evaluating various tissue types with inherently 

different consistencies.  The mouse mammary tumor virus polyomavirus middle T (PyV-

mT) transgenic model of breast cancer served as the system of interest.  The tumors were 

allowed to grow to a prescribed size, at which point they were resected and sectioned.  A 

portion of the tumor was utilized in the MGT assay, while a second portion was analyzed 

for collagen content.  The model-evaluated modulus values were correlated quantitatively 

to type I collagen content of the tissue samples, providing a first consideration of the link 

between the bulk modulus as evaluated by the MGT assay and the microstructural 

composition of the tissue.  The results demonstrate a strong linear correlation between 

tumor mechanical properties and collagen content.   

Chapter V revolves around the quantification of a third tissue type using the MGT 

assay.  In this evaluation, the modulus values of a HER2+ murine model of breast cancer 

were assessed.  Two strains of the tumor line were utilized, one which is resistant to 

treatment with Herceptin, and one which is responsive to the treatment.  The resistant and 

responsive lines simulate non-responders and responders in the human case, and the work 

aimed to gage the potential difference in modulus between the two cases for prognostic 

evaluation.    

 Finally, the last investigative chapter of this work contains other pertinent studies 

with a specific interest in the interrogation of the sensitivity and accuracy of the assay in 
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order to validate its use as a reliable soft tissue modulus evaluation technique.  A series of 

tests were performed which examined the repeatability and accuracy of the assay, and the 

assumptions employed within the assay were considered. 

 

Significance of this Thesis 

The novelty of the work presented here lies in the method of tissue parameter 

evaluation coupled to model-based analysis and correlated with traditional cellular 

assays.  As indicated by the material testing literature, an abundance of methods exist by 

which the mechanical parameters of soft tissue can be evaluated.  This leads to a 

discordance regarding the published modulus values for soft tissues.  Additionally, 

manipulating the soft tissue, especially when the sample is on the scale of a biopsy 

specimen, has proven difficult and often requires specialized equipment.  The MGT assay 

allows for the utilization of the soft tissue in its native state, without extensive and 

tedious manipulation which could, quite feasibly, affect the integrity and structure of the 

tissue, and hence the measured modulus.  The method utilized within the MGT assay 

allows for ease of manipulation of the tissue specimen while maintaining adaptability to 

tissue size and shape.  In regards to a unified protocol, the MGT assay allows integration 

of a preferred testing protocol and provides flexibility regarding mechanical model of the 

tissue domain.  Concisely, a rigorous skeleton of the soft tissue evaluation protocol is 

defined by the MGT assay, which can then be customized to reflect the testing 

environment.   

Additionally, the treatment of the soft tissue of interest which is presented by the 

MGT assay is a novel approach.  As presented in the review of the material testing 
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literature, the majority of the approaches utilize a manipulation of the soft tissue in order 

to normalize the size and shape of the sample.  Depending on the location of origin of the 

tissue, manipulating the sample can prove tedious and difficult due to the consistency.  

Being that the accuracy of the modulus evaluation via mechanical testing can depend on 

the success of creating a normal surface, the manipulation proves very important.  The 

approach presented within the MGT assay is a gel-embedding process, whereby the 

excised soft tissue is used in its native shape and state, thus eliminating the need for 

tedious manipulation.  An approach such as this has not previously been utilized in soft 

tissue modulus evaluation techniques.  As previously mentioned, Erkamp et al. used a 

gelatin to create a confined compression of the soft tissue of interest; however, in that 

case the gel was utilized as part of the material testing setup instead of serving as a 

contained portion of the sample.  The gel-embedding approach indicated by the MGT 

assay is a novel approach to sample preparation and testing.  

A prime example of the utility of this system is evident within the field of 

elastography.  Techniques termed „elastographic‟ have been developed which allow for 

noninvasive modulus evaluation of soft tissues.   Though elastographic approaches can be 

varied in regards to imaging modality (i.e. ultrasound versus MRI) and in method of 

tissue evaluation (direct strain images versus inverse modulus evaluation) the theory is 

the same.  Specifically, a prescribed stress is applied to the tissue, during which the 

internal displacements of the tissue are monitored.  Using these deformations and 

assuming a mechanical behavior of the tissue, a spatial map of the elasticity of the tissue 

domain can be generated.  In this manner, elastographic techniques can noninvasively 

evaluate tissues for areas of low strain or high stiffness, which is generally correlated to 
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disease.  However, in most cases these techniques have not been rigorously validated 

regarding their assessment of modulus value, and though areas of interest can be 

identified, the accuracy of the assessment of tissue parameters has been elusive due to the 

non-invasive nature of the techniques.  A system such as that conceived within the MGT 

assay would allow for a direct evaluation of elastographic techniques.  The heterogeneous 

gel-tissue system is developed in such a way that it is readily amenable to modulus 

evaluation via elastographic techniques.  The modulus evaluation could then also be 

performed using the combined mechanical testing and modeling approach outlined by the 

MGT assay, the specifics of which would be defined so as to mimic the deformation 

experienced in the elastographic evaluation.   This would allow for direct comparison of 

the evaluated modulus between the two methods, providing a measure of the accuracy of 

the elastographic technique.  Additionally, the MGT assay provides a heterogeneous 

system that is analogous to that which is evaluated by elastographic techniques.  More 

specifically, when an in vivo soft tissue evaluation is performed using elastography, the 

tissue of interest is generally subdermal and at least semi-confined by other tissues which 

inherently impose boundary conditions on the tissue of interest.  This environment is not 

accurately reflected in an ex vivo direct testing situation where either an indenter or 

compression test is utilized, as the external surfaces of the tissue are typically stress-free 

in these cases.  A confined compression may more closely resemble the native 

environment, but realistically the confining substrate is likely to be far more stiff than the 

restraining soft tissues in vivo.  The MGT assay serves to address this issue in that it 

begins to replicate the in vivo environment by embedding the tissue of interest within a 

gel of controllable modulus.   
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CHAPTER II 

 

EXPERIMENTAL PROTOCOL 

 

MGT Assay Overview 

The MGT assay was developed as an adaptive soft tissue modulus evaluation 

technique that couples mechanical testing with modeling to achieve tissue 

parameterization.  The system consists of three major components.  The first is the gel-

embedding process, whereby the soft tissue of interest is embedded in a cylindrical 

polyacrylamide gel of known and controllable height and diameter.  This creates a 

heterogeneous system with normal surfaces amenable to direct material testing.  A 

homogeneous gel is also created at this time, termed the reference gel.  The reference gel 

is evaluated to obtain a modulus value of the polyacrylamide gel, which is then assigned 

as the background modulus in the heterogeneous gel-tissue system.  The second 

component of the assay is the mechanical testing, which can be adapted so as to mimic 

the environment of interest in regard to the tissue.  The final component of the three-part 

assay is the CT scan and modeling.  Both the homogeneous gel and the heterogeneous 

gel-tissue system undergo a microCT scan.  The resultant images are then segmented in 

order to create a 3D mesh of the sample.  This allows for a model which accurately 

describes the shape, size, location, and surfaces of the tissue and gel.  The mesh is 

utilized in a finite element model (FEM) description of the tissue domain with assumed 

modulus values, and boundary conditions are implemented so as to mimic the mechanical 

testing routine.  The model-calculated force values are compared to the mechanical forces 
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achieved during material testing; optimization of the system results in an assigned tissue 

modulus value.   

 

Gel Generation 

 The gel-embedding process is pivotal to the MGT assay as it allows the use of the 

soft tissue in its native state and shape without tedious manipulation.  Additionally, the 

gel-embedding process allows the formation of external surfaces which are controllable 

in shape and size, hence increasing adaptability of the sample to various material testing 

protocols.  The process for creating the gels begins with the production of a buffer 

solution consisting of all of the gel components with the exception of the contrast agent 

and the initiator.  This solution is then utilized in the production of all individual gels.  To 

create the buffer solution, deionized water, 1 molar Tris buffer, and 10% ammonium 

persulfate (BioRad Laboratories, Hercules, CA) are mixed in a specified proportion, the 

absolute volumes of which depended on the total volume of solution needed for gel 

generation (i.e. larger tissue samples or a greater number of samples would require a 

larger volume of bulk solution).  Generally, 19.1 mL of deionized water, 0.65 mL of 1 

molar Tris buffer, and 0.25 mL of 10% ammonium persulfate, or some multiple of these 

values, are utilized.  A volume of the buffer solution is then combined with 30% 

Acrylamide/Bis-acrylamide (BioRad Laboratories, Hercules, CA) in a proportion which 

is dependent on the desired final polyacrylamide percentage, to yield a total combined 

volume of 16 mL (or some multiple of this volume).  The combination of the buffer 

solution and the polyacrylamide constitutes the bulk solution, which is then used in each 

individual sample generation in order to enforce homogeneity across the samples.  To 
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generate the individual gel, the desired volume of the bulk solution is transferred to the 

forming container.  The container used to generate the individual gel can be varied 

depending on desired shape and size of the resulting sample.  Optiray (Mallinckrodt Inc, 

Hazelwood, MO), a CT contrast agent, is subsequently added to the individual gels after 

allocation of the solutions.  The object to be embedded is suspended by means of forceps 

in the gel solution while TEMED, the initiating agent, is added to the solution.  The 

sample is pipette-mixed for approximately one minute as the solution begins to solidify in 

order to promote a uniform mixture.  In addition to the heterogeneous, tissue-containing 

samples, a homogeneous reference gel is also produced during all gel generation 

instances.  The homogeneous gel is generated from the same solution and in the same 

manner as the homogeneous gels, without the addition of the submerged tissue.  This gel 

serves as the reference gel for evaluating the modulus of the polyacrylamide, which is 

then utilized as the assumed background modulus in the heterogeneous gel.   

 

Material Testing 

As indicated previously, the MGT assay is amenable to the use of any desired 

mechanical testing protocol.  However, for this work, the same protocol was utilized in 

all tissue evaluations.  Specifically, the protocol adopted in this work consists of a series 

of unconfined step compressions followed by a 60 second dwell which was implemented 

to allow the viscoelastic behavior of the gel and tissue to dissipate.  This protocol was 

selected to create compatibility with elastography techniques as our initial liver work was 

designed as a comparison mechanism for ultrasound elastography evaluation of hepatic 

fibrosis.  To perform the material testing, after gel generation the individual samples are 
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removed from their forming containers and placed on the lower platen of the Enduratec 

Electroforce 3100 tester (Bose, Enduratec Systems Group, Eden Prairie, Minnesota), 

which has been previously fitted with the appropriately sized force transducer, dependent 

on the size of the sample.  Additionally, both platens are lubricated using an oil-based 

spray which allows the sample to displace laterally while being compressed.  The system 

is tared after placing the sample so as to remove the weight of the sample from the 

evaluated force value.  The lower platen is then raised until the tissue initially contacts 

the top platen.  Contact is determined both visually and by a slight increase in the force 

reading.  After establishing contact, a 0.3 mm precompression is applied and held for 60 

seconds.  The testing protocol then consists of consecutive step compressions from 0.35 

mm to 0.65 mm in 0.05 mm increments.  After each step a 60 second dwell is 

implemented to allow the transient behavior to dissipate.   

 

Imaging and Mesh Creation 

Imaging of both the homogenous gel and the heterogeneous gels is necessary in 

order to implement the modeling portion of the MGT assay evaluation, and thus 

computed tomography (CT) scans are collected of each sample.  After collection of the 

CT images, image segmentation is performed using AnalyzeAVW (Mayo Foundation for 

Medical Education and Research).  The addition of the contrast agent to the gel 

generation process allows for sufficient contrast between the gel-tissue and the gel-air 

interfaces such that thresholding based on pixel intensity and connectivity can be utilized 

to segment the images.  A marching cubes surface extraction is then performed on the 

segmented images to create a surface description of the samples which is then used as a 
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bounding description for a custom-built tetrahedral mesh generator [54].   This results in 

a 3-dimensional mesh for each individual sample, which describes the size, shape, and 

boundaries of the polyacrylamide gel, as well as (in the heterogeneous gel) the size, 

shape, location, and boundaries of the embedded soft tissue.    

 

Finite Element Model 

A central concept of the MGT modulus evaluation assay is the finite element 

model (FEM) used to represent the domain of interest.  In all work presented here, a 

linear elastic medium is assumed, so that the set of mathematical equations governing 

linear elastic deformations for this model is given by: 

     ⃑   
 

    
(   ⃑ )      (1) 

where     (   )⁄  is the shear modulus, ν is Poisson‟s ratio, and  ⃑  is the vector of 

Cartesian displacements.  Given this equation, a numerical solution to the coupled set of 

linear partial differential equations is obtained using a weighted residual method.  The 

method begins with standard residual weighting and integration: 
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where an integration by parts has taken place which reduces the basis function order 

requirement, and introduces the surface integral via the divergence theorem.  In the 

previous equation, the 〈 〉 operator indicates integration over the problem domain, and 

   is the i
th

 member of a complete set of scalar functions of position.  The particular 

functions used can vary, but this work utilizes the standard C
o
 local Lagrange polynomial 

interpolants associated with finite elements.  Using the Galerkin approach, the unknown 

displacement vector is also expanded using a Lagrange basis function of position: 
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The element used in this work was the standard linear tetrahedral element.  Upon 

substituting the basis function, the local weighted residual expression for the i
th

 equation 

and the j
th

 set of displacement coefficients can be written as: 
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.  The contribution from each tetrahedral element can thus be 

determined, and a global stiffness matrix can be constructed.   Boundary conditions are 

then assigned either as displacement boundary conditions or as applied stresses, the 

location and magnitude of which are determined by the material testing protocol.  

Corresponding to the material testing protocol previously described, the boundary 

conditions at the top surface of the gel in this work are: 

                   (5) 

where d is the displacement at the step compression of interest.  At the bottom surface of 

the gel, the boundary conditions are: 

                  (6) 
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In order to ensure solution uniqueness, at least one Dirichlet condition is required in the 

lateral directions. To achieve this, the approximately 10 nodes on the top and bottom 

surface that are closest to the center-line are fixed on each surface to restrain their 

movement laterally. The remaining boundary conditions for the sides of the gel are stress-

free: 

                  (7) 

The matrix system is then assembled and solved using an iterative matrix solver which 

uses a biconjugate gradient solver with an incomplete LU preconditioner, resulting in a 

displacement solution for the domain of the mesh.   

 Once the displacement solution is calculated from the matrix system, the unused 

Galerkin equations on the compressing model surface (the Dirichlet, or Type I, conditions 

on the top surface) can be used to estimate the average surface stress applied.  To be 

specific, after the evaluation of the displacement solution, the finite element equation: 

∬ ̃   ⃑      ∑  ⃑  〈        〉  ∑  ⃑  〈   
 

    
   〉   (8) 

is available at nodes where a Dirichlet boundary condition was implemented.  The right-

hand-side of the equation can be constructed using the displacement solution, allowing 

for the solution of the left-hand-side surface integral for the local normal stress 

distribution.  This provides a surface stress description for the gel based on the defined 

compression and the prescribed modulus value.  The surface stress can subsequently be 

averaged and multiplied by the model-based surface area for comparison to the respective 

mechanically-tested average force value.   
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Optimization Procedure 

The process of evaluating the elastic modulus of the embedded tissue sample is 

achieved via an inverse evaluation of the previously described FEM wherein the resulting 

stresses are known and the input modulus values are to be determined.  This inverse 

evaluation of the modulus values is achieved by the implementation of an iterative 

optimization technique which minimizes the difference between the resultant model 

forces and the measured mechanical forces.  The optimization is initialized using an 

estimate of the modulus value (E) to perform a forward evaluation of the model forces.   

The unknown modulus value is then optimized iteratively using a custom-built 

Levenberg-Marquardt non-linear optimization algorithm.  The optimized modulus value 

occurs when the error between the model-derived force values and the experimental force 

values is minimized.  Thus, the objective function of consideration is the sum of squares 

of the difference between the model force values and the experimental force values, and 

is given by:  

 ( )  ∑ (      (  )        (    ))
  

   (9) 

where Fexptl is the set of experimental force values at each strain level, Fmodel is the set of 

model-calculated force values at each strain level for the current modulus value, and N is 

the number of strain levels.  To optimize for the modulus value E which minimizes the 

objective function, the derivative of the objective function is taken with respect to the 

modulus of interest and set equal to zero:  
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where , -  is the transpose of the Jacobian matrix J, which is the matrix consisting of the 

first-order partial derivatives of Fmodel with respect to the modulus.  Applying a standard 

Newton-Raphson root-finding approach to equation 11 results in: 

        
, - { ̅       ̅     }

, -  
  (12) 

from which the parameter update can be calculated using a standard Levenberg-

Marquardt approach,   

(, - , -    )   , - { ̅        ̅     }  (13) 

where             I is the identity matrix, and α is a regularization parameter 

utilized to improve the conditioning of the iterative procedure: 

  (       (, - , -)      )
 

   (14) 

In the definition of α, λ is an empirical factor and SSE is the sum squared error between 

measured and calculated forces [55].  Optimization of the modulus value occurs by a 

series of iterative parameter updates, calculated using Eq. 13.  The optimization proceeds 

until the relative error between iterations is below a set tolerance or until the objective 

function is static and a unique solution is obtained. 

 

Tissue Modulus Evaluation 

 With the components of the MGT assay in place, the evaluation of the tissue 

modulus takes place in a series of defined steps.  First, the homogeneous and 

heterogeneous gels are generated, tested, and imaged as previously described.  The CT 

scans are segmented and a tetrahedral mesh is generated for each sample.  The FEM is 

then utilized in the Levenberg-Marquardt optimization procedure to perform the modulus 

evaluation.  The homogeneous reference gel is evaluated first, and the optimization 
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procedure is implemented with the material testing data in order to obtain the modulus 

value of the polyacrylamide gel.  The optimized gel modulus value is then used as the 

assigned background gel modulus in the heterogeneous sample.  This reduces the two 

parameter system (gel modulus and tissue modulus) to one unknown modulus value.  The 

heterogeneous sample is subsequently evaluated, using its associated material testing 

data, and an optimized tissue modulus value is assigned.    
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CHAPTER III 

 

EX VIVO LIVER STUDY 

 

Introduction and Contribution of Study 

 This paper was the first publication regarding the MGT assay, and the murine 

liver work presented here represents the initial development of the MGT assay as well as 

the first implementation of the assay as a modulus evaluation technique.  This study 

addressed proof of concept of the assay in regards to its feasibility and application.  The 

combination of the gel-embedding, mechanical testing, and modeling proved to be 

successful in evaluating the modulus of a soft tissue sample in its resected shape, without 

alteration.  The introduction and some of the methods may be repetitive in regards to 

Chapter II due to the necessity of presenting a detailed description of the MGT in this 

principal paper.  Beyond the details of the assay, this paper served as the first evaluation 

of a soft tissue specimen via the MGT assay and provides validation of the assay-

assigned modulus in comparison to indentation testing, thus verifying its utility as a 

modulus evaluation technique.  The motivation for this work was to develop a correlative 

technique for soft tissue modulus evaluation that could be used in conjunction with 

ultrasound elastography.  The need for a sample preparation method that was compatible 

with both ultrasound imaging and mechanical evaluation techniques led to the 

development of the gel-embedding system utilized in the MGT assay.  The development 

of the assay serves to connect the material testing literature and the evaluation of 

elastographic techniques.  Additionally, this work adds to the material testing literature 
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by presenting a novel approach to soft tissue modulus evaluation that can be adapted to 

suit the nature of the specific interrogation.  This work was published in Medical Physics 

in November of 2007.   

 

Experimental Study 

 DEVELOPMENT OF A MECHANICAL TESTING ASSAY FOR FIBROTIC 

MURINE LIVER 

 

Appearing in 

Medical Physics, Volume 34, Number 11, November 2007 

 

Abstract 

In this article, a novel protocol for mechanical testing, combined with finite 

element modeling, is presented that allows the determination of the elastic modulus of 

normal and fibrotic murine livers and is compared to an independent mechanical testing 

method.  The novel protocol employs suspending a portion of murine liver tissue in a 

cylindrical polyacrylamide gel, imaging with a microCT, conducting mechanical testing, 

and concluding with a mechanical property determination via a finite element method 

analysis.  More specifically, the finite element model is built from the computerized 

tomography (CT) images, and boundary conditions are imposed in order to simulate the 

mechanical testing conditions.  The resulting model surface stress is compared to that 

obtained during mechanical testing, which subsequently allows for direct evaluation of 

the liver modulus.  The second comparison method involves a mechanical indentation 

test performed on a remaining liver lobe for comparison.  In addition, this lobe is used for 

histological analysis to determine relationships between elasticity measurements and 
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tissue health.  This complete system was used to study 14 fibrotic livers displaying 

advanced fibrosis (injections with irritant), three control livers (injections without 

irritant), and three normal livers (no injections).  The moduli evaluations for non-diseased 

livers were estimated as 0.62±0.09 kPa and 0.59±0.1 kPa for indenter and model-gel-

tissue (MGT) assay tests, respectively.  Moduli estimates for diseased liver ranged from 

0.6–1.64 kPa and 0.96–1.88 kPa for indenter and MGT assay tests, respectively.  The 

MGT modulus, though not equivalent to the modulus determined by indentation, 

demonstrates a high correlation, thus indicating a relationship between the two testing 

methods.  The results also showed a clear difference between non-diseased and diseased 

livers.  The developed MGT assay system is quite compact and could easily be utilized 

for controlled evaluation of soft-tissue moduli as shown here.  In addition, future work 

will add the correlative method of elastography such that direct controlled validation of 

measurement on tissue can be determined. 

 

Introduction 

Investigating the mechanical properties of soft tissue has important impact on 

many application fronts within biomedical engineering.  The nature of soft tissue is that 

of a composite material whereby collagen and elastin fibers contribute most substantively 

to its mechanical properties.  Hepatic fibrosis is an example of a disease where the elastic 

properties generally increase as the disease progresses due to elevated deposition of 

collagen.  Though the distribution of the scar tissue within the liver will vary based on the 

cause of the fibrosis, the response is the same for all types; i.e. a cascade of events occurs 

that cause stellate cells to become activated, and in turn, contract, and produce scar tissue.  
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A process known as fibrogenesis degrades the liver‟s normal matrix, and release 

cytokines which cause inflammation.  All of these effects result in disruption of the 

liver‟s normal function [56, 57].  Quantifying the mechanical properties with novel 

testing assays or imaging techniques could be an excellent way to stage disease and 

outcomes.  In recent years, noninvasive imaging techniques have been a very active area 

of research, i.e. the field know as elastography [28, 58-61].  Within this domain, some 

example applications using mechanical properties to assess organ health have been 

forthcoming including breast [25, 62-66], prostate [67, 68], thyroid [69], and 

intravascular evaluations [70, 71].   

While the recognition that mechanical properties may be important for tissue 

characterization, detailed quantitative experimental systems correlating imaging modality 

and independent assessment have been difficult with real tissue.  For example, one 

popular method of mechanical property interrogation is compression testing and consists 

of compressing a known geometric sample between two plates and measuring the applied 

displacements and resulting forces [42].  From this data, various mathematical 

constitutive models of the tissue can be generated that relate the stress, strain, and rates 

thereof.  While this testing is quite routine, the tissue sample preparation can be a 

challenge especially with respect to small irregularly shaped samples.  Due to this 

restriction, mechanical indentation techniques have become a popular method for 

modulus assessment also.  A variety of different approaches to indentation testing have 

been cited in the literature [46, 47, 72-74].  However, eliciting a modulus value from 

indenter testing requires significant experimental assumptions, the basis of which is 

dependent on many factors, such as sample size and shape, indenter type, and boundary 
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conditions.  This complexity in testing makes a uniform testing protocol for different 

tissue samples equally as challenging as the sampling issue above.  In addition, as the 

results in this paper indicate, some variability between tests is possible based on the 

mechanism of disease onset.  In any case, the need for controlled independent testing that 

can be directly verified with noninvasive imaging techniques is evident. 

 This paper presents a novel ex vivo model-gel-tissue (MGT) assay system that 

combines mechanical testing, imaging, and finite element modeling to monitor the 

changes in mechanical properties of a murine liver fibrosis model.  The purpose of this 

protocol was to provide an independent tissue evaluation system that could be adapted to 

a variety of applications and that would assist in quantifying elastography techniques.  

The protocol calls for tissue samples to be embedded in a cylindrical gel which is used in 

compression testing for modulus analysis and is equally amenable to elastography 

evaluation.  In order to develop this system, the ability of the assay to accurately assess 

the modulus of the embedded tissue must be verified.  Thus, to qualify our results, 

separate indentation testing was performed and compared to the MGT assay technique.  

While many previous studies have been predominantly concerned with human or large 

animal evaluations, this protocol is focused on small animal models (i.e. rodent).  The 

obvious advantage of targeting small animal applications is that it allows for rapid 

evaluation of many subjects, multi-modal image registration (magnetic resonance, 

computed tomographic, positron emission tomography, bioluminescence, etc.), access to 

numerous disease models, and the ability to test pharmacological therapeutics within 

these systems.  This paper serves as a description of the testing protocol as well as an 

initial evaluation of its capabilities based on the modulus assessment of 14 fibrotic and 6 
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non-diseased livers.  The separate indentation tests were consistent with the MGT assay 

results for control and normal livers.  While stiffening of the tissue was measured by both 

MGT assay and indentation tests, there was inconsistency among the absolute values 

established for fibrotic livers (consistency for the normals/controls).  Interestingly 

though, the offset between the values among the two testing methods was correlated.  It is 

also shown that statistical differences in modulus values for fibrosis and controls can be 

detected in both the MGT assay and indentation tests.  In addition, the results from the 

liver testing seem to correlate with those found in the literature for normal and fibrotic 

human liver testing post mortem [57]. 

 

Methods 

The protocol used to evaluate fibrotic and non-diseased murine liver involves a 

series of steps as shown in Figure 1.  This three-pronged investigation sought to 

characterize liver tissue in three distinct ways: (1) mechanical testing with an ex vivo 

MGT assay, (2) mechanical testing by indentation, and (3) tissue characterization for 

disease progression via histochemical staining.  This system of tissue evaluation allows 

for an investigation of the abilities of the proposed MGT assay by comparison with 

traditional indenter testing technique, while correlating elasticity measurements with 

normal and diseased subjects.  
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 Fibrosis Model & Disease Scoring 

Adult C57 mice (18-20 g, 8-10 weeks of age) purchased from Jackson Laboratory 

were housed in cages with a 12-hour light/dark cycle (6 a.m. to 6 p.m.) and provided with 

rodent chow and tap water ad libitum.  All animals received humane care in compliance 

with the institution's guidelines, and animal procedures were approved by the 

Institutional Animal Care and Use Committee, which is certified by the American 

Association for Accreditation of Laboratory Animal Care.  The animals were divided into 

three groups – fibrosis, controls, and normals.  The fibrosis group of mice consisted of 

fourteen animals that received weekly intraperitoneal (IP) injections of carbon 

 
Figure 1.  General mechanical testing framework for murine liver system. 
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tetrachloride (Sigma Chemical, St. Louis, MO) mixed with olive oil (Sigma Chemical, St. 

Louis, MO) in a 1:4 ratio, respectively.  Each dose of CCl4 was 1 ml/kg per injection.  

The second group of mice consisted of three animals and was the control group.  This 

group received weekly IP injections of pure olive oil.  The third group, the normal group, 

consisted of three animals and did not receive IP injections (of note these mice were 

several weeks older than groups 1 and 2).  Diseased mice were sacrificed at variable time 

points between 2 and 10 weeks of treatment.  Using histological assessment, only mice 

that were of an Ishak fibrosis scores of 3 or 4 (advanced fibrosis) were selected for 

comparison.  A control mouse was sacrificed after five, six, and eight weeks of treatment.  

The liver was removed and divided into three sections.  The first, and largest, section 

consisted of two of the four lobes, and was embedded in the polyacrylamide gel.  The 

third lobe was preserved for use in indenter testing and histological analysis, and the 

fourth lobe was frozen for future analysis.   

Histological analysis of the liver tissue was performed using the liver lobe 

designated for indenter testing.  After indenter testing, the tissue was fixed in 10% 

buffered formalin, dehydrated in graded ethylic alcohol, and embedded in paraffin.  

Sections were generated with a thickness of 5 micrometers and were stained with 

hematoxylin/eosin (H/E) or 0.1% Sirius red.  The H/E stained sections were analyzed 

under light microscope for histopathological assessment. The Sirius red stained sections 

were used for fibrosis evaluation.  These specimens were scored using Ishak (score 0-6) 

systems, which is commonly used in clinical pathology.  The Ishak system grades mild 

fibrosis as 0-1, advanced fibrosis as 2-4, and cirrhosis as 5-6 [75]. 
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Model-Gel-Tissue (MGT) Assay Construction 

In order to provide a controllable evaluation technique, a system of embedding 

extracted murine livers in a cylindrical gel has been developed.  This gel-matrix provides 

a reference material for evaluation, provides a measurable contrast in elasticity between 

the gel and liver, and allows for use of true tissue shape by building a model based on 

microCT scans of the gel.  In addition, the cylindrical gel could easily be utilized in 

multiple imaging modalities for possible elastography assessment.  The gel-tissue 

samples also needed to be appropriately shaped for both imaging applications and 

material testing.  In order to make the system amenable to compression testing, this 

meant a small sample size with a uniform shape.  To achieve this, the gel samples were 

generated in Petri dishes that had a known diameter.  This created a cylindrical shape 

with a measurable surface area and a consistent height.  The process of tissue submersion 

involved a simultaneous tissue resection and mixing of base components of the 

polyacrylamide gel (BioRad Laboratories, Hercules, CA).  The components were 1 molar 

Tris buffer, deionized water, and ammonium persulfate (APS).  Graphite flakes (Sigma-

Aldrich Chemie GmbH, Buchs, Switzerland) were also added to the base solution; these 

were necessary to provide ultrasound contrast (although this will not be reported in this 

work at this time) for imaging.  During liver resection, the buffer solution was mixed as 

indicated in Table 1.  Once the liver was removed and sectioned, the portion dedicated to 

the gel sample was weighed using a digital balance.  In order to generate the individual 

gel sample, the buffer solution and acrylamide/polyacrylamide were mixed in a Petri dish 

according to the proportions indicated in Table 1.  To provide a perceivable distinction 

between the liver and gel in the CT scans for segmentation purposes, a computed 
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tomography (CT) contrast agent, Optiray (Mallinckrodt Inc, Hazelwood, MO), was 

included in the gel mixture.  The liver sample was then suspended in the liquid gel using 

forceps and TEMED was added, which initiates the polymerization reaction to cause 

solidification of the gel.  The solution was agitated during the solidification process, 

which required approximately two minutes, using pipette mixing; the agitation prevented 

settling of the graphite flakes.  This process was performed for the fibrosis liver, the 

control liver, and the normal liver; gels with a fibrotic liver embedded are referred to as 

fibrosis gels, gels with a control liver embedded are referred to as control gels, and gels 

with a normal liver are referred to as normal gels.  In addition, a reference gel was 

generated, which was produced as described above, without the addition of the liver 

sample.  This reference gel was utilized in material testing in order to evaluate the 

modulus of the polyacrylamide gel generated on the occasion of each fibrotic liver 

evaluation.  Fourteen fibrosis gels, three control gels, and three normal gels were 

generated over the course of the research.   

  

 

Table 1. Polyacrylamide gel recipe utilized for the liver evaluations. 

Polyacrylamide Gel Recipe 

Buffer Solution 

 

Individual Gel Recipe 
(5% Polyacrylamide) 

38.2 mL deionized H2O 6.67 mL buffer solution 

1.3 mL 1 M Tris buffer 
1.33 mL 30% 

Acrylamide/Polyacrylamide 

0.5 mL 10% APS solution 0.2 mL Optiray CT contrast 

1.5 g graphite 0.07 mL TEMED 
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Imaging 

 After the gel had congealed, microCT scans were obtained using the Imtek 

microCAT II scanner (Concord/CTI, Knoxville, TN).  The resolution of the microCT 

image voxel was 115 by 115 by 115 microns.  These scans were later utilized for finite 

element model generation.  The gel sample was placed on the scanner bed and made level 

by adjusting its positioning based on prescan information from the scanner.  CT scans 

were obtained for fibrosis, control, and normal gels, as well as for the reference gels.  

After scanning, the gels were transferred to the material testing lab and immediately 

tested.  The total time between sacrifice and testing ranged from 1 – 2 hours. 

 

Indenter & Traditional Compressive Material Testing 

Individual liver lobes obtained during resection of the liver were placed in 0.9% 

NaCl and refrigerated until testing could be performed, which was less than one hour. 

Indenter tests were performed on the liver lobes in order to acquire an elasticity value to 

which results from the MGT assay could be compared.  All material testing was 

performed utilizing the Enduratec Electroforce 3100 tester (Bose, Enduratec Systems 

Group, Eden Prairie, Minnesota).  The material tester setup is shown in Figure 2.  A 50-g 

transducer (Honeywell Sensotec, Columbus, Ohio) was attached to the upper arm of the 

tester, the indenter tip was attached to the transducer using a coupling device 

manufactured for this purpose, and the tip was lubricated with non-stick oil-based 

lubricant spray.  The testing configuration is shown in Figure 3.  The indenter tip used in 

all tests was a spherical tip with a diameter of 1.5 mm.  A spherical tip was chosen in 
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order to minimize damage to the tissue so that the liver lobes could subsequently be 

utilized for histological testing.  The liver lobes were placed on the lower platen of the 

material tester, and the force and displacement values were zeroed prior to lowering the 

indenter.  The indenter tip was manually lowered until it made contact with the liver 

 

Figure 2.  Material testing setup used in the MGT assay. 

 

 

 

Figure 3.  Close up of liver indentation setup.  The liver was positioned so that contact 

with the indenter occurred at a point where the liver was uniform in height. 
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surface, which was determined by visual inspection and by observation of a sudden 

increase in the force values registered by the transducer.  Contact between the liver and 

indenter was regulated between specimens by maintaining a force value between 0.01 

and 0.03 g at initial contact.  The liver lobe was situated on the platen relative to the 

indenter so as to provide a uniform surface for indentation.  The indentation occurred at 

the thickest portion of the liver, in an area where there were no steep surface gradients.   

Development of an indentation protocol that correlated to the compression 

protocol was necessary in order to generate results that could be analyzed relative to one 

another.  However, in indentation testing, it is necessary that the depth of indentation not 

exceed the radius of the indenter tip to prevent aberrant behavior of the indentation 

model.  In order to remain within the confines of the indenter system, the indentation 

protocol consisted of three indentations to a depth of 0.4 mm.  Each indentation was held 

for a 60 second dwell period, which allowed the viscoelastic effects to dissipate, and then 

released.  The indenter returned to zero position, and remained there for 60 seconds, at 

which point another indentation occurred in the same manner.  In addition, each liver was 

measured after testing using a digital caliper to determine the thickness of the specimen at 

the region of indentation for use in modulus calculation.   

The gel-tissue cylindrical specimen was tested using traditional compression.  

Due to the increased size of the specimen, the load cell used was a 250 gram transducer 

(Honeywell Sensotec, Columbus, Ohio).  Figure 4 illustrates the setup for compression 

testing.  Each gel was weighed using an analytical balance and measured using digital 

calipers (diameter and height) prior to testing.  Both platens of the material tester were 

lubricated, again using the non-stick oil-based lubricant spray.  The material tester was 
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zeroed after placing the gel specimen on the platen, so that the weight of the gel was not 

considered in the measured force.  The platen was then raised until initial contact with the 

gel surface.  This was determined by visual cues as well as a negligible increase in the 

force reading.  For the compression case, the initial force values were limited to between 

1 and 2 grams.  A precompression of 0.3 mm was applied to each gel prior to testing in 

order to ensure full contact with the gel surface (~3-5% prestrain).  The testing protocol 

consisted of a series of step compressions, applied in 0.05 mm increments, from 0.35 mm 

to 0.65 mm (~max strain 6.5-9%).  After each step, the compression dwelled for 60 

seconds, as was implemented in the indentation, to allow the force to reach steady state.  

The test was performed twice for each gel. 

 

 

 

 

 

Figure 4.  Gel compression testing setup. 
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Computational Model for Indentation and Model-Gel-Tissue Assay 

With respect to the indentation testing data, the mechanical properties were 

determined using the correlation model suggested by Stevanocić et al. which concerned 

the contact between a rigid sphere and an elastic layer bonded to a rigid substrate [76].  

The assumption is that the boundary defined between the liver and the bottom platen 

experiences no-slip conditions, and hence the liver can be modeled as an elastic medium 

bonded to the rigid platen.  Stevanocić et al. developed a set of equations that was able to 

normalize the data presented by Chen and Engel [77] for a variety of varying modulus 

combinations by utilizing a dimensionless radius and layer thickness, which caused all of 

the curves to collapse onto one normalized curve.  The correlation equation derived by 

Stevanocić et al. is: 

 

  
      

  .
 

 
/
  

  (15) 

where c1,c2, and c3 are correlation coefficients, which, based on the analysis by 

Stevanocić et al., are defined as -1.73, 0.734, and 1.04, respectively, a represents the 

contact radius, aL is the contact radius corresponding to an infinitely thick elastic layer, 

and t is the layer thickness.  The contact radius, a, for a spherical indenter can be 

calculated from: 

  √      (16) 

where ρ is the radius of the spherical indenter tip and d is the penetration depth of the 

indenter.  To calculate the contact radius for an infinitely thick elastic layer, the Hertz 

relation must be consulted: 
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where E denotes the elastic modulus of the medium, υ the Poisson‟s ratio, and F the 

applied load.  For this research, if a Poisson‟s ratio is assumed for the tissue, all of the 

elements of equation 3 are known except for Young‟s Modulus of the tissue.  In past 

work, it has shown that for general soft tissue organs 0.45 has captured 1
st
 order elasticity 

effects for liver and brain reasonably well [78-81].  This value would correlate with a 9:1 

ratio of the Lamé constants (λ:G with G the shear modulus, and λ the bulk modulus) 

which is reasonably below the convention for Poisson locking which is important for the 

MGT assay (sometimes called mesh locking and typically has λ»G, or ν→0.5).  

Substituting equations 16 and 17 into equation 15 and solving for the modulus gives: 
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The modulus for each liver lobe was calculated for each of the three indentations.  The 

indentation depth and applied force were both calculated as the average respective value 

over the last 20 sampling points of the dwell, at which time the viscoelastic response had 

dissipated.  The three calculated modulus values were then averaged to obtain the final 

elastic modulus value for each liver. 

For the traditional compression test, a more complex model analysis was 

performed.  Finite element analysis was combined with physical material testing to 

determine the modulus of interest.  A critical component in this analysis was the selection 

of the model to represent the continuum of interest.  In this work a Hookean elastic solid 

was chosen.  This model assumes a symmetric, isotropic, specimen in equilibrium under 

small strains.  These assumptions linearize the strain tensor and simplify Cauchy‟s law 

from 36 stiffness constants to 2 (Young‟s modulus E, and Poisson‟s ratio ν) and use the 
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traditional mechanical equilibrium equation.  Similar to the indentation tests, Poisson‟s 

ratio was assigned to be 0.45.  However, sensitivity tests with respect to Poisson‟s ration 

and the models associated with indentation and model-gel analysis are summarized at the 

end of this section. 

Based on the equations for linear elastic deformation, a finite element system was 

developed for the gel-tissue domain.  An iterative matrix solver was used to solve the 

sparse FE system which used a biconjugate gradient solver with an incomplete LU 

preconditioner [82].  To construct the domain, microCT image volumes were acquired 

prior to compression.  In all experiments, the control, normal, and fibrosis gel systems 

were imaged and the gel and tissue were segmented using AnalyzeAVW (Mayo 

Foundation for Medical Education and Research, Rochester, MN).  Due to the doping of 

the gel with CT contrast, it was relatively simple to extract the liver volume using the 

standard morphometric operations of threshholding and region-growing.  The segmented 

volumes were found to agree with estimated volumes based on an assumed liver tissue 

density and the measured mass of the tissue.  Upon completion of the segmentation, a 

surface description was generated and used as a bounding description for a custom-built 

tetrahedral mesh generator [54].  Figure 5 illustrates the geometric model construction 

process with Figure 5a demonstrating a representative CT slice of the murine liver within 

a contrast-doped gel.  Figure 5b illustrates a homogeneous gel tetrahedral mesh (as can be 

seen, small gel surface defects were even captured with the process).  Figure 5c illustrates 

the extracted liver tetrahedral mesh within the gel system. 
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 The boundary conditions for the model reflected an unconfined compression that 

prescribed a fixed normal displacement (Dirichlet boundary conditions) on the majority 

of the top surface but was allowed to slip laterally (Neumann boundary conditions).  This 

was achieved experimentally by placing a lubricant on the contact surfaces.  More 

formally, the boundary conditions on the majority of the top surface were, 

                        (19) 

where d is the fixed compressive displacement magnitude, u signifies a displacement, and 

σ signifies a stress.  The subscript n indicates the normal direction and the subscript t 

  a 

b 

c 

Figure 5.  Computational domain construction with (a) liver microCT, (b) gel 

tetrahedral mesh, and (c) liver tetrahedral mesh extracted from gel/liver model. 
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indicates a tangent-to-the-surface direction (subscript 1 or 2 indicates the two tangent 

axes associated with a right hand coordinate system).  Similarly, at the bottom surface, 

the boundary conditions were, 

                       (20) 

In order to ensure solution uniqueness, at least one Dirichlet condition is required in the 

lateral directions.  To achieve this, nodes on the top and bottom surface that were within 

approximately 15 microns of the center-line (which translated to approximately 10 nodes) 

were fixed on each surface to restrain their movement laterally.  The remaining boundary 

conditions for the sides of the gel were stress-free, i.e.  

                      (21) 

 This paper serves to compare modulus estimates as provided by a novel MGT 

assay and that provided by indentation theory.  In the model-based comparison method, 

the above model is compressed in simulation to a degree that matches the physical 

compression of its mechanically tested physical counterpart.  As mentioned previously, 

for each gel with embedded liver, a corresponding homogeneous (reference) gel is also 

constructed.  From the mechanical tester, an average force applied to either gel surface 

(homogeneous or liver-gel system) is recorded.  By measuring the contact surface area, 

an average stress can consequently be determined.  Similarly, in the simulation, a 

compression is prescribed according to (19), (20), and (21).  Once the boundary 

conditions are prescribed, a solution is calculated which is based on an initial estimate of 

the gel and liver properties for each of the gel systems (homogeneous and liver-gel 

systems).  Once the displacement solution is calculated, the unused Galerkin (weighted 

residual finite element technique) equations associated with implementing Dirichlet 
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conditions along the compressing surface can be used to estimate the boundary integral 

resulting from the standard weighted residual form, and subsequently the local boundary 

stress.  This stress is averaged and multiplied by the surface area and then compared to 

the mechanical tester result.  The determination of the liver modulus occurs in two steps.  

The reference gel (which is made at the same time as gel-tissue suspensions) is tested in 

the mechanical tester, and the modulus to match the model to the mechanical testing 

output is performed.  Once determined, this is the assumed modulus of the gel within the 

heterogeneous liver-gel system.  The properties of the liver are then determined by the 

same process of comparing measured to predictive average stresses. 

As alluded to above, Poisson‟s ratio estimates were utilized in both the indenter 

modulus calculation and the finite element simulation for model modulus calculation.  In 

order to assess the variability of the results based on Poisson‟s ratio selection, a range of 

Poisson‟s ratio in both calculations were tested.  Based on previous experience, a value of 

0.45 was assumed to be a reasonable estimation.  From this assumption, it was opted to 

test a range of Poisson‟s ratio values from 0.43 to 0.49.  For the indenter test calculations, 

the evaluation only required changing the Poisson‟s ratio that was utilized in the 

calculations for the modulus value.  Each Poisson‟s ratio in the range was substituted into 

the equation and the resulting modulus value was recorded.  This evaluation was 

performed for each of the tested livers (14 fibrotic, 3 control, and 3 normal).  For the 

model calculation, the evaluation was performed using one of the sample fibrotic livers 

(analysis for #11).  The range of Poisson‟s ratio values tested was from 0.43 to 0.48 (in 

the case 0.49, conditioning in the stiffness matrix was poor).  For the liver of interest, the 

previously described modulus evaluation technique was performed a total of six times, 
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with each of the different Poisson‟s ratios.  The modulus value obtained for each ratio 

was recorded for comparison.   

    

Results 

Figure 6 illustrates the average stress-strain behavior of the reference gels with the 

values extracted after the 60 second dwell period.  Generating an estimate of the 

reference gel properties (which was created at the same time as the gel-tissue suspension) 

was important to the model-based characterization of mouse-liver properties.  Figure 7 

illustrates a similar stress-vs-strain application for a gel containing a murine liver, with 

data points again collected after the 60 second dwell.  Figure 8 illustrates the excitation 

and dwell period of a typical indentation test. 
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Figure 6.  Stress-strain curves for reference gels from compression testing.  A 

precompression of approximately 4% strain (0.3 mm) was applied prior to testing. The 

values are average values for the two compression tests performed on each gel, with 

error bars indicating the standard deviation of the two tests.  

 

 

 

 

Figure 7.  Stress-vs-strain behavior taken after the 60 second dwell for the gel-tissue 

system of a fibrotic specimen.  The two curves represent the two compression tests.  

The data points represent the stress value after the dwell period at each step 

compression. 
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The results from the indentation testing of the liver lobes are given in Tables 2, 3, 

and 4.  Table 2 contains the data for the fibrotic livers.  The values are given as the 

average of the three indentation tests for each liver.  Table 3 contains the average 

modulus values and the standard deviations for the indenter assessment of the fibrotic 

livers.  Table 4 contains the data for the control livers and the normal livers without 

treatment.  The average value and standard deviation are given for the three controls, the 

three normals, and the non-diseased group, which contains all six control and normal 

livers.  In each case, the standard deviation is small, indicating the variability of inter-

sample moduli.  The model-based calculation of fibrosis, control, and normal liver 

moduli are given in Tables 2, 3, & 4, also.  For the model-based simulations, the control 

liver from liver 2 was not available so model data from only two control livers were used 

 

Figure 8.  Example of force data obtained from liver indentation test.  The temporal 

decay of the force data during sustained compression indicates the viscoelastic nature of 

the tissue.  However, the effect dampens and a steady state has been approximately 

established at the end of the dwell. 
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to determine the control liver properties.  In both the model-based and indenter cases, the 

control and normal moduli did not vary over the course of the experimentation.  When 

considering the control/normal liver moduli as compared to the fibrosis liver moduli, both 

the indenter testing and the model results show a difference between groups.  Fibrotic 

livers 6, 7, and 12 have indenter modulus values that are slightly lower than the others 

and are not distinct from the non-diseased average modulus, but the average fibrosis 

value for the indenter assessment is distinct from the average non-diseased value.   

 

 

 

 

 

Table 2.  Results from indenter material testing and model compression simulation for 

fibrosis and reference gels. 
 

Liver 
Number 

Ishak 
Grade 

Indentation 
Modulus  

(kPa) 

Model (Compression) 

Indenter Percent 
of Model Modulus 

- Fibrosis 

Liver 
Modulus 

(kPa) 

Reference 
Modulus 

(polyacrylamide) 
(kPa) 

1 4 1.56 1.53 6.12 101.9% 

2 4 1.26 1.70 6.52 74.3% 

3 4 1.64 1.88 6.69 87.5% 

4 4 1.18 1.53 6.67 77.5% 

5 4 0.85 1.42 5.84 59.9% 

6 3 0.70 0.96 5.84 73.1% 

7 4 0.72 1.05 5.84 69.0% 

8 4 1.06 1.39 5.79 76.3% 

9 4 0.95 1.10 5.79 85.9% 

10 4 1.07 1.31 5.52 81.8% 

11 4 0.87 1.05 5.66 82.6% 

12 3 0.60 0.97 5.66 61.1% 

13 4 1.07 1.50 6.20 71.3% 

14 4 1.08 1.60 6.20 67.8% 
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A correspondence is suggested between indenter and model-gel-tissue assays of 

modulus, as can be seen in Figure 9 and in the last column of Table 2.  Figure 9 plots the 

model-based modulus for each fibrotic liver versus the indenter test modulus.  A general 

trend exists between the two sets of measures, whereas the indenter modulus increases, so 

does the model modulus.  This is again represented in the last column of Table 2, which 

gives the indenter modulus as a percentage of the model modulus.  With exception of the 

liver 1 measurement, the modulus as measured by the indenter is consistently lower and 

represents an approximate mean of 76.4% ± 11.1%.  As Figure 9 indicates, a discrete 

least squares approximation generates a reasonably good linear fit between the two 

methods.   

Table 3.  Average modulus values and standard deviations from indenter material 

testing and model compression simulation for fibrotic livers.  
 

 Indenter Model 

Average 1.04 1.36 

Standard Deviation 0.30 0.29 

 
 
 

Table 4.  Average modulus values and standard deviations from indenter material 

testing and model compression simulation for control gel.  

 

  
Indentation 

Modulus (kPa) 
Model – Compression 

Modulus (kPa) 

Control Average (kPa) 0.69 ± 0.06 0.66 ± 0.13 

Normal Average (kPa) 0.55 ± 0.04 0.55 ± 0.06 

Average Non-Diseased Modulus (kPa) 0.62 ± 0.09 0.59 ± 0.10 
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A test for normality was conducted on both the model and indenter modulus 

assessment data for the fibrotic livers.  The Lilliefors test for normality was utilized, 

which allows analysis on continuous data with estimated mean and standard deviation 

[83].  In both cases, the null hypothesis of a normal distribution could not be rejected.  A 

t-test analysis was performed to assess the difference in means between the non-diseased 

group and the fibrosis group for both the indenter analysis and the model analysis.  In 

both cases, a difference was detected at a significance level of 0.01.  A t-test was also 

utilized to assess the difference in means between the indenter and model analysis for the 

fibrosis group.  The analysis indicated that the average indentation modulus was lower 

than the average model modulus for the fibrosis group at the 0.01 significance level.  The 

 

 

Figure 9.  Liver model modulus as a function of indenter modulus for fibrotic samples.  

The correlation coefficient between the two sets (R
2
=0.741, R=0.861) indicates a 

relationship between the two measures. 
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non-diseased results from the indenter analysis and the model analysis were compared 

using a t-test, and in this case, the null hypothesis of equal means could not be rejected.  

Finally, an outliers test was performed on the data point for liver 1, which is the only 

instance of the indentation modulus computed as larger than the model modulus.  

Grubb‟s test was performed on the data for the ratio of the indenter test to the model test, 

and the data point for liver 1 was found to be an outlier.  Removing the data point for 

liver 1 from the correlation curve (figure 9) increases the correlation between the two 

curves, as shown in figure 10 below. 

 

 

 

 

Figure 10. Liver model modulus as a function of indenter modulus for fibrotic 

samples. When the data point for liver 1 is removed, the correlation coefficient 

between the two sets increases (R
2
=0.820, R=0.905). 
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In the Poisson‟s ratio evaluation, the effects were generally minimal from varying 

the Poisson‟s ratio.  In the indenter case, the maximum difference in modulus for any of 

the livers was approximately 75 Pascals between Poisson‟s ratio values of 0.43 and 0.49.  

In the model evaluation, the maximum modulus difference was approximately 255 

Pascals, between 0.43 and 0.48 (with 0.49 resulting in ill-conditioned stiffness matrix).   

 

Discussion 

Research has indicated that, in general, biological soft tissues are viscoelastic in 

nature, and, therefore, research commonly utilizes cyclic compressions to estimate the 

viscous reaction of biological soft tissue and isolate their elastic nature [84].  In contrast, 

some testing regiments institute a dwell period if they are concerned with factoring out 

such influences.  When considering diagnostic processes such as elastography, in 

particular static-based methods which involve a prolonged state of compression, using the 

latter strategy to estimate properties would seem appropriate [28, 85].  When considering 

surgical loading conditions also, a static-based assessment is more suitable [78].  Thus, 

for compatibility reasons with research directions within the laboratory, a dwell period 

was instituted to factor out transient behavior and data was analyzed at these approximate 

steady state times.  The dwell period length was chosen as 60 seconds for two reasons.  

First, this length of time was sufficient to approximate steady state as is indicated by 

Figure 8, which shows the force curve for a sample liver indentation under the protocol 

described above.  Second, this time frame is relative to how long it takes to acquire an 

image in ultrasound elastography, or other elastography techniques, which is a current 

focus within the laboratory.  There is little doubt that tissue is viscoelastic, and the force-
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to-displacement behavior will change with increasing load rate.  However, as with any 

material testing protocol, the loading environment concerned with the application must be 

taken into account.  In addition, the same dwell period was implemented for both the 

indenter and compression tests in order to provide uniformity to the investigation.  These 

dwell periods may be adjusted in the future depending on the application or if certain 

information regarding diseased tissue can be uncovered by looking at different loading 

events temporally.  It should be noted that a linear regression was performed on the 

“steady-state” data to establish stress-to-strain relationships at these time points; in each 

case, a consistent correlation value of greater than 0.99 was determined thus indicating a 

reasonably robust analysis at this time point. 

The main purpose of this research was to identify whether the MGT assay could 

be utilized to measure the stiffness of an embedded piece of tissue.  As indicated by the 

correlation between the indenter and model modulus evaluations, the developed testing 

protocol delivered reasonable results for the elastic modulus of these trial samples.  This 

is especially evident through the non-diseased analysis, in which case the model and 

indenter values are statistically indifferent.  In addition, a chemically-induced liver 

fibrosis model was used to determine whether intuitive changes in these properties could 

be monitored.  The dual-testing methodology allowed for independent confirmation of 

the MGT assay‟s measurement.  It is interesting to note that while the control/normal 

mice values were statistically the same between testing methods, i.e. MGT and 

indentation assays, the fibrotic liver comparison indicated statistically different but 

correlated moduli values.   The controls/normals would indicate fidelity exists between 

the two methods.  However, the fibrotic discrepancy indicates that there is something 
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different with respect to the constituency of the tissue when performing indentation 

versus MGT, i.e. a smaller value.  Statistical analysis among fibrotic livers indicated a 

difference in means between the indenter and MGT assay at a 0.01 level of significance, 

which may signify differing sensitivities in the model-based and indentation methods.  

One of the distinct differences between the two tests is the extent of the mouse liver used 

within each test.  The two largest lobes are used in the MGT test, while one of the smaller 

lobes is used for the indentation.  The other distinct difference is that indentation tests are 

measured on the surface of a liver lobe.  It is quite possible that the outer parenchymal 

capsule associated with the liver may not have the same degree of fibrosis as the internal 

regions of the organ.  Any heterogeneity with respect to the fibrosis in regions near the 

outer surface of the liver would inherently have a greater effect on indentation tests.  The 

fact that the moduli values were less for these tests would be consistent with this 

assertion and the outer surface would be the most likely region to not have fully 

developed fibrosis.  The MGT assay would be more representative of global organ 

fibrosis and the properties would reflect this. 

 There are several sources of error within the techniques that reflect limitations of 

this protocol.  All methods herein represent an ex vivo methodology.  Without linking the 

in vivo and ex vivo properties, it will be difficult to use this as a quantitative metric for in 

vivo changes.  Nevertheless, the protocol does represent a reasonably robust technique to 

monitor changes under like conditions.  It is interesting though that the values presented 

here correlate with other results within the literature for human liver.  Yeh et al. measured 

normal and fibrotic livers in 19 fresh human cadaver livers using a standard compression 

test.  At 5% strain normal and fibrotic livers had moduli values of 640 ± 80, and 1110 ± 
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170 Pascals, respectively.  These are remarkably consistent with the values reported here.  

This may indicate that murine liver is a reasonably good model of human liver for 

mechanical properties; however, this should be tempered by the fact that Yeh‟s results 

were done 24-48 hours post-mortem (tissue was preserved) whereas the tests presented 

here are done 1-2 hours post-mortem; nevertheless, an interesting correlation.   

Another possible source of error is the Poisson‟s ratio selection.  A value of 0.45 

was chosen based on two primary reasons.  The first is that this value has been used in 

previous lab work and has proven successful in that application.  The second is that this 

value provides a nearly incompressible description which is sufficiently elastic (as 

opposed to hyperelastic) to not invoke mesh-locking in the finite element solution.  In 

addition, the testing of the Poisson‟s ratio range indicated that the indenter testing is 

somewhat insensitive to a small change in Poisson‟s ratio.  The model is more sensitive 

to the changing Poisson‟s ratio; however, the effect is still small.  The analysis was 

performed using a Poisson‟s ration of 0.45.  Other research has utilized values higher 

than this.  It is important to note, though, that the same Poisson‟s ratio was used in both 

analyses, which at the very least provides a very good relative comparison of moduli. 

There are a myriad of other possible sources of error to include: segmentation, 

tetrahedral element choice, variability in disease model, subjectivity of disease grading, 

variability in pre-compression environment, etc.  However, the independent method 

testing performed herein does provide confirmation regarding the detection of disease.  

The results also suggest that indentation and the MGT assay may provide information 

regarding fibrosis at both a local and more global level.  Furthermore, it should be noted 
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that one advantage of the MGT assay is it would be amenable for calibrating elastography 

methods and conducting controlled experiments among different modalities. 

 

Conclusions 

The MGT method yielded results that could be correlated to indenter testing of 

the individual liver lobes.  The control/normal liver modulus values are consistent for 

both the model and indenter tests.  However, the fibrotic livers resulted in modulus values 

that were consistently higher in the model calculation than in the indenter calculation.  

Rather than thinking this is a limitation of either theory, it is hypothesized that this may 

be due to the indentation being performed at the liver surface, which is a region that may 

experience less fibrosis formation than the organ volume.  The results reported here 

support this hypothesis thus far.  The results demonstrated that normal and advanced 

fibrotic livers can be statistically identified with these techniques.  Unfortunately, the 

Ishak scoring system is not specific enough to determine whether the extent of fibrosis 

can be correlated to the variability within modulus measurements.  Future work would 

have to be focused at providing disease scoring that is more quantitative such as by image 

analysis.  In addition, enhancements to the model regarding element-type and perhaps 

more complicated constitutive relations to match the transient properties would be 

appropriate for investigation.  Despite some limitations though, the techniques and results 

produced herein should serve as a robust framework for testing elastography techniques 

as well as to monitor small-animal diseases systems that affect soft tissue architecture. 
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CHAPTER IV 

 

EX VIVO TUMOR STUDY #1 

 

Introduction and Contribution of Study 

 The work presented in this manuscript served to further the breadth of analysis of 

the MGT assay as well as to investigate the potential of linking microstructural content of 

tissue samples to evaluated modulus values.  Continuing the work of the previous 

manuscript, this paper concerned the application of the MGT assay to tumor tissue 

evaluation, further demonstrating the capability of the assay as a soft tissue modulus 

evaluation technique.  In addition, this paper served as an initial investigation into the 

relationship between microstructure and modulus.  Specifically, collagen content of the 

samples was quantified and compared to the assay-evaluated modulus, and a correlation 

between the two measures was established.  Finally, this work highlighted a potential 

limitation of the assay relative to the ratio of the size of the tissue specimen to the volume 

of the gel in which it is embedded, thus indicating the need to qualitatively evaluate the 

capabilities of the assay in order to ensure its application as a modulus evaluation 

technique.  This work was initiated with the notion of evaluating the suspected 

mechanical differences between tumors with membrane-tethered TNF-α versus those 

with cytoplasmic TNF-α, which was being evaluated by a collaborator; the collagen 

content of the samples was also evaluated due to the expected effect of the TNF-α 

differences.  The results showed that the TNF-α state of the tumors was not differentiated 

by either the MGT assay modulus or the collagen content of the tissue.  However, the 
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collagen content and the modulus value demonstrated a correlation, which provided an 

interesting first observation of the potential quantitative link between microstructure and 

macroscopic property.  This work was published in Biomechanics and Modeling in 

Mechanobiology in August of 2009.      

 

Experimental Study 

A NOVEL MODEL-GEL-TISSUE ASSAY ANALYSIS FOR COMPARING 

TUMOR ELASTIC PROPERTIES TO COLLAGEN CONTENT 

 

Appearing in 

Biomechanics and Modeling in Mechanobiology, Volume 8, Number 4, August 2009 

 

Abstract 

In previous work, a new assay was realized for determining soft-tissue mechanical 

properties.  The method, named the model-gel-tissue (MGT) assay, couples material 

testing with a finite element model built from a micro-CT image acquisition of a gel-

embedded tissue specimen to determine its mechanical properties.  Given recent reports 

demonstrating that increased stromal collagen promotes mammary tumor initiation and 

proliferation, in this paper, the MGT assay is used to evaluate the modulus of murine 

mammary tumors and is subsequently correlated quantitatively to type I collagen content. 

In addition, preliminary testing of the assay sensitivity with respect to gel-volume to 

tissue-mass ratio is reported here.  The results demonstrate a strong linear correlation 

between tumor mechanical properties and collagen content (R
2
 = 0.9462).  This result is 

important because mechanical stiffness as provided by the MGT assay is very similar to 

parameters under clinical investigation using elastographic imaging techniques.  The 
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sensitivity tests indicated that an approximate gel-volume to tissue-mass ratio threshold 

of 16.5mlg
−1

 is needed for successful analysis.  This is an important result in that it 

presents guideline constraints for conducting this analysis. 

 

Introduction 

 Assessment of tissue stiffness often plays an integral role in research and clinical 

diagnostics since it has been identified as an indicator of a variety of pathological 

conditions, including hepatic fibrosis, arterial disease, myocardial infarction, breast 

cancer, prostatic cancer, thyroid disease, and skin cancer, among others [7-21].  In 

addition, recently developed medical imaging modalities are attempting to render non-

invasive measurements of these properties for disease screening (commonly cancer 

screening) and therapeutic applications [22, 24, 27, 86-91].  However, direct mechanical 

measurement of tissue for modulus assessment and method validation has proven 

difficult due to the inherent irregular tissue shape and the challenge of preparing them for 

traditional mechanical testing methods.  However, some material testing methods have 

been developed that are applicable to a specific tissue configuration; for example, 

indentation testing for layered slab tissues.  While a very common approach, the 

determination of elastic properties from this data is often based on certain geometric 

shapes, and boundary conditions.  In the case of tissue resection and biopsy specimens, 

which are generally the gold-standard pathological sampling techniques, these tissue 

samples would routinely violate many of these assumptions.  Thus, the development of a 

mechanical property assessment technique that can be adaptable to the uncertainty of 
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tissue size and shape and yet be quantitative would be an important contribution towards 

understanding biomarkers associated with tissue structure.   

 With respect to the macroscopic determination of mechanical properties, the two 

primary protein components that define mechanical stability of soft tissue are collagen 

and elastin.  These proteins directly influence the structural integrity of tissue, and an 

assessment of the amount of collagen in a sample is a measure that reflects the load-

bearing nature of tissue, and hence its stiffness.  Changes to tissue health can lead to 

altered distributions of these particular proteins within soft tissue [5].   For example, in 

recent reports increased stromal collagen has been shown to increase tumor formation 

and proliferation in murine mammary tissue by threefold and has resulted in a more 

invasive phenotype with increased metastasis [92].  The possibility to use an assessment 

of collagen to predict tumorigenic behavior is intriguing but the interaction and change to 

the relationship between cellular structure and modulus in the diseased state is to some 

degree uncertain; and, it‟s relationship at clinically relevant diagnostic length scales is 

equally uncertain.  The standard method used for collagen assessment is histological 

analysis; however, at best histological processing provides an indirect relationship to 

collagen‟s functional mechanical role, and it is this functional role that is critical in many 

ways to the use of mechanical properties as a biomarker.  For example, breast cancer and 

liver fibrosis are often detected by palpation [93-96].  Other areas of study such as 

fracture repair and wound healing are also characterized by mechanical performance [97-

101].  While these are important areas, it would also be interesting to extrapolate the role 

that mechanical properties or the monitoring of tissue architecture could play in cancer 

evaluation.   
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 In this work, an ex vivo mechanical testing assay that was previously reported is 

used within the context of measuring mechanical properties of arbitrarily shaped tissue 

volumes from a murine mammary tumor model.  The assay involves suspending freshly 

excised tissue volumes within a rapidly congealing gel, imaging the sample, evaluating 

mechanical performance using standard material testing equipment, and then 

implementing a model-fitting process for modulus assessment.  The assay is called the 

model-gel-tissue (MGT) assay, and is used here to demonstrate the link between tissue 

mechanical properties and collagen content for mammary tumors.  Preliminary work 

utilizing the assay within a liver fibrosis murine model has been reported [102].  In the 

work presented here, the utility of the assay to evaluate various tissue types is 

demonstrated, as a shift is made from fibrotic liver to mammary tumor tissue.  This 

expansion of the assay analysis to other tissue types, in particular cancer-based, begins to 

provide a more quantitative understanding of the stiffness biomarker that is commonly 

used to detect breast cancer.  In addition, the work presented here is concerned with the 

specific task of linking structural load bearing changes to a histological assessment of a 

murine breast cancer system.  In doing so, a critical quantitative correlation to cellular 

microstructural content, which had not been realized in the previous work, is 

demonstrated.  In addition to this considerable advance, the tissue specimen volume has 

been reduced by one order of magnitude such that it is now biopsy-relevant and a 

preliminary sensitivity study regarding gel-volume to tissue-mass ratios is explored.   
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Methods 

The work reported herein concerns the analysis of the modulus of elasticity of 

nine murine mammary tumors as measured by the MGT assay previously reported.  The 

mouse model was prepared with murine breast cancer 1x10
6
 cells derived from mouse 

mammary tumor virus polyomavirus middle T transgenic lines (PyV-mT; maintained in 

DMEM, 10% FCS, 5.0 ng ml
-1

 17-β estradiol, 1 g ml
-1

 progesterone) and were 

implanted contralaterally in FVB/nJ host mice in the 4
th

 mammary fat pad.  Tumor tissues 

were collected after 30–40 days, which allotted growth to approximately 1 cm
3
, and 

sectioned for analysis.  The largest section was utilized for modulus evaluation in the 

MGT assay.  Collagen content of the tumors was determined from the acid-hydrolyzed 

homogenate of a separate tumor segment.  Amino-acid analysis of the derivatized 

hydrolysate yielded hydroxyproline and other amino acids to estimate both total and 

relative collagen content [5].  This value was then used as a comparison for the MGT 

assay evaluation of the tissue modulus.  These tests were prepared in a blinded fashion 

from the MGT assay and were only available post MGT assay conclusion.  In addition, a 

histological analysis was performed on tissue samples in order to ensure that the collagen 

present was predominantly type I.  Tissue samples underwent standard 

immunohistological analysis, using rabbit anti-collagen I (abcam, Cambridge, MA), 

which has shown 100% specificity to collagen type I and less than 1% reactivity to other 

collagen types.  The Dako Envision+ System, DAB/Peroxidase (DakoCytomation) was 

used to produce localized, visible staining of the collagen.  For comparison purposes, 

adjacent sections of tumor were stained with Masson's Trichrome to visualize 

extracellular collagen deposition. 
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The MGT assay used to measure mechanical properties utilizes a gel-embedded 

tissue sample and combines finite element modeling of the gel-tissue composite with 

direct mechanical testing to evaluate the mechanical properties of the tissue sample.  An 

outline of the assay is depicted below (Fig. 11).    

 

 

 

Implementation of the MGT system required production of a uniform gel with 

embedded tissue sample as well as rigorously defined material testing protocols.  The gel 

that proved most amenable to the demands of the system was a rapidly congealing 

polyacrylamide (PA) gel.  The components of such a gel were 1 molar Tris buffer, 10% 

 

 
 

Figure 11. Assay outline. 
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ammonium persulfate (APS) solution, and 30% acrylamide/polyacrylamide (BioRad 

Laboratories). Since multiple samples could be generated during the course of one 

experiment, an initial solution was generated for use in all gel generation.  For this 

research, a 4.5% polyacrylamide gel, which had a modulus of approximately 2.5 kPa, was 

utilized.  It is necessary for the MGT assay that the modulus of the gel be similar to that 

expected for the tissue; if the gel is too stiff, the incremental effect of the tissue modulus 

on the composite system is undetectable.  In addition, the ratio of gel-volume to tissue-

mass proved pivotal in the effectiveness of the assay.  In an attempt to compensate for the 

varying tumor tissue volumes across samples, we gradually varied the gel volume, 

resulting in gel-volume to tissue-mass ratios ranging from 4.43 to 32.68.  The success of 

the assay appears to be linked to this ratio (Table 5).  Based on this preliminary analysis, 

a volume of 1.4 mL of solution was generally used; however, this amount could be varied 

dependent on the tissue mass if necessary.  With respect to setup, the diameter of the gel 

cylinder could be varied to accommodate different tissue shapes, but it was necessary that 

the gel completely envelop the tissue for the assay evaluation.  In the mammary tumor 

case, well plates with a diameter of 16 mm proved sufficient for the extracted tissue size.  

To generate the gels, the desired volume of buffer/APS/PA solution was added to one of 

the wells.  In addition, to provide a distinguishable boundary between the tissue and the 

gel in CT scans for the purpose of extracting the geometric shape for modeling (i.e. 

image segmentation), Optiray (Mallinckrodt Inc), a CT contrast agent, was added to the 

mixture.  The tissue was then suspended in the liquid using forceps while the 

polymerization initiator, TEMED, was added to the well.  Solidification of the gel was 

complete in approximately two minutes.  In addition to the embedded tissue gels, a 
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homogeneous gel was generated at the same time for the purpose of estimating the 

mechanical properties of the gel itself.  The homogenous gel was created following the 

same guidelines previously described, without suspension of the tissue.  If multiple gel 

volumes were used in the experimentation, a homogeneous gel was generated for each 

volume instance. 

After gel generation, the gel-tissue sample was imaged using the Imtek microCAT 

II scanner (Concord/CTI). Image segmentation of the CT images was performed using 

AnalyzeAVW (Mayo Foundation for Medical Education and Research).  Upon 

completion of the segmentation, a surface description was generated and used as a 

bounding description for a custom-built tetrahedral mesh generator [54].  After imaging, 

the gel-tissue specimen was subjected to compression testing using the Enduratec 

Electroforce 3100 material tester (Bose, Enduratec Systems Group) with both force and 

displacement being acquired.  Due to the small size of the samples, a 50-gram force 

transducer was utilized.  The mechanical test consisted of a series of incremental 

unconfined step compressions to specified displacement levels, from 0.35 to 0.65 mm in 

0.05 mm increments, followed by a 60 second dwell period which was implemented to 

dissipate the majority of the viscoelastic behavior of the tissue and gel.  The compression 

testing was repeated twice for each gel sample.  The unconfined nature of the 

compression was achieved experimentally by applying a lubricant to both the top and 

bottom surfaces of the gel. 

After imaging and material testing was completed, the MGT assay modulus 

evaluation process took place in two steps.  First, the homogenous gel sample was 

evaluated to determine its modulus.  The finite element model generated for the 
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homogeneous gel was subjected to boundary conditions that matched the unconfined 

mechanical compression of the physical gel.  Specifically, the top surface was subjected 

to a fixed normal displacement (Dirichlet boundary conditions) while being allowed to 

slip laterally (Neumann boundary conditions).  The bottom surface of the gel experienced 

similar boundary conditions, with the difference being that the normal displacement was 

maintained at a constant zero value.  Approximately ten nodes in the center of both the 

top and the bottom surfaces were confined laterally in order to ensure uniqueness of the 

computational solution.  A modulus value was assumed for the gel in the model, and a 

forward evaluation of the displacements was calculated.  From the displacement field, 

equivalent surface stress due to the specified compression level could be reconstructed.  

The resulting model stress was then converted to a force value based on the surface area 

of the specific gel and compared to the acquired force from the mechanical tester; the 

input gel modulus was varied until the model-calculated force value matched the 

measured force value, at which point the reference gel modulus was recorded.  This value 

was then assumed to be the gel modulus in the gel-tissue sample evaluation.  The method 

of tissue modulus estimation, as in the homogeneous case, was compressed according to 

the same mechanical testing conditions.  The modeled and measured mechanical forces 

were compared, and the model‟s tissue modulus was adjusted until the two forces were 

equivalent, at which point the tissue modulus was assigned.   

 

Results 

The results of the volume regulation testing are presented below (Table 5), 

wherein the ratio of tumor gel-volume to tissue-mass is correlated to whether the MGT 
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assay was able to successfully analyze the tissue modulus.  A successful analysis was 

achieved in the case where a modulus value could be evaluated for the tissue.  An 

unsuccessful analysis was defined by an inability to differentiate the specimen from the 

background gel due to undetectable differential force resolution experienced when 

adjusting the tissue modulus.  In cases where the gel-to-tissue ratio is approximately 16.5 

or less the assay is able to successfully evaluate the tissue modulus.  According to the 

available data, the maximum value at which the assay is no longer able to evaluate the 

tissue modulus is 18.92. 

 

 

 

The results from the murine tumor tissue assay analysis are compiled below 

(Table 6).  The first column is the tumor number given for identification purposes.  The 

Table 5. Gel-to-tissue volume ratio. 

Mammary 

Tumor Mass (g) 

Gel Volume 

(mL) 

Gel-to-Tissue 

Ratio (mL/g) 

Positive 

Analysis? 

0.3819 2 5.24 Yes 

0.3580 2 5.59 Yes 

0.4519 2 4.43 Yes 

0.1057 2 18.92 No 

0.0684 2 29.24 No 

0.0912 1.5 16.45 Yes 

0.0950 1.5 15.79 Yes 

0.0459 1.5 32.68 No 

0.1011 1.4 13.85 Yes 

0.2221 1.4 6.30 Yes 

0.1335 1.4 10.47 Yes 

0.2554 1.4 5.48 Yes 
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second column of the table is the modulus value as calculated by the MGT assay, and the 

third column is the collagen percentage as evaluated by acid-hydrolyzed homogenate 

analysis.  A pictorial depiction of the data from Table 6 follows, wherein collagen 

percentage of the tumors is plotted versus the MGT assay modulus assessment for each 

tumor (Fig. 12).  A linear regression was performed on the data, resulting in a correlation 

coefficient that demonstrates a strong linear correlation between the two variables 

(R
2
=0.9462).  In addition, two sets of predictive intervals (90% and 95%) are shown.  

These predictive intervals indicate the range of obtainable collagen percentage values 

correlating to a specific modulus value in future evaluations [103, 104].  In other words, 

these intervals depict the specificity of the assay in evaluating a correlation between the 

model modulus value and the analysis of collagen percentage.  

 

 

 

Table 6. Assay and acid-hydrolyzed homogenate results 

Tumor 

Number 

Modulus 

(Pa) 

Collagen 

Percentage 

1 750 7.93 

2 970 9.00 

3 3840 33.48 

4 2430 16.64 

5 1050 11.76 

6 2730 20.11 

7 1840 16.37 

8 890 7.07 

9 650 4.49 
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Results from the histological analysis of the mammary tumor tissue are shown in 

figures 13 and 14 below.  Representative images at 10x and 20x magnification are shown 

for both the immunohistological analysis for collagen type I (Fig. 13) and the Masson‟s 

trichrome staining of adjacent slices (Fig. 14).  In figure 13, the slides were lightly 

counterstained with Mayer's hematoxylin to tag collagen I with a slight brown color.  In 

figure 14, the light pink areas are cellular cytoplasm, while the darker pink/brown areas 

are the nuclear component.  Blues areas in figure 14 are extracellular collagen.   

Comparison of the brown-stained collagen type I (Fig. 13) to the blue-stained ECM 

 

Figure 12. Collagen percentage as a function of tumor modulus for PyV-mT tumors.  

The black line is the linear regression to the data set, while the red line is the 90% 

confidence interval, and the blue line is the 95% confidence interval. 
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collagen (Fig. 14) indicates that most, if not all, of the collagen present in the tumor 

tissue is type I. 

 

 

 

 

 

 

 

Figure 13. Representative slice from immunohistological analysis of murine mammary 

tumor tissue.  The two images are the same slice, with the left being at 10x 

magnification and the right at 20x magnification. 

 

 

 

Figure 14. Representative slice from Masson‟s Trichrome staining of murine mammary 

tumor tissue. The two images are the same slice, with the left being at 10x 

magnification and the right at 20x magnification. 
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Discussion 

One of the aims of this work was to demonstrate that the analytic capability of the 

MGT assay was not limited to a specific tissue type.  To this avail, murine mammary 

tumor tissue was used, which, by dictation of the system, is a much smaller tissue volume 

than the murine liver.  Thus, while we were able to show the applicability of the assay to 

other tissue types, this work also provided insight to the required assay parameters for 

tissue assessment using the MGT assay; namely, the required control of the gel-volume to 

tissue-mass ratio.  In practice, the gel must completely surround the tissue.  However, if 

the gel volume exceeds the tissue mass by too large a ratio, the gel mechanics will 

overwhelm the changes to the composite mechanics and the assay will be less sensitive to 

contributions from the soft-tissue.  The realization of this volume regulation is evident 

from the data (Table 5).  From this data, a threshold of the ratio is observed, above which 

the assay is not able to identify the tissue among the gel, which is important to recognize 

in order to ensure the fidelity of the assay.  In cases where the gel-to-tissue ratio is 

approximately 16.5 or less the assay is able to successfully evaluate the tissue modulus.  

The implications are that since the tissue mass can only be minimally controlled (e.g. 

volume of the biopsy), control of the assay must be performed by modifying the gel 

recipe based on the measured mass of the resected tissue, i.e. the gel volume is dependent 

on the individual tissue samples.   

 With respect to cancer screening, a common clinical presentation is a change in 

the mechanical stiffness of tissue in a focal region such that it becomes more rigid (e.g. 

breast cancer).  While for conditions such as liver fibrosis, the mechanism for altered 

mechanical properties is well understood, this process in cancer is mechanistically 
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unclear.  As more information is uncovered regarding microstructural effects relating to 

tumorigenesis, such as that relating increased stromal collagen content to tumor 

formation and proliferation [92], the need to understand the underlying structure-function 

link is enhanced.  This work demonstrates a distinct tracking of mechanical properties 

with respect to collagen content within this particular cancer model (Fig. 12).  In 

addition, the immunohistological analysis performed indicates that the collagen content 

evaluated by the acid-hydrolyzed homogenate is representative of collagen type I.  It is 

unclear if the apparent linear relationship will translate to other tumors or whether 

various cellular and molecular challenges will change this correlation.  From a 

methodological standpoint, the breakthrough that the MGT assay makes is the ability to 

analyze mechanical properties of small animal tissue immediately post-mortem while 

allowing the sample size to be arbitrarily shaped and very small in volume.  From the 

clinical standpoint, the breakthrough is twofold: (1) human biopsies are generally small 

and arbitrarily shaped, and hence the assay could presumably be utilized in biopsy 

evaluation, and (2) it is clear that the MGT assay combined with other cellular assays 

allows more detailed understanding of the elasticity signal commonly collected by 

clinical elastographic imaging methods, i.e. it illuminates the relationship between the 

cellular biomarker of collagen presentation and the mechanical abnormalities of the 

tumor at the macroscopic scale.  

While the general behavior reported can be intuited, the contribution is in the 

absolute quantification – a definable metric to relate function to histological presence.  In 

addition, it is interesting to begin to speculate how this type of analysis can be furthered.  

For example, the force-displacement data for this assay was fit to a linearly elastic 
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homogeneous computer model of the tumor.  Time-varying changes were factored from 

the experiment by allowing sufficient time lapses to allow for a quasi-steady state force-

displacement response.  The reality is that these temporal behaviors have information 

regarding soft-tissue interstitial fluid dynamics and cell-to-cell mechanics.  With more 

sophisticated models, and more sophisticated fitting procedures, other information 

regarding structure and function could possibly be determined.  In addition to generating 

models to correlate the slow-varying transients, other altered material testing profiles 

could be utilized.  For example, viscoelastic properties are often illuminated by testing 

specimens with cyclic loading; it would be interesting to put a mechanical excitation 

spectrum though the specimen and correlate the findings with very complex models.  

Another area that awaits further investigation is the enhancement of the imaging aspect to 

this experiment.  Here, microCT was used to essentially capture the shape of the tissue 

specimen.  One could envision using high-field MR techniques to get at the more fine 

structural heterogeneity; or perhaps, diffusion imaging could be used to highlight regions 

of the tumor that do not permit the traffic of interstitial fluid as readily.  The ultimate 

triumvirate for relating structure to assessable modulus would be to combine structure-

enhancing imaging sequences, sophisticated testing regimens, and detailed cell and 

molecular assays.  The MGT assay is a first move in this direction. 
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CHAPTER V 

 

EX VIVO TUMOR STUDY #2 

 

Introduction and Contribution of Study 

 The study presented in this paper served to investigate a prognostic aspect of soft 

tissue modulus evaluation.  In this work, the potential of early determination of 

responsiveness of a tumor to treatment by means of elastic modulus evaluation was 

considered.  However, in the small cohort of tumors studied, a connection between the 

two could not be established.  Subsequently, this work presented a second opportunity to 

consider the modulus as an indicator of microstructure, as the assay derived modulus 

values were evaluated relative to collagen content of the tissues.  As in the previous 

study, a correlation was observed between sample collagen content and the elastic 

modulus.  The rationale for this work pertained to the potential of a non-invasive 

evaluation of tissue modulus as an early prognostic indicator of tumor responsiveness to 

treatment.  While current, invasive biochemical evaluations of tumor tissues can 

determine tumor classification and point to the indicated treatment, some tumors that are 

expected to respond to a given treatment unforeseeably will not. The literature indicates 

that work has been done to investigate genetically identifiable indicators of resistance, 

but these are not pertinent in all cases.  Hence, in many cases, resistance cannot be 

determined prior to treatment.  While almost all of the literature regarding resistance to 

treatment investigates resistance evaluation via genetic or cellular means, this work aims 
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to investigate mechanical differences as an indicator of resistance.  This work will be 

submitted for publication.  

 

Experimental Study 

 INVESTIGATION OF A MODULUS DEPENDENCE ON TREATMENT 

RESPONSIVENESS USING A MURINE MODEL OF HER2+ BREAST CANCER 

 

To be submitted, 2011 

 

Abstract 

 Screening and treatment for breast cancer has improved, thus increasing survival 

among patients.  Additionally, genetic analysis of tumors can indicate preferential 

treatment regiments based on tumor class.  However, even with knowledge of the tumor 

subtype and the associated treatment, patients do not respond equivalently to the same 

treatment.  Methods for determining which patients are responsive and which are 

resistant to a specific treatment prior to treatment are not currently available, but would 

prove valuable in treatment planning.  In this work, an association between the modulus 

of the tumor tissue and the responsiveness of the tumor to a specified treatment was 

investigated.  The MGT assay was utilized to evaluate the modulus of Herceptin-

responsive and Herceptin-resistant lines of a murine model of HER2+ breast cancer.  

Four responsive and four resistant tumors were evaluated; in this cohort of samples, a 

correlation between responsiveness of the tumor and tissue modulus could not be defined.  

The collagen content of the tissue was subsequently evaluated via histological staining 

and quantification using the Ariol SL-50 platform (Genetix).  In regards to collagen 

content, a correlation between modulus and tissue collagen content was established, with 
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the exception of one of the samples, which was statistically identified as an outlier.  

Though a modulus/responsiveness relationship could not be elicited, the work serves to 

further validate the use of the MGT assay as a modulus evaluation technique.  

Additionally, it indicates the relationship between the microstructure (collagen content) 

and macroscopic parameter (modulus) of the tissue.   

    

Introduction 

Breast cancer is an extremely prevalent form of cancer in the United States, and is 

the second-leading cause of cancer-related death in women [105].  Though breast cancer 

is an inherently heterogeneous disease dependent on a plethora of factors, breast cancer 

subtypes have been identified based on gene expression.  Of particular interest for 

therapeutic reasons are the subclasses of cancer that involve cellular receptors which are 

targets for therapy; specifically, estrogen receptor (ER), progesterone receptor (PR), and 

human epidermal growth factor receptor 2 (HER2).  Tumors are classified as either 

positive or negative for overexpression of the protein or gene amplification in these cases.  

HER2, a member of the ErbB protein family, is a cell surface receptor tyrosine kinase 

and has been shown to be involved in pathways affecting cell growth and differentiation.  

Overexpression of HER2, or an amplification of the HER2/neu oncogene, occurs in 

approximately 25% of human breast cancers.  A HER2+ tumor demonstrates increased 

cell growth and proliferation, and is generally indicated by a poor prognosis as it is 

correlated to a shorter time to relapse as well as a shorter overall survival [106].  

Specifically, the signaling pathways implicated in HER2+ tumors have effects on cell 

division, migration, adhesion, differentiation, and apoptosis [107].  Trastuzumab 
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(Herceptin®, Genentech Inc., San Francisco, CA) is a monoclonal antibody that, through 

mechanisms that are currently not fully understood, targets the HER2 protein on the cell 

surface, elucidating an immune response as well as affecting the intracellular signaling 

[108].  While Herceptin has proven successful as a treatment in some HER2+ cases of 

breast cancer, a portion of HER2+ patients do not respond to the treatment.  The 

mechanism for resistance is not well understood; while some cases can be described by a 

genetic signature, others are not identifiable.  Currently, no clinically relevant biomarkers 

exist that can predict resistance to Herceptin, and hence it is not possible to discern 

between patients who will and will not respond to treatment prior to the treatment.   

Though the mechanisms of resistance to Herceptin treatment are as of yet not 

understood, recent studies have resulted in speculated potential pathways.  It has been 

observed that Herceptin binding to the HER2 extracellular domain does not prevent 

ligand-induced generation of HER2/HER3 and HER2/HER1 (or EGFR) heterodimers; 

these heterodimers can continue signaling via the mitrogen-activated protein kinase 

(MAPK) and phosphatidylinositol 3-kinase (PI3K) proliferative survival pathways, and 

thus, although Herceptin affects HER2 signaling, it may not affect signaling from the 

HER receptor family members, which may have an implication in conferring resistance 

to the drug [109, 110].  The PI3K and the MAPK pathways have also been indicated in 

Herceptin resistance due to activation by the insulin-like growth factor 1 receptor 

(IGF1R).  Based on this observation, overexpression of IGF1R has been identified as a 

potential mechanism for Herceptin resistance [111-113].  Mutations in the PI3K pathway 

have also been investigated as potential mechanisms of Herceptin resistance.   Specific 

mutations in the catalytic and kinase domains of the p110α subunit of PI3K activate 
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signaling and have been indicated in Herceptin resistance [114, 115].  Additionally, a 

decrease in, or loss of, the phosphatase and tensin homolog (PTEN), a tumor suppressor 

which acts to inhibit PI3K signaling, has also been indicated in conferring Herceptin 

resistance [115, 116].  However, even with this knowledge of molecular and cellular 

effects, the mechanism for resistance is incompletely defined and may potentially vary 

among patients.  This lack of a priori knowledge unfortunately results in patients 

spending valuable time undergoing ineffective treatments.  For this reason, differences 

between the responsive and the non-responsive (or resistant) cancers that can be 

illuminated prior to devising a treatment plan would prove invaluable.   

It has been well established in many pathological conditions that the modulus of 

the affected tissue is perceivably different than the normal tissue; specifically, in many 

cases, disease affects the microstructure in such a way that it produces a lesion that is 

stiffer than the healthy tissue [7-21].  This discernable change in condition is the central 

concept behind physical palpation as a method of breast tumor detection.  Though in 

many cases the mechanisms that impart resistance have not been identified or are not well 

understood, it is conceivable that these same mechanisms may also have an effect on the 

modulus of the tumor.  This is especially prevalent when considering the literature 

regarding the role of tensional homeostasis on the progression of the tumor as well as the 

propensity to affect the remodeling of the extracellular matrix associated with tumor 

aggressiveness and invasiveness [32,51-54].  To examine the potential prognostic value 

of modulus assessment, the MGT assay was utilized to investigate the modulus of a 

Herceptin-responsive and a Herceptin-resistant strain of the BT-474 xenograft mouse 

model of breast cancer.  BT-474 is a human-derived cell line originating from an invasive 
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ductal carcinoma that is HER2+ and conducive to growth in the murine environment.  

With the attempted development of imaging-based noninvasive modulus assessment 

techniques, a recognizable difference in stiffness between the resistant and the responsive 

tumor types could prove to be useful as a preliminary indicator of treatment success [24, 

25, 27, 86, 87, 89-91, 117].  

 

Methods 

The Herceptin-responsive and Herceptin-resistant cell lines utilized in this work 

had been previously established by the Arteaga laboratory at Vanderbilt, and the methods 

described here were adapted from their protocol [118].  To generate the Herceptin-

responsive line, BT-474 cells were obtained from the American Type Culture Collection 

and maintained in improved minimal essential medium (IMEM, Life Technologies Inc.) 

supplemented with 10% FCS at 37°C in a humidified, 5% CO2 incubator.  To devise the 

Herceptin-resistant line, 2x10
7
 BT-474 cells suspended in growth factor-reduced Matrigel 

were injected subcutaneously into the right flank of five week old BALB/c athymic nude 

mice (Harlan Sprague-Dawley) 24 hours after they had been implanted with 0.72 mg, 60 

day release 17β-estradiol pellets (Innovative Research).  The tumors were allowed to 

grow until they reached a volume of approximately 300 mm
3
, at which point the mice 

were treated with Herceptin in a biweekly regiment.  Tumors that responded completely 

to the treatment and then reoccurred with continuous treatment were harvested and 

processed to generate the Herceptin-resistant cell line.  For this work, cells from each 

established line were obtained from the Arteaga laboratory.  To develop the tumors 

utilized here, five week old BALB/c athymic nude mice were implanted with an estradiol 

pellet, and then, 24 hours later, were injected in the right flank with 1x10
7
 cells from the 
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appropriate cell line suspended in a 1:10 matrigel to media solution.  Five mice were 

injected with Herceptin-responsive cells specifically for this work, while the mice 

implanted with the Herceptin-resistant strain were utilized in collaboration with another 

investigator.  The tumors were allowed to grow until they reached approximately 200-

250 mm
3
, at which point the mice were euthanized and the tumors were resected for 

evaluation.  A portion of the tumor was reserved for histology.  The other portion of the 

tumor was immediately embedded in a 4.8% polyacrylamide gel and analyzed via the 

MGT assay protocol [1,2].  Four responsive mice and four resistant mice grew tumors of 

sufficient volume and were used in the evaluation.   

Histological analysis was performed on a portion of the tissue from each tumor 

sample in order to quantify collagen content of the samples.  Following resection, the 

tissue samples were placed in 10% formalin for 24 hours, after which the tissue was 

moved to 70% ethanol where it was kept until histological analysis was performed.  To 

establish consistency among the staining, histological analysis was performed on all of 

the samples at the same time.  Once all of the samples had been collected, they were 

paraffin-embedded and sliced at a thickness of 5 microns.  Three slides were obtained 

from each tissue sample, one taken from each edge of the tissue volume and one taken 

from the core of the sample, in order to provide a representative sampling of the entire 

available volume.  The slides were stained using Gomori‟s Trichrome and analysis of the 

slides was performed using the Ariol SL-50 platform (Genetix, New Milton, UK).  The 

Ariol system obtains high resolution images of the slides in an automated manner that is 

specific to the individual tissue sample.  The system is trained on one of the obtained 

images to identify the colors of interest (based on the staining procedure and tissue 
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components of interest), as dictated by hue, intensity, and saturation.   After training, the 

system evaluates each of the slices by means of thresholding based on the previously 

established limits, generating data for the number of pixels in the sample for each 

indicated color.  For this evaluation, the system was trained to identify two colors: the 

blue stain, indicating collagen, and the set of all colors, indicating the total tissue area.  

The amount of collagen in each histological sample was then quantified as the sum of the 

blue pixels in the sample.  The percent collagen in each sample slice was calculated by 

dividing the total number of collagen pixels by the number of pixels of all colors, thus 

allowing for a calculation of the collagen in the sample normalized to the area of the 

tissue sample. 

 

Results 

The results for the breast tumor responsiveness testing are shown in Figures 15, 

16, and 17.  Figure 15 shows the assay evaluated modulus for the four responsive (BT) 

and the four resistant (HR) tumors.  For the small sample size investigated here, there 

was no observed difference in stiffness between the Herceptin-responsive and the 

Herceptin-resistant samples; a t-test for the difference in means between the two groups 

indicated that there is no significant difference in the two means.  Figure 16 depicts the 

tumor modulus value versus the percent collagen as calculated by the Ariol analysis.  

Figure 17 again shows the modulus versus percent collagen with a linear regression of the 

data, but excludes sample HR6-1.  A Grubb‟s outlier test was performed on the data to 

determine if sample HR6-1 qualified as on outlier in the data set.  The test indicated with 

a significance of 0.01 that the point was an outlier, and thus the data point was excluded 
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from the linear regression.  The resulting correlation coefficient for the regression (R) is 

0.89.  Table 7 provides the percent collagen calculations for each of the three slides from 

each tumor sample as assessed by the Ariol system, as well as the average percent for the 

three slides.  The evaluated percent collagen is consistent across the three slides, with an 

average standard deviation of 1.9%, except in the case of HR6-1.  The highest slide for 

this sample registered at 30.82% collagen while the lowest equivocated to 8.44%.  This 

spread caused a large standard deviation for the sample at 11.58%.  Figure 18 shows the 

three histological images from sample HR6-1 corresponding to the three calculations in 

Table 7.  Figure 19 contains the three images from sample HR6-3.  The data point for 

sample HR6-3 was not considered an outlier, but as can be seen in Figure 17, it has one 

of the larger deviations from the correlation curve.   

 

 

 

Figure 15.  Modulus values for the Herceptin-responsive (BT) and Herceptin-resistant 

(HR) tumors. 

 



90 

 

Figure 16.  Percent collagen and assay modulus for Herceptin-responsive (BT) and 

Herceptin-resistant (HR) tumors. 

 

 

Figure 17.  Linear correlation between percent collagen and assay-assigned modulus.  

Data points represent the seven tumor samples for the combined responsive and 

resistant lines. The outlier (sample HR6-1) is excluded. 
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Table 7. Ariol data for percent collagen in each of the three slides from each tumor 

sample. 
 % Collagen 

 Slide 1  Slide 2 Slide 3 Average 

BT474-1 5.53 6.67 4.47 5.56 

BT474-2 10.31 13.70 13.54 12.52 

BT474-3 13.94 12.23 13.77 13.31 

BT474-4 8.64 9.72 13.04 10.47 

HR6-1 30.82 14.50 8.44 17.92 

HR6-2 7.53 4.65 3.91 5.36 

HR6-3 8.37 5.51 4.45 6.11 

HR6-4 13.96 12.74 8.07 11.59 

 

 

    

 

Figure 18.  Ariol images of histology slices from tumor sample HR6-1.  The actual 

image set obtained by the Ariol system is significantly higher resolution than the images 

presented here; the image data had to be down-sampled to be contained in this document. 
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Discussion 

During conception of the responsive versus resistant tumor modulus evaluation 

study, it was believed that possible cellular and microstructural differences that 

contributed to the resistant nature of the Herceptin-resistant tumor line would result in 

perceivable differences in modulus between the tumor lines.  However, in the modest 

population of four tumors of each type presented here, there was not a significant 

     

 

Figure 19.  Ariol images of histology slices from tumor sample HR6-3. The actual 

image set obtained by the Ariol system is significantly higher resolution than the images 

presented here; the image data had to be down-sampled to be contained in this 

document. 
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difference between the responsive and the resistant tumor types.  The average modulus 

for the four responsive samples was slightly higher (4718 Pa) than the average modulus 

of the resistant tumors (3307 Pa), but a t-test for the difference in means indicated that 

this was not a significant result.  Thus, for this sample set, a difference in modulus 

between the responsive and resistant tumor types could not be established.   

Histological analysis was performed on the tumor tissues in order to probe 

whether a relationship existed between the collagen content of the tissues and the assay-

derived modulus, as was the case in previous work [2].  As indicated in Figure 17, there 

was an apparent correlation between collagen content and tissue modulus, though the 

correlation indicated in this work is not as strong as the correlation previously established 

in the PyV-mT tissue case.  One reason for this may be the difference in collagen 

quantification methods.  In the previous work, collagen content was assessed 

biochemically by hydroxyproline content.  In the work presented here, the collagen 

quantification was performed by means of trichrome staining and image analysis 

techniques.  The image analysis method of collagen quantification is less specific than the 

hydroxyproline content analysis, as it is susceptible to errant staining and pixel 

misclassification.  Even though the correlation is not as strong as previously experienced, 

the data still establishes a collagen-modulus correlation in a distinct tissue type and 

serves as another observation of the link between a microstructural component of the 

tissue and the clinically relevant macroscopic measurement.   

In considering the collagen content to modulus data, there are two data points that 

elicit specific discussion.  As previously stated, sample HR6-1 was verified as an outlier 

in the data set.  The collagen content of this sample was very high relative to the expected 
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value based on the modulus of the sample.  The stained histology slices from this sample 

are shown in Figure 18.  In consideration of these slices, the first slice appears brighter 

and tonally bluer than the other slices.  This may indicate some difference in preparation 

of this slide, which cannot be verified since the staining was performed by an outside 

source.  Another point of interest is the significant difference in shape of the first slice 

from the other two slices.  Though the intent was to capture a representative slice from 

the core and each of the ends of the tissue volume, the difference in shape may indicate 

that the slice was obtained from a section too far toward the end of the tissue volume, 

which could skew the collagen content.  Another issue arose in the second slice of sample 

HR6-1, wherein a dense blue section is present.  This area likely biased the pixel count in 

the slice, artificially inflating the value.  The second sample requiring consideration, 

sample HR6-3, dissents slightly from the general trend in Figure 17; in this case, the 

collagen content was lower than the modulus value would imply.  The histology slices 

from this sample (Figure 19) do not immediately point to any obvious reason for the 

difference.  However, it does appear that the cell density of the tissue from sample HR6-3 

is high relative to the other samples, which could have an effect on the interstitial 

collagen.  Additionally, it was noted when collecting the tissue that HR6-3 appeared to 

have a necrotic core.  If during sectioning the core was not evenly divided between 

histological sample and assay sample, the differences in sample composition would skew 

the data.  This could attribute to the observed inconsistency of the HR6-3 data point on 

the collagen-modulus curve (Figure 17).  An interesting observation is that both of these 

contradictory data points are from the Herceptin-resistant line.  Considering the extensive 

processing to generate the resistant line, wherein the cells survive increased unfavorable 
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conditions relative to the responsive cells, it is not surprising that aberrant behavior 

would be present.   

 

Conclusions 

 The intent of this work was to investigate tumor modulus as a predictor of 

responsiveness to treatment.  In the sample set presented here and using the current 

protocol, a relationship between the two parameters could not be established.  However, 

it is possible that a more complicated interpretation of responsiveness exists which could 

not be elicited in this particular investigation.  Particularly, a more detailed examination 

of the heterogeneity of the tissue may prove insightful regarding the modulus as a 

prognostic indicator.  It is possible that the responsiveness of the tumor is indicated by 

heterogeneity in the tissue which cannot be visualized with CT and which is not assessed 

via the current assignment of a single modulus to the tumor tissue.  In the current state, 

the MGT assay assigns a single modulus to the entire tumor volume.  Additionally, the 

CT scan does not provide contrast between soft tissues and thus does not allow for 

identification of the internal structure of the tumor, further limiting the evaluation to only 

one average modulus assessment.  Assessment of tissue heterogeneity may provide 

further insight into the potential of modulus evaluation as a correlative to disease state.     

While this investigation could not determine an observable inherent difference in 

modulus between Herceptin-responsive and Herceptin-resistant tumors pre-treatment, this 

does not exclude modulus evaluation as a potential biomarker for responsiveness.  All of 

the tumors contained in this study were grown, resected, and tested, without receiving 

any treatment via Herceptin.  Thus, both sets of tumors (responsive and resistant) were 
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overexpressing HER2 and experiencing the downstream effects of this signaling in a 

similar manner.  This similarity in condition is reflected in the result that the two groups 

were not differentiable in modulus value as assessed by the MGT assay.  The difference 

between the two tumor sets lies in their response to Herceptin treatment, wherein the 

responsive set loses the signaling associated with HER2, while the responsive set eludes 

the treatment and continues downstream signaling.  The signaling associated with 

HER2+ tumors has effects in cell division, migration, adhesion, differentiation, and 

apoptosis, and treatment with Herceptin results in cell cycle arrest and subsequent cell 

death.  It is therefore reasonable to conceive that, after (preliminary) treatment, 

differences between the cellular states of the tumors would alter the tension within the 

tumor and, subsequently, the stiffness of the stroma.  Thus it is possible that, although 

pre-treatment differences were not detectable, early changes in the tumor due to the effect 

of Herceptin treatment may be identifiable via modulus evaluation before they are 

noticeable through the clinical manifestation of treatment response, which is a 

measurable change in the physical tumor size. 
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CHAPTER VI 

 

OTHER STUDIES 

 

Introduction 

It has been well established in research that understanding the mechanical 

properties of soft tissue is a challenging endeavor.  The inherent irregularity of shape of 

tissue samples and the relative difficulty in creating a normalized shape is one main 

source of difficulty in evaluating soft tissue properties.  However, in many cases, disease 

development and progression have been shown to result in changes in the stiffness of the 

tissue and thus methods of soft tissue modulus evaluation are highly desired [7-21].  In 

previous work, the MGT assay was developed and utilized [102, 119].  The system was 

conceived as a union of mechanical testing and modeling with a gel submersion system to 

allow for uniformity and controllability of the testing shape.  To test the feasibility of the 

system, the MGT assay was initially validated relative to the traditionally accepted 

method of direct indentation testing [102].  This was accomplished using fibrotic murine 

liver tissue, and the results demonstrated a correlation between the MGT assay modulus 

and the modulus calculated from indentation testing.  However, the magnitude of the 

modulus differed between the two techniques, which was attributed to the nature of the 

testing protocols; i.e. indentation testing manipulates only a small portion of the surface 

of the tissue, while the MGT assay technique is a whole-volume interrogation of the 

tissue modulus.  After confirming the aptitude of the assay, the technique was utilized to 

evaluate the modulus of murine mammary tumor tissue relative to the collagen content of 
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the tissue [119].  This work provided an initial examination of the microstructural 

contribution of the tissue to the bulk Young‟s modulus, and the results demonstrated a 

positive correlation between collagen content and the assay derived modulus.   

While the aforementioned work was successful in demonstrating the ability of the 

MGT assay, a thorough sensitivity study of the MGT Assay had yet to be performed, and 

hence its capabilities and limitations remained unknown.  Previous work has shown a 

dependency on the tissue volume to gel volume relative ratio for the success of the assay 

in evaluating the tissue modulus [119].  This observation solidifies the idea that the assay 

inherently possesses limitations and boundaries attributed to the various components of 

the assay.  These limitations will need to be identified and accounted for in order to 

successfully utilize the MGT assay as a reliable modulus evaluation technique. Thus, the 

purpose of the work presented herein was to characterize the MGT assay in order to 

ensure and validate its rigorousness as a repeatable modulus evaluation technique.   

The gel generation process is of main concern to the work presented here 

regarding assay characterization.  The protocol described in Chapter II was utilized for all 

gel generation in this work.  Specifically, the buffer solution was generated using 19.1 

mL of deionized water, 0.65 mL of 1 molar Tris buffer, and 0.25 mL of 10% ammonium 

persulfate (BioRad Laboratories, Hercules, CA).  Then, a volume of the buffer solution 

was combined with 30% Acrylamide/Bis-acrylamide (BioRad Laboratories, Hercules, 

CA), in a proportion which was dependent on the desired final polyacrylamide 

percentage, to yield a total combined volume of 16 mL of the bulk solution.  The 

individual gels were created by transferring 1.4 mL of the bulk solution to an individual 

well in a 24 well cell culture plate (Corning Inc., Corning, NY).  The wells were 
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cylindrical in shape and had a diameter of 16 mm, thus creating a standardized shape 

among samples.  After solution allocation, 0.16 mL of the contrast agent Optiray 

(Mallinckrodt Inc., Hazelwood, MO) was added to the wells, unless otherwise stated.  At 

this point, if a heterogeneous gel was being created, the object to be embedded was 

suspended by means of forceps in the gel solution.  Finally, 0.02 mL of TEMED, the 

initiating agent, was added and the sample was pipette-mixed for approximately one 

minute as the solution solidified in order to promote a uniform mixture.  

   

Gel Selection 

Methods 

In the heterogeneous gel-tissue sample, the gel modulus is used as the elastic 

reference for the embedded tissue property assessment.  Thus, the initial gel selection was 

of considerable importance.  In considering the role of the gel in the MGT assay, two key 

characteristics of the gel were required: (1) the gel modulus had to be variable and 

relatively simple to control, and (2) gel properties needed to be relatively static over time, 

i.e. shifts due to small protocol variations in testing time and ambient temperature needed 

to be minimized, and viscoelastic effects need to subside quickly.  Two materials are 

commonly mentioned in literature as being utilized for phantom generation and 

submersion techniques: agarose (Research Products International Corp, Mt. Prospect, IL) 

and polyacrylamide (BioRad Laboratories, Hercules, CA).  In relation to the 

aforementioned requirements, both agarose and polyacrylamide materials have the 

advantage that the stiffness of the gel can be modified by altering the percentage (by 

weight) of agarose or polyacrylamide in the gel, respectively.  However, the 



100 

controllability of the resultant modulus was unknown.  Additionally, the dynamic 

behavior of the gel properties relative to the time scale of the MGT evaluation required 

investigation.  Hence, an initial assessment of the agarose and polyacrylamide gels was 

performed in order to facilitate gel selection.  In order to assess the achievable modulus 

range and controllability for each gel, an array of gels of differing compositions was 

created.  For the agarose samples, eight gels were generated, with agarose percentages of 

0.3, 0.4, 0.5, 0.6, 0.75, 1.0 and 1.25.  In the polyacrylamide case, six gel samples were 

tested, ranging from 3 to 6 percent polyacrylamide in 0.5 percent increments.  All gels 

were created in Petri dishes that measured 10 cm in diameter and 1.1 cm deep.  The 

testing protocol consisted of the application of a 5 percent precompression.  Step 

compressions were applied in 0.5 percent increments for a total of 5 percent additional 

strain, with a 60 second dwell after each compression.  The force values were collected at 

the end of each dwell period, and were utilized with the corresponding compression 

values to generate stress and strain data for the gels.  A linear regression was performed 

on the stress-strain data to approximate the modulus for each gel sample.  The same 

material testing protocol was implemented to assess the thermal-dependence of the gel 

moduli.  Two samples were manufactured for each gel type.  The gels were tested 

immediately after generation, and then at each subsequent hour for four hours. The 

modulus values for the samples were calculated as previously described.   

 

Results 

The results from the gel selection testing indicated that both were readily 

controllable in terms of the resultant modulus by regulating the percent of the constitutive 
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components.  In regards to thermal sensitivity, the results showed that agarose was very 

sensitive to thermal effects; particularly, the modulus of the agarose samples decreased 

by 15.5% over the first hour and 44.8% over the full four hours of the test.  

Polyacrylamide, on the other hand, did not demonstrate the same extremity of thermal 

effects as agarose. The polyacrylamide results showed a decrease in modulus of only 

4.8% in the first hour, and a total of 12.6% over the four hours of experimentation.  

 

Discussion 

The initial gel testing for the comparison between agarose and polyacrylamide gel 

proved deterministic in the gel selection. Both gels were able to be controlled for 

modulus based on the percentage of agarose or polyacrylamide, and could be adapted to 

generate the desired modulus, so either gel was appropriate in this regard.  However, the 

thermal testing results proved the most decisive.  In considering the experimental 

procedures of the MGT assay, the gel would be exposed to room temperature for 

prolonged periods of time during imaging and material testing, and thus thermal stability 

was necessary.  Agarose is a hydrogel, and the gel is solidified by cooling the 

components on ice.  As it is exposed to room temperature for prolonged periods of time, 

the gel liquefies and changes properties, and this was reflected in the material testing 

results.  Polyacrylamide solidifies by way of a polymerization reaction, which limits the 

thermal dependence.  The polyacrylamide gel was thus chosen as the gel matrix based on 

its insensitivity to thermal fluctuations, rapid congealing properties, and stability.  

Appendix A contains specifics regarding the chemistry and structure of polyacrylamide. 
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Gel Generation Reliability Test 

Methods 

In considering the reliability of the MGT assay, a main component for 

investigation is the background modulus of the heterogeneous gel.  The background 

modulus utilized for the heterogeneous optimization is defined using a homogeneous 

reference gel which is generated at the same time and in the same manner as the 

heterogeneous tissue-containing gels.  The homogeneous gel is tested and imaged 

following the same method described for the assay evaluation, and an optimized modulus 

value is obtained, which is then assumed to be the modulus of the background gel in the 

heterogeneous tissue-gel sample.  In using the homogeneous gel modulus in the 

heterogeneous optimization, it is assumed that the gel modulus is consistent from sample 

to sample, and that the same modulus value can be obtained in a repeatable manner.  To 

validate this assumption, five sets of three homogenous gels were tested.  On each 

occasion, one bulk solution was mixed as previously described, from which each set of 

homogeneous gels was created.  Sets 1 and 2 were created using 4.5 percent 

polyacrylamide while sets 3 and 4 were generated with 4.8 percent polyacrylamide.  Set 5 

was also produced with 4.8 percent polyacrylamide, but the CT contrast agent (Optiray) 

was withheld from the gels.  Table 8 gives the required volumes of both the buffer 

solution and the polyacrylamide for each percent polyacrylamide used for this 

experiment.   
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Results 

The results for the gel generation reliability tests are shown in Table 9 below.  

The optimized modulus values for each of the three samples in the five sets are tabulated.  

The table also includes the average and the standard deviation of each set of samples.  

The last row of the table gives the standard deviation as a percentage of the average 

modulus for each set. The average of this value over the five sets is 1%.  The largest 

standard deviation as a percent of the average occurs in set 1, at 1.40%.   

 

 

Table 8.  Components of the bulk solution for the gel generation reliability testing. 

 
%PA of Solution 

4.5 4.8 

Buffer Solution (mL) 13.6 13.44 

30% Acrylamide/Bis-

acrylamide (mL) 
2.4 2.56 

 

Table 9.  Gel generation reliability test modulus results. 

 Modulus Values (Pa) 

 Set 1 Set 2 Set 3 Set 4 Set5 

 911 993 1303 1282 1810 

 936 1001 1294 1279 1778 

 918 1003 1277 1258 1801 

      

Average (Pa) 922 999 1291 1273 1796 

Std Deviation (Pa) 12.9 5.3 12.3 13.1 16.5 

Std Dev % of Avg 1.40% 0.53% 0.95% 1.03% 0.92% 
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Discussion 

In the gel generation reliability testing, the difference in modulus value between 

individual gels generated from the same bulk solution was minimal when considering the 

number in isolation.  As previously stated, the average standard deviation as a percent of 

the mean modulus value over the five sets was 1%.  The high repeatability was 

anticipated since the majority of the components that constitute the gel mixture, and thus 

the majority of the sources for variance among gel modulus values, are placed into the 

bulk solution, instituting uniformity among the gels.  The contrast agent and the initiator 

(TEMED) are added separately to the gels after they have been proportioned to the 

individual well plates, and thus are both possible sources of the constituent differences 

that result in different gel modulus values.  The contrast agent is added by means of 

syringe, and though every effort is made to keep the amount uniform, very slight 

differences in volume are not only possible but likely.  Since the contrast agent adds to 

the volume of the gel and thus in essence dilutes the polyacrylamide percentage of the 

volume, differences in the contrast agent volume will create slight differences in the 

modulus values of the individual gels.  In considering the reference gel sets, the first four 

sets contained a contrast agent, but set 5 did not.  Even without the contrast agent, the 

modulus values of set 5 still vary among the three samples, resulting in a standard 

deviation as a percent of the average modulus of 0.92%.  Since the potential error due to 

the addition of the contrast agent has been eliminated in this case, other sources must be 

responsible for the differences.  The addition of the initiator, TEMED, though added to 

the individual gel is not a likely source of error.  Previous experiments have shown that 

the amount of initiator affects the final modulus of the gel, so if the amount added to each 
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gel were not constant, then it is possible that the TEMED would have an effect. However, 

the TEMED measurement is highly controlled by means of a micropipette and thus 

should be invariant.  Other possible sources of the disparity in modulus values outside of 

the gel generation process include the material testing and the segmentation of the CT 

images.  These aspects of the assay are highly controlled and automated in all possible 

cases in order to minimize induced error.  However, the material testing and 

segmentation are still user-controlled and hence have the potential to generate error. 

 

Effect of Gel Generation Reliability on Modulus Reconstruction 

Methods 

After evaluating the repeatability of the gel generation, the progression of tests led 

to an evaluation of the extent of the effect of the background modulus on the optimized 

embedded tissue modulus.  Since the model calculated surface stress (and hence force) is 

dependent on both the background modulus and the embedded modulus, a change in the 

background modulus will consequently have an effect on the optimized embedded 

modulus.  To investigate this effect, nine heterogeneous meshes from a previous study 

were utilized.  These meshes were from the second evaluation of the MGT assay wherein 

the modulus values of murine mammary tumors derived from mouse mammary tumor 

virus polyomavirus middle T (PyV-mT) transgenic lines were compared to the collagen 

content of the tissue.  In evaluating the tissues via the MGT assay, heterogeneous meshes 

were created for each sample with a corresponding assigned background modulus and an 

optimized tissue modulus.  The background modulus and the optimized tissue modulus 

values from the previous study were utilized as the baseline for the background modulus 
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dependency interrogation presented here.  In the previous study, the nine tumor samples 

were evaluated in three different groups at various times, so there were three groups of 

baseline background modulus values: 4164, 2346, and 989.  The baseline background 

modulus values and baseline tissue modulus values are shown in Table 10.  The 

respective background modulus was altered both above and below the baseline value by a 

percentage consistent with the results from the gel generation reliability test, or 1%.  The 

optimization process was initiated with the altered background modulus and the resultant 

tissue modulus was recorded and compared to the value obtained in the baseline case. 

 

 

 

Results 

The results are shown in Tables 11 and 12 and Figures 20 and 21 below.   In 

Table 11, the percent change is given for each of the 9 tumor samples.  The percent 

change is calculated as: 

 

 

Table 10.  Tumor data for effect of gel generation reliability on modulus reconstruction 

analysis. 

Tumor 

Number 

Background Modulus 

(Pa) 

Tissue Modulus 

(Pa) 

1 4164 746 

2 4164 974 

3 4164 3841 

4 2346 2427 

5 2346 1049 

6 989 2728 

7 989 1840 

8 989 886 

9 989 650 
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               ) (    

               )

           
   (22) 

where     
      is the optimized tissue modulus value when the background modulus is 

decreased by 1%,      
      is the optimized tissue modulus value when the background 

modulus is increased by 1%, and          is the baseline tissue modulus.  For a 1% 

alteration in the background modulus, the average change over all nine samples was 

0.144, or approximately 14 percent.  The maximum value over the samples was 0.300 

and the minimum value was 0.050.  Other parameters of interest for the nine samples, 

including baseline background modulus, baseline tissue modulus, tissue volume, gel 

volume, and tissue-gel volume ratio are also tabulated (Table 12).  Figures 20 and 21 

depict the data for the 1% range in graphical form.  Figure 20 shows the normalized 

optimized tissue modulus as a function of the normalized background modulus (or 

percent change in background modulus) for each incremental background modulus 

evaluation.  Figure 21 shows the normalized average tissue modulus change as a function 

of the tissue to gel volume ratio.  The nine samples are grouped by baseline background 

modulus, as indicated by the marker style.  
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Table 11.  Effect of gel generation on modulus reconstruction results – 1% range. 

Tumor Number Percent Change 

1 11.7% 

2 11.0% 

3 5.0% 

4 21.9% 

5 30.0% 

6 13.5% 

7 8.6% 

8 16.8% 

9 10.8% 

  

Average 14.4% 

 

 

 

 

Table 12.  Tumor data for effect of gel generation on modulus reconstruction analysis. 

Tumor 

Number 

Background 

Modulus 

(Pa) 

Tissue 

Modulus 

(Pa) 

Tissue 

Volume 

(mm
3
) 

Gel 

Volume 

(mm
3
) 

Tissue-Gel 

Volume Ratio 

1 4164 746 303.4 2000 0.152 

2 4164 974 284.3 2000 0.142 

3 4164 3841 329.5 2000 0.165 

4 2346 2427 63.3 1500 0.042 

5 2346 1049 65.9 1500 0.044 

6 989 2728 66.9 1400 0.048 

7 989 1840 134.6 1400 0.096 

8 989 886 88.6 1400 0.063 

9 989 650 158.7 1400 0.113 
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Figure 20.  Normalized tissue modulus as a function of percent background modulus 

noise for each of the nine PyV-mT tumor samples in the effect of gel generation on 

modulus reconstruction analysis.  

 

 

Figure 21.  Normalized modulus average range as a function of tissue to gel volume ratio 

in the effect of gel generation on modulus reconstruction analysis.  The different markers 

indicate the three original background modulus values.  The red square indicates an 

original value of 2346 Pa, the green triangle was originally 989 Pa, and the blue diamond 

was 4164 Pa. 
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Discussion 

From the previous results, the average standard deviation of the reference sets as a 

percent of the mean modulus was 1%.  This is thus the largest difference between an 

optimized reference gel modulus utilized as the assumed background modulus and the 

actual heterogeneous background modulus that would be expected.  From this 

assumption, a ±1% range of the altered background modulus was evaluated.  Though the 

percent change in the background modulus was uniform, the effect on the optimized 

tissue modulus varied.  Figure 20 shows the normalized tissue modulus (optimized 

modulus divided by baseline modulus) as a function of normalized background modulus 

(altered modulus divided by baseline modulus).  From this figure, it is apparent that the 

extent of the effect of the background modulus is not a simple relationship, but rather is a 

complicated dependency on parameters such as the tissue-volume-to-gel-volume-ratio, 

the tissue modulus, the ratio between the tissue modulus and background modulus, and 

the boundary between the tissue and gel.  Many options were considered in trying to find 

a universal relationship between the altered background modulus and the optimized tissue 

modulus for all of the samples, but the relationship is inherently complicated and relies 

on a complex combination of the parameters that could not be elicited.  Figure 21 shows 

the average 1% range divided by the baseline tissue modulus as a function of tissue 

volume to gel volume ratio.  This figure implies a slight relationship between these two 

parameters, with a general increase in the range as the tissue volume to gel volume ratio 

decreases; however, it is clear that they do not completely describe the relationship.  Even 

without a clear descriptive relationship, the normalized average range is insightful.  This 

value spans from 0.050 to 0.300, with an average value of 0.141.  This means that, in the 
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worst case, a 1% change in the background modulus results in a 30% change in the 

optimized tissue modulus, and on average it results in a 14% change in the modulus.  

These results emphasize that the optimized embedded modulus is highly sensitive to the 

background modulus.  Unfortunately, the gel creation process is susceptible to slight 

differences that cannot be controlled beyond the repeatability demonstrated by the gel 

generation repeatability testing.  An option that had been considered to address this issue 

was eliminating the homogeneous gel for background modulus assignment and rather 

performing a dual optimization of both the background modulus and the embedded 

modulus.  This would allow the background modulus to vary for each sample, and thus 

could account for the slight differences in background modulus.  However, 

implementation of the dual optimization has proven difficult due to the range of modulus 

combinations that can produce the same error.  In the single optimization case, where the 

background modulus is assigned, a minimum error is associated with one single 

embedded modulus value.  In the dual optimization case, a basin of minimum error 

values occurs wherein various combinations of modulus values produce the same error.  

This is due to a lack of information relative to the input parameters (ie force, 

displacement).  Based on the work presented here, it may be beneficial and even 

necessary to further consider ways to restrict the dual optimization process so that the 

error due to the assigned background modulus could potentially be eliminated.  
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Reliability and Repeatability of Modulus Reconstruction 

Methods 

The assumption in utilizing the MGT assay for embedded tissue modulus 

evaluation is that the assay can accurately evaluate the modulus of the embedded item.  

The feasibility of this assumption has been previously checked in a secondary nature by 

comparing the results of the assay to the traditionally accepted soft tissue evaluation 

method of indentation testing.  However, in order to concisely evaluate the assay, it was 

opted to directly check the accuracy and repeatability of the embedded modulus 

evaluation.  It has been previously established that a gel-volume-to-tissue-mass ratio 

dependency exists for the assay, and a limiting ratio was suggested based on the data 

available from previous work [119].  Due to this realization, a volume-modulus-ratio 

(VMR) evaluation was produced which consisted of embedding multiple objects with the 

same modulus value but different volumes.  The VMR evaluation was conceived to serve 

three purposes: (1) test the ability of the assay to repeatedly assign the „correct‟ modulus 

to the embedded component, (2) analyze whether a relationship existed between the ratio 

of embedded volume to overall gel volume and the evaluated embedded modulus, and (3) 

investigate the dependency of a successful reconstruction on the ratio between embedded 

modulus and background modulus.  In order to achieve these objectives, it was necessary 

to ensure uniformity among the embedded pieces.  To this avail, a gel-in-gel system was 

devised wherein polyacrylamide gel phantoms were used to represent the embedded soft 

tissue sample, and were subsequently embedded in the traditional polyacrylamide 

background.  Each VMR evaluation consisted 11 total gels: a reference gel, a sample of 

the embedded gel compatible for material testing, and three sets of three heterogeneous 
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gels, with small, medium, and large embedded pieces.  The sample preparation process 

for this experiment occurred in two parts.  First, the gels for embedding were generated; a 

5.5% bulk solution was created as previously detailed.  In this experiment, barium sulfate 

was used in place of Optiray to provide both CT and visual contrast.  The consistency of 

the barium sulfate made it difficult to measure volumes small enough to add to the 

individual gels, so 0.16 mL of barium sulfate was added to the bulk solution to ensure 

consistency among gel samples.  From the bulk solution, three gels were generated: one 

which was utilized as the sample of the embedded gel, providing a measure of the 

expected reconstructed embedded modulus, and the other two which were cut into pieces 

to create the embedded samples.  Nine embedded segments were utilized, with three each 

of a large mass, a medium mass, and a small mass.  Each large embedded gel weighed 

approximately 150 mg, the medium embedded gels weighed around 120 mg, and the 

small embedded gels weighed 90 mg.  The second portion of the sample preparation 

process consisted of generating the background gel and embedding the gel segments.  As 

in all gel generation cases, the bulk solution was generated with the desired percent 

polyacrylamide, from which the homogenous gel and nine heterogeneous gels were 

created.  The nine heterogeneous gels, the reference gel, and the sample of the embedded 

gel were evaluated using the MGT assay protocol, and the optimized modulus from the 

sample of the embedded gel was used to assess the fidelity of the embedded modulus 

evaluations.  Three distinct sets of the VMR analysis were evaluated; the difference 

between the three sets existed in the percent polyacrylamide, and hence the modulus, of 

the background gels.  The percent polyacrylamide of the embedded gel remained constant 

at 5.5% in all cases, while the background gel percent polyacrylamide was varied 
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between 4%, 4.5%, and 5% PA.  The component volumes for the polyacrylamide 

percentages used in this portion of the experimentation are given in Table 13.  The 

combinations of background %PA and embedded %PA for each set are given in Table 

14, and examples of the homogeneous embedded and background gels as well as the 

heterogeneous gel are shown in Figure 22.     

 

 

 

Table 13.  Components of the bulk solution for the VMR analysis. 

 
% PA of Solution 

4 4.5 5 5.5 

Buffer Solution (mL) 13.87 13.6 13.33 13.07 

30% Acrylamide/Bis-

acrylamide (mL) 
2.13 2.4 2.67 2.93 

 

 

 

 

Table 14.  Percent polyacrylamide for VMR analysis. 

 
Set Number 

1 2 3 

Background % PA 4.5 5 4 

Embedded % PA 5.5 5.5 5.5 

 

 

 

 

    

Figure 22.  (a) Sample of embedded modulus gel with barium sulfate (left) and 

background reference gel (right).  (b) Heterogeneous gel with embedded 

polyacrylamide sample from the VMR analysis.   

 

a b 
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Results 

The results for the VMR analysis are presented in Table 15.  Table 15 consists of 

the homogeneous gel modulus value for each set as well as the modulus of the sample of 

the embedded gel for each set.  Additionally, it gives the optimized modulus values for 

each of the nine embedded gel segments in each of the three sets.  Figures 23 and 24 

below show the force values from the material testing protocol as a function of the 

displacement for each sample in sets 1 and 2 of the VMR analysis.  The dashed curves 

indicate the unsuccessful modulus reconstructions from each set, while the other samples 

in the set are represented by the solid lines.  Tables 16 and 17 provide the slope of the 

force-displacement curves for each sample in VMR set 1 and 2, respectively.  The 

highlighted slopes correspond to the dashed force-displacement curves from Figures 23 

and 24. 
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Table 15. Results for the reliability and repeatability of modulus reconstruction (VMR) 

analysis. 

 Modulus (Pa) 

 Set 1 Set 2 Set 3 

Reference 1327 2890 941 

Sample of Embedded Gel 4453 5137 4478 

Sample 1 4620 5821 94 

Sample 2 2946 2293 322 

Sample 3 4503 5217 562 

Sample 4  4316 1324 138 

Sample 5 4720 2686 1583 

Sample 6 4063 5137 644 

Sample 7 1667 5314 559 

Sample 8 4340 4779 444 

Sample 9 4486 5308 403 
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Figure 23.  Force values as a function of displacement for VMR set #1. 

 

 

 

 

Table 16.  Slope of force versus displacement curve for VMR set #1.  

Sample 
Number 

Slope              
(force vs disp) 

Absolute 
Difference from 

Average 

1 3.98 1.98% 

2 3.37 13.70% 

3 4.00 2.53% 

4 3.78 3.09% 

5 3.96 1.36% 

6 3.85 1.21% 

7 3.37 13.55% 

8 3.91 0.11% 

9 3.84 1.67% 

   

Average 3.90  
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Figure 24.  Force values as a function of displacement for VMR set #2. 

 

 

 

 

Table 17.  Slope of force versus displacement curve for VMR set #2.  

 

Sample 
Number 

Slope              
(force vs disp) 

Absolute 
Difference from 

Average 

1 7.71 0.90% 

2 6.76 13.14% 

3 7.78 0.01% 

4 6.83 12.28% 

5 6.98 10.32% 

6 7.87 1.08% 

7 7.68 1.39% 

8 7.97 2.33% 

9 7.70 1.12% 

   

Average 7.78  
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Discussion 

The results of the reliability and repeatability of modulus reconstruction proved 

very interesting.  Based on the previous realization of the importance of the gel-volume-

to-tissue-volume ratio, it was expected that there would be a trend concerning embedded 

volume.  Specifically, it was hypothesized that embedded volume would affect the 

accuracy of the reconstructed modulus of the embedded specimen; for the samples that 

succeeded in reconstructing, this trend was not observed.  The average difference 

between the optimized embedded modulus and the sample embedded gel did not depend 

on the volume of the embedded segment.  In the first set, the average absolute difference 

was 109 Pa for the large samples, 264 for the medium samples, and 73 for the small 

samples (excluding those that did not test appropriately, i.e. „large 2‟ and „small 1‟).  In 

the second set, the average difference values were 67 for the large samples and 235 for 

the small samples (excluding „large 2‟).  Of the three medium samples in the second set, 

only 1 tested appropriately, and that sample had an error of zero.  These values comprise 

a very limited sampling due to the failure of the modulus optimization in some of the 

cases.  However, as an initial estimation, it is implied that there is no correlation between 

modulus optimization error and embedded volume.  This statement is tempered, though, 

by the fact that the sensitivity of the transducer must be sufficient to quantify the force 

differences achieved based on gel-volume-to-tissue-mass-ratio.   

The notable result from the VMR evaluation is the behavior of „large 2‟ and 

„small 1‟ from set 1, „large 2‟, „medium 1‟, and „medium 2‟ from set 2, and the entirety of 

set 3.  These samples produced very large embedded modulus evaluation errors, in some 

cases to the extent where the evaluation does not sense the embedded volume.  After 
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viewing these results, it was hypothesized that the reason for this behavior is that the gel-

in-gel configuration lacked the bonding at the interface that the tissue-in-gel system 

possesses.  In other words, it appears that as the heterogeneous gel-in-gel sample is 

compressed, the background gel is decoupled from the embedded gel due to a weak 

interface bond and hence the assay cannot accurately evaluate the embedded gel.  Though 

this does not happen in all cases, the faltered evaluations indicate that the interface is 

unreliable.  Figures 23 and 24 show the force values as a function of the step 

displacements for sets 1 and 2, respectively.  In these figures, the samples which did not 

test appropriately are indicated by the dashed line, whereas those which had successful 

reconstructions are indicated by the solid lines.  From this depiction, it is obvious that the 

force values are lower for all of the samples which failed to reconstruct appropriately.  

This observation is further confirmed by Tables 16 and 17, which present the slopes of 

the force-displacement curves.  Here again the unsuccessful samples are distinct in that 

the slopes are noticeably lower than the successful samples.  These would seem to 

support the hypothesis that the background gel and embedded gel decoupled.  Without a 

bond between the two surfaces, as the top surface of the background gel is compressed, 

the internal motion of the gel will not be coupled to the embedded gel, and instead will 

deform around the embedded gel.  Since the background gel modulus is lower than the 

embedded gel modulus in all cases, a lack of strain transfer to the embedded gel would 

result in a lower force experienced by the material tester as compared to the coupled case.  

In considering the third set, all nine of the samples evaluated to very low (near zero) 

embedded modulus values.  This is most likely due to the high contrast between the 

embedded and background modulus values, which exasperated the inadequate bond and 
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caused all of the samples to fail.  Due to the modulus evaluation failure in some of the 

sample cases, the VMR analysis did not prove successful in its intended three-fold 

purpose.  However, it did manage to highlight the previously understated importance of 

the bond between the embedded tissue and the polyacrylamide gel.   

 The gel-in-gel approach to the VMR analysis proved to be ineffective due to the 

presumed interface issues; however, the bonding in the tissue-in-gel case had not 

previously presented an issue.  The reason for this was hypothesized to be the surface 

texture and porosity of the tissue that is not mimicked in the embedded gel case.  

Previous experiments with murine liver and murine breast tumor tissue have displayed 

effective bonding between the gel and the tissue, with no outward signs of inadequacy as 

in the gel-in-gel case.  If interface issues had occurred in these cases, then the optimized 

tissue modulus would be lower than the actual tissue modulus, which would not be 

identifiable based on modulus value alone.  It is not likely that this occurred in either of 

the soft tissue cases, though, due to the experimental protocol.  In the murine liver case, 

indentation testing was performed to validate the assay-derived modulus.  In the non-

diseased case, the two measures were almost identical.  In the diseased case, the 

magnitude of the measures differed, but a correlation existed between the two.  A similar 

correlation was found in the mammary tumor work, wherein the modulus of the tissue 

correlated tightly to tissue collagen content.  If the gel-tissue interface were decoupling in 

either of these evaluations, random noise would have effectively been added to the 

optimized tissue values and such strong correlations to other measures would not have 

been observed.   
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Soft Tissue Boundary Effect 

Methods 

The gel-in-gel approach to the assay evaluation process was conceptualized as a 

baseline evaluation system due to the controllable nature of the embedded gel size and 

modulus.  Additionally, embedded gels produced from the same bulk gel provided a 

uniform modulus across samples, allowing for a separate calculation of the expected 

embedded modulus by means of the sample of the embedded gel, and providing a 

standard for calculation of the assay modulus optimization error.  However, the gel 

analysis did not prove entirely successful.  It was hypothesized that the problem with the 

gel-in-gel analysis could be attributed to the gel-gel interface,  which was potentially not 

indicative of the bond experienced in the soft tissue case.  Based on this hypothesis, the 

VMR analysis was extended in a more representative manner using soft tissue, the result 

of which was an experiment involving chicken liver samples.  The experimental protocol 

was similar to the gel-in-gel VMR analysis previously described.  A single lobe of a 

chicken liver purchased from the grocery store was sectioned into 10 samples, nine of 

which were used for embedding for assay analysis, and one of which was underwent 

indentation testing for modulus confirmation.  The nine samples for embedding were 

divided into three groups of three samples – named large, medium, and small – based on 

the sample mass.  The large tissue samples weighed an average of 245 mg, the medium 

samples registered an average of 197 mg, and the small samples weighed an average of 

144 mg.  A 4.8% polyacrylamide bulk solution was produced and utilized for the 

background gel, from which the homogeneous gel and the heterogeneous chicken liver 

gels were created.  After solidification, the gels were tested, imaged, and evaluated as 
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previously described.  For corroboration of the assay-evaluated modulus values, 

indentation testing was performed on the final liver sample.  The indentation protocol 

was the same as that described in the murine liver paper [1].  Briefly, a spherical indenter 

tip with a radius of 1.5 mm was used to indent the tissue a distance of 0.4 mm.  The 

indentation was held for a 60 second dwell and then released for 60 seconds; this was 

repeated three times for each test.  The indentation test was repeated twice – once before 

the gels were tested and the second time after half of the gel testing had been performed. 

Analysis of the data for modulus extraction was performed in the manner previously 

described, using the correlation model suggested by Stevanocić et al. [60].   

  

Results 

The results for the soft tissue boundary effect analysis are given in Table 18.  

Presented here are the optimized modulus values for each of the nine embedded samples 

as well as the resulting modulus from the indentation testing of the liver segment.  The 

average modulus value assessed by the MGT assay was 547 Pa with a standard deviation 

of 22.7 Pa.  Also given in Table 18 are the absolute differences between the optimized 

modulus and the indentation-based modulus.  The maximum difference between the 

indentation-derived modulus and the assay-assigned modulus occurs in sample „M2‟ with 

a magnitude of 44 Pa, which equates to an 8.2% error.  The average absolute difference 

over all nine samples is 17.8 Pa, or 3.31%.   
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Discussion 

To verify the suspected inferiority of the gel-gel system, a soft tissue test utilizing 

chicken liver was implemented.  This test was performed in the same manner as the VMR 

analysis, except soft tissue (specifically chicken liver) was substituted for the embedded 

gel.  As shown in Table 18, the results for this experiment indicate a successful 

evaluation of the embedded liver tissue.  All nine samples optimized successfully with an 

average modulus of 547 Pa and a standard deviation of 22.6 Pa.   Additionally, the assay 

derived modulus values for the nine embedded samples mirrored the separately evaluated 

indentation modulus, with a maximum error of 44 Pa, or 8.18%, and an average error of 

17.8 Pa, or 3.31%.  This strong correspondence between the indentation testing and the 

assay assessment parallels the initial experiments with murine liver which demonstrated a 

 

 

Table 18.  Optimized modulus values for chicken liver tests. 

 

 Modulus (Pa) 
Absolute 

Difference from 
Indentation (Pa) 

Indentation 538  

Sample 1 531 7.2 

Sample 2 526 12.4 

Sample 3 540 2 

Sample 4 572 33.5 

Sample 5 582 44 

Sample 6 543 4.5 

Sample 7 528 10.4 

Sample 8 529 9 

Sample 9 575 37.3 
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very high correlation between the assay modulus and the indentation modulus in the non-

diseased case.  In the evaluation performed here, some spread of the modulus was 

expected due to the nature of the soft tissue.  Liver tissue was chosen due to its relative 

homogeneity, though heterogeneity inherently still exists which could account for some 

of the spread in the data.  Additionally, the previously established dependency on 

background modulus could account for some of the modulus spread experienced in the 

chicken liver evaluation.  Overall, the values presented here provide a secondary 

confirmation of the ability of the assay to evaluate a modulus that corresponds to a 

traditionally accepted soft tissue modulus evaluation technique.  Additionally, these 

results speak to the repeatability of the MGT in assessing the „correct‟ modulus value to 

the embedded tissue.  Finally, this data makes a strong argument toward validating the 

assumption that the issues in the gel-in-gel case were not a function of the MGT assay 

protocol, but could be attributed to the interaction between the embedded gel and the 

background gel.   
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CHAPTER VII 

 

SUMMARY AND RECOMENDATIONS 

 

The work described here has been a collection of evaluations and trials of the 

newly developed soft tissue modulus evaluation technique termed the MGT assay.  The 

assay has been utilized for a variety of tissue evaluations, including fibrotic murine liver 

and murine mammary tumor tissue.   Additionally, it has been validated relative to a 

standard mechanical testing technique in the murine liver case, and the results of the 

assay have been correlated to microstructural composition by comparison to collagen 

content in the PyV-mT murine mammary tumor case.  These investigations provided the 

utility and initial validation of the MGT assay.  In the latest work, the assay was utilized 

to evaluate the modulus difference between responsive and resistant lines of the BT-474 

tumor tissue.  Though mechanical properties did not prove to provide a statistically 

significant biomarker between the lines, a correlation between modulus and collagen 

content of the samples was established.  Finally, an investigation of the limitations and 

capabilities of the MGT assay was conducted to ensure its aptitude and reliability as a 

modulus evaluation technique.  This analysis brought to light some aspects of the assay 

that need to be further considered or adapted as well as some areas which had previously 

been undervalued. 

Investigations utilizing the MGT assay have not reached their pinnacle, as there 

are other aspects of the assay to investigate, and ways to further the analysis paradigm.  

For example, it is intuitive to think that the segmentation of the CT scans and the 
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resulting gel and embedded volumes would affect the modulus optimization.  This has, in 

fact, proven to be the case in previous work, where, purely for the sake of observation, 

the segmented volumes of a sample were manipulated to survey the effect on the modulus 

evaluation.  To present the effect in an organized manner, a theoretical example of the 

dependency is shown in Figure 25 and Tables 19 and 20 below.  A simulation was 

created which consisted of an ellipsoid embedded in a cylindrical volume with a 

paraboloid top to mimic a tissue sample embedded in the polyacrylamide gel.  A modulus 

was assigned to the background and to the embedded volume, and a forward evaluation 

of the forces was performed.  The embedded volume was then varied from the baseline 

state, both by increasing and decreasing the volume, and the resulting system was utilized 

with the previously established force values to obtain an optimized embedded modulus.  

This analysis was performed with two different baseline embedded volumes; one was 140 

mm
3
, which corresponds to the average tumor volume in previous studies, and one was 

102 mm
3
, to consider the case of smaller embedded volumes.  As expected, the changing 

embedded volume, representing the changing segmentation volume, has an effect of the 

reconstructed modulus.  This can be visualized in Figure 25.  The effect appears fairly 

linear in this case, but that is most likely due to the smooth surfaces and lack of noise in 

the simulation.  It would be expected that the relationship would be more complex in the 

tissue case.  In all evaluations utilizing the MGT assay, segmented gel volumes and 

segmented embedded volumes have been recorded.  However, data for actual volume of 

the tissue and gel have not been collected due to the difficulty associated with obtaining it 

as well as the possible destructive effects on the samples.  In all cases, masses were 

recorded, but since the density value of the samples is unknown, the mass only provides a 
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broad idea of where the segmented volume should fall.  The correlation between 

segmented volume and optimized modulus should be further evaluated and consideration 

should be given as to how to assess the segmented volume for accuracy.   

 

 

 

 

 
 

 

 

 

 

 

 

 
 

Figure 25.  Effect of Embedded Volume on Optimized Modulus. 
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Table 19.  Effect of Embedded Modulus Segmented Volume on Modulus, 

embedded volume =140 mm
3
. 

Embedded Volume = 140 mm
3
 

Optimized 
Modulus 

Percent Volume 
change 

Difference 
Difference Percent 

of Actual 

1.8757 0% 0.0007 0.04% 

1.8681 1% -0.0069 -0.37% 

1.8608 2% -0.0142 -0.76% 

1.8528 3% -0.0222 -1.18% 

1.8462 4% -0.0288 -1.54% 

1.8394 5% -0.0356 -1.90% 

1.8227 7.5% -0.0523 -2.79% 

1.8075 10% -0.0675 -3.60% 

1.8828 -1% 0.0078 0.42% 

1.8906 -2% 0.0156 0.83% 

1.8996 -3% 0.0246 1.31% 

1.9074 -4% 0.0324 1.73% 

1.9161 -5% 0.0411 2.19% 

1.9387 -7.5% 0.0637 3.40% 

1.9619 -10% 0.0869 4.63% 

 

Table 20.  Effect of Embedded Modulus Segmented Volume on Modulus, 

embedded volume =102 mm
3
. 

Embedded Volume = 102 mm
3
 

Optimized 
Modulus 

Percent Volume 
change 

Difference 
Difference Percent 

of Actual 

1.8755 0% 0.0005 0.03% 

1.8681 1% -0.0069 -0.37% 

1.8609 2% -0.0141 -0.75% 

1.8533 3% -0.0217 -1.16% 

1.8466 4% -0.0284 -1.51% 

1.8392 5% -0.0358 -1.91% 

1.8228 7.5% -0.0522 -2.78% 

1.807 10% -0.068 -3.63% 

1.8828 -1% 0.0078 0.42% 

1.8911 -2% 0.0161 0.86% 

1.8992 -3% 0.0242 1.29% 

1.9074 -4% 0.0324 1.73% 

1.917 -5% 0.042 2.24% 

1.9392 -7.5% 0.0642 3.42% 

1.963 -10% 0.088 4.69% 
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 The MGT assay was developed as an adaptable method, insomuch as the 

mechanical testing protocol and the model utilized can be adjusted.  A logical next step in 

advancing the assay would be to consider the viscoelastic nature of the components.  

Biological tissues are inherently viscoelastic, and the polyacrylamide gel has 

demonstrated this behavior in the exponential decay of the force curve with prolonged 

compression (Figure 27).  Work until this point has assumed a steady-state of the system 

after the dwell period and implemented a linear elastic model of the gel-tissue system.  

The data points extracted at the end of the dwell period demonstrate a linear stress-strain 

relationship and hence a linear evaluation of the data as an initial examination was 

validated.  However, the time-dependent data contains information that is lost in the 

linear evaluation and which may prove insightful in evaluating the tissue.  Since the 

mechanical testing protocol is at the discretion of the investigator and can be adapted at 

will to the situation, it would be feasible to implement a viscoelastic description of the gel 

and tissue in the modeling portion of the MGT assay and adapt the mechanical testing 

accordingly.  As an initial investigation of the viscoelastic nature of the system, a 

standard linear solid (SLS) model, as shown in Figure 26, was fit to the experimental data 

for the BT-474 tissue samples.  The current protocol imposes a dwell period during 

which stress-relaxation occurs.  At each step compression, a constant strain is held while 

the stress responds accordingly.  This approach is not ideal for calculating viscoelastic 

parameters, but it can serve to provide us with some initial evaluation of the viscoelastic 

tendencies of the system. 
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 A sample mechanical testing curve is shown in Figure 27.  For this preliminary 

viscoelastic parameterization, each step compression was considered individually.  The 

constitutive equation for the standard linear solid model is given by: 
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When subjected to the conditions of a stress relaxation test (i.e. 0 , o  ) the time-

dependent expression for the stress is given by: 
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where εo is the strain level and τe is the stress relaxation time constant and is given by: 
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The relaxation equation was fit to the stress data for the tumor samples, and the 

coefficients were evaluated using a least squares approximation.  A representative curve 

 
 

Figure 26.  Standard linear solid model. 
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fit is presented in Figure 28; the blue line is the testing data and the green line is the SLS 

fit.  The average relaxation time constants for the samples are shown in Table 21. 

 

 
Figure 27. Sample material testing curve. 

 

 

 

 
Figure 28. Representative fitting of the SLS model to the experimental data. 
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 From Figure 28, it is obvious that this model is insufficient to describe the data.  

The main shortcoming is in the initial response, where the model cannot accurately 

represent the immediate elastic deformation experienced in the mechanical testing.  A 

more detailed model is necessary to fully describe the data, but this simplified model is a 

suitable first approximation to probe a viscoelastic consideration of the mechanical 

testing data.  Given the data in Table 21, it is interesting to note that in almost all cases 

the addition of the biological specimen increases the relaxation time of the model fit.  

This indicates that the tissue is higher in viscosity than the gel and prolongs relaxation of 

the system.  Using dynamic data to assess the tissues as opposed to the static information 

currently implemented in the MGT assay would allow for further parameterization of the 

tissue which could provide insight regarding differences among the samples that are lost 

in the static evaluation.     

In regards to the potential for the MGT assay as a component of elastographic 

techniques, two preliminary evaluations have been performed.  Both evaluations were 

performed using the fibrotic liver samples that were evaluated in Chapter III.  The first 

 

Table 21. Stress relaxation time constants for reference gels and heterogeneous gels. 

 

Reference Gel Average  Specimen Average  

Ref1 20.97 BT474-1 23.18 

Ref2 21.84 HR6-1 25.13 

Ref3 18.63 BT474-2 18.6 

  BT474-3 21.27 

Ref4 18.82 HR6-2 21.88 

  HR6-3 22.72 

Ref5 16.76 BT474-4 17.27 

 



134 

preliminary investigation utilized a specially designed compression chamber, as shown in 

Figure 29(a).  The gel-embedded liver sample (created for and used in the MGT assay 

evaluation) was placed in the chamber, and pre- and post-compression CT images were 

collected.  An elastographic method termed Modality Independent Elastography (MIE) 

was then utilized to assess the elasticity contrast between the gel and the tissue [120].  

The MGT assay analysis of the tissue modulus was also performed, allowing for a direct 

comparison of the two evaluation techniques.  The results are shown in Table 22.  The 

resulting contrast for the two techniques was very similar, with an error of 3.3%.  This 

evaluation provides a prime example of how the MGT assay could potentially be used for 

validation of elastographic techniques.   

 

 

(a) 

(b) (c) 

Figure 29.  MIE data acquisition.  (a) Photograph of compression chamber, (b) transverse 

CT slice of setup, and (c) liver-gel block under compression. 

 



135 

Table 22.  Elasticity contrast ratios obtained by different material property analyses. 

 

 Elasticity contrast (gel:liver) 

MGT Assay 4.23:1 

MIE 4.09:1 

 

 

 The second preliminary elastographic evaluation of the MGT system was in the 

form of ultrasound elastography.  As previously mentioned, the gel-tissue heterogeneous 

system was initially devised in order to provide a sample which was conducive to both 

ultrasound evaluation and mechanical testing.  To this avail, ultrasound images were 

obtained of one of the gel-embedded fibrotic murine livers.  A sample ultrasound image 

is provided in Figure 30.  The resultant strain image is shown in Figure 31.   Using the 

two regions of interest delineated in Figure 31, an average contrast ratio between the gel 

and the liver was calculated as 2.71.  Though the corresponding MGT assay evaluation of 

the data is not available, this preliminary data set serves to further demonstrate the 

feasibility of using the gel-embedded tissue system in elastographic techniques, which 

can then be directly validated using the MGT assay.        
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Figure 30. B-mode ultrasound image of gel-liver interface.  

 

 

 

 
Figure 31. Strain image of gel-liver interface.  
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Protection of Research Subjects and Societal Implications 

 

 In performing any research detailed in this manuscript, all necessary precautions 

were taken to protect the animals involved.  Mice were used frequently in the work 

presented herein, and their use was always preceded by the appropriate protocol approved 

by the Institutional Animal Care and Use Committee and following the guidelines for 

humane care as set forth by the institution.  Precautions were taken to minimize pain and 

ensure quality of life, and the animals were closely monitored to ensure that they were 

not suffering at any point during their use in the studies.   

 The utility of the MGT assay lies mainly in research regarding the correlation of 

disease and tissue modulus.  The assay can serve as a stand-alone soft tissue evaluation 

technique, but it was conceived as a method for validating non-invasive imaging 

techniques for modulus assessment, and that is most likely how it would find its use in a 

broad spectrum.  It is conceivable that the assay be used in other applications where an 

evaluation of soft tissue mechanical properties is desired, such as a biopsy evaluation 

method.  However, these methods would be clinical or research-based and hence ethical 

concerns would be expected to be minimal.   
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Appendix A: Polyacrylamide 

 Polyacrylamide gels are formed by the copolymerization of acrylamide monomers 

and a bifunctional crosslinker, which is typically bisacrylamide (N,N‟-methylene-bis-

acrylamide).  The resulting structure is a three-dimensional network of acrylamide 

chains, crosslinked by the bisacrylamide.  The reaction that produces polyacrylamide is a 

vinyl addition polymerization initiated by a free radical-producing catalyst (Chramback 

1985).  The most common catalytic initiator is ammonium persulfate coupled with 

tetramethylethlenediamine (TEMED).  In the presence of TEMED, ammonium persulfate 

produces free oxygen radicals at an accelerated rate.  These free radicals then act as 

catalysts for the polymerization reaction by converting acrylamide monomers to free 

radicals.  The newly formed acrylamide monomer free radicals then react with 

unactivated monomers, beginning the polymerization reaction.  The concentration of the 

initiators affects both the rate of polymerization and the properties of the resulting gel; an 

increase in the concentration of the initiators causes a decrease in the gel elasticity and 

the average polymer chain length.  The polyacylamide polymerization reaction is 

depicted in Figure 32 [121]. 
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Figure 32.  Polyacrylamide gel polymerization reaction and resulting polyacylamide 

matrix [121]. 
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