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CHAPTER I
INTRODUCTION

A shift-invariant space (SIS) is a closed subspace V of L?(R), such that if f €
V, then f(-+ k) € V for all £ € Z. Such spaces have many applications in
numerical analysis, multiresolution analysis (MRA) and wavelet theory (see e.g.

[AGO01, AST05, Bow00, CS07, UB00] and the references therein).

One example of a shift-invariant space is the Paley-Wiener space of functions

that are bandlimited to [—1/2,1/2]:
) 11
PW(R) = {f € L*(R) : suppf C [—575]}-

It is easy to see that PW(R) is actually not only a shift-invariant space, it
is invariant under arbitrary translation, i.e., if f € PW(R), then f(z 4+ «) €

PW(R) for all & € R.

One method for constructing SISs is as follows:

Definition I1.0.1. Let ® = (¢y,...,¢,)T be a vector function with ¢1, ..., ¢,

in L2(R). The SIS V(®) generated by ® is given by

V(@) ={>_CT(k)d(-+k):Ce(*)}
k€Z
where C' = (c1,--+,¢,.)T for each ¢; = {c;i(k)} € ¢2. In other words, every
function f € V/(®) is of the form Y7, >, -, ¢i(k)¢i(- + k). In this case we say
that the space V(®) is finitely generated by ® = {1, -, $,} and the functions
o1, , ¢, are called generators. If ¢;(- + k) and ¢;(- + 1) are orthogonal for
(i, k) # (4,1) and ||¢;||2 = 1 for all 4, then ¢q, -, ¢, are called orthonormal



generators. If ® only consists of a single function ¢, we say that V(¢) is a
principal shift-invariant space (PSIS). One can show that PW(R) = V(sinc),

where sinc(z) = sinwa/7z.

For an example of a PSIS, consider a function ¢ such that its Fourier transform
B(&) = X[0,1) + X[2,3)- We can compute that ¢(x) = sinc(z)(e™* 4 €°™*). Then

the PSIS V(¢), generated by the single function ¢, is given by

V(e)={ D ad(-+k):{a}pz_o €7}

k=—0o0

In this example, V(¢) is not only shift invariant, but also %Z—invariant, ie., if

h € V(¢), then we have that h(- + 3) € V(¢).

Figure 1.1: 8% = x(o,1).

Other important examples are the SIS generated by B-splines. Specifically,
the B-spline 3° of order 0 which is the characteristic function on [0,1), i.e.
B° = X(o,1)- The B-spline 3* of order s is defined to be the (s+1)-fold convolution
of the function £°, i.e. 85 = 8571 % 8%, It is not hard to check that each 3°
has compact support and is a piecewise polynomial of degree s in C*~! with
integer breakpoints. For any s, the SIS V' generated by {3% : i < s} is the space
of all piecewise polynomials of degree less than or equal to s with the integer
breakpoints. This space is used in numerical analysis, signal processing and

many other applications. From the construction, one can easily show that V is
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shift invariant. However, it is not %Z—invariant for any n > 1.

Figure 1.2: B! = % % g°.

Figure 1.3: 82 = 5%« g1,

From all the examples above, we can see that some SISs are only shift invari-
ant(invariant under Z) while others have more invariance structure, for exam-
ple invariance under %Z for some n > 1 or even invariance under all the real
numbers. In general, a finitely generated SIS need not possess any invariance
other than translation by integers. Shift-invariant spaces with additional in-
variance have been used in the study of wavelet analysis and sampling theory
[Web00, CS03, HL09], and have been completely characterized in [ACHKM10)]
for L?(R) and in [ACP09] for L?(R"™). For a subspace V of L?(R), let

(V) = {t € R| (- — ) belong to V for all f € v}. (L0.1)

For any closed subspace V of L?, one may verify that 7(V) is a closed additive



subgroup of R, and hence 7(V) is either {0}, or R, or oZ for some o > 0. It
can be shown that [ACHKM10] for any finitely generated shift-invariant space
V(®),

T(V(®)) =Ror 7(V(¢)) = %Z for some n € N. (1.0.2)

We say that a shift-invariant space V' has additional invariance if 7(V) D Z. It is
well-known that the Paley-Wiener space PW is invariant under all translations.
Thus,

T(PW)=R.

A closed subspace V of L? with 7(V) = R is usually known as a translation-
invariant space. The fact that the space PW of bandlimited functions is also
translation-invariant (7(PW) = R) makes it useful for modeling signals and
images. However, it is known that any function ¢ that generates a Riesz basis for
PW has slow spatial-decay in the sense that ¢ ¢ L'(R), e.g., sinc(z) = 527 We
can show that this slow spatial-decay property for the generator of a translation-
invariant PSIS is not unique to the space of bandlimited functions PW. This is
exactly the reason we want to consider %Z-invariant SISs. We want to construct
SISs that are close to being translation invariant, with generators which are well

localized in both space and frequency domains.

This paper is presented in three chapters: In this chapter, we will introduce
basic notations and definitions that are frequently used in this note as well as
the property of finitely generated SIS with additional invariance. In Chapter II,
we will discuss the time frequency localization of generators of finitely generated
SISs with additional invariance. Chapter III is devoted to the construction of
PSISs with additional invariance nearest to a set of given functions. Most of

the results in this paper are from [ASW11, AKTW11, TW11].



11 Fourier Analysis

We now begin with the review of Fourier analysis. Let us first look at the

definition of Fourier series.

Definition I.1.1. If f is an integrable function on the interval [a,b] of length

L, the n-th Fourier coefficient of f is defined by

~ 1 b .
ay, = f(n> _ Z/ f(x)e—Qﬂznx/de7 ne.
a

The Fourier series of f is given by

oo
E an627rzn:r/L )

n=—oo
Similarly,

Definition I.1.2. The Fourier transform of a function f € L(R) is defined to

be
J?(f) = /oo f(x)e 2™ 8dx, a.e. eR.

The Fourier transform can be extended to be a unitary operator on L?(R). For

any subset V C L?(R), we denote V= {f fevh

Under suitable conditions, e.g. f € L2(R) or f is in the Schwartz space, f can

be reconstructed from f using the inverse Fourier transform

f@:[lmﬁm%

Definition I.1.3. The convolution of two functions f,g € L*(R) is defined to

be
U*muw=[%f@mu—ywy
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It satisfies

Lf gy < {IF 1 llgllr-

More generally, from Tonelli’s theorem, we have that
Lf = gllp < [f1lllgllp, for 1 <p < oo.

We will use the following properties of the Fourier transform throughout this
paper:

(1) For any real number a, if h(z) = f(z + a), then h(¢) = e2mi9€ f(¢).

~

(2) For any real number &, if h(z) = €27%*% f(z), then ﬁ(f) = f(&—&o).
(3) f+g=fg.
Proposition I.1.4. If f(x) is in L'(R), then f(f) is uniformly continuous and

decays to zero as |¢| — oo, i.e. | € Co(R).

And we will frequently use the following results:

Theorem I.1.5 (Plancherel’s). If f(z) € L2(R), then f(£) is also in L2(R) and

| Wepie= [~ 1n@pa

Theorem 1.1.6 (Parseval’s). If f(x) and g(x) are both in L?(R), then
| Rea@ie= [ swis@s,

For more detail about Fourier analysis and its applications, see [SS03] and [WO01].



1.2 Schwartz Spaces

Definition 1.2.1. The Schwartz space S, or the space of rapidly decreasing
functions, is the set of all infinitely differentiable functions f so that f and all

its derivatives f/ , f”, ..., fO, ... are rapidly decreasing, in the sense that

sup |z]*| £ ()] < oo for all k, £ > 0.
:L’ER

Note that the Schwartz space is a topological vector space under the topology
induced by the above seminorms. We can show that the Schwartz space is closed

under differentiation and multiplication by polynomials.

The Schwartz space is very important in Fourier analysis. Actually, we have the

following theorem.

Theorem 1.2.2. The Fourier transform is a continuous bijection of S.

The main ingredient of the proof of the theorem is the following properties of

Fourier transform of function f in the Schwartz space S:

~

o FO(E) = 2mi) F(&)

~

o If h(z) = (—2miz)* f(x), then h(¢) = (F)*)(€)

A simple but important example of a function in S is the Gaussian function
fl)=e",

which plays a key role in Fourier analysis as well as in probability theory.

After normalizing the Gaussian function, we have that

~

Theorem 1.2.3. If f(z) = e~ then f(&) = f(©).



Proof. Define

then

F(0) = / e dp = 1.

And from the fact that f (z) = —27zf(z) and the properties above,

F/(g):/ —2mizf(x)e 2™ dy
=1 f(x)e 2™ 4y

o~

i(2mig) f(§) = —2mEF(E)

By solving an ordinary differential equation, we will have F(£) = e e O

1.3 Frame Theory

Frames can be considered as the generalized notion of orthonormal bases. How-
ever, the frame elements in general are neither orthogonal to each other nor

linearly independent. We now start with Riesz bases.

Definition I.3.1. A Riesz basis {¢;} for a Hilbert space H is a family of
the form {¢p = Uep}p2,, where {e,}7°, is an orthonormal basis for # and

U :H — H is a bounded bijective operator.

We have the following characterization of Riesz bases in terms of bases with

extra conditions:

Proposition 1.3.2. A sequence {fi}7°, is a Riesz basis for H if and only if it

18 a basis for H and

0 < Allella < || exdrll < Bllell2 < oo,
k

8



for all c € 2, where A and B are absolute constants.

Now we are ready to see the definition of a frame.

Definition I.3.3. A sequence {fj}72, of elements in 7 is a frame for A if there

exist positive constants A and B such that

AIIFIP <D KE fi)? < BJIFI1P for all f € H.

The constants A and B are called frame bounds.

If {fr}32, is a frame of #, the operator

T:(N) = H, T({cr}p2y) chfk

is called the pre-frame operator and its adjoint operator is given by
T* :H — C(N), T f = {{f, fu) } 221
The frame operator S : H — H given by

Sf=TT*f = (f, fi)fx

k=1
is a positive invertible operator satisfying Aly; < S < Bly and %IH <Sl<
L1y
For a given frame {f;}32, in H and the frame operator S, the collection

{Feree, = {S™ fu )22, also forms a frame in H. We call this frame the canonical

dual frame of {f}72,, and we have

F=Y 0= (F I ]
k=1 k=1



Please see [Chr03] for more review about frame theory.

14 Finitely Generated Shift-invariant Spaces

Now we are ready to have the formal definition of a shift-invariant space.

Definition I.4.1. A subspace V of L?(R) is a shift-invariant space (SIS) if it

is invariant under integer translations, i.e.

f eV implies f(-+k) €V, forall kecZ.

From now on, we only focus on finitely generated shift invariant spaces which

are defined to be of the form

V(@) ={>_CT(k)2(-+k): Ce ()}
keZ
for some vector function ® = (¢1,--- ,¢,.)T, where each ¢; € L?*(R) and C =
(c1,+ ,e.)T, where each ¢; = {c;(k)} € ¢2. In other words, every function
f e V(®)is of the form Y77 >, o ¢i(k)¢i(- + k). In this case we say that the

space V(®) is finitely generated by ® = {¢1,--- , ¢, }.

Note that in general, the only assumption that we will require on ® is that the

Gramian matrix

~ D
Go(w) =Y d(w+k)®(w+k)
keZ
is bounded, i.e.
Go(w) < MI, ae. weR, (I.4.1)

where M is a positive constant. Recall that the Gramian matrix is a semi-

positive definite Hermitian matrix. An equivalent condition on the matrix Gg

10



is that its components (Gs); ; belong to L>°. Then we have that

1> c®)i(-+ k)3 < (Suﬁz (Ga)i s (N _llell3) < oo
gelN 445 i=1

=1 LcZ

which gives us that V(®) is a well-defined linear subspace of L?(R) under the
condition (I.4.1). But that by no means implies that V' (®) is a closed subspace

of L*(R). We have the following characterization:
Theorem 1.4.2 ([ASTO05]). Let ® be such that (I.4.1) holds. Then V(®) is

closed in L*(R) iff there exists a positive constant A > 0 such that

AGs(§) < GR(E) ae E€R.

And also,

Theorem 1.4.3 ([Bow00]). ® generates a Riesz basis for V(D) iff
ml < Ge(€) < MI

a.e. £ € R for some positive constants m and M.

We have the following more general result:

Theorem 1.4.4 ([Bow00]). ® generates a frame for V(®) with frame constants
A and B iff
AG < G* < BG

If V(¢) is a principal shift invariant space (PSIS) generated by a single function

¢, then by the definition, we have that

V(@) ={ Y adl-+k): {en}ien € £}

k=—o0

11



From the discussion above, we know that V' (¢) is a well-defined linear subspace

of L?(R) if we assume that the overlap function
Go(€) =D lo(¢+ )
J

has an upper bound, i.e. there exists a constant B such that G4(£) < B a.e. &.

Furthermore, if we assume that A < G4(§) a.e. £, for some positive constant A,
then V() is closed subspace of L?(R) and ¢ generates a Riesz basis for V().

In that case, we can equivalently define V(¢) to be
V(¢) =span{¢(- + k) : k € R} (1.4.2)

where the closure is taken with respect to the L2-norm. From now on, we always
assume that every finitely generated SIS V(®) we talk about in this note is a
closed subspace of L?(R) and ® generates a frame, in other words, we assume

that there exist positive constants A and B such that
AGy < G%(£) < BGy, ae. £ €R.
In particular, for principal SIS V(¢), we assume that ¢ generates a frame, i.e.
AN o+ RP < Q1o+ R)P2<BY 166+ k)% ae £€R (14.3)
J J J

for positive constants A and B.

We have the following well-known result,

Proposition 1.4.5. If ® generates an orthonormal basis for the SISV (®), then

we must have

Go(w)=1I, ae.weR (1.4.4)

12



where I is the r X r identity matrix.

Proof. Since ® generates a orthonormal basis, for any ¢ # j and any k;, k; € Z,

from Parseval’s theorem, we must have that

:/ q?i(f)eQWikiEES;(f)e’?’rikjEdg
1 -
= $i(& + k)X RERIG (g oy e 2Tk (E4R) g
Z / 2miki (E+k) 2mik; (£+k)
keZ”°

1 .
- / Z é\l(f + k)@(ﬁ + k)e2m(ki—kj)£d§
0 jeZ

The sum and integral above can be interchanged by Fubini’s theorem.

Consider Go(§)i; = D7, a@(f + k)@(g + k). It is a 1-periodic function and
satisfies

1
/ Ga(&)ige*m Fh)ede = 0
0

for all k; and k;. Then all the Fourier coeflicients are zero, which means if
i # j, we have Go(£);; = 0 for almost everywhere £ € R. For any ¢, from the

normality, using similar computations, we have that for k =0

> STy ! n " —2mik§
1— /oo $i(2)i(@)dr = /0 l%asi(ul)m(su)e de,

13



and for any k # 0

oo

0 ¢i(x)pi(x + k)dx

Il
T~

o0
oo

= | $:(&)pi(€)e M de

1
-y / Gi(€ + D)Bi(€ + e 2mik(ErD g
ez 0

1 b, n .
:/ Z¢i(£+l)¢i(€+l)€*2ﬂzk5d£
0 1eZ

So we have Gg(§);; = 1 for almost every £ € R. That shows that Go(w) = I,

a.e. weR O

Corollary 1.4.6. If ¢ generates an orthonormal basis for the PSIS V(¢), then

we have that

S 10+ k)P =1, ae weR
keZ

L5 Shift-invariant spaces with %Z—invariance

We say V is %Z—invariant if V' is invariant under translations by multiples of
1/n, ie.
k
f eV implies f(-4+ =) €V, for all k € Z.
n

We say a subspace is translation-invariant if it is invariant under all real num-
bers, i.e.

f €V implies f(-+a) €V, for all « € R.

Obviously, any translation-invariant space is shift-invariant and %Z—invariant

and any %Z—invariant space is shift-invariant, but the inverses are not true in

14



general.

Given a SIS V, let G be the set of all parameters 6 such that V is invariant
under integer multiple of . We must have that Z C G and if § € G, then
I+ k6 € G for all integers | and k. In particular, if 6 is irrational, then G is

dense in R, since V is closed, we can show that V' is translation invariant.
It is shown in [ACHKM10] that there are only two possibilities:
e V is translation-invariant, or

e there exists an n € N such that V is %Z—invariant, but not %Z—invariant

with m > n.

Definition I.5.1. Given a SIS V', we say that V has invariance order n if n is the
maximum positive integer such that V is %Z—invariant. If this maximum does
not exist, we say that V has invariance order oo; in this case V is translation-

invariant.

Given a positive integer n, we divide the real line into n subset. For k =

0,---,n—1,set Iy = [k,k+ 1), and define
By = |J Uk +nj).
jez
Note that Bj implicitly depends on the choice of n.

Suppose V is a SIS in L?(R), we define the following spaces:
U ={f € L*R): f: gxB, for some g € V}, k=0,....,n—1. (L5.1)

Since the sets By are disjoint, we have that Uy are mutually orthogonal.

15



If f €V, we use f* to denote the function

fk:fXBka

and Py to denote the orthogonal projection onto Uy,
fF=Puf.

The following results are proven in [ACHKM10]

Theorem 1.5.2. IfV is a SIS, then for each k =0,...,n—1, the subspace Uy,

is a SIS that is also %Z-invam’ant.

Proposition 1.5.3. Suppose V is a SIS, then V is also %Z-mvam‘ant iffU, CV
for all k =0,...,n— 1. In that case, we have that V is the orthogonal direct
sum

V=Uyd - &U,_1.

This proposition states that if a SIS is also %Z—invariant then every function in

it can be uniquely written as a sum of projections in the frequency domain.

Definition 1.5.4. Given f € L2(R) and w € [0,1), the fiber f,, of f at w is the

sequence

~

J?w = { (W =+ k)kez}'

It is easy to check that the fiber ]/”; belongs to ¢%(Z) for almost every w € [0, 1).

Similarly, given a closed subspace V of L?(R) and w € [0, 1), the fiber space of

V at wis

Ty (w) =span{f, : f €V and f,, € (*(Z)},

where the closure is taken in the norm of ¢?(Z).

16



If V(@) is a finitely generated SIS with ® = {¢1,...,¢,} and f € V(®), there

exist Z-periodic functions ai, ..., a, such that

T

F&) =D ai(©)a(§),ae. &,

i=1

which implies that the fiber space Jy (¢)(w) is generated by the fibers of the

generators at w. That is, for a.e. w we have that
Jv @) (w) = span{(g/ﬁ\i)w ci=1,...,r}
Now we define the r x Z matrix Fg(w),
(Fo(w))ij = di(w +j), for L<i<r,jeL.

From the definition of Grammian matrix, we have that Gg(w) = Fo(w) x Fj(w),

where Fj(w) is the adjoint matrix of Fg(w). Then we must have that
dim(Jv (¢)(w)) = rank [Fe(w)] = rank [Ge(w)], (I.5.2)

for a.e. w.

In a similar manner, the SIS Uy is generated by ®* = P,® = {¢¥ ... ¢},

where ¢f = Py¢;. The fiber spaces Jy, (w) satisfy
Ju, (w) =span{(¢; )u :i=1,...,7}.

for a.e. w.

We denote by Ggr the Grammian matrix associated with the generators of Uy.

17



From above, we must have
dim(Jy, (w)) = rank [Gex(w)], (I.5.3)

for a.e. wand k=0,...,n.

Using the notation above, we have the following characterization,

Theorem 1.5.5 ([ACHKMI10]). If V(®) is finitely generated by ® = (¢1,--- , ¢,)7,

then the following statements are equivalent:
(a) V is LZ-invariant.

(b) For almost every w € [0,1),

dim (Jy (w)) = z_: dim (Ju, (w)).
k=0

(¢) For almost every w € [0,1),
n—1
rank [Go(w)] = Zrank [Gar(w)].
k=0

The proof of this theorem follows directly from (I.5.2) and (I.5.3) and the or-

thogonality of the Uy.

18



CHAPTER II

UNCERTAINTY PRINCIPLES

In many applications, it is always desired to construct “good” generating func-
tions in the sense that the functions have good localization in both time and
frequency domains, i.e. the generating functions and their Fourier transforms
both have fast decay. It is of interest in some applications for a SIS to be trans-
lation invariant like the Paley-Wiener space. However, the generating function
sinwa/mx has slow decay. So we want to construct a SIS which is also 1Z-
invariant such that the generators have fast decay, but also have good frequency

decay.

In general, there are obstructions for the time-frequency localization. For ex-
ample, the classical uncertainty principle tells us that a function and its fourier

transform cannot both decay as rapidly as we want.

Theorem I1.0.6. For any function f € L*(R), we have

17115 < 4l f @)||211€F ()12,

and the equality holds only if

for s > 0.

See [BF94] for the proof of a more general version of the classical uncertainty

principle.
The time-frequency localization deteriorates if we impose more conditions. In

19



fact, for sequence of functions, it is even impossible for

|fa(@)] < e+ |2])P, |Fa(€)] < (1 +|€])?

to hold, when p > 1, for all f,, in an infinite orthonormal set [BBS92], where ¢

is a absolute positive constant which dose not depend on n.
In fact, the time-frequency non-localization for a basis of L?(R) is an active

subject of research. For example, if the Gabor system {E,T.f} .7 =

{e2mime f (g + )}, nez of a function f is a Riesz basis for L2(R), we will have

the following Balian-Low theorem:

Theorem I1.0.7. Let f € L*(R). If {E,,T,.f} is a Riesz basis for L>(R), then

([ estwra)( [ o) ==

The Balian-Low theorem implies that if function f generates a Gabor Riesz

basis, then it is impossible that g and g satisfy

c o c
f@l< 2 IFO1< &
simultaneously with r > 3/2.

See [HW96] for the proof of The Balian-Low theorem and [HP08] and the ref-

erences therein for related work.

In this chapter, we want to consider similar questions but in SIS which are also

%Z—invariant. The questions can be formulated as follows:

Question I1.0.8.

1. If functions ¢1,...,d, and their integer shifts generate a Riesz basis (or

even a frame) for the shift-invariant space V(®), what can we say about

20



their time-freqency localizations?

2. Furthermore, if V(®) is also %Z—invariant for some n > 1, how fast can

¢; decay in both time and frequency domains simultaneously?

Note that the generators only generate a subspace of L?(R) and we don’t con-
sider the modulation structures of the functions. So the Balian-Low theorem
doesn’t apply here. In fact, it is possible to construct an orthonormal generator
¢ for the shift invariant space V(¢) such that ¢ and ¢T are both in the Schwartz
space. However, we show that if V(¢) has additional invariance then we get a

severe time-freqency obstruction.

First, we will consider the easy case when the SIS is a PSIS, that is, generated by
a single function. Then we will consider the more general finitely generated SIS.
Although, the PSIS result is really a special case for general finitely generated
SIS result, we will consider them separately. Also, to make things smoother, we

will show the results first and prove them later.

1.1 Principal Shift-invariant Space case

In general, if we do not require any additional invariance other than integer shift,
we can construct a PSIS to have an orthonormal generator with exponential
decay. Consider the Schwartz S space of rapidly decreasing functions. Let
g(x) = e~™" and then g9(¢&) = e~ hence g and § are both in S. Consider
the overlap function G4(§) = >, [9(£+J) 2= > e~(E+)* | We also know that
9(&) = e~™€ is never zero. In particular, there exists positive constant ¢ such
that g(&) > ¢ > 0 for all £ € [0,1]. Then we have Gy4(¢) > [g(&)]*> > ¢ > 0 for

all £ € [0,1]. Since G4(€) is a 1-periodic function, G4(§) > ¢* > 0 for all €.

Now it makes sense to consider the function ¢(x) such that (E(f) =3(£)/(G4(8)) z,

And it follows that the overlap function Gy (§) = 3=, 6 + )2 = > lg€ +
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3)|?/Gg(€) = 1. Thus, {¢(x + k)} is an orthonormal basis for the PSIS V(¢),
and ¢ decays exponentially in both the time domain and frequency domain.
However, V(¢) is neither translation invariant nor %Z—invariant for some n > 1.

This leads us to the consider next question.

As we can see from the PW space, if a PSIS is translation invariant, there may be
some obstructions in terms of the time-frequency localization of the generator.
Actually, this slow spatial-decay property for the generator of principal shift-
invariant spaces V(¢) that are also translation-invariant is not unique to the
space of bandlimited functions PW. In fact, we can show that the generator ¢

of any translation-invariant principal shift-invariant space V() is not integrable.

Theorem II.1.1. Let ¢ € L? and {¢(- — k)| k € Z} be a Riesz basis for its

generating space V(¢). If V(¢) is translation-invariant, then ¢ & L'.

The slow spatial-decay of the generators of shift-invariant spaces that are also
translation-invariant is a disadvantage for the numerical implementation of some
analysis and processing algorithms. As we discussed before, this is the reason

we are considering the PSIS which is %Z—invariant.

We try to circumvent some of the problems by seeking PSIS V(¢) that are close
to being translation invariant, with a generator ¢ which is well localized in both
space and frequency domains, i.e., ¢ and qZAJ are well localized. Specifically, we
ask whether we can find a shift-invariant space V() such that V(¢) is also 17Z
invariant for some 2 < n € N, and such that ¢ and $ are well localized. It turns
out that it is possible to construct functions ¢ that are well-localized in time and
frequency domains, that generate shift-invariant spaces V(¢) that are also %Z
invariant. But in light of the Balian-Low Theorem and uncertainty principle,
we should expect there must be some other obstructions. It turns out that we

can obtain the following surprising result:
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Theorem I1.1.2. If ¢ € L? has the property that {¢(- — k)| k € Z} is a Riesz
basis for its generating space V(@) and V(¢) is %Z—mvariam‘ for some n > 2,

then for any € > 0, we have

/ |p(2))? || Teda = +o0. (I1.1.1)
R
Remark 1.

(i) Theorem II.1.2 is a Balian-Low type result. If we choose ¢ = 1 in (IL.1.1)
of Theorem I1.1.2, we get [ |z¢(x)|*dz = 4oc0. It should be noted that
in the Balian-Low Theorem [ _|zg(x)|?dz can be finite, while in the
case of Theorem IL1.2 [ [z¢(z)[*dx is always infinite. For the case A, =
Jz |o(x)]?|z[Pdx, the theorem above should be comparable to the (1,00)

version of the Balian-Low Theorem ([BCPS06], [Gau09]).

(if) If we do not require other invariances besides integer shifts, then we can
find V(¢) such that {¢(- — k) : k € Z} is an orthonormal basis for V' and
such that ¢ decays exponentially in both time and frequency. In particular
for such a ¢ it is obvious that (f |z|*|g(z de) (f_ 1€1°19(¢) |2d§)

00, where a, 8 > 0 are any positive real numbers.

There is also a decay restriction in the Fourier domain. Specifically, the Fourier
transform of an integrable generator ¢ of a principal shift-invariant space which
is 1Z-invariant for some integer n > 2 cannot decay faster than [¢|71/?7¢ for

any € > 0.

Theorem I1.1.3. Let 2 < n € N. Let ¢ € L' N L? have the property that

{¢(- — k)| k € Z} is a Riesz basis for its generating space V(¢) and V(@) is
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%Z—invariant, then for any € > 0,
sup [ (&)[[¢]"/*+ = 400, (I.1.2)
£ER

We conclude from Theorem I1.1.3 that there is an obstruction to pointwise

frequency (non)-localization property.

Remark 2. The conclusion of Theorem II.1.3 remains valid if we weaken the

condition that ¢ € LY N L2 to ¢ € L2 and ¢ is continuous.

Now, we show the optimality of the results of Theorems I1.1.2 and II.1.3.
The optimality of Theorem II.1.2 is obvious since the ¢ = sinc function gener-
ates a translation invariant space and [, |¢(x)[?|z|'~“dz < oo for any 0 < e < 1.

The following result shows that (II.1.2) in Theorem II.1.3 is sharp and that
for any 2 < n € N there exists a generator ¢ € L' N L? (that depends on n)
for V(¢) such that qAS decays like |£|~1/2. This is done by constructing time-

frequency localized generators ¢ that achieve the desired properties:

Theorem I1.1.4. For each integer n > 2, there exists a function ¢ € L' N L?
(and hence & is continuous), which depends on n, such that {¢(- —k)| k € Z} is

an orthonormal basis for its generating space V(¢), V() is +Z-invariant, and

/ |p(z)|2(1 + |z|)!~¢dx < oo, (I11.1.3)
R
sup |6(6)|€]? < +oc. (11.1.4)
£ER

Remark 3.

(i) Note that by giving up the translation invariance and only allowing 1/n
invariance as in Theorem II.1.4, we are able to have an L' generator, while

this is not possible for translation invariance as shown in Theorem II.1.1.
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(ii) Note that Theorem II.1.4 shows the optimality of both Theorems II.1.2

and II.1.3 simultaneously.

We turn our attention to the integral measure of time-frequency localization for
generators of %Z—invariant spaces. Unlike what was proven for the translation-
invariant case in Theorem 1.1, we prove that by sacrificing a little frequency
localization, it is possible for generators of such spaces to be in L', even when

satisfying the optimality condition (II.1.3).

Theorem I1.1.5. Forany2 <neN,e>0,7v>0,0>0,1<q < oo with
1+8—q/2 < 1/(2y), there exists ¢ € L? (that depends on €,6,q,v,n) such that
{6(- — k)| k € Z} is an orthonormal basis for its generating space V(¢), V()

is %Z—invam’ant and ¢ satisfies the following conditions:
1. o lo(@)P(1+ [2])!~“dw < oo,
2. [ o(@)|(1 + |z])7dz < oo,

3. Jo 16(©)|7(1 + [¢)2d¢ < oo.

Remark 4.

(i) Note that the orthonormal generator ¢ = sinc for the Paley-Wiener space
PW satisfies the first and third localization properties in Theorem I1.1.5.
However, the sinc function does not satisfies the second time localization
inequality. In fact no function ¢ generating a shift-invariant space V(¢)
that is also translation invariant can satisfy the second inequality of The-
orem II.1.5, as is shown in Theorem II.1.1. Thus by relaxing translation
invariance to %Z invariance we are able to get better time localization in
the sense of the second localization inequality above. For this, however,
we needed to trade off some frequency localization by allowing infinite

support in frequency.
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(ii) We do not know what happens for the case € = 0.

(iii) Using Lemmas I1.2.4, 11.2.5 and I1.2.6, Theorem I1.1.5 can be shown to be

valid for other norms and other weights.
11.2 Proofs

I1.2.1 Proof of Theorem II.1.1

To prove Theorem I1.1.1, we first look at the following proposition which is a

special case of the result in Theorem 1.5.5.

Proposition I1.2.1. Let ¢ € L? with the property that {¢(- — k)| k € Z} is a
Riesz basis for its generating space V(). Then V(@) is translation-invariant if

and only if for almost all £ € R,

HE)D(E+E) =0 for all 0 £ k € Z.

Now we start to prove Theorem II.1.1.

Proof of Theorem II.1.1. Suppose on the contrary that there exists a principal
shift-invariant space V(¢) on the real line such that V(¢) is translation-invariant

and the generator ¢ is integrable. Let

0 := {¢ € R| 4(¢) #0}.

Since ¢ € L' by assumption, ngS is continuous, and hence O is an open set. From
Proposition I1.2.1, it follows that the Lebesgue measure of the set (O+7)N(O+k)
is zero for all j # k € Z. This together with the fact that O is an open set gives
that

(O+)NO+k)=0 forallj+#kel. (11.2.1)
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Recall that R is connected and that any connected set is not a union of nonempty
disjoint open sets. Thus {O + k|k € Z} is not an open covering of the real line,
ie., R\(Ukez(O +k)) # 0, which in turn implies the existence of a real number

&o € R with the property that

o~

$(éo+k) =0 forall ke Z. (11.2.2)

As :é\ is uniformly continuous by the assumption that ¢ € L', for any € > 0

there exists § > 0 such that

o~ o~

|6+ k) —p(&o+ k)| < e forall | —E&| <dandke€Z. (I1.2.3)

By (I1.2.1), for any £ € R there exists an integer {(£) such that

Yo lo(E+ k) = o€+ 1) (IL.2.4)

kEZ

Combining (I1.2.2), (I1.2.3) and (I1.2.4) yields

716+ k)P < e whenever |¢ — & <. (11.2.5)
keZ

Since € > 0 can be chosen to be arbitrarily small, the last inequality contradicts
the Riesz basis property that there exists m > 0 such that m <3~ _, |B(&+ k)|

for almost all £ € R. O

11.2.2 Proof of Theorem I1.1.2

We first have the following proposition which is also a special case of Theorem

1.5.5.
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Proposition I1.2.2. Let n > 2 be an integer, and ¢ € L? with the property
that {¢(- — k)| k € Z} is a Riesz basis for its generating space V(¢). Then V (¢)
18 %Z—mvariant if and only if for almost all £ € R, one and only one of the

following vectors

D, (€)= (-, €+ m—n), (€ +m),p(€ +m+n),-), 0<m<n—1,
(I11.2.6)

1S nonzero.

Proof of Theorem II.1.2. Suppose on the contrary that

[ 1o+ ol < o (1127

Then ¢ € L', which implies that (g is a uniformly continuous function. Let
O ={€£ €R| D,,(§) #0},0 <m < n—1, where ®,, is defined as in (11.2.6).
Since

O = | J{€ € R| &€ +m + kn) # 0},
kel

then O,,,0 < m < n — 1 are open sets, and
Om+m=0p and O,, + nk =0,, forall0<m <n-—1andk € Z. (IL.2.8)

Moreover, the intersection between the sets O,, with different m have zero
Lebesgue measure (hence are empty sets). Therefore {O,,|0 < m < n — 1} is
not an open covering of the real line R, which implies that the existence of a

real number £, € R with the property that

~

$(éo+k) =0 forall k € Z. (I1.2.9)
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Let N > 1 be a sufficiently large integer, § = N~'=¢/2, and h be a smooth
function supported on [—2,2] and satisfy 0 < h < 1 and h(z) = 1 when z €

[—1,1]. Define ¢n(x) = h(x/N)¢(x). Then we obtain that

(5] X6-4n) (§0+§+k)|2d§)

kGZ
/2 1/2
< %/w I )(©)de) =25/\¢ () )
< 6/4 /\¢ 1+|x|)1+6dx) : (I1.2.10)

and

~ /
Z|¢N o+ §+ k) — I (6o + D))

Z / Fr(€o+€ + k)
k:

dg)

)[[ac'ac)”

]/N2lh’ N0 1960 + € + k —n)ldn] ag'ac)”

/O keZ

. ) e NV
|h|\1/ e[ [ (3 0+ + k=) anas'a)

~ ~ 1/2
N2y (esssup eex I I6(¢ + R)2) (IL.2.11)

kEZ

IN

IN
g~
\\\\

IN

where 51\1( =N fR ¢(§ n)dn is used to obtain the second inequality,
while the third inequality is obtained by letting |h’(N77)\ = [W/(Nn) /2R (Nn)| /2
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and using Holder inequality. Also we have that

Slaxteo+hP = Y| [ e o)1 - ha/N)da|

kEZ keZ

/ (Z|¢x+1||1— ((x+l)/N)|>2dx

0 ‘ez

/O(Z|¢x+z 1+ |z + Z|)1+6)

lez

IA

IN

X(le h((z +1)/N))? (1—|—|ac—|—l|)_1_€)dx

Z
2(l§jv|zr“ ([ o)+ ol ar)

(11.2.12)

IN

where the first equality follows from (I1.2.9). Combining (I1.2.10), (II.2.11) and

(I1.2.12) with the Riesz basis condition gives

m < essinf 5ER(Z |$(€ + k)|2)1/2
keZ
< (5] Tierermra)”
kEZ
< () Slhv+ern-du+wra)”
kEZ
~ 1/2 P 1/2
(it 1)+ (s [ STIG e+ €+ wae)
kez =0 ez
< CON~“* 5 0as N — oo, (I1.2.13)
which is a contradiction. O
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11.2.3 Proof of Theorem I1.1.3

Proof. Note that ¢ € L' implies that (Z is uniformly continuous. Now, suppose

on the contrary that

6(6)| < O+ |¢g])1/2 (11.2.14)

for some positive constants C' and € > 0. This together with the continuity of
the function ¢ implies that Go(&) =D per \g/b\(ﬁ + k)|? is a continuous function.

Therefore there exists a positive constant m such that
Gy(§) >m forall (£ eR (I1.2.15)

from the continuity of the function Gg. Using the argument in the proof of
Theorem I1.1.2, we can find a real number & € R such that ¢A5(50 + k) =0 for
all k € Z, which implies that G4(&) = 0. This contradicts (II.2.15). O

I1.2.4 Proof of Theorem 11.1.4

To prove Theorems I1.1.4 and II.1.5, we construct a family of principal shift-
invariant spaces on the real line which are %Z—invariant for a given integer n > 2.
Let g be an infinitely-differentiable function that satisfies g() = 0 when z < 0,
g(z) = 1 when x > 1, and (g(z))? + (¢9(1 — 2))> = 1 when 0 < x < 1. For
positive numbers o, 3 > 0 and a natural number n > 2, define 1, 3, With the

help of the Fourier transform by

oo Bi—1
Pagn(®) = ho(©) + 33 (8) V2h( — nly; +1)
j=1 1=0
00 /33'—1
+ )V2hi (=€ —n(y; +1),  (I1.2.16)
j=1 l:()
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where §; = [278] (the smallest integer larger than or equal to 277), Vi =
300 Brs 9o(@) = g( + V)g(=z +1), g1 (w) = gl + 1)g(—2°z + 1), and

b W2 =0

g1(27%(26 —1+2799) /(2% = 1)) if j>1.

The functions 9. g, (€) with a = 1,8 = 2 and n = 2 and hy(&),0 < i < 3, with

a =1 are plotted in Figure II.1.

Figure II.1: The functions h;,0 < ¢ < 3 with a = 1 on the top, and the function
Ya,8n With a = 1,8 =2 and n = 2 on the bottom.

Lemma I1.2.3. For o, > 0 and an integer n > 2, let 1o p,n be defined as
in (11.2.16). Then o g,n is an orthonormal generator of its generating space

V (Ya,8n) and the principal shift-invariant space V(Yo p.5) is +Z-invariant.
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Proof. As each hj, for j > 0, is supported in (—1/2,1/2) by construction,

oo Bj—1
Gagn©F = [ho(OP + 3 S (8) M hy(€ — n(y; + 1)
=1 (=0
00 Bjil
+3 57 (B) M k(=€ — n(y; + 1),
j=1 1=0

which implies that

S Wasn€+ B = S lhole+ 0P+ 303 (1hi (€ + )P + |hj(—€ + k)?)
kEZ keZ j=1keZ
= [ho(&)+ 3 I () + 3 Ihi (=€) (11.2.18)

for any £ € (—1/2,1/2). Set

H(&) := |ho(¢ I2+Z|h |2+Z|hj(—£)2

Then H () is a symmetric function supported on (—1/2,1/2) and for any & €
[1—2792 1 —2-0+De]/2 with j > 0,

1A ()1 + lhjs1 (€)1

= lg(=20 V(2 — 14 279 /(2% — 1) + 1)P

H(¢)

gD (26 — 14270+ (2 — 1) 4 1)

= 1 (11.2.19)

by the construction of the functions g and hj,j > 0. Therefore H(§) =1 for all

€ (—1/2,1/2), which together with (II.2.18) implies that

Y apnl€+ k)P =1 forall € € R\(1/2+1Z). (11.2.20)
kEZ
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Then 1, g, is an orthonormal generator for its generating space V(¢4 5,n) by

(11.2.20).

By (II.2.16), @l is supported on (—1/2,1/2) + nZ. Then V(14 g,n) is 1Z-

invariant by (11.2.20) and Proposition I11.2.4.
We are now ready to prove Theorem II.1.4.

Proof of Theorem II.1.4. Let o 5, be as in (I1.2.16) for o, > 0, and set
¢ = Ya,n- Then by Lemma I1.2.3 it suffices to prove (II.1.4) for the function
¢ just defined. From (I1.2.16) it follows that

BN = [ (€)]1€]1/2

< swp {lho(©llEl?  sup B¢ —nly; + D),
Jj>1,0<1<8;-1

swp B2 (=€ = iy + D)€}

J21,0<1<8; -1

Note that, from its definition, h;(§ —n(v; +1)) has support in [n(y; +1), n(v; +
[) + 1] and has maximal value 1. Thus the term |h;(¢ — n(vy; +1))||¢]*/? can
be bounded above by (n(wj +1)+ 1)1/2 for all { and 0 <1 < 3; — 1. Thus, it

follows from the last inequality and the relation v; 4+ 8; = ;41 that

6(E)1E12 < 1+ ngp(ﬁj)_l/2(7j+1)1/2 < 0, (11.2.21)
j>1

where C is a positive constant. Hence (II.1.4) holds. In particular, we can show
that

0 < limsup |6(€)||€]"/? < 0. (11.2.22)

|€§]—o00
This proves the pointwise frequency localization of the theorem. The time
localization inequality is a direct consequence of Lemma I1.2.4 below. The fact

that ¢ is also in L! follows from Lemma II.2.5 choosing p = 1, v = 0. O
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I1.2.5 Proof of Theorem I1.1.5

Theorem II.1.5 is an immediate consequence of the following three lemmas:

Lemma II.2.4. Lete € (0,1), ., 8 > 0, n be an integer with n > 2, and Yy g.n
be defined as in (11.2.16). Then

/ a0 ()| |2 dz < . (11.2.23)
R

Lemma I1.2.5. Lety > 0,1 < p <2, n be an integer withn > 2, and o 5,n be
defined as in (11.2.16) for positive numbers o, 8 > 0 with 5(1/p —1/2) + a(p —
—7)/p > 0. Then

/ [Ya,gn(2)[P(1 + |2])d2 < 0. (11.2.24)
R

Lemma I1.2.6. Let § >0, 1 < g < oo, n be an integer with n > 2, and Yo gn
be defined as in (I1.2.16) for positive numbers o, § > 0 with oo > B(1 4+ —q/2).
Then

/I%gn 91+ |€])°d¢ < oo. (I1.2.25)

Proof of Lemma II.2.4. Taking the inverse Fourier transform of both sides of

(I1.2.16) yields

o0

_olere ez 1 2gsagy 2]
Va,pn(T) = 9 90( 9 z_: 27 1(2ja+1 x)
ﬂ]_l 1 o0
miz(1—2779%) 2mixn(y;+1) — N—1/29—ja
xe (3 ermenrt) 4 22 S (s, /20
=0 Jj=1
B;—1
2% —1 —miz(1—2"7% —2mizn(vy;
xgY (= Sragre) x e TN emEmientt)
=0

(I1.2.26)
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where gy and gy are the inverse Fourier transforms of the functions gy and
g1 respectively. Since both gy and g; are compactly supported and infinitely
differentiable, their inverse Fourier transforms gg and gy’ have polynomial decay

at infinity. In particular,

|96 (@) + |g7 ()| S C(L+[z) 72, z € R

for some positive constant C'. Hence

| A

([ Wopm@Pa+lay=ae) ™ < (22 ([ laf@PRa+ ja—<as)

oo

_ s 2¢ 1 2 Slnﬂmrx 2 B 12
_ N—1/260—ja v ; -
1);(/6’]) 2 (/R 91(2ja+1 m)‘ ( o ) (1+ |z)) dw)
) —j(B+a+tae)/2 el —2 M 2 1/2
< C+C;2 (/R(1+2 |z)) ( T ) dm)
1/2 4 L s e
= _](B+a+(16 —ja 9 M
C+CZQ /1/2 ;(1+2 |z +1)) )( — ) dw)
—i(B8/2+ae/2) sin 3;mx 2 1/2
< C+C;2 (/1/2(Smm )dm)
1 2 1/2
< C+0YN 2 iBta /2 / 7 ”
; 1/2 min(fs 2]z I)) )
[ee]
= Crey e (11.2.27)
Jj=1

where C' is a positive constant which could be different at different occurrences.

O
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Proof of Lemma II.2.5. Similar to the argument in Lemma I1.2.4 we have

1/p

(/}R Yo, .n(x)P(1+ |:17|)7dg:>

C+C 27i(B/3Hal=(1)/p) (/ (Sm @M)Pdl,) Lp
= _1/2 \ sinmx

C+ Czjil 2-1(B(1/p=1/2)+a(p=1-7)/P) if 1 < p < 2

IN

C+CY 2, j277B/2e) if p=1

< oo,

from which the lemma follows. O

Proof of Lemma 11.2.6. By (11.2.16), we have

/waﬁn 91+ Je))°d

oo Bi—1
- /|ho 114 je)Pae+ 30 Y By ‘”2/|h iy + D)L+ Jel)de
Jj=1 1=0

OO/B_/

nS ﬁq/2/|h &= n(y; + D)L+ [e])d

7j=1 1=0

< 0+cz 22 Bila/2= 5)/|h € —n(y; +1))|9d¢
j=1 1=0
oy Z 2789020 [ hy(—¢ —n(y; + D)l
j=1 1=0
< C+C) 2P0a2d oo, (I1.2.28)
i>1

where C' is a positive constant which could be different at different occurrences.

Hence the lemma is established. O
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11.3 Finitely Generated Shift-invariant Space case

In this section, we generalize some of the results from the previous section. We
generalize the results in two ways. First, we consider finitely generated shift-
invariant spaces, second, we only require the generators and their integer shifts
form a frame of the generating space.
Recall that if a shift-invariant space V(®) is generated by ® = (¢1,...,¢,)7
with ¢1,...,¢, in L*(R) and {¢;(- — k)| k € Z,i =1,...,r} forms a frame for
V(®), we have that

AG(¢) < G*(¢) < BG(¢) (I1.3.1)

for almost every £ € R ([Bow00]), where G(§) = G¢(&) is the Grammian matrix
for ® = (¢1,...,0.)7T.

Here we have to make a natural assumption that Length(V (®)) = r where for
any finitely generated shift-invariant space V', Length(V') is the cardinality of

the smallest generating set for V', that is

Length(V) = min{#® : V = V(®)}.

Under this assumption, using Theorem 2.3 in [ACHMO7], we can easily show

that there exists at least a point £ € R such that

det G(€) # 0.

We now show that if a finitely generated shift-invariant space is translation
invariant, then at least one of its frame generators cannot be in L'. In an

equivalent form, we have the following theorem.

Theorem II.3.1. Suppose that functions ¢1,...,¢, in L?> N L' satisfy that
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{0i(- — k)| k € Z,i = 1,...,r} forms a frame for the generating space V().

Then V(@) cannot be translation-invariant.

We also have the following Balian-Low type obstructions, the following theorem

can be considered as generalization of Theorem I1.1.2,

Theorem I1.3.2. Suppose ¢; € L? are such that {¢;(-—k)| k € Z,i=1,...,r}
is a frame for V(®) which is 1Z-invariant for some n f r. Then there eits

io € {1,...,r} such that

/ |bio () *|2|"Fdx = +o00
R

for all e > 0.

There is also a pointwise decay restriction in the Fourier domain. Specifically,

the following theorem can be compared with Theorem II1.1.3,

Theorem I1.3.3. Suppose that functions ¢n,...,¢, in L? satisfy that qgi 18
continuous fori=1,...,r and {¢;(-— k)| k € Z,i=1,...,r} is a frame for the
generating space V(®) which is %Z-invariant for some n { r, then there exits

io € {1,...,7} such that €/2<¢; (£) & L for any ¢ > 0, i.e.,
sup |63, (6)[[€]'/#+¢ = +oc.
£eR

Note that the condition n t 7 in the above two theorems is very easy to satisfy
since we are hoping to have shift-invariant spaces close to being translation
invariant. In other words, n is usually very large, in which case the condition is

automatically satisfied.
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114 Proofs

We first have the following proposition which is directly from Theorem 1.5.5

Proposition I1.4.1 ([ACHKM10]). IfV(®) is finitely generated by ® = (¢p1,- -

and V(®) is LZ-invariant, then for almost every w € [0, 1),

n—1
rank G(w) = Z rank G(w), (I1.4.1)
1=0

where Gj(w);j = ZkeZ &(w +k) (/b\é(w + k) and (/ﬁ = aiXBl-
Here and later on we will use a slightly different version of Proposition 11.4.1,

Corollary 11.4.2. If V(®) is finitely generated by ® = (¢1,- -+, ¢.)T and V(®)

18 %Z-invam’ant, then for almost every w € R,

n—1
rank G(w) = Z rank A;(w), (I1.4.2)
1=0

where Aj(w)ij = > 1c7, bi(w+ kn +1) gj(w +kn+1).

Proof. From the definition of the matrices G;(w) and A;(w), it is easy to show

that for w € [0,1), we have that
Gl(w) = Al (w)

In particular, we have (I1.4.2) is true for almost every w € [0,1). Note that
Aflw+1) = Aj41(w), for all I = 0,1,...,n — 1. Then 27;01 rank [A4;(w)] is
a periodic function with period 1. It is also easy to see that rank [G(w)] is a
periodic function with period 1. So we must have that (I1.4.2) is true for almost

every w € R. O
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Now we are ready to see an important lemma of this section.

Lemma I1.4.3. Suppose that functions ¢1, ..., ¢, in L? satisfy that q/b\z s con-
tinuous fori=1,...,r and the generating space V() is %Z—mvariant for some

n{r, then there exists £ € R such that det(G(&)) = 0.

Proof. Suppose on the contrary that for all £ € R, det(G(£)) # 0, that is
rank G(£) = r. Since V(@) is 1 Z-invariant, from Corollary 11.4.2 we have that
n—1

r =rank G(§) = Z rank A;(€) (I1.4.3)

1=0
for almost every & € R. Now we want to show that this is true for all £ € R.

Note that G(¢) = 327 A;(€), which implies that

n—1
rank G(§) < Z rank A;(€),
1=0
for all £ € R. This shows that if (I1.4.3) is not true for some &, € R, we must
have that

n—1

r =rank G(&) < Z rank A;(&o)-

1=0
Since A;(§) = -5 A7 (€), where A7(€), defined as A7(§)i; = 224 = bi(w +
kn +1) QASJ- (w+ kn +1), are all positive semidefinite matrices. So there must be

a p(l,€) such that
p(l,€)

rank A;(§) = rank Z A7 (8).
s=0

: 7o : P(LE) ps(ey ; ;
Since ¢; is continuous, Y .7 A7 () is a continuous matrix whose rank can only

increase locally, which implies

p(L,€) (L8
rank A;(n) > rank Z Aj(n) > rank Z Aj (&) = rank A;(§),
s=0 s=0
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for all |n—¢| < e for some small e. This proves that rank A;(£) can only increase

locally. Then there must exist some €y > 0 such that

n—1 n—1
r < Z rank A;(&) < Z rank A;(n),
1=0 1=0

for all | — &| < €o, this contradicts that (I1.4.3) is true for almost every £ € R.
Then (I1.4.3) is true for all £ € R.

Since rank A;(&) can only increase locally and their sum is always constant, we
must have that rank A4;(¢) is locally constant in R. But R is connected, and
so rank A;(€) has to be a constant function in R. We denote rank A;(§) = ry,
sor = Elnz_ol r;. From the definition of Ag: (), for any I; and ls, we have that
r, = A (&) = A+ 12— 1) = A, (§) = ri,. This is a contradiction to the

assumption that n tr. So we have £ € R such that det[G(£)] = 0. O
Now we are ready to prove Theorem I1.3.1.

Proof of Theorem I1.3.1. Suppose the contrary that V(®) is translation invari-
ant, in particular, it is %Z—invariant for any n > 1. Since ¢; € L', we must have

that ggl is continuous for ¢ =1,...,r.

Define E = {¢|det(G(§)) # 0}, by Lemma 11.4.3, E # R. For any £ € E,
rank G(£) = r. Since the rank of G(§) is non-decreasing locally as showed in
the proof of Lemma I1.4.3. It is easy to see that E is an open set in R. So F

has to be the union of disjoint open intervals.

Choose & € E\E to be the left end point of one of the intervals whose union is F,
then det(G(&p)) = 0. There must exist a nonzero vector @ such that G(&p)d = 0.

Since G(§) = F(&)F*(€) where F(£) is a r X Z matrix with F (&) = ggi(er k),
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we have F*(&y)d = 0. Then we can show that

> aigi(§o+k) =0 forall k€ Z

i=1

~

Define f(z) = >"._; a;¢i(x). Then f(& + k) = 0 for all the integer k. Also we
must have that f € L, which implies that fis uniformly continuous. Then for
any € > 0, we can choose § > 0 small enough, such that (£y,&, + ¢) C E and

that

~ o~ ~

fE+ R =1fE+E) = [+ k) <e forall §e (S, +0)and k € Z
Note that for any £ € R, we have
rank F(§) = rank G(§) <.

By (I1.4.1) and the fact that V(®) is 1Z-invariant for any n > 1, we have that
forany 1 <i<rande€R
for at most r integers k. Since f is a linear combination of ¢;, we must have

that

~

fE+k)#0,

for at most 72 integers k. Then for & € (£y,&y +0),

SIfE+R)P <r?e,
kel
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which implies that

&o+6 R
Jim 1/ SO IF(E + )[Pde = 0.
0 keZ

But

Y If(E+k)Pde = [F(9)al = (G(9)a,a) > Al
kel

for £ € (&, & + 9), which is a contradiction.

O

Before proving Theorem 11.3.2, we first introduce the following lemma whose

proof can be found in the proof of Theorem I1.1.2,

Lemma I1.4.4 ([ASW11]). If f € L? satisfies that
/ |f(2)|]?|z|* T¢dz < 0o, for some € > 0,
R
and that there exists a constant C such that

Z IF(€+ k)2 <C for almost every ¢ € R. (11.4.4)
kel

and that there exists & is such that
Fléo+ k) =0 forallkez,

then we must have

gt [ 3 o +e-+ P =0
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Proof of Theorem I1.3.2. Suppose the contrary that there exits € > 0 such that

/ |pi () |?|z]*Tedx < o0, (I1.4.5)
R

for every i, then we must have that ¢; is continuous for every i.

Define E = {{|det(G(§)) # 0}, by Lemma II.4.3, E # R. From the same
argument in the proof of Theorem I1.3.1, we can choose & € E\ E to be the left
end point of one of the intervals whose union is E, then det(G(&y)) = 0. With
the same notation, there must exist a nonzero vector @ such that F*(&y)a = 0.
Define a function f(z) = >\, a;¢;(x), then f(fo + k) = 0 for all integers k.
Also from (II.4.5), we will have that

l/uquWWz<m.
R

Also from (I1.3.1), one can easily show that (11.4.4) is true for all ¢;. In particular

it is true for f. Then by Lemma I11.4.4,

0—1m1*/‘§:Ufo+€+k|%
keZ

mnf/\w*@+aﬂw%

= lim = G a,a)d 11.4.6
Jim [ (0te + s (11.46)
This is a contradiction for the same reason as shown in Theorem II1.3.1. O

The following is the proof for Theorem II.3.3

Proof of Theorem I1.3.3. Suppose the contrary that there exists e > 0 such that
51/2“(?51-(5) € L™ for all ¢;. Then G(&) will be a continuous matrix function.

This, together with the fact that {¢;(- — k)| k € Z,i = 1,...,r} is a frame for
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V(®), will give us that

AG(€) < G*(¢), forall € eR. (I1.4.7)

But V(®) is 1Z-invariant for some n { r. Define E = {¢|det(G(£)) # 0}. By
Lemma I1.4.3, E' # R. It is easy to see that F is an open set in R since det G()
is a continuous function. So E has to be the union of disjoint open intervals.

From the same argument in the proof of Theorem I1.3.1, we can choose £, and

0 > 0 such that det G(&§p) = 0 and (&g, &0 + ) C E.

For any ¢ € (&,& + ¢) we have det G(§) # 0. Then from (I1.4.7), we have
that A < G(&) which implies that det G(§) > A". But this contradicts that

det G(&) = 0 by the continuity of det G(¢&).
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CHAPTER III
OPTIMAL SHIFT-INVARIANT SPACES

1111 Background

In many signal and image processing applications, it is assumed that the func-
tions representing the signals belong to some PSIS. For example, the signals are
often assumed to be bandlimited or to belong to a PSIS generated by splines,
see e.g., [AGO1]. These assumptions are useful in applications. However, the
choice of the particular PSIS typically is not deduced from a set of data or ob-
servations of the underlying class of signals. Thus, it is natural to search for a
shift-invariant space that is nearest to a set of some observed data, for example,
in the sense of the least squares. Existence of such spaces is guaranteed by the

following theorem which is a special case of a more general result in [ACHMO7]:

Theorem IIL.1.1 ([ACHMO7]). Let F = {fi,..., fm} C L*(R) be a set of
functions in L?(R), then there exists V =V (¢) € Vi such that

SONfi = Pofill> <> Nfi = P £l for all V! € Vi,
=1 i=1

where Py and Py are orthogonal projections on V. and V' respectively.

From now on, we will denote by V the class of all PSIS with an orthonormal gen-
erator which are also translation invariant. Similarly, by V,, we denote the class

of all PSI spaces with an orthonormal generator which are also %Z—invariant.

Although the theorem above assures us of the existence of a principal shift-
invariant space nearest to a set of data, it does not provide an answer, if we

require the PSIS to have additional invariance. For this reason, we consider the
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following two problems:

Problem 1. Given a set of functions F = {f1,..., fm} C L*(R), we want to

find a principal shift-invariant space V(¢$) which satisfies

m
V(¢) = argming. ey, Y |Ifi = Pvo fill%,

i=1
where Py is the orthogonal projection onto V.

Problem 2. Given a set of functions F = {f1,..., fm} C L2(R) and an integer

n > 2, we want to find a principal shift-invariant V(¢) which satisfies

V(¢) = argminy. ey, Y |Ifi = Py fill,

i=1

where Py is the orthogonal projection onto V.

Following [ACHMO7], we say that if Problem 1 (resp. Problem 2) has a solution
for any finite set of data functions F, then V (resp. V,,), satisfies the Minimum

Subspace Approximation Property (MSAP).

Definition ITI.1.2. A set C of closed subspaces of a separable Hilbert space H
containing the zero subspace has MSAP if for every finite subset F C H there

exists an element V' € C such that V = argminy cc >, 7 If — Py f113,.

Necessary and sufficient conditions for MSAP were obtained in [AT10]. Specifi-
cally, let us identify any subspace V' € C with the orthogonal projection Q@ = Qv
whose kernel is exactly V' (i.e., @ = I — Py). The set C is then identified with
a set of projections {@Q € II(H) : ker @ € C} where II(H) is the set of all or-
thogonal projections on H. Defining C* := C + P+ (H), where PT(H) C B(H)
is the set of all positive semidefinite operators, we have the following sufficient

topological condition for MSAP.
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Theorem I11.1.3 ([AT10]). (C = C) = (C* = C*) = (C satisfies MSAP);

where the closures are taken with respect to the weak operator topology.

For finite dimensional spaces the last implication is, in fact, an equivalence. The
first implication is, however, a strict one. For infinite dimensional spaces, both

implications are strict.

The characterization in the infinite dimensional case is in terms of contact half

spaces containing C*. Specifically, a half space in B(H) is a set
Hpo={A€ B(H): ®(A) > a},

where a € R and ® is a bounded R-linear functional on B(H). A contact half
space to CT is a half space containing C* such that its boundary has non-empty

intersection with C*. The set of all contact half spaces is denoted by n(C™).

Theorem III.1.4 ([AT10]). Let C be a set of projectors in B(H). Then C has
MSAP if and only if

n(C*) =n(CY).

In other words, C has MSAP if and only if given a € R, a bounded R-linear
functional ® on B(#), and an operator A’ € CT satisfying ®(4') = a, there is

A € CT such that ®(A) = a.

Note that the characterizations in both finite and infinite dimensional cases
give necessary and sufficient conditions for existence of a best approximating
subspace V' € C. However, the conditions may be difficult to check and the
theorem does not give a way to construct V. Thus, one of the goals of this
paper is to use a constructive method to prove that V and V), satisfy MSAP.
But first, we show that VT is not closed under the weak operator topology,

where V7 is defined the same way as C*. Thus, we give a new example that
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shows that the second implication of Theorem III.1.3 is not an equivalence.

Consider the sets

2k=1 1 . . 2k=1 1 . .

E = UO [—1+2,f_1,—1+21+2,f_1) U UO {25_121k+2,f_1)

for all k € Z". Note that every Ej, is a tiling set, that is it has measure 1 and
a packing property, i.e., U, .7 Ex = R, and Ej N (Ej + j) has measure 0 for all
j € Z\{0}. If we define ¢y, via bn = XE,, we have that I — Py4,) € V C V1.
It is not difficult to show that I — Py (4, converges weakly to I — Py () where
'l,//; = %X[—1,1)~ Since for any V(¢) € V, we must have 5: x g for some tiling set
E (in particular the measure of F is 1). There is, however, no non-negative self
adjoint operator A such that Py () = Py (g)—A, that is I—Py ) = [ =Py (4)+A4,
and, hence, I — Py (y) ¢ VT. Therefore, V1 is not closed in the weak operator
topology. The same example also shows that VI is not closed for any integer

n > 2.
II1.2 Constructions

II1.2.1 Translation invariant PSI spaces.

We first consider the simple case in which we only have one data function f.
As we mentioned in the introduction, it is easy to show that if V(¢) € V, we
must have that QAS = XE, where F is a tiling set. In such a way each V(¢) € V
is characterized by the tiling set £. The following theorem ensures existence of

an optimal subspace for one function f.

Theorem II1.2.1. For any data function f € L*(R), there exists V(¢) € V
such that
If = Pooy FI? < I = Py fI?, forall V' €V.

50



Before proving this theorem, first note that

1f = Py FI2 = £ = [Py FI1%,

and

1Py [l = 1Py Il = 1 Pefll = I Fxell,

where ¢ = yg. Now if we can maximize ||PE]?|| with a measurable tiling set F,
then V(¢) defined by gg = xg will be an optimal subspace whose existence is

asserted by Theorem III.2.1. In the proof below we construct such a tiling set.

Proof. (Theorem II1.2.1). Since f € L2(R), we have f € L2(R) and {f(¢ +

k)} ez € % for almost every £ € R. Then the function

o~ o~

MF(€) = max{1f(€ + )1},

is well defined for almost every ¢ € R, meaurable and 1-periodic.

~ ~ -~ ~

Consider the set Sy = {€ € D(Mf)| Mf(€) = |f(&)|}, where D(Mf) is the
domain of M f Since fand M f are measurable functions, Sy is a measurable
set. Our goal is to construct a (measurable) tiling set £ C Sp. Indeed, such a

set would maximize ||Pg f|| among all tiling sets E’, because then

1Pef? = [ (F©Pag = [ afieras = [ mfieras > [ 1f@Pde = |pe IR
E E E E

Clearly, to construct E we may consider for each & € D(Mf) N [0,1) the non-

empty set (£ +2Z)NSy and pick one point from each of these sets. We only need

to make sure that the result is Lebesgue measurable. We do it in the following

way.
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First, for each integer [ > 0, we define the sets L; via

[%, % +1), if [ is even;

&1, -1, if I is odd.

Next, using recursion, we let F; = S;NL; and Siy1 = S\ U (B + k), 1 >0,
keZ
where E; + k is the set Ej translated by k. Finally, we define F = |J Ej. It is
1>0
easily seen that F; and S; are all measurable sets, and so E is measurable. We

claim that FE is the desired tiling set.

~

Observe that by construction E C Sy, and, for each £ € D(M f) N[0, 1), the set
(x+7Z)N E is a singleton. Hence, E does, indeed, have the desired properties

and the theorem is proved. O

It turns out that the case of several data functions is a simple corollary of the

above theorem.

Corollary II1.2.2. For data functions fi,..., fm € L2(R), there exists V(¢) €
V such that

S Nfi = Proy £ill* < D Nfi = Poy £ill?, for all V() € V.

i=1 =1
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Proof. Note that for any V(¢) € V, if 1Z = x g’ we have

Z Ifi = Py fill? = Z(Hfz‘”2 — 1Py £ill?)
=1 =1

_Z”fz”Q Z”szE’”
12 - / Zw dz

I1£:l12 = 1|1 Py gy 117,

S
>

where f is such that f = Py |ﬁ\2 It remains to apply Theorem III.2.1 to

this function f. O

I11.2.2 %Z-invariant PSI spaces.

It is impossible to construct a translation invariant PSI space such that the
generator is in L' ([ASW11]). Hence, it is natural to relax one of the conditions
and study %Z—invariant spaces for some integer n. This leads us to consider

Problem 2 in the introduction, and we have

Theorem I11.2.3. For data functions fi,..., fm € L*(R), there exists V(¢) €
VY, such that

m m
Y i = Pro fill> < D Nfi = Po fill® for all V($) € V.
i=1 i=1
As in the previous section we observe that proving the above theorem is equiv-
alent to finding an eligible function ¢ that maximizes the expression
m

> 1Py ) £l (IIL.2.1)

=1
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To prove Theorem I11.2.3, we will use the following characterization of %Z—

invariance, which is a special case of Proposition II.2.1.

Proposition II1.2.4. Let n > 2 be an integer, and ¢ € L*(R) be an orthonor-
mal generator for the space V(¢). Then V(¢) is %Z—z’nvam’ant if and only if for

almost every £ € [0,1), one of the following vectors

()=, d(E+j—n),dE+ ), dE+j+n),--), j=01,...n—1,
(I11.2.2)

is a unit vector in €2 and the others are zero vectors.

For almost every & € [0,1) we let j(£§) € {0,1,...,n — 1} be such that ®;(£)

is the unique unit vector in the above proposition.

We also need the following Lemma:

Lemma IIL.2.5. Suppose that h;j(x), j =0,...,n—1 are measurable functions
on R and €’ (x), j =0,...,n — 1 are real valued measurable functions on [0,1).
For x € [0,1), define s(z) to be the smallest index such that e*®)(z) < e(x) for
all 1 # s(x), and let S(z), be the periodization on R of s(x). Then the function

h(z) := hs)(x) is also measurable.

Proof. Define Ey = {z € [0,1)|e’(z) < €i(z),i # 0}, and define E; for j =

1,....,n—1as
Ej ={z €[0,1)]¢’(z) < €'(2),i # j} \ U< B

Clearly, the sets Ej, j =0,...,n — 1, are measurable. Then define £7,0 < j <
n — 1 to be

B =U, 7E; +F,
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which are also measurable. From its definition, h(z) can be written as

n—1
h(z) = hi(@)xpi (z)
j=0
which is a clearly a measurable function. O

Proof. (of Theorem I11.2.3) We begin by noting that for any V(¢) € V,, and
{é(-+ k), k € Z} is an orthonormal basis for V(¢), we have

m

i—1 ( ) i 1»/IR ( )

=3 [ 1R - ciope

where C§(&) = 2,7, Fi(€ + DB(E +1) is a periodic function. Rewriting the

integral and using Fubini’s theorem, we get

m o0

1 m R ) R
Z\lfi—PmmF:/o S°S RE+E) - CLEME + )

=1 i=1 k=—o0

1 m n—1 oo N . N
— [ XX 3 ek nket ) - CHOME+ nk -+ e

i=1 j=0 k=—o0

1 m n—1 N . N
= [ SR € ) - CLOE + -+ e

i=1 j=0

since for almost every £ € [0,1), we have {fi(f—l—nk—i—j) —C;S(g)(/é\(f—i—nk—i—j)}k €
2.
Observe that, using the notation introduced after Proposition I111.2.4 and de-

noting F"i(erl) to be the ¢? vector {fi(f +nk+1)}r, the last expression is equal
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to

1 m
/0 SOIE(E +5(6) — P, oy Fol€ +5O)]%
=1

> D IFE+DRde, (IIL.2.3)
)

i=11£j(¢

where j(§) € {0,1,...,n —1} and ®;)(§) are defined after Proposition I11.2.2.

Hence, in order to construct ¢ € L?(R) such that V(¢) € V,, minimizes

ZHfz‘ — Py fill?

i=1

it suffices to minimize the integrand in Equation I11.2.3 for almost every & €
[0,1).

Since for fixed j, &, and f; the expression Y ;" 37, |F5(€ +1)]|2% is constant,
minimizing the above expression becomes a problem of finding, for each £, the
best approximation of vectors in £? by a one dimensional space generated by
U;(£). This problem can be solved using the singular value decomposition
(SVD).

Define G;(§) to be a m x m matrix, where [G;({)]1,,, = D % Fi (€ + nk +
j)fl2 (+nk+j) for j =0,1,...,n — 1. Suppose the eigenvalues of G,(&) are
X&) > Xja(§) = -+ > Ajm(§) > 0. Then the eigenvalues are measurable.
Also there exists measurable a matrix function U;(§) such that U;(§)US(§) = 1

almost everywhere and we have the singular value decomposition
G;(&) = U;(§)A; (U (6),

where A;(§) = diag(X;,1(), ..., Ajm(§))-(see [ACHMOT])

Let us denote the vector formed by the first row of U5 (§) as Uj1 &) = (yJ1 &)y sy
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Then it is not difficult to check that U}() is a left-eigenvector of G;(£) with

eigenvalue A; 1(€). Define

Zy_] Xij

where B; = U, 7[j,j + 1) + nk. Since U1 is a measurable function of £, then
g; is also measurable.
Define Q; = {¢€ € [0,1)[ X, .7 lg;(€ + k)|*> = 0}, it is easy to see that Q; is a

measurable set. Define another function

9; (&) = Xa,+j.j+1) + 4(&)-

Now g;(£) is a measurable function supported on B; and [|g;(€ + -)||7, =

> ke 195 (6 + k)2 = > ke 195 (€ +nk + )2 # 0 for almost every ¢ € [0,1).

Now define h;(&) = % One can check that h;(§) is a measurable

function supported on B; and for almost every £ € [0, 1)

ST hs €+ R = 3 Ry (€ + nk + )2 Zlg (E+nk+ P 3 (04
2 o los(@ + T2,

Also, by the Eckart-Young theorem,

ZHF§+J Py o Fs6+ )% < D IF6+7) — PwFi(€+ )7 (I11.2.5)

i=1

for all subspaces W C ¢? with dim W = 1, where ﬁj(f) is the ¢2 vector {h;(£+
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We also define a function for almost every & € [0, 1),
el() = \\ﬁ(é +J) = P o P €+ 1)l

Z WE+ D7,
1#j

i Mg H'Mg

Since h; and fj are all measurable, ¢/ (£) is also a measurable function. Suppose
5(€) is the smallest index such that e*(©) (&) < e!(¢) for all I. Then by Lemma
II1.2.5, we can construct a measurable function h(§) = hge)(§) where S(€) is
the periodization of s(£). Note that S(§) = S( + k) for all k € Z. Then

/Rm(f)l d£=/0 Z|h<§+k)| ¢
/ S e (€ + K) e

0 reZ
=1

7

which implies h € L? and ||| 2 = 1. Define ¢(z) to be such that ¢ = h.

For almost every £ € [0,1) and 0 <l <n—1

1911z = I{A(& + nk + D}ellee = I[{A(E +nk + D }illee

= [{hse) (€ +nk + D}rlle

since hge)(§) is supported on Bgey, there exits [(£) such that ||®;¢)(&)|ez = 1
and || ®;(£)]l;z = 0 for ¢ # I(§). By Proposition 111.2.4, V(¢) € V,

Finally, we need to show that ¢ is indeed an optimal generator.

For any V(¢) € V,, and almost every £ € [0,1), there exists j; € {1,2,...,n}
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such that ||1Z(£ +n-+j1)|lez =1 and HzZ({ +n-+j)|lez =0 for j # ji1. Then

from Equation II1.2.5, we have that

ZIIF £+ )Py,  FiE+i)ll

m
< Z (€ + 1) = Puy, o) Fi(€ + )lI7

where U, (€) is the £2 vector {1Z(§ + nk + j1) }, so

el(g) < Z W&+ 1) = Pu, o F €+ 0l + D0 IEE+ D%,

i=1 1751

From the construction of h(£), we have {h(§ +nk+j)}r = {hse)(+nk+j)}k

and

|
—

n

SO IF(E +5) = Pongesnbri Fi (€ + )17

=17

Il
=

Z HE+S(©) — Py o F6+ SE©)IIE
>3

Z F(E+ D7 = eSO < e(9),
#5(¢
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where ﬁs(g)(f) = {hs)(§ +nk + S(£))}x. Then we have

1Fi(§ + 7) — Pia(etnk+i)tn EF(&+7)|%

»D

LLMf

m n—1

ZZ H(E+7) = Puyo Fie+ D)%
i=1 j=0

for a.e. £ €]0,1). So we must have that

Z Ifi = Pvioy fill* < Z Ifi = Py ey fill?

i=1 i=1

and the theorem is proved.
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