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ABSTRACT

The role of uncertainty management is increasingly being recognized in the
design of complex systems that require multi-level multidisciplinary analyses. Most
previous studies in this direction have only dealt with aleatory uncertainty (i.e., natural or
physical variability). However, various modeling errors, assumptions and
approximations, measurement errors, and sparse and imprecise information introduce
additional epistemic uncertainty in model prediction. Therefore, an approach to
multidisciplinary uncertainty analysis and system design that addresses both aleatory and
epistemic uncertainty is needed. The objective of this dissertation is to develop a
methodology that provides decision support to engineers for multidisciplinary design and
analysis of systems under aleatory uncertainty (i.e., natural or physical variability) and
epistemic uncertainty (due to sparse and imprecise data).

Specifically, the dissertation accomplishes this objective through: (1)
Development of a probabilistic approach for the representation of epistemic uncertainty;
(2) Development of a probabilistic framework for the propagation of both aleatory and
epistemic uncertainty; (3) Development of formulations and algorithms for design
optimization under aleatory and epistemic uncertainty, from the perspective of system
robustness and reliability; (4) Development of a framework for uncertainty propagation
in  multidisciplinary system analysis; and (5) Development of formulations and
algorithms for design optimization under aleatory and epistemic uncertainty for
multidisciplinary systems, from the perspective of system robustness and reliability.

The methodology developed in this dissertation is illustrated through problems
related to spacecraft design and analysis, such as the conceptual upper-stage design of a
two-stage-to-orbit vehicle, and design and analysis of a fire detection satellite.



To my parents, Dil Roushan Ara and Late AKM Asaduzzaman



ACKNOWLEDGEMENTS

First, 1 would like to express my sincere respect and gratitude to my thesis
advisors, Dr. Sankaran Mahadevan and Dr. Mark McDonald, for their thoughtful
suggestions, constant guidance and encouragement throughout the progress of this
research. Dr. McDonald spent a lot of his time during my early years to help me stay
focused on my research. Dr. Mahadevan was always available for discussion. His critical
comments and useful advice helped a lot to guide this research in the right direction. |
would also like to record my profound thanks and gratitude to the rest of my dissertation
committee, Dr. Mark Ellingham and Dr. Prodyot K. Basu, for their insightful comments
and advice to enrich this research.

The research reported in this dissertation was supported by funds from NASA
Langley Research Center (LaRC), Hampton, VA. | would like to thank the researchers at
NASA Langley, especially Mr. Lawrence Green, who provided valuable information and
advice. | would like to thank Vanderbilt Civil Engineering department for supporting me
as a Teaching Assistant in my first year of study. | would also like to thank the Integrative
Graduate Education, Research, and Training (IGERT) Program in Reliability and Risk
Engineering and Management at VVanderbilt University for providing a forum of researchers
that helped me a lot in communicating and sharing ideas.

I would also like to thank the members of our research group for their support,
especially Shankar Sankararaman, Venkata Sura, and Dr. Sirisha Rangavajhala. 1 am
grateful to all of my friends for their cooperation and encouragement during this study.
Finally, I would like to express my deepest appreciation to my mother for continuous

support and love. I am also thankful to God for giving me the opportunity to extend my

iv



education. |1 would also like to thank all the people who are not listed here but have

contributed in any way, being by my side or in any other sense.



TABLE OF CONTENTS

Page
ACKNOW LED GEMEN T S .. i e e e e e e e et e e iv
LIS T OF TABLES . ...t i i e e e e e e e e e e e e e e, iX

LISTOF FIGURES.. ... ittt e e e e e e e e X
Chapter

l. INTRODUCTION. ... ]

OBV . . ettt e e e e e e e e e e ———— 6
Two-stage-to-orbit (TSTO) Vehicle........o.oeeii e, 12
Fire Satellite (FireSat) Design and Analysis.........cccoveveiieiieviecininieninnn 13
. LITERATURE REVIEW. ...ttt e e e e e e e e, 15
1. Introduction.. PPN L1
2. Uncertainty quantlflcatlon W|th sparse pomt data ................................... 16
3. Uncertainty quantification with interval data......................coo i, 19
4. Uncertainty quantification considering correlations..................ccovevieinen, 29
5. Design optimization with epistemic uncertainty...................cccceeeeenn32
6. Uncertainty quantification of Multidisciplinary systems.........................34
7. Multidisciplinary design optimization with epistemic uncertainty.............. 37

1. PROBABILISTIC SYSTEM ANALYSIS WITH SPARSE DATA ...............41

1. Introduction.. Y |
2. Proposed Methods for Uncertalnty Representatlon ............................... 43
3. Proposed Methods for Uncertainty Propagation... P - 10,
4. Numerical Ilustration.. e 56
5. Conclu5|on63
IV.  APROBABILISTIC APPROACH FOR REPRESENTATION OF
INTERVAL UNCERTAINTY Lo e e e e e e 65
1. [Introduction.. PPN ¢ 1o
2. Estimating bounds on moments for lnterval data .................................... 69
3. Fitting Johnson distributions to interval data................coooooii i, 81
4. Numerical EXamMPIES. .. ....cuuiriieie it e e e e e 86

Vi



VI.

VIL.

VIIL.

5.

(000] o] (1157 (o] 1 T

PROBABILISTIC FRAMEWORK FOR UNCERTAINTY
PROPAGATION WITH BOTH PROBABILISTIC

AND INTERVAL VARIABLES

APwnh e

Introduction..
Uncertainty Propagatlon usmg Probablllstlc AnaIyS|s

Numerical EXampPIes. .. ......ooeuieiieii e
@0 008 01 [ o

INCLUSION OF CORRELATION EFFECTS IN MODEL

PREDICTION UNDER DATA UNCERTAINTY

93

1. Introduction.. .. 128
2. Input modellng Wlth Johnson dlstrlbutlons usmg correlatlons ............ 130
3. Proposed Methodology for uncertainty propagation under uncertain
COMTEIAtIONS. .. e e e e e e e e e e e e e e 13T
4. Example Problems..........coiiiiii e e 145
5. CONCIUSION. ...ttt e e e e e e een 2 148
ROBUSTNESS-BASED DESIGN OPTIMIZATION UNDER DATA
UNCER T AINT Y ottt e e e e e et e e e e ae e e 150
1. Introduction.. PP PPRIPN k1 0
2. Proposed methodology ............................................................... 156
3. Example Problem...... ..o 167
O 0] 00111 o] P! I o

RELIABILITY-BASED DESIGN OPTIMIZATION (RBDO) UNDER

EPISTEMIC UNCERTAINTY

HwnN P

MULTIDISCIPLINARY SYSTEM ANALYSIS UNDER ALEATORY
AND EPISTEMIC UNCERTAINTY ..o,

arwE

Introduction..

RBDO for smgle d|SC|pI|ne systems ..........................................
Numerical EXample. ... ..o
(0] T 1115 o]  F P

Introduction..

Probabilistic Uncertalnty Propagatlon for Slngle D|SC|pI|ne Problems

Probabilistic Uncertainty Propagation for Multidisciplinary Problems
Numerical EXamPpPIes. .. ....c.uoeiie i e
CONCIUSION. .. e e e e e e

vii



X. ROBUSTNESS-BASED DESIGN OPTIMIZATION OF
MULTIDISCIPLINARY SYSTEM UNDER EPISTEMIC
UNCERT AINTY ot e e e e e e 220

INErOUCHION. .. .eee e e e e e e e 220
Robustness-based design optimization for multidisciplinary systems......... 221
Numerical EXampPIeS.......c.uiuuieiie it e 228
CONCIUSION. .. ..e e e e e e e a2, 238

APwnhE

Xl.  RELIABILITY-BASED DESIGN OPTIMIZATION (RBDO) OF
MULTIDISCIPLINARY SYSTEM UNDER EPISTEMIC
UNCERTAINTY L e e 239

INtrOdUCTION. .. ..o e e e 239
RBDO for multidisciplinary SYStemS.........ovvuiiiiiiiiiieene e e 240
Numerical EXamPIES.........uirrieie it e e e 244
CONCIUSION. .. e e e e e 22, 249

APwnh e

XIl.  SUMMARY AND FUTURE NEEDS.......ccoiiii e 251
Summary of Contributions............cooiii i el 2D

Future Research NEOAS. .....oue et e e e e 2BT

BIBLIOGRAPHY ... e e e e e 260

viii



Table

LIST OF TABLES

CHAPTER I Page
Data for Mach and AOA... ... e e D8
Distribution parameters for distribution of Mach...................cooooni 59
Distribution parameters for distribution of AOA..........ccceiiiiiiiii e 289
Worst Case Distribution Parameters. .. ... ..ccoov i e e e e 61
WOrst-Case SenSItiVILIES. ......c.oeiue it ieeeennn. 01

Best Case Distribution Parameters..........o.uveuieiiii i e 61

BeSt-Case SENSIIVITIES. ... e e e e e e 61
CHAPTER IV

Methods for calculating moment bounds for single interval data.................... 73

Interval data for the five numerical examples.............cooooiiiiiiiiii i, 87
CHAPTER V

Computation effort for Challenge Problem A............iii . 120

Comparison of bounds on expected values............ccoooiiii i, 123
CHAPTER VI

Regression statistics for the semi-empirical formulas........................o.l. 134

Allowable domains for the correlation coefficients................coooiiiiiinnns 135

Sparse point data for Mach and AOA.........on i, 146

Multiple interval data for Mach and AOA.........ccoiiiiiii e, 147
CHAPTER VII

Design bounds for the design variables.............coooiiiii i, 168

Design bounds for the analysis outputs...............ccoviiiiiiiiiiiiccn e et ... 168

iX



Sparse Point Data for the random input variables....................................168

Obijective function values at optimal solutions and optimal sample sizes.......... 173

Multiple Interval Data for the random input variables..............................174

Single Interval Data for the random input variables.................................174
CHAPTER VIII

Data of input variables in torque shaft assembly design.............................188

Optimal design solution for the torque shaft problem...............................190
CHAPTER IX

Sparse Point Data for the random input variables....................................203

Computational effort for PBO and EBO for Example 1 with interval data........ 209

Functional relationships among the disciplinary analyses..........................
Uncertain variables and data...............ccooviie i eennn.

Computational effort for the FireSat problem......................

CHAPTER X

Sparse Point Data for the random input variables...................cocoviiinn
Design variables and design bounds for mathematical example.....................

Computational effort for different methods for Example 1.......

Uncertain variables and data for FireSat problem.................

Design variables and design bounds for FireSat problem.........

Computational effort for different methods for FireSat problem

CHAPTER XI

Optimal design solution for the mathematical problem...........

Optimal design solution for the FireSat problem...............ccooviiiiiiiin .



Figure

LIST OF FIGURES

CHAPTER | Page
The Two-Stage-To-Orbit (TSTO) Highly Reliable
Reusable Launch Systems (HRRLS) concept vehicle.............c.cooooiii i, 12
TSTO Vehicle CONCEPL......uieeieie ittt et e e eee e a2 13
FireSat: A three-subsystem representation................cceevvviieiieiinennennn. .14
CHAPTER Il
Examples of an empirical p-box for multiple intervals..................................22
CHAPTER III
Johnson distribution family identification................c.oo i, 45
Examples of PDFs for different Johnson distributions.....................ccooee. 46
Jackknifed PDF estimates given sparse data.............ccovvevveiieiinineviniiiiiinnn, 49
Jackknifed CDF estimates given sparse data...........cooovveineiiiiie e i 49
Centerline pressure contours for TSTO upper stage
at Mach = 2.0, AOA = 10 UBQIEES. ... vt ee e e e e e e e e e et eaeaeens 57
Drag Coefficient Response Surface..........coooovviiiiiiiiii i e, 60
The worst and best case distribution parameters of Mach..................ccccoeeeen. 62
The worst and best case distribution parameters of AoA.............................63
CHAPTER IV
Moments vs. PMFs at the interval endpoints ................c.ccoeiiiiiiiveeeen .l 15
Computational effort for the estimation of bounds on second,
third, and fourth moments for overlapping intervals....................c.cooeee .79
Computational effort for the estimation of bounds on second,
third, and fourth moments for non-overlapping intervals.............................80

Xi



10.

11.

12.

13.

14.

15.

16.

Samples from the family of Johnson cumulative distributions for

overlapping and non-overlapping examples for multiple interval

examples (thick solid lines — Johnson p-box, thin solid lines

— empirical p-box, dashed thin lines — family of Johnson CDFS).................... 88

Single interval example...... ... .88

Comparison of empirical, bounded Johnson, normal, and lognormal
p-boxes for multiple interval examples (thick dashed line — lognormal,
thin dotted line — normal, thick solid line — bounded Johnson,

thin solid line — empirical distribution)................ccooo i 89
CHAPTER V

PBO and EBO DOUNGS. .. ...ttt e e e e e e e e e 103
Optimization methods for output uncertainty quantification (Case 1)............ 104
Optimization methods for output uncertainty quantification (Case 2)............ 108
Mass-spring-damper system acted on by an excitation function................... 111
Family of Johnson distributions for input variable a for Problem A-1............ 114
Bounds on CDF of system response for Problem A-1...............................114
Family of Johnson distributions for input variable b for Problem A-2............... 115
Bounds on CDF of system response for Problem A-2...............................115
Bounds on CDF of system response for Problem A-3..................c.eel a0 116
Family of log-normal distributions for input variable b for Problem A-4........... 117
Bounds on CDF of system response for Problem A-4.............................. 117
Family of log-normal distributions for input variable b for Problem A-5.......... 118

Bounds on CDF of system response for Problem A-5...............................118
Bounds on CDF of system response for Problem A-6...............................119
Family of triangular distributions for input variable k for Problem B............. 121
Family of triangular distributions for input variable w for Problem B............ 121

Xii



17.

18.

Bounds on CDF of system response for Problem B...........................

Rigorous vs. optimal boundsS..........cooi i,

CHAPTER VI

Family of CDFs of system response for sparse pointdata....................

Bounds on CDF of system response for interval data.........................

CHAPTER VII

Decoupled approach for robustness-based design optimization.............

Robustness-based design optimization with sparse data for different

SAMPIE SIZES (M) . ten et et et et et et e e e et et e e e e e e e

Robustness-based design optimization with sparse point and

INTEIVAL AaLA. .. e et e e e e e e e e e e e e e e

CHAPTER VIII

Schematic diagram for the torque shaft assembly........................o. .

CHAPTER IX

A two-disciplinary system with feedback coupling.............cccoviiiinnen.

Decoupled formulation..........cooe oo e

Decoupled approach for multidisciplinary uncertainty propagation

With Sparse POINt data ...........ovirii e e e e e e

Decoupled approach for multidisciplinary uncertainty propagation

WITh Interval data. .. ...

Propagation through multidisciplinary analysis of sparse point data

Propagation through multidisciplinary analysis of single interval data
Propagation through multidisciplinary analysis of multiple interval data
Rigorous vs. Optimal bounds for multiple interval data......................

Schematic diagram for the spacecraft solar array..............ccooeviiiiiii s

Xiii

187

.196

.198

.200



10.

11.

12.

30010 R3] o
BOUNGS 0N Agg + ottt it it et e e e e e e e e e

[ST0] 0T a0 R0 <

CHAPTER X

Robustness-based optimization for Example 1..........cooooviiiiiiiiiiiiniinnss

Robustness-based optimization for the FireSat problem...........................

Xiv

213

214

215

231

237



CHAPTER |

INTRODUCTION

The role of systematic uncertainty quantification is increasingly being recognized
in assessing the performance, safety, and reliability of complex physical systems, often in
the absence of an adequate amount of experimental data for many applications. Further,
simulation of a complex physical system often involves multiple levels of modeling, such
as material to component to subsystem to system. Interacting models and simulation
codes from multiple disciplines (multiple physics) may be required at some of the levels.
As the models are integrated across multiple disciplines and levels, the complexity and
sophistication of the models increase, and assessing the predictive capability of the
overall system model becomes a difficult challenge. The variability in the input
parameters is propagated through the simulation codes, between individual disciplines,
and from one level to next level. Various modeling errors, assumptions and
approximations, measurement errors, and sparse and imprecise information, further
compound the uncertainty in the predictive capability of the system model. An efficient
methodology that accounts for all sources of uncertainty in multidisciplinary systems
awaits development. Therefore, the overall research objective of this dissertation is to
pursue computational methods to quantify, propagate and manage the uncertainty in
multi-disciplinary system analysis models. In order to assess the uncertainty in estimates
of system performance and system-level figures of merit, it is important that various

types of known uncertainties be accounted for appropriately. Uncertainty in engineering



analysis and design arises from several different sources (Oberkampf et al, 1999) and
must be propagated through the system model. Some of the "known" sources are:

(1) Physical uncertainty or inherent variability: The demands on an engineering

system as well as its properties always have some variability associated with them, due to
environmental factors and variations in operating conditions, manufacturing processes,
quality control etc. Such quantities are represented in engineering analysis as random
variables, with statistical parameters such as mean values, standard deviations,
distribution types etc. estimated from observed data and there exist well established
methods for handling such uncertainty.

(2) Epistemic Uncertainty: Epistemic uncertainty represents a lack of knowledge

about the system due to limited data, measurement limitations, or simplified
approximations in modeling system behavior. This type of uncertainty can be typically
reduced by gathering more information. Epistemic uncertainty can be viewed in two
ways. It can be defined with reference to a stochastic but poorly known quantity (Baudrit
and Dubois, 2006) or with reference to a fixed (deterministic) but poorly known physical
quantity (Helton et al, 2004). An example of the first type of epistemic uncertainty is an
expert giving a range of values for a physical quantity (such as elastic modulus of a foam
material). An example of the second type of epistemic uncertainty is a measurement of
the size of a crack within a mechanical component; the crack has a fixed length, but due
to measurement difficulties, only an interval might be reported. Non-probabilistic
representations such as fuzzy sets, evidence theory, etc. are available for describing such
uncertainties (Ferson et al, 2007; Mourelatos and Zhou, 2006; Rao and Annamdas, 2009).

This dissertation focuses on the first type of epistemic uncertainty, where the probability



distributions of input random variables may need to be inferred from data such as
intervals given by experts or sparse point data. In this case, the distribution parameters of
the random variables are also uncertain. In this dissertation, a probabilistic framework has
been developed for the representation of epistemic uncertainty arising from sparse point
and interval data on random variables.

(3) Model Error: This results from approximate mathematical models of the
system behavior and from numerical approximations during the computational process,
resulting in two types of error in general — solution approximation error, and model form
error. For new and complex engineering systems, this type of uncertainty is not
quantifiable a priori. This dissertation, however, does not include model errors in the
uncertainty analysis.

The uncertainty described by sparse point or interval data (either regarding the
variables or their distribution parameters) should be represented in a manner that
facilitates ease of use in efficient algorithms for reliability analysis or design
optimization. In this dissertation, this uncertainty has been represented through a flexible
family of probability distributions. Such conversion of epistemic uncertainty to a
probabilistic format enables the use of computationally efficient methods for probabilistic
uncertainty propagation.

After finding an appropriate representation strategy for aleatory and epistemic
uncertainty in the system input, it must be propagated through the system model if a
statement about the uncertainty in model output is to be made. Many probabilistic
uncertainty propagation methods have been developed for single discipline problems

involving expensive computational codes in order to propagate physical variability in the



input, typically expressed through random variables and random processes and/or fields.
Most of these techniques have only been studied with respect to physical variability
represented by probability distributions, but are not able to include both aleatory and
epistemic uncertainty.

Uncertainty analysis often assumes independence among input random variables.
However, intervariable dependencies or statistical correlations might have significant
impact on the results of uncertainty analysis. Multivariate input modeling methods have
been developed for some known marginal distributions (Der Kiureghian and Liu, 1986;
Liu and Der Kiureghian, 1986; Minhajuddin et al; 2004 and Haas, 1999). However, in
practice, it is likely that the marginal distribution types for the input variables are not
known or cannot be specified accurately due to the presence of limited or interval data
and in this case, the correlation itself is uncertain. Moreover, correlations among the
distribution parameters have also significant impact on uncertainty analysis. Little to no
work exists in the literature that considers uncertainty in correlation coefficients and
correlations among distribution parameters in the presence of sparse point data or interval
data. Again, for interval data, the correlations among the input variables themselves are
unknown and computationally efficient methods are needed for the propagation of both
aleatory and statistical uncertainty that account for correlations among random variables
for which the information is only available in the form of intervals.

There has been an increased emphasis focused on accounting for uncertainty in
design inputs used for design optimization. In deterministic design optimization, it is
generally assumed that all the design variables and model inputs are precisely known; the

influence of data or distribution parameter uncertainty on the optimality and feasibility of



the models is not explicitly considered. However, real-life engineering problems are not
deterministic and this deterministic assumption about inputs may lead to infeasibility or
poor performance (Sim, 2006). In recent years, several methods have been developed for
design under uncertainty. Reliability-based design (Chiralaksanakul and Mahadevan,
2005) and robust design (Du and Chen, 2000, Huang and Du, 2007) are two major
developments among these. While reliability-based design aims to maintain design
feasibility at desired reliability levels, robust design optimization attempts to minimize
variability in the system performance due to variations in the inputs (Lee et al, 2008). In
recent years, several methods have also been proposed to integrate these two paradigms
of design under uncertainty (Lee et al, 2008, Du et al, 2004). All these methods
developed so far work under aleatory uncertainty (i.e., precise probabilistic information).
However, such precise knowledge about probability distribution is rarely available in
practice.

In recent years, multidisciplinary reliability analysis and design optimization
under uncertainty have received increased attention in order to account for uncertainties
in the system and design variables. Several solution techniques are reported in the
literature for multidisciplinary design optimization (MDO) under uncertainty (e.g., Du
and Chen, 2002; Du and Chen, 2005; Mahadevan and Smith, 2006; Chiralaksanakul and
Mahadevan, 2007; Du et al, 2008). These studies have dealt with aleatory uncertainty
only. However, in practice, sufficient data are not available to construct the probability
distributions of some of the input variables. Sometimes the only information available for
an input variable is given by one or more intervals. If the system design can

accommodate both aleatory and epistemic uncertainty, the resulting systems will be safer



and more robust. Therefore, it is necessary to develop algorithms for multidisciplinary
design optimization that deal with both aleatory and data uncertainty. Computational
methods for multidisciplinary analysis and design under both aleatory and epistemic
uncertainty are in their infancy. A few methods exist for multidisciplinary design
optimization under both aleatory and epistemic uncertainty. Many of these methods use
non-probabilistic methods to handle epistemic uncertainty and are computationally
expensive. This dissertation research advances the state of the art in multidisciplinary
system design under uncertainty.
Objectives

The overall goal of this dissertation is to develop and demonstrate effective
methodologies for quantifying, propagating, and designing for uncertainty in
multidisciplinary systems. Both probabilistic and non-probabilistic formats of uncertainty
data have been included and integrated. In developing the methodology, this dissertation
research addresses fundamental questions focused on the following five research
objectives:

1. Input uncertainty representation

2. Uncertainty propagation

3. Design Optimization under uncertainty

4. Multidisciplinary uncertainty propagation analysis

5. Multidisciplinary design optimization under uncertainty

These five objectives and solution approaches are discussed below, along with the

organization of the dissertation.



Objective 1: Input uncertainty representation

Input uncertainty representation is the first step for reliability analysis and
probabilistic design optimization for any system. A mathematical model of the physical
system must account for uncertainty. This dissertation represents uncertain quantities as
random variables, described through probability distributions. However, sometimes the
data on the random variable is sparse, imprecise, or incomplete and this results in
uncertainty about the distribution type and distribution parameters. Again, intervariable
dependencies or statistical correlations might have a significant impact on the results of
uncertainty analysis. In practice, it is likely that the marginal distribution types for the
input variables are not known or cannot be specified accurately due to the presence of
limited or interval data which results in uncertainty in correlations among model inputs as
well as their distribution parameters. This objective focuses on the following questions:
(1) How can uncertainty in model inputs be quantified? (2) How can uncertainty in
distribution type be addressed? (3) How can uncertainty in distribution parameters be
quantified? (4) How can an efficient multivariate input modeling technique be developed
in the presence of sparse and imprecise probabilistic information? (5) How can
uncertainty in correlations among model inputs, and among distribution parameters of
model inputs be addressed?

In order to address this uncertainty in distribution type, this dissertation proposes
the use of a flexible family of distributions. Next the uncertainty in the distribution
parameters themselves is considered, and the use of computational resampling methods to
determine Johnson distributions for the distribution parameters is proposed. A

methodology is proposed to convert uncertainty arising from interval data to a



probabilistic format. This dissertation also proposes a methodology for multivariate input
modeling of random variables by using a four parameter flexible Johnson family of
distributions for the marginals that also accounts for data uncertainty. This multivariate
input model is particularly suitable for uncertainty quantification problems that contain
both aleatory and data uncertainty. In this dissertation, a computational framework is
developed to consider correlations among basic random variables as well as among their
distribution parameters. Chapters Ill and IV of this dissertation address questions 1 to 4

and Chapter VI addresses questions 4 and 5 in detail.

Obijective 2: Uncertainty propagation

Once the uncertainty in model inputs, their distributions, and correlations among
model inputs is quantified, it must be propagated through the system model if a statement
about the uncertainty in model output is to be made. This objective focuses on the
following questions: (1) How can a computationally efficient method be developed for
the propagation of uncertainty through system models? (2) How can uncertain
correlations among model inputs and their distribution parameters be included in
uncertainty analysis?

An optimization-based approach is proposed for computing the bounds on the
reliability of a design that allows for the decoupling of epistemic and aleatory uncertainty
analysis, enabling computationally affordable approaches to reliability analysis under
aleatory and epistemic uncertainty arising from sparse point data. This dissertation
develops and illustrates a probabilistic approach for propagation in system analysis, when
the information on the uncertain input variables and/or their distribution parameters may

be available as either probability distributions or simply intervals (single or multiple). A



methodology for propagating both aleatory and data uncertainty arising from sparse point
data through computational models of system response that assigns probability
distributions to the distribution parameters and quantifies the uncertainty in correlation
coefficients by use of computational resampling methods is also proposed. For interval
data, the correlations among the input variables are unknown. This dissertation
formulates the optimization problems of deriving bounds on the cumulative probability
distribution of system response, using correlations among the input variables that are
described by interval data. Chapters Ill and V of this dissertation address question 1 and

Chapter VI addresses question 2 in detail.

Obijective 3: Design Optimization under uncertainty

Now that the uncertainty in the input is quantified, and an uncertainty propagation
method to quantify the uncertainty in the output is developed, the next step is to develop
formulations and algorithms for design optimization under data uncertainty, both from
the perspective of system robustness so that the resulting solutions are least sensitive to
variations in the model inputs and from the perspective of satisfying the system
reliability. This objective addresses the following questions: (1) How can a methodology
be developed for design optimization that can handle data uncertainty (i.e., imprecise
probabilistic information)? (2) How can the proposed methodology improve the
robustness and reliability of the design?

This dissertation proposes formulations and algorithms for design optimization
under both aleatory (i.e., natural or physical variability) and epistemic uncertainty (i.e.,
imprecise probabilistic information), from the perspective of system robustness and

reliability. An approach is proposed in this dissertation to decouple the robustness-based



and reliability-based design from the analysis of non-design epistemic variables to
achieve computational efficiency. Chapters VII and VIII of this dissertation address
questions 1 and 2 in detail.

Objective 4: Multidisciplinary uncertainty propagation analysis

Multidisciplinary system analysis, even deterministic, is computationally
expensive. Uncertainty analysis multiplies the computational effort even further.
Inclusion of data uncertainty within the analysis again multiplies the computational
effort. This objective focuses on the following fundamental questions: (1) How can the
uncertainty quantification methods developed in Objectives 1-2 be extended for
multidisciplinary systems? (2) How can an efficient method for uncertainty quantification
be developed for a multidisciplinary system that includes imprecise probabilistic
information and remains computationally tractable?

This dissertation develops an efficient probabilistic approach for uncertainty
propagation in multidisciplinary system analysis, when the information on the uncertain
input variables may be available as either sparse point data or as intervals (single or
multiple). A decoupled approach is used in this dissertation to un-nest the
multidisciplinary system analysis from the probabilistic analysis to achieve
computational efficiency. This approach uses deterministic optimization to first quantify
the uncertainty in the coupling variables, without any coupled system level analysis.
Once the uncertainty in the coupling variables is quantified, the system level uncertainty
propagation analysis is similar to single discipline problems. The proposed methods are
equally applicable to both sampling and analytical approximation-based reliability

analysis methods. Chapter X of this dissertation addresses questions 1 and 2 in detail.
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Obijective 5: Multidisciplinary design optimization under uncertainty

Multidisciplinary design optimization under aleatory uncertainty itself is a
challenging problem. Inclusion of epistemic uncertainty makes this problem more
difficult. This objective focuses on the following fundamental questions: (1) How can the
design optimization methods developed in Objective 3 be extended for multidisciplinary
systems? (2) How can an efficient method be developed for multidisciplinary system
design that includes sparse and imprecise probabilistic information and remains
computationally tractable?

This dissertation proposes formulations and algorithms for design optimization of
multidisciplinary systems under both aleatory uncertainty (i.e., natural or physical
variability) and epistemic uncertainty (i.e., imprecise probabilistic information), from the
perspective of system robustness and reliability. A single loop approach is used for the
robustness-based design optimization, which does not require any explicit coupled
multidisciplinary uncertainty propagation analysis. Thus the computational complexity
and cost involved in estimating the mean and variation of the performance function is
greatly reduced. The proposed methodology for reliability-based design of
multidisciplinary systems also does not require any coupled system level analysis. An
approach is proposed in this dissertation to decouple the robustness-based and reliability-
based design from the analysis of non-design epistemic variables to achieve further
computational efficiency. Chapters X and XI address questions 1 and 2 in detail.

The uncertainty quantification and design optimization methodologies developed

in this dissertation are illustrated through problems related to spacecraft design and
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analysis, such as the conceptual level upper stage design of a two-stage-to-orbit (TSTO)
vehicle and a simplified three-disciplinary version of a fire satellite (FireSat).

Two-stage-to-orbit (TSTO) Vehicle

The two-stage-to-orbit (TSTO) vehicle involves a multidisciplinary system
analysis consisting of geometric modeling, aerodynamics, aerothermodynamics, engine
performance analysis, trajectory analysis, mass property analysis and cost modeling
(Stevenson et al, 2002). The Two-Stage-To-Orbit (TSTO) is a Highly Reliable Reusable
Launch Systems (HRRLS) concept vehicle, as shown in Figure 1. This concept vehicle is
used in the NASA Aeronautics Research Mission Directorate (ARMD) Fundamental
Aeronautics Program (Hypersonics Project). The first (launch) stage (shown in blue in
the figure), employs a turbine-based, combined cycle propulsion system. The second

(upper) stage is (shown in red in the figure) employs a rocket powered propulsion system.

Figure 1: The Two-Stage-To-Orbit (TSTO) Highly Reliable Reusable Launch
Systems (HRRLS) concept vehicle.
In this dissertation, a simplified version of the upper stage design process of a
TSTO vehicle is used to illustrate the proposed methods. High fidelity codes of
individual disciplinary analysis are replaced by inexpensive surrogate models. Figure 2

illustrates the analysis process of a TSTO vebhicle.
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Figure 2: TSTO vehicle concept

Fire Satellite (FireSat) Design and Analysis

This problem has been originally described in Wertz and Larson (1999). This is a
hypothetical but realistic spacecraft consisting of a large number of subsystems with both
feedback and feed-forward couplings. The primary objective of the fire satellite (FireSat)
is to detect, identify, and monitor forest fires in near real time. This satellite is intended to
carry a large and accurate optical sensor of length 3.2 m and weight 720 kg, and has an

angular resolution of 8.8e-7 radians. In this dissertation, a simplified subset of FireSat
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subsystems consisting of i) Orbit Analysis, ii) Attitude Control and iii) Power, based on
Ferson et al (2009) has been used . This three-discipline problem is sketched in Figure 3.

Target latitude,
Target longitude,
Target size
[Altitude]

A
Orbit period, Eclipse period

Orbit

Orbit Period,
Satellite velocity,

Max slewing angle Imins Imax

[Ptot] ’ [Ttot] ’ [Asa]

Figure 3: FireSat: A three-subsystem representation

The following chapter discusses the existing methods for handling the above

objectives and explains the scope of the proposed methods.
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CHAPTER I

LITERATURE REVIEW

1. Introduction

As discussed in Parry (1996), there are three elements in a model-based uncertainty
analysis: i) characterizing uncertainty in individual elements of the model, i.e.,
representing input uncertainty regarding individual elements of the model, ii) propagating
the uncertainty thus represented through a model of system response to obtain a
representation of the output uncertainty and iii) communicating the results thus obtained
to the decision makers and other stakeholders. Therefore, it is important that the different
types of uncertainty in the system and the model be represented in a way that it can be
efficiently used in further analysis i.e., in algorithms for reliability analysis and design
optimization and the results can be easily communicated to the stakeholders. It is now
well recognized that both aleatory and epistemic uncertainty must be represented in an
appropriate manner so that it can be used in any decision support analysis (Helton and

Burmaster, 1996; Parry, 1996; Pate -Cornell, 1996).

Many important physics-based engineering analyses require the use of
computationally expensive codes, and often involve uncertain inputs that are described
using various probabilistic and non-probabilistic methods. Many probabilistic uncertainty
propagation methods have been developed for many single discipline problems involving
computationally expensive simulation models in order to propagate physical variability in

the input, expressed through random variables and random processes and/or fields. In



recent years, several methods have been developed for design under uncertainty for both
single and multidisciplinary problems.

All these methods developed so far work under precise probabilistic information on
the random variables. This dissertation specifically focuses on epistemic uncertainty
arising from imprecise probabilistic information (especially sparse point data and
interval data) on the random variables. In particular, this dissertation develops methods
for different uncertainty management tools, namely uncertainty quantification and design
optimization for both single and multidisciplinary systems under both aleatory and
epistemic uncertainty arising from sparse point and interval data.

The following sections present a review of existing methods in the literature for
uncertainty quantification, propagation, and design optimization under uncertainty. This
review is followed by an outline of the methods proposed in the subsequent chapters to
address some of the unfulfilled research needs in the current literature, especially with

respect to imprecise probabilistic information.

2. Uncertainty quantification with sparse point data

One approach for uncertainty representation under data uncertainty is evidence
theory (Shafer, 1976). Evidence theory has been used with interval data for reliability-
based design optimization (Mourelatos and Zhou, 2006) and multidisciplinary systems
design (Agarwal et al, 2004), where a belief measure is used to formulate the non-
deterministic design constraints. Other approaches for epistemic uncertainty
quantification based on evidence theory include Guo and Du (2007) and Guo and Du
(2009). However, evidence theory requires basic probability assignments (bpa) and it is

not clear how to construct bpa from sparse data.
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In some cases, random variables with sparse data can be modeled using convex
models of uncertainty (Ben-Haim and Elishakoff, 1990). Examples of convex models
include intervals, ellipses or any convex sets. Convex models usually require less detailed
information to characterize uncertainties than probabilistic models. They require a worst-
case analysis in design applications that can be formulated as a constrained optimization
problem. When the convex models are intervals, techniques in interval analysis can be
used, though they are computationally expensive. As an extension of interval analysis,
some research in uncertainty representation and propagation under data uncertainty has
focused on the use of possibility/fuzzy set theory (Dubois and Prade, 1988). The
drawback of these approaches is that they require combinatorial interval analysis, and the
computational expense increases exponentially with the number of uncertain variables
and with the nonlinearity of the function. Further, the use of interval analysis methods for
problems with sparse point data requires that interval information be inferred from point
data, and this introduces additional uncertainty to the problem.

It is clear from the above discussion that probability theory might be easier and
more intuitive in handling the information available from sparse point data. While
probability theory is a widely understood and perfect description of aleatory uncertainty,
knowledge of the exact probability distribution type and/or parameters for random
variables is usually imperfect due to limited data. Extensive probabilistic techniques for
uncertainty quantification and propagation also exist, which usually rely on existence of
sufficient data. For cases where data is limited, it is impossible to define a unique
probability distribution function to adequately describe the random variable. Hence, the

probability distributions are imprecise. Two types of approaches are available to handle
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this situation: (1) Bayesian methods, and (2) P-boxes, as discussed below.

Bayesian methods (e.g. Der Kiureghian 1984, McFarland 2007) have been used to
leverage expert opinion in cases where data is sparse, while including the information
gained from the data. However, under sparse data, the distributions selected are sensitive
to the choice of prior distributions. Alternately, other studies within the context of
imprecise probability theory have focused on representing uncertainty in the probability
distribution by using a probability box, or p-box (e.g., Ferson et al, 2007), which is the
collection of all possible empirical distributions for the random variable. Other research
has focused on developing bounds, e.g., on CDFs. Halperin (1986) extensively developed
the idea of interval bounds on CDFs as well as methods for propagation of these
probability intervals through simple expressions. Hyman (1982) developed similar ideas
for probabilistic arithmetic expressions in the density domain. Williamson and Downs
(1990) described algorithms to compute arithmetic operations (addition, subtraction,
multiplication and division) on pairs of p-boxes. These operations generalize the notion
of convolution between probability distributions (Berleant, 1993; 1996; Berleant and
Goodman-Strauss, 1998).

Several of these current methods of uncertainty propagation under data and
distribution uncertainty can be computationally expensive. One reason is that for every
combination of distribution parameters, the probabilistic analysis for aleatory variables
has to be repeated, which results in a computationally expensive nested analysis. Various
approaches can be used to reduce the computational expense of the nested approach; for
example, Monte Carlo methods leveraging importance sampling, the first-order reliability

method (FORM), and second-order reliability method (SORM) (Haldar and Mahadevan,
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2000) can be used. The system analysis may also be replaced with an inexpensive
surrogate model (e.g., polynomial chaos (Ghanem and Spanos 1991; Cheng and Sandu,
2009) or Gaussian process model (Bichon et al, 2008)) to achieve computational
efficiency. While these propagation methods are useful for problems dealing with
uncertainties having probabilistic representation arising primarily from inherent
variability in physical parameters, decoupled methods to efficiently represent and
propagate aleatory and data uncertainty (or a mixture of aleatory and epistemic
uncertainty) are yet to be developed.

Therefore, Chapter 111 of this dissertation develops and illustrates an approach for
the propagation of both aleatory and epistemic uncertainty in such a way that the
epistemic and aleatory uncertainty analyses are not nested, thus enabling computationally
efficient calculation of bounds on reliability estimates under epistemic and aleatory
uncertainty.

3. Uncertainty quantification with interval data

3.1 Sources of Interval data

Interval data are encountered frequently in practical engineering problems.
Several such situations where interval data arise are discussed in (Du et al 2005; Ferson
et al 2007), for example: (a) physical limits and theoretical constraints may be the only
sources of information, which can only circumscribe possible ranges of quantities
resulting in interval data. (b) Interval data arises when the only information available for
a variable is a collection of expert opinions, which specify a range of possible values for
a variable. (c) Reporting data with plus-or-minus uncertainties associated with the

calibration of measuring devices also leads to interval data. (d) Some tests in chemical or
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purity quantification can only state that an observation is below a certain detection limit,
resulting in an interval observation for the amount of impurity between zero and the
threshold. (e) Intervals may arise in the detection of a fault when observations are spaced
temporally; as the fault occurs between two consecutive observations, the time of failure
is given by a window of time. Interval data requires careful treatment, especially if the
width of the interval cannot be ignored when compared to the magnitude of the variable.

Two types of interval data are considered in this dissertation, based on computational
methods: single or multiple intervals. When compared to single interval cases, multiple
intervals require consideration of two additional issues: (1) From the context of
computational expense, estimating statistics from multiple intervals can be more
challenging, (2) From the context of aggregation of information represented in the
multiple intervals, there may be no basis to believe that the “true” value of the variable
lies at any particular location of any intervals, such as endpoints or midpoints of the
intervals. Although not necessarily true, a common assumption in the literature is that all
the intervals are equally likely to enclose the “true” value of the variable, i.e., all intervals
have an equal weight (Ferson et al 2007).

When data is available in multiple intervals (e.g., given by multiple experts), the
information contained in one interval could contradict that in the other interval(s), or
could be contained by other interval(s). In this context, intervals can be broadly
categorized as non-overlapping and overlapping intervals.

3.2 What does an interval represent?

In order to propagate uncertainty through models of system response, it is necessary

to first have a valid representation of the input uncertainty that can lead to meaningful
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quantification of the uncertainty in the system response. In this context, there are two
broadly categorized interpretations of what interval data represents in the literature.

The first is the so-called equi-probability model, which corresponds to the Laplacian
principle of indifference (Howson and Urbach, 1993) and considers each interval as a
uniform distribution (Bertrand and Groupil, 2000). Each possible value in every interval
is assumed equally likely, resulting in a single probability mass and/or density for each
possible realization of a random variable. We note that there might not be a justification
to assume uniform distribution or any other distribution within a particular interval,
which can be viewed as a limitation of the equi-probability model. Also, the equi-
probability model results in a precise probabilistic representation of interval data, thereby
failing to capture the inherent imprecision in the data.

The second popular interpretation of interval data, which is adopted in this
dissertation, is that it represents incertitude in the data (Ferson et al 2007). As a result,
the possible values for quantities of interest such as probability of an event will in general
be an interval, unlike a single value for point data. Unlike the equi-probability model that
results in a single probabilistic representation of the interval, the notion of incertitude
leads to a collection of distribution functions that could arise from different possible

combinations of values from within the intervals.

21



09r- 0.8

08

0.7

06

05

04

Cumulative probability

0.3

Cumulative probability

02

01

Overlapping data with 5 intervals Non-overlapping data with 4 intervals
[5, 6;5.5,6.1; 6, 6.5; 5.4, 6.2; 5.6, 6.6] [5, 6;6.1,6.7;6.9,7.8; 8, 9]
Figure 1: Examples of an empirical p-box for multiple intervals

The set of all possible probability distributions of a particular distribution type
(e.g., empirical, normal) for a variable described by interval data is known as a
probability box, or a p-box for short (Williamson and Downs 1990). To illustrate, we
explain the notion of an empirical p-box that exists in the literature (Ferson et al 2007),
which is the collection of all possible empirical distributions for the given set of intervals.
An empirical p-box summarizes the interval data set graphically. It is constructed as an
increasing step function with a constant vertical step height of 1/N, where N is the
number of intervals. The construction of the empirical p-box requires sorting the lower
and upper bounds for the set of intervals, followed by plotting the empirical cumulative
distribution function (CDF) of each of the sorted bounds as shown in Figure 1 for
overlapping interval data with five intervals [5, 6; 5.5, 6.1; 6, 6.5; 5.4, 6.2; 5.6, 6.6] and
non-overlapping interval data with four intervals [5, 6; 6.1, 6.7; 6.9, 7.8; 8, 9]. The step
height at each data point for the empirical CDF in Figure 1 is equal, which reflects the

assumption that the intervals are all equally weighed. Note that the p-box and the
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Dempster-Shafer structure (discussed in the following subsection) are equivalent and
each representation can be converted to the other (Regan et al, 2004).

Several other approaches such as evidence theory and fuzzy logic are also used within
the interpretation of incertitude. A brief discussion of the various techniques to represent
interval data within the scope of incertitude is presented next.

3.3 Existing Methods for Treatment of Interval Uncertainty

The Sandia epistemic uncertainty project (Oberkampf et al 2004) conducted a
workshop that invited various views on quantification and propagation of epistemic data
uncertainty (includes interval data), which are summarized in (Ferson et al 2004). Many
uncertainty theories for representation and propagation of interval uncertainty have been
discussed at the workshop, which include Dempster—Shafer structures (Helton et al,
2004; Klir, 2004), probability distributions (Helton et al, 2004), possibility distributions
(Helton et al, 2004), random intervals (Fetz and Oberguggenberger, 2004), sets of
probability measures (Fetz and Oberguggenberger, 2004), fuzzy sets (Fetz and
Oberguggenberger, 2004), random sets (Berleant and Zhang, 2004; Hall and Lawry,
2004), imprecise coherent probabilities (Kozine and Utkin, 2004), coherent lower
previsions (De Cooman and Troffaes, 2004), p-boxes (Ferson and Hajagos, 2004),
families of polynomial chaos expansions (Red- Horse and Benjamin, 2004), info-gap
models (Ben-Haim, 2004), etc. A brief discussion of some of the popular uncertainty
theories discussed in the above workshop, and interval data in general, follows.

In addition to the p-box representation discussed previously, other research within
the realm of probability theory for interval data has focused on developing bounds, e.g.,

on CDFs. Hailperin (1986) extensively developed the idea of interval bounds on CDFs as
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well as methods for propagation of these probability intervals through simple
expressions. Hyman (1982) developed similar ideas for probabilistic arithmetic
expressions in the density domain. Williamson and Downs (1990) described algorithms
to compute arithmetic operations (addition, subtraction, multiplication and division) on
pairs of p-boxes. These operations generalize the notion of convolution between
probability distributions (Berleant 1993; 1996; Berleant and Goodman-Strauss, 1998).
Additional results involving bounds on CDFs are available in Helton et al (2004) and
Helton et al (2008). Epistemic uncertainty has also been expressed using subjective
probability (e.g., (Apeland et al, 2002; Hofer et al, 2002)). On the other hand, some
researchers believe that a probabilistic representation is not appropriate for interval data
because information may be added to the problem (Du et al, 2005; Agarwal et al, 2004).
A commonly used approach for representation of interval data is Dempster-Shafer
evidence theory (Shafer, 1976). In the context of evidence theory, there exist many rules
to aggregate different sources of information. Among different rules of combination, the
Dempster’s rule is one of the most popular, however, this approach may not be suitable
particularly for cases where there is inconsistency in the available evidence (Oberkampf
et al, 2001; Agarwal et al, 2004), e.g., in the case of non-overlapping intervals. In such
cases, a mixture or averaging rule may be appropriate (Oberkampf et al, 2001). Evidence
theory has been applied to quantify epistemic uncertainty in the presence of interval data
for multidisciplinary systems design (Agarwal et al, 2004), where a belief measure is
used to formulate the non-deterministic design constraints. Others have developed
approaches for epistemic uncertainty quantification based on evidence theory, including

Guo and Du (2007) and Guo and Du (2009).
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In some cases, uncertain events form patterns that can be modeled using convex
models of uncertainty (Ben-Haim and Elishakoff, 1990). Examples of convex models
include intervals, ellipses or any convex sets. Convex models usually require less detailed
information to characterize uncertainties than probabilistic models. They require a worst-
case analysis in design applications which can be formulated as a constrained
optimization problem. When the convex models are intervals, techniques in interval
analysis can be used, though they are computationally expensive.

Some research has focused on the use of possibility/fuzzy set theory for interval
data. The possibility distribution (membership function) of a function of an interval
variable with a given possibility distribution can be found using Zadeh's Extension
Principle (Dubois and Prade, 1988). The drawback of this approach is that it requires
combinatorial interval analysis, and the computational expense increases exponentially
with the number of uncertain variables and with the nonlinearity of the function. Within
the realm of fuzzy representation, Rao and Annamdas (2009) present the idea of weighted
fuzzy theory for intervals, where fuzzy set based representations of interval variables
from evidences of different credibilities are combined to estimate the system margin of
failure.

The aggregation of multiple sources of information as seen with multiple interval
data is an important issue in characterizing input uncertainty. There is now an extensive
list of literature that discuss different aggregation methods, which include stochastic
mixture modeling (Ferson and Hajagos, 2004; Helton et al, 2004), Dempster's rule
(Agarwal et al, 2004; Rutherford, 2004), a posteriori mixture (Red- Horse and Benjamin,

2004), natural extension of pointwise maximum (De Cooman and Troffaes, 2004), etc.
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However, the aggregation method used in uncertainty representation must be consistent
with the nature of the uncertainty as well as the specific uncertainty theory used (Helton
et al, 2004).

Helton et al (2004) discussed and illustrated the use of different uncertainty theories,
namely, probability theory, evidence theory, possibility theory, and interval analysis for
the representation and propagation of epistemic uncertainty. This paper used a sampling-
based approach with each of the uncertainty theories. For probability theory, they defined
the probability spaces by assuming uniform distributions over the sets of the possible
values of the input variables. Multiple sources of information are aggregated by simply
averaging the distributions for the number of sources assigning equal weight to each
source. Baudrit and Dubois (2006) proposed a methodology to represent imprecise
probabilistic information described by intervals using different uncertainty approaches,
such as probability theory, possibility theory and belief functions, etc.

Within the context of uncertainty propagation with interval variables, there exists
literature that considers both interval and aleatory uncertainties. Approaches such as
evidence theory or possibility theory are commonly used to represent interval variables,
while probabilistic representation is typically used to represent aleatory uncertainties. The
propagation of an evidence theory representation of uncertainty through a model of
system response is computationally more expensive than that of probability theory
(Helton et al, 2007). Helton et al (2008) discussed the efficiency of different alternatives
for the representation and propagation of epistemic uncertainty and argued that
propagation of epistemic uncertainty using evidence theory and possibility theory

required more computational effort than that of probability theory. In uncertainty
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propagation analysis, for every combination of interval values, the probabilistic analysis
for aleatory variables is repeated, which results in a computationally expensive nested
analysis. Some research in the literature focuses on managing this computational expense
(Penmetsa and Grandhi, 2002, Rao and Cao, 2002). Representation and propagation of
interval uncertainty has been studied from the context of structural problems (Langley,
2000) and multidisciplinary problems (Du and Chen, 2000). Besides their computational
complexity, another disadvantage of using non-probabilistic methods is that the end users
of the uncertainty analysis are little aware of these methods and therefore, it may involve
huge educational effort to make them familiar with these non-traditional uncertainty
analysis methods (Helton et al, 2008).

As discussed above, there are various approaches for treating interval data, each
with their own advantages and limitations. One of the drawbacks of the current
approaches is the need for nested analysis in the presence of interval variables. To
alleviate this issue, Chapter IV develops a probabilistic representation for interval data
using a collection of flexible probability distributions.

If non-probabilistic methods are to be used for epistemic uncertainty propagation,
new efficient approaches have to be developed. However, if the uncertainty described by
intervals can be represented through probability distributions, the computational expense
of interval analysis is avoidable as it allows for treatment of aleatory and epistemic
uncertainty together without nesting, and already well established probabilistic methods
of uncertainty propagation, for example, Monte Carlo methods (Robert and Cesalla,
2004) and optimization-based methods such as first-order reliability method ( FORM),

second-order reliability method (SORM) etc. (Haldar and Mahadevan, 2000) can be used.
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The system may also be replaced with an inexpensive surrogate model (e.g., polynomial
chaos (Ghanem and Spanos 1991; Cheng and Sandu, 2009) or Gaussian process model
(Bichon et al, 2008)) to achieve computational efficiency. While these uncertainty
propagation methods are useful for problems dealing with uncertainties having
probabilistic representation arising primarily from inherent variability in physical
parameters, methods to efficiently represent and propagate epistemic uncertainty (or a
mixture of aleatory and epistemic uncertainty) are yet to be developed.

It should be noted that some researchers argue that a probabilistic representation
IS not appropriate for epistemic uncertainty because information may be added to the
problem (Du et al, 2005; Agarwal et al, 2004). This may be true when a single fixed
probability distribution is assumed for the epistemic variable. In this dissertation, we
alleviate this concern by using a flexible family of Johnson distributions. The use of a
family of distributions for the underlying basic random variable avoids the problem of
incorrect classification of the distribution type and thus minimizes the risk of adding
information to the problem. However, we observe that some non-probabilistic methods
may also add subjective information to the problem. For example, when evidence theory
is used for the representation of interval uncertainty, the use of a combination rule adds
an assumption about combining evidence; different combination rules exist in the
literature (Agarwal et al, 2004). The commonly used Dempster’s rule also requires some
consistency or agreement among the intervals (Oberkampf et al, 2001; Agarwal et al,
2004). The evidence theory also requires that an interval for a random variable be

associated with the basic probability assignments (BPA) associated with the intervals.
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However, in practice, such consistency among the different intervals may not be possible
and any assumption about the BPA can add information to the problem.
Chapter V of this dissertation develops a new probabilistic approach for the

propagation of both probabilistic and interval variables.

4. Uncertainty quantification considering correlations

As mentioned in Chapter I, uncertainty analysis studies often assume independence
among input random variables for the sake of convenience and due to lack of multivariate
data. However, intervariable dependencies or statistical correlations might have
significant impact on the results of uncertainty analysis. Uncertainty analyses with
correlated variables require the joint PDF of input variables. However, it is almost
impossible to obtain the joint PDF of the input variables, as it requires joint multivariate
observations. Therefore, uncertainty analyses tend to use only information on marginal
distributions and covariances. Correlation information can be used to transform the
correlated variables to an uncorrelated reduced normal space in the case of analytical
reliability methods (e.g., FORM) or to simulate correlated random variables for use in
Monte Carlo simulation.

There exist various methods to transform correlated variables to uncorrelated standard
normal space and to simulate correlated random variables, e.g., Rosenblatt transformation
(Rosenblatt, 1952), Nataf transformation (Nataf, 1962), Power and Modulus
transformations (Box and Cox, 1964; John and Draper, 1980), etc. The Rosenblatt
transformation is quite accurate, but it requires closed form conditional distributions

which are almost impossible to obtain in practice. The Nataf transformation requires only
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information on marginal distributions and the correlation matrix (Rebba, 2005). Methods
of generating correlated variables or transforming correlated variables to uncorrelated
standard normal space have been discussed and illustrated in many studies (Der
Kiureghian and Liu 1986; Liu and Der Kiureghian 1986 ; Haas 1999 and Minhajuddin et
al 2004) for known marginals such as normal, lognormal, shifted exponential, shifted
Rayleigh, Gamma, beta, etc. Der Kiureghian and Liu (1986) presented semi-empirical
formulas that relate the correlation coefficients in the reduced normal space poj to the
original correlation coefficients pj; for several known two-parameter marginal
distributions.

In practice, it is likely that the marginal distribution types are not known or cannot be
specified accurately due to the presence of limited or interval data. For such cases, the
Johnson family of distributions (Johnson, 1949a) is a convenient choice as it has the
flexibility to fit data with a large range of different distribution function shapes and thus
eliminates the need to forcibly assume a fixed distribution type. While there are several
other viable four-parameter distributions that may also be used with this approach, such
as the Pearson (Pearson, 1895), Beta (McDonald, 1984), and Lambda distributions
(Ramberg and Schmeiser, 1974), the Johnson family is a convenient choice. This is
because the Johnson distribution lends itself to easy transformation to a standard normal
space, which then can be conveniently applied in well known reliability analysis and
reliability-based design optimization methods. However, for random variables having
Johnson marginal distributions, an efficient methodology to transform correlated
variables to uncorrelated standard normal space or to simulate correlated variables is yet

to be developed. Johnson (1949b) proposed a bivariate distribution based on the
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univariate Johnson distributions. This method can be extended for simulating multivariate
Johnson distributions as discussed in Stanfield et al (1996). However, this multivariate
Johnson distribution cannot match the sample correlation matrix of the original data set if
some of the marginal distributions possess large skewness. Stanfield et al (1996)
proposed an improved method to model multivariate Johnson distributions that can match
the first three marginal moments and correlation structure of the data but fail to match the

kurtosis of the data.

Most of the existing methods that use statistical correlation in uncertainty analysis
have been developed only in the context of aleatory uncertainty in the input random
variables (e.g., Noh et al, 2009). These methods consider correlations among basic
random variables that are described by well known two-parameter probability
distributions (e.g., normal, lognormal, exponential, Rayleigh, Gamma, etc.). Some
uncertainty quantification methods exist that deal with unknown dependencies among the
input variables (Berleant and Zhang, 2004). Ferson and Kreinovich (2006) described
dependence among input variables described by interval data in the context of interval
analysis. Recently, uncertainty quantification methods under both aleatory and data
uncertainty have been developed where input uncertainty is represented by a flexible
family of distributions, e.g., Johnson distributions (McDonald et al, 2009 and Zaman et
al, 2009a, 2009b). These uncertainty quantification methods were developed assuming
independence among the input variables. Chapter V of this dissertation develops a
multivariate input model of random variables and extends these methods to include

correlations.
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5. Design optimization with epistemic uncertainty

In deterministic design optimization, it is generally assumed that all design variables
and system variables are precisely known; the influence of natural variability and data
uncertainty on the optimality and feasibility of the design is not explicitly considered.
However, real-life engineering problems are not deterministic and this deterministic
assumption about inputs may lead to infeasibility or poor performance (Sim, 2006). In
recent years, many methods have been developed for design under uncertainty.
Reliability-based design (e.g., Chiralaksanakul and Mahadevan, 2005; Ramu et al, 2006;
Agarwal et al, 2007and Du and Huang, 2007) and robust design (e.g., Parkinson et al,
1993; Du and Chen, 2000; Doltsinis and Kang, 2004 and Huang and Du, 2007) are two
directions pursued by these methods. While reliability-based design aims to maintain
design feasibility at desired reliability levels, robust design optimization attempts to
minimize variability in the system performance due to variations in the inputs (Lee et al,
2008). In recent years, several methods have also been proposed to integrate these two
paradigms of design under uncertainty (e.g., Du et al, 2004, Lee et al, 2008).

Taguchi proposed robust design methods for selecting design variables in a manner
that makes the product performance insensitive to variations in the manufacturing process
(Taguchi, 1993). Taguchi’s methods have widespread applications in engineering;
however, these methods are implemented through statistical design of experiments and
cannot solve problems with multiple measures of performances and design constraints
(Wei et al, 2009). With the introduction of nonlinear programming to robust design, it has
become possible to achieve robustness in both performance and design constraints (Du

and Chen, 2000).
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Although there is now an extensive volume of literature for robust optimization
methods and applications, all these methods have only been studied with respect to
physical or natural variability represented by probability distributions. However,
uncertainty in system design also arises from other contributing factors as discussed in
Chapter 1. A few studies on robust design optimization are reported in the literature to
deal with epistemic uncertainty arising from lack of information. Youn et al (2007) used
a possibility-based method, and redefined the performance measure of robust design
using the most likely values of fuzzy random variables. Dai and Mourelatos (2003)
proposed two two-step methods for robust design optimization that can treat aleatory and
epistemic uncertainty separately using a range method and a fuzzy sets approach.

There is now also an extensive volume of literature available for RBDO methods and
applications. However, all these methods have only been studied with respect to physical
or natural variability represented by probability distributions. RBDO is a challenging
problem in presence of epistemic uncertainty, because the design methodology requires
employing a search among the possible values of epistemic variables in order to find a
conservative design. A few studies on RBDO are reported in the literature to deal with
epistemic uncertainty arising from lack of information. Agarwal et al (2004) developed
an evidence theory based approach to multidisciplinary RBDO using response surfaces
for uncertain measures represented by the belief and plausibility functions and a
sequential approximate optimization approach. However, this method cannot handle both
alatory and epistemic uncertainty together. Mourelatos and Zhou (2006) developed an
evidence theory based design optimization (EBDO) methodology for single discipline

system that can handle both aleatory and epistemic uncertainty. Mourelatos and Zhou
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(2005) proposed a possibility based design optimization (PBDO) methodology for single
discipline system, which is a formulation of triple loop optimization sequence and
therefore, is computationally expensive. Zhou and Mourelatos (2008) proposed double
loop and sequential strategies to manage the computational expense in the PBDO
methodology.

Most of the current methods of robust optimization and RBDO with epistemic
uncertainty need additional non-probabilistic formulations to incorporate epistemic
uncertainty into the robust optimization framework, which may be computationally
expensive. Therefore, there is a need for efficient robust design optimization and RBDO
methodologies that deal with both aleatory and epistemic uncertainty.

Chapter VII of this dissertation develops an efficient robust optimization
methodology that includes both aleatory and epistemic uncertainty arising from both
sparse point data and interval data. Chapter VIII of this dissertation develops an efficient
RBDO methodology that includes both aleatory and epistemic uncertainty arising from

both sparse point data and interval data.

6. Uncertainty quantification in multidisciplinary systems
Efficient uncertainty propagation methods are available to include both aleatory
and epistemic uncertainty in uncertainty propagation analysis, but for single discipline
problems only, for example see Zaman et al (2009b) and the references cited therein.
Uncertainty propagation for multidisciplinary systems, even with aleatory uncertainty
alone, is expensive as it involves coupled system analysis that is achieved through

iterative executions of individual disciplinary analysis codes. Some efficient methods

34



such as Du and Chen (2005) and Du et al (2008) are available for handling aleatory
uncertainty in multidisciplinary analysis. These methods take advantage of optimization
to construct analytical approximations to evaluate the system compatibility requirement.
When both aleatory and epistemic uncertainty are present, propagation of uncertainty
through multidisciplinary system models becomes even more difficult. This dissertation
focuses on the handling of sparse point and interval data in a manner that facilitates
efficient algorithms for reliability analysis or design optimization of multidisciplinary
systems.

There is now an extensive volume of literature available for deterministic
multidisciplinary design optimization (MDO) methods and applications (e.g., Cramer et
al, 1994; Sobieszczanski-Sobieski, 1995; Sobieszczanski-Sobieski and Haftka, 1997). In
recent years, multidisciplinary reliability analysis and design optimization under
uncertainty have received increased attention in order to account for uncertainties in the
system and design variables. Several solution techniques are reported in the literature for
multidisciplinary design optimization (MDO) under uncertainty (e.g., Du and Chen,
2002; Du and Chen, 2005; Mahadevan and Smith, 2006; Chiralaksanakul and
Mahadevan, 2007; Du et al, 2008). These studies have dealt with aleatory uncertainty
only. However, in practice, sufficient data are not available to construct the probability
distributions of some of the input variables. Sometimes the only information available for
an input variable is given by one or more intervals. Therefore, it is necessary to develop
algorithms for multidisciplinary reliability analysis and design optimization that deal with

both physical variability and data uncertainty.
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A few methods exist for MDO under both aleatory and epistemic uncertainty.
Zhang and Huang (2009) proposed algorithms that considered both random and fuzzy
variables. Agarwal et al (2004) proposed a methodology for uncertainty quantification
using evidence theory. Li and Azarm (2008) proposed methods for interdisciplinary
uncertainty propagation embedded within a multidisciplinary robust optimization
framework for interval variables. Gu et al (2006) proposed an implicit uncertainty
propagation method considering aleatory uncertainty in the design variables and
prediction error in disciplinary simulation-based design tools. An efficient methodology
for multidisciplinary uncertainty propagation with both aleatory and epistemic
uncertainty that works within a probabilistic framework of uncertainty representation
awaits development. This is the focus and contribution of Chapter 1X of this dissertation.

The efficiency of multidisciplinary uncertainty propagation analysis depends on
how the system analysis is handled. Several methods are available for system analysis
within the MDO literature, namely the multidisciplinary feasibility (MDF) method, the
all-at-once (AAO) method, and the individual disciplinary feasibility (IDF) method
(Cramer et al, 1994). All these methods have their own advantages and limitations.

A decoupled approach for multidisciplinary reliability analysis was previously
developed in Mahadevan and Smith (2006). This approach quantifies the uncertainty
associated in coupling variables and therefore un-nests the system analysis from the
algorithms of probabilistic analysis. However, this method has been developed for
handling aleatory uncertainty only. In this disstertation, we extend this idea of a
decoupled formulation and propose probabilistic methods for multidisciplinary reliability

analysis under both aleatory and epistemic uncertainty.
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Chapter VII of this dissertation develops a probabilistic framework for the
propagation of both aleatory and epistemic uncertainty in multidisciplinary systems that
can deal with both sparse point data and any type of interval data (nested, un-nested and
mixed).

7. Multidisciplinary design optimization with epistemic uncertainty

MDO is the optimization of systems of coupled simulations (Cramer et al, 1994).
There is now an extensive volume of literature available for MDO methods and
applications (e.g., Cramer et al, 1994; Sobieszczanski-Sobieski, 1995; Sobieszczanski-
Sobieski and Haftka, 1997). However, these deterministic methods can be inadequate in
real-world applications since they do not explicitly take uncertainty into account.
Robustness-based design optimization and RBDO account for this uncertainty in design

parameters.

Robustness-based design optimization of a multidisciplinary system aims to
simultaneously optimize the mean value of the objective function and minimize its
variation while satisfying the system compatibility requirements of the multidisciplinary
system. Although there is now an extensive volume of literature for robust optimization
methods and applications, all these methods have only been studied for single discipline
problems. As mentioned earlier, some of these methods can only handle aleatory

uncertainty, while others can handle both aleatory and epistemic uncertainty.

Multidisciplinary robustness-based design integrates the concept of robust design
with multidisciplinary design optimization (MDO). The difficulties lie in estimating the

mean and variation of the performance functions considering the multidisciplinary nature
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of the system. The term performance function refers to the objective function as well as
the constraint functions of the robustness-based design optimization. Generally,
multidisciplinary robustness-based design optimization requires uncertainty analysis of
the coupled system for estimating the mean and variation of the performance function.
Therefore, the efficiency of the robust design methodology depends on the efficiency of
the uncertainty analysis method. Du and Chen (2002) proposed efficient uncertainty
analysis methods for multidisciplinary problems, namely, the system uncertainty analysis
(SUA) method and the concurrent subsystem uncertainty analysis (CSSUA) method.
They used these uncertainty analysis methods in the framework of robust design for
multidisciplinary systems to achieve computational efficiency. However, these methods
have two limitations. Firstly, SUA requires at least one coupled multidisciplinary system
level analysis at each iteration of the robust optimization problem, and CSSUA requires a
nested double loop formulation when used in a robust optimization framework. Secondly,
these methods are developed to account for aleatory and model uncertainty only; no data
uncertainty is considered. Du and Chen (2002) proposed another hierarchical
collaborative approach to multidisciplinary robust optimization. However, this approach
may suffer from convergence issues and like SUA and CSSUA, this method also does not
consider data uncertainty. Gu et al (2000) proposed a worst case uncertainty propagation
method for multidisciplinary systems and then applied this method to robust design
optimization; however, they did not consider data uncertainty. Robust design
optimization of multidisciplinary systems has also been studied using game theory
methods (Chen and Lewis, 1999; Kalsi et al, 2001). A detailed review of methods for

multidisciplinary robust optimization is found in Allen et al (2006).
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Most of these multidisciplinary methods deal with aleatory uncertainty only and a few
of them deal with both aleatory and model uncertainty. However, uncertainty in system
performance may arise from many contributing factors as discussed in Chapter 1. The
sources of errors in the models of physical systems can be divided into two types: model
form error and solution approximation or numerical error (Mahadevan and Rebba, 2006).
Model form errors result from approximation about system behavior model, boundary
conditions, etc. Solution approximation error may include discretization error as seen in
finite element or finite difference methods, truncation error as seen in lower-order
approximations in response surface methods, numerical round-off error, etc. There are
two ways to include model form errors in design optimization. The first approach
assumes model error as a stochastic variable with a mean value 0 and standard deviation
being proportional to the corresponding function value (Du and Chen, 2002; Smith and
Mahadevan, 2003). The second approach quantifies the model error based on the
comparison of model prediction with physical observations (Mahadevan and Rebba,
2006). Mahadevan and Rebba (2006) also developed method to quantify the solution
approximation error based on the model itself, using the Richardson extrapolation
method. Although all these model uncertainty quantification methods can be
conveniently incorporated to our proposed robustness-based design optimization
framework, our focus in this dissertation is on the epistemic uncertainty arising from

sparse point data and interval data.

A few methods exist for multidisciplinary problems under both aleatory and
epistemic uncertainty. Li and Azarm (2008) proposed methods for multidisciplinary

robust optimization with interval uncertainty using collaborative optimization. In this
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method, the uncertain parameters are given as single intervals. This method requires a
tolerance region for the coupling variables. The system compatibility requirement is
assumed to be satisfied when this tolerance region for the coupling variable is smaller
than a predefined tolerance region of the target variable. However, for a multidisciplinary
system, the system compatibility requirement should be satisfied at every single point
value. Also, this method needs additional non-probabilistic formulations to incorporate
epistemic uncertainty into the design optimization framework, which may be
computationally expensive. Therefore, an efficient methodology for multidisciplinary
robust design optimization under both aleatory and epistemic uncertainty awaits

development.

As discussed earlier, most of the existing methods for RBDO can handle only single
discipline problems. Multidisciplinary RBDO under aleatory uncertainty alone is a
computationally challenging problem. The inclusion of epistemic uncertainty in
multidisciplinary RBDO further multiplies this computational effort. Little or no method
for multidisciplinary RBDO exists in the literature that can handle both aleatory and
epistemic uncertainty. Therefore, there is a need for an efficient RBDO methodology that
deals with both aleatory and epistemic uncertainty for multidisciplinary problems.

Chapter IX of this dissertation develops a methodology for robustness-based
design optimization for multidisciplinary systems that includes both aleatory and
epistemic uncertainty. Chapter X of this dissertation develops a methodology for RBDO

for multidisciplinary systems that includes both aleatory and epistemic uncertainty.
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CHAPTER 111

PROBABILISTIC SYSTEM ANALYSIS WITH SPARSE DATA

1. Introduction

In this Chapter, the problem of reliability analysis under both aleatory uncertainty
(natural variability), and epistemic uncertainty (arising when our only knowledge about
the random variables is sparse point data) is addressed. First, the epistemic uncertainty
arising from a lack of knowledge of the distribution type of the random variables is
considered. To address this uncertainty in distribution type, the use of a flexible family of
distributions is proposed. The Johnson family of distributions has the ability to reproduce
the shape of many named continuous probability distributions, and therefore alleviate the
difficulty of determining an appropriate named distribution type for the random variable.
We next consider uncertainty in the distribution parameters themselves, and propose the
use of computational resampling methods to determine Johnson distributions for the
distribution parameters. As a result, we compute the uncertainty in reliability estimates
for limit state functions having random variables with imprecise probability distributions
as their arguments. We propose an optimization-based approach for computing the
bounds on the reliability of a design that allows for the decoupling of epistemic and
aleatory uncertainty analysis, enabling computationally affordable approaches to
reliability analysis under aleatory and epistemic uncertainty. The proposed methods are

illustrated for a problem of uncertainty quantification for drag prediction, where the drag



coefficient of a hypersonic aerospace vehicle is to be estimated as a function of its

velocity and angle of attack.

The contribution of this chapter is to develop and illustrate an approach for the
propagation of both aleatory and epistemic uncertainty in such a way that the epistemic
and aleatory uncertainty analyses are not nested, thus enabling computationally efficient
calculation of bounds on reliability estimates under epistemic and aleatory uncertainty. In
this chapter, we specifically address two types of epistemic uncertainty that arise from
sparse data. We first consider epistemic uncertainty arising from a lack of knowledge of
the distribution type of the random variables. To address this uncertainty in distribution
type, we propose the use of the Johnson family of distributions. The Johnson family of
distributions has the ability to reproduce the shape of many named continuous probability
distributions, and therefore alleviate the difficulty of determining an appropriate named
distribution type for the random variable. We also consider uncertainty in the distribution
parameters themselves. We propose the use of computational resampling methods to
determine Johnson distributions for the parameters of the Johnson distribution. Finally,
we address the uncertainty in the reliability estimates for limit state functions with
random variables that have imprecise probability distributions. We propose an
optimization-based approach to compute the bounds on the reliability without nesting the
epistemic and aleatory uncertainty analyses, thus enabling a computationally affordable
approach to reliability analysis under aleatory and epistemic uncertainty. The resulting
approach allows for computationally affordable, though approximate, methods of
defining and ultimately propagating imprecise probability distributions through

computationally expensive simulation models.
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The rest of the chapter is organized as follows. Section 2 describes the proposed
methodologies for uncertainty representation. Section 3 describes the proposed methods
for propagating both epistemic and aleatory uncertainty, using a first-order-reliability
method (FORM). Section 4 gives a numerical illustration of the proposed techniques for a
problem of uncertainty quantification for drag prediction, where the drag coefficient of a
hypersonic aerospace vehicle is to be estimated as a function of its velocity and angle of

attack. Section 5 provides conclusions and suggestions for future work.

2. Proposed Methods for Uncertainty Representation

2.1 Fitting the Johnson Distribution to Point Data

The Johnson distribution is a four parameter distribution, and as such it can match
the first four moments of a wide variety of probability distribution shapes, thereby
allowing it to replicate the shape of many named probability distributions. The shape of
the fitted distribution is controlled by the parameters in the function as well as by the
transformation function used. A brief description of the Johnson distribution function is
provided here. Since Johnson family distribution has the flexibility to fit data with a large
range of different distribution function shapes, this eliminates the need to test different
distributions that will give the best fit to a set of sample data. Fitting data of a random
variable with Johnson distribution involves transforming a continuous random variable x
whose distribution is unknown into a standard Normal (z) with one of the four
normalizing translations proposed by Johnson (Johnson, 1949). The general form of the

translation is:
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Z=y+ é’f(x;fj (1)

where z ~ N(0,1). f is the translation functions that map different distributions to the

standard Normal distribution. The Johnson’s distribution functions are as follows:

f(y) = In(y), for lognormal (S, ) distribution

= In[y +4/y? +1l for unbounded (S;) Johnson distribution @)
= In[y/(1- y)] for bounded (S;) Johnson distribution, and
=y, for Normal (S) distribution

where y = (x-¢)/4.

DeBrota et al (1988) present four methods to estimate the Johnson distribution
parameters. These methods include the method of moments (requiring the first four
moments of the data), percentile matching (by using four points and solving a system of
nonlinear equations for the distribution parameters), least squares estimation (by
minimizing the sum of squared errors in the percentile values of the probability
distribution), and minimizing the error norm of the Johnson distribution when compared
with the empirical CDF.

Venkataraman and Wilson (1987) implement the above methods, and determine

the distribution using the following procedure:

1. Calculate the moments of x: mp, mz, and ma.
2. Calculate the skewness and kurtosis of x: B =mZ/m; and g, =m, /m?2.

3. Use the chart in Figure 1 to determine the appropriate distribution family.
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After the distribution parameters of the experimental data have been estimated,

regenerating random variable x that follows this distribution is easy. The first step is to

generate standard Normal random variable z. Then x can be generated by performing the

inverse translation to z:

- A Zzr
x =&+ Af [ 5 j

©)

Note that cumulative probability calculations are much simpler in the standard normal

space, allowing for relatively simple calculations of the PDF and CDF of x. Examples of

PDFs for different Johnson distributions are shown in Figure 2.
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Figure 1: Johnson distribution family identification. B =m3/m; and g,=m,/m>.

(Marhadi, 2007)
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2.2 Statistical Uncertainty Quantification via Jackknife

Figure 2: Examples of PDFs for different Johnson distributions

With the assumption of the Johnson distribution, we are able to alleviate the issue

of uncertainty in distribution type. However, it is not possible under small sample sizes to

know the precise values of the distribution parameters. Therefore, we introduce a novel

and versatile approach for the uncertainty quantification of distribution parameters. This

approach assumes that both the basic random variables and their distributions are Johnson

distributed, and uses a jackknife technique to estimate the distribution of the distribution




parameters. The assumption of the distribution parameters also having the Johnson
distribution allows for the possibility of a non-normal distribution for the distribution
parameters. This is important, particularly if moment matching is used to estimate the
distribution parameters given small sample sizes, for two reasons. First, the estimates
resulting from a moment matching approach do not necessarily have asymptotic
normality properties as would be the case, for instance, when using a maximum
likelihood estimator. Second, even if the estimator had an asymptotic normality property,
the sample size may be too small to assume that it holds. In that case, common
assumptions that the unknown population mean takes on a normal distribution and that
the unknown population variance assumes a chi-square distribution are unwarranted. Our
proposed method does not assume any particular distribution type for the distribution
parameters, and therefore can be used with any method for distribution parameter
estimation, including the method of moments, maximum likelihood, or Bayesian
estimation techniques.

Jackknifing (Miller, 1964, 1968, 1974; Arvesen, 1969; Efron, 1979) is used in
statistical inferencing to estimate the bias and standard error in a statistic, when a random
sample of observations is used to calculate it. The basic idea behind the jackknife
estimator lies in systematically recomputing the distribution parameter estimate, leaving
out one observation at a time from the sample set. From this new set of "observations" for
the statistic an estimate for the bias can be calculated and an estimate for the variance of
the parameter. We propose the following algorithm for uncertainty quantification of the

distribution parameters:
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Algorithm for Uncertainty Quantification in Distribution
Parameters

Seti=1
while (i <=N)
Delete observation i from the original set of observations

Estimate the Johnson distribution parameters on the basis of
the N-1 remaining points.

Record as estimate i.
Restore observation i to the set of original observations.
i=i+1

end while

Fit a Johnson Distribution to the set of parameter estimates
obtained in the while loop.

As an illustration of this approach, consider the following set of observations of a
random variable X: [5.0, 5.2, 5.5, 6.0, 6.3, 6.5, 7.0, 7.2, 7.5, 8.0]. The PDFs and CDFs of
the Johnson distributions estimated on the basis of leaving one observation out are shown

below in Figures 3 and 4, respectively.
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Figure 4: Jackknifed CDF estimates given sparse data
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3. Proposed Methods for Uncertainty Propagation

The proposed methods in this section propagate both aleatory and epistemic input
uncertainty to calculate the resulting uncertainty in the output. The proposed methods are
based on the concepts of FORM, inverse FORM, and sensitivity analysis. A brief
overview of these concepts is provided first, and the proposed methods are developed
subsequently.

3.1 FORM, Inverse FORM, and Sensitivity Analysis

In model-based reliability analysis, the failure probability estimation problem is
given as
P =P(g(x) <k) (4)

It is customary to formulate this problem such that the condition g < 0 corresponds to
failure, while g > 0 corresponds to a condition of safety. The limit state “surface”
corresponds to points where g = 0.

The rigorous mathematical definition of failure probability requires the evaluation
of the integral of the joint probability density function (pdf) of all the random variables
over the failure domain as:

Pe= P(@<0)=].Jg<of (x)d x (5)

This integral poses computational hurdles as it can be difficult to formulate the joint
probability density explicitly and integration of a multidimensional integral may be
difficult. Alternatively, Pe can be evaluated using several methods (first-order second
moment (FOSM), first-order reliability method (FORM), second-order reliability method

(SORM), inverse FORM, and Monte Carlo simulation), all of them iterative (Haldar and
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Mahadevan, 2002). Further details on these methods and computational issues are
provided in Haldar and Mahadevan (2002).
In the first order reliability method (FORM), the variables, x, which may each be
of a different probability distribution, and may be correlated, are first transformed to a
space of uncorrelated reduced normal variables u. Well-known methods (Haldar and
Mahadevan, 2002) are available to transform x to u. The closest point to the origin on
the function g = 0 in the reduced normal space is then found. This minimum distance
point is referred to as the most probable point (MPP) of this limit state, and the distance f
is referred to as the reliability index. Then the first-order estimate of Pg is the same as in
Eq. 4,i.e. P. = ®(—/). The MPP can be calculated as the optimal solution of:
min [ u ] (6)
st.g(u)=0
It is also possible to find the extreme value of the response function g for which
the probability of exceedence will be equal to ®(xf4). This is done by solving the
following inverse FORM problem:
min/max g(u) (7)
s.t.lfull=pr
The inverse FORM problem has a very important role in this chapter because it returns a
worst-case point at a certain probability level. The inverse FORM formulation is
particularly useful in dealing with reliability analysis under uncertainty in the distribution
parameters, when the uncertainty in the distribution parameters is described
probabilistically using the Jackknife technique. The inverse FORM formulation could be

used with the failure probability, conditioned on the values of the distribution parameters,
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as the g function. In this case, inverse FORM would yield the solution to the problem of
estimating confidence bounds on the failure probability. Optimization-based approaches
to obtain confidence bounds on the reliability estimate are described in detail in the
following section.

An additional by-product of FORM is the sensitivity vector a. The sensitivity
vector is defined as:

V.,G(u)
= 8
“TV e ©

The sensitivity vector is collinear with the MPP vector, and its components quantify the
influence of each random variable on the reliability index. These components are referred
to as probabilistic sensitivity factors. This sensitivity vector shows the relative
contribution of each of the random variables to the variance in the limit state function. As
such, the alpha vector gives quantitative guidance about which random variables to
collect further information. When applied to the parameter space in terms of the inverse
FORM problem of finding the distribution parameters that maximize or minimize the
failure probability, this vector provides information about the sensitivity of the failure

probability estimate to each distribution parameter.

3.2 Optimization-Based Confidence Intervals for CDF and Reliability Estimates

In this chapter, uncertainty analysis is carried out using the probabilistic
techniques for reliability analysis described in the last section. We treat epistemic and
aleatory uncertainties separately, performing reliability analysis conditioned on a
realization of the distribution parameters. Thus there are two sets of uncertain variables

in the problem. The first set of uncertain variables, x, has aleatory or irreducible
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uncertainty and is basic to the limit state function, i.e., these variables correspond to
quantities such as capacity and load for a structure. The second set of variables has
epistemic uncertainty, and is the distribution parameters 0, selected from a set of
admissible values ®. It should be noted that given the presence of epistemic uncertainty,
the failure probability is itself uncertain because of the uncertainty in the distributions of
the basic random variables. It is desired to determine bounds on this failure probability,
given uncertainty in the distribution parameters. Explicit and separate treatment of the
epistemic and aleatory variables allows for the calculation of probability distributions of
and confidence intervals for the failure probability.

In general, the aleatory uncertainty is propagated using any appropriate
probabilistic technique. However, the failure probability is conditioned on a set of
distribution parameter values. This conditioning has necessitated nested methods for
uncertainty propagation, where a set of distribution parameters would be selected first,
and then given these distribution parameters, a reliability analysis would be performed.
Mehta et al (1993) proposed formulations that allow for the use of FORM in such a
nested manner. The most general problem of calculating bounds on the failure probability

would thus be stated as

min/ max Pz (0)
w.r.t. 0
st.00O®

©)

In the reliability analysis, the distributions of the basic random variables x are
conditioned on 0. The cumulative distribution functions for the basic random variables

with uncertain probability distributions are calculated by conditioning on a particular
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realization of the uncertain distribution parameters. Their optimum values are chosen to
minimize or to maximize the failure probability.

If FORM is to be used in confidence bounds calculation, then the MPP is given
below as a mathematical programming problem with the following generalized statement:

min/emax{min,B(x,B)}

St.

g(x)=0
0O

(10)

This nested optimization problem can be decoupled and expressed as:

x* =arg min(3(x, 0%)|g(x) = 0)

where (11)

0* =arg min/ max S(x*,0)
0O

Each optimization problem in Eq. (11) is solved iteratively until convergence.

If the uncertainty in the distribution parameters is represented probabilistically,
then it is possible to use the approach of Eq. (11) to calculate confidence bounds on the
failure probability. In calculating these confidence bounds, it is useful to define a
transformation of the distribution parameters to the standard normal parameter space u’.
Once this transformation is defined, the second optimization problem can be defined such
that the set ® becomes a hypersphere in the transformed space of radius Sr. With this
definition, Eq. (11) then becomes

x* = arg min{3(x,8*)|g(x) = 0)}
X

where

(12)
0* = argmin/ max{g3(x*,0) | HUHH =S}
0
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We note that the solution of Eqg. (12) guarantees that to first order accuracy the
probability of the reliability index associated with the system’s limit state exceeding
P(x*, %) is d(£Lr). Hence the solution of the problem gives confidence bounds on the
failure probability with the 1 - o/2 confidence level equal to ®(-|53r)).

If the failure probability of an entire series or parallel system is of concern, MCS
could be used directly with Eqg. (9) where the failure or safety of all components in the
system is evaluated for each randomly generated sample point. Alternatively, the MPP
for each component could be determined using FORM for each limit state function, and
the system reliability would become the objective function for the second optimization
problem in Eq. (12).

It should be noted that there are no system response function evaluations required
for the inverse FORM analysis with the epistemic variables. In other words, if expensive
structural or CFD codes are required to evaluate the limit state function for the purposes
of reliability analysis, in this decoupled formulation, no evaluations are required to find
the values of the distribution parameters which minimize or maximize the likelihood of
the MPP. This is because the second problem (the inverse FORM problem) in Eq. (11)
manipulates the transformation to normality only, and does not involve solution of the
first problem (the direct FORM problem) in which limit state functions are required to
evaluate the gradients of the objectives and constraints. The inverse FORM reliability
analysis finds the worst-case values of the distribution parameters so that the failure
probability is maximized, or best case parameters such that the failure probability is

minimized. When the two optimization problems converge, we have first order estimates
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of the failure probability by solving the reliability analysis, where the expensive function
evaluations are encountered, only a few times in this decoupled formulation.

As in direct FORM for the case of certain probability distributions, sensitivity
analysis can be performed on both the epistemic and aleatory uncertainties using the
sensitivity vector a. The interpretation of the sensitivity vector a (see Eq. 8) for the
aleatory random variables is much the same as in the case with probability distributions
with no randomness. However, the alpha vector for the distribution parameters also lends
important information to the decision maker. This vector gives an indication of the
sensitivity of the failure probability to the uncertainty in each distribution parameter.
Sensitivities of distribution parameters near zero indicate that the outcome of the design
problem is unlikely to change, regardless of the value of the distribution parameter. High
sensitivities, however, indicate the distribution parameter has a large influence on the
reliability estimate. This information can be used in determining the variables for which

to pursue more intensive data collection.

4. Numerical Illustration
In this section, the proposed methods are applied to a single aerodynamic data set for
the upper stage of the Two-Stage-To-Orbit (TSTO) concept vehicle, as shown in Figure 1
of Chapter I. The objective is to quantify the uncertainty in the predicted drag, given
uncertainty in the flight conditions.
Because the fine grid (3,800,000 grid points) computational fluid dynamics code is too
expensive for uncertainty propagation analysis, a design of computational experiments

has been conducted to construct a surrogate model. The following cases have been
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analyzed to develop a surrogate model for drag prediction. The following values for the
Mach number (Mach) were selected: 0.5, 0.9, 1.1, 1.2, 1.6, 2.0, 4.0, 6.0, 8.0, 10.0, and
12.0. The following values of Angle of Attack (AoA) were selected: 0, 5, 10, 15, 20, 30,
and 40 degrees. Instead of the expected 11x7 = 77 data points for every combination of
Mach and AoA, only 68 points were used as the analysis code failed to converge for
remaining 9 points.

Centerline and surface pressure contours for a representative case (Mach = 2.0,
and angle of attack = 10 degrees) are shown in Figure 5. From the uncertainty analysis
point of view of this chapter, only two variables are of interest: Mach number and angle
of attack. Each calculation by the Cart3D code is presumed here to be deterministic.
Any issues related to the repeatability of individual results from this code, or any other
data source, are beyond the scope of this chapter and are within the domain of code
verification, rather than uncertainty quantification. Given a Mach number and an angle
of attack, a selection of Cart3D options to be used within the calculation, and a
prescription for the process used to capture the results, there is no uncertainty within any

individual result.
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Figure 5: Centerline pressure contours for TSTO upper stage at Mach = 2.0, AoA =10
degrees
A response surface (Equation 13) for a model-predicted drag coefficient (Cp) has

been created as a function of Mach number (Mach) and angle of attack (AoA).

Cp = 0.050269-0.015291* Mach + 4.02211E - 004* AoA -
7.04277E -004* Mach * AoA +1.44863E003* Mach? + 4.61108E 004 * AoA?

(13)
A surface plot of the drag coefficient is given in Figure 6. We wish to determine the
95 percent confidence interval for the probability that the drag coefficient exceeds 0.15.

Thus, we will use a limit state function of

g(Mach, AoA) = 0.15 - (0.050269 - 0.015291* Mach + 4.02211E - 004* A0A -
7.04277E -004* Mach * A0A +1.44863E003* Mach? + 4.61108E 004* AoA?)

(14)
and use analytical reliability methods to evaluate the exceedence probability. Mach and
AO0A are described by sparse point data as given in Table 1.

Table 1: Data for Mach and AoA

Data
Mach AOA
6.52 21.73
6.06 20.19
5.49 18.30
6.52 21.75
5.74 19.13
5.74 19.14
5.34 17.79
6.24 20.79
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5.42 18.07
6.10 20.34

As the variability of the mission parameters are described by sparse point data,
this creates uncertainty about the distribution parameters of Mach and AoA. In this
example, it is assumed that Mach and AoA as well as their distribution parameters are
characterized by bounded Johnson distributions. We follow the procedure described in
Section 2 to obtain the distributions of each distribution parameter of Mach AoA as given
in Tables 2 and 3.

Table 2: Distribution parameters for distribution of Mach

9 A Y &
§Miach 0.2194 0.2330 -0.0250 0.3991
pMach 0.3493 0.1905 0.2098 1.3401
yMeen 0.2555 0.3528 -0.0014 -0.0811
gvach 0.5263 0.1652 -0.1672 5.1554

Table 3: Distribution parameters for distribution of AOA

o A Y &
§HoA 0.2194 0.2330 -0.0250 0.3991
AR 0.3493 0.6350 0.2098 4.4670
YR 0.2555 0.3528 -0.0014 -0.0811
gron 0.5263 0.5506 -0.1672 17.1846

The set of admissible distribution parameter values is found by transforming the
distribution parameters to the standard normal space and considering only those
distribution parameters for which their image in the u? space fall on a sphere centered at

the origin having radius 1.96. Thus, we will use the problem statement of Eq. (10) to
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calculate a 95 percent confidence interval for the probability of the drag coefficient

taking on a value of 0.15 or greater.
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Figure 6: Drag Coefficient Response Surface

By solving Eqg. (10), the 95 percent confidence interval for the exceedance probability is
found to be (0.0126, 0.2732). The worst-case distribution parameters and sensitivities are
given in Tables 4 and 5. From Table 5 we see that uncertainty in the distribution of AoA
IS more important than the uncertainty in the distribution of Mach. This is intuitive

considering the larger gradients of the response surface in the AoA direction and the

wider distribution of AoA.
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Table 4. Worst Case Distribution Parameters

(P;=0.2732)
0 A Y &
Mach 0.4500 1.3957 0.2091 5.2328
A0A 0.4144 4.9903 -0.0529 17.6268

Table 5. Worst-Case Sensitivities

(P;=0.2732)
Aleatory Sensitivities
Variable Sensitivity
Mach -0.2999
AOA 0.9541

Epistemic Sensitivities
Variable Sensitivity
g -0.1554
AMach -0.0509
y e 0.1992

Meach -0.1192
3R -0.3100
AR 0.3823
PR -0.3192
ghoA 0.2922

The best-case parameter values (where P; = 0.0126) and sensitivities are given in

Tables 6 and 7.

Table 6. Best Case Distribution Parameters

(P; = 0.0126)
9 A Y &
Mach 0.5954 1.4179 0.0000 5.2729
AoA 0.6122 45163 0.2130 17.2949

Table 7. Best-Case Sensitivities
(P¢=0.0126)
Aleatory Sensitivities
Variable Sensitivity
Mach | -0.5101
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AoA | 0.8601
Epistemic Sensitivities
Variable Sensitivity

§een 0.1750
pMaen 0.0410
yMeen -0.1583
gvach 0.1568
3R 0.2527
AR -0.3340

y oA 0.2094
ghoA -0.4570

From Table 7 we see that uncertainty in the distribution of AoA is more important than
the uncertainty in the distribution of Mach. This is intuitive considering the larger
gradients of the response surface in the AoA direction and the larger variance in AoA.
Because the limit state function is very sensitive to A0A, and the scatter of the
distribution is wide, it is obvious that the failure probability is very sensitive to the
uncertainty in the distribution of AoA. The CDFs of the worst and best case distributions

of Mach and AoA are shown in Figures 7 and 8, respectively.
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Figure 7: The worst and best case distribution parameters of Mach
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Figure 8: The worst and best case distribution parameters of A0A
The use of optimization methods in calculating confidence bounds on the failure
probability makes the proposed method computationally efficient (483 function
evaluations) as compared to a sampling-based method (e.g., MCS). If we used the
sampling method to calculate the confidence bounds, we would require N xn function
evaluations (e.g.,10x10000), where N is the sample size of sparse point data and n is the

MCS sample size.

5. Conclusion

This chapter developed a methodology for propagating both aleatory and
epistemic uncertainty arising from sparse data through computational models of system
response. A flexible Johnson family of distributions is used to represent variables with
sparse data. The methodology differs from existing approaches in that it infers Johnson
probability distributions to the distribution parameters also by use of computational

resampling methods. Once the uncertainty in the distribution parameters is quantified, the
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reliability analysis of the system uses probability distributions conditioned on the
distribution parameter values. An efficient optimization-based method for calculating the
confidence intervals of the failure probability is developed based on FORM. This method
eliminates the computationally expensive process of nesting an aleatory uncertainty
analysis inside an epistemic uncertainty analysis. This methodology also affords
sensitivity analysis information with regard to each of the distribution parameters as well
as the basic random variables. The results of the sensitivity analysis give quantitative

guidance regarding data collection for the random variables.
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CHAPTER IV

A PROBABILISTIC APPROACH FOR REPRESENTATION OF
INTERVAL UNCERTAINTY

1. Introduction

In this chapter, we propose a probabilistic approach to represent interval data for
input variables in reliability and uncertainty analysis problems, using flexible families of
continuous Johnson distributions. Such a probabilistic representation of interval data
facilitates a unified framework for handling aleatory and epistemic uncertainty. For
fitting probability distributions, methods such as moment matching are commonly used in
the literature. However, unlike point data where single estimates for the moments of data
can be calculated, moments of interval data can only be computed in terms of upper and
lower bounds. Finding bounds on the moments of interval data even within some given
finite accuracy has been conjectured to be an NP hard problem because it includes a
search among the combinations of multiple values of the variables, including interval
endpoints. In this chapter, we present efficient algorithms based on continuous
optimization to find the bounds on second and higher moments of interval data. With
numerical examples, we show that the proposed bounding algorithms are scalable in
polynomial time with respect to increasing number of intervals. Using the bounds on
moments computed using the proposed approach, we fit a family of Johnson distributions
to interval data. Furthermore, using an optimization approach based on percentiles, we

find the bounding envelopes of the family of distributions, termed as a Johnson p-box.



The idea of bounding envelopes for the family of Johnson distributions is analogous to
the notion of empirical p-box in the literature. Several sets of interval data with different
numbers of intervals and type of overlap are presented to demonstrate the proposed
methods. As against the computationally expensive nested analysis that is typically
required in the presence of interval variables, the proposed probabilistic representation
enables inexpensive optimization-based strategies to estimate bounds on an output

quantity of interest.

Within the context of reliability analysis, it is often required that a certain function
g(x) of input variables X, representing a response of the designed system, lie within given
bounds. In many cases, the values of some elements of x are uncertain, and this
uncertainty may be of aleatory or epistemic type. Aleatory uncertainty can be
represented by using probability distributions. In some cases of epistemic uncertainty,
the distribution for x must be determined from imprecisely available data, such as
intervals given by experts. This implies that the cumulative distribution function of x, and
subsequently that of g(x), denoted as F(g(x)), cannot be known precisely. Instead of
formulating design requirements in terms of failure probabilities, the requirements may
then have to be formulated as bounds on the cumulative distribution function F(g(x)) of
the function g(x). In this chapter, we focus on the representation of epistemic uncertainty
arising from interval data in the input variables x, where a variable’s possible values are

described by intervals.

As discussed in Chapter 1l above, there are various approaches for treating

interval data, each with their own advantages and limitations. One of the drawbacks of
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the current approaches is the need for nested analysis in the presence of interval
variables. To alleviate this issue, we propose a probabilistic representation for interval
data using a family of Johnson distributions. A new aggregation technique is proposed to
combine multiple intervals. This aggregation technique enables the use of the method of
matching moments to represent the uncertainty described by the multiple intervals
through a family of probability distributions. An important advantage of the proposed
approach is that it allows for a unified probabilistic framework to be applied that can
jointly handle aleatory and epistemic uncertainties, thereby allowing for well developed
and efficient analytical probabilistic methods such as FORM and SORM to be used in
uncertainty propagation. The proposed representation avoids the expensive nested
analysis by enabling the use of an optimization-based strategy that can estimate the
distribution parameters of the input variables that maximize or minimize an output
quantity of interest.

It is a common practice in the literature to use methods such as moment matching
and percentile matching to fit probability distributions to data sets. However, describing
interval data in a probabilistic format is not straightforward. Unlike point data, where
statistics such as moments have precise values, statistics for interval data are usually
described by their upper and lower bounds. Finding bounds on the statistics of interval
data is a computationally challenging problem because it typically involves interval
analysis that is conducted using a combinatorial search. It has been reported that
computing the upper bound on second moment of overlapping intervals is conjectured to
be an NP-hard problem even if some given finite accuracy in the moment bounds is of

interest (Kreinovich 2004, Ferson et al 2007), although polynomial time algorithms have
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been reported for some special cases (Kreinovich et al 2006). Little to no work exists in
the literature about bounds on higher moments. Most previous approaches that calculate
bounds on moments combinatorially search for points within the intervals that minimize
or maximize the moments of the data. A major contribution of this chapter is the
development of algorithms based on continuous optimization methods which scale
polynomially in computational effort with respect to the number of intervals. Knowledge
of the bounds on moments on the interval data is useful because it provides restrictions
on the possible distributions the underlying random variable may assume. Using the
moment bounds computed using the proposed algorithms, we develop a probabilistic
representation of the interval as a Johnson p-box, which is an ensemble of bounded
Johnson distributions.

The main contributions of this chapter are summarized as follows. First, we
present approaches based on continuous optimization to find the bounds on second and
higher moments of interval data with single and multiple intervals. Second, we
demonstrate using numerical examples that these algorithms are scalable in polynomial
time with respect to increasing number of intervals. Third, using the bounds on moments,
we fit a family of Johnson distributions to interval data. Analogous to the notion of
empirical p-box as the bounding envelope for empirical distributions, we construct a
Johnson p-box, which represents the bounding envelope for Johnson distributions for
interval data.

The remainder of the chapter is organized as follows. Section 2 develops the
methods for estimating moment bounds for interval data and Section 3 develops a

probabilistic approach for the representation of interval uncertainty. Section 4 illustrates
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the proposed developments using different examples of interval data, where comparisons
with alternate representations such as the empirical p-box are made. Section 5 concludes

the chapter with summary and future work.

2. Estimating Bounds on Moments for Interval Data

This section discusses the proposed algorithms that estimate bounds on moments for
interval data for single and multiple interval cases. A brief background is provided first.

In this dissertation, we fit a family of Johnson distributions to interval data using the
moment matching approach. Moment matching involves equating the moments derived
from data to those of the probability distribution being fit. The Johnson family is a
generalized family of distributions that can represent normal, lognormal, bounded, or
unbounded distributions. While there are several other viable four-parameter distributions
that may also be used with this approach, such as the Pearson, Beta, and Lambda
distributions, the Johnson family is a convenient choice. This is because the Johnson
distribution lends itself to easy transformation to a standard normal space, which then can
be conveniently applied in well known reliability analysis and reliability-based design
optimization methods.

Among other methods (see Chapter IlI), we use the moment matching approach in
this dissertation to take advantage of the moment bounding algorithms developed in this
section. Moreover, to determine the appropriate type of Johnson distribution (bounded,
unbounded, normal, lognormal), we need to compute the moments of the data set. While
it is possible to have point estimates for the moments of point data, moments on interval

data must be described using upper and lower bounds. As discussed in Section 1, it is
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challenging to compute bounds on moments of a variable described by multiple intervals.
Note that in this dissertation, we assume that the multiple interval data are obtained from
equally credible sources. As discussed in Section 1, this is a common assumption in the
literature. The reason is that in absence of any additional information regarding the
relative credibility of each source; it is reasonable to assume that all sources of

information are equally credible.

In the following subsections, we propose methods that can compute lower and upper
bounds on the first four moments for single and multiple interval cases.

2.1 Bounds on Moments for Single Interval

In this subsection, we outline the proposed method to estimate bounds on moments for a
single interval case.

In order to estimate the bounds on moments, we first find the probability mass function
(PMF) of the end points of the interval that minimize or maximize the moments of the

single interval data. The following procedure is used:
1. Sample ns data points from the given interval (both endpoints included)

2. Solve the following optimization problems with the PMFs, p(xi ) i={1, ..., ns},

as the decision variables:

min/(n)1ax M, k=1230r4 @

pP{X

st. > p(x)=1 )
i=1

Here, M, =E(x)

M, = E(® )~ (E(x)P? @3)
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Mj = E(x3)—3E(x2)E(x)+ 2(E(x))

M, = E(x4)—4E(x3)E(x) +6E(x2XE(x))2 ~3(E(x))*

where, E(X) = 2Xi p(Xi)
E(x?)= Zx p(x,) (4)

E()= 2 x'p(x)

Note that the above formulas for the third and fourth moments have been derived from
the definition of moments as given below (DeGroot, 1984):

Consider a random variable X for which the first moment i.e., the expectation of X

iSE(X )= u. Then for any positive integer k, the expectation E[(X - y)k] is called the kth

central moment of the variable X or the kth moment of X about the mean value.

2.1.1 Bounds on first moment for single interval

For the lower bound on the first moment, the above minimization yields that the
probability mass function (PMF) at the lower endpoint of the interval is the Dirac delta
function, i.e., PMF is equal to one at this point and zero elsewhere. Thus the lower bound
on the mean for a single interval is the lower bound of the interval itself. Similarly, the
upper bound on the mean for a single interval occurs when the probability mass function
(PMF) at the upper endpoint of the interval is the Dirac delta function. The upper bound

on the mean for a single interval therefore is the upper bound of the interval. If we
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estimated the bounds on the first moment of single interval data based on observation, we
would get the exact same results.

2.1.2 Bounds on second moment for single interval

For the lower bound on the second moment, the above minimization yields that
the PMF at any point within the interval is the Dirac delta function, which implies that
the lower bound on variance for a single interval is zero. Similarly, for the upper bound
on the second moment, the above maximization yields a PMF of 0.5 at the both endpoints

of the single interval.

2.1.3 Bounds on third moment for single interval

For the lower bound on the third moment, the above minimization yields a PMF
of 0.2113 for the lower endpoint and 0.7887 for the upper endpoint. Similarly, a PMF of
0.7887 for the lower endpoint and 0.2113 for the upper endpoint is obtained for the upper

bound on the third moment (maximization).

2.1.4 Bounds on fourth moment for single interval

For the lower bound on the fourth moment, the above minimization yields that the
PMF at any point within the interval is the Dirac delta function, which implies that the
lower bound on the fourth moment for a single interval is zero. For the upper bound on
the fourth moment, the above optimization yields a PMF of 0.7887 for one of the

endpoints and 0.2113 for the other.

We summarize these methods in Table 1 below. Note that these values of PMFs
for the end points hold irrespective of the actual data represented by the single interval.

For a given single interval, one could therefore directly use the above PMFs to estimate
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the lower and upper bounds on the moments, without having to repeat the optimization
for each problem. We also note that we have solved the above mentioned optimization
problems for four different sample sizes i.e., by discretizing the single interval into four
different sizes (10, 100, 500, and 1000) and obtained the exact same results with linear
computational efforts. The nature of the sampling or discretization does not have any
effect on the end results as long as the samples include the two endpoints of the single

interval data.

Table 1: Methods for calculating moment bounds for single interval data

Moment Condition Formula
Lower bound Upper bound
PMF =1 at lower endpoint | PMF =1 at upper endpoint _
1 - - M, = E(x)
=0 elsewhere =0 elsewhere
PMF =1 at any point PMF = 0.5 at each (o2 2
2 =0 elsewhere endpoint M, = E(X )_(E(X))
PMF =0.2113 at lower PMF =0.7887 at lower
endpoint endpoint (3 2 3
3 =(0.7887 at upper =0.2113 at upper Mj = E(X )_SE(X )E(X)+ Z(E(X))
endpoint endpoint
PMF = 0.7887 at one of the
4 PMF = 1 at any point endpoints M, = E(X4)—4E(x3)E(X)+6E(x2XE(x))Z -3(E(x))*
=0 elsewhere =0.2113 at the other
endpoint

Note: E(x):iZ::xip(xi) E(xz):gxfp(xi) E(x3):iZ::xi3p(xi) E(x“):in“p(xi)

where p(x; ) = Probability Mass Function (PMF)

It is seen from the optimization results that the minimum and maximum of the
moments occur, when all the probability masses are concentrated at the two endpoints
only, with two exceptions as seen for the lower bounds on the second and fourth
moments. This is intuitive for the lower and upper bounds on the first moment. However,

for the other cases, we investigate this issue as follows:
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With regard to the proposed algorithm, the following can be stated from the

definition of moments as mentioned earlier in this section:

1. As the second and fourth moments are by definition positive, the lower
bounds on these moments are zero with the Probability Mass Function PMF

being the Dirac delta function at any point within the interval.

2. As the moments are by definition, the expectation of powers of deviation from
the mean value, these expectations are essentially minimum (for the third
moment) or maximum (for the second, third and fourth moments), when the
data points are located at the endpoints of the interval i.e., when the PMFs are

concentrated only at the endpoints of the single interval.

Once we know that for minimum and maximum of some moments, the PMFs
concentrate only on the two endpoints of the single interval, it might be interesting to
investigate the nature of the solutions. We plot the values of the moments as a function of
the pair (wi, wy), where w; is the PMF at the lower endpoint and w;, = 1-w; is the PMF at
the upper endpoint of the interval. It is seen in Figure 1 that the second moment reaches
its maximum when PMFs at both the endpoints are 0.5 each, which are consistent with
our optimization results. For the third moment, we get a symmetric shape, which is
consistent with our optimization results, where we have found that the PMFs at both the
end points get flipped for the minimization (0.2113, 0.7887) and maximization problems
(0.7887, 0.2113). For the fourth moment, we get a bi-modal shape. The curve reaches its

maximum for two sets of PMF pairs (0.2113, 0.7887) and (0.7887, 0.2113), which are
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consistent with our optimization results. These two sets of PMFs also correspond to the

minimum and maximum of the third moments, respectively as seen in Figure 1.
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Figure 1: Moments vs. PMFs at the interval endpoints

2.1.5 Numerical Example

We apply the proposed method of estimating bounds on a single interval to the following
example: [5, 15]. The bounds on the first moment are calculated to be [5, 15], those on
the second moment are [0, 25], those on the third moment are [-96.225, 96.225], and
those on the fourth moment are [0, 833.333]. We use this example later in the chapter to

illustrate subsequent steps in the proposed methodology.

2.2 Bounds on moments for multiple intervals

As discussed in Section 1, the computation of bounds on moments for multiple intervals
is computationally expensive as it is usually treated as a combinatorial problem, where
the moments are calculated at the combinations of possible values of the interval variable.
Rather than deal with this problem combinatorially, we have formulated this computation

as a nonlinear programming problem with the objective being minimization or
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maximization of the moments of data points that are constrained to fall within each of the
respective intervals. The computational effort of this approach with increasing number of
variables is demonstrated to be of polynomial order in the number of intervals. The
proposed formulations are valid for any type of interval data, i.e. overlapping or non-
overlapping intervals. The bounds on moments thus found are rigorous, i.e., they
completely enclose all possible moments generated from various combinations of the
interval data.

2.2.1 Bounds on first moment for multiple intervals

Consider a set of intervals given as a; < xi < b;, i = {1, ..., n} where n is the
number of intervals. Estimating the bounds on the first moment (arithmetic mean)
involves identifying a configuration of scalar points {x; i = {1, ..., n}}, (where x;
indicates the true value of the observation within the interval) within the respective
intervals that yield the smallest possible mean, and a configuration that yield the largest
possible mean. Because the mean is proportional to the sum of the interval data, the
configuration for the lower bound on the mean is the set of left endpoints of the interval,
and that for the upper bound on the mean is the set of right interval endpoints. The

formula for the arithmetic mean of interval data x; is therefore
W)= 238,23 ®
where |v wm|are the lower and upper bounds on the mean, respectively.

2.2.2 Bounds on second moment for multiple intervals

The second central moment (variance) is a quadratic function of each of the values of its

data. We search for the configuration of scalar points, x;, constrained to lie within their
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respective intervals that minimizes (or maximizes) the function shown below to yield the
lower (or upper) bound on the variance. Therefore, we construct a linearly constrained

optimization problem as follows:

. (& ,) 1(& Y
min/max M, :H[;Xi j—F(;xij (6)

s.t. Ib, <x, <ub, i={,..,n} )

2.2.3 Bounds on third and fourth moments for multiple intervals

The third and fourth central moments are third and fourth order polynomial functions
of each of the values of the data, respectively. We search for the configuration of points
{xi 1 ={1, 2,.., n}} constrained to lie within their respective intervals that minimizes (or
maximizes) the function shown below to yield the lower (or upper) bound of the

third/fourth moment.

s.t. Ib, <x <ub, i={,..,n} (9)
where minimizing (or maximizing) the above problem with k = 3 and k = 4 yields the
lower (or upper) bound on the third and fourth moments, respectively.

We have implemented the formulations to calculate the lower and upper bounds
on the second, third and fourth moments for various test cases with increasing number of
intervals. We considered both overlapping and non-overlapping interval examples to
demonstrate the performance of the proposed formulations. The following procedure was

used to generate the intervals for overlapping interval test cases. The interval extremes
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(lowest of the lower bound and the highest of the upper bound) were arbitrarily assumed.
In order to generate a desired number of intervals for each test case, a uniform random
number generator was used to generate overlapping intervals between interval extremes.
To generate non-overlapping interval data with n intervals for the test problems, we used
the following procedure. First, a sequence of monotonically increasing random numbers
is generated, {1 ,..., 2xn}. The i-th interval is generated by collecting the (2i-1)-th and
(2i)-th random number. Thus the interval widths and the end points are generated
randomly:.

We solved the above optimization formulations in Egs. (6)-(9) using the MATLAB
function fmincon, which implements a sequential quadratic programming algorithm. The
plots in the Figures 2 and 3 illustrate the scalability of the proposed formulations with
increasing number of intervals for overlapping and non-overlapping cases, respectively.
For each plot shown in Figures 2 and 3, we fit a linear or quadratic function as well as an
exponential function (solely for comparison purposes). The regression coefficients (i.e.,
the values of R?) indicate a strong linear/quadratic trend for the scalability of the

algorithms.
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Figure 2: Computational effort for the estimation of bounds on second, third, and fourth
moments for overlapping intervals
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Figure 3: Computational effort for the estimation of bounds on second, third, and fourth
moments for non-overlapping intervals

Observe that the computational effort for estimating the lower bound on second
moment increases linearly with increasing number of intervals for both overlapping and
non-overlapping data (subplots (a) in both Figures 2 and 3). The computational effort to
estimate the upper bound on second moment with increasing number of intervals is
observed to be O(n%), making this a computationally affordable procedure, even for

relatively large data sets(subplots (b) in both Figures 2 and 3).

80




The computational effort is also found to scale polynomially with the number of
intervals for both minimization and maximization of third and fourth moments, as seen
from subplots (c)-(f) in both Figures 2 and 3. These plots show the best fitting polynomial
and exponential trend lines to show that the trend is indeed polynomial in the number of
intervals.

So far, we discussed the proposed optimization formulations to estimate bounds on the
second, third, and fourth moments of interval data, which is the first important
contribution of this chapter. The moment bounds estimated in this section can be used to

fit a family of Johnson distributions to interval data, as discussed in the next section.

3. Fitting Johnson Distributions to Interval Data
As discussed in Chapter 11, there are several approaches to fit Johnson distributions to
point data using statistics such as moments or percentiles. Unlike for point data where
there can be a single probability distribution as the uncertainty description (when a large
amount of samples is available), multiple probability distributions could describe interval
data. Once the bounds on the moments of the interval data are calculated using the
approach outlined in the previous section, we can now fit the Johnson distributions whose

moments fall within the bounds of the moments of the interval data.

Within the proposed framework, two procedures could be adopted for the
uncertainty quantification of interval data: (1) sampling-based, which involves taking
random samples of moments from within the bounds computed earlier, and fitting a

Johnson distribution to each set of sampled moments, and (2) optimization-based, where
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a bounding envelope of the family of distributions can be constructed using an
optimization approach using percentiles. The sampling based approach is discussed next.

3.1 Sampling-based procedure

The proposed sampling-based procedure for constructing the family of Johnson

distributions is as follows:

1. Calculate the bounds on the first four moments of single or multiple interval data

(Section 2).

2. Randomly select a set of moments from within the bounds of the first four
moments. This sampling can be done using uniform distribution or by any
discretization method. In this chapter, we use uniform distribution. We note here
that the type of sampling or discretization method used might have impact on the

end results. However, this issue is not investigated in this dissertation.

3. From Figure 1 (see Chapter IlI), infer the type of distribution to be fitted (e.g.
bounded, unbounded, etc.) We only select those samples that suggest a bounded
Johnson distribution fit, so that the resulting distribution lies within the bounds of
the interval data specified, because, for interval uncertainty, it may be reasonable
to argue that the true measurement has zero probability of lying outside the given
interval for the single interval case or outside the overall bounds ([Min(Lower

bounds) Max(Upper bounds)]) for the multiple interval case.

4. Using the bounds of the interval data, two parameters of the bounded Johnson
distribution, £ and /, are estimated as & =min {a;, i = {1,..., n}}, and 2 = max {b;,

i={1,..,n}} -min{a, i ={1,..., n}}. The parameters & and 4, which are the
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location parameters (DeBrota et al, 1989), determine the lower end point and the

range, respectively, of the bounded Johnson distribution.

5. The remaining two unknown parameters y and ¢, which govern the shape of the
bounded Johnson distribution, are computed by solving the following

optimization problem.

2

4
rry\iﬁn f (X) = Z(M i(sampled) — M i(johnson)) (10)
’ i=1
st —50<y <50 (1)
02<5 (12)

where Misampledy 1S the set of moments sampled from step 2, and are the set of
moments for a Migonnsony Johnson distribution. Constraints on the Johnson
parameters are imposed for numerical reasons (discussed later). Note that the
objective function of the above optimization problem may require scaling since

the moments can be of largely different magnitudes.

6. Repeat steps 2, 3, and 4 for a desired number of times. Each repetition of steps 3,

4, and 5 yields a single Johnson distribution.

The above sampling-based procedure can be repeated as many times as desired to obtain
a family of Johnson distributions. The issue of sampling size can be problem dependent.
The sampling-based procedure of uncertainty representation cannot guarantee rigorous
bounds on input distributions, as it might underestimate the uncertainty due to practical
limitations or computational expense. The sample size is a more critical issue when this
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uncertainty has to be propagated through some models of system response. In order to
alleviate the issue of sampling size in uncertainty representation, we have proposed an

optimization-based strategy to represent interval uncertainty.

Note that the above procedure is the same for both overlapping and non-
overlapping intervals. The optimization-based procedure to generate a probabilistic
representation for interval data is discussed next.

3.2 Optimization-based procedure: Johnson p-box

Theoretically, infinitely many distributions can be fit to the given interval data. It
is of interest for practical reasons to compute bounding envelopes for the family of
Johnson distributions, which we call the Johnson p-box. Note that the Johnson p-box is
analogous to the empirical p-box (Figure 1 of Chapter II), which is the bounding
envelope of empirical distributions to fit the interval data. In this subsection, we present

an optimization formulation based on percentiles to construct the Johnson p-box.

In order to compute the bounding envelope, we solve a set of optimization problems,
each for a different percentile value, o, where 0.01< « <0.99 Each optimization problem

for a chosen o finds the parameters of the Johnson distribution that maximize or

minimize the Johnson variable, x“, such that the moments of the Johnson distribution fall
within the bounds computed in Section 2. The following optimization formulation is used
to compute the Johnson p-box. Note that the minimization yields the left most bound of
the family of distributions for each «. Similarly, maximization of the optimization

problem below yields the right most bound for each a.
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min/ max X” 13)

7,0
s,t. ml, <Ml e, <ML, (14)
M2y, M2, on < M2, (15)
M3y, < M3 jg0n < M3, (16)
m4,, <mleon < M4, @7
-50<y <50 (18)
02<6 (19)

where x* is the « - th percentile point,0.01< & <0.99 , M1jonnson, ...M4jonson are the first

four moments of the Johnson distribution with parameters & /, y, and o, respectively,
which can be computed using simulation; mlp, ..., m4y, respectively are the lower
bounds on the first four moments of the interval computed using the proposed approach;
and mly, ..., mdy, respectively are the upper bounds on the first four moments of the

interval computed using the proposed approach.

The value of the objective function, x“, can be found by applying the Johnson
transformation (see Eqg. 1 in Chapter Il1) to a standard normal variable corresponding to
the given a. Constraints in Eq. (18) and (19) are imposed on the Johnson parameters for

numerical reasons. The bounded Johnson transformation (DeBrota et al, 1989) is given as
7 -1
x=§+/1{1+ exp(—Tyﬂ , Where x is the Johnson variable, and z is the standard

normal variable. The & parameter is restricted to be greater than 0.2: as 6 — 0, the
moments approach the impossible region for the Johnson family of distributions (Figure 1
in Chapter I11) and can cause division by zero problems with the bounded Johnson

transformation (Egs. 1 and 2 in Chapter I11). The bounds on ¥ have been chosen so that
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-1
the bounded Johnson transformation function[lJr exp(—%ﬂ , has a finite non-zero

value.

4. Numerical Examples
In this section, we apply the proposed approaches to five example problems. We
consider four multiple interval examples, each with different numbers of intervals and
overlaps, and one single interval example. Note that the examples used in this chapter
may not cover all types of overlaps; however, the proposed methods work in more
general situations. Comparisons with alternate representations, such as the empirical p-

box, are also discussed.

4.1 lllustration of the proposed methodoloqgy

We consider two examples each for overlapping and non-overlapping multiple
interval data, each with different numbers of intervals (Table 2). We follow the procedure
outlined in Section 4.1 to fit a family of bounded Johnson distributions to each multiple
interval data set in Table 2. The cumulative distribution functions of the family of
Johnson distributions for each multiple interval data set are shown by thin dotted lines in
Figure 4. The corresponding single interval results, where the moment bounds are
computed using the methods outlined in Section 2.1, are shown in the left hand side plot

in Figure 5.
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Table 2: Interval data for the five numerical examples

Example Data

Example 1 with 5 overlapping intervals [5, 6;5.5,6.1; 6,6.5;5.4,6.2; 5.6, 6.6]

Example 2 with 9 overlapping intervals [3.5,6.4;6.9,8.8; 6.1,84; 2.8,6.7; 3.5,9.7; 6.5, 9.9;
[Ferson et al 2007] 0.15,3.8;4.5,4.9; 7.1, 7.9]

Example 3 with 4 non-overlapping intervals [5,6;6.1,6.7;6.9,7.8; 8, 9]

Example 4 with 6 non-overlapping intervals [1, 1.52; 2.68, 2.98; 7.52, 7.67; 7.73, 8.35; 9.44,
[Ferson et al 2007] 9.99;3.66, 4.58]

Example 5 with a single interval [5, 15]

The Johnson p-box optimization problem is solved for each set of interval data in Table 2
using Matlab’s fmincon solver. We use 20 equally spaced points for the percentile values,
a, ranging between 0.01 and 0.99. Note that the selectetion of the number of percentile
points is arbitray. However, solving the optimization problem at increased number of
percentile points results in more accrutare bounds on uncertainty but with increased
computational efforts. For each o, the minimization and maximization problems yield
the left and right bounds on the p-box in Figure 4, respectively. At each a value, we
repeated the maximization/minimization using 15 different starting points to avoid local

optima; the best results among the 15 runs are reported.

It is interesting to note that the Johnson p-boxes in Figure 4 for all the multiple interval
examples shown have discontinuities. It is noted that the set of active constraints in the
optimization (particularly, those with the moment bounds (Egs. 14- 17)) changes at the
point of discontinuity. For example, at the point A for Example 1 in Figure 4, the set of

active constraints changes.
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thick solid line — bounded Johnson, thin solid line — empirical distribution)

Below the point A, the constraints on the upper bound of the third moment (upper bound

in Eg. 16) and on the lower bound of the first moment (lower bound in Eq. 14) are active.

Above the point A, the constraints on the lower bound of the fourth moment (lower

bound in Eq. 17) and on the lower bound of the first moment (lower bound on Eq. 14)

are active. Similar trend was observed at point B in Example 1, where a discontinuity

occurs in the bounding envelope. Below the point B, the lower bound of the fourth

moment (lower bound in Eq. 17) and the upper bound of the first moment (upper bound
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in Eq. 14) are the active constraints. Above the point B, the lower bound of the third
moment (lower bound in Eq. 16) and the upper bound of the first moment (upper bound
in Eq. 14) are the active constraints. For the single interval example, the Johnson p-box

coincides with the left and right end points of the interval data.

4.2 Comparison with other representations

In this subsection, we present a comparison of the Johnson p-box with the
empirical p-box idea available in the literature. We also compare how the choice of
Johnson family of distributions impacts the probabilistic representation of interval data.
Using an optimization formulation similar to that of the Johnson p-box, we compute the
corresponding bounding envelopes for normal and lognormal distributions for single and

multiple interval examples.

The empirical p-boxes for the multiple interval data cases, obtained by sorting the
endpoints of the intervals, are also plotted in Figures 4 and 6 for comparison purposes
(thin solid lines). Note that for all examples presented in this section, not all members of
the Johnson family of distributions fall inside the empirical p-box. The moments of the
family of Johnson distributions fall within the moment bounds computed earlier;

however, the distributions do not necessarily fall within the empirical p-box.

In order to study the effect of the choice of Johnson family, we compare the Johnson p-
box to the bounding envelopes obtained for normal and lognormal distributions. The
following optimization formulation is used to find the bounding envelopes for normal and

lognormal distributions, where constraints are imposed on the first two moments.
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min/d max X* (20)

s,t. ml, <mly, <ml, (21)
m2Ib < m2dist < m2ub (22)

where x“ is the « - th percentile point, 0.01< o <0.99, d = (ly, oy) is the design variable
vector, where Y is the normal random variable ; ml,, and m2,, are the first and the

second moments for normal/lognormal distributions, respectively; ml, and m2j
respectively are the lower bounds on the first two moments of the interval computed
using the proposed approach; and m1,, and m2,, respectively are the upper bounds on the

first two moments of the intervals computed using the proposed approach.

The quantities ml,, and m2,, for the normal p-box are related to the design variable
vector, ml, = &, and m2, = o . The moments of the lognormal variable (X), ml,, and

m2, are computed in terms of the corresponding normal variable moments, (v, ov), as

follows.
ml, = HY+0507 (23)
m2, =z’ (eaf —1) (24)

The maximization and minimization at each percentile point for the normal and
lognormal have been repeated with 15 different starting points to avoid local optima. The
best results from within the 15 starting points have been plotted in Figure 6. Note that the

bounded Johnson p-box remains close to the empirical p-box for all the four multiple
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interval examples, which is not necessarily the case for normal and lognormal p-boxes.
One possible reason for this behavior could be the theoretical bounds that exist on
normal, lognormal, and bounded Johnson distributions. The normal distribution is
unbounded, and can lie between [-o0, +oo], whereas the lognormal distribution is bounded
between [0, +oo]. The bounded Johnson distribution is restricted to lie within the interval
bounds (discussed in Step 4 of Section 3.2).

As shown from the examples above, the proposed probabilistic representation of
interval data using a family of bounded Johnson distributions is a viable approach for
uncertainty quantification for interval uncertainty. Once such a family of distributions is
constructed, it could be used in the context of uncertainty/reliability analysis using Monte
Carlo simulations or FORM/SORM, resulting in set of values for an output quantity. This
notion is unlike the case with aleatory uncertainties, where usually a single probabilistic
representation describes the uncertainty, which yields a single quantity of interest from
the uncertainty propagation stage. The proposed uncertainty representation is particularly
suitable for use in FORM/SORM, since these methods require that the random variables
are represented by probability distributions. These methods also require transforming the
random variables into standard normal space, which is easy with Johnson distributions.

The state-of-the-art in uncertainty propagation in the presence of interval data
requires a nested analysis — instances of interval variable are considered in an outer loop,
each iteration of which requires a probabilistic analysis for the aleatory uncertainties —
inner loop. Instead, one could use an optimization-based uncertainty propagation
approach, where the parameters of the input interval variables (probabilistically

described) that either maximize or minimize an output quantity of interest, e.g.,
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probability of failure, can be found. We have proposed such optimization-based
approaches for cases where the input variables are described by sparse point data
(McDonald et al, 2009). Similar ideas can be extended to variables described by intervals,
which will be studied in the future.
5. Conclusion
In this chapter, we propose a probabilistic framework for representing uncertainty
information available through interval data. The main contributions of this chapter are:
(1) development of algorithms to estimate bounds on the second, third, and fourth
moments of single and multiple interval data, (2) demonstration that the proposed
moment bounding algorithms are scalable in polynomial time, (3) use of the moment
bounds thus estimated to fit a family of flexible Johnson distributions, (4) definition of a
Johnson p-box, which is the bounding envelope of the family of Johnson distributions,
and (5) development of an optimization-based method to construct the Johnson p-box.
Through scalability testing, we have shown that the algorithms to compute bounds
on the second, third and fourth moment of interval data scale polynomially in the number
of intervals. This is important because these problems have been generally considered
earlier to be NP-hard. We have also shown how a probabilistic description for interval
data can be provided by a family of distributions. Due to the nature of the interval data,
however, we make no assumptions about the relative likelihood of any of these CDFs to
be the true CDF. For point data, statistics such as moments or percentiles which are used
to fit probability distributions assume single values. However, for interval data, we can

only estimate bounds on the statistics such as moments or percentiles. Therefore, unlike
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for point data where there can be a single probability distribution as the uncertainty
description, multiple probability distributions should describe interval data.

This chapter presented an approach that can be used to fit a family of Johnson
distributions using moment bounds obtained as discussed above. The family of Johnson
distributions thus fit can be used as the probabilistic representation of the interval data.
This process could also be performed using several other distributions. Johnson
distributions offer an advantage because they have convenient transformations to be
mapped into the normal space, which facilitates the use of popular analytical reliability
methods such as FORM and SORM.

The proposed probabilistic framework of handling interval data can be applied for a
combined treatment of aleatory and epistemic input uncertainties from the perspective of
uncertainty propagation or reliability based design. This approach to uncertainty
representation given interval data can allow for computationally efficient propagation by
avoiding the nested analysis that is typically performed in the presence of interval

variables.
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CHAPTER YV

PROBABILISTIC FRAMEWORK FOR UNCERTAINTY
PROPAGATION WITH BOTH PROBABILISTIC AND INTERVAL
VARIABLES

1. Introduction

This chapter develops and illustrates a probabilistic approach for uncertainty
representation and propagation in system analysis, when the information on the uncertain
input variables and/or their distribution parameters may be available as either probability
distributions or simply intervals (single or multiple). A unique aggregation technique is
used to combine multiple interval data and to compute rigorous bounds on the system
response CDF. The uncertainty described by interval data is represented through a
flexible family of probability distributions. Conversion of interval data to a probabilistic
format enables the use of computationally efficient methods for probabilistic uncertainty
propagation. Two methods are explored for the implementation of the proposed
approach, based on: (1) sampling and (2) optimization. The sampling based strategy is
more expensive and tends to underestimate the output bounds. The optimization based
methodology improves both aspects. The proposed methods are used to develop new
solutions to challenge problems posed by the Sandia Epistemic Uncertainty Workshop
(Oberkampf et al, 2004). Results for the challenge problems are compared with earlier

solutions.

As mentioned earlier in Chapter 1, if the uncertainty described by intervals can be

converted to a probabilistic format, the computational expense of interval analysis is



avoidable as it allows for treatment of aleatory and epistemic uncertainty together without
nesting, and already well established probabilistic methods of uncertainty propagation
can be used. This chapter develops and illustrates a new approach for the representation
and propagation of uncertainty available in both probabilistic and non-probabilistic
formats. The proposed representation avoids the expensive nested analysis by enabling
the use of an optimization-based strategy that can estimate the distribution parameters of
the input variables that minimize or maximize an output quantity of interest, e.g.,
probability of failure or expectation of system response. Note that this optimization is
done not to change the design but rather to determine the endpoints of intervals that
bound the output estimates. The system design is considered static. A new aggregation
technique is used to combine multiple intervals and to compute rigorous bounds on the
system response CDF. This aggregation technique enables the use of the method of
matching moments to represent the uncertainty described by the multiple intervals
through a family of probability distributions (see Chapter 1V).

The rest of the chapter is organized as follows. Section 3 describes the proposed
methodologies for representation and propagation of epistemic and aleatory uncertainty.
Section 3 describes numerical examples, specifically Sandia Challenge Problems
(Oberkampf et al, 2004) and solves them using the two proposed approaches: (1)
sampling-based, and (2) optimization-based. Solutions from the proposed methods are
compared to those obtained with earlier methods. Section 4 provides concluding remarks

and suggestions for future work.
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2. Uncertainty Propagation using Probabilistic Analysis

Chapter IV proposed a methodology for representation of interval uncertainty using a
flexible family of Johnson distributions. In this chapter, we have used Monte Carlo
simulation (MCS) to achieve the propagation of both probabilistic and interval
uncertainty through system models. Our purpose here is to develop a unified probabilistic
framework that can represent and propagate both aleatory and epistemic uncertainty, no
matter what uncertainty propagation method is used. However, we note here that
analytical approximation methods (e.g., FORM, SORM) and efficient sampling methods
(e.g., importance sampling) can also be used within the proposed uncertainty propagation

framework.

Problems involving interval uncertainty can be divided into two cases: 1) Input
variable is described by a single interval or multiple intervals; or 2) the distribution
parameter of the input variable is described by a single interval or multiple intervals. In
the following subsections, we propose sampling and optimization-based approaches for
propagation of aleatory and epistemic uncertainty for each of the cases.

2.1 Sampling-based methodology for uncertainty propagation

2.1.1 Case 1: Input variable described by interval data

In this case, the uncertainty is modeled probabilistically by fitting a Johnson
distribution, using values of the moments sampled from within the moment bounds of the
interval data. The following computational procedure can be used to implement

uncertainty quantification by sampling:
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1. Generate a family of CDFs for each of the input variables described by
single or multiple interval data by the procedure described in section 2.

2. Propagate each of the CDFs from the input family of CDFs through the
system response equation by any probabilistic uncertainty propagation
method (e.g, FORM, SORM or MCS).

3. Construct the CDF of the system response given a realization of the
distribution parameters from the family of CDFs by repeating step 2 for a
range of threshold values and thus obtain a family of CDFs for system
response.

2.1.2 Case 2: Input variable distribution parameters described by interval data

As in Case 1, the uncertainty is again modeled probabilistically by fitting a family
of Johnson distributions, using values of the moments sampled from within the moment
bounds of the interval data. The following computational procedure can be used to
implement uncertainty quantification by sampling:

1. Generate a family of n CDFs for each of the distribution parameters of the
input variables described by a single or multiple interval data by the
procedure described in section 2.

2. Take m samples from each of the n CDFs of distribution parameters of an
input variable. Now the input variable of interest has a family of M- N
CDFs. Note that n is the number of CDFs for each distribution parameter.
We can sample as many sets of distribution parameter values as we want
from each of the n CDFs. Each set of the sampled distribution parameter

values now gives a single CDF for the input random variable of interest.
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Therefore, by sampling m sets of distribution parameter values from each of
the n CDFs of the distribution parameters, we have a total of M-N number
of CDFs for the input random variable of interest. . Now if we generate p
samples from each of the mxn CDFs, the overall sample size will be
mxnxp.

3. Propagate each of the CDFs from the family of CDFs of each of the input
variables through the system response equation by any probabilistic
uncertainty propagation method (e.g, FORM or MCS).

4. Construct the CDF of the system response given a realization of the
distribution parameters from the family of CDFs by repeating step 3 for a
range of threshold values and thus obtain a family of CDFs for system

response.

2.2 Optimization-based methods for uncertainty propagation

The above methodology to convert interval uncertainty into a probabilistic format is
based on a sampling strategy. A sampling strategy might underestimate the output bounds
since the sampling is not exhaustive due to practical limitations or computational
expense. Therefore, in this subsection, we develop an optimization-based strategy to
convert uncertainty described by interval data into a probabilistic framework. The
optimization approach is also much less expensive compared to the sampling-based
approach. We propose two types of optimization — percentile-based and expectation-

based.
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2.2.1 Case 1: Input variable described by interval data

Percentile-Based Optimization (PBO)

This method minimizes and maximizes the system output g, (xm) conditioned on a

set of moments (m;) for the input variables at different percentile values (a) of the output
CDF and thus obtains bounds on the system output CDF. Its implementation is as
follows:
1. Calculate the bounds on the first four moments of single or multiple interval
data by the methods described in Chapter IV.
2. Solve the following optimization problems at different percentile values (a) to
obtain bounds on output CDF. Minimizing the objective function gives the
lower bound on the output and maximizing the objective function gives the

upper bound on the output.

min/ max g, (xm)

st.m, > a
m, <b i=12...4
B, - B -120 (1)
ﬁz _2:31_350

where B, =m; /m;
B, =m,/ mz2

Here, the decision variable set m is the set of moments (m= [m; m; m3 m4]). The
last two nonlinear constraints ensure that the optimizer only selects those values
of moments that suggest a bounded Johnson distribution fit (See Figure 1 of
Chapter I11), so that the resulting distribution lies within the bounds of the interval
data specified. It is noted here that the objective function in this optimization

problem is conditioned on a set of moments for each of the input variables and
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estimates the parameters of Johnson distribution from the set of moments in each

iteration by the method described in Chapter IV.

Expectation-Based Optimization (EBO)

The optimization formulation as described above is rigorous, but expensive as it
requires solving the problem repeatedly at different a-levels. Therefore, in the following
discussion, we propose an expectation-based optimization strategy to obtain approximate
bounds on system response CDFs which is computationally less expensive. This
formulation is based on the assumption that the sets of distribution parameters of input
variables which result in minimum or maximum expectation of the system response

(E(g(x))), can also give an upper bound on the entire CDF of the system response (g(x))

for the minimization problem and a lower bound for the maximization problem,

respectively. A proof in support of this statement is given below:

Theorem: CDF lower bound obtained by EBO will be no less than that obtained by
PBO. The variables and the constraints for the PBO and EBO optimization problems are
identical.

Proof: The most general problem of calculating lower bounds on the system response

can be stated as follows:

EBO PBO
Min  E(g(x)) Min  g“(x)
st. Oec® st. 0O

where @ is the set of distribution parameters, selected from a set of admissible values @.

There are two possibilities:
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i) 6;=6,: EBO curve is coincident with PBO curve, which
implies ga(x\9;)= g“(x‘é’;).

i) 6. #6,:0; is not the optimal solution. Note that in both EBO and PBO, the
feasible sets  are identical, however, §; minimizes the expectation of the
system response ( E(g(x))), whereas &, minimizes the quantile value of the
system response (g“(x)). This implies that there is a set of parameters
0, € ® for which g“(x‘eg)s g“(x‘@é). This is illustrated in Figure 1. The left

two curves are obtained by solving the minimization problems and the right
two curves are obtained by solving the maximization problems. For the

minimization problems, it is seen from the figure that at fixed o-level the EBO

solution gives a higher value of system response (g“(x)(@é) than that of the
PBO solution (g“(x)(ag ).

This proves the theorem that CDF lower bound obtained by EBO will be no less than that

obtained by PBO.
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Figure 1: PBO and EBO bounds

Therefore, EBO gives an upper bound (to the right of PBO lower bound) of output
uncertainty for the minimization problem. Similarly, it can be proved that EBO gives a
lower bound (to the left of PBO upper bound) of output uncertainty for the maximization
problem.

EBO has the same formulation as in Eq. (1) but with a different objective function

min/max E(g(xjm)). All the constraints remain the same. In this case, the optimization

formulation yields sets of moments each corresponding to a set of Johnson distribution
parameters. Once the distribution parameters are obtained, any probabilistic uncertainty
propagation method (e.g., FORM or MCS) can be used to construct approximate bounds
on the CDF of the system response. Figure 2 illustrates the two optimization methods for

Case 1.
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Figure 2: Optimization methods for output uncertainty quantification (Case 1)

2.2.2 Case 2: Input variable distribution parameters described by interval data

In this case, the implementation is more involved than in Case 1 where the input
variable itself was described by interval data. In Case 1, input uncertainty was
represented by a family of distributions for the input variable. In Case 2, we have a family
of distributions for each distribution parameter of the input variable.

Percentile-Based Optimization (PBO)

The proposed PBO formulation involves two nested uncertainty analysis procedures.

The inner loop uncertainty analysis calculates the conditional CDF of the system
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response given a value of the distribution parameter. The outer loop uncertainty analysis
calculates the distribution parameters which minimize or maximize the conditional CDF
of the system response.

In the inner loop, the cumulative distribution functions for the basic random
variables with uncertain probability distributions are calculated by conditioning on a

particular realization of the uncertain distribution parameters. Their optimum values are

chosen to minimize or to maximize the system response ga(XHD) conditioned on a

realization of distribution parameters for the input variables at different percentile values
(a).

In the outer loop, the cumulative distribution functions for the basic random
variables with uncertain probability distributions are calculated by conditioning on a
particular distribution of distributions of the uncertain distribution parameters. Their

optimum values are chosen to minimize or to maximize the system response ga(x|m)

conditioned on set of moments (m;) for each of the input variables and/or distribution
parameters at different percentile values («). The lower bound of the a-percentile value of

the output g(x) is obtained by solving:

min{min(g, ()6 6" (m))

st.m, =g

m, <b, i=12..4 (2)
ﬂz—ﬁl—120

B, =2p,-3<0

where g, =mZ /m}
B = m4/mz2

The upper bound of the a-percentile value of the output g(x) is obtained by solving:
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max max(g, ({6°)jp° € 0°(m)))

stm, > g
m, <b, i=12...4 )
B~ —-120
B, —2p,-3<0

where B, =m; /m;
Bo=m, I m§

In the above optimization formulations, 6° corresponds to the realization of distribution
parameters and 6° corresponds to the hyper parameters i.e., distribution parameters of
distribution parameters of the input variable. The constraints are the same as in Eq. (1).
The most general way of solving this optimization formulation can be outlined as
follows:
1. Calculate the bounds on the first four moments of single or multiple interval data
by the methods described in Chapter IV.
2. The outer loop optimizer passes a single CDF for the distribution parameter to the
inner loop optimization problem. This single CDF is sampled for realizations of
the distribution parameters. The inner loop optimizer solves for the particular

realization of the distribution parameter which leads to the minimum or

maximum system response ga(xeD) at different percentile values (o). Therefore,

solving these nested formulations of Egs. (2) and (3) yields the realization of
distribution parameters which minimizes or maximizes the system

response ga(XHD), respectively at different percentile values (o) to obtain bounds

on output CDF.

Expectation-Based Optimization (EBO)
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As in Case 1, we also propose an expectation-based strategy for Case 2 to obtain
approximate bounds on system response CDF based on the same assumption that was
made for Case 1.

The formulations are the same as in Eqgs. (2) and (3) but with a different objective
functions mnin(rgln(E(g(x‘eD)‘eD € QB(m)))) and mgx(n;gx(E(g(x‘@D)‘eD € GB(m)))),

respectively. All the constraints remain the same. Solving these nested formulations
yields the realization of distribution parameters that minimize or maximize the
expectation of the system response. Once the realizations of the distribution parameters
are obtained, any probabilistic uncertainty propagation method (e.g., FORM, SORM or
MCS) can be used to construct approximate bounds on the CDF of the system response.

Figure 3 illustrates both the optimization methods for Case 2.
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Figure 3: Optimization methods for output uncertainty quantification (Case 2)

Note that the PBO and EBO methods are developed to propagate uncertainty
described by only interval data. However, in practice, a mixture of both sparse point and
interval data could be available for the same variable, or some variables might be
described by sparse point data and the others might be described by interval data. If both
sparse point and interval data are available for the same variable, the optimization-based

moment bounding algorithms developed in Chapter 1V can still be used to calculate
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moment bounds for the mixed data. In the moment bounding algorithms, each decision
variable corresponds to an interval. When both sparse point and interval data are
available for the same variable, the number of decision variables in the optimization
problems is still equal to the number of intervals only, and the sparse point data are used
as fixed quantities in calculating moments in the objective functions of the optimization
problems. Once the bounds on the moments for the mixed data are obtained, the
uncertainty propagation can be achieved by using both PBO and EBO.

When some variables are described by sparse point data and others are described by
interval data, it is necessary to estimate the confidence bounds on the first four moments
for the variable described by sparse point data. Efficient methods are available to estimate
the confidence bounds on mean values and variances in the presence of limited data (see
Chapter VII). It is also possible to estimate bounds on the third and fourth moments for
sparse point data using bootstrap methods. The two types of bounds are treated in the
same manner. Once the confidence bounds on the moments for sparse point data and the
bounds on moments for interval data are obtained, the uncertainty propagation can be

achieved by using both PBO and EBO.

3. Numerical Examples
In this section, the proposed methods for propagation of aleatory and epistemic
uncertainty are illustrated with Challenge Problems from the Sandia Epistemic
Uncertainty Workshop (Oberkampf et al, 2004). Section 4.1 briefly describes the two
problem sets. Section 4.2 presents the solutions for the challenge problems using both

sampling and optimization-based approaches.
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3.1 Challenge Problems

The two problem sets involve (A) a simple algebraic function, and (B) solution to a

linear ordinary differential equation (ODE).
3.1.1 Challenge Problem A: Algebraic problem set

Consider the algebraic function

y=(a+b)’ @)

where, y is the output. The input variables a and b are assumed to be independent of each
other and both a and b are positive real numbers. The task for each problem in the set is
to quantify the uncertainty in y given the information concerning a and b. It is assumed
that there is no uncertainty about the model form. Only uncertainty in the model input

variables is considered.

Six problems are specified in sequence. The sequence is structured by the type and
quantity of information specified for a and b. The structure of the sequence is given here:
Problem 1: a and b are both uncertain and must lie within given single intervals.

Problem 2: a is uncertain and must lie within a single interval, and b is characterized by
multiple intervals.

Problem 3: Both a and b are characterized by multiple intervals.

Problem 4: a is uncertain and must lie within a single interval, and the uncertainty in b is
specified by a probability distribution with imprecise parameters.

Problem 5: a is characterized by multiple intervals, and the uncertainty in b is specified

by a probability distribution with imprecise parameters.
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Problem 6: a is uncertain and must lie within a single interval, and the uncertainty in b is
described by a precise probability distribution.

Problems 2, 3 and 5 each are further divided into three sub-problems based on the
nature of the multiple intervals. The types of the multiple intervals are classified as i)
consonant collection of intervals (intervals are nested), ii) consistent collection of
intervals (no overlaps among the intervals), and iii) arbitrary collection of intervals (no
assumption about the overlap or relationship among the intervals). The complete
description of each problem set and the numerical data can be found in Oberkampf et al
(2004). In our approach, we use an optimization technique to obtain the bounds on
moments of interval data, and our method does not depend on the type of intervals. Since
our proposed methods can handle all three classes of interval data in the same manner, we

only choose to solve the first sub-problem for each of Problems 2, 3 and 5.

3.1.2 Challenge Problem B: ODE Problem
The ODE problem is described by a spring mass - damper system acted on by a

forcing function Y cos wt as shown in Figure 4. The displacement and the velocity of the

mass relative to a fixed reference frame are given by x and x, respectively.

Y cos wt

Figure 4: Mass-spring-damper system acted on by an excitation function (Oberkampf et
al, 2004)

The equation of motion for the mass is given in Eq. (5)
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m X + ¢ x+kx=Y cos et (5)
The analytical expression for the steady-state magnification factor can be obtained as

D, = K (6)

S \/(k - ma)z)2 +(co)?

The task for this problem is to quantify the uncertainty in D, given the information

concerning k, m and w.
In the prescribed problem set, parameter m is given by a triangular probability

with a mode of mpeg. The values of Myp,

max ]

distribution defined on the interval [m_, ,m

min »
Mmax, @aNd Mmog are precisely known.
Parameter k is described by a triangular distribution with imprecise Kmin, Kmax, and Kmog-
The values of Knin, Kmax, and kmog are described by multiple intervals.

Parameter c is described by multiple intervals, and w is given by a triangular probability

distribution defined on the interval [@,,,,®,,, | With a mode of @ meq. The values of @ min,

min !

® max, aNd @ mog are described by single intervals.

The complete description of the problem and the numerical data can be found in
Oberkampf et al (2004).
3.2 Numerical Results

Bounds on the CDF of system response for each of the problems are constructed
using the optimization methods described in Section 3.2. A family of CDFs of system
response is also constructed using the sampling strategy described in section 3.1. In the
sampling approach, we have used 100,000 samples of system response for each of 10 sets

of distribution parameters for each problem under Case 1 and 100,000 samples for each
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of 100 sets of distribution parameters for each problem under Case 2. The optimization-
based strategy used 1000 samples of system response for each problem under Case 1 and
1000 samples for each of 100 sets of distribution parameters for each problem under Case

2.

3.2.1 Challenge Problem A
Problem A-1

For this problem, both input variables a and b are described by single intervals
[0.1, 1.0] and [0.0, 1.0], respectively. We follow the procedure outlined in Chapter IV to
fit a family of bounded Johnson distributions to each single interval data set. As an
example, samples of cumulative density functions for the family of Johnson distributions
for input variable a are shown in Figure 5.

This problem belongs to Case 1 as described in Section 2 and is solved by both
optimization and sampling-based strategies and the results are shown in Figure 6.

This particular problem can also be solved by a simple deterministic optimization

approach as shown below:

min/max y = (a+b)?
st. Ib<a<ub (6)
lb<b<ub

This optimization formulation yields the bounds on the system response as
[0.6922, 2] which is exactly the same as the lowermost and uppermost bounds obtained

by the proposed probabilistic approach, corresponding to CDF values of 0 and 1.
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Figure 5: Family of Johnson distributions for input Figure 6: Bounds on CDF of system response for
variable a for Problem A-1 Problem A-1

Problem A-2

For this problem, the input variable a is described by a single interval [0.1, 1] and
has the same uncertainty representation as shown in Figure 5. Input variable b is
described by multiple interval data ([0.6, 0.8], [0.4, 0.85], [0.2, 0.9], [0.0, 1.0]) and we
follow the procedure outlined in Chapter IV to fit a family of bounded Johnson
distributions to the multiple interval data set of input variable b. Several sample
cumulative density functions from the family of Johnson distributions for input variable b
are shown in Figure 7.

This problem belongs to Case 1 as described in Section 2 and is solved by both

optimization and sampling-based strategies and the results are shown in Figure 8.
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Problem A-3

For this problem, both input variables a and b are described by multiple interval
data ([0.5, 0.7], [0.3, 0.8], [0.1, 1.0]) and ([0.6, 0.6], [0.4, 0.85], [0.2, 0.9], [0.0, 1.0]),
respectively, and have similar representations of uncertainty as shown in Figure 7. This
problem belongs to Case 1 as described in Section 2 and is solved by both optimization

and sampling-based strategies and the results are shown in Figure 9.
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Problem A-4

For this problem, the input variable a is described by a single interval [0.1, 1.0]
and has the same uncertainty representation as shown in Figure 5. Input variable b is
given by a log-normal probability distribution with imprecise parameters. These
parameters are given by single intervals [0.0, 1.0] and [0.1, 0.5], respectively, and have
similar uncertainty representations as shown in Figure 5. We follow the procedure
outlined in Section 2.1 to obtain a family of log-normal distributions for input variable b
given that the distribution parameters are represented as families of Johnson distributions.
As an example, samples of cumulative density functions of the family of log-normal
distributions for input variable b are shown in Figure 10.

This problem belongs to Case 2 as described in Section 2 and is solved by both

optimization and sampling-based strategies and the results are shown in Figure 11.
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Problem A-5

For this problem, the input variable a is described by multiple interval data ([0.5,
0.7], [0.3, 0.8], [0.1, 1.0]) and has a similar uncertainty representation as shown in Figure
7. Input variable b is given by a log-normal probability distribution with imprecise
parameters. These parameters are described by multiple intervals ([0.6, 0.8], [0.2, 0.9],
[0.0, 1.0]) and ([0.3, 0.4], [0.2, 0.45], [0.1, 0.5]), respectively, and have similar
uncertainty representations as shown in Figure 7. We follow the procedure outlined in
Section 2.1 to obtain a family of log-normal distributions for input variable b given that
the distribution parameters are represented as families of Johnson distributions. Several
sample cumulative density functions from the family of log-normal distributions for input

variable b are shown Figure 12.
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This problem belongs to Case 2 as described in Section 2 and is solved by both
optimization and sampling-based strategies and the results are shown in Figure 13.
Problem A-6

For this problem, the input variable a is described by a single interval [0.1, 1.0]
and has the same uncertainty representation as shown in Figure 5. Input variable b is
given by a log-normal probability distribution with precise parameters, 0.5 for each. This
problem belongs to Case 1 as described in Section 2 and is solved by both optimization

and sampling-based strategies and the results are shown in Figure 14.
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It is seen in Figures 6, 11 and 14 that the bounds obtained by the expectation-
based optimization (EBO) formulation and the percentile-based optimization (PBO)
formulation almost coincide with each other. It is seen in Figures 8, 9 and 13 that the
percentile-based optimization (PBO) formulation generates rigorous bounds compared to
those obtained by the expectation-based optimization (EBO) formulation. The bounds
obtained by EBO are still wider than those obtained by the sampling method.

The computational efforts for both PBO and EBO methods are listed in Table 1. It

is seen from Table 1 that EBO is less expensive compared to PBO for each problem.
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Table 1: Computation effort for Challenge Problem A

Challenge PBO EBO
Problem A
Percentile Function Function
Points Evaluations Evaluations

A-1 21 7286 526

A-2 12 2962 148

A-3 11 3750 446

A-4 15 6123 349

A-5 15 10271 556

A-6 21 2494 127

3.2.2 Challenge Problem B

For this problem, the input variable k is given by a triangular distribution with
imprecise Kmin, Kmax, and Kkmog. The distribution parameters Kmin, Kmax, and Kmogq are
described by multiple interval data ([90, 100], [80, 110], ([200, 210], [200, 220], [190,
230]) and ([150, 160], [140, 170], [120, 180]) respectively, and have similar uncertainty
representations as shown in Figure 7. We follow the procedure outlined in Section 2.1 to
obtain a family of triangular distributions for input variable k given that the distribution
parameters Kmin, Kmax, and kmog are represented as families of Johnson distributions.

Several sample cumulative density functions from the family of triangular distributions

for input variable k are shown in Figure 15.
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Input variable c is described by multiple intervals ([5, 10], [15, 20], [25, 25]) and
has a representation similar to that shown in Figure 7. Input variable @ is given by a

triangular probability distribution defined on the interval [, ®,, ] with a mode of

®mog- The distribution parameters wmin, ®max, and wmog are described by single intervals
[2, 2.3], [2.5, 2.7] and [3.0, 3.5], respectively, and have similar representations as shown
in Figure 5. We follow the procedure outlined in Section 2.1 to obtain a family of
triangular distributions for input variable w given that the distribution parameters wmin,
®max, and wmeg are represented as families of Johnson distributions. Several sample
cumulative density functions from the family of triangular distributions for input variable
o are shown in Figure 16.

This problem belongs to Case 2 as described in Section 2 and is solved by both

expectation-based optimization (EBO) and sampling-based strategies and the results are
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shown in Figure 17. It is noted here that we did not find any converged solutions for this

problem by the percentile-based optimization (PBO) method.
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Figure 17: Bounds on CDF of system response for Problem B
It is seen in Figure 17 that the results obtained by EBO provide an envelope for
the CDFs obtained by sampling.

Comparison with results from earlier studies

The results obtained by the proposed optimization-based methodology are
compared with earlier solutions (Helton et al, 2004; Kozine and Utkin, 2004; De Cooman
and Troffaes, 2004; Ferson and Hajagos, 2004 and Red- Horse and Benjamin, 2004).
Ferson et al (2004) compared these earlier solutions in a tabular form. We have added an
extra column to their table with the solutions from our approaches as shown in Table 2.

The earlier solutions given in Table 2 are in terms of bounds on the expected values of
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the output, whereas our approaches give bounds on the entire output CDF. It can be

mentioned here that bounds on the expected value of the system response are same as the

bounds on the system response itself (Ferson et al, 2004 and Zaman et al, 2009a).

Table 2: Comparison of bounds on expected values

Helton et al. Kozineand |De Cooman and| Ferson and Red- Horse |Approach in
(2004) Utkin (2004) | Troffaes (2004) | Hajagos (2004) and this chapter
Benjamin
(2004)
1 - [0.69, 2.0] [0.692201, 2 .0] [0.692, 2] - [0.6922,2]
2a - [0.93,1.84] [0.956196, 1.8] [0.84, 1.89] - [0.6922, 2]
3a - [0.944,1.473] ][1.04881, 1.2016]] [0.83, 1.56] - [0.6922,2]
4 [1,3.7] [0.859, 1.108] [1.00966, [0.9944, 4.416] - [0.6922,
4.08022] 8.8329]
5a (Graphical) [1.45, 2.824] [1.54027, [1.05, 3.79] - [0.6922,
2.19107] 8.4681]
6 [1.05, 3] [1.019, 2.776] [1.05939, [1.052, 2.89] - [0.7050,
2.86825] 8.4066]
B (Graphical) - - [1.17,3.72] (Graphical) [0.8192,
1.8869]

Some quantitative agreement on the expected values is found among the earlier

five studies, particularly for Problem A-1 as shown in Table 2. The results with the

proposed approach (last column in Table 2) show some overlaps with the results of the

earlier studies. Ferson et al (2004) argued that the disagreements in results among

different studies are mostly due to the approaches by which the uncertainty described by

multiple intervals is aggregated. Moreover, disagreement has also been observed

regarding the answers to the Problems A-4 and A-6, though these problems did not have
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any multiple estimates for any of the input variables and thus should not have any
problem due to the aggregation methods. Ferson et al (2004) mentioned four possible
reasons for the observed discrepancies among the answers: i) nesting (due to difference in
approaches, one result may be nested in others), ii) differences in truncation about
whether or where the distributions were truncated to finite ranges, iii) numerical
approximation error, and iv) different representations of independence.

Some authors mention repeated parameters in the system response expression as
an issue when non-probabilistic methods are used for uncertainty quantification, as it can
introduce the uncertainty of the repeated parameters more than once in the analysis
(Ferson et al, 2004). Different authors employed different strategies for handling the issue
of repeated parameters. These include sampling, exact evaluation, Mathematical
programming, Independent natural extension, Subinterval reconstitution, Systematic
sampling, Dependency tracking, vertex method, etc. The approach proposed in this
chapter uses probabilistic uncertainty propagation methods, where the effect of repeated
parameters is not an issue.

For Problem B, Helton et al (2004) used a sampling strategy and a Dempster-
Shafer structure to compute the output bounds as [1.44, 2.86]. Red-Horse and Benjamin
(2004) gave bounding distributions for Ds which had the support [1.4, 3.6]. Note that
Helton et al (2004) and Red-Horse and Benjamin (2004) did not provide any numerical
value for the output bounds in their papers. The numerical values for the output bounds
mentioned in this chapter are estimated by Ferson et al (2004) from the graphical
solutions. Ferson and Hajagos (2004) computed an interval ([1.17, 3.72]) based on

moment propagation and argued that it might overestimate the uncertainty of the answer,
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whereas a sampling-based strategy might underestimate the uncertainty. We employed
both sampling and optimization-based strategies but with a different aggregation method
and computed the output interval as [0.8192, 1.8869].

It is seen that the optimization-based methodology proposed in this chapter gives
wider bounds than other methods for the Problems A and narrower bounds for Problem
B. However, instead of considering whether the bounds are narrower or wider, it is more
helpful to evaluate bounds in terms of “rigor” and “optimality” as conceptually sketched
in Figure 18. By rigorous, it is meant that the true interval of the possible quantile values
lies within the computed bounds. By optimal, it is meant that the bounds are the

narrowest possible, while still being rigorous.
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Figure 18: Rigorous vs. optimal bounds
The proposed PBO bounds are rigorous, provided that the set ® encompasses all

admissible distribution parameter values. This is because the quantile values are

125



minimized or maximized over the entire set ®. If the set of all admissible distribution
parameter values is equal to ©, then the bounds obtained by PBO are optimal. Suppose 6

is the solution to the PBO problem. Because 6" is an element of ©, rigor requires that 6

minimizes or maximizes g"‘(x|¢9) over the set ®. And it is impossible to construct a wider

interval without violating the constraint 8 € ®. In this instance the bounds are both
rigorous and optimal. Again, if the set ® is a superset of all actually admissible
distribution parameter values, the bounds will still be rigorous, as the search over ®
includes a search over the set of all actually admissible distribution parameter values;
however, the bounds will not be optimal because @ is larger than the set of all admissible
parameter values.

The differences in the results obtained by the different solution methods appear to
create another type of epistemic uncertainty, which may be referred to as method
uncertainty. The output intervals given by multiple methods may also be aggregated

using the method described in section 2.

4. Conclusion

This chapter developed a probabilistic framework for the representation and
propagation of uncertainty available as interval data. Both sampling and optimization-
based methods are developed for two cases: (1) when the input variable is described by
interval data, and (2) when the distribution parameters of the input variable are described
by interval data. The methodology proposed in this chapter can handle all three classes of

interval data mentioned in Section 4 in the same manner.
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It is obvious that there is no unique or right answer to problems involving interval
uncertainty (Oberkampf et al, 2004). However, the probabilistic methodology proposed
in this chapter is flexible, and conversion of interval data to a probabilistic format enables
the use of computationally efficient methods for probabilistic uncertainty propagation.
The optimization-based approach adds further efficiency and ensures more rigorous
bounds compared to the sampling-based approach. Further, the aggregation method for
multiple intervals used here is also computationally efficient, and only scales
polynomially in computational effort with respect to the number of interval data. The
proposed approach facilitates the implementation of design optimization under
uncertainty using efficient reliability-based design optimization (RBDO) methods, e.g.,
single loop, decoupled, etc., due to the use of a probabilistic format to represent all the
uncertain variables. Note that the example problems assume statistical independence
among the input random variables. However, the proposed approach will also work for
any correlated interval variable with any appropriate multivariate input modeling method.
Also, the accuracy of the optimization methods depends on the solver used. As in the
case in nonlinear optimization, the proposed optimization-based strategies do not always
guarantee convergence. Sometimes the problems might not have a unique solution and a
non-gradient based solver (e.g., genetic algorithm) might help when convergence

problems are encountered.
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CHAPTER VI

INCLUSION OF CORRELATION EFFECTS IN MODEL PREDICTION
UNDER DATA UNCERTAINTY

1. Introduction

In many uncertainty propagation analyses, it is likely that the marginal distribution
types for the input variables are not known or cannot be specified accurately due to the
presence of sparse point or interval data. This chapter proposes a methodology for
multivariate input modeling of random variables by using a four parameter flexible
Johnson family of distributions for the marginals that also accounts for data uncertainty.
Semi-empirical formulas in terms of the Johnson marginals and covariances are presented
to estimate the model parameters (reduced correlation coefficients). This multivariate
input model is particularly suitable for uncertainty quantification problems that contain
both aleatory and data uncertainty. In this chapter, a computational framework is
developed to consider correlations among basic random variables as well as among their
distribution parameters. We present a methodology for propagating both aleatory and
data uncertainty arising from sparse point data through computational models of system
response that assigns probability distributions to the distribution parameters and
quantifies the uncertainty in correlation coefficients by use of computational resampling
methods. For interval data, the correlations among the input variables are unknown. We
formulate the optimization problems of deriving bounds on the cumulative probability
distribution of system response, using correlations among the input variables that are

described by interval data.



This chapter develops a multivariate input model for random variables having
Johnson marginal distributions based on the Nataf transformation. We present semi-
empirical formulas that relate poj; to pj in terms of the prescribed marginal distributions
and covariances. This poj; can be used to generate correlated standard normal variates
which are later transformed to an uncorrelated standard normal space for use in analytical
reliability methods (e.g., FORM), or used to simulate correlated random variables for use

in MCS.

It should be noted that given the presence of limited or interval data, the marginal
distributions of the input variables and their correlation coefficients are also uncertain.
Little to no work exists in the literature that considers uncertainty in correlation
coefficients, and statistical correlations among distribution parameters. Moreover, for
interval data, the correlations among the input variables are unknown and very few
computationally efficient methods exist for propagation of both aleatory and statistical
uncertainty that account for correlations among interval variables. Therefore, the
contributions of this chapter are to (i) derive semi-empirical formulas that relate poj; to pjj
in terms of the Johnson marginal distributions and covariances and hence, develop a
framework for multivariate input modeling of random variables modeled with Johnson
marginal distributions; (ii) develop a method for the propagation of both aleatory and
data uncertainty arising from sparse point data, by taking into account the uncertainty in
correlations among basic random variables as well as correlations among distribution
parameters; and (iii) develop a method for the propagation of both aleatory and data
uncertainty arising from interval data by taking into account the correlations among basic

random variables.
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The rest of the chapter is organized as follows. Section 2 describes the computational
framework for input modeling with Johnson distributions using correlations. Section 3
describes the proposed methods for the representation and propagation of both statistical
and aleatory uncertainty using correlations. Section 4 gives the numerical results using
two proposed methods: (1) for sparse point data, and (2) for interval data. Section 5

provides concluding remarks and suggestions for future work.

2. Input modeling with Johnson distributions using correlations

In this section, we propose a methodology to simulate correlated random variables (or
uncorrelated standard normal variates) when the marginals and the correlation matrix [C]
are the only information available. We use the Nataf transformation to calculate the
reduced correlation coefficient (poj), similar to Der Kiureghian and Liu (1986). The
Nataf transformation assumes that if Z; and Z, are standard normal variates obtained by
marginal transformations of X; and X», and if we assume Z; and Z, are jointly normal,
then X; and X; are jointly Nataf distributed. This process involves solving the following

integral equation:

P2 = I J (Xl ;1m1 J( X, —M, ](1‘52(21’ Z,, Po12 )dzldz2 1)

0,

—00 —00

where p12 is the correlation coefficient of the basic random variables, po 12 is the reduced
correlation coefficient of the standard normal variates obtained by the following

transformation:

z,=oYF, (X)) i=12 @)
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#,(21,2,,p01,) i the bivariate normal PDF of zero means, unit standard deviations and

correlation coefficient pg 12.

#,

1 exp{ Z12 - 2p0,12 Z,Z, + 222} ?)

) 272'\/1 — Pess 2(1- p.)

The integral equation in Eq. (1) has to be solved iteratively for given marginal
distributions and correlation coefficient pj. To avoid solving an integral equation
iteratively, Der Kiureghian and Liu (1986) proposed semi-empirical formulas for the ratio

_ P
Pij

F (4)

for some two-parameter marginal distributions, e.g., uniform, shifted exponential, shifted

Rayleigh, Type-I largest value, log-normal, gamma, and Type-I1 largest value.

In this section, we develop similar semi-empirical formulas to calculate reduced
correlation coefficient (po ;) for random variables having Johnson marginal distributions.
As in the case of Nataf transformation, we also assume that the transformed standard
normal variates are jointly normal. Then instead of solving the integral equation in Eq.
(1), we calculate the reduced correlation coefficient poj;j by a numerical technique based

on optimization. The procedure can be outlined as follows:

1. Define standard normal variates Z = (Z3, Z,) obtained by marginal

transformations of X = (Xy, X3) given by Eq. (2).

2. Zj;and Z, are now assumed jointly normal with joint PDF given by Eq. (3).

3. Choose an initial value for pg j;.
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4. Calculate the correlation coefficient p;; from the simulated correlated variables

X1 and Xo.

5. lIterate until the correlation coefficients calculated from the original data (pi;,
data) and the simulated correlated variables (pjj, simuiation) become equal. Obtain
the reduced correlation coefficient po ;. This is achieved by the following

optimization problem:

rLliijr‘(Pij,data ~ Pij,simulation (pO,ij ))2 )
st.—0.99< p,; <0.99

We solved this optimization problem using the MATLAB function fmincon, which

implements a sequential quadratic programming algorithm.

This calculation can be tedious; therefore, we also present semi-empirical formulas for
the correction factor F when marginal distributions come from the Johnson family of
distributions. These formulas are based on the following properties (Der Kiureghian and

Liu, 1986):
1. Fisafunction of p;; and the parameters of the two marginal distributions.
2. Fisalways greater than one for any arbitrary pj; and marginal distributions.

Based on the above properties, we propose three semi-empirical formulas for the

following three cases:
1. Both X; and X are bounded Johnsons (SB) (Eq. (6))
2. Both X; and X; are unbounded Johnsons (SU) (Eq. (7))
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3. Xiis unbounded Johnson (SU) and X; is bounded Johnson (SB) (Eq. (8))

F =1.2924+0.0443p, — 0.1316(V, + V, )+ 0.1508(43, + S8, )~ 0.0864(83, + ) (6)
+0.0138p,(V, +V, )~ 0.0205,(8, + B, ) 0.0118p,(B, + B, )-0.0203VV,
+0.0031V, (8, + B, )+ V, (8, + B,)+0.0128(V,(8, + B,)+ V, By + )
+0.05193, 3, - 0.00838, 8, — 0.0388(8, B, + B8, ) 0.0111( B, ,, + B )
—0.0488p% +0.1814(V2 + V2 )+ 0.0226(3 + 2 )+0.0199(52 + 52 )

F =1.0375+0.0133p; +0.0401(V, + V, )+ 0.0630(3; + 3; ) 0.0055(3, + f3; ) @)
+0.0135p, (v, + V, }+ 0.0273p, (B, + B, )- 0.0042,(B,, + B, )-0.1649VV,
- 0-0212(\4 (ﬂli + B )"' V, (ﬂli + B ))+ 0-0028(\4 (ﬂZi + By )"' Vv, (ﬂzi + By ))
~0.02008, 3, +0.00798, 3, ~ 0.0016(8, 5, + /4, )+ 0.0003( 5, By + Byf3)
+0.0001p7 —0.0223(V? + V?)+0.0146(f2 + 2 ) - 0.0049( 2 + 32 )

F =1.1432-0.6575p; + 0.8593V; +0.1864V, + 0.287143; +0.74293; + 0.2446 3, —0.889953,  (8)
—0.0411p,V, +0.0013p,V, - 0.37535; 3; - 0.0137 p; 3, + 0.2135p, 3, + 0.0076 0, 3;;
—0.2269V,V, +0.2459V, 3, +0.0127V, 3, — 0.2800V, 3, + 0.0292V, 3, + 0.3745V, 3,
-0.1167V,3, — 0.1528V, 3, + 0.1532V, 3, + 0.1126 8, 3, — 0.066 13, 3,; — 0.2850 3, 3,
—0.0798,8, —0.1778 3,3, + 0.1670 8, 3, —0.0195p; + 0.0143V; + 0.0466V?
+0.27703; +0.10453; —0.04508; +0.07233;

In Egs. (6), (7) and (8), F is the correction factor, pj; is the original correlation
coefficient, V; and V; are the coefficients of variation, S, £ are the skewness and fai, B5j
are the kurtosis for X; and X;, respectively. These equations are obtained by least-square
fitting to a general second degree polynomial. Note that in Egs. (6) and (7), X; and X;are
the same Johnson type (both bounded, or both unbounded), therefore the formulas for F
are symmetric in i and j. In Eq. (8) X; and X; are of different type (X; is unbounded, X; is

bounded), therefore this formula is not expected to be symmetric.
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In order to validate the fitted models, the coefficients of determination R? for each
of Egs. (6)-(8) are calculated. However, in the presence of multiple regressor variables,
the R? value might overestimate the strength of the model, as it always increases with
increasing number of regressor variables in the models (Haldar and Mahadevan, 2000).
Therefore, another statistic, the adjusted R® is also computed for each of the models,
which also accounts for the sample size of the regressor variables (Cramer, 1987). The
overall significance of the proposed regression models is also tested using the F-test. The
F-tests are performed at 0.05 significance level. The values of p in Table 1 reflect the
significance of F-statistics. For example, a value of p less than the significance level of

0.05 indicates a good fit. The regression statistics are given in Table 1.

Table 1: Regression statistics for the semi-empirical formulas

Distributions R’ R”-adjusted F p Feritical
Johnson SB-SB | 0.9597 0.9350 14.3740 1.8162¢-010 1.9332
Johnson SU-SU | 0.8959 0.8452 5.4608 3.79556-006 1.8599
Johnson SU-SB | 0.9818 0.9645 27.1762 0 1.7390

It is seen in Table 1 that the values of both R? and R*-adjusted are reasonably high
for each of the fitted models, the values of F are well above the corresponding critical
values, and the respective p values are much less than the significance level 0.05,

indicating that the models in Eqgs. (6)-(8) provide a good fit to the data.

Table 2 lists the allowable domains for the correlation coefficients for the semi-
empirical formulas given above. The proposed formulas are valid for only these ranges of

the correlation coefficients. The other coefficients in the formulas are functions of the
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first four moments of the marginal Johnson distributions and are constrained by the

Johnson translation system.

Table 2: Allowable domains for the correlation coefficients

Distributions Dij
Johnson SB-SB -0.95t0 0.92
Johnson SU-SU -0.931t00.93
Johnson SU-SB -0.94 t0 0.93

Once the reduced correlation coefficients are obtained by one of the semi-empirical
formulas presented above, the next step is to transform the correlated variables into
uncorrelated standard normal variates for use in analytical reliability methods or to
generate correlated random variates for use in MCS. The procedure of transformation to

uncorrelated standard normal variates is as follows:

1. Calculate the correction factor F for the given marginals and correlation
coefficient pjj and thus obtain the reduced correlation coefficient po j; and reduced

correlation matrix [C].

[C']{1 3 } ©

Po12 1

2. Generate correlated standard normal variates (Z) from the joint PDF given in Eq.

(3) with the reduced correlation matrix [C].

3. Transform correlated standard normal variates (Z) to uncorrelated standard

normal (u) space by the transformation

u=L"z) (10)
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where L is the lower triangular matrix obtained by Cholesky factorization of the

reduced correlation matrix [C].

Since Monte Carlo methods have widespread applications in uncertainty analysis,
it is important to include correlations into the computational process, when the input
variables are correlated. As mentioned earlier that there are several ways to generate
correlated random variables with given marginals and correlation matrix. In this chapter,

we have used the following procedure to generate correlated random variables:

1. Calculate the correction factor F for the given marginals and correlation
coefficient p;j and thus obtain the reduced correlation coefficients pjj and reduced

correlation matrix [C].

2. Generate correlated standard normal variates (Z) from the joint PDF given in Eq.

(3) with the reduced correlation matrix[C'].

3. Generate correlated random variables (X) with given marginals by the following

transformation:
F (X)) = [Z] i=172 (11)

We note here that the procedures described above require that the reduced correlation
matrix [C'] be at least positive semi-definite, if not positive definite. This condition is
satisfied in almost all practical cases, because the original correlation matrix [C] is by
definition positive define and the differences between the original correlation coefficients
pij and the reduced correlation coefficients po j; are usually small (Liu and Der Kiureghian,
1986). However, in some practical cases, when we construct the reduced correlation
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matrix [C'] by estimating the pairwise correlation coefficients independently, it is likely
that the correlation matrix [C'] will be non-positive semi-definite. Methods (e.g.,

Higham, 2002; Mishra, 2007) exist for adjusting a non-positive semi-definite matrix so
that it can be positive semi-definite and remains as close as possible to the original

matrix.

Once we have transformed the original random variables to uncorrelated standard
normal space or we have generated correlated input variables, the next step is to
propagate this uncertainty through models of system response by any uncertainty

propagation method (e.g., FORM or MCS).

3. Proposed Methodology for uncertainty propagation under uncertain
correlations
In this section we describe our proposed methodology for the propagation of
epistemic and aleatory uncertainty using correlations. First, we fit a family of Johnson
distributions to sparse point and interval data on the input variables using the moment
matching approach. Moment matching involves equating the moments derived from data
to those of the probability distribution being fit. A detailed discussion on fitting Johnson
distributions to sparse point and interval data can be found in McDonald et al (2009) and

Zaman et al (2009a), respectively.

The Johnson family is a generalized family of distributions that can represent normal,
lognormal, bounded, or unbounded distributions. Because of their flexibility, Johnson
distributions can be used for probabilistic representation of sparse point data or interval

data when the underlying probability distribution is not known. As discussed earlier in
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Section 1, the Johnson family is a convenient choice for this purpose among other four
parameter distributions, as it has easy transformation to standard normal space, which

then can be conveniently used for further analysis.

In Section 3.1 we describe novel approaches for uncertainty quantification with
sparse point data. In Section 3.2 we describe the methods for quantification of both

aleatory and interval uncertainty using correlations among interval variables.

3.1 Statistical Uncertainty Quantification via Jackknife for sparse point data

It should be noted that given the presence of limited data, the marginal distributions of
the input variables and their correlation coefficients are also uncertain. We introduce a
versatile approach for uncertainty quantification of distribution parameters and
correlation coefficients among basic random variables as well as their distribution
parameters for sparse point data. This approach assumes that both the basic random
variables and their distribution parameters are Johnson distributed, and uses a jackknife
technique to estimate the distribution of the distribution parameters and correlation
coefficients among basic random variables. The assumption of the distribution
parameters having the Johnson distribution allows for both the possibility of a non-
normal distribution for the small sample size as well as the distribution asymptotically

approaching normality

Jackknifing (Arvesen, 1969 and Miller, 1974) is used to estimate the bias and
standard error in a statistic, when a random sample of observations is used to calculate it.

The basic idea behind the jackknife estimator lies in systematically recomputing the
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statistic estimate, leaving out one observation at a time from the sample set. From this
new set of "observations" for the statistic an estimate for the bias can be calculated and an
estimate for the variance of the parameter. We propose the following algorithm for

uncertainty quantification of the distribution parameters and correlation coefficients.

Note that any appropriate point estimation technique may be used for this
procedure. The use of the Johnson distribution for the underlying basic random variable
avoids the problem of incorrect classification of the distribution type. The use of the
Johnson distribution for characterizing parameter uncertainty allows for relaxation of the
assumption of asymptotic normality. The Johnson distribution can much more closely
match the shape of the parameter’s distribution even if it is non-normal, as it may be

under small sample sizes, and will still be appropriate for large samples.

Algorithm for Uncertainty Quantification in Distribution
Parameters and Correlation Coefficients

Seti=1

while (i <= N)
Delete observation i from the original set of observations
Estimate the Johnson distribution parameters and correlation
coefficient of the basic random variables on the basis of the N-1
remaining points.
Record as estimate i.
Restore observation i to the set of original observations.
i=i+1

end while

Obtain a set of distribution parameters and correlation coefficients

Fit a Johnson Distribution to the set of parameter estimates
obtained in the while loop.
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Once the uncertainty in the distribution parameters and correlation coefficients of the
basic random variables are quantified, the next step is to consider the correlations among
the distribution parameters. As we have a set of distribution parameters for which we fit
Johnson distribution for the distributions of distribution parameters, we are now able to
generate correlated distribution parameters from their marginals using the approach
described in section 2. Therefore, the output uncertainty quantification procedure with
sparse point data on the input, considering correlations among basic random variables as

well as among their distribution parameters can be outlined as follows:

1. Obtain N sets of distribution parameters and correlation coefficients for the basic

random variables (X) of sample size N via jackknife.

2. Fit Johnson distributions to the set of distribution parameters obtained in step 1.
Now, we have four marginal distributions for the distribution parameters of the

basic random variables.

3. Calculate the correlation coefficients p;; for the distribution parameters from the

set of distribution parameters obtained in step 1.

4. Obtain reduced correlation coefficients poj for the distribution parameters by the

procedure described in section 2.

5. Generate N sets of correlated distribution parameters using the marginal
distributions obtained in step 2 and reduced correlation coefficients obtained in

step 4 by the procedure described in section 2.

6. Generate correlated input variables using each set of distribution parameters

obtained in step 5 and correlation coefficients obtained in step 1 by the procedure
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described in section 2 and propagate through model of system response by MCS

to obtain a CDF of system response.
7. Repeat step 6 N times and thus obtain a family of CDFs for the system response.
This procedure is illustrated in Section 4 through an example problem.
3.2 Uncertainty quantification with interval data

In order to express and propagate interval data using probabilistic methods, it is
necessary to fit probability distributions to interval data. An approach for fitting a family
of Johnson distributions to interval data has been discussed in Chapter IV. As we are able
to calculate the bounds on the moments of an uncertain quantity characterized by interval
data, we can require that the moments of the distribution fall between the upper and lower
bounds given from the estimation procedures. With interval data, it is impossible to know
the true moments of the data, thus there are infinitely many possible probability
distributions that can represent the interval data. This uncertainty in the moments of the
data also creates uncertainty in the parameters of the Johnson distribution. Chapter IV
proposed algorithms to compute bounds on moments for single interval and multiple
interval data. Chapter V proposed an optimization-based methodology for uncertainty

propagation with interval data.

Interval data are encountered frequently in practical engineering problems as
discussed in Chapter Il. In many problems, it is likely that interval data for individual
input variables are not observed simultaneously. Therefore, it is impractical to calculate
the correlation coefficients among the input variables which are described by interval

data. Rather it is assumed that with interval data the correlations among the input
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variables are unknown and therefore can range from -1 to +1. In the following discussion,
we reformulate the optimization-based approaches proposed in Chapter V to include
correlations among input random variables.

The first approach is a percentile-based optimization (PBO) method which

minimizes and maximizes the system response ga(x|m) conditioned on a set of moments

(m;) for the input variables at different percentile values (o) and thus bounds on system
response CDF is obtained. We include correlation in this analysis by adding the reduced
correlation coefficient pgjj as a decision variable, which ranges from ryi, to rmax. Note that
for a pair of input random variables, there exists either positive or negative correlation.
The proposed approach requires that the designer has the knowledge about the correlation
type among the input random variables. Therefore, the quantities rmin and rmax are
specified by the designer in the optimization formulation. For example, rpin and rypax May
assume values between -1 to -0.1 for negatively correlated variables and 0.1 to 1 for
positively correlated variables.
The implementation of this uncertainty quantification approach considering
correlations is as follows:
1. Calculate the bounds on the first four moments of single or multiple interval data

by the methods described in Chapter IV.

2. Solve the following optimization problems at different percentile values (a) to

obtain bounds on output CDF.

142



min/ max ga(X‘m,Po.ij)

m, g
st.m; > g
m <b, i=12...4
Fin < Po.ij = Max (12)
ﬂz - 181 -120
B, —2p,-3<0

where B, =mZ/m}
B = m4/mz2

The last two nonlinear constraints ensure that the optimizer only selects those
values of moments that suggest a bounded Johnson distribution fit, so that the resulting
distribution lies within the bounds of the interval data specified. It is noted here that the
objective function in this optimization problem is conditioned on a set of moments and
reduced correlation coefficient po jj for the input variables and estimates the parameters of
Johnson distribution from the set of moments in each iteration by the method described in
Chapter IV.

Percentile-based optimization is expensive as it requires solving the problems
repeatedly at different a-levels. Therefore, Chapter V proposed another expectation-based
optimization (EBO) strategy to obtain approximate bounds on system response CDFs
which is computationally less expensive. This formulation is based on the assumption
that the sets of distribution parameters of input variables which result in minimum or

maximum expectation of the system response (E(g(x))) can also give an upper bound on

the entire CDF of the system response (g(x)) for the minimization problem and a lower
bound for the maximization problem, respectively. A proof in support of this statement is

given in Chapter V. As in the case of PBO, we also reformulate this expectation-based
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optimization (EBO) problem by including correlations in the analysis. Its implementation
is as follows:
1. Calculate the bounds on the first four moments of single or multiple interval data

by the methods described in Chapter IV.

2. Obtain two set of moments and reduced correlation coefficients po; that minimize
and maximize the expected value of the system response (E(g(x))) conditioned
on a set of moments (m;) and reduced correlation coefficient pgjj for the input

variables. These are obtained by the following optimization problems:

min/max E(g (x‘m, Poii)

M, Po jj
S.t.mi > a
m, <b, i=12...4
r-min S:DO,ij < r-max (13)
ﬂz - 181 -120
B, —2p-3<0

where B, =mZ/m;
2
B, =m,[m,

The last two nonlinear constraints ensure that the optimizer only selects those values
of moments that suggest a bounded Johnson distribution fit as mentioned earlier.
3. Obtain two sets of parameters of Johnson distribution for the input variables from

the sets of moments obtained in step 2.

4. Construct the CDF of the system response given a set of reduced correlation
coefficients and distribution parameters for the input variables by any
probabilistic uncertainty propagation method (e.g., FORM or MCS) and thus

obtain approximate bounds on the CDF of the system response.
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In summary, this chapter developed a multivariate input model of random variables
by using a four parameter flexible family of distributions for the marginals to account for
data uncertainty. The proposed multivariate input model is then used to develop a
computational framework for the uncertainty propagation that considers statistical
correlations among basic random variables as well as among their distribution

parameters.

4. Example Problems

In this section, the proposed methods are applied to a single aerodynamic data set for
the upper stage of the Two-Stage-To-Orbit (TSTO) Highly Reliable Reusable Launch
Systems (HRRLS) concept vehicle, as described in Chapter I1l. A response surface (Eg.
13 in Chapter Il) for a model-predicted drag coefficient (Cp) is used for uncertainty
propagation, which is a function of Mach number (Mach) and angle of attack (AoA). We
wish to quantify the uncertainty in Cp given available information concerning Mach and
AOA. The information on Mach and AOA is available as either sparse point data or

interval data.

4.1 Uncertainty propagation with sparse point data

In this case, Mach and Ao0A are assumed to be given by sparse point data as
shown in Table 3. The distributions of Mach and AoA are inferred from point data and
fitted to bounded Johnson distributions by the method of matching moments. Since the
data sets of Mach and AoA are small, they are jackknifed and a Johnson distribution is

fitted using each of the jackknifed parameter estimates with one observation deleted in
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order to quantify the statistical uncertainty in the distribution parameters. Uncertainty in
correlation coefficients is also quantified via jackknife.

Table 3: Sparse point data for Mach and AcA

Data
Mach AOA
6.52 18.52
6.06 16.04
5.49 17.52
6.52 16.53
5.74 18.63
5.74 15.94
5.34 16.32
6.24 17.40
5.42 16.00
6.10 18.54

The output is a family of CDFs of system response conditioned on each
jackknifed observation of the distribution parameters of Mach and AoA and the

correlation coefficient pj;. The results are shown in Figure 1.

T
Ignoring correlations
0.9r|- Correlated Basic RVs
Correlated Basic RVs and Dist Params

0.8
0.7
0.6

05

CDF

0.4
03
0.2

0.1

' - | |
Qos 0.06 0.07 0.08 0.09 0.1 0.11 0.12
System response

Figure 1: Family of CDFs of system response for sparse point data
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Figure 1 shows the results for three cases: i) ignoring correlations, ii) including
correlations in basic random variables and iii) including correlations in basic random
variables and their distribution parameters. It is seen in Figure 1 that correlations among
the basic random variables as well as their distribution parameters have significant
impact on the distributions of system response, especially in the tails of the distributions,
which are the regions of interest to the decision maker. It is also seen that we obtain a
tighter scatter in output distributions, i.e., narrower bounds on the output CDFs when we
consider correlations among basic random variables as well as among their distribution
parameters. We further obtain narrower bounds on the output CDF in Case (iii) as
compared to that obtained in Case (ii), which suggests that statistical correlations among

the distribution parameters should be included in predicting the system response.

4.2 Uncertainty propagation with multiple interval data

In this case, the uncertainty in both Mach and AoA are described by multiple
interval data as given in Table 4. Here, it is assumed that there exists positive correlation
between Mach and AoA and their correlation coefficients range from 0.1 to 1.This
problem is solved by both PBO and EBO approaches presented in section 3.2. The output
is in the form of bounds on the system response CDF. The results are shown in Figure 2.

Table 4: Multiple interval data for Mach and AcA

Data
Mach AOA

[5, 6,55, 6.1,6, 6.5,5.4, 6.2,5.6, 6.6] | [18, 19; 18.5, 20; 19, 20; 195, 21; 18, 20.5]
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Figure 2: Bounds on CDF of system response for interval data

Figure 2 shows the results for two cases: i) ignoring correlations and ii) including
correlations in basic random variables. It is seen in Figure 2 that correlations among the
basic random variables have significant impact on the distributions of system response,
especially in the tails of the distributions. It is also seen that we obtain narrower bounds
on the output CDFs when we consider correlations among basic random variables. As
expected, EBO is less expensive (65 function evaluations) for correlated input modeling
as compared to PBO (850 function evaluations) which was solved at 15 different
percentile values. Similarly, for uncorrelated input modeling, EBO required only 60
function evaluations as compared to 810 function evaluations by PBO (solved at 15
different percentile values).

5. Conclusion

This chapter developed a methodology for multivariate input modeling of random

variables by using a flexible Johnson family of distributions for the marginals that also
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accounts for data uncertainty. Semi-empirical formulas in terms of the Johnson marginals
and covariances are presented to estimate the reduced correlation coefficients. This
reduced correlation coefficient is then used to transform correlated random variables to
uncorrelated standard normal space for use in analytical reliability analysis methods and
to generate correlated random variables for use in MCS for Johnson distributed marginal
distributions. This chapter also developed a methodology for propagating both aleatory
and data uncertainty arising from sparse point data through computational models of
system response. The methodology differs from existing approaches in that it assigns
probability distributions to the distribution parameters and quantifies the uncertainty in
correlation coefficients through the use of computational resampling methods. A
methodology has also been developed for the propagation of both aleatory and interval
uncertainty in the presence of correlations among interval variables. These methods are
illustrated with example problems. The results show that statistical correlations have
significant impact on uncertainty quantification, especially in the tails of the output
distributions, which are the regions of interest to the decision maker. The proposed
approach facilitates the implementation of design optimization under uncertainty

considering correlations.
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CHAPTER VII

ROBUSTNESS-BASED DESIGN OPTIMIZATION UNDER DATA
UNCERTAINTY

1. Introduction

This chapter proposes formulations and algorithms for design optimization under
both aleatory (i.e., natural or physical variability) and epistemic uncertainty (i.e.,
imprecise probabilistic information), from the perspective of system robustness. The
proposed formulations deal with epistemic uncertainty arising from both sparse and
interval data without any assumption about the probability distributions of the random
variables. A decoupled approach is proposed in this chapter to un-nest the robustness-
based design from the analysis of non-design epistemic variables to achieve
computational efficiency. The proposed methods are illustrated for the upper stage design
problem of a two-stage-to-orbit (TSTO) vehicle, where the information on the random
design inputs are only available as sparse point and/or interval data. As collecting more
data reduces uncertainty but increases cost, the effect of sample size on the optimality
and robustness of the solution is also studied. A method is developed to determine the
optimal sample size for sparse point data that leads to the solutions of the design problem
that are least sensitive to variations in the input random variables.
The essential elements of robust design optimization are: (1) maintaining robustness
in the objective function (objective robustness); (2) maintaining robustness in the
constraints (feasibility robustness); (3) estimating mean and measure of variation

(variance) of the performance function; and (4) multi-objective optimization. The rest of



this section briefly reviews the literature with respect to these four elements and
establishes the motivation for the current study.

Objective robustness

In robust optimization, the robustness of the objective function is usually achieved by
simultaneously optimizing its mean and minimizing its variance. Two major robustness
measures are available in the literature: one is the variance, which is extensively
discussed in the literature (Du and Chen, 2000; Lee and Park, 2001 and Doltsinis and
Kang, 2004) and the other is based on the percentile difference (Du et al, 2004). Although
the percentile difference method has the advantage that it contains the information of
probability in the tail regions of the performance distribution, this method is only
applicable to unimodal distributions. Variance as a measure of variation of the
performance function can be applied to any distribution (unimodal or multimodal), but it
only characterizes the dispersion around the mean (Huang and Du, 2007).

Feasibility robustness

Feasibility robustness i.e., robustness in the constraints can be defined as satisfying
the constraints of the design in the presence of uncertainty. Du and Chen (2000)
classified the methods of maintaining feasibility robustness into two categories, methods
that use probabilistic and statistical analysis, and methods that do not require them.
Among the methods that require probabilistic and statistical analysis, a probabilistic
feasibility formulation (Du and Chen, 2000 and Lee et al, 2008), and a moment matching
formulation (Parkison et al, 1993) have been proposed. Du and Chen (2000) used a most
probable point (MPP)-based importance sampling method to reduce the computational

burden associated with the probabilistic feasibility formulation. The moment matching
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formulation is a simplified approach which requires only the constraints on the first and
second moments of the performance function to be satisfied, and assumes that the
performance function is normally distributed. A variation of this approach, the feasible
region reduction method has been described in Park et al (2006), which is more general
and does not require the normality assumption. This is a tolerance design method, where
width of the feasible space in each direction is reduced by the amountko , where k is a
user-defined constant and o is the standard deviation of the performance function. This
method only requires the mean and variance of the performance function.

Methods that do not require probabilistic and statistical analysis are also available, for
example, worst case analysis (Parkinson et al, 1993), corner space evaluation
(Sundaresan et al, 1995), and manufacturing variation patterns (MVP) (Yu and Ishii,
1998). A comparison study of the different constraint feasibility methods can be found in
Du and Chen (2000).

Estimating mean and variance of the performance function

Various methods have been reported in the literature to estimate the mean and
standard deviation of the performance function. These methods can be divided into three
major classes: (i) Taylor series expansion methods, (ii) sampling-based methods and (iii)
point estimate methods (Huang and Du, 2007).

The Taylor series expansion method (Haldar and Mahadevan, 2000; Du and Chen,
2000; and Lee et al, 2001) is a simple approach. However, for a nonlinear performance
function, if the variances of the random variables are large, this approximation may result

in large errors (Du et al., 2004). Although a second-order Taylor series expansion is
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generally more accurate than the first-order approximation, it is also computationally
more expensive.

Sampling-based methods require information on distributions of the random
variables, and are expensive. Efficient sampling techniques such as importance sampling,
Latin hypercube sampling, etc. (Robert and Cesalla, 2004) can be used to reduce the
computational effort, but are still prohibitive in the context of optimization. Surrogate
models (Ghanem and Spanos 1991; Bichon et al, 2008; Cheng and Sandu, 2009) may be
used to further reduce computational effort.

In an attempt to overcome the difficulties associated with the computation of
derivatives required in Taylor series expansion, Rosenlblueth (1975) proposed a point
estimate method to compute the first few moments of the performance function. Different
variations of this point estimate method (Hong, 1998; Zhao and Ono, 2000 and Zhao and
Ang, 2003) have been studied. Although point estimate methods are easier to implement,
the accuracy may be low and may generate points that lie outside the domain of the
random variable.

Multi-objective optimization

Robustness-based optimization considers two objectives: optimize the mean of the
objective function and minimize its variation. An extensive survey of the multi-objective
optimization methods can be found in Marler and Arora (2004). Among the available
methods, the weighted sum approach is the most common approach to multi-objective
optimization and has been extensively used in robust design optimization (Lee and Park,
2001; Doltsinis and Kang, 2004; Zou and Mahadevan, 2006). The designer can obtain

alternative design points by varying the weights and can select the one that offers the best
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trade-off among multiple objectives. Despite its simplicity, the weighted sum method
may not obtain potentially desirable solutions (Park et al, 2006). Another common
approach is the e-constraint method in which one of the objective functions is optimized
while the other objective functions are used as constraints. Despite its advantages over
weighted sum method in some cases, the e-constraint method can be computationally
expensive for more than two objective functions (Mavrotas, 2009).

Other methods include goal programming (Zou and Mahadevan, 2006),
compromise decision support problem (Bras and Mistree, 1993, 1995; Chen et al, 1996),
compromise programming (CP) (Zalney, 1973; Zhang, 2003; Chen et al, 1999) and
physical programming (Messac, 1996; Messac et al, 2001; Messac and Ismail-Yahaya,
2002; Chen et al, 2000). Each of these methods has its own advantages and limitations.

As discussed in Chapter 11, most of the current methods of robust optimization for
epistemic uncertainty use non-probabilistic methods to represent epistemic uncertainty.
These methods need additional non-probabilistic formulations to incorporate epistemic
uncertainty into the robust optimization framework and thus, are computationally
expensive. However, if the epistemic uncertainty can be converted to a probabilistic
format, the need for these additional formulations is avoidable, and well established
probabilistic methods of robust design optimization can be used. Therefore, there is a
need for an efficient robust design optimization methodology that deals with both
aleatory and epistemic uncertainty. In this chapter, we propose robustness-based design
optimization formulations that work under both aleatory and epistemic uncertainty using

probabilistic representations of different types of uncertainty. Our proposed formulations
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deal with both sparse point and interval data without any strict assumption about
probability distributions of the random variables.

The performance of robustness-based design can be defined by the mean and
variation of the performance function. In our proposed formulations, we obtain the
optimum mean value of the objective function (e.g., gross weight) while also minimizing
its variation (e.g., standard deviation). Thus, the design will meet target values in terms of
both design bounds and standard deviations of design objectives and design variables
thereby ensure feasibility robustness.

A Taylor series expansion method is used in this dissertation to estimate the mean and
standard deviation of the performance function, which requires means and standard
deviations of the random variables. However, with sparse point data and interval data, it
is impossible to know the true moments of the data, and there are many possible
probability distributions that can represent these data (see Chapter V). In this chapter, we
propose methods for robustness-based design optimization that account for this
uncertainty in the moments due to sparse point data and interval data and thereby include
epistemic uncertainty into the robust design optimization framework. As collecting more
data reduces uncertainty but increases cost, the effect of sample size on the optimality
and the robustness of the solution is also studied. A method to determine the optimal
sample size for sparse point data that will lead to the minimum scatter on solutions to the
design problem is also presented in this chapter.

In some existing methods for robust design under epistemic uncertainty, all the
epistemic variables are considered as design variables (Youn et al, 2007). However, if the

designer does not have any control on an epistemic variable (e.g., Young’s modulus in
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beam design), considering that variable as a design variable might lead to a solution that
could underestimate the design objectives. Therefore, in this chapter, we propose a
general formulation for robust design that considers some of the epistemic variables as
non-design variables, which leads to a conservative design under epistemic uncertainty.
An example of epistemic uncertainty in a design variable is the geometric dimension of a
component, whose manufactured value is different from the design value. This difference
might be specified as an interval by an expert, or only a few instances of historic values
of this difference might be available. Note that the sparse point and/or interval data for
the epistemic design variables are used only to estimate the variances; the mean values of
such variables are controlled by the design.

Note that the proposed robustness-based design optimization method is general
and capable of handling a wide range of application problems under data uncertainty. The
proposed methods are illustrated for the conceptual level design process of a two-stage-
to-orbit (TSTO) vehicle, where the distributions of the random inputs are described by
sparse point and/or interval data.

The rest of the chapter is organized as follows. Section 2 proposes robustness-based
design optimization framework for sparse point data and interval data. In Section 3, we
illustrate the proposed methods for the conceptual level design process of a TSTO

vehicle. Section 4 provides conclusions and suggestions for future work.

2. Proposed methodology

Deterministic design optimization
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In a deterministic optimization formulation, all design variables and system
variables are considered deterministic. No random variability or data uncertainty is taken

into account. The deterministic optimization problem is formulated as follows:

min f(x)
st. LB<g;(x)<UB foralli @
Ib<x<ub

where f(x) is the objective function, x is the vector of design variables, gi(x) is the ith
constraint, LB and UB are the vectors of lower and upper bounds of constraints g,'s and

Ib and ub are the vectors of lower and upper bounds of design variables.

In practice, the input variables might be uncertain and solutions of this
deterministic formulation could be sensitive to the variations in the input variables.
Robustness-based design optimization takes this uncertainty into account. The optimal
design points obtained using the deterministic method could be used as initial guesses in

robustness-based optimization.

Robustness-based design optimization

In the proposed methodology, we use variance as a measure of variation of the
performance function in order to achieve objective robustness, the feasible region
reduction method to achieve feasibility robustness, a first-order Taylor series expansion
to estimate the mean and variance of the performance function, and a weighted sum
method for the aggregation of multiple objectives. This combination of methods is only
used for the sake of illustration. Other approaches can be easily substituted in the
proposed methodology. The robustness-based design optimization problem can now be

formulated as follows:
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mdin f(,u,O'):(W*,uf +Vv*o,)

st. LB +ko(g;(d,z)) <E(g;(d,z)) <UB-ko(g,(d,z)) foralli 2
Ib+ko(x)<d, <ub-ko(x) fori=12,...,nrdv
Ib<d, <ub fori=12,...,nddv

where u, ando, are the mean value and standard deviation of the objective function,

respectively; d is the vector of deterministic design variables as well as the mean values
of the uncertain design variables x; nrdv and nddv are the numbers of the random design
variables and deterministic design variables, respectively; and z is the vector of non-
design input random variables, whose values are kept fixed at their mean values as a part

of the design. w>0 and v>0 are the weighting coefficients that represent the relative

importance of the objectives u, ando, in EQ.(2); gi(d, z) is the ith constraint;
E(g;(d,z)) is the mean and o(g,(d,z)) is the standard deviation of the ith constraint. LB
and UB are the vectors of lower and upper bounds of constraints g;'s ; Ib and ub are the

vectors of lower and upper bounds of the design variables; o(x) is the vector of standard

deviations of the random variables and k is some constant. The role of the constant k is to
adjust the robustness of the method against the level of conservatism of the solution. It
reduces the feasible region by accounting for the variations in the design variables and is
related to the probability of constraint satisfaction. For example, if a design variable or a
constraint function is normally distributed, k =1 corresponds to the probability 0.8413, k
=2 to the probability 0.9772, etc.

Note that the robust design formulation in Eq. (2) is a standard nonlinear multi-

objective optimization formulation. The optimality conditions of such a formulation have
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been extensively described in the literature including Cagan and Williams (1993) and
Marler and Arora (2004).

In the proposed formulation, the performance functions considered are in terms of the
model outputs. The means and standard deviations of the objective and constraints are
estimated by using a first-order Taylor series approximation as follows:

Performance function: Y = g(X,, X,,...., X,,) (3)

First-order approximate mean of y: E(Y') = g(uy, . ttx, oo tix, ) 4)

-\ 09 09
First-order variance of y: Var(Y') ( j Var + ——Cov|X;, X.) (5)
le X, 2; X, X (x.x,)

i

The implementation of Eqg. (2) requires that variances of the random design
variables X; and the means and variances of the random non-design variables Z; be
precisely known, which is possible only when a large number of data points are available.
In practical situations, only a small number of data points may be available for the input
variables. In other cases, information about random input variables may only be specified
as intervals, as by expert opinion. This is input data uncertainty, causing uncertainty
regarding the distribution parameters (e.g., mean and variance) of the inputs X; and Z;.
Robustness-based optimization has to take this into account. In the following subsections,
we propose a new methodology for robustness-based design optimization that accounts

for data uncertainty.

2.1 Robustness-based design optimization under data uncertainty
The inclusion of epistemic uncertainty in robust design adds another level of

complexity in the design methodology. The design variables d and/or the input random
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variables z in Eq. (2) might have epistemic uncertainty. Since the designer does not have
any control on the non-design epistemic variables z, the design methodology has to
employ a search among the possible values of such epistemic variables in order to find an
optimal solution. In such case, we get a conservative robust design. The robustness-based
design optimization problem can now be formulated with the following generalized

statement:

mdin(max f(u,0)=(W*u, +v*o, ))
H

st. LB +ko(g;(d, ,)) <E(g;(d,z)) <UB—-ko(g;(d, x,)) foralli (6)
Ib+ko(x) <d <ub-ko(x)
Z Su,<Z,

where Z, and Z, are the vectors of lower and upper bounds of the decision variables p;, of
the inner loop optimization problem.

Note that in this formulation, the outer loop decision variables d may consist of stochastic
design variables as well as epistemic design variables. The outer loop optimization is a
design optimization problem, where a robust design optimization is carried out for a fixed
set of non-design epistemic variables. The inner loop optimization is the analysis for the
non-design epistemic variables, where the optimizer searches among the possible values
of the non-design epistemic variables for a conservative solution of the robust design

problem.

This nested optimization problem can be decoupled and expressed as:

d” =argmin(w* x, (d, 2, )+v*o, (d, 1))
st. LB +ko(g;(d, 1)) < E(g,(d, 2)) <UB—ko (g, (d, ")) foralli @)
Ib+ ko (x) < d <ub—ke(x)
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1, =argmax(w* e, (d, 41, )+ v* o, (d", 11, ) )

Hy

st.  LB+ko(g,(d", 1,)) <E(g;(d,z)) <UB-ko(g,(d", ,)) foralli
Z Su,<Z,

The optimization problems in Egs. (7) and (8) are solved iteratively until
convergence. Note that the first constraint (i.e., the robustness constraint) in Eq. (8) is
required to ensure that the optimization is driven by all non-design epistemic variables,
because sometimes the objective function may not be a function of all non-design
epistemic variables. In cases when the objective function is the function of all non-design
epistemic variables, this constraint is not required. Figure 1 illustrates the decoupled
approach for robustness-based design optimization under both aleatory and epistemic

uncertainty.

Design Optimization (Eq. (7))

Uncertainty Analysis for non-design
epistemic variables (Eq. (8))

Yes

Required Design

Figure 1: Decoupled approach for robustness-based design optimization
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Note that d” are fixed quantities in the optimization in Eq. (8) and , are the fixed

quantities in the optimization in Eq. (7).

2.1.1 Robustness-based design with sparse point data

This section develops a methodology for robustness-based design optimization
with sparse point data, using the formulations in Egs. (7) and (8). It is assumed that only
sparse point data are available for the uncertain design variables as well as non-design
epistemic variables.

When a variable, either design or non-design, is described by sparse point data,
there is uncertainty about the mean and variance calculated from the samples. In the
design optimization (Eq. (7)), the mean values of the design variables (either aleatory or
epistemic) are controlled by the given design bounds. As in design optimization under
aleatory uncertainty only, here also it is assumed that the variances of the epistemic
design variables do not change as their mean values change. However, since the mean
values of the non-design variables cannot be controlled in the design optimization, the
proposed robustness-based design optimization methodology accounts for the uncertainty
about mean values of such epistemic variables through the optimization in Eq. (8).

The constraints on the non-design epistemic variables in Eg. (8) are implemented
through the construction of confidence intervals about mean values. As these variables
are described by the sparse point data, it is possible that the underlying distributions of
the variables might have major deviations from normality. Therefore, we have used the
Johnson's modified t statistic (Johnson, 1978) to construct the confidence bounds on

mean values of the non-design epistemic variables as follows:
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9)

Zu=f+t

where z is the vector of means of the epistemic variables, s is the vector of standard

deviations, n is the sample size of the sparse point data, , is the third central moment

and t_,, ., is obtained from the Student t distribution at (n-1) degrees of freedom and «

al2,n
significance level. This modified statistic takes into account the skewness of the
distribution and thus provides a better estimate of the confidence bound in the presence of
limited data.

The proposed robustness-based design optimization methodology accounts for the
uncertainty about the variances for all epistemic variables by first estimating confidence
bounds on variances and then solving the optimization formulations in Egs. (7) and (8)
using the upper bound variances for the input random variables x; and z;. Solving the
optimization formulations in Egs. (7)-(8) using the upper bound variances for all the
epistemic variables ensures that the resulting solution is least sensitive to the variations in
the input random variables.

The chi-square distribution is a good assumption for the distribution of the
variance, especially if the underlying population is normal. The two-sided (1-a)
confidence interval for the population variance o® can be expressed as (Haldar and
Mahadevan, 2000):

{(n—l)sz ;(n—l)sz} (10)

C1—0:/2,n—1 Ca/Z,n—l

163



where n is the sample size, s is the sample standard deviation of sparse point data, and

C,/2nq IS Obtained from the chi-square distribution at (n-1) degrees of freedom and «

significance level. Note that Eq. (10) can still be used to obtain approximate confidence
bounds for variance if the underlying population is not normal. However, in such cases,
other approximation methods (Bonett, 2006; Cojbasic and Tomovic, 2007) can be
used to obtain more reliable estimates of confidence bounds.

The optimization formulation shown in Eqgs. (7)-(8) involves aggregation of
multiple objectives. In the proposed formulations, the aggregate objective function
consists of two types of objectives, expectation and standard deviation of model outputs.
Since different objectives have different magnitudes, a scaling factor has to be used in the

formulation.

2.1.2 Determination of optimal sample size for sparse point data

The optimal solutions depend on the sample size of the sparse data as will be
discussed in Section 3.1. Therefore, it is of interest to determine the optimal sample size
of the sparse data that leads to the solution of the design problem that is least sensitive to
the variations of design variables. This will facilitate resource allocation decision for data

collection. The following two optimization formulations are solved iteratively until
convergence for the optimal sample sizes of the epistemic design variables (n;) and
epistemic non-design variables(n;).The formulations in Eq. (11)-(12) are the weighted

sum formulations of a three-objective optimization problem, where the first and second
objectives are the mean and standard deviation of GW respectively and the third

objective is the total cost of obtaining samples for all the random variables.
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[d nd] argmln [W*E(g (d, 1)) +v*o(g,(d, ),n,,n) +(1-w—V) [ancdj+2n C, J]

st. LB +kao(g;(d, 1,),ny,n.) < E(g;(d, 2)) <UB-ko(g,(d, 1,),n,,n;) foralli
Ib+ko(x,ny) <d <ub—-ko(x,n,)

m q
lendjcdj +Zl:nejcej <C
J= J=

ng; <by; forallj

11

[yz,ne] arg max {W*E(g d", 1)) +v*o(g,(d”, ,),n;,n) +(1-w-v) (anjcdﬁz‘nece]n

st. LB +ko(g;(d”, 1,),ny,n,) < E(g,(d, z)) <UB—kao(g,(d", ,),n;,n,) foralli
Zl(ne)sluz SZu(ne)

m q
lendjcdj +Zl:nejcej <C
]= 1=

n, <b,; forallj

where w>0 and v>0 are the weighting coefficients that represent the relative

importance of the objectives; ny and n, are the sample sizes and b, and b, are the

maximum sample size possible for the jth design and non-design random variables,
respectively. m and g are the number of design and non-deisgn random variables,

respectively. C, and c,, are the cost of obtaining one sample for the jth random design

and non-design variables, respectively and C is the total cost allocated for obtaining
samples for all the random variables. Note that as in Eq. (8), the robustness constraint in
Eqg. (12) is only required if the objective function is not a function of all non-design
epistemic variables. The optimization formulation presented above is a mixed-integer

nonlinear problem. A relaxed problem is solved in Section 3.
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2.1.3 Robustness-based design with interval data

This section develops a methodology for robustness-based design optimization
with interval data, using the formulations in Egs. (7) and (8). In this case, the only
information available for one or more input random variables is in the form of single
interval or multiple interval data.

The methodology for robustness-based design optimization with interval data is
similar to sparse point data as described in Section 2.1.1. However, the estimation of
mean values and variances for interval data is not straightforward. For interval data, the
moments (e.g., mean and variance) are not single-valued, rather only bounds can be given
(see Chapter 1V). We have proposed methods to compute the bounds of moments for
both single and multiple interval data in Chapter IV. Once the bounds on the mean and
variance of interval data are estimated, we use the upper bounds of sample variance to
solve the formulations of robust design under uncertainty represented through single
interval or multiple interval data. Therefore, the resulting solution becomes least sensitive
to the variations in the uncertain variables.

For non-design epistemic variables described by interval data, the constraints on
the decision variables in Eq. (8) are implemented through estimating the bounds of the
means by the methods as described in Chapter 1V.

Once the bounds on the mean and variance of interval data are estimated by the
methods described in Chapter IV, we can now use these bounds to solve the formulations
of robustness-based design optimization under uncertainty represented through single

interval or multiple interval data. In the following section, we illustrate our proposed
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formulations for robustness-based design optimization with both sparse point and interval
data.
3. Example Problem

In this section, the proposed methods are illustrated for the conceptual level
design process of a TSTO vehicle as discussed in Chapter I. The TSTO concept vehicle is
shown in Figure 1 of Chapter I. The analysis process of a TSTO vehicle is illustrated in
Figure 2 of Chapter I.

The analysis outputs (performance functions) are Gross Weight (GW), Engine
Weight (EW), Propellant Fraction Required (PFR), Vehicle Length (VL), Vehicle Volume
(VV) and Body Wetted Area (BWA). Each of the analysis outputs is approximated by a
second-order response surface and is a function of the random design variables Nozzle
Expansion Ratio (ExpRatio), Payload Weight (Payload), Separation Mach (SepMach),
Separation Dynamic Pressure (SepQ), Separation Flight Path Angle (SepAngle), and
Body Fineness Ratio (Fineness). Each of the random variables is described by either
sparse point data or interval data.

The objective is to optimize an individual analysis output (e.g., Gross Weight)
while satisfying the constraints imposed by each of the design variables as well as all the
analysis outputs. We note here that we have assumed independence among the uncertain
input variables and thereby ignored the covariance terms in Eqg. (5) to estimate the
variance of the performance function in each of the following examples. The numerical
values of the design bounds for the design variables and analysis outputs are given in

Tables 1 and 2, respectively.
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Table 1: Design bounds for the design variables

Design Variable Ib ub
ExpRatio 40 150
Payload 8000 40000
SepMach 7 12
SepQ 40 200
SepAngle 7 12
Fineness 4 6

Table 2: Design bounds for the analysis outputs

Analysis output LB UB
GW 0 100e+005
EW 0 100e+005

PFR 0.4 0.95
VL 0 100e+002
VV 0 100e+003
BWA 0 100e+005

3.1. Robustness-based design optimization with sparse point data

The methodology proposed in Section 2.1.1 is illustrated here for the TSTO

problem. It is assumed that all the input variables x are described by sparse point data as

given in Table 3. For this example, the input variable SepQ is assumed to be a non-design

epistemic variable and all the remaining variables are assumed to be design variables.

The design bounds for the respective design variables and the analysis outputs are given

in Tables 1 and 2.

Table 3: Sparse Point Data for the random input variables

Sample ExpRatio Payload SepMach SepQ SepAngle | Fineness
01 85.23 2.8952e+004 10.85 115.38 9.12 4.07
02 82.25 2.9747e+004 10.56 111.63 9.49 4.02
03 88.79 2.6638e+004 10.93 118.57 9.85 4.47
04 83.93 2.8356e+004 10.70 111.60 9.87 4.15
05 80.67 2.7193e+004 10.58 100.34 9.27 4.15
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06 91.32 2.9168e+004 10.82 102.42 9.21 4.17
07 83.64 2.8844e+004 10.88 117.25 9.57 4.23
08 86.64 2.5836e+004 10.99 109.69 9.64 4.32
09 90.32 2.9310e+004 10.00 116.90 9.42 4.01
10 85.39 2.9949e+004 10.87 104.19 9.21 4.42

The design problem becomes:

d” =argmin(w*E(GW) + (1-w) *(GW))

st. LB, +ko(GW)<E(GW)<UB, -ko(GW)
LB, +ko(EW) < E(EW)<UB, —-ko(EW)
LB, + ko(PFR) < E(PFR) <UB, — ko (PFR) @3)
LB, +ko(VL) < E(VL) <UB, —ko(VL)
LB, + ko(VV) <E(VV) <UB, —ko(VV)
LB + ka(BWA) < E(BWA) <UB, —ka(BWA)
Ib+ko(x) <d; <ub-ko(x) fori=12,..5

1, =argmax(w* E(GW) + (1-w)*c(GW)) (14)

st. Z <u, <Z fori=1

where the bounds Z; and Z, for the mean of the non-design epistemic variable SepQ are
calculated by Eqg. (9) as given in Section 2.1.1. Note that in Eq. (14), we do not use the
robust design constraints, since the objective function in this case is a function of all non-
design epistemic variables.

As mentioned earlier in Section 2, w >0 is the weight parameter that represents
the relative importance of the objectives and k is a constant that adjusts the robustness of
the method against the level of conservatism of the solution. In this dissertation, k is

assumed to be unity.
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Variances of the random variables x and z are estimated as single point values.
Confidence intervals for the variances are estimated for each random variable described
by the sparse point data. The weight parameter w is varied (from 0 to 1) and the
optimization problem in Eqgs. (13)-(14) are solved iteratively until convergence by the
Matlab solver 'fmincon’ for different sample sizes (n) of the sparse point data. The
formulations are relaxed by assuming that standard deviations estimates of the variables
do not change significantly as the sample size changes. Therefore, the same standard
deviations as estimated from the data given in Table 3 are used in each case. As the
sample size (n) changes, the confidence bounds on the variance also change (see Eq.
(10)). In each case, the optimization problems converged in less than 5 iterations. Here,
‘fmincon’ uses a sequential quadratic programming (SQP) algorithm. The estimate of the
Hessian of the Lagrangian is updated using the BFGS formula at each iteration. The
convergence properties of SQP have been discussed by many authors including Fletcher
(1987) and Panier and Tits (1993).

The solutions are obtained by solving the problem using the upper confidence
bound for the variances of the random variables x and z. The solutions are presented in

Figure 2.
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Figure 2: Robustness-based design optimization with sparse data for different sample
sizes (n)

It is seen in Figure 2 that the solutions become more conservative (i.e., the mean
and standard deviation of GW assume higher values) as we add uncertainty to the design
problem. As gathering more data reduces data uncertainty, the solutions become less
sensitive (i.e., the standard deviation of GW assumes lower value) to the variations of the
input random variables as the sample size (n) increases. Also, looking at the mean of
GW, it is seen that as the uncertainty decreases with sample size, the optimum mean

weight required is less.

3. 2 Determination of optimal sample size for sparse point data

The optimal sample size formulations are illustrated here for the TSTO design
problem. The formulations are relaxed by assuming that standard deviations of the data
do not change significantly as sample size changes. To make the problem simpler, we

first relax the integer requirement on the optimal sample size n and then round off the
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solution for n to the nearest integer value. The input variable SepQ is assumed to be a
non-design epistemic variable and all the remaining variables are assumed to be design

variables. The design bounds for the respective design variables and the analysis outputs

remain the same as in Tables 3 and 4.

Therefore, the design problem becomes as follows:

[d*, n;]z arg min (w* E(GW)+Vv*o(GW) + (1—w—v)*(5ndl +10n, +5n,, +5ny, +4n,, +6n:))

st. LB, +c(GW)<E(GW)<UB, - (GW)
LB, + c(EW) <E(EW) <UB, —o(EW)
LB, + o(PFR) < E(PFR) <UB, — o(PFR)
LB, + o(VL) <E(VL) <UB, — o (VL)
LB, +o(VV)<E(MV)<UB, —-c(VV)
LB, + o(BWA) < E(BWA) <UB, — o(BWA)
Ib+ko(x) <d, <ub-ko(x) foralli=12,..5
5n,, +10n,, +5n, +5n,, +4n,, +6n; <1050
N, <30 for j=1,2,...,5

(15)

[,u:, n:]: arg max (W* E(GW)+v*o(GW) +(1—W—V)*(5n:1 +10n" +5n, +5n° +4n’ +6ne))

HzNe
S.t. Zl(ne)S /uz SZu(ne) (16)

5n° +10n’ +5n, +5n° +4n’ +6n° <1050

n, <30 for j=1

We have solved this problem for different combinations of weights w and v and

the optimal solutions are presented in Table 4. In each case, the optimization problems

converged in less than 4 iterations.
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Table 4: Objective function values at optimal solutions and optimal sample sizes

Weights Objective function Value Optimal Sample Sizes
w | v | 1- | Mean GW Std GW Total Ng1 | Ng2 | Ng3 | Nga | Nas | Ne
W- Cost
Vv
0O | 0| 1 |1.6118e+005 |6.3732e+004 | 455.3008 | 5 |10 15| 8 | 9 |30
0.6 | 0.2 [ 0.2 | 1.4684e+005 | 5.3219e+004 | 539.8948 | 6 | 10 | 30 | 8 | 10 | 30
0.5[0.4 [0.1|1.4878e+005 | 5.0526e+004 | 593.6961 | 7 | 10 | 30 | 14 | 15 | 30
0505 | 0 |1.5143e+005 | 4.7604e+004 | 886.9363 | 25 | 25 | 30 | 30 | 30 | 15

It is seen in Table 6 that the total cost incurred in obtaining samples is the
minimum when we solve the problem giving the maximum importance on the total cost.
In this case, we get the most conservative robust design i.e., the mean and the standard
deviation of GW assume the maximum of all possible values. Note that the optimal
sample size required is also the minimum in this case. As we give more importance on
the mean and standard deviation of GW, the total cost and also the optimal sample size
increase with a decrease in both the mean and standard deviation of GW.

3. 3 Robustness-based design optimization with sparse point and interval data

The methodology proposed in Section 2.1 is illustrated here for the same TSTO
problem. Here, it is assumed that the design variable ExpRatio is described by sparse
point data as given in Table 3, the design variable Payload is described by multiple
interval data as given in Table 5 and the design variables SepMach and SepQ are
described by single interval data as given in Table 6. The non-design epistemic variables
SepAngle and Fineness are described by the sparse point data (as given in Table 3) and
the single interval data (as given in Table 6), respectively. The design bounds for the

respective design variables and the analysis outputs remain the same as in Tables 3 and 4.
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Table 5: Multiple Interval Data for the random input variables

Payload [25000, 28000], [26000, 29000], [25000, 29000], [26000, 30000],
[25000, 30000]

Table 6: Single Interval Data for the random input variables

SepMach [9, 10]
SepQ [100, 120]
Fineness [4, 4.5]

The design problem is now formulated as follows:

d” =argmin(w*E(GW) + (1-w)*a(GW))

st. LB, +ko(GW)<E(GW)<UB, -ko(GW)
LB, +ko(EW)<E(EW)<UB, -ko(EW)
LB, + ko(PFR) < E(PFR) <UB, — ko (PFR) (5)
LB, +ko(VL) < E(VL) <UB, —ko(VL)
LB, + ko(VV)<E(VV) <UB, —ka(VV)
LB, + ka(BWA) < E(BWA) <UB, —ka(BWA)
Ib+ko(x) <d, <ub—ko(x) fori=1,2,3,4

1, =argmax (w* E(GW) + (1-w)*o(GW)) (16)
st. Z <u, <Z fori=12
where the bounds Z; and Z, for the mean value of the non-design epistemic variable
SepAngle are calculated by Eqg. (9) as given in Section 2.1.1 and those for the epistemic
variable Fineness are calculated by the method described in Section 2.1.3. Note that in
Eq. (16), we do not use the robust design constraints, since the objective function in this
case is a function of all non-design epistemic variables.

Variances of the random variables ExpRatio and SepAngle are estimated as single

point values. Confidence intervals for the variances are estimated for each random
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variable described by sparse point data. Bounds on the variances of the random variables
SepMach, SepQ, Fineness, and Payload are estimated by the methods described in
Sections 2.1.3. The free parameter w is varied (from 0 to 1) and the optimization
problems in Egs. (15) and (16) are solved iteratively until convergence. In each case, the
optimization problems converged in less than 5 iterations. The solutions are obtained by
solving the problems using the upper confidence bound on sample variance for the
random variables ExpRatio and SepAngle, and the upper bound on sample variances for

the random variables Payload, SepMach, SepQ and Fineness. The solutions are presented

in Figure 3.
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Figure 3: Robustness-based design optimization with sparse point and interval data

Figure 3 shows the solutions of the conservative robust design in presence of
uncontrollable epistemic uncertainty described through mixed data i.e., both sparse point

data and interval data, which is seen frequently in many engineering applications.
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4. Conclusion

This chapter proposed several formulations for robustness-based design
optimization under data uncertainty. Two types of data uncertainty — sparse point data
and interval data — are considered. The proposed formulations are illustrated for the upper
stage design problem of a TSTO space vehicle. A decoupled approach is proposed in this
chapter to un-nest the robustness-based design from the analysis of non-design epistemic
variables to achieve computational efficiency. As gathering more data reduces
uncertainty but increases cost, the effect of sample size on the optimality and the
robustness of the solution is also studied. This is demonstrated by numerical examples,
which suggest that as the uncertainty decreases with sample size, the resulting solutions
become more robust. We have also proposed a formulation to determine the optimal
sample size for sparse point data that leads to the solution of the design problem that is
least sensitive (i.e., robust) to the variations of design variables. In this chapter, we have
used the weighted sum approach for the aggregation of multiple objectives and to
examine the trade-offs among multiple objectives. Other multi-objective optimization
techniques can also be explored within the proposed formulations.

The major advantage of the proposed methodology is that unlike existing
methods, it does not use separate representations for aleatory and epistemic uncertainties
and does not require nested analysis. Both types of uncertainty are treated in a unified
manner using a probabilistic format, thus reducing the computational effort and
simplifying the optimization problem. The results regarding robustness of the design
versus data size are valuable to the decision maker. The design optimization procedure

also optimizes the sample size, thus facilitating resource allocation for data collection
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efforts. Due to the use of a probabilistic format to represent all the uncertain variables,
the proposed robustness-based design optimization methodology facilitates the
implementation of multidisciplinary robustness-based design optimization, which is a

challenging problem in presence of epistemic uncertainty.
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CHAPTER VIII

RELIABILITY-BASED DESIGN OPTIMIZATION (RBDO) UNDER
EPISTEMIC UNCERTAINTY

1. Introduction

This chapter proposes formulations and algorithms for reliability-based design
optimization (RBDO) under both aleatory uncertainty (i.e., natural or physical variability)
and epistemic uncertainty (i.e., imprecise probabilistic information). The proposed
formulations specifically deal with epistemic uncertainty arising from sparse point data
and interval data. An efficient decoupled approach is proposed that un-nests the design
analysis from the epistemic analysis. The proposed methods are illustrated through an

example problem.

As mentioned in Chapter IlI, most of the existing methods are based on non-
probabilistic theory. Many of these methods need additional non-probabilistic
formulations to incorporate epistemic uncertainty into the design optimization
framework, which may be computationally expensive. However, if the epistemic
uncertainty can be converted to a probabilistic format, the need for these additional
formulations is avoidable, and well established probabilistic methods of RBDO can be
used. Therefore, there is a need for an efficient RBDO methodology that deals with both
aleatory and epistemic uncertainty.

The contribution of this chapter is to develop a methodology for RBDO that includes

both aleatory and epistemic uncertainty. This chapter specifically focuses on epistemic



uncertainty arising from sparse point data and interval data. This chapter proposes an

efficient decoupled approach that un-nests the design analysis from the epistemic analysis

The rest of the chapter is organized as follows. Section 2 proposes an RBDO
framework that considers sparse point data and interval data for the random variables.
Section 3 illustrates the proposed methods with an example problem. Section 4 provides

conclusions and suggestions for future work.

2. RBDO for single discipline systems

2.1 Deterministic design optimization

In a deterministic optimization formulation, all design variables are considered
deterministic. No random variability or data uncertainty is taken into account. The
deterministic optimization problem is formulated as follows:

min f(x)
X

st. g,(x)<0 foralli @
Ib<x<ub

where f(x) is the objective function, X is the vector of design variables, gi(x) is the ith

constraint and Ib and ub are the vectors of lower and upper bounds of design variables.

In practice, the input design variables might be uncertain and solutions of this
deterministic formulation could be sensitive to the uncertainty of input design variables.
Reliability-based design optimization (RBDO) takes this uncertainty into account. The
optimal design points obtained using the deterministic method could be used as initial
guess in RBDO.
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2.2 Reliability-based design optimization

A simple, typical RBDO formulation with only component level reliability

constraints is as follows:

min  f(d,2) (2)
st.  p, =P(g,(X,Z2)<0)< p, for i=12,...k

where f(d,Z) is the objective function, d is a set of design variables, Z is a set of input
random variables, and p; could be ith threshold failure probability. The vector d may
include both deterministic design variables as well as distribution parameters of random

design variables x. Note that in RBDO, the objective function value is the nominal value,

which is estimated at the mean values of the random variables x and z.

RBDO methods fall into three groups depending on how reliability analysis is
incorporated into the optimization process. Tu et al (2001) referred to the RBDO methods
that use the reliability index directly as a reliability index approach (RIA) and to those
based on quantile functions of the probability distributions as the performance measure
approach (PMA). The RIA uses a direct FORM, whereas the PMA uses an inverse
FORM for reliability analysis. Nested algorithms, which were used before the 1990s,
include a full reliability analysis at every step of the design optimization algorithm. It is
well known that nesting these two procedures results in a large number of function
evaluations, and studies performed by Agarwal and Renaud (2004), Liang et al (2004),
Du and Chen (2004), and Yang and Gu (2004) have confirmed that nested methods

require many more function evaluations than RBDO methods in which the reliability
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analysis loop is either decoupled or eliminated via single loop methods. To reduce the
computational expense associated with nested methods, many researchers have developed
single-loop approaches to RBDO (Madsen and Hansen, 1992; Chen et al, 1997; Wang
and Kodiyalam , 2002; Agarwal and Renaud, 2004). The methodologies are focused on
removing the inner reliability analysis loop by making the optimality conditions of either
FORM or inverse FORM constraints in the optimization loop. Although a number of
RBDO studies have focused on developing computationally efficient methods to solve
Eq. (2), a very few methods exist for reliability-based design under epistemic uncertainty
as mentioned in Section 1. The focus of this chapter is not on efficiency, but on the
inclusion of epistemic uncertainty in the design optimization. Therefore, in developing
the methodology for RBDO under epistemic uncertainty, we use the classical nested loop
RBDO formulation. In this formulation, the reliability analysis required for evaluating the
reliability constraints is done inside the RBDO framework using direct FORM.

The FORM estimates the failure probability as P, = ®(~ ) where ® is the

cumulative distribution function (CDF) for the standard normal probability distribution
and g is the minimum distance from the origin to the limit state in the uncorrelated
reduced normal space (Hasofer and Lind, 1974). The limit state function g is derived
from a system performance criterion and formulated such that g < 0 indicates failure. The
minimum distance point on the limit state is referred to as the most probable point (MPP),
and g is referred to as the reliability index. The FORM method is able to handle
correlated, non-normal random variables and nonlinear limit states; however, the
probability estimate is based on a first-order approximation of the limit state at the MPP.

The following formulation is used to estimate the failure probability:
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min B =+/(Y)'(Y) 3

st. g,(Y)=0
In Eqg. (3), Y denotes all the random variables in uncorrelated standard normal space.
Function gy is transformed functions such that g, (Y)=g(T*(x)) where T is the
transformation function from original space, x, to standard normal space Y. For more

details about the implementation of FORM, the reader is referred to Ditlevsen and

Madsen (1979), Haldar and Mahadevan (2000), and Nowak and Collins (2000).

In the following section, we develop the methodology for RBDO under epistemic

uncertainty for single discipline problems.

2.3 RBDO under epistemic uncertainty

The inclusion of epistemic uncertainty in RBDO adds another level of complexity
in the design methodology. The design variables d and/or the input random variables Z in
Eqg. (2) might have epistemic uncertainty. Since the designer does not have any control on
the non-design epistemic variables, the RBDO methodology has to employ a search
among the possible values of such epistemic variables in order to find an optimal
solution. In such case, we get a conservative reliability-based design. The RBDO
problem can now be formulated with the following generalized statement:

mdin(max f(d,Z))

H

st. p, =P(g,(X,Z2)<0)<p; for i=12,..k (4)
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where Z, and Z, are the vectors of lower and upper bounds of the decision variables p;, of
the inner loop optimization problem.

Note that in this formulation, the outer loop decision variables d may consist of
stochastic design variables as well as epistemic design variables. The outer loop
optimization is a design optimization problem, where an RBDO is carried out for a fixed
set of non-design epistemic variables. The inner loop optimization is the analysis for the
non-design epistemic variables, where the optimizer searches among the possible values
of the non-design epistemic variables for a conservative solution of the RBDO.

This nested optimization problem can be decoupled and expressed as:

d” :argmin(f(d,y:)) (5)
d
st. p; = P(gi(X,y:)s 0)< p. fori=12,..,k
#; =argmax(f(d”, 1, ) (6)
H,
st. p; = P(gi(X*,,uz)s 0)< p, for i=12,..,k
Z <u <7,

The optimization problems in Egs. (5) and (6) are solved iteratively until convergence.
Note that the first constraint (i.e., the reliability constraint) in Eq. (6) is required to ensure
that the optimization is driven by all non-design epistemic variables, because sometimes
the objective function may not be a function of all non-design epistemic variables. In
cases when the objective function is the function of all non-design epistemic variables,
this constraint is not required.

Since Eq. (5) is solved with a fixed set of non-design epistemic variables, Eq. (5)

is equivalent to an RBDO problem under aleatory uncertainty alone. Eq. (6) is referred to
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as uncertainty analysis for the non-design epistemic variables throughout this
dissertation. The RBDO formulations presented above are general and can handle all
varieties of design and non-design variables, such as one or more design or non-design
variables being deterministic, aleatory or epistemic. Since Eq. (5) is equivalent to
traditional RBDO under aleatory uncertainty, it can accommodate both deterministic and
aleatory design variables as well as both deterministic and aleatory non-design variables.
Eg. (5) also accommodates epistemic design variables. The propose methodology
accommodates non-design epistemic variables by employing a search among the possible

values of non-design epistemic variables through the formulation in Eq. (6).

RBDO with sparse data

This section develops a methodology for RBDO with sparse point data, using the
formulations in Egs. (5) and (6). It is assumed that only sparse point data are available for
some of the design variables as well as non-design epistemic variables.

When a variable, either design or non-design, is described by sparse point data,
there is uncertainty about the mean and variance calculated from the samples. In the
design optimization (Eq. (5)), the mean values of the design variables (either aleatory or
epistemic) are controlled by the given design bounds. However, since the mean values of
the non-design variables cannot be controlled in the design optimization, the proposed
RBDO methodology accounts for the uncertainty about mean values of such epistemic

variables through the optimization in Eq. (6).
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The constraints on the non-design epistemic variables in Eq. (6) are implemented
through the construction of confidence intervals about mean values using Eqg. (9) of
Chapter VII.

The proposed RBDO methodology accounts for the uncertainty about the
variances for all epistemic variables by first estimating confidence bounds on variances
and then solving the optimization formulations in Egs. (5) and (6) using the upper bound
variances for the input random variables x; and z;. Solving the optimization formulations
in Egs. (5)-(6) using the upper bound variances for all the epistemic variables ensures that
the resulting solution is least sensitive to the variations in the input random variables. The

confidence bounds on variances are estimated using Eq. (10) of Chapter VII.

RBDO with interval data

This section develops a methodology for RBDO with interval data, using Egs. (5)
and (6). In this case, the only information available for one or more input random
variables is in the form of single interval or multiple interval data.

The methodology for RBDO with interval data is similar to sparse point data as
described earlier. However, the estimation of mean values and variances for interval data
is not straightforward. For interval data, the moments (e.g., mean and variance) are not
single-valued, rather only bounds can be given (see Chapter 1V). We have proposed
methods to compute the bounds of moments for both single and multiple interval data in
Chapter IV. Once the bounds on the mean and variance of interval data are estimated, we

use the upper bounds of the variances to solve the formulations of RBDO under epistemic
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uncertainty in Eqgs. (5) and (6). Therefore, the resulting solution becomes least sensitive
to the variations in the uncertain variables.

For non-design epistemic variables described by interval data, the constraints on
the decision variables in Eq. (6) are implemented through estimating the bounds on the

mean values by the methods as described in Chapter 1V.

In the following section, the proposed RBDO formulations are illustrated for a Shaft-

Gear Assembly.

3. Numerical Example
Shaft-Gear Assembly

This problem is adapted from Mahadevan and Rebba (2006), and modified in this
example to include epistemic uncertainty. Consider a mechanical drive shaft assembled
into a press-fit gear wheel as shown in Figure 1. The objective is to determine the radii of
the solid shaft R and the gear wheel Ry such that the assembly meets the design torque
requirements reliably without slipping at the fit interface (Cruse, 1997). The interface
length L is known and the interference fit tolerated in this assembly A is also
deterministic. The maximum torque T that can be transmitted by the assembly (fit)
without any slippage can be given in terms of the coefficient of friction 5 at the fit,
interface length L (or gear wheel width in this case), shaft radius R, and the interference

pressure p as (Shigley et al, 2004)

T = 27npLR? ©)
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Ry

Figure 1: Schematic diagram for the torque shaft assembly (Mahadevan and Rebba,
2006)

The interface pressure can be derived using the assumption of a thick cylinder for the
gear wheel and the shaft as

A

p= — ®
R{l(RO +R +00]+E1(1_Ui)}

E, | RZ—R? ,

where Ey and E; are Young’s moduli, vy and v; are the Poisson ratios of the gear wheel

and the drive shaft, respectively.

The two design variables are bounded as 5<R<9 and 10<R<20, respectively. Suppose we

wish to ensure that the maximum torque transmitted by the assembly fit exceeds a

threshold value T,. The probability of achieving the design requirement needs to be

evaluated first. A limit state is defined as g =T—Ty and failure is defined when the torque

delivered (T) is less than Ty, i.e., when g <O0.
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Knowing the specific densities of the shaft o and the gear wheel o, the total weight of

the assembly can be estimated as

w =ﬂLga[poRf +(p, _po)RZJ 9)

where g, is the acceleration due to gravity. In this illustrative example, po and p; are

assumed to be 7.85 and 7.95, respectively and Ty is assumed to be 5000 units.

The general formulation for this RBDO problem is as follows:

min W =7Lg,|p,R? +(p, - o, )R?] (10)
st. P(T<T,)<p,

where pg is assumed to be 0.0062 ($=2.5) in this example. Since the torque T transmitted
by the mechanical assembly depends on both R and Rg, the probability P (T< Ty) also
depends on those respective radii.

The values for the deterministic variables and statistics of the various uncertain
parameters are given in Table 1.

Table 1: Data of input variables in torque shaft assembly design

Variable Distribution type Data

Eo Lognormal [10,178; 9771; 9786; 9838; 9411,
10,288; 10,065; 9849; 10, 274;
9658]

E; Lognormal [7980; 7952; 8064; 8063; 7827;
7994; 7967; 8126; 8219; 8222]

vo Lognormal [0.1,0.2]

i Lognormal Mean: 0.25, Std: 0.05
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7 Lognormal [0.7,0.75; 0.73, 0.76; 0.72, 0.78]

A Deterministic 0.01

L Deterministic 4

In this case, the input random variable v; is assumed to have aleatory uncertainty.
All the remaining input random variables are considered as non-design epistemic
variables, where E; and E; are assumed to be described by sparse point data, vg is
assumed to be described by single interval data, and 7 is assumed to be described by
multiple interval data as given in Table 1. The confidence bounds on the mean for the
variables Eq and E; are estimated by the methods described in Section 2. Bounds on the
mean values and variances of the epistemic variables vy and 7 are estimated by the
methods described in Chapter IV. Since this problem contains non-design epistemic
variables, this problem is solved by the RBDO methodology developed in Section 2 by
solving the following two optimization problems iteratively until convergence and the

solutions are given in Table 2.

[R*.R:|=argminw (R, R, ) (12)
R.R,
st. P(T(R,Ry, 1)<T,)< py
5<R<9
10<R, <20
4, =arg maxw (R*, Ry ) (12)

“,
st. P(T(RR, 1, )<T,)<p,
Z sy, <Z, for all i
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where Z; and Z, are are the vectors of the bounds on the mean values of the epistemic

variables.
Table 2: Optimal design solution for the torque shaft problem
No. of g function evaluations
Optimum (R, Ro) w Design Epistemic Total
Analysis |  Analysis ota
(Ea. (12)) | (Eq. (12))
(6.5297, 12.2412) | 1.4539e+005 7,302 1,680 8,982

The optimizations in Egs. (11) and (12) required only 2 iterations between the design
problem (Eqg. (11)) and the uncertainty analysis for the non-design epistemic variables
(Eq. (12)) for convergence. Number of g function evaluations for both the design and
epistemic analyses are listed in Table 2 for future reference. It is seen in Table 2 that the
proposed RBDO methodology can solve this design problem with only 8,982 function
evaluations, of which only 1,680 evaluations are required for the epistemic analyses and
only 7, 302 evaluations are required for the design analyses. Note that the design analysis
(Eg. (11)) is equivalent to an RBDO problem under aleatory uncertainty alone, since it is
solved with a fixed set of non-design epistemic variables. If this example problem
involved only aleatory uncertainty, the number of g function evaluation would be
approximately half of 7,302, because it would require solving Eg. (11) only once instead
of twice in the current example. Therefore, the proposed RBDO methodology under
epistemic uncertainty can solve this problem with a reasonably increased number of

function evaluations.
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4. Conclusion

This chapter has developed formulations for reliability-based design optimization
(RBDO) for single systems under both aleatory and epistemic uncertainty on the data of
the random variables. Two types of data uncertainty — sparse point data and interval data
— are considered. The computational efficiency of the proposed formulations is
demonstrated with a number of example problems considering the number of individual

disciplinary analyses.

The huge computational expense required for the epistemic analysis is reduced by
decoupling the design analysis from the epistemic analysis. Unlike existing methods, it
does not use separate representations for aleatory and epistemic uncertainties and does
not require nested analysis. Both types of uncertainty are treated in a unified manner
using a probabilistic format, thus reducing the computational effort and simplifying the
optimization problem. The numerical example in this chapter was carried out using the
classical nested loop RBDO formulation and the number of function evaluations needed
was reported in Section 3. The focus of this chapter is not on efficiency, but on the
inclusion of epistemic uncertainty in the design optimization. Several more efficient
RBDO methods (single loop and sequential) have been developed in recent years, and all
these methods can be enhanced to incorporate epistemic uncertainty. Future work in this

direction also needs to include system reliability constraints.
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CHAPTER IX

MULTIDISCIPLINARY SYSTEM ANALYSIS UNDER ALEATORY AND
EPISTEMIC UNCERTAINTY

1. Introduction

This chapter develops an efficient probabilistic approach for uncertainty
propagation in multidisciplinary system analysis, when the information on the uncertain
input variables may be available as either sparse point data or as intervals (single or
multiple). A decoupled approach is used in this chapter to un-nest the multidisciplinary
system analysis from the probabilistic analysis to achieve computational efficiency. This
approach uses deterministic optimization to first quantify the uncertainty in the coupling
variables, without any coupled system level analysis. Once the uncertainty in the
coupling variables is quantified, the system level uncertainty propagation analysis is
similar to single discipline problems. The proposed methods are equally applicable to
both sampling and analytical approximation-based reliability analysis methods. A
mathematical problem and a practical engineering problem are used to illustrate the
proposed methods. The accuracy of the proposed decoupled approach is verified by

Monte Carlo simulation using a multi-discipline feasible (MDF) analysis approach.

As mentioned in Chapter Il, the proposed method extends the idea of a decoupled
formulation as developed in Mahadevan and Smith (2006) and proposes probabilistic
methods for multidisciplinary reliability analysis under both aleatory and epistemic

uncertainty. This approach uses deterministic optimization to first quantify the



uncertainty in the coupling variables. No coupled system level analysis is required. Once
the uncertainty in the coupling variables is quantified, the system level uncertainty
propagation is achieved based on the single discipline uncertainty propagation methods

that include both physical variability and data uncertainty, using a probabilistic approach.

The rest of the Chapter is organized as follows. Sections 2 and 3 describe the
proposed methodology for the propagation of both epistemic and aleatory uncertainty
through multidisciplinary analysis. Section 4 gives the numerical results using the
proposed methods for a simple mathematical problem and a practical engineering

problem. Section 5 provides concluding remarks and suggestions for future work.

2. Probabilistic Uncertainty Propagation for Single Discipline Problems
In the case of random variables for which only sparse point data or interval data are
available, a flexible family of Johnson distributions is used to develop a probabilistic
representation using the moment matching approach. Moment matching involves
equating the moments derived from the data to those of the probability distribution being
fit. A detailed discussion on fitting Johnson distributions to sparse point data and interval
data can be found in Chapter 11l and Chapter 1V, respectively.
An approach for uncertainty propagation with sparse point data has been developed in
Chapter I11. Chapter 1V developed the method for propagation with interval data.
Note that the PBO and EBO methods presented in Chapter 1V do not consider
dependence among moments and are able to give rigorous bounds on the system
response. However, it is more helpful to evaluate bounds in terms of both “rigor” and

“optimality” as discussed and conceptually sketched in Figure 19 in Chapter IV. As
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mentioned in Chapter IV, by rigorous, it is meant that the true interval of the possible
quantile values lies within the computed bounds. By optimal, it is meant that the bounds
are the narrowest possible, while still being rigorous. The optimal bounds preserve the
dependence among moments of interval data.

For a random variable, the moments are not independent to each other. For
example, when the first moment is selected from a configuration of multiple interval data,
it is obvious that the other moments will be estimated using the same configuration of
multiple interval data. Therefore, if the moments are selected independently like the PBO
and EBO methods presented in this section, the set ® (see Chapter V) becomes a
superset of all actually admissible distribution parameter values resulting rigorous bounds
on the system response, the lower and upper bounds of which may underestimate the
output uncertainty. In the following discussion, we propose formulations for PBO and
EBO that result in optimal bounds on the system response for multiple interval data. Note
that this is not an issue for the single interval data. For multiple interval data, a particular
value of moments within the moment bounds corresponds to a fixed set of configuration
of multiple interval data. However, for single interval data, the moment bounds are
calculated using closed-form formulas. See Chapter 1V for details.

Optimal PBO formulation:

The approach is the same as in the percentile-based optimization (PBO) method

presented earlier in this section, which minimizes and maximizes the system output

ga(x|m) conditioned on a set of moments (m;) for the input variables at different

percentile values (a) of the output CDF and thus obtains bounds on the system output

194



CDF. The optimal PBO solves the following optimization problems at different percentile
values (o) to obtain bounds on the output CDF.
min/ max g, (xm)
st.a <x <b, i=12...,N
B, —p—120 (1)
p,—=2p,-3<0
where B, =m’/m;
B,=m, / mz2

where N is the number of intervals. Note that in PBO, the decision variables were the set
of moments (m= [m; m, ms my]); however, in Eg. (1), the decision variables are
configurations of multiple interval data (x = [X1 X2 X3 ... Xn]). The set of moments m are
estimated using this configuration x of interval data inside the optimizer and thus, the
dependency relationships among the moments are preserved resulting in optimal bounds
on the system response.

Optimal EBO formulation:

The Optimal EBO method has the same formulation as in Eq. (1) but with a different

objective function min/ max E(g(x|m)) . All the constraints remain the same. Note that in

the EBO formulation, the decision variables were the set of moments (m= [m; m,; m3
m4]), however, in optimal EBO, the decision variables are configurations of multiple
interval data (X = [X; X2 X3 ... Xn]). In this case, the optimization formulation yields
configurations of multiple interval data, which are then used to estimate sets of moments
for the uncertain design variables corresponding to a set of Johnson distribution

parameters. Once the distribution parameters are obtained, any probabilistic uncertainty
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propagation method (e.g., FORM or MCS) can be used to construct approximate bounds
on the CDF of the system response.
The uncertainty propagation methods described above are extended for

multidisciplinary systems in Section 3.

3. Probabilistic Uncertainty Propagation for Multidisciplinary Problems

The computational effort required for multidisciplinary reliability analysis and design
optimization depends on the type of formulation required for probabilistic system
analysis. In this section, a decoupled approach adapted from Mahadevan and Smith
(2006) is used to develop a method for multidisciplinary reliability analysis with sparse
point data as well as interval data.
3.1 Multidisciplinary System Analysis

In many practical applications, multidisciplinary system analysis (MDA) makes use
of individual disciplinary analysis codes that interact with each other through shared
input and output data. A feasible multidisciplinary analysis yields a solution that
simultaneously satisfies all individual disciplinary analyses (Du and Chen, 2005). Figure

1 shows a two-discipline system for the sake of illustration.

Input variables:
Xs X = {X1, X2, Xs}

X4 lxz Disciplinary response
variables:
Analysis 1 » Analysis 2 u ={uiz, Uza}

y

Ai(x, u(x))=0 Ax(X, U(X)) =0 Output variables:
l l 9=1{01, 92, f}
f.o 02
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Figure 1: A two-disciplinary system with feedback coupling (Mahadevan and Smith,
2006)

In Figure 1, x; and x, are input variables to disciplines 1 and 2, respectively; Xs
are the input variables common to each discipline. u;, and uy; are disciplinary
response variables that couple the two disciplines. f, g; and g, are the system output
variables. f may represent an objective function in the context of optimization and g,
and g, may represent limit state functions for reliability analysis. In order to achieve
feasibility in multidisciplinary system analysis, the non-linear equations shown in Eq.
(2) below have to be solved simultaneously.

A(x,u(x))=0, fori=1,2 2)

In the following subsection, an approach is developed to decouple the system analysis

from the probabilistic analysis.
3.2 Decoupled approach for probabilistic analysis

The coupling variables in a multidisciplinary analysis depend on the random input
variables and therefore are random themselves. Mahadevan and Smith (2006) quantified
the uncertainty in the coupling variables by using a first-order second moment (FOSM)
approximation. Once the uncertainty in the coupling variables is quantified, probabilistic
system analysis only needs uncertainty propagation through the individual disciplinary
analyses, as shown in Figure 2. The uncertainty propagation can be achieved using
already well established probabilistic methods of uncertainty propagation, for example,
Monte Carlo methods (Robert and Cesalla, 2004) and optimization-based methods such
as first-order reliability method (FORM), second-order reliability method (SORM) etc.

(Haldar and Mahadevan, 2000).
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A Additional analyses to
A1 Az calculate Va,,

PDF of decoupled intermediate
variable u

Probabilistic Analysis U
for response vanable g, C Al t
using A, only (Monte

Carlo, FORM) l

P(g,(x, u) <0)

Figure 2: Decoupled formulation (Mahadevan and Smith, 2006)

The decoupled formulation described above has been developed for handling aleatory
uncertainty only. In the following subsections, we extend this decoupled approach to
develop methods for multidisciplinary uncertainty propagation analysis under epistemic
uncertainty arising from sparse point data and interval data.

3.3 Multidisciplinary uncertainty propagation analysis with sparse point data
In this case, the only information available for the input random variables is
sparse point data. In the first step, analysis is performed to generate data for the coupling

variables. The second step performs uncertainty propagation through the individual
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disciplinary analyses using sparse point data for each of the input random variables. Du
and Chen (2002) proposed uncertainty analysis methods for multidisciplinary problems,
namely, the system uncertainty analysis (SUA) method and the concurrent subsystem
uncertainty analysis (CSSUA) method for handling aleatory uncertainty. They used these
methods to estimate the mean values of the coupling variables of the multidisciplinary
system. The SUA requires a coupled system analysis and CSSUA requires solving a
deterministic optimization problem using individual disciplinary analyses to estimate the
mean of the coupling variable. Since coupled system analysis may be expensive for a
large and complex system, we only use the CSSUA method in this chapter in order to

generate sparse point data for the coupling variables as follows:
n 2
mind =3 (u, -u;) 3)
u i=1

where u” are the unknown target values of the coupling variables and u are the values of
the coupling variables obtained by subsystem analysis only. The optimizer minimizes the
deviations between u” and u and thus generates a set of data for the coupling variables.
By solving the optimization problem in Eq. (3) N times, we can generate N number of
sparse point data for each of the coupling variables.

Note that Du and Chen (2002) developed CSSUA for estimating the mean values
of the coupling variables. However, in this chapter, we use this method only to generate
sparse point data for the coupling variables. No coupled system level analysis is required.
The system compatibility requirement is already satisfied through the system level

optimizer as shown in Eq. (3). Once the data for the coupling variables is obtained, the

uncertainty propagation method is straightforward. Its implementation is as follows:
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1. Generate N sparse point data for the coupling variables by solving Eg. (3) N
times, where N is the sample size for each of the input random variables x.

2. Generate families of flexible probability distributions for each of the input
random and coupling variables by the method described in Chapter I11.

3. Propagate each of the input distributions through the corresponding individual
disciplinary analysis to obtain a family of output distributions.

The three steps are illustrated in Figure 3.
X

_ " 2 Individual
min d :E(U.—U.) : 3 Disciplinary
Analyses

«— ce—

/./'.‘_1__
Family of CDFs of decoupled
z intermediate variable u
4

/ /'

Y
Probabilistic Analysis for
response variable g; using <:{
A;only (MCS or FORM) a4

Family of output CDFs

Figure 3: Decoupled approach for multidisciplinary uncertainty propagation with sparse
point data
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3.4 Multidisciplinary uncertainty propagation analysis with interval data

In this case, the only information available for the input random variables is in the
form of single interval or multiple interval data. In the first step, a deterministic
optimization is performed to generate interval data for the coupling variables. The second
step performs uncertainty propagation through the individual disciplinary analyses using
interval data for each of the input and coupling random variables. No coupled system
level analysis is required. The system compatibility requirement is already satisfied
through the constraints of the deterministic optimization. The steps of implementation are

as follows:

1. Generate interval data for the coupling variables by solving:

min/max u
st.a<x<b (4)
A(x,u(x))=0,fori=1,2,..

where a and b are the vectors of lower and upper endpoints of the given
intervals for the random input variables x. For multiple interval data, repeat
the optimization in Eq. (4) N times to obtain N intervals for the coupling
variables, where N is the number of intervals for the input random variables.

2. Calculate bounds on moments of the interval data for the input random and
coupling variables by the method described in Chapter 1V.

3. Obtain bounds on the system output by the optimization methods (PBO, EBO)

mentioned in Section 2.
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[— X

min/max u Individual
st.a<x<b Disciplinary

Analyses
A(x,u(x))=0,fori=1,2 y

l

u

|

Bounds on Moments for u

Probabilistic Analysis for
response variable g; using

A only (PBO or EBO) Al <:{

|
v

Bounds on output CDFs

Figure 4: Decoupled approach for multidisciplinary uncertainty propagation with interval
data
4. Numerical Examples
The proposed uncertainty propagation methods for multidisciplinary analysis under
both aleatory and epistemic uncertainty on the input random variables are illustrated with
two example problems: (1) a simple mathematical problem, and (2) an engineering
problem.
4.1 Mathematical Problem
This mathematical problem is taken from Du and Chen (2005). This is a two-
disciplinary problem with feedback coupling. The functional relationships for the

individual disciplinary analyses are given as follows:

202



Analysis 1 Analysis 2

XS={X1},X1={X2,X3} XS={X1},XZ={X4,X5}
Up, = X2+ 2%, — Xy + 24Uy, Upy = XX, + Xo + X + Uy,
O, = X2+ 2%, + X; + X8 % 9, = /% + X, +%(0.4%,)

In this example problem, the disciplinary response variables u; , and u; couple
the two analyses. These response variables are defined such that u; is an output of
analysis i and an input to analysis j. The output g; of disciplinary analysis 1 will be used
to illustrate the proposed multidisciplinary uncertainty propagation methods.

In this example problem, the disciplinary response variables u; , and u; couple
the two analyses. These response variables are defined such that u; is an output of
analysis i and an input to analysis j. The output g; of disciplinary analysis 1 will be used
to illustrate the proposed multidisciplinary uncertainty propagation methods.

Example 1(a): Sparse point data

In this case, the input random variables {xl,...,xs} are given by sparse point data.

Each input random variable is described by the data set as given in Table 1. This problem
is solved by the decoupled approach developed in Section 3.3 in order to obtain sparse
point data for the coupling variables u; > and u, ;. Once the data of the coupling variables
are obtained, the uncertainty propagation through the system output is achieved through
the individual disciplinary analyses only by the method mentioned in Section 2 and the
results are shown in Figure 5.

Table 1: Sparse Point Data for the random input variables

Sample X1 X2 X3 X4 X5
01 0.9567 0.9813 1.0294 0.9600 0.8396
02 0.8334 1.0726 0.8664 1.0690 1.0257
03 1.0125 0.9412 1.0714 1.0816 0.8944
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04 1.0288 1.2183 1.1624 1.0712 1.1415
05 0.8854 0.9864 0.9308 1.1290 0.9195
06 1.1191 1.0114 1.0858 1.0669 1.0529
07 1.1189 1.1067 1.1254 1.1191 1.0219
08 0.9962 1.0059 0.8406 0.8798 0.9078
09 1.0327 0.9904 0.8559 0.9980 0.7829
10 1.0175 0.9168 1.0571 0.9843 0.9941

0.6r

CDF

0.4

95 3 35 ) _A‘f _ _4‘.5 5 5.5
Output of disciplinary analyis 1

Figure 5: Propagation through multidisciplinary analysis of sparse point data

As seen in Figure 5, the proposed method quantifies the data uncertainty for the input
random variables by generating a family of CDFs for the system response at the
disciplinary level 1 of the two-discipline system. In this example problem, the generation
of data for the coupling variables requires only 414 individual disciplinary analyses. The
uncertainty propagation analysis has generated 100,000 (10x%10,000) Monte Carlo
samples for each of the input variables to construct 10 output CDFs, which requires

100,000 individual disciplinary analyses.

Example 1(b): Single interval data
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In this case, the input random variables {xl,..., x5} are given by single interval data. Each

input random variable ranges from 0.5 to 1.5. This problem is solved by the decoupled
approach developed in Section 3.4 in order to obtain single interval data for the coupling
variables u;, and u,;. Once the data of the coupling variables are obtained, the
uncertainty propagation through the system output is achieved through the individual
disciplinary analyses only by the PBO and EBO methods mentioned in Section 2 and the
results are shown in Figure 6. Note that this problem involves only single interval data
and therefore, is solved by the basic PBO and PBO as described in Section 2. It is seen in
Figure 6 that the bounds calculated by EBO and PBO almost coincide with each other for
this problem. This problem is also solved by MCS using an MDF approach and the

results are shown in Figure 6.

0.6

CDF

0.4r

3 4
Output of disciplinary analysis 1

Figure 6: Propagation through multidisciplinary analysis of single interval data
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Since this particular problem involves only single interval data, the uncertainty

bounds for this problem can be obtained by a simple deterministic optimization as shown

below:
min/ max g,
st. Ib<x <ub (5)
Ib<x, <ub
Ib<x,<ub
lb<u,, <ub

Note that the bounds on u,; are obtained by the decoupled approach described in Section
3.4.

This optimization formulation yields the bounds on the system response as [1.75,
6.76] which is exactly the same as the lowermost and uppermost bounds obtained by the
proposed probabilistic approach, corresponding to CDF values of 0 and 1. This approach
requires only 15 individual disciplinary analyses. Note that if we solved this problem by a
deterministic optimization using an MDF approach, it would give the same bounds as

obtained by the decoupled deterministic optimization.

Example 1(c): Multiple interval data

In this case, the input random variables {xl,...,xs} are given by multiple interval data.

Each input random variable is described by the following data set: ([0.5, 1.2], [0.8, 1.5],
[0.75, 1.75], [0.5, 1.75], [0.7, 1.4]). This problem is solved by the decoupled approach
developed in Section 3.4 in order to obtain multiple interval data for the coupling
variables u;, and u,;. Once the data of the coupling variables are obtained, the
uncertainty propagation through the system output is achieved through the individual

disciplinary analyses only by the PBO and EBO methods mentioned in Section 2 and the
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results are shown in Figure 7. This problem is also solved by MCS using an MDF

approach and the results are shown in Figure 7.

0.8

0.6

CDF

0.4r

0.2r

4 5 6 7 8 9
Output of disciplinary analysis 1

Figure 7: Propagation through multidisciplinary analysis of multiple interval data

As mentioned earlier in Section 2, the PBO and EBO methods give rigorous
bounds on the system response for multiple interval data. Therefore, this problem is also
solved by the proposed Optimal PBO and EBO formulations as discussed in Section 2

and the results are shown in Figure 8.
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-e-PBO (rigorous)
EBO (rigorous)
0.8F ——PBO (optimal) |
EBO (optimal)
0.6f i
LL
o
@)
0.4 -
0.2+ i
0 | | | |
1 2 3 4 5 6 7 8 9

Output of disciplinary analysis 1

Figure 8: Rigorous vs. Optimal bounds for multiple interval data

It is seen in Figure 8 that the optimal bounds are in good agreement with the
rigorous bounds. The bounds calculated by EBO and PBO coincide with each other for

this problem.

The generation of data for the coupling variables requires only 56 and 280
individual disciplinary analyses for the single and multiple interval cases, respectively.
The computational efforts for the PBO and EBO methods with both single and multiple
interval data and the computational efforts for the Optimal PBO and Optimal EBO
methods with multiple interval data are listed in Table 2. Obviously, EBO is less
expensive compared to PBO for each problem. It is also seen that for the same problem,
the Optimal PBO and Optimal EBO require more function evaluations than the basic
PBO and EBO. This is expected due to the larger number of decision variables required

in the former case.
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Table 2: Computational effort for PBO and EBO for Example 1 with interval data

Basic PBO Basic EBO Optimal PBO Optimal
Percentile Function Function Percentile Function EBO
Points Evaluations | Evaluations Points Evaluations Function
Evaluations
Single 21 1482 295 - - -
interval
data
Multiple 21 1692 47 21 2394 243
interval data

4.2 Example 2: Engineering Problem (FireSat)

This problem has been is sketched in Figure 3 of Chapter I. As seen in Figure 3 (see

Chapter 1), the Orbit subsystem has feed-forward coupling with both Attitude Control and

Power subsystems. Further, the Attitude Control and Power subsystems are coupled

through three coupling variables Pacs, Imin, and Imax. The functional relationships for the

disciplinary analyses are given in Table 3. A satellite configuration is assumed in which

two solar panels extend out from the spacecraft body. Each solar panel has dimensions L

by W and the edge of the solar panel is at a distance D from the centerline of the

satellite’s body as sketched in Figure 9.

Figure 9: Schematic diagram for the spacecraft solar array (Ferson et al, 2009)
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Table 3: Functional relationships among the disciplinary analyses

Subsystem-1
(Orbit)

Subsystem-2
(Attitude Control)

Subsystem-3
(Power)

The satellite velocity: v=_|—~
RE +H

where, © = Earth’s gravity constant,
Re = Earth’s radius, and
H = orbit altitude.

The orbit period:
3
Ngrp = 27 (Re+H) _2z(Rg +H)
)7 v

The maximum eclipse time:

Atorpit .. [ RE
Ateclinse = —2 2t arcsin
eclipse pn Rg +H

The maximum slewing angle:
Sin(¢target /RE)
1-coslprarget / Re J+ H/Re

Oslew = arctan{

Where, drarger = target diameter.

The slewing torque:

_ 40s1ew |
Tslew = 5 | max

Atglew
where, lhx = maximum moment of
inertia of the spacecraft calculated
in Power subsystem.

Total disturbance torque:

[ 2 2 2 2
Tdist =479 +7Sp +Tm + 73

where, 74, 7, Tm ,and 7, = Torques
due to gravity gradients, solar
radiation, magnetic field
interactions, and aerodynamic drag,
respectively.

3u .
Tqg =———|l — I minlsin(20
g 2(RE +H)3| max m|n| ( )

Here, I and Iy, = maximum and
minimum moment of inertia for the
spacecraft calculated in Power
subsystem, 8 = the deviation of the
major moment axis from the local
vertical (nadir).

Tsp = Lgp %AS(H q)cosi

Here, Ly, = moment arm for the
solar radiation torque — the distance
between the center of the solar
pressure and the center of gravity of
the spacecraft, F; = average solar
flux, ¢ = speed of light (2.9979e8
m/s), q = reflectance factor or
surface reflectivity, and i = sun
incidence angle (angle at which the
sun radiation hits the spacecraft
surface), As = surface area off which
the solar radiation is reflected. For
cylindrical solar arrays, A = Ag, /7

2MRp
Ty=—""—=
(Re +H)?

Here, M is the magnetic moment of

The total power: Pt = Pacs + Pother

Here, the Attitude Control subsystem is only
considered explicitly as a power consumer.
All other power consumers are lumped into
one bin as Pyer. Pacs is calculated in the
Attitude subsystem.

; P,
The total solar array size: A =—2
PeoL

where, Required Power Output,
[PeTe I PaTg j

Xe Xqg
P, =

sa Td
Here, P, and P4 = spacecraft’s power
requirements during eclipse and daylight,
respectively.

For this example problem,
Pe = Pd = Ptot

T. and T4 = time per orbit spent in eclipse and
in sunlight, respectively.

For this example problem,

T.= AtedipSe and
Td = Atorbit _Te
The power production capability at the end of

; LT
life, PeoL = PBOL(l—Edeg)

where, LT = lifetime of the spacecraft in
years, eqeq = degradation per year in %/year.

The power production capability at the
beginning of life, Pgo =7Fs14 coso .

Here, Iy = inherent degradation of the array —
It lumps together temperature effects,
shadowing, and uncovered areas in the
physical layout, & = sun incidence angle —
typically a worst-case angle is used.

The equations for the moment of inertia for
the configuration as shown in Figure 6:
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the Earth expressed in Am* and Rp,
is the residual dipole of the
spacecraft.

1
ra=LarCq AV’

Here, L, is the moment arm for the
aerodynamic drag torque - the
distance between the center of the
aerodynamic pressure and the center
of gravity of the spacecraft, p is the
atmospheric density, Cq is the drag
coefficient, A is the cross-sectional
surface area in the direction of
flight, and V is the velocity of the
spacecraft in orbit.

The Attitude control power:
Pacs = Ttot@max + NPhold

where, Ty, =max( Ty - Tyist )

® = maximum rotational velocity
of a reaction wheel (typically 5000-
6000 rpm), n = number of reaction
wheels that could be simultaneously

active (in this case n=3), and B,

= holding power — the power
necessary to maintain a constant

velocity of @, .

AT
L= |Dsallw
Nsa
A
W= sa
Mwhsa
Mgy = 2pLWt

1(,2 .2 L 2
| =Mgy|—| L“+t° |+| D+—
saX sa 12( j ( 2)

m
_ "'sa 2 2
'say—_12 (H +W )

2
lsaz = msa[%(Lz +W2j+[D+%J ]

where, 1, = the length to width ratio of the
solar array, ng; = number of solar arrays, p =
average mass density of the arrays, t =
thickness of the solar panels. The distance D
can be independently chosen, but is should be
larger than the radius of the spacecraft body.

The total moment of inertia:

ltot = Isa + Ibody

lbody = Mol of the main body of the spacecraft
(one for each axis x, y, and z).

Imin =Min(lor, x - Tot,y + Irot, 2

Imax = max(ltot,x oty |t0t,Z)

Note that in the full system analysis, the
overall moments of inertia of the system are
computed in the “Structures” subsystem. To
limit the scope of this example problem, the
overall moments of inertia are now calculated
in the “Power” subsystem and the moments of
inertia of the main body ly.4, are kept constant
as follows:

Ibodyx = 6200 kg —m?

Ibodyy = 6200 kg —m?

Ibodyz = 4700 kg —m?

The objective is to quantify the uncertainty in 3 output variables that are the result
of the 3-disciplinary analysis — total power Py, required solar array area As,, and total
torque it @s shown in Figure 3 of Chapter 1. The uncertain variables involved in each

subsystem and their corresponding single interval data are listed in Table 4. Note that this
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problem involves only single interval data and therefore, is solved by the basic PBO and

PBO as mentioned in Section 2.

Table 4: Uncertain variables and data

No Variable Symbol | Unit Data
1 Earth’s radius Re m [6378135, 6378145 ]
2 Altitude H m [2x10° 3.5787x107 ]
3 Power other than ACS Pother w [825, 1375]
4 Avg solar flux Fs W/m? [1326, 1481]
5 Deviation of major moment axis 0 deg [10,19]

from local vertical

6 Moment arm for solar radiation Lsp m [0, 3.75]
torque

7 Reflectance factor q [0.1,0.99]

8 Residual dipole of the space craft Rp Am? [0,10]

9 Moment arm for aerodynamic L, m [0,3.75]
torque

10 Drag coefficient Cq [2,4]

This problem is solved by the decoupled approach developed in Section 3.4 in order to

obtain the interval data for the coupling variables Pacs, Imin, @and Inax. Once the data of the
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coupling variables are obtained, the uncertainty propagation through the system outputs

Prot, Asa, and zy are achieved through the individual disciplinary analyses only. Each of

the problems is also solved by MCS using an MDF approach.

)] System Output 1: Total power, Pi: This problem is solved by the PBO and EBO

methods mentioned in Section 2.2 and the results are shown in Figure 10.
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Since this problem involves only single interval data, the uncertainty bounds for

this problem can be obtained by a simple deterministic optimization as shown below:

min/ max P,
X

ot
st.lb<P,s <ub
Ib <P <ub

other —

(6)

where the design variables x are Pacs and Poimer. Note that the bounds on Pacs are

obtained by the decoupled approach described in Section 3.4.

This optimization formulation yields the bounds on the system response as

[885.206, 1638.7] which is exactly the same as the lowermost and uppermost bounds
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obtained by the proposed probabilistic approach, corresponding to CDF values of 0 and

1. This approach requires only 6 individual disciplinary analyses.

problem is solved by the PBO and

System Output 2: Total array size, Asa: This

i)

EBO methods mentioned in Section 2.2 and the results are shown in Figure 11.
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Figure 11: Bounds on Ag,

the uncertainty bounds for

interval data,

Since this problem involves only single

this problem can be obtained by a simple deterministic optimization as shown below:

min/ max A,

st. Ib

e <ub

<R

Ib<H <ub

(7)

Ib <P, <ub
Ib<F, <ub

Ib<P, <ub

where the design variables x are Rg, H, Pother, Fs, and Pacs. Note that the bounds on Pacs

are obtained by the decoupled approach described in Section 3.4.
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This optimization formulation yields the bounds on the system response as [9.11,
34.77] which is exactly the same as the lowermost and uppermost bounds obtained by the
proposed probabilistic approach, corresponding to CDF values of 0 and 1. This approach

requires only 24 individual disciplinary analyses.

iii) System Output 3: Total torque, zi,r: This problem is solved by the PBO and EBO

methods mentioned in Section 2.2and the results are shown in Figure 12.

—PBO
EBO
0.8F —MCS 1
0.6 .
LL
a)
O
0.4 .
0.2f // i
0 —— I 1 | |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

System response

Figure 12: Bounds on zit

Since this problem involves only single interval data, the uncertainty bounds for

this problem can be obtained by a simple deterministic optimization as shown below:
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min/ max Tiot
X

sit. Ib<R; <ub
Ib<H <ub
Ib<6&<ub (8)
Ib<L,<ub

5 =
Ib<F <ub
Ib<qg<ub

Ib<R, <ub
Ib<L, <ub
Ib<C, <ub
Ib<1,, <ub

— "min —

Ib<l1,, <ub

- max —

where the design variables x are Rg, H, 0, Lsp, Fs,0, Rp, La, Cqd, Imin, and Imax. Note that the
bounds on Iy, and Imax are obtained by the decoupled approach described in Section 3.4.

This optimization formulation yields the bounds on the system response as
[0.00033, 0.3240] which is exactly the same as the lowermost and uppermost bounds
obtained by the proposed probabilistic approach, corresponding to CDF values of 0 and

1. This approach requires only 24 individual disciplinary analyses.

Note that we have used single interval data of the coupling variables in Egs. (6)-
(8) as obtained by the decoupled approach. If we solved these problems by a
deterministic optimization using an MDF approach, it would give the same bounds as

obtained by the decoupled deterministic optimization.

It is seen in Figures 10-12 that the bounds calculated by EBO and PBO coincide
with each other. In this example problem, the generation of data for the coupling
variables requires only 84 individual disciplinary analyses. The computational efforts for
both the PBO and EBO methods are listed in Table 5. As expected, EBO is less
expensive compared to PBO for each problem.
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Table 5: Computational effort for the FireSat problem

PBO EBO
Function
Percentile Points Function Evaluations Evaluations
Prot 26 559 18
A 23 966 121
Tiot 23 2484 108

Discussion

Each problem is also solved by MCS using an MDF approach in order to verify
the results of the proposed PBO and EBO methods. It is seen in Figures 6-7 and 10-12
that the proposed PBO and EBO bounds are in good agreement with the MCS results.
Note that this MCS approach is computationally very expensive. In order to generate 100
output CDFs, we have used 1 million (100x10,000) samples for each input variable,
which requires 1 million system analyses. The proposed decoupled approach for
multidisciplinary uncertainty propagation does not require any coupled system level

analysis, which makes the proposed methods computationally feasible.

The deterministic optimizations with single interval data are very efficient in
estimating the output uncertainty bounds with a very few individual disciplinary analyses.
However, this approach is not able to give any probabilistic information about the output
uncertainty and therefore this approach is recommended when the only quantity of
interest is the bounds on output uncertainty. When the uncertainty propagation analysis is
required to produce any probabilistic information, the PBO and EBO methods are

recommended. Note that the deterministic optimization approach is applicable with single
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interval data only, whereas the PBO and EBO methods are equally applicable with both

single and multiple interval data.

5. Conclusion

This chapter developed a probabilistic framework for the propagation of uncertainty
through multidisciplinary systems, when the information is available as sparse point data
or interval data. The uncertainty described by sparse point and interval data is represented
through a flexible Johnson family of distributions. An optimization-based approach is
used to decouple the probabilistic analysis from the system analysis. This approach uses
deterministic optimization to first quantify the uncertainty in the coupling variables. No
coupled system level analysis is required. This chapter also discussed the concepts of
rigor and optimality with regard to the bounds on the system response and proposed
optimization formulations that give optimal bounds on the output uncertainty. The
proposed decoupled approach is illustrated for a mathematical problem and for a practical
engineering problem.

The major advantage of the proposed methodology is that it does not require any
coupled system level analysis, which makes it computationally efficient for large and
complex multidisciplinary systems where only individual analysis codes are available.
Unlike existing methods, it does not use separate representations for aleatory and
epistemic uncertainties and does not require nested analysis. Both types of uncertainty are
treated in a unified manner using a probabilistic format, thus reducing the computational
effort and simplifying the optimization problem. The results regarding the uncertainty in
the coupling variables are valuable to the designer as it can help select the initial guesses

in an all-at-once approach to multidisciplinary design optimization. Due to the use of a
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probabilistic format to represent all the uncertain variables, the proposed uncertainty
propagation framework facilitates the implementation of multidisciplinary design

optimization in the presence of both aleatory and epistemic uncertainty.
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CHAPTER X

ROBUSTNESS-BASED DESIGN OPTIMIZATION OF MULTIDISCIPLINARY
SYSTEM UNDER EPISTEMIC UNCERTAINTY

1. Introduction

This chapter proposes formulations and algorithms for design optimization of
multidisciplinary systems under both aleatory uncertainty (i.e., natural or physical
variability) and epistemic uncertainty (i.e., imprecise probabilistic information), from the
perspective of system robustness. The proposed formulations specifically deal with
epistemic uncertainty arising from sparse and interval data without any assumption about
the probability distributions of the random variables. A single loop approach is used for
the design optimization, which does not require any explicit coupled multidisciplinary
uncertainty propagation analysis. Thus the computational complexity and cost involved
in estimating the mean and variation of the performance function is greatly reduced. A
decoupled approach is proposed in this chapter to un-nest the robustness-based design
from the analysis of non-design epistemic variables to achieve further computational
efficiency. The proposed methods are illustrated for a mathematical problem and a
practical engineering problem, where the information on the random inputs is only

available as sparse point and/or interval data.

The contribution of this chapter is to develop a methodology for robustness-based
design optimization for multidisciplinary systems that includes both aleatory and

epistemic uncertainty. This chapter specifically focuses on epistemic uncertainty arising



from sparse point data and interval data. In this chapter, we propose an efficient single
loop formulation for the robust design problem. The proposed single loop formulation
eliminates the need for explicit interdisciplinary uncertainty propagation for estimating
the mean and variation of the output. A decoupled approach is proposed in this chapter to
un-nest the robustness-based design from the analysis of non-design epistemic variables
to achieve further computational efficiency. The proposed robustness-based MDO
approach is based on the framework for single discipline systems developed in Chapter
VII. In order to demonstrate the efficiency of the proposed method, the robust
optimization methods based on SUA and CSSUA developed in Du and Chen (2002) are
also used and modified in this chapter to include data uncertainty. The proposed method

is illustrated by using a mathematical example and an engineering example.

The rest of the chapter is organized as follows. Section 2 proposes a
multidisciplinary robustness-based design optimization framework that considers sparse
point data and interval data for the random variables. In Section 3, we illustrate the
proposed methods for a mathematical example and an engineering example. Section 4

provides conclusions and suggestions for future work.

2. Robustness-based design optimization for multidisciplinary systems

In Chapter VII, a methodology for robustness-based design optimization is
proposed for single discipline systems. In this chapter, a methodology for robustness-
based design optimization for multidisciplinary systems is developed, based on the

methodology developed in Chapter VII.
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As mentioned in Chapter IX, in order to achieve feasibility in multidisciplinary
system analysis, the non-linear equations shown in Eq. (7) in Chapter 1X have to be
solved simultaneously.

Existing methods for multidisciplinary robust design optimization solve either Eq. (7)
(see Chapter IX) or a sub-optimization problem nested within the framework of the
design optimization to estimate the means of the disciplinary response variables and
thereby estimate the mean of the performance function. The means of the input design
variables as well as the disciplinary response variables are then used to estimate the
variance of the performance function. This makes the current methods computationally
expensive for coupled multidisciplinary systems. In this chapter, we propose a single loop
formulation for the multidisciplinary robustness-based design optimization that
eliminates the need for coupled interdisciplinary uncertainty analysis for estimating the
mean and variance of the performance function.

Section 2.1 proposes a single loop formulation for multidisciplinary robustness-based
design optimization and Section 2.2 proposes formulations for multidisciplinary
robustness-based design optimization that account for input data uncertainty.

2.1 Multidisciplinary robustness-based design optimization

Existing robustness-based design optimization frameworks use different
multidisciplinary optimization methods including the all-in-one approach (Du and Chen,
2002), collaborative optimization (Li and Azarm, 2008), etc. In this chapter, we compare
the efficiency of the proposed method and the all-in-one approach of multidisciplinary
robust optimization. The all-in-one approach is more commonly known as the

multidisciplinary feasible method (MDF) in the literature (Cramer et al, 1994). The
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formulation of robustness-based design optimization using the all-in-one approach is as
follows:

min f(y,o-):w*yf(d,z)+(1—w)*af(d,z)

st. LB+ko-g (d,z)< E(gi(d,z))sus—kag (d,z) foralli 6))

[ i
<d <ub-ko
X/ X

S S

Ib+ko
X/ X

The formulation in Eq. (1) is similar to that in Eq. (1) in Chapter VII. Here, the design
variables d are the deterministic design variables and the mean values of the uncertain
local input variables x as well as the shared input variables xs (see Chapter IX). Note that
one or more of the input random variables x and Xs may be non-design variables and
referred to as z throughout this chapter. g; is the constraint of the ith discipline. This
robust design formulation requires estimating the mean values u; and w4 as well as the
standard deviations of and oy considering the multidisciplinary nature of the system. In
order to estimate the mean values u; and ug and the standard deviations o and oy, it is
necessary to estimate the mean values and the standard deviations of the coupling

variables.

This all-in-one approach of robust design estimates the mean values of the coupling
variables using either SUA or the CSSUA methods of interdisciplinary uncertainty
propagation (Du and Chen, 2002). It has been mentioned earlier that SUA requires a
coupled system level analysis at each iteration of the robust optimization problem and
CSSUA requires a nested double loop formulation when used for robust optimization.
The standard deviations of the coupling variables are estimated by approximating the

system equations in Eq. (1) through a first-order Taylor series approximation at the mean
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values (Haldar and Mahadevan, 2000) of all the input and the coupling variables and then

solving the following system of linear equations:

n 2 2 2
o2 = 3| P ajj{aFuij o+ Fil o2 foraii @)
L= oy, OX OX, :

where, afi ,o> and zes are the variances of ith coupling variable, local input variables

and shared input variables, respectively.

In the following discussion, we propose a single loop formulation for the robustness-
based design optimization that does not require any explicit interdisciplinary uncertainty

propagation.

Single loop formulation

The all-in-one approach of multidisciplinary robust optimization satisfies the system
compatibility requirements through a coupled interdisciplinary uncertainty analysis for
SUA-based uncertainty propagation or by solving a nested double loop formulation for
CSSUA-based uncertainty propagation as mentioned earlier. This approach also requires
solving a system of linear equations at least once at each iteration of the design
optimization. The idea behind the single loop formulation is that if the system
compatibility requirement can be satisfied within the optimization algorithm by including
the coupling variables as the optimization design variables as in the all-at-once approach,
the only difficulty left is in estimating the standard deviations &7 and &y of the objective

function and the constraints, respectively. This difficulty can be overcome by including
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also the standard deviations of the disciplinary response variables o as the optimization

design variables. These additional design variables &, will be constrained by Eq. (9).

The single loop formulation of the multidisciplinary robustness-based design

optimization is now as follows:

min  f(u,0)=w*u,(d,z,u)+(@-w)*o,(d,z,u,0,)

d,u, o4

st. LB +ko, (d,2,u,0,)<E(g,(d, z,u))<UB-ko, (d, z,u,0,) foralli (3)
Ib+ke,, <d<ub—ko,,

x/xs —

A(d,zu(d,z))=0 foralli

n 2 2 2
ol=) ok, oy +(8F‘“j ol + i o’
' 4=\ ou i OX OXq i

J#i

In the above optimization formulation, the design variables are the mean values of all
input variables x and xs and coupling variables p, as well as the standard deviations of

the coupling variables a,,.

In the following subsections, the methodology for robustness-based design
optimization under epistemic uncertainty described in Chapter VII is extended for the

multidisciplinary systems.

2.2 Multidisciplinary robustness-based design optimization under epistemic uncertainty

As in single discipline problem, in this case, the design variables d and/or the
input random variables z in Egs. (1) and (3) might have epistemic uncertainty. Since the
designer does not have any control on the non-design epistemic variables z, the design
methodology has to employ a search among the possible values of such epistemic

variables in order to find an optimal solution. In such case, we get a conservative robust
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design. When one or more epistemic variables cannot be treated as design variables, the
design methodology has to solve two optimization problems iteratively until convergence
in order to find a conservative robust design. For SUA and CSSUA-based
multidisciplinary robust design, this approach requires solving the two decoupled

optimization problems as given below.

d*:argmin(w*yf(d,yf)+(1—w)*af(d,yj)) 4)

st. LB +ka(g,(d, 47)) < E(g,(d,2)) <UB—ka(g,(d, &) foralli

Ib+ko,, <d<ub—ko,,

XIxg —

p; =argmax (W, (d”, )+ @-w)*o (a1, ) 5)

M

st. Z <u,<Z,

The optimization problems in Egs. (4) and (5) are solved iteratively until convergence.
Note that the robust constraint is satisfied only in Eq. (4). As mentioned earlier in Section
2.1, Eqgs. (4)-(5) satisfy the system compatibility requirements through a coupled
interdisciplinary uncertainty analysis for SUA-based uncertainty propagation or by
solving a nested double loop formulation for CSSUA-based uncertainty propagation. This
approach also requires solving a system of linear equations as shown in Eq. (2) at least

once at each iteration of Egs. (4)-(5).

Single loop formulation
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When one or more epistemic variables cannot be treated as design variables, the single
loop formulation for the robustness-based design optimization now requires solving the

two decoupled optimization problems as given below.

d” =argmin (w* s, (d,u, 4" )+ Q- w)*o, (d,u,0,, ")) (6)

d,uy 04
sit. LB+ko(g,(d,u,0,, 7)) < E(g,(d,u,2)) SUB—ko(g,(d,u,0,, ")) foralli

lb+ko,, <d<ub—ko,,

Ald,u(d,z")x)=0 foralli

n 2 2 2
ol :Z R,y o +(8F‘“j ol + oF, ol
=k OX OX, :

j#i

i =argmax (w o, 0° u, 1, )+ (- W), (070,01, ) )

Hay o ly 0y

st. Ald",u(d",z) 1,)=0 foralli

n 2 2 2
ol =Y Fy oy +(6F‘"] ol + at o}
©E ou; OX OX :

s
J#i

Z <u,<Z,

Note that the optimization in Eq. (6) is a single loop formulation, which solves the design
problem and the second optimization adjusts the design in presence of uncontrollable
epistemic uncertainty. The optimization problems in Egs. (6) and (7) are solved
iteratively until convergence. Note that the robust constraint is satisfied only in Eq. (6).
The first constraint (i.e., the system compatibility requirements) in Eq. (7) is only
required if the objective function is not a function of all non-design epistemic variables.
In order to obtain solutions that are least sensitive to data uncertainty, the robustness-

based design optimization formulations in Eqs. (4)-(7) have to be solved using the
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approach described in Chapter VII. In the following section, the proposed robustness-
based design formulations are illustrated for a mathematical example and an engineering

example.

3. Numerical Examples
The proposed robustness-based design  optimization  formulations  for
multidisciplinary systems are illustrated with two numerical examples: (1) a simple
mathematical example and (2) an engineering problem.

3.1 Example 1: Mathematical Example

The two-disciplinary problem with feedback coupling as discussed in Chapter IX is
used here. The output of the function g, in disciplinary analysis 2 will be used as
objective function to illustrate the proposed multidisciplinary robust optimization

methods.

In this case, the input random variable x; and x4, are considered as non-design

epistemic variable and the remaining input random variables {x,,x, , X, } are considered as

design variables. The input random variables x; and x, are assumed to be described by
sparse point data as given in Table 1. The input random variables x3 and x, are assumed
to be described by single interval data ([0.5; 1.5]) and ([2; 5]), respectively. The input
random variable xs is assumed to be described by multiple interval data ([0.5, 1.2], [0.8,
1.5], [0.75, 1.75], [0.5, 1.75], [0.7, 1.4]). The design bounds for the input design variables
are given in Table 2. Each disciplinary constraint has a lower bound of 2 and an upper

bound of 20.
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Table 1: Sparse Point Data for the random input variables

Sample X1 X2
01 0.9567 0.9813
02 0.8334 1.0726
03 1.0125 0.9412
04 1.0288 1.2183
05 0.8854 0.9864
06 1.1191 1.0114
07 1.1189 1.1067
08 0.9962 1.0059
09 1.0327 0.9904
10 1.0175 0.9168

Table 2: Design variables and design bounds for mathematical example

No Variable |Design bounds
1 X2 [0, 10]
2 X3 [0, 10]
3 Xs [2, 10]

This problem is solved by both all-in-one and single loop formulations. The all-

in-one robustness-based design formulation for this problem is as follows:

d” =argmin w*ﬂ—iz+(1—w)*a—?f (8)
d ‘ugz O-gz
st. LB +ko(g;(d, 1)) < E(g;(d,2)) <UB —ko(g;(d, 1)) foralli

b+ko,,, <d<ub—ko,,,

xIxg —

where d is the vector of means of the input design variables.
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* (o}
L, = argmax w*ﬂ—‘;iz+(1—w)* % (9)
#a 'ugz O-gz
st. Z <u, <Z,

where the bounds Z, and Z, for the epistemic variables x; and x, are calculated using Eq.

(9) as given in Chapter VII and by the moment bounding method described in Chapter

IV, respectively.

The single loop formulation of the robustness-based design problem is as follows:

*
d,u, oy

’ugz o

[0, 22;]=argmin (w*”—iz+(1_w)* T, J
92

s.t. LB, +ko, <u, <UB, —ko, (10)
LB, +koy, < py, <UB, —ko
Ib+ko, <d <ub-ko,

Uy, —((zf)z +2X, — X3 +24/Uy, ): 0

* * * 2
Uyy —(zlz2 +(22) + X +ul'2): 0

oF, oF, )
ol - 2 g2 4| —2 | o7
v auy, )7 T ox
2 2
ol — s ol + —8Fu” o+ s, o’ |=0
a ou, ) OX OX, :

* (o}
4L, = argmax {w*ﬂ—?f+ (1—w)*%} 11)

Ha ‘ugz 92

oF, oF, Y oF, Y
st. ol - 2ol 2| ol + 2 o2 |=0
1,2 auZl 2,1 8X 8Xs s

N
_I_
7\
(o))
2| A
N
N
Q
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Il
(@]
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Note that in Eqg. (11), the objective function is a function of non-design epistemic
variables x; and x4 and therefore, the system compatibility equations are not used here.

As mentioned earlier in Chapter VII, w>0 is the weight parameter that represents the
relative importance of the objectives and k is a constant that adjusts the robustness of the

method against the level of conservatism of the solution. In this dissertation, k is assumed

to be unity. y; and 0;2 are scaling factors used to normalize the two objectives in terms
of mean value and standard deviation of the objective functions. The weight parameter w
is varied (from 0 to 1) and the optimization formulations in Eqgs. (8)-(11) are solved by
the Matlab solver ‘fmincon' by the methodology described in Chapter VII. The solutions

are presented in Figure 1.
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Figure 1: Robustness-based optimization for Example 1

Figure 1 shows the solutions of the conservative robust design in presence of

uncontrollable epistemic uncertainty. It is seen from Figure 1 that the single loop
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formulation generates optimal solutions that are almost the same as the solutions obtained

by SUA and CSSUA-based robust optimization methods.

The computational efforts of the different methods are compared in Table 3. It is
seen that compared to both SUA and CSSUA-based optimization methods, the single
loop formulation is much less expensive in terms of both function evaluations and

computational time.

Table 3: Computational effort for different methods for Example 1

All-in-one Single loop

SUA CSSUA

DA SA CT DA SA CT DA SA CT

11588 | 454 | 17.53118 | 15504 0 14.804068 | 1600 0 3.037412

Note: DA = Disciplinary analysis SA = System analysis CT = Computational time in seconds

3.2 Example 2: Engineering Problem (FireSat)

The same FireSat problem as described in Chapters | and IX is used here. The
output Py of disciplinary analysis 3 (Power subsystem) will be used as an objective
function to illustrate the proposed multidisciplinary robust optimization methods. The
objective is to simultaneously minimize the mean value of the total power consumption,
Pwt and its standard deviation. The uncertain variables involved in each subsystem and

their corresponding single interval data are given in Table 4.
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Table 4: Uncertain variables and data for FireSat problem

No Variable Symbol | Unit Data
1 Earth’s radius Re m [6378135, 6378145 ]
2 Power other than ACS Pother w [825, 1375]
3 Avg solar flux Fs W/m? [1326, 1481]
4 Deviation of major moment 0 deg [10,19]

axis from local vertical

5 Moment arm for solar Lo m [0, 3.75]
radiation torque

6 Reflectance factor q [0.1,0.99]

7 Residual dipole of the space Rp Am? [0,10]
craft

8 Moment arm for L, m [0,3.75]

aerodynamic torque

9 Drag coefficient Cy [2,4]

For the sake of illustration, in this example problem, the following epistemic
variables are considered as design variables with the design bounds given in Table 5
below. Note that the design variables g and Cq4 are function of other design variables of
the original problem, i.e., the FireSat problem consisting of all the subsystems. In this
paper, a simplified three disciplinary problem has been used. Therefore, these variables

are considered here as design variables.
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Table 5: Design variables and design bounds for FireSat problem

No Variable Symbol Design bounds
1 Power other than ACS Pother [500, 1500]
2 Deviation of major moment 0 [0, 90]

axis from local vertical

3 Moment arm for solar Lsp [0, 20]
radiation torque

4 Reflectance factor q [0, 1]

5 Moment arm for L, [0, 10]
aerodynamic torque

6 Drag coefficient Cq [1, 8]

This problem has six epistemic design variables and three epistemic non-design variables.

This problem is solved by both all-in-one and single loop formulations.

The all-in-one robustness-based design formulation for this problem is as follows:

* . O,
d”=argmin (w*ﬂ—fmw(l—w)*#J
d

Hry P
st. LB, + ko, < p, <UB —ko,. 12)
LB, +ko, <u,  <UB,—ko,
Ib+ko, <d <ub-ko, fori=12,...6

where d is the vector of means of the input design variables.
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* O
4L, = argmax (W*ﬂ—i‘"‘ +(1- W)*#J (13)

# H Rot GP!OI

st. Z <p, <Z, fori=123

where the bounds Z, and Z, for the epistemic variables Rg, Fs and Rp  are calculated by

the method described in Chapter 1V.

The single loop formulation of the robustness-based design problem is as follows:

d” =arg min(w*ﬂ—fw‘+(1—w)*a—f‘°‘J 14)
dotty oy Pot O P
st. LB, +ko, <u, <UB, —ko,
LB, +ko, <u, <UB,-ko,
Ib+ko, <d <ub-ko, for i=12,..,6
Pacs — (Ziot@max + NPhgia ) =0
i —MiN(Log 0 Doty » |m) 0

I _maX(ItOtX’ItotY’ItotZ
2 2
o _( agj (ag j“ + ze{agmj . JZO
' u2 u3 Xs )
2 2
GUZ _ alm|n 1 mln O_ + mm Gf + almin O_f =0
: ou, OX OX, °
2 aImax
o, — || —— G +
¢ ou,
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HziburOu ’LlPtot O-me

st. I:)ACS - (Ttota)max + nI:)hold)

Imin _mm( totX' totY’ totZ

Imax_max( totX’ totY’ totZ

Guz ([ aI:)ACS j 5 (aPACS jo.
1 6U 2

L, —argmax(w*ﬂpm +(1-w)* ﬂ}
0

2 ol
Oy, — ul G
2 ou, 6u3
ol — 8Imax O_UZ + 8Imax O_UZ
: ou, ' ou, ?
Z Su, <Z, fori=12

For this example problem, only single interval data is available for the input design
variables as given in Table 2. The two disciplinary constraints are assumed to have lower
bounds of 20 and 0.09 and upper bounds of 50 and 0.4, respectively. The weight
parameter w is varied (from 0 to 1) and the optimization formulations in Egs. (12)-(15)

are solved by the Matlab solver ‘fmincon’ for sparse point and interval data. The solutions

are presented in Figure 2.
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Figure 2: Robustness-based optimization for the FireSat problem

Figure 2 shows the solutions of the conservative robust design in presence of

uncontrollable epistemic uncertainty. It is seen from Figure 2 that the single loop

formulation generates optimal solutions that are almost the same as the solutions obtained

by SUA and CSSUA-based robust optimization methods.

The computational efforts of the different methods are compared in Table 6. It is

seen that compared to both SUA and CSSUA-based optimization methods, the single

loop formulation is much less expensive in terms of both function evaluations and

computational time.

Table 6: Computational effort for different methods for FireSat problem

All-in-one Single loop
SUA CSSUA
DA SA CT DA SA CT DA SA CT
2170 640 | 28.9766 | 28090 0 26.6426 | 1080 0 12.1503

Note: DA = Disciplinary analysis SA = System analysis CT = Computational time in seconds
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4. Conclusion

This chapter has developed formulations for multidisciplinary robustness-based
design optimization under data uncertainty. Two types of data uncertainty — sparse point
data and interval data — are considered. A single loop approach is used for the design
optimization, which does not require any explicit coupled multidisciplinary uncertainty
propagation analysis. Thus the computational complexity and cost involved in estimating
the mean and variation of the performance function is greatly reduced. A decoupled
approach is proposed in this chapter to un-nest the robustness-based design from the
analysis of non-design epistemic variables to achieve further computational efficiency.
The computational efficiency of the proposed formulations is demonstrated by a
mathematical and an engineering example problems considering the number of individual
disciplinary analyses, number of system level analyses, and the overall computational
time. The selection of the method may depend on the number of system level analysis as
well as the disciplinary analysis and the computational time required. CSSUA-based
method may be preferable over the SUA-based method if the system level analysis is
computationally expensive, and the individual disciplinary analyses are more affordable.
However, in both examples, the single loop formulation appears to be more efficient as it
requires no integrated system level analysis and the number of individual disciplinary
analyses as well as the computational time required are much less. Due to the use of a
probabilistic format to represent all the uncertain variables, the proposed
multidisciplinary robustness-based design optimization methodology facilitates the
implementation of multidisciplinary reliability-based design optimization, which is a

challenging problem in presence of epistemic uncertainty.
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CHAPTER XI

RELIABILITY-BASED DESIGN OPTIMIZATION (RBDO) OF
MULTIDISCIPLINARY SYSTEM UNDER EPISTEMIC UNCERTAINTY

1. Introduction

This chapter proposes formulations and algorithms for reliability-based design
optimization (RBDO) of multidisciplinary systems under both aleatory uncertainty (i.e.,
natural or physical variability) and epistemic uncertainty (i.e., imprecise probabilistic
information). The proposed formulations specifically deal with epistemic uncertainty
arising from sparse point data and interval data. An efficient decoupled approach is
proposed that un-nests the design analysis from the epistemic analysis. The proposed
methodology for multidisciplinary systems does not require any coupled system level
analysis. The proposed methods are illustrated for a mathematical problem and a practical
engineering problem.

As mentioned in Chapter IlI, most of the existing methods are based on non-
probabilistic theory and can handle only single discipline problems. Many of these
methods need additional non-probabilistic formulations to incorporate epistemic
uncertainty into the design optimization framework, which may be computationally
expensive. However, if the epistemic uncertainty can be converted to a probabilistic
format, the need for these additional formulations is avoidable, and well established
probabilistic methods of RBDO can be used. Therefore, there is a need for an efficient

RBDO methodology that deals with both aleatory and epistemic uncertainty.



The contribution of this chapter is to develop a methodology for RBDO for
multidisciplinary systems that includes both aleatory and epistemic uncertainty. This
chapter specifically focuses on epistemic uncertainty arising from sparse point data and
interval data. In this chapter, we propose an efficient decoupled approach that un-nests
the design analysis from the epistemic analysis. The proposed methodology for

multidisciplinary RBDO does not require any coupled system level analysis.

The rest of the chapter is organized as follows. Section 2 extends the methodology
for single discipline system as developed in Chapter VIII to multidisciplinary system. In
Section 3, we illustrate the proposed methods for a number of example problems. Section

4 provides conclusions and suggestions for future work.

2. RBDO for multidisciplinary systems

As mentioned in Chapter IX, in order to achieve feasibility in multidisciplinary
system analysis, the non-linear equations shown in Eq. (7) in Chapter 1X have to be
solved simultaneously.

Consider the following MDO formulation:

min f(x,u(x) @)
st. g(x,u(x))<0

In addition to satisfying the design constraints, MDO in Eq. (1) requires that the system
compatibility among the disciplines in Eqg. (7) in Chapter IX is also satisfied. Several

methods are available for multidisciplinary optimization based on how the system
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analysis is handled, namely the multidisciplinary feasibility (MDF) method, the all-at-
once (AAO) method, and the individual disciplinary feasibility (IDF) method (Cramer et

al, 1994). All these methods have their own advantages and limitations.

2.1 Multidisciplinary RBDO

Now, consider the following probabilistic variation of Eq. (1)

min f(x,u(x)) (2)
st. P(g(x,u(x)) <«

In Eq. (2), all or some of the design variables are random design variables. Like Eq. (1),
Eq. (2) also requires satisfying the system compatibility requirements as shown in Eq. (7)
in Chapter IX, in addition to satisfying the reliability constraints.

As mentioned in Chapter VIII, there exist different combinations of methods to
solve singe disciplinary RBDO. Each of these combinations can be used with different
MDO strategies, namely the MDF, AAO, or IDF method to handle the multidisciplinary
system analysis. Therefore, a multidisciplinary RBDO problem of Eqg. (2) can be solved
by several combinations of methods (Chiralaksanakul and Mahadevan, 2007). All these
methods have their own advantages and limitations. A detailed discussion of different
RBDO methods for multidisciplinary systems can be found in Chiralaksanakul and

Mahadevan (2007) and Smith (2007).

In this chapter, we use the RBDO/AAO method to develop the methodology for
multidisciplinary RBDO under epistemic uncertainty. In RBDO/AAO method, the design
formulation in Eq. (2) becomes:
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min £ (x,u(x)) ©)
)

Note that in Eq. (3), the system compatibility requirement is used as constraints in the
design optimization formulation. The reliability analysis required for estimating the
reliability constraints in Eq. (3) is done as follows:

min g =+/(Y) (Y) (4)

st gy(Y,u,(Y))=0
AY.u,(¥))=0

where Y denotes all the random input variables of the system in uncorrelated standard
normal space. Functions gy and uy are transformed functions such that g, ()= g(T *(x))
where T is the transformation function from original space, X, to standard normal space Y.
The system compatibility requirements A (Y, u, (Y ))=0, are included in Eq. (4) to ensure
system compatibility in multidisciplinary reliability analysis.

The above mentioned formulation of multidisciplinary reliability is known as
collaborative reliability analysis in Du and Chen (2005). Mahadevan and Smith (2005)
proposed an efficient approach to solving Eq. (4), namely multi-constraint FORM for
multidisciplinary reliability analysis. In this chapter, Eq. (4) is used within the

multidisciplinary RBDO framework under epistemic uncertainty to evaluate the

reliability constraints.

2.2 Multidisciplinary RBDO under epistemic uncertainty
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As discussed in Chapter VIII, the inclusion of epistemic uncertainty in RBDO adds
another level of complexity in the design methodology. Multidisciplinary RBDO under
aleatory uncertainty alone is a computationally challenging problem. The inclusion of
epistemic uncertainty in multidisciplinary RBDO further multiplies this computational
effort. In Chapter VIII, we have proposed an approach that decouples the uncertainty
analysis of the epistemic non-design variables from the design optimization problem. The

same approach is used here for the multidisciplinary problem as follows:

As in Eg. (3), the general problem of multidisciplinary RBDO can be expressed as

follows:

rgin(max f(d,u,uz))

U y7

st. p, =P(g;(X,Z2)<0)< p, for i=12,...k (5)
Z, Su,<Z,

A(d,u(d,z),u,)=0 foralli
This nested optimization problem can be decoupled and expressed as:
d* =argmin(f(d,u, ) (6)
du

st.  p =P(gi(X,y:)SO)< p, for i=12,...,k
A(d,u(d,z") )=0 foralli

w2 =argmax (f(d",u, 11,)) (7
1, ,U
st. A(d"u(d",z) 4,)=0 foralli
Z <u,<Z,
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The optimization problems in Egs. (6) and (7) are solved iteratively until convergence.
Note that the reliability constraint is satisfied only in Eq. (6). The first constraint (i.e., the
system compatibility equations) in Eq. (7) is required to ensure that the optimization is
driven by all non-design epistemic variables, because sometimes the objective function
may not be a function of all non-design epistemic variables. In cases when the objective
function is the function of all non-design epistemic variables, this constraint is not
required.

We have developed the methodology of solving single discipline RBDO problem
under both sparse point and interval data in Chapter VIII. The same methodology is used
to solve the multidisciplinary RBDO problem under epistemic uncertainty. In the
following section, the proposed RBDO formulations are illustrated for multidisciplinary

example problems.

3. Numerical Examples

3.1 Example 1: Mathematical Example

The two-disciplinary problem with feedback coupling as discussed in Chapter 1X
is used here. The output of the function g, in disciplinary analysis 2 will be used as
objective function to illustrate the proposed multidisciplinary RBDO method. Each input
design variable has a lower bound of 0.001 and an upper bound of 10. A limit state is
defined as g =g1—g1,0 and failure is defined when g <0. Here, g1 is assumed to be 5.

The general formulation for this RBDO problem is as follows:
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min g,
st. P(g,<0,0)< P,

(8

where p is assumed to be 0.0062 ($=2.5) in this example. In this example problem, the

probability P (g:< g1,0) depends on all the random design variables x.

In this case, the input random variable x; is considered as non-design epistemic variable

and the remaining input random variables {xz,..., xs}are considered as design variables.

The input random variables are assumed to be described by single interval data. Each

input random variable ranges from 0.5 to 1.5. Bounds on the mean for the epistemic

variable x; and bounds on the variances of all the random variables x are estimated by the

methods described in Chapter IV. Since this problem contains non-design epistemic

variables, this problem is solved by the RBDO methodology developed in Section 2 by

solving the following two optimization problems iteratively until convergence and the

solutions are given in Table 1.

[d0°,u"|=argmin g,(d,u, )
du
s.t. P(gl(d,u,/tz*)ﬁ gl,0)< Po
U, —((z*)2 + 2%, — X + 24/Uy, ): 0

U, —(z*x4 + X+ X +u1,2): 0
Ib<d <ub

u; =argmax g (d"u" x,)

Hy

st. Z,<u, <Z,
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where Z, and Z, are the bounds on the mean value of the non-design epistemic variable z.
Note that in Eq. (10), the objective function is a function of non-design epistemic variable
X1 and therefore, the system compatibility equations are not used here.

Table 1: Optimal design solution for the mathematical problem

No of analyses
: Design Analysis | Epistemic Analysis Total
Optimum x
i > (Eq. (9)) (€. (10))
DA SA DA SA DA SA
(2.2436, 2.6628,
0.0010,00010) | 2300 | 13846 1 0 8 0 | 13854 | O

Note: DA = Disciplinary analysis SA = System analysis

The optimizations in Egs. (9) and (10) required only 2 iterations between the design
problem (Eqg. (9)) and the uncertainty analysis for the non-design epistemic variables (Eq.
(10)) for convergence. Number of function evaluations in terms of disciplinary analysis
(DA) and system analysis (SA) for both the design and epistemic analyses are listed in
Table 1 for future reference. It is seen in Table 1 that the proposed RBDO methodology
can solve this design problem with only 13,854 disciplinary analyses, of which only 8
evaluations are required for the epistemic analyses and only 13,846 evaluations are
required for the design analyses. If this example problem involved only aleatory
uncertainty, the number of function evaluation would be approximately half of 13,846.
Therefore, the proposed RBDO methodology under epistemic uncertainty can solve this
problem with a reasonably increased number of function evaluations.

3.2 Example 2: Engineering Problem (FireSat)
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The same FireSat problem as described in Chapters I, IX and X is used here. The
output Py of disciplinary analysis 3 (Power subsystem) will be used as the objective
function to illustrate the proposed multidisciplinary RBDO method. The uncertain
variables involved in each subsystem and their corresponding single interval data are
given in Table 4 in Chapter X. The design bounds for the design variables are given in
Table 5 in Chapter X. In this example, it is assumed that all the input random variables
have log-normal distributions, moments of which are estimated from the single interval

data given in Table 4 in Chapter X.

The limit states are defined as g1 =Asa—Asa0 and g2 = Tt~ Twoto and failures are defined

when g; >0 and g, >0 . Here, Asa0 and zioro are assumed to be 50 and 0.35, receptively.

The general formulation for this RBDO problem is as follows:

min Pyt

st. P(A, = A,,)< Pos (11)
P(Ttot 2 Ttot,0)< Po.2

where po1 and po2 are assumed to be 0.0062 (5=2.5) each. In this example problem, the

probabilities P(ASa > Asa,o) and P(rtot > rmtvo)depend on all the random input variables x.

This problem has six epistemic design variables and three epistemic non-design
variables. Bounds on the mean for the non-design epistemic variables Rg, Fs, Rp and
bounds on the variances of all the random variables x are estimated by the methods
described in Chapter IV. Since this problem contains non-design epistemic variables, this

problem is solved by the RBDO methodology developed in Section 2 by solving the
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following two optimization problems iteratively until convergence and the solutions are

given in Table 2.

d” =argmin F’mt(d,ulﬂ:)
du

st P(ALd.u, )2 A )< Py
P(rtot(d,u,y;)z Ttot,o)< Po.
Pacs — (Ttota’max +NRgq ) =0
Lin =ML 0 Lory s ez )= 0

| ax — max(ltot,X ' Itot,Y’ Itot,z): 0
Ib<d <ub

(12)

4, =argmax Ry (d",u,u,)

13)
Ml
S't' PACS - (Ttota)max + r]Phold ) = O
Imin - min(ltot,x ) Itot,Y’ Itot,z ): 0
0

Imax - max(ltot,x ' Itot,Y' Itot,Z)=
Z <, <Z,

where Z, and Z, are are the bounds on the mean values of the non-design epistemic

variables z.
Table 2: Optimal design solution for the FireSat problem
No of analyses
. Design Analysis | Epistemic Analysis Total
Optimum x P
P “ | (Eq.(12)) (Eq. (13))
DA SA DA SA DA SA
(700, 5, 3.6192, 782.424 | 75,702 0 378 0 76,080 0
0.3792,1.0571, 1)

Note: DA = Disciplinary analysis SA = System analysis
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The optimizations in Egs. (12) and (13) required only 2 iterations between the design
problem (Eq. (12)) and the uncertainty analysis for the non-design epistemic variables
(Eqg. (13)) for convergence. Number of function evaluations in terms of disciplinary
analysis (DA) and system analysis (SA) for both the design and epistemic analyses are
listed in Table 6 for future reference. It is seen in Table 2 that the proposed RBDO
methodology can solve this design problem with only 76,080 disciplinary analyses, of
which only 378 evaluations are required for the epistemic analyses and only 75,702
evaluations are required for the design analyses. If this example problem involved only
aleatory uncertainty, the number of function evaluation would be approximately half of
75,702. Therefore, the proposed RBDO methodology under epistemic uncertainty can

solve this problem with a reasonably increased number of function evaluations.

4. Conclusion

This chapter has developed formulations for reliability-based design optimization
(RBDO) for both multidisciplinary systems under both aleatory and epistemic uncertainty
on the data of the random variables. Two types of data uncertainty — sparse point data and
interval data — are considered. The computational efficiency of the proposed formulations
is demonstrated with a number of example problems considering the number of
individual disciplinary analyses.

The proposed RBDO methodology does not require any coupled system level
analysis. The huge computational expense required for the epistemic analysis is reduced
by decoupling the design analysis from the epistemic analysis. Unlike existing methods,

it does not use separate representations for aleatory and epistemic uncertainties and does
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not require nested analysis. Both types of uncertainty are treated in a unified manner
using a probabilistic format, thus reducing the computational effort and simplifying the
optimization problem. The numerical examples in this chapter were carried out using the
classical nested loop RBDO formulation and the number of function evaluations needed
in each case was reported in Section 3. The focus of this chapter is not on efficiency, but
on the inclusion of epistemic uncertainty in the design optimization. Several more
efficient RBDO methods (single loop and sequential) have been developed in recent
years, and all these methods can be enhanced to incorporate epistemic uncertainty. Future
work in this direction also needs to include system reliability constraints, and the multi-

level nature of the multidisciplinary systems.

250



CHAPTER XII

SUMMARY AND FUTURE NEEDS

Summary of Contributions

In order to design reliable complex systems, it is necessary that the design process
accounts for all forms of uncertainty and ensures that the reliability targets are satisfied
throughout all stages of design. In this dissertation, efficient methods are developed to
incorporate uncertainty in the design of complex and multidisciplinary systems. This has
been done in two ways. First, this dissertation developed -efficient uncertainty
representation and propagation methods for both single and multidisciplinary systems
under epistemic uncertainty. Second, efficient design optimization methods, addressing
both robustness and reliability, are developed for both single and multidisciplinary

systems under epistemic uncertainty.

Objective 1 of this dissertation was to develop efficient methods to represent
epistemic uncertainty arising from sparse point data and interval data. Chapters Ill, IV
and V1 of this dissertation developed efficient uncertainty representation methods using a

flexible family of Johnson distributions to achieve this objective.

Objective 2 was to develop efficient uncertainty propagation methods under
epistemic uncertainty. Chapters I1l, V and VI of this dissertation achieved this objective

by developing both sampling and optimization-based uncertainty propagation methods.



Chapter 111 developed a methodology for propagating both aleatory and
epistemic uncertainty arising from sparse point data through computational models of
system response. This method eliminates the computationally expensive process of
nesting an aleatory uncertainty analysis inside an epistemic uncertainty analysis. This
methodology also affords sensitivity analysis information with regard to each of the
distribution parameters as well as the basic random variables. The results of the
sensitivity analysis give quantitative guidance regarding data collection for the random

variables.

Chapter 1V developed a probabilistic approach to represent interval data for
input variables in reliability and uncertainty analysis problems. The proposed
probabilistic framework of handling interval data can be applied for a combined
treatment of aleatory and epistemic input uncertainties from the perspective of
uncertainty propagation or reliability based design. This approach to uncertainty
representation given interval data can allow for computationally efficient propagation by
avoiding the nested analysis that is typically performed in the presence of interval

variables.

Chapter V developed a probabilistic approach for uncertainty representation and
propagation in system analysis, when the information on the uncertain input variables
and/or their distribution parameters may be available as either probability distributions or
simply intervals (single or multiple). Two methods are explored for the implementation

of the proposed approach, based on: (1) sampling and (2) optimization. The sampling
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based strategy is more expensive and tends to underestimate the output bounds. The
optimization based methodology improves both aspects. The proposed approach
facilitates the implementation of design optimization under uncertainty using efficient
reliability-based design optimization (RBDO) methods, e.g., single loop, decoupled, etc.,

due to the use of a probabilistic format to represent all the uncertain variables.

Chapter VI developed a methodology for multivariate input modeling of random
variables by using a four parameter flexible Johnson family of distributions for the
marginals that also accounts for data uncertainty. Semi-empirical formulas in terms of the
Johnson marginals and covariances are presented to estimate the model parameters. This
multivariate input model is particularly suitable for uncertainty quantification problems
that contain both aleatory and data uncertainty. A computational framework is developed
to consider correlations among basic random variables as well as among their distribution
parameters. A methodology is developed for propagating both aleatory and data
uncertainty arising from sparse point data and interval data through computational
models of system response. The proposed approach facilitates the implementation of

design optimization under uncertainty considering correlations.

Objective 3 of this dissertation was to develop efficient design optimization
methods under epistemic uncertainty arising from sparse point data and interval data.
Chapters VII and VIII of this dissertation achieved this objective by developing
robustness and reliability-based design optimization methods under epistemic

uncertainty, respectively.
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Chapter VII developed formulations and algorithms for design optimization
under both aleatory and epistemic uncertainty, from the perspective of system robustness.
A decoupled approach is proposed in this dissertation to un-nest the robustness-based
design from the analysis of non-design epistemic variables to achieve computational
efficiency. As collecting more data reduces data uncertainty but increases expenses, the
effect of sample size on the optimality and the robustness of the solution is also studied.
A method is also presented to determine the optimal sample size for sparse point data that
leads to the solutions of the design problem that are least sensitive to variations in the
design variables. The major advantage of the proposed methodology is that unlike
existing methods, it does not use separate representations for aleatory and epistemic
uncertainties and does not require nested analysis. Both types of uncertainty are treated in
a unified manner using a probabilistic format, thus reducing the computational effort and
simplifying the optimization problem. The results regarding robustness of the design
versus data size are valuable to the decision maker. The design optimization procedure
also optimizes the sample size, thus facilitating resource allocation for data collection
efforts. Due to the use of a probabilistic format to represent all the uncertain variables,
the proposed robustness-based design optimization methodology facilitates the
implementation of multidisciplinary robustness-based design optimization, which is a

challenging problem in presence of epistemic uncertainty.

Chapter VIII developed formulations and algorithms for reliability-based design

optimization (RBDO) for single discipline systems under both aleatory uncertainty and
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epistemic uncertainty. An efficient decoupled approach is proposed that un-nests the
design analysis from the epistemic analysis. The huge computational expense required for
the epistemic analysis is reduced by decoupling the design analysis from the epistemic
analysis. Unlike existing methods, it does not use separate representations for aleatory
and epistemic uncertainties and does not require nested analysis. Both types of
uncertainty are treated in a unified manner using a probabilistic format, thus reducing the

computational effort and simplifying the optimization problem.

Objective 4 of this dissertation was to develop efficient uncertainty propagation
methods for multidisciplinary systems under epistemic uncertainty. Chapter 1X of this
dissertation developed efficient optimization-based uncertainty propagation methods for

multidisciplinary systems to achieve this objective.

Chapter IX developed an efficient probabilistic approach for uncertainty
propagation in multidisciplinary system analysis, when the information on the uncertain
input variables may be available as either sparse point data or as intervals (single or
multiple). A decoupled approach is used in this dissertation to un-nest the system analysis
from the probabilistic analysis to achieve computational efficiency. This approach uses
deterministic optimization to first quantify the uncertainty in the coupling variables. No
coupled system level analysis is required. The proposed methods are equally applicable
with both sampling and analytical approximation-based reliability analysis methods. Due
to the use of a probabilistic format to represent all the uncertain variables, the proposed

uncertainty propagation framework facilitates the implementation of multidisciplinary
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design optimization in the presence of both aleatory and epistemic uncertainty.

Objective 5 of this dissertation was to develop efficient design optimization
methods for multidisciplinary systems under epistemic uncertainty. Chapters X and XI of
this dissertation achieved this objective by developing robustness and reliability-based
design optimization methods for multidisciplinary systems under epistemic uncertainty,

respectively.

Chapter X developed formulations and algorithms for design optimization for
multidisciplinary systems under both aleatory and epistemic uncertainty, from the
perspective of system robustness. A single loop approach is used for the design
optimization, which does not require any explicit interdisciplinary uncertainty
propagation and thus the computational complexity and cost involved in estimating the
mean and variation of the performance function is greatly reduced. A decoupled approach
is proposed to un-nest the robustness-based design from the analysis of non-design

epistemic variables to achieve further computational efficiency.

Chapter XI extended the RBDO methodology for single discipline system
developed in Chapter VIII to multidisciplinary systems. The proposed RBDO
methodology does not require any coupled system level analysis. The huge computational
expense required for the epistemic analysis is reduced by decoupling the design analysis

from the epistemic analysis.
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In summary, the methodologies developed in this dissertation will allow engineers to
comprehensively account for different types of uncertainty relevant to the design of
multidisciplinary systems, and perform multidisciplinary design analysis under physical,
and data uncertainty. The broader impact of this research includes (1) Stimulating new
directions for modeling epistemic uncertainty, (2) Development of new methods and
algorithms for design optimization under epistemic uncertainty, and (3) Application to
multidisciplinary systems encountered in aerospace engineering, automobile design, and

other domains that can use model-based reliability analysis and design optimization.

Future Research Needs

The short-term research needs are as follows. As mentioned in Chapter Il, epistemic
uncertainty can be viewed in two ways. It can be defined with reference to a stochastic
but poorly known quantity or with reference to a fixed but poorly known physical
quantity. This dissertation focuses on handling the first definition of epistemic
uncertainty i.e., epistemic uncertainty with reference to a stochastic but poorly known
quantity in a straightforward manner, as the uncertainty representation methods proposed
in this dissertation are purely probabilistic, resulting in a family of probability
distributions. However, the second definition of epistemic uncertainty i.e., epistemic
uncertainty with reference to a fixed but poorly known quantity can also be managed
using the probabilistic methods as can be found in Helton et al (2004) and Helton et al
(2008), though the implications of probability distributions for the representation of this
type of epistemic uncertainty merit further investigation. Following Helton et al (2004)

and Helton et al (2008), the proposed methods can also handle this second definition of
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epistemic uncertainty. It would be worthwhile to investigate this issue of using

probability theory for the second definition of epistemic uncertainty.

This dissertation specifically focuses on epistemic uncertainty arising from sparse
point and interval data. However, as mentioned in Chapter I, epistemic uncertainty can
also arise from other sources, for example, model error. The methodologies developed in

this dissertation need to be extended to include other sources of epistemic uncertainty.

In this dissertation, uncertainty propagation methods are developed, which can handle
either sparse point data or interval data. However, in practice, a mixture of both sparse
point and interval data could be available for the same variable, or one or more variable
might be described by sparse point data and the others might be described by interval
data. The methods developed in this dissertation are capable of handling such cases;
however, the uncertainty propagation methods developed in this dissertation have not
been illustrated to solve such problems. In future, it would be worthwhile to solve such

problems using the developed methods.

In this dissertation, design optimization methods are developed assuming
independence among input random variables. However, intervariable dependencies or
statistical correlations might have significant impact on the results of the design
optimization. Correlations may also exist among multiple constraints and objectives,
which may also affect the design optimization results. The design optimization methods
developed in this dissertation need to be extended to include correlations among input

randon variables as well as among multiple constraints and objectives.

Finally, this dissertation develops uncertainty analysis and design optimization

methods for multidisciplinary systems. However, in practice, the multidisciplinary
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models might have multiple levels. As the models are integrated across multiple levels,
the complexity and sophistication of the models increases, and assessing the predictive
capability of the overall system model becomes a more difficult challenge. The methods
developed in this dissertation need to be extended for the multi-level multidisciplinary

systems.

In the long term, the methodologies developed in this dissertation can also be
extended to solve problems in economics and finance, for example, portfolio
optimization, product family optimization, probabilistic budget estimation, etc and
problems in systems of systems (SoS), for example, transportation systems, emergency
response, network optimization, etc. Most of the existing solution approaches to these
problems deal with aleatory uncertainty only (McDonald, 2008; Mclnvale, 2009; Touran,
2010). There exist a few methods that deal with both aleatory and epistemic uncertainty
in portfolio management (Garlappi et al, 2007, Berleant et al, 2008). These methods
primarily focus on epistemic uncertainty arising from model error. However, if these
problems can be solved taking into account both aleatory and epistemic uncertainty
arising from all sources, the resulting solutions will be more robust, which may assist in

more realistic decision making under uncertainty.
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