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ABSTRACT 
 
 

The role of uncertainty management is increasingly being recognized in the 
design of complex systems that require multi-level multidisciplinary analyses. Most 
previous studies in this direction have only dealt with aleatory uncertainty (i.e., natural or 
physical variability). However, various modeling errors, assumptions and 
approximations, measurement errors, and sparse and imprecise information introduce 
additional epistemic uncertainty in model prediction.  Therefore, an approach to 
multidisciplinary uncertainty analysis and system design that addresses both aleatory and 
epistemic uncertainty is needed. The objective of this dissertation is to develop a 
methodology that provides decision support to engineers for multidisciplinary design and 
analysis of systems under aleatory uncertainty (i.e., natural or physical variability) and 
epistemic uncertainty (due to sparse and imprecise data). 

 
Specifically, the dissertation accomplishes this objective through: (1) 

Development of a probabilistic approach for the representation of epistemic uncertainty; 
(2) Development of a probabilistic framework for the propagation of both aleatory and 
epistemic uncertainty; (3) Development of formulations and algorithms for design 
optimization under aleatory and epistemic uncertainty, from the perspective of system 
robustness and reliability; (4) Development of a framework for uncertainty propagation 
in multidisciplinary system analysis; and (5) Development of formulations and 
algorithms for design optimization under aleatory and epistemic uncertainty for 
multidisciplinary systems, from the perspective of system robustness and reliability. 

 
The methodology developed in this dissertation is illustrated through problems 

related to spacecraft design and analysis, such as the conceptual upper-stage design of a 
two-stage-to-orbit vehicle, and design and analysis of a fire detection satellite. 
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CHAPTER I 

 

INTRODUCTION 

 

The role of systematic uncertainty quantification is increasingly being recognized 

in assessing the performance, safety, and reliability of complex physical systems, often in 

the absence of an adequate amount of experimental data for many applications. Further, 

simulation of a complex physical system often involves multiple levels of modeling, such 

as material to component to subsystem to system. Interacting models and simulation 

codes from multiple disciplines (multiple physics) may be required at some of the levels. 

As the models are integrated across multiple disciplines and levels, the complexity and 

sophistication of the models increase, and assessing the predictive capability of the 

overall system model becomes a difficult challenge. The variability in the input 

parameters is propagated through the simulation codes, between individual disciplines, 

and from one level to next level. Various modeling errors, assumptions and 

approximations, measurement errors, and sparse and imprecise information, further 

compound the uncertainty in the predictive capability of the system model. An efficient 

methodology that accounts for all sources of uncertainty in multidisciplinary systems 

awaits development.  Therefore, the overall research objective of this dissertation is to 

pursue computational methods to quantify, propagate and manage the uncertainty in 

multi-disciplinary system analysis models. In order to assess the uncertainty in estimates 

of system performance and system-level figures of merit, it is important that various 

types of known uncertainties be accounted for appropriately. Uncertainty in engineering 
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analysis and design arises from several different sources (Oberkampf et al, 1999) and 

must be propagated through the system model. Some of the "known" sources are:  

(1) Physical uncertainty or inherent variability: The demands on an engineering 

system as well as its properties always have some variability associated with them, due to 

environmental factors and variations in operating conditions, manufacturing processes, 

quality control etc. Such quantities are represented in engineering analysis as random 

variables, with statistical parameters such as mean values, standard deviations, 

distribution types etc. estimated from observed data and there exist well established 

methods for handling such uncertainty. 

 (2) Epistemic Uncertainty: Epistemic uncertainty represents a lack of knowledge 

about the system due to limited data, measurement limitations, or simplified 

approximations in modeling system behavior. This type of uncertainty can be typically 

reduced by gathering more information.  Epistemic uncertainty can be viewed in two 

ways. It can be defined with reference to a stochastic but poorly known quantity (Baudrit 

and Dubois, 2006) or with reference to a fixed (deterministic) but poorly known physical 

quantity (Helton et al, 2004). An example of the first type of epistemic uncertainty is an 

expert giving a range of values for a physical quantity (such as elastic modulus of a foam 

material). An example of the second type of epistemic uncertainty is a measurement of 

the size of a crack within a mechanical component; the crack has a fixed length, but due 

to measurement difficulties, only an interval might be reported.  Non-probabilistic 

representations such as fuzzy sets, evidence theory, etc. are available for describing such 

uncertainties (Ferson et al, 2007; Mourelatos and Zhou, 2006; Rao and Annamdas, 2009). 

This dissertation focuses on the first type of epistemic uncertainty, where the probability 
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distributions of input random variables may need to be inferred from data such as 

intervals given by experts or sparse point data. In this case, the distribution parameters of 

the random variables are also uncertain. In this dissertation, a probabilistic framework has 

been developed for the representation of epistemic uncertainty arising from sparse point 

and interval data on random variables. 

 (3) Model Error: This results from approximate mathematical models of the 

system behavior and from numerical approximations during the computational process, 

resulting in two types of error in general – solution approximation error, and model form 

error. For new and complex engineering systems, this type of uncertainty is not 

quantifiable a priori. This dissertation, however, does not include model errors in the 

uncertainty analysis. 

The uncertainty described by sparse point or interval data  (either regarding the 

variables or their distribution parameters) should be represented  in a manner that 

facilitates ease of use in efficient algorithms for reliability analysis or design 

optimization. In this dissertation, this uncertainty has been represented through a flexible 

family of probability distributions. Such conversion of epistemic uncertainty to a 

probabilistic format enables the use of computationally efficient methods for probabilistic 

uncertainty propagation. 

After finding an appropriate representation strategy for aleatory and epistemic 

uncertainty in the system input, it must be propagated through the system model if a 

statement about the uncertainty in model output is to be made. Many probabilistic 

uncertainty propagation methods have been developed for single discipline problems 

involving expensive computational codes in order to propagate physical variability in the 
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input, typically expressed through random variables and random processes and/or fields. 

Most of these techniques have only been studied with respect to physical variability 

represented by probability distributions, but are not able to include both aleatory and 

epistemic uncertainty.  

Uncertainty analysis often assumes independence among input random variables. 

However, intervariable dependencies or statistical correlations might have significant 

impact on the results of uncertainty analysis. Multivariate input modeling methods have 

been developed for some known marginal distributions (Der Kiureghian and Liu, 1986; 

Liu and Der Kiureghian, 1986; Minhajuddin et al; 2004 and Haas, 1999). However, in 

practice, it is likely that the marginal distribution types for the input variables are not 

known or cannot be specified accurately due to the presence of limited or interval data 

and in this case, the correlation itself is uncertain. Moreover, correlations among the 

distribution parameters have also significant impact on uncertainty analysis. Little to no 

work exists in the literature that considers uncertainty in correlation coefficients and 

correlations among distribution parameters in the presence of sparse point data or interval 

data. Again, for interval data, the correlations among the input variables themselves are 

unknown and computationally efficient methods are needed for the propagation of both 

aleatory and statistical uncertainty that account for correlations among random variables 

for which the information is only available in the form of intervals. 

There has been an increased emphasis focused on accounting for uncertainty in 

design inputs used for design optimization. In deterministic design optimization, it is 

generally assumed that all the design variables and model inputs are precisely known; the 

influence of data or distribution parameter uncertainty on the optimality and feasibility of 
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the models is not explicitly considered. However, real-life engineering problems are not 

deterministic and this deterministic assumption about inputs may lead to infeasibility or 

poor performance (Sim, 2006). In recent years, several methods have been developed for 

design under uncertainty. Reliability-based design (Chiralaksanakul and Mahadevan, 

2005) and robust design (Du and Chen, 2000, Huang and Du, 2007) are two major 

developments among these. While reliability-based design aims to maintain design 

feasibility at desired reliability levels, robust design optimization attempts to minimize 

variability in the system performance due to variations in the inputs (Lee et al, 2008). In 

recent years, several methods have also been proposed to integrate these two paradigms 

of design under uncertainty (Lee et al, 2008, Du et al, 2004). All these methods 

developed so far work under aleatory uncertainty (i.e., precise probabilistic information). 

However, such precise knowledge about probability distribution is rarely available in 

practice. 

In recent years, multidisciplinary reliability analysis and design optimization 

under uncertainty have received increased attention in order to account for uncertainties 

in the system and design variables. Several solution techniques are reported in the 

literature for multidisciplinary design optimization (MDO) under uncertainty (e.g., Du 

and Chen, 2002; Du and Chen, 2005; Mahadevan and Smith, 2006; Chiralaksanakul and 

Mahadevan, 2007; Du et al, 2008). These studies have dealt with aleatory uncertainty 

only. However, in practice, sufficient data are not available to construct the probability 

distributions of some of the input variables. Sometimes the only information available for 

an input variable is given by one or more intervals. If the system design can 

accommodate both aleatory and epistemic uncertainty, the resulting systems will be safer 
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and more robust. Therefore, it is necessary to develop algorithms for multidisciplinary 

design optimization that deal with both aleatory and data uncertainty. Computational 

methods for multidisciplinary analysis and design under both aleatory and epistemic 

uncertainty are in their infancy. A few methods exist for multidisciplinary design 

optimization under both aleatory and epistemic uncertainty. Many of these methods use 

non-probabilistic methods to handle epistemic uncertainty and are computationally 

expensive. This dissertation research advances the state of the art in multidisciplinary 

system design under uncertainty. 

Objectives 
 

The overall goal of this dissertation is to develop and demonstrate effective 

methodologies for quantifying, propagating, and designing for uncertainty in 

multidisciplinary systems. Both probabilistic and non-probabilistic formats of uncertainty 

data have been included and integrated. In developing the methodology, this dissertation 

research addresses fundamental questions focused on the following five research 

objectives: 

1. Input uncertainty representation 

2. Uncertainty propagation 

3. Design Optimization under uncertainty 

4. Multidisciplinary uncertainty propagation analysis  

5. Multidisciplinary design optimization under uncertainty 

These five objectives and solution approaches are discussed below, along with the 

organization of the dissertation.  
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Objective 1: Input uncertainty representation

Input uncertainty representation is the first step for reliability analysis and 

probabilistic design optimization for any system. A mathematical model of the physical 

system must account for uncertainty. This dissertation represents uncertain quantities as 

random variables, described through probability distributions. However, sometimes the 

data on the random variable is sparse, imprecise, or incomplete and this results in 

uncertainty about the distribution type and distribution parameters. Again, intervariable 

dependencies or statistical correlations might have a significant impact on the results of 

uncertainty analysis. In practice, it is likely that the marginal distribution types for the 

input variables are not known or cannot be specified accurately due to the presence of 

limited or interval data which results in uncertainty in correlations among model inputs as 

well as their distribution parameters. This objective focuses on the following questions: 

(1) How can uncertainty in model inputs be quantified? (2) How can uncertainty in 

distribution type be addressed?  (3) How can uncertainty in distribution parameters be 

quantified? (4) How can an efficient multivariate input modeling technique be developed 

in the presence of sparse and imprecise probabilistic information? (5) How can 

uncertainty in correlations among model inputs, and among distribution parameters of 

model inputs be addressed?  

  

In order to address this uncertainty in distribution type, this dissertation proposes 

the use of a flexible family of distributions. Next the uncertainty in the distribution 

parameters themselves is considered, and the use of computational resampling methods to 

determine Johnson distributions for the distribution parameters is proposed. A 

methodology is proposed to convert uncertainty arising from interval data to a 
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probabilistic format. This dissertation also proposes a methodology for multivariate input 

modeling of random variables by using a four parameter flexible Johnson family of 

distributions for the marginals that also accounts for data uncertainty. This multivariate 

input model is particularly suitable for uncertainty quantification problems that contain 

both aleatory and data uncertainty. In this dissertation, a computational framework is 

developed to consider correlations among basic random variables as well as among their 

distribution parameters. Chapters III and IV of this dissertation address questions 1 to 4 

and Chapter VI addresses questions 4 and 5 in detail. 

 
Objective 2: Uncertainty propagation

Once the uncertainty in model inputs, their distributions, and correlations among 

model inputs is quantified, it must be propagated through the system model if a statement 

about the uncertainty in model output is to be made. This objective focuses on the 

following questions: (1) How can a computationally efficient method be developed for 

the propagation of uncertainty through system models? (2) How can uncertain 

correlations among model inputs and their distribution parameters be included in 

uncertainty analysis?  

  

An optimization-based approach is proposed for computing the bounds on the 

reliability of a design that allows for the decoupling of epistemic and aleatory uncertainty 

analysis, enabling computationally affordable approaches to reliability analysis under 

aleatory and epistemic uncertainty arising from sparse point data. This dissertation 

develops and illustrates a probabilistic approach for propagation in system analysis, when 

the information on the uncertain input variables and/or their distribution parameters may 

be available as either probability distributions or simply intervals (single or multiple). A 
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methodology for propagating both aleatory and data uncertainty arising from sparse point 

data through computational models of system response that assigns probability 

distributions to the distribution parameters and quantifies the uncertainty in correlation 

coefficients by use of computational resampling methods is also proposed. For interval 

data, the correlations among the input variables are unknown.  This dissertation 

formulates the optimization problems of deriving bounds on the cumulative probability 

distribution of system response, using correlations among the input variables that are 

described by interval data. Chapters III and V of this dissertation address question 1 and 

Chapter VI addresses question 2 in detail. 

 

Now that the uncertainty in the input is quantified, and an uncertainty propagation 

method to quantify the uncertainty in the output is developed, the next step is to develop 

formulations and algorithms for design optimization under data uncertainty, both from 

the perspective of system robustness so that the resulting solutions are least sensitive to 

variations in the model inputs and from the perspective of satisfying the system 

reliability. This objective addresses the following questions: (1) How can a methodology 

be developed for design optimization that can handle data uncertainty (i.e., imprecise 

probabilistic information)? (2) How can the proposed methodology improve the 

robustness and reliability of the design?  

Objective 3: Design Optimization under uncertainty 

This dissertation proposes formulations and algorithms for design optimization 

under both aleatory (i.e., natural or physical variability) and epistemic uncertainty (i.e., 

imprecise probabilistic information), from the perspective of system robustness and 

reliability. An approach is proposed in this dissertation to decouple the robustness-based 
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and reliability-based design from the analysis of non-design epistemic variables to 

achieve computational efficiency.  Chapters VII and VIII of this dissertation address 

questions 1 and 2 in detail. 

Multidisciplinary system analysis, even deterministic, is computationally 

expensive. Uncertainty analysis multiplies the computational effort even further. 

Inclusion of data uncertainty within the analysis again multiplies the computational 

effort. This objective focuses on the following fundamental questions: (1) How can the 

uncertainty quantification methods developed in Objectives 1-2 be extended for 

multidisciplinary systems? (2) How can an efficient method for uncertainty quantification 

be developed for a multidisciplinary system that includes imprecise probabilistic 

information and remains computationally tractable?  

Objective 4: Multidisciplinary uncertainty propagation analysis 

This dissertation develops an efficient probabilistic approach for uncertainty 

propagation in multidisciplinary system analysis, when the information on the uncertain 

input variables may be available as either sparse point data or as intervals (single or 

multiple). A decoupled approach is used in this dissertation to un-nest the 

multidisciplinary system analysis from the probabilistic analysis to achieve 

computational efficiency. This approach uses deterministic optimization to first quantify 

the uncertainty in the coupling variables, without any coupled system level analysis. 

Once the uncertainty in the coupling variables is quantified, the system level uncertainty 

propagation analysis is similar to single discipline problems. The proposed methods are 

equally applicable to both sampling and analytical approximation-based reliability 

analysis methods. Chapter IX of this dissertation addresses questions 1 and 2 in detail. 
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Objective 5: Multidisciplinary design optimization under uncertainty 

Multidisciplinary design optimization under aleatory uncertainty itself is a 

challenging problem. Inclusion of epistemic uncertainty makes this problem more 

difficult. This objective focuses on the following fundamental questions: (1) How can the 

design optimization methods developed in Objective 3 be extended for multidisciplinary 

systems? (2) How can an efficient method be developed for multidisciplinary system 

design that includes sparse and imprecise probabilistic information and remains 

computationally tractable?  

This dissertation proposes formulations and algorithms for design optimization of 

multidisciplinary systems under both aleatory uncertainty (i.e., natural or physical 

variability) and epistemic uncertainty (i.e., imprecise probabilistic information), from the 

perspective of system robustness and reliability.  A single loop approach is used for the 

robustness-based design optimization, which does not require any explicit coupled 

multidisciplinary uncertainty propagation analysis. Thus the computational complexity 

and cost involved in estimating the mean and variation of the performance function is 

greatly reduced. The proposed methodology for reliability-based design of 

multidisciplinary systems also does not require any coupled system level analysis. An 

approach is proposed in this dissertation to decouple the robustness-based and reliability-

based design from the analysis of non-design epistemic variables to achieve further 

computational efficiency. Chapters X and XI address questions 1 and 2 in detail. 

The uncertainty quantification and design optimization methodologies developed 

in this dissertation are illustrated through problems related to spacecraft design and 
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analysis, such as the conceptual level upper stage design of a two-stage-to-orbit (TSTO) 

vehicle and a simplified three-disciplinary version of a fire satellite (FireSat). 

Two-stage-to-orbit (TSTO) Vehicle 

The two-stage-to-orbit (TSTO) vehicle involves a multidisciplinary system 

analysis consisting of geometric modeling, aerodynamics, aerothermodynamics, engine 

performance analysis, trajectory analysis, mass property analysis and cost modeling 

(Stevenson et al, 2002). The Two-Stage-To-Orbit (TSTO) is a Highly Reliable Reusable 

Launch Systems (HRRLS) concept vehicle, as shown in Figure 1.  This concept vehicle is 

used in the NASA Aeronautics Research Mission Directorate (ARMD) Fundamental 

Aeronautics Program (Hypersonics Project).  The first (launch) stage (shown in blue in 

the figure), employs a turbine-based, combined cycle propulsion system.  The second 

(upper) stage is (shown in red in the figure) employs a rocket powered propulsion system.  

In this dissertation, a simplified version of the upper stage design process of a 

TSTO vehicle is used to illustrate the proposed methods.  High fidelity codes of 

individual disciplinary analysis are replaced by inexpensive surrogate models. Figure 2 

illustrates the analysis process of a TSTO vehicle. 

 

Figure 1:  The Two-Stage-To-Orbit (TSTO) Highly Reliable Reusable Launch 

Systems (HRRLS) concept vehicle. 
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Figure 2: TSTO vehicle concept 

 

Fire Satellite (FireSat) Design and Analysis 

This problem has been originally described in Wertz and Larson (1999). This is a 

hypothetical but realistic spacecraft consisting of a large number of subsystems with both 

feedback and feed-forward couplings. The primary objective of the fire satellite (FireSat) 

is to detect, identify, and monitor forest fires in near real time. This satellite is intended to 

carry a large and accurate optical sensor of length 3.2 m and weight 720 kg, and has an 

angular resolution of 8.8e-7 radians. In this dissertation, a simplified subset of FireSat 
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subsystems consisting of i) Orbit Analysis, ii) Attitude Control and iii) Power, based on 

Ferson et al (2009) has been used . This three-discipline problem is sketched in Figure 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: FireSat: A three-subsystem representation 

 

The following chapter discusses the existing methods for handling the above 

objectives and explains the scope of the proposed methods. 
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CHAPTER II 
 
 

LITERATURE REVIEW 
 

 
1. Introduction 

 
As discussed in Parry (1996), there are three elements in a model-based uncertainty 

analysis: i) characterizing uncertainty in individual elements of the model, i.e., 

representing input uncertainty regarding individual elements of the model, ii) propagating 

the uncertainty thus represented through a model of system response to obtain a 

representation of the output uncertainty and iii) communicating the results thus obtained 

to the decision makers and other stakeholders. Therefore, it is important that the different 

types of uncertainty in the system and the model be represented in a way that it can be 

efficiently used in further analysis i.e., in algorithms for reliability analysis and design 

optimization and the results can be easily communicated to the stakeholders. It is now 

well recognized that both aleatory and epistemic uncertainty must be represented in an 

appropriate manner so that it can be used in any decision support analysis (Helton and 

Burmaster, 1996; Parry, 1996; Pate´-Cornell, 1996). 

Many important physics-based engineering analyses require the use of 

computationally expensive codes, and often involve uncertain inputs that are described 

using various probabilistic and non-probabilistic methods. Many probabilistic uncertainty 

propagation methods have been developed for many single discipline problems involving 

computationally expensive simulation models in order to propagate physical variability in 

the input, expressed through random variables and random processes and/or fields. In 
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recent years, several methods have been developed for design under uncertainty for both 

single and multidisciplinary problems.  

All these methods developed so far work under precise probabilistic information on 

the random variables. This dissertation specifically focuses on epistemic uncertainty 

arising from imprecise probabilistic information (especially sparse point data and 

interval data) on the random variables. In particular, this dissertation develops methods 

for different uncertainty management tools, namely uncertainty quantification and design 

optimization for both single and multidisciplinary systems under both aleatory and 

epistemic uncertainty arising from sparse point and interval data. 

The following sections present a review of existing methods in the literature for 

uncertainty quantification, propagation, and design optimization under uncertainty. This 

review is followed by an outline of the methods proposed in the subsequent chapters to 

address some of the unfulfilled research needs in the current literature, especially with 

respect to imprecise probabilistic information.  

 
2. Uncertainty quantification with sparse point data 

One approach for uncertainty representation under data uncertainty is evidence 

theory (Shafer, 1976). Evidence theory has been used with interval data for reliability-

based design optimization (Mourelatos and Zhou, 2006) and multidisciplinary systems 

design (Agarwal et al, 2004), where a belief measure is used to formulate the non-

deterministic design constraints. Other approaches for epistemic uncertainty 

quantification based on evidence theory include Guo and Du (2007) and Guo and Du 

(2009).  However, evidence theory requires basic probability assignments (bpa) and it is 

not clear how to construct bpa from sparse data. 
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In some cases, random variables with sparse data can be modeled using convex 

models of uncertainty (Ben-Haim and Elishakoff, 1990). Examples of convex models 

include intervals, ellipses or any convex sets. Convex models usually require less detailed 

information to characterize uncertainties than probabilistic models. They require a worst-

case analysis in design applications that can be formulated as a constrained optimization 

problem. When the convex models are intervals, techniques in interval analysis can be 

used, though they are computationally expensive. As an extension of interval analysis, 

some research in uncertainty representation and propagation under data uncertainty has 

focused on the use of possibility/fuzzy set theory (Dubois and Prade, 1988). The 

drawback of these approaches is that they require combinatorial interval analysis, and the 

computational expense increases exponentially with the number of uncertain variables 

and with the nonlinearity of the function. Further, the use of interval analysis methods for 

problems with sparse point data requires that interval information be inferred from point 

data, and this introduces additional uncertainty to the problem. 

It is clear from the above discussion that probability theory might be easier and 

more intuitive in handling the information available from sparse point data. While 

probability theory is a widely understood and perfect description of aleatory uncertainty, 

knowledge of the exact probability distribution type and/or parameters for random 

variables is usually imperfect due to limited data. Extensive probabilistic techniques for 

uncertainty quantification and propagation also exist, which usually rely on existence of 

sufficient data. For cases where data is limited, it is impossible to define a unique 

probability distribution function to adequately describe the random variable.  Hence, the 

probability distributions are imprecise. Two types of approaches are available to handle 
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this situation: (1) Bayesian methods, and (2) P-boxes, as discussed below. 

Bayesian methods (e.g. Der Kiureghian 1984, McFarland 2007) have been used to 

leverage expert opinion in cases where data is sparse, while including the information 

gained from the data.  However, under sparse data, the distributions selected are sensitive 

to the choice of prior distributions. Alternately, other studies within the context of 

imprecise probability theory have focused on representing uncertainty in the probability 

distribution by using a probability box, or p-box (e.g., Ferson et al, 2007), which is the 

collection of all possible empirical distributions for the random variable.  Other research 

has focused on developing bounds, e.g., on CDFs. Halperin (1986) extensively developed 

the idea of interval bounds on CDFs as well as methods for propagation of these 

probability intervals through simple expressions. Hyman (1982) developed similar ideas 

for probabilistic arithmetic expressions in the density domain. Williamson and Downs 

(1990) described algorithms to compute arithmetic operations (addition, subtraction, 

multiplication and division) on pairs of p-boxes. These operations generalize the notion 

of convolution between probability distributions (Berleant, 1993; 1996; Berleant and 

Goodman-Strauss, 1998). 

Several of these current methods of uncertainty propagation under data and 

distribution uncertainty can be computationally expensive. One reason is that for every 

combination of distribution parameters, the probabilistic analysis for aleatory variables 

has to be repeated, which results in a computationally expensive nested analysis. Various 

approaches can be used to reduce the computational expense of the nested approach; for 

example, Monte Carlo methods leveraging importance sampling, the first-order reliability 

method (FORM), and second-order reliability method (SORM) (Haldar and Mahadevan, 
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2000) can be used. The system analysis may also be replaced with an inexpensive 

surrogate model (e.g., polynomial chaos (Ghanem and Spanos 1991; Cheng and Sandu, 

2009) or Gaussian process model (Bichon et al, 2008)) to achieve computational 

efficiency. While these propagation methods are useful for problems dealing with 

uncertainties having probabilistic representation arising primarily from inherent 

variability in physical parameters, decoupled methods to efficiently represent and 

propagate aleatory and data uncertainty (or a mixture of aleatory and epistemic 

uncertainty) are yet to be developed.  

Therefore, Chapter III of this dissertation develops and illustrates an approach for 

the propagation of both aleatory and epistemic uncertainty in such a way that the 

epistemic and aleatory uncertainty analyses are not nested, thus enabling computationally 

efficient calculation of bounds on reliability estimates under epistemic and aleatory 

uncertainty. 

3. Uncertainty quantification with interval data 

3.1 Sources of Interval data 

Interval data are encountered frequently in practical engineering problems.  

Several such situations where interval data arise are discussed in (Du et al 2005; Ferson 

et al 2007), for example: (a) physical limits and theoretical constraints may be the only 

sources of information, which can only circumscribe possible ranges of quantities 

resulting in interval data. (b) Interval data arises when the only information available for 

a variable is a collection of expert opinions, which specify a range of possible values for 

a variable. (c) Reporting data with plus-or-minus uncertainties associated with the 

calibration of measuring devices also leads to interval data. (d) Some tests in chemical or 
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purity quantification can only state that an observation is below a certain detection limit, 

resulting in an interval observation for the amount of impurity between zero and the 

threshold. (e) Intervals may arise in the detection of a fault when observations are spaced 

temporally; as the fault occurs between two consecutive observations, the time of failure 

is given by a window of time. Interval data requires careful treatment, especially if the 

width of the interval cannot be ignored when compared to the magnitude of the variable. 

Two types of interval data are considered in this dissertation, based on computational 

methods: single or multiple intervals. When compared to single interval cases, multiple 

intervals require consideration of two additional issues:  (1) From the context of 

computational expense, estimating statistics from multiple intervals can be more 

challenging, (2) From the context of aggregation of information represented in the 

multiple intervals, there may be no basis to believe that the “true” value of the variable 

lies at any particular location of any intervals, such as endpoints or midpoints of the 

intervals.  Although not necessarily true, a common assumption in the literature is that all 

the intervals are equally likely to enclose the “true” value of the variable, i.e., all intervals 

have an equal weight (Ferson et al 2007).  

When data is available in multiple intervals (e.g., given by multiple experts), the 

information contained in one interval could contradict that in the other interval(s), or 

could be contained by other interval(s). In this context, intervals can be broadly 

categorized as non-overlapping and overlapping intervals.   

3.2 What does an interval represent? 

In order to propagate uncertainty through models of system response, it is necessary 

to first have a valid representation of the input uncertainty that can lead to meaningful 
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quantification of the uncertainty in the system response. In this context, there are two 

broadly categorized interpretations of what interval data represents in the literature. 

The first is the so-called equi-probability model, which corresponds to the Laplacian 

principle of indifference (Howson and Urbach, 1993) and considers each interval as a 

uniform distribution (Bertrand and Groupil, 2000). Each possible value in every interval 

is assumed equally likely, resulting in a single probability mass and/or density for each 

possible realization of a random variable. We note that there might not be a justification 

to assume uniform distribution or any other distribution within a particular interval, 

which can be viewed as a limitation of the equi-probability model. Also, the equi-

probability model results in a precise probabilistic representation of interval data, thereby 

failing to capture the inherent imprecision in the data.  

The second popular interpretation of interval data, which is adopted in this 

dissertation, is that it represents incertitude in the data (Ferson et al 2007).  As a result, 

the possible values for quantities of interest such as probability of an event will in general 

be an interval, unlike a single value for point data. Unlike the equi-probability model that 

results in a single probabilistic representation of the interval, the notion of incertitude 

leads to a collection of distribution functions that could arise from different possible 

combinations of values from within the intervals.   
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Overlapping data with 5 intervals 
[5, 6; 5.5, 6.1; 6, 6.5; 5.4, 6.2; 5.6, 6.6] 

Non-overlapping data with 4 intervals 
[5, 6; 6.1, 6.7; 6.9, 7.8; 8, 9] 

Figure 1: Examples of an empirical p-box for multiple intervals 
 

The set of all possible probability distributions of a particular distribution type 

(e.g., empirical, normal) for a variable described by interval data is known as a 

probability box, or a p-box for short (Williamson and Downs 1990). To illustrate, we 

explain the notion of an empirical p-box that exists in the literature (Ferson et al 2007), 

which is the collection of all possible empirical distributions for the given set of intervals. 

An empirical p-box summarizes the interval data set graphically. It is constructed as an 

increasing step function with a constant vertical step height of 1/N, where N is the 

number of intervals. The construction of the empirical p-box requires sorting the lower 

and upper bounds for the set of intervals, followed by plotting the empirical cumulative 

distribution function (CDF) of each of the sorted bounds as shown in Figure 1 for 

overlapping interval data with five intervals [5, 6; 5.5, 6.1; 6, 6.5; 5.4, 6.2; 5.6, 6.6] and 

non-overlapping interval data with four intervals [5, 6; 6.1, 6.7; 6.9, 7.8; 8, 9]. The step 

height at each data point for the empirical CDF in Figure 1 is equal, which reflects the 

assumption that the intervals are all equally weighed. Note that the p-box and the 
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Dempster-Shafer structure (discussed in the following subsection) are equivalent and 

each representation can be converted to the other (Regan et al, 2004). 

Several other approaches such as evidence theory and fuzzy logic are also used within 

the interpretation of incertitude. A brief discussion of the various techniques to represent 

interval data within the scope of incertitude is presented next. 

3.3 Existing Methods for Treatment of Interval Uncertainty 

The Sandia epistemic uncertainty project (Oberkampf et al 2004) conducted a 

workshop that invited various views on quantification and propagation of epistemic data 

uncertainty (includes interval data), which are summarized in (Ferson et al 2004). Many 

uncertainty theories for representation and propagation of interval uncertainty have been 

discussed at the workshop, which include Dempster–Shafer structures (Helton et al, 

2004; Klir, 2004), probability distributions (Helton et al, 2004), possibility distributions 

(Helton et al, 2004), random intervals (Fetz and Oberguggenberger, 2004), sets of 

probability measures (Fetz and Oberguggenberger, 2004), fuzzy sets (Fetz and 

Oberguggenberger, 2004), random sets (Berleant and Zhang, 2004; Hall and Lawry, 

2004), imprecise coherent probabilities (Kozine and Utkin, 2004), coherent lower 

previsions (De Cooman and Troffaes, 2004), p-boxes (Ferson and Hajagos, 2004), 

families of polynomial chaos expansions (Red- Horse and Benjamin, 2004), info-gap 

models (Ben-Haim, 2004), etc. A brief discussion of some of the popular uncertainty 

theories discussed in the above workshop, and interval data in general, follows.  

In addition to the p-box representation discussed previously, other research within 

the realm of probability theory for interval data has focused on developing bounds, e.g., 

on CDFs. Hailperin (1986) extensively developed the idea of interval bounds on CDFs as 
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well as methods for propagation of these probability intervals through simple 

expressions. Hyman (1982) developed similar ideas for probabilistic arithmetic 

expressions in the density domain. Williamson and Downs (1990) described algorithms 

to compute arithmetic operations (addition, subtraction, multiplication and division) on 

pairs of p-boxes. These operations generalize the notion of convolution between 

probability distributions (Berleant 1993; 1996; Berleant and Goodman-Strauss, 1998). 

Additional results involving bounds on CDFs are available in Helton et al (2004) and 

Helton et al (2008). Epistemic uncertainty has also been expressed using subjective 

probability (e.g., (Apeland et al, 2002; Hofer et al, 2002)). On the other hand, some 

researchers believe that a probabilistic representation is not appropriate for interval data 

because information may be added to the problem (Du et al, 2005; Agarwal et al, 2004).  

A commonly used approach for representation of interval data is Dempster-Shafer 

evidence theory (Shafer, 1976). In the context of evidence theory, there exist many rules 

to aggregate different sources of information. Among different rules of combination, the 

Dempster’s rule is one of the most popular, however, this approach may not be suitable 

particularly for cases where there is inconsistency in the available evidence (Oberkampf 

et al, 2001; Agarwal et al, 2004), e.g., in the case of non-overlapping intervals. In such 

cases, a mixture or averaging rule may be appropriate (Oberkampf et al, 2001).  Evidence 

theory has been applied to quantify epistemic uncertainty in the presence of interval data 

for multidisciplinary systems design (Agarwal et al, 2004), where a belief measure is 

used to formulate the non-deterministic design constraints.  Others have developed 

approaches for epistemic uncertainty quantification based on evidence theory, including 

Guo and Du (2007) and Guo and Du (2009).   
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In some cases, uncertain events form patterns that can be modeled using convex 

models of uncertainty (Ben-Haim and Elishakoff, 1990). Examples of convex models 

include intervals, ellipses or any convex sets. Convex models usually require less detailed 

information to characterize uncertainties than probabilistic models. They require a worst-

case analysis in design applications which can be formulated as a constrained 

optimization problem. When the convex models are intervals, techniques in interval 

analysis can be used, though they are computationally expensive. 

Some research has focused on the use of possibility/fuzzy set theory for interval 

data. The possibility distribution (membership function) of a function of an interval 

variable with a given possibility distribution can be found using Zadeh's Extension 

Principle (Dubois and Prade, 1988). The drawback of this approach is that it requires 

combinatorial interval analysis, and the computational expense increases exponentially 

with the number of uncertain variables and with the nonlinearity of the function. Within 

the realm of fuzzy representation, Rao and Annamdas (2009) present the idea of weighted 

fuzzy theory for intervals, where fuzzy set based representations of interval variables 

from evidences of different credibilities are combined to estimate the system margin of 

failure.  

The aggregation of multiple sources of information as seen with multiple interval 

data is an important issue in characterizing input uncertainty. There is now an extensive 

list of literature that discuss different aggregation methods, which include stochastic 

mixture modeling (Ferson and Hajagos, 2004; Helton et al, 2004), Dempster's rule 

(Agarwal et al, 2004; Rutherford, 2004), a posteriori mixture (Red- Horse and Benjamin, 

2004), natural extension of pointwise maximum (De Cooman and Troffaes, 2004), etc. 
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However, the aggregation method used in uncertainty representation must be consistent 

with the nature of the uncertainty as well as the specific uncertainty theory used (Helton 

et al, 2004).  

Helton et al (2004) discussed and illustrated the use of different uncertainty theories, 

namely, probability theory, evidence theory, possibility theory, and interval analysis for 

the representation and propagation of epistemic uncertainty. This paper used a sampling-

based approach with each of the uncertainty theories. For probability theory, they defined 

the probability spaces by assuming uniform distributions over the sets of the possible 

values of the input variables. Multiple sources of information are aggregated by simply 

averaging the distributions for the number of sources assigning equal weight to each 

source. Baudrit and Dubois (2006) proposed a methodology to represent imprecise 

probabilistic information described by intervals using different uncertainty approaches, 

such as probability theory, possibility theory and belief functions, etc. 

Within the context of uncertainty propagation with interval variables, there exists 

literature that considers both interval and aleatory uncertainties. Approaches such as 

evidence theory or possibility theory are commonly used to represent interval variables, 

while probabilistic representation is typically used to represent aleatory uncertainties. The 

propagation of an evidence theory representation of uncertainty through a model of 

system response is computationally more expensive than that of probability theory 

(Helton et al, 2007). Helton et al (2008) discussed the efficiency of different alternatives 

for the representation and propagation of epistemic uncertainty and argued that 

propagation of epistemic uncertainty using evidence theory and possibility theory 

required more computational effort than that of probability theory. In uncertainty 
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propagation analysis, for every combination of interval values, the probabilistic analysis 

for aleatory variables is repeated, which results in a computationally expensive nested 

analysis. Some research in the literature focuses on managing this computational expense 

(Penmetsa and Grandhi, 2002, Rao and Cao, 2002).  Representation and propagation of 

interval uncertainty has been studied from the context of structural problems (Langley, 

2000) and multidisciplinary problems (Du and Chen, 2000).  Besides their computational 

complexity, another disadvantage of using non-probabilistic methods is that the end users 

of the uncertainty analysis are little aware of these methods and therefore, it may involve 

huge educational effort to make them familiar with these non-traditional uncertainty 

analysis methods (Helton et al, 2008). 

As discussed above, there are various approaches for treating interval data, each 

with their own advantages and limitations. One of the drawbacks of the current 

approaches is the need for nested analysis in the presence of interval variables. To 

alleviate this issue, Chapter IV develops a probabilistic representation for interval data 

using a collection of flexible probability distributions.  

If non-probabilistic methods are to be used for epistemic uncertainty propagation, 

new efficient approaches have to be developed. However, if the uncertainty described by 

intervals can be represented through probability distributions, the computational expense 

of interval analysis is avoidable as it allows for treatment of aleatory and epistemic 

uncertainty together without nesting, and already well established probabilistic methods 

of uncertainty propagation, for example, Monte Carlo methods (Robert and Cesalla, 

2004) and optimization-based methods such as first-order reliability method ( FORM), 

second-order reliability method (SORM) etc. (Haldar and Mahadevan, 2000) can be used. 



 

28 
 

The system may also be replaced with an inexpensive surrogate model (e.g., polynomial 

chaos (Ghanem and Spanos 1991; Cheng and Sandu, 2009) or Gaussian process model 

(Bichon et al, 2008)) to achieve computational efficiency. While these uncertainty 

propagation methods are useful for problems dealing with uncertainties having 

probabilistic representation arising primarily from inherent variability in physical 

parameters, methods to efficiently represent and propagate epistemic uncertainty (or a 

mixture of aleatory and epistemic uncertainty) are yet to be developed.  

It should be noted that some researchers argue that a probabilistic representation 

is not appropriate for epistemic uncertainty because information may be added to the 

problem (Du et al, 2005; Agarwal et al, 2004). This may be true when a single fixed 

probability distribution is assumed for the epistemic variable. In this dissertation, we 

alleviate this concern by using a flexible family of Johnson distributions. The use of a 

family of distributions for the underlying basic random variable avoids the problem of 

incorrect classification of the distribution type and thus minimizes the risk of adding 

information to the problem. However, we observe that some non-probabilistic methods 

may also add subjective information to the problem. For example, when evidence theory 

is used for the representation of interval uncertainty, the use of a combination rule adds 

an assumption about combining evidence; different combination rules exist in the 

literature (Agarwal et al, 2004).  The commonly used Dempster’s rule also requires some 

consistency or agreement among the intervals (Oberkampf et al, 2001; Agarwal et al, 

2004). The evidence theory also requires that an interval for a random variable be 

associated with the basic probability assignments (BPA) associated with the intervals. 
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However, in practice, such consistency among the different intervals may not be possible 

and any assumption about the BPA can add information to the problem.  

Chapter V of this dissertation develops a new probabilistic approach for the 

propagation of both probabilistic and interval variables. 

 

4. Uncertainty quantification considering correlations 

As mentioned in Chapter I, uncertainty analysis studies often assume independence 

among input random variables for the sake of convenience and due to lack of multivariate 

data. However, intervariable dependencies or statistical correlations might have 

significant impact on the results of uncertainty analysis. Uncertainty analyses with 

correlated variables require the joint PDF of input variables. However, it is almost 

impossible to obtain the joint PDF of the input variables, as it requires joint multivariate 

observations. Therefore, uncertainty analyses tend to use only information on marginal 

distributions and covariances. Correlation information can be used to transform the 

correlated variables to an uncorrelated reduced normal space in the case of analytical 

reliability methods (e.g., FORM) or to simulate correlated random variables for use in 

Monte Carlo simulation. 

There exist various methods to transform correlated variables to uncorrelated standard 

normal space and to simulate correlated random variables, e.g., Rosenblatt transformation 

(Rosenblatt, 1952), Nataf transformation (Nataf, 1962), Power and Modulus 

transformations (Box and Cox, 1964; John and Draper, 1980), etc. The Rosenblatt 

transformation is quite accurate, but it requires closed form conditional distributions 

which are almost impossible to obtain in practice. The Nataf transformation requires only 
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information on marginal distributions and the correlation matrix (Rebba, 2005). Methods 

of generating correlated variables or transforming correlated variables to uncorrelated 

standard normal space have been discussed and illustrated in many studies (Der 

Kiureghian and Liu  1986; Liu and Der Kiureghian 1986 ; Haas 1999 and Minhajuddin et 

al 2004) for known marginals such as normal, lognormal, shifted exponential, shifted 

Rayleigh, Gamma, beta, etc. Der Kiureghian and Liu (1986) presented semi-empirical 

formulas that relate the correlation coefficients in the reduced normal space ρ0,ij to the 

original correlation coefficients ρij for several known two-parameter marginal 

distributions. 

In practice, it is likely that the marginal distribution types are not known or cannot be 

specified accurately due to the presence of limited or interval data. For such cases, the 

Johnson family of distributions (Johnson, 1949a) is a convenient choice as it has the 

flexibility to fit data with a large range of different distribution function shapes and thus 

eliminates the need to forcibly assume a fixed distribution type. While there are several 

other viable four-parameter distributions that may also be used with this approach, such 

as the Pearson (Pearson, 1895), Beta (McDonald, 1984), and Lambda distributions 

(Ramberg and Schmeiser, 1974), the Johnson family is a convenient choice.  This is 

because the Johnson distribution lends itself to easy transformation to a standard normal 

space, which then can be conveniently applied in well known reliability analysis and 

reliability-based design optimization methods. However, for random variables having 

Johnson marginal distributions, an efficient methodology to transform correlated 

variables to uncorrelated standard normal space or to simulate correlated variables is yet 

to be developed. Johnson (1949b) proposed a bivariate distribution based on the 
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univariate Johnson distributions. This method can be extended for simulating multivariate 

Johnson distributions as discussed in Stanfield et al (1996). However, this multivariate 

Johnson distribution cannot match the sample correlation matrix of the original data set if 

some of the marginal distributions possess large skewness. Stanfield et al (1996) 

proposed an improved method to model multivariate Johnson distributions that can match 

the first three marginal moments and correlation structure of the data but fail to match the 

kurtosis of the data.  

Most of the existing methods that use statistical correlation in uncertainty analysis 

have been developed only in the context of aleatory uncertainty in the input random 

variables (e.g., Noh et al, 2009). These methods consider correlations among basic 

random variables that are described by well known two-parameter probability 

distributions (e.g., normal, lognormal, exponential, Rayleigh, Gamma, etc.). Some 

uncertainty quantification methods exist that deal with unknown dependencies among the 

input variables (Berleant and Zhang, 2004). Ferson and Kreinovich (2006) described 

dependence among input variables described by interval data in the context of interval 

analysis. Recently, uncertainty quantification methods under both aleatory and data 

uncertainty have been developed where input uncertainty is represented by a flexible 

family of distributions, e.g., Johnson distributions (McDonald et al, 2009 and Zaman et 

al, 2009a, 2009b).  These uncertainty quantification methods were developed assuming 

independence among the input variables.  Chapter V of this dissertation develops a 

multivariate input model of random variables and extends these methods to include 

correlations. 
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5. Design optimization with epistemic uncertainty 

In deterministic design optimization, it is generally assumed that all design variables 

and system variables are precisely known; the influence of natural variability and data 

uncertainty on the optimality and feasibility of the design is not explicitly considered. 

However, real-life engineering problems are not deterministic and this deterministic 

assumption about inputs may lead to infeasibility or poor performance (Sim, 2006). In 

recent years, many methods have been developed for design under uncertainty. 

Reliability-based design (e.g., Chiralaksanakul and Mahadevan, 2005; Ramu et al, 2006; 

Agarwal et al, 2007and Du and Huang, 2007) and robust design (e.g., Parkinson et al, 

1993; Du and Chen, 2000; Doltsinis and Kang, 2004 and Huang and Du, 2007) are two 

directions pursued by these methods. While reliability-based design aims to maintain 

design feasibility at desired reliability levels, robust design optimization attempts to 

minimize variability in the system performance due to variations in the inputs (Lee et al, 

2008). In recent years, several methods have also been proposed to integrate these two 

paradigms of design under uncertainty (e.g., Du et al, 2004, Lee et al, 2008). 

Taguchi proposed robust design methods for selecting design variables in a manner 

that makes the product performance insensitive to variations in the manufacturing process 

(Taguchi, 1993). Taguchi’s methods have widespread applications in engineering; 

however, these methods are implemented through statistical design of experiments and 

cannot solve problems with multiple measures of performances and design constraints 

(Wei et al, 2009). With the introduction of nonlinear programming to robust design, it has 

become possible to achieve robustness in both performance and design constraints (Du 

and Chen, 2000). 
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Although there is now an extensive volume of literature for robust optimization 

methods and applications, all these methods have only been studied with respect to 

physical or natural variability represented by probability distributions. However, 

uncertainty in system design also arises from other contributing factors as discussed in 

Chapter I. A few studies on robust design optimization are reported in the literature to 

deal with epistemic uncertainty arising from lack of information. Youn et al (2007) used 

a possibility-based method, and redefined the performance measure of robust design 

using the most likely values of fuzzy random variables. Dai and Mourelatos (2003) 

proposed two two-step methods for robust design optimization that can treat aleatory and 

epistemic uncertainty separately using a range method and a fuzzy sets approach.  

There is now also an extensive volume of literature available for RBDO methods and 

applications. However, all these methods have only been studied with respect to physical 

or natural variability represented by probability distributions. RBDO is a challenging 

problem in presence of epistemic uncertainty, because the design methodology requires 

employing a search among the possible values of epistemic variables in order to find a 

conservative design. A few studies on RBDO are reported in the literature to deal with 

epistemic uncertainty arising from lack of information. Agarwal et al (2004) developed 

an evidence theory based approach to multidisciplinary RBDO using response surfaces 

for uncertain measures represented by the belief and plausibility functions and a 

sequential approximate optimization approach. However, this method cannot handle both 

alatory and epistemic uncertainty together. Mourelatos and Zhou (2006) developed an 

evidence theory based design optimization (EBDO) methodology for single discipline 

system that can handle both aleatory and epistemic uncertainty. Mourelatos and Zhou 



 

34 
 

(2005) proposed a possibility based design optimization (PBDO) methodology for single 

discipline system, which is a formulation of triple loop optimization sequence and 

therefore, is computationally expensive. Zhou and Mourelatos (2008) proposed double 

loop and sequential strategies to manage the computational expense in the PBDO 

methodology.  

Most of the current methods of robust optimization and RBDO with epistemic 

uncertainty need additional non-probabilistic formulations to incorporate epistemic 

uncertainty into the robust optimization framework, which may be computationally 

expensive. Therefore, there is a need for efficient robust design optimization and RBDO 

methodologies that deal with both aleatory and epistemic uncertainty.  

Chapter VII of this dissertation develops an efficient robust optimization 

methodology that includes both aleatory and epistemic uncertainty arising from both 

sparse point data and interval data. Chapter VIII of this dissertation develops an efficient 

RBDO methodology that includes both aleatory and epistemic uncertainty arising from 

both sparse point data and interval data.  

 

6. Uncertainty quantification in multidisciplinary systems 

Efficient uncertainty propagation methods are available to include both aleatory 

and epistemic uncertainty in uncertainty propagation analysis, but for single discipline 

problems only, for example see Zaman et al (2009b) and the references cited therein. 

Uncertainty propagation for multidisciplinary systems, even with aleatory uncertainty 

alone, is expensive as it involves coupled system analysis that is achieved through 

iterative executions of individual disciplinary analysis codes. Some efficient methods 
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such as Du and Chen (2005) and Du et al (2008) are available for handling aleatory 

uncertainty in multidisciplinary analysis. These methods take advantage of optimization 

to construct analytical approximations to evaluate the system compatibility requirement. 

When both aleatory and epistemic uncertainty are present, propagation of uncertainty 

through multidisciplinary system models becomes even more difficult. This dissertation 

focuses on the handling of sparse point and interval data in a manner that facilitates 

efficient algorithms for reliability analysis or design optimization of multidisciplinary 

systems. 

There is now an extensive volume of literature available for deterministic 

multidisciplinary design optimization (MDO) methods and applications (e.g., Cramer et 

al, 1994; Sobieszczanski-Sobieski, 1995; Sobieszczanski-Sobieski and Haftka, 1997). In 

recent years, multidisciplinary reliability analysis and design optimization under 

uncertainty have received increased attention in order to account for uncertainties in the 

system and design variables. Several solution techniques are reported in the literature for 

multidisciplinary design optimization (MDO) under uncertainty (e.g., Du and Chen, 

2002; Du and Chen, 2005; Mahadevan and Smith, 2006; Chiralaksanakul and 

Mahadevan, 2007; Du et al, 2008). These studies have dealt with aleatory uncertainty 

only. However, in practice, sufficient data are not available to construct the probability 

distributions of some of the input variables. Sometimes the only information available for 

an input variable is given by one or more intervals. Therefore, it is necessary to develop 

algorithms for multidisciplinary reliability analysis and design optimization that deal with 

both physical variability and data uncertainty.  
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A few methods exist for MDO under both aleatory and epistemic uncertainty. 

Zhang and Huang (2009) proposed algorithms that considered both random and fuzzy 

variables. Agarwal et al (2004) proposed a methodology for uncertainty quantification 

using evidence theory. Li and Azarm (2008) proposed methods for interdisciplinary 

uncertainty propagation embedded within a multidisciplinary robust optimization 

framework for interval variables. Gu et al (2006) proposed an implicit uncertainty 

propagation method considering aleatory uncertainty in the design variables and 

prediction error in disciplinary simulation-based design tools.  An efficient methodology 

for multidisciplinary uncertainty propagation with both aleatory and epistemic 

uncertainty that works within a probabilistic framework of uncertainty representation 

awaits development. This is the focus and contribution of Chapter IX of this dissertation. 

The efficiency of multidisciplinary uncertainty propagation analysis depends on 

how the system analysis is handled. Several methods are available for system analysis 

within the MDO literature, namely the multidisciplinary feasibility (MDF) method, the 

all-at-once (AAO) method, and the individual disciplinary feasibility (IDF) method 

(Cramer et al, 1994). All these methods have their own advantages and limitations.  

A decoupled approach for multidisciplinary reliability analysis was previously 

developed in Mahadevan and Smith (2006). This approach quantifies the uncertainty 

associated in coupling variables and therefore un-nests the system analysis from the 

algorithms of probabilistic analysis. However, this method has been developed for 

handling aleatory uncertainty only. In this disstertation, we extend this idea of a 

decoupled formulation and propose probabilistic methods for multidisciplinary reliability 

analysis under both aleatory and epistemic uncertainty.  
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Chapter VII of this dissertation develops a probabilistic framework for the 

propagation of both aleatory and epistemic uncertainty in multidisciplinary systems that 

can deal with both sparse point data and any type of interval data (nested, un-nested and 

mixed). 

7. Multidisciplinary design optimization with epistemic uncertainty 

 
MDO is the optimization of systems of coupled simulations (Cramer et al, 1994). 

There is now an extensive volume of literature available for MDO methods and 

applications (e.g., Cramer et al, 1994; Sobieszczanski-Sobieski, 1995; Sobieszczanski-

Sobieski and Haftka, 1997). However, these deterministic methods can be inadequate in 

real-world applications since they do not explicitly take uncertainty into account. 

Robustness-based design optimization and RBDO account for this uncertainty in design 

parameters. 

Robustness-based design optimization of a multidisciplinary system aims to 

simultaneously optimize the mean value of the objective function and minimize its 

variation while satisfying the system compatibility requirements of the multidisciplinary 

system. Although there is now an extensive volume of literature for robust optimization 

methods and applications, all these methods have only been studied for single discipline 

problems. As mentioned earlier, some of these methods can only handle aleatory 

uncertainty, while others can handle both aleatory and epistemic uncertainty.  

Multidisciplinary robustness-based design integrates the concept of robust design 

with multidisciplinary design optimization (MDO). The difficulties lie in estimating the 

mean and variation of the performance functions considering the multidisciplinary nature 
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of the system. The term performance function refers to the objective function as well as 

the constraint functions of the robustness-based design optimization. Generally, 

multidisciplinary robustness-based design optimization requires uncertainty analysis of 

the coupled system for estimating the mean and variation of the performance function. 

Therefore, the efficiency of the robust design methodology depends on the efficiency of 

the uncertainty analysis method. Du and Chen (2002) proposed efficient uncertainty 

analysis methods for multidisciplinary problems, namely, the system uncertainty analysis 

(SUA) method and the concurrent subsystem uncertainty analysis (CSSUA) method. 

They used these uncertainty analysis methods in the framework of robust design for 

multidisciplinary systems to achieve computational efficiency. However, these methods 

have two limitations. Firstly, SUA requires at least one coupled multidisciplinary system 

level analysis at each iteration of the robust optimization problem, and CSSUA requires a 

nested double loop formulation when used in a robust optimization framework. Secondly, 

these methods are developed to account for aleatory and model uncertainty only; no data 

uncertainty is considered. Du and Chen (2002) proposed another hierarchical 

collaborative approach to multidisciplinary robust optimization. However, this approach 

may suffer from convergence issues and like SUA and CSSUA, this method also does not 

consider data uncertainty. Gu et al (2000) proposed a worst case uncertainty propagation 

method for multidisciplinary systems and then applied this method to robust design 

optimization; however, they did not consider data uncertainty.  Robust design 

optimization of multidisciplinary systems has also been studied using game theory 

methods (Chen and Lewis, 1999; Kalsi et al, 2001). A detailed review of methods for 

multidisciplinary robust optimization is found in Allen et al (2006).  
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Most of these multidisciplinary methods deal with aleatory uncertainty only and a few 

of them deal with both aleatory and model uncertainty. However, uncertainty in system 

performance may arise from many contributing factors as discussed in Chapter I. The 

sources of errors in the models of physical systems can be divided into two types: model 

form error and solution approximation or numerical error (Mahadevan and Rebba, 2006). 

Model form errors result from approximation about system behavior model, boundary 

conditions, etc. Solution approximation error may include discretization error as seen in 

finite element or finite difference methods, truncation error as seen in lower-order 

approximations in response surface methods, numerical round-off error, etc. There are 

two ways to include model form errors in design optimization. The first approach 

assumes model error as a stochastic variable with a mean value 0 and standard deviation 

being proportional to the corresponding function value (Du and Chen, 2002; Smith and 

Mahadevan, 2003). The second approach quantifies the model error based on the 

comparison of model prediction with physical observations (Mahadevan and Rebba, 

2006). Mahadevan and Rebba (2006) also developed method to quantify the solution 

approximation error based on the model itself, using the Richardson extrapolation 

method. Although all these model uncertainty quantification methods can be 

conveniently incorporated to our proposed robustness-based design optimization 

framework, our focus in this dissertation is on the epistemic uncertainty arising from 

sparse point data and interval data. 

A few methods exist for multidisciplinary problems under both aleatory and 

epistemic uncertainty. Li and Azarm (2008) proposed methods for multidisciplinary 

robust optimization with interval uncertainty using collaborative optimization. In this 



 

40 
 

method, the uncertain parameters are given as single intervals. This method requires a 

tolerance region for the coupling variables. The system compatibility requirement is 

assumed to be satisfied when this tolerance region for the coupling variable is smaller 

than a predefined tolerance region of the target variable. However, for a multidisciplinary 

system, the system compatibility requirement should be satisfied at every single point 

value. Also, this method needs additional non-probabilistic formulations to incorporate 

epistemic uncertainty into the design optimization framework, which may be 

computationally expensive. Therefore, an efficient methodology for multidisciplinary 

robust design optimization under both aleatory and epistemic uncertainty awaits 

development.  

As discussed earlier, most of the existing methods for RBDO can handle only single 

discipline problems. Multidisciplinary RBDO under aleatory uncertainty alone is a 

computationally challenging problem. The inclusion of epistemic uncertainty in 

multidisciplinary RBDO further multiplies this computational effort. Little or no method 

for multidisciplinary RBDO exists in the literature that can handle both aleatory and 

epistemic uncertainty. Therefore, there is a need for an efficient RBDO methodology that 

deals with both aleatory and epistemic uncertainty for multidisciplinary problems.   

Chapter IX of this dissertation develops a methodology for robustness-based 

design optimization for multidisciplinary systems that includes both aleatory and 

epistemic uncertainty. Chapter X of this dissertation develops a methodology for RBDO 

for multidisciplinary systems that includes both aleatory and epistemic uncertainty.  

 
 



 

 
 

CHAPTER III 

 
PROBABILISTIC SYSTEM ANALYSIS WITH SPARSE DATA 

 
 

1. Introduction 
 
 

In this Chapter, the problem of reliability analysis under both aleatory uncertainty 

(natural variability), and epistemic uncertainty (arising when our only knowledge about 

the random variables is sparse point data) is addressed. First, the epistemic uncertainty 

arising from a lack of knowledge of the distribution type of the random variables is 

considered. To address this uncertainty in distribution type, the use of a flexible family of 

distributions is proposed. The Johnson family of distributions has the ability to reproduce 

the shape of many named continuous probability distributions, and therefore alleviate the 

difficulty of determining an appropriate named distribution type for the random variable. 

We next consider uncertainty in the distribution parameters themselves, and propose the 

use of computational resampling methods to determine Johnson distributions for the 

distribution parameters. As a result, we compute the uncertainty in reliability estimates 

for limit state functions having random variables with imprecise probability distributions 

as their arguments. We propose an optimization-based approach for computing the 

bounds on the reliability of a design that allows for the decoupling of epistemic and 

aleatory uncertainty analysis, enabling computationally affordable approaches to 

reliability analysis under aleatory and epistemic uncertainty. The proposed methods are 

illustrated for a problem of uncertainty quantification for drag prediction, where the drag 
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coefficient of a hypersonic aerospace vehicle is to be estimated as a function of its 

velocity and angle of attack. 

 
The contribution of this chapter is to develop and illustrate an approach for the 

propagation of both aleatory and epistemic uncertainty in such a way that the epistemic 

and aleatory uncertainty analyses are not nested, thus enabling computationally efficient 

calculation of bounds on reliability estimates under epistemic and aleatory uncertainty. In 

this chapter, we specifically address two types of epistemic uncertainty that arise from 

sparse data. We first consider epistemic uncertainty arising from a lack of knowledge of 

the distribution type of the random variables. To address this uncertainty in distribution 

type, we propose the use of the Johnson family of distributions. The Johnson family of 

distributions has the ability to reproduce the shape of many named continuous probability 

distributions, and therefore alleviate the difficulty of determining an appropriate named 

distribution type for the random variable. We also consider uncertainty in the distribution 

parameters themselves. We propose the use of computational resampling methods to 

determine Johnson distributions for the parameters of the Johnson distribution. Finally, 

we address the uncertainty in the reliability estimates for limit state functions with 

random variables that have imprecise probability distributions. We propose an 

optimization-based approach to compute the bounds on the reliability without nesting the 

epistemic and aleatory uncertainty analyses, thus enabling a computationally affordable 

approach to reliability analysis under aleatory and epistemic uncertainty. The resulting 

approach allows for computationally affordable, though approximate, methods of 

defining and ultimately propagating imprecise probability distributions through 

computationally expensive simulation models. 
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The rest of the chapter is organized as follows. Section 2 describes the proposed 

methodologies for uncertainty representation. Section 3 describes the proposed methods 

for propagating both epistemic and aleatory uncertainty, using a first-order-reliability 

method (FORM). Section 4 gives a numerical illustration of the proposed techniques for a 

problem of uncertainty quantification for drag prediction, where the drag coefficient of a 

hypersonic aerospace vehicle is to be estimated as a function of its velocity and angle of 

attack. Section 5 provides conclusions and suggestions for future work. 

 
 

2. Proposed Methods for Uncertainty Representation 
 

 
2.1 Fitting the Johnson Distribution to Point Data 

 The Johnson distribution is a four parameter distribution, and as such it can match 

the first four moments of a wide variety of probability distribution shapes, thereby 

allowing it to replicate the shape of many named probability distributions. The shape of 

the fitted distribution is controlled by the parameters in the function as well as by the 

transformation function used. A brief description of the Johnson distribution function is 

provided here. Since Johnson family distribution has the flexibility to fit data with a large 

range of different distribution function shapes, this eliminates the need to test different 

distributions that will give the best fit to a set of sample data. Fitting data of a random 

variable with Johnson distribution involves transforming a continuous random variable x 

whose distribution is unknown into a standard Normal (z) with one of the four 

normalizing translations proposed by Johnson (Johnson, 1949). The general form of the 

translation is:  
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z = γ + δf x −ξ
λ

 
 
 

 
 
                                                                    (1) 

where z ~ N(0,1). f is the translation functions that map different distributions to the 

standard Normal distribution. The Johnson’s distribution functions are as follows: 
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 where y = (x-ξ)/λ. 

 

 DeBrota et al (1988) present four methods to estimate the Johnson distribution 

parameters. These methods include the method of moments (requiring the first four 

moments of the data), percentile matching (by using four points and solving a system of 

nonlinear equations for the distribution parameters), least squares estimation (by 

minimizing the sum of squared errors in the percentile values of the probability 

distribution), and minimizing the error norm of the Johnson distribution when compared 

with the empirical CDF. 

 Venkataraman and Wilson (1987) implement the above methods, and determine 

the distribution using the following procedure: 

 

1. Calculate the moments of x: m2, m3, and m4. 

2. Calculate the skewness and kurtosis of x: 

 

β1 ≡ m3
2 /m2

3  and 

 

β2 ≡ m4 /m2
2. 

3. Use the chart in Figure 1 to determine the appropriate distribution family. 
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After the distribution parameters of the experimental data have been estimated, 

regenerating random variable x that follows this distribution is easy. The first step is to 

generate standard Normal random variable z. Then x can be generated by performing the 

inverse translation to z: 







 −

+= −

δ
γλξ zfx 1                                                     (3) 

Note that cumulative probability calculations are much simpler in the standard normal 

space, allowing for relatively simple calculations of the PDF and CDF of x. Examples of 

PDFs for different Johnson distributions are shown in Figure 2. 

 

Figure 1: Johnson distribution family identification. 

 

β1 ≡ m3
2 /m2

3  and 

 

β2 ≡ m4 /m2
2. 

(Marhadi, 2007) 
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(b) Lognormal (Johnson SL) 
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(c) Bounded (Johnson SB) 
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(d) Unbounded (Johnson SU) 
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Figure 2: Examples of PDFs for different Johnson distributions 

 
 

2.2 Statistical Uncertainty Quantification via Jackknife 

 With the assumption of the Johnson distribution, we are able to alleviate the issue 

of uncertainty in distribution type. However, it is not possible under small sample sizes to 

know the precise values of the distribution parameters. Therefore, we introduce a novel 

and versatile approach for the uncertainty quantification of distribution parameters. This 

approach assumes that both the basic random variables and their distributions are Johnson 

distributed, and uses a jackknife technique to estimate the distribution of the distribution 
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parameters. The assumption of the distribution parameters also having the Johnson 

distribution allows for the possibility of a non-normal distribution for the distribution 

parameters. This is important, particularly if moment matching is used to estimate the 

distribution parameters given small sample sizes, for two reasons. First, the estimates 

resulting from a moment matching approach do not necessarily have asymptotic 

normality properties as would be the case, for instance, when using a maximum 

likelihood estimator. Second, even if the estimator had an asymptotic normality property, 

the sample size may be too small to assume that it holds. In that case, common 

assumptions that the unknown population mean takes on a normal distribution and that 

the unknown population variance assumes a chi-square distribution are unwarranted. Our 

proposed method does not assume any particular distribution type for the distribution 

parameters, and therefore can be used with any method for distribution parameter 

estimation, including the method of moments, maximum likelihood, or Bayesian 

estimation techniques. 

 Jackknifing (Miller, 1964, 1968, 1974; Arvesen, 1969; Efron, 1979) is used in 

statistical inferencing to estimate the bias and standard error in a statistic, when a random 

sample of observations is used to calculate it. The basic idea behind the jackknife 

estimator lies in systematically recomputing the distribution parameter estimate, leaving 

out one observation at a time from the sample set. From this new set of "observations" for 

the statistic an estimate for the bias can be calculated and an estimate for the variance of 

the parameter. We propose the following algorithm for uncertainty quantification of the 

distribution parameters: 
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As an illustration of this approach, consider the following set of observations of a 

random variable X: [5.0, 5.2, 5.5, 6.0, 6.3, 6.5, 7.0, 7.2, 7.5, 8.0]. The PDFs and CDFs of 

the Johnson distributions estimated on the basis of leaving one observation out are shown 

below in Figures 3 and 4, respectively. 

Algorithm for Uncertainty Quantification in Distribution 
Parameters 
 

       Set i = 1 
 

while  (i <= N) 
 

Delete observation i from the original set of observations 
 
Estimate the Johnson distribution parameters on the basis of 
the N-1 remaining points.  
 
Record as estimate i.  
 
Restore observation i to the set of original observations.  
 
i = i + 1 

 
end while 

 
Fit a Johnson Distribution to the set of parameter estimates 
obtained in the while loop. 
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Figure 3: Jackknifed PDF estimates given sparse data 

 

Figure 4: Jackknifed CDF estimates given sparse data 
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3. Proposed Methods for Uncertainty Propagation 

The proposed methods in this section propagate both aleatory and epistemic input 

uncertainty to calculate the resulting uncertainty in the output. The proposed methods are 

based on the concepts of FORM, inverse FORM, and sensitivity analysis. A brief 

overview of these concepts is provided first, and the proposed methods are developed 

subsequently. 

3.1 FORM, Inverse FORM, and Sensitivity Analysis  

In model-based reliability analysis, the failure probability estimation problem is 

given as 

 

PF = P(g(x) ≤ k)                               (4) 

It is customary to formulate this problem such that the condition g < 0 corresponds to 

failure, while g > 0 corresponds to a condition of safety. The limit state “surface” 

corresponds to points where g = 0. 

 The rigorous mathematical definition of failure probability requires the evaluation 

of the integral of the joint probability density function (pdf) of all the random variables 

over the failure domain as: 

PF =  P(g < 0) = ∫…∫g ≤ 0 f (x)d x           (5) 

This integral poses computational hurdles as it can be difficult to formulate the joint 

probability density explicitly and integration of a multidimensional integral may be 

difficult.  Alternatively, PF can be evaluated using several methods (first-order second 

moment (FOSM), first-order reliability method (FORM), second-order reliability method 

(SORM), inverse FORM, and Monte Carlo simulation), all of them iterative (Haldar and 
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Mahadevan, 2002).  Further details on these methods and computational issues are 

provided in Haldar and Mahadevan (2002).  

 In the first order reliability method (FORM), the variables, x, which may each be 

of a different probability distribution, and may be correlated, are first transformed to a 

space of uncorrelated reduced normal variables u.  Well-known methods (Haldar and 

Mahadevan, 2002) are available to transform x to u.  The closest point to the origin on 

the function g = 0 in the reduced normal space is then found.  This minimum distance 

point is referred to as the most probable point (MPP) of this limit state, and the distance β 

is referred to as the reliability index.  Then the first-order estimate of PF is the same as in 

Eq. 4, i.e. 

 

PF  =  Φ(−β) . The MPP can be calculated as the optimal solution of: 

min || u ||                                                                      (6) 

                                                       s.t. g(u) = 0                                  

 It is also possible to find the extreme value of the response function g for which 

the probability of exceedence will be equal to Φ(±βT). This is done by solving the 

following inverse FORM problem: 

min/max g(u)          (7) 

                                                        s.t. || u || = βT 

The inverse FORM problem has a very important role in this chapter because it returns a 

worst-case point at a certain probability level. The inverse FORM formulation is 

particularly useful in dealing with reliability analysis under uncertainty in the distribution 

parameters, when the uncertainty in the distribution parameters is described 

probabilistically using the Jackknife technique. The inverse FORM formulation could be 

used with the failure probability, conditioned on the values of the distribution parameters, 
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as the g function. In this case, inverse FORM would yield the solution to the problem of 

estimating confidence bounds on the failure probability. Optimization-based approaches 

to obtain confidence bounds on the reliability estimate are described in detail in the 

following section. 

An additional by-product of FORM is the sensitivity vector α.  The sensitivity 

vector is defined as: 

 

 

α = −
∇uG(u)
∇uG(u)

                                                      (8) 

The sensitivity vector is collinear with the MPP vector, and its components quantify the 

influence of each random variable on the reliability index. These components are referred 

to as probabilistic sensitivity factors.  This sensitivity vector shows the relative 

contribution of each of the random variables to the variance in the limit state function. As 

such, the alpha vector gives quantitative guidance about which random variables to 

collect further information. When applied to the parameter space in terms of the inverse 

FORM problem of finding the distribution parameters that maximize or minimize the 

failure probability, this vector provides information about the sensitivity of the failure 

probability estimate to each distribution parameter.  

 

3.2 Optimization-Based Confidence Intervals for CDF and Reliability Estimates  

 In this chapter, uncertainty analysis is carried out using the probabilistic 

techniques for reliability analysis described in the last section. We treat epistemic and 

aleatory uncertainties separately, performing reliability analysis conditioned on a 

realization of the distribution parameters.  Thus there are two sets of uncertain variables 

in the problem. The first set of uncertain variables, x, has aleatory or irreducible 
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uncertainty and is basic to the limit state function, i.e., these variables correspond to 

quantities such as capacity and load for a structure. The second set of variables has 

epistemic uncertainty, and is the distribution parameters θ, selected from a set of 

admissible values Θ.  It should be noted that given the presence of epistemic uncertainty, 

the failure probability is itself uncertain because of the uncertainty in the distributions of 

the basic random variables. It is desired to determine bounds on this failure probability, 

given uncertainty in the distribution parameters. Explicit and separate treatment of the 

epistemic and aleatory variables allows for the calculation of probability distributions of 

and confidence intervals for the failure probability. 

 In general, the aleatory uncertainty is propagated using any appropriate 

probabilistic technique.  However, the failure probability is conditioned on a set of 

distribution parameter values. This conditioning has necessitated nested methods for 

uncertainty propagation, where a set of distribution parameters would be selected first, 

and then given these distribution parameters, a reliability analysis would be performed. 

Mehta et al (1993) proposed formulations that allow for the use of FORM in such a 

nested manner. The most general problem of calculating bounds on the failure probability 

would thus be stated as 

Θθ
θ

θ

∈..
...

)(max    min/

ts
trw

PF

                                                       (9) 

In the reliability analysis, the distributions of the basic random variables x are 

conditioned on θ. The cumulative distribution functions for the basic random variables 

with uncertain probability distributions are calculated by conditioning on a particular 
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realization of the uncertain distribution parameters. Their optimum values are chosen to 

minimize or to maximize the failure probability.  

 If FORM is to be used in confidence bounds calculation, then the MPP is given 

below as a mathematical programming problem with the following generalized statement: 

Θ∈
=

θ
x

θx
xθ

0)(
..

)},(min{maxmin/

g
ts

β

                                                         (10) 

This nested optimization problem can be decoupled and expressed as: 
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Each optimization problem in Eq. (11) is solved iteratively until convergence. 

 If the uncertainty in the distribution parameters is represented probabilistically, 

then it is possible to use the approach of Eq. (11) to calculate confidence bounds on the 

failure probability. In calculating these confidence bounds, it is useful to define a 

transformation of the distribution parameters to the standard normal parameter space uθ. 

Once this transformation is defined, the second optimization problem can be defined such 

that the set Θ becomes a hypersphere in the transformed space of radius βT. With this 

definition, Eq. (11) then becomes 
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We note that the solution of Eq. (12) guarantees that to first order accuracy the 

probability of the reliability index associated with the system’s limit state exceeding 

β(x*, θ*) is Φ(±βT). Hence the solution of the problem gives confidence bounds on the 

failure probability with the 1 - α/2 confidence level equal to Φ(-|βT|). 

 If the failure probability of an entire series or parallel system is of concern, MCS 

could be used directly with Eq. (9) where the failure or safety of all components in the 

system is evaluated for each randomly generated sample point. Alternatively, the MPP 

for each component could be determined using FORM for each limit state function, and 

the system reliability would become the objective function for the second optimization 

problem in Eq. (12). 

 It should be noted that there are no system response function evaluations required 

for the inverse FORM analysis with the epistemic variables. In other words, if expensive 

structural or CFD codes are required to evaluate the limit state function for the purposes 

of reliability analysis, in this decoupled formulation, no evaluations are required to find 

the values of the distribution parameters which minimize or maximize the likelihood of 

the MPP. This is because the second problem (the inverse FORM problem) in Eq. (11) 

manipulates the transformation to normality only, and does not involve solution of the 

first problem (the direct FORM problem) in which limit state functions are required to 

evaluate the gradients of the objectives and constraints. The inverse FORM reliability 

analysis finds the worst-case values of the distribution parameters so that the failure 

probability is maximized, or best case parameters such that the failure probability is 

minimized. When the two optimization problems converge, we have first order estimates 
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of the failure probability by solving the reliability analysis, where the expensive function 

evaluations are encountered, only a few times in this decoupled formulation. 

 As in direct FORM for the case of certain probability distributions, sensitivity 

analysis can be performed on both the epistemic and aleatory uncertainties using the 

sensitivity vector α. The interpretation of the sensitivity vector α (see Eq. 8) for the 

aleatory random variables is much the same as in the case with probability distributions 

with no randomness. However, the alpha vector for the distribution parameters also lends 

important information to the decision maker. This vector gives an indication of the 

sensitivity of the failure probability to the uncertainty in each distribution parameter. 

Sensitivities of distribution parameters near zero indicate that the outcome of the design 

problem is unlikely to change, regardless of the value of the distribution parameter.  High 

sensitivities, however, indicate the distribution parameter has a large influence on the 

reliability estimate.  This information can be used in determining the variables for which 

to pursue more intensive data collection. 

 

4. Numerical Illustration 

In this section, the proposed methods are applied to a single aerodynamic data set for 

the upper stage of the Two-Stage-To-Orbit (TSTO) concept vehicle, as shown in Figure 1 

of Chapter I.  The objective is to quantify the uncertainty in the predicted drag, given 

uncertainty in the flight conditions. 

Because the fine grid (3,800,000 grid points) computational fluid dynamics code is too 

expensive for uncertainty propagation analysis, a design of computational experiments 

has been conducted to construct a surrogate model. The following cases have been 
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analyzed to develop a surrogate model for drag prediction. The following values for the 

Mach number (Mach) were selected: 0.5, 0.9, 1.1, 1.2, 1.6, 2.0, 4.0, 6.0, 8.0, 10.0, and 

12.0. The following values of Angle of Attack (AoA) were selected: 0, 5, 10, 15, 20, 30, 

and 40 degrees. Instead of the expected 11×7 = 77 data points for every combination of 

Mach and AoA, only 68 points were used as the analysis code failed to converge for 

remaining 9 points.  

Centerline and surface pressure contours for a representative case (Mach = 2.0, 

and angle of attack = 10 degrees) are shown in Figure 5.  From the uncertainty analysis 

point of view of this chapter, only two variables are of interest: Mach number and angle 

of attack.  Each calculation by the Cart3D code is presumed here to be deterministic.  

Any issues related to the repeatability of individual results from this code, or any other 

data source, are beyond the scope of this chapter and are within the domain of code 

verification, rather than uncertainty quantification.  Given a Mach number and an angle 

of attack, a selection of Cart3D options to be used within the calculation, and a 

prescription for the process used to capture the results, there is no uncertainty within any 

individual result. 
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A response surface (Equation 13) for a model-predicted drag coefficient (CD) has 

been created as a function of Mach number (Mach) and angle of attack (AoA).  

 

22 AoA * 004 4.61108E+Mach *31.44863E00+AoA *Mach  * 004-7.04277E

-AoA*004-4.02211E+Mach*0.015291-0.050269=DC
           (13) 

 

A surface plot of the drag coefficient is given in Figure 6. We wish to determine the 

95 percent confidence interval for the probability that the drag coefficient exceeds 0.15. 

Thus, we will use a limit state function of   

 

 )AoA * 004 4.61108E+Mach *31.44863E00+AoA *Mach  * 004-7.04277E
-AoA*004-4.02211E+Mach*0.015291-(0.050269 - 0.15= AoA) g(Mach,

22
       (14)                                  

 

and use analytical reliability methods to evaluate the exceedence probability. Mach and 

AoA are described by sparse point data as given in Table 1.  

Table 1: Data for Mach and AoA 

Data 
Mach AoA 

 
6.52 21.73 
6.06 20.19 
5.49 18.30 
6.52 21.75 
5.74 19.13 
5.74 19.14 
5.34 17.79 
6.24 20.79 

Figure 5:  Centerline pressure contours for TSTO upper stage at Mach = 2.0, AoA = 10 
degrees 
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5.42 18.07 
6.10 20.34 

 

As the variability of the mission parameters are described by sparse point data, 

this creates uncertainty about the distribution parameters of Mach and AoA. In this 

example, it is assumed that Mach and AoA as well as their distribution parameters are 

characterized by bounded Johnson distributions. We follow the procedure described in 

Section 2 to obtain the distributions of each distribution parameter of Mach AoA as given 

in Tables 2 and 3. 

Table 2: Distribution parameters for distribution of Mach 

 δ λ γ ξ 
δMach 0.2194 0.2330 -0.0250 0.3991 
λMach 0.3493 0.1905 0.2098 1.3401 
γMach 0.2555 0.3528 -0.0014 -0.0811 
ξMach 0.5263 0.1652 -0.1672 5.1554 

 

Table 3: Distribution parameters for distribution of AOA 

 δ λ γ ξ 
δAoA 0.2194 0.2330 -0.0250 0.3991 
λAoA 0.3493 0.6350 0.2098 4.4670 
γAoA 0.2555 0.3528 -0.0014 -0.0811 
ξAoA 0.5263 0.5506 -0.1672 17.1846 

 

 

The set of admissible distribution parameter values is found by transforming the 

distribution parameters to the standard normal space and considering only those 

distribution parameters for which their image in the uθ  space fall on a sphere centered at 

the origin having radius 1.96. Thus, we will use the problem statement of Eq. (10) to 
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calculate a 95 percent confidence interval for the probability of the drag coefficient 

taking on a value of 0.15 or greater. 

 

 

Figure 6: Drag Coefficient Response Surface 
 

By solving Eq. (10), the 95 percent confidence interval for the exceedance probability is 

found to be (0.0126, 0.2732). The worst-case distribution parameters and sensitivities are 

given in Tables 4 and 5. From Table 5 we see that uncertainty in the distribution of AoA 

is more important than the uncertainty in the distribution of Mach. This is intuitive 

considering the larger gradients of the response surface in the AoA direction and the 

wider distribution of AoA. 

M
  

AoA 

D 
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Table 4. Worst Case Distribution Parameters 
(Pf = 0.2732) 

 δ λ γ ξ 
Mach 0.4500 1.3957 0.2091 5.2328 
AoA 0.4144 4.9903 -0.0529 17.6268 

 

Table 5. Worst-Case Sensitivities 
(Pf = 0.2732) 

Aleatory Sensitivities 
Variable Sensitivity 

Mach -0.2999 
AoA 0.9541 

Epistemic Sensitivities 
Variable Sensitivity 

δMach -0.1554 
λMach -0.0509 
γMach 0.1992 
ξMach -0.1192 
δAoA -0.3100 
λAoA 0.3823 
γAoA -0.3192 
ξAoA 0.2922 

 

The best-case parameter values (where Pf = 0.0126) and sensitivities are given in 

Tables 6 and 7. 

Table 6. Best Case Distribution Parameters 
(Pf = 0.0126) 

 δ λ γ ξ 
Mach 0.5954 1.4179 0.0000 5.2729 
AoA 0.6122 4.5163 0.2130 17.2949 

 

 

Table 7. Best-Case Sensitivities 
( Pf = 0.0126) 

Aleatory Sensitivities 
Variable Sensitivity 
Mach -0.5101 
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AoA 0.8601 
Epistemic Sensitivities 

Variable Sensitivity 
δMach 0.1750 
λMach 0.0410 
γMach -0.1583 
ξMach 0.1568 
δAoA 0.2527 
λAoA -0.3340 
γAoA 0.2094 
ξAoA -0.4570 

 

From Table 7 we see that uncertainty in the distribution of AoA is more important than 

the uncertainty in the distribution of Mach. This is intuitive considering the larger 

gradients of the response surface in the AoA direction and the larger variance in AoA. 

Because the limit state function is very sensitive to AoA, and the scatter of the 

distribution is wide, it is obvious that the failure probability is very sensitive to the 

uncertainty in the distribution of AoA. The CDFs of the worst and best case distributions 

of Mach and AoA are shown in Figures 7 and 8, respectively. 

 

Figure 7: The worst and best case distribution parameters of Mach 
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Figure 8: The worst and best case distribution parameters of AoA 
 

The use of optimization methods in calculating confidence bounds on the failure 

probability makes the proposed method computationally efficient (483 function 

evaluations) as compared to a sampling-based method (e.g., MCS). If we used the 

sampling method to calculate the confidence bounds, we would require nN × function 

evaluations (e.g., 1000010× ), where N is the sample size of sparse point data and n is the 

MCS sample size. 

5. Conclusion 

This chapter developed a methodology for propagating both aleatory and 

epistemic uncertainty arising from sparse data through computational models of system 

response. A flexible Johnson family of distributions is used to represent variables with 

sparse data.  The methodology differs from existing approaches in that it infers Johnson 

probability distributions to the distribution parameters also by use of computational 

resampling methods. Once the uncertainty in the distribution parameters is quantified, the 
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reliability analysis of the system uses probability distributions conditioned on the 

distribution parameter values. An efficient optimization-based method for calculating the 

confidence intervals of the failure probability is developed based on FORM. This method 

eliminates the computationally expensive process of nesting an aleatory uncertainty 

analysis inside an epistemic uncertainty analysis. This methodology also affords 

sensitivity analysis information with regard to each of the distribution parameters as well 

as the basic random variables.  The results of the sensitivity analysis give quantitative 

guidance regarding data collection for the random variables. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

CHAPTER IV 

 
A PROBABILISTIC APPROACH FOR REPRESENTATION OF 

INTERVAL UNCERTAINTY 
 

 

1. Introduction 

 

In this chapter, we propose a probabilistic approach to represent interval data for 

input variables in reliability and uncertainty analysis problems, using flexible families of 

continuous Johnson distributions. Such a probabilistic representation of interval data 

facilitates a unified framework for handling aleatory and epistemic uncertainty. For 

fitting probability distributions, methods such as moment matching are commonly used in 

the literature. However, unlike point data where single estimates for the moments of data 

can be calculated, moments of interval data can only be computed in terms of upper and 

lower bounds. Finding bounds on the moments of interval data even within some given 

finite accuracy has been conjectured to be an NP hard problem because it includes a 

search among the combinations of multiple values of the variables, including interval 

endpoints. In this chapter, we present efficient algorithms based on continuous 

optimization to find the bounds on second and higher moments of interval data. With 

numerical examples, we show that the proposed bounding algorithms are scalable in 

polynomial time with respect to increasing number of intervals. Using the bounds on 

moments computed using the proposed approach, we fit a family of Johnson distributions 

to interval data. Furthermore, using an optimization approach based on percentiles, we 

find the bounding envelopes of the family of distributions, termed as a Johnson p-box. 
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The idea of bounding envelopes for the family of Johnson distributions is analogous to 

the notion of empirical p-box in the literature. Several sets of interval data with different 

numbers of intervals and type of overlap are presented to demonstrate the proposed 

methods. As against the computationally expensive nested analysis that is typically 

required in the presence of interval variables, the proposed probabilistic representation 

enables inexpensive optimization-based strategies to estimate bounds on an output 

quantity of interest. 

 
Within the context of reliability analysis, it is often required that a certain function 

g(x) of input variables x, representing a response of the designed system, lie within given 

bounds. In many cases, the values of some elements of x are uncertain, and this 

uncertainty may be of aleatory or epistemic type.  Aleatory uncertainty can be 

represented by using probability distributions.  In some cases of epistemic uncertainty, 

the distribution for x must be determined from imprecisely available data, such as 

intervals given by experts. This implies that the cumulative distribution function of x, and 

subsequently that of g(x), denoted as F(g(x)), cannot be known precisely. Instead of 

formulating design requirements in terms of failure probabilities, the requirements may 

then have to be formulated as bounds on the cumulative distribution function F(g(x)) of 

the function g(x). In this chapter, we focus on the representation of epistemic uncertainty 

arising from interval data in the input variables x, where a variable’s possible values are 

described by intervals.  

 

As discussed in Chapter II above, there are various approaches for treating 

interval data, each with their own advantages and limitations. One of the drawbacks of 
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the current approaches is the need for nested analysis in the presence of interval 

variables. To alleviate this issue, we propose a probabilistic representation for interval 

data using a family of Johnson distributions. A new aggregation technique is proposed to 

combine multiple intervals. This aggregation technique enables the use of the method of 

matching moments to represent the uncertainty described by the multiple intervals 

through a family of probability distributions. An important advantage of the proposed 

approach is that it allows for a unified probabilistic framework to be applied that can 

jointly handle aleatory and epistemic uncertainties, thereby allowing for well developed 

and efficient analytical probabilistic methods such as FORM and SORM to be used in 

uncertainty propagation. The proposed representation avoids the expensive nested 

analysis by enabling the use of an optimization-based strategy that can estimate the 

distribution parameters of the input variables that maximize or minimize an output 

quantity of interest. 

It is a common practice in the literature to use methods such as moment matching 

and percentile matching to fit probability distributions to data sets. However, describing 

interval data in a probabilistic format is not straightforward.  Unlike point data, where 

statistics such as moments have precise values, statistics for interval data are usually 

described by their upper and lower bounds. Finding bounds on the statistics of interval 

data is a computationally challenging problem because it typically involves interval 

analysis that is conducted using a combinatorial search. It has been reported that 

computing the upper bound on second moment of overlapping intervals is conjectured to 

be an NP-hard problem even if some given finite accuracy in the moment bounds is of 

interest (Kreinovich 2004, Ferson et al 2007), although polynomial time algorithms have 
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been reported for some special cases (Kreinovich et al 2006). Little to no work exists in 

the literature about bounds on higher moments. Most previous approaches that calculate 

bounds on moments combinatorially search for points within the intervals that minimize 

or maximize the moments of the data. A major contribution of this chapter is the 

development of algorithms based on continuous optimization methods which scale 

polynomially in computational effort with respect to the number of intervals. Knowledge 

of the bounds on moments on the interval data is useful because it provides restrictions 

on the possible distributions the underlying random variable may assume. Using the 

moment bounds computed using the proposed algorithms, we develop a probabilistic 

representation of the interval as a Johnson p-box, which is an ensemble of bounded 

Johnson distributions.  

The main contributions of this chapter are summarized as follows. First, we 

present approaches based on continuous optimization to find the bounds on second and 

higher moments of interval data with single and multiple intervals. Second, we 

demonstrate using numerical examples that these algorithms are scalable in polynomial 

time with respect to increasing number of intervals. Third, using the bounds on moments, 

we fit a family of Johnson distributions to interval data. Analogous to the notion of 

empirical p-box as the bounding envelope for empirical distributions, we construct a 

Johnson p-box, which represents the bounding envelope for Johnson distributions for 

interval data.  

The remainder of the chapter is organized as follows. Section 2 develops the 

methods for estimating moment bounds for interval data and Section 3 develops a 

probabilistic approach for the representation of interval uncertainty. Section 4 illustrates 
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the proposed developments using different examples of interval data, where comparisons 

with alternate representations such as the empirical p-box are made. Section 5 concludes 

the chapter with summary and future work.  

 
 

2. Estimating Bounds on Moments for Interval Data 

This section discusses the proposed algorithms that estimate bounds on moments for 

interval data for single and multiple interval cases.  A brief background is provided first.  

In this dissertation, we fit a family of Johnson distributions to interval data using the 

moment matching approach.  Moment matching involves equating the moments derived 

from data to those of the probability distribution being fit.  The Johnson family is a 

generalized family of distributions that can represent normal, lognormal, bounded, or 

unbounded distributions. While there are several other viable four-parameter distributions 

that may also be used with this approach, such as the Pearson, Beta, and Lambda 

distributions, the Johnson family is a convenient choice.  This is because the Johnson 

distribution lends itself to easy transformation to a standard normal space, which then can 

be conveniently applied in well known reliability analysis and reliability-based design 

optimization methods.  

Among other methods (see Chapter III), we use the moment matching approach in 

this dissertation to take advantage of the moment bounding algorithms developed in this 

section. Moreover, to determine the appropriate type of Johnson distribution (bounded, 

unbounded, normal, lognormal), we need to compute the moments of the data set. While 

it is possible to have point estimates for the moments of point data, moments on interval 

data must be described using upper and lower bounds.  As discussed in Section 1, it is 
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challenging to compute bounds on moments of a variable described by multiple intervals. 

Note that in this dissertation, we assume that the multiple interval data are obtained from 

equally credible sources. As discussed in Section 1, this is a common assumption in the 

literature. The reason is that in absence of any additional information regarding the 

relative credibility of each source; it is reasonable to assume that all sources of 

information are equally credible. 

 
In the following subsections, we propose methods that can compute lower and upper 

bounds on the first four moments for single and multiple interval cases.   

2.1 Bounds on Moments for Single Interval 

In this subsection, we outline the proposed method to estimate bounds on moments for a 

single interval case.  

In order to estimate the bounds on moments, we first find the probability mass function 

(PMF) of the end points of the interval that minimize or maximize the moments of the 

single interval data. The following procedure is used: 

1.  Sample ns data points from the given interval (both endpoints included) 

2. Solve the following optimization problems with the PMFs, ( )ixp , i = {1, …, ns}, 

as the decision variables: 

( )
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Note that the above formulas for the third and fourth moments have been derived from 

the definition of moments as given below (DeGroot, 1984): 

Consider a random variable X for which the first moment i.e., the expectation of X 

is ( ) µ=XE . Then for any positive integer k, the expectation ( )[ ]kXE µ−  is called the kth 

central moment of the variable X or the kth moment of X about the mean value. 

 
2.1.1 Bounds on first moment for single interval 

For the lower bound on the first moment, the above minimization yields that the 

probability mass function (PMF) at the lower endpoint of the interval is the Dirac delta 

function, i.e., PMF is equal to one at this point and zero elsewhere. Thus the lower bound 

on the mean for a single interval is the lower bound of the interval itself.  Similarly, the 

upper bound on the mean for a single interval occurs when the probability mass function 

(PMF) at the upper endpoint of the interval is the Dirac delta function. The upper bound 

on the mean for a single interval therefore is the upper bound of the interval. If we 
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estimated the bounds on the first moment of single interval data based on observation, we 

would get the exact same results. 

2.1.2 Bounds on second moment for single interval 

For the lower bound on the second moment, the above minimization yields that 

the PMF at any point within the interval is the Dirac delta function, which implies that 

the lower bound on variance for a single interval is zero. Similarly, for the upper bound 

on the second moment, the above maximization yields a PMF of 0.5 at the both endpoints 

of the single interval.  

2.1.3 Bounds on third moment for single interval 

For the lower bound on the third moment, the above minimization yields a PMF 

of 0.2113 for the lower endpoint and 0.7887 for the upper endpoint. Similarly, a PMF of 

0.7887 for the lower endpoint and 0.2113 for the upper endpoint is obtained for the upper 

bound on the third moment (maximization).  

2.1.4 Bounds on fourth moment for single interval 

For the lower bound on the fourth moment, the above minimization yields that the 

PMF at any point within the interval is the Dirac delta function, which implies that the 

lower bound on the fourth moment for a single interval is zero. For the upper bound on 

the fourth moment, the above optimization yields a PMF of 0.7887 for one of the 

endpoints and 0.2113 for the other.  

We summarize these methods in Table 1 below. Note that these values of PMFs 

for the end points hold irrespective of the actual data represented by the single interval. 

For a given single interval, one could therefore directly use the above PMFs to estimate 
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the lower and upper bounds on the moments, without having to repeat the optimization 

for each problem.  We also note that we have solved the above mentioned optimization 

problems for four different sample sizes i.e., by discretizing the single interval into four 

different sizes (10, 100, 500, and 1000) and obtained the exact same results with linear 

computational efforts. The nature of the sampling or discretization does not have any 

effect on the end results as long as the samples include the two endpoints of the single 

interval data. 

Table 1: Methods for calculating moment bounds for single interval data 

Moment Condition Formula Lower bound Upper bound 

1 PMF = 1 at lower endpoint 
         = 0  elsewhere 

PMF = 1 at upper endpoint 
         = 0  elsewhere ( )xEM =1  

2 PMF = 1 at any point 
      = 0  elsewhere  

PMF = 0.5 at each 
endpoint ( ) ( )( )22

2 xExEM −=  

3 

PMF = 0.2113 at lower 
endpoint  

        = 0.7887 at upper 
endpoint 

PMF = 0.7887 at lower 
endpoint  

       = 0.2113 at upper 
endpoint 

( ) ( ) ( ) ( )( )323
3 23 xExExExEM +−=  

4 PMF = 1 at any point 
       = 0  elsewhere 

PMF = 0.7887 at one of the 
endpoints  

      = 0.2113 at the other 
endpoint 

( ) ( ) ( ) ( )( ) ( )( )42234
4 36)(4 xExExExExExEM −+−=
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            where ( )ixp = Probability Mass Function (PMF)     

It is seen from the optimization results that the minimum and maximum of the 

moments occur, when all the probability masses are concentrated at the two endpoints 

only, with two exceptions as seen for the lower bounds on the second and fourth 

moments. This is intuitive for the lower and upper bounds on the first moment. However, 

for the other cases, we investigate this issue as follows: 
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 With regard to the proposed algorithm, the following can be stated from the 

definition of moments as mentioned earlier in this section: 

1. As the second and fourth moments are by definition positive, the lower 

bounds on these moments are zero with the Probability Mass Function PMF 

being the Dirac delta function at any point within the interval. 

2. As the moments are by definition, the expectation of powers of deviation from 

the mean value, these expectations are essentially minimum (for the third 

moment) or maximum (for the second, third and fourth moments), when the 

data points are located at the endpoints of the interval i.e., when the PMFs are 

concentrated only at the endpoints of the single interval. 

Once we know that for minimum and maximum of some moments, the PMFs 

concentrate only on the two endpoints of the single interval, it might be interesting to 

investigate the nature of the solutions. We plot the values of the moments as a function of 

the pair (w1, w2), where w1 is the PMF at the lower endpoint and w2 = 1-w1 is the PMF at 

the upper endpoint of the interval. It is seen in Figure 1 that the second moment reaches 

its maximum when PMFs at both the endpoints are 0.5 each, which are consistent with 

our optimization results. For the third moment, we get a symmetric shape, which is 

consistent with our optimization results, where we have found that the PMFs at both the 

end points get flipped for the minimization (0.2113, 0.7887)  and maximization problems 

(0.7887, 0.2113). For the fourth moment, we get a bi-modal shape. The curve reaches its 

maximum for two sets of PMF pairs (0.2113, 0.7887) and (0.7887, 0.2113), which are 
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consistent with our optimization results. These two sets of PMFs also correspond to the 

minimum and maximum of the third moments, respectively as seen in Figure 1. 
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Figure 1: Moments vs. PMFs at the interval endpoints 
 
 

2.1.5 Numerical Example 

We apply the proposed method of estimating bounds on a single interval to the following 

example: [5, 15]. The bounds on the first moment are calculated to be [5, 15], those on 

the second moment are [0, 25], those on the third moment are [-96.225, 96.225], and 

those on the fourth moment are [0, 833.333]. We use this example later in the chapter to 

illustrate subsequent steps in the proposed methodology. 

2.2 Bounds on moments for multiple intervals 

As discussed in Section 1, the computation of bounds on moments for multiple intervals 

is computationally expensive as it is usually treated as a combinatorial problem, where 

the moments are calculated at the combinations of possible values of the interval variable. 

Rather than deal with this problem combinatorially, we have formulated this computation 

as a nonlinear programming problem with the objective being minimization or 
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maximization of the moments of data points that are constrained to fall within each of the 

respective intervals. The computational effort of this approach with increasing number of 

variables is demonstrated to be of polynomial order in the number of intervals. The 

proposed formulations are valid for any type of interval data, i.e. overlapping or non-

overlapping intervals. The bounds on moments thus found are rigorous, i.e., they 

completely enclose all possible moments generated from various combinations of the 

interval data. 

2.2.1 Bounds on first moment for multiple intervals 

Consider a set of intervals given as ai  ≤  xi  ≤  bi, i = {1, ..., n} where n is the 

number of intervals. Estimating the bounds on the first moment (arithmetic mean) 

involves identifying a configuration of scalar points {xi, i = {1, ..., n}}, (where xi 

indicates the true value of the observation within the interval) within the respective 

intervals that yield the smallest possible mean, and a configuration that yield the largest 

possible mean. Because the mean is proportional to the sum of the interval data, the 

configuration for the lower bound on the mean is the set of left endpoints of the interval, 

and that for the upper bound on the mean is the set of right interval endpoints. The 

formula for the arithmetic mean of interval data xi is therefore  
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where [ ]M,M are the lower and upper bounds on the mean, respectively.  

2.2.2 Bounds on second moment for multiple intervals 

The second central moment (variance) is a quadratic function of each of the values of its 

data. We search for the configuration of scalar points, xi, constrained to lie within their 
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respective intervals that minimizes (or maximizes) the function shown below to yield the 

lower (or upper) bound on the variance. Therefore, we construct a linearly constrained 

optimization problem as follows:   
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2.2.3 Bounds on third and fourth moments for multiple intervals 

The third and fourth central moments are third and fourth order polynomial functions 

of each of the values of the data, respectively. We search for the configuration of points 

{xi, i = {1, 2,.., n}} constrained to lie within their respective intervals that minimizes (or 

maximizes) the function shown below to yield the lower (or upper) bound of the 

third/fourth moment.  
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where minimizing (or maximizing) the above problem with k = 3 and k = 4 yields the 

lower (or upper) bound on the third and fourth moments, respectively.  

We have implemented the formulations to calculate the lower and upper bounds 

on the second, third and fourth moments for various test cases with increasing number of 

intervals. We considered both overlapping and non-overlapping interval examples to 

demonstrate the performance of the proposed formulations. The following procedure was 

used to generate the intervals for overlapping interval test cases. The interval extremes 
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(lowest of the lower bound and the highest of the upper bound) were arbitrarily assumed. 

In order to generate a desired number of intervals for each test case, a uniform random 

number generator was used to generate overlapping intervals between interval extremes. 

To generate non-overlapping interval data with n intervals for the test problems, we used 

the following procedure. First, a sequence of monotonically increasing random numbers 

is generated, {1 ,…, 2×n}. The i-th interval is generated by collecting the (2i-1)-th and 

(2i)-th random number. Thus the interval widths and the end points are generated 

randomly. 

We solved the above optimization formulations in Eqs. (6)-(9) using the MATLAB 

function fmincon, which implements a sequential quadratic programming algorithm. The 

plots in the Figures 2 and 3 illustrate the scalability of the proposed formulations with 

increasing number of intervals for overlapping and non-overlapping cases, respectively. 

For each plot shown in Figures 2 and 3, we fit a linear or quadratic function as well as an 

exponential function (solely for comparison purposes). The regression coefficients (i.e., 

the values of R2) indicate a strong linear/quadratic trend for the scalability of the 

algorithms.  
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Figure 2: Computational effort for the estimation of bounds on second, third, and fourth 
moments for overlapping intervals 
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Figure 3:  Computational effort for the estimation of bounds on second, third, and fourth 
moments for non-overlapping intervals  
 

Observe that the computational effort for estimating the lower bound on second 

moment increases linearly with increasing number of intervals for both overlapping and 

non-overlapping data (subplots (a) in both Figures 2 and 3). The computational effort to 

estimate the upper bound on second moment with increasing number of intervals is 

observed to be O(n2), making this a computationally affordable procedure, even for 

relatively large data sets(subplots (b) in both Figures 2 and 3).   
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The computational effort is also found to scale polynomially with the number of 

intervals for both minimization and maximization of third and  fourth moments, as seen 

from subplots (c)-(f) in both Figures 2 and 3. These plots show the best fitting polynomial 

and exponential trend lines to show that the trend is indeed polynomial in the number of 

intervals. 

So far, we discussed the proposed optimization formulations to estimate bounds on the 

second, third, and fourth moments of interval data, which is the first important 

contribution of this chapter. The moment bounds estimated in this section can be used to 

fit a family of Johnson distributions to interval data, as discussed in the next section.  

3. Fitting Johnson Distributions to Interval Data 

As discussed in Chapter III, there are several approaches to fit Johnson distributions to 

point data using statistics such as moments or percentiles. Unlike for point data where 

there can be a single probability distribution as the uncertainty description (when a large 

amount of samples is available), multiple probability distributions could describe interval 

data. Once the bounds on the moments of the interval data are calculated using the 

approach outlined in the previous section, we can now fit the Johnson distributions whose 

moments fall within the bounds of the moments of the interval data.  

 
Within the proposed framework, two procedures could be adopted for the 

uncertainty quantification of interval data: (1) sampling-based, which involves taking 

random samples of moments from within the bounds computed earlier, and fitting a 

Johnson distribution to each set of sampled moments, and (2) optimization-based, where 
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a bounding envelope of the family of distributions can be constructed using an 

optimization approach using percentiles. The sampling based approach is discussed next.  

3.1 Sampling-based procedure 

The proposed sampling-based procedure for constructing the family of Johnson 

distributions is as follows: 

1. Calculate the bounds on the first four moments of single or multiple interval data 

(Section 2). 

2. Randomly select a set of moments from within the bounds of the first four 

moments. This sampling can be done using uniform distribution or by any 

discretization method. In this chapter, we use uniform distribution. We note here 

that the type of sampling or discretization method used might have impact on the 

end results. However, this issue is not investigated in this dissertation. 

3. From Figure 1 (see Chapter III), infer the type of distribution to be fitted (e.g. 

bounded, unbounded, etc.)  We only select those samples that suggest a bounded 

Johnson distribution fit, so that the resulting distribution lies within the bounds of 

the interval data specified, because, for interval uncertainty, it may be reasonable 

to argue that the true measurement has zero probability of lying outside the given 

interval for the single interval case or outside the overall bounds ([Min(Lower 

bounds)  Max(Upper bounds)]) for the multiple interval case.  

4. Using the bounds of the interval data, two parameters of the bounded Johnson 

distribution, ξ and λ, are estimated as ξ  = min {ai, i = {1,…, n}}, and λ = max {bi, 

i = {1, …, n}}  - min {ai, i = {1 ,…, n}}. The parameters ξ and λ, which are the 
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location parameters (DeBrota et al, 1989), determine the lower end point and the 

range, respectively, of the bounded Johnson distribution.  

5. The remaining two unknown parameters γ  and δ, which govern the shape of the 

bounded Johnson distribution, are computed by solving the following 

optimization problem. 
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where Mi(sampled) is the set of moments sampled from step 2, and are the set of 

moments for a Mi(johnson) Johnson distribution. Constraints on the Johnson 

parameters are imposed for numerical reasons (discussed later). Note that the 

objective function of the above optimization problem may require scaling since 

the moments can be of largely different magnitudes.  

6. Repeat steps 2, 3, and 4 for a desired number of times. Each repetition of steps 3, 

4, and 5 yields a single Johnson distribution.  

 

The above sampling-based procedure can be repeated as many times as desired to obtain 

a family of Johnson distributions. The issue of sampling size can be problem dependent. 

The sampling-based procedure of uncertainty representation cannot guarantee rigorous 

bounds on input distributions, as it might underestimate the uncertainty due to practical 

limitations or computational expense. The sample size is a more critical issue when this 
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uncertainty has to be propagated through some models of system response. In order to 

alleviate the issue of sampling size in uncertainty representation, we have proposed an 

optimization-based strategy to represent interval uncertainty. 

 
Note that the above procedure is the same for both overlapping and non-

overlapping intervals. The optimization-based procedure to generate a probabilistic 

representation for interval data is discussed next.  

3.2 Optimization-based procedure: Johnson p-box 

Theoretically, infinitely many distributions can be fit to the given interval data. It 

is of interest for practical reasons to compute bounding envelopes for the family of 

Johnson distributions, which we call the Johnson p-box. Note that the Johnson p-box is 

analogous to the empirical p-box (Figure 1 of Chapter II), which is the bounding 

envelope of empirical distributions to fit the interval data. In this subsection, we present 

an optimization formulation based on percentiles to construct the Johnson p-box. 

 
In order to compute the bounding envelope, we solve a set of optimization problems, 

each for a different percentile value, α, where 0.990.01 ≤≤ α  Each optimization problem 

for a chosen α finds the parameters of the Johnson distribution that maximize or 

minimize the Johnson variable, αx , such that the moments of the Johnson distribution fall 

within the bounds computed in Section 2. The following optimization formulation is used 

to compute the Johnson p-box. Note that the minimization yields the left most bound of 

the family of distributions for each α. Similarly, maximization of the optimization 

problem below yields the right most bound for each α. 
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where 0.990.01 point, percentileth -  theis ≤≤ αααx  , m1johnson,…m4johnson are the first 

four moments of the Johnson distribution with parameters ξ, λ, γ, and δ, respectively, 

which can be computed using simulation; m1lb, …, m4lb respectively are the lower 

bounds on the first four moments of the interval computed using the proposed approach; 

and m1ub, …, m4ub respectively are the upper bounds on the first four moments of the 

interval computed using the proposed approach.  

The value of the objective function, αx , can be found by applying the Johnson 

transformation (see Eq. 1 in Chapter III) to a standard normal variable corresponding to 

the given α. Constraints in Eq. (18) and (19) are imposed on the Johnson parameters for 

numerical reasons. The bounded Johnson transformation (DeBrota et al, 1989) is given as 

1

exp1
−















 −
−++=

δ
γλξ zx  , where x is the Johnson variable, and z is the standard 

normal variable. The δ  parameter is restricted to be greater than 0.2: as 0→δ , the 

moments approach the impossible region for the Johnson family of distributions (Figure 1 

in Chapter III) and can cause division by zero problems with the bounded Johnson 

transformation (Eqs. 1 and 2 in Chapter III). The bounds on  have been chosen  so that 
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the bounded Johnson transformation function,
1

exp1
−















 −

−+
δ

γz , has a finite non-zero 

value.  

 
 

4. Numerical Examples 

In this section, we apply the proposed approaches to five example problems. We 

consider four multiple interval examples, each with different numbers of intervals and 

overlaps, and one single interval example. Note that the examples used in this chapter 

may not cover all types of overlaps; however, the proposed methods work in more 

general situations. Comparisons with alternate representations, such as the empirical p-

box, are also discussed.  

 
4.1 Illustration of the proposed methodology 

We consider two examples each for overlapping and non-overlapping multiple 

interval data, each with different numbers of intervals (Table 2). We follow the procedure 

outlined in Section 4.1 to fit a family of bounded Johnson distributions to each multiple 

interval data set in Table 2. The cumulative distribution functions of the family of 

Johnson distributions for each multiple interval data set are shown by thin dotted lines in 

Figure 4. The corresponding single interval results, where the moment bounds are 

computed using the methods outlined in Section 2.1, are shown in the left hand side plot 

in Figure 5.  
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Table 2: Interval data for the five numerical examples 
 

Example Data 

Example 1 with 5 overlapping intervals [5, 6; 5.5, 6.1; 6, 6.5; 5.4, 6.2; 5.6, 6.6] 

Example 2 with 9 overlapping intervals  
[Ferson et al 2007] 

[3.5, 6.4; 6.9, 8.8; 6.1, 8.4; 2.8, 6.7; 3.5, 9.7; 6.5, 9.9; 
0.15, 3.8; 4.5, 4.9; 7.1, 7.9] 

Example 3 with 4 non-overlapping intervals [5, 6; 6.1, 6.7;6.9, 7.8; 8, 9] 

Example 4 with 6 non-overlapping intervals   
[Ferson et al 2007] 

[1, 1.52; 2.68, 2.98; 7.52, 7.67; 7.73, 8.35; 9.44, 
9.99;3.66, 4.58] 

Example 5 with a single interval [5, 15] 

 

The Johnson p-box optimization problem is solved for each set of interval data in Table 2 

using Matlab’s fmincon solver. We use 20 equally spaced points for the percentile values, 

α,  ranging between 0.01 and 0.99. Note that the selectetion of the number of percentile 

points is arbitray. However, solving the optimization problem at increased number of 

percentile points results in more accrutare bounds on uncertainty but with increased 

computational efforts. For each α,  the minimization and maximization problems yield 

the left and right bounds on the p-box in Figure 4, respectively. At each α value, we 

repeated the maximization/minimization using 15 different starting points to avoid local 

optima; the best results among the 15 runs are reported. 

It is interesting to note that the Johnson p-boxes in Figure 4 for all the multiple interval 

examples shown have discontinuities. It is noted that the set of active constraints in the 

optimization (particularly, those with the moment bounds (Eqs. 14- 17)) changes at the 

point of discontinuity. For example, at the point A for Example 1 in Figure 4, the set of 

active constraints changes.  
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Figure 4: Samples from the family of Johnson cumulative distributions for overlapping 
and non-overlapping examples for multiple interval examples (thick solid lines – Johnson 
p-box, thin solid lines – empirical p-box, dashed thin lines – family of Johnson CDFs) 

Figure 5: Single interval example 
 

  

Example 1 Example 2 

  

Example 3 Example 4 

  

Samples from the family of Johnson 
distributions (thin dotted lines) with Johnson p-
box (thick dotted line) 

Comparison of Johnson p-box (thick solid 
line) with normal (thin dotted line) and 
lognormal (thick dotted line) p-boxes  
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Example 1 Example 2 

  

Example 3 Example 4 
Figure 6: Comparison of empirical, bounded Johnson, normal, and lognormal p-boxes for 
multiple interval examples (thick dashed line – lognormal, thin dotted line – normal, 
thick solid line – bounded Johnson, thin solid line – empirical distribution) 
 

Below the point A, the constraints on the upper bound of the third moment (upper bound 

in Eq. 16) and on the lower bound of the first moment (lower bound in Eq. 14) are active.  

Above the point A, the constraints on the lower bound of the fourth moment (lower 

bound in Eq. 17) and on the lower bound of  the first moment (lower bound on Eq. 14) 

are active. Similar trend was observed at point B in Example 1, where a discontinuity 

occurs in the bounding envelope. Below the point B, the lower bound of the fourth 

moment (lower bound in Eq. 17) and the upper bound of the first moment (upper bound 
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in Eq. 14) are the active constraints. Above the point B, the lower bound of the third 

moment (lower bound in Eq. 16) and the upper bound of the first moment (upper bound 

in Eq. 14) are the active constraints. For the single interval example, the Johnson p-box 

coincides with the left and right end points of the interval data.  

 
 
4.2 Comparison with other representations 

In this subsection, we present a comparison of the Johnson p-box with the 

empirical p-box idea available in the literature. We also compare how the choice of 

Johnson family of distributions impacts the probabilistic representation of interval data. 

Using an optimization formulation similar to that of the Johnson p-box, we compute the 

corresponding bounding envelopes for normal and lognormal distributions for single and 

multiple interval examples.  

The empirical p-boxes for the multiple interval data cases, obtained by sorting the 

endpoints of the intervals, are also plotted in Figures 4 and 6 for comparison purposes 

(thin solid lines). Note that for all examples presented in this section, not all members of 

the Johnson family of distributions fall inside the empirical p-box. The moments of the 

family of Johnson distributions fall within the moment bounds computed earlier; 

however, the distributions do not necessarily fall within the empirical p-box. 

In order to study the effect of the choice of Johnson family, we compare the Johnson p-

box to the bounding envelopes obtained for normal and lognormal distributions. The 

following optimization formulation is used to find the bounding envelopes for normal and 

lognormal distributions, where constraints are imposed on the first two moments.  
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where 0.990.01 point, percentileth -  theis ≤≤ αααx , d = (µY, σY) is the design variable 

vector, where Y is the normal random variable ;  distm1  and distm2  are the first and the 

second moments for normal/lognormal distributions, respectively; m1lb and m2lb 

respectively are the lower bounds on the first two moments of the interval computed 

using the proposed approach; and m1ub and m2ub respectively are the upper bounds on the 

first two moments of the intervals computed using the proposed approach.  

The quantities  distm1  and distm2  for the normal p-box are related to the design variable 

vector, YYm µ=1  and 22 YYm σ= . The moments of the lognormal variable (X),   distm1  and 

distm2  are computed in terms of the corresponding normal variable moments, (µY, σY), as 

follows. 
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The maximization and minimization at each percentile point for the normal and 

lognormal have been repeated with 15 different starting points to avoid local optima. The 

best results from within the 15 starting points have been plotted in Figure 6. Note that the 

bounded Johnson p-box remains close to the empirical p-box for all the four multiple 
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interval examples, which is not necessarily the case for normal and lognormal p-boxes. 

One possible reason for this behavior could be the theoretical bounds that exist on 

normal, lognormal, and bounded Johnson distributions. The normal distribution is 

unbounded, and can lie between [-∞, +∞], whereas the lognormal distribution is bounded 

between [0, +∞]. The bounded Johnson distribution is restricted to lie within the interval 

bounds (discussed in Step 4 of Section 3.2).  

As shown from the examples above, the proposed probabilistic representation of 

interval data using a family of bounded Johnson distributions is a viable approach for 

uncertainty quantification for interval uncertainty. Once such a family of distributions is 

constructed, it could be used in the context of uncertainty/reliability analysis using Monte 

Carlo simulations or FORM/SORM, resulting in set of values for an output quantity. This 

notion is unlike the case with aleatory uncertainties, where usually a single probabilistic 

representation describes the uncertainty, which yields a single quantity of interest from 

the uncertainty propagation stage. The proposed uncertainty representation is particularly 

suitable for use in FORM/SORM, since these methods require that the random variables 

are represented by probability distributions. These methods also require transforming the 

random variables into standard normal space, which is easy with Johnson distributions. 

The state-of-the-art in uncertainty propagation in the presence of interval data 

requires a nested analysis – instances of interval variable are considered in an outer loop, 

each iteration of which requires a probabilistic analysis for the aleatory uncertainties – 

inner loop.  Instead, one could use an optimization-based uncertainty propagation 

approach, where the parameters of the input interval variables (probabilistically 

described) that either maximize or minimize an output quantity of interest, e.g., 
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probability of failure, can be found. We have proposed such optimization-based 

approaches for cases where the input variables are described by sparse point data 

(McDonald et al, 2009). Similar ideas can be extended to variables described by intervals, 

which will be studied in the future.  

5. Conclusion 

In this chapter, we propose a probabilistic framework for representing uncertainty 

information available through interval data. The main contributions of this chapter are: 

(1) development of algorithms to estimate bounds on the second, third, and fourth 

moments of single and multiple interval data, (2) demonstration that the proposed 

moment bounding algorithms are scalable in polynomial time, (3) use of the moment 

bounds thus estimated to fit a family of flexible Johnson distributions,  (4) definition of a 

Johnson p-box, which is the bounding envelope of the family of Johnson distributions, 

and (5) development of an optimization-based method to construct the Johnson p-box.  

Through scalability testing, we have shown that the algorithms to compute bounds 

on the second, third and fourth moment of interval data scale polynomially in the number 

of intervals. This is important because these problems have been generally considered 

earlier to be NP-hard.  We have also shown how a probabilistic description for interval 

data can be provided by a family of distributions. Due to the nature of the interval data, 

however, we make no assumptions about the relative likelihood of any of these CDFs to 

be the true CDF.  For point data, statistics such as moments or percentiles which are used 

to fit probability distributions assume single values. However, for interval data, we can 

only estimate bounds on the statistics such as moments or percentiles. Therefore, unlike 
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for point data where there can be a single probability distribution as the uncertainty 

description, multiple probability distributions should describe interval data.  

This chapter presented an approach that can be used to fit a family of Johnson 

distributions using moment bounds obtained as discussed above. The family of Johnson 

distributions thus fit can be used as the probabilistic representation of the interval data. 

This process could also be performed using several other distributions. Johnson 

distributions offer an advantage because they have convenient transformations to be 

mapped into the normal space, which facilitates the use of popular analytical reliability 

methods such as FORM and SORM. 

The proposed probabilistic framework of handling interval data can be applied for a 

combined treatment of aleatory and epistemic input uncertainties from the perspective of 

uncertainty propagation or reliability based design. This approach to uncertainty 

representation given interval data can allow for computationally efficient propagation by 

avoiding the nested analysis that is typically performed in the presence of interval 

variables.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

CHAPTER V 

 
PROBABILISTIC FRAMEWORK FOR UNCERTAINTY 

PROPAGATION WITH BOTH PROBABILISTIC AND INTERVAL 
VARIABLES 

 
 
 

1. Introduction 
 
 

This chapter develops and illustrates a probabilistic approach for uncertainty 

representation and propagation in system analysis, when the information on the uncertain 

input variables and/or their distribution parameters may be available as either probability 

distributions or simply intervals (single or multiple). A unique aggregation technique is 

used to combine multiple interval data and to compute rigorous bounds on the system 

response CDF. The uncertainty described by interval data is represented through a 

flexible family of probability distributions. Conversion of interval data to a probabilistic 

format enables the use of computationally efficient methods for probabilistic uncertainty 

propagation. Two methods are explored for the implementation of the proposed 

approach, based on: (1) sampling and (2) optimization.  The sampling based strategy is 

more expensive and tends to underestimate the output bounds. The optimization based 

methodology improves both aspects. The proposed methods are used to develop new 

solutions to challenge problems posed by the Sandia Epistemic Uncertainty Workshop 

(Oberkampf et al, 2004). Results for the challenge problems are compared with earlier 

solutions. 

 
As mentioned earlier in Chapter I, if the uncertainty described by intervals can be 

converted to a probabilistic format, the computational expense of interval analysis is 
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avoidable as it allows for treatment of aleatory and epistemic uncertainty together without 

nesting, and already well established probabilistic methods of uncertainty propagation 

can be used. This chapter develops and illustrates a new approach for the representation 

and propagation of uncertainty available in both probabilistic and non-probabilistic 

formats. The proposed representation avoids the expensive nested analysis by enabling 

the use of an optimization-based strategy that can estimate the distribution parameters of 

the input variables that minimize or maximize an output quantity of interest, e.g., 

probability of failure or expectation of system response. Note that this optimization is 

done not to change the design but rather to determine the endpoints of intervals that 

bound the output estimates. The system design is considered static. A new aggregation 

technique is used to combine multiple intervals and to compute rigorous bounds on the 

system response CDF. This aggregation technique enables the use of the method of 

matching moments to represent the uncertainty described by the multiple intervals 

through a family of probability distributions (see Chapter IV).  

The rest of the chapter is organized as follows. Section 3 describes the proposed 

methodologies for representation and propagation of epistemic and aleatory uncertainty. 

Section 3 describes numerical examples, specifically Sandia Challenge Problems 

(Oberkampf et al, 2004) and solves them using the two proposed approaches: (1) 

sampling-based, and (2) optimization-based. Solutions from the proposed methods are 

compared to those obtained with earlier methods. Section 4 provides concluding remarks 

and suggestions for future work. 
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2. Uncertainty Propagation using Probabilistic Analysis 

 

Chapter IV proposed a methodology for representation of interval uncertainty using a 

flexible family of Johnson distributions. In this chapter, we have used Monte Carlo 

simulation (MCS) to achieve the propagation of both probabilistic and interval 

uncertainty through system models. Our purpose here is to develop a unified probabilistic 

framework that can represent and propagate both aleatory and epistemic uncertainty, no 

matter what uncertainty propagation method is used. However, we note here that 

analytical approximation methods (e.g., FORM, SORM) and efficient sampling methods 

(e.g., importance sampling) can also be used within the proposed uncertainty propagation 

framework. 

Problems involving interval uncertainty can be divided into two cases: 1) Input 

variable is described by a single interval or multiple intervals; or 2) the distribution 

parameter of the input variable is described by a single interval or multiple intervals. In 

the following subsections, we propose sampling and optimization-based approaches for 

propagation of aleatory and epistemic uncertainty for each of the cases. 

2.1 Sampling-based methodology for uncertainty propagation 

 
2.1.1 Case 1: Input variable described by interval data 

In this case, the uncertainty is modeled probabilistically by fitting a Johnson 

distribution, using values of the moments sampled from within the moment bounds of the 

interval data. The following computational procedure can be used to implement 

uncertainty quantification by sampling: 
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1. Generate a family of CDFs for each of the input variables described by 

single or multiple interval data by the procedure described in section 2. 

2. Propagate each of the CDFs from the input family of CDFs through the 

system response equation by any probabilistic uncertainty propagation 

method (e.g, FORM, SORM or MCS). 

3. Construct the CDF of the system response given a realization of the 

distribution parameters from the family of CDFs by repeating step 2 for a 

range of threshold values and thus obtain a family of CDFs for system 

response. 

2.1.2 Case 2: Input variable distribution parameters described by interval data 

As in Case 1, the uncertainty is again modeled probabilistically by fitting a family 

of Johnson distributions, using values of the moments sampled from within the moment 

bounds of the interval data. The following computational procedure can be used to 

implement uncertainty quantification by sampling: 

1. Generate a family of n CDFs for each of the distribution parameters of the 

input variables described by a single or multiple interval data by the 

procedure described in section 2. 

2.  Take m samples from each of the n CDFs of distribution parameters of an 

input variable. Now the input variable of interest has a family of nm ⋅  

CDFs. Note that n is the number of CDFs for each distribution parameter. 

We can sample as many sets of distribution parameter values as we want 

from each of the n CDFs. Each set of the sampled distribution parameter 

values now gives a single CDF for the input random variable of interest. 
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Therefore, by sampling m sets of distribution parameter values from each of 

the n CDFs of the distribution parameters, we have a total of nm ⋅  number 

of CDFs for the input random variable of interest. . Now if we generate p 

samples from each of the m×n CDFs, the overall sample size will be 

m×n×p. 

3. Propagate each of the CDFs from the family of CDFs of each of the input 

variables through the system response equation by any probabilistic 

uncertainty propagation method (e.g, FORM or MCS). 

4. Construct the CDF of the system response given a realization of the 

distribution parameters from the family of CDFs by repeating step 3 for a 

range of threshold values and thus obtain a family of CDFs for system 

response. 

 
2.2 Optimization-based methods for uncertainty propagation 

 

The above methodology to convert interval uncertainty into a probabilistic format is 

based on a sampling strategy. A sampling strategy might underestimate the output bounds 

since the sampling is not exhaustive due to practical limitations or computational 

expense. Therefore, in this subsection, we develop an optimization-based strategy to 

convert uncertainty described by interval data into a probabilistic framework. The 

optimization approach is also much less expensive compared to the sampling-based 

approach. We propose two types of optimization – percentile-based and expectation-

based. 
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2.2.1 Case 1: Input variable described by interval data 

Percentile-Based Optimization (PBO) 

This method minimizes and maximizes the system output ( )mxgα  conditioned on a 

set of moments (mi) for the input variables at different percentile values (α) of the output 

CDF and thus obtains bounds on the system output CDF. Its implementation is as 

follows: 

1. Calculate the bounds on the first four moments of single or multiple interval 

data by the methods described in Chapter IV. 

2. Solve the following optimization problems at different percentile values (α) to 

obtain bounds on output CDF. Minimizing the objective function gives the 

lower bound on the output and maximizing the objective function gives the 

upper bound on the output.                               
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β
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      (1) 

Here, the decision variable set m is the set of moments (m= [m1 m2 m3 m4]). The 

last two nonlinear constraints ensure that the optimizer only selects those values 

of moments that suggest a bounded Johnson distribution fit (See Figure 1 of 

Chapter III), so that the resulting distribution lies within the bounds of the interval 

data specified. It is noted here that the objective function in this optimization 

problem is conditioned on a set of moments for each of the input variables and 
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( )( )
Θ∈θ

θ

..ts

xgEMin ( )
Θ∈θ

α

θ

..ts

xgMin

estimates the parameters of Johnson distribution from the set of moments in each 

iteration by the method described in Chapter IV. 

 

Expectation-Based Optimization (EBO) 

The optimization formulation as described above is rigorous, but expensive as it 

requires solving the problem repeatedly at different α-levels. Therefore, in the following 

discussion, we propose an expectation-based optimization strategy to obtain approximate 

bounds on system response CDFs which is computationally less expensive. This 

formulation is based on the assumption that the sets of distribution parameters of input 

variables which result in minimum or maximum expectation of the system response 

(E(g(x))), can also give an upper bound on the entire CDF of the system response (g(x)) 

for the minimization problem and a lower bound for the maximization problem, 

respectively. A proof in support of this statement is given below: 

Theorem: CDF lower bound obtained by EBO will be no less than that obtained by 

PBO. The variables and the constraints for the PBO and EBO optimization problems are 

identical. 

Proof: The most general problem of calculating lower bounds on the system response 

can be stated as follows: 

                                           EBO                                                                    PBO 

                            
 

 

where θ is the set of distribution parameters, selected from a set of admissible values Θ. 

There are two possibilities: 
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i) **
PE θθ = : EBO curve is coincident with PBO curve, which 

implies ( ) ( )**
EP xgxg θθ αα = . 

ii) **
PE θθ ≠ : *

Eθ  is not the optimal solution. Note that in both EBO and PBO, the 

feasible sets    are identical, however, *
Eθ  minimizes the expectation of the 

system response ( ( )( )xgE ), whereas *
Pθ  minimizes the quantile value of the 

system response ( ( )xgα ).  This implies that there is a set of parameters 

Θ∈*
Pθ  for which ( ) ( )**

EP xgxg θθ αα ≤ . This is illustrated in Figure 1. The left 

two curves are obtained by solving the minimization problems and the right 

two curves are obtained by solving the maximization problems. For the 

minimization problems, it is seen from the figure that at fixed α-level the EBO 

solution gives a higher value of system response ( ( ) *
Exg θα ) than that of the 

PBO solution ( ( ) *
Pxg θα ). 

This proves the theorem that CDF lower bound obtained by EBO will be no less than that 

obtained by PBO. 
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Figure 1: PBO and EBO bounds 

 

Therefore, EBO gives an upper bound (to the right of PBO lower bound) of output 

uncertainty for the minimization problem. Similarly, it can be proved that EBO gives a 

lower bound (to the left of PBO upper bound) of output uncertainty for the maximization 

problem.  

EBO has the same formulation as in Eq. (1) but with a different objective function 

))((maxmin/ mxgE
m

. All the constraints remain the same. In this case, the optimization 

formulation yields sets of moments each corresponding to a set of Johnson distribution 

parameters. Once the distribution parameters are obtained, any probabilistic uncertainty 

propagation method (e.g., FORM or MCS) can be used to construct approximate bounds 

on the CDF of the system response. Figure 2 illustrates the two optimization methods for 

Case 1. 

 

System  
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Figure 2: Optimization methods for output uncertainty quantification (Case 1) 
 

2.2.2 Case 2: Input variable distribution parameters described by interval data 

 In this case, the implementation is more involved than in Case 1 where the input 

variable itself was described by interval data. In Case 1, input uncertainty was 

represented by a family of distributions for the input variable. In Case 2, we have a family 

of distributions for each distribution parameter of the input variable. 

Percentile-Based Optimization (PBO)  

The proposed PBO formulation involves two nested uncertainty analysis procedures.  

The inner loop uncertainty analysis calculates the conditional CDF of the system 
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response given a value of the distribution parameter. The outer loop uncertainty analysis 

calculates the distribution parameters which minimize or maximize the conditional CDF 

of the system response.  

In the inner loop, the cumulative distribution functions for the basic random 

variables with uncertain probability distributions are calculated by conditioning on a 

particular realization of the uncertain distribution parameters. Their optimum values are 

chosen to minimize or to maximize the system response ( )Dxg θα   conditioned on a 

realization of distribution parameters for the input variables at different percentile values 

(α).  

In the outer loop, the cumulative distribution functions for the basic random 

variables with uncertain probability distributions are calculated by conditioning on a 

particular distribution of distributions of the uncertain distribution parameters. Their 

optimum values are chosen to minimize or to maximize the system response ( )mxgα  

conditioned on set of moments (mi) for each of the input variables and/or distribution 

parameters at different percentile values (α). The lower bound of the α-percentile value of 

the output g(x) is obtained by solving: 

( )( )
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The upper bound of the α-percentile value of the output g(x) is obtained by solving: 
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In the above optimization formulations, θD corresponds to the realization of distribution 

parameters and θB corresponds to the hyper parameters i.e., distribution parameters of 

distribution parameters of the input variable. The constraints are the same as in Eq. (1). 

The most general way of solving this optimization formulation can be outlined as 

follows: 

1. Calculate the bounds on the first four moments of single or multiple interval data 

by the methods described in Chapter IV. 

2. The outer loop optimizer passes a single CDF for the distribution parameter to the 

inner loop optimization problem. This single CDF is sampled for realizations of 

the distribution parameters. The inner loop optimizer solves for the particular 

realization of the distribution parameter which leads to the minimum or 

maximum system response ( )Dxg θα  at different percentile values (α). Therefore, 

solving these nested formulations of Eqs. (2) and (3) yields the realization of 

distribution parameters which minimizes or maximizes the system 

response ( )Dxg θα , respectively at different percentile values (α) to obtain bounds 

on output CDF.  

Expectation-Based Optimization (EBO) 
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As in Case 1, we also propose an expectation-based strategy for Case 2 to obtain 

approximate bounds on system response CDF based on the same assumption that was 

made for Case 1. 

The formulations are the same as in Eqs. (2) and (3) but with a different objective 

functions ( )( )( )




 ∈ mxgE BDD

m D
θθθ

θ
)(minmin  and ( )( )( )( )mxgE BDD

m D
θθθ

θ
∈)(maxmax , 

respectively. All the constraints remain the same. Solving these nested formulations 

yields the realization of distribution parameters that minimize or maximize the 

expectation of the system response. Once the realizations of the distribution parameters 

are obtained, any probabilistic uncertainty propagation method (e.g., FORM, SORM or 

MCS) can be used to construct approximate bounds on the CDF of the system response. 

Figure 3 illustrates both the optimization methods for Case 2. 
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Figure 3: Optimization methods for output uncertainty quantification (Case 2) 
 

 
Note that the PBO and EBO methods are developed to propagate uncertainty 
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interval data could be available for the same variable, or some variables might be 

described by sparse point data and the others might be described by interval data. If both 

sparse point and interval data are available for the same variable, the optimization-based 

moment bounding algorithms developed in Chapter IV can still be used to calculate 
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moment bounds for the mixed data. In the moment bounding algorithms, each decision 

variable corresponds to an interval. When both sparse point and interval data are 

available for the same variable, the number of decision variables in the optimization 

problems is still equal to the number of intervals only, and the sparse point data are used 

as fixed quantities in calculating moments in the objective functions of the optimization 

problems. Once the bounds on the moments for the mixed data are obtained, the 

uncertainty propagation can be achieved by using both PBO and EBO. 

When some variables are described by sparse point data and others are described by 

interval data, it is necessary to estimate the confidence bounds on the first four moments 

for the variable described by sparse point data. Efficient methods are available to estimate 

the confidence bounds on mean values and variances in the presence of limited data (see 

Chapter VII). It is also possible to estimate bounds on the third and fourth moments for 

sparse point data using bootstrap methods. The two types of bounds are treated in the 

same manner. Once the confidence bounds on the moments for sparse point data and the 

bounds on moments for interval data are obtained, the uncertainty propagation can be 

achieved by using both PBO and EBO. 

 

 
3. Numerical Examples 

 
In this section, the proposed methods for propagation of aleatory and epistemic 

uncertainty are illustrated with Challenge Problems from the Sandia Epistemic 

Uncertainty Workshop (Oberkampf et al, 2004). Section 4.1 briefly describes the two 

problem sets. Section 4.2 presents the solutions for the challenge problems using both 

sampling and optimization-based approaches.  
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3.1 Challenge Problems 

The two problem sets involve (A) a simple algebraic function, and (B) solution to a 

linear ordinary differential equation (ODE). 

3.1.1 Challenge Problem A: Algebraic problem set 

Consider the algebraic function 

( )abay +=                                                                                                                        (4) 

where, y is the output. The input variables a and b are assumed to be independent of each 

other and both a and b are positive real numbers. The task for each problem in the set is 

to quantify the uncertainty in y given the information concerning a and b. It is assumed 

that there is no uncertainty about the model form. Only uncertainty in the model input 

variables is considered.  

Six problems are specified in sequence. The sequence is structured by the type and 

quantity of information specified for a and b. The structure of the sequence is given here: 

Problem 1: a and b are both uncertain and must lie within given single intervals. 

Problem 2: a is uncertain and must lie within a single interval, and b is characterized by 

multiple intervals. 

Problem 3: Both a and b are characterized by multiple intervals. 

Problem 4: a is uncertain and must lie within a single interval, and the uncertainty in b is 

specified by a probability distribution with imprecise parameters. 

Problem 5: a is characterized by multiple intervals, and the uncertainty in b is specified 

by a probability distribution with imprecise parameters. 
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Problem 6: a is uncertain and must lie within a single interval, and the uncertainty in b is 

described by a precise probability distribution. 

Problems 2, 3 and 5 each are further divided into three sub-problems based on the 

nature of the multiple intervals. The types of the multiple intervals are classified as i) 

consonant collection of intervals (intervals are nested), ii) consistent collection of 

intervals (no overlaps among the intervals), and iii) arbitrary collection of intervals (no 

assumption about the overlap or relationship among the intervals).  The complete 

description of each problem set and the numerical data can be found in Oberkampf et al 

(2004). In our approach, we use an optimization technique to obtain the bounds on 

moments of interval data, and our method does not depend on the type of intervals. Since 

our proposed methods can handle all three classes of interval data in the same manner, we 

only choose to solve the first sub-problem for each of Problems 2, 3 and 5. 

 
3.1.2 Challenge Problem B: ODE Problem 
 

The ODE problem is described by a spring mass - damper system acted on by a 

forcing function Y cos ωt as shown in Figure 4. The displacement and the velocity of the 

mass relative to a fixed reference frame are given by x and 
•
x , respectively.  

 

Figure 4: Mass-spring-damper system acted on by an excitation function (Oberkampf et 
al, 2004) 

 
The equation of motion for the mass is given in Eq. (5) 
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tYkxxcxm ωcos=++
•••

      (5)                                                                                                            
 
The analytical expression for the steady-state magnification factor can be obtained as  

( ) ( )222 ωω cmk

kDs
+−

=         (6)                                                                                                    

 
The task for this problem is to quantify the uncertainty in Ds given the information 

concerning k, m and ω. 

In the prescribed problem set, parameter m is given by a triangular probability 

distribution defined on the interval [ ]maxmin ,mm  with a mode of mmod. The values of mmin, 

mmax, and mmod are precisely known. 

Parameter k is described by a triangular distribution with imprecise kmin, kmax, and kmod. 

The values of kmin, kmax, and kmod are described by multiple intervals. 

Parameter c is described by multiple intervals, and ω is given by a triangular probability 

distribution defined on the interval [ ]maxmin ,ωω  with a mode of ω mod. The values of ω min, 

ω max, and ω mod are described by single intervals. 

 
The complete description of the problem and the numerical data can be found in 

Oberkampf et al (2004). 

3.2 Numerical Results 

Bounds on the CDF of system response for each of the problems are constructed 

using the optimization methods described in Section 3.2. A family of CDFs of system 

response is also constructed using the sampling strategy described in section 3.1. In the 

sampling approach, we have used 100,000 samples of system response for each of 10 sets 

of distribution parameters for each problem under Case 1 and 100,000 samples for each 
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of 100 sets of distribution parameters for each problem under Case 2. The optimization-

based strategy used 1000 samples of system response for each problem under Case 1 and 

1000 samples for each of 100 sets of distribution parameters for each problem under Case 

2. 

 
3.2.1 Challenge Problem A 
 
Problem A-1 
 

 For this problem, both input variables a and b are described by single intervals 

[0.1, 1.0] and [0.0, 1.0], respectively. We follow the procedure outlined in Chapter IV to 

fit a family of bounded Johnson distributions to each single interval data set. As an 

example, samples of cumulative density functions for the family of Johnson distributions 

for input variable a are shown in Figure 5.  

This problem belongs to Case 1 as described in Section 2 and is solved by both 

optimization and sampling-based strategies and the results are shown in Figure 6. 

This particular problem can also be solved by a simple deterministic optimization 

approach as shown below: 

( )

ubblb
ubalbts

abay

≤≤
≤≤

+=
)6(..

maxmin/
 

 
This optimization formulation yields the bounds on the system response as 

[0.6922, 2] which is exactly the same as the lowermost and uppermost bounds obtained 

by the proposed probabilistic approach, corresponding to CDF values of 0 and 1. 
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Figure 5: Family of Johnson distributions for input 

variable a for Problem A-1 
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Figure 6: Bounds on CDF of system response for 

Problem A-1 
 

Problem A-2 
 

For this problem, the input variable a is described by a single interval [0.1, 1] and 

has the same uncertainty representation as shown in Figure 5. Input variable b is 

described by multiple interval data ([0.6, 0.8], [0.4, 0.85], [0.2, 0.9], [0.0, 1.0]) and we 

follow the procedure outlined in Chapter IV to fit a family of bounded Johnson 

distributions to the multiple interval data set of input variable b. Several sample 

cumulative density functions from the family of Johnson distributions for input variable b 

are shown in Figure 7.  

This problem belongs to Case 1 as described in Section 2 and is solved by both 

optimization and sampling-based strategies and the results are shown in Figure 8. 
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Figure 7: Family of Johnson distributions for input 

variable b for Problem A-2 
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Figure 8: Bounds on CDF of system response for 

Problem A-2 
 

Problem A-3 

For this problem, both input variables a and b are described by multiple interval 

data ([0.5, 0.7], [0.3, 0.8], [0.1, 1.0]) and ([0.6, 0.6], [0.4, 0.85], [0.2, 0.9], [0.0, 1.0]), 

respectively, and have similar representations of uncertainty as shown in Figure 7.  This 

problem belongs to Case 1 as described in Section 2 and is solved by both optimization 

and sampling-based strategies and the results are shown in Figure 9. 
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Figure 9: Bounds on CDF of system response for Problem A-3 

 
 
Problem A-4 
 

For this problem, the input variable a is described by a single interval [0.1, 1.0] 

and has the same uncertainty representation as shown in Figure 5. Input variable b is 

given by a log-normal probability distribution with imprecise parameters. These 

parameters are given by single intervals [0.0, 1.0] and [0.1, 0.5], respectively, and have 

similar uncertainty representations as shown in Figure 5. We follow the procedure 

outlined in Section 2.1 to obtain a family of log-normal distributions for input variable b 

given that the distribution parameters are represented as families of Johnson distributions. 

As an example, samples of cumulative density functions of the family of log-normal 

distributions for input variable b are shown in Figure 10. 

This problem belongs to Case 2 as described in Section 2 and is solved by both 

optimization and sampling-based strategies and the results are shown in Figure 11. 
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Figure 10: Family of log-normal distributions for input 

variable b for Problem A-4 
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Figure 11: Bounds on CDF of system response for 

Problem A-4 
 

Problem A-5 

For this problem, the input variable a is described by multiple interval data ([0.5, 

0.7], [0.3, 0.8], [0.1, 1.0]) and has a similar uncertainty representation as shown in Figure 

7. Input variable b is given by a log-normal probability distribution with imprecise 

parameters. These parameters are described by multiple intervals ([0.6, 0.8], [0.2, 0.9], 

[0.0, 1.0]) and ([0.3, 0.4], [0.2, 0.45], [0.1, 0.5]), respectively, and have similar 

uncertainty representations as shown in Figure 7. We follow the procedure outlined in 

Section 2.1 to obtain a family of log-normal distributions for input variable b given that 

the distribution parameters are represented as families of Johnson distributions. Several 

sample cumulative density functions from the family of log-normal distributions for input 

variable b are shown Figure 12. 
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Figure 12: Family of log-normal distributions for input 

variable b for Problem A-5 
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Figure 13: Bounds on CDF of system response for 

Problem A-5 
 

This problem belongs to Case 2 as described in Section 2 and is solved by both 

optimization and sampling-based strategies and the results are shown in Figure 13. 

Problem A-6 
 

For this problem, the input variable a is described by a single interval [0.1, 1.0] 

and has the same uncertainty representation as shown in Figure 5. Input variable b is 

given by a log-normal probability distribution with precise parameters, 0.5 for each. This 

problem belongs to Case 1 as described in Section 2 and is solved by both optimization 

and sampling-based strategies and the results are shown in Figure 14. 
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Figure 14: Bounds on CDF of system response for Problem A-6 

 
It is seen in Figures 6, 11 and 14 that the bounds obtained by the expectation-

based optimization (EBO) formulation and the percentile-based optimization (PBO) 

formulation almost coincide with each other. It is seen in Figures 8, 9 and 13 that the 

percentile-based optimization (PBO) formulation generates rigorous bounds compared to 

those obtained by the expectation-based optimization (EBO) formulation. The bounds 

obtained by EBO are still wider than those obtained by the sampling method.  

  The computational efforts for both PBO and EBO methods are listed in Table 1. It 

is seen from Table 1 that EBO is less expensive compared to PBO for each problem. 
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Table 1: Computation effort for Challenge Problem A 

Challenge 
Problem A 

 

PBO EBO 

Function 
Evaluations 

Percentile 
Points 

Function 
Evaluations 

A-1 21 7286 526 

A-2 12 2962 148 

A-3 11 3750 446 

A-4 15 6123 349 

A-5 15 10271 556 

A-6 21 2494 127 

 

3.2.2 Challenge Problem B 

For this problem, the input variable k is given by a triangular distribution with 

imprecise kmin, kmax, and kmod. The distribution parameters kmin, kmax, and kmod are 

described by multiple interval data ([90, 100], [80, 110], ([200, 210], [200, 220], [190, 

230]) and ([150, 160], [140, 170], [120, 180]) respectively, and have similar uncertainty 

representations as shown in Figure 7. We follow the procedure outlined in Section 2.1 to 

obtain a family of triangular distributions for input variable k given that the distribution 

parameters kmin, kmax, and kmod are represented as families of Johnson distributions. 

Several sample cumulative density functions from the family of triangular distributions 

for input variable k are shown in Figure 15. 
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Figure 15: Family of triangular distributions for input 

variable k for Problem B 

 
Figure 16: Family of triangular distributions for input 

variable ω for Problem B 
 

Input variable c is described by multiple intervals ([5, 10], [15, 20], [25, 25]) and 

has a representation similar to that shown in Figure 7. Input variable ω is given by a 

triangular probability distribution defined on the interval [ ]maxmin ,ωω  with a mode of 

ωmod. The distribution parameters ωmin, ωmax, and ωmod are described by single intervals 

[2, 2.3], [2.5, 2.7] and [3.0, 3.5], respectively, and have similar representations as shown 

in Figure 5. We follow the procedure outlined in Section 2.1 to obtain a family of 

triangular distributions for input variable ω given that the distribution parameters ωmin, 

ωmax, and ωmod are represented as families of Johnson distributions. Several sample 

cumulative density functions from the family of triangular distributions for input variable 

ω are shown in Figure 16. 

This problem belongs to Case 2 as described in Section 2 and is solved by both 

expectation-based optimization (EBO) and sampling-based strategies and the results are 
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shown in Figure 17. It is noted here that we did not find any converged solutions for this 

problem by the percentile-based optimization (PBO) method. 

 
Figure 17: Bounds on CDF of system response for Problem B 

 
It is seen in Figure 17 that the results obtained by EBO provide an envelope for 

the CDFs obtained by sampling.  

Comparison with results from earlier studies 

The results obtained by the proposed optimization-based methodology are 

compared with earlier solutions (Helton et al, 2004; Kozine and Utkin, 2004; De Cooman 

and Troffaes, 2004; Ferson and Hajagos, 2004 and Red- Horse and Benjamin, 2004). 

Ferson et al (2004) compared these earlier solutions in a tabular form. We have added an 

extra column to their table with the solutions from our approaches as shown in Table 2. 

The earlier solutions given in Table 2 are in terms of bounds on the expected values of 
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the output, whereas our approaches give bounds on the entire output CDF. It can be 

mentioned here that bounds on the expected value of the system response are same as the 

bounds on the system response itself (Ferson et al, 2004 and Zaman et al, 2009a). 

Table 2: Comparison of bounds on expected values 

 

Some quantitative agreement on the expected values is found among the earlier 

five studies, particularly for Problem A-1 as shown in Table 2. The results with the 

proposed approach (last column in Table 2) show some overlaps with the results of the 

earlier studies. Ferson et al (2004) argued that the disagreements in results among 

different studies are mostly due to the approaches by which the uncertainty described by 

multiple intervals is aggregated. Moreover, disagreement has also been observed 

regarding the answers to the Problems A-4 and A-6, though these problems did not have 

 Helton et al.  
(2004) 

Kozine and 
Utkin (2004) 

De Cooman and 
Troffaes (2004) 

Ferson and 
Hajagos (2004)  

Red- Horse 
and 

Benjamin 
(2004)  

Approach in 
this chapter 

1  -  [0.69, 2.0]  [0.692201, 2 .0]  [0.692, 2]  -   [0.6922,2] 
 

2a  -  [0.93,1.84]  [0.956196, 1.8]  [0.84, 1.89]  -  [0.6922, 2]  

3a  -  [0.944, 1.473]  [1.04881, 1.2016]  [0.83, 1.56]  -   [0.6922,2] 

4  [1, 3.7]  [0.859, 1.108]  [1.00966, 
4.08022]  

[0.9944, 4.416]  -   [0.6922, 
8.8329] 

5a  (Graphical)  [1.45, 2.824]  [1.54027, 
2.19107]  

[1.05, 3.79]  -  [0.6922, 
8.4681]  

6  [1.05, 3]  [1.019, 2.776]  [1.05939, 
2.86825]  

[1.052, 2.89]  -  [0.7050, 
8.4066]  

       
B (Graphical) - - [1.17, 3.72] (Graphical) [0.8192, 

1.8869] 
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any multiple estimates for any of the input variables and thus should not have any 

problem due to the aggregation methods. Ferson et al (2004) mentioned four possible 

reasons for the observed discrepancies among the answers: i) nesting (due to difference in 

approaches, one result may be nested in others), ii) differences in truncation about 

whether or where the distributions were truncated to finite ranges, iii) numerical 

approximation error, and iv) different representations of independence.  

Some authors mention repeated parameters in the system response expression as 

an issue when non-probabilistic methods are used for uncertainty quantification, as it can 

introduce the uncertainty of the repeated parameters more than once in the analysis 

(Ferson et al, 2004). Different authors employed different strategies for handling the issue 

of repeated parameters. These include sampling, exact evaluation, Mathematical 

programming, Independent natural extension, Subinterval reconstitution, Systematic 

sampling, Dependency tracking, vertex method, etc. The approach proposed in this 

chapter uses probabilistic uncertainty propagation methods, where the effect of repeated 

parameters is not an issue. 

For Problem B, Helton et al (2004) used a sampling strategy and a Dempster- 

Shafer structure to compute the output bounds as [1.44, 2.86]. Red-Horse and Benjamin 

(2004) gave bounding distributions for Ds which had the support [1.4, 3.6]. Note that 

Helton et al (2004) and Red-Horse and Benjamin (2004) did not provide any numerical 

value for the output bounds in their papers. The numerical values for the output bounds 

mentioned in this chapter are estimated by Ferson et al (2004) from the graphical 

solutions. Ferson and Hajagos (2004) computed an interval ([1.17, 3.72]) based on 

moment propagation and argued that it might overestimate the uncertainty of the answer, 
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whereas a sampling-based strategy might underestimate the uncertainty. We employed 

both sampling and optimization-based strategies but with a different aggregation method 

and computed the output interval as [0.8192, 1.8869]. 

It is seen that the optimization-based methodology proposed in this chapter gives 

wider bounds than other methods for the Problems A and narrower bounds for Problem 

B. However, instead of considering whether the bounds are narrower or wider, it is more 

helpful to evaluate bounds in terms of “rigor” and “optimality” as conceptually sketched 

in Figure 18. By rigorous, it is meant that the true interval of the possible quantile values 

lies within the computed bounds. By optimal, it is meant that the bounds are the 

narrowest possible, while still being rigorous.  

 

 

 

 

 

 

 

 

 

 

Figure 18: Rigorous vs. optimal bounds 
 

The proposed PBO bounds are rigorous, provided that the set Θ encompasses all 

admissible distribution parameter values. This is because the quantile values are 

System 
  

Rigorous bounds 
Optimal bounds 

CDF 



 

126 
 

minimized or maximized over the entire set Θ. If the set of all admissible distribution 

parameter values is equal to Θ, then the bounds obtained by PBO are optimal. Suppose θ* 

is the solution to the PBO problem. Because θ* is an element of Θ, rigor requires that θ* 

minimizes or maximizes ( )θα xg  over the set Θ. And it is impossible to construct a wider 

interval without violating the constraint Θ∈θ . In this instance the bounds are both 

rigorous and optimal. Again, if the set Θ is a superset of all actually admissible 

distribution parameter values, the bounds will still be rigorous, as the search over Θ 

includes a search over the set of all actually admissible distribution parameter values; 

however, the bounds will not be optimal because Θ is larger than the set of all admissible 

parameter values.  

The differences in the results obtained by the different solution methods appear to 

create another type of epistemic uncertainty, which may be referred to as method 

uncertainty. The output intervals given by multiple methods may also be aggregated 

using the method described in section 2.  

 
4. Conclusion 

 

This chapter developed a probabilistic framework for the representation and 

propagation of uncertainty available as interval data. Both sampling and optimization-

based methods are developed for two cases: (1) when the input variable is described by 

interval data, and (2) when the distribution parameters of the input variable are described 

by interval data. The methodology proposed in this chapter can handle all three classes of 

interval data mentioned in Section 4 in the same manner. 
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It is obvious that there is no unique or right answer to problems involving interval 

uncertainty (Oberkampf et al, 2004). However, the probabilistic methodology proposed 

in this chapter is flexible, and conversion of interval data to a probabilistic format enables 

the use of computationally efficient methods for probabilistic uncertainty propagation. 

The optimization-based approach adds further efficiency and ensures more rigorous 

bounds compared to the sampling-based approach.  Further, the aggregation method for 

multiple intervals used here is also computationally efficient, and only scales 

polynomially in computational effort with respect to the number of interval data. The 

proposed approach facilitates the implementation of design optimization under 

uncertainty using efficient reliability-based design optimization (RBDO) methods, e.g., 

single loop, decoupled, etc., due to the use of a probabilistic format to represent all the 

uncertain variables. Note that the example problems assume statistical independence 

among the input random variables. However, the proposed approach will also work for 

any correlated interval variable with any appropriate multivariate input modeling method. 

Also, the accuracy of the optimization methods depends on the solver used. As in the 

case in nonlinear optimization, the proposed optimization-based strategies do not always 

guarantee convergence. Sometimes the problems might not have a unique solution and a 

non-gradient based solver (e.g., genetic algorithm) might help when convergence 

problems are encountered. 

 
 
 
 
 
 
 

 



 

 
 

CHAPTER VI 
 
 

INCLUSION OF CORRELATION EFFECTS IN MODEL PREDICTION 
UNDER DATA UNCERTAINTY 

 
 

1. Introduction 

 

In many uncertainty propagation analyses, it is likely that the marginal distribution 

types for the input variables are not known or cannot be specified accurately due to the 

presence of sparse point or interval data. This chapter proposes a methodology for 

multivariate input modeling of random variables by using a four parameter flexible 

Johnson family of distributions for the marginals that also accounts for data uncertainty. 

Semi-empirical formulas in terms of the Johnson marginals and covariances are presented 

to estimate the model parameters (reduced correlation coefficients). This multivariate 

input model is particularly suitable for uncertainty quantification problems that contain 

both aleatory and data uncertainty. In this chapter, a computational framework is 

developed to consider correlations among basic random variables as well as among their 

distribution parameters. We present a methodology for propagating both aleatory and 

data uncertainty arising from sparse point data through computational models of system 

response that assigns probability distributions to the distribution parameters and 

quantifies the uncertainty in correlation coefficients by use of computational resampling 

methods. For interval data, the correlations among the input variables are unknown.  We 

formulate the optimization problems of deriving bounds on the cumulative probability 

distribution of system response, using correlations among the input variables that are 

described by interval data. 
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This chapter develops a multivariate input model for random variables having 

Johnson marginal distributions based on the Nataf transformation. We present semi-

empirical formulas that relate ρ0,ij to ρij in terms of the prescribed marginal distributions 

and covariances. This ρ0,ij can be used to generate correlated standard normal variates 

which are later transformed to an uncorrelated standard normal space for use in analytical 

reliability methods (e.g., FORM), or used to simulate correlated random variables for use 

in MCS. 

It should be noted that given the presence of limited or interval data, the marginal 

distributions of the input variables and their correlation coefficients are also uncertain. 

Little to no work exists in the literature that considers uncertainty in correlation 

coefficients, and statistical correlations among distribution parameters. Moreover, for 

interval data, the correlations among the input variables are unknown and very few 

computationally efficient methods exist for propagation of both aleatory and statistical 

uncertainty that account for correlations among interval variables. Therefore, the 

contributions of this chapter are to (i) derive semi-empirical formulas that relate ρ0,ij to ρij 

in terms of the Johnson marginal distributions and covariances and hence, develop a 

framework for multivariate input modeling of random variables modeled with Johnson 

marginal distributions; (ii) develop a method for the propagation of both aleatory and 

data uncertainty arising from sparse point data, by taking into account the uncertainty in 

correlations among basic random variables as well as correlations among distribution 

parameters; and (iii) develop a method for the propagation of both aleatory and data 

uncertainty arising from interval data by taking into account the correlations among basic 

random variables.  
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The rest of the chapter is organized as follows. Section 2 describes the computational 

framework for input modeling with Johnson distributions using correlations. Section 3 

describes the proposed methods for the representation and propagation of both statistical 

and aleatory uncertainty using correlations. Section 4 gives the numerical results using 

two proposed methods: (1) for sparse point data, and (2) for interval data. Section 5 

provides concluding remarks and suggestions for future work. 

 
 

2. Input modeling with Johnson distributions using correlations 

In this section, we propose a methodology to simulate correlated random variables (or 

uncorrelated standard normal variates) when the marginals and the correlation matrix [C] 

are the only information available. We use the Nataf transformation to calculate the 

reduced correlation coefficient (ρ0,ij), similar to Der Kiureghian and Liu (1986). The 

Nataf transformation assumes that if Z1 and Z2 are standard normal variates obtained by 

marginal transformations of X1 and X2, and if we assume Z1 and Z2 are jointly normal, 

then X1 and X2 are jointly Nataf distributed. This process involves solving the following 

integral equation: 

  

where ρ12 is the correlation coefficient of the basic random variables, ρ0,12 is the reduced 

correlation coefficient of the standard normal variates obtained by the following 

transformation: 

 
( )[ ] (2)1,2i  1 =Φ= −

iXi XFZ
i

( ) )1(,, 2112,0212
2

22

1

11
12 dzdzzzmxmx ρφ

σσ
ρ 







 −







 −
= ∫ ∫

∞

∞−

∞

∞−



 

131 
 

( )12,0212 ,, ρφ zz  is the bivariate normal PDF of zero means,  unit standard deviations and 

correlation coefficient ρ0,12. 

 

 

The integral equation in Eq. (1) has to be solved iteratively for given marginal 

distributions and correlation coefficient ρij. To avoid solving an integral equation 

iteratively, Der Kiureghian and Liu (1986) proposed semi-empirical formulas for the ratio 

 

for some two-parameter marginal distributions, e.g., uniform, shifted exponential, shifted 

Rayleigh, Type-I largest value, log-normal, gamma, and Type-II largest value.  

In this section, we develop similar semi-empirical formulas to calculate reduced 

correlation coefficient (ρ0,ij) for random variables having Johnson marginal distributions. 

As in the case of Nataf transformation, we also assume that the transformed standard 

normal variates are jointly normal. Then instead of solving the integral equation in Eq. 

(1), we calculate the reduced correlation coefficient ρ0,ij by a numerical technique based 

on optimization. The procedure can be outlined as follows: 

1. Define standard normal variates Z = (Z1, Z2) obtained by marginal 

transformations of X = (X1, X2) given by Eq. (2). 

2. Z1 and Z2 are now assumed jointly normal with joint PDF given by Eq. (3). 

3. Choose an initial value for ρ0,ij. 
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4. Calculate the correlation coefficient ρij from the simulated correlated variables 

X1 and X2. 

5. Iterate until the correlation coefficients calculated from the original data (ρij, 

data) and the simulated correlated variables (ρij, simulation) become equal. Obtain 

the reduced correlation coefficient ρ0,ij. This is achieved by the following 

optimization problem: 

( )( )
99.099.0..

)5(min

,0

2
,0,,

,0

≤≤−

−

ij

ijsimulationijdataij

ts
ij

ρ

ρρρ
ρ  

We solved this optimization problem using the MATLAB function fmincon, which 

implements a sequential quadratic programming algorithm. 

This calculation can be tedious; therefore, we also present semi-empirical formulas for 

the correction factor F when marginal distributions come from the Johnson family of 

distributions. These formulas are based on the following properties (Der Kiureghian and 

Liu, 1986): 

1. F is a function of ρij and the parameters of the two marginal distributions. 

2. F is always greater than one for any arbitrary ρij and marginal distributions. 

Based on the above properties, we propose three semi-empirical formulas for the 

following three cases: 

1. Both Xi and Xj are bounded Johnsons (SB) (Eq. (6)) 

2. Both Xi and Xj are unbounded Johnsons (SU) (Eq. (7)) 
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3. Xi is unbounded Johnson (SU) and Xj is bounded Johnson (SB) (Eq. (8)) 

 

 

 

 

 

 

 

 

 

 

In Eqs. (6), (7) and (8), F is the correction factor, ρij is the original correlation 

coefficient, Vi and Vj  are the coefficients of variation, β1i, β1j are the skewness and β2i, β2j 

are the kurtosis for Xi and Xj, respectively. These equations are obtained by least-square 

fitting to a general second degree polynomial. Note that in Eqs. (6) and (7),  Xi and Xj are 

the same Johnson type (both bounded, or both unbounded),  therefore the formulas for F 

are symmetric in i and j. In Eq. (8) Xi and Xj are of different type (Xi is unbounded, Xj is 

bounded), therefore this formula is not expected to be symmetric. 
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In order to validate the fitted models, the coefficients of determination R2 for each 

of Eqs. (6)-(8) are calculated. However, in the presence of multiple regressor variables, 

the R2 value might overestimate the strength of the model, as it always increases with 

increasing number of regressor variables in the models (Haldar and Mahadevan, 2000). 

Therefore, another statistic, the adjusted R2 is also computed for each of the models, 

which also accounts for the sample size of the regressor variables (Cramer, 1987). The 

overall significance of the proposed regression models is also tested using the F-test. The 

F-tests are performed at 0.05 significance level. The values of p in Table 1 reflect the 

significance of F-statistics. For example, a value of p less than the significance level of 

0.05 indicates a good fit. The regression statistics are given in Table 1.   

 Table 1: Regression statistics for the semi-empirical formulas 

 

It is seen in Table 1 that the values of both R2 and R2-adjusted are reasonably high 

for each of the fitted models, the values of F are well above the corresponding critical 

values, and the respective p values are much less than the significance level 0.05, 

indicating that the models in Eqs. (6)-(8) provide a good fit to the data. 

Table 2 lists the allowable domains for the correlation coefficients for the semi-

empirical formulas given above. The proposed formulas are valid for only these ranges of 

the correlation coefficients. The other coefficients in the formulas are functions of the 

Distributions R2 R2-adjusted F p Fcritical 
Johnson SB-SB 0.9597 0.9350 14.3740 1.8162e-010 1.9332 
Johnson SU-SU 0.8959 0.8452 5.4608 3.7955e-006 1.8599 
Johnson SU-SB 0.9818 0.9645 27.1762 0 1.7390 
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first four moments of the marginal Johnson distributions and are constrained by the 

Johnson translation system. 

Table 2: Allowable domains for the correlation coefficients 
 

Distributions ρij 
Johnson SB-SB -0.95 to 0.92 
Johnson SU-SU -0.93 to 0.93 
Johnson SU-SB -0.94 to 0.93 

 

Once the reduced correlation coefficients are obtained by one of the semi-empirical 

formulas presented above, the next step is to transform the correlated variables into 

uncorrelated standard normal variates for use in analytical reliability methods or to 

generate correlated random variates for use in MCS. The procedure of transformation to 

uncorrelated standard normal variates is as follows: 

1. Calculate the correction factor F for the given marginals and correlation 

coefficient ρij and thus obtain the reduced correlation coefficient ρ0,ij and reduced 

correlation matrix ][ 'C . 

 

 

2. Generate correlated standard normal variates (Z) from the joint PDF given in Eq. 

(3) with the reduced correlation matrix ][ 'C . 

3. Transform correlated standard normal variates (Z) to uncorrelated standard 

normal (u) space by the transformation 
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where L is the lower triangular matrix obtained by Cholesky factorization of the 

reduced correlation matrix ][ 'C .     

Since Monte Carlo methods have widespread applications in uncertainty analysis, 

it is important to include correlations into the computational process, when the input 

variables are correlated. As mentioned earlier that there are several ways to generate 

correlated random variables with given marginals and correlation matrix. In this chapter, 

we have used the following procedure to generate correlated random variables: 

1. Calculate the correction factor F for the given marginals and correlation 

coefficient ρij and thus obtain the reduced correlation coefficients ρ0,ij and reduced 

correlation matrix ][ 'C . 

2. Generate correlated standard normal variates (Z) from the joint PDF given in Eq. 

(3) with the reduced correlation matrix ][ 'C . 

3. Generate correlated random variables (X) with given marginals by the following 

transformation: 

 

We note here that the procedures described above require that the reduced correlation 

matrix ]'[C  be at least positive semi-definite, if not positive definite. This condition is 

satisfied in almost all practical cases, because the original correlation matrix ][C  is by 

definition positive define and the differences between the original correlation coefficients 

ρij and the reduced correlation coefficients ρ0,ij are usually small (Liu and Der Kiureghian, 

1986). However, in some practical cases, when we construct the reduced correlation 

( ) [ ] (11)1,2i  =Φ= iiX ZXF
i
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matrix ]'[C  by estimating the pairwise correlation coefficients independently, it is likely 

that the correlation matrix ]'[C  will be non-positive semi-definite. Methods (e.g., 

Higham, 2002; Mishra, 2007) exist for adjusting a non-positive semi-definite matrix so 

that it can be positive semi-definite and remains as close as possible to the original 

matrix.  

Once we have transformed the original random variables to uncorrelated standard 

normal space or we have generated correlated input variables, the next step is to 

propagate this uncertainty through models of system response by any uncertainty 

propagation method (e.g., FORM or MCS).  

3. Proposed Methodology for uncertainty propagation under uncertain 
correlations 

 
In this section we describe our proposed methodology for the propagation of 

epistemic and aleatory uncertainty using correlations. First, we fit a family of Johnson 

distributions to sparse point and interval data on the input variables using the moment 

matching approach. Moment matching involves equating the moments derived from data 

to those of the probability distribution being fit.  A detailed discussion on fitting Johnson 

distributions to sparse point and interval data can be found in McDonald et al (2009) and 

Zaman et al (2009a), respectively.  

The Johnson family is a generalized family of distributions that can represent normal, 

lognormal, bounded, or unbounded distributions. Because of their flexibility, Johnson 

distributions can be used for probabilistic representation of sparse point data or interval 

data when the underlying probability distribution is not known. As discussed earlier in 
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Section 1, the Johnson family is a convenient choice for this purpose among other four 

parameter distributions, as it has easy transformation to standard normal space, which 

then can be conveniently used for further analysis. 

In Section 3.1 we describe novel approaches for uncertainty quantification with 

sparse point data. In Section 3.2 we describe the methods for quantification of both 

aleatory and interval uncertainty using correlations among interval variables. 

 

3.1 Statistical Uncertainty Quantification via Jackknife for sparse point data 

It should be noted that given the presence of limited data, the marginal distributions of 

the input variables and their correlation coefficients are also uncertain. We introduce a 

versatile approach for uncertainty quantification of distribution parameters and 

correlation coefficients among basic random variables as well as their distribution 

parameters for sparse point data. This approach assumes that both the basic random 

variables and their distribution parameters are Johnson distributed, and uses a jackknife 

technique to estimate the distribution of the distribution parameters and correlation 

coefficients among basic random variables. The assumption of the distribution 

parameters having the Johnson distribution allows for both the possibility of a non-

normal distribution for the small sample size as well as the distribution asymptotically 

approaching normality 

 Jackknifing (Arvesen, 1969 and Miller, 1974) is used to estimate the bias and 

standard error in a statistic, when a random sample of observations is used to calculate it. 

The basic idea behind the jackknife estimator lies in systematically recomputing the 
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statistic estimate, leaving out one observation at a time from the sample set. From this 

new set of "observations" for the statistic an estimate for the bias can be calculated and an 

estimate for the variance of the parameter. We propose the following algorithm for 

uncertainty quantification of the distribution parameters and correlation coefficients. 

Note that any appropriate point estimation technique may be used for this 

procedure. The use of the Johnson distribution for the underlying basic random variable 

avoids the problem of incorrect classification of the distribution type. The use of the 

Johnson distribution for characterizing parameter uncertainty allows for relaxation of the 

assumption of asymptotic normality. The Johnson distribution can much more closely 

match the shape of the parameter’s distribution even if it is non-normal, as it may be 

under small sample sizes, and will still be appropriate for large samples. 

 

Algorithm for Uncertainty Quantification in Distribution 
Parameters and Correlation Coefficients 
 

       Set i = 1 
 

while  (i <= N) 
 

Delete observation i from the original set of observations 
 
Estimate the Johnson distribution parameters and correlation 
coefficient of the basic random variables on the basis of the N-1 
remaining points.  
 
Record as estimate i.  
 
Restore observation i to the set of original observations.  
 
i = i + 1 

 
end while 
 
Obtain a set of distribution parameters and correlation coefficients 
 
Fit a Johnson Distribution to the set of parameter estimates 
obtained in the while loop. 
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Once the uncertainty in the distribution parameters and correlation coefficients of the 

basic random variables are quantified, the next step is to consider the correlations among 

the distribution parameters. As we have a set of distribution parameters for which we fit 

Johnson distribution for the distributions of distribution parameters, we are now able to 

generate correlated distribution parameters from their marginals using the approach 

described in section 2. Therefore, the output uncertainty quantification procedure with 

sparse point data on the input, considering correlations among basic random variables as 

well as among their distribution parameters can be outlined as follows: 

1. Obtain N sets of distribution parameters and correlation coefficients for the basic 

random variables (X) of sample size N via jackknife. 

2. Fit Johnson distributions to the set of distribution parameters obtained in step 1. 

Now, we have four marginal distributions for the distribution parameters of the 

basic random variables. 

3. Calculate the correlation coefficients ρij for the distribution parameters from the 

set of distribution parameters obtained in step 1. 

4. Obtain reduced correlation coefficients ρ0,ij for the distribution parameters by the 

procedure described in section 2. 

5. Generate N sets of correlated distribution parameters using the marginal 

distributions obtained in step 2 and reduced correlation coefficients obtained in 

step 4 by the procedure described in section 2. 

6. Generate correlated input variables using each set of distribution parameters 

obtained in step 5 and correlation coefficients obtained in step 1 by the procedure 
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described in section 2 and propagate through model of system response by MCS 

to obtain a CDF of system response. 

7. Repeat step 6 N times and thus obtain a family of CDFs for the system response. 

This procedure is illustrated in Section 4 through an example problem. 

3.2 Uncertainty quantification with interval data 

In order to express and propagate interval data using probabilistic methods, it is 

necessary to fit probability distributions to interval data. An approach for fitting a family 

of Johnson distributions to interval data has been discussed in Chapter IV. As we are able 

to calculate the bounds on the moments of an uncertain quantity characterized by interval 

data, we can require that the moments of the distribution fall between the upper and lower 

bounds given from the estimation procedures. With interval data, it is impossible to know 

the true moments of the data, thus there are infinitely many possible probability 

distributions that can represent the interval data. This uncertainty in the moments of the 

data also creates uncertainty in the parameters of the Johnson distribution. Chapter IV 

proposed algorithms to compute bounds on moments for single interval and multiple 

interval data. Chapter V proposed an optimization-based methodology for uncertainty 

propagation with interval data. 

Interval data are encountered frequently in practical engineering problems as 

discussed in Chapter II.  In many problems, it is likely that interval data for individual 

input variables are not observed simultaneously. Therefore, it is impractical to calculate 

the correlation coefficients among the input variables which are described by interval 

data. Rather it is assumed that with interval data the correlations among the input 
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variables are unknown and therefore can range from -1 to +1. In the following discussion, 

we reformulate the optimization-based approaches proposed in Chapter V to include 

correlations among input random variables. 

The first approach is a percentile-based optimization (PBO) method which 

minimizes and maximizes the system response ( )mxgα  conditioned on a set of moments 

(mi) for the input variables at different percentile values (α) and thus bounds on system 

response CDF is obtained. We include correlation in this analysis by adding the reduced 

correlation coefficient ρ0,ij as a decision variable, which ranges from rmin to rmax. Note that 

for a pair of input random variables, there exists either positive or negative correlation. 

The proposed approach requires that the designer has the knowledge about the correlation 

type among the input random variables. Therefore, the quantities rmin and rmax are 

specified by the designer in the optimization formulation. For example, rmin and rmax may 

assume values between -1 to -0.1 for negatively correlated variables and 0.1 to 1 for 

positively correlated variables. 

The implementation of this uncertainty quantification approach considering 

correlations is as follows: 

1. Calculate the bounds on the first four moments of single or multiple interval data 

by the methods described in Chapter IV. 

2. Solve the following optimization problems at different percentile values (α) to 

obtain bounds on output CDF.  
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The last two nonlinear constraints ensure that the optimizer only selects those 

values of moments that suggest a bounded Johnson distribution fit, so that the resulting 

distribution lies within the bounds of the interval data specified. It is noted here that the 

objective function in this optimization problem is conditioned on a set of moments and 

reduced correlation coefficient ρ0,ij for the input variables and estimates the parameters of 

Johnson distribution from the set of moments in each iteration by the method described in 

Chapter IV. 

Percentile-based optimization is expensive as it requires solving the problems 

repeatedly at different α-levels. Therefore, Chapter V proposed another expectation-based 

optimization (EBO) strategy to obtain approximate bounds on system response CDFs 

which is computationally less expensive. This formulation is based on the assumption 

that the sets of distribution parameters of input variables which result in minimum or 

maximum expectation of the system response (E(g(x))) can also give an upper bound on 

the entire CDF of the system response (g(x)) for the minimization problem and a lower 

bound for the maximization problem, respectively. A proof in support of this statement is 

given in Chapter V. As in the case of PBO, we also reformulate this expectation-based 
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optimization (EBO) problem by including correlations in the analysis. Its implementation 

is as follows: 

1. Calculate the bounds on the first four moments of single or multiple interval data 

by the methods described in Chapter IV. 

2. Obtain two set of moments and reduced correlation coefficients ρ0,ij that minimize 

and maximize the expected value of the system response (E(g(x))) conditioned 

on a set of moments (mi) and reduced correlation coefficient ρ0,ij for the input 

variables. These are obtained by the following optimization problems: 
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The last two nonlinear constraints ensure that the optimizer only selects those values 

of moments that suggest a bounded Johnson distribution fit as mentioned earlier. 

3. Obtain two sets of parameters of Johnson distribution for the input variables from 

the sets of moments obtained in step 2. 

4. Construct the CDF of the system response given a set of reduced correlation 

coefficients and distribution parameters for the input variables by any 

probabilistic uncertainty propagation method (e.g., FORM or MCS) and thus 

obtain approximate bounds on the CDF of the system response. 
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In summary, this chapter developed a multivariate input model of random variables 

by using a four parameter flexible family of distributions for the marginals to account for 

data uncertainty. The proposed multivariate input model is then used to develop a 

computational framework for the uncertainty propagation that considers statistical 

correlations among basic random variables as well as among their distribution 

parameters. 

 
 

4. Example Problems 

In this section, the proposed methods are applied to a single aerodynamic data set for 

the upper stage of the Two-Stage-To-Orbit (TSTO) Highly Reliable Reusable Launch 

Systems (HRRLS) concept vehicle, as described in Chapter III.  A response surface (Eq. 

13 in Chapter II) for a model-predicted drag coefficient (CD) is used for uncertainty 

propagation, which is a function of Mach number (Mach) and angle of attack (AoA). We 

wish to quantify the uncertainty in CD given available information concerning Mach and 

AoA. The information on Mach and AOA is available as either sparse point data or 

interval data. 

 

4.1 Uncertainty propagation with sparse point data 

In this case, Mach and AoA are assumed to be given by sparse point data as 

shown in Table 3. The distributions of Mach and AoA are inferred from point data and 

fitted to bounded Johnson distributions by the method of matching moments. Since the 

data sets of Mach and AoA are small, they are jackknifed and a Johnson distribution is 

fitted using each of the jackknifed parameter estimates with one observation deleted in 
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order to quantify the statistical uncertainty in the distribution parameters. Uncertainty in 

correlation coefficients is also quantified via jackknife. 

Table 3: Sparse point data for Mach and AoA 

Data 
Mach AoA 

 
6.52 18.52 
6.06 16.04 
5.49 17.52 
6.52 16.53 
5.74 18.63 
5.74 15.94 
5.34 16.32 
6.24 17.40 
5.42 16.00 
6.10 18.54 

 

The output is a family of CDFs of system response conditioned on each 

jackknifed observation of the distribution parameters of Mach and AoA and the 

correlation coefficient ρij. The results are shown in Figure 1. 

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.120

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

System response

C
D

F

 

 

Ignoring correlations
Correlated Basic RVs
Correlated Basic RVs and Dist Params

 

Figure 1: Family of CDFs of system response for sparse point data 
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Figure 1 shows the results for three cases: i) ignoring correlations, ii) including 

correlations in basic random variables and iii) including correlations in basic random 

variables and their distribution parameters. It is seen in Figure 1 that correlations among 

the basic random variables as well as their distribution parameters have significant 

impact on the distributions of system response, especially in the tails of the distributions, 

which are the regions of interest to the decision maker. It is also seen that we obtain a 

tighter scatter in output distributions, i.e., narrower bounds on the output CDFs when we 

consider correlations among basic random variables as well as among their distribution 

parameters. We further obtain narrower bounds on the output CDF in Case (iii) as 

compared to that obtained in Case (ii), which suggests that statistical correlations among 

the distribution parameters should be included in predicting the system response. 

 

4.2 Uncertainty propagation with multiple interval data 

In this case, the uncertainty in both Mach and AoA are described by multiple 

interval data as given in Table 4. Here, it is assumed that there exists positive correlation 

between Mach and AoA and their correlation coefficients range from 0.1 to 1.This 

problem is solved by both PBO and EBO approaches presented in section 3.2. The output 

is in the form of bounds on the system response CDF. The results are shown in Figure 2. 

Table 4: Multiple interval data for Mach and AoA 

Data 
Mach AoA 

 
[5,  6; 5.5,  6.1; 6,  6.5; 5.4,  6.2; 5.6,  6.6] 

 
[18,  19; 18.5,  20; 19,  20; 19.5,  21; 18,  20.5] 
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Figure 2: Bounds on CDF of system response for interval data 
 

Figure 2 shows the results for two cases: i) ignoring correlations and ii) including 

correlations in basic random variables. It is seen in Figure 2 that correlations among the 

basic random variables have significant impact on the distributions of system response, 

especially in the tails of the distributions. It is also seen that we obtain narrower bounds 

on the output CDFs when we consider correlations among basic random variables. As 

expected, EBO is less expensive (65 function evaluations) for correlated input modeling 

as compared to PBO (850 function evaluations) which was solved at 15 different 

percentile values. Similarly, for uncorrelated input modeling, EBO required only 60 

function evaluations as compared to 810 function evaluations by PBO (solved at 15 

different percentile values). 

5. Conclusion 

This chapter developed a methodology for multivariate input modeling of random 

variables by using a flexible Johnson family of distributions for the marginals that also 
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accounts for data uncertainty. Semi-empirical formulas in terms of the Johnson marginals 

and covariances are presented to estimate the reduced correlation coefficients. This 

reduced correlation coefficient is then used to transform correlated random variables to 

uncorrelated standard normal space for use in analytical reliability analysis methods and 

to generate correlated random variables for use in MCS for Johnson distributed marginal 

distributions. This chapter also developed a methodology for propagating both aleatory 

and data uncertainty arising from sparse point data through computational models of 

system response.  The methodology differs from existing approaches in that it assigns 

probability distributions to the distribution parameters and quantifies the uncertainty in 

correlation coefficients through the use of computational resampling methods. A 

methodology has also been developed for the propagation of both aleatory and interval 

uncertainty in the presence of correlations among interval variables. These methods are 

illustrated with example problems. The results show that statistical correlations have 

significant impact on uncertainty quantification, especially in the tails of the output 

distributions, which are the regions of interest to the decision maker. The proposed 

approach facilitates the implementation of design optimization under uncertainty 

considering correlations. 

 

 
 
 
 
 
 
 
 
 
 



 

 
 

CHAPTER VII 
 
 

ROBUSTNESS-BASED DESIGN OPTIMIZATION UNDER DATA 
UNCERTAINTY 

 
 

1. Introduction 
 
 

This chapter proposes formulations and algorithms for design optimization under 

both aleatory (i.e., natural or physical variability) and epistemic uncertainty (i.e., 

imprecise probabilistic information), from the perspective of system robustness. The 

proposed formulations deal with epistemic uncertainty arising from both sparse and 

interval data without any assumption about the probability distributions of the random 

variables. A decoupled approach is proposed in this chapter to un-nest the robustness-

based design from the analysis of non-design epistemic variables to achieve 

computational efficiency. The proposed methods are illustrated for the upper stage design 

problem of a two-stage-to-orbit (TSTO) vehicle, where the information on the random 

design inputs are only available as sparse point and/or interval data. As collecting more 

data reduces uncertainty but increases cost, the effect of sample size on the optimality 

and robustness of the solution is also studied. A method is developed to determine the 

optimal sample size for sparse point data that leads to the solutions of the design problem 

that are least sensitive to variations in the input random variables.  

The essential elements of robust design optimization are: (1) maintaining robustness 

in the objective function (objective robustness); (2) maintaining robustness in the 

constraints (feasibility robustness); (3) estimating mean and measure of variation 

(variance) of the performance function; and (4) multi-objective optimization. The rest of 
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this section briefly reviews the literature with respect to these four elements and 

establishes the motivation for the current study. 

Objective robustness 

In robust optimization, the robustness of the objective function is usually achieved by 

simultaneously optimizing its mean and minimizing its variance. Two major robustness 

measures are available in the literature: one is the variance, which is extensively 

discussed in the literature (Du and Chen, 2000; Lee and Park, 2001 and Doltsinis and 

Kang, 2004) and the other is based on the percentile difference (Du et al, 2004). Although 

the percentile difference method has the advantage that it contains the information of 

probability in the tail regions of the performance distribution, this method is only 

applicable to unimodal distributions. Variance as a measure of variation of the 

performance function can be applied to any distribution (unimodal or multimodal), but it 

only characterizes the dispersion around the mean (Huang and Du, 2007). 

Feasibility robustness 

Feasibility robustness i.e., robustness in the constraints can be defined as satisfying 

the constraints of the design in the presence of uncertainty. Du and Chen (2000) 

classified the methods of maintaining feasibility robustness into two categories, methods 

that use probabilistic and statistical analysis, and methods that do not require them. 

Among the methods that require probabilistic and statistical analysis, a probabilistic 

feasibility formulation (Du and Chen, 2000 and Lee et al, 2008), and a moment matching 

formulation (Parkison et al, 1993) have been proposed. Du and Chen (2000) used a most 

probable point (MPP)-based importance sampling method to reduce the computational 

burden associated with the probabilistic feasibility formulation. The moment matching 



 

152 
 

formulation is a simplified approach which requires only the constraints on the first and 

second moments of the performance function to be satisfied, and assumes that the 

performance function is normally distributed. A variation of this approach, the feasible 

region reduction method has been described in Park et al (2006), which is more general 

and does not require the normality assumption. This is a tolerance design method, where 

width of the feasible space in each direction is reduced by the amount σk , where k is a 

user-defined constant and σ  is the standard deviation of the performance function. This 

method only requires the mean and variance of the performance function.  

Methods that do not require probabilistic and statistical analysis are also available, for 

example, worst case analysis (Parkinson et al, 1993), corner space evaluation 

(Sundaresan et al, 1995), and manufacturing variation patterns (MVP) (Yu and Ishii, 

1998). A comparison study of the different constraint feasibility methods can be found in 

Du and Chen (2000). 

Estimating mean and variance of the performance function 

Various methods have been reported in the literature to estimate the mean and 

standard deviation of the performance function. These methods can be divided into three 

major classes: (i) Taylor series expansion methods, (ii) sampling-based methods and (iii) 

point estimate methods (Huang and Du, 2007).  

The Taylor series expansion method (Haldar and Mahadevan, 2000; Du and Chen, 

2000; and Lee et al, 2001) is a simple approach. However, for a nonlinear performance 

function, if the variances of the random variables are large, this approximation may result 

in large errors (Du et al., 2004). Although a second-order Taylor series expansion is 
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generally more accurate than the first-order approximation, it is also computationally 

more expensive. 

 Sampling-based methods require information on distributions of the random 

variables, and are expensive. Efficient sampling techniques such as importance sampling, 

Latin hypercube sampling, etc. (Robert and Cesalla, 2004) can be used to reduce the 

computational effort, but are still prohibitive in the context of optimization. Surrogate 

models (Ghanem and Spanos 1991; Bichon et al, 2008; Cheng and Sandu, 2009) may be 

used to further reduce computational effort.  

In an attempt to overcome the difficulties associated with the computation of 

derivatives required in Taylor series expansion, Rosenlblueth (1975) proposed a point 

estimate method to compute the first few moments of the performance function. Different 

variations of this point estimate method (Hong, 1998; Zhao and Ono, 2000 and Zhao and 

Ang, 2003) have been studied. Although point estimate methods are easier to implement, 

the accuracy may be low and may generate points that lie outside the domain of the 

random variable. 

Multi-objective optimization 

Robustness-based optimization considers two objectives: optimize the mean of the 

objective function and minimize its variation. An extensive survey of the multi-objective 

optimization methods can be found in Marler and Arora (2004). Among the available 

methods, the weighted sum approach is the most common approach to multi-objective 

optimization and has been extensively used in robust design optimization (Lee and Park, 

2001; Doltsinis and Kang, 2004; Zou and Mahadevan, 2006). The designer can obtain 

alternative design points by varying the weights and can select the one that offers the best 
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trade-off among multiple objectives. Despite its simplicity, the weighted sum method 

may not obtain potentially desirable solutions (Park et al, 2006). Another common 

approach is the ε-constraint method in which one of the objective functions is optimized 

while the other objective functions are used as constraints. Despite its advantages over 

weighted sum method in some cases, the ε-constraint method can be computationally 

expensive for more than two objective functions (Mavrotas, 2009). 

Other methods include goal programming (Zou and Mahadevan, 2006), 

compromise decision support problem (Bras and Mistree, 1993, 1995; Chen et al, 1996), 

compromise programming (CP) (Zalney, 1973; Zhang, 2003; Chen et al, 1999) and 

physical programming (Messac, 1996; Messac et al, 2001; Messac and Ismail-Yahaya, 

2002; Chen et al, 2000). Each of these methods has its own advantages and limitations. 

As discussed in Chapter II, most of the current methods of robust optimization for 

epistemic uncertainty use non-probabilistic methods to represent epistemic uncertainty. 

These methods need additional non-probabilistic formulations to incorporate epistemic 

uncertainty into the robust optimization framework and thus, are computationally 

expensive. However, if the epistemic uncertainty can be converted to a probabilistic 

format, the need for these additional formulations is avoidable, and well established 

probabilistic methods of robust design optimization can be used. Therefore, there is a 

need for an efficient robust design optimization methodology that deals with both 

aleatory and epistemic uncertainty. In this chapter, we propose robustness-based design 

optimization formulations that work under both aleatory and epistemic uncertainty using 

probabilistic representations of different types of uncertainty. Our proposed formulations 
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deal with both sparse point and interval data without any strict assumption about 

probability distributions of the random variables. 

The performance of robustness-based design can be defined by the mean and 

variation of the performance function. In our proposed formulations, we obtain the 

optimum mean value of the objective function (e.g., gross weight) while also minimizing 

its variation (e.g., standard deviation). Thus, the design will meet target values in terms of 

both design bounds and standard deviations of design objectives and design variables 

thereby ensure feasibility robustness.  

A Taylor series expansion method is used in this dissertation to estimate the mean and 

standard deviation of the performance function, which requires means and standard 

deviations of the random variables. However, with sparse point data and interval data, it 

is impossible to know the true moments of the data, and there are many possible 

probability distributions that can represent these data (see Chapter IV). In this chapter, we 

propose methods for robustness-based design optimization that account for this 

uncertainty in the moments due to sparse point data and interval data and thereby include 

epistemic uncertainty into the robust design optimization framework. As collecting more 

data reduces uncertainty but increases cost, the effect of sample size on the optimality 

and the robustness of the solution is also studied. A method to determine the optimal 

sample size for sparse point data that will lead to the minimum scatter on solutions to the 

design problem is also presented in this chapter.  

In some existing methods for robust design under epistemic uncertainty, all the 

epistemic variables are considered as design variables (Youn et al, 2007). However, if the 

designer does not have any control on an epistemic variable (e.g., Young’s modulus in 
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beam design), considering that variable as a design variable might lead to a solution that 

could underestimate the design objectives. Therefore, in this chapter, we propose a 

general formulation for robust design that considers some of the epistemic variables as 

non-design variables, which leads to a conservative design under epistemic uncertainty. 

An example of epistemic uncertainty in a design variable is the geometric dimension of a 

component, whose manufactured value is different from the design value. This difference 

might be specified as an interval by an expert, or only a few instances of historic values 

of this difference might be available. Note that the sparse point and/or interval data for 

the epistemic design variables are used only to estimate the variances; the mean values of 

such variables are controlled by the design. 

Note that the proposed robustness-based design optimization method is general 

and capable of handling a wide range of application problems under data uncertainty. The 

proposed methods are illustrated for the conceptual level design process of a two-stage-

to-orbit (TSTO) vehicle, where the distributions of the random inputs are described by 

sparse point and/or interval data.  

The rest of the chapter is organized as follows. Section 2 proposes robustness-based 

design optimization framework for sparse point data and interval data. In Section 3, we 

illustrate the proposed methods for the conceptual level design process of a TSTO 

vehicle. Section 4 provides conclusions and suggestions for future work. 

 

2. Proposed methodology 

 
Deterministic design optimization 
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In a deterministic optimization formulation, all design variables and system 

variables are considered deterministic. No random variability or data uncertainty is taken 

into account. The deterministic optimization problem is formulated as follows: 

 
ubxlb
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where  )(xf  is the objective function,  x is the vector of design variables, ( )xgi  is the ith 

constraint, LB and UB are the vectors of lower and upper bounds of constraints sgi '  and 

lb and ub are the vectors of lower and upper bounds of design variables. 

In practice, the input variables might be uncertain and solutions of this 

deterministic formulation could be sensitive to the variations in the input variables. 

Robustness-based design optimization takes this uncertainty into account. The optimal 

design points obtained using the deterministic method could be used as initial guesses in 

robustness-based optimization. 

 

Robustness-based design optimization 

In the proposed methodology, we use variance as a measure of variation of the 

performance function in order to achieve objective robustness, the feasible region 

reduction method to achieve feasibility robustness, a first-order Taylor series expansion 

to estimate the mean and variance of the performance function, and a weighted sum 

method for the aggregation of multiple objectives. This combination of methods is only 

used for the sake of illustration. Other approaches can be easily substituted in the 

proposed methodology. The robustness-based design optimization problem can now be 

formulated as follows: 
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where ff σ and µ  are the mean value and standard deviation of the objective function, 

respectively; d is the vector of deterministic design variables as well as the mean values 

of the uncertain design variables x; nrdv and nddv are the numbers of the random design 

variables and deterministic design variables, respectively; and z is the vector of non-

design input random variables, whose values are kept fixed at their mean values as a part 

of the design. 0≥w  and 0≥v   are the weighting coefficients that represent the relative 

importance of the objectives ff σ and µ  in Eq.(2); ( )zdgi ,  is the ith constraint; 

( )( )zdgE i ,  is the mean and )),(( zdgiσ is the standard deviation of the ith constraint. LB 

and UB are the vectors of lower and upper bounds of constraints sgi ' ; lb and ub are the 

vectors of lower and upper bounds of the design variables; )(xσ is the vector of standard 

deviations of the random variables  and k is some constant. The role of the constant k is to 

adjust the robustness of the method against the level of conservatism of the solution. It 

reduces the feasible region by accounting for the variations in the design variables and is 

related to the probability of constraint satisfaction. For example, if a design variable or a 

constraint function is normally distributed, k =1 corresponds to the probability 0.8413, k 

=2 to the probability 0.9772, etc. 

Note that the robust design formulation in Eq. (2) is a standard nonlinear multi-

objective optimization formulation. The optimality conditions of such a formulation have 
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been extensively described in the literature including Cagan and Williams (1993) and 

Marler and Arora (2004). 

In the proposed formulation, the performance functions considered are in terms of the 

model outputs. The means and standard deviations of the objective and constraints are 

estimated by using a first-order Taylor series approximation as follows: 

Performance function: ),....,,( 21 nXXXgY =                                                                   (3) 

First-order approximate mean of y: ),....,,()'(
21 nXXXgYE µµµ≈                                       (4) 

First-order variance of y: ( ) ( )ji
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The implementation of Eq. (2) requires that variances of the random design 

variables Xi and the means and variances of the random non-design variables Zi be 

precisely known, which is possible only when a large number of data points are available. 

In practical situations, only a small number of data points may be available for the input 

variables. In other cases, information about random input variables may only be specified 

as intervals, as by expert opinion. This is input data uncertainty, causing uncertainty 

regarding the distribution parameters (e.g., mean and variance) of the inputs Xi and Zi. 

Robustness-based optimization has to take this into account. In the following subsections, 

we propose a new methodology for robustness-based design optimization that accounts 

for data uncertainty.  

 
 

2.1 Robustness-based design optimization under data uncertainty 
 

The inclusion of epistemic uncertainty in robust design adds another level of 

complexity in the design methodology. The design variables d and/or the input random 
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variables z in Eq. (2) might have epistemic uncertainty. Since the designer does not have 

any control on the non-design epistemic variables z, the design methodology has to 

employ a search among the possible values of such epistemic variables in order to find an 

optimal solution. In such case, we get a conservative robust design. The robustness-based 

design optimization problem can now be formulated with the following generalized 

statement: 

 

 

 

 

where Zl and Zu are the vectors of lower and upper bounds of the decision variables µz of 

the inner loop optimization problem. 

Note that in this formulation, the outer loop decision variables d may consist of stochastic 

design variables as well as epistemic design variables. The outer loop optimization is a 

design optimization problem, where a robust design optimization is carried out for a fixed 

set of non-design epistemic variables. The inner loop optimization is the analysis for the 

non-design epistemic variables, where the optimizer searches among the possible values 

of the non-design epistemic variables for a conservative solution of the robust design 

problem. 
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The optimization problems in Eqs. (7) and (8) are solved iteratively until 

convergence. Note that the first constraint (i.e., the robustness constraint) in Eq. (8) is 

required to ensure that the optimization is driven by all non-design epistemic variables, 

because sometimes the objective function may not be a function of all non-design 

epistemic variables. In cases when the objective function is the function of all non-design 

epistemic variables, this constraint is not required. Figure 1 illustrates the decoupled 

approach for robustness-based design optimization under both aleatory and epistemic 

uncertainty. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1: Decoupled approach for robustness-based design optimization 
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Note that d* are fixed quantities in the optimization in Eq. (8) and µz
* are the fixed 

quantities in the optimization in Eq. (7). 

 
2.1.1 Robustness-based design with sparse point data 

 
 

This section develops a methodology for robustness-based design optimization 

with sparse point data, using the formulations in Eqs. (7) and (8). It is assumed that only 

sparse point data are available for the uncertain design variables as well as non-design 

epistemic variables.  

When a variable, either design or non-design, is described by sparse point data, 

there is uncertainty about the mean and variance calculated from the samples. In the 

design optimization (Eq. (7)), the mean values of the design variables (either aleatory or 

epistemic) are controlled by the given design bounds. As in design optimization under 

aleatory uncertainty only, here also it is assumed that the variances of the epistemic 

design variables do not change as their mean values change. However, since the mean 

values of the non-design variables cannot be controlled in the design optimization, the 

proposed robustness-based design optimization methodology accounts for the uncertainty 

about mean values of such epistemic variables through the optimization in Eq. (8).  

The constraints on the non-design epistemic variables in Eq. (8) are implemented 

through the construction of confidence intervals about mean values. As these variables 

are described by the sparse point data, it is possible that the underlying distributions of 

the variables might have major deviations from normality. Therefore, we have used the 

Johnson's modified t statistic (Johnson, 1978) to construct the confidence bounds on 

mean values of the non-design epistemic variables as follows: 
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where z  is the vector of means of the epistemic variables, s is the vector of standard 

deviations, n is the sample size of the sparse point data, 3µ  is the third central moment 

and 1,2/ −ntα  is obtained from the Student t distribution at (n-1) degrees of freedom and α 

significance level. This modified statistic takes into account the skewness of the 

distribution and thus provides a better estimate of the confidence bound in the presence of 

limited data. 

The proposed robustness-based design optimization methodology accounts for the 

uncertainty about the variances for all epistemic variables by first estimating confidence 

bounds on variances and then solving the optimization formulations in Eqs. (7) and (8) 

using the upper bound variances for the input random variables xi and zi. Solving the 

optimization formulations in Eqs. (7)-(8) using the upper bound variances for all the 

epistemic variables ensures that the resulting solution is least sensitive to the variations in 

the input random variables. 

The chi-square distribution is a good assumption for the distribution of the 

variance, especially if the underlying population is normal. The two-sided (1-α) 

confidence interval for the population variance σ2 can be expressed as (Haldar and 

Mahadevan, 2000): 
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where n is the sample size, s is the sample standard deviation of sparse point data, and 

1,2/ −ncα  is obtained from the chi-square distribution at (n-1) degrees of freedom and α 

significance level. Note that Eq. (10) can still be used to obtain approximate confidence 

bounds for variance if the underlying population is not normal. However, in such cases, 

other approximation methods (Bonett, 2006; Cojbasic and Tomovic, 2007) can be 

used to obtain more reliable estimates of confidence bounds.  

The optimization formulation shown in Eqs. (7)-(8) involves aggregation of 

multiple objectives. In the proposed formulations, the aggregate objective function 

consists of two types of objectives, expectation and standard deviation of model outputs. 

Since different objectives have different magnitudes, a scaling factor has to be used in the 

formulation. 

 
2.1.2 Determination of optimal sample size for sparse point data 
 

The optimal solutions depend on the sample size of the sparse data as will be 

discussed in Section 3.1. Therefore, it is of interest to determine the optimal sample size 

of the sparse data that leads to the solution of the design problem that is least sensitive to 

the variations of design variables. This will facilitate resource allocation decision for data 

collection. The following two optimization formulations are solved iteratively until 

convergence for the optimal sample sizes of the epistemic design variables ( *
dn ) and 

epistemic non-design variables( *
en ).The formulations in Eq. (11)-(12) are the weighted 

sum formulations of a three-objective optimization problem, where the first and second 

objectives are the mean and standard deviation of GW respectively and the third 

objective is the total cost of obtaining samples for all the random variables. 
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where 0≥w  and 0≥v   are the weighting coefficients that represent the relative 

importance of the objectives; 
jdn and 

jen  are the sample sizes and 
jdb and 

jeb are the 

maximum sample size possible for the jth design and non-design random variables, 

respectively. m and q are the number of design and non-deisgn random variables, 

respectively.  
jdc and 

jec are the cost of obtaining one sample for the jth random design 

and non-design variables, respectively and C is the  total cost allocated for obtaining 

samples for all the random variables. Note that as in Eq. (8), the robustness constraint in 

Eq. (12) is only required if the objective function is not a function of all non-design 

epistemic variables.  The optimization formulation presented above is a mixed-integer 

nonlinear problem. A relaxed problem is solved in Section 3. 
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2.1.3 Robustness-based design with interval data 

 
This section develops a methodology for robustness-based design optimization 

with interval data, using the formulations in Eqs. (7) and (8). In this case, the only 

information available for one or more input random variables is in the form of single 

interval or multiple interval data.  

The methodology for robustness-based design optimization with interval data is 

similar to sparse point data as described in Section 2.1.1. However, the estimation of 

mean values and variances for interval data is not straightforward. For interval data, the 

moments (e.g., mean and variance) are not single-valued, rather only bounds can be given 

(see Chapter IV). We have proposed methods to compute the bounds of moments for 

both single and multiple interval data in Chapter IV. Once the bounds on the mean and 

variance of interval data are estimated, we use the upper bounds of sample variance to 

solve the formulations of robust design under uncertainty represented through single 

interval or multiple interval data. Therefore, the resulting solution becomes least sensitive 

to the variations in the uncertain variables. 

For non-design epistemic variables described by interval data, the constraints on 

the decision variables in Eq. (8) are implemented through estimating the bounds of the 

means by the methods as described in Chapter IV. 

Once the bounds on the mean and variance of interval data are estimated by the 

methods described in Chapter IV, we can now use these bounds to solve the formulations 

of robustness-based design optimization under uncertainty represented through single 

interval or multiple interval data. In the following section, we illustrate our proposed 
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formulations for robustness-based design optimization with both sparse point and interval 

data. 

3. Example Problem 

In this section, the proposed methods are illustrated for the conceptual level 

design process of a TSTO vehicle as discussed in Chapter I. The TSTO concept vehicle is 

shown in Figure 1 of Chapter I. The analysis process of a TSTO vehicle is illustrated in 

Figure 2 of Chapter I. 

The analysis outputs (performance functions) are Gross Weight (GW), Engine 

Weight (EW), Propellant Fraction Required (PFR), Vehicle Length (VL), Vehicle Volume 

(VV) and Body Wetted Area (BWA). Each of the analysis outputs is approximated by a 

second-order response surface and is a function of the random design variables Nozzle 

Expansion Ratio (ExpRatio), Payload Weight (Payload), Separation Mach (SepMach), 

Separation Dynamic Pressure (SepQ), Separation Flight Path Angle (SepAngle), and 

Body Fineness Ratio (Fineness). Each of the random variables is described by either 

sparse point data or interval data. 

The objective is to optimize an individual analysis output (e.g., Gross Weight) 

while satisfying the constraints imposed by each of the design variables as well as all the 

analysis outputs.  We note here that we have assumed independence among the uncertain 

input variables and thereby ignored the covariance terms in Eq. (5) to estimate the 

variance of the performance function in each of the following examples. The numerical 

values of the design bounds for the design variables and analysis outputs are given in 

Tables 1 and 2, respectively. 
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Table 1: Design bounds for the design variables 

Design Variable lb ub 
ExpRatio 40 150 
Payload 8000 40000 

SepMach 7 12 
SepQ 40 200 

SepAngle 7 12 
Fineness 4 6 

 

 

Table 2: Design bounds for the analysis outputs 

Analysis output LB UB 
GW 0 100e+005 
EW 0 100e+005 
PFR 0.4 0.95 
VL 0 100e+002 
VV 0 100e+003 

BWA 0 100e+005 
 

3.1. Robustness-based design optimization with sparse point data 

The methodology proposed in Section 2.1.1 is illustrated here for the TSTO 

problem. It is assumed that all the input variables x are described by sparse point data as 

given in Table 3. For this example, the input variable SepQ is assumed to be a non-design 

epistemic variable and all the remaining variables are assumed to be design variables. 

The design bounds for the respective design variables and the analysis outputs are given 

in Tables 1 and 2. 

Table 3: Sparse Point Data for the random input variables 
 

Sample ExpRatio Payload SepMach SepQ SepAngle Fineness 
01 85.23 2.8952e+004 10.85 115.38 9.12 4.07 
02 82.25 2.9747e+004 10.56 111.63 9.49 4.02 
03 88.79 2.6638e+004 10.93 118.57 9.85 4.47 
04 83.93 2.8356e+004 10.70 111.60 9.87 4.15 
05 80.67 2.7193e+004 10.58 100.34 9.27 4.15 



 

169 
 

06 91.32 2.9168e+004 10.82 102.42 9.21 4.17 
07 83.64 2.8844e+004 10.88 117.25 9.57 4.23 
08 86.64 2.5836e+004 10.99 109.69 9.64 4.32 
09 90.32 2.9310e+004 10.00 116.90 9.42 4.01 
10 85.39 2.9949e+004 10.87 104.19 9.21 4.42 

 

The design problem becomes: 
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where the bounds Zl and Zu for the mean of the non-design epistemic variable SepQ are 

calculated by Eq. (9) as given in Section 2.1.1. Note that in Eq. (14), we do not use the 

robust design constraints, since the objective function in this case is a function of all non-

design epistemic variables. 

As mentioned earlier in Section 2, 0≥w  is the weight parameter that represents 

the relative importance of the objectives and k is a constant that adjusts the robustness of 

the method against the level of conservatism of the solution. In this dissertation, k is 

assumed to be unity. 
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Variances of the random variables x and z are estimated as single point values. 

Confidence intervals for the variances are estimated for each random variable described 

by the sparse point data. The weight parameter w is varied (from 0 to 1) and the 

optimization problem in Eqs. (13)-(14) are solved iteratively until convergence by the 

Matlab solver 'fmincon' for different sample sizes (n) of the sparse point data. The 

formulations are relaxed by assuming that standard deviations estimates of the variables 

do not change significantly as the sample size changes. Therefore, the same standard 

deviations as estimated from the data given in Table 3 are used in each case. As the 

sample size (n) changes, the confidence bounds on the variance also change (see Eq. 

(10)). In each case, the optimization problems converged in less than 5 iterations. Here, 

‘fmincon’ uses a sequential quadratic programming (SQP) algorithm. The estimate of the 

Hessian of the Lagrangian is updated using the BFGS formula at each iteration. The 

convergence properties of SQP have been discussed by many authors including Fletcher 

(1987) and Panier and Tits (1993). 

The solutions are obtained by solving the problem using the upper confidence 

bound for the variances of the random variables x and z. The solutions are presented in 

Figure 2. 
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Figure 2: Robustness-based design optimization with sparse data for different sample 
sizes (n) 

 
 

It is seen in Figure 2 that the solutions become more conservative (i.e., the mean 

and standard deviation of GW assume higher values) as we add uncertainty to the design 

problem. As gathering more data reduces data uncertainty, the solutions become less 

sensitive (i.e., the standard deviation of GW assumes lower value) to the variations of the 

input random variables as the sample size (n) increases. Also, looking at the mean of 

GW, it is seen that as the uncertainty decreases with sample size, the optimum mean 

weight required is less. 

 
3. 2 Determination of optimal sample size for sparse point data 
 

The optimal sample size formulations are illustrated here for the TSTO design 

problem. The formulations are relaxed by assuming that standard deviations of the data 

do not change significantly as sample size changes. To make the problem simpler, we 

first relax the integer requirement on the optimal sample size n and then round off the 
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solution for n to the nearest integer value. The input variable SepQ is assumed to be a 

non-design epistemic variable and all the remaining variables are assumed to be design 

variables. The design bounds for the respective design variables and the analysis outputs 

remain the same as in Tables 3 and 4. 

Therefore, the design problem becomes as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

We have solved this problem for different combinations of weights w and v and 

the optimal solutions are presented in Table 4. In each case, the optimization problems 

converged in less than 4 iterations. 
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Table 4: Objective function values at optimal solutions and optimal sample sizes 
 

Weights Objective function Value Optimal Sample Sizes  
w v 1-

w-
v 

Mean GW Std GW Total 
Cost 

nd1 nd2 nd3 nd4 nd5 ne 

0 0 1 1.6118e+005 6.3732e+004 455.3008 5 10 15 8 9 30 
0.6 0.2 0.2 1.4684e+005 5.3219e+004 539.8948 6 10 30 8 10 30 
0.5 0.4 0.1 1.4878e+005 5.0526e+004 593.6961 7 10 30 14 15 30 
0.5 0.5 0 1.5143e+005 4.7604e+004 886.9363 25 25 30 30 30 15 

 

It is seen in Table 6 that the total cost incurred in obtaining samples is the 

minimum when we solve the problem giving the maximum importance on the total cost. 

In this case, we get the most conservative robust design i.e., the mean and the standard 

deviation of GW assume the maximum of all possible values. Note that the optimal 

sample size required is also the minimum in this case. As we give more importance on 

the mean and standard deviation of GW, the total cost and also the optimal sample size 

increase with a decrease in both the mean and standard deviation of GW.  

3. 3 Robustness-based design optimization with sparse point and interval data 
 

The methodology proposed in Section 2.1 is illustrated here for the same TSTO 

problem. Here, it is assumed that the design variable ExpRatio is described by sparse 

point data as given in Table 3, the design variable Payload is described by multiple 

interval data as given in Table 5 and the design variables SepMach and SepQ are 

described by single interval data as given in Table 6. The non-design epistemic variables 

SepAngle and Fineness are described by the sparse point data (as given in Table 3) and 

the single interval data (as given in Table 6), respectively. The design bounds for the 

respective design variables and the analysis outputs remain the same as in Tables 3 and 4. 
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Table 5: Multiple Interval Data for the random input variables 

Payload [25000, 28000], [26000, 29000], [25000, 29000], [26000, 30000], 
[25000, 30000] 

 

Table 6: Single Interval Data for the random input variables 

SepMach [9, 10] 
SepQ [100, 120] 
Fineness [4, 4.5] 

 

The design problem is now formulated as follows: 
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where the bounds Zl and Zu for the mean value of the non-design epistemic variable 

SepAngle are calculated by Eq. (9) as given in Section 2.1.1 and those for the epistemic 

variable Fineness are calculated by the method described in Section 2.1.3. Note that in 

Eq. (16), we do not use the robust design constraints, since the objective function in this 

case is a function of all non-design epistemic variables. 

Variances of the random variables ExpRatio and SepAngle are estimated as single 

point values. Confidence intervals for the variances are estimated for each random 
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variable described by sparse point data. Bounds on the variances of the random variables 

SepMach, SepQ, Fineness, and Payload are estimated by the methods described in 

Sections 2.1.3. The free parameter w is varied (from 0 to 1) and the optimization 

problems in Eqs. (15) and (16) are solved iteratively until convergence. In each case, the 

optimization problems converged in less than 5 iterations. The solutions are obtained by 

solving the problems using the upper confidence bound on sample variance for the 

random variables ExpRatio and SepAngle, and the upper bound on sample variances for 

the random variables Payload, SepMach, SepQ and Fineness. The solutions are presented 

in Figure 3. 
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Figure 3: Robustness-based design optimization with sparse point and interval data 
 
 

Figure 3 shows the solutions of the conservative robust design in presence of 

uncontrollable epistemic uncertainty described through mixed data i.e., both sparse point 

data and interval data, which is seen frequently in many engineering applications. 
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4. Conclusion 
 

This chapter proposed several formulations for robustness-based design 

optimization under data uncertainty. Two types of data uncertainty – sparse point data 

and interval data – are considered. The proposed formulations are illustrated for the upper 

stage design problem of a TSTO space vehicle. A decoupled approach is proposed in this 

chapter to un-nest the robustness-based design from the analysis of non-design epistemic 

variables to achieve computational efficiency. As gathering more data reduces 

uncertainty but increases cost, the effect of sample size on the optimality and the 

robustness of the solution is also studied. This is demonstrated by numerical examples, 

which suggest that as the uncertainty decreases with sample size, the resulting solutions 

become more robust.  We have also proposed a formulation to determine the optimal 

sample size for sparse point data that leads to the solution of the design problem that is 

least sensitive (i.e., robust) to the variations of design variables. In this chapter, we have 

used the weighted sum approach for the aggregation of multiple objectives and to 

examine the trade-offs among multiple objectives. Other multi-objective optimization 

techniques can also be explored within the proposed formulations.    

The major advantage of the proposed methodology is that unlike existing 

methods, it does not use separate representations for aleatory and epistemic uncertainties 

and does not require nested analysis. Both types of uncertainty are treated in a unified 

manner using a probabilistic format, thus reducing the computational effort and 

simplifying the optimization problem. The results regarding robustness of the design 

versus data size are valuable to the decision maker. The design optimization procedure 

also optimizes the sample size, thus facilitating resource allocation for data collection 
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efforts. Due to the use of a probabilistic format to represent all the uncertain variables, 

the proposed robustness-based design optimization methodology facilitates the 

implementation of multidisciplinary robustness-based design optimization, which is a 

challenging problem in presence of epistemic uncertainty.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 
 

CHAPTER VIII 
 
 

RELIABILITY-BASED DESIGN OPTIMIZATION (RBDO) UNDER 
EPISTEMIC UNCERTAINTY 

 
 
 

1. Introduction 
 
 

This chapter proposes formulations and algorithms for reliability-based design 

optimization (RBDO) under both aleatory uncertainty (i.e., natural or physical variability) 

and epistemic uncertainty (i.e., imprecise probabilistic information). The proposed 

formulations specifically deal with epistemic uncertainty arising from sparse point data 

and interval data. An efficient decoupled approach is proposed that un-nests the design 

analysis from the epistemic analysis. The proposed methods are illustrated through an 

example problem. 

 
As mentioned in Chapter II, most of the existing methods are based on non-

probabilistic theory. Many of these methods need additional non-probabilistic 

formulations to incorporate epistemic uncertainty into the design optimization 

framework, which may be computationally expensive. However, if the epistemic 

uncertainty can be converted to a probabilistic format, the need for these additional 

formulations is avoidable, and well established probabilistic methods of RBDO can be 

used. Therefore, there is a need for an efficient RBDO methodology that deals with both 

aleatory and epistemic uncertainty.  

The contribution of this chapter is to develop a methodology for RBDO that includes 

both aleatory and epistemic uncertainty. This chapter specifically focuses on epistemic 
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uncertainty arising from sparse point data and interval data. This chapter proposes an 

efficient decoupled approach that un-nests the design analysis from the epistemic analysis 

The rest of the chapter is organized as follows. Section 2 proposes an RBDO 

framework that considers sparse point data and interval data for the random variables. 

Section 3 illustrates the proposed methods with an example problem. Section 4 provides 

conclusions and suggestions for future work. 

 
 

2. RBDO for single discipline systems 

 

2.1 Deterministic design optimization 

In a deterministic optimization formulation, all design variables are considered 

deterministic. No random variability or data uncertainty is taken into account. The 

deterministic optimization problem is formulated as follows: 

 
ubxlb

ixgts
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≤≤
≤ )1( allfor 0)(..
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where )(xf  is the objective function,  x is the vector of design variables, ( )xgi  is the ith 

constraint and lb and ub are the vectors of lower and upper bounds of design variables. 

In practice, the input design variables might be uncertain and solutions of this 

deterministic formulation could be sensitive to the uncertainty of input design variables. 

Reliability-based design optimization (RBDO) takes this uncertainty into account. The 

optimal design points obtained using the deterministic method could be used as initial 

guess in RBDO. 
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2.2 Reliability-based design optimization 

A simple, typical RBDO formulation with only component level reliability 

constraints is as follows: 
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where  f(d,Z) is the objective function, d is a set of design variables, Z is a set of input 

random variables, and pi could be ith threshold failure probability. The vector d may 

include both deterministic design variables as well as distribution parameters of random 

design variables x. Note that in RBDO, the objective function value is the nominal value, 

which is estimated at the mean values of the random variables x and z. 

 

RBDO methods fall into three groups depending on how reliability analysis is 

incorporated into the optimization process. Tu et al (2001) referred to the RBDO methods 

that use the reliability index directly as a reliability index approach (RIA) and to those 

based on quantile functions of the probability distributions as the performance measure 

approach (PMA). The RIA uses a direct FORM, whereas the PMA uses an inverse 

FORM for reliability analysis. Nested algorithms, which were used before the 1990s, 

include a full reliability analysis at every step of the design optimization algorithm. It is 

well known that nesting these two procedures results in a large number of function 

evaluations, and studies performed by Agarwal and Renaud (2004), Liang et al (2004), 

Du and Chen (2004), and Yang and Gu (2004) have confirmed that nested methods 

require many more function evaluations than RBDO methods in which the reliability 
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analysis loop is either decoupled or eliminated via single loop methods. To reduce the 

computational expense associated with nested methods, many researchers have developed 

single-loop approaches to RBDO (Madsen and Hansen, 1992; Chen et al, 1997; Wang 

and Kodiyalam , 2002; Agarwal and Renaud, 2004). The methodologies are focused on 

removing the inner reliability analysis loop by making the optimality conditions of either 

FORM or inverse FORM constraints in the optimization loop. Although a number of 

RBDO studies have focused on developing computationally efficient methods to solve 

Eq. (2), a very few methods exist for reliability-based design under epistemic uncertainty 

as mentioned in Section 1. The focus of this chapter is not on efficiency, but on the 

inclusion of epistemic uncertainty in the design optimization. Therefore, in developing 

the methodology for RBDO under epistemic uncertainty, we use the classical nested loop 

RBDO formulation. In this formulation, the reliability analysis required for evaluating the 

reliability constraints is done inside the RBDO framework using direct FORM. 

The FORM estimates the failure probability as ( )β−Φ=fP  where Ф is the 

cumulative distribution function (CDF) for the standard normal probability distribution 

and β is the minimum distance from the origin to the limit state in the uncorrelated 

reduced normal space (Hasofer and Lind, 1974). The limit state function g is derived 

from a system performance criterion and formulated such that g < 0 indicates failure. The 

minimum distance point on the limit state is referred to as the most probable point (MPP), 

and β is referred to as the reliability index. The FORM method is able to handle 

correlated, non-normal random variables and nonlinear limit states; however, the 

probability estimate is based on a first-order approximation of the limit state at the MPP. 

The following formulation is used to estimate the failure probability: 
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( ) ( )
( ) 0..

)3(min
=

=

Ygts
YY

Y

Tβ  

In Eq. (3), Y denotes all the random variables in uncorrelated standard normal space. 

Function gY is transformed functions such that ( ) ( )( )xTgYgY
1−=  where T is the 

transformation function from original space, x, to standard normal space Y. For more 

details about the implementation of FORM, the reader is referred to Ditlevsen and 

Madsen (1979), Haldar and Mahadevan (2000), and Nowak and Collins (2000). 

 
In the following section, we develop the methodology for RBDO under epistemic 

uncertainty for single discipline problems. 

 

 
2.3 RBDO under epistemic uncertainty 

The inclusion of epistemic uncertainty in RBDO adds another level of complexity 

in the design methodology. The design variables d and/or the input random variables Z in 

Eq. (2) might have epistemic uncertainty. Since the designer does not have any control on 

the non-design epistemic variables, the RBDO methodology has to employ a search 

among the possible values of such epistemic variables in order to find an optimal 

solution. In such case, we get a conservative reliability-based design. The RBDO 

problem can now be formulated with the following generalized statement: 
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where Zl and Zu are the vectors of lower and upper bounds of the decision variables µz of 

the inner loop optimization problem. 

Note that in this formulation, the outer loop decision variables d may consist of 

stochastic design variables as well as epistemic design variables. The outer loop 

optimization is a design optimization problem, where an RBDO is carried out for a fixed 

set of non-design epistemic variables. The inner loop optimization is the analysis for the 

non-design epistemic variables, where the optimizer searches among the possible values 

of the non-design epistemic variables for a conservative solution of the RBDO. 

 This nested optimization problem can be decoupled and expressed as: 
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The optimization problems in Eqs. (5) and (6) are solved iteratively until convergence. 

Note that the first constraint (i.e., the reliability constraint) in Eq. (6) is required to ensure 

that the optimization is driven by all non-design epistemic variables, because sometimes 

the objective function may not be a function of all non-design epistemic variables. In 

cases when the objective function is the function of all non-design epistemic variables, 

this constraint is not required. 

Since Eq. (5) is solved with a fixed set of non-design epistemic variables, Eq. (5) 

is equivalent to an RBDO problem under aleatory uncertainty alone. Eq. (6) is referred to 
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as uncertainty analysis for the non-design epistemic variables throughout this 

dissertation. The RBDO formulations presented above are general and can handle all 

varieties of design and non-design variables, such as one or more design or non-design 

variables being deterministic, aleatory or epistemic. Since Eq. (5) is equivalent to 

traditional RBDO under aleatory uncertainty, it can accommodate both deterministic and 

aleatory design variables as well as both deterministic and aleatory non-design variables. 

Eq. (5) also accommodates epistemic design variables. The propose methodology 

accommodates non-design epistemic variables by employing a search among the possible 

values of non-design epistemic variables through the formulation in Eq. (6).  

 

RBDO with sparse data 

This section develops a methodology for RBDO with sparse point data, using the 

formulations in Eqs. (5) and (6). It is assumed that only sparse point data are available for 

some of the design variables as well as non-design epistemic variables.  

When a variable, either design or non-design, is described by sparse point data, 

there is uncertainty about the mean and variance calculated from the samples. In the 

design optimization (Eq. (5)), the mean values of the design variables (either aleatory or 

epistemic) are controlled by the given design bounds. However, since the mean values of 

the non-design variables cannot be controlled in the design optimization, the proposed 

RBDO methodology accounts for the uncertainty about mean values of such epistemic 

variables through the optimization in Eq. (6).  
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The constraints on the non-design epistemic variables in Eq. (6) are implemented 

through the construction of confidence intervals about mean values using Eq. (9) of 

Chapter VII.      

The proposed RBDO methodology accounts for the uncertainty about the 

variances for all epistemic variables by first estimating confidence bounds on variances 

and then solving the optimization formulations in Eqs. (5) and (6) using the upper bound 

variances for the input random variables xi and zi. Solving the optimization formulations 

in Eqs. (5)-(6) using the upper bound variances for all the epistemic variables ensures that 

the resulting solution is least sensitive to the variations in the input random variables. The 

confidence bounds on variances are estimated using Eq. (10) of Chapter VII. 

 

RBDO with interval data 

This section develops a methodology for RBDO with interval data, using Eqs. (5) 

and (6). In this case, the only information available for one or more input random 

variables is in the form of single interval or multiple interval data. 

The methodology for RBDO with interval data is similar to sparse point data as 

described earlier. However, the estimation of mean values and variances for interval data 

is not straightforward. For interval data, the moments (e.g., mean and variance) are not 

single-valued, rather only bounds can be given (see Chapter IV). We have proposed 

methods to compute the bounds of moments for both single and multiple interval data in 

Chapter IV. Once the bounds on the mean and variance of interval data are estimated, we 

use the upper bounds of the variances to solve the formulations of RBDO under epistemic 
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uncertainty in Eqs. (5) and (6). Therefore, the resulting solution becomes least sensitive 

to the variations in the uncertain variables. 

For non-design epistemic variables described by interval data, the constraints on 

the decision variables in Eq. (6) are implemented through estimating the bounds on the 

mean values by the methods as described in Chapter IV. 

In the following section, the proposed RBDO formulations are illustrated for a Shaft-

Gear Assembly. 

 

3. Numerical Example 

Shaft-Gear Assembly 

This problem is adapted from Mahadevan and Rebba (2006), and modified in this 

example to include epistemic uncertainty. Consider a mechanical drive shaft assembled 

into a press-fit gear wheel as shown in Figure 1. The objective is to determine the radii of 

the solid shaft R and the gear wheel R0 such that the assembly meets the design torque 

requirements reliably without slipping at the fit interface (Cruse, 1997). The interface 

length L is known and the interference fit tolerated in this assembly Δ is also 

deterministic. The maximum torque T that can be transmitted by the assembly (fit) 

without any slippage can be given in terms of the coefficient of friction ɳ at the fit, 

interface length L (or gear wheel width in this case), shaft radius R, and the interference 

pressure p as (Shigley et al, 2004) 

)7(2 2pLRT πη=  
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Figure 1: Schematic diagram for the torque shaft assembly (Mahadevan and Rebba, 
2006) 

 

The interface pressure can be derived using the assumption of a thick cylinder for the 

gear wheel and the shaft as 
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where E0 and Ei are Young’s moduli, ʋ0 and ʋi are the Poisson ratios of the gear wheel 

and the drive shaft, respectively. 

The two design variables are bounded as 5≤R≤9 and 10≤R0≤20, respectively. Suppose we 

wish to ensure that the maximum torque transmitted by the assembly fit exceeds a 

threshold value T0. The probability of achieving the design requirement needs to be 

evaluated first. A limit state is defined as g =T−T0 and failure is defined when the torque 

delivered (T) is less than T0, i.e., when g <0. 
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Knowing the specific densities of the shaft ρi and the gear wheel ρ0, the total weight of 

the assembly can be estimated as 

( )[ ] )9(2
0

2
0 0

RRLgW ia ρρρπ −+=  

 

where ga is the acceleration due to gravity. In this illustrative example, ρ0 and ρi are 

assumed to be 7.85 and 7.95, respectively and T0 is assumed to be 5000 units. 

 

The general formulation for this RBDO problem is as follows: 
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where p0 is assumed to be 0.0062 (β=2.5)  in this example. Since the torque T transmitted 

by the mechanical assembly depends on both R and R0, the probability P (T≤ T0) also 

depends on those respective radii. 

The values for the deterministic variables and statistics of the various uncertain 

parameters are given in Table 1. 

Table 1: Data of input variables in torque shaft assembly design 
 

Variable Distribution type Data 

E0 Lognormal [10,178; 9771; 9786; 9838; 9411; 
10,288; 10,065; 9849; 10, 274; 
9658] 

Ei Lognormal [7980; 7952; 8064; 8063; 7827; 
7994; 7967; 8126; 8219; 8222] 

ʋ0 Lognormal [0.1, 0.2] 

ʋi Lognormal Mean: 0.25,  Std: 0.05 
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ɳ Lognormal [0.7, 0.75; 0.73, 0.76; 0.72, 0.78] 

Δ Deterministic 0.01 

L Deterministic 4 

 

In this case, the input random variable ʋi is assumed to have aleatory uncertainty. 

All the remaining input random variables are considered as non-design epistemic 

variables, where E0 and Ei are assumed to be described by sparse point data, ʋ0 is 

assumed to be described by single interval data, and ɳ is assumed to be described by 

multiple interval data as given in Table 1. The confidence bounds on the mean for the 

variables E0 and Ei are estimated by the methods described in Section 2. Bounds on the 

mean values and variances of the epistemic variables ʋ0 and ɳ are estimated by the 

methods described in Chapter IV. Since this problem contains non-design epistemic 

variables, this problem is solved by the RBDO methodology developed in Section 2 by 

solving the following two optimization problems iteratively until convergence and the 

solutions are given in Table 2. 
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where Zl and Zu are are  the vectors of the bounds on the mean values of the epistemic 

variables.  

Table 2: Optimal design solution for the torque shaft problem 

Optimum (R, R0) W 

No. of g function evaluations 

Design 
Analysis 
(Eq. (11)) 

Epistemic 
Analysis 
(Eq. (12)) 

Total 

(6.5297, 12.2412) 1.4539e+005 7,302 1,680 8,982 

 

The optimizations in Eqs. (11) and (12) required only 2 iterations between the design 

problem (Eq. (11)) and the uncertainty analysis for the non-design epistemic variables 

(Eq. (12))  for convergence. Number of g function evaluations for both the design and 

epistemic analyses are listed in Table 2 for future reference. It is seen in Table 2 that the 

proposed RBDO methodology can solve this design problem with only 8,982 function 

evaluations, of which only 1,680 evaluations are required for the epistemic analyses and 

only 7, 302 evaluations are required for the design analyses. Note that the design analysis 

(Eq. (11)) is equivalent to an RBDO problem under aleatory uncertainty alone, since it is 

solved with a fixed set of non-design epistemic variables. If this example problem 

involved only aleatory uncertainty, the number of g function evaluation would be 

approximately half of 7,302, because it would require solving Eq. (11) only once instead 

of twice in the current example. Therefore, the proposed RBDO methodology under 

epistemic uncertainty can solve this problem with a reasonably increased number of 

function evaluations. 
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4. Conclusion 

This chapter has developed formulations for reliability-based design optimization 

(RBDO) for single systems under both aleatory and epistemic uncertainty on the data of 

the random variables. Two types of data uncertainty – sparse point data and interval data 

– are considered. The computational efficiency of the proposed formulations is 

demonstrated with a number of example problems considering the number of individual 

disciplinary analyses. 

The huge computational expense required for the epistemic analysis is reduced by 

decoupling the design analysis from the epistemic analysis. Unlike existing methods, it 

does not use separate representations for aleatory and epistemic uncertainties and does 

not require nested analysis. Both types of uncertainty are treated in a unified manner 

using a probabilistic format, thus reducing the computational effort and simplifying the 

optimization problem. The numerical example in this chapter was carried out using the 

classical nested loop RBDO formulation and the number of function evaluations needed 

was reported in Section 3. The focus of this chapter is not on efficiency, but on the 

inclusion of epistemic uncertainty in the design optimization. Several more efficient 

RBDO methods (single loop and sequential) have been developed in recent years, and all 

these methods can be enhanced to incorporate epistemic uncertainty. Future work in this 

direction also needs to include system reliability constraints. 

 
 
 
 
 
 



 

 
 

CHAPTER IX 
 
 

MULTIDISCIPLINARY SYSTEM ANALYSIS UNDER ALEATORY AND 
EPISTEMIC UNCERTAINTY 

 
 

 
1. Introduction 

 
 

This chapter develops an efficient probabilistic approach for uncertainty 

propagation in multidisciplinary system analysis, when the information on the uncertain 

input variables may be available as either sparse point data or as intervals (single or 

multiple). A decoupled approach is used in this chapter to un-nest the multidisciplinary 

system analysis from the probabilistic analysis to achieve computational efficiency. This 

approach uses deterministic optimization to first quantify the uncertainty in the coupling 

variables, without any coupled system level analysis. Once the uncertainty in the 

coupling variables is quantified, the system level uncertainty propagation analysis is 

similar to single discipline problems. The proposed methods are equally applicable to 

both sampling and analytical approximation-based reliability analysis methods. A 

mathematical problem and a practical engineering problem are used to illustrate the 

proposed methods. The accuracy of the proposed decoupled approach is verified by 

Monte Carlo simulation using a multi-discipline feasible (MDF) analysis approach.  

 
 
As mentioned in Chapter II, the proposed method extends the idea of a decoupled 

formulation as developed in Mahadevan and Smith (2006) and proposes probabilistic 

methods for multidisciplinary reliability analysis under both aleatory and epistemic 

uncertainty. This approach uses deterministic optimization to first quantify the 
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uncertainty in the coupling variables. No coupled system level analysis is required. Once 

the uncertainty in the coupling variables is quantified, the system level uncertainty 

propagation is achieved based on the single discipline uncertainty propagation methods 

that include both physical variability and data uncertainty, using a probabilistic approach. 

 
The rest of the Chapter is organized as follows. Sections 2 and 3 describe the 

proposed methodology for the propagation of both epistemic and aleatory uncertainty 

through multidisciplinary analysis. Section 4 gives the numerical results using the 

proposed methods for a simple mathematical problem and a practical engineering 

problem. Section 5 provides concluding remarks and suggestions for future work. 

 

2. Probabilistic Uncertainty Propagation for Single Discipline Problems 

In the case of random variables for which only sparse point data or interval data are 

available, a flexible family of Johnson distributions is used to develop a probabilistic 

representation using the moment matching approach. Moment matching involves 

equating the moments derived from the data to those of the probability distribution being 

fit.  A detailed discussion on fitting Johnson distributions to sparse point data and interval 

data can be found in Chapter III and Chapter IV, respectively.  

An approach for uncertainty propagation with sparse point data has been developed in 

Chapter III. Chapter IV developed the method for propagation with interval data.  

Note that the PBO and EBO methods presented in Chapter IV do not consider 

dependence among moments and are able to give rigorous bounds on the system 

response. However, it is more helpful to evaluate bounds in terms of both “rigor” and 

“optimality” as discussed and conceptually sketched in Figure 19 in Chapter IV. As 
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mentioned in Chapter IV, by rigorous, it is meant that the true interval of the possible 

quantile values lies within the computed bounds. By optimal, it is meant that the bounds 

are the narrowest possible, while still being rigorous. The optimal bounds preserve the 

dependence among moments of interval data.  

For a random variable, the moments are not independent to each other. For 

example, when the first moment is selected from a configuration of multiple interval data, 

it is obvious that the other moments will be estimated using the same configuration of 

multiple interval data. Therefore, if the moments are selected independently like the PBO 

and EBO methods presented in this section, the set Θ (see Chapter IV) becomes a 

superset of all actually admissible distribution parameter values resulting rigorous bounds 

on the system response, the lower and upper bounds of which may underestimate the 

output uncertainty. In the following discussion, we propose formulations for PBO and 

EBO that result in optimal bounds on the system response for multiple interval data. Note 

that this is not an issue for the single interval data. For multiple interval data, a particular 

value of moments within the moment bounds corresponds to a fixed set of configuration 

of multiple interval data. However, for single interval data, the moment bounds are 

calculated using closed-form formulas. See Chapter IV for details. 

Optimal PBO formulation: 

The approach is the same as in the percentile-based optimization (PBO) method 

presented earlier in this section, which minimizes and maximizes the system output 

( )mxgα  conditioned on a set of moments (mi) for the input variables at different 

percentile values (α) of the output CDF and thus obtains bounds on the system output 
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CDF. The optimal PBO solves the following optimization problems at different percentile 

values (α) to obtain bounds on the output CDF.  
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where N is the number of intervals. Note that in PBO, the decision variables were the set 

of moments (m= [m1 m2 m3 m4]); however, in Eq. (1), the decision variables are 

configurations of multiple interval data (x = [x1 x2 x3 … xN]). The set of moments m are 

estimated using this configuration x of interval data inside the optimizer and thus, the 

dependency relationships among the moments are preserved resulting in optimal bounds 

on the system response. 

Optimal EBO formulation: 

The Optimal EBO method has the same formulation as in Eq. (1) but with a different 

objective function ))((maxmin/ mxgE
x

. All the constraints remain the same. Note that in 

the EBO formulation, the decision variables were the set of moments (m= [m1 m2 m3 

m4]), however, in optimal EBO, the decision variables are configurations of multiple 

interval data (x = [x1 x2 x3 … xN]).  In this case, the optimization formulation yields 

configurations of multiple interval data, which are then used to estimate sets of moments 

for the uncertain design variables corresponding to a set of Johnson distribution 

parameters. Once the distribution parameters are obtained, any probabilistic uncertainty 
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propagation method (e.g., FORM or MCS) can be used to construct approximate bounds 

on the CDF of the system response. 

The uncertainty propagation methods described above are extended for 

multidisciplinary systems in Section 3. 

 

3. Probabilistic Uncertainty Propagation for Multidisciplinary Problems 

The computational effort required for multidisciplinary reliability analysis and design 

optimization depends on the type of formulation required for probabilistic system 

analysis. In this section, a decoupled approach adapted from Mahadevan and Smith 

(2006) is used to develop a method for multidisciplinary reliability analysis with sparse 

point data as well as interval data. 

3.1 Multidisciplinary System Analysis 

In many practical applications, multidisciplinary system analysis (MDA) makes use 

of individual disciplinary analysis codes that interact with each other through shared 

input and output data. A feasible multidisciplinary analysis yields a solution that 

simultaneously satisfies all individual disciplinary analyses (Du and Chen, 2005). Figure 

1 shows a two-discipline system for the sake of illustration. 
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Input variables: 
x = {x1, x2, xs} 

 
Disciplinary response 
variables: 
u = {u1,2, u2,1} 

 
Output variables: 
g = {g1, g2, f} 

 
Analysis 1 

 
A1(x, u(x)) = 0 

 

Analysis 2 
 

A2(x, u(x)) = 0 
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Figure 1: A two-disciplinary system with feedback coupling (Mahadevan and Smith, 
2006) 

 

In Figure 1, x1 and x2 are input variables to disciplines 1 and 2, respectively; xs 

are the input variables common to each discipline. u1,2 and u2,1 are disciplinary 

response variables that couple the two disciplines. f, g1 and g2 are the system output 

variables. f may represent an objective function in the context of optimization and g1 

and g2 may represent limit state functions for reliability analysis. In order to achieve 

feasibility in multidisciplinary system analysis, the non-linear equations shown in Eq. 

(2) below have to be solved simultaneously. 

( )( ) (2)                                                                    1,2ifor ,0, ==xuxAi  

In the following subsection, an approach is developed to decouple the system analysis 

from the probabilistic analysis. 

3.2 Decoupled approach for probabilistic analysis 

The coupling variables in a multidisciplinary analysis depend on the random input 

variables and therefore are random themselves. Mahadevan and Smith (2006) quantified 

the uncertainty in the coupling variables by using a first-order second moment (FOSM) 

approximation. Once the uncertainty in the coupling variables is quantified, probabilistic 

system analysis only needs uncertainty propagation through the individual disciplinary 

analyses, as shown in Figure 2. The uncertainty propagation can be achieved using 

already well established probabilistic methods of uncertainty propagation, for example, 

Monte Carlo methods (Robert and Cesalla, 2004) and optimization-based methods such 

as first-order reliability method (FORM), second-order reliability method (SORM) etc. 

(Haldar and Mahadevan, 2000). 
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Figure 2: Decoupled formulation (Mahadevan and Smith, 2006) 
 

The decoupled formulation described above has been developed for handling aleatory 

uncertainty only. In the following subsections, we extend this decoupled approach to 

develop methods for multidisciplinary uncertainty propagation analysis under epistemic 

uncertainty arising from sparse point data and interval data. 

3.3 Multidisciplinary uncertainty propagation analysis with sparse point data 

In this case, the only information available for the input random variables is 

sparse point data. In the first step, analysis is performed to generate data for the coupling 

variables. The second step performs uncertainty propagation through the individual 
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disciplinary analyses using sparse point data for each of the input random variables. Du 

and Chen (2002) proposed uncertainty analysis methods for multidisciplinary problems, 

namely, the system uncertainty analysis (SUA) method and the concurrent subsystem 

uncertainty analysis (CSSUA) method for handling aleatory uncertainty. They used these 

methods to estimate the mean values of the coupling variables of the multidisciplinary 

system. The SUA requires a coupled system analysis and CSSUA requires solving a 

deterministic optimization problem using individual disciplinary analyses to estimate the 

mean of the coupling variable. Since coupled system analysis may be expensive for a 

large and complex system, we only use the CSSUA method in this chapter in order to 

generate sparse point data for the coupling variables as follows: 

( ) )3(min
2

1

*
* ∑

=

−=
n

i
iiu

uud  

where u* are the unknown target values of the coupling variables and u are the values of 

the coupling variables obtained by subsystem analysis only. The optimizer minimizes the 

deviations between u* and u and thus generates a set of data for the coupling variables.  

By solving the optimization problem in Eq. (3) N times, we can generate N number of 

sparse point data for each of the coupling variables. 

Note that Du and Chen (2002) developed CSSUA for estimating the mean values 

of the coupling variables. However, in this chapter, we use this method only to generate 

sparse point data for the coupling variables. No coupled system level analysis is required. 

The system compatibility requirement is already satisfied through the system level 

optimizer as shown in Eq. (3). Once the data for the coupling variables is obtained, the 

uncertainty propagation method is straightforward. Its implementation is as follows: 
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1. Generate N sparse point data for the coupling variables by solving Eq. (3) N 

times, where N is the sample size for each of the input random variables x. 

2. Generate families of flexible probability distributions for each of the input 

random and coupling variables by the method described in Chapter III. 

3. Propagate each of the input distributions through the corresponding individual 

disciplinary analysis to obtain a family of output distributions. 

The three steps are illustrated in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Decoupled approach for multidisciplinary uncertainty propagation with sparse 
point data 
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3.4 Multidisciplinary uncertainty propagation analysis with interval data  

In this case, the only information available for the input random variables is in the 

form of single interval or multiple interval data. In the first step, a deterministic 

optimization is performed to generate interval data for the coupling variables. The second 

step performs uncertainty propagation through the individual disciplinary analyses using 

interval data for each of the input and coupling random variables. No coupled system 

level analysis is required. The system compatibility requirement is already satisfied 

through the constraints of the deterministic optimization. The steps of implementation are 

as follows: 

 

1. Generate interval data for the coupling variables by solving: 

( )( ) .. 2, 1,ifor ,0,
)4(..

maxmin/

==
≤≤

xuxA
bxats
u

i

 

where a and b are the vectors of lower and upper endpoints of the given 

intervals for the random input variables x. For multiple interval data, repeat 

the optimization in Eq. (4) N times to obtain N intervals for the coupling 

variables, where N is the number of intervals for the input random variables. 

2. Calculate bounds on moments of the interval data for the input random and 

coupling variables by the method described in Chapter IV. 

3. Obtain bounds on the system output by the optimization methods (PBO, EBO) 

mentioned in Section 2. 
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Figure 4: Decoupled approach for multidisciplinary uncertainty propagation with interval 
data 

 

4. Numerical Examples  

The proposed uncertainty propagation methods for multidisciplinary analysis under 

both aleatory and epistemic uncertainty on the input random variables are illustrated with 

two example problems: (1) a simple mathematical problem, and (2) an engineering 

problem.  

4.1 Mathematical Problem  

This mathematical problem is taken from Du and Chen (2005). This is a two-

disciplinary problem with feedback coupling. The functional relationships for the 

individual disciplinary analyses are given as follows: 

x 
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In this example problem, the disciplinary response variables u1,2 and u2,1 couple 

the two analyses. These response variables are defined such that ui,j is an output of 

analysis i and an input to analysis j. The output g1 of disciplinary analysis 1 will be used 

to illustrate the proposed multidisciplinary uncertainty propagation methods. 

In this example problem, the disciplinary response variables u1,2 and u2,1 couple 

the two analyses. These response variables are defined such that ui,j is an output of 

analysis i and an input to analysis j. The output g1 of disciplinary analysis 1 will be used 

to illustrate the proposed multidisciplinary uncertainty propagation methods. 

Example 1(a): Sparse point data 

In this case, the input random variables { }51 ,..., xx  are given by sparse point data. 

Each input random variable is described by the data set as given in Table 1. This problem 

is solved by the decoupled approach developed in Section 3.3 in order to obtain sparse 

point data for the coupling variables u1,2 and u2,1. Once the data of the coupling variables 

are obtained, the uncertainty propagation through the system output is achieved through 

the individual disciplinary analyses only by the method mentioned in Section 2 and the 

results are shown in Figure 5. 

Table 1: Sparse Point Data for the random input variables 

Sample x1 x2 x3 x4 x5 
01 0.9567 0.9813 1.0294 0.9600 0.8396 
02 0.8334 1.0726 0.8664 1.0690 1.0257 
03 1.0125 0.9412 1.0714 1.0816 0.8944 
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04 1.0288 1.2183 1.1624 1.0712 1.1415 
05 0.8854 0.9864 0.9308 1.1290 0.9195 
06 1.1191 1.0114 1.0858 1.0669 1.0529 
07 1.1189 1.1067 1.1254 1.1191 1.0219 
08 0.9962 1.0059 0.8406 0.8798 0.9078 
09 1.0327 0.9904 0.8559 0.9980 0.7829 
10 1.0175 0.9168 1.0571 0.9843 0.9941 
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Figure 5: Propagation through multidisciplinary analysis of sparse point data 
 

As seen in Figure 5, the proposed method quantifies the data uncertainty for the input 

random variables by generating a family of CDFs for the system response at the 

disciplinary level 1 of the two-discipline system.  In this example problem, the generation 

of data for the coupling variables requires only 414 individual disciplinary analyses. The 

uncertainty propagation analysis has generated 100,000 (10×10,000) Monte Carlo 

samples for each of the input variables to construct 10 output CDFs, which requires 

100,000 individual disciplinary analyses. 

 

Example 1(b): Single interval data 
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In this case, the input random variables { }51 ,..., xx  are given by single interval data. Each 

input random variable ranges from 0.5 to 1.5. This problem is solved by the decoupled 

approach developed in Section 3.4 in order to obtain single interval data for the coupling 

variables u1,2 and u2,1. Once the data of the coupling variables are obtained, the 

uncertainty propagation through the system output is achieved through the individual 

disciplinary analyses only by the PBO and EBO methods mentioned in Section 2 and the 

results are shown in Figure 6. Note that this problem involves only single interval data 

and therefore, is solved by the basic PBO and PBO as described in Section 2. It is seen in 

Figure 6 that the bounds calculated by EBO and PBO almost coincide with each other for 

this problem. This problem is also solved by MCS using an MDF approach and the 

results are shown in Figure 6. 
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Figure 6: Propagation through multidisciplinary analysis of single interval data 
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Since this particular problem involves only single interval data, the uncertainty 

bounds for this problem can be obtained by a simple deterministic optimization as shown 

below: 

ubulb
ubxlb
ubxlb
ubxlbts

g

≤≤
≤≤
≤≤
≤≤

1,2

3

2

1

1

)5(..
maxmin/

 

Note that the bounds on u2,1 are obtained by the decoupled approach described in Section 

3.4. 

This optimization formulation yields the bounds on the system response as [1.75, 

6.76] which is exactly the same as the lowermost and uppermost bounds obtained by the 

proposed probabilistic approach, corresponding to CDF values of 0 and 1. This approach 

requires only 15 individual disciplinary analyses. Note that if we solved this problem by a 

deterministic optimization using an MDF approach, it would give the same bounds as 

obtained by the decoupled deterministic optimization. 

Example 1(c): Multiple interval data 

In this case, the input random variables { }51 ,..., xx  are given by multiple interval data. 

Each input random variable is described by the following data set: ([0.5, 1.2], [0.8, 1.5], 

[0.75, 1.75], [0.5, 1.75], [0.7, 1.4]). This problem is solved by the decoupled approach 

developed in Section 3.4 in order to obtain multiple interval data for the coupling 

variables u1,2 and u2,1. Once the data of the coupling variables are obtained, the 

uncertainty propagation through the system output is achieved through the individual 

disciplinary analyses only by the PBO and EBO methods mentioned in Section 2 and the 



 

207 
 

results are shown in Figure 7. This problem is also solved by MCS using an MDF 

approach and the results are shown in Figure 7. 
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Figure 7: Propagation through multidisciplinary analysis of multiple interval data 
 
 

As mentioned earlier in Section 2, the PBO and EBO methods give rigorous 

bounds on the system response for multiple interval data. Therefore, this problem is also 

solved by the proposed Optimal PBO and EBO formulations as discussed in Section 2 

and the results are shown in Figure 8. 
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Figure 8: Rigorous vs. Optimal bounds for multiple interval data 
 
 

It is seen in Figure 8 that the optimal bounds are in good agreement with the 

rigorous bounds. The bounds calculated by EBO and PBO coincide with each other for 

this problem.  

The generation of data for the coupling variables requires only 56 and 280 

individual disciplinary analyses for the single and multiple interval cases, respectively. 

The computational efforts for the PBO and EBO methods with both single and multiple 

interval data and the computational efforts for the Optimal PBO and Optimal EBO 

methods with multiple interval data are listed in Table 2. Obviously, EBO is less 

expensive compared to PBO for each problem. It is also seen that for the same problem, 

the Optimal PBO and Optimal EBO require more function evaluations than the basic 

PBO and EBO. This is expected due to the larger number of decision variables required 

in the former case. 
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Table 2: Computational effort for PBO and EBO for Example 1 with interval data 

 Basic PBO Basic EBO 
Function 

Evaluations 

Optimal PBO Optimal 
EBO 

Function 
Evaluations 

Percentile 
Points 

Function 
Evaluations 

Percentile 
Points 

Function 
Evaluations 

Single 
interval 

data 

21 1482 295 - - - 

Multiple 
interval data 

21 1692 47 21 2394 243 

 

4.2 Example 2: Engineering Problem (FireSat) 

This problem has been is sketched in Figure 3 of Chapter I. As seen in Figure 3 (see 

Chapter I), the Orbit subsystem has feed-forward coupling with both Attitude Control and 

Power subsystems. Further, the Attitude Control and Power subsystems are coupled 

through three coupling variables PACS, Imin, and Imax. The functional relationships for the 

disciplinary analyses are given in Table 3. A satellite configuration is assumed in which 

two solar panels extend out from the spacecraft body. Each solar panel has dimensions L 

by W and the edge of the solar panel is at a distance D from the centerline of the 

satellite’s body as sketched in Figure 9. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 9: Schematic diagram for the spacecraft solar array (Ferson et al, 2009) 
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Table 3: Functional relationships among the disciplinary analyses 

Subsystem-1 
(Orbit) 

Subsystem-2 
(Attitude Control) 

Subsystem-3 
(Power) 

The satellite velocity: 
HRE +

=
µ

υ  

 
where, µ = Earth’s gravity constant, 
RE = Earth’s radius, and  
H = orbit altitude. 
 
The orbit period: 

( ) ( )
υ
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π
HRHRt EE

orbit
+
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The maximum eclipse time: 
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The maximum slewing angle: 
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where,  ϕtarget = target diameter. 
 
 

 

The slewing torque: 

max2
4

I
tslew

slew
slew

∆
=

θ
τ  

where, Imax = maximum moment of 
inertia of the spacecraft calculated 
in Power subsystem. 
 
Total disturbance torque: 

2222
amspgdist τττττ +++=  

where, τg , τsp, τm ,and τa = Torques 
due to gravity gradients, solar 
radiation, magnetic  field 
interactions, and aerodynamic drag, 
respectively. 
 

( )
( )θ

µ
τ 2sin

2

3
minmax3

II
HRE

g −
+

=  

 
Here, Imax and Imin = maximum and 
minimum moment of inertia for the  
spacecraft calculated in Power 
subsystem, θ = the deviation of the 
major moment axis from the local 
vertical (nadir). 
 

( ) iqA
c

F
L s

s
spsp cos1+=τ  

 
Here, Lsp = moment arm for the 
solar radiation torque – the distance 
between the center of the solar 
pressure and the center of gravity of 
the spacecraft, Fs = average solar 
flux, c = speed of light (2.9979e8 
m/s), q = reflectance factor or 
surface reflectivity, and i = sun 
incidence angle (angle at which the 
sun radiation hits the spacecraft 
surface), As = surface area off which 
the solar radiation is reflected. For 
cylindrical solar arrays, π/sas AA =  
 

( )3
2

HR

MR

E

D
m

+
=τ  

 
Here, M is the magnetic moment of 

The total power: otherACStot PPP +=  

 
Here, the Attitude Control subsystem is only 
considered explicitly as a power consumer. 
All other power consumers are lumped into 
one bin as Pother. PACS is calculated in the 
Attitude subsystem. 
 

The total solar array size: 
EOL

sa
sa P

P
A =  

 
where, Required Power Output, 

d

d
dd

e
ee

sa T
X

TP
X

TP

P








+

=  

 
Here, Pe and Pd = spacecraft’s power 
requirements during eclipse and daylight, 
respectively. 
  
For this example problem,  
Pe = Pd = Ptot  
 
Te and Td = time per orbit spent in eclipse and 
in sunlight, respectively.  
 
For this example problem, 
 Te = eclipset∆  and  

eorbitd TtT −∆=
 

The power production capability at the end of 
life, ( )LT

BOLEOL PP deg1 ε−=  
 
where, LT = lifetime of the spacecraft in 
years, ɛdeg = degradation per year in %/year.  
 
The power production capability at the 
beginning of life, θη cosdsBOL IFP = . 
 
Here, Id = inherent degradation of the array — 
It lumps together temperature effects, 
shadowing, and uncovered areas in the 
physical layout, θ = sun incidence angle — 
typically a worst-case angle is used. 
The equations for the moment of inertia for 
the configuration as shown in Figure 6: 
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the Earth expressed in Am2 and RD 
is the residual dipole of the 
spacecraft. 
 

2
2
1 AVCL daa ρτ =  

 
Here, La is the moment arm for the 
aerodynamic drag torque – the 
distance between the center of the 
aerodynamic pressure and the center 
of gravity of the spacecraft, ρ is the 
atmospheric density, Cd is the drag 
coefficient, A is the cross-sectional 
surface area in the direction of 
flight, and V is the velocity of the 
spacecraft in orbit. 
 
The Attitude control power: 

holdtotACS nPP += maxωτ  
 
where, totτ  = max( slewτ , distτ ) 
 
 ω = maximum rotational velocity 
of a reaction wheel (typically 5000-
6000 rpm), n = number of reaction 
wheels that could be simultaneously 
active (in this case n=3), and holdP  
= holding power — the power 
necessary to maintain a constant 
velocity of maxω . 
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where, rlw = the length to width ratio of the 
solar array, nsa = number of solar arrays, ρ = 
average mass density of the arrays, t = 
thickness of the solar panels. The distance D 
can be independently chosen, but is should be 
larger than the radius of the spacecraft body. 
 
The total moment of inertia: 

bodysatot III +=  
Ibody = MoI of the main body of the spacecraft 
(one for each axis x, y, and z). 

( )
( )ZtotYtotXtot

ZtotYtotXtot
IIII

IIII

,,,max

,,,min
,,max

,,min

=

=
 

Note that in the full system analysis, the 
overall moments of inertia of the system are 
computed in the “Structures” subsystem. To 
limit the scope of this example problem, the 
overall moments of inertia are now calculated 
in the “Power” subsystem and the moments of 
inertia of the main body Ibody are kept constant 
as follows: 

2

2

2

mkg4700

mkg6200

mkg6200

−=

−=

−=

bodyZ

bodyY

bodyX

I

I

I

 

 
 

The objective is to quantify the uncertainty in 3 output variables that are the result 

of the 3-disciplinary analysis – total power Ptot, required solar array area Asa, and total 

torque τtot as shown in Figure 3 of Chapter I. The uncertain variables involved in each 

subsystem and their corresponding single interval data are listed in Table 4. Note that this 
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problem involves only single interval data and therefore, is solved by the basic PBO and 

PBO as mentioned in Section 2. 

 
 

Table 4: Uncertain variables and data 
 
 

No  Variable  Symbol  Unit  Data 

1   Earth’s radius  RE  m  [6378135, 6378145 ] 

2   Altitude  H  m  [2×105, 3.5787×107 ] 

3   Power other than ACS  Pother  W  [825, 1375] 

4  Avg solar flux  Fs  W/m2  [1326, 1481] 

5  Deviation of major moment axis 
from local vertical 

θ deg  [10, 19 ] 

6  Moment arm for solar radiation 
torque 

 Lsp  m  [0, 3.75] 

7  Reflectance factor q   [ 0.1, 0.99] 

8  Residual dipole of the space craft RD  Am2  [0, 10 ] 

9  Moment arm for aerodynamic 
torque 

La  m  [0, 3.75 ] 

10  Drag coefficient Cd   [2, 4 ] 

 
 
 

This problem is solved by the decoupled approach developed in Section 3.4 in order to 

obtain the interval data for the coupling variables PACS, Imin, and Imax. Once the data of the 
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coupling variables are obtained, the uncertainty propagation through the system outputs 

Ptot, Asa, and τtot are achieved through the individual disciplinary analyses only. Each of 

the problems is also solved by MCS using an MDF approach. 

 
i) System Output 1: Total power, Ptot: This problem is solved by the PBO and EBO 

methods mentioned in Section 2.2 and the results are shown in Figure 10. 
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Figure 10: Bounds on Ptot 
 

 
Since this problem involves only single interval data, the uncertainty bounds for 

this problem can be obtained by a simple deterministic optimization as shown below: 

ubPlb
ubPlbts

P

other

ACS

totx

≤≤
≤≤ )6(..

maxmin/

 

where the design variables x are PACS and Pother. Note that the bounds on PACS are 

obtained by the decoupled approach described in Section 3.4. 

This optimization formulation yields the bounds on the system response as 

[885.206, 1638.7] which is exactly the same as the lowermost and uppermost bounds 



 

214 
 

obtained by the proposed probabilistic approach, corresponding to CDF values of 0 and 

1. This approach requires only 6 individual disciplinary analyses. 

 
ii) System Output 2: Total array size, Asa: This problem is solved by the PBO and 

EBO methods mentioned in Section 2.2 and the results are shown in Figure 11. 
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Figure 11: Bounds on Asa 
 

Since this problem involves only single interval data, the uncertainty bounds for 

this problem can be obtained by a simple deterministic optimization as shown below: 

ubPlb
ubFlb

ubPlb
ubHlb
ubRlbts

A

ACS

s

other

E

sax

≤≤
≤≤

≤≤
≤≤
≤≤

)7(

..

maxmin/

 

where the design variables x are RE, H, Pother, Fs, and PACS. Note that the bounds on PACS 

are obtained by the decoupled approach described in Section 3.4. 
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This optimization formulation yields the bounds on the system response as [9.11, 

34.77] which is exactly the same as the lowermost and uppermost bounds obtained by the 

proposed probabilistic approach, corresponding to CDF values of 0 and 1. This approach 

requires only 24 individual disciplinary analyses. 

 

 
iii) System Output 3: Total torque, τtot: This problem is solved by the PBO and EBO 

methods mentioned in Section 2.2and the results are shown in Figure 12. 
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Figure 12: Bounds on τtot 
 
 

Since this problem involves only single interval data, the uncertainty bounds for 

this problem can be obtained by a simple deterministic optimization as shown below: 
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where the design variables x are RE, H, θ, Lsp,  Fs,q, RD, La, Cd, Imin, and Imax. Note that the 

bounds on  Imin, and Imax are obtained by the decoupled approach described in Section 3.4. 

This optimization formulation yields the bounds on the system response as 

[0.00033, 0.3240] which is exactly the same as the lowermost and uppermost bounds 

obtained by the proposed probabilistic approach, corresponding to CDF values of 0 and 

1. This approach requires only 24 individual disciplinary analyses. 

Note that we have used single interval data of the coupling variables in Eqs. (6)- 

(8) as obtained by the decoupled approach. If we solved these problems by a 

deterministic optimization using an MDF approach, it would give the same bounds as 

obtained by the decoupled deterministic optimization. 

It is seen in Figures 10-12 that the bounds calculated by EBO and PBO coincide 

with each other. In this example problem, the generation of data for the coupling 

variables requires only 84 individual disciplinary analyses. The computational efforts for 

both the PBO and EBO methods are listed in Table 5. As expected, EBO is less 

expensive compared to PBO for each problem. 
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Table 5: Computational effort for the FireSat problem  

 PBO EBO 
Function 

Evaluations Percentile Points Function Evaluations 

Ptot 26 559 18 

Asa 23 966 121 

τtot 23 2484 108 

 

Discussion 

Each problem is also solved by MCS using an MDF approach in order to verify 

the results of the proposed PBO and EBO methods. It is seen in Figures 6-7 and 10-12 

that the proposed PBO and EBO bounds are in good agreement with the MCS results. 

Note that this MCS approach is computationally very expensive. In order to generate 100 

output CDFs, we have used 1 million (100×10,000) samples for each input variable, 

which requires 1 million system analyses. The proposed decoupled approach for 

multidisciplinary uncertainty propagation does not require any coupled system level 

analysis, which makes the proposed methods computationally feasible. 

The deterministic optimizations with single interval data are very efficient in 

estimating the output uncertainty bounds with a very few individual disciplinary analyses. 

However, this approach is not able to give any probabilistic information about the output 

uncertainty and therefore this approach is recommended when the only quantity of 

interest is the bounds on output uncertainty. When the uncertainty propagation analysis is 

required to produce any probabilistic information, the PBO and EBO methods are 

recommended. Note that the deterministic optimization approach is applicable with single 
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interval data only, whereas the PBO and EBO methods are equally applicable with both 

single and multiple interval data. 

 
5. Conclusion 

This chapter developed a probabilistic framework for the propagation of uncertainty 

through multidisciplinary systems, when the information is available as sparse point data 

or interval data. The uncertainty described by sparse point and interval data is represented 

through a flexible Johnson family of distributions. An optimization-based approach is 

used to decouple the probabilistic analysis from the system analysis. This approach uses 

deterministic optimization to first quantify the uncertainty in the coupling variables. No 

coupled system level analysis is required. This chapter also discussed the concepts of 

rigor and optimality with regard to the bounds on the system response and proposed 

optimization formulations that give optimal bounds on the output uncertainty. The 

proposed decoupled approach is illustrated for a mathematical problem and for a practical 

engineering problem. 

The major advantage of the proposed methodology is that it does not require any 

coupled system level analysis, which makes it computationally efficient for large and 

complex multidisciplinary systems where only individual analysis codes are available. 

Unlike existing methods, it does not use separate representations for aleatory and 

epistemic uncertainties and does not require nested analysis. Both types of uncertainty are 

treated in a unified manner using a probabilistic format, thus reducing the computational 

effort and simplifying the optimization problem. The results regarding the uncertainty in 

the coupling variables are valuable to the designer as it can help select the initial guesses 

in an all-at-once approach to multidisciplinary design optimization. Due to the use of a 
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probabilistic format to represent all the uncertain variables, the proposed uncertainty 

propagation framework facilitates the implementation of multidisciplinary design 

optimization in the presence of both aleatory and epistemic uncertainty.  

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

CHAPTER X 
 
 

ROBUSTNESS-BASED DESIGN OPTIMIZATION OF MULTIDISCIPLINARY 
SYSTEM UNDER EPISTEMIC UNCERTAINTY 

 
 
 

1. Introduction 
 
 

This chapter proposes formulations and algorithms for design optimization of 

multidisciplinary systems under both aleatory uncertainty (i.e., natural or physical 

variability) and epistemic uncertainty (i.e., imprecise probabilistic information), from the 

perspective of system robustness.  The proposed formulations specifically deal with 

epistemic uncertainty arising from sparse and interval data without any assumption about 

the probability distributions of the random variables. A single loop approach is used for 

the design optimization, which does not require any explicit coupled multidisciplinary 

uncertainty propagation analysis. Thus the computational complexity and cost involved 

in estimating the mean and variation of the performance function is greatly reduced. A 

decoupled approach is proposed in this chapter to un-nest the robustness-based design 

from the analysis of non-design epistemic variables to achieve further computational 

efficiency. The proposed methods are illustrated for a mathematical problem and a 

practical engineering problem, where the information on the random inputs is only 

available as sparse point and/or interval data. 

 
 

The contribution of this chapter is to develop a methodology for robustness-based 

design optimization for multidisciplinary systems that includes both aleatory and 

epistemic uncertainty. This chapter specifically focuses on epistemic uncertainty arising 
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from sparse point data and interval data.  In this chapter, we propose an efficient single 

loop formulation for the robust design problem. The proposed single loop formulation 

eliminates the need for explicit interdisciplinary uncertainty propagation for estimating 

the mean and variation of the output. A decoupled approach is proposed in this chapter to 

un-nest the robustness-based design from the analysis of non-design epistemic variables 

to achieve further computational efficiency. The proposed robustness-based MDO 

approach is based on the framework for single discipline systems developed in Chapter 

VII. In order to demonstrate the efficiency of the proposed method, the robust 

optimization methods based on SUA and CSSUA developed in Du and Chen (2002) are 

also used and modified in this chapter to include data uncertainty. The proposed method 

is illustrated by using a mathematical example and an engineering example. 

The rest of the chapter is organized as follows. Section 2 proposes a 

multidisciplinary robustness-based design optimization framework that considers sparse 

point data and interval data for the random variables. In Section 3, we illustrate the 

proposed methods for a mathematical example and an engineering example. Section 4 

provides conclusions and suggestions for future work. 

 
 

2. Robustness-based design optimization for multidisciplinary systems 

In Chapter VII, a methodology for robustness-based design optimization is 

proposed for single discipline systems. In this chapter, a methodology for robustness-

based design optimization for multidisciplinary systems is developed, based on the 

methodology developed in Chapter VII. 
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As mentioned in Chapter IX, in order to achieve feasibility in multidisciplinary 

system analysis, the non-linear equations shown in Eq. (7) in Chapter IX have to be 

solved simultaneously. 

Existing methods for multidisciplinary robust design optimization solve either Eq. (7) 

(see Chapter IX) or a sub-optimization problem nested within the framework of the 

design optimization to estimate the means of the disciplinary response variables and 

thereby estimate the mean of the performance function. The means of the input design 

variables as well as the disciplinary response variables are then used to estimate the 

variance of the performance function. This makes the current methods computationally 

expensive for coupled multidisciplinary systems. In this chapter, we propose a single loop 

formulation for the multidisciplinary robustness-based design optimization that 

eliminates the need for coupled interdisciplinary uncertainty analysis for estimating the 

mean and variance of the performance function. 

Section 2.1 proposes a single loop formulation for multidisciplinary robustness-based 

design optimization and Section 2.2 proposes formulations for multidisciplinary 

robustness-based design optimization that account for input data uncertainty.  

2.1 Multidisciplinary robustness-based design optimization 

Existing robustness-based design optimization frameworks use different 

multidisciplinary optimization methods including the all-in-one approach (Du and Chen, 

2002), collaborative optimization (Li and Azarm, 2008), etc.  In this chapter, we compare 

the efficiency of the proposed method and the all-in-one approach of multidisciplinary 

robust optimization. The all-in-one approach is more commonly known as the 

multidisciplinary feasible method (MDF) in the literature (Cramer et al, 1994). The 
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formulation of robustness-based design optimization using the all-in-one approach is as 

follows: 

 

 

 

The formulation in Eq. (1) is similar to that in Eq. (1) in Chapter VII. Here, the design 

variables d are the deterministic design variables and the mean values of the uncertain 

local input variables x as well as the shared input variables xs (see Chapter IX). Note that 

one or more of the input random variables x and xs may be non-design variables and 

referred to as z throughout this chapter. gi is the constraint of the ith discipline. This 

robust design formulation requires estimating the mean values μf and μg as well as the 

standard deviations σf and σg considering the multidisciplinary nature of the system. In 

order to estimate the mean values μf and μg and the standard deviations σf and σg, it is 

necessary to estimate the mean values and the standard deviations of the coupling 

variables. 

This all-in-one approach of robust design estimates the mean values of the coupling 

variables using either SUA or the CSSUA methods of interdisciplinary uncertainty 

propagation (Du and Chen, 2002). It has been mentioned earlier that SUA requires a 

coupled system level analysis at each iteration of the robust optimization problem and 

CSSUA requires a nested double loop formulation when used for robust optimization. 

The standard deviations of the coupling variables are estimated by approximating the 

system equations in Eq. (1) through a first-order Taylor series approximation at the mean 
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values (Haldar and Mahadevan, 2000) of all the input and the coupling variables and then 

solving the following system of linear equations: 
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where, 2
iuσ , 2

xσ  and 2
sxσ  are the variances of ith coupling variable, local input variables 

and shared input variables, respectively.  

In the following discussion, we propose a single loop formulation for the robustness-

based design optimization that does not require any explicit interdisciplinary uncertainty 

propagation. 

Single loop formulation  

The all-in-one approach of multidisciplinary robust optimization satisfies the system 

compatibility requirements through a coupled interdisciplinary uncertainty analysis for 

SUA-based uncertainty propagation or by solving a nested double loop formulation for 

CSSUA-based uncertainty propagation as mentioned earlier. This approach also requires 

solving a system of linear equations at least once at each iteration of the design 

optimization. The idea behind the single loop formulation is that if the system 

compatibility requirement can be satisfied within the optimization algorithm by including 

the coupling variables as the optimization design variables as in the all-at-once approach, 

the only difficulty left is in estimating the standard deviations σf and σg of the objective 

function and the constraints, respectively. This difficulty can be overcome by including 
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also the standard deviations of the disciplinary response variables σu as the optimization 

design variables. These additional design variables σu will be constrained by Eq. (9). 

The single loop formulation of the multidisciplinary robustness-based design 

optimization is now as follows: 

 

 

 

 

In the above optimization formulation, the design variables are the mean values of all 

input variables x and xs and coupling variables µu as well as the standard deviations of 

the coupling variables σu.  

In the following subsections, the methodology for robustness-based design 

optimization under epistemic uncertainty described in Chapter VII is extended for the 

multidisciplinary systems.  

2.2 Multidisciplinary robustness-based design optimization under epistemic uncertainty 

As in single discipline problem, in this case, the design variables d and/or the 

input random variables z in Eqs. (1) and (3) might have epistemic uncertainty. Since the 

designer does not have any control on the non-design epistemic variables z, the design 

methodology has to employ a search among the possible values of such epistemic 

variables in order to find an optimal solution. In such case, we get a conservative robust 
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design. When one or more epistemic variables cannot be treated as design variables, the 

design methodology has to solve two optimization problems iteratively until convergence 

in order to find a conservative robust design. For SUA and CSSUA-based 

multidisciplinary robust design, this approach requires solving the two decoupled 

optimization problems as given below. 
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The optimization problems in Eqs. (4) and (5) are solved iteratively until convergence. 

Note that the robust constraint is satisfied only in Eq. (4). As mentioned earlier in Section 

2.1, Eqs. (4)-(5) satisfy the system compatibility requirements through a coupled 

interdisciplinary uncertainty analysis for SUA-based uncertainty propagation or by 

solving a nested double loop formulation for CSSUA-based uncertainty propagation. This 

approach also requires solving a system of linear equations as shown in Eq. (2) at least 

once at each iteration of Eqs. (4)-(5). 

 

Single loop formulation  
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When one or more epistemic variables cannot be treated as design variables, the single 

loop formulation for the robustness-based design optimization now requires solving the 

two decoupled optimization problems as given below.  
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Note that the optimization in Eq. (6) is a single loop formulation, which solves the design 

problem and the second optimization adjusts the design in presence of uncontrollable 

epistemic uncertainty. The optimization problems in Eqs. (6) and (7) are solved 

iteratively until convergence. Note that the robust constraint is satisfied only in Eq. (6). 

The first constraint (i.e., the system compatibility requirements) in Eq. (7) is only 

required if the objective function is not a function of all non-design epistemic variables. 

In order to obtain solutions that are least sensitive to data uncertainty, the robustness-

based design optimization formulations in Eqs. (4)-(7) have to be solved using the 
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approach described in Chapter VII. In the following section, the proposed robustness-

based design formulations are illustrated for a mathematical example and an engineering 

example. 

3. Numerical Examples 

The proposed robustness-based design optimization formulations for 

multidisciplinary systems are illustrated with two numerical examples: (1) a simple 

mathematical example and (2) an engineering problem. 

3.1 Example 1: Mathematical Example 

The two-disciplinary problem with feedback coupling as discussed in Chapter IX is 

used here. The output of the function g2 in disciplinary analysis 2 will be used as 

objective function to illustrate the proposed multidisciplinary robust optimization 

methods. 

In this case, the input random variable x1 and x4 are considered as non-design 

epistemic variable and the remaining input random variables { }532 ,, xxx are considered as 

design variables. The input random variables x1 and x2 are assumed to be described by 

sparse point data as given in Table 1. The input random variables x3 and x4 are assumed 

to be described by single interval data ([0.5; 1.5]) and ([2; 5]), respectively. The input 

random variable x5 is assumed to be described by multiple interval data ([0.5, 1.2], [0.8, 

1.5], [0.75, 1.75], [0.5, 1.75], [0.7, 1.4]). The design bounds for the input design variables 

are given in Table 2. Each disciplinary constraint has a lower bound of 2 and an upper 

bound of 20. 
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Table 1: Sparse Point Data for the random input variables 

Sample x1 x2 
01 0.9567 0.9813 
02 0.8334 1.0726 
03 1.0125 0.9412 
04 1.0288 1.2183 
05 0.8854 0.9864 
06 1.1191 1.0114 
07 1.1189 1.1067 
08 0.9962 1.0059 
09 1.0327 0.9904 
10 1.0175 0.9168 

 

Table 2: Design variables and design bounds for mathematical example 

No  Variable  Design bounds 

1  x2 [0, 10] 

2 x3 [0, 10] 

3 x5 [2, 10] 

 

This problem is solved by both all-in-one and single loop formulations. The all-

in-one robustness-based design formulation for this problem is as follows: 
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where d is the vector of means of the input design variables. 



 

230 
 

( )

uzl

g

g

g

g
z

ZZts

ww
z

≤≤











−+=

µ

σ
σ

µ
µ

µ
µ

..

)9(*1*maxarg **
*

2

2

2

2

 

where the bounds Zl and Zu for the epistemic variables x1  and x4  are calculated using Eq. 

(9) as given in Chapter VII and by the moment bounding method described in Chapter 

IV, respectively. 

The single loop formulation of the robustness-based design problem is as follows: 
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Note that in Eq. (11), the objective function is a function of non-design epistemic 

variables x1 and x4 and therefore, the system compatibility equations are not used here. 

As mentioned earlier in Chapter VII, 0≥w  is the weight parameter that represents the 

relative importance of the objectives and k is a constant that adjusts the robustness of the 

method against the level of conservatism of the solution. In this dissertation, k is assumed 

to be unity. **

22
 and gg σµ are scaling factors used to normalize the two objectives in terms 

of mean value and standard deviation of the objective functions. The weight parameter w 

is varied (from 0 to 1) and the optimization formulations in Eqs. (8)-(11) are solved by 

the Matlab solver 'fmincon' by the methodology described in Chapter VII. The solutions 

are presented in Figure 1.  
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Figure 1: Robustness-based optimization for Example 1 
 
 

Figure 1 shows the solutions of the conservative robust design in presence of 

uncontrollable epistemic uncertainty. It is seen from Figure 1 that the single loop 
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formulation generates optimal solutions that are almost the same as the solutions obtained 

by SUA and CSSUA-based robust optimization methods. 

The computational efforts of the different methods are compared in Table 3. It is 

seen that compared to both SUA and CSSUA-based optimization methods, the single 

loop formulation is much less expensive in terms of both function evaluations and 

computational time. 

Table 3: Computational effort for different methods for Example 1 

All-in-one Single loop 

SUA CSSUA 

DA SA CT DA SA CT DA SA CT 

11588 454 17.53118 15504 0 14.804068 1600 0 3.037412 

Note: DA = Disciplinary analysis   SA = System analysis   CT = Computational time in seconds 

3.2 Example 2: Engineering Problem (FireSat) 

The same FireSat problem as described in Chapters I and IX is used here. The 

output Ptot of disciplinary analysis 3 (Power subsystem) will be used as an objective 

function to illustrate the proposed multidisciplinary robust optimization methods. The 

objective is to simultaneously minimize the mean value of the total power consumption, 

Ptot and its standard deviation.  The uncertain variables involved in each subsystem and 

their corresponding single interval data are given in Table 4.  
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Table 4: Uncertain variables and data for FireSat problem 

No  Variable  Symbol  Unit  Data 

1  Earth’s radius RE  m  [6378135, 6378145 ] 

2  Power other than ACS Pother  W  [825, 1375] 

3 Avg solar flux Fs  W/m2  [1326, 1481] 

4 Deviation of major moment 
axis from local vertical 

θ deg  [10, 19 ] 

5 Moment arm for solar 
radiation torque 

 Lsp  m  [0, 3.75] 

6  Reflectance factor q   [ 0.1, 0.99] 

7  Residual dipole of the space 
craft 

RD  Am2  [0, 10 ] 

8 Moment arm for 
aerodynamic torque 

La  m  [0, 3.75 ] 

9  Drag coefficient Cd   [2, 4 ] 

 

For the sake of illustration, in this example problem, the following epistemic 

variables are considered as design variables with the design bounds given in Table 5 

below. Note that the design variables q and Cd are function of other design variables of 

the original problem, i.e., the FireSat problem consisting of all the subsystems. In this 

paper, a simplified three disciplinary problem has been used. Therefore, these variables 

are considered here as design variables. 
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Table 5: Design variables and design bounds for FireSat problem 
 

No  Variable  Symbol  Design bounds 

1  Power other than ACS Pother  [500, 1500] 

2 Deviation of major moment 
axis from local vertical 

θ [0, 90] 

3 Moment arm for solar 
radiation torque 

 Lsp  [0, 20] 

4  Reflectance factor q  [0, 1] 

5 Moment arm for 
aerodynamic torque 

La  [0, 10] 

6 Drag coefficient Cd  [1, 8] 

 

This problem has six epistemic design variables and three epistemic non-design variables. 

This problem is solved by both all-in-one and single loop formulations.  

The all-in-one robustness-based design formulation for this problem is as follows: 
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where the bounds Zl and Zu for the epistemic variables RE, Fs and RD   are calculated by 

the method described in Chapter IV. 

The single loop formulation of the robustness-based design problem is as follows: 
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For this example problem, only single interval data is available for the input design 

variables as given in Table 2. The two disciplinary constraints are assumed to have lower 

bounds of 20 and 0.09 and upper bounds of 50 and 0.4, respectively. The weight 

parameter w is varied (from 0 to 1) and the optimization formulations in Eqs. (12)-(15) 

are solved by the Matlab solver 'fmincon' for sparse point and interval data. The solutions 

are presented in Figure 2. 
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Figure 2: Robustness-based optimization for the FireSat problem 
 

Figure 2 shows the solutions of the conservative robust design in presence of 

uncontrollable epistemic uncertainty. It is seen from Figure 2 that the single loop 

formulation generates optimal solutions that are almost the same as the solutions obtained 

by SUA and CSSUA-based robust optimization methods. 

The computational efforts of the different methods are compared in Table 6. It is 

seen that compared to both SUA and CSSUA-based optimization methods, the single 

loop formulation is much less expensive in terms of both function evaluations and 

computational time. 

Table 6: Computational effort for different methods for FireSat problem 

All-in-one Single loop 

SUA CSSUA 

DA SA CT DA SA CT DA SA CT 

2170 640 28.9766 28090 0 26.6426 1080 0 12.1503 

Note: DA = Disciplinary analysis   SA = System analysis   CT = Computational time in seconds 
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4. Conclusion 

This chapter has developed formulations for multidisciplinary robustness-based 

design optimization under data uncertainty. Two types of data uncertainty – sparse point 

data and interval data – are considered. A single loop approach is used for the design 

optimization, which does not require any explicit coupled multidisciplinary uncertainty 

propagation analysis. Thus the computational complexity and cost involved in estimating 

the mean and variation of the performance function is greatly reduced. A decoupled 

approach is proposed in this chapter to un-nest the robustness-based design from the 

analysis of non-design epistemic variables to achieve further computational efficiency. 

The computational efficiency of the proposed formulations is demonstrated by a 

mathematical and an engineering example problems considering the number of individual 

disciplinary analyses, number of system level analyses, and the overall computational 

time. The selection of the method may depend on the number of system level analysis as 

well as the disciplinary analysis and the computational time required. CSSUA-based 

method may be preferable over the SUA-based method if the system level analysis is 

computationally expensive, and the individual disciplinary analyses are more affordable. 

However, in both examples, the single loop formulation appears to be more efficient as it 

requires no integrated system level analysis and the number of individual disciplinary 

analyses as well as the computational time required are much less. Due to the use of a 

probabilistic format to represent all the uncertain variables, the proposed 

multidisciplinary robustness-based design optimization methodology facilitates the 

implementation of multidisciplinary reliability-based design optimization, which is a 

challenging problem in presence of epistemic uncertainty. 



 

 
 

CHAPTER XI 
 
 

RELIABILITY-BASED DESIGN OPTIMIZATION (RBDO) OF 
MULTIDISCIPLINARY SYSTEM UNDER EPISTEMIC UNCERTAINTY 

 
 
 

1. Introduction 
 
 
This chapter proposes formulations and algorithms for reliability-based design 

optimization (RBDO) of multidisciplinary systems under both aleatory uncertainty (i.e., 

natural or physical variability) and epistemic uncertainty (i.e., imprecise probabilistic 

information). The proposed formulations specifically deal with epistemic uncertainty 

arising from sparse point data and interval data. An efficient decoupled approach is 

proposed that un-nests the design analysis from the epistemic analysis. The proposed 

methodology for multidisciplinary systems does not require any coupled system level 

analysis. The proposed methods are illustrated for a mathematical problem and a practical 

engineering problem. 

As mentioned in Chapter II, most of the existing methods are based on non-

probabilistic theory and can handle only single discipline problems. Many of these 

methods need additional non-probabilistic formulations to incorporate epistemic 

uncertainty into the design optimization framework, which may be computationally 

expensive. However, if the epistemic uncertainty can be converted to a probabilistic 

format, the need for these additional formulations is avoidable, and well established 

probabilistic methods of RBDO can be used. Therefore, there is a need for an efficient 

RBDO methodology that deals with both aleatory and epistemic uncertainty. 
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The contribution of this chapter is to develop a methodology for RBDO for 

multidisciplinary systems that includes both aleatory and epistemic uncertainty. This 

chapter specifically focuses on epistemic uncertainty arising from sparse point data and 

interval data. In this chapter, we propose an efficient decoupled approach that un-nests 

the design analysis from the epistemic analysis. The proposed methodology for 

multidisciplinary RBDO does not require any coupled system level analysis.  

The rest of the chapter is organized as follows. Section 2 extends the methodology 

for single discipline system as developed in Chapter VIII to multidisciplinary system. In 

Section 3, we illustrate the proposed methods for a number of example problems. Section 

4 provides conclusions and suggestions for future work. 

 
 

2. RBDO for multidisciplinary systems 

 
 
As mentioned in Chapter IX, in order to achieve feasibility in multidisciplinary 

system analysis, the non-linear equations shown in Eq. (7) in Chapter IX have to be 

solved simultaneously. 

Consider the following MDO formulation: 

( )( )
( )( ) 0,..

)1(,min

≤xuxgts

xuxf
x  

In addition to satisfying the design constraints, MDO in Eq. (1) requires that the system 

compatibility among the disciplines in Eq. (7) in Chapter IX is also satisfied. Several 

methods are available for multidisciplinary optimization based on how the system 
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analysis is handled, namely the multidisciplinary feasibility (MDF) method, the all-at-

once (AAO) method, and the individual disciplinary feasibility (IDF) method (Cramer et 

al, 1994). All these methods have their own advantages and limitations. 

 

2.1 Multidisciplinary RBDO 

Now, consider the following probabilistic variation of Eq. (1) 

( )( )
( )( )( ) α≤xuxgPts

xuxf
x

,..

)2(,min

 

In Eq. (2), all or some of the design variables are random design variables. Like Eq. (1), 

Eq. (2) also requires satisfying the system compatibility requirements as shown in Eq. (7) 

in Chapter IX, in addition to satisfying the reliability constraints. 

As mentioned in Chapter VIII, there exist different combinations of methods to 

solve singe disciplinary RBDO. Each of these combinations can be used with different 

MDO strategies, namely the MDF, AAO, or IDF method to handle the multidisciplinary 

system analysis. Therefore, a multidisciplinary RBDO problem of Eq. (2) can be solved 

by several combinations of methods (Chiralaksanakul and Mahadevan, 2007). All these 

methods have their own advantages and limitations. A detailed discussion of different 

RBDO methods for multidisciplinary systems can be found in Chiralaksanakul and 

Mahadevan (2007) and Smith (2007). 

 

In this chapter, we use the RBDO/AAO method to develop the methodology for 

multidisciplinary RBDO under epistemic uncertainty. In RBDO/AAO method, the design 

formulation in Eq. (2) becomes: 
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Note that in Eq. (3), the system compatibility requirement is used as constraints in the 

design optimization formulation. The reliability analysis required for estimating the 

reliability constraints in Eq. (3) is done as follows: 

( ) ( )
( )( )

( )( ) 0,
0,..

)4(min

=
=

=

YuYA
YuYgts

YY

Yi

YY

Tβ

 

where Y denotes all the random input variables of the system in uncorrelated standard 

normal space. Functions gY and uY are transformed functions such that ( ) ( )( )xTgYgY
1−=  

where T is the transformation function from original space, x, to standard normal space Y. 

The system compatibility requirements ( )( ) 0, =YuYA Yi , are included in Eq. (4) to ensure 

system compatibility in multidisciplinary reliability analysis. 

The above mentioned formulation of multidisciplinary reliability is known as 

collaborative reliability analysis in Du and Chen (2005). Mahadevan and Smith (2005) 

proposed an efficient approach to solving Eq. (4), namely multi-constraint FORM for 

multidisciplinary reliability analysis. In this chapter, Eq. (4) is used within the 

multidisciplinary RBDO framework under epistemic uncertainty to evaluate the 

reliability constraints. 

 
 

2.2 Multidisciplinary RBDO under epistemic uncertainty 
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As discussed in Chapter VIII, the inclusion of epistemic uncertainty in RBDO adds 

another level of complexity in the design methodology. Multidisciplinary RBDO under 

aleatory uncertainty alone is a computationally challenging problem. The inclusion of 

epistemic uncertainty in multidisciplinary RBDO further multiplies this computational 

effort. In Chapter VIII, we have proposed an approach that decouples the uncertainty 

analysis of the epistemic non-design variables from the design optimization problem. The 

same approach is used here for the multidisciplinary problem as follows: 

 

As in Eq.  (3), the general problem of multidisciplinary RBDO can be expressed as 

follows:  

 

 

 

 

 

This nested optimization problem can be decoupled and expressed as: 
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The optimization problems in Eqs. (6) and (7) are solved iteratively until convergence. 

Note that the reliability constraint is satisfied only in Eq. (6). The first constraint (i.e., the 

system compatibility equations) in Eq. (7) is required to ensure that the optimization is 

driven by all non-design epistemic variables, because sometimes the objective function 

may not be a function of all non-design epistemic variables. In cases when the objective 

function is the function of all non-design epistemic variables, this constraint is not 

required. 

We have developed the methodology of solving single discipline RBDO problem 

under both sparse point and interval data in Chapter VIII. The same methodology is used 

to solve the multidisciplinary RBDO problem under epistemic uncertainty. In the 

following section, the proposed RBDO formulations are illustrated for multidisciplinary 

example problems. 

3. Numerical Examples 

 
 

3.1 Example 1: Mathematical Example 

The two-disciplinary problem with feedback coupling as discussed in Chapter IX 

is used here. The output of the function g2 in disciplinary analysis 2 will be used as 

objective function to illustrate the proposed multidisciplinary RBDO method. Each input 

design variable has a lower bound of 0.001 and an upper bound of 10. A limit state is 

defined as g =g1−g1,0 and failure is defined when g <0. Here, g1,0  is assumed to be 5. 

The general formulation for this RBDO problem is as follows: 
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( ) )8(..
min

00,11

2

pggPts
g

<≤
 

where p0 is assumed to be 0.0062 (β=2.5)  in this example. In this example problem, the 

probability P (g1≤ g1,0) depends on all the random design variables x. 

In this case, the input random variable x1 is considered as non-design epistemic variable 

and the remaining input random variables { }52 ,..., xx are considered as design variables. 

The input random variables are assumed to be described by single interval data. Each 

input random variable ranges from 0.5 to 1.5. Bounds on the mean for the epistemic 

variable x1 and bounds on the variances of all the random variables x are estimated by the 

methods described in Chapter IV.  Since this problem contains non-design epistemic 

variables, this problem is solved by the RBDO methodology developed in Section 2 by 

solving the following two optimization problems iteratively until convergence and the 

solutions are given in Table 1. 
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where Zl and Zu are the bounds on the mean value of the non-design epistemic variable z. 

Note that in Eq. (10), the objective function is a function of non-design epistemic variable 

x1  and therefore, the system compatibility equations are not used here. 

Table 1: Optimal design solution for the mathematical problem 

Note: DA = Disciplinary analysis   SA = System analysis 

 
 

The optimizations in Eqs. (9) and (10) required only 2 iterations between the design 

problem (Eq. (9)) and the uncertainty analysis for the non-design epistemic variables (Eq. 

(10))  for convergence. Number of function evaluations in terms of disciplinary analysis 

(DA) and system analysis (SA) for both the design and epistemic analyses are listed in 

Table 1 for future reference. It is seen in Table 1 that the proposed RBDO methodology 

can solve this design problem with only 13,854 disciplinary analyses, of which only 8 

evaluations are required for the epistemic analyses and only 13,846 evaluations are 

required for the design analyses. If this example problem involved only aleatory 

uncertainty, the number of function evaluation would be approximately half of 13,846. 

Therefore, the proposed RBDO methodology under epistemic uncertainty can solve this 

problem with a reasonably increased number of function evaluations. 

3.2 Example 2: Engineering Problem (FireSat) 

Optimum x g2 

No of analyses 

Design Analysis 
(Eq. (9)) 

Epistemic Analysis 
(Eq. (10)) 

Total 

DA SA DA SA DA SA 

(2.2436, 2.6628, 
0.0010, 0.0010) 

1.2300 13,846 0 8 0 13,854 0 
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The same FireSat problem as described in Chapters I, IX and X is used here. The 

output Ptot of disciplinary analysis 3 (Power subsystem) will be used as the objective 

function to illustrate the proposed multidisciplinary RBDO method. The uncertain 

variables involved in each subsystem and their corresponding single interval data are 

given in Table 4 in Chapter X. The design bounds for the design variables are given in 

Table 5 in Chapter X. In this example, it is assumed that all the input random variables 

have log-normal distributions, moments of which are estimated from the single interval 

data given in Table 4 in Chapter X. 

The limit states are defined as g1 =Asa−Asa,0 and g2 = τtot− τtot,0 and failures are defined 

when g1 >0 and g2 >0 . Here, Asa,0 and τtot,0  are assumed to be 50 and 0.35, receptively. 

 

The general formulation for this RBDO problem is as follows: 

( )
( ) 2,00,

1,00, )11(..
min

pP
pAAPts

P

tottot

sasa

tot

<≥

<≥

ττ

 

where p0,1 and p0,2 are assumed to be 0.0062 (β=2.5) each. In this example problem, the 

probabilities ( )0,sasa AAP ≥  and ( )0,tottotP ττ ≥ depend on all the random input variables x. 

This problem has six epistemic design variables and three epistemic non-design 

variables. Bounds on the mean for the non-design epistemic variables RE, Fs, RD and 

bounds on the variances of all the random variables x are estimated by the methods 

described in Chapter IV.  Since this problem contains non-design epistemic variables, this 

problem is solved by the RBDO methodology developed in Section 2 by solving the 
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following two optimization problems iteratively until convergence and the solutions are 

given in Table 2. 
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where Zl and Zu are are  the bounds on the mean values of the non-design epistemic 

variables z. 

Table 2: Optimal design solution for the FireSat problem 

Note: DA = Disciplinary analysis   SA = System analysis 

 

Optimum x Ptot 

No of analyses 

Design Analysis 
(Eq. (12)) 

Epistemic Analysis 
(Eq. (13)) 

Total 

DA SA DA SA DA SA 

(700, 5, 3.6192, 
0.3792, 1.0571, 1) 

782.424 75,702 0 378 0 76,080 0 
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The optimizations in Eqs. (12) and (13) required only 2 iterations between the design 

problem (Eq. (12)) and the uncertainty analysis for the non-design epistemic variables 

(Eq. (13)) for convergence. Number of function evaluations in terms of disciplinary 

analysis (DA) and system analysis (SA) for both the design and epistemic analyses are 

listed in Table 6 for future reference. It is seen in Table 2 that the proposed RBDO 

methodology can solve this design problem with only 76,080 disciplinary analyses, of 

which only 378 evaluations are required for the epistemic analyses and only 75,702 

evaluations are required for the design analyses. If this example problem involved only 

aleatory uncertainty, the number of function evaluation would be approximately half of 

75,702. Therefore, the proposed RBDO methodology under epistemic uncertainty can 

solve this problem with a reasonably increased number of function evaluations. 

 
 

4. Conclusion 

This chapter has developed formulations for reliability-based design optimization 

(RBDO) for both multidisciplinary systems under both aleatory and epistemic uncertainty 

on the data of the random variables. Two types of data uncertainty – sparse point data and 

interval data – are considered. The computational efficiency of the proposed formulations 

is demonstrated with a number of example problems considering the number of 

individual disciplinary analyses. 

The proposed RBDO methodology does not require any coupled system level 

analysis. The huge computational expense required for the epistemic analysis is reduced 

by decoupling the design analysis from the epistemic analysis. Unlike existing methods, 

it does not use separate representations for aleatory and epistemic uncertainties and does 
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not require nested analysis. Both types of uncertainty are treated in a unified manner 

using a probabilistic format, thus reducing the computational effort and simplifying the 

optimization problem. The numerical examples in this chapter were carried out using the 

classical nested loop RBDO formulation and the number of function evaluations needed 

in each case was reported in Section 3. The focus of this chapter is not on efficiency, but 

on the inclusion of epistemic uncertainty in the design optimization. Several more 

efficient RBDO methods (single loop and sequential) have been developed in recent 

years, and all these methods can be enhanced to incorporate epistemic uncertainty. Future 

work in this direction also needs to include system reliability constraints, and the multi-

level nature of the multidisciplinary systems. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 



 

 
 

CHAPTER XII 
 
 

SUMMARY AND FUTURE NEEDS 
 

 

Summary of Contributions 

           In order to design reliable complex systems, it is necessary that the design process 

accounts for all forms of uncertainty and ensures that the reliability targets are satisfied 

throughout all stages of design. In this dissertation, efficient methods are developed to 

incorporate uncertainty in the design of complex and multidisciplinary systems. This has 

been done in two ways. First, this dissertation developed efficient uncertainty 

representation and propagation methods for both single and multidisciplinary systems 

under epistemic uncertainty. Second, efficient design optimization methods, addressing 

both robustness and reliability, are developed for both single and multidisciplinary 

systems under epistemic uncertainty. 

 

Objective 1 of this dissertation was to develop efficient methods to represent 

epistemic uncertainty arising from sparse point data and interval data. Chapters III, IV 

and VI of this dissertation developed efficient uncertainty representation methods using a 

flexible family of Johnson distributions to achieve this objective.  

 

Objective 2 was to develop efficient uncertainty propagation methods under 

epistemic uncertainty. Chapters III, V and VI of this dissertation achieved this objective 

by developing both sampling and optimization-based uncertainty propagation methods. 
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Chapter III developed a methodology for propagating both aleatory and 

epistemic uncertainty arising from sparse point data through computational models of 

system response. This method eliminates the computationally expensive process of 

nesting an aleatory uncertainty analysis inside an epistemic uncertainty analysis. This 

methodology also affords sensitivity analysis information with regard to each of the 

distribution parameters as well as the basic random variables.  The results of the 

sensitivity analysis give quantitative guidance regarding data collection for the random 

variables. 

 

Chapter IV developed a probabilistic approach to represent interval data for 

input variables in reliability and uncertainty analysis problems. The proposed 

probabilistic framework of handling interval data can be applied for a combined 

treatment of aleatory and epistemic input uncertainties from the perspective of 

uncertainty propagation or reliability based design. This approach to uncertainty 

representation given interval data can allow for computationally efficient propagation by 

avoiding the nested analysis that is typically performed in the presence of interval 

variables.  

 

Chapter V developed a probabilistic approach for uncertainty representation and 

propagation in system analysis, when the information on the uncertain input variables 

and/or their distribution parameters may be available as either probability distributions or 

simply intervals (single or multiple). Two methods are explored for the implementation 

of the proposed approach, based on: (1) sampling and (2) optimization.  The sampling 
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based strategy is more expensive and tends to underestimate the output bounds. The 

optimization based methodology improves both aspects. The proposed approach 

facilitates the implementation of design optimization under uncertainty using efficient 

reliability-based design optimization (RBDO) methods, e.g., single loop, decoupled, etc., 

due to the use of a probabilistic format to represent all the uncertain variables. 

 

Chapter VI developed a methodology for multivariate input modeling of random 

variables by using a four parameter flexible Johnson family of distributions for the 

marginals that also accounts for data uncertainty. Semi-empirical formulas in terms of the 

Johnson marginals and covariances are presented to estimate the model parameters. This 

multivariate input model is particularly suitable for uncertainty quantification problems 

that contain both aleatory and data uncertainty. A computational framework is developed 

to consider correlations among basic random variables as well as among their distribution 

parameters. A methodology is developed for propagating both aleatory and data 

uncertainty arising from sparse point data and interval data through computational 

models of system response. The proposed approach facilitates the implementation of 

design optimization under uncertainty considering correlations. 

 

Objective 3 of this dissertation was to develop efficient design optimization 

methods under epistemic uncertainty arising from sparse point data and interval data. 

Chapters VII and VIII of this dissertation achieved this objective by developing 

robustness and reliability-based design optimization methods under epistemic 

uncertainty, respectively. 
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Chapter VII developed formulations and algorithms for design optimization 

under both aleatory and epistemic uncertainty, from the perspective of system robustness. 

A decoupled approach is proposed in this dissertation to un-nest the robustness-based 

design from the analysis of non-design epistemic variables to achieve computational 

efficiency. As collecting more data reduces data uncertainty but increases expenses, the 

effect of sample size on the optimality and the robustness of the solution is also studied. 

A method is also presented to determine the optimal sample size for sparse point data that 

leads to the solutions of the design problem that are least sensitive to variations in the 

design variables. The major advantage of the proposed methodology is that unlike 

existing methods, it does not use separate representations for aleatory and epistemic 

uncertainties and does not require nested analysis. Both types of uncertainty are treated in 

a unified manner using a probabilistic format, thus reducing the computational effort and 

simplifying the optimization problem. The results regarding robustness of the design 

versus data size are valuable to the decision maker. The design optimization procedure 

also optimizes the sample size, thus facilitating resource allocation for data collection 

efforts. Due to the use of a probabilistic format to represent all the uncertain variables, 

the proposed robustness-based design optimization methodology facilitates the 

implementation of multidisciplinary robustness-based design optimization, which is a 

challenging problem in presence of epistemic uncertainty.  

 

Chapter VIII developed formulations and algorithms for reliability-based design 

optimization (RBDO) for single discipline systems under both aleatory uncertainty and 
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epistemic uncertainty. An efficient decoupled approach is proposed that un-nests the 

design analysis from the epistemic analysis. The huge computational expense required for 

the epistemic analysis is reduced by decoupling the design analysis from the epistemic 

analysis. Unlike existing methods, it does not use separate representations for aleatory 

and epistemic uncertainties and does not require nested analysis. Both types of 

uncertainty are treated in a unified manner using a probabilistic format, thus reducing the 

computational effort and simplifying the optimization problem. 

 

Objective 4 of this dissertation was to develop efficient uncertainty propagation 

methods for multidisciplinary systems under epistemic uncertainty. Chapter IX of this 

dissertation developed efficient optimization-based uncertainty propagation methods for 

multidisciplinary systems to achieve this objective. 

 

Chapter IX developed an efficient probabilistic approach for uncertainty 

propagation in multidisciplinary system analysis, when the information on the uncertain 

input variables may be available as either sparse point data or as intervals (single or 

multiple). A decoupled approach is used in this dissertation to un-nest the system analysis 

from the probabilistic analysis to achieve computational efficiency. This approach uses 

deterministic optimization to first quantify the uncertainty in the coupling variables. No 

coupled system level analysis is required. The proposed methods are equally applicable 

with both sampling and analytical approximation-based reliability analysis methods. Due 

to the use of a probabilistic format to represent all the uncertain variables, the proposed 

uncertainty propagation framework facilitates the implementation of multidisciplinary 
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design optimization in the presence of both aleatory and epistemic uncertainty.  

 

Objective 5 of this dissertation was to develop efficient design optimization 

methods for multidisciplinary systems under epistemic uncertainty. Chapters X and XI of 

this dissertation achieved this objective by developing robustness and reliability-based 

design optimization methods for multidisciplinary systems under epistemic uncertainty, 

respectively. 

 

Chapter X developed formulations and algorithms for design optimization for 

multidisciplinary systems under both aleatory and epistemic uncertainty, from the 

perspective of system robustness.  A single loop approach is used for the design 

optimization, which does not require any explicit interdisciplinary uncertainty 

propagation and thus the computational complexity and cost involved in estimating the 

mean and variation of the performance function is greatly reduced. A decoupled approach 

is proposed to un-nest the robustness-based design from the analysis of non-design 

epistemic variables to achieve further computational efficiency. 

 

Chapter XI extended the RBDO methodology for single discipline system 

developed in Chapter VIII to multidisciplinary systems. The proposed RBDO 

methodology does not require any coupled system level analysis. The huge computational 

expense required for the epistemic analysis is reduced by decoupling the design analysis 

from the epistemic analysis. 
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In summary, the methodologies developed in this dissertation will allow engineers to 

comprehensively account for different types of uncertainty relevant to the design of 

multidisciplinary systems, and perform multidisciplinary design analysis under physical, 

and data uncertainty. The broader impact of this research includes (1) Stimulating new 

directions for modeling epistemic uncertainty, (2) Development of new methods and 

algorithms for design optimization under epistemic uncertainty, and (3) Application to 

multidisciplinary systems encountered in aerospace engineering, automobile design, and 

other domains that can use model-based reliability analysis and design optimization. 

 
 

Future Research Needs 
 

The short-term research needs are as follows. As mentioned in Chapter II, epistemic 

uncertainty can be viewed in two ways. It can be defined with reference to a stochastic 

but poorly known quantity or with reference to a fixed but poorly known physical 

quantity. This dissertation focuses on handling the first definition of epistemic 

uncertainty i.e., epistemic uncertainty with reference to a stochastic but poorly known 

quantity in a straightforward manner, as the uncertainty representation methods proposed 

in this dissertation are purely probabilistic, resulting in a family of probability 

distributions. However, the second definition of epistemic uncertainty i.e., epistemic 

uncertainty with reference to a fixed but poorly known quantity can also be managed 

using the probabilistic methods as can be found in Helton et al (2004) and Helton et al 

(2008), though the implications of probability distributions for the representation of this 

type of epistemic uncertainty merit further investigation. Following Helton et al (2004) 

and Helton et al (2008), the proposed methods can also handle this second definition of 
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epistemic uncertainty. It would be worthwhile to investigate this issue of using 

probability theory for the second definition of epistemic uncertainty. 

This dissertation specifically focuses on epistemic uncertainty arising from sparse 

point and interval data. However, as mentioned in Chapter I, epistemic uncertainty can 

also arise from other sources, for example, model error. The methodologies developed in 

this dissertation need to be extended to include other sources of epistemic uncertainty. 

In this dissertation, uncertainty propagation methods are developed, which can handle 

either sparse point data or interval data. However, in practice, a mixture of both sparse 

point and interval data could be available for the same variable, or one or more variable 

might be described by sparse point data and the others might be described by interval 

data.   The methods developed in this dissertation are capable of handling such cases; 

however, the uncertainty propagation methods developed in this dissertation have not 

been illustrated to solve such problems. In future, it would be worthwhile to solve such 

problems using the developed methods. 

In this dissertation, design optimization methods are developed assuming 

independence among input random variables. However, intervariable dependencies or 

statistical correlations might have significant impact on the results of the design 

optimization. Correlations may also exist among multiple constraints and objectives, 

which may also affect the design optimization results. The design optimization methods 

developed in this dissertation need to be extended to include correlations among input 

randon variables as well as among multiple constraints and objectives. 

Finally, this dissertation develops uncertainty analysis and design optimization 

methods for multidisciplinary systems. However, in practice, the multidisciplinary 
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models might have multiple levels. As the models are integrated across multiple levels, 

the complexity and sophistication of the models increases, and assessing the predictive 

capability of the overall system model becomes a more difficult challenge. The methods 

developed in this dissertation need to be extended for the multi-level multidisciplinary 

systems.  

In the long term, the methodologies developed in this dissertation can also be 

extended to solve problems in economics and finance, for example, portfolio 

optimization, product family optimization, probabilistic budget estimation, etc and 

problems in systems of systems (SoS), for example, transportation systems, emergency 

response, network optimization, etc. Most of the existing solution approaches to these 

problems deal with aleatory uncertainty only (McDonald, 2008; McInvale, 2009; Touran, 

2010). There exist a few methods that deal with both aleatory and epistemic uncertainty 

in portfolio management (Garlappi et al, 2007, Berleant et al, 2008). These methods 

primarily focus on epistemic uncertainty arising from model error. However, if these 

problems can be solved taking into account both aleatory and epistemic uncertainty 

arising from all sources, the resulting solutions will be more robust, which may assist in 

more realistic decision making under uncertainty.  
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