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CHAPTER I

Problem Statement

Perfect memory and recall provides a mixed blessing. While flawless recollection of episodic data and pro-

cedural rules allows for increased reasoning, photographic memory hinders a robot’s ability to operate in

real-time, highly dynamic environments. The absence of forgetting can result in memory being filled by a

tremendous volume of data, increasing both search time and the probability of over-learning. Many small,

but critical details within the environment greatly impact the probability of successful task completion, un-

fortunately robots are currently ill-equipped to navigate incoming data to detect, recognize, and act upon

these details. As robotic hardware and designs improve, robots will be further inundated as finer resolution

environmental data and higher accuracy mental models become available. Contemporary robots are already

overrun with vast volumes of data requiring real-time processing and the problem will only increase. Before

robots realize human-level intelligence, a means of classifying the importance of each acquired datum and

forgetting unnecessary, erroneous, and expired data will be required. This dissertation uses forgetting to fil-

ter data and has developed a robotic forgetting mechanism, inspired by human forgetting, that incorporates

time-based decay and interference effects.

Solomon Veniaminovich Shereshevskii, a professional mnemonist, possessed a close to photographic

memory, but found it difficult to learn and understand higher level concepts. Despite the ability to recall lists

of great length, understanding non-literal sentences or recognizing dynamically changing objects, including

human faces, proved challenging (Luria, 1968). Shereshevskii’s near photographic memory prevented him

from forgetting minor details and allowing concepts to transcend into higher levels of thought (Schooler and

Hertwig, 2005). A lack of forgetting capabilities can cause similar problems for robots.

Forgetting has previously been recognized as beneficial to machine-learning, particularly case-based rea-

soning (Kira and Arkin, 2004). Within some domains and tasks, random forgetting has been found to im-

prove performance (Kira and Arkin, 2004) and in particular situations, even accurate data can hinder perfor-

mance (Markovitch and Scott, 1988). Selective utilization of learned information has previously been used

to prune classification hierarchies, improving efficiency (Yoo and Fisher, 1991; Markovitch and Scott, 1989;

Mooney, 1989). Forgetting may be required in order to achieve human levels of intelligence, and theories of

human forgetting may provide the basis for the generation of effective robot forgetting.

Through the years, strong evidence has been found to both support and refute the two leading theories of

human forgetting, time-based decay and interference (Jonides et al., 2008). Some research has posited that
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human forgetting is a combination of both theories and their subcomponents (Jonides et al., 2008; Wixted,

2004; Sims and Gray, 2004; Altmann and Gray, 2002). Reflecting on the complexity of the human mind

and cognition, it is unlikely that the full dynamic of human forgetting can be realized from one parsimonious

mechanism. Several researchers have developed models of human forgetting that incorporate multiple forget-

ting methods (Mueller and Krawitz, 2009). Others that stand by one mechanism, have admitted that multiple

mechanisms may contribute to human forgetting, just to a lesser extent (Wixted, 2004).

This dissertation uses forgetting as a means of filtering data and presents a new approach to implementing

forgetting within robots that combines both time-based decay and interference theories of forgetting. Through

the unique collection of mechanisms in the forgetting system, the approach may be highly amenable to

the varied demands of robotic systems, allowing for the removal of irrelevant, erroneous, and out-dated

information. Contemporary and future robotic systems involve a complex interaction between their various

subcomponents. Individual robot subsystems may possess detailed and vital information regarding active

tasks, but when this information is combined to form higher level concepts, a robot may be better equipped

to detect and beneficially act upon the many critical details within the environment. The developed forgetting

method is capable of simultaneously operating both at the lower raw sensor value levels, and with multiple

instances of the forgetting mechanism, manage a robot’s composite data. Inherently non-domain specific, the

forgetting mechanism can operate on a wide array of data modalities, but can be parameter-tuned, allowing

the relative importance of each component of the forgetting method to be modified.

Forgetting may directly aid the ability of robots to operate under uncertainty. When complete certainty is

unavailable, then any decision or action selection made by a robot is essentially an educated guess. Heuristics

comprise a critical form of decision making under uncertainty and real-time constraints (Gigerenzer et al.,

1999; Gigerenzer and Brighton, 2009). Forgetting has previously been shown to improve the accuracy and

applicability of some heuristics (Schooler and Hertwig, 2005). This form of decision-making benefits many

areas within robotics and forgetting may significantly improve their effectiveness.

Neurobiology, psychology, artificial intelligence, and robotics have all worked cooperatively over the past

few decades to improve the understanding of their respective fields. The forgetting approach presented in this

dissertation may provide additional evidence for theories of human forgetting. The approach incorporates a

large number of theories of human forgetting, but the impact of individual components can be independently

modified, allowing for a comparison of the effects of each theory. As robots evolve and are assigned tasks

with ever increasing similarity to the challenges faced by humans on a daily basis, the effects of individual

forgetting components on robot performance may correlate with the effects of human performance.

Inherent to the operation of the dissertation’s approach to robotic forgetting, a relevance metric is de-

veloped for each datum stored in a robot’s knowledge bases. These values are used to classify and rank
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the probability that an individual datum will be required by the system. This classification may provide an

additional search criterion for other subsystems within the robot.

The presented forgetting mechanism may indirectly aid robots in attaining human levels of Situational

Awareness (SA). A phenomena with numerous definitions (Adams et al., 1995), SA can loosely be consid-

ered an understanding of the environment and effects of possible future actions. Data management poses one

of the underlying difficulties in developing SA in real-time domains. Many features are required by a robot’s

architecture in order for comprehensive SA to be developed, such as information filtering, inter-module com-

munication, and storing volumes of information and purging stale data (Freedman and Adams, 2008). These

features all contain aspects of data management and are negatively affected by increasing volumes of stored

data. Forgetting may aid the realization of these features and consequently improve the ability for robotic

systems to develop SA.
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CHAPTER II

Literature Review

Numerous factors can limit a robot’s ability to effectively and efficiently operate within complex, dynamic

environments. Copious volumes of data can inundate a robot’s cognitive processes, information inaccessi-

bility and incorrect knowledge can induce erroneous models of the environment, and demanding cognitive

processes can prevent real-time responses to environmental stimuli. As robots increase their ability to assuage

these data problems, real-time robotic performance may increase. Capabilities to forget undesirable data may

aid robots attempting to minimize cognitive workload, prioritize data, and purge erroneous information.

This chapter provides a review of several aspects that are critical to the efficacious incorporation of forget-

ting mechanisms into contemporary robotic design. A history of robotics is presented to provide motivation

and justification for taking inspiration from biological systems. Transitioning from the discussion of how

biologically inspired ideas have influenced the evolution of robotics, human situational awareness (an under-

standing of the environment and effects of possible future actions) is discussed. Human situational awareness,

a phenomena of key importance, that enables humans to effectively operate within challenging domains, may

provide parallels allowing robots to operate in those same demanding conditions. Providing insight into the

manner in which contemporary robots and cognitive agents are controlled, a review of several leading cogni-

tive architectures is presented. Forgetting as occurs within humans is then reviewed. Human forgetting is a

complex and multifaceted mechanism that offers many insights and suggestions.

II.1 History of Robotics

The field of robotics has a long and storied history, dating back thousands of years. The concept of robots

originated as clever, sophisticated machines (Matarić, 2007), but slowly evolved into the myriad of present

day definitions of the term robot (Wikipedia, 2009). These modern day definitions have refined the concept of

the robot to roughly refer to intelligent machines possessing some level of autonomy. Originally mechanical

creations generally possessing fixed modes of operation and minimal levels of adjustability, contemporary

robotic designs have evolved into highly reconfigurable, general purpose machines (Wikipedia, 2009).

The term “Robot”, coined by Josef Čapek, first appeared in the 1920 play Rossum’s Universal Robots

(R.U.R.) by Čapek’s bother, Karel Čapek (Zunt, 2004); however, visions of mechanical beings performing

undesirable, but necessary tasks had already existed for thousands of years (Matarić, 2007). Many examples

of ancient robotic designs and technologies exist. Around approximately 1400 B.C., the Babylonians crafted

a water clock named “Clepsydra”, a device considered one of the earliest robotic devices (The History of
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Figure II.1: Vaucanson’s duck (Riskin, 2003)

Computing Project, 2007). Many user-configurable automated devices were crafted by Hero of Alexandria

(10 - 70 A.D.), while a clock tower featuring mechanical figurines playing music to announce the passage of

time was constructed in China by Su Song in 1088 (Wikipedia, 2009).

These early robotic creations realized tremendous mechanical discovery and ingenuity, but only repro-

duced the outward appearance and actions of the biological entities they mimicked. It was not until the

eighteenth century that robotic devices began to reproduce both internal and external functions of the entities

that they embodied (Riskin, 2003). In 1738, the French scientist Jacques Vaucanson put on display a me-

chanic duck, Figure II.1, that “stretches out its Neck to take Corn out of your hand; it swallows it, digests

it, and discharges it digested by the usual Passage” (Vaucanson, 1979). Vaucanson’s creation benefited from

extensive analysis of real ducks to allow the mechanical creation to simulate a number of authentic behaviors

and actions, although its most prominent, digestion, was faked (Riskin, 2003). This mechanical achievement

was one of the earliest examples of robotic designs shifting from “amusements and feats of technological

virtuosity” to the study of how biological processes could be recreated within machines and how the under-

standing of those processes may be enhanced (Riskin, 2003).

After Vaucanson created his duck, scientists and inventors continued developing devices of increasing

realism and complexity, but it was not until the mid-twentieth century that robots began to resemble their

modern day counterparts. In the 1940’s, the field of cybernetics emerged, applying control theory to the

understanding of biological systems. Cybernetics’s initiator, Norbert Wiener and his colleagues investigated
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how control theory could explain and aid in simulating biological processes from the level of neurons to

behavior (Matarić, 2007). During this time, William Grey Water used the field of cybernetics to develop a

collection of devices commonly referred to as “tortoises” that exhibited many aspects analogous to biological

systems. Many consider these turtles to be the first examples of modern robots (Matarić, 2007).

From the 1950’s through the mid-1980’s, robot developers started to integrate Artificial Intelligence (AI)

inspired approaches into their creations. Robots such as Shakey (Raphael, 1976), HILARE (Giralt et al.,

1979), and the Stanford Cart (Moravec, 1990) combined the biologically inspired abilities of vision process-

ing, world modeling, and planning to achieve tasks too complex and difficult for earlier designs (Matarić,

2007). These robots achieved their success by employing the design paradigm commonly referred to as

Sense-Model-Plan-Act. A robot using this approach first sensed its environment, and once complete, con-

structed a world model suitable for a planner. Plans were generated by this planner and subsequently trans-

fered to an actuation unit that caused the robot to take physical actions (Brooks, 1991). Robots from this

era often spent a majority of their processing time perceiving the environment and constructing world mod-

els (Brooks, 1991). In 1987, Schoppers (1987) developed the notion of Universal Plans, a lookup-table based

approach to planning that required responses to all possible environmental states to be calculated.

Robots embodying the Sense-Model-Plan-Act paradigm were slow and required carefully engineered

static environments (Matarić, 2007; Brooks, 1991). In the late 1980’s and early 1990’s, a new approach to

robot design emerged, reactive (Brooks, 1986) and later behavior-based (Arkin, 1998; Matarić, 1992; Werger,

1999) robotics. Reactive design methods, analogous to human reflexes, enabled robots to respond to elements

within the environment quickly, and unlike previous robotic designs, in a smooth manner (Matarić, 2007).

Behavior-based robotics uses collections of simple modules that each exhibit individual behaviors. Collec-

tions of these behaviors run concurrently, resulting in emergent intelligence. Inspired by the capabilities of

fish, insects, and birds, robots were developed with complex combinations of simple behaviors that resulted

in abilities far exceeding earlier robot designs. A number of robots modeling insects were created, that in

many ways, reproduced biological behavior (Arkin, 1998).

Despite minimalism and statelessness being core ideals of behavior-based robotics, researchers reintro-

duced deliberative processing into robotic designs. These new architectures were hybrid combinations of

behavior-based principles and classical AI inspired algorithms (Werger, 1999). This change in design philos-

ophy was inspired by the desire to realize higher level cognitive functions within robots. Present day robotic

designs commonly employ this hybrid approach, often involving slow and highly computationally expensive

processes operating on top of fast reactive mechanisms.

The reintroduction of state information into robotic designs allows robots to complete challenging cog-

nitive tasks, but has proven to be a double-edged sword. Along with the benefits of persistent sensor data
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and mental constructs, enduring state can become stale and erroneous information may remain available to

cognitive processes for significant periods of time. Humans remediate this informational plague by many

means, one of which is forgetting. As future robotic designs progressively incorporate biologically inspired

capabilities, parallels to human forgetting may allow robots to achieve still greater levels of performance and

success.

II.2 Situational Awareness

Humans are able to operate and excel in highly dynamic and complex environments partly because of their

perceptual and cognitive capabilities. Situation Awareness (SA) (Adams et al., 1995; Endsley, 1988b,a,

1995b), the human ability to perceive the environment, comprehend the situation, and project that compre-

hension into the near future, forms a critical component of those cognitive and perceptual capabilities.

SA has received considerable attention in the human factors community and many definitions have been

developed (Uhlarik and Comerford, 2002; Fracker, 1988; Dominguez, 1994; Endsley, 1988b,a, 1995b; Sarter

and Woods, 1991). As a result of SA’s origin in avionics and military related human performance research,

many existing definitions of SA are domain and task specific, such as SA

“means that the pilot has an integrated understanding of factors that will contribute to safe flying

of the aircraft under normal or non-normal conditions. The broader this knowledge is, the greater

the degree of situational awareness” (Regal et al., 1988).

This dissertation will adopt the non-domain specific commonly accepted definition of SA from Endsley

(1988b):

“the perception of the elements in the environment within a volume of time and space, the com-

prehension of their meaning, and the projection of their status in the near future.”

The large number of SA definitions presently available partly arose from the difficulty in determining

exactly what is and what is not encompassed by SA (Uhlarik and Comerford, 2002). There has even been

debate as to whether SA is a concept that defines a cognitive phenomena or if SA is a causal agent forming a

portion of human cognition (Flach, 1995).

While often misinterpreted as a process (or a set of processes), SA is a grouping and description of

processes working to form human cognition. The portions of these processes that handle incoming data and

then compute higher level constructs can be grouped together by SA. Endsley partitioned this higher level

construct into a series of three levels (Endsley, 1995b). Level one involves acquiring raw information from

the environment. Level two consists of merging data from level one into an understanding of the current
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Figure II.2: Endsley’s model of SA located within the greater model of human decision making (Endsley,
1995b)

situation in the environment. The final level utilizes level one and level two constructs to predict the future

states of the environment and possible actions to undertake. Figure II.2 illustrates how Endsley’s model of

SA fits within the larger context of human decision making.

The concept of situational awareness can also be represented by the Perceptual Cycle (Neisser, 1976),

a cyclical model of human cognition. As illustrated in Figure II.3, the actual environment modifies the

human’s current mental model of the environment’s status and properties. These modifications result in

active adjustments to how perceptual channels are directed within the environment. Perceptual channels

sample the constantly changing environment, completing the cycle (Adams et al., 1995). While at a high

level, the cyclical nature of situational awareness can be considered similar to Sense-Model-Plan-Act loops

of robotics from the 1960’s to the 1980’s (Brooks, 1991), the various components of the perception cycle are

not system states that can be discretely entered and exited. The three elements of the perception cycle are

permanently active, simultaneously working toward high levels of situational awareness and performance.

The human cognitive system is highly advanced and at present too difficult to fully understand. The study

of SA bounds the decision making process and aids in the identification of aspects of human cognition that

contain similar properties and requirements (Flach, 1995). Care must be taken while studying SA as the
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Figure II.3: The Perceptual Cycle (Neisser, 1976)

phenomenon is not performance, although a relationship between SA and performance exists (Adams et al.,

1995). When minimal or erroneous SA is maintained, the likelihood of achieving high levels of performance

is low, especially if a human mistakenly overestimates their level of SA. Inferior performance is not guaran-

teed as a result of poor SA, since luck, physical skill, and physical dexterity may compensate. If a human

realizes that their level of SA is below some desirable threshold, then behaviors and actions may be changed

to improve SA and causally improve performance (Endsley, 1995b). When an agent deliberately changes

behaviors to improve SA, some means of approximating their SA level is required (New York Times News

Service, 2000). In many domains, the ability to accurately estimate one’s current level of SA may be critical

to achieving high performance levels.

II.2.1 Situational Awareness Components

SA is difficult to define and isolate partly due to the large and diverse array of cognitive and perceptual

abilities that compose the phenomenon, see Table II.1 for an initial list. Additionally, human SA is highly

sensitive to a number of external (e.g. environmental stressors, salience, automation) and internal (e.g. cogni-

tive workload, vigilance, fatigue, stress) factors (Endsley, 1995a; Salmon et al., 2006; Wickens, 2002). This

section presents an overview of some of the cognitive and perceptual components that compose human SA.
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Table II.1: Initial list of situational awareness components
Attention Biases and Expectations

Explicit Focus Schema and Mental Models
Short & Long Term Memory Data Driven and Goal Driven Behavior

System Stress Goals, Plans, and their Evolution
Workload Observation Quality and Availability
Failures Framing and Ordering Effects

Uncertainty and Confidence Bad SA vs. Bad Decision Making
Ideal, Achievable, and Actual SA Vigilance

II.2.1.1 Attention

Attention management affects a human’s ability to sense and understand the surrounding environment. While

attending to a particular sensory channel does not guarantee perception, attention is required to attain percep-

tion (Wickens et al., 2004), a critical component of level one SA. Humans are able to divide, direct, and select

their attentional capabilities (Wickens and Hollands, 2000). However, human perception is limited and finite

as humans have a bounded quantity of attention to distribute across all items of interest at any given point

in time. These items generally consist of perceiving information from the environment, processing that in-

formation, decision making, and motor control. Human attentional resources are limited by sensory channel

demands; and complex dynamic environments can quickly overload human attentive abilities (Freedman and

Adams, 2007). As a result, humans may selectively sample their sensory channels (Smart, 2005). Humans

typically manage their attentional focus based upon the frequency that percepts must be updated and infor-

mation update rates. Sampling can occur in periodic sequences, but previously acquired information, along

with current goals and plans, may also dictate the flow of attention. Human perception is further constrained

by the limited human ability to parallel process sensor percepts due to sensor modality and working memory

constraints. However, salient features may direct attention and focus their efforts to potentially critical tasks.

As the presence of sampling increases, human SA can improve even as the domain becomes more challeng-

ing (Wickens and Hollands, 2000). Along with goal directed influences, the focus of attention can be shifted

by expertise and ancestral bias (New et al., 2007).

Many domains are dynamic and information importance may change substantially throughout the dura-

tion of a task. Attention must shift and sampling patterns must be altered when these conditions occur in order

to ensure incoming percepts are relevant and beneficial. Memory’s collection of existing percepts may need

to undergo a similar shift. When the applicability of individual percepts and memory items fade, forgetting

can purge obsolete information, reducing cognitive load and shifting the “focus of attention” of mental pro-

cesses. Forgetting provides selective cognitive attention. During the process of forgetting old items, cognitive

processes are effectively directed away from knowledge of minimal importance.
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II.2.1.2 Explicit Focus

Humans are able to direct their attention, and potentially the sensory channels that attention relies upon,

based on the surrounding environment and the dynamics of present tasks. The ability to rapidly redirect

human attention is critical for level one SA and as a result has an effect on level two and three SA. When

attention is intentionally placed on particular aspects within the environment, the human’s knowledge of those

items may increase while information regarding other items will become stale, and potentially forgotten.

Selective attention can filter extraneous information from the environment, but may also prevent critical

knowledge from being detected and understood. Attention must also be focused on the items critical to the

success of current tasks and goals. Without focused attention, distractors prevent the consistent acquisition

of information critical for the development and maintenance of SA (Smart, 2005). In the extreme; however,

focused attention becomes cognitive tunneling (Wickens and Hollands, 2000), ignoring critical information

to focus on one particular item in the environment. In complex, dynamic environments, numerous objects

within the environment require simultaneous monitoring. The ability to divide attention between these items

is paramount to the development of SA. Affording attention to unnecessary objects can degrade SA. Imperfect

sampling and failed data retrievals may require repeated sampling (Wickens and Hollands, 2000).

Forgetting and directed attention are complimentary processes that provide many of the same benefits to

humans operating within complex domains. A common characteristic of these domains, information overload

hampers SA generation abilities, but selective attention can provide data filters minimizing this knowledge

burden. Forgetting capabilities may allow for the removal of erroneous and unnecessary data passing through

these attentive filters, further minimizing the quantity of unnecessary information.

II.2.1.3 Short and Long-Term Memory

Humans possess short-term and long-term memory that stores previous experiences and information required

to achieve and maintain SA (Freedman and Adams, 2007). A number of models of short-term and long-

term memory exist, varying between two philosophies, that short-term and long-term memory are separate

and distinct systems and that both forms of memory are two aspects of the same system (Jonides et al.,

2008). Baddeley (1986, 2000) developed one of the most influential multi-store models of human memory,

which describes a collection of model buffers working together to form short-term memory. Interactions be-

tween short-term and long-term memory are coordinated by a central executive module (Jonides et al., 2008).

Unitary-store models of short-term memory, consisting of activated long-term memory representations, may

have originally been proposed by Atkinson and Shiffrin (Jonides et al., 2008; Atkinson and Shiffrin, 1971).

In these models, short-term memory consists of activated long-term memory representations and recently ac-

quired sensory percepts. Representations within long-term memory possess varying activation levels whose
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strength fluctuates depending on observation frequency and recency. A relationship exists between the acti-

vation strength of a long-term memory concept and that item’s probability of being in short-term memory.

As activation strength increases, so does the chance the item will be activated and included in short-term

memory. A restricted set of the most activated short-term memory items are within the focus of attention and

are directly accessible for cognitive processing (Jonides et al., 2008; Oberauer, 2006).

Short-term memory provides rapid access to information, but is capacity limited. Multi-store models

of memory interpret the capacity limitations of short-term memory as the result of the rate of forgetting

combined with the speed of rehearsal and discovery. Unitary-store models of memory present this limitation

as a limit on the number of items that can be activated from long-term memory at any point in time (Jonides

et al., 2008). Long-term memory can be unreliable, at times failing to recall information or returning incorrect

data (Freedman and Adams, 2007).

Both short-term and long-term memory are critical for the development and maintenance of SA. After

information has been distilled from the environment, it is placed in short-term memory and forms level one

SA. If percepts are rehearsed or repeatedly perceived, their encoding strength and durability will increase,

otherwise they will be forgotten (Jonides et al., 2008). Forgetting induced short-term memory instability and

capacity limitations, are often viewed as negative forces working against human performance (Wickens and

Hollands, 2000), but may serve critical functions in the development and maintenance of SA. Tasks and goals

evolve while objects in the environment change. Forgetting provides a mechanism for removing this old

information; reducing the interference and erroneous memory recalls that prevent rapid recall of contextually

important information.

Procedural information residing in long-term memory, including schemata (Kumar, 1971), mental mod-

els (Minsky, 1974), semantic networks (Sanford and Garrod, 1981), and frames (Minsky, 1974), combine

with level one SA to form a comprehensive understanding of the environment and predictions of the short-

term evolution of that environment (level two and level three SA). While fairly stable, phenomena and facts

represented in long-term memory can evolve, both rapidly and gradually. Forgetting of long-term memory

elements allows adaptation to changing conditions, such as technological improvements, and minimization

of the effects of false beliefs that were previously thought to be true.

II.2.1.4 Failures

Humans are prone to a number of physical and cognitive errors, mistakes, and failures. To effectively operate

within real world environments, humans need to find means to effectively deal with these failures, non-

optimal decision making, and unintentional events. Failures can result in reduced SA and often are correlated

with inaccurate or insufficient SA (Freedman and Adams, 2007). Even the best, highly trained, professional
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athletes, humans who have dedicated potentially their entire lives to being able to perform a very small set

of tasks, cannot remove all sources of uncertainty (Davids et al., 1991). Mental ability also suffers the curse

of failure. Forgetting provides a mechanism for erroneous decisions and inaccurate mental constructs to be

removed from memory; increasing the ability to recall vital and correct information.

II.2.1.5 Goals, Plans, and Their Evolution

In complex dynamic environments, it is quite common to simultaneously maintain multiple goals, which may

or may not conflict at some level. These goals not only evolve over time, but require prioritization based on

their importance to the overall system task. When utilizing a data driven processing method, patterns may

emerge from the environment, dictating whether new goals must be created, existing goals should be changed,

or if priorities require alteration. Conversely, a goal driven methodology will influence how new observations

from the environment are integrated and interpreted.

Goals can be thought of as ideal system states, which are used to select the most appropriate mental model

for a given task. The resultant combination of goals and mental models allows for plans to be generated that

modify the environment to align with key environmental states. If available, scripts may also be used to assist

in the action selection process.

Current goals may be malleable, evolving as a result of performance and interactions with the envi-

ronment. When the environment and current mental models are consistent, correct operation is commonly

assumed, but when differences exist, plans and goals may require modification. Additionally, the relative

importance of goals and plans may shift in an attempt to better align the environment and mental models.

Figure II.4 graphically describes the relationship between goals, plans, mental models, and SA (Endsley,

1995b).

As goals change, knowledge requirements can similarly transform. Forgetting can provide a means of

removing information that is no longer relevant to current goals and increase the ability to recall new ger-

mane observations from the environment. When switching tasks, humans frequently experience a temporary

performance penalty during the initial portion of new tasks, often labeled “switch-cost” or “restart cost” (All-

port and Wylie, 2000). Altmann described the theory of functional decay, which describes how within-run

slowing can minimize “switch-cost”. Within-run slowing appears as a progressive decrement in performance

during task execution. This reduction in performance results from memory items critical to task completion

becoming progressively more challenging to recall. While task performance declines on the current task, the

acquisition and retention of knowledge required for a subsequent task is improved (Altmann, 2002; Altmann

and Gray, 2002; Altmann and Schunn, 2002; Sims and Gray, 2004).
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Figure II.4: Relationship of goals, plans, and mental models to SA (Endsley, 1995b)
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SA is a complex phenomena comprised of many cognitive and psychological components. While not

a process in and of itself, SA provides a grouping of mental processes enabling humans to operate within

complex and dynamic domains. The majority of SA components are affected by data management issues and

forgetting may provide a means of removing unnecessary and obsolete information. With less data to process,

humans are better equipped to achieve high levels of SA and performance. This section presented several

components of SA and how they benefit from forgetting. Appendix B provides descriptions of additional SA

components.

II.2.2 Robotic Situational Awareness

Robots are often tasked to operate in the same complex and dynamic domains as humans. SA can assist

robotic systems in many of the ways that humans benefit from the psychological phenomenon. A large body

of work exists that aims to improve the SA of human remote operators that work with robots, but research

aspiring to achieve human levels of SA within robots is difficult to find.

II.2.2.1 Improving Remote Operator Situational Awareness

Considerable effort in the field of Human-Robot Interaction (HRI) has focused on improving the SA of

humans interacting with robots (Drury et al., 2003; Humphrey and Adams, 2009a; Kaber et al., 2000; Burke

and Murphy, 2004; Scholtz et al., 2005; Sellner et al., 2006; Stubbs et al., 2007; Riley and Endsley, 2005;

Gatsoulis, 2008). In some cases, remote operators directly tele-operate robots to complete tasks and acquire

sensor readings. At other times, humans and robots operate in more of a team fashion, with a human generally

assuming the leadership role.

Across this spectrum of configurations, robots can operate as various levels of autonomy. A number

of taxonomies have been created to identify individual levels of autonomy (Sheridan and Verplank, 1978;

Kaber et al., 2000; Parasuraman et al., 2000). Sheridan and Verplank (1978) developed the ten levels of

autonomy available to a human working with a system. Shown in Table II.2, the taxonomy ranges from

humans assuming complete control at one extreme, to systems possessing full responsibility at the other.

Research has shown; however, that increasing the level of automation in a system may generate mixed results.

In some domains and tasks, operator SA may improve but in others, unintended consequences may result,

including a net loss of SA (Parasuraman et al., 2000; Adams, 2007). A primary cause of lost SA, “out of the

loop” effects may appear if the level of automation is improperly increased. In this condition, the operator

loses awareness of some of the events occurring within the environment as the automated system performs

action selection and execution.

A number of taxonomies for multi-robot systems have been developed. Gerkey and Matarić (2003),
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Table II.2: Levels of autonomy (Sheridan and Verplank, 1978)

Level Description

10 The system is fully autonomous and ignores human input.
9 The system can optionally inform the human.
8 The system provides information by request.
7 The system can perform any action but then must inform the human.
6 The system can perform any action unless the human rejects the action selection.
5 The system requires approval from the human.
4 The system provides a single suggested action.
3 The system provides a small set of options to the human.
2 The system provides a complete list of possible actions.
1 The system does not provide assistance.

Table II.3: Types of human-robot teams (Yanco and Drury, 2004)

Type Human Robot

1 Human Robot
2 Human Robot Team
3 Human Robots
4 Human Team Robot
5 Humans Robot
6 Human Team Robot Team
7 Human Team Robots
8 Humans Robot Team

Dudek et al. (2002), and Balch (2002) have generated taxonomies for robot only teams that highlight the dif-

ferences in communication and information requirements between differing configurations of robots. Yanco

and Drury (2004) expanded these ideas to a taxonomy specifically for human-robot teams, see Table II.3.

Drury et al. (2003) analyzed the SA requirements and properties of real-time HRI teams. They found that

HRI tasks have a non-symmetrical property, the requirements for human teammates were not identical to the

robot teammate requirements. They developed a general definition of HRI SA and a five element classifi-

cation system to define the SA requirements of HRI teams, see Table II.4. The applicability of these HRI

definitions for potential future systems, where robots may assume a greater share of leadership responsibil-

ities is uncertain. In future systems, a greater emphasis on protecting humans from harm will exist, but the

asymmetrical nature of HRI applications may diminish, requiring these definitions to be modified.

A large body of work exists exploring how communication interfaces can be developed to increase the

level of human operator SA (Adams, 2009; Goodrich et al., 2008; Adams and Freedman, 2007; Freedman

and Adams, 2007; Gatsoulis, 2008; Sellner et al., 2006; Murphy et al., 2008; Scholtz et al., 2004; Yanco and

Drury, 2004; Scholtz et al., 2005; Humphrey and Adams, 2009a). Under conditions where operator SA is
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Table II.4: Definitions of HRI SA forms (Drury et al., 2003)

Name Definition

HRI Awareness “Given n humans and m robots working together on a synchronous task, HRI
awareness consists of five components:”(General Case)

Human-Robot “The understanding that the humans have of the locations, identities,
activities, status, and surroundings of the robots. Further, the understanding of
the certainty with which humans know the aforementioned information.”

Awareness

Human-Human “The understanding that the humans have of the locations, identities, and
activities of their fellow human collaborators.”Awareness

Robot-Human “The robots’ knowledge of the humans’ commands needed to direct activities
and any human-delineated constraints that may require command
noncompliance or a modified course of action.”

Awareness

Robot-Robot “The knowledge that the robots have of the commands given to them, if any,
by other robots, the tactical plans of the other robots, and the robot-to-robot
coordination necessary to dynamically reallocate tasks among robots if
necessary.”

Awareness

Humans’ Overall “The humans’ understanding of the overall goals of the joint human-robot
activities and the measurement of the moment-by-moment progress obtained
against the goals.”

Mission Awareness

commonly explored, two primary forms of HRI exist, remote interaction and proximate interaction (Goodrich

and Schultz, 2007). Under remote conditions, operators are not co-located with the robots and all interaction

occurs through a computer interface. Examples for modifying a graphical user interface to support SA during

remote interaction include the exploration into novel compass visualizations (Humphrey and Adams, 2008)

and the creation of guidelines governing interface design (Scholtz et al., 2004). Research aiming to improve

human operator SA during proximate interactions, when the human and robot(s) are co-located, includes the

creation of specific roles for human operators to assume (Murphy et al., 2008; Scholtz et al., 2005; Goodrich

and Schultz, 2007) and providing robots with anticipatory capabilities to improve team efficiency (Hoffman

and Breazeal, 2007).

II.2.2.2 Improving Robotic Situational Awareness

While considerable work and progress has been made towards improving human SA when operating within

human-robot teams, a far smaller body of work exists directly attempting to increase the level of SA pos-

sessed by robots. To some extent; however, a large portion of robotics research has indirectly worked towards

the development of human level SA. Improved hardware-based sensors allow for increased accuracy of per-

ception, including the minimization of missed data located within the environment. Mapping and navigation
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algorithms, such as Simultaneous Localization And Mapping (Smith et al., 1990), FastSLAM (Thrun et al.,

2004), and Markov localization (Fox et al., 1999), allow robots to operate within complex, dynamic en-

vironments, sometimes with no a priori information. Using these algorithms, robots can maintain a sense

of localization and simultaneously develop a comprehensive map of their surroundings. Research has been

conducted to allow robots to gauge and estimate the psychological and emotional state of humans located

within close proximity (Mower et al., 2007; Breazeal et al., 2009). Even research not inherently associated

with robotics, such as machine vision (Davies, 2004) and natural language processing (Manning and Schütze,

1999), has increased the ability for robots to develop SA. This body of work is gradually advancing the SA

capabilities of robots from a bottom-up perspective.

The body of robotics research aiming to explicitly achieve human levels of robot SA from top-down or

holistic approaches is scarce. Gatsoulis and Virk (2006) suggested taking a holistic approach to improving

performance within the Urban Search and Rescue domain by improving the SA of both humans and robots.

By increasing the level of SA within human operators and within the controlled robots, the SA of the entire

system may be improved, resulting in increased performance. In their presented work, only efforts to under-

stand, measure, and improve operator SA were presented. The desire to improve the SA of robots operating

within the Urban Search and Rescue domain has been reiterated in the future work section of Gatsoulis’s PhD

thesis (Gatsoulis, 2008).

Lison et al. (2010) recently crafted the ability for robots employing the CoSy Cognitive Architecture,

see Section II.3.2 for a full review, to create and maintain rich probabilistic multi-modal belief models from

low-level sensory information. These hierarchical structures are founded on Markov Logic (Richardson and

Domingos, 2006) and allow for comprehensive situated reasoning.

II.3 Cognitive Architectures

Contemporary designs for intelligent robots often utilize cognitive architectures. Considerable work has

been completed towards the realization of cognitive agents (McCarthy, 1959; Cox, 2005; McCarthy et al.,

2002; Cox, 2007), but current systems have not come close to achieving human-level Artificial Intelligence

(AI) (McCarthy et al., 2002). The vast majority of current AI systems use only a limited number of algorithms

and representations, normally only one (McCarthy et al., 2002), but a symbiotic relationship of multiple,

and possibly many, different representations and algorithmic approaches may need to be formed (Minsky,

1992). The Causality Matrix, see Figure II.5, is an initial attempt to categorize classes of algorithms and

determine how they can be combined (Minsky, 1992). To achieve human-level AI, different algorithms and

representations will need to be assimilated into one coherent and diverse system (McCarthy et al., 2002;

Cassimatis et al., 2006), plus the system must be capable of seamlessly transitioning between algorithmic
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processes while still enabling parallel processing (Singh and Minsky, 2003).

Figure II.5: The Causality Matrix (Minsky et al., 2004)

Robots capable of generating human levels of SA within complex, dynamic domains will require diverse

cognitive and physical capabilities. Forgetting may increase robotic capabilities by improving the effec-

tiveness and efficiency of many of the cognitive processes required for robotic SA generation. Cognitive

architectures provide principled means for enabling forgetting to aid these processes. This section presents

a number of existing cognitive architectures designed for domains ranging from mobile robotics to human

performance modeling. Many of the presented architectures incorporate forgetting mechanisms or have pre-

viously been incorporated into robotic systems. Several presented cognitive architectures do not inherently

incorporate forgetting mechanisms, but allow for their introduction. Cognitive architectures along with for-

getting mechanisms may allow robots to complete complex mental operations, minimize unnecessary data,

and increase SA.

II.3.1 The Minsky-Sloman Architecture

Two potential architectures that can allow agents to easily switch between “ways to think” (Minsky, 2006) are

the Human-CognitionAffect (H-CogAff) architecture (Sloman, 2001, 2003), see Figure II.6, and the Model

Six architecture (Minsky, 2006; Singh, 2005), see Figure II.7. These frameworks share many components in

common and are sometimes collectively referred to as the Minsky-Sloman model (Minsky et al., 2004). These

hierarchical architectures are flexible in that the number, type, and format of cognitive processes are allowed
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Figure II.6: The H-CogAff Architecture (Sloman, 2001)

to vary across implementations. Processes can be executed in parallel and hierarchical level boundaries are

not absolute. The reactive layer represents processes that immediately form responses to sensed values.

Deliberative processes examine multiple responses to input and determine the most appropriate action. The

meta-management layer of the H-CogAff architecture represents similar processes to the top three levels of

the Model Six architecture. Meta-management processes provide various forms of metacognition through

controlling, monitoring, and evaluating self (McCarthy et al., 2002). Forgetting mechanisms are not inherent

to these architectures, but can be incorporated into individual instances.

The EM-ONE architecture for reflective commonsense reasoning provides an initial implementation of

the Model Six architecture (Singh, 2005). Realizing the lower three levels of the Model Six architecture, EM-

ONE provides commonsense reasoning capabilities and the benefits of Minsky’s critic-selector model (Min-

sky, 2006). EM-ONE incorporates ideas from the H-CogAff architecture and has been used to control two

simulated robots working cooperatively on physical manipulation and social interaction tasks (Singh, 2005).

II.3.2 CoSy Architecture Schema

The Cognitive Systems for Cognitive Assistants (CoSy) Architecture Schema, is a modular schema designed

to allow for the creation of agents capable of parallel modular processing, metacognition, and structured data

management. Each loosely coupled module, see Figure II.8, is referred to as a subarchitecture and generally

works within one realm of reasoning, visual, spatial, etc. Subarchitectures consist of four separate types of

components. Unmanaged processes are generally light weight and run continuously. Working memory stores
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Figure II.7: The Model Six Architecture (Recreated from (McCarthy et al., 2002))

data derived from the unmanaged components and is writable by any component within the module, but

read-only to the rest of the system. However, some privileged components may exist that can modify other

modules’ working memory. Managed processes, which generally perform expensive calculations, monitor

working memory for relevant changes. When these changes are detected, the managed processes determine

what actions should be completed. Permission is required from the task manager before a managed compo-

nent can begin any new processing. Cognitive Systems for Cognitive Assistants Architecture Schema agents

require a subarchitecture designed to perform coordination and another to bind symbols. Binding enables

high-level inter-module communication. The schema does not inherently incorporate many of the capabili-

ties present in other cognitive architectures that directly model human cognition (such as forgetting), but it

does allow for their inclusion through the development of appropriate subarchitectures (Hawes et al., 2006,

2007). This schema has been incorporated into robotic systems capable of human-robot interaction, com-

pleting physical manipulation tasks, and exploratory behavior (Hawes et al., 2010, 2009, 2007; Jacobsson

et al., 2008; Kruijff et al., 2007). The ability for these robots to generate and maintain rich belief models has

recently been crafted (Lison et al., 2010). These models are spatio-temporally framed structures incorporat-

ing epistemic information and utilize Markov Logic (Richardson and Domingos, 2006). Similar to systems

designed for commonsense reasoning (Mueller, 2006), this addition allows for reasoning over situationally

dependent information.

II.3.3 Polyscheme

Polyscheme (Cassimatis, 2002; Cassimatis et al., 2007) is a flexible hybrid cognitive architecture designed to

tightly integrate diverse arrays of knowledge representations and inference schemes. Five central principles,
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Figure II.8: The CoSy Architecture Schema Subarchitecture (Sridharan et al., 2007)

1. Algorithms and representations have niches

2. Frequent communication between components is critical

3. Focus of attention must be carefully guided and singular

4. The Common Function Principle

5. The Multiple Implementation Principle

Figure II.9: Guiding principles of Polyscheme (Cassimatis, 2002)

shown in Figure II.9, have guided the development of Polyscheme (Cassimatis, 2002, 2006). Polyscheme is

composed of three components, a set of specialists, an attention buffer, and a focus manager. Specialists im-

plement inference schemes, and except for supporting a communications protocol, their design is unrestricted.

Specialists reason over and communicate with knowledge chunks called propositions. The attention buffer

stores a queue of these propositions, which have been requested for focus by specialists. The focus man-

ager selects propositions and forces each specialist to perform inferences on them (Cassimatis et al., 2007).

With this design, specialists are able to utilize different algorithms and representations, but stay abreast of

knowledge changes within the system. Polyscheme’s goal is to form a commonsense substrate, a means of

simplifying the realization of complex AI problems by providing a common base architecture capable of

supporting a diverse array of domains (Cassimatis, 2002). A review of available literature did not reveal any

experiments directly relating Polyscheme to beneficial forgetting capabilities.

Polyscheme provides a systematic means for integrating different forms of inference and knowledge

representations. Through focusing, knowledge can be shared across data representations. Polyscheme’s fo-
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cus manager is domain independent and different attention fixation strategies can be utilized to modify and

control the operations of specialists (Cassimatis et al., 2007), making the architecture flexible and applica-

ble to numerous domains requiring complex cognitive ability. In a demonstration of the ease of adapting

Polyscheme to different domains, the original implementation, which was concerned with physical reason-

ing, was converted into a natural language syntactic parser (Cassimatis, 2006). Polyscheme has also been

used in human-robot interaction and heterogeneous information retrieval applications. Real robot hardware

experiments have been completed using Polyscheme (Cassimatis et al., 2007), including NASA’s Robonaut

humanoid robot (Sofge et al., 2004; Ambrose et al., 2000).

II.3.4 ICARUS

ICARUS (Choi et al., 2004; Langley and Choi, 2006) is a cognitive architecture aiming to realize qualitative

aspects of human behavior. Several concepts regarding human behavior that originated in the field of psy-

chology have influenced the design of ICARUS. These include, the use of means-ends analysis to solve unfa-

miliar problems, mental problem solving combined with execution to complete challenges within a physical

context, skill generation resulting from the solving of novel challenges, and converting backward-chaining

search into a forward-chaining process through learning (Langley and Choi, 2006). ICARUS utilizes two

forms of knowledge, concepts and skills. Concepts represent forms of environmental situations built from

lower level concepts and percepts. Skills describe how goals can be decomposed into subgoals. Long term

memory possesses a hierarchical structure of skills. Concepts utilize relations between perceptions, while

skills are composed of relations between actions. Skills incorporate goal conditions, requisite preconditions,

and continuation conditions (Langley et al., 2009). Recently, episodic memory capabilities have been added

to ICARUS (Stracuzzi et al., 2009).

ICARUS follows a recognize-act paradigm. First, a perceptual buffer is populated with percepts of objects

perceived within the environment (Langley et al., 2009). These environmental percepts include a type, name,

and attribute pairs that describe the object in the environment being represented by the percept (Langley

and Choi, 2006). Low-level concepts are then compared against these percepts and matches are transfered

to short-term memory in the form of beliefs. Higher level concepts may be relevant to the newly created

beliefs, resulting in a cyclical belief creation pattern (Langley et al., 2009) Categories within ICARUS are

represented in a boolean fashion, preventing fuzzy classification (Langley and Choi, 2006). Starting from

the agent’s top-level goal, a search through its skill hierarchy is taken with paths containing skills possessing

fulfilled preconditions, but unsatisfied goals. Once a primitive skill is reached that possesses actions available

for direct execution, the search is terminated and the actions are taken. When the search fails to find primitive

actions to execute, the agent begins problem solving, which uses backward chaining to achieve goals and
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generate new skills (Langley et al., 2009).

ICARUS has been used in domains requiring inference, action execution, problem solving, and learning.

Some of these domains include logic problems (Tower of Hanoi, Multi-column subtraction, FreeCell, and

logistics), control of synthetic characters (Langley et al., 2009), and in-city driving (Langley and Choi, 2006).

Currently, the feasibility of using ICARUS to control robots is being explored (Langley et al., 2009).

II.3.5 ACT-R

Adaptive Control of Thought - Rational (ACT-R) (Anderson et al., 2004; Anderson and Lebiere, 1998) is a

cognitive architecture designed to model human behavior. The architecture is composed of a collection of

modules, each representing a different type of knowledge and functionality. These modules include sensor

processing modules, motor modules, an intentional module representing system goals, and a declarative

module that stores long-term declarative knowledge. Each module has a buffer that acts like short-term

memory, holding a single unit of relational declarative knowledge, frequently referred to as a chunk. Long-

term memory in ACT-R consists of a collection of production rules used to coordinate module processing.

When long-term memory productions match chunks in short-term memory, module buffers may be modified,

new structures may be constructed in memory, and actions within modules may be taken (Anderson et al.,

2004).

Production matching within ACT-R is founded on an activation level approach. Chunks in memory

compete for selection by productions based on an activation level set by equations II.1 and II.2. These

equations calculate the activation of a chunk based on a base activation (Bi) and the chunk’s relevance to

the current context. Wj, source activation, represents attention directed to portions of the current goal and

S ji, strength of association, represents the frequency that a chunk was required when element j was part of a

current goal. ε1 and ε2 represent permanent and transient noise, respectively. The base level activation (Bi) is

calculated by combining an initial expected base level activation value (β ) with a logarithmic function based

on the retrieval times of a chunk (Anderson and Lebiere, 1998).

Ai = Bi +∑
j

(WjS ji)+ ε1 + ε2 (II.1)

Bi = β + ln(
n

∑
k=1

t−d
k ) (II.2)

Pi =
1

1+ e− (Ai−τ)/s (II.3)
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Ti = Fe−Ai (II.4)

Chunk selection is not a deterministic process. After chunk activation levels have been updated, two

equations are used to select a chunk for activation and determine the latency before the chunk becomes

activated. Equation II.3 calculates the probability that a chunk’s activation level will exceed a preset threshold

value (τ). τ acts as a minimum threshold value for an item’s activation level, while s provides noise to the

system. When the activation of multiple chunks exceeds τ , the final chunk is selected probabilistically. A

retrieval latency, defined by equation II.4, delays the activation of the selected chunk. F provides a scaling

factor to match units to real time (Taatgen et al., 2006).

ACT-R inherently incorporates the concept of forgetting. Equation II.2, which calculates a chunk’s current

base activation level, implements trace-decay (time-based forgetting) and derivatives of the function have

been used to model trace-decay by other architectures and models (Nuxoll et al., 2004; Schooler and Hertwig,

2005). The presence of the summation term in equation II.1 results in the ACT-R model possessing similarity-

based interference (see Section II.4 for a description of the different types of interference that may lead to

forgetting). Similarity-based interference, interference resulting from the presence of items with similar

properties, results from the strength of association terms, Si, j, whose values are dependent on the number

of chunks associated with components of the current goal and the total number of chunks in declarative

memory. As the number of similar chunks increases, the strength of association decreases, resulting in

increased interference. The combination of base level activations and encoding interference enables ACT-R

to directly model the psychological notion of “fan-out” (Anderson and Lebiere, 1998).

ACT-R is capable of both structural and statistical learning. Base activation levels for chunks evolve

through the operation of the ACT-R system. Frequently selecting a chunk will increase its base level ac-

tivation, while ignoring a chunk will cause its activation level to fade. Through a process of production

compilation, new productions can be generated. New productions are generated based on the firing of exist-

ing productions and variable replacement (Langley et al., 2009).

ACT-R has been used across a wide variety of domains within experimental psychology. Phenomena

that have been explored using ACT-R include memory, attention, reasoning, problem solving, and language

processing (Langley et al., 2009). ACT-R has also been used to explore if forgetting is beneficial to heuris-

tics (Schooler and Hertwig, 2005) and to model individual differences (Daily et al., 2001). A number of

robotic applications have been developed using ACT-R. Burghart et al. (2006) incorporated ACT-R into a

robotic system that solves jigsaw puzzles with the assistance of a human tutor. ACT-R/S (Harrison and
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Schunn, 2003; Harrison, 2007), an extended version of ACT-R that incorporates two spatial buffers (config-

ural and manipulative), has been incorporated into NASA’s Robonaut project (Sofge et al., 2004). Another

extension of ACT-R, ACT-R/Embodied (ACT-R/E) (Trafton et al., 2008), combines visual and auditory data

to enable robots to track conversations within human-robot interaction domains.

II.3.6 Soar

Soar (Lehman et al., 2006)1is a cognitive architecture originating in the 1980’s that aims to model high-level

aspects of human cognition (Laird, 2008). Two fundamental assumptions have guided Soar’s development,

that humans are complex knowledge systems that rationally utilize knowledge, and that human cognition

primarily operates at the symbolic level (Johnson, 1997). Soar possesses three forms of long-term memory:

procedural, semantic, and episodic knowledge (Nuxoll and Laird, 2007; Laird, 2008). Procedural memory is

composed of operators that describe primitive and high level domain specific actions. Operators can propose

actions both internal and external to an agent. Working memory within Soar contains declarative knowledge

and is the only form of memory that can be matched by procedural knowledge (Johnson, 1997).

Tasks in Soar are formed around the achievement of goals. Goals are stored on a stack and can possess

subgoals to form a hierarchical structure. The processing cycle within Soar consists of three steps, propose

operators, select an operator, and apply the selected operator. During the process of selecting operators that

have been suggested by procedural memory, if multiple operators have the same preference or if no operators

have been proposed, then an impasse is instigated (Langley et al., 2009). During an impasse, a new goal

aiming to solve the impasse is created and is added to the agent’s goal stack (Johnson, 1997). When a new

goal is added to the stack, a new state is generated, which inherits the properties of the parent state (Langley

et al., 2009). Operators are able to modify parent states, both directly and indirectly through external actions.

When a goal is achieved, the goal is removed from the stack and the substate is discarded (Laird, 2006).

The original design for Soar did not incorporate forgetting, but it has subsequently been added (Chong,

2003). Chong’s implementation of forgetting borrowed the activation equation from ACT-R, see equa-

tions II.1 and II.2. The spreading activation term in equation II.1 and the permanent noise term were not

used. The summation term was not included in this implementation because Soar did not possess any sub-

symbolic associative links. Equation II.5 defines the value for the transient noise term, where ans represents

the variance of the distribution used to model the noise within the system. The decay implementation in Soar

was then extend by Nuxoll et al. (2004). Extensions to Chong’s implementation included improved efficiency

of the decay features, extending decay functionality to the entirety of working memory, and applying acti-

1Soar originally stood for State, Operator, And Result, but the name is no longer considered to be an acronym. Additionally, Soar is
no longer written in all capital letters to reflect Soar’s transition to a proper name (Ritter and Kim, 2006).
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vation differently to both forms of working memory present within Soar. Additionally, a change was made

that diverges from the original ACT-R implementation. Instead of setting the initial base activation of a new

working memory item to a fixed value, the item’s initial activation level is dependent on the activation levels

of the working memory elements that caused the item to be created.

ε2 = ans∗ log
[
(1.0− p)

/
p
]

p = rand [0.0,1.0] (II.5)

Soar is capable of procedural, episodic, and semantic learning. Procedural learning occurs via two pro-

cesses, chunking and reinforcement learning. When subgoals are completed, chunking can be used to abstract

the processing that resulted in the goal being completed. This abstraction is then converted into a new pro-

duction rule. Reinforcement learning adjusts the operator selection process by modifying operator preference

levels. Semantic memory is bolstered through the accumulation of portions of working memory for later use,

while episodic learning records copies of working memory at different points in time (Langley et al., 2009).

A diverse array of domains have been explored with the Soar architecture (Langley et al., 2009). Software

agents using Soar have been developed to compete in the First Person Shooter style computer games Quake

2 (Laird, 2001), Unreal Tournament (Magerko et al., 2004), Quake 3, and Descent 3 (Wintermute et al.,

2007). Soar has also been used to model military pilots participating in air combat training exercises (Tambe

et al., 1995). Human language processing (Lewis, 1993) and categorization (Miller and Laird, 1996) have

also been explored with the Soar cognitive architecture. Soar has previously been employed by robotic

systems. Sultanik et al. (2008) developed a system where Soar controlled mobile robots performing team-

based surveillance. These robots interacted with human operators through a Personal Digital Assistant (PDA)

based interface. Hanford et al. (2008) developed a six-legged hexapod robot that used Soar to complete

navigation and obstacle avoidance tasks.

II.3.7 CLARION

Connectionist Learning with Adaptive Rule Induction ON-line (CLARION) (Sun, 2003) is a fixed-hybrid

cognitive architecture composed of four distinct subsystems, the Action-Centered Subsystem, the Non-

Action-Centered Subsystem, the Motivational Subsystem, and the Metacognitive Subsystem, see Figure II.10.

The Action-Centered Subsystem performs both physical and mental action control, while the Non-Action-

Centered Subsystem maintains non-action centric knowledge. Motivational decision support is provided by

the Motivational Subsystem. The Metacognitive Subsystem monitors, directs, and alters the actions of the

other subsystems. All subsystems provide both implicit and explicit forms of knowledge representation. Im-

plicit knowledge resides in the “bottom” level of each subsystem and consists of sub-symbolic reasoning
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Figure II.10: The CLARION Cognitive Architecture (Adapted from (Sun et al., 2006))

utilizing neural networks. “Top” level reasoning provides symbolic processing through rule-based compo-

nents (Sun et al., 2006). All four subsystems can perform bidirectional learning; top-down and bottom-

up (Sun, 2006).

CLARION directly incorporates forgetting mechanisms into the Non-Action-Centered and Action-Centered

subsystems. Symbolic knowledge within both subsystems is composed of a collection of chunks and asso-

ciated rules, each of which can undergo forgetting. Within the Non-Action-Centered Subsystem, forgetting

occurs by two separate processes. The first involves a time dependent base level activation (i.e., decay) similar

to ACT-R, see Section II.3.5. Defined by equation II.6, base level activation within the Non-Action-Centered

Subsystem affects the selection of chunks and associative rules. If a base level activation drops below a

threshold value, the item is filtered. Rules and chunks can also be forgotten using a frequency threshold.

CLARION calculates the frequency that chunks and rules are invocated (encoding, re-encoding, extraction,

re-extraction, and activation) and if the invocation frequency for an item drops below some threshold, the item

is removed. When chunks are removed from the system, associative rules connected to the chunk are also re-

moved. The Action-Centered Subsystem utilizes the same forgetting mechanisms except that items within the

Action-Centered Subsystem’s capacity-limited working memory can also have chunks deliberatively added
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and removed (Sun, 2003).

B j = iB j + c
n

∑
l=1

t−d
l (II.6)

CLARION explicitly provides metacognitive capabilities through its subsystems. While one subsection

has been labeled the metacognition subsection, metacognitive capabilities are also provided via the motiva-

tional subsystem. The action-centered subsystem can also assist in realizing metacognition, but does not have

direct architectural support (Sun, 2003; Sun et al., 2006).

CLARION’s metacognitive subsystems utilize a diverse array of status information in determining how

to modify the system. All modules within the metacognitive subsystem have access to the system’s state,

goal structure, and state of the systems drives. Through the goal setting module, the CLARION architecture

is capable of generating new goals that should be pursued. The evaluation module processes the above inputs

into a reinforcement reward to be used for learning. Filtering, selection, and regulation are also possible

within the metacognitive subsystem. Through its reasoning, the metacognitive subsystem is able to modify

many of the system’s properties. Reasoning and data processing provided by CLARION’s motivational

subsystem also promotes metacognition. Via generating drive strengths for an agent, this subsystem indirectly

determines the importance of goals at any point in time.

CLARION has previously been used to simulate a number of cognitive tasks, including serial reaction

time, artificial grammar learning, process control, alphabetical arithmetic, Tower of Hanoi (Sun, 2002),

minefield navigation (Sun and Peterson, 1998; Sun et al., 2001), and social simulation (Naveh and Sun,

2006). The cognitive architecture has been used to explore the interactions between rule-based reasoning,

similarity-based reasoning, and associative memory (Sun et al., 2006) and also investigate the phenomenon

of performance degradation under pressure (Wilson et al., 2009). Additionally, CLARION models have been

employed to probe the relationship between the dichotomies of implicit versus explicit knowledge and proce-

dural versus declarative knowledge (Sun et al., 2009). A review of the available literature did not reveal any

experiments involving real robots using the CLARION architecture.

II.3.8 COGNET

COGnition as a NEtwork of Tasks (COGNET) (Harper and Zacharias, 2004; Zachary and Mentec, 2000;

Zachary et al., 2005) is a real-time multi-tasking cognitive architecture designed to produce agents for in-

telligent training, decision-support, and human performance modeling. As shown in Figure II.11, COGNET

consists of four main components: cognition, perception, and action subsystems along with a memory store.

All three subsystems operate in parallel and the cognitive and perceptual subsystems can access the memory
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Figure II.11: The COGNET Cognitive Architecture (Zachary et al., 2005)

store independently. Sets of resources exist within the perception and motor subsystems to afford timing and

accuracy simulations with the outside world. Metacognition support has been incorporated into the original

design, adding a cognitive proprioception component, additions to the memory store, and metacognitive rea-

soning within the cognitive subsystem. For purposes of simplifying models within the COGNET architecture,

the memory store operates as a long term memory structure (Zachary et al., 2005).

COGNET maintains five separate forms of knowledge: declarative, procedural, action, perceptual, and

metacognitive (Zachary et al., 2005). Declarative knowledge utilizes a blackboard representation that can

be modified by both the cognitive and perceptual subsystems (Zachary et al., 1998). Guiding the opera-

tions of the cognitive subsystem, modifying declarative memory, and selecting actions for the motor subsys-

tem (Zachary et al., 2005), procedural knowledge utilizes a chunking mechanism based on Goals, Operators,

Methods, and Selection Rules (GOMS) (Zachary et al., 1998). Action knowledge instructs the motor sub-

system how to interact with the outside world. Rule-based perceptual knowledge consists of the form, IF

event Then POST updated data to memory store (Zachary et al., 1998). Metacognitive knowledge is utilized

by the cognitive subsystem and is GOMS based (Zachary et al., 2005). Metacognitive memory stores in-

formation relevant to the system, which simple GOMS style knowledge chunks can use to modify system

operation. The cognitive subsystem processes procedural and metacognitive rules in an identical fashion,

simplifying development. Metacognition can be utilized to improve how the system restarts interrupted pro-

cesses. COGNET has been designed to easily transition from a cognitive task analysis of a highly structured

domain to a working system.

A forgetting mechanism has been incorporated into the COGNET architecture (Zachary et al., 2004).

The forgetting capabilities were modeled after the Human Operator Simulator work of Glenn et al. (1992)
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and Lane et al. (1981). Trace-decay and rehearsal effects (see Section II.4.1) were combined with proactive

interference (see Section II.4.2) to model human learning performance. Only elements located within a

COGNET model’s short-term memory can be forgotten by these mechanisms. Contradictory information can

be deliberatively removed from both short-term and long-term memory (Zachary et al., 2004).

COGNET has been used to construct models of real-time human-computer interaction in multi-tasking

environments (Zachary et al., 1998). Attention-switching has been explored in vehicle tracking (Ryder and

Zachary, 1991), and COGNET models have been used to create improved computer interfaces (Zachary

et al., 1992) for en-route air traffic control (Seamster et al., 1993) and telephone operator services (Ryder

et al., 1998). The Australian air traffic control curriculum has been redesigned with results from a COGNET

air traffic control model (Australian Civil Aviation Authority, 1994). COGNET has been incorporated into

the Operational driven development approach for Cognitive Systems (Reichel et al., 2008) cognitive agent

system. This system allows a remote operator to direct teams of unmanned aerial vehicles operating within

military domains.

Robots operating in dynamic domains and assigned complex tasks may require a large collection of skills,

knowledge, and capabilities. The use of a cognitive architecture may be required for designs to effectively

incorporate forgetting into a system capable of parallel and diverse processing capabilities. Existing cognitive

architectures span a wide range of design paradigms and have been tested across a diverse sampling of

experimental domains. Distilling the critical features of each may lead to a better understanding of the

requirements for synthetic forgetting and its applicability to robotic domains.

II.4 Forgetting

Robots and humans operating within complex, dynamic domains are often inundated with data and forget-

ting can play a critical role in the ability to achieve and maintain SA. Forgetting information can remove

out-of-date information, increase the ease of recalling critical knowledge, and improve cognitive processing

efficiency. Robotic systems that aim to realize human levels of SA may require the beneficial, but intricate

effects of forgetting.

A long standing debate has raged regarding the form and mechanics of human forgetting (Roediger III,

2008). Two prominent theories exist, time-based decay and similarity-based interference, which appear to

stand in stark contrast to one another (Jonides et al., 2008). The first, subscribes to the belief that the passage

of time directly degrades items within memory, while the later postulates that accumulation of inter-item
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interference prevents items from being successfully recalled. Numerous models of each theory have been

developed that appear to accurately model empirical evidence, but the developed analyses and their models

have also sparked controversy (Jonides et al., 2008; Mueller and Krawitz, 2009; Altmann and Schunn, 2002;

Sims and Gray, 2004; Wixted, 2004). The complexity of psychological testing of humans has driven a serious

debate over the possibility of diverse arrays of confounds that can cloud the interpretations of results (Jonides

et al., 2008; Oberauer, 2006; Nairne, 2002; Wixted, 2004). Further complicating matters, it has been postu-

lated that some psychologists have misread and misinterpreted previous findings, resulting in the dismissal of

valid ideas and the reluctance to accept new theories (Wixted, 2004; Altmann and Schunn, 2002).

These debates are further heightened by the multiple forms of human memory, which can be partitioned

into two major categories (Tulving, 1990). Procedural memory is highly stable, non-symbolic knowledge

without a truth value, forming stimulus-response pairings. Conversely, declarative memory is “knowledge

that can be introspectively reasoned over without any overt behavioral response” (Tulving, 1990). Declarative

memory groups two separate, but parallel memory types, episodic memory and semantic memory (Tulving,

1984). Episodic memory maintains a collection of individual episodes and events, including temporal-spatial

relations. Semantic memory is a non-instance based memory involving “the acquisition, retention, and uti-

lization of skills and knowledge that have to do with the world” (Tulving, 1984). Some models and analyses

of forgetting are strongly dependent on a particular form of memory. Altmann and Gray (2002) stated that

their functional decay model relies heavily on episodic memory representations, although Sims and Gray

(2004) questioned this dependence.

Item representation, which may be influenced by types of memory, adds additional uncertainty regarding

the nature of forgetting. Presently, at least two forms of storage have been considered within short-term

memory, whole item storage and the binding of features (Jonides et al., 2008). Models of both trace-based

decay and interference-based forgetting have been developed utilizing both short-term storage approaches.

It has been posited that working memory operates on a number of levels, implying different item recall

difficulties (Jonides et al., 2008). The Oberauer model (Oberauer, 2006) presents three levels of focus, “the

activated part of long-term memory”, “the region of direct access”, and “the focus of attention”. The first

represents activated long-term memory currently residing in working memory. The second represents highly

activated items that can be directly accessed, while the third represents the item currently under focus. At the

lower level, items may have only a small probability of being recalled, but they will provide structured noise,

facilitating the forgetting process (Jonides et al., 2008).

Recall and reperception can affect the ability to recall items from memory. The spacing effect (Melton,

1967; Dempster, 1988; Pavlik Jr. and Anderson, 2005; Callan and Schweighofer, 2010) is the psychological

phenomena where spaced repetition of reperception results in greater recall ability than repeatedly observing
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an item within a short period of time. While one of the most reproducible phenomenon in experimental psy-

chology (Dempster, 1988), a complete understanding is still lacking. Extensive work has been completed ex-

ploring the spacing effect and a number of theories have been crafted (Pavlik Jr. and Anderson, 2005; Cepeda

et al., 2006; Callan and Schweighofer, 2010). The deficient-processing theory states repeated presentation of

an item induces a feeling of knowing (Zechmeister and Shaughnessy, 1980), resulting in reduced maintenance

via rehearsal. When presentations are further spaced apart, the item will often no longer be in working mem-

ory and the sense of knowledge is reduced, resulting in greater rehearsal being performed (Rundus, 1971;

Cuddy and Jacoby, 1982; Callan and Schweighofer, 2010). The encoding variability theory or contextual

fluctuation theory (Estes, 1955; Melton, 1967; Landauer, 1969; Glenberg, 1979; Raaijmakers, 2003; Callan

and Schweighofer, 2010) posits that when items are perceived in a spaced fashion, an increasingly diverse set

of associations to existing knowledge forms along with the item’s associated context becoming more diverse,

aiding subsequent cue-based retrieval.

II.4.1 Time-based Decay

Time-based decay is the intuitive concept that items within short-term memory deteriorate and eventually

disappear due to the effects of time (Jonides et al., 2008). At perception, items are encoded in memory at a

particular activation level, dictating ease of retrieval. As time passes, this activation level decreases, increas-

ing the difficulty of item retrieval. To combat these effects, the memory system performs a refreshing strategy

called rehearsal (Nairne, 2002). During this process, memory items are recalled in order to strengthening their

activation levels (Nairne, 2002). As shown in Figure II.12, the activation level of a memory item may un-

dergo three stages (Altmann, 2002). Strengthening involves memory rapidly recalling the item to boost its

activation level. The middle stage, Use, involves recalling a memory item to complete a task. During this

period, recall provides a boost to the item’s activation level, but not at a rate to fully counteract decay. In the

final stage, Disuse, the item is no longer used and the activation slowly decays.

In 1885, Ebbinghaus (1885) presented the original forgetting curve, a logarithmic function, which can

be estimated with a power function (Wixted and Carpenter, 2007), that predicts trace-decay (Roediger III,

2008). A commonly used equation for modeling time-based decay, Equation II.2, can be found in the ACT-R

cognitive architecture (Anderson and Lebiere, 1998), see Section II.3.5.

While mathematical models of time-based decay exist (Mueller and Krawitz, 2009), there are no generally

agreed upon biological mechanisms to support time-based decay, although several mechanisms have been

proposed (Jonides et al., 2008). One suggestion postulates that neurons forming an item in memory fall out

of synchrony, continually increasing the difficultly of retrieval (Lustig et al., 2005). A second states items do

not deteriorate, but their probability of receiving memory’s focus of attention wanes, making the item harder
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Figure II.12: Time-based decay (adapted from (Altmann, 2002))

to recall (Jonides et al., 2008).

Both psychological-based and neurological-based empirical evidence has been collected in order to verify

time-based decay, but alternate explanations exist for many of the discovered trends (Jonides et al., 2008).

These alternate explanations have been used as support for interference-based forgetting (Lewandowsky et al.,

2004).

II.4.2 Similarity-based Interference

Similarity-based interference, the current dominant account of forgetting (Jonides et al., 2008), has a long and

storied history (Wixted, 2004). While proponents of interference admit that forgetting is correlated with time,

they believe the true causes of failed recall are processes and activities that occur during a time span (Nairne,

2002). Unlike decay theory, interference predicts failed recall results from inter-item competition for the

memory system’s focus of attention (Roediger III, 2008). Interference-based forgetting is a complex theory

involving many forms of competition between items. Competition can be affected by item encoding strength,

the number of items, the similarity between items, and the phase of learning and recall (encoding, storage,

and retrieval) (Jonides et al., 2008). Two common methods exist for partitioning the theories of interference,

the point of interference (encoding and output) (Lewandowsky et al., 2004) and the age of affected items

(retroactive interference and proactive interference) (Jonides et al., 2008). The former compares Encoding

Interference with Output Interference, while the later contrasts Retroactive Interference with Proactive Inter-

ference. Each form of interference exhibits different behaviors and many models of forgetting promote one

over the other.
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II.4.2.1 Proactive Interference

Proactive interference effects entail existing memory items decreasing the encoding strength of new items and

increasing the difficulty associated with new item recall (Jonides et al., 2008). Proactive interference is often

associated with cue-overload, a phenomena where items associated with the same or similar cues interfere

with each other (Wixted, 2004). When a new item is initially perceived, the effects of proactive interference

may be small, but will increase with time. It is speculated that items previously associated with a cue are

unintentionally recalled during the new item’s retention period resulting in interference (Wixted, 2004).

II.4.2.2 Retroactive Interference

Retroactive effects describe the phenomena where new memory items interfere with existing items (Jonides

et al., 2008). While an object of debate, there appears to be a Retroactive Interference gradient immediately

following the perception of an item. Some believe that after memory trace creation, a consolidation process

begins that strengthens the item. As items consolidate, they become more resistant to interference and the

effects of retroactive interference decrease (Wixted, 2004).

Skaggs (1933) has posited that retroactive interference effects actually arise from two separate processes,

similarity and mental exertion. Receiving grater acceptance, similarity effects dictate that increased simi-

larity between items results in greater retroactive interference (Jonides et al., 2008). Mental exertion pro-

vides non-similarity based retroactive interference. During an item’s consolidation process, the presence of

mental exertion of any form will adversely affect the consolidation process and the item’s final encoding

strength (Wixted, 2004).

II.4.3 Cognitive Models Incorporating Forgetting

Through the years, strong evidence has been found to both support and refute the two leading theories of

forgetting, time-based decay and interference (Jonides et al., 2008). Some research has posited that forgetting

is a combination of both theories and their subcomponents (Jonides et al., 2008; Wixted, 2004; Sims and

Gray, 2004; Altmann and Gray, 2002). Reflecting on the complexity of the human mind and cognition, it

is unlikely that the full dynamic of forgetting can be realized from one parsimonious mechanism. Several

researchers have developed models of forgetting that incorporate multiple forgetting methods (Mueller and

Krawitz, 2009). Others that stand by one mechanism, have admitted that multiple mechanisms may contribute

to forgetting, just to a lesser extent (Wixted, 2004). Table II.5 presents a number of existing models of short-

term memory and characterizes them based on the forms of forgetting that they contain. This table has been

modified and expanded from (Mueller and Krawitz, 2009). As presented in (Mueller and Krawitz, 2009),

the Time Effects column was labeled Decay and was changed to prevent confusion with purely decay-based
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Table II.5: Models of short-term memory (Adapted and Expanded from (Mueller and Krawitz, 2009))
Time Encoding Output

Model Effects Capacity Interference Interference
Perturbation Model (Lee and Estes, 1977, 1981) + - - -
(Shiffrin and Cook, 1978) + + - -

The Trace Threshold Model (Schweickert and Boruff, 1986) + - - -
TODAM (Lewandowsky and Murdock, 1989) - + + o
Network Model (Burgess and Hitch, 1992, 1999) + + + +
Feature Model (Neath and Nairne, 1995) - + + -
(Brown and Hulme, 1995) o - o o

ACT-R (Anderson and Matessa, 1997) + + + -
(Dosher and Ma, 1998; Dosher, 1999) + - - +

The Primacy Model (Page and Norris, 1998) + + + -
Start-End Model (Henson, 1998) + + + +
SPAN (Byrne, 1998) + + + -
EPIC (Kieras et al., 1999) + - - -
OSCAR (Brown et al., 2000) - + + +
Modified EPIC (Mueller, 2002) o o o o
SOB (Farrell and Lewandowsky, 2002) - + + +
Modified SOAR (Nuxoll et al., 2004) + - - -
SIMPLE (Brown et al., 2007) + - + -

’+’ the component is present, ’o’ the component is optional, ’-’ the component is not present.

forgetting effects. Table II.5 was expanded with the incorporation of Modified Soar. The remainder of this

section will present a few models of forgetting that are representative of trace-decay and interference-based

mechanisms.

II.4.3.1 The Trace Threshold Model

Schweickert and Boruff (1986) developed a model of trace-decay within short-term memory to explore verbal

capacity limits. Unlike many models that promote short-term memory capacity limits, this model is designed

around the length of time a verbal trace can be recalled. The model is founded on the idea that the “similarity

between the trace-decay hypothesis and the common assumption made in psychophysics that the probability

of detecting a stimulus equals the probability that its intensity is greater than a fluctuating threshold” (Schwe-

ickert and Boruff, 1986). Equations II.7- II.9 describe the entirety of the Schweikert-Boruff model. In this

model, list recall will be successful if the verbal trace duration, Tv, is greater than the required recall time, Tr.

Equation II.7 calculates the probability of correctly recalling a list. If Tr and Tv are considered to be stochasti-

cally independent random variables possessing means of τr and τv with variances of σ2
r and σ2

v , equation II.7

can be transformed into equations II.8 and II.9. Equation II.8 calculates the probability of immediate se-

rial recall “analogous to the psychophysical function for probability of detection” (Schweickert and Boruff,

1986). τv and σ2
v are determined through estimation with empirical data (Schweickert and Boruff, 1986).

P = P [Tr 6 Tv] (II.7)
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P = P

[
Tr−Tv− (τr− τv)√

σ2
r +σ2

v
6 z

]
(II.8)

z =− (τr− τv)
/√

σ2
r +σ2

v (II.9)

The Trace Threshold model accurately models the relationship between speaking times and the probabil-

ity of correct list recall (Mueller and Krawitz, 2009), although it only takes maintenance into account (Schwe-

ickert and Boruff, 1986). Other components of memory span, including word frequency (Hulme et al., 1997),

have been tested with the Trace Threshold model (Mueller and Krawitz, 2009). Results from the Trace

Threshold model have been misinterpreted in the past, since unlike other models, this model treats a list

of words as a single item. The more common approach is to treat words as individual items (Mueller and

Krawitz, 2009).

II.4.3.2 SIMPLE

The Scale-Independent Memory, Perception, and Learning (SIMPLE) model (Brown et al., 2007) is a tempo-

ral difference model of human memory and forgetting. In this model, items to be recalled are located within

a multi-dimensional psychological space. A temporal axis exists within this space that records the amount

of time since an item’s point of presentation and other axes can exist that record additional item properties.

Since SIMPLE is a temporal difference model of forgetting, the discriminability of an item is determined by

the degree to which the item is isolated from its neighbors. When calculating the discriminability of items,

inter-item distance along the time-axis undergoes a logarithmic compression, that increases the effective sim-

ilarity of items as they move further from the psychological space’s origin. While time plays a critical role

in the SIMPLE model, it does not incorporate trace-decay. Forgetting within SIMPLE is purely interfer-

ence based. With Weber Compression, as time passes, items become increasingly similar and difficult to

discriminate (Brown et al., 2007).

SIMPLE is a “scale-similar” model of forgetting, exhibiting similar behavior across time-scales differing

by orders of magnitude (Brown et al., 2007). Similar behavior across time-scales is possible because of the

way SIMPLE calculates inter-item similarity. Instead of comparing items by the magnitude of inter-item

distance within psychological space, the ratios of positions along each axis, raised by a power constant, are

compared. SIMPLE is also founded on the concept of local distinctiveness. As inter-item distance increases,

the similarity between items decreases along with interference. Resultingly, items within close proximity
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affect each other to a greater extent than items spaced further apart (Brown et al., 2007).

The distance between two items in a multi-dimensional psychological space is computed with equa-

tion II.10. For each dimension, the difference is located along the relevant axis and scaled by a constant

factor, wl , representing the level of attention paid to that dimension. Distances in SIMPLE are calculated in

a Manhattan fashion as opposed to an Euclidean or more complex method (Lewandowsky et al., 2004). The

distance between two items is then processed by equation II.11 to form a similarity metric η . α modifies the

family of equations used to transform distance into similarity. When α = 1.0, equation II.11 acts as an expo-

nential function, while a value of 2.0 results in Gaussian behavior (Brown et al., 2007). Many experiments

set α to a value of 1.0 (Brown et al., 2007; Lewandowsky et al., 2004). The discriminability of an item is

inversely proportional to the similarity to the rest of the items in the system summed together, equation II.12.

When recall omissions cannot occur, the probability of correctly recalling an item in a target location during

serial recall is equivalent to the item’s discriminability. However, the probability of incorrectly recalling an

item at a desired location is given by equation II.13. In this equation, γ represents the deterministic nature of

item recall. γ is often set to 1.0 (Brown et al., 2007). When modeling free recall, omissions are possible and

equation II.14 is required instead of equation II.12. Equation II.14 transforms the probability density with a

sigmoid function, governed by threshold value t and slope s.

Si, j =
m

∑
l=1

wl |Mi,l −M j,l | where
m

∑
l=1

wl = 1 (II.10)

ηi, j = e−c|Si, j|α (II.11)

Di =
1

n
∑
j=1

ηi, j

(II.12)

P(R j
∣∣Ti) =

(ηi, j)
γ

n
∑

k=1

(
ηi,k

)γ
(II.13)

P(Ri|Di) =
1

1+ e−s(Di−t) (II.14)
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II.4.3.3 The Architecture of Dosher and Ma (1998) and Dosher (1999)

Dosher and Ma (1998) and Dosher (1999) developed a model of human forgetting that combines trace-decay

with output interference effects. In this model of serial recall, trace-decay effects occur during explicitly

labeled retention intervals and during the process of recall. As the length of time required to recall a list

of items increases, forgetting effects become more severe and the probability of correct list recall decreases.

Their model consists of two formulations, one predicting full list recall and a second that calculates individual

item recall probabilities.

Equation II.15 determines the probability of correctly recalling an entire list during a serial recall trial

and takes a common exponential form (Murdock, 1982; Wixted and Carpenter, 2007). Accurate list recall

is influenced by list length (L), forgetting rate (β ), and initial encoding strength of the entire list (λ ). De-

pending on the form of experimental data being analyzed, tL can represent output time, output duration, or

pronunciation duration of the list. A Gaussian with mean µ ′(tL) and standard deviation σ models the strength

distribution of the list during the forgetting process. Strength values above a threshold value τ are recalled,

while lesser values indicate the list has been forgotten.

p = 1−Φ(τ,µ ′ (tL) ,σ)
µ ′ (tL) = λe−β tL (II.15)

Equation II.16 represents the probability of correctly recalling an individual item within a list of length

l at its correct location (k) with material m and presentation rate r during serial recall trials. This equation

incorporates two separate measures of time, the length of time between item presentation and the end of

presentation (ts) and the time duration between the end of list presentation and the point at which the item is

to be recalled (to). Four scaling factors, βIs , βIo , βTs , and βTo , regulate the relative importance of the factors

influencing forgetting. Item encoding strength αkr is dependent on item position and presentation rate.

p = 1−Φ(τ,µklmr,1) = αkre−(βIs(l−k)+βIo(k−1)+βT sts+βToto) (II.16)

Robotic systems have benefited from the introduction of ideas and concepts inspired by biological systems

and humans in particular. Contemporary robotic designs are continuously incorporating additional human

inspired capabilities. Human forgetting has the potential to motivate an analogous capability for robots. With

increased forgetting abilities, future robots may be better equipped to realize benefits of forgetting similar to

those currently enjoyed by humans.
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II.4.3.4 Robotic Designs Employing Forgetting

Forgetting has previously been explored in the field of robotics. Kira and Arkin (2004) augmented an existing

case-based reasoning system to use forgetting as a means of modifying a case library. Implemented within

the MissionLab System (MacKenzie et al., 1997), an instance of the Autonomous Robot Architecture (Arkin,

1998), the modifications affected a behavioral unit called GOTO, which realizes goal-directed navigation

in mobile robots. Cases in this system consisted of a fixed size collection of continuous valued vectors

of static length, see Figure II.13. The system was able to learn new cases, but maintained a case library

with a capacity that was quickly exceed. Each case was implemented as a fixed collection of scalar values

representing internal parameters and traversability of areas directly adjacent to the robot (Likhachev and

Arkin, 2001). Kira and Arkin’s cases were fixed data structures, but many systems may use variable size

constructs. Forgetting was implemented to aid in selecting cases the system could delete when its case

library’s capacity was exceeded.

To facilitate forgetting, three separate forms of case selection were evaluated: random selection, metric-

based selection, and a spreading activation selection involving time-based decay. Random forgetting was not

expected to produce quality results due to several properties inherent in the case-based reasoning system. The

case library capacity was relatively small (four to twenty cases) and was expected to generally possess few

redundant high performance cases. As the robot operated within its domain, existing cases were improved

through a hill-climbing learning algorithm (Likhachev et al., 2002). Random selection primarily acted as a

control group to compare other strategies. Four separate metrics were implemented in the metric-based for-

getting mechanism, performance, recency, frequency of use, and a weighted summation of the three metrics.

Activation spreading selection maintained activation scores for cases based on case construction, case perfor-

mance, case similarity to the current environment, and case lifetime. Time effects resulted in a decrement to

case activation similar to time-based decay, except the degradation was linear.

Testing occurred in the MissionLab simulator, with the robot navigating through both homogeneous and

heterogeneous environments of various clutter density. Performance and frequency metrics best equipped the

robot to complete the most tasks and minimize distance traveled. Weighting the metrics resulted in similar

performance. Forgetting resulting from spreading activation performed worse than a robot not equipped with

a forgetting mechanism. Recency and random forgetting achieved inferior results. Kira and Arkin attribute

some of spreading activation’s performance deficits to parameter and threshold settings.

While Kira and Arkin explored the benefits of forgetting for case-based reasoning, Correia and Abreu

(2004) investigated improvements to topological map generation and maintenance from forgetting. In their

work, fatigue and trace decay where incorporated into a behavior-based robot. This combination of abilities
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Spatial Vector:
D(goal distance) = 5

density distance
Region 0: σ0 = 1.00 r0 = 1.00
Region 1: σ1 = 0.80 r1 = 1.00
Region 2: σ2 = 0.00 r2 = 1.00
Region 3: σ3 = 0.80 r3 = 1.00
Temporal Vector:
(0 - min, 1 - max)
ShortTerm Motion Rs = 0.000
LongTerm Motion Rl = 0.600
Traversability Vector:
(0 - untraversable, 1 - excellent)
f0 = 0.14 f1 = 0.32
f2 = 1.00 f3 = 0.32

Case Output Parameters:
MoveToGoal Gain = 0.10
Noise Gain = 0.02
Noise Persistence = 10
Obstacle Gain = 0.80
Obstacle Sphere = 1.50
Bias Vector X = -1.00
Bias Vector Y = 0.70
Bias Vector Gain = 0.70
CaseTime = 2.0

Figure II.13: Example case-based reasoning case (Adapted from (Likhachev and Arkin, 2001))

was chosen to enable the robot to effectively manage the inter-play between exploration and preventing stale

information from corrupting data stores. In their design, a simplified representation of fatigue was imple-

mented as the latency, warm-up, and after-discharge portions of fatigue where assumed to have a zero second

duration. Only the fatigue and recovery periods had non-zero durations. The robot possessed two behaviors,

explore and go-home, of which explore had higher priority. In their experiments, the explore behavior would

be enabled until the robot became fatigued or the map exceeded a threshold number of locations, causing

the go-home behavior to be executed. After the recovery period, the robot would continue exploring the

environment. Forgetting capabilities were used to purge stale information from the map. A trace-based de-

cay approach was explored and three separate forgetting functions were evaluated, see equations II.17-II.19.

In these equations, α represents the decay factor and n represents the number of times a location has been

visited. The system was evaluated on simulated Kheprea robots (Correia and Abreu, 2004).

w(t +1) = w(t)−αeαt where w(t0) = 1 (II.17)

w(t) =
1

1+ e−αt (II.18)

w(t) = 1− 1
1+ exp

(
− 0.8t−3000

500 +2.5n
) (II.19)
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Howell and Donald (2000) developed a robot that utilized forgetting while performing simultaneous lo-

calization and mapping tasks. During the execution of a task, the robot generated a map comprised of tangent

vectors extracted from sonar readings. The number of data points within the map was capacity limited to a

set number of entries and when this limit was exceeded, the system randomly discarded existing tangents.

Removal of map entries provided benefits of bounding computational requirements by the mapping and local-

ization algorithms and removing older information from the map. Howell and Donald (2000) presented three

possible modifications to the forgetting mechanism that included restricting map evaluations to areas within

close proximity to the robot, sampling available vectors to reduce the density of evaluated map entities, and

performing localization at progressively more precise resolutions.
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CHAPTER III

Detailed Presentation of Approach to Solving Problem

This chapter presents a novel approach to improving the data management capabilities of robotic systems

through the incorporation of Human-Inspired Forgetting mechanisms. The developed forgetting system holds

the potential to reduce the number of memory items requiring cognitive processing, while simultaneously

improving a robot’s ability to detect critical cues in the environment. Increasing the ability for robotic systems

to wade through vast arrays of diverse data will not generate SA by itself, but will form one component that

may combine with other components to form the interactions required for the realization of improved robotic

SA.

Robotic SA is influenced by a wide array of components and processes, but data management forms an

unifying theme connecting many of these factors. Effective data management may allow for better infor-

mation filtering and efficient processing throughout a robotic system by providing structure, while allowing

for improved robotic SA and performance. Forgetting may play an integral part in the ability for robotic

systems to remove unnecessary and erroneous data, while enabling rapid recall of relevant memory items. A

large body of work has been completed that attempts to model the inner workings of human memory and the

presented approach takes inspiration from this previous work to develop a forgetting capability targeting the

specific requirements of robotic systems.

III.1 Forgetting

Before a forgetting system can be implemented to improve a robot’s SA, the specific benefits to SA must be

determined. Each level of SA possesses different attributes that may be non-uniformly affected by forgetting

mechanisms. Level one concepts are generally atomic, consisting of either sets of similar raw data items (e.g.,

logged sensor readings) or singular items receiving continuous updates (e.g., bump sensor status). Purging

will have a minor impact on systems that only consider a sensor’s current status, but may facilitate the pruning

of archived raw data.

Level two SA may benefit the most from forgetting. Composite objects, level two constructs are the meld-

ing of multi-modal information to form higher level representations of possibly highly dynamic constructs.

Purging may realize two separate benefits. First, level two items have relations to level one items. When

these lower level items are altered or removed, level two items may be modified. Unnecessary relations and

subcomponents may be deleted or entire items may be discarded. Second, the entire item may be deemed

unnecessary and deleted.
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Level three concepts may be affected in many of the same ways as level two concepts. The difference

lies in the effects on the system. Level three concepts predict the effects of actions and the evolution of the

environment. These items may already be highly dynamic and possess a short life-span. Additionally, level

three concepts are less likely to be a subcomponent of another item. As a result, the effects of forgetting a

level three concept may be slightly smaller than the forgetting of level two items.

Even limiting the scope of improving robotic SA to the advancement of data management leaves a signif-

icant frontier for advancement. The described forgetting mechanism may aid systems in removing erroneous

data and pruning unnecessary information. Forgetting may appear to be an odd selection as a feature addi-

tion to a system predicated on comprehensive and complex data management. This belief primarily results

because forgetting is often considered to be a negative property or activity, for example misplacing keys, for-

getting items on shopping lists, and the inability to remember where a car was parked. However, forgetting

actually provides many benefits to data management.

Forgetting is a critical cognitive process for humans operating within complex and changing environ-

ments. With forgetting, humans are able to improve the efficiency of memory retrieval. Selecting goal-

relevant memories results in competition between memories, each vying for selection. It has been shown that

humans use forgetting to progressively repress memories that are not selected, thus reducing the cognitive

load on subsequent memory retrievals (Kuhl et al., 2007). Human forgetting can reduce “switch cost”, the

costs incurred when switching between tasks (Altmann, 2002). Through “within-run slowing”, a performance

degradation that occurs during the execution of a task, memories regarding the present task are reduced in

encoding strength. This encoding reduction allows for easier replacement of task specific information with

data relevant to new tasks (Altmann, 2002). Forgetting also aids in classification, a common and critical

task in many real world domains. In many environments, categories undergo gradual, but significant change.

Exemplar items may become faster or larger, technology may improve the properties of consumer devices,

and cultures will evolve over time. With forgetting, humans are able to progressively reduce the influence of

previous instances of categories stored in memory and incorporate new items, allowing humans to adapt to

changing categories (Elliott and Anderson, 1995). Forgetting also aids heuristic inference. Heuristics play a

critical role in humans’ ability to handle complex decision problems under tight time constraints and demand-

ing mental load by taking advantage of structure in the environment (Gigerenzer et al., 1999; Gigerenzer and

Brighton, 2009). Under certain circumstances, cognitive capacity limitations have been shown to improve

the ability for humans to detect correlations within data (Anderson et al., 2005; Kareev, 2005). However,

it has been suggested that cognitive limitations promote the use of simpler detection mechanisms that can

outperform more complex approaches in stable environments (Gaissmaier et al., 2006). The recognition

heuristic states that when selecting between items, select the item that is recognized (Gigerenzer et al., 1999;
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Goldstein and Gigerenzer, 2002). With forgetting, unimportant information is unavailable, thus preventing

it from being recognized. Irrelevant information removal increases the chances that only important items

are recognized, increasing the applicability and performance of the recognition heuristic (Schooler and Her-

twig, 2005). Forgetting has also been shown to improve performance of the fluency heuristic (Schooler and

Hertwig, 2005).

As described in Chapter II, there are several separate proposed means by which humans forget infor-

mation. The present biological and psychological literature has suggested many forms of forgetting and

combinations of those forms, but has not reached a unanimous decision as to which method or methods are

actually used. As compelling evidence has been presented for many of the proposed methods, this disserta-

tion introduces forgetting to robotic systems by selecting and combining several of these human forgetting

methods into one comprehensive algorithm. Through the method that the individual components are com-

bined, the relative importance of each forgetting component can be changed to realize a highly configurable

and dynamic forgetting system.

III.2 Improving Situation Awareness with Forgetting

This dissertation recommends the incorporation of forgetting within robots in order to improve the genera-

tion and maintenance of human-level SA. Forgetting and recall mechanisms can be used to select memory

items that have a high probability of solving a current problem or increasing the understanding of a situation.

Forgetting can also be performed after a memory item has been selected. The recallability of the selected

item is increased, while the ability to retrieve other items in memory is reduced. The approach taken by this

dissertation pre-filters memory items, reducing the quantity available to selection mechanisms. A large per-

centage of existing and future robotic algorithms require substantial computational power, but must execute

fast enough to realize a real-time system. Pre-filtering available memory items has the potential to not only

remove out-dated, erroneous, and irrelevant data, but also to decrease the computational demands of current

and future robotic technologies. All but the simplest forgetting algorithms will require some computational

power, but when this demand is less than the demand required by existing robotic algorithms, the system may

realize a net performance increase.

Robots are often assigned diverse tasks and asked to operate within varied domains and no single algo-

rithm or approach will completely solve the entirety of robotic challenges. A large array of existing algorithms

have already been developed that enable robots to move and operate within complex domains while achiev-

ing high levels of performance, but these approaches tend to be domain specific. No simple parsimonious

algorithm may be capable of solving all of robotics’ problems. The described forgetting algorithm will not

replace any existing or future technologies, but may improve the performance of those systems and allow
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for more effective searches through the vast quantities of data that may be stored within robotic knowledge

bases.

Different algorithms can be employed to pre-filter robotic data, but each will need to follow the same

basic design. When memory items are perceived or otherwise created, their cognitive representations receive

properties and statistics facilitating the forgetting process. Item reproception and recall results in the repre-

sentations being appropriately updated to reflect current usage patterns. When existing robotic algorithms

require the use of a memory item, the forgetting algorithm begins the pre-filtering process. The retrievabil-

ity of each memory item is calculated and the resultant set of recallable items is presented to the querying

system. In general, items are not permanently forgotten. The retrievability of an item is recalculated each

time a query is to be performed. Depending on the forgetting algorithm used, the existence of memory items,

even with a very small chance of recall, can affect the system similar to how cues can help humans recall

information. Forgetting may not be appropriate for the entirety of robotic data and certain algorithms may

need to bypass the filtering effects of forgetting. With the described approach, both of these cases can easily

be handled. Forgetting will not have to be applied to every type of data within a robot. In situations where

accuracy may be more important than execution speed or when a complete analysis of all memory items

is required, forgetting pre-filtering can be ignored. The presented forgetting approach does not necessarily

delete memory items determined to be unrecallable. In these situations, the full collection of memory items

can be presented to the querying system.

III.3 ActSimple

A large number of models of human forgetting have previously been developed, but few models have been

crafted explicitly for the control and implementation of mobile robots. This dissertation has developed a new

method for realizing forgetting that has been developed specifically for robotic systems and the application of

pre-filtering data available to existing and future robotic algorithms. The new algorithm, named ActSimple,

derives its name from its two largest influences, ACT-R and SIMPLE. Many algorithms and models of human

forgetting have been explored in the past, but ActSimple incorporates a breadth of mechanisms and theories

that may provide the new algorithm with the diversity and flexibility to aid robotic systems across a wide

range of domains, modalities, and tasks.

Through the years, strong evidence has been found to both support and refute the two leading theories of

forgetting, time-based decay and interference (Jonides et al., 2008). Some research has posited that forgetting

is a combination of both theories and their subcomponents (Jonides et al., 2008; Wixted, 2004; Sims and

Gray, 2004; Altmann and Gray, 2002). Reflecting on the complexity of the human mind and cognition, it

is unlikely that the full dynamic of forgetting can be realized from one parsimonious mechanism. Several
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researchers have developed models of forgetting that incorporate multiple forgetting methods (Mueller and

Krawitz, 2009). Others that stand by one mechanism, have admitted that multiple mechanisms may contribute

to forgetting, just to a lesser extent (Wixted, 2004).

ActSimple combines time-based decay, effects of mental exertion, similarity-based interference, and out-

put interference. Through the unique collection of mechanisms in ActSimple, the algorithm may be highly

amenable to the varied demands of robotic systems. The system may be tailored to specific domains and

tasks by modifying constants and the relative importance of the individual mechanisms.

This section proceeds as follows, first the incorporation of time-based decay is explained, followed by

similarity-based interference’s impact on the system. Mental exertion effects are presented, followed by the

influence of output interference. Finally, the integration of all of the components is explained. Constant

scaling factors and offsets are represented by c symbols in the equations that follow.

III.3.1 Time-Based Decay

While time-based decay theory previously fell out of favor (Wixted, 2004), decay has recently regained a

significant amount of support (Altmann and Schunn, 2002; Wixted, 2004). Time-based decay’s durability

and recent resurgence provides strong evidence that it has an effect on forgetting. Time effects must be

incorporated into any effective robotic forgetting system. Purely interference based models of forgetting

exist that incorporate aspects of time, such as SIMPLE (Section II.4.3.2), but their direct applicability to

robotics is unclear. Unlike many laboratory-based recall experiments, robots will observe items multiple

times and may require repeated recall of individual memory items. The SIMPLE model does not incorporate

rehearsal, although it can model some rehearsal-based primacy effects. Brown et al. (2007) modeled several

recall data sets by setting the effective time value used by the SIMPLE model to the time of last rehearsal.

While this approach approximated the empirical data, the effects of previous item presentation and rehearsal

were lost or minimized. Unlike some interference-based models, trace-based decay models can allow for a

natural modeling of rehearsal effects.

Activation = ln(
ItemRecallCount√

Li f etimeO f Item
) (III.1)

While multiple forms for the algorithmic process of forgetting have been proposed that exhibit a decreas-

ing proportional rate of decay (Wixted, 2004), the power law family of equations, which has been posited to

best characterize forgetting (Wixted, 2004; Anderson and Schooler, 1991; Wickelgren, 1974), will be used.

A commonly cited equation is the ACT-R base activation equation, Equation II.1, and its many simplified

forms (e.g. Equation III.1). Pavlik and Anderson (2003) modified Equation II.1 to incorporate the item’s
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activation level at each time of retrieval (Sims and Gray, 2004). This modification realizes the spacing effect

of short-term memory (see Section II.4). The Pavlik and Anderson equation, Equation III.2, will be used to

model time-based decay (a mental exertion scaling factor, ϕ , has been added for ActSimple). Depending on

the robot, the initial base level activation, β , can be set to a fixed value or a dynamically generated value, such

as a belief level (Thrun et al., 2005). bi, j represents the feature’s activation level at the jth retrieval of item i

and bi represents the feature’s base activation. r j is the span of time since item i’s jth recall. ϕ represents the

effects of mental exertion, which are described in Section III.3.3.

di, j = c1ebi, j + c2

bi = ϕβi + ln(
Ji

∑r
−di, j
i, j )

(III.2)

III.3.2 Encoding Interference

Many complex domains require robots to possess diverse arrays of knowledge to achieve high performance

levels. Developing SA requires acquiring data from many sources, which can quickly strain robotic memory

capacities. Limits in raw storage and computational restrictions may further hamper SA generation. Incorpo-

rating encoding interference may aid robots in maintaining breadth of knowledge without purging or ignoring

critical information. Two forms of encoding interference are incorporated into ActSimple, mental exertion

and similarity-based encoding interference. Mental overload has been incorporated by different means than

similarity-based encoding interference and will be described in Section III.3.3.

The similarity-based encoding interference component is based on the SIMPLE temporal ratio model of

forgetting (Section II.4.3.2). Unlike the SIMPLE model; however, acquisition time of memory items is not

used to calculate interference as perception and rehearsal-based time effects are already incorporated into

the trace-based decay portion of the system. The difference effects of the SIMPLE model were integrated

into ActSimple because of the inter-item interactions within psychological space that the model produces.

Explicit knowledge items possess properties, either continuous or discrete, that provide inter-item differenti-

ation. Exploiting these properties by locating memory items within a multidimensional psychological space,

as performed by SIMPLE, may allow robots to approximate differences between data and maintain a wide

breadth of knowledge. Maintaining separate axes within the psychological space, instead of generating and

storing a single difference value, allows ActSimple to provide unique weights to the distances along indi-

vidual axes and dynamically alter those weight values. Similarity-based encoding interference is calculated

with three equations, Equation III.3, Equation III.4, and Equation III.5. δ represents a set of functions able

to calculate the distance between two items on an axis within the psychological space. Functions were in-
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corporated into the model instead of simple distances to allow for axes to be non-linear or contain subspaces

(for instance the International Commission on Illumination 1931 Color Space (International Commission on

Illumination, 1932)). Attention directed to each axis is indicated by θ , while ∆ represents the full distance

between two items in psychological space. Presently, the inter-item distance is calculated in a Manhattan

Distance fashion, although Euclidean methods are possible. The similarity (η) of two items is calculated by

an exponential function incorporating item confidence levels (γ), inter-item distance, and a factor (λ ) that

alters how distance is related to similarity. ℘i represents the discriminability of item i.

∆i,k =
L

∑θl |δl (i,k)| where
L

∑θl = 1 (III.3)

ηi,k = γke−c3|∆i,k|λ (III.4)

℘i =
γi

K

∑ηi,k

(III.5)

III.3.3 Mental Exertion

It has been posited that memory items may consolidate or become more durable after they are perceived.

Mental exertion during this consolidation period can increase the likelihood that an item will be forgot-

ten (Wixted, 2004). This form of retroactive interference may be beneficial to robots operating in complex

and dynamic environments, as it may foster a form of focused attention. When a robot is under a heavy

computational load, the addition of more memory items may slow comprehension and subsequently reduce

SA. By incorporating retroactive interference through mental exertion, irrelevant details may be encoded at

reduced strengths and quickly removed. Conversely, important items will be recalled rapidly, boosting their

encoding strength and negating the effects of mental exertion.

The effects of mental load have been incorporated into ActSimple by generating a scaling factor, ϕ , that

modifies an item’s initial base activation level. ϕ is computed by taking the integral of mental exertion ex-

perienced by the robot during a time-window near the item’s perception, see Equation III.6. In this equation,

t0 and t1 represent the bounds of the time-window. While in the time-window, the robot updates ϕ each time

the item’s encoding level is required.

ϕ = 1− c4

∫ t1

t0
MentalExertiondt (III.6)

49



III.3.4 Output Interference

When robots are operating within complex and dynamic domains, periods of low computational demand

followed by intervals of high computational load will be a common occurrence. Output interference has been

added to ActSimple in order to decrease the volume of data that must be processed during these high load

periods. As a robot makes decisions, the effects of output interference increase, systematically removing

irrelevant and possibly erroneous information as the rate of decision making increases. The greatest benefit

from output interference may be seen in domains where each subsequent decision or action increases the

importance of correct decision making, while reducing the available response time.

Inspired by Lewandowsky et al.’s model (2004), output interference has been incorporated into ActSim-

ple. Lewandowsky et al. provided the SIMPLE model of human memory with output interference capabilities

by modifying Equation II.11 into III.7, where o is a constant and n represents the number of output decisions

that have already been completed plus one. This modification to SIMPLE motivated the addition of an output

interference parameter (ϖ) to ActSimple, see Equation III.8. In this equation, ρ j represents the amount of

time since the jth decision was made. Deviating from Lewandowsky et al.’s modification, ϖ was not incor-

porated into ActSimple’s encoding interference component. Instead, the effects of output interference have

been placed in the recallable probability equation (Equation III.10), described in Section III.3.5. ActSimple

incorporates more components than SIMPLE and placing the output interference coefficient in the recallable

probability equation allows the effects of output interference to affect the entire system.

Unlike the conditions where Lewandowsky et al.’s model was evaluated, robotic systems may be required

to operate for long periods of time, making a significant number of recalls. With the original model, output

interference never decreased and eventually the effects of output interference would prevent the robot from

making memory retrievals. A power law decay, modeled after the power law decay properties of ACT-R, was

added to the magnitude of the output interference scaling factor so that interference effects will wane during

periods of infrequent recall.

ηi, j = e−c|Si, j|α on−1
(III.7)

ϖ = c
c6+ln

J

∑ρ
−c7
j

5 (III.8)
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III.3.5 Activation

Many of ActSimple’s individual components are combined by Equation III.9 to form an activation level for

each item in memory. Effects of trace decay and encoding interference are summed together with permanent

(ε1) and transient (ε2) noise. Scaling constant c8 allows the relative importance of trace decay and encoding

interference to be altered.

αi = c8bi +(1− c8)℘i + ε1 + ε2 (III.9)

Forgetting within ActSimple is nondeterministic and uses a sigmoid function, shown in Equation III.10,

to compute the probability that an item is available for recall. In Equation III.10, ς represents the slope of the

sigmoid function. τ is a threshold on the activation values and Output interference (ϖ) scales the resultant

recallability probability. Similar sigmoid-based probability functions have been used by existing cognitive

architectures, such as ACT-R (Section II.3.5) and SIMPLE (Section II.4.3.2), but resultant probabilities are

used differently in ActSimple. In architectures modeling human memory, resultant probabilities are often

used to probabilistically select an item for recall. ActSimple uses item probabilities to determine if an item

will be available for selection. This change allows specialized and domain specific robotic algorithms to

continue to perform item selection. The forgetting mechanism only removes old and irrelevant information,

speeding search, while adding a small degree of variability to the item selection process.

P(ri|αi) =
(

ϖ

ϖ +1

)
1

1+ e−ς(αi−τ) (III.10)

III.3.6 Retrieval Time

Some robotic algorithms may require or benefit from the ability to approximate the ease of memory item

retrieval. The retrieval time equation from the ACT-R architecture (Section II.3.5) is incorporated into Act-

Simple to provide an estimate of a memory item’s integrity and availability. A constant latency factor (ψ)

scales the result of an exponential function on an item’s activation level (α) to generate a retrieval metric.

This metric can be used to model the latency required for an item to be recalled from memory.

Retrieval Timei = ψec9αi (III.11)

While not directly part of the system, robots using this mechanism can utilize rehearsal strategies to

modify the activation values of memory items. By periodically recalling particular items, the system will
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boost their activation levels, potentially increasing their focus levels and preventing the items from being

filtered.

In complex and dynamic domains, robots must process large volumes of diverse data. Through the human

forgetting inspired filtering and purging provided by ActSimple, it is believed that robots may be better

equipped to generate and maintain SA.
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CHAPTER IV

Test Domain

In order to explore the effectiveness of using Human-Inspired Forgetting to filter information, a simplified

version of ActSimple was developed along with six other forgetting algorithms. A WiFi signal strength

estimation domain was developed to empirically test these forgetting approaches. Simulated WiFi signal

strength information was generated and provided to a simulated robot operating within a grid-based world.

The forgetting algorithms were used to filter the database of stored signal strength readings, improving the

overall estimate of available WiFi signal strength at any particular point within the environment.

Robots operating within complex and dynamic domains are frequently inundated with copious data read-

ings and information. Much of this knowledge is redundant, erroneous, or rapidly becomes out of date.

Human-inspired robotic forgetting mechanisms may be capable of partially alleviating this information pro-

cessing problem. A large number of human forgetting models have been proposed by the psychology lit-

erature, many of which may benefit robotics. While the vast and varied array of possible robot tasks and

information may make the selection of an optimal forgetting algorithm for robots impossible, several are

more applicable to on-line implementations and the specific requirements of robots.

The experiments described in this dissertation were conducted to explore the effectiveness of several

forms of forgetting as applied to a specific task and data type common to many robot domains. Modern

mobile robots often require some form of wireless communication, with WiFi frequently providing a high

bandwidth, low-cost communication medium. WiFi signal strength, and consequently communication relia-

bility and speed, can be affected by many factors. Areas of minimal to no signal strength can be frequently

encountered. In stable environments, WiFi hardware can often be carefully positioned to provide acceptable

WiFi signal strength and avoid areas of no communication. Unfortunately, optimal placement of WiFi tech-

nology in complex and dynamic environments is frequently not possible. Many robotic deployments require

careful multi-agent coordination; necessitating categorization and monitoring of WiFi capabilities within an

environment. Some systems even utilize relocatable WiFi nodes to alleviate communication bottlenecks and

areas of minimal signal strength (Basu and Redi, 2004; Reyes et al., 2006; Weiss et al., 2008).

The described experiments simulated a robot tasked with continuously exploring a grid-based environ-

ment to monitor and estimate WiFi signal strength. The robot collected WiFi signal strength samples which

were used to generate an estimate of the available WiFi signal strength of the entire environment. Interpola-

tion methods were implemented to allow for estimates where no sample readings were available. This task,
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along with being practical and frequently required, is representative of many activities performed by robots

operating within complex and dynamic environments where low-level environmental properties can impact

the probability of successful mission completion.

IV.1 Algorithms

Seven forgetting algorithms were evaluated to filter unimportant sensor readings: a simplified version of

ActSimple, a trace-based decay method (labeled ACT-R), two similarity-based interference methods based

on SIMPLE (referred to as SIMPLE and SIMPLE Update), two queue-based forgetting methods (labeled

Queue-Dynamic and Queue-Static), and a random forgetting method. Testing was also performed without

forgetting (referred to as No Forgetting) to act as a control for comparing forgetting algorithm performance.

ActSimple

The experiments used a simplified version of the ActSimple algorithm. Described by Equations IV.1, IV.2,

IV.3, IV.4, and IV.5, the simplified version of ActSimple was used instead of the full version to better illustrate

the core components of the algorithm (trace-based decay and similarity-based interference), minimize the

need for parameter optimization, and to allow for a more direct comparison to the ACT-R and SIMPLE

algorithms. The simplified version of the algorithm does not incorporate the Pavlik and Anderson (2003)

modification, mental exertion, belief state effects, output interference, or noise. All remaining constants were

considered adjustable parameters except for λ , which was fixed at 1.0. In the SIMPLE-inspired portion of

the algorithm, the psychological space consisted of three axes: reading position along the x-axis, reading

position along the y-axis, and WiFi signal strength.

Equation IV.1 is a simplified version of Equation III.2. The effects of mental exertion (ϕ) have been

removed and the Pavlik and Anderson (2003) modification (−di, j) was replaced with a constant, d. Equa-

tions IV.3 and IV.4 are equivalent to Equations III.4 and III.5 except that the belief state effects (γ) have

been removed. Equation IV.5 calculates the complete activation level for a memory item except, unlike

Equation III.9, noise (ε1 and ε2) was not included. Mental exertion (Equation III.6) and output interference

(Equation III.8) are not included in the simplified version of ActSimple. Equation IV.2 is unmodified from

the full ActSimple Algorithm (Equations III.3).

bi = βi + ln(
Ji

∑r−cd
i, j ) (IV.1)

∆i,k =
L

∑θl |δl (i,k)| where
L

∑θl = 1 (IV.2)

54



ηi,k = e−c3|∆i,k| (IV.3)

℘i =
1

K

∑ηi,k

(IV.4)

αi = c8bi +(1− c8)℘i (IV.5)

Pi =
1

1+ e−ς(αi−τ) (IV.6)

Trace-based decay forgetting

The trace-based decay forgetting algorithm labeled ACT-R was implemented for these experiments using

Equation IV.7 and Equation IV.8. Noise was not used by the implemented version of the algorithm. In

Equation IV.8, ς is equivalent to the 1
s term from Equation II.3.

Bi = β + ln(
n

∑
k=1

t−d
k ) (IV.7)

Pi =
1

1+ e−ς(Bi−τ) (IV.8)

SIMPLE and SIMPLE Update

The similarity-based interference forgetting algorithms, SIMPLE and SIMPLE Update, were inspired by the

SIMPLE model of human memory. The psychological space used by these two algorithms possessed four

axes: reading position along the x-axis, reading position along the y-axis, time, and WiFi signal strength.

Both methods work in an identical fashion, except when a WiFi reading is reperceived (a WiFi signal strength

value is collected multiple times at a particular location). When reperception occurs, the SIMPLE Update

method updates the sample’s time property to the current point in time and increments the perception count
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for the reading. Conversely, the SIMPLE algorithm increments the perception count, but does not update the

perception time. Both forgetting algorithms where implemented as described in Section II.4.3.2.

Queue Dynamic and Queue Static

Two queue-based forgetting algorithms were explored, Queue Dynamic and Queue Static. Both algorithms

possessed a fixed sized queue that stored WiFi signal strength readings. New readings were appended to the

end of the queue, and once the queue capacity was exceeded, old readings were removed from the front of the

queue. Similar to the differences between SIMPLE and SIMPLE Update, operation of the two queue methods

deviated only when a reading was reperceived. If a reading was collected and it was already present in the

queue, then the Queue Dynamic algorithm updates the readings perception count and moves the reading to

the back of the queue. Queue Static also updates the readings perception count, but does not relocate the

reading.

Random Forgetting

Similar in operation to the queue-based forgetting algorithms, a random forgetting algorithm was also tested

in the experiments. This algorithm worked exactly like the Queue Static algorithm except when capacity

was exceeded, readings were randomly selected for deletion. The newest reading was guaranteed to not be

removed.

IV.2 Environment

The environment constructed for these experiments consisted of a 25 unit by 25 unit simulated grid world.

Movements within the grid world were constrained to only horizontal or vertical transitions. All movements

consisted of single-unit location changes, and the simulated robot moved at every time step unless the robot

attempted to leave the bounds of the grid world. It was assumed that all sensing and data processing occurred

within one time unit. WiFi sensor readings were taken at every time step, irrespective of whether or not the

robot’s position actually changed. WiFi signal strength within the environment ranged from 1 to 100 (weak

to strong, respectively) and was determined by a location’s proximity to WiFi basestations located within

the environment, see Equation IV.9. WiFi signal strength values computed by Equation IV.9 were clipped

to the range 1 to 100. For the experiments, the slope was set to 2.0 and the threshold remained at 4.0. Two

basestation configurations were tested during the experiments, four basestations and eight basestations, see

Figure IV.1. In the figure, strong WiFi signal strength is represented by darker areas, while lighter areas

indicate weak signal strength.
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(a) Four basestation configuration (b) Eight basestation configuration

Figure IV.1: Basestation configurations within the tested environment

WiFi Signal Strength = 100∗∑
i

(
1− 1

1+ e−slope(distancei−threshold)

)
+noise (IV.9)

In addition to basestation proximity, WiFi signal strength readings were also influenced by noise. The

magnitude of noise affecting a given sample was determined by a probability density function defined by

Equation IV.10. Probabilities were not influenced by noiseless signal strength and the final reading value was

clipped to remain within the interval 1 to 100.

p(x) =



0.62 if x = 0
0.1 if |x|= 10
0.05 if |x|= 20
0.03 if |x|= 40
0.01 if |x|= 60
0 else

(IV.10)

While a grid world, the test environment possesses a significant challenge to a robot attempting to main-

tain an accurate estimate of WiFi signal strengths. The number of WiFi basestations can change, resulting

in substantial alterations to the availability of WiFi signal strength, and noise will generate many erroneous

readings. Even without changes to the number of basestations or noise, many naive approaches to estimating

WiFi signal strength will not be effective. Figure IV.2 depicts the absolute error that would result if a robot

simply assumed that the WiFi signal strength within a static, noiseless environment was constant. When

four basestations are present, minimal error is realized when the robot estimates signal strength to be at its

minimum, an approach that would be impractical and self-defeating. When eight basestations are present,
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Figure IV.2: Average error when estimating WiFi signal strength with a constant value

the absolute error of a constant-valued estimate is radically different from when four basestations are located

within the environment. A robot may require a large number of readings distributed within the environment

in order to generate accurate estimates of WiFi signal strength. It is not possible to instantaneously acquire

all of the required samples, since the process requires some period of time. Changing the number of bases-

tations within the experiment models the dynamism present in nearly all real-world domains and tests the

effectiveness of different data processing mechanisms’ ability to handle real-world situations.

The effectiveness of the forgetting algorithms was evaluated by simulating a robot traveling along a

number of predetermined paths taking WiFi sensor readings. At set intervals, the robot generated an estimated

WiFi signal strength map from the readings that were correctly recalled. When each estimated WiFi signal

strength map was created, the absolute error at each point within the environment was calculated and used as

a metric for effectiveness. Interpolation methods were utilized to generate estimated signal strength values

for locations where no sensor readings were successfully recalled. The absence of sensor readings at a given

location may have resulted from the robot being unable to recall any readings at the location or the robot not

having explored that area yet. When no readings were available, the robot guessed a strength value of 50.5,
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the midpoint of the range of possible signal strength values.

IV.3 Interpolation Methods

A large number of interpolation methods are available for converting the collection of sensor readings into an

estimated strength map. The simulated environment was a grid-based world, but no restrictions were placed

on the robot’s path. Sampling was often non-uniform with regard to the entire environment and estimated

strength maps needed to be created before the robot had a chance to fully explore the environment. The inter-

polation method used within the experiment needed to be non-uniform and allow for the generation of signal

strength estimates outside of the convex hull surrounding the entirety of the presently recalled WiFi samples.

A number of interpolation methods were possible, but the selection was further restricted to only include

exact value methods of interpolation. Functional interpolation methods were not selected because, while

estimated values may successfully pass through all provided sample points, these methods often generate in-

valid values for locations in between readings. With the nature of the experiments and sensor readings, these

out-of-bounds values were unacceptable. Considering these criteria, the experiments used a combination of

three exact interpolation methods: Nearest Neighbor Interpolation, Shepard’s Interpolation (Shepard, 1968),

and Microsphere Interpolation (Dudziak, 2007). Each of these forms of interpolation possesses a different

method of generating estimated values that can affect the experimental results.

Nearest Neighbor Interpolation is a fast method that estimates values solely on the closest available

sample. Due to the nature of the environment and the possibility of multiple readings being collocated, sev-

eral WiFi readings may be equidistant to a location where interpolation is being performed. When equidistant

points occur, two separate methods can be independently tested. The first approach uses an equal weighting

scheme and averages the values for all samples (this approach will be refereed to as Nearest Neighbor Inter-

polation with Equal Weighting). The second approach uses a weighted average based on the number of times

each reading has been observed (this approach will be referred to as Nearest Neighbor Interpolation with Per-

ception Count Weighting). Nearest Neighbor Interpolation can be the most variable of the three interpolation

methods. Small changes in the location of a reading may change which sample’s value is used to estimate a

target location within the environment. Since individual readings vary substantially, the estimate can equally

fluctuate. Figure IV.3 demonstrates an example application of the Nearest Neighbor Interpolation method

where the number of samples available to the interpolation algorithm is 10, 100, 500, and 1000 samples

respectively. The left column shows the original images and the sample locations used by the interpolation

method and the right column provides the resultant images. Nearest Neighbor Interpolation generates blocky

results with few gradients.

The Shepard’s Interpolation method (Shepard, 1968) was also explored during these experiments. An
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(a) Nearest Neighbor Interpolation with 10 samples

(b) Nearest Neighbor Interpolation with 100 samples

(c) Nearest Neighbor Interpolation with 500 samples

(d) Nearest Neighbor Interpolation with 1000 samples

Figure IV.3: Nearest Neighbor Interpolation with 10, 100, 500, and 1000 randomly generated samples. The
left column shows the original image and the sample locations used by the interpolation method and the right
column shows the resultant images.
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inverse distance weighted approach to interpolation, Shepard’s Interpolation (Equations IV.11 and IV.12)

differs from Nearest Neighbor Interpolation by incorporating influence from every available sample. Equa-

tion IV.11 calculates the weight or relative influence of sample i. p is the weighting exponent, a constant

influencing propagation, while d represents the euclidean distance between a sample and the location that is

being estimated. In the experiments, p was held constant at 2.0, a commonly used value for the weighting

exponent (Dudziak, 2007). The sample weights are used in Equation IV.12 to generate a weighted sum of the

values of available samples, v. The influence of individual readings is determined solely by relative distance

between the samples and the location whose value is being interpolated; no special handling is required for

equidistant points. An example of Shepard’s Interpolation on a raster image is presented in Figure IV.4. In

this figure, interpolation was performed with 10, 100, 500, and 1000 randomly generated samples. Shepard’s

Interpolation results are blended and not blocky like with Nearest Neighbor Interpolation; however, as shown

in Figure IV.4, the results can be overly blurred, obscuring transition changes.

wi =
d−p

i
N

∑d−p
j

(IV.11)

Estimated Value =
N

∑wivi (IV.12)

Microsphere Interpolation (Dudziak, 2007) is an approximation method embodying an analogy of

spheres illuminated by light sources. The location being estimated is considered to be a sphere, with its

surface decomposed into a number of sectors. Unlike in Shepard’s Interpolation, the influence of a sample

is affected not only by distance to the target location, but also by the angle between the sample and the nor-

mal from each sector on the sphere, see Figure IV.5. Similar to Nearest Neighbor Interpolation, the most

influential sample for each sector is determined and then the samples selected for all of the sectors undergo

a weighted average to produce the final interpolated value. The mathematical form of Microsphere Inter-

polation is shown in Equations IV.13, IV.14, and IV.15. The weighting exponent, p, in the Microsphere

Interpolation algorithm serves a similar purpose as the weighting constant in Shepard’s Interpolation. In

the described experiments, when multiple samples equally affected a sector, their values were averaged with

equal weighting. p was held constant at 2.0 and the number of sectors was set to 20. An example of Micro-

sphere Interpolation on a raster image is presented in Figure IV.6. In this figure, interpolation was performed

with 10, 100, 500, and 1000 randomly generated samples. Microsphere Interpolation combines the positive

effects of Nearest Neighbor Interpolation and Shepard’s Interpolation to produce blended results that still
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(a) Shepard’s Interpolation with 10 samples

(b) Shepard’s Interpolation with 100 samples

(c) Shepard’s Interpolation with 500 samples

(d) Shepard’s Interpolation with 1000 samples

Figure IV.4: Shepard’s Interpolation with 10, 100, 500, and 1000 randomly generated samples. The left
column shows the original images and the sample locations used by the interpolation method and the right
column shows the resultant images.
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Figure IV.5: Microsphere Interpolation with one sample (adapted from (Dudziak, 2007))

maintain a majority of the transitional information in the data.

wi = max
(∣∣l j − I

∣∣−p ∗ cos(si, l j − I)
)
| j ∈ (1,2, ...,N) (IV.13)

mi = v j|max
(∣∣l j − I

∣∣−p cos(si, l j − I)
)

, j ∈ (1,2, ...,N) (IV.14)

f (I) =



vi |I = li, i ∈ {1,2, ..,N}
P

∑
i=1

miwi

P

∑
i=1

wi

otherwise

I = Location of interpolation
p = Propagation of influence power, p > 0

vi = Value of sample i, i ∈ {1,2, ..,N}
li = Location of sample i, i ∈ {1,2, ..,N}

N = Number of samples
si = Sector normal i, i ∈ {1,2, ..,N}

P = Precision (Number of sector normals)

(IV.15)

The interpolation values of the described interpolation methods may have an impact on a robot estimating

WiFi signal strength. Figure IV.3 shows the blocky nature of the results of Nearest Neighbor Interpolation.

The edges of color boundaries are not approximated well and small variations in the samples can have large

affects on the resultant interpolation values. Shepard’s Interpolation does not have sharp transitions between

color regions, but the results are overly smooth. The influence of distant samples are used in the generation of

the interpolated value, generating incorrect results. These effects are most noticeable in the top center portion

of Figure IV.4. Microsphere Interpolation limits the stochastic nature of Nearest Neighbor Interpolation,
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(a) Microsphere Interpolation with 10 samples

(b) Microsphere Interpolation with 100 samples

(c) Microsphere Interpolation with 500 samples

(d) Microsphere Interpolation with 1000 samples

Figure IV.6: Microsphere Interpolation with 10, 100, 500, and 1000 randomly generated samples. The left
column shows the original images and the sample locations used by the interpolation method and the right
column shows the resultant images.
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Figure IV.7: Multiple samples on the same line as an interpolation point

but also limits the influence of distance samples. When interpolating WiFi signal strength, distant readings

should be ignored, as closer samples make their influence undesirable, especially if those points are collinear

with the location to be interpolated. As shown in Figure IV.7, if two readings, that are collinear with the

interpolation location, are on the same side of a location to be interpolated, the more distant point (assuming

no error), should not be used in the interpolation. The two samples may have completely different values,

possibly resulting from objects within the environment, and averaging will only degrade the quality of the

result.

The form of weighting used when readings are equidistant can have a large impact on the quality of

interpolation results. When asymmetric noise is present within a system, perception count weighting may

be better equipped to minimize average error as the number of points available to the interpolation method

increases. Figure IV.8 shows the results of the four described interpolation methods on data collected from

the experimental environment. Figure IV.9 displays a zoomed in view of the first ten thousand steps taken

by the robot. The noise within the environment is asymmetric because of WiFi signal strength clipping.

The data shown in the figures was gathered by a simulated robot, without forgetting, that continuously ex-

plored the entirety of the experimental environment while collecting WiFi signal strength readings. All four

interpolation methods initially generated a high level of estimation error, but as the robot started collecting

readings, the estimation error quickly decreased. After approximately 500 time-steps, the effects of per-

ception count weighting and equal weighting diverged. Nearest Neighbor with Equal Weighting, Shepard’s

Interpolation, and Microsphere Interpolation all experienced increasing error, while Nearest Neighbor with

Perception Count Weighting generated a reduction in error as the number of steps increased. Asymmetric

noise causes this phenomena. When noise is symmetric, highly erroneous readings will effectively average

out; reducing error over time. Asymmetric noise; however, does not generate complimentary erroneous data

readings and the average of all sensible reading values do not average to the correct value. Perception Count

Weighting is only able to average out noise when multiple readings have been acquired for a given location.

Depending on the paths taken by robotic systems within an environment, the availability of multiple readings

may be inconsistent.
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Figure IV.8: Effects of asymmetric noise on interpolation methods
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Figure IV.9: Effects of asymmetric noise on interpolation methods for the first ten thousand steps taken
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Robots operating within complex domains frequently do not evenly sample an environment. Task exe-

cution, terrain traversability, and other entities can influence the paths that robots follow and the length of

time that they spend in various locations. Especially when sensors are continuously acquiring new samples,

clustering and grouping of data generally occurs. Nearest Neighbor Interpolation, Shepard’s Interpolation,

and Microsphere Interpolation are all affected differently by data clustering. Figure IV.10 demonstrates the

effects of clustering on the three interpolation methods. The images were constructed by interpolating across

a 25 pixel by 25 pixel image. A black pixel sample was located at the point (-10, 0) and 1 or 100 white pixel

samples were located at the point (10, 0). The one hundred white pixels were all collocated. The results

of one black pixel and one white pixel are shown in the left column of Figure IV.10 and the results of one

black pixel and one hundred white pixels are shown in the right column. Nearest Neighbor Interpolation

(Figure IV.10a) is only affected by data clustering when samples are equidistant, resulting in a weighted av-

erage. Shepard’s Interpolation (Figure IV.10b) is affected at all points within the image, except at the exact

locations of the samples. The presence of one hundred white pixel samples dramatically influences the inter-

polation values throughout when using Shepard’s Interpolation (Figure IV.10b). Microsphere Interpolation

(Figure IV.10c) generates identical results in either situation. Mobile robots are tasked with varied and diverse

assignments with many data modalities. The data readings resulting from these modalities may resemble any

of the three interpolation methods. An experiment presented by this dissertation explored the effects of all

three interpolation methods to evaluate the effects of clustering on the effectiveness of forgetting in mobile

robotics.

IV.4 Experimental Design

Robotic forgetting of low-level data readings may be affected by data clustering, reading distributions, and

environment coverage. In the described experiments, the results of a simulated robot following twenty sep-

arate paths through the environment were tested. These paths, graphically described in Figure IV.11, fit into

two different categories. The first sixteen paths, Figure IV.11a-p, involve the robot systematically moving

back and forth through the environment, completing a number of cycles. A cycle refers to the simulated

robot traveling from the left portion of the environment to the right and then completing a return trip. The

remaining four paths, Figure IV.11q-t, were randomly generated. While the robot traversed the paths, either

four or eight WiFi basestations were present, see Figure IV.1. In some of the paths, the number of basesta-

tions changed from four to eight or from eight to four at roughly the half way point through the complete

path. These changes were incorporated into the testing in order to evaluate the system’s ability to adapt to

changing environments. At the completion of each path, the robot used an interpolation algorithm to generate

an estimated WiFi signal strength map. The absolute error between the true WiFi signal strength and the
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(a) Nearest Neighbor Interpolation

(b) Shepard’s Interpolation

(c) Microsphere Interpolation

Figure IV.10: Effects of sample clustering on interpolation methods
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estimate was calculated for each location within the environment and averaged. This mean value formed the

primary metric to indicate performance of a particular forgetting algorithm (or no forgetting) on the recently

traversed path.

IV.5 Summary

This chapter described the general environment and testing procedure used for all experiments presented in

this dissertation. However, most of the experiments made modifications to this general design. Chapter V

presents an experiment that computed optimal parameterizations for the seven forgetting algorithms. The

algorithms, combined with the parameterizations, were tested with 44 new paths and four new basestation

configurations. Chapter VI presents an experiment conducted in the real world (not in simulation). During this

experiment, the simulation environment and the noise distribution described in Chapter IV.2 were not used.

Chapter VII presents an experiment where the forgetting algorithms were tested in the presence of twenty

one new noise distributions. An experiment is presented in Chapter VIII where the forgetting algorithms

were tested at each point along the paths, not just at the end. Finally, Chapter IX presents an experiment

where the Pavlik and Anderson modification (Chapter III.3.1) was incorporated into the tested versions of the

ActSimple and ACT-R algorithms.
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(a) Path 1
1 cycle
4 to 8 basestations
1272 steps

(b) Path 2
1 cycle
4 basestations
1272 steps

(c) Path 3
1 cycle
4 basestations
1080 steps

(d) Path 4
1 cycle
4 basestations
1032 steps

(e) Path 5
1 cycle
8 to 4 basestations
1272 steps

(f) Path 6
1 cycle
8 basestations
1272 steps

(g) Path 7
1 cycle
8 basestations
1080 steps

(h) Path 8
1 cycle
8 basestations
1032 steps

(i) Path 9
3 cycles
4 to 8 basestations
3768 steps

(j) Path 10
3 cycles
4 basestations
3768 steps

(k) Path 11
3 cycles
4 basestations
3192 steps

(l) Path 12
3 cycles
4 basestations
3000 steps

(m) Path 13
3 cycles
8 to 4 basestations
3768 steps

(n) Path 14
3 cycles
8 basestations
3768 steps

(o) Path 15
3 cycles
8 basestations
3192 steps

(p) Path 16
3 cycles
8 basestations
3000 steps

(q) Path 17
random path
4 to 8 basestations
3000 steps

(r) Path 18
random path
4 basestations
3000 steps

(s) Path 19
random path
8 to 4 basestations
3000 steps

(t) Path 20
random path
8 basestations
3000 steps

Figure IV.11: Paths through the environment

70



CHAPTER V

Optimization

The forgetting algorithms described in Chapter IV.1 each possess a number of parameters that can greatly

influence forgetting performance and estimation accuracy. Before the effectiveness of the forgetting algo-

rithms were evaluated, the algorithms required optimization. This chapter describes the optimization process

performed to identify the optimal parameterizations for each forgetting algorithm through the use of simula-

tion. Using the calculated parameterizations, the relative performance of each forgetting algorithm and No

Forgetting was analyzed.

V.1 Optimization

The seven forgetting algorithms described in Chapter IV.1 each possess a diverse collection of properties and

parameters. This section presents the two optimization strategies that were employed to determine optimal

parameterizations for each of the algorithms. The first optimization approach computed parameters for the

Queue Static, Queue Dynamic, and Random forgetting algorithms. ACT-R, SIMPLE, SIMPLE Update,

and ActSimple were optimized with a second, more complex process. The optimization used the Nearest

Neighbor Interpolation with Perception Count Weighting as the existing robotic algorithm. This interpolation

method was selected for its ability to average out the effects of noise.

V.1.1 Optimizing the Queue-Based Forgetting Algorithms

The Queue Static, Queue Dynamic, and Random Forgetting algorithms each possesses a single parameter,

which is discrete. For these algorithms, an exhaustive search through their respective parameter spaces was

completed. The longest path through the simulated environment involved 3768 steps taken by the robot.

During the optimization process, the queue size parameter for each of the three forgetting algorithms varied

from 1 to 3769. At the largest value, the queue for each algorithm was able to maintain every reading along

the path, effectively providing no forgetting. For each queue size, the simulated robot traversed each path

1000 times. Figure V.1a presents the results of the exhaustive search, while Figure V.1b provides a zoomed

in perspective of the forgetting algorithms’ optimal queue sizes. In both figures, the horizontal dashed line

represents the estimation error when no forgetting is performed by the robot.

With small queue sizes, the queue-based forgetting algorithms initially performed poorly (estimation

error over 25), but the estimation error quickly decreased as queue size increased (see Figure V.1). Random

Forgetting was the first forgetting algorithm to outperform No Forgetting (queue size of 409). As queue size
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Figure V.1: Queue-based forgetting algorithm optimization results
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continued to increase, Queue Static and Queue Dynamic Forgetting began generating less error than Random

Forgetting. Performance exceeded No Forgetting levels for queue sizes of 409 - 1868 readings for Random

Forgetting, 476 - 2009 readings for Queue Static Forgetting, and 473 - 2125 readings for Queue Dynamic

Forgetting. Through the queue size range of 500 to 1400 readings, Queue Dynamic generated error values

appreciably better than Queue Static, although both algorithms appeared to follow a similar trend. At larger

queue sizes, the performance of the three forgetting algorithms become identical to No Forgetting levels.

V.1.2 Optimizing the Non-Queue-Based Forgetting Algorithms

Ideally, an exhaustive search would have been conducted through the parameter spaces of each remaining

forgetting algorithm. However, ACT-R, SIMPLE, SIMPLE Update, and ActSimple each involve a large

number of continuous parameters, making this approach infeasible. Instead, a two-stage optimization pro-

cess was conducted, involving a parameter sweep and a local optimization pattern search. Throughout this

optimization process, an assumption was made that the influence of the X and Y axes would be identical

in Simple, Simple Update, and ActSimple. The first stage involved sweeping through each algorithm’s pa-

rameter space by evaluating estimation error at a large number of roughly equi-distant points (5,359,616

for ACT-R, 2,744,560 each for SIMPLE and SIMPLE Update, and 2,621,892 for ActSimple). During this

step, the robot traversed each path ten times. Table V.1 lists the number of tested parameterizations for each

forgetting algorithm where the average estimation error was below certain threshold limits. The column ti-

tled Error Limit provides the threshold values, while the four columns on the right contain the number of

parameterizations for each forgetting algorithm that generated estimation errors below the threshold values.

Once the parameter sweep was completed, the Coliny Pattern Search algorithm from the DAKOTA (De-

sign Analysis Kit for Optimization and Terascale Applications) toolkit (DAKOTA, 2010) was used to perform

the local optimization. ACT-R, SIMPLE, SIMPLE Update, and ActSimple are all stochastic algorithms and

the simulated test environment possesses significant noise, limiting the effectiveness of gradient-based op-

timization methods. While slower than gradient-based optimization algorithms, the Coliny Pattern Search

method maintains greater immunity to noise present in the WiFi readings and estimated signal strength val-

ues. During this phase, the robot traversed each path 100 times per test point in a forgetting algorithm’s

parameter space.

The pattern search was applied to the best 700 parameterizations found during the parameter sweep for

each forgetting algorithm. Table V.2 presents the average reduction in estimation error observed for each

parameterization that underwent the optimization process. The ACT-R forgetting algorithm experienced a

minimal improvement (0.016), while the performance gains for SIMPLE were negligible (0.001). However,

ActSimple received a modest improvement (0.250) and SIMPLE Update’s performance unexpectedly im-
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Table V.1: Parameter sweep counts

Error Limit ACT-R SIMPLE SIMPLE Update ActSimple

5.8 0 0 0 0
5.9 0 0 0 94
6.0 0 0 0 244
6.1 0 0 0 393
6.2 0 0 0 620
6.3 0 0 0 1,103
6.4 0 0 0 1,979
6.5 541 0 0 3,019
7.0 71,867 0 0 33,963
7.5 129,441 0 0 67,132
8.0 196,401 0 0 93,171
8.5 259,196 0 0 118,156
9.0 328,827 0 0 153,543
9.1 344,216 0 0 159,644
9.3 396,624 0 799 191,870
9.4 1,735,650 917,956 933,614 1,084,886
9.5 1,740,271 938,887 954,086 1,091,645

10.0 1,757,893 985,154 998,773 1,108,362

Points
Tested 5,359,616 2,744,560 2,744,560 2,621,892

proved by a large margin (1.646). Despite the significant gains, the initial poor performance of SIMPLE

Update prevented the algorithm from exceeding the performance of ActSimple.

Table V.2: Parameterization error improvement

Algorithm Average Std.Dev.

ACT-R 0.016 0.017
SIMPLE 0.001 0.001
SIMPLE Update 1.646 1.178
ActSimple 0.250 0.127

V.1.3 Optimization Results

The results from both optimization approaches were combined so that the relative performance of the seven

forgetting algorithms could be compared against each other and No Forgetting. The resultant parameter-

izations and estimation error for each forgetting algorithm and No Forgetting are presented in Table V.3.

The column labeled Error presents the estimation error generated by each forgetting algorithm’s optimal

parameterization. The columns on the right show the individual parameter values for each optimized parame-

terization. Parameters not included in a forgetting algorithm are indicated with a ’—’ symbol. No Forgetting

does not involve any parameters. All of the forgetting algorithms outperformed No Forgetting, although
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SIMPLE’s benefits were negligible (an improvement of 0.004). The optimized SIMPLE Update forgetting

algorithm generated an average estimation error 3.113 lower than SIMPLE, demonstrating the benefits of

updating the perception time associated with a WiFi signal strength reading. The optimized parameteriza-

tions for these two algorithms possess large Time-Axis parameter values (0.7035 for SIMPLE and 0.9891 for

SIMPLE Update), signifying the importance of time effects.

Table V.3: Best algorithm parameterizations
Parameters

Algorithm Error Queue Size β d X & Y Time Strength c3 c8 ς τ

No Forgetting 9.357 — — — — — — — — — —
Queue Static 7.559 776 — — — — — — — — —
Queue Dynamic 6.504 803 — — — — — — — — —
Random 8.892 597 — — — — — — — — —
ACT-R 6.451 — 6.1290 0.8257 — — — — — 104.6835 0.8065
Simple 9.353 — — — 0.05553 0.7035 0.1854 2.5000 — 7.7329 -1.2500
Simple Update 6.240 — — — 0.004974 0.9891 0.0009642 14.3125 — 5465.8491 0.03125
ActSimple 5.608 — 5.0000 0.9229 0.5000 — 0.0000 2.5000 0.1517 149.2500 0.0000

The ACT-R algorithm’s best parameterization generated an estimation error average of 6.451, while Act-

Simple’s best parameterized realized an average value of 5.608. While both of the SIMPLE forgetting algo-

rithms and ACT-R performed worse than ActSimple, these results suggest that the combination of trace-based

decay and similarity-based interference can be combined to generate greater performance levels. The opti-

mized parameterization of ActSimple possessed a c8 value of 0.1517, indicating the importance of similarity-

based interference. The X and Y Axis parameters were 0.5000, indicating that only spatial information was

used in calculating the similarity-based interference. Strength values of the WiFi readings were not used by

the optimized parameterization of ActSimple. The d parameter for ActSimple and ACT-R was 0.9229 and

0.8257 respectively, deviating from the value of 0.5, which is commonly used in many ACT-R based systems.

During the parameter sweep of ACT-R, SIMPLE, SIMPLE Update, and ActSimple’s parameter spaces,

ten instances of each path were employed to generate average estimation error values and 100 instances were

used during the pattern search. Since the forgetting algorithms are stochastic algorithms operating over noisy

WiFi readings, the estimation error values are variable. An analysis of this variability was conducted by

processing groups of path instances with each forgetting algorithm. Using the optimized parameterizations,

each forgetting algorithm processed sets of 10, 100, and 1000 paths instances. The results were collected for

100 trials of each path instance count. The estimation error was then averaged across trials and the results are

presented in Table V.4.

While the standard deviation between trials for each forgetting algorithm was reduced as the path instance

count increased, the values were all relatively small. These results suggest that the forgetting algorithms are
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Table V.4: Variance test

Algorithm Instances Average Std. Dev. Span

ACT-R 10 6.469 0.027 0.134
100 6.467 0.009 0.042

1000 6.469 0.003 0.013

SIMPLE 10 9.358 0.019 0.080
100 9.358 0.006 0.034

1000 9.359 0.002 0.008

SIMPLE Update 10 6.247 0.033 0.176
100 6.253 0.008 0.034

1000 6.253 0.003 0.014

ActSimple 10 5.629 0.029 0.157
100 5.631 0.009 0.050

1000 5.633 0.003 0.014

robust to differences between path instances.

A forgetting algorithm’s performance when applied to a particular path may differ from that forgetting

algorithm’s average performance. Path properties, including basestation configuration changes and length

can alter the operation of a forgetting algorithm. The seven forgetting algorithms and No Forgetting were

tested with a new set of 100 instances of the twenty paths, described in Chapter IV. The average number of

recallable readings generated by each forgetting algorithm or No Forgetting, when applied to each path, is

presented in Table V.5. Ranking was performed after rounding to minimize the effects of noise. No Forgetting

averaged the largest number of recallable readings (1270.13) although the SIMPLE algorithm generated a

nearly identical number of recallable readings (1270.1). The Random forgetting algorithm was limited by

its queue size and realized the least number of recallable readings (597). ActSimple produced the second

smallest number of recallable readings (636.958). While the SIMPLE Update algorithm averaged 1025.51

recallable readings, ACT-R generated an average of 674.86.

The estimation error generated by each forgetting algorithm or No Forgetting, when applied to each path,

is presented in Table V.6. No Forgetting and the SIMPLE algorithm generated identical average estimation

error and standard deviation values (9.159 and 6.568, respectively). All other forgetting algorithms generated

less overall estimation error. The standard deviation value of 6.568 was also the largest generated by any

forgetting algorithm or No Forgetting. ActSimple realized the smallest overall estimation error (5.448), while

SIMPLE Update and ACT-R were second and third, respectively (6.058 and 6.276, respectively). Queue

Dynamic’s fourth smallest estimation error (6.319) was 0.043 larger than ACT-R’s estimation error.

No Forgetting generated substantially greater estimation error on the six paths containing a basestation

configuration change than the fourteen static paths. Paths 17 and 19 (the two randomly generated dynamic
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Table V.5: Individual path average number of recallable readings
No Forgetting Queue Static Queue Dynamic Random ACT-R SIMPLE SIMPLE Update ActSimple

Path 1 - 1 Cycle 4 - 8 Basestations 1155.93 776 803 597 635.36 1155.91 734.1 661.28
Path 2 - 1 Cycle 4 Basestations 913.78 776 803 597 631.47 913.74 911.36 688.79
Path 3 - 1 Cycle 4 Basestations 787.8 775.48 787.58 597 583.15 787.79 787.34 671.33
Path 4 - 1 Cycle 4 Basestations 752.33 752.32 752.33 597 558.54 752.3 752.3 663.87
Path 5 - 1 Cycle 8 - 4 Basestations 1155.41 776 803 597 634.7 1155.38 741.15 659.57
Path 6 - 1 Cycle 8 Basestations 973.85 776 803 597 631.47 973.83 915.16 685.64
Path 7 - 1 Cycle 8 Basestations 835.1 776 803 597 588.88 835.09 834.05 671.01
Path 8 - 1 Cycle 8 Basestations 796.6 775.87 794.42 597 565.99 796.58 795.87 667.26
Path 9 - 3 Cycles 4 - 8 Basestations 2048 776 803 597 781.39 2047.94 1170.33 579.68
Path 10 - 3 Cycles 4 Basestations 1484.33 776 803 597 802.86 1484.27 1480.58 701.36
Path 11 - 3 Cycles 4 Basestations 1286.69 776 803 597 732.45 1286.68 1285.93 661.39
Path 12 - 3 Cycles 4 Basestations 1206.36 776 803 597 679.43 1206.3 1201.08 633.74
Path 13 - 3 Cycles 8 - 4 Basestations 2048.21 776 803 597 759.35 2048.15 1111.5 586.78
Path 14 - 3 Cycles 8 Basestations 1687.46 776 803 597 839.68 1687.38 1504.52 683.77
Path 15 - 3 Cycles 8 Basestations 1450.61 776 803 597 767.2 1450.6 1433.73 654.33
Path 16 - 3 Cycles 8 Basestations 1370.07 776 803 597 724.11 1370.03 1338.93 634.38
Path 17 - Random 4 - 8 Basestations 1502.93 776 803 597 691.51 1502.89 775.2 556.41
Path 18 - Random 4 Basestations 1167.63 776 803 597 646.72 1167.6 1041.59 606.96
Path 19 - Random 8 - 4 Basestations 1502.51 776 803 597 646.37 1502.46 740.5 501.12
Path 20 - Random 8 Basestations 1277.1 776 803 597 596.57 1277.07 954.94 570.49

Average 1270.13 774.784 799.266 597 674.86 1270.1 1025.51 636.958
Std 380.540 5.289 11.698 0 83.496 380.526 270.409 53.041
Rank 1 5 4 8 6 2 3 7

paths) resulted in the largest estimation error of the six dynamic paths. Old readings are not filtered by No

Forgetting and their influence detrimentally impacts the ability to estimate signal strength. No Forgetting’s

poor overall estimation error was not simply a result of generating substantial error on dynamic paths. While

No Forgetting outperformed ActSimple on the six static one cycle paths (paths 2-4 and 6-8), No Forgetting

resulted in greater estimation error with the the six static three cycle paths (paths 10-12 and 14-16).

The statistical significance of the relative estimation error performance results from Table V.6 was tested

with two non-parametric Wilcoxon signed rank tests. Non-parametric testing was performed because the true

path distribution is not known. Wilcoxon signed rank tests were selected because they can be more powerful

than the simpler sign test. Results from the tests are presented in Table V.7. The first test, labeled Less than No

Forgetting, tested if the forgetting algorithms listed in the left-most column generated less average estimation

error than No Forgetting. The second test, labeled ActSimple less than, tested if ActSimple resulted is less

estimation error than No Forgetting and the other forgetting algorithms. Both tests were singled-sided and

used an α of 0.05. Results that were found to be significant are indicated in bold and individual pairings that

were not performed are marked with a —— symbol. The tests included the estimation error results from all

twenty paths.

ActSimple’s reduction of estimation error relative to No Forgetting was found to be significant (v = 32.0,

p = 0.0024), while the reduction of estimation error of the other forgetting algorithms was not found to be

significant (column Less than No Forgetting). When ActSimple was compared against No Forgetting and

the other forgetting algorithms (column ActSimple less than), ActSimple’s relative estimation error benefits
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Table V.6: Individual path estimation error
No Forgetting Queue Static Queue Dynamic Random ACT-R SIMPLE SIMPLE Update ActSimple

Path 1 - 1 Cycle 4 - 8 Basestations 17.801 8.987 8.687 14.649 5.635 17.801 8.427 6.024
Path 2 - 1 Cycle 4 Basestations 4.413 5.211 4.553 5.397 4.698 4.413 4.433 4.621
Path 3 - 1 Cycle 4 Basestations 5.004 5.093 5.002 5.625 5.694 5.004 5.01 5.077
Path 4 - 1 Cycle 4 Basestations 5.708 5.708 5.708 6.224 10.944 5.708 5.708 5.746
Path 5 - 1 Cycle 8 - 4 Basestations 18.729 8.736 8.404 15.044 4.897 18.729 5.871 5.296
Path 6 - 1 Cycle 8 Basestations 5.062 6.212 5.335 6.553 5.575 5.062 5.593 5.479
Path 7 - 1 Cycle 8 Basestations 6.098 6.561 6.166 7.135 6.801 6.098 6.103 6.389
Path 8 - 1 Cycle 8 Basestations 6.408 6.559 6.404 7.315 9.055 6.408 6.414 6.557
Path 9 - 3 Cycles 4 - 8 Basestations 17.032 5.972 5.169 8.196 3.834 17.032 5.658 4.618
Path 10 - 3 Cycles 4 Basestations 3.788 4.959 4.128 5.583 1.908 3.789 3.831 2.274
Path 11 - 3 Cycles 4 Basestations 4.404 5.653 3.761 6.103 2.748 4.405 4.412 2.964
Path 12 - 3 Cycles 4 Basestations 5.108 11.604 9.669 7.292 8.907 5.109 5.203 3.715
Path 13 - 3 Cycles 8 - 4 Basestations 18.158 5.271 4.31 7.402 2.837 18.158 4.23 3.502
Path 14 - 3 Cycles 8 Basestations 3.891 6.015 5.128 6.781 2.613 3.892 4.552 3.297
Path 15 - 3 Cycles 8 Basestations 5.005 8.043 5.82 7.648 3.949 5.005 5.015 4.416
Path 16 - 3 Cycles 8 Basestations 5.346 9.434 7.55 8.934 6.765 5.346 5.431 4.947
Path 17 - Random 4 - 8 Basestations 20.971 8.15 7.199 16.624 13.983 20.972 8.756 13.864
Path 18 - Random 4 Basestations 4.762 9.352 5.648 7.172 4.406 4.763 6.145 3.964
Path 19 - Random 8 - 4 Basestations 20.256 7.887 6.673 15.419 12.416 20.258 8.216 10.317
Path 20 - Random 8 Basestations 5.227 12.224 11.069 9.063 7.849 5.227 12.161 5.897

Average 9.159 7.382 6.319 8.708 6.276 9.159 6.058 5.448
Std 6.568 2.148 1.936 3.604 3.355 6.568 1.983 2.616
Rank 7 5 4 6 3 7 2 1

Table V.7: Comparison of estimation error

Less than ActSimple
No Forgetting less than

n v p n v p

No Forgetting —— —— —— 20 32.0 0.0024
Queue Static 20 105.0 0.5073 20 30.0 0.0018
Queue Dynamic 19 81.0 0.2974 20 58.0 0.0413
Random 20 108.0 0.5508 20 0.0 <0.0001
ACT-R 20 71.0 0.1081 20 71.0 0.1081
SIMPLE 20 154.5 0.9687 20 32.0 0.0024
SIMPLE Update 20 105.0 0.5073 20 53.0 0.0266
ActSimple 20 32.0 0.0024 20 —— ——

were found to be significant when compared against No Forgetting (v = 32.0, p = 0.0024), Queue Static

(v = 30.0, p = 0.0018), Queue Dynamic (v = 58.0, p = 0.0413), Random (v = 0.0, p < 0.0001), SIMPLE

(v = 32.0, p = 0.0024), and SIMPLE Update (v = 53.0, p = 0.0266). However, ActSimple’s estimation

error improvement over ACT-R was not significant (v = 71.0, p = 0.1081). These results suggest that for

collections of paths similar to the twenty tested paths, ActSimple is an effective approach to reducing average

estimation error. While ACT-R’s reduction of average estimation error relative to No Forgetting was not

found to be significant, ActSimple’s estimation error improvement over ACT-R was also not found to be

significant. This suggests that the trace-based decay present in ActSimple and ACT-R may play a critical role

in the ability to improve performance.
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The presence of dynamism can have a large impact on the absolute and relative effectiveness of a forget-

ting algorithm, and the statistical results presented in Table V.7 may be affected by varying the percentage of

paths containing a basestation configuration change. A single-sided Wilcoxon rank sum test was performed

to evaluated if No Forgetting and the forgetting algorithms generated less average estimation error on static

paths as compared to dynamic paths. This test was employed instead of the Wilcoxon signed rank test be-

cause the data was not paired. The test was performed with α = 0.05, nA = 14, and nB = 6. Results from this

test are presented in Table V.8.

Table V.8: The effects of dynamism on estimation error

w p

No Forgetting 0.0 <0.0001
Queue Static 37.0 0.3590
Queue Dynamic 31.0 0.1985
Random 5.0 0.0005
ACT-R 37.0 0.3590
SIMPLE 0.0 <0.0001
SIMPLE Update 25.0 0.0893
ActSimple 26.0 0.1037

The difference in average estimation error between static and dynamic paths was found to be significant

for No Forgetting (w = 0.0, p < 0.0001), Random (w = 5.0, p = 0.0005), and SIMPLE (w = 0.0, p < 0.0001).

The remaining forgetting algorithms were not found to generate a significant difference in average estimation

error. These results suggest that Queue Static, Queue Dynamic, ACT-R, SIMPLE Update, and ActSimple

may not be affected by dynamism to the same extent as No Forgetting, Random, and SIMPLE.

Dynamism may affect the relative estimation error generated by No Forgetting and the forgetting algo-

rithms. Four single-sided Wilcoxon signed rank tests were performed to test the differences in estimation

error that results from applying No Forgetting and the forgetting algorithms to just static paths and to dy-

namic paths. Results from these tests are presented in Table V.9. The first test (Less than No Forgetting -

Static) tests if the forgetting algorithms listed in the left-most column generated less estimation error when

only results from the fourteen static paths were considered. The second test (Less than No Forgetting - Dy-

namic) tests if the forgetting algorithms generated less estimation error than No Forgetting when only results

from the six dynamic paths were included. The third test (ActSimple less than - Static) tests if ActSimple

resulted in less estimation error than No Forgetting and the other forgetting algorithms when applied to only

the static paths. The fourth test (ActSimple less than - Dynamic) tests if ActSimple generated less estimation

error than No Forgetting and the other forgetting algorithms when applied to only the dynamic paths. The α

value was 0.05 for each test and significant results are indicated in bold.
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Table V.9: Estimation error performance on static and dynamic paths

Less than No Forgetting ActSimple less than

Static Dynamic Static Dynamic

n v p n v p n v p n v p

No Forgetting —— —— —— —— —— —— 14 32.0 0.1083 6 0.0 0.0156
Queue Static 14 105.0 1.0000 6 0.0 0.0156 14 3.0 0.0003 6 9.0 0.4219
Queue Dynamic 13 81.0 0.9960 6 0.0 0.0156 14 21.0 0.0247 6 11.0 0.5781
Random 14 105.0 1.0000 6 0.0 0.0156 14 0.0 0.0001 6 0.0 0.0156
ACT-R 14 71.0 0.8794 6 0.0 0.0156 14 23.0 0.0338 6 14.0 0.7812
SIMPLE 14 95.0 0.9980 6 9.5 0.4375 14 32.0 0.1083 6 0.0 0.0156
SIMPLE Update 14 105.0 1.0000 6 0.0 0.0156 14 18.0 0.0148 6 10.0 0.5000
ActSimple 14 32.0 0.1083 6 0.0 0.0156 —— —— —— —— —— ——

None of the results from testing if the forgetting algorithms generated less estimation error than No For-

getting when applied to only the static paths (column Less than No Forgetting - Static) were found to be

significant. However, when the forgetting algorithms were tested to determine if they resulted in less estima-

tion error than No Forgetting when processing dynamic paths (column Less than No Forgetting - Dynamic),

all of the results were significant (v = 0.0, p = 0.0156), except for SIMPLE (v = 9.5, p = 0.4375). All of

the forgetting algorithms, except for SIMPLE, generated identical metric and p values because they resulted

in less estimation error than No Forgetting when applied to each of the six dynamic paths. These results sug-

gest that Human-Inspired Forgetting may be an effective approach to improving system accuracy in dynamic

domains. While the results from comparing the estimation error from ActSimple to the estimation error from

No Forgetting when applied to the static paths was not found to be significant, ActSimple’s average estima-

tion error on the static paths (µ = 4.6674, σ = 1.303) was smaller than the average estimation error resulting

from No Forgetting (µ = 5.0161, σ = 0.7506). These results suggest that in addition to the benefits provided

by applying Human-Inspired Forgetting to dynamic paths, ActSimple may result in equal or even improved

accuracy when employed under some static conditions.

The third Wilcoxon signed rank test in Table V.9 evaluated if ActSimple resulted in less estimation error

than No Forgetting and the other forgetting algorithms when only results from the static paths were included

(column ActSimple less than - Static). The results were significant for Queue Static (v = 3.0, p = 0.0003),

Queue Dynamic (v = 21.0, p = 0.0247), Random (v = 0.0, p = 0.0001), ACT-R (v = 23.0, p = 0.0338),

and SIMPLE Update (v = 18.0, p = 0.0148). The results for No Forgetting and SIMPLE were identical

and not significant. The fourth Wilcoxon signed rank test in Table V.9 tested if ActSimple resulted in less

estimation error than No Forgetting and the other forgetting algorithms when only results from the dynamic

paths were used. The results were significant for No Forgetting (v = 0.0, p = 0.0156), Random (v = 0.0,
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p = 0.0156), and SIMPLE (v = 0.0, p = 0.0156). Results for the remaining forgetting algorithms were

not significant. These results suggest that Human-Inspired Forgetting may not improve accuracy across all

possible conditions. Instead, forgetting algorithms and their parameterizations may need to be optimized for

specific domain properties and conditions. ActSimple was able to generate less estimation error than the other

forgetting algorithms (excluding SIMPLE) when processing static paths and also resulted in less estimation

error than No Forgetting and SIMPLE when applied to dynamic paths. ActSimple may not always result in

the least amount of estimation error for every specific tested condition, but these results suggest ActSimple

may be capable of improving average system accuracy. The ratio of static to dynamic paths used during the

optimization process may have influenced the relative performance of ActSimple and the other forgetting

algorithms when applied to static and dynamic paths.

V.1.4 Summary

The optimization process and results for ActSimple and the six other forgetting algorithms have been pro-

vided. Two separate optimization procedures were employed, one for the queue-based forgetting algorithms

and another for the remaining four algorithms. During optimization, the forgetting algorithms were optimized

with WiFi signal strength estimation results from a simulated robot traversing the twenty paths described in

Chapter IV.4. Only one metric was used during optimization, the average absolute signal strength estima-

tion error generated by the robot when it employed the forgetting algorithms. After the robot had finished

traversing each path, the robot estimated the signal strength at each location within the environment and the

resultant error at each location was recorded. The metric was computed by averaging the estimation error for

100 instances of each of the twenty paths.

The forgetting algorithms and No Forgetting were tested for twenty paths after optimization. ActSimple

was found to generate the smallest amount of estimation error, while SIMPLE and No Forgetting tied for

the greatest amount of estimation error (Table V.6). These results suggest in addition to Human-Inspired

Forgetting having the potential to improve performance relative to No Forgetting, ActSimple may be a highly

effective implementation. However, while ActSimple outperformed No Forgetting and the other forgetting

algorithms, ActSimple possesses the largest number of parameters and can be considered the most complex

of the algorithms.

The effects of algorithm complexity are shown in Figure V.2, which plots an algorithm’s number of

parameters versus its resultant average absolute estimation error. Path dynamism was demonstrated to have

an effect on the estimation error generated by forgetting algorithms and No Forgetting. Each forgetting

algorithm (and No Forgetting) in Figure V.2 is indicated with a unique symbol, while the set of paths used to

create the average estimation error is represented by color. The results of averaging estimation error from all
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Figure V.2: Number of parameters vs. average absolute estimation error

twenty paths is shown in black, while results generated solely from the fourteen static paths are shown in red.

Blue indicates results involving only the six dynamic paths.

Excluding SIMPLE, Figure V.2 shows an inverse relationship between complexity and estimation error

when all twenty paths are included (Black). SIMPLE and No Forgetting generated an identical amount of

estimation error, suggesting parameter count is not the sole factor influencing performance. The relative

performance of the forgetting algorithms and No Forgetting was more variable when the paths were parti-

tioned based on dynamism. While ActSimple generated the smallest amount of estimation error on static

paths (Red), No Forgetting resulted in the second smallest amount. When applied to only dynamic paths

(Blue), ActSimple generated the fourth smallest amount of estimation error, while No Forgetting resulted

in the seventh smallest amount of estimation error. SIMPLE Update generated the second smallest amount

of estimation error on dynamic paths, but only resulted in the fourth smallest amount of estimation error on

static paths. The optimization process was performed for the entire set of twenty paths and the ratio of static

to dynamic paths may have influenced the resultant parameterizations.

In addition to the average estimation error metric (Table V.6), a second metric was recorded, the average

number of recallable readings (Table V.5). The average number of recallable readings metric shows the av-

erage number of WiFi signal strength readings presented to the existing robotic algorithm (Nearest Neighbor

Interpolation with Perception Count Weighting). While No Forgetting resulted in the largest number of re-
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Figure V.3: Average number of recallable readings vs. average absolute estimation error

callable readings, ActSimple filtered the second largest number of readings. Random forgetting averaged the

smallest number of recallable readings, suggesting a forgetting algorithm’s operation and parameterization

have a large impact on the amount of filtering that is performed.

Forgetting algorithm selectivity has a greater influence on performance than just the average number

of recallable readings. The relationship between the average number of recallable readings and average

absolute estimation error for each forgetting algorithm and No Forgetting is presented in Figure V.3. This

figure uses the same key as employed in Figure V.2. When all twenty paths are included, ActSimple filtered

the second largest number of readings, but still managed to produce the lowest amount of estimation error.

No Forgetting, which filtered the fewest readings, tied with SIMPLE for the largest amount of estimation

error. Random forgetting filtered the most readings, but only generated the sixth best estimation error. These

results suggest that simply using more data to solve a problem may not always be the optimal solution.

When the results from static and dynamic paths were separated, a performance trend appears for No

Forgetting and the forgetting algorithms. Applying No Forgetting, SIMPLE, Queue Static, Queue Dynamic,

and ACT-R to only the static paths resulted in fewer recallable readings and less estimation error than when

the forgetting algorithms and No Forgetting were applied to the dynamic paths. These forgetting algorithms

and No Forgetting performed better with the static paths. The Random forgetting algorithm averaged the

same number of recallable readings under all conditions, but still performed better on static paths. ActSimple
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and SIMPLE Update resulted in a different trend. While both algorithms generated less estimation error

when only processing static paths, they also resulted in larger numbers of recallable readings. In situations

where the average number of recallable readings can have a noticeable impact on efficiency and performance,

determining if these two algorithms perform better with static or dynamic paths is more challenging.

V.2 Alternate Existing Robotic Algorithms

Robots operating within complex and dynamic domains require the ability to adapt to changing task con-

ditions as well as environment fluctuations. In Section V.1, the seven forgetting algorithms were optimized

while being applied to the existing robotic algorithm of Nearest Neighbor Interpolation with Perception Count

Weighting. This section explores the effects on forgetting algorithm performance when changes occur to the

existing robotic algorithm. Results from this experiment reveal if the forgetting algorithms maintain their

performance levels, realize graceful degradation, or fail completely.

This experiment tested all four interpolation methods described in Chapter IV.3 (Nearest Neighbor In-

terpolation with Perception Count Weighting, Nearest Neighbor Interpolation with Equal Weighting, Shep-

ard’s Interpolation, and Microsphere Interpolation) with the optimized parameterizations discovered in Chap-

ter V.1. The seven forgetting algorithms and No Forgetting were individually combined with the four inter-

polation methods and evaluated with 1000 instances each of the twenty paths described in Chapter IV. These

path instances were the same as those used in optimizing the queue forgetting methods (Section V.1).

Estimation error generated from combining each forgetting algorithm or No Forgetting with the four

interpolations methods is presented in Table V.10. The best performing forgetting algorithms were able

to minimize the resultant estimation error for each interpolation method. In the table, the right most two

columns present the mean and standard deviation across interpolation method. Error values were smallest

when the Nearest Neighbor with Perception Count Weighting method was used, except for Random forgetting

where Microsphere Interpolation generated 0.006 less error. The Shepard’s Interpolation method consistently

produced the largest estimation error and the Nearest Neighbor Interpolation with Equal Weighting method

always underperformed the Nearest Neighbor Interpolation with Perception Count Weighting method. The

SIMPLE algorithm and No Forgetting generated nearly identical error values. While SIMPLE outperformed

No Forgetting by 0.004 when Nearest Neighbor Interpolation with Perception Count Weighting was used, the

error values for the other interpolation methods were equivalent.

The rank orderings of the estimation error values were calculated and are presented in Table V.11. The

ranking was performed after rounding to minimize the effects of noise. The ActSimple algorithm generated

the smallest estimation error for each of the four interpolation methods. The SIMPLE Update algorithm

generated the second best error with Nearest Neighbor Interpolation with Perception Count Weighting, but
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Table V.10: New interpolation methods
No Forgetting Queue Static Queue Dynamic Random ACT-R Simple Simple Update ActSimple Mean Std

NN - Perception Count 9.357 7.559 6.504 8.892 6.451 9.353 6.251 5.608 7.497 1.515
NN - Equal 10.718 7.803 7.015 9.182 6.9 10.718 7.591 5.911 8.23 1.793
Shepard’s 11.485 9.169 7.941 11.98 7.836 11.485 8.586 7.263 9.468 1.896
Microsphere 10.609 7.619 6.842 8.886 6.738 10.609 7.414 5.691 8.051 1.818

Average 10.542 8.037 7.076 9.735 6.981 10.542 7.46 6.118 8.311 1.727
Std 0.881 0.761 0.615 1.503 0.6 0.883 0.957 0.774 0.872 0.285

produced the fourth smallest error with the other interpolation methods. While the ACT-R algorithm gener-

ated the third best error with Nearest Neighbor Interpolation with Perception Count Weighting, the forgetting

algorithm achieved the second best error with the remaining interpolation methods. With Nearest Neighbor

Interpolation with Perception Count Weighting, the Queue Dynamic algorithm generated the fourth best es-

timation error and improved to third for the remaining interpolation methods. The Queue Static algorithm

consistently achieved the fifth best error. The Random and SIMPLE algorithms, along with No Forgetting,

never realized a ranking better than sixth.

Table V.11: New interpolation method rankings
No Forgetting Queue Static Queue Dynamic Random ACT-R Simple Simple Update ActSimple Mean Std

NN - Perception Count 8 5 4 6 3 7 2 1 4.5 2.449
NN - Equal 7 5 3 6 2 7 4 1 4.375 2.264
Shepard’s 6 5 3 8 2 6 4 1 4.375 2.326
Microsphere 7 5 3 6 2 7 4 1 4.375 2.264

Average 7 5 3.25 6.5 2.25 6.75 3.5 1 4.406 2.248
Std 0.816 0 0.5 1 0.5 0.5 1 0 0.54 0.394

The estimation error differences between Nearest Neighbor Interpolation with Perception Count Weight-

ing and the other interpolation methods are shown in Table V.12. Positive deviation values reflect a decrease

in performance. Except for the marginal performance gain (-0.006) for the Random forgetting algorithm

and Microsphere Interpolation, the forgetting algorithms and No Forgetting each experienced a decrease in

performance when an interpolation method other than Nearest Neighbor Interpolation with Perception Count

Weighting was employed. The performance decrements were not consistent and ranged from 0.060 to 3.088.

The ActSimple algorithm generated the second smallest average performance decrement, trailing only Queue

Static forgetting. No Forgetting generated increasing estimation error for each of the three alternate interpo-

lation methods. These increases in error suggest the alternate interpolation methods pose a greater challenge

to the forgetting algorithms. Maintaining the estimation error values that were generated with Nearest Neigh-

bor Interpolation with Perception Count Weighting requires the forgetting algorithms to increase the amount

of error reduction afforded by filtering. The estimation error increases for the Queue Static, Queue Dy-

namic, ACT-R, and ActSimple algorithms were all smaller than the respective changes with No Forgetting.
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These four forgetting algorithms maintained their benefits to WiFi signal strength estimation, improving their

relative benefit when applied to the three new and more challenging existing robotic algorithms. These esti-

mation error trends suggest the algorithms are robust to changes in task. Algorithm performance will degrade

gracefully if a robot’s task changes slightly or is poorly modeled.

Table V.12: New interpolation method performance deviations
No Forgetting Queue Static Queue Dynamic Random ACT-R Simple Simple Update ActSimple Mean Std

NN - Equal 1.361 0.243 0.511 0.29 0.449 1.365 1.34 0.303 0.733 0.523
Shepard’s 2.128 1.609 1.437 3.088 1.386 2.132 2.335 1.655 1.971 0.572
Microsphere 1.252 0.06 0.338 -0.006 0.287 1.256 1.163 0.083 0.554 0.567

Average 1.581 0.638 0.762 1.124 0.707 1.585 1.613 0.681 1.086 0.445
Std 0.477 0.847 0.591 1.707 0.593 0.477 0.632 0.851 0.772 0.404

V.3 Alternate Basestation Configurations and Paths

The seven forgetting algorithms were optimized and compared against No Forgetting while filtering WiFi

signal strength readings. During optimization, the Nearest Neighbor Interpolation with Perception Count

Weighting was employed as the existing robotic algorithm. Section V.2 demonstrated how changes to the

existing robotic algorithm (interpolation method) can affect the performance of a forgetting algorithm. Per-

formance can also be influenced by changes to the environment. This section describes an experiment where

the forgetting algorithms, along with No Forgetting, were applied to a set of 44 new paths (labeled path 21 -

64), comprised of new path trajectories, basestation configurations, and number of basestation configuration

changes that occurred during a path.

V.3.1 Description of Paths 21 - 64

The paths used during the optimization process employed two basestation configurations, one with four

basestations and another with eight (Figure IV.1). During the experiment presented in this section, four

new basestation configurations were constructed. These new configurations consisted of: a single basestation

configuration, a two basestation configuration, a three basestation configuration, and a five basestation config-

uration. The signal strength available at each location in the environment for each basestation configuration

is presented in Figure V.4.

The 44 new paths were created with three different types of path trajectories. Twenty of the paths (Path

21 - 40) incorporated an exhaustive pattern through the environment (Figure V.5a). This trajectory is identical

to the trajectory of Paths 1, 2, 5, 6, 9, 10, 13, and 14. The trajectory starts at the center of the environment

and then travels to the lower left corner. From this point, the trajectory exhaustively moves to the upper right

corner of the environment. The trajectory then returns to the lower left corner. Paths using this trajectory

86



(a) 1 basestation (b) 2 basestations

(c) 3 basestations (d) 5 basestations

Figure V.4: New basestation configurations

Table V.13: Basestation configurations for paths 21 - 64

Path Cfg. Path Cfg. Path Cfg. Path Cfg.

Path 21 1 Path 32 5 Path 43 3 Path 54 2 - 1
Path 22 2 Path 33 1 - 2 Path 44 5 Path 55 3 - 5
Path 23 3 Path 34 2 - 1 Path 45 1 - 2 Path 56 5 - 3
Path 24 5 Path 35 3 - 5 Path 46 2 - 1 Path 57 1
Path 25 1 - 2 Path 36 5 - 3 Path 47 3 - 5 Path 58 2
Path 26 2 - 1 Path 37 1 - 2 - 1 Path 48 5 - 3 Path 59 3
Path 27 3 - 5 Path 38 2 - 1 - 2 Path 49 1 Path 60 5
Path 28 5 - 3 Path 39 1 - 2 - 3 Path 50 2 Path 61 1 - 2
Path 29 1 Path 40 3 - 2 - 1 Path 51 3 Path 62 2 - 1
Path 30 2 Path 41 1 Path 52 5 Path 63 3 - 5
Path 31 3 Path 42 2 Path 53 1 - 2 Path 64 5 - 3

made either one or three round trips from the lower left corner to the upper right and back. The second

trajectory (Figure V.5b) is similar to the first, except every other column in the environment is skipped. This

trajectory was used by Paths 41 - 56. The remaining trajectories (Figures V.5c - V.5j) were each randomly

generated. Each of these trajectories were used by only one path (Paths 57 - 64). Paths 21 - 28 and 41 - 48

were 1272 steps long while paths 29 - 40 and 49 - 56 were 3768 steps long. The randomly generated paths

(Paths 57 - 64) were all 3000 steps in length. Twenty of the paths possessed one basestation configuration

change. This change occurred at roughly the midpoint of the paths. Four paths incorporated two basestation

configuration changes. These four paths changed configurations at approximately the one third and two thirds

points along the path. Table V.13 presents the basestation configurations employed by each path.
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(a) Exhaustive path (b) Sparse path

(c) Path 57 (d) path 58 (e) Path 59 (f) Path 60

(g) Path 61 (h) Path 62 (i) Path 63 (j) Path 64

Figure V.5: New path trajectories
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V.3.2 Forgetting Performance with Paths 21 - 64

The seven forgetting algorithms and No Forgetting were applied to 100 instances of each new path. Testing

conditions were identical to those used during optimization except for the actual paths. The Nearest Neighbor

Interpolation with Perception Count Weighting was used as the existing robotic algorithm.

The resultant individual average number of recallable readings are presented in Table V.14. Ranking

values were computed after rounding to minimize the effects of noise. The rank ordering when only paths

21 - 64 were included in the results (Table V.14) was identical to the rank ordering when only paths 1 - 20

were tested (Table V.5). No Forgetting averaged the largest number of recallable readings (1090.794), with

SIMPLE averaging nearly the same amount (1090.759). ActSimple averaged the second least number of

recallable readings (600.877) and the Random forgetting algorithm filtered the most (583.108). The Random

and ActSimple algorithms also generated the smallest standard deviations (32.05 and 71.07, respectively).

The resultant individual estimation error results are presented in Table V.15. The rank ordering of the

forgetting algorithms and No Forgetting differed from the rank orderings when the forgetting algorithms and

No Forgetting were applied to paths 1 - 20 (Table V.6), unlike the average number of recallable reading count

rankings. The ActSimple algorithm maintained the smallest estimation error (5.144), but SIMPLE Update

moved from second place to sixth. ActSimple’s estimation error was 5.448 when applied to paths 1 - 20

and decreased to 5.144 when applied to paths 21 - 64. The SIMPLE Update algorithm’s estimation error

increased from 6.058 to 8.708. The ACT-R algorithm generated a third place estimation error (6.276) with

paths 1 - 20, but improved to second place by producing an estimation error of 5.277 with paths 21 - 64. Both

Queue Static and Queue Dynamic improved their rankings by one despite generating larger estimation error

for paths 21 - 64. Queue Static produced an estimation error of 7.382 for paths 1 - 20 and 7.571 for paths 21 -

64. The Queue Dynamic algorithm generated an estimation error of 6.319 for paths 1- 20 and 6.675 for paths

21 - 64. No Forgetting and the SIMPLE algorithm tied for the largest estimation error (9.058) in a similar

fashion to their performance with paths 1 - 20.

The statistical significance of the relative estimation error performance results from Table V.15 was tested

with two Wilcoxon signed rank tests and are presented in Table V.16. These tests were performed in a

similar fashion to those presented in Chapter V.1.3. The first test, labeled Less than No Forgetting, tested

if the forgetting algorithms listed in the left-most column generated less average estimation error than No

Forgetting. The second test, labeled ActSimple less than, tested if ActSimple resulted is less estimation error

than No Forgetting and the other forgetting algorithms. Both tests were singled-sided and used an α of 0.05.

Results that were found to be significant are indicated in bold and individual pairings that were not performed

are marked with a —— symbol. The tests included the estimation error results from all 44 paths.
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Table V.14: Average number of recallable readings for paths 21 - 64
No Forgetting Queue Static Queue Dynamic Random ACT-R SIMPLE SIMPLE Update ActSimple

Path 21 - 1 Cycle 1 Basestations 867.76 776 803 597 629.62 867.7 718.59 684.02
Path 22 - 1 Cycle 2 Basestations 877.33 776 803 597 630.58 877.32 781.46 687.76
Path 23 - 1 Cycle 3 Basestations 907.48 776 803 597 631.11 907.41 832.66 684.53
Path 24 - 1 Cycle 5 Basestations 944.44 776 803 597 631.41 944.44 943.33 686.33
Path 25 - 1 Cycle 1 - 2 Basestations 1017.46 776 803 597 641.24 1017.43 712.73 675.23
Path 26 - 1 Cycle 2 - 1 Basestations 1019.39 776 803 597 639.84 1019.35 698.69 675.19
Path 27 - 1 Cycle 3 - 5 Basestations 1013.18 776 803 597 631.79 1013.13 864.31 675.33
Path 28 - 1 Cycle 5 - 3 Basestations 1015.34 776 803 597 632.01 1015.3 904.21 674.49
Path 29 - 3 Cycles 1 Basestations 1322.37 776 803 597 775.26 1322.34 1171.52 725.32
Path 30 - 3 Cycles 2 Basestations 1358.58 776 803 597 782.94 1358.49 1262.24 717.62
Path 31 - 3 Cycles 3 Basestations 1455.92 776 803 597 800.62 1455.88 1379.26 711.99
Path 32 - 3 Cycles 5 Basestations 1588.12 776 803 597 825.91 1588.02 1577.04 696.9
Path 33 - 3 Cycles 1 - 2 Basestations 1619.48 776 803 597 761.82 1619.36 1080.82 651.95
Path 34 - 3 Cycles 2 - 1 Basestations 1617.03 776 803 597 758.02 1616.97 1035.48 661.49
Path 35 - 3 Cycles 3 - 5 Basestations 1689.26 776 803 597 806.93 1689.19 1388.25 656.67
Path 36 - 3 Cycles 5 - 3 Basestations 1686.57 776 803 597 787.37 1686.52 1240.63 665.66
Path 37 - 3 Cycles 1 - 2 - 1 Basestations 1594.34 776 803 597 754.5 1594.34 1121.57 664.7
Path 38 - 3 Cycles 2 - 1 - 2 Basestations 1611.8 776 803 597 759.65 1611.74 1133.04 655.19
Path 39 - 3 Cycles 1 - 2 - 3 Basestations 1644.36 776 803 597 781.42 1644.32 1146.95 662.66
Path 40 - 3 Cycles 3 - 2 - 1 Basestations 1647.4 776 803 597 804.7 1647.34 1148.84 658.19
Path 41 - 1 Cycle 1 Basestations 478.14 478.14 478.14 478.14 449.12 478.12 478.14 477.75
Path 42 - 1 Cycle 2 Basestations 483.88 483.88 483.88 483.88 451.04 483.88 483.88 483.24
Path 43 - 1 Cycle 3 Basestations 499.63 499.63 499.63 499.63 466.54 499.61 499.63 498.68
Path 44 - 1 Cycle 5 Basestations 521.68 521.68 521.68 521.68 483.87 521.68 521.68 520.74
Path 45 - 1 Cycle 1 - 2 Basestations 558.72 558.72 558.72 558.72 519.75 558.69 558.72 554.78
Path 46 - 1 Cycle 2 - 1 Basestations 558.72 558.72 558.72 558.72 519.22 558.69 558.72 554.71
Path 47 - 1 Cycle 3 - 5 Basestations 560.23 560.23 560.23 560.23 514.55 560.23 560.23 559.3
Path 48 - 1 Cycle 5 - 3 Basestations 559.31 559.31 559.31 559.31 514.47 559.3 559.31 558.29
Path 49 - 3 Cycle 1 Basestations 718.89 718.89 718.89 597 490.36 718.87 718.89 514.79
Path 50 - 3 Cycle 2 Basestations 745.78 745.77 745.78 597 502.4 745.74 745.78 521.64
Path 51 - 3 Cycle 3 Basestations 795.85 775.6 792.73 597 525.56 795.84 795.85 535.33
Path 52 - 3 Cycle 5 Basestations 872.79 776 803 597 559.69 872.77 872.79 555.85
Path 53 - 3 Cycle 1 - 2 Basestations 877.86 776 803 597 570.29 877.83 858.72 544.54
Path 54 - 3 Cycle 2 - 1 Basestations 878.81 776 803 597 559.22 878.79 844.19 532.83
Path 55 - 3 Cycle 3 - 5 Basestations 927.95 776 803 597 604.4 927.94 922.3 577.67
Path 56 - 3 Cycle 5 - 3 Basestations 925.63 776 803 597 567.56 925.63 925.63 542.57
Path 57 - Random 1 Basestations 1106.44 776 803 597 602.72 1106.39 905.6 629.61
Path 58 - Random 2 Basestations 1148.29 776 803 597 622.52 1148.25 962.87 600.2
Path 59 - Random 3 Basestations 1234.58 776 803 597 675.58 1234.57 1070.24 636.7
Path 60 - Random 5 Basestations 1287.83 776 803 597 638.92 1287.79 987.12 569.79
Path 61 - Random 1 - 2 Basestations 1290.66 776 803 597 662.71 1290.61 739.02 584.82
Path 62 - Random 2 - 1 Basestations 1193.83 776 803 597 578.01 1193.79 696.49 564.84
Path 63 - Random-3 - 5 Basestations 1214.35 776 803 597 620.73 1214.34 910.16 548.07
Path 64 - Random 5 - 3 Basestations 1291.32 776 803 597 585.67 1291.28 854.76 539.75

Average 1090.794 724.114 744.118 583.108 630.723 1090.759 897.408 600.877
Std 398.434 101.215 111.859 32.05 116.051 398.417 272.904 71.07
Rank 1 5 4 8 6 2 3 7
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Table V.15: Average estimation error for paths 21 - 64
No Forgetting Queue Static Queue Dynamic Random ACT-R SIMPLE SIMPLE Update ActSimple

Path 21 - 1 Cycle 1 Basestations 4.063 4.539 4.061 4.606 4.106 4.063 6.563 4.13
Path 22 - 1 Cycle 2 Basestations 4.13 4.627 4.148 4.759 4.229 4.13 5.766 4.181
Path 23 - 1 Cycle 3 Basestations 4.313 5.1 4.436 5.189 4.536 4.313 5.566 4.518
Path 24 - 1 Cycle 5 Basestations 4.573 5.525 4.741 5.713 4.925 4.573 4.578 4.841
Path 25 - 1 Cycle 1 - 2 Basestations 14.371 10.038 8.689 11.895 5.384 14.371 12.255 5.5
Path 26 - 1 Cycle 2 - 1 Basestations 14.529 10.057 8.694 11.982 5.242 14.531 15.777 5.397
Path 27 - 1 Cycle 3 - 5 Basestations 10.727 8.629 7.886 10.097 5.01 10.728 6.603 5.691
Path 28 - 1 Cycle 5 - 3 Basestations 11.141 8.596 7.843 10.184 4.564 11.141 12.931 5.309
Path 29 - 3 Cycles 1 Basestations 3.798 5.851 3.57 5.059 1.443 3.799 6.711 1.765
Path 30 - 3 Cycles 2 Basestations 3.827 4.981 3.756 5.16 1.599 3.827 5.768 1.859
Path 31 - 3 Cycles 3 Basestations 3.82 4.939 4.107 5.516 1.847 3.82 5.277 2.28
Path 32 - 3 Cycles 5 Basestations 3.816 5.507 4.6 6.104 2.238 3.817 3.799 2.809
Path 33 - 3 Cycles 1 - 2 Basestations 13.999 4.877 3.851 6.828 2.763 14 7.84 2.676
Path 34 - 3 Cycles 2 - 1 Basestations 14.119 4.666 3.649 6.71 2.454 14.12 10.439 2.282
Path 35 - 3 Cycles 3 - 5 Basestations 10.023 5.406 4.577 6.903 2.639 10.023 4.644 3.288
Path 36 - 3 Cycles 5 - 3 Basestations 10.643 4.912 4.095 6.602 2.089 10.643 6.445 2.484
Path 37 - 3 Cycles 1 - 2 - 1 Basestations 10.372 4.421 3.838 7.682 1.919 10.372 9.958 2.245
Path 38 - 3 Cycles 2 - 1 - 2 Basestations 10.253 4.599 3.992 7.682 2.127 10.254 7.262 2.687
Path 39 - 3 Cycles 1 - 2 - 3 Basestations 10.047 4.986 4.24 6.78 2.465 10.047 5.903 2.847
Path 40 - 3 Cycles 3 - 2 - 1 Basestations 15.074 4.486 3.889 8.122 6.468 15.075 14.761 2.645
Path 41 - 1 Cycle 1 Basestations 4.335 4.335 4.335 4.335 4.267 4.335 4.335 4.335
Path 42 - 1 Cycle 2 Basestations 4.261 4.261 4.261 4.261 4.266 4.261 4.261 4.261
Path 43 - 1 Cycle 3 Basestations 4.76 4.76 4.76 4.76 4.779 4.76 4.76 4.764
Path 44 - 1 Cycle 5 Basestations 5.39 5.39 5.39 5.39 5.431 5.39 5.39 5.391
Path 45 - 1 Cycle 1 - 2 Basestations 15.135 15.135 15.135 15.135 13.635 15.133 15.135 15.018
Path 46 - 1 Cycle 2 - 1 Basestations 15.188 15.188 15.188 15.188 13.502 15.187 15.188 15.061
Path 47 - 1 Cycle 3 - 5 Basestations 11.306 11.306 11.306 11.306 10.146 11.306 11.306 11.309
Path 48 - 1 Cycle 5 - 3 Basestations 11.631 11.631 11.631 11.631 10.324 11.632 11.631 11.635
Path 49 - 3 Cycles 1 Basestations 4.145 4.145 4.145 4.883 2.35 4.144 4.145 2.644
Path 50 - 3 Cycles 2 Basestations 4.069 4.069 4.069 4.98 2.43 4.07 4.069 2.681
Path 51 - 3 Cycles 3 Basestations 4.453 4.665 4.454 5.574 2.961 4.453 4.453 3.179
Path 52 - 3 Cycles 5 Basestations 4.808 6.182 4.625 6.329 3.596 4.808 4.808 3.717
Path 53 - 3 Cycles 1 - 2 Basestations 14.697 12.842 13.343 12.509 10.299 14.697 13.836 8.429
Path 54 - 3 Cycles 2 - 1 Basestations 14.843 13.241 13.401 12.724 9.435 14.844 12.917 7.601
Path 55 - 3 Cycles 3 - 5 Basestations 10.853 10.548 10.049 10.234 8.927 10.854 10.43 8.052
Path 56 - 3 Cycles 5 - 3 Basestations 11.237 11.25 10.057 10.167 6.946 11.237 11.237 5.632
Path 57 - Random 1 Basestation 3.844 6.211 3.532 5.467 1.683 3.845 7.186 2.051
Path 58 - Random 2 Basestation 3.879 6.844 4.322 5.791 2.653 3.879 6.597 2.799
Path 59 - Random 3 Basestation 4.025 6.539 4.29 6.171 2.549 4.025 6.243 2.585
Path 60 - Random 5 Basestation 4.671 8.3 6.703 7.742 5.138 4.672 7.926 4.782
Path 61 - Random 1 - 2 Basestation 11.615 7.006 5.13 9.235 6.152 11.616 10.761 5.187
Path 62 - Random 2 - 1 Basestation 16.497 9.058 6.078 14.752 10.373 16.498 12.927 10.402
Path 63 - Random 3 - 5 Basestation 7.198 15.908 14.033 9.622 12.781 7.198 13.99 6.954
Path 64 - Random 5 - 3 Basestation 8.927 7.08 5.498 9.695 6.224 8.927 8.42 5.526

Average 9.058 7.571 6.675 8.28 5.277 9.058 8.708 5.144
Std 4.408 3.473 3.645 3.162 3.564 4.408 3.801 3.439
Rank 7 4 3 5 2 7 6 1
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Table V.16: Comparison of estimation error for paths 21 - 64

Less than ActSimple
No Forgettting less than

n v p n v p

No Forgetting —— —— —— 44 71.0 <0.0001
Queue Static 35 203.0 0.0337 44 34.0 <0.0001
Queue Dynamic 34 108.0 0.0004 44 118.0 <0.0001
Random 36 246.0 0.0881 44 21.0 <0.0001
ACT-R 44 71.0 <0.0001 44 600.0 0.8897
SIMPLE 38 609.5 0.9999 44 71.0 <0.0001
SIMPLE Update 31 221.0 0.3042 44 30.0 <0.0001
ActSimple 44 71.0 <0.0001 —— —— ——

The reduction in estimation error when compared to No Forgetting (column Less than No Forgetting) was

significant for Queue Static (v = 203.0, p = 0.0337), Queue Dynamic (v = 108.0, p = 0.0004), ACT-R (v =

71.0, p < 0.0001), and ActSimple (v = 71.0, p < 0.0001). The results for Random forgetting (v = 246.0, p =

0.0881), SIMPLE (v = 609.5, p = 0.9999), and SIMPLE Update (v = 221.0, p = 0.3042) were not significant.

These results suggest than the ability for Human-Inspired Forgetting algorithms to improve performance

relative to No Forgetting was not limited to only the original twenty paths tested in Chapter V.1.3. Despite

changing multiple path and environmental properties, four of the forgetting algorithms were able to generate

less estimation error than No Forgetting. Forgetting algorithms may possess the ability to improve system

accuracy even for conditions for which they were not directly optimized.

The second Wilcoxon signed rank test (column ActSimple less than) tested if ActSimple generated less

estimation error than No Forgetting and the other forgetting algorithms. The results were significant for

No Forgetting (v = 71.0, p < 0.0001), Queue Static (v = 34.0, p < 0.0001), Queue Dynamic (v = 118.0,

p < 0.0001), Random (21.0, p < 0.0001), SIMPLE (v = 71.0, p < 0.0001), and SIMPLE Update (v = 30.0,

p < 0.0001). However, comparing ActSimple to ACT-R was not significant (v = 600.0, p = 0.8897). These

results suggest that trace-based decay may play a role in the ability for forgetting algorithms to improve

system accuracy.

The effect of dynamism on the results was explored by using a single-sided Wilcoxon rank sum test

to determine if No Forgetting and the forgetting algorithms generated less estimation error on static paths as

compared to dynamic paths. Results from this test are presented in Table V.17. The evaluation was conducted

in an identical fashion to the test presented in Chapter V.1.3, and was performed with α = 0.05, nA = 20, and

nB = 24.

The difference in average estimation error between static and dynamic paths was significant for No For-

getting and all of the forgetting algorithms. No Forgetting (w = 0.0, p < 0.0001), Queue Static (w = 104.0,
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Table V.17: The effects of dynamism on estimation error for paths 21 - 64

w p

No Forgetting 0.0 <0.0001
Queue Static 104.0 0.0005
Queue Dynamic 123.0 0.0026
Random 7.0 <0.0001
ACT-R 105.0 0.0006
SIMPLE 0.0 <0.0001
SIMPLE Update 29.0 <0.0001
ActSimple 113.0 0.0011

p = 0.0005), Queue Dynamic (w = 123.0, p = 0.0026), Random (w = 7.0, p < 0.0001), ACT-R (w = 105.0,

p = 0.0006), SIMPLE (w = 0.0, p < 0.0001), SIMPLE Update (w = 29.0, p < 0.0001), and ActSimple

(w = 113.0, p = 0.0011) each generated less estimation error when applied to only static paths as com-

pared to being applied to only dynamic paths. These results suggest that static conditions may provide fewer

challenges to mobile robots or are possibly more forgiving of poor performance.

Dynamism may affect the relative estimation error generated by No Forgetting and the forgetting algo-

rithms. Four single-sided Wilcoxon signed rank tests were performed to test the difference in estimation error

that results from applying No Forgetting and the forgetting algorithms to just static paths and to just dynamic

paths. Results from these tests are presented in Table V.18. The first test (Less than No Forgetting - Static)

evaluated if the forgetting algorithms listed in the left-most column generated less estimation error when only

results from the twenty static paths were considered. The second test (Less than No Forgetting - Dynamic)

evaluated if the forgetting algorithms generated less estimation error than No Forgetting when only results

from the twenty four dynamic paths were included. The third test (ActSimple less than - Static) evaluated

if ActSimple resulted in less estimation error than No Forgetting and the other forgetting algorithms when

applied to only the static paths. The fourth test (ActSimple less than - Dynamic) evaluated if ActSimple

generated less estimation error than No Forgetting and the other forgetting algorithms when applied to only

dynamic paths. The α value was 0.05 for each test.

The first Wilcoxon signed rank test in Table V.18 (column Less than No Forgetting - Static) evaluated if

the forgetting algorithms generated less estimation error than No Forgetting on the new static paths. Only the

results from ActSimple (v = 45.0, p = 0.0120) and ACT-R (v = 40.0, p = 0.0068) were significant. However,

the results from the second Wilcoxon signed rank test (column Less than No Forgetting - Dynamic) showed

a different trend. The results from all forgetting algorithms except for SIMPLE were significant. Queue

Static (v = 18.0, p = 0.0002), Queue Dynamic (v = 16.0, p = 0.0002), Random (v = 13.0, p = 0.0001),

ACT-R (v = 11.0, p < 0.0001), SIMPLE Update (v = 34.0, p = 0.0062), and ActSimple (v = 3.0, p <
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Table V.18: Estimation error performance on static and dynamic paths for paths 21 - 64

Less than No Forgettting ActSimple less than

Static Dynamic Static Dynamic

n v p n v p n v p n v p

No Forgetting —— —— —— —— —— —— 20 45.0 0.0120 24 3.0 <0.0001
Queue Static 15 120.0 1.0000 20 18.0 0.0002 20 10.0 <0.0001 24 8.0 <0.0001
Queue Dynamic 14 74.0 0.9137 20 16.0 0.0002 20 36.0 0.0042 24 30.0 0.0001
Random 16 136.0 1.0000 20 13.0 0.0001 20 10.0 <0.0001 24 3.0 <0.0001
ACT-R 20 40.0 0.0068 24 11.0 <0.0001 20 165.0 0.9893 24 144.0 0.4387
SIMPLE 17 136.5 0.9988 21 178.5 0.9872 20 45.0 0.0120 24 3.0 <0.0001
SIMPLE Update 12 76.0 0.9995 19 34.0 0.0062 20 15.0 0.0001 24 3.0 <0.0001
ActSimple 20 45.0 0.0120 24 3.0 <0.0001 —— —— —— —— —— ——

0.0001) each generated less estimation error than No Forgetting when processing only the twenty four new

dynamic paths. These results suggest than Human-Inspired Forgetting based forgetting algorithms may be

an effective approach to improving system accuracy in dynamic domains, but trace-based decay may provide

some forgetting algorithms the ability to improve performance in certain static environments as well.

The third Wilcoxon signed rank test in Table V.18 (column ActSimple less than - Static) evaluated if

ActSimple generated less estimation error than No Forgetting and the other forgetting algorithms when only

applied to the new static paths. Results from No Forgetting and all of the other forgetting algorithms, except

ACT-R (v = 165.0, p = 0.9893), were significant. No Forgetting (v = 45.0, p = 0.0120), Queue Static

(v = 10.0, p < 0.0001), Queue Dynamic (v = 36.0, p = 0.0042), Random (v = 10.0, p < 0.0001), SIMPLE

(v = 45.0, p = 0.0120), and SIMPLE Update (v = 15.0, p = 0.0001) each generated more estimation error

than ActSimple when applied to only the new static paths. The results from the fourth Wilcoxon signed rank

test (column ActSimple less than - Dynamic) showed a similar trend. Except for ACT-R (v = 144.0, p =

0.4387), the comparisons against No Forgetting and the remaining forgetting algorithms were significant. No

Forgetting (v = 3.0, p < 0.0001), Queue Static (v = 8.0, p < 0.0001), Queue Dynamic (v = 30.0, p = 0.0001),

Random (v = 3.0, p < 0.0001), SIMPLE (v = 3.0, p < 0.0001), and SIMPLE Update (v = 3.0, p < 0.0001)

were all found to generate more estimation error when processing the new dynamic paths. These results show

ActSimple improving system accuracy in both static and dynamic conditions as compared to No Forgetting

and all of the forgetting algorithms except ACT-R. ActSimple and ACT-R both incorporate trace-based decay

and these results suggest that this method of implementing forgetting in robotic systems may be an effective

approach to improving performance across a wide range of realistic conditions that could be presented to

robotic systems.
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V.3.3 Summary

The forgetting algorithms and No Forgetting were tested with a set of 44 new paths, labeled paths 21 - 64.

These paths possessed different trajectories, basestation configurations, and number of basestation configura-

tion changes, but the forgetting algorithms (except for SIMPLE) were able to generate less average absolute

estimation error than No Forgetting.

While the relative estimation performance of the forgetting algorithms varied from the original twenty

paths, the ActSimple algorithm produced the smallest estimation error for both sets of paths (Tables V.6 and V.15).

SIMPLE Update, which generated the second best performance for paths 1 - 20, only realized the sixth best

estimation error for the new paths. These results suggest that forgetting algorithms embodying Human-

Inspired Forgetting possess the ability to improve accuracy despite changing environmental conditions and

task properties. However, the relative benefits of the forgetting algorithms may not be constant. The Act-

Simple algorithm appears to capitalize on its combination of trace-based decay and similarity-interference to

generate improved filtering capabilities. The SIMPLE Update algorithm generated less estimation error than

ACT-R when applied to paths 1 - 20 and ACT-R averaged less estimation error than SIMPLE Update when

applied to paths 21 - 64, but ActSimple realized the least amount of estimation error for both groups of paths.

While the ActSimple algorithm generated the smallest amount of average absolute estimation error, it

possess the largest number of parameters. The additional parameters in ActSimple may lengthen the amount

of time required to optimize the algorithm for a new task or domain, but the results suggest that the extra

parameters may not cause over-learning by the algorithm. A comparison of each algorithm’s complexity

(number of parameters) and the algorithm’s resultant average absolute estimation error is presented in Fig-

ure V.6. This graph uses the same key as Figure V.2, but presents the combined results of all 44 paths (paths

21 - 64), the twenty new static paths, and the 24 new dynamic paths.

No Forgetting and the forgetting algorithms each generated less estimation error when operating with just

the static paths as compared to the full set of paths. This trend is identical to the trend generated by paths 1 -

20. No Forgetting and the forgetting algorithms also generated more error when applied to the dynamic paths,

than when applied to the full set of 44 paths. Dynamism appears to result in more challenging conditions

for both No Forgetting and the forgetting algorithms, although the magnitude of the effects do not appear

to be consistent. The estimation error difference from applying a forgetting algorithm (or No Forgetting) to

only static paths versus only dynamic paths varies across No Forgetting and the forgetting algorithms. No

Forgetting and SIMPLE resulted in the largest performance differences.

ACT-R and ActSimple generated less average absolute estimation error than No Forgetting, when only ap-

plied to the static paths. This result suggests that at least under certain conditions, Human-Inspired Forgetting
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Figure V.6: Number of parameters vs. average absolute estimation error for paths 21 - 64

has the potential to improve performance in static environments. The filtering afforded by these algorithms

may allow robotic systems to better reject noise inherent in complex domains, resulting in greater accuracy.

The average number of recallable readings metric when No Forgetting and the forgetting algorithms were

applied to paths 21- 64 was also collected (Table V.14). The rank ordering of the number of recallable

readings resulting from each forgetting algorithm and No Forgetting was identical to when the forgetting

algorithms were applied to paths 1 - 20. No Forgetting averaged the largest number of recallable readings,

Random forgetting averaged the least, and ActSimple averaged the second smallest number of recallable

readings. The filtering provided by a forgetting algorithm is only beneficial if the resultant estimation error

either improves or only increases slightly. A graph comparing the average number of recallable readings

and the average absolute estimation error from No Forgetting and the forgetting algorithms is presented in

Figure V.7.

The average number of recallable readings generated by No Forgetting and each forgetting algorithm was

smallest when only static paths were considered. As a result, the dynamic paths resulted in larger numbers

of recallable readings. The difference in the number of recallable readings between static and dynamic con-

ditions varied across the forgetting algorithms. No Forgetting and SIMPLE experienced a relatively large

difference, while ActSimple and SIMPLE Update generated more consistent values (Figure V.7). When ap-
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Figure V.7: Average number of recallable readings vs. average estimation error for paths 21 - 64

plied to each of the three sets of paths, ActSimple and ACT-R generated the least amount of average absolute

estimation error and fewer recallable readings than No Forgetting and all other forgetting algorithms, except

for Random forgetting. These results suggest that the application of Human-Inspired Forgetting algorithms

may have the potential to increase accuracy, while also reducing the number of data points that require pro-

cessing by potentially computationally expensive existing robotic algorithms.

V.4 Summary

This chapter presented a set of experiments where the seven forgetting algorithms described in Chapter IV

were optimized and tested under three sets of conditions. Two metrics were collected, the average absolute

estimation error resulting from a robot estimating the WiFi signal strength at each point within a simulated

environment, and the average number of recallable WiFi signal strength readings that were presented to the

existing robotic algorithms.

Results from this chapter have shown that simply providing additional data to an existing robotic algo-

rithm may not be an effective approach to improving accuracy. After the forgetting algorithms were op-

timized, they were tested with a set of twenty paths. While No Forgetting generated the largest number

of recallable readings, No Forgetting tied for the largest amount of average estimation error. Conversely,

ActSimple filtered the second most number of readings, but still resulted in the smallest amount of average
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estimation error. The selectivity of an information filter (forgetting algorithm) appears critical to the effec-

tiveness and accuracy of a system. Intelligent removal of detrimental information has the potential to improve

system accuracy and reduce the volume of data requiring potentially computationally expensive processing.

Mobile robots operating in complex and dynamic domains are frequently presented with new challenges

and must adjust. The tasks performed by these systems are not static and constantly adapt to changing

conditions. The ability for the tested forgetting algorithms to reduce average estimation error despite small

changes to task was evaluated by combing the algorithms with three additional interpolation methods. No

Forgetting generally resulted in or tied for the largest amount of estimation error. Conversely, ActSimple

consistently produced the smallest amount of estimation error. ActSimple and Human-Inspired Forgetting

appear to degrade gracefully in the presence of small changes to task.

In addition to adapting to changing tasks, mobile robots must also perform well in the face of changing

environmental conditions. The forgetting algorithms were tested with a set of 44 additional paths, comprised

of new trajectories, basestation configurations, and basestation configuration changes. The relative perfor-

mance of the forgetting algorithms changed when applied to these new paths, but No Forgetting once again

tied for the largest amount of estimation error, while ActSimple resulted in the smallest amount of estima-

tion error. ActSimple did not produce the smallest amount of estimation error for every single path, but on

average, outperformed No Forgetting and the other forgetting algorithms. No forgetting algorithm may be

capable of guaranteeing the best performance on any one specific set of condition. Average performance is

often more important to mobile robots, especially if extreme performance degradations can be avoided.

The results presented in this chapter suggest that Human-Inspired Forgetting may be an effective and vi-

able means of simultaneously improving system accuracy, while minimizing the number of points that must

be processed by potentially computationally expensive existing robotic algorithms. No Forgetting resulted

in at least a tie for the largest amount of estimation error, despite never filtering a signal strength reading, in

nearly every tested condition. The forgetting algorithms employing Human-Inspired Forgetting, excluding

SIMPLE, were able to simultaneously filter data, while improving accuracy. ActSimple was able to consis-

tently generate the smallest amount of estimation error, while filtering the largest number of readings. These

results suggest that ActSimple is an effective forgetting algorithm that may also be resistant to changes in

task and environment. When operating within complex and dynamic domains, algorithms employed by mo-

bile robots must be capable of operating across a diverse array of conditions and degrade gracefully in the

presence of unexpected situations.
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CHAPTER VI

Real World Testing

The real world poses many challenges that are difficult to model or account for in simulation. Robotic

algorithms require real world testing to verify that unintended properties of a simulator do not mask true

performance levels or unanticipated real world challenges do not negate an algorithm’s benefits. This chapter

presents an experiment where ActSimple and the other six forgetting algorithms were applied to real world

WiFi readings. The experiment was conducted in an identical manner to previous simulation evaluations

(Chapter V), except that a real robot collected the WiFi signal data from an outdoor environment and a

collection of new paths and basestation configurations were employed.

VI.1 Experimental Design

Before the forgetting algorithms could be applied to any real world WiFi data, truth information was required

in order to calculate the estimation error values. The real world is presently too difficult to model completely,

forcing truth information to be collected empirically. Initially, the experiment was to be conducted on Van-

derbilt University’s campus, but the lack of control and repeatability over WiFi quality in a city environment

made this approach impractical. WiFi interference can result from numerous sources, including cell phones,

microwaves, computers, air conditioners, other WiFi equipment, and heavy machinery. While the forgetting

algorithms were tasked with removing the effects of this interference during testing, uncontrolled interference

prevents the generation of truth information guaranteed to be consistent and valid throughout the experiment.

Instead, the experiment was performed at the Colson Hollow group camp grounds, an area located within

the Land Between the Lakes national recreation area. Colson Hollow consists of a large grassy field sur-

rounded by forests on three sides and a river on the fourth. The campgrounds are isolated from many sources

of WiFi interference, while providing a large open experimental area. Power lines are present at Colson Hol-

low and a radio transmitter is within a few miles of the location, but the reliability of collected truth data was

greater than if readings were collected on Vanderbilt’s campus.

Similar to the simulation-based optimization experiment (Chapter V), the real world experiment involved

two WiFi basestation configurations and a large number of WiFi sampling locations, see Figure VI.1. Due

to logistical constraints, changes to the environment were made. The sampling area was 300 ft. by 300 ft.

and samples were taken along a ten by ten grid. The WiFi basestations were situated 25 ft. outside of the

sampling region and were placed on approximately 5 ft. tall wooden stands.

A Pioneer 3DX robot equipped with a WiFi enabled laptop computer recorded the readings. While the
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Figure VI.1: Real world experiment map. The red points represent sample locations. The blue circles repre-
sent WiFi basestations that were always present in both configurations, blue rings represent WiFi basestations
present in the seven basestation configuration, and the blue cross represents a basestation present only in the
four basestation configuration.

robot was running during data collection, the ground conditions prevented the robot from driving through

the environment. Sampling was performed by manually placing the robot at each location. Samples were

collected with a Dell TrueMobile 1150 Series Mini PCI card (Dell, 2003) and the NetStumbler 0.4.0 (Net-

Stumbler, 2002) WiFi monitoring program. All samples required for a particular sampling location and

basestation configuration were collected at one time for a 6 minute interval with a frequency of up to 2 Hz.

Actual sampling frequency was dependent on individual WiFi basestation response times.

During the evaluation, readings were selected randomly from the samples recorded for a particular loca-

tion and basestation configuration. This approach was employed to minimize the effects of any interference

present in the environment and to increase the efficiency of data collection. The Colson Hollow location

minimized the effects of persistent, low frequency noise. In the ideal case, no noise would be present and the

process of collecting WiFi readings in batches would not affect the results. However, if noise was present,

randomly selecting readings would minimize these effects. The collection of readings in batches permitted a

larger number of paths to be tested with fewer recorded samples.

The NetStumbler application created sampling log files for each combination of location and basestation

configuration in Wi-Scan file format. NetStumbler actively sends WiFi packets to detected basestations in

order to determine the available signal level, noise level, and Signal to Noise Ratio (SNR), timestamped to

the second. In the generated files, samples are recorded when available, instead of at a set frequency.

Before the data could be evaluated, the raw logs required processing, which consisted of several steps. For

each second within the logging time window for a particular location and basestation combination, the reading

with the highest SNR value was selected. If no readings were available for a particular second, a value of 0

dB was assigned. The NetStumbler program occasionally produced samples where both the reported signal
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strength and the noise level were -32618. These values are erroneous and were discarded before processing

began. The SNR values were then multiplied by 2.0, incremented by 1.0, and then clipped to the range 1 to

100. This conversion process was performed so that the results are on the same scale as the results generated

during optimization. While the clipping process does result in some lost information, the robot’s primary

goal is to locate problematic areas possessing poor WiFi capabilities. As a rule of thumb, a SNR over 40 dB

is considered to be very good. The clipping process only affects readings with a SNR over 50 dB, readings

already indicative of areas not experiencing degraded WiFi communications. As the final processing step,

a Max 2 filter was applied to the data. Resulting from the active WiFi signal strength measuring technique

employed by the NetStumbler program, the generated readings possessed an unnecessarily large number of

minimum value readings. These extra readings resulted not from weak signal strength, but from basestations

occasionally not reporting strength values at a high enough frequency to ensure valid data at every time

stamp. The Max 2 filter tested each reading and if the previous reading was larger, then the current reading

was changed to the value of the previous reading. The Max 2 filter only operated on the pre-filtered data,

otherwise, the readings would have been monotonically increasing.

VI.2 Real World Results

All of the real world data was collected during a four day period in June, 2010. The entirety of the data was

used to calculate the truth data. After the readings were processed as described in Section VI.1, the readings

for each combination of location and basestation configuration were averaged. Results from this averaging

process are shown in Figures VI.2a and VI.2b. In these figures, black represents areas possessing a greater

SNR. The presence of the basestations in each condition can be clearly observed, although exact basestation

positions are not always easy to determine. Interference appears to have slightly affected the top and right

portions of the seven basestation truth map, and to a lesser extent the truth map for the four basestation con-

figuration. This interference resulted in weaker SNR values and a greater difficulty in determining basestation

positions. Definitive differences between areas of high SNR and areas with low SNR can be observed.

The forgetting algorithms were tested with a set of eighteen new paths, as the paths used during opti-

mization did not fit in the smaller real world environment. These new paths ranged in length from 337 to

3177 steps (µ = 1831.278 and σ = 1032.329) with six generated randomly. A basestation configuration

change occurred in eight of the paths, at roughly the midpoint of the path’s trajectory. While the real world

environment is only 10 by 10, the forgetting algorithms were optimized in the larger simulation environment.

When relatively short paths are processed by the forgetting algorithms, they consistently recalled nearly every

reading. Six additional paths, with a length of 208 steps or less, were also tested, but since the seven for-

getting algorithms and No Forgetting generated effectively identical recall and estimation error values, these

101



(a) 4 basestations (b) 7 basestations

Figure VI.2: Maps of real world truth values

paths were not included in the presented results. The removal of these paths did not affect the error rankings.

Path instances were created by randomly selecting readings from the log files, and readings were allowed

to be selected multiple times. During testing, parameterizations determined in the optimization experiment

(Chapter V) were used.

Table VI.1: Real world results
No Forgetting Queue Static Queue Dynamic Random ACT-R Simple Simple Update ActSimple

Recall Average 848.316 675.979 692.467 544.366 555.095 848.297 632.063 338.887
Std 331.196 179.450 189.407 108.914 131.159 331.189 206.261 36.805

Rank 1st 4th 3rd 7th 6th 2nd 5th 8th

Error Average 4.588 3.084 3.289 3.855 3.840 4.588 2.382 3.069
Std 3.182 1.940 2.277 2.122 2.151 3.1818 1.038 0.950

Rank 7th 3rd 4th 6th 5th 7th 1st 2nd

The overall recallable reading counts and estimation error values are presented in Table VI.1. Rank-

ing values were computed after rounding was performed to minimize the effects of insignificant noise. No

Forgetting generated the largest average number of recallable readings, with SIMPLE averaging only 0.019

fewer. Both No Forgetting and the SIMPLE algorithm maintained similar recallable reading count standard

deviations (331.196 and 331.189, respectively), which were 124.928 higher than the next highest standard

deviation (SIMPLE Update’s standard deviation of 206.261). ActSimple averaged only 338.887 recallable

readings, 509.429 less than No Forgetting, while maintaining a standard deviation of only 36.805. All other

forgetting algorithms averaged a greater number of recallable readings than ActSimple.

The performance differences between each forgetting algorithm and No Forgetting are presented in Ta-

ble VI.2. The Outperformed row represents the number of paths where a forgetting algorithm outperformed

No Forgetting, while the Underperformed row displays the number of paths where the forgetting algorithm

generated greater estimate error. The Outperformed Ave. and Underperformed Ave. rows provide the aver-

age error deviation for paths where the forgetting algorithm outperformed or underperformed No Forgetting,
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Table VI.2: Forgetting performance deviations from No Forgetting

Metric Queue Static Queue Dynamic Random ACT-R Simple Simple Update ActSimple

Average Deviation 1.504 1.299 0.733 0.747 0 2.205 1.518
Deviation Std. 2.386 2.176 1.53 1.104 0 2.639 2.542
Outperformed 8 8 8 9 8 9 8

Outperformed Ave. 3.594 2.985 2.088 1.692 0 4.454 4.209
Underperformed 4 3 6 7 7 5 10

Underperformed Ave. 0.42 0.169 0.586 0.254 0 0.079 0.634
Equal Performance 6 7 4 2 3 4 0

respectively.

Despite averaging far fewer recallable readings, ActSimple’s average estimation error (3.069) was 1.518

less than No Forgetting. Although ActSimple also maintained the only estimation standard deviation under

1.0 (0.950), SIMPLE Update averaged lower estimation error (2.382). Queue Static maintained the third best

average estimation error (3.084).

All forgetting algorithms outperformed No Forgetting on eight of the eighteen paths except for ACT-R and

SIMPLE Update, which both generated smaller error on nine paths. The number of paths where the forgetting

algorithms underperformed No Forgetting was more variable, ranging from three to ten paths. ActSimple

underperformed No Forgetting ten times, while ACT-R underperformed seven times and SIMPLE Update

underperformed five times. The outperformed and underperformed values for SIMPLE are not reliable, since

the largest estimation error performance difference between SIMPLE and No Forgetting was less than 0.001.

Trends were also observed in the individual path data. Basestation configuration changes generated sub-

stantial performance variations in the forgetting algorithms and No Forgetting. When basestation configu-

ration changes were not present, the worst estimation error generated by No Forgetting was 3.614, but the

best error produced for a path with a basestation configuration change was 7.547. Excluding SIMPLE, every

forgetting algorithm outperformed No Forgetting when a basestation configuration change occurred. Again

ignoring SIMPLE, SIMPLE Update and ACT-R were the only forgetting algorithms to outperform No For-

getting on static paths. However, both forgetting algorithms only outperformed No Forgetting on one path

each and by a margin less than 0.001.

The performance properties exhibited by No Forgetting and the forgetting algorithms when no basesta-

tion configuration change occurred can partially be explained by the method used to generate the truth data.

Readings for each pairing of location and basestation configuration were averaged together to form the truth

value for each combination. During paths when no basestation configuration change occurred, No Forgetting

benefited from being able to recall every reading to help average out noise present in the readings, essen-

tially mimicking the truth data generation procedure. If truth values were available by a means other than a
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weighted average, the performance differences along static versus dynamic paths may decrease.

The statistical significance of the relative estimation error performance results from Table VI.1 was tested

with two Wilcoxon signed rank tests and are presented in Table VI.3. These tests were performed in a

similar fashion to those presented in Chapter V.1.3. The first test, labeled Less than No Forgetting, evaluated

if the forgetting algorithms listed in the left-most column generated less average estimation error than No

Forgetting. The second test, labeled ActSimple less than, evaluated if ActSimple resulted in less estimation

error than No Forgetting and the other forgetting algorithms. Both tests were single-sided and α was 0.05.

Significant results are indicated in bold and the individual pairings that were not performed are marked with

a —— symbol.

Table VI.3: Comparison of estimation error for real-world paths

Less than ActSimple
No Forgetting less than

n v p n v p

No Forgetting —— —— —— 18 55.0 0.0982
Queue Static 12 10.0 0.0105 18 102.0 0.7659
Queue Dynamic 11 6.0 0.0068 18 101.0 0.7525
Random 14 26.0 0.0520 18 50.0 0.0649
ACT-R 16 35.0 0.0467 18 55.0 0.0982
SIMPLE 15 57.0 0.4452 18 55.0 0.0982
SIMPLE Update 14 20.0 0.0209 18 171.0 1.0000
ActSimple 18 55.0 0.0982 —— —— ——

The reduction in estimation error when compared to No Forgetting (column Less than No Forgetting)

was significant for Queue Static (v = 10.0, p = 0.0105), Queue Dynamic (v = 6.0, p = 0.0068), ACT-R

(v = 35.0, p = 0.0467), and SIMPLE Update (v = 20.0, p = 0.0209). Results from Random, SIMPLE,

and ActSimple were not significant. The Wilcoxon signed rank test labeled ActSimple less than evaluated if

ActSimple generated less estimation error. None of the results were significant, despite ActSimple generating

the second smallest average estimation error (Table VI.1).

SIMPLE Update averaged the smallest amount of estimation error when applied to the real-world paths

(Table VI.2). A single-sided Wilcoxon signed rank test was conducted to determine if SIMPLE Update

generated less estimation error than ActSimple on these paths and the results were significant (n = 18, v =

0, p < 0.0001). SIMPLE Update outperformed ActSimple when applied to this particular set of testing

conditions.

The effects of dynamism on the results was explored by using a single-sided Wilcoxon rank sum test

to determine if No Forgetting and the forgetting algorithms generated less estimation error on static paths

as compared to dynamic paths. This test was conducted in an identical fashion to the tests presented in
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Chapter V, and the results are presented in Table VI.4. The α was set to 0.05, while nA = 10, and nB = 8.

Table VI.4: The effects of dynamism on estimation error for real-world paths

w p

No Forgetting 0.0 <0.0001
Queue Static 11.0 0.0043
Queue Dynamic 8.0 0.0015
Random 0.0 <0.0001
ACT-R 0.0 <0.0001
SIMPLE 0.0 <0.0001
SIMPLE Update 17.0 0.0217
ActSimple 8.0 0.0015

The difference in average estimation error between static and dynamic paths was significant for No For-

getting and all of the forgetting algorithms. No Forgetting and the forgetting algorithms, on average, found

the real-world paths containing a basestation configuration change to be more challenging.

The presence of basestation configuration changes may alter the relative estimation error performance of

No Forgetting and the forgetting algorithms. Four single-sided Wilcoxon signed rank tests were performed

to evaluate the difference in estimation error that results from applying No Forgetting and the forgetting

algorithms to static paths and dynamic paths. Results from these tests are presented in Table VI.5. The first

test (Less than No Forgetting - Static) evaluated if the forgetting algorithms listed in the left-most column

generated less estimation error than No Forgetting when only results from the static paths were considered.

The second test (Less than No Forgetting - Dynamic) evaluated if the forgetting algorithms generated less

estimation error than No Forgetting on the dynamic paths. The third test (ActSimple less than - Static)

evaluated if ActSimple resulted in less estimation error than No Forgetting and the other forgetting algorithms

when applied to only the static paths. The fourth test (ActSimple less than - Dynamic) evaluated if ActSimple

generated less estimation error than No Forgetting and the other forgetting algorithms when applied to the

dynamic paths. The α was 0.05 for each test.

The Wilcoxon signed rank test in Table VI.5 for the Less than No Forgetting - Static condition evaluated

if the forgetting algorithms generated less estimation error than No Forgetting on static paths. None of the re-

sults were significant. The results of the Wilcoxon signed rank test for the Less than No Forgetting - Dynamic

condition showed a different trend. The results from all of the forgetting algorithms, except SIMPLE, were

found to be significant (v = 0.0, p = 0.0039). These results suggest that Human-Inspired Forgetting based

forgetting algorithms may be an effective approach to improving system accuracy in dynamic real-world

conditions.

The Wilcoxon signed rank test for the ActSimple less than - Static condition evaluated if ActSimple
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Table VI.5: Estimation error performance on real-world static and dynamic paths

Less than No Forgetting ActSimple less than

Static Dynamic Static Dynamic

n v p n v p n v p n v p

No Forgetting —— —— —— —— —— —— 10 55.0 1.0000 8 0.0 0.0039
Queue Static 4 10.0 1.0000 8 0.0 0.0039 10 52.0 0.9971 8 10.0 0.1562
Queue Dynamic 3 6.0 1.0000 8 0.0 0.0039 10 55.0 1.0000 8 8.0 0.0977
Random 6 21.0 1.0000 8 0.0 0.0039 10 50.0 0.9932 8 0.0 0.0039
ACT-R 8 35.0 0.9961 8 0.0 0.0039 10 55.0 1.0000 8 0.0 0.0039
SIMPLE 8 25.0 0.8438 7 7.0 0.1484 10 55.0 1.0000 8 0.0 0.0039
SIMPLE Update 6 20.0 0.9844 8 0.0 0.0039 10 55.0 1.0000 8 36.0 1.0000
ActSimple 10 55.0 1.0000 8 0.0 0.0039 —— —— —— —— —— ——

generated less estimation error than No Forgetting and the other forgetting algorithms when only applied to

the static paths. None of the results were significant. The Wilcoxon signed rank test for the ActSimple less

than - Dynamic condition tested if ActSimple generated less estimation error on dynamic paths. Results were

significant for No Forgetting, Random, ACT-R, and SIMPLE (v = 0.0, p = 0.0039), and not significant for

Queue Static, Queue Dynamic, and SIMPLE Update.

The real-world paths and environment differed greatly from the paths and environment used in Chapter V

and the overall average estimation error across No Forgetting and the forgetting algorithms dropped from

7.314 to 3.5869. Additionally, ActSimple averaged the second smallest amount of estimation error and

maintained the smallest estimation error standard deviation (0.950). These results suggest that ActSimple

may have been able to minimize the occurrence and severity of very poor performance, but the reduction

in average estimation error for No Forgetting and the forgetting algorithms may have limited the ability for

ActSimple to outperform No Forgetting and the other forgetting algorithms.

VI.3 Discussion

The effectiveness of Human-Inspired Forgetting was explored by applying No Forgetting and the forgetting

algorithms to real-world data. A robot was used to collect WiFi signal strength readings from a real-world

environment, and these readings were used to create path instances to test the forgetting algorithms. Results

from this experiment suggest Human-Inspired Forgetting has the potential to improve system accuracy in

real-world environments, and especially within dynamic real-world environments.

Each forgetting algorithm, except SIMPLE, averaged less estimation error than No Forgetting when ap-

plied to the real-world data, while also reducing the average number of recallable readings. The tested envi-

ronment was very different from the conditions used to originally optimize the algorithms, but the forgetting
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Figure VI.3: Number of parameters vs. average absolute estimation error for real world paths

algorithms still managed to increase system accuracy. While the SIMPLE Update algorithm averaged less

estimation error, ActSimple generated the second smallest average estimation error and resulted in the fewest

number of recallable readings.

The effects of algorithm complexity are shown in Figure VI.3, which plots an algorithm’s number of

parameters versus its resultant average estimation error. No Forgetting and each forgetting algorithm is

represented by a unique symbol and color indicates which paths were included in the results. The SIMPLE

Update and ActSimple algorithms are two of the most complex algorithms, based on parameter count, but they

averaged the least amount of estimation error on dynamic paths and the full set of eighteen paths. These two

algorithms also resulted in the smallest differences between performance on static paths and dynamic paths.

No Forgetting and SIMPLE resulted in the least amount of estimation error on static paths but the largest

amount of estimation error on dynamic paths. However, the average estimation error difference between real-

world static and dynamic paths for No Forgetting and SIMPLE was smaller than the differences generated

by No Forgetting and SIMPLE on the simulated paths (Figures V.2 and V.6). Many robotic systems require

consistent performance. Human-Inspired Forgetting based forgetting algorithms may not improve accuracy

for every single set of conditions, but the results suggest Human-Inspired Forgetting may allow robots to

minimize severe accuracy degradations while improving average accuracy.
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Figure VI.4: Average number of recallable readings vs. average estimation error for real world paths

A comparison between the average amount of estimation error and the average number of recallable

readings that resulted from No Forgetting and each forgetting algorithm is presented in Figure VI.4. This

graph uses the same key as Figure VI.3. Unlike the results generated with the simulated path data (Figures V.3

and V.7), ActSimple averaged the least number of recallable readings for the full set of paths, static paths,

and dynamic paths. No Forgetting and SIMPLE resulted in the largest number of recallable readings for all

three sets of paths. SIMPLE Update averaged less estimation error than ActSimple, but resulted in almost

twice as many recallable readings. Mobile robots are frequently tasked with operating under tight timing

constraints. These results suggest the ActSimple algorithm may be capable of improving system accuracy,

while simultaneously reducing the volume of data requiring processing by computationally expensive existing

robotic algorithms.

The relative benefits of forgetting depend on the forgetting algorithm, its parameterization, and compat-

ibility with the task and environment. Each forgetting algorithm was optimized under simulated conditions

differing greatly from the real-world environment employed in this chapter. However, the forgetting algo-

rithms were still able to simultaneously reduce estimation error and the number of recallable readings. These

results suggest Human-Inspired Forgetting based forgetting algorithms may be relatively resilient to changing

environmental conditions. As many realistic challenges facing mobile robots constantly evolve or are difficult

to model, the ability to minimize the need to frequently re-optimize may be paramount in applying forgetting
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to real world situations.
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CHAPTER VII

Performance with Other Noise Distributions

During the optimization experiments (Chapter V), only a single noise distribution was tested. During the real

world experiment (Chapter VI), an alternate noise distribution was present in the environment. Differences in

the noise distributions may have lead to the performance deviations observed between the real world results

and those acquired from the optimization experiment (Chapter V). This chapter describes an experiment

that was conducted to explore the effects of applying the forgetting algorithms in the presence of new noise

distributions. During this experiment, the seven forgetting algorithms and No Forgetting were tested with the

simulated robot traveling the 64 paths described in Chapters IV and V. For each new noise distribution, the

estimation error was calculated in an identical fashion as in previous experiments.

VII.1 New Noise Distributions

In addition to the original noise distribution, 21 new discrete noise distributions were tested, comprising

six separate distribution families. Noise distribution families consisted of distributions based on Gaussian,

rounded Gaussian, impulse, Laplace, and sinc distributions as well as No Noise. All distributions are centered

at 0 and range from -100 to 100.

Original Noise Distribution: The original noise distribution’s Probability Density Function (PDF) is

defined by Equation IV.10 (repeated below). This distribution has only nine values with a probability greater

than 0 and maintains a large probability at its center, as can be seen in Figure VII.1

p(x) =



0.62 x = 0
0.1 |x|= 10
0.05 |x|= 20
0.03 |x|= 40
0.01 |x|= 60
0 else

(IV.10)
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Figure VII.1: Original noise distribution PDF
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Figure VII.2: Discrete Gaussian PDF

Discrete Gaussian: The discrete Gaussian distribution PDFs are characterized by Equation VII.1 and the

distributions with σ = 1 and σ = 2 are shown in Figure VII.2. Six discrete Gaussian noise distributions were

tested in this experiment with σ values of 1, 1.25, 1.5, 2, 5, and 15.

Gaussian(x,σ) = 1√
2πσ2

e
−x2

2σ2

p(x,σ) =
Gaussian(x,σ)

100

∑
i=−100

Gaussian(i,σ)

(VII.1)
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Rounded Discrete Gaussian: The rounded discrete Gaussian family of noise distributions were inspired

by the discrete Gaussian and are calculated using Equation VII.2. Unlike the discrete Gaussian, the rounded

discrete Gaussian has only non-zero values that are multiples of an integer parameter, r. The tested rounded

discrete Gaussian noise distributions have the following σ ,r parameter sets: {5, 3}, {5, 5}, {5, 11}, {15,

3}, {15, 5}, and {15, 11}. Figure VII.3 contrasts the two rounded discrete Gaussian distributions {5, 3}

and {5, 11} with the discrete Gaussian of σ = 5. The two rounded Gaussian distributions have fewer values

possessing a non-zero probability than the discrete Gaussian. However, each of the non-zero probability

values in the rounded Gaussian distributions has a greater probability than the equivalent value in the discrete

Gaussian distribution. Figure VII.4 contrasts the two rounded discrete Gaussian distributions {15, 3} and

{15, 11} with the discrete Gaussian with σ = 15. The trends when σ = 15 are similar to when σ = 5.

round(x,r) = r bx/re

rounded Gaussian(x,σ ,r) =
100

∑
i=−100

{
Gaussian(x,σ) round(i,r) = x
0 round(i,r) 6= x

p(x,σ ,r) =
rounded Gaussian(x,σ , r)

100

∑
i=−100

rounded Gaussian(x,σ ,r)

(VII.2)

113



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100

Noise

Pr
ob

ab
ili

ty σ = 5
σ = 5, r = 3
σ = 5, r = 11

Figure VII.3: Rounded discrete Gaussian σ = 5 PDFs
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Figure VII.5: Impulse distribution PDFs

Impulse: The tested impulse family of noise distributions incorporate a large probability located at x = 0

and all remaining probability is equally distributed throughout the range -100 to 100. Impulse noise distribu-

tions are characterized by Equation VII.3. This experiment tested impulse functions with δ values of 0.25,

0.3, and 0.5. Figure VII.5 shows the distribution for δ = 0.25. When δ = 1, the distribution is the same as

No Noise.

p(x,δ ) =


δ x = 0

1−δ

200 x 6= 0
(VII.3)
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Figure VII.6: Discrete Laplace PDFs

Discrete Laplace: The discrete Laplace family of noise distributions are characterized by Equation VII.4.

Figure VII.6 displays Laplace distributions with b = 0.5 and b = 2. During this experiment, four Laplace

distributions were tested, b = 0.5, b = 1, b = 1.5, and b = 2.

Laplace(x,b) = 1
2b e

−|x|
b

p(x,b) =
Laplace(x,b)

100

∑
i=−100

Laplace(i,b)

(VII.4)
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Figure VII.7: PDF for the sinc noise distribution

Sinc: The sinc noise distribution was inspired by the sinc function (Equation VII.5). Equation VII.6

characterizes the sinc noise distribution. Since the sinc noise distribution does not contain any parameters,

only one instance was tested. A plot of the sinc noise distribution is provided in Figure VII.7.

sinc(x) =


1 x = 0

sin(x)
x x 6= 0

(VII.5)

p(x,b) =
sinc(x)

100

∑
i=−100

sinc(x)

(VII.6)
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Table VII.1: Noise distribution effects on average recallable reading counts
Distribution Parameters No Forgetting Queue Static Queue Dynamic Random ACT-R SIMPLE SIMPLE Update ActSimple

Gaussian σ = 1 1243.81 749.498 772.833 592.845 692.446 1243.76 894.168 629.925
σ = 1.25 1335.31 751.433 775.058 594.422 698.224 1335.26 844.204 613.593
σ = 1.5 1405.43 752.783 776.408 595.257 699.948 1405.38 798.527 599.905
σ = 2 1503.69 754.353 777.978 596.079 698.482 1503.63 747.124 580.019
σ = 5 1712.59 757.117 780.742 596.949 682.631 1712.53 677.417 540.814
σ = 5, r = 3 1430.29 753.138 776.763 595.562 699.866 1430.24 789.532 595.348
σ = 5, r = 5 1250.29 749.668 773.129 592.983 693.783 1250.24 901.63 629.616
σ = 5, r = 11 963.138 726.616 745.011 583.947 623.624 963.108 824.275 629.864
σ = 15 1789.04 757.794 781.419 596.995 671.039 1788.98 677.542 529.13
σ = 15, r = 3 1666.57 756.459 780.084 596.917 685.058 1666.52 714.292 549.129
σ = 15, r = 5 1568.62 755.203 778.828 596.578 693.498 1568.57 751.274 567.181
σ = 15, r = 11 1338.81 751.379 775.004 594.51 700.785 1338.77 878.958 614.091

Impulse δ = 0.25 883.529 718.754 737.316 582.242 637.197 883.49 826.471 664.399
δ = 0.3 917.292 725.406 743.978 584.356 658.369 917.255 865.527 678.752
δ = 0.5 986.244 737.493 757.01 588.988 702.128 986.206 931.357 702.491

Laplace b = 0.5 956.453 724.642 742.695 583.14 610.775 956.416 807.529 618.877
b = 1 1276.48 749.24 772.826 592.576 676.176 1276.43 882.602 612.133
b = 1.5 1435.65 752.569 776.194 595.138 688.393 1435.59 783.751 588.124
b = 2 1529.15 754.25 777.875 596.033 689.263 1529.1 739.718 571.789

Sinc ——— 1708.94 756.715 780.34 596.911 678.045 1708.89 740.522 540.631

Type1 ——— 1134.94 743.156 765.058 588.315 644.386 1134.91 932.682 617.406

None ——— 642.234 603.25 610.641 541.375 536.115 642.21 546.603 556.673

With Impulse Average 1303.568 740.042 761.69 590.096 670.92 1303.522 797.987 601.359
Std 311.835 32.819 36.544 11.956 40.018 311.826 94.847 45.574
Rank 1 5 4 8 6 2 3 7

Without Impulse Average 1362.707 742.066 764.152 590.87 671.712 1362.66 785.913 588.645
Std 293.378 34.855 38.729 12.681 41.733 293.369 95.156 33.627
Rank 1 5 4 7 6 2 3 8

None: The No Noise case was also tested. Equation VII.7 describes how the no noise case was imple-

mented.

p(x) =

{
1 x = 0
0 x 6= 0

(VII.7)

VII.2 The results

The effects of the 21 new noise distributions described in Chapter VII.1 were explored in a simulation eval-

uation. Each of the 21 new noise distributions, along with the original noise distribution, were individually

used to add noise to the readings collected in the signal strength estimation domain. All 64 paths described in

Chapters IV and V were used during testing. Except for changing the noise distribution in the environment,

the testing conditions were identical to those described in Chapter V.

The noise distribution present in the environment can alter the number of readings filtered by a forgetting

algorithm. Table VII.1 presents the average number of recallable readings for the noise distributions when

applied to the seven forgetting algorithms and No Forgetting. The left-most column lists each distribution’s
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family (Gaussian, Impulse, Laplace, sinc, Original, or No Noise). The second column lists the parameters

that define the individual noise distributions. The Gaussian and rounded Gaussian noise distributions can

be differentiated by the presence of the r parameter, as the parameter is specific to the rounded Gaussian

class. The remaining columns present the average number of recallable readings. The ranking values were

calculated after rounding to minimize the effects of noise. Table VII.1 provides two sets of overall descriptive

statistics, labeled “With Impulse” and “Without Impulse”. The former includes all of the tested noise distri-

butions, while the latter excludes the Impulse noise distributions. The Impulse noise distributions generated

significantly more estimation error than the other tested noise distributions (presented below).

When all of the noise distributions were considered, No Forgetting generated the largest number of re-

callable readings (1303.568) and the SIMPLE algorithm averaged a nearly identical 1303.522 recallable

readings. No Forgetting and the SIMPLE algorithm also generated the largest number of recallable read-

ings during the optimization experiments (Chapter V). The Random forgetting algorithm produced the least

number of recallable readings 590.096, while the ActSimple algorithm generated the second smallest number

(601.359). The SIMPLE Update algorithm resulted in the third most recallable readings (797.987), while the

ACT-R algorithm resulted in the third least number of recallable readings (670.92).

The recallable readings metric for No Forgetting and the SIMPLE algorithm resulted in similar large

standard deviations of 311.835 and 311.826, respectively. The standard deviation values for the other for-

getting algorithms were considerably smaller. The SIMPLE Update algorithm had a standard deviation of

94.847, but the remaining algorithms’ standard deviations were all at or below 45.574. The amount of filter-

ing provided by the Queue Static, Queue Dynamic, Random, ACT-R, and ActSimple forgetting algorithms is

comparatively consistent in the presence of varying noise distributions.

When the Impulse noise distributions are not included in the results, the ActSimple algorithm filtered the

most number of readings (588.645), while Random forgetting filtered the second most number of readings

(590.87). The other rank ordering values did not change. However, the average number of recallable readings

increased for all forgetting algorithms and No Forgetting, except SIMPLE Update and ActSimple when the

Impulse distribution results were not included.

Changing noise distributions within an environment can also affect estimation error performance. Ta-

ble VII.2 presents the resultant estimation error for each noise distribution averaged across the forgetting

algorithms and No Forgetting. The left two columns identify the individual noise distributions in the same

fashion as Table VII.1. The noise distributions did not provide a consistent challenge. The three Impulse

distributions resulted in significantly larger estimation error (53.833 for δ = 0.25, 50.606 for δ = 0.3, and

37.032 for δ = 0.5) than any other noise distribution. In the environment, the signal strength ranged from 1

to 100 and before the first reading was collected, the robot guessed a value of 50.5 for each location in the
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Table VII.2: Noise distribution average estimation error

Distribution Parameters Average Std

Gaussian σ = 1 3.853 1.286
σ = 1.25 3.940 1.279
σ = 1.5 4.049 1.261
σ = 2 4.278 1.230
σ = 5 5.485 1.120
σ = 5, r = 3 5.377 1.158
σ = 5, r = 5 5.337 1.182
σ = 5, r = 11 5.231 1.182
σ = 15 9.267 1.026
σ = 15, r = 3 9.211 1.050
σ = 15, r = 5 9.155 1.059
σ = 15, r = 11 9.030 1.08

Impulse δ = 0.25 53.833 2.600
δ = 0.3 50.606 2.220
δ = 0.5 37.032 0.437

Laplace b = 0.5 3.882 1.179
b = 1 3.916 1.288
b = 1.5 4.184 1.253
b = 2 4.468 1.220

Sinc ——— 11.204 1.785

Original ——— 7.250 1.402

None ——— 4.194 0.976
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environment. This guess results in a maximum average error of 49.5. The average estimation error when

δ = 0.25 was 4.333 larger than simply guessing 49.5.

After the sinc distribution’s average estimation error of 11.204, the four Gaussian distributions with σ =

15 generated the largest average error (9.267 for σ = 15, 9.211 for {σ = 15, r = 3}, 9.155 for {σ = 15,

r = 5}, and 9.030 for {σ = 15, r = 11}). Rounding in the rounded Gaussian distributions reduced the number

of noise values with a non-zero probability. As the rounding in the σ = 15 distributions increased, the average

estimation error decreased. However, the original noise distribution, which only possesses nine values with a

non-zero probability, resulted in the next largest average estimation error (7.250). This error value was larger

than the Gaussian distribution with σ = 5 (5.485) and the Laplace distribution with b = 2 (4.468), despite

these two distributions having 49 and 53 probability values at or above 0.000001, respectively. Additionally,

the Laplace distribution had thirteen values with a probability greater than 0.012 and the Gaussian distribution

had twenty one values with a probability larger than 0.01.

The Gaussian distributions with σ = 5 followed the same trend as the Gaussian distributions with σ = 15.

The distributions’ estimation error decreased as rounding increased (5.485 for σ = 5 to 5.231 for {σ = 5,

r = 11}). The Laplace distributions also realized decreasing error as the value of b was reduced (4.468 for

b = 2 to 3.882 for b = 0.5).

The Gaussian distributions with σ = 1.5, σ = 1.25, and σ = 1 generated average estimation errors of

4.049, 3.940, and 3.853, respectively. The No Noise case unintuitively produced greater error (4.194). A

small amount of noise appears to have benefited at least one of the forgetting algorithms or No Forgetting.

The individual estimation error values were also recorded and are presented in Table VII.3. The table pro-

vides overall descriptive statistics both with and without the Impulse noise distributions. When the Impulse

distributions are included, the ActSimple algorithm generated the smallest overall average estimation error

(10.755), but the Queue Static algorithm’s error was slightly larger (10.837). The SIMPLE Update algorithm,

which had the second best estimation error during optimization (on paths 1 - 20) (Chapter V.1), generated

an error of 11.502. This value gives SIMPLE Update the fifth smallest estimation error. No Forgetting and

the SIMPLE forgetting algorithm tied for the worst average estimation error (12.964). The Queue Static

algorithm generated the best estimation error (10.837) out of all three queue-based forgetting algorithms

(including Random forgetting).

Several trends exist in the error values for individual noise distributions. During the No Noise case,

No Forgetting and the SIMPLE algorithm generated the worst estimation error (5.479). This estimation

error value was the smallest achieved by No Forgetting or the SIMPLE algorithm. Every other forgetting

algorithm generated less estimation error than No Forgetting and SIMPLE when No Noise was present, but

also produced less estimation error than the No Noise case with at least two noise distributions.
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Table VII.3: Noise distribution effects on average estimation error
Distribution Parameters No Forgetting Queue Static Queue Dynamic Random ACT-R SIMPLE SIMPLE Update ActSimple

Gaussian σ = 1 5.77 3.081 2.909 4.283 2.946 5.77 3.472 2.594
σ = 1.25 5.853 3.131 2.971 4.361 3 5.853 3.573 2.78
σ = 1.5 5.935 3.216 3.08 4.429 3.053 5.935 3.771 2.969
σ = 2 6.094 3.386 3.26 4.622 3.219 6.095 4.227 3.323
σ = 5 7.056 4.674 4.456 5.816 4.297 7.056 5.768 4.758
σ = 5, r = 3 7.05 4.751 4.489 5.857 4.329 7.05 5.233 4.259
σ = 5, r = 5 7.033 4.813 4.487 5.885 4.351 7.033 5.05 4.045
σ = 5, r = 11 6.805 5.01 4.525 5.805 4.073 6.805 5.213 3.616
σ = 15 10.312 8.988 8.441 9.835 7.836 10.312 10.218 8.196
σ = 15, r = 3 10.316 9.01 8.41 9.85 7.784 10.316 10.014 7.983
σ = 15, r = 5 10.304 9.03 8.405 9.851 7.761 10.304 9.78 7.808
σ = 15, r = 11 10.271 9.115 8.332 9.855 7.71 10.271 9.133 7.55

Impulse δ = 0.25 54.046 50.109 54.474 52.276 57.423 54.045 51.195 57.099
δ = 0.3 50.722 47.611 50.969 49.063 53.776 50.721 48.476 53.507
δ = 0.5 37.495 36.392 36.692 36.943 37.446 37.495 36.608 37.184

Laplace b = 0.5 5.604 3.326 3.192 4.287 2.989 5.604 3.575 2.48
b = 1 5.835 3.126 2.977 4.374 2.994 5.835 3.501 2.688
b = 1.5 6.05 3.367 3.202 4.586 3.155 6.05 3.94 3.125
b = 2 6.26 3.616 3.459 4.813 3.363 6.26 4.459 3.513

Sinc ——— 12.125 11.041 10.161 11.767 8.911 12.125 14.331 9.17

Original ——— 8.794 7.352 6.415 8.213 5.542 8.794 7.7 5.191

None ——— 5.479 4.267 4.291 4.333 3.122 5.479 3.813 2.765

With Impulse Average 12.964 10.837 10.891 11.868 10.867 12.964 11.502 10.755
Std 14.405 14.173 15.285 14.334 16.189 14.404 14.299 16.138
Rank 7 2 4 6 3 7 5 1

Without Impulse Average 7.523 5.49 5.13 6.464 4.76 7.523 6.146 4.674
Std 2.105 2.659 2.406 2.529 2.113 2.105 3.127 2.266
Rank 7 4 3 6 2 7 5 1

The Queue Dynamic algorithm experienced the largest difference in estimation error when the No Noise

and Gaussian with σ = 1 distributions were considered. Queue Dynamic generated in an average error of

4.291 with No Noise, but the Gaussian distribution resulted in an estimation error of only 2.909, a difference

of 1.382. The Queue Static algorithm experienced a similar trend, as error decreased by 1.186. ActSimple

experienced a smaller reduction in error (0.171), but still realized an improvement. These results suggest

noise may provide some aid to forgetting algorithms.

The Impulse noise distributions resulted in the largest amount of estimation error for every forgetting

algorithm and No Forgetting. While the Impulse noise distribution with δ = 0.5 generated the least amount

of error between the Impulse distributions, the error associated with this distribution was over double the next

largest estimation error for each forgetting algorithm or No Forgetting. Error values of this magnitude can

mask the trends present in the rest of the data. Table VII.3 includes the overall average error for each forget-

ting algorithm and No Forgetting excluding the Impulse distributions. Without the Impulse distributions, the

average estimation error values for the forgetting algorithm and No Forgetting possess smaller magnitudes.

ActSimple generated an error of 4.674 instead of 10.755, SIMPLE Update’s error changed from 11.502 to

6.146, ACT-R’s error dropped from 10.867 to 4.76, and No Forgetting’s error improved from 12.964 to 7.523.

122



Table VII.4: Noise distribution effects on estimation error rankings
Distribution Parameters No Forgetting Queue Static Queue Dynamic Random ACT-R SIMPLE SIMPLE Update ActSimple

Gaussian σ = 1 7 4 2 6 3 7 5 1
σ = 1.25 7 4 2 6 3 7 5 1
σ = 1.5 7 4 3 6 2 7 5 1
σ = 2 7 4 2 6 1 8 5 3
σ = 5 7 3 2 6 1 7 5 4
σ = 5, r = 3 7 4 3 6 2 7 5 1
σ = 5, r = 5 7 4 3 6 2 7 5 1
σ = 5, r = 11 7 4 3 6 2 7 5 1
σ = 15 7 4 3 5 1 7 6 2
σ = 15, r = 3 7 4 3 5 1 7 6 2
σ = 15, r = 5 7 4 3 6 1 7 5 2
σ = 15, r = 11 7 4 3 6 2 7 5 1

Impulse δ = 0.25 5 1 6 3 8 4 2 7
δ = 0.3 5 1 6 3 8 4 2 7
δ = 0.5 7 1 3 4 6 7 2 5

Laplace b = 0.5 7 4 3 6 2 7 5 1
b = 1 7 4 2 6 3 7 5 1
b = 1.5 7 4 3 6 2 7 5 1
b = 2 7 4 2 6 1 7 5 3

sinc ——— 6 4 3 5 1 6 8 2

Original ——— 7 4 3 6 2 7 5 1

None ——— 7 4 5 6 2 7 3 1

With Impulse Average 6.773 3.545 3.091 5.5 2.545 6.727 4.727 2.227
Std 0.612 1.057 1.151 0.964 2.087 0.935 1.386 1.901
Rank 8 4 3 6 2 7 5 1

Without Impulse Average 6.947 3.947 2.789 5.842 1.789 7 5.158 1.579
Std 0.229 0.229 0.713 0.375 0.713 0.333 0.898 0.902
Rank 7 4 3 6 2 8 5 1

However, the rank ordering only changed for three forgetting algorithms. The ActSimple algorithm contin-

ued to generate the least amount of error, while Queue Static moved from second to fourth. Queue Dynamic

switched from fourth to third, and ACT-R improved from third to second. The relative performance of No

Forgetting and the SIMPLE and Random forgetting algorithms did not change.

The relative estimation error performance of the forgetting algorithms and No Forgetting was ranked for

each noise distribution. These ranking values are presented in Table VII.4. Ranking was performed after

rounding to minimize the effects of noise. The overall average rankings were similar for both the With

Impulse and the Without Impulse results. All forgetting algorithms maintained the same ranking values

except for SIMPLE, which switched from a tie with No Forgetting (With Impulse) to eighth place. The

performance deviations between No Forgetting and SIMPLE were very small (Table VII.3) and this change

in rank ordering does not appear to represent a large change in performance. The overall rank ordering

in Table VII.4 is identical to the Without Impulse overall estimation error ranks in Table VII.3, except for

SIMPLE.

The ActSimple and ACT-R algorithms generated the best overall rank values, but generated the worst

performance on the two Impulse distributions with δ = 0.25 and δ = 0.3. Additionally, the Queue Dynamic
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algorithm resulted in the third best overall rank value, but the sixth largest estimation error when tested with

the two Impulse noise distributions. The SIMPLE algorithm and No Forgetting generated the fourth and fifth

best estimation error values.

The statistical significance of the relative estimation error performance results from Table VII.3 was

evaluated with four single-sided Wilcoxon signed rank tests and the results are presented in Table VII.5.

The first two tests, labeled With Impulse - Less than No Forgetting and With Impulse - ActSimple less than,

evaluated the statistical significance of the results when the Impulse distributions were included. The last

two tests, labeled Without Impulse - Less than No Forgetting and Without Impulse - ActSimple less than,

evaluated the statistical significance when the Impulse distributions were not included. The first and third

tests evaluated if the forgetting algorithms listed in the left-most column resulted in less average estimation

error than No Forgetting. The second and fourth tests evaluated if ActSimple resulted in less estimation error

than No Forgetting and the other forgetting algorithms. The α value for these tests was set to 0.05. Results

that were found to be significant are indicated in bold.

Table VII.5: Comparison of estimation error

With Impulse Without Impule

Less than ActSimple Less than ActSimple
No Forgetting less than No Forgetting less than

n v p n v p n v p n v p

No Forgetting —— —— —— 22 26.0 0.0003 —— —— —— 19 0.0 <0.0001
Queue Static 22 0.0 <0.0001 22 56.0 0.0104 19 0.0 <0.0001 19 2.0 <0.0001
Queue Dyanmic 22 3.0 <0.0001 22 68.0 0.0293 19 0.0 <0.0001 19 12.0 0.0001
Random 22 0.0 <0.0001 22 44.0 0.0030 19 0.0 <0.0001 19 0.0 <0.0001
ACT-R 22 41.0 0.0021 22 71.0 0.0369 19 0.0 <0.0001 19 65.0 0.1206
SIMPLE 21 145.0 0.8462 22 26.0 0.0003 18 145.0 0.9966 19 0.0 <0.0001
SIMPLE Update 22 17.0 <0.0001 22 43.0 0.0026 19 16.0 0.0003 19 0.0 <0.0001
ActSimple 22 26.0 0.0003 —— —— —— 19 0.0 <0.0001 —— —— ——

Results from the first test (column With Impulse - Less than No Forgetting) were significant for Queue

Static (v = 0.0, p < 0.0001), Queue Dynamic (v = 3.0, p < 0.0001), Random (v = 0.0, p < 0.0001), ACT-R

(v = 41.0, p = 0.0021), SIMPLE Update (v = 17.0, p < 0.0001), and ActSimple (v = 26.0, p = 0.0003).

Results from SIMPLE were not significant (v = 145.0, p = 0.8462). These results suggest that the results

presented in Chapter V were not dependent on the original tested noise distribution. Algorithms based on

Human-Inspired Forgetting may be applicable to a wide range of environmental conditions. Additionally, the

forgetting algorithms’ parameterizations may not require constant re-optimization as real world environments

and domains evolve over time.

Each of the comparisons in the second test (column With Impulse - ActSimple less than) were significant.
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No Forgetting (v = 26.0, p = 0.0003), Queue Static (v = 56.0, p = 0.0104), Queue Dynamic (v = 68.0,

p = 0.0293), Random(v = 44.0, p = 0.0030), ACT-R (v = 71.0, p = 0.0369), SIMPLE (v = 26.0, p = 0.0003),

and SIMPLE Update (v = 43.0, p = 0.0026) each resulted in less estimation error than ActSimple. These

results suggest that the relative benefits of ActSimple may be resilient to some changes in environmental

conditions and the results presented in Chapter V were not a result of a particular set of tested conditions.

The Impulse distributions resulted in substantially more estimation error than the other tested noise dis-

tributions and their inclusion in the results had the potential to alter the relative performance of the forgetting

algorithms. The Without Impulse Wilcoxon signed rank tests evaluated if the benefits of ActSimple and

Human-Inspired Forgetting were still present when the Impulse noise distributions were removed. The With-

out Impulse - Less than No Forgetting) test evaluated if the forgetting algorithms generated less estimation

error than No Forgetting and the results were significant for Queue Static (v = 0.0, p < 0.0001), Queue Dy-

namic (v = 0.0, p < 0.0001), Random (v = 0.0, p < 0.0001), ACT-R (v = 0.0, p < 0.0001), SIMPLE Update

(v = 16.0, p = 0.0003), and ActSimple (v = 0.0, p < 0.0001). Results from SIMPLE were not significant

(v = 145.0, p = 0.9966). When the Impulse noise distributions were removed, the forgetting algorithms

continued to generate less estimation error than No Forgetting.

The fourth Wilcoxon signed rank test evaluated if ActSimple generated less estimation error than No For-

getting and the other forgetting algorithms when the Impulse distributions were not included (column Without

Impulse - ActSimple less than). Results from No Forgetting (v = 0.0, p < 0.0001), Queue Static (v = 2.0,

p < 0.0001), Queue Dynamic (v = 12.0, p = 0.0001), Random (v = 0.0, p < 0.0001), SIMPLE (v = 0.0, p <

0.0001), and SIMPLE Update (v = 0.0, p < 0.0001) were significant, while results from ACT-R (v = 65.0,

p = 0.1206) were not significant. Results from this test suggest the ability for ActSimple to generate less

estimation error than No Forgetting and the forgetting algorithms that do not include trace-based decay was

not a result of the Impulse distributions. The difference in estimation error between ActSimple and ACT-R

was not significant, suggesting trace-based decay may be an effective method to improve system accuracy,

even in the presence of diverse environmental conditions.

Individual paths can influence the amount of estimation error that is generated. Some paths are more chal-

lenging than others and individual forgetting algorithms may respond differently depending on path proper-

ties. Table VII.6 presents the estimation error results from Table VII.3 for only paths 1 - 20, instead of the full

set of 64 paths. This table is formatted identical to Table VII.3. The forgetting algorithms and No Forgetting

each generated less overall average estimation error (With Impulse) on the full set of noise distributions when

only paths 1 - 20 were included. Estimation error for the Without Impulse results followed a different trend.

Excluding the SIMPLE Update algorithm, the forgetting algorithms and No Forgetting each averaged more

error with paths 1 - 20. The Impulse noise distribution had a smaller negative impact on the original set of
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Table VII.6: Noise distribution effects on average estimation error (paths 1 - 20)
Distribution Parameters No Forgetting Queue Static Queue Dynamic Random ACT-R SIMPLE SIMPLE Update ActSimple

Gaussian σ = 1 6.017 3.053 2.856 4.699 3.422 6.017 2.404 2.653
σ = 1.25 6.101 3.335 3.132 4.847 3.538 6.101 2.77 2.965
σ = 1.5 6.183 3.609 3.432 4.933 3.637 6.183 3.168 3.28
σ = 2 6.345 3.925 3.839 5.166 3.877 6.345 3.916 3.855
σ = 5 7.309 5.427 5.31 6.496 5.279 7.308 5.904 5.964
σ5, r = 3 7.311 5.269 5.054 6.447 5.151 7.311 4.783 4.86
σ = 5, r = 5 7.305 4.939 4.623 6.401 5.059 7.305 4.045 4.369
σ = 5, r = 11 7.13 4.503 4.311 6.125 4.517 7.13 3.628 3.503
σ = 15 10.54 9.955 9.641 10.665 9.463 10.54 10.279 10.099
σ = 15, r = 3 10.547 9.892 9.562 10.637 9.282 10.547 10.029 9.58
σ = 15, r = 5 10.541 9.86 9.488 10.636 9.181 10.541 9.663 9.15
σ = 15, r = 11 10.526 9.587 8.993 10.554 8.926 10.526 8.384 8.479

Impulse δ = 0.25 41.226 37.318 41.81 39.687 43.759 41.225 39.509 43.626
δ = 0.3 38.783 35.295 39.217 37.362 41.062 38.782 37.323 40.927
δ = 0.5 29.075 27.627 28.18 28.566 29.036 29.074 27.745 28.513

Laplace b = 0.5 5.852 2.608 2.748 4.462 3.262 5.852 2.114 2.193
b = 1 6.091 3.154 2.949 4.804 3.469 6.091 2.511 2.752
b = 1.5 6.31 3.806 3.574 5.129 3.762 6.31 3.504 3.499
b = 2 6.524 4.173 4.064 5.39 4.07 6.524 4.281 4.13

sinc ——— 12.391 11.8 11.273 12.449 10.414 12.391 13.26 10.752

Original ——— 9.164 7.394 6.322 8.72 6.278 9.164 6.076 5.441

No Noise ——— 5.714 3.439 3.513 4.228 3.221 5.714 2.281 2.214

With Impulse Average 11.681 9.544 9.722 10.836 9.985 11.681 9.435 9.673
Std 10.416 10.21 11.379 10.376 11.862 10.416 10.956 11.964
Rank 7 2 4 6 5 7 1 3

Without Impulse Average 7.784 5.775 5.510 6.989 5.569 7.784 5.421 5.249
Std 2.106 2.958 2.805 2.682 2.527 2.106 3.308 2.883
Rank 8 5 3 6 4 7 2 1

paths (1 - 20).

The ActSimple algorithm only generated the third best estimation error (9.673) with paths 1 - 20 when the

Impulse distributions were included. SIMPLE Update realized the least amount of estimation error (9.435)

and Queue Static averaged the second least average error (9.544). The ACT-R algorithm produced the fifth

least amount of error (9.985). When the Impulse distributions were not included, ActSimple averaged the

least amount of error (5.249) and SIMPLE Update generated the second least amount of error (5.421). Queue

Static’s relative performance dropped to fifth place with an error of 5.775.

The SIMPLE Update algorithm generated the best estimation error when the Impulse noise distributions

were included in the results and the second best error when the Impulse noise distributions were not included.

However, SIMPLE Update only averaged the fifth best estimation error when processing results from all 64

paths (Table VII.3). Some of the paths from path 21 - path 64 pose a greater challenge to SIMPLE Update

than some other forgetting algorithms.

Rank ordering of the estimation error resulting from paths 1 - 20 was calculated and is presented in

Table VII.7. Ranking was performed after rounding to minimize the effects of noise. The overall rank

ordering averages changed from the ranking of overall estimation error for paths 1 - 20 when the Impulse
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Table VII.7: Noise distribution effects on estimation error rankings (paths 1 - 20)
Distribution Parameters No Forgetting Queue Static Queue Dynamic Random ACT-R SIMPLE SIMPLE Update ActSimple

Gaussian σ = 1 7 4 3 6 5 7 1 2
σ = 1.25 7 4 3 6 5 7 1 2
σ = 1.5 7 4 3 6 5 7 1 2
σ = 2 7 5 1 6 3 7 4 2
σ = 5 8 3 2 6 1 7 4 5
σ = 5, r = 3 7 5 3 6 4 7 1 2
σ = 5, r = 5 7 4 3 6 5 7 1 2
σ = 5, r = 11 7 4 3 6 5 7 2 1
σ = 15 6 3 2 8 1 6 5 4
σ = 15, r = 3 6 4 2 8 1 6 5 3
σ = 15, r = 5 6 5 3 8 2 6 4 1
σ = 15, r = 11 6 5 4 8 3 6 1 2

Impulse δ = 0.25 5 1 6 3 8 4 2 7
δ = 0.3 5 1 6 3 8 4 2 7
δ = 0.5 8 1 3 5 6 7 2 4

Laplace b = 0.5 7 3 4 6 5 7 1 2
b = 1 7 4 3 6 5 7 1 2
b = 1.5 7 5 3 6 4 7 2 1
b = 2 7 4 1 6 2 7 5 3

sinc ——— 5 4 3 7 1 5 8 2

Original ——— 7 5 4 6 3 7 2 1

No Noise ——— 7 4 5 6 3 7 2 1

With Impulse Average 6.636 3.727 3.182 6.091 3.862 6.455 2.591 2.636
Std 0.848 1.279 1.296 1.306 2.077 0.963 1.894 1.761
Rank 8 4 3 6 5 7 1 2

Without Impulse Average 6.737 4.158 2.895 6.474 3.316 6.684 2.684 2.105
Std 0.653 0.688 0.994 0.841 1.600 0.582 2.029 1.049
Rank 8 5 3 6 4 7 2 1

distributions were included. ActSimple improved from the third least estimation error to the second smallest

average rank. The SIMPLE Update algorithm maintained the best performance. Queue Static dropped from

second to fourth and Queue Dynamic moved from fourth to third. The ACT-R algorithm remained fifth. Rank

positions, when the Impulse distributions were not included, did not change from Table VII.6 to Table VII.7.

The rank ordering of performance in Tables VII.3 and VII.6 was identical for the Impulse distributions

with δ = 0.25 and δ = 0.3. ActSimple and ACT-R generated more error than the other forgetting algorithms

and No Forgetting with these noise distributions for both the full set of paths (paths 1 - 64) and the smaller

original set (paths 1 - 20).

VII.3 Summary

Noise in the environment can influence the effectiveness of a forgetting algorithm. This chapter presented

an experiment where the performance of No Forgetting and the seven forgetting algorithms was tested with

twenty one new noise distributions. Results from this experiment demonstrate the stability and flexibility of

the benefits afforded by Human-Inspired Forgetting.

No Forgetting did not generate the largest amount of estimation error for each of the new noise distri-
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butions, but tied for the greatest amount of overall average estimation error and never resulted in better than

the fifth best estimation error value. The Human-Inspired Forgetting algorithms managed to generate less

estimation error, despite the changes to the noise distribution present in the environment. In many real-world

environments, accurately modeling the noise and other environmental properties that can influence a mo-

bile robot’s performance is very challenging, if not impossible. The results from this chapter suggest that if

Human-Inspired Forgetting is utilized in mobile robots operating in real-world environments, the algorithms

may increase system accuracy without requiring constant re-optimization.

The ActSimple algorithm averaged the least amount of average estimation error and appears to be an

effective and reliable means of incorporating Human-Inspired Forgetting into robotic systems. The algorithm

did not generate the smallest amount of estimation error for each tested noise distribution, but resulted in the

smallest average estimation error and the best average rank value. Forgetting algorithms may not be able

to guarantee the best possible performance under every condition, but ActSimple appears to be an effective

means of improving average performance.

Algorithmic complexity can be an important factor when selecting and utilizing an algorithm. The es-

timation error values from Table VII.3 were contrasted with each algorithm’s number of parameters and is

presented in Figure VII.8. Each algorithm is represented with a unique symbol and error values including the

Impulse noise distributions are shown in black, while the error values not including the Impulse distributions

are shown in gray.

No Forgetting does not possess any parameters and tied for the largest amount of estimation error. Act-

Simple utilizes the largest number of parameters and resulted in the smallest amount of estimation error.

However, a direct relationship between parameter count and estimation error is not shown. SIMPLE and

SIMPLE Update each possess seven parameters, yet both resulted in more estimation error than ACT-R,

Queue Static, and Queue Dynamic. Other factors appear to have an impact on the effectiveness of a forget-

ting algorithm to improve system accuracy. Additionally, ActSimple was optimized with only the original

noise distribution, but still generated the smallest amount of estimation error. The additional parameters in

ActSimple do not appear to cause over-learning, but may aid in ActSimple’s ability to perform well across

multiple noise distributions.

Human-Inspired Forgetting may improve system accuracy, but the filtering performed by the forgetting

algorithms may also reduce the number of data points requiring potentially computationally expensive pro-

cessing by existing robotic algorithms. A comparison between the forgetting algorithms resultant estimation

error (Table VII.3) and the resultant number of recallable readings (Table VII.1) is presented in Figure VII.9.

This figure uses the same key as Figure VII.8.

The Impulse noise distributions substantially increased the average estimation error generated by No
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Figure VII.8: Number of parameters vs. average absolute estimation error
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Figure VII.9: Average number of recallable readings vs. average estimation error
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Forgetting and the forgetting algorithms, but the relative number of recallable readings and estimation error

values are similar. No Forgetting and SIMPLE resulted in the most estimation error, but also the largest

number of recallable readings. This data suggests that in noisy environments, the quantity of data available

to an existing robotic algorithm may not result in improved accuracy. ActSimple generated the least amount

of estimation error and resulted in at most the second smallest number of recallable readings. The ability

to intelligently select a subset of data collected from the environment may have a greater influence on the

effectiveness of a mobile robot to improve system accuracy.

ActSimple is the most complex forgetting algorithm that was tested, possessing the largest number of

parameters, but was able to average the smallest amount of estimation error and at most the second smallest

number of recallable readings. Robotic systems that operate in dynamic real-world environments and em-

ploy computationally expensive existing robotic algorithms may realize improved accuracy, while decreasing

overall computational load with the use of the ActSimple forgetting algorithm. Generating the best average

estimation error over the full set of tested noise distributions, the ActSimple algorithm may also not require

constant re-optimization in order to provide benefits to the system.
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CHAPTER VIII

Evaluating the Performance of Forgetting at Each Point Along the Paths

During the optimization experiment (Chapter V), the parameters for each forgetting algorithm were opti-

mized by minimizing the resultant WiFi signal strength estimation error generated at the end of each path.

Neither the absolute nor the relative performance of a forgetting algorithm parameterization will necessarily

be constant throughout a path. At the beginning of a path, most forgetting algorithms and parameterizations

generate nearly identical estimation values; however, as the robot continues along the path, the performance

across the forgetting algorithms may diverge. This chapter describes an experiment in which forgetting algo-

rithm performance data was gathered throughout the entire path, not just at the end. During this experiment,

item recalls did not affect a reading’s activation level and only the effects of perception count were included.

This experiment used paths 1 - 20 (Chapter IV.4) and the same simulation conditions used during op-

timization (Chapter V). The collected results were averaged over 100 instances of each path. These path

instances were not the same as the path instances used to optimize the forgetting algorithms. The resultant

estimation values for each path were plotted. The most interesting results are provided in this chapter and the

remaining results are provided in Appendix A. Performance along paths 1, 2, 4, 5, 8, 9, 10, 12, 13, 17, and

20 are described in detail in this chapter.

VIII.1 Performance Along Individual Paths

The performance along all paths exhibited a few general trends. Path 2, provided in Figure VIII.1, is rep-

resentative of these trends. At the beginning of each path, no WiFi readings were available and estimation

error was significant. While the initial estimation error was dependent on a path’s initial basestation con-

figuration, the forgetting algorithms and No Forgetting each generated identical error values. As the robot

began collecting WiFi signal strength readings, the estimation error generally began to decrease, although

the decrement rate depended on the path. After approximately 500 - 650 time steps (roughly 600 steps for

Path 2), the performance of the forgetting algorithms began to diverge on most paths. The degree that the

individual forgetting algorithms’ performance diverged was path dependent. None of the conditions gener-

ated monotonically decreasing error, even when only paths containing a single basestation configuration were

analyzed.
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VIII.1.1 Performance of Forgetting when Applied to Path 2

The benefits of the individual forgetting algorithms varied across paths, but also experienced sizable vari-

ability along each path. Figure VIII.1 presents the along the path results for Path 2. This path involved one

complete cycle through the simulation environment using the four basestation configuration. At the begin-

ning of this path, no readings were available and the estimation error was very large (42.0696). After the first

reading was collected, the average error dropped sharply to 30.0406, as is visible in Figure VIII.1. The esti-

mation error continued to decline until 43 readings were collected. At this point, the error began to increase

for approximately 138 readings before returning to a declining trend. Around the 600th time step, the estima-

tion error generated by the different forgetting algorithms began to diverge. The SIMPLE Update and ACT-R

algorithms both experienced a larger increase in estimation error than the other forgetting algorithms or No

Forgetting. During the period of increased error, from approximately reading 700 to 1150, ACT-R reached

an error value of 13.759 and SIMPLE Update’s error increased to 13.298. The error generated by ACT-R

and SIMPLE Update at the end of the path had returned to levels similar to the other forgetting algorithms

and No Forgetting. The trends shown in path 2 are representative of the performance generated along path 3

(Figure A.1). 1 Cycle 4 Basestations
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Figure VIII.1: Along path results for path 2 - 1 cycle 4 basestations

Performance of the forgetting algorithms and No Forgetting at each point in time along the path was
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influenced by the environment. Estimation error values and the number of recallable readings were often

inconsistent at any given point in time. Figure VIII.2 graphically presents the individual error and recallable

reading counts throughout the environment at selected points in time when No Forgetting was present. Fig-

ures VIII.2a - VIII.2h show the average number of recallable readings at each location in the environment.

The recall maps indicate recallable readings with blue. Darker colors represent larger numbers of recallable

readings. Recall values within these maps are clipped to a value of three readings to allow for discrimination

of values between 0 to 3. The blue color does not directly present the probability of recalling an item, simply

the average number of recallable items. As a result, two harder to recall readings may be represented with a

darker color than one easier to recall reading. The small black square represents the robot. The robot moves

and then takes a reading, thus, the last collected reading is always concealed by the robot indicator. The

basestations are represented as two circles in Figure VIII.2. The basestations are located in each corner. The

inner circle shows the 90% strength mark for the basestation, while the outer circle shows the radius where

the basestation’s strength has been reduced to 10%. These circles indicate the transition area for a basestation,

where available signal strength shifts from high levels to low. Figures VIII.2i - VIII.2p show the individual

error values throughout the environment. Red indicates error, with darker colors representing greater amounts

of error. The robot indicator and the basestation markings are the same in the error maps as they are in the

recall maps. The full set of error and recall maps for No Forgetting, Queue Static, ACT-R, ActSimple, and

SIMPLE Update for all twenty paths are available in Appendix A.

Path 2 is one of the simplest paths tested. The robot started at the center of the environment and traveled

to the lower left corner of the environment. The robot proceeded to exhaustively explore the environment

traveling from the left side of the environment to the right. At the completion of the trip to the right side

of the environment, the robot returned to the lower left corner of the environment, again with an exhaustive

search strategy. At least one reading was collected at every location in the environment.

At the beginning of the path, the robot is located in the center of the environment and no readings are

available (Figure VIII.2a). The average number of recallable readings is zero for every location in the en-

vironment and the associated recall map (Figure VIII.2a) contains no blue markings. The robot does not

not have any signal strength readings and is forced to guess a signal strength value of 50.5 for each location

(Figure VIII.2i). Substantial error is generated at most locations in the environment, shown in Figure VIII.2i

by the large amount of red. The only areas where large amounts of error are not present is in the transition

areas for each basestation, identified with each basestation’s pair of circles. At this point, the robot made a

movement towards the lower left corner of the environment and gathered its first reading (Figure VIII.2b).

The robot changed its error estimation for every location in the environment based on this single reading and

the resultant error changed significantly (Figure VIII.2j). The robot traveled to the lower left corner of the
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Figure VIII.2: Path 2 - 1 cycle 4 basestations with No Forgetting error and recall maps
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environment collecting signal strength readings (Figure VIII.2c). Signal strength in the center of the envi-

ronment was at a constant minimum level. Until the robot reached the basestation in the lower left corner,

collecting additional readings did not result in visible changes to the robot’s estimation error. When the robot

reached the lower left basestation and began collecting higher valued strength readings (Figure VIII.2c), the

corresponding estimation error began to decrease (Figure VIII.2k). The robot collected additional readings

(Figures VIII.2d - VIII.2f), which slowly reduced estimation error near the basestations (Figures VIII.2l -

VIII.2n). After the 648th time step (Figure VIII.2g), at least one reading had been collected for every location

in the environment and pockets of significant error were removed (Figure VIII.2o). The robot collected addi-

tional readings, while returning to the lower left corner of the environment (Figure VIII.2h), but no significant

visual change occurred to the error map (Figure VIII.2p).

Environmental conditions had a large impact on the average number of recallable readings at each loca-

tion. Figure VIII.2h shows the effects of a basestation on the number of recallable readings. Both the center

of the environment and the center of the basestations possess an extreme signal strength level (either the

minimum or the maximum detectable value). The noise present in the environment is symmetric, but is then

clipped, converting the noise into an asymmetric noise source. At the center of the environment, any signal

strength reading that would have been negative (due to noise before clipping) is clipped to the minimum de-

tectable signal strength value. Likewise, readings centered on a basestation will be clipped to the maximum

detectable signal strength value. The clipping process at these two locations effectively limits the number of

unique signal strength readings that can be recorded by the robot. Conversely, the transition areas between

the basestations are not at the extremes of the detectable signal strength spectrum. At these locations, noise

can result in both positive or negative error, which allows for a greater number of possible signal strength

values. Even if the recallable probability of each reading is less, the presence of more unique readings at a

particular location can result in a darker color on a recall map.

The performance of the ACT-R algorithm differed from that of No Forgetting. Selected estimation error

and recallable reading maps from applying the ACT-R forgetting algorithm to Path 2 are presented in Fig-

ure VIII.3. Figure VIII.1 demonstrates that during the second half of path 2, the ACT-R forgetting method

experienced a large increase in estimation error for approximately 550 time units. This phenomena occurred

because the ACT-R forgetting method began to filter readings located on the left side of the environment

before the robot was able to complete the path. The ACT-R forgetting algorithm started to filter the earliest

readings by the 648th time step and the robot had completed the first pass through the environment (Fig-

ure VIII.3a). The effects of filtering are visible for the sub-path from the center of the environment to the

lower left corner of the environment and in the corner itself. A slight increase in estimation error can be seen

in the lower left corner of Figure VIII.3i. As the robot continued the pass back to the left side of the environ-
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Figure VIII.3: Path 2 - 1 cycle 4 basestations with ACT-R error and recall maps
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ment, the effects of filtering increase and additional readings from the left side of the environment become

unrecallable (Figures VIII.3b - VIII.3e). During this period, the estimation error present on the left side of

the environment continued to increase (Figure VIII.3j - VIII.3m). After collecting more readings, the robot

traveled past the transition point between where readings were recallable and where they were unrecallable

(Figure VIII.3f). While Figures VIII.3n and VIII.3o do not show increasing error on the right side of the

environment, Figures VIII.3f and VIII.3g show ACT-R continuing to filter greater numbers of old readings.

At the end of the path, the error map (Figure VIII.3p) visually appears the same as the map generated by No

Forgetting (Figure VIII.2p), but the recallable reading map shows significant differences. The map generated

by No Forgetting (Figure VIII.2h) reveals large deviations in the number of recallable readings per location

in the environment, while the recall map generated by ACT-R (Figure VIII.3h) suggests only one reading was

available (except for the sub-path from the center of the environment to the lower left corner and the right

most edge of the environment).

Figure VIII.4: End of path recall map for ActSimple and path 2 - 1 cycle 4 basestations

Similarity-base interference affected the number of recallable readings generated by the ActSimple algo-

rithm. Figure VIII.4 presents the recallable reading map for ActSimple at the end of path 2. The top, bottom,

and right edges of the environment exhibited larger numbers of recallable readings, unlike the left side of the

environment. ActSimple’s parameterization places a large emphasis on spatial similarity. Readings located

on the edges of the environment have fewer nearby locations and consequently experienced reduced interfer-

ence. Increased numbers of recallable readings are not available on the left edge of the environment due to

the effects of time.
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Figure VIII.5: Path 2 - 1 cycle 4 basestations with Queue Static error and recall maps
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Figure VIII.6: Path 2 - 1 cycle 4 basestations with SIMPLE Update error and recall maps
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The Queue Static algorithm’s limited queue size had an effect on the forgetting algorithm’s performance

along Path 2 (Figure VIII.5). Since the queue size for Queue Static was 776, estimation error and recall were

the same as No Forgetting for the collection of the first 776 unique readings (Figures VIII.5h, VIII.5i, VIII.5a,

and VIII.5b). Around the 979th time step, the queue became full and older readings began to be forgotten.

Figure VIII.5c shows the initial readings from the center of the environment starting to become unrecallable.

However, the associated error map (Figure VIII.5j) did not reveal the effects of forgetting. The limited queue

size’s effects started to prevent readings from the left side of the environment from being recallable by the

1079th time step (Figure VIII.5d). The effects on estimation error began to appear at this time, increasing error

in the affected left side of the environment (Figure VIII.5k). The primary region experiencing the effects of

the limited queue size began moving to the right of the environment as the robot continued to follow the path.

A band of limited reading recallability can be seen in Figures VIII.5e - VIII.5g. The effects on estimation

error can be seen in the corresponding error maps (Figures VIII.5l - VIII.5n).

The SIMPLE Update algorithm experienced a substantial increase in estimation error similar to ACT-R

(Figure VIII.1). Selected recall and error maps for the SIMPLE Update algorithm being applied to path 2

are presented in Figure VIII.6. The SIMPLE Update algorithm’s performance was visually identical to No

Forgetting for the first 633 time steps (Figures VIII.6a and VIII.6i). The performance of SIMPLE Update

began to diverge and by the 648th time step, the forgetting algorithm began filtering readings in the center

of the environment (Figure VIII.6b), but an increase in estimation error was not visible in the associated

error map (Figure VIII.6j). Additional readings began to be filtered (Figure VIII.6c) and visible increases in

estimation error started to occur as the robot began the second half of the path (Figure VIII.6k). The filtering

of readings continued in the center of the environment (Figure VIII.6d) and estimation error also continued to

increase (Figure VIII.6l). Continuing along the path, the robot progressed to the left side of the environment,

traveling through the area experiencing the filtering of readings (Figure VIII.6e), reducing estimation error

(Figure VIII.6m). The robot then collected additional readings, which removed the substantial filtering of

readings that occurred in the center of the environment (Figures VIII.6f and VIII.6g). These additional

readings removed the visible increase in estimation error and after completing a total of 1211 time steps, the

elevated estimation error was no longer visible (Figure VIII.6o). A second increase in the filtering of readings

started to appear at the end of the path (Figure VIII.6h). However, a second visible increase in estimation

error did not occur (Figure VIII.6p).

VIII.1.2 Performance of Forgetting when Applied to Path 4

Path 4 is similar to path 2 in that it involves one cycle through the environment and the four basestation con-

figuration, but differs in the number of locations visited in the environment’s upper left corner. Figure VIII.7
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presents path 4’s trajectory (repeated from Figure IV.11d). When the robot travels into the upper left section,

the collection of readings is not exhaustive and readings are only collected for the locations visited by the

robot. This section describes the performance differences with ACT-R and ActSimple that result from the

change in path trajectory from Path 2 to Path 4.

Figure VIII.7: Trajectory of path 4 (Repeated from Figure IV.11d
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Figure VIII.8: Along path results for path 4 - 1 cycle 4 basestations

The ACT-R algorithm’s end of path estimation error with Path 4 (time 1033 in Figure VIII.8) increased

substantially from path 2 (time 1272 in Figure VIII.1). ACT-R generated an end of path estimation error
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Figure VIII.9: Path 4 - 1 cycle 4 basestations with ACT-R error and recall maps

of 4.703 for path 2, but the Path 4 results have an end of path error of 10.950. Figure VIII.9 presents a

subset of the error and recall maps for ACT-R when applied to path 4. Similar to the filtering of the readings

that occurred along path 2, ACT-R filtered the readings collected from the left side of the environment,

including the readings from the upper left section (Figure VIII.9b). All of the readings from the upper left

were unrecallable (Figure VIII.9c) and significant estimation error was generated (Figure VIII.9f) by the time

the robot returned to the lower left corner of the environment.

ActSimple’s performance differed from ACT-R’s along path 4. Figure VIII.10 presents the recallable

reading and error maps for ActSimple along path 4. After 699 time steps, ActSimple did not visually begin

to filter the readings gathered in the left half of the environment (Figure VIII.10b). However, bands of large

estimation error were still present (Figure VIII.10e), similar to ACT-R. When the robot completed the path,

the readings located in the upper left section were still not being filtered (Figure VIII.10c). However, some

readings in the bottom left portion do appear to have been filtered, since this area is a lighter more consistent

blue than the right portion. Unlike ACT-R, ActSimple generated considerably less error in the upper left

portion of the environment (Figure VIII.10f).

VIII.1.3 One Cycle, Eight Basestation Paths

Estimation error along the three paths involving one cycle and eight basestations was similar to the per-

formance observed along the one cycle, four basestation paths except for the effects of the first acquired
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Figure VIII.10: Path 4 - 1 cycle 4 basestations with ActSimple error and recall maps

reading and the initial rate of error reduction. The eight basestation paths maintained a larger percentage

of the environment where strong signal strength was available. As a result, the estimation error gener-

ated before any readings were collected was 33.999. Unlike the four basestation paths described in Chap-

ters VIII.1.1 and VIII.1.2, which experienced an estimation error drop from 42.070 to 30.041, the error

increased to 57.562 after the first reading was collected. This phenomena is present in the graph of estimation

error for path 8 (Figure VIII.11). Paths 6 and 7 generated similar estimation error as path 8 and are presented

in Figures A.2 and A.3.
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Figure VIII.11: Along path results for path 8 - 1 cycle 8 basestations

VIII.1.4 Static, Three Cycle Paths

The performance of the forgetting algorithms and No Forgetting on the beginning portions of the three cycle,

single basestation configuration (either four or eight) paths (paths 10-12 and 14-16) were similar to their

complementary one cycle paths (paths 2-4 and 6-8). The performance of each forgetting algorithm and No

Forgetting started to diverge as the second cycle in each path began. Figure VIII.12 presents the estimation

error along path 10, which is representative of the estimation error values diverging.

The SIMPLE Update algorithm generated an oscillating estimation error along path 10. Selected recall

maps for SIMPLE Update applied to path 10 are presented in Figure VIII.13. The complimentary error maps

are presented in Figure VIII.14. Path 10 includes three cycles through the environment, all of which are iden-

tical except for an initial sub-path from the center of the environment to the lower left corner. The first cycle

in path 10 is identical to the entirety of path 2 and the performance of SIMPLE Update along path 10 initially

was indistinguishable to the results of applying SIMPLE Update to path 2 (Figures VIII.1 and VIII.6). A de-

scription of SIMPLE Update applied to path 2 is presented in Chapter VIII.1.1. Figures VIII.13a - VIII.13b

and Figures VIII.14a - VIII.14b show the recallable readings and the estimation error generated by the SIM-

PLE Update algorithm for the final portion of the first cycle through the environment. At the conclusion

of the first cycle (after 1272 time steps), a second instance of significant filtering started to appear in the
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Figure VIII.12: Along path results for path 10 - 3 cycles 4 basestations

middle of the environment (Figure VIII.13b). However, an increase in estimation error was not visible (Fig-

ure VIII.14b). The robot began the second cycle. After a total of 1320 time steps, the region experiencing

substantial filtering had expanded (Figure VIII.13c) and an increase in estimation error was observed (Fig-

ure VIII.14c). The area where readings were being filtered continued to expand, while the robot completed

the 1464th time step. Estimation error increased in a similar fashion (Figure VIII.14c). After the 1733th

time step, the robot had ventured into the filtering area, reducing the area’s size (Figure VIII.13e). While

the size of the filtered reading area was shrinking, new readings were being filtered at the right edge of the

environment. Estimation error along the right side of the environment similarly increased (Figure VIII.14e).

The robot finished the first half of the second cycle by completing the 1896th time step while traveling to

the upper right corner. The newly collected readings on the right side of the environment reduced the effects

of filtering on that half of the environment (Figure VIII.13f) and elevated estimation error was also removed

(Figure VIII.14f). During the robot’s return trip to the left side of the environment, another area of extensive

filtering appeared (Figure VIII.13g) and estimation error also increased (Figure VIII.14g). After the 2520th

time step, the filtering and increase in estimation error had again subsided (Figures VIII.13h and VIII.14h).

The third cycle through the environment was similar to the second cycle (Figures VIII.13i - VIII.13l and

Figures VIII.14i - VIII.14l).
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Figure VIII.13: Path 10 - 3 cycles 4 basestations with SIMPLE Update recall maps
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Figure VIII.14: Path 10 - 3 cycles 4 basestations with SIMPLE Update error maps
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Figure VIII.15: Along path results for path 12 - 3 cycles 4 basestations

The differences in estimation error were greater along path 12 (Figure VIII.15). Near the end of the

path, Queue Static, Queue Dynamic, and ACT-R each experienced a “step-like” increase in error. Path 12’s

trajectory (Figure VIII.16, repeated from Figure IV.11l) is very similar to path 4’s trajectory (Figure VIII.7,

repeated from Chapter IV.4). The first two cycles in the path 12 trajectory each reproduce path 4’s trajectory,

except the second cycle does not include the sub-path from the center of the environment to the lower left

corner. The third cycle is similar to the second cycle, except the robot does not travel into the upper left

quadrant of the environment. The second and third cycles only visit locations previously visited by the first

cycle, resulting in the graphical representation of path 12’s trajectory (Figure VIII.16) being identical to the

graphical representation for path 4’s trajectory (Figure VIII.7).

The large estimation error deviations and the “step-like” trends in the last third of path 12 result from

the interaction of path 12’s trajectory with the upper left corner of the environment (similar to the interaction

experienced by path 4 and that quadrant of the environment). Figure VIII.17 presents selected recall and error

maps for ACT-R when applied to path 12. The number of recallable readings in each location along path 12

(Figures VIII.17a - VIII.17c) were identical to the results from path 4 (Figures VIII.9a - VIII.9c) for the first

1032 time steps. The error maps for path 12 (Figures VIII.17i - VIII.17k) were also identical to the error

maps from path 4 (Figures VIII.9d - VIII.9f) during this period of time. The robot then began the second
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Figure VIII.16: Trajectory of path 12 (Repeated from Figure IV.11l)

cycle, returning to the upper left quadrant (Figure VIII.17d). While readings were again recallable in the

upper left, readings at the right edge of the environment were being filtered. The newly recallable readings

in the upper left reduced the estimation in that area, but an increase in estimation error was present on the

right side of the environment due to readings being filtered (Figure VIII.17l). The robot continued along the

path and after 1560 time steps, the error map (Figure VIII.17m) resembled the error map from mid-point of

the first cycle (Figure VIII.17i). The recall map (Figure VIII.17e) reveals readings were available throughout

the entire trajectory. The robot returned to the lower left corner and the readings in the upper left quadrant

again began to become unrecallable (Figure VIII.17f), resulting in slightly increased error (Figure VIII.17n).

During the third cycle, the robot did not return to the upper left quadrant and the readings from that location

were filtered (Figures VIII.17g and VIII.17h). Substantial error returned to the upper left portion of the

environment (Figure VIII.17o and VIII.17p).

The Queue Static and Queue Dynamic algorithms experienced similar “step-like” increases in estimation

error due to similar interactions with the upper left quadrant of the environment. While Random forgetting

also experienced increasing error during the second half of this path, Random forgetting did not generate a

large jump in estimation error like the other queue-based forgetting methods or ACT-R. The results for paths

11, 14, 15, and 16 are located in Appendix A.

VIII.1.5 Dynamic, Non-Random Paths

When the forgetting algorithms and No Forgetting were applied to the non-random paths containing a bases-

tation configuration change, the resultant estimation error during the first half of each path was similar to

the performance seen on the static paths. Once the basestation configuration change occurred, the estimation

error generated by the forgetting algorithms and No Forgetting increased sharply. The change in estimation
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Figure VIII.17: Path 12 - 3 cycles 4 basestations with ACT-R error and recall maps
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error is presented in Figure VIII.18 for path 5, Figure VIII.19 for path 9, Figure VIII.20 for path 13, and Fig-

ure VIII.21 for path 1. The basestation configuration change occurred after 648 time steps for paths 1 and 5

and after 1896 time steps for paths 9 and 13. The effects of the basestation configuration change were differ-

ent for each path, and estimation error from the individual forgetting algorithms and No Forgetting diverged.

While the forgetting algorithms generated worse estimation error than No Forgetting for at least a portion of

each path after the basestation configuration change, all forgetting algorithms, except SIMPLE produced less

estimation error than No Forgetting at the end of each path (Figures VIII.21 - VIII.20). The Queue Static,

Queue Dynamic, and ACT-R algorithms generated substantially greater error than No Forgetting along path

1 after the basestation configuration change. The Queue Static and Queue Dynamic algorithms’ periods of

increased error lasted for approximately 110 time steps, while the ACT-R algorithm’s increase lasted for

roughly 185 time steps. 1 Cycle 8 - 4 Basestations
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Figure VIII.18: Along path results for path 5 - 1 cycle 8 - 4 basestations
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3 Cycles 4 - 8 Basestations
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Figure VIII.19: Along path results for path 9 - 3 cycles 4 - 8 basestations
3 Cycles 8 - 4 Basestations
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Figure VIII.20: Along path results for path 13 - 3 cycles 8 - 4 basestations
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1 Cycle 4 - 8 Basestations
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Figure VIII.21: Along path results for path 1 - 1 cycle 4 - 8 basestations

Basestation configuration changes can have a significant impact on the amount of estimation error present

at each location within the environment. The estimation error and recallable reading maps for No Forgetting

when applied to path 1 are presented in Figure VIII.22. No Forgetting performed the same as with path 2

(Figure VIII.2) for the first 648 time steps (Figures VIII.22a and VIII.22e), but the estimation error changed

abruptly after the basestation configuration change and the 649th time step (Figure VIII.22f). The bases-

tation configuration switched from the four basestation configuration to the eight basestation configuration

and altered the error associated with each previously collected reading. New readings were collected (Fig-

ure VIII.22c) as the robot began the return trip to the left side, which aided in reducing the error in the

locations near the new basestations (Figure VIII.22g). The error levels did not change near the old basesta-

tion location because the change in basestation configuration only added basestations, none were removed.

At the end of the path, a new reading had been collected for nearly every location within the environment

(Figure VIII.22d), helping to reduce error; however, No Forgetting was unable to remove the effects of the

readings collected prior to the basestation configuration change (Figure VIII.22h).

VIII.1.6 Randomly Generated Paths

Four of the tested paths (paths 17 - 20) involved randomly generated trajectories. Two paths contained a

basestation configuration change from either four to eight or eight to four basestations, while the remaining
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(a) Recall
648 time steps

(b) Recall
649 time steps

(c) Recall
789 time steps

(d) Recall
1272 time steps

(e) Error
648 time steps

(f) Error
649 time steps

(g) Error
789 time steps

(h) Error
1272 time steps

Figure VIII.22: Path 1 - 1 cycle 4 - 8 basestations with No Forgetting error and recall maps

two paths only possessed a single basestation configuration. The estimation error performance along these

paths resembled the performance observed on non-randomly generated paths (involving the same length and

basestation configuration characteristics) except that the randomly generated paths tended to have sharper

estimation error transitions. Figure VIII.23 shows the estimation error for path 17, a randomly generated path

with a basestation configuration change after 1500 time steps and Figure VIII.24 presents performance along

path 20, a path without a basestation configuration change. The performance along path 19 can be found in

Figure A.8.
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Random 4 - 8 Basestations
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Figure VIII.23: Along path results for path 17 - random 4 - 8 basestations
Random 8 Basestations
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Figure VIII.24: Along path results for path 20 - random 8 basestations
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The SIMPLE Update algorithm performed differently on path 18 (Figure VIII.25). Unlike the other tested

forgetting algorithms or No Forgetting, SIMPLE Update experienced a large increase in estimation error from

around time step 1500 to time step 2400. Figure VIII.26 presents selected recall and estimation error maps for

SIMPLE Update when applied to path 18. After the first reading was collected (Figure VIII.26a), the SIMPLE

Update algorithm generated the same amount of estimation error as every other forgetting algorithm (and No

Forgetting) when applied to a path beginning in the 4 basestation configuration. After the first 65 time steps

(Figure VIII.26b), the estimation error near the upper left basestation was reduced (Figure VIII.26j). After the

294th time step (Figure VIII.26c), the estimation error in the lower left corner was reduced (Figure VIII.26k).

The majority of significant estimation error was removed (Figure VIII.26l) by the time of the 1050th time

step (Figure VIII.26d). The robot continued collecting readings and by the 1552th time step, readings in

the upper center of the environment started being filtered (Figure VIII.26e). Estimation error in this area

of the environment started to increase (Figure VIII.26m). The number of readings being filtered continued

to increase and by the 1970th time step, the majority of the center of the environment was being filtered

(Figure VIII.26f). Estimation error similarly increased (Figure VIII.26n). The robot then traveled through

the area where filtering was occurring and collected new readings (Figures VIII.26g and VIII.26h). These

new readings resulted in the reduction of the increased estimation error (Figure VIII.26o and VIII.26p).Random 4 Basestations
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Figure VIII.25: Along path results for path 18 - random 4 basestations
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(a) Recall

1 time step

(b) Recall

65 time steps

(c) Recall

294 time steps

(d) Recall

1050 time steps

(e) Recall

1552 time steps

(f) Recall
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(g) Recall
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(h) Recall

3000 time steps

(i) Error

1 time step

(j) Error
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(k) Error
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(l) Error
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(m) Error
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(n) Error

1970 time steps

(o) Error
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(p) Error

3000 time steps

Figure VIII.26: Path 18 - random 4 basestations with SIMPLE Update recall and error maps

VIII.2 Along the Path Performance Metrics

The graphs from Chapter VIII.1 show varied relative performance along each tested path. In many domains

and tasks, the precise time when a decision will need to be made will often not be known in advance. Ad-
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Table VIII.1: Along path average estimation error
Path No Forgetting Queue Static Queue Dynamic Random ACT-R SIMPLE SIMPLE Update ActSimple

Path 1 - 1 Cycle 4 - 8 Basestations 21.09 20.83 20.70 20.47 20.08 21.09 18.80 19.25
Path 2 - 1 Cycle 4 Basestations 10.97 11.10 11.04 11.23 13.12 10.97 12.59 10.98
Path 3 - 1 Cycle 4 Basestations 11.62 11.63 11.62 11.74 13.37 11.62 12.75 11.63
Path 4 - 1 Cycle 4 Basestations 11.98 11.98 11.98 12.07 14.02 11.98 13.15 11.98
Path 5 - 1 Cycle 8 - 4 Basestations 24.65 23.87 23.88 23.93 22.41 24.65 22.85 22.56
Path 6 - 1 Cycle 8 Basestations 14.36 14.68 14.58 14.80 16.97 14.36 16.81 14.40
Path 7 - 1 Cycle 8 Basestations 15.00 15.04 15.01 15.21 17.00 15.00 15.94 15.02
Path 8 - 1 Cycle 8 Basestations 15.50 15.51 15.50 15.67 17.50 15.50 16.39 15.51
Path 9 - 3 Cycles 4 - 8 Basestations 15.82 10.85 10.80 12.58 14.04 15.82 12.95 12.11
Path 10 - 3 Cycles 4 Basestations 6.39 7.27 6.65 7.61 6.25 6.39 8.32 5.69
Path 11 - 3 Cycles 4 Basestations 6.99 8.54 6.69 7.99 6.97 6.99 8.13 6.37
Path 12 - 3 Cycles 4 Basestations 7.59 9.45 8.44 8.56 9.13 7.59 8.64 7.03
Path 13 - 3 Cycles 8 - 4 Basestations 17.64 12.00 11.77 14.03 14.35 17.64 14.96 12.37
Path 14 - 3 Cycles 8 Basestations 7.77 9.22 8.61 9.68 8.15 7.77 10.46 7.52
Path 15 - 3 Cycles 8 Basestations 8.71 10.34 9.00 10.23 9.05 8.71 9.81 8.43
Path 16 - 3 Cycles 8 Basestations 9.05 11.03 9.70 10.63 10.20 9.05 10.01 8.85
Path 17 - Random 4 - 8 Basestations 22.22 21.08 21.01 21.62 21.41 22.22 19.37 20.99
Path 18 - Random 4 Basestations 9.56 10.57 9.81 10.44 10.28 9.56 11.38 9.12
Path 19 - Random 8 - 4 Basestations 25.90 23.61 23.16 24.72 23.81 25.90 22.46 23.18
Path 20 - Random 8 Basestations 15.64 17.67 17.30 16.94 16.26 15.64 18.36 15.66

Average 13.92 13.81 13.36 14.01 14.22 13.92 14.21 12.93
Std 5.95 5.07 5.35 5.18 5.2 5.95 4.54 5.34

ditionally, robots operating in complex and dynamic domains will be required to make multiple decisions

across a period of time. A forgetting algorithm’s average performance along a path may frequently be more

important than the best performance available at any one specific point in time.

The average estimation error generated by a forgetting algorithm or No Forgetting along a path was

computed and is presented in Table VIII.1. Values in red represent average estimation error values worse

than those generated by No Forgetting, for instance, Queue Static’s average estimation error of 11.10 on path

2. Teal text indicates estimation values equal to No Forgetting performance, for instance, SIMPLE’s average

estimation error on path 1. The results from the 100 path instances for each path were averaged together.

Analysis of the data at the path instance level would have been heavily influenced by the stochastic nature

of the algorithms and noise in the environment. Path instance level analysis was not performed. The results

were rounded to 2 decimal places. All data analysis and table coloring was performed on the rounded values

to minimize the effects of noise. The standard deviation of the estimation values was also computed and those

results are located in Table VIII.2.

Except for SIMPLE, which generated identical estimation error values as No Forgetting, every forgetting

algorithm outperformed No Forgetting on some paths, but generated greater estimation error on others (Ta-

ble VIII.1). The ActSimple algorithm resulted in an overall average estimation error of 12.93, the smallest

across all forgetting algorithms and No Forgetting (Table VIII.1), but also generated a standard deviation

of 9.12, the largest across all forgetting algorithms and No Forgetting (Table VIII.2). Applying ActSimple

to the twenty paths generated less estimation error than No Forgetting on 13 paths, the most of any forget-
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Table VIII.2: Along path standard deviation
Path No Forgetting Queue Static Queue Dynamic Random ACT-R SIMPLE SIMPLE Update ActSimple

Path 1 - 1 Cycle 4 - 8 Basestations 7.6 8.48 8.32 7.61 9.58 7.6 8.28 8.59
Path 2 - 1 Cycle 4 Basestations 8.42 8.32 8.37 8.22 7.4 8.42 7.58 8.41
Path 3 - 1 Cycle 4 Basestations 8.11 8.11 8.11 8.02 7.29 8.11 7.49 8.1
Path 4 - 1 Cycle 4 Basestations 8.09 8.09 8.09 8.03 7.06 8.09 7.4 8.09
Path 5 - 1 Cycle 8 - 4 Basestations 10.49 11.3 11.25 10.72 12.17 10.49 11.4 11.89
Path 6 - 1 Cycle 8 Basestations 13.15 12.93 13 12.84 11.86 13.15 11.83 13.12
Path 7 - 1 Cycle 8 Basestations 12.9 12.88 12.9 12.77 11.98 12.9 12.37 12.89
Path 8 - 1 Cycle 8 Basestations 13.02 13.02 13.02 12.91 12.04 13.02 12.5 13.02
Path 9 - 3 Cycles 4 - 8 Basestations 9.4 8.22 9.04 7.86 8.74 9.4 7.56 9.06
Path 10 - 3 Cycles 4 Basestations 5.89 5.56 5.79 5.44 6.55 5.89 5.46 6.2
Path 11 - 3 Cycles 4 Basestations 5.74 5.23 5.87 5.35 6.25 5.74 5.5 6.02
Path 12 - 3 Cycles 4 Basestations 5.73 5.28 5.67 5.37 5.74 5.73 5.51 5.98
Path 13 - 3 Cycles 8 - 4 Basestations 10.93 10.47 10.96 9.83 10.3 10.93 9.86 10.7
Path 14 - 3 Cycles 8 Basestations 9.04 8.54 8.75 8.38 9.45 9.04 8.45 9.15
Path 15 - 3 Cycles 8 Basestations 8.77 8.25 8.66 8.25 9.04 8.77 8.46 8.88
Path 16 - 3 Cycles 8 Basestations 8.77 8.15 8.56 8.23 8.67 8.77 8.49 8.85
Path 17 - Random 4 - 8 Basestations 6.91 7.39 7.63 6.63 7.08 6.91 7.22 6.89
Path 18 - Random 4 Basestations 6.21 5.65 6.04 5.67 5.98 6.21 5.54 6.48
Path 19 - Random 8 - 4 Basestations 8.76 9.73 9.84 8.75 8.94 8.76 9.88 9.25
Path 20 - Random 8 Basestations 10.97 9.36 9.64 9.92 10.5 10.97 8.81 10.89

Average 8.94 8.75 8.98 8.54 8.83 8.94 8.48 9.12
Std 2.36 2.42 2.32 2.38 2.14 2.36 2.25 2.31

ting algorithm (Table VIII.1). The ACT-R algorithm resulted in less estimation error than No Forgetting on

the second most number of paths (8), but surprisingly generated the worst overall average estimation error

(14.22). Unlike the ActSimple algorithm, when the ACT-R algorithm generated greater estimation error than

No Forgetting, the difference was large (µ = 1.44, σ = 0.77). On the paths where No Forgetting outper-

formed ActSimple, the average error difference was 0.02 (σ = 0.01). The Queue Dynamic and SIMPLE

Update algorithms outperformed No Forgetting on 7 and 6 paths, respectively.

The statistical significance of the relative estimation error performance results from Table VIII.1 was

evaluated with two Wilcoxon signed rank tests and are presented in Table VIII.3. These tests were performed

in a similar fashion to those presented in Chapter V.1.3. The first test, labeled Less than No Forgetting,

evaluated if the forgetting algorithms listed in the left-most column generated less average estimation error

than No Forgetting. The second test, labeled ActSimple less than, evaluated if ActSimple resulted in less

estimation error than No Forgetting and the other forgetting algorithms. Both tests were singled-sided and

used an α of 0.05. Results that were found to be significant are indicated in bold and individual pairings that

were not performed are marked with a —— symbol. The tests included the estimation error results from all

20 twenty paths.

The reduction in estimation error when compared to No Forgetting (column Less than No Forgetting) was

significant for only ActSimple (v = 28.0, p = 0.0014). Results from the other forgetting algorithms were

not significant. The second Wilcoxon signed rank test (column ActSimple less than) evaluated if ActSimple

generated less estimation error. Results from No Forgetting and all of the forgetting algorithms were signifi-
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Table VIII.3: Comparison of estimation error - Along Path Average

Less than ActSimple
No Forgetting less than

n v p n v p

No Forgetting —— —— —— 20 28.0 0.0014
Queue Static 20 128.0 0.8058 20 24.0 0.0007
Queue Dynamic 19 89.0 0.4144 20 43.0 0.0096
Random 20 134.0 0.8613 20 0.0 <0.0001
ACT-R 20 126.0 0.7848 20 1.0 <0.0001
SIMPLE 20 187.0 0.9995 20 28.0 0.0014
SIMPLE Update 20 115.0 0.6494 20 18.0 0.0002
ActSimple 20 28.0 0.0014 —— —— ——

cant. No Forgetting (v = 28.0, p = 0.0014), Queue Static (v = 24.0, p = 0.0007), Queue Dynamic (v = 43.0,

p = 0.0096), Random (v = 0.0, p < 0.0001), ACT-R (v = 1.0, p < 0.0001), SIMPLE (v = 28.0, p = 0.0014),

and SIMPLE Update (v = 18.0, p = 0.0002) each resulted in more estimation error than ActSimple. These

results suggest that ActSimple may be an effective and safe approach to improving system accuracy. No For-

getting and forgetting algorithms may not be able to realize a constant relative performance along the entirety

of a path, but on average, ActSimple was able to generate less estimation error.

The effect of dynamism on the results was explored by using a single-sided Wilcoxon rank sum test to

determine if No Forgetting and the forgetting algorithms generated less estimation error on static paths as

compared to dynamic paths. Results from this test are presented in Table VIII.4, and was conducted in an

identical fashion to the test presented in Chapter V.1.3. The test was performed with an α of 0.05, nA = 6,

and nB = 14.

Table VIII.4: The effects of dynamism on estimation error - Along Path Average

w p

No Forgetting 0.0 <0.0001
Queue Static 12.0 0.0059
Queue Dynamic 12.0 0.0059
Random 8.0 0.0017
ACT-R 8.0 0.0017
SIMPLE 0.0 <0.0001
SIMPLE Update 9.0 0.0023
ActSimple 8.0 0.0017

The difference in average estimation error between static and dynamic paths was significant for No For-

getting and all of the forgetting algorithms, where each generated less estimation error on the static paths.

These results suggest that dynamic conditions provide greater challenges to maintaining system accuracy
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than static conditions.

The presence of basestation configuration changes may alter the relative estimation error performance of

No Forgetting and the forgetting algorithms. Four single-sided Wilcoxon signed rank tests were performed

to evaluate the difference in estimation error that results from applying No Forgetting and the forgetting

algorithms to static paths and dynamic paths. Results from these testes are presented in Table VIII.5. The first

test (Less Than No Forgetting - Static) evaluates if the forgetting algorithms listed in the left-most column

generated less estimation error than No Forgetting when only results from the fourteen static paths were

considered. The second test (Less than No Forgetting - Dynamic) evaluates if the forgetting algorithms

generated less estimation error than No Forgetting when only the results from the six dynamic paths were

included. The third test (ActSimple less than - Static) evaluates if ActSimple results in less estimation error

than No Forgetting and the other forgetting algorithms when applied to only the static paths. The fourth test

(ActSimple less than - Dynamic) evaluates if ActSimple generated less estimation error than No Forgetting

and the other forgetting algorithms when applied to only the dynamic paths. The α was 0.05 for each test.

Table VIII.5: Estimation error performance on static and dynamic paths - Along Path Average

Less than No Forgetting ActSimple less than

Static Dynamic Static Dynamic

n v p n v p n v p n v p

No Forgetting —— —— —— —— —— —— 14 28.0 0.0676 6 0.0 0.0156
Queue Static 14 105.0 1.0000 6 0.0 0.0156 14 6.0 0.0009 6 6.0 0.2188
Queue Dynamic 13 81.0 0.9960 6 0.0 0.0156 14 10.0 0.0026 6 9.0 0.4219
Random 14 105.0 1.0000 6 0.0 0.0156 14 0.0 0.0001 6 0.0 0.0156
ACT-R 14 102.0 0.9998 6 0.0 0.0156 14 0.0 0.0001 6 1.0 0.0312
SIMPLE 14 105.0 1.0000 6 12.0 0.6562 14 28.0 0.0676 6 0.0 0.0156
SIMPLE Update 14 105.0 1.0000 6 0.0 0.0156 14 0.0 0.0001 6 10.0 0.5000
ActSimple 14 28.0 0.0676 6 0.0 0.0156 —— —— —— —— —— ——

The Wilcoxon signed rank test in Table VIII.5 for the Less than No Forgetting - Static condition evaluated

if the forgetting algorithms generated less estimation error than No Forgetting on static paths. None of the

results were significant, even though ActSimple (µ = 10.5862, σ = 3.5194) was the only forgetting algorithm

to average less estimation error on the static paths than No Forgetting (µ = 10.7950, σ = 3.2860). The results

of the Wilcoxon signed rank test for the Less than No Forgetting - Dynamic condition showed a different trend.

The results from all of the forgetting algorithms, except SIMPLE, were significant. Queue Static (v = 0.0,

p = 0.0156), Queue Dynamic (v = 0.0, p = 0.0156), Random (v = 0.0, p = 0.0156), ACT-R (v = 0.0,

p = 0.0156), SIMPLE Update (v = 0.0, p = 0.0156), and ActSimple (v = 0.0, p = 0.0156) all generated less

estimation error than No Forgetting when processing on the six dynamic paths. These results suggest that
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Human-Inspired Forgetting based forgetting algorithms may be an effective approach to improving system

accuracy in dynamic domains, and ActSimple may provide acceptable performance on static paths.

The Wilcoxon signed rank test for the ActSimple less than - Static condition evaluated if ActSimple gen-

erated less estimation error than No Forgetting and the other forgetting algorithms when only applied to static

paths. Results from all of the forgetting algorithms, except SIMPLE were significant. Queue Static (v = 6.0,

p = 0.0009), Queue Dynamic (v = 10.0, p = 0.0026), Random (v = 0.0, p = 0.0001), ACT-R (v = 0.0,

p = 0.0001), and SIMPLE Update (v = 0.0, p = 0.0001) each generated more estimation error than ActSim-

ple on static paths. Results from No Forgetting and SIMPLE were not significant. The Wilcoxon signed rank

test for the ActSimple less than - Dynamic condition evaluated if ActSimple generated less estimation error

on the dynamic paths. Results were significant for No Forgetting (v = 0.0, p = 0.0156), Random (v = 0.0,

p = 0.0156), ACT-R (v = 1.0, p = 0.0312), and SIMPLE (v = 0.0, p = 0.0156). These results suggest that

ActSimple is able to perform well across a variety of conditions, resulting in very good average performance.

ActSimple may not be able to guarantee the best performance in every single tested condition, but the al-

gorithm may be equipped to improve system accuracy across the diverse set of conditions potentially facing

mobile robots.

The ActSimple algorithm generated the largest overall estimation standard deviation (Table VIII.2), al-

though by itself, this metric provides little information. The standard deviation of a forgetting method’s

estimation error values describes the variability of the estimation values along the path, but does not indicate

if this fluctuation is beneficial or detrimental. A forgetting method may consistently produce highly erroneous

estimates, while another algorithm may oscillate from acceptable to highly accurate estimates. A third metric,

signed squared deviation (SSD), was computed to analyze the effects of estimation variability. This metric is

computed using Equation VIII.1 and compares an algorithm’s performance against a reference trend. SSD is

similar to the mean squared error except that the sign of the difference is maintained. Maintaining the sign

allows the metric to compare the beneficial deviations from the reference to the negative deviations from the

reference. The results in Table VIII.6 were computed with the average performance of all tested forgetting

algorithms and No Forgetting acting as the reference. Values in red represent positive (detrimental) deviations

and numbers in teal represent values equal to the reference.

SSD =

Length

∑
i=1

[
Sign(xi− ri)(xi− ri)

2
]

Length
(VIII.1)

The ActSimple algorithm was one of only three forgetting algorithms that generated a negative SSD value

(-2.14) and was the only algorithm that produced negative SSD values for all paths (Table VIII.6). The Queue
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Table VIII.6: Along path average signed squared deviation
Path No Forgetting Queue Static Queue Dynamic Random ACT-R SIMPLE SIMPLE Update ActSimple

Path 1 - 1 Cycle 4 - 8 Basestations 4.48 4.05 2.47 1.15 -0.54 4.48 -6.52 -4.54
Path 2 - 1 Cycle 4 Basestations -0.83 -0.72 -0.79 -0.39 9.97 -0.83 5.58 -0.82
Path 3 - 1 Cycle 4 Basestations -0.45 -0.45 -0.45 -0.31 7.33 -0.45 2.55 -0.45
Path 4 - 1 Cycle 4 Basestations -0.51 -0.51 -0.51 -0.35 9.21 -0.51 2.67 -0.50
Path 5 - 1 Cycle 8 - 4 Basestations 6.15 0.83 0.79 1.52 -6.97 6.15 -2.19 -4.91
Path 6 - 1 Cycle 8 Basestations -1.59 -0.85 -1.08 -0.48 12.08 -1.59 8.55 -1.50
Path 7 - 1 Cycle 8 Basestations -0.56 -0.54 -0.55 -0.22 9.88 -0.56 1.12 -0.53
Path 8 - 1 Cycle 8 Basestations -0.53 -0.53 -0.53 -0.24 9.80 -0.53 1.02 -0.52
Path 9 - 3 Cycles 4 - 8 Basestations 21.72 -14.51 -15.30 -0.97 4.47 21.72 -0.02 -3.94
Path 10 - 3 Cycles 4 Basestations -0.39 0.34 -0.27 1.13 1.21 -0.39 4.66 -1.80
Path 11 - 3 Cycles 4 Basestations -0.25 3.14 -0.60 0.84 1.19 -0.25 1.83 -1.39
Path 12 - 3 Cycles 4 Basestations -1.00 3.46 1.05 0.17 4.24 -1.00 1.19 -3.00
Path 13 - 3 Cycles 8 - 4 Basestations 33.99 -14.81 -16.84 -0.52 1.23 33.99 3.44 -8.76
Path 14 - 3 Cycles 8 Basestations -1.17 0.61 -0.27 1.95 1.97 -1.17 6.93 -1.80
Path 15 - 3 Cycles 8 Basestations -0.50 2.58 -0.24 1.56 2.25 -0.50 0.86 -1.10
Path 16 - 3 Cycles 8 Basestations -0.92 3.26 -0.11 1.24 3.25 -0.92 0.46 -1.55
Path 17 - Random 4 - 8 Basestations 4.35 -1.07 -2.31 0.74 0.69 4.35 -13.65 -0.18
Path 18 - Random 4 Basestations -0.55 1.39 -0.23 0.33 0.14 -0.55 5.62 -1.66
Path 19 - Random 8 - 4 Basestations 10.27 -2.07 -4.07 1.33 -0.29 10.27 -8.59 -1.76
Path 20 - Random 8 Basestations -2.65 3.38 1.90 0.15 -0.66 -2.65 6.11 -2.16

Average 3.45 -0.65 -1.90 0.43 3.52 3.45 1.08 -2.14
Std 9.14 5.12 5.04 0.86 4.82 9.14 5.43 2.06
Min -2.65 -14.81 -16.84 -0.97 -6.97 -2.65 -13.65 -8.76
Max 33.99 4.05 2.47 1.95 12.08 33.99 8.55 -0.18

Dynamic algorithm generated the second largest number of negative SSD values with 16 and also produced

the second most negative average SSD value (-1.90). SIMPLE and No Forgetting had the next highest number

of individual path SSD values with 14; however, two of the positive values for each algorithm were at or above

21.72. These large values reflect the relatively poor performance of No Forgetting and the SIMPLE algorithm

on the second half of the associated paths. The SIMPLE Update algorithm generated the second best overall

estimation error at the end of the twenty paths (Chapter V), but only produced five negative individual path

SSD values. The remaining fifteen paths all resulted in positive SSD values. The SIMPLE Update algorithm’s

overall average SSD value was 1.08, the fifth best overall average.

While the ActSimple algorithm had only the fourth best minimum SSD value (-8.76), ActSimple had

the best and only negative maximum SSD value (-0.18). The minimum SSD represents an algorithm’s best

performance, while the maximum SSD represents an algorithm’s worst performance. These results suggest

that the ActSimple algorithm will not only be beneficial in some situations, but the algorithm may involve the

least amount of risk concerning worst case estimation error.

ACT-R generated the largest average SSD value despite producing the third best average estimation error

when applied to paths 1 - 20 and only end of path estimation error is considered (Chapter V). While SIMPLE

and No Forgetting tied for the largest max SSD value (33.99), the common spurts of poor performance

generated by ACT-R helped the method achieve the worst average SSD. Queue Dynamic produced the second

best average SSD value despite the algorithm’s fourth best end of path estimation performance (on paths 1
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- 20). SIMPLE Update, which had the second best end of path average estimation error (on paths 1 - 20),

produced an average SSD of 1.08.

The statistical significance of the SSD metric, when average performance was used as a reference, was

tested with two single-sided Wilcoxon signed rank tests and the results are presented in Table VIII.7. The

Less than No Forgetting test evaluated if the forgetting algorithms listed in the left-most column generated

more negative SSD values than No Forgetting. The ActSimple less than test evaluated if ActSimple generated

more negative SSD values than No Forgetting and the other forgetting algorithms. These tests used an α

value of 0.05 and included all twenty tested paths.

Table VIII.7: Comparison of estimation error - Along Path SSD Average

Less than ActSimple
No Forgetting less than

n v p n v p

No Forgetting —— —— —— 20 28.0 0.0014
Queue Static 20 116.0 0.6629 20 60.0 0.0487
Queue Dynamic 19 84.0 0.3397 20 76.0 0.1471
Random 20 105.0 0.5073 20 0.0 <0.0001
ACT-R 20 123.0 0.7510 20 5.0 <0.0001
SIMPLE 20 159.0 0.9800 20 28.0 0.0014
SIMPLE Update 20 107.0 0.5364 20 38.0 0.0053
ActSimple 20 28.0 0.0014 —— —— ——

The reduction in SSD values as compared to No Forgetting (column Less Than No Forgetting) was only

significant for ActSimple (v = 28.0, p = 0.0014). The Wilcoxon signed rank test for the ActSimple less

than condition evaluated if ActSimple generated more negative SSD values than No Forgetting and the other

forgetting algorithms. Results from No Forgetting and all of the forgetting algorithms, except Queue Dy-

namic, were significant. No Forgetting (v = 28.0, p = 0.0014), Queue Static (v = 60.0, p = 0.0487, Random

(v = 0.0, p < 0.0001), ACT-R (v = 5.0, p < 0.0001), SIMPLE (v = 28.0, p = 0.0014), and SIMPLE Up-

date (v = 38.0, p = 0.0053) each resulted in SSD values greater than ActSimple. These results suggest that,

in addition to averaging less estimation error than No Forgetting and the other forgetting algorithms along

the tested paths (Table VIII.3), ActSimple may be able to minimize periods of relatively poor performance.

While the results from comparing ActSimple and Queue Dynamic were not significant, ActSimple generated

a maximum SSD value of -0.18 and Queue Dynamic produced a considerable larger maximum SSD value of

2.47 (Table VIII.3). Mobile robots operating in challenging domains need to achieve high levels of perfor-

mance while also preventing periods of poor performance that may cause a task to fail. The results suggest

ActSimple may be the safest tested Human-Inspired Forgetting algorithm.

Testing of the relative estimation error performance for No Forgetting and each forgetting algorithm on
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Table VIII.8: Along path No Forgetting signed squared deviation
Path No Forgetting Queue Static Queue Dynamic Random ACT-R SIMPLE SIMPLE Update ActSimple

Path 1 - 1 Cycle 4 - 8 Basestations 0.00 -2.51 -3.58 -1.25 -12.67 0.00 -17.84 -16.13
Path 2 - 1 Cycle 4 Basestations 0.00 0.10 0.04 0.19 16.25 0.00 10.12 0.00
Path 3 - 1 Cycle 4 Basestations 0.00 0.00 0.00 0.05 11.25 0.00 4.80 0.00
Path 4 - 1 Cycle 4 Basestations 0.00 0.00 0.00 0.03 13.82 0.00 5.08 0.00
Path 5 - 1 Cycle 8 - 4 Basestations 0.00 -8.03 -7.61 -1.87 -25.35 0.00 -14.84 -20.86
Path 6 - 1 Cycle 8 Basestations 0.00 0.45 0.25 0.49 22.12 0.00 17.33 0.01
Path 7 - 1 Cycle 8 Basestations 0.00 0.02 0.00 0.15 15.09 0.00 3.21 0.00
Path 8 - 1 Cycle 8 Basestations 0.00 0.00 0.00 0.10 14.87 0.00 2.97 0.00
Path 9 - 3 Cycles 4 - 8 Basestations 0.00 -68.41 -71.81 -29.67 -15.08 0.00 -30.56 -39.67
Path 10 - 3 Cycles 4 Basestations 0.00 1.12 0.12 2.04 4.04 0.00 7.31 -0.93
Path 11 - 3 Cycles 4 Basestations 0.00 4.32 -0.16 1.53 3.05 0.00 3.20 -0.73
Path 12 - 3 Cycles 4 Basestations 0.00 7.33 4.13 1.53 8.76 0.00 3.12 -0.64
Path 13 - 3 Cycles 8 - 4 Basestations 0.00 -90.08 -95.54 -39.72 -39.72 0.00 -38.57 -70.99
Path 14 - 3 Cycles 8 Basestations 0.00 2.99 1.14 4.95 6.97 0.00 13.39 -0.18
Path 15 - 3 Cycles 8 Basestations 0.00 4.81 0.17 3.41 4.92 0.00 2.44 -0.18
Path 16 - 3 Cycles 8 Basestations 0.00 7.18 1.46 3.97 6.02 0.00 2.03 -0.11
Path 17 - Random 4 - 8 Basestations 0.00 -9.60 -12.70 -1.60 -3.32 0.00 -30.97 -4.85
Path 18 - Random 4 Basestations 0.00 3.08 0.21 1.45 1.08 0.00 9.29 -0.31
Path 19 - Random 8 - 4 Basestations 0.00 -20.08 -26.38 -4.32 -13.14 0.00 -37.06 -19.94
Path 20 - Random 8 Basestations 0.00 11.70 8.65 3.47 0.82 0.00 16.39 0.03

Average 0.00 -7.78 -10.08 -2.75 0.99 0.00 -3.46 -8.77
Std 0 25.6 26.43 11.26 15.4 0 17.98 18.05
Min 0.00 -90.08 -95.54 -39.72 -39.72 0.00 -38.57 -70.99
Max 0.00 11.70 8.65 4.95 22.12 0.00 17.33 0.03

static paths versus dynamic paths was not conducted. Unlike the average estimation error metric presented

in Table VIII.1, the SSD metric is dependent on the relative performance of No Forgetting and the other

forgetting algorithms.

Wilcoxon signed rank tests evaluating the relative estimation error performance between No Forgetting

and the forgetting algorithms when applied to static paths and dynamic paths were conducted. The majority

of the results are similar to the results involving the average estimation error metric and are not presented.

The only change resulted from testing if ActSimple generated less estimation error than ACT-R on dynamic

paths. Unlike in Table VIII.5, the results were not significant.

SSD values were also computed using No Forgetting as a reference and the results are presented in

Table VIII.8. The SSD values for No Forgetting are all 0.00, since it was used as the reference. The SIMPLE

algorithm’s performance was always within the effects of noise and the algorithm’s SSD values of 0.00 reflect

that trend. The ActSimple algorithm did not generate a negative SSD value under all conditions, unlike in

Table VIII.6. Along five paths, the ActSimple algorithm generated SSD values of 0.00 and for two paths,

ActSimple generated positive SSD values. However, these two SSD values were very small (0.01 and 0.03).

The other forgetting algorithms produced fewer individual path SSD values that were negative.

Queue Dynamic produced a better average SSD value (-10.08 compared to ActSimple’s -8.77), but gen-

erated nine positive individual path SSD values. Queue Dynamic and Queue Static both produced better

minimum SSD values (-95.54 and -90.08 respectively) than ActSimple (-70.99), but also had much large
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maximum SSD values (8.65 and 11.70 compared to 0.03). ActSimple only had the third best minimum SSD,

but its maximum SSD was substantially better than the values for all forgetting algorithms except SIMPLE.

No Forgetting generated very poor relative estimation error when the robot traversed the environment for

three cycles and a basestation change occurred, as shown in Figures VIII.19 and VIII.20 (Section VIII.1). Ta-

ble VIII.8 supports this finding with the SSD values for all forgetting algorithms (except SIMPLE) generating

substantial negative SSD values for these two paths.

The ActSimple algorithm generated the least amount of average estimation error when performance was

considered along each path (Table VIII.1). Table VIII.6 shows ActSimple generating the best SSD value

when the average performance of all of the forgetting algorithms and No Forgetting is used as the reference.

While ActSimple did not generate the best average SSD value when No Forgetting was used as a reference,

Table VIII.8 shows the use of ActSimple resulting in the least positive max SSD value (excluding SIMPLE).

These results suggest that at least for the paths and environment tested, ActSimple may not always generate

the best possible performance, but on average, ActSimple will produce the best average error estimates while

minimizing the risks associated with filtering data. Many robotic designs may be affected to a greater extent

by average and worst case performance than best case performance. ActSimple has the potential to improve

average robotic performance without greatly degrading worst case performance.

The statistical significance of the SSD values generated when No Forgetting was used as a reference was

evaluated with two single-sided Wilcoxon signed rank tests and the results are presented in Table VIII.9. The

tests were conducted in an identical fashion to the results presented in Table VIII.7. All twenty paths were

used in the tests and the α was set to 0.05.

Table VIII.9: Comparison of estimation error - Along Path SSD No Forgetting

Less than ActSimple
No Forgetting less than

n v p n v p

No Forgetting —— —— —— 20 28.0 0.0014
Queue Static 19 100.0 0.5856 20 62.0 0.0570
Queue Dynamic 17 65.0 0.3056 20 78.0 0.1650
Random 20 124.0 0.7625 20 0.0 <0.0001
ACT-R 20 129.0 0.8159 20 6.0 <0.0001
SIMPLE —— —— —— 20 28.0 0.0014
SIMPLE Update 20 107.0 0.5364 20 37.0 0.0047
ActSimple 20 28.0 0.0014 —— —— ——

The Less than No Forgetting test determined if the forgetting algorithms generated SSD values more

negative than No Forgetting. This SSD metric was computed by using the estimation error performance of

No Forgetting as a reference, and as a result the SSD values for No Forgetting are 0.0 for each path. This
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analysis effectively also tested if the forgetting algorithms generated SSD values less than 0.0. The results

for ActSimple were significant (v = 28.0, p = 0.0014), but the results for the other forgetting algorithms

were not significant. The ActSimple less than test determined if ActSimple generated more negative SSD

values than No Forgetting and the other forgetting algorithms. Results from this analysis were significant

for No Forgetting (v = 28.0, p = 0.0014), Random (v = 0.0, p < 0.0001), ACT-R (v = 6.0, p < 0.0001),

SIMPLE (v = 28.0, p = 0.0014), and SIMPLE Update (v = 37.0, p = 0.0047). Testing with Queue Static

and Queue Dynamic did not generate significant results. These tests suggest that ActSimple was the only

forgetting algorithm able to consistently generate negative SSD values and average less estimation error than

No Forgetting.

Wilcoxon signed rank tests evaluating the relative estimation error performance between No Forgetting

and the forgetting algorithms when applied to static paths and dynamic paths were conducted. The results are

similar to the results involving the SSD metric where average performance was used as a reference and are

not presented.

VIII.3 Summary

The performance of each forgetting algorithm and No Forgetting varies across paths as well as along each

path. This chapter explored the along the path performance of No Forgetting and the seven forgetting algo-

rithms by applying each forgetting algorithm and No Forgetting to the same twenty paths (paths 1 - 20) used

during optimization (Chapter V) and recording performance at each time step. Results from this experiment

demonstrate the benefits and effectiveness of using the ActSimple algorithm to improve system accuracy

throughout the entirety of a path.

The estimation error generated by No Forgetting and the forgetting algorithms generally decreased as the

robot traveled through the environment, but the reduction in estimation error did not occur in a monotonic

fashion. Even on static paths, short bursts of increased estimation error were observed with both No Forget-

ting and the forgetting algorithms. These estimation error variations were nearly identical for approximately

the first 600 time steps on each path. The inability to maintain monotonically decreasing error did not result

from limitations in the forgetting algorithms, but instead the estimation error volatility was a direct result of

the interaction of the environment and task.

After approximately the first 600 time steps, the forgetting algorithms were provided with enough read-

ings for estimation error performance to begin to diverge. ACT-R frequently generated a relatively large

increase in estimation error that lasted for several hundred time steps, while SIMPLE Update frequently

resulted in oscillating amounts of estimation error. ActSimple did not exhibit these drastic increases in esti-

mation error.
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Figure VIII.27: Average estimation error on static paths and dynamic paths before the basestation configura-
tion change

When basestation configuration changes occurred, the estimation error increased sharply for No Forget-

ting and each forgetting algorithm. The collection of additional readings again reduced the estimation error,

but the relative performance of No Forgetting and the forgetting algorithms was more variable than at the

beginning of each path. The ability for No Forgetting and the forgetting algorithms to reduce estimation error

for both static paths and after a basestation configuration change were plotted in Figures VIII.27 and VIII.28.

Figure VIII.27 shows the estimation error for No Forgetting and each forgetting algorithm averaged across

the paths. Each path was included in the results, except that the portion of the dynamic paths that occurred

after a basestation configuration change were not included. Figure VIII.28 shows the average estimation

error generated by No Forgetting and the forgetting algorithms from the dynamic paths after the basesta-

tion configuration changes occurred. In this graph, time represents the amount of time since the basestation

configuration change occurred.

Figures VIII.27 and VIII.28 both show the collection of additional WiFi signal strength readings generally

resulting in the reduction of estimation error. However, the rate of estimation error reduction is not identical.

After a basestation configuration change, both No Forgetting and the forgetting algorithms reduce estimation

error at a slower rate and the relative performance between No Forgetting and the forgetting algorithms is

more pronounced. No Forgetting and SIMPLE generally reduced estimation error at the slowest rate.
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Figure VIII.28: Average estimation error on dynamic paths after a basestation configuration change

In addition to accuracy, algorithmic complexity can be an important factor when selecting and utilizing

an algorithm. The average estimation error values from Table VIII.1 were contrasted with each algorithm’s

number of parameters and the results are presented in Figure VIII.29.

ActSimple possesses the largest number of parameters, but generated the smallest amount of estimation

error for all twenty paths, the fourteen static paths, and the six dynamic paths. No Forgetting, which uses

no parameters, produced the second smallest amount of estimation error on static paths, but resulted in the

fourth best estimation error for all paths and the second worst estimation error on the dynamic paths. ACT-R

and SIMPLE Update averaged greater amounts of estimation error than Queue Static and Queue Dynamic,

despite possessing more parameters. While Queue Dynamic requires fewer parameters, the consistency of

ActSimple’s results suggest that the ActSimple algorithm may be an effective approach to improving system

accuracy throughout tasks performed in both static and dynamic environments. The consistent performance

of ActSimple may result from its unique combination of trace-based decay and similarity-based interference.
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CHAPTER IX

Pavlik and Anderson Modification

ActSimple possesses a large number of components, inspired by a diverse collection of cognitive architec-

tures and models of human memory. A simplified version of the ActSimple algorithm was tested in the

experiments presented in Chapters V - VIII. This simplification helped demonstrate many of the properties

of ActSimple’s two primary components, trace-based decay and similarity-based interference. This chapter

presents an experiment that incorporates the Pavlik and Anderson modification (Pavlik and Anderson, 2003)

into ActSimple’s trace-based decay component.

IX.1 Optimizing the Pavlik and Anderson Modification

Pavlik and Anderson (2003) modified ACT-R’s base level activation equation (Equation II.2 (repeated below))

to incorporate an item’s activation level at each time of retrieval (Sims and Gray, 2004). The modified version

of ACT-R’s base level activation equation is shown in Equation IX.1. The Bi, j term represents the activation

present at the jth perception or recall of the ith item. This modification was applied to the ACT-R cognitive

architecture to better realize the spacing effect of short-term memory (see Chapter II.4). The Pavlik and

Anderson modification was incorporated into ActSimple using Equation IX.1, except that the Bi and Bi, j

terms were replaced with the bi and bi. j terms. This implementation realized the full trace-based decay

component within ActSimple, with the exception of the mental exertion component. The performance of the

Pavlik and Anderson modification was evaluated when applied to both ActSimple and ACT-R. The Pavlik

and Anderson modification versions of ACT-R (ACT-R PA) and ActSimple (ActSimple PA) were compared

against the previously evaluated versions of the algorithms. No other changes were made.

Bi = β + ln(
n

∑
k=1

t−d
k ) (II.2)

di, j = c1eBi, j + c2

Bi = β + ln(
Ji

∑r
−di, j
i, j )

(IX.1)

The addition of the Pavlik and Anderson modification required both forgetting algorithms to be fully

re-optimized before performance comparisons were completed. Unlike the two stage optimization process

performed in Chapter V, the ActSimple PA and ACT-R PA algorithms were optimized with the Coliny evolu-
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1. Generate and evaluate an initial population.

2. Perform parent selection.

3. Apply crossover and mutation effects.

4. Evaluate the new individuals.

5. Select a new population.

6. Repeat.

Figure IX.1: Evolutionary algorithm process

tionary algorithm provided by the DAKOTA toolkit (DAKOTA, 2010). This algorithm required less compu-

tation and preliminary testing showed an equal effectiveness to the optimization approach taken in Chapter V.

Figure IX.1 presents the steps taken by the evolutionary algorithm. An initial parameterization population

is created and evaluated. Parent parameterizations are selected to form a set of new parameterizations. The

crossover and mutation effects are applied to the selected individuals and the resultant parameterizations are

evaluated. A new parameterization population is selected from the combination of both groups of parameter-

izations. The algorithm continues generating new populations until the results converge.

The optimization algorithm was configured to have a convergence tolerance of 0.0001 and to use a popu-

lation size of 100. Initial seeding was performed randomly with the criteria that all instances were guaranteed

to be unique. A two point crossover approach was taken with a crossover rate of 50%. The mutation rate

was 100%, with mutations consisting of deviations generated from a zero mean normal distribution. A merit-

based evaluation was employed and the probability of a parameterization being selected was proportional

to its relative WiFi estimation error. During the selection phase, the best ten parameterizations from the

combination of the two current groups were selected along with 90 randomly chosen parameterizations.

Environmental conditions were the same during the optimization described in Chapter V, except new path

instances were used. Evaluations performed by the evolutionary algorithm employed ten path instances for

each of the test paths. During the optimization process, DAKOTA stores all evaluated parameterizations and

their respective estimation error values. Once the evolutionary algorithm completed, all parameterizations

generating estimation error values under 6.5 were evaluated with 100 instances per path. Parameterizations

for each algorithm were ordered based on the results of this second step. Evaluating the parameterizations

with sets of 100 path instances permitted averaging out some of the effects of noise inherent in the environ-

ment and the algorithms.

The best parameterization for each Pavlik and Anderson algorithm is presented in Table IX.1, along with

the previously discovered optimal parameterizations for both ACT-R and ActSimple. ACT-R and ActSimple
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Table IX.1: Pavlik and Anderson parameterizations
Algorithm β d c1 c2 XYAttention Strength Axis c3 c8 ς τ

ACT-R 6.1290 0.8257 — — — — — — 104.6835 0.8065
ACT-R PA -2.0181 — 8.5922 9.2281 — — — — 80.9834 -68.8124
ActSimple 5.0000 0.9229 — — 0.5000 0.0000 2.5000 0.1517 149.2500 0.0000
ActSimple PA -2.1957 — 22.4574 18.7865 0.09093 0.8181 89.2226 0.6121 126.0423 -84.7130

parameter values vary significantly from the parameterizations calculated for the Pavlik and Anderson ver-

sions. In the original versions, β was 6.1290 and 5.0000 for ACT-R and ActSimple, respectively. β values

for ACT-R PA and ActSimple PA were both approximately -2 (-2.0181 and -2.1957). The threshold values

experienced a similar shift, changing from close to 0 (0.8065 and 0.0000) to large negative values (-68.8124

and -84.7130). Contrasted to the d values for ACT-R and ActSimple (0.8257 and 0.9229, respectively), which

set the rate of forgetting present in the algorithm, the values c1 and c2 are large in magnitude (8.5922 and

9.2281 for ACT-R PA and 22.4574 and 18.7865 for ActSimple PA). In Equation IX.1, when c1 = 0, di. j is

equivalent to c2. As a result, setting c1 = 0 and c2 = d provides identical behavior to ACT-R and ActSimple.

The ActSimple specific parameters underwent similar changes. The weight provided to the strength axis in

ActSimple transitioned from 0.0000 to 0.8181, while c3 changed from 2.5000 to 89.2226. The c8 parameter

changed from 0.1517 to 0.6121, increasing the significance of the trace-based decay component.

IX.2 Effects of the Pavlik and Anderson Modification

The Pavlik and Anderson modification alters the decay rate of items that have been reperceived or recalled.

Figure IX.2 provides the changes to the rate of decay when the Pavlik and Anderson modification is applied

to ACT-R. The figure was created with the recently determined optimal parameterization for ACT-R PA and

all values were computed on integral values of time. Figure IX.2a presents the decay rates of ACT-R, while

Figure IX.2b shows ACT-R PA’s rate of forgetting. The ACT-R 2 and ACT-R PA 2 lines show a memory

item that is initially perceived at time 0 and then reperceived at time 700. ACT-R 3 and ACT-R PA 3 display

the same memory item except that it is reperceived twice, once at time 700 and again at time 900. Until

the second reperception, ACT-R 2 is identical to ACT-R 3 and ACT-R PA 2 is identical to ACT-R PA 3. The

horizontal lines represent threshold values, τ , for the forgetting algorithms. When the activation value crosses

the threshold, the memory item will be recallable with a probability of 50%.

At time 1, the activation values for both algorithms start at the respective β values, but then the activation

starts to decay. ACT-R PA 2 and ACT-R PA 3 cross their threshold at approximately time 627, while ACT-

R 2 and ACT-R 3 cross slightly later, at roughly time 630. At time 700, the item is reperceived and the

activation values sharply increased. The activation values for ACT-R 2 and ACT-R 3 at time 701 became
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Figure IX.2: Comparison of the activation values generated by ACT-R and ACT-R PA
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6.133, 0.004 larger than their β value, while ACT-R PA 2 and ACT-R PA 3’s activations only return to

approximately the β value. As time continued to progress, the activation values again began to decay. At

time 900, the second reperception occurred and the activation values for ACT-R 3 and ACT-R PA 3 again

increased sharply. The activation value for ACT-R 3 at time 901 became 6.145, while ACT-R PA 3 returned

to -2.018. At approximately time 1882, ACT-R 2 crossed its threshold, while the ACT-R PA 2 activation did

not cross until approximately time 2092. Unlike the initial crossings, ACT-R 2 crossed before ACT-R PA 2.

At approximately time 2332, ACT-R PA 3 crossed its threshold value, while at time 2500, ACT-R 3 had an

activation value of 0.992.

Activation values affect the probability that an item from memory will be made available to an existing

robotic algorithm. Figure IX.3 presents the recall probabilities that are produced from the activation values in

Figure IX.2. Figure IX.3a presents the recallable probabilities for ACT-R 2 and ACT-R 3, while Figure IX.3b

shows the recallable probabilities for ACT-R PA 2 and ACT-R PA 3. The recall probabilities follow their

respective activation values, maintaining a value of 50% when the activation crossed the respective threshold

values. Until approximately time 1581, ACT-R 2 generated the same recallable probabilities as ACT-R 3,

while ACT-R PA 2 produced identical recallable probabilities to ACT-R PA 3. Around time 1882, ACT-R 2

resulted in a recallability probability of 50%, while ACT-R 3 maintained a recallable probability of nearly

100% until at least time 2500. ACT-R PA 2 generated a recallable probability of 50% at approximeatly time

2092, while ACT-R PA 3 resulted in a recallable probability of 50% around time 2332. Figure IX.3c contrasts

the recallable probability values of ACT-R 2 and ACT-R PA 2. The trends for these two conditions are the

same, except ACT-R PA 2 generates quicker transitions from large probabilities to low probabilities.

The data trends shown in Figures IX.2 and IX.3 confirm that the Pavlik and Anderson modification en-

ables the ACT-R forgetting method to exhibit the spacing effect. This result can be seen when the memory

item is reperceived the second time and the ACT-R PA 3 line decays appreciably faster than the ACT-R 3

line. Even in a dynamic environment, mobile robots may rapidly reperceive the same item for a short period

of time. If the object represented by the memory item changes or disappears altogether, the increased rate of

decay offered by the Pavlik and Anderson modification may enable robots to filter the memory item.

IX.3 Original Twenty Paths

The ACT-R, ACT-R PA, ActSimple, and ActSimple PA algorithms were combined with Nearest Neighbor

Interpolation with Perception Count Weighting to process 100 instances of paths 1 - 20 (Chapter IV.4). The

resultant average recallable reading counts and average estimation error values for each of the four algorithms

are presented in Table IX.2. ACT-R PA averaged 661.282 recallable items, 13.345 fewer than ACT-R’s

674.627. Despite this reduction in recallable items, ACT-R PA achieved an average estimation error of 5.942,
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(a) Comparison of the recall probabilities generated by ACT-R 2 and ACT-R 3
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(b) Comparison of the recall probabilities generated by ACT-R PA 2 and ACT-R
PA 3
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Figure IX.3: Comparison of the recall probabilities generated by ACT-R and ACT-R PA
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0.326 better than ACT-R’s 6.268.

ActSimple and ActSimple PA followed a different trend. The Pavlik and Anderson version of the algo-

rithm averaged 25.123 more recallable items and generated an average estimation value 0.472 larger than

ActSimple. Interestingly, the performance of ACT-R PA and ActSimple PA was very similar, producing a

recallable item difference of only 0.355 and an estimation error difference of 0.037. While ActSimple PA

averaged more recallable items, the algorithm managed to maintain a slightly better estimation error than

ACT-R PA.

Table IX.2: Pavlik and Anderson metrics

ACT-R ACT-R PA ActSimple ActSimple PA

Recall Average 674.627 661.282 636.514 661.637
Recall Std 83.32 98.377 53.001 101.757
Error Average 6.268 5.942 5.433 5.905
Error Std 3.368 2.758 2.588 2.733

The statistical significance of the relative average number of recallable readings and average estimation

error performance results from Table IX.2 was tested with four single-sided Wilcoxon signed rank tests, with

α = 0.05. Results from these tests are presented in Table IX.3. The first test evaluated if ACT-R PA resulted

in fewer average recallable readings than ACT-R. Results from this test were not significant. ActSimple was

tested to determine if the algorithm averaged fewer recallable readings than ActSimple PA. This test was also

not significant. Despite ACT-R PA averaging 13.345 fewer recallable readings than ACT-R and ActSimple

averaging 25.123 fewer readings than ActSimple PA, the data does not indicate that the Pavlik and Anderson

modification affects the average number of recallable readings.

Table IX.3: Effects of the Pavlik and Anderson modification

Test n v p

Average number of recallable readings
ACT-R PA less than ACT-R 20 91.0 0.3108
ActSimple less than ActSimple PA 20 81.0 0.1942

Average estimation error
ACT-R less than ACT-R PA 20 79.0 0.1744
ActSimple less than ActSimple PA 20 91.0 0.3108

The effects of the Pavlik and Anderson modification on estimation error were also tested. ACT-R was

tested to determine if the algorithm averaged less estimation error than ACT-R PA. The results were not

significant. ActSimple was evaluated to determine if the algorithm resulted in less estimation error than Act-

Simple PA. Like ACT-R, the results were not significant. While the estimation error values from Table IX.2
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maintained a 0.326 average estimation error difference between the ACT-R algorithms and a 0.472 average

estimation error difference between the ActSimple algorithms, the results were not able to reveal an effect on

estimation error by the Pavlik and Anderson modification.

Dynamism appears to have influenced the relative performance of the Pavlik and Anderson forgetting al-

gorithms. Table IX.4 shows the performance differences in the ACT-R methods and the ActSimple Methods.

The values in the table represent the change from the original method to the Pavlik and Anderson method,

e.g., a negative error value indicates that the Pavlik and Anderson algorithm generated less error than the

original algorithm.

Table IX.4: Effects of the Pavlik and Anderson modification along static and dynamic paths

ACT-R, ACT-R PA Difference ActSimple, ActSimple PA Difference

Recall Error Recall Error

Dynamic Static Dynamic Static Dynamic Static Dynamic Static

Average -34.25 -4.387 -2.099 0.434 64.903 8.076 -2.112 1.580
Std 53.671 21.708 3.207 1.196 102.337 100.762 2.451 2.306
Min -114.55 -67.67 -6.477 -0.012 -33.75 -109.57 -6.185 -0.462
Max 6.57 12.2 0.072 4.556 202.4 173.34 -0.477 6.171

ACT-R PA averaged fewer recallable items for both the dynamic and static paths (-34.25 and -4.387

respectively), while the average estimation error only decreased in the presence of dynamism (-2.099). ACT-

R PA produced larger estimation error (0.434) when the robot traveled static paths. ActSimple PA realized a

similar error trend, decreasing error by 2.112 for dynamic paths, but increasing error by 1.580 for static paths.

ActSimple PA averaged a greater number of recallable items under both conditions (64.903 for dynamic paths

and 8.076 for static paths). Both ACT-R PA and ActSimple PA decreased average estimation error during

dynamic paths by approximately the same amount (-2.099 and -2.112, respectively), but ActSimple PA’s

increase in error for static paths was 3.641 times as large as the change for ACT-R PA. The minimum and

maximum error values show a similar trend between the ACT-R algorithms and the ActSimple methods. The

PA methods reduced estimation error by at least 6.185 on one dynamic path, but generated at least 4.556

greater error on at least one static path. These extreme error deviations all occurred with paths containing a

randomly generated trajectory.

The statistical significance of the average number of recallable readings and estimation error values from

Table IX.4 was evaluated with eight single-sided Wilcoxon signed rank tests that are presented in Table IX.5.

Significant results are indicated in bold and α was set to 0.05. ACT-R was evaluated to determine if the

algorithm averaged fewer recallable readings than ACT-R PA on static paths, while ACT-R PA was tested to

determine if the algorithm generated fewer recallable readings than ACT-R on dynamic paths. Results from
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both tests were not significant. ActSimple was tested to determine if the algorithm produced fewer recallable

readings than ActSimple PA for static paths and for dynamic paths. Similar to the ACT-R tests, neither was

significant. The data from applying the four algorithms to the set of twenty paths was unable to demonstrate

the Pavlik and Anderson modification altering the average number of recallable readings.

Table IX.5: Statistical significance of the Pavlik and Anderson modification on static and dynamic paths

Test Paths n v p

Average number of recallable readings
ACT-R less than ACT-R PA Static 14 48.0 0.4039
ACT-R PA less than ACT-R Dynamic 6 4.0 0.1094
ActSimple less than ActSimple PA Static 14 47.0 0.3804
ActSimple less than ActSimple PA Dynamic 6 5.0 0.1562

Average estimation error
ACT-R less than ACT-R PA Static 14 15.0 0.0083
ACT-R PA less than ACT-R Dynamic 6 3.0 0.0781
ActSimple less than ActSimple PA Static 14 16.0 0.0101
ActSimple PA less than ActSimple Dynamic 6 0.0 0.0156

Wilcoxon signed rank tests were also used to determine if the Pavlik and Anderson modification had an

effect of average estimation error. Testing if ACT-R resulted in less estimation error than ACT-R PA on static

paths was significant (v = 15.0, p = 0.0083). ACT-R PA was tested to determine if the algorithm gener-

ated less estimation error than ACT-R when applied to dynamic paths, but the results were not significant.

ActSimple’s ability to reduce estimation error on static paths compared to ActSimple PA was found to be

significant (v = 16.0, p = 0.0101). Significance was also found when testing if ActSimple PA resulted in less

estimation error than ActSimple on dynamic paths (v = 0.0, p = 0.0156). The Pavlik and Anderson modifi-

cation appears to increase estimation error when applied to static paths. However, the Pavlik and Anderson

modification may reduce estimation error on dynamic paths. While the estimation error reduction from ACT-

R PA was not significant when applied to the six dynamic paths, the average estimation error reduction shown

in Table IX.4 was 2.099.

IX.4 Randomly Generated paths

The effects of random movement by the simulated robot were evaluated by applying the four forgetting

algorithms to 500 new paths, all randomly generated. These paths were created based on twenty combinations

of basestation configurations and path length (referred to as a path class). Half of the path classes were static,

involving only the four basestation configuration or the eight basestation configuration, while the other half

switched configurations at the path’s midpoint. Path lengths ranged from 600 steps to 6000 steps. Twenty

five paths were created for each path class and 100 instances were tested for each path. The random nature of
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each path allowed for large potential performance deviations between paths in each class.

The overall results of applying the four forgetting methods to the 500 randomly generated paths are shown

in Table IX.6. Compared to the results from the original twenty paths (Table IX.2), all four forgetting methods

averaged fewer recallable items. Out of the original set of twenty paths, sixteen did not involve a randomly

generated path. These sixteen paths primarily involved the robot conducting a nearly complete investigation

of the environment, repeatedly traveling from one side of the environment to the other. On average, the

number of readings that are taken at each location within the environment will be more consistent than along

the 500 new randomly generated paths. Frequently visiting the same locations reduces the total number of

unique readings that can be collected, consequently reducing the number of readings that will be recallable.

Table IX.6: Pavlik and Anderson random path overall performance

ACT-R ACT-R PA ActSimple ActSimple PA

Recall Average 610.016 542.385 513.009 546.396
Recall Std 142.282 96.424 79.138 99.139
Error Average 12.449 12.31 11.756 12.307
Error Std 8.201 7.865 8.279 7.901

The average error for all four forgetting methods roughly doubled compared to the estimation error gen-

erated with the original twenty paths. Randomly generated paths frequently do not continuously and exhaus-

tively explore the environment, like the non-random paths from the original set. In addition to not visiting

some locations within the environment, randomly generated paths can also involve locations being visited

a small number of times. Visiting locations a small number of times reduces the number of readings per

location, limiting the ability for the Nearest Neighbor with Perception Count Weighting algorithm to average

out the effects of noise.

The ACT-R PA algorithm averaged fewer recallable items (542.385) compared to ACT-R (610.016), as

shown in Table IX.6, while ActSimple PA averaged more recallable items than ActSimple (546.396 and

513.009, respectively). These results are similar to those presented in Table IX.2. The average estimation

error also followed this trend. ACT-R generated an average estimation error of 12.449 compared to ACT-R

PA’s estimation error of 12.31. ActSimple generated an average estimation error of 11.756, while ActSimple

PA produced a value of 12.307. Again following the performance pattern from the original set of twenty paths,

the results from ACT-R PA and ActSimple PA were very close, deviating in recall by 4.011 and average error

by 0.003.

The statistical significance of the results from Table IX.6 was tested with four single-side Wilcoxon signed

rank tests, which are presented in Table IX.7. Significant results are shown in bold and α = 0.05. Values
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from all 500 paths were used.

Table IX.7: Effects of the Pavlik and Anderson modification on randomly generated paths

Test n v p

Average number of recallable readings
ACT-R PA less than ACT-R 496 118600.0 <0.0001
ActSimple less than ActSimple PA 500 24199.5 <0.0001

Average estimation error
ACT-R less than ACT-R PA 491 58885.0 0.3158
ActSimple less than ActSimple PA 500 44141.5 <0.0001

The first Wilcoxon signed rank test evaluated if ACT-R PA resulted in fewer recallable readings than

ACT-R and the results were significant (v = 118600.0, p < 0.0001). ActSimple was evaluated to determine if

the algorithm generated fewer recallable readings than ActSimple PA and was also significant (v = 24199.5,

p < 0.0001). These results indicate that when applied to randomly generated paths, the Pavlik and An-

derson modification may aid the ACT-R algorithm in reducing the average number of recallable readings.

Conversely, the modification may cause ActSimple to make additional readings recallable. Changes to the

average number of recallable readings may influence the resultant average estimation error.

ACT-R was evaluated to determine if the algorithm generated less estimation error than ACT-R PA, but

the results were not significant (v = 58885.0, p = 0.3158). Results from testing if ActSimple resulted in less

estimation error than ActSimple PA were significant (v = 44141.5, p < 0.0001). When applied to both static

and dynamic paths, the results suggest that the Pavlik and Anderson modification may not improve overall

average estimation error.

The average recallable reading counts and estimation error values for each path class were computed

and the performance differences between ACT-R and ACT-R PA are shown in Table IX.8, along with the

performance differences between ActSimple and ActSimple PA. Negative values represent a Pavlik and An-

derson algorithm generating either less error or fewer recallable readings. In the table, the path class labels

include the basestation configurations present in the class and the number of three step movements taken by

the robot. For example, the path class label “Random-B4-200” represents the set of paths that only involve

the four basestation configuration and include 200 three step movements (a total of 600 steps). The label

“Random-B4-100-B8-100” describes the set of paths where the robot travels through the four basestation

configuration for 300 steps and then the eight basestation configuration for 300 steps. Three step movement

patterns were used in the creation of the random paths to reduce the occurrence of the robot traveling back

and forth to a very limited number of locations. Similar to Table IX.4, the values in Table IX.8 represent the

change in performance from the original form of a forgetting algorithm to the Pavlik and Anderson version
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Table IX.8: Pavlik and Anderson random path class performance

ACT-R, ACT-R PA Difference ActSimple, ActSimple PA Difference

Path Class Recall Error Recall Error

Random-B4-200 0.038 0 4.288 0.006
Random-B8-200 0.062 -0.001 4.43 0
Random-B4-500 -7.144 0.273 -49.08 1.125
Random-B8-500 -7.14 0.218 -33.619 1.832
Random-B4-1000 -48.16 2.317 -4.287 2.881
Random-B8-1000 -47.717 3.094 39.508 3.586
Random-B4-1500 -86.369 2.62 21.168 2.775
Random-B8-1500 -77.702 3.857 89.992 2.998
Random-B4-2000 -107.998 2.491 49.784 1.899
Random-B8-2000 -115.704 4.192 106.413 2.734

Random-B4-100-B8-100 0.049 0.001 9.59 0.058
Random-B8-100-B4-100 0.054 0 8.911 0.058
Random-B4-250-B8-250 -9.023 -0.248 -7.802 -0.249
Random-B8-250-B4-250 -9.215 -0.173 -5.619 0.224
Random-B4-500-B8-500 -118.021 -4.861 18.367 -3.705
Random-B8-500-B4-500 -102.552 -4.324 12.042 -2.579
Random-B4-750-B8-750 -151.651 -4.124 90.677 -2.384
Random-B8-750-B4-750 -130.364 -2.678 75.472 0.08
Random-B4-1000-B8-1000 -172.387 -3.273 132.225 -1.322
Random-B8-1000-B4-1000 -161.675 -2.16 105.279 0.996

Average -67.631 -0.139 33.387 0.551
Std 61.656 2.735 50.494 2.005

of the forgetting approach.

ACT-R PA generated greater error on static paths, but less error on dynamic paths, except for the four

600 step path classes. The average estimation error deviations during the 600 step paths were at most 0.001.

ACT-R PA’s change in error (compared to ACT-R) was dependent on the length of the path. During both

the static and dynamic paths, the average error for the 1500 step paths was roughly a tenth of the magnitude

of longer paths. ACT-R PA’s largest performance decrement occurred with the Random-B8-2000 path class,

while the biggest performance gain occurred with the path class Random-B4-500-B8-500.

Relative performance between ActSimple PA and ActSimple was more variable (Table IX.8). ActSimple

PA generated inferior performance for each static path class (except for Random-B8-200 where the error

difference was zero), but both performance gains and losses were present in the dynamic path results. Act-

Simple PA’s best relative error value (-3.705) occurred with path class Random-B4-500-B8-500, but path

class Random-B8-1000-B4-1000 resulted in a performance decrement of 0.996.

On average, ACT-R PA resulted in fewer recallable items (-67.631) and less error (-0.139), while Act-

Simple PA generated more recallable items (33.387) and more error (0.551). ACT-R PA’s and ActSimple’s
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best relative error occurred with the same path class, Random-B4-500-B8-500.

These results suggest that the benefits from the Pavlik and Anderson modification for dynamic paths may

be dependent on time. Using the Pavlik and Anderson modification, readings that are repeatedly perceived

within a short time period will quickly decay once a basestation configuration change occurs that invalidates

those readings. As the amount of time between basestation configuration changes (or the end of the path)

increases, erroneous readings will become unreadable and valid readings that have not been perceived for a

period of time will also be filtered. While traversing randomly generated paths, nothing prevents the robot

from traveling to an area in the environment, collecting a number of samples and not returning to that loca-

tion. The Pavlik and Anderson modification, in this situation, may result in readings from this area quickly

becoming unrecallable despite their accuracy and benefit.

A clear difference in performance between static and dynamic paths is shown in Table IX.8. The average

effects of each path type (static and dynamic) are presented in Table IX.9. ACT-R PA generated a reduced

number of recallable items for both dynamic and static paths (-85.478 and -49.783, respectively), but the

change for static paths was roughly 42% less than the change for dynamic paths. ActSimple PA resulted

in greater numbers of recallable items (43.914 for dynamic paths and 22.86 for static paths) and similar to

ACT-R PA, the magnitude of change was larger for dynamic paths. ACT-R PA reduced error during dynamic

paths (-2.184), but increased error during static paths (1.906). ActSimple PA generated a similar trend, an

error reduction for dynamic paths (-0.882) and an increase in error for static paths (1.984). Unlike ACT-R

PA, the magnitude of change for ActSimple PA was larger for static paths.

Table IX.9: Pavlik and Anderson random path effects of dynamism

ACT-R, ACT-R PA Difference ActSimple, ActSimple PA Difference

Recall Error Recall Error

Dynamic Static Dynamic Static Dynamic Static Dynamic Static

Average -85.478 -49.783 -2.184 1.906 43.914 22.86 -0.882 1.984
Std 72.568 45.293 1.951 1.641 51.583 49.755 1.533 1.256

The statistical significance of using the Pavlik and Anderson modification with static paths and dynamic

paths was tested with a set of eight single-sided Wilcoxon signed rank tests, which are presented in Ta-

ble IX.10. These tests are similar to those presented in Table IX.5.

The first two Wilcoxon signed rank tests evaluated if ACT-R PA resulted in fewer recallable readings

with static paths and dynamic paths. Results from both tests were significant (v = 29700.0, p < 0.0001).

Significance was also found when ActSimple was tested to determine if the algorithm resulted in fewer

recallable readings than ActSimple PA for static paths (v = 8372.0, p < 0.0001) and dynamic paths (v =
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Table IX.10: Statistical significance on static and dynamic randomly generated paths

Test Paths n v p

Average number of recallable readings
ACT-R PA less than ACT-R Static 248 29700.0 <0.0001
ACT-R PA less than ACT-R Dynamic 250 29700.0 <0.0001
ActSimple less than ActSimple PA Static 248 8372.0 <0.0001
ActSimple less than ActSimple PA Dynamic 250 3943.0 <0.0001

Average estimation error
ACT-R less than ACT-R PA Static 247 1013.0 <0.0001
ACT-R PA less than ACT-R Dynamic 250 26321.0 <0.0001
ActSimple less than ActSimple PA Static 244 277.0 <0.0001
ActSimple PA less than ActSimple Dynamic 250 21853.0 <0.0001

3943.0, p < 0.0001). Both sets of tests agree with the results from Table IX.7, the Pavlik and Anderson

modification appears to decrease the number of recallable readings generated by ACT-R, but increase the

number of recallable readings resulting from ActSimple.

The Pavlik and Anderson modification’s affect on average estimation error was also evaluated with four

Wilcoxon signed rank tests. ACT-R was evaluated to determine if the algorithm generated less estimation

error than ACT-R PA on static paths and the results were significant (v = 1013.0, p < 0.0001). Significance

was also observed when ACT-R PA was tested to determine if the algorithm resulted in less estimation error

than ACT-R on dynamic paths (v = 26321.0, p <= 0.0001). These results help to explain why the test

evaluating the affect of the Pavlik and Anderson modification when applied to all 500 paths (Table IX.7) was

not significant. The modification may improve estimation error performance on dynamic paths, but degrade

performance on static paths. A similar set of tests were performed on the ActSimple algorithms. ActSimple’s

ability to generate less estimation error than ActSimple PA on static paths was significant (v = 277.0, p <

0.0001) and ActSimple PA’s ability to reduce estimation error compared to ActSimple on dynamic paths was

also significant (v = 21853.0, p < 0.0001). These results suggest that the Pavlik and Anderson modification

may possess the ability to improve system accuracy on randomly generated dynamic paths.

On average, ACT-R PA and ActSimple PA generated less error on dynamic paths, but increased error on

static paths. The use and application of the Pavlik and Anderson modification to both ACT-R and ActSimple

may only be applicable in certain domains and for particular tasks. Some robotic systems, such as a security

robots, may constantly and exhaustively patrol a large environment. Incorporating the Pavlik and Anderson

modification may be detrimental in those situations. However, other robots may only monitor an environment

as a secondary task. In these cases, movement patterns may possess a greater degree of variability and when

operating within a heavily dynamic environment, such as a busy office setting, benefit from the addition of
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the Pavlik and Anderson modification.

Both the ACT-R PA and the ActSimple PA algorithms were optimized with the same set of twenty orig-

inal paths. Out of these paths, six possess a basestation configuration change and only four incorporated

a randomly generated trajectory (two of the randomly generated paths were static and two were dynamic).

Re-optimizing the Pavlik and Anderson algorithms with an increased percentage of random dynamic paths

has the potential to increase the benefits afforded by the forgetting approaches during dynamic and complex

paths, but at the expense of static and simpler paths.

IX.5 Summary

The Pavlik and Anderson modification was applied to the ACT-R and ActSimple forgetting algorithms, cre-

ating the ACT-R PA and ActSimple PA forgetting algorithms. These two new forgetting algorithms were

optimized with an evolutionary algorithm and then tested with the original set of twenty paths and a set of

500 randomly generated paths. Results from this chapter suggest the Pavlik and Anderson modification may

improve system accuracy on dynamic paths.

Incorporating the Pavlik and Anderson modification into ACT-R and ActSimple resulted in decreased es-

timation error when the forgetting algorithms were applied to dynamic paths. The decrease in estimation error

between ActSimple PA and ActSimple was significant for both sets of dynamic paths. Accuracy improve-

ments from ACT-R PA, compared to ACT-R, was significant when processing the set of randomly generated

dynamic paths. However, applying the two Pavlik and Anderson modification forgetting algorithms to the

sets of static paths resulted in increased estimation error. The Pavlik and Anderson modification did not have

a significant effect on the average number of recallable readings when processing the original set of twenty

paths, but the average number of recallable readings decreased when processing the set of randomly gener-

ated paths. The benefits the Pavlik and Anderson modification appear to be dependent on the properties of

the original forgetting algorithm, task, and environment.

The relative benefits of the Pavlik and Anderson modification are affected by the combined changes to

average estimation error and number of recallable readings. The interaction between these two metrics for

the original set of twenty paths in shown in Figure IX.4. The ACT-R and ActSimple algorithms generated

greater amounts of estimation error on the dynamic paths as compared to the static paths, while the Pavlik

and Anderson modification algorithms resulted in decreased error on the dynamic paths. The ACT-R PA

algorithm resulted in fewer recallable readings and less estimation error than ACT-R when applied to the

dynamic paths and the full set of paths. However, while ActSimple PA resulted in less estimation error than

ActSimple when applied to dynamic paths, the modification generated a greater number of recallable readings

for all three conditions and increased estimation error for the static paths and the full set of twenty paths.
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Figure IX.4: Average number of recallable readings vs. average estimation error for the original paths

A comparison of the average number of recallable readings and estimation error for the randomly gener-

ated paths is presented in Figure IX.5. The ActSimple algorithm combined the smallest number of recallable

readings and the least amount of estimation error for the set of static paths and the full set of 500 random

paths. Adding the Pavlik and Anderson modification resulted in additional recallable readings and greater

amounts of estimation error. When applied to only the dynamic paths, the Pavlik and Anderson modification

still resulted in more recallable readings, but decreased the amount of estimation error. Adding the Pavlik

and Anderson modification to ACT-R decreased the number of recallable readings for all three sets of paths,

but decreased the amount of estimation error for the set of dynamic paths and the full 500 paths.

The Pavlik and Anderson modification may improve system accuracy and performance under certain

conditions. The degree to which dynamism is present in the environment and the computational cost of each

additional recallable data item may determine the actual benefits of using the modification for any particular

task or environment. Mobile robots operating in complex domains can experience a diverse array of varying

conditions. These systems will require a forgetting algorithm capable of high levels of performance in all

reasonable situations. However, some systems may operate within a constrained set of conditions or be

capable of adapting forgetting algorithms as tasks and the environment change. In these situations, the use of

the Pavlik and Anderson modification may result in increased system accuracy and performance.
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Figure IX.5: Average number of recallable readings vs. average estimation error for random paths
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CHAPTER X

Summary of Contributions and Future Directions

This chapter reviews the work presented in this dissertation and summarizes the contributions from this

research. An outline for potential avenues of future research are also presented.

X.1 Review

Perfect memory and recall provides a mixed blessing. While flawless recollection of episodic data and pro-

cedural rules allows for increased reasoning, photographic memory hinders a robot’s ability to operate in

real-time, highly dynamic environments. The absence of forgetting can result in memory being filled by a

tremendous volume of data, increasing both search time and the probability of over-learning. Contemporary

robots are already overrun with vast volumes of data requiring real-time processing and the problem will

only increase. Before robots realize human-level intelligence, a means of classifying the importance of each

acquired datum and forgetting unnecessary, erroneous, and expired data will be required.

This dissertation has developed Human-Inspired Forgetting, a means of incorporating forgetting capa-

bilities into current and future robotic systems. This approach may enable robots to remove unnecessary,

erroneous, and out-of-date information, while increasing the ability to reliably and rapidly recall critical cues

necessary for successful task completion. Instead of selecting an item from memory to complete a task,

Human-Inspired Forgetting filters the information presented to existing robotic algorithms. The pruned data

may allow a diverse array of powerful, but task specific algorithms to realize improved accuracy while re-

ducing cognitive load. The novel ActSimple forgetting algorithm was developed as an implementation of

Human-Inspired Forgetting. This forgetting algorithm has been heavily inspired by a number of cognitive ar-

chitectures, along with models of human memory and combines trace-based decay and encoding interference

with belief state values, mental exertion, and output interference.

The benefits of the ActSimple algorithm and six other Human-Inspired Forgetting based forgetting algo-

rithms were tested against the situation where No Forgetting was present. A WiFi signal strength estimation

test domain was constructed to assess the ability of the forgetting algorithms to simultaneously reduce the

amount of data presented to existing robotic algorithms and increase system accuracy. In the test domain,

a robot explored an environment while collecting WiFi signal strength readings. At set points, the readings

were used to generate estimated signal strength values for each location in the environment. During the ex-

periments, two metrics were collected, the number of recallable readings presented to the existing robotic al-

gorithm and the average estimation error at each location in the environment. The forgetting algorithms were
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Table X.1: Reduction in average number of recallable readings

No Forgetting 3rd most 3rd most ActSimple ActSimple
Experiment average average reduction (%) average reduction (%)

Chapter V - Paths 1 - 20 1270.13 1025.51 19.259 636.958 49.851
Chapter V.3 - Paths 21 - 64 1090.794 897.408 17.729 600.877 44.914
Chapter VI - Real-World Data 848.316 692.467 18.372 338.887 60.052
Chapter VII - Other Noise Distributions 1303.568 797.987 38.784 601.359 53.868

Average 1128.202 853.343 23.536 544.520 52.171
Std 208.672 142.043 10.185 138.126 6.404

evaluated with a set of seven experiments, including the robot following a set of twenty paths (Chapter V.1.3),

the use of alternate existing robotic algorithms (Chapter V.2), traveling a set of 44 paths (Chapter V.3), test-

ing with WiFi signal strength readings collected from a real-world environment (Chapter VI), changing noise

distributions in the environment (Chapter VII), testing performance along each path instead of just at the end

(Chapter VIII), and adding the Pavlik and Anderson modification to the ActSimple and ACT-R forgetting

algorithms (Chapter IX).

All forgetting algorithms, except for SIMPLE, reduced the average number of recallable readings, com-

pared to No Forgetting, for each experiment where the metric was recorded. No Forgetting and the SIMPLE

forgetting algorithm generated nearly identical results, consistently resulting in the largest number of re-

callable readings. In each experiment, the ActSimple algorithm filtered either the most or the second most

number of readings. The reduction of average recallable reading count is presented in Table X.1. Results from

ActSimple and the algorithm that generated the third largest number of recallable readings for each experi-

ment are included. Each forgetting algorithm, except for SIMPLE, resulted in at least an average reduction of

23.536% of the number of recallable readings. ActSimple averaged a reduction of 52.171%. Mobile robots

operating in real-world environments often have tight timing constraints and the reduction of data requiring

cognitive processing may decrease computational load. However, system performance will only improve if

filtering does not negatively affect system accuracy.

No Forgetting and the SIMPLE forgetting algorithm generated nearly identical estimation error values and

averaged the largest amount of estimation error on the five experiments where performance was tested at the

end of each path. The ActSimple algorithm averaged the least amount of estimation error in each experiment,

except for the real-world experiment where the algorithm averaged the second smallest estimation error. The

other forgetting algorithms resulted in more variable relative estimation error performance. The SIMPLE

Update algorithm averaged the least amount of estimation error in the real-world experiment, but the third

most when applied to paths 21 - 64. Use of the ACT-R forgetting method averaged the second smallest
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average estimation error with paths 21 - 64, but only the fifth best estimation error on the real-world data. The

forgetting algorithms, except for SIMPLE, consistently resulted in less estimation error than No Forgetting,

but only the ActSimple algorithm was able to maintain consistent relative estimation error reduction.

Relative estimation error performance of a forgetting algorithm may not be consistent throughout the

entirety of a task. The along the path experiment tested the effectiveness of the forgetting algorithms to

reduce estimation error at each point along the tested paths. The ActSimple algorithm resulted in the smallest

average estimation error and the best average SSD value (using average performance as a reference), but No

Forgetting did not generate the worst performance. Random forgetting, ACT-R, and SIMPLE Update each

resulted in a greater amount of average estimation error and ACT-R produced the worst average SSD value.

The forgetting algorithms were optimized by using the amount of estimation error generated at the end of

each tested path. This optimization approach may have resulted in the reduced relative performance of some

of the forgetting algorithms when estimation error was tested along each path. However, the tasks assigned to

mobile robots are often difficult to perfectly model and often change slightly throughout task execution. The

ActSimple algorithm was able to consistently maintain relative performance, by reducing estimation error,

both at the end of paths and at each point along those paths.

Dynamism had an impact on the amount of estimation error generated by No Forgetting and the forgetting

algorithms. Average estimation error increased when No Forgetting and the forgetting algorithms were ap-

plied to paths containing a basestation configuration change, but decreased when applied to static paths. The

deviations between performance on static and dynamic paths was not consistent. No Forgetting and the SIM-

PLE forgetting algorithm resulted in the largest deviations between average estimation error on static paths

and dynamic paths (Figures V.2, V.6, VI.3, VIII.29). Mobile robots assigned challenging tasks in complex

environments require consistently high levels of performance. Results from this dissertation suggest that the

use of Human-Inspired Forgetting may allow robotic systems to minimize performance fluctuations resulting

from changing levels of dynamism present in the environment.

The ActSimple PA and ACT-R PA forgetting algorithms, which added the Pavlik and Anderson modifi-

cation to ActSimple and ACT-R respectively, resulted in less estimation error when applied to dynamic paths

from the original set of paths (paths 1 - 20). However, these two forgetting algorithms generated greater

estimation error than ActSimple and ACT-R on the static paths. When ActSimple PA and ACT-R PA were

applied to a large set of randomly generated paths, the algorithms again reduced estimation error on the dy-

namic paths but increase estimation error on the static paths. Under some conditions, forgetting algorithms

may be capable of generating less estimation error on dynamic paths as compared to static paths, although

overall accuracy and consistency may degrade.

Human-Inspired Forgetting has the potential to improve system accuracy, while decreasing the volume
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of data requiring potentially computationally expensive cognitive processing. The ActSimple forgetting al-

gorithm provides an implementation of Human-Inspired Forgetting inspired by a diverse array of cognitive

architectures and models of human memory. Experiments presented in this dissertation show that the Act-

Simple algorithm consistently reduced average estimation error, while simultaneously decreasing the average

number of recallable readings provided to the existing robotic algorithms. ActSimple’s consistency may re-

sult from the algorithm’s unique combination of trace-based decay and similarity-based interference. Human-

Inspired Forgetting, and the ActSimple algorithm in particular, has the potential to improve system accuracy,

while minimizing the cognitive load experienced by real-time mobile robots. Forgetting algorithms may be

unable to guarantee the best performance for every single condition, but may possess the ability to improve

average performance, while limiting the severity and frequency of extreme performance degradations.

X.2 Summary of Contributions

Contributions of this dissertation include:

1. This dissertation has identified data management as a core area where non-domain specific algorithms

and strategies can be developed to aid robotic systems in reducing cognitive load. These new algo-

rithms and strategies may eventually assist robotic systems in improving their situational awareness.

Understanding the current and future states of a complex and dynamic environment frequently requires

many cues, data that can be easily overlooked or ignored. Improving robotic systems’ ability to navi-

gate large volumes of data may eventually lead to robots capitalizing on a greater percentage of these

available cues, boosting performance and reliability.

2. This dissertation has put forth the idea that Human-Inspired Forgetting can be used as a means for

robotic systems to filter incoming data streams and remove erroneous knowledge for the purpose of

increasing data management capabilities and performance. Unlike some existing models of human

forgetting and robotic systems, the presented approach does not select items from memory, but filters

the data available to existing algorithms. Through this data reduction, traditional robotic algorithms

may realize improved performance and increased accuracy.

3. ActSimple, a new algorithm designed to implement robotic forgetting was created. This algorithm

incorporates a number of different components, each inspired by existing models and understanding of

human forgetting and memory. The cognitive architecture ACT-R and the SIMPLE model of human

memory provided the bulk of the inspiration for the algorithm and its name. ActSimple is a non-domain

specific algorithm with a number of parameters and subcomponents that can be adjusted for particular
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domains and tasks. These parameters can be tuned through either off-line or on-line learning mecha-

nisms, minimizing design effort. A large infrastructure is not required by the ActSimple algorithm and

multiple concurrent instances may be executed on the same system, each operating on different forms

of data or sections of the robot.

4. Within the context of a WiFi signal strength estimation task, this dissertation presented initial ex-

ploration into the application of Human-Inspired Forgetting. Factors affecting robotic performance,

including changes to task and the environment were investigated, revealing how forgetting capabilities

can mitigate some of the challenges posed by complex and dynamic environments.

X.3 Future Directions

Many avenues exist for future work in Human-Inspired Forgetting for robotic systems. Additional compo-

nents within ActSimple can be explored or added, Human-Inspired Forgetting can be applied to new forms

of data and knowledge, and many robotic domains exist that may benefit from robotic forgetting capabilities.

The ActSimple algorithm combines a number of diverse components inspired by many models of hu-

man memory and cognitive architectures. This dissertation explored the components of trace-based decay,

similarity-based interference, and the Pavlik and Anderson modification. Future experiments may investigate

the benefits afforded by belief state values, mental exertion, and output interference.

A number of additional components may also be added to the ActSimple algorithm. Rehearsal forms a

critical component in many trace-based decay theories of forgetting, see Chapter II.4.1, and Figure II.12 in

particular. This cognitive strategy is analogous to a human rapidly and repeatedly stating a fact to prevent

forgetting and may aid a robot in actively shaping the knowledge that is remembered and forgotten.

Many items encountered by robots possess a number of characteristics that allow for grouping. Color,

size, heat, and location are all properties that may be important in robotic domains. Presently, the ActSimple

algorithm treats all data equally. The introduction of a mechanism into ActSimple that “highlights” items

within memory that fit a currently desired parameter set may be explored. Minsky (1986) proposed the idea

of K-Lines, mechanisms within human memory that link relevant memories together. When a K-Line is

“activated”, all of the memories attached to the K-Line also become “activated” or easier to recall. A system

that “highlights” memory items may provide a robot with an improved ability to utilize cues in recalling

critical information.

Forgetting algorithms, and ActSimple in particular, possess a large number of independent parameters.

This dissertation explored the effectiveness of off-line parameter space searches, but on-line implementations

may be explored. While some reliable real-time metric will be required to ascribe a utility to individual pa-

rameter settings, nothing prevents the parameters used by ActSimple from being manipulated while a robot
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traverses its environment. Many domains where robots are and will be operating are fluid and dynamic. Op-

timal parameter settings may also fluctuate and on-line tuning may be one mechanism that allows ActSimple

to adapt to these changes.

Many task, domain, and environmental factors can influence the absolute and relative performance of a

forgetting algorithm and its parameterization. This dissertation created parameterizations for ActSimple and

six other forgetting algorithms by optimizing performance with twenty paths. An analysis may be conducted

to determine the relative benefits of creating generalized parameterizations, parameter values tuned for high

levels of performance across diverse conditions, and specialized parameterizations, parameter values tuned

for specific subsets of task and environmental conditions. In some situations, the use of a single general

use parameterization may result in acceptable performance. However, some domains may allow for accurate

sensing of environmental conditions and performance may increase if the robot rapidly switches between

specialized sets of parameterizations.

Human-Inspired Forgetting may benefit a number of robotics domains. Many traditional robotic domains,

such as Human-Robot Interaction (HRI) (Goodrich and Schultz, 2007) and disaster rescue (Murphy et al.,

2000, 2008), may directly benefit from the introduction of robots with forgetting capabilities. Human-robot

interaction involves humans and robots working cooperatively to solve common goals and in some cases,

providing mutual assistance. Robots may one day become ubiquitous elements of human daily life, but they

will require the ability to communicate naturally with humans. Along with the ability to provide human

partners with the small cues and mannerisms that are common in human communication, robots will need to

detect and correctly interpret cues provided by their human partners. Gaze (Mutlu et al., 2009), timing (Okuno

et al., 2009), and body position (Yamaoka et al., 2009) can all influence the quality of communication and

the quantity of information that is reliably passed between partners. Effects of cues and emotive behavior

are not consistent. If robots are to one day be able to achieve natural interaction capabilities with humans,

the ability to recall important cues, while ignoring inconsequential actions may be critical. Human-Inspired

Forgetting may provide this capability. Through the interaction with an individual, a robot may be able

to record communication cues and adapt its own behavior appropriately. With the inclusion of rehearsal

mechanisms, robots may be well equipped to recall common cues and critical rare human reactions. These

rare reactions may result from injuries or from a human becoming exceptionally angry.

Wilderness Search and Rescue (Adams et al., 2009), Urban Search and Rescue (Murphy et al., 2000),

and future CBRNE deployments (Humphrey and Adams, 2009b) are all domains where robots are frequently

tasked with searching an environment, detecting abnormalities, and identifying items that appear out-of-place.

Unexpected items may signify humans trapped under rubble or explosive devices that have been concealed

in a building. Forgetting may be able to improve the performance of robotic systems operating within these
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domains. Similar to the experiments presented in this dissertation (Chapters V - IX), forgetting may enable

robots to gain an understanding of the current status of an environment and adapt to changes. These domains

are often highly dynamic and continually evolve. Supplies are transported throughout the environment, rubble

can shift, first responders setup and break down equipment, and victims may wander throughout the affected

areas. Forgetting may allow robots operating under these conditions to remove outdated information, while

still retaining salient and pertinent data.
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Appendix A

Supporting Media for Chapter VIII

This appendix presents additional supporting media for Chapter VIII.

A.1 Additional Along the Path Performance Graphs

This section presents eight additional along the path performance graphs that were not included in Chap-

ter VIII. Graphs for paths 3, 6, 7, 11, 14, 15, 16, and 19 are provided.1 Cycle 4 Basestations Doubleloop
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Figure A.1: Along path results for path 3 - 1 cycle 4 basestations
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Figure A.2: Along path results for path 6 - 1 cycle 8 basestations
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Figure A.3: Along path results for path 7 - 1 cycle 8 basestations
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3 Cycles 4 Basestations Doubleloop
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Figure A.4: Along path results for path 11 - 3 cycles 4 basestations
3 Cycles 8 Basestations
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Figure A.5: Along path results for path 14 - 3 cycles 8 basestations
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3 Cycles 8 Basestations Doubleloop
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Figure A.6: Along path results for path 15 - 3 cycles 8 basestations
3 Cycles 8 Basestations Doubleloop Pass1-3
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Figure A.7: Along path results for path 16 - 3 cycles 8 basestations
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Random 8 - 4 Basestations
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Figure A.8: Along path results for path 19 - random 8 - 4 basestations
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A.2 Along the Path Error and Recall Maps

This section presents the complete set of error and recall maps for the Act-R, Queue Static, SIMPLE Update,

and ActSimple algorithms. The maps for No Forgetting are also presented. Each set of maps is provided in

video format and is located on the accompanying DVD in the path structure shown in Figure A.2.

• Chapter VIII Video Files

– Act-R

– ActSimple

– No Forgetting

– Queue Static

– SIMPLE Update

Figure A.9: Directory Structure
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Appendix B

Additional Components of Situational Awareness

SA is a complex phenomena that spans a diverse array of cognitive processes and properties. Many com-

ponents of cognition can affect the ability to generate and maintain SA, although dependence on forgetting

mechanisms is not universal. Some portions of the processes required to generate SA are not directly affected

by data management issues and forgetting capabilities; however, these aspects of human cognition are still

important. Benefits arising from components not directly associated with forgetting aid in the development

of an environment suitable for the generation of SA, while the absence of these components can negate the

benefits of forgetting. This appendix presents a number of cognitive phenomena that influence the ability to

generate and maintain SA, while not directly being influenced by forgetting mechanisms.

B.1 System Stress

Human SA tends to suffer as human stress levels increase. In real world environments, many types of stressors

exist, elements that affect information processing, but are not actually inherent components of the information

to be processed. Stressors can be both environmental and physiological. Environmental stressors include

noise, vibration, heat, cold, and poor lighting. Anxiety, fatigue, frustration, and anger are all considered to

be physiological stressors. Four effects commonly arise from the presence of stressors. As stress builds,

humans can undergo physiological changes, such as becoming frustrated. Short-term physiological effects

also commonly occur, such as increased heart rate or a change in the output of catecholamines. In the presence

of stressors, human information processing efficiency often decreases and long-term negative health effects

may develop (Wickens et al., 2004).

The presence of stress can result in decreased perceptual abilities and inferior processing of resultant

information. This degradation may cause a reduction in level one SA. As level one SA decreases, higher

levels of SA start to degrade (Freedman and Adams, 2007).

B.2 Ideal, Achievable, and Actual Situational Awareness

Pew (2000) classifies human SA into three categories; ideal, achievable, and actual SA, as shown in Fig-

ure B.1. Ideal SA is often unachievable, as it represents an awareness of the entire situation, including items

that may not be available under human cognitive and perceptual limitations. Achievable SA, a subset of ideal

SA, captures the best level of SA for a given situation that is possible with human cognitive and perceptual

capabilities. Actual SA represents a human’s current level of SA, which is often a subset of the achievable SA
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Figure B.1: Relationship between ideal, achievable, and actual SA (Recreated from (Pew, 2000))

category. Breaking down SA into ideal, achievable, and actual levels aids developers during the design and

evaluation phases of interface development. Achievable SA provides performance goals for new interfaces

and provides a valuable point of reference from which to compare a human’s actual SA (Pew, 2000).

B.3 Vigilance

Maintaining good SA requires the constant observance of numerous specific details. In many domains, tasks

can become quite boring and taxing. Humans have a tendency to stop paying attention to some of these

details, at times to focus on other issues and sometimes to simply reduce the amount of required work. This

phenomenon is known as loss of vigilance and can result in disastrous consequences. It is well known that

human vigilance levels drop dramatically over time and have an effect on overall SA. Human vigilance levels

often drop due to boredom and fatigue (Wickens and Hollands, 2000).

B.4 Uncertainty and Confidence

Uncertainty and confidence play a pivotal role in the relationship between human SA and performance. Hu-

man uncertainty often manifests itself in a human’s hesitation or failure to act. Frequently, humans will con-

tinue to gather additional information in order to improve their awareness and confidence in actions selected

to achieve desired objectives. However, complete certainty is almost always impossible. A trade off must

constantly be made between the cost of acting under uncertainty and the benefits of additional search. Once

an acceptable level of uncertainty has been reached, actions should be performed. When humans spend too

much time searching the environment, the associated costs will increase and performance may subsequently

degrade.

Many factors play into a person’s level of confidence in their SA. When incoming data disagrees or

outright contradicts itself, then uncertainty will increase as the likelihood that some previously acquired
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Figure B.2: SA and confidence levels (Endsley and Jones, 1997)

information is erroneous may be quite high. The quality and reliability of information sources within the

environment can have an impact on confidence levels. Within adversarial domains, misleading or completely

false information may also act to degrade confidence as the ability to trust incoming information is weakened.

Additionally, the ability and confidence in that ability to process and correctly interpret incoming data can

influence a person’s faith in their SA.

As seen in Figure B.2, there are four possible states to define the relationship between confidence and

SA, assuming a binary partitioning. The ideal case occurs when good SA is matched with high confidence,

but care must be taken to handle the other scenarios. If high SA is achieved, but confidence is low, then per-

formance may be unnecessarily poor, as observations will needlessly be sought from the environment. When

SA is poor and uncertainty is high, then the desire to further monitor the environment will be appropriately

high. The worst case occurs when SA is poor and confidence is high. Not only may poor action selection

result while someone is in this state, but others may worsen their SA as they interact with the person acting

with considerable confidence (Endsley and Jones, 1997).

B.5 Bad Situational Awareness vs. Bad Decision Making

SA is not synonymous with superior decision making, nor is it interchangeable with performance. Venturino

et al. (1990) performed a study of fighter pilot SA where pilots participated in a combat simulation. Pilots

who rated their SA as low performed poorly and pilots with self-assessments of average SA only performed at

an average level of performance. When high self-ratings of SA were given, pilot performance varied greatly.

From these results, Venturino et al. concluded that while SA may be necessary for high levels of performance,

it is not the sole factor (Uhlarik and Comerford, 2002). Additionally, through luck or pure physical skill and

ability, high levels of performance may occasionally be produced.
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B.6 Biases and Expectations

Humans naturally have biases and expectations regarding different situations and their outcomes. In complex

dynamic environments many objects require constant monitoring and surveillance. The patterns dictating how

sensory channels are directed within the environment can be influenced by bottom-up factors (e.g., saliency

and cues), but can also be affected by top-down biases and expectations. Previous experiences, goals, and

mental models can all form expectations that govern the usage of sensory channels. Bias and expectations

also influence higher levels of SA. In the presence of incomplete or ambiguous knowledge, humans often use

expectations to filter choices and minimize cognitive load (Wickens and Hollands, 2000). Heuristics are often

used by humans to complete tasks in time restricted situations. These heuristics can provide results compa-

rable to more cognitively taxing mental processes, but are often domain and task specific (Gigerenzer et al.,

1999). When inappropriately applied, heuristics can degrade performance and result in incorrect decision

making (Wickens and Hollands, 2000).

B.6.1 Schemas and Mental Models

Mental models and schemas are constructs generally stored in long term memory that speed up comprehen-

sion of the environment and assist in determining the important of various SA constructs. Created through

experience operating in some domain, mental models and schemas allow circumvention of various bottle-

necks to SA by directing attention to the most importance aspects in the environment. Additionally, guidance

on how to process incoming information and how to use it to project into the future can result from their use.

Assistance in the decision making process is also possible by utilizing mental models and schemas (Endsley

and Jones, 1997).

Considerable debate exists about the exact representation of humans’ mental models. Minsky (1974,

1986) postulated that mental models are composed of frames. Frames are considered to be the basic building

block of knowledge with a human’s memory consisting of millions of these frames in a hierarchical data

structure. Lower level frames will possess greater specificity of a particular task or event, but at a smaller

scope. Within each frame, top level components are fixed, in that they represent items mandatory to the

domain or phenomena being represented. As a progression is made to lower items within a frame, items gain

in optionality. Many of the items within a frame may already possess values even before the frame is applied

to an instance of a situation. These values act as defaults, assisting in the understanding of complex situations

and causing deviations from the default values to be noticed. Defaults can negatively impact recall in some

situations. If the real value of some feature does not agree with a default, but this fact is not noticed and

recorded, then the default value can erroneously be stored for recall later. Minsky defined six different types

of frames, shown in Table B.1. While all of the frame types possess the same basic characteristics, hierarchy
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Table B.1: Minsky’s variety of frames (Minsky, 1974)
Frames for objects

Temporal or programmatic frames
Mixed frames for situations

Grammar frames
Narrative or text frames

Scientific paradigms

and leveling of optionality, each is used for a different purpose.

When the environment highly correlates with a mental model, the decision making process is even further

speed up, as less processing is required. If a mental model partially disagrees with the current state of the

environment, benefits can still be realized from its use due to human pattern matching abilities and utilization

of best fit approximation. Additionally, mental models provide default values for missing information, al-

lowing for decision making and prediction even in the presence of uncertainty. Confidence in the model can

also negatively affect this process as doubt about a mental model’s correctness and applicability increases,

reliance on the model will decrease until it is not used at all (Endsley and Jones, 1997).

B.6.2 Framing and Order

The order in which observations about the environment are made can have a substantial impact on a human’s

ability to understand a situation. This impact may result from the formation of a situational model about

the environment and the current task at hand, which is primarily composed of these observations. As new

information is received, the model is altered, ideally resulting in a more detailed and accurate picture of

the state of the environment. Much of this model is necessarily built from inferences and assumptions, since

complex dynamic environments contain too much information and uncertainty to allow for full understanding.

When incorrect ordering of information is presented to a human, they may either produce incorrect inferences

or fail to produce them altogether (Sanford and Garrod, 1981).

Dooling and Lachman (1971) crafted a demonstration of this phenomenon with a short text passage.

“With hocked gems financing him, our hero bravely defied all scornful laughter that tried to

prevent his scheme. Your eyes deceive’, he had said. An egg, not a table, correctly typifies this

unexplored planet’. Now three sturdy sisters sought proof. Forging along, sometimes through

calm vastness, yet more often turbulent peaks and valleys, days became weeks as many doubters

spread fearful rumors about the edge. At last, from nowhere, welcome winged creatures appeared

signifying momentous success.”
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Figure B.3: Recall performance of details from a reading passage ((Sanford and Garrod, 1981) recreated
from (Thorndyke, 1977)

This passage is generally considered difficult to remember, much less interpret and understand, until the

title is provided, “Christopher Columbus’s discovery of America”. Once the title is available to frame the text,

a basic understanding can start to form, but not until the passage is reread can many of the rich metaphors be

appreciated (Sanford and Garrod, 1981).

Thorndyke (1977) experimentally tested the effects of information ordering by presenting a reading pas-

sage to subjects whose recall was subsequently tested. Five different versions of the passage were used during

the test, Story (the passage was presented in its normal format and ordering), After-Theme (sentences contain-

ing the theme of the story were moved to the end of the passage after some slight restructuring), No-Theme

(the passage had its theme completely removed), Description (the passage was altered so that only nominal

and pronominal references remained), and Random Passages. Results from this experiment can be seen in

Figure B.3. In the graph, Level of Hierarchy refers to the relative importance of a piece of information to

the overall meaning and context of the passage. From this experiment, Thorndyke was able to conclude that

the standard story format ordering of a passage allowed readers to form a global frame (in the Minsky sense)

of reference that subsequent information could refine. The After-Theme and No-Theme versions prevented

the reader from constructing a global frame, but allowed the readers to utilize local causal’ links and simple

temporal ordering (Sanford and Garrod, 1981).
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Table B.2: Negative forces acting on SA (Endsley and Jones, 1997)
Error in observations

Denial of observations
False observations

Overloading of observations
Inducing wrong conclusions

Disorganization of observations
Induce incorrect assumptions
Increase of unpredictability

B.6.3 Observation Quality and Availability

The quality of SA that can be obtained is based solely on the quality of the input observations from the

environment and the ability of a human’s cognitive processes to generate an understanding of the environment

and future actions. While producing a highly efficient and effective SA capability is difficult with even the

best set of observations in the real world, false and misleading information will result in a direct assault on

this capability. Causes of these undesired observations do not necessarily need to originate from adversarial

forces in the environment, such as direct competitors, but may come from teammates or even neutral agents

who happen to be present in the environment. In this case, agent can refer to practically anything, humans,

animals, or even machines that are somehow involved with the current process. Additionally, a human’s own

senses may help to undermine the ability to generate high SA because of failures and errors in the ability to

perceive the environment (Endsley and Jones, 1997).

Table B.2 partitions the collection of negative forces acting on SA into eight separate areas. The first,

and most obvious, is simply erroneous observations of the environment. Sources of erroneous observations

are numerous, ranging from sensory error to the inability of human senses to detect characteristics about

objects in the environment. Second in the list, denial of observations, may result when active entities in

the environment are actively attempting to prevent particular observations from being made. Third, false

observations help to increase uncertainty, generate false beliefs, and decrease trust in valid percepts. Other

negative forces acting against SA can impose similar constraints and degrade the ability for a human to

achieve and maintain high levels of SA (Endsley and Jones, 1997).

B.7 Workload

Human SA is affected by both cognitive and physical workload, which can act as a stressor when present

in excess (Wickens et al., 2004). Figure B.4 depicts the relationship between workload and SA. Under low

to moderate workload, SA and workload can vary almost independently. At the lowest levels of workload,

vigilance may decrease and attention can be diverted from important task elements. As workload exceeds
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Figure B.4: SA vs. Workload (Endsley, 1993)

available capacity, performance and SA decrease. Under this condition, every task requiring attention can-

not be adequately handled and information regarding the environment is ignored or undetected (Endsley and

Jones, 1997). Under these high workload conditions, critical information and tasks are often neglected, for-

gotten, or ignored (Wickens et al., 2004). Missing information directly degrades level one SA and indirectly

affects higher levels of SA. Level two and level three SA are also directly affected by the time pressures

resulting from an increased workload. Without adequate cognitive capacity, level one constructs cannot be

formed into level two constructs and the development of level three constructs equally suffers. Forgetting

stale, irrelevant, and out of date data may reduce cognitive workload by reducing the mental search time

required to recall items necessary for successful task completion.

B.8 Data Driven and Goal Driven Behavior

Two diametrically opposed processes can be used for operating in a complex dynamic environment, data

driven processing and goal driven processing. When operating in a data driven mindset, the environment is

scanned in parallel for salient signal properties to emerge. Salient features of the environment are observed

and processed into level one SA. Patterns can easily be detected when utilizing a data driven approach, which

can be used to modify or replace any current goals. Goal driven processing involves directed sampling in

the environment. Using this approach, specific information from the environment can be sought out and then

evaluated with respect to current goals, forming level two SA.

Choosing which mode to use can play a significant role in the success of a task, as the selection will affect

how attention is directed and how information is perceived and interpreted. These two methods need to be

alternated constantly, since data driven processing can lead to data overflow and goal driven processing can

result in too narrow of a focus and the loss of the ability to determine information’s importance (Endsley and

Jones, 1997).
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