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CHAPTER I 

 

INTRODUCTION 

 

Chemokines are a family of chemotactic cytokines that bind seven 

transmembrane G protein-coupled receptors.  Chemokines are classified based 

on the position of conserved cysteine residues in the amino-terminus into the CC, 

CXC, CX3C, and C subfamilies (Murphy et al., 2000).  The corresponding 

chemokine receptors can be somewhat specific in the binding of chemokines, as 

is the case for CXCL12 which binds only CXCR4 and CXCR7, or receptors can 

be more promiscuous in chemokine binding, such as CXCR2 for example, which 

binds CXCL1, 2, 3, 5, 6, 7, and 8.  In recent years chemokines have gained 

greater recognition as mediators of tumorigenesis and metastasis.  Newly 

characterized roles in inflammation-mediated tumorigenesis, angiogenesis, and 

metastasis have established chemokines as therapeutic targets for cancer 

treatment.  Therefore, understanding the biology of chemokines and their 

receptors is crucial for the development of novel therapeutics. The cellular 

responses elicited by chemokines are in part regulated through the internalization 

and intracellular trafficking of chemokine receptors.  In addition, the chemotactic 

response is regulated through previously identified adaptor proteins and likely 

through novel proteins complexes that interact with the cytoplasmic domains of 

the receptors.  Understanding the intracellular trafficking mechanisms and the 

identification of components of the cytoplasmic protein complexes that regulate 
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the chemotactic response will greatly impact the field and aid in the identification 

of potential therapeutic targets for the treatment of malignancies.          

 

Internalization and trafficking of chemokine receptors 

 

Regulation and functional significance of internalization 

Chemokine receptors undergo a basal level of internalization, followed by 

degradation or recycling, in the absence of ligand. Ligand binding can greatly 

enhance the internalization and trafficking of these G protein-coupled receptors 

(GPCRs) and can increase the dynamics of receptor sensitization versus 

desensitization and of receptor recycling versus degradation. The receptor 

trafficking pathways may vary depending on the presence or absence of ligand. 

Two major choices are available for this trafficking: clathrin-mediated endocytosis 

and/or lipid raft/caveolae-dependent internalization. Some receptors take 

advantage of both of these pathways, while others may follow one pathway the 

majority of the time. The cell type in which the receptor is expressed may in part 

determine the likelihood of utilization of one pathway as compared to another. 

This may be due to the ratio of specific adaptor proteins, the lipid composition of 

the membrane in proximity to the domain to which the receptor is localized, or 

other poorly characterized determinates. The fate of the receptor after ligand 

stimulation (to traffic or not to traffic) may affect the length, strength, or type of 

intracellular signals generated. Moreover, the type of post-translational 
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modifications of the receptor can also have major effects on ligand mediated 

signaling.  

A major mechanism by which chemokine receptors undergo ligand-

induced internalization is through clathrin-mediated endocytosis (Figure 1) 

(Signoret et al., 2005; Venkatesan et al., 2003; Vila-Coro et al., 1999; Weber et 

al., 2004; Yang et al., 1999).  The binding of ligand results in phosphorylation of 

Ser and Thr residues in the intracellular loops and carboxyl-terminus of the 

chemokine receptor by G protein-coupled receptor kinases (GRKs) (Ferguson, 

2001; Ferguson et al., 1998; Freedman and Lefkowitz, 1996; Krupnick and 

Benovic, 1998).   Phosphorylation results in the uncoupling of the G protein 

subunits from the receptor and receptor desensitization in some cases (Ferguson 

et al., 1996; Krupnick and Benovic, 1998). In addition, the phosphorylation of 

these residues and/or the presence of di-leucine motifs in the carboxyl-terminal 

domain of chemokine receptors are important for the recruitment of adaptor 

molecules that link the receptor to a lattice of clathrin that facilitates receptor 

internalization. Two adaptor molecules that play important roles in G protein-

coupled receptor internalization are adaptin-2 (AP-2) and β-arrestin. β-arrestin 

binds with high affinity to the phosphorylated receptor, to the β2-adaptin subunit 

of the AP-2 heterotrimeric protein complex, and to clathrin to mediate 

endocytosis (Benovic et al., 1987; Fan et al., 2001b; Goodman et al., 1996; 

Laporte et al., 1999; Lohse et al., 1990; Pippig et al., 1993).  It was originally 

thought that β-arrestin binding to GPCRs was only mediated through 

phosphorylated residues in the carboxyl-terminus. However, more recent  
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Figure 1: Schematic of chemokine receptor endocytosis and intracellular 
trafficking. 
CCP: clathrin-coated pit, CCV: clathrin-coated vesicle, EE: early endosome, LE: 
late endosome, RE: recycling endosome, RRP: rapid recycling pathway, SRP: 
slow recycling pathway, EEA-1: early endosomal antigen-1, FIP-2: Rab11-family 
interacting protein-2, LAMP-1: lysosomal-associated membrane protein-1. 
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chemokine receptor studies suggest that binding can also occur through the 

intracellular loops. Studies on CCR5 demonstrate that phosphorylated Ser 

residues in the carboxyl-terminus and a conserved Asp-Arg-Tyr sequence motif 

in the second intracellular loop are necessary for β-arrestin association 

(Huttenrauch et al., 2002). Moreover, β-arrestin binds to both the carboxyl-

terminus and the third intracellular loop of CXCR4 (Cheng et al., 2000). AP-2 

binds directly to some chemokine receptors, including CXCR2 and CXCR4, 

through highly conserved Leu-Leu, Ile-Leu, Leu-Ile motifs in the carboxyl-

terminus (Fan et al., 2001b; Heilker et al., 1996). The association of receptors 

with these adaptor molecules results in recruitment of clathrin and formation of 

clathrin-coated pits which ‘pinch off’ from the membrane through the action of 

dynamin and become clathrin-coated vesicles (Barlic et al., 1999; Colvin et al., 

2004; Droese et al., 2004; Jimenez-Sainz et al., 2003; Orsini et al., 1999; van der 

Bliek et al., 1993; Vila-Coro et al., 1999; Weber et al., 2004; Yang et al., 1999). 

The clathrin-coated vesicle is then uncoated and the receptor-ligand complex 

enters the early endosomal compartment. Recent findings suggest that β-arrestin 

not only plays an important role in the desensitization and internalization of 

chemokine receptors, but also in the intracellular trafficking of chemokine 

receptors. According to immunofluorescence staining and confocal microscopy, 

β-arrestin accompanies CXCR4 to the early endosome following CXCL12-

induced internalization (Orsini et al., 1999). However, it remains unclear whether 

this endosomal colocalization points to an active contribution of β-arrestin to the 

endosomal trafficking of CXCR4 or whether it is just a consequence of the 
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binding of β-arrestin to both clathrin and CXCR4 during internalization. The 

chemokine receptor can then either enter the perinuclear recycling compartment 

and traffic back to the plasma membrane to be re-exposed to ligand, or it can 

enter the late endosomal compartment where it will be sorted to the lysosomal 

compartment for degradation.  

 

Regulation of chemokine receptor trafficking by Rab GTPases 

 Rabs are small GTPases that cycle between GDP-bound (inactive) and 

GTP-bound (active) states and regulate a number of cellular trafficking events. 

The exchange of GDP for GTP, GTP hydrolysis, and GDP displacement are 

regulated by guanine nucleotide exchange factors (GEFs), GTPase-activating 

proteins (GAPs), and GDP dissociation inhibitors (GDIs), respectively. Rabs are 

post-translationally modified with geranyl-geranyl groups at their carboxyl-termini 

(Pereira-Leal and Seabra, 2000; Zerial and McBride, 2001). This modification 

allows Rabs to associate with intracellular membrane-bound compartments. 

Interestingly, individual Rab family members associate with particular endocytic 

compartments. For example, Rab4 and Rab5 associate with the early endocytic 

compartment (Bucci et al., 1992; Gorvel et al., 1991; van der Sluijs et al., 1992) 

and Rab11 associates with the perinuclear recycling compartment (Casanova et 

al., 1999; Green et al., 1997; Ren et al., 1998), and Rab7 associates with the late 

endosomal compartment (Meresse et al., 1995; Soldati et al., 1995) (Figure 1).  

Rab5 is an important mediator of the early endocytic response. The fusion 

of early endosomes in vitro requires Rab5 (Gorvel et al., 1991) and expression of 
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a dominant negative Rab5 (S34N mutant) results in a decrease of transferrin 

receptor endocytosis (transferrin co-localization is a marker for early endosomes) 

(Stenmark et al., 1994). Rab5 binds to type I phosphatidylinositol 3-kinase (PI3K) 

and promotes production of phosphatidylinositol 3-phosphate (PI(3)P) 

(Miaczynska and Zerial, 2002). Rab5 and PI(3)P then recruit EEA-1 (early 

endosomal antigen-1) and other proteins that stimulate fusion with early 

endosomes (Nielsen et al., 2000). Rab5 appears to be important in chemokine 

receptor endocytosis and trafficking as well.  CXCR2 localizes to Rab5-positive 

endosomes during early time points of ligand stimulation. Moreover, ligand-

stimulated CXCR2 internalization requires rab5 GTP hydrolysis. Expression of a 

Rab5 dominant negative mutant (Rab5-S34N) significantly attenuates CXCR2 

internalization (Fan et al., 2003). In addition, internalization of CXCR4 and CCR5 

is also inhibited by expression of a dominant-negative Rab5 mutant (Venkatesan 

et al., 2003).    

There are two main endosomal recycling pathways, a slow and a rapid 

recycling process to which Rab11a and Rab4 can contribute, respectively. 

Rab11a localizes to the perinuclear recycling compartment and plays a 

prominent role in the slow recycling process (Ullrich et al., 1996). The recycling 

pathway involving Rab11a is important for the intracellular trafficking of and the 

responses mediated by chemokine receptors. Following ligand stimulation, 

CXCR2 localizes to the Rab11a-positive compartment. The expression of a 

dominant negative (Rab11a-S25N) mutant results in significantly reduced 

CXCR2 recycling (Fan et al., 2003). Two proteins that interact with Rab11a and 
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play a role in recycling of CXCR2 are myosin Vb (Lapierre et al., 2001) and 

Rab11-Family Interacting Protein 2 (FIP2) (Hales et al., 2002). Expression of the 

myosin Vb tail (mutant that lacks the motor domain) and Rab11-FIP2 (129-512) 

truncated mutant inhibits recycling of CXCR2 and impairs its resensitization. In 

addition, expression of the myosin Vb tail impairs CXCR2- and CXCR4-mediated 

chemotaxis (Fan et al., 2003). These studies demonstrate the importance of 

recycling in chemokine receptor function.  

The second pathway bypasses the Rab11a-positive perinuclear 

endosomes and mediates rapid recycling of receptors through Rab4-positive 

endosomes (Sheff et al., 1999; Sonnichsen et al., 2000). This occurs in a PI3K-

dependent manner (Hunyady et al., 2002).  It remains unclear what mechanisms 

mediate these different recycling pathways. Recent studies suggest that the low-

affinity N-Formyl peptide receptor (FPR) utilizes both the rapid and slow recycling 

pathways. The receptor shows extensive co-localization with Rab4 and partial 

co-localization with Rab11, suggesting that the receptor primarily recycles 

through the rapid pathway, but also utilizes the slower recycling pathway (Ernst 

et al., 2004).  

Rab7 mediates the movement of late endosomes to the lysosome by 

interacting with microtubule motor proteins (Jordens et al., 2001). Prolonged 

exposure of chemokine receptors to ligand results in their lysosomal degradation 

(Marchese and Benovic, 2001; Mueller et al., 1997; Yang et al., 1999). Rab7 

appears to be involved in the lysosomal sorting of chemokine receptors. 

Expression of a dominant negative mutant of Rab7 (Rab7-T22N) results in 
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decreased localization of CXCR2 to the lysosomal compartment (LAMP-1-

positive) after prolonged ligand treatment. CXCR2 localization to Rab5- and 

Rab11a-positive endosomes increased with expression of Rab7-T22N. These 

data suggest that Rab7 regulates the transfer of CXCR2 to the lysosome and 

blocking its activity results in accumulation of CXCR2 in early and recycling 

endosomes (Fan et al., 2003). 

 

Regulation of chemokine receptor trafficking 

Little is known about chemokine receptor recycling and what factors 

mediate the fate of the chemokine receptor once it is internalized. It is likely that 

many factors contribute to differential recycling of chemokine receptors. These 

factors may include the duration and concentration of ligand stimulation as well 

as sorting motifs located in the intracellular domains of the receptor. It does 

appear that the length of stimulation with ligand plays a role in the 

recycling/degradation sorting decision. For example, CCR5 exhibits plasma 

membrane and recycling endosome localization at early time points of ligand 

stimulation and localization to the late endosomal compartments at later time 

points (Signoret et al., 2000). At early time periods after CXCL8 stimulation of 

CXCR2, the receptor enters the recycling compartment. Following extended 

periods of stimulation, the receptor enters the late endosomal and lysosomal 

compartments (Fan et al., 2003). The ability of internalized CXCR2 to recycle is 

crucial for continued gradient sensing and chemotactic response to ligand. When 

CXCR2 recycling is inhibited, chemotaxis and signaling are impaired (Fan et al., 
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2003; Fan et al., 2004). It is not yet known what other sorting molecules bind to 

chemokine receptors and how they may mediate trafficking.  

 

Chemokine receptor signaling and the chemotactic response 

The process of directional cell migration involves multiple steps including 

cell polarization, protrusion of lamellipodial protrusion, leading edge adhesion 

formation, and rear retraction.  Despite extensive investigation, the mechanisms 

that regulate the coordination of these various processes remain elusive.  Of 

particular interest is the communication between chemokine receptors, the 

cytoskeleton, and the signaling pathways that mediate polarization in the 

direction of a chemotactic gradient. 

 Since there is no clear evidence for the assymetrical distribution of 

chemokine receptors during chemotaxis, it seems likely that gradient sensing 

polarization results from polarized distribution of intracellular signaling mediators.  

One of these mediators is phosphatidylinositol-3 kinase (PI3K), more specifically 

the PI3Kγ isoform.  During cell migration, the PI3K product, phosphatidylinositol-

3,4,5-tripshosphate (PtdIns(3,4,5)P3) accumulates at the leading edge in 

neutrophils as indicated by localization of the PI(3)P binding probe, GFP fused to 

the PH domain of protein kinase B (Akt) (Merlot and Firtel, 2003).  In addition, it 

appears that PI3Kγ is important but not essential for an efficient chemotactic 

response in leukocytes, as bone marrow-derived neutrophils and macrophages 

from PI3Kγ-/- mice exhibit impaired but not ablated chemotaxis (Hirsch et al., 

2000).  The necessity of PI3K for efficient leukocyte chemotaxis is likely due to its 
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role in Rac activation (Akasaki et al., 1999; Weiner, 2002) although the partial 

inhibition of Rac activation indicates that PI3K-independent signaling pathways 

for Rac activation do exist (Akasaki et al., 1999; Fukui et al., 2001; Reif and 

Cyster, 2002).   

The reorganization of the actin and microtubule components of the 

cytoskeleton in response to chemokines play critical roles in polarization and 

chemotaxis.   The Rho family of small GTPases are critically involved in these 

processes.  Formation of productive lamellipodia at the leading edge during cell 

migration requires the actin-related protein (Arp) 2/3 complex, which mediates 

actin filament nucleation and the formation of branched actin networks.  Arp 2/3 

activity is indirectly regulated by the small GTPases Rac and Cdc42 through the 

Wiskott-Aldrich syndrome proteins (WASP) and WASP family verprolin-

homologous proteins (WAVE) proteins (reviewed in (Stradal et al., 2004; 

Takenawa and Suetsugu, 2007)).  Additionally, Rac and Cdc42 play a role in the 

reorientation of the microtubule-organizing-center (MTOC) in gradient-sensing 

cells, an event that is critical for the establishment of cell polarization.  This effect 

is mediated through the adaptor molecule IQ motif containing GTPase activating 

protein 1 (IQGAP1), cytoplasmic linker protein-170 (CLIP-170), and 

Adenomatous polyposis coli (APC) (Fukata et al., 2002; Watanabe et al., 2004).  

In contrast to Rac and Cdc42 which localize to the leading edge in the migrating 

cell, RhoA localizes to the rear of the cell during migration (del Pozo et al., 1999) 

and has a role in the actomyosin-based contraction which is important for rear 
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retraction, a necessary step for the translocation of the cell body (Worthylake et 

al., 2001).       

 Despite all the current literature regarding regulation of the chemotactic 

response, direct links connecting activated chemokine receptors to the actin 

cytoskeleton, mediators of intracellular trafficking, and signaling scaffolds are 

limited.  It is hypothesized that these chemokine receptor-interacting proteins are 

essential for the mediation of the chemotactic response.  Furthermore, the 

identification of these interactions reveals potential novel therapeutic targets for 

the treatment of cancer.   

   

The role of chemokines in tumorigenesis and metastasis 

The contributions of chemokines to the process of tumorigenesis are both 

positive and negative.  It is critical to understand the various roles of chemokines 

in tumor biology as they represent attractive therapeutic targets.  First, 

chemokines have a role in the anti-tumorigenic and in some cases tumor-

promoting immune responses.  Chemokines produced by tumor cells regulate 

the recruitment of dendritic cells, cytotoxic T lymphocytes, and natural killer cells 

into the tumor site, which can promote anti-tumorigenic immune responses 

(Rosenberg, 2001; Vicari et al., 2004).  These properties are the basis of current 

efforts directed toward cell-based immunotherapeutic strategies.  Conversely, 

tumor-produced CCL2 can promote trafficking of macrophages, which can 

release angiogenic factors and have immunosuppressive effects (Coussens et 

al., 1999; Loberg et al., 2007; Negus et al., 1995; Pollard, 2004; Polverini et al., 
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1977).  In addition, production of CCL22 by tumor cells can recruit 

immunosuppressive T-regulatory cells into the tumor, which can aid in tumor 

promotion (Curiel et al., 2004; Zou, 2005).  Finally, recent evidence suggests that 

chronic inflammation may promote tumorigenesis in some instances, such as 

hepatocellular, gastric, and colon carcinomas (reviewed in (Balkwill et al., 2005; 

Dalgleish and O'Byrne, 2006; Moss and Blaser, 2005)) and chemokines play a 

central role in the inflammatory process.    

There is also a substantial contribution of the CXC chemokine family to 

angiogenesis, which is an important component of tumorigenesis.  Although 

there are exceptions, in general chemokines that contain a glutamic acid-leucine-

arginine (ELR) motif on the amino-terminus are angiogenesis promoters while 

those that lack this motif are angiostatic (Belperio et al., 2000; Strieter et al., 

1995).  The angiogenic activity of ELR+ chemokines is mediated through CXCR2 

(Addison et al., 2000).  The importance of CXCR2 in mediating tumor-associated 

angiogenesis is demonstrated by studies using murine lung cancer model in 

CXCR2 -/- mice and neutralizing antibodies against CXCR2 (Keane et al., 2004).  

These studies revealed a significant inhibition of tumor angiogenesis, tumor 

growth, and metastasis (Keane et al., 2004).  Additionally, in a mouse xenograft 

model using transgenic mice that specifically overexpress CXCR2 on endothelial 

cells, melanoma tumor growth and angiogenesis is significantly increased 

(Horton et al., 2007).   

 Chemokines also have a role in targeting of metastatic spread to specific 

organs.  The CXCR4 chemokine receptor has recently been shown to be 
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important in tumor metastasis, including breast cancer.  The expression of this 

receptor on tumor cells may mediate preferential metastasis to target organs that 

express the ligand for this receptor, stromal-derived factor-1 alpha (SDF-1α), also 

known as CXCL12.  CXCR4 is upregulated in metastatic breast cancer cells and 

neutralization of the CXCR4/SDF-1α interaction with CXCR4-specific antibodies 

impairs the metastasis of breast cancer cell lines (Muller et al., 2001).  In 

addition, both RNAi of CXCR4 and the synthetic polypeptide TN14003 that 

mimics SDF-1α but blocks activation of CXCR4 have been shown to individually 

inhibit primary tumor growth and metastasis of the highly metastatic MDA-MB-

231 breast cancer cell line (Chen et al., 2003b; Lapteva et al., 2005; Liang et al., 

2005).   
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CHAPTER II 

 

RHOB PLAYS AN ESSENTIAL ROLE IN CXCR2 SORTING DECISIONS 

 

Introduction 

A major mechanism by which chemokine receptors undergo ligand-

induced internalization is through clathrin-mediated endocytosis (Signoret et al., 

2000; Venkatesan et al., 2003; Vila-Coro et al., 1999; Weber et al., 2004; Yang et 

al., 1999).  The binding of ligand results in phosphorylation of Ser and Thr 

residues in the intracellular loops and carboxyl-terminus of the chemokine 

receptor by G protein-coupled receptor kinases (GRKs) (Ferguson, 2001; 

Ferguson et al., 1998; Freedman and Lefkowitz, 1996; Krupnick and Benovic, 

1998).  Receptor phosphorylation results in the uncoupling of the G protein 

subunits from the receptor and receptor desensitization in some cases 

(Ferguson, 2001; Ferguson et al., 1996; Krupnick and Benovic, 1998). In 

addition, the phosphorylation of these residues and/or the presence of di-leucine 

motifs in the carboxyl-terminal domain of chemokine receptors are important for 

the recruitment of adaptor molecules that link the receptor to a lattice of clathrin 

that facilitates receptor internalization.  The association of receptors with these 

adaptor molecules results in recruitment of clathrin and formation of clathrin-

coated pits which “pinch off’ from the membrane through the action of dynamin 

and become clathrin-coated vesicles (Barlic et al., 1999; Colvin et al., 2004; 

Droese et al., 2004; Jimenez-Sainz et al., 2003; Orsini et al., 1999; van der Bliek 
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et al., 1993; Vila-Coro et al., 1999; Weber et al., 2004; Yang et al., 1999).  

Indeed, chemokine receptors may concentrate and internalize through preformed 

clathrin lattices where endocytic machinery is accumulated (Signoret et al., 

2005).  The clathrin-coated vesicle is uncoated and the receptor-ligand complex 

enters the early endosome.  The receptor can either enter the recycling 

compartment and traffic back to the plasma membrane to bind ligand, or enter 

the late endosome where it will be sorted to the lysosome for degradation.  The 

factors that mediate the trafficking fate of internalized chemokine receptors are 

largely unknown.  

Prior studies show that the length of stimulation with ligand plays a role in 

the recycling/degradation sorting decision (Fan et al., 2003; Neel et al., 2005; 

Signoret et al., 2000).  At early time periods after CXCL8 stimulation of CXCR2, 

the receptor enters the recycling compartment; conversely, following extended 

periods of stimulation, the receptor enters the late endosome and lysosome (Fan 

et al., 2003).  The ability of internalized CXCR2 to recycle is crucial for continued 

gradient sensing and chemotactic response to ligand. When CXCR2 recycling is 

inhibited, chemotaxis and signaling are impaired (Fan et al., 2003; Fan et al., 

2004; Zaslaver et al., 2001).     

Rabs are small GTPases that are post-translationally modified with 

geranyl-geranyl groups at their carboxyl-termini (Pereira-Leal and Seabra, 2000; 

Zerial and McBride, 2001) which allows them to associate with particular 

intracellular membrane-bound compartments and regulate a number of cellular 

trafficking events.  Rab5, a mediator of the early endocytic response, is important 
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for CXCR2 trafficking.  CXCR2 localizes to Rab5-positive endosomes during 

early time points of ligand stimulation and expression of a Rab5 dominant 

negative mutant attenuates CXCR2 internalization (Fan et al., 2003).  The 

recycling pathway involving Rab11a is important in the intracellular trafficking of 

chemokine receptors and the responses mediated by these receptors. Following 

ligand stimulation, CXCR2 localizes to the Rab11a-positive compartment. 

Expression of a dominant negative mutant reduces CXCR2 recycling (Fan et al., 

2003).  Rab7 appears to be involved in the lysosomal sorting of chemokine 

receptors. Expression of dominant negative Rab7 decreases localization of 

CXCR2 to the lysosome (LAMP-1-positive) and increases localization to Rab5- 

and Rab11a-positive endosomes after prolonged ligand stimulation (Fan et al., 

2003). These data suggest that Rab7 regulates the transfer of CXCR2 to the 

lysosome.   

Although the small GTPase RhoB has nearly 85% sequence homology to 

the extensively characterized isoform RhoA, a number of studies suggest a 

unique function for RhoB (Ridley, 2001; Wennerberg and Der, 2004; Wheeler 

and Ridley, 2004).  RhoB can be prenylated with either a farnesyl or a 

geranylgeranyl group, where RhoA and RhoC are only geranylgeranylated.  

These differences in post-translational modification may be responsible for the 

unique cellular functions and localization of RhoB from other isoforms.  The 

majority of RhoB is localized to endosomes but its precise localization remains 

controversial.  Studies have reported it to be localized to the plasma membrane 

(Michaelson et al., 2001), late endosomes (Wherlock et al., 2004), and more 
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recently to early endosomes (Rojas et al., 2004).  Despite the ambiguity of its 

localization, it does appear that RhoB plays an important role in intracellular 

trafficking (Gampel et al., 1999; Mellor et al., 1998).   

 In the current study, we utilized dominant negative (T19N) and GTPase-

deficient activated (Q63L) RhoB mutants as well as siRNA directed against RhoB 

to investigate the potential role of RhoB in CXCR2 chemokine receptor 

trafficking.  We have found that the RhoB T19N mutant, RhoB Q63L mutant, and 

siRNA directed against RhoB impair CXCR2-mediated chemotaxis and disrupt 

the intracellular trafficking of CXCR2.  In addition, we have shown for the first 

time that CXCR2 may recycle through alternative pathways when RhoB function 

is disrupted.  These data suggest that RhoB plays a key role in the 

recycling/degradation sorting decision in CXCR2 receptor trafficking.   

 

Materials and Methods 

 

Materials and Antibodies 

Anti-CXCR2 affinity purified polyclonal antibody was generated in our 

laboratory and described previously (Mueller et al., 1994).  Anti-CXCR2, anti-

CD63 monoclonal, and anti-Actin rabbit polyclonal antibodies were purchased 

from Santa Cruz, Biotechnology, Inc. (Santa Cruz, CA).  Anti-RhoB polyclonal 

rabbit antibody was acquired from Bethyl Laboratories, Inc. (Montgomery, TX).  

Anti-EEA-1 and Anti-LAMP-1 (CD107a) monoclonal antibodies were obtained 

from Becton Dickinson Biosciences (Franklin Lakes, NJ).  Anti-Rab11a polyclonal 
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antibody was used for immunofluorescence staining.  Anti-Calreticulin polyclonal 

antibody and anti-Rab4 rabbit polyclonal antibody were purchased from Abcam 

(Cambridge, MA).  Anti-Golgin-97 and anti-CD71 monoclonal antibodies and 

Oregon Green 488 phalloidin were obtained from Invitrogen (Carlsbad, CA).  

Anti-Na+/K+ ATPase monoclonal antibody was purchased from Upstate (α-1, 

clone 464.6, Lake Placid, NY).  Anti-mannose-6-phosphate polyclonal antibody 

was a generous gift from Dr. Lisa Matovcik and was described previously 

(Goldenring et al., 1999).  Species specific Cy2 (donkey anti-rabbit), Cy5 (donkey 

anti-mouse), and Cy3 (donkey anti-goat) conjugated secondary antibodies were 

acquired from Jackson Immunoresearch Laboratories, Inc. (West Grove, PA).  

Anti-β-tubulin monoclonal antibody was purchased from Sigma-Aldrich (St. Louis, 

MO).  

 

Plasmids 

The human CXCR2 plasmid was constructed and described previously 

(Mueller et al., 1997).  The human myc-tagged wild type, T19N, and Q63L RhoB 

constructs were a generous gift from Dr. Harry Mellor (University of Bristol).  The 

EGFP-Rab7 construct was described previously (Fan et al., 2003) and was a gift 

from Dr. Angela Wandinger-Ness (University of New Mexico School of Medicine).  

The EGFP-Rab11a construct was described previously (Lapierre et al., 2001).     
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Cell Culture and Transfection 

Human embryonic kidney (HEK) 293 cells were cultured in DMEM 

(Dulbecco's modified Eagle's medium) supplemented with penicillin (50 

units/ml)/streptomycin (50 µg/ml), 3 mM glutamine, 10% heat-inactivated fetal 

bovine serum (FBS) (Atlanta Biologicals, Lawrenceville, GA) at 37°C, 5% CO2 

and transfected with human CXCR2 plasmid using Fugene6 transfection reagent 

following the manufacturer’s protocol (Roche Applied Science, Indianapolis, IN).  

Neomycin-resistant cells were selected and surface expression of CXCR2 was 

confirmed using FACS analysis.  Cells were transfected with Fugene6 for 

transient transfections and experiments were performed after 48 hours.  All 

experiments conducted using myc-tagged RhoB mutants and EGFP-Rab7 or –

Rab11a were transiently transfected into cells stably expressing hCXCR2.  

 

RhoB RNA Interference 

Pre-designed Cy-3 labeled siRNA oligomers containing 21 nucleotides 

were purchased from Ambion (Austin, TX).  siRNA identification numbers 42060 

or 120362 were used to specifically target human RhoB with sequences 

5’gccuacgacuaccucgagutt 3’ and 5’gcaugaacaggacuugacctt 3’, respectively.  

Nonspecific Cy-3 labeled siRNA (#4621) was also purchased from Ambion and 

used as a negative control in these studies.  Transfections were performed using 

Oligofectamine reagent (Invitrogen, Carlsbad, CA).  Experiments were performed 

48 hours after transfection.     
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Isolation of GST-TRBD  

GST-TRBD fusion protein was isolated from E.coli as previously described 

(Ren and Schwartz, 2000).  Briefly, cells were grown in LB/Amp and protein 

expression was induced with 0.5mM isopropyl b-D-thiogalactopyranoside (IPTG) 

for 2 hours at 37˚C.  The cells were harvested, resuspended in 50mM Tris-HCl, 

pH 7.4, 0.5% Triton X-100, 150mM NaCl, 5mM MgCl2 containing bacterial 

protease inhibitor cocktail (Sigma-Aldrich, St. Louis, MO), disrupted by 

sonication, and debris removed by centrifugation.  GST-TRBD protein was 

purified by incubating lysates with Glutathione-Agarose (Sigma-Aldrich, St. Louis, 

MO).        

 

RhoB Activation Assay 

GST-TRBD expression construct and pull-down assay were previously 

described (Ren and Schwartz, 2000) and adapted for RhoB (Gampel and Mellor, 

2002).  Approximately 1.5 X 107 HEK293 cells stably expressing CXCR2 were 

transiently transfected with myc-RhoB WT or myc-RhoB Q63L 48 hours prior to 

experiment.  Cells were serum-starved overnight, stimulated with vehicle (0.1% 

BSA/PBS) for 60 minutes, 100 ng/ml EGF for 60 minutes, or 100 ng/ml CXCL8 

for 5 minutes, 30 minutes, or 60 minutes, and lysed in 50mM Tris-HCl, pH 7.4, 

1% Triton X-100, 0.1% SDS, 500mM NaCl, 10mM MgCl2 containing mammalian 

protease inhibitor cocktail and phosphatase inhibitor cocktails I and II (Sigma-

Aldrich, St. Louis, MO).  Lysates were cleared by centrifugation and an aliquot 

was removed from each and used as total RhoB for western blot.  GST-TRBD 
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agarose beads were incubated with lysates at 4˚C and washed three times with 

50mM Tris-HCl, pH 7.4, 1% Triton X-100, 150mM NaCl, 10mM MgCl2.     

 

Immunofluorescence and Confocal Microscopy 

Cells were grown on glass coverslips coated with 0.1 mg/ml poly-L-lysine 

(Sigma-Aldrich) and transfected with indicated constructs.  Cells were serum 

starved 4 hours and stimulated with vehicle (0.1% BSA/PBS) or 100 ng/ml 

CXCL8 at 37˚C for indicated times.  Cells were fixed in 4% paraformaldehyde for 

10 minutes, permeabilized in 0.2% Triton X-100/PBS for 5 minutes, blocked in 

10% normal donkey serum for 30 minutes (Jackson Immunoresearch 

Laboratories, Inc., West Grove, PA), and incubated with primary antibodies for 2 

hours at room temperature.  After washing three times with 0.1% Tween 20/PBS, 

the coverslips were incubated with fluorescence-conjugated secondary 

antibodies for 1 hour.  After three washes with 0.1% Tween 20/PBS, coverslips 

were mounted with ProLong Gold antifade reagent (Invitrogen, Carlsbad, CA).  

Confocal images were acquired using a LSM-510 Meta laser scanning 

microscope (Carl Zeiss, Thornwood, NY) with a 63X 1.3 numerical aperture oil 

immersion lens and images were processed by Photoshop software (Adobe 

Systems, San Jose, CA).          

 

Quantitation of Co-localization in Confocal Images 

Co-localization of CXCR2 with endosomal markers was quantitated using 

Metamorph Imaging System software package (Molecular Devices Corporation, 
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Sunnyvale, CA).  Threshold levels for all images were kept consistent among 

vector and mutant transduced cells.  At least twenty fields were quantitated for 

each time point.  The percent co-localization is indicative of the area of CXCR2-

stained fluorescent pixels overlapping that of endocytic markers.         

 

Fractionation of Endosomal Compartments 

Cells were lysed mechanically in detergent-free homogenization buffer.  

Nuclei and cell debris were removed by centrifuging at 3000 X g.  The cell 

homogenates were then mixed with iodixanol media to bring the final 

concentration to 12.5%.  The compartments were then fractionated on the self-

generated density gradient by centrifuging at 350,000 X g in vertical rotor.  

Fractions were then collected and endosomal compartments were collected by 

centrifuging at 300,000 X g.  Fractions were separated by SDS-PAGE and 

subjected to western blot analysis.  The Golgin-97 antibody was used to detect 

Golgi, the Calreticulin antibody was used to detect ER, the Na+/K+ ATPase 

antibody was used to detect plasma membrane, and Rablla and LAMP-1 

antibodies were used to detect the recycling and lysosomal compartments, 

respectively.   

 

Measurement of endosome motility 

 Velocity and distance traveled by individual endosomes were measured 

using Metamorph Imaging System software package (Molecular Devices 

Corporation, Sunnyvale, CA).  A series of 60 images at 1 second time intervals 
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was taken for cells stimulated with vehicle or CXCL8 for 30 minutes.  Because it 

is difficult to distinguish directional linear movement with random movement of 

endosomes, maximum distance traveled from point of origin (frame 1 of the time 

lapse series) was also measured.  The average velocities and distances were 

measured for at least thirty individual endosomes in at least ten randomly 

selected cells.   

 

Chemotaxis Assay  

96-well chemotaxis chamber (Neuroprobe, Gaithersburg, MD) was used 

for chemotaxis assays as described previously (Fan et al., 2004).  The number of 

cells were counted in 20 microscope fields (20X objective).   

 

CXCR2 degradation by western blot analysis 

 Cells were transfected 48 hours prior to experiments with vector, myc-

RhoB WT, T19N, or Q63L.  Cells were pretreated for 30 minutes at 37˚C with 20 

μg/ml cycloheximide to inhibit new receptor synthesis, stimulated with vehicle 

(0.1% BSA/PBS) or 100 ng/ml CXCL8 for 30 minutes, 180 minutes, or 360 

minutes, and lysed in 50mM Tris-Cl, pH 7.5, 150mM NaCl, 0.1% SDS, 1% NP-

40, 0.5% sodium deoxycholate.  Lysates were subjected to SDS-PAGE and 

CXCR2 and actin were detected by western blot analysis.  The densities of the 

CXCR2 and actin protein bands were measured using Odyssey 2.1 software 

package (Li-COR Biosciences, Lincoln, NE).  The densities of the CXCR2 bands 

were normalized to total protein by dividing by the actin band densities.  Percent 
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receptor remaining values were calculated by dividing the normalized densities of 

the treated samples by the normalized density of the vehicle treated samples and 

multiplying by 100.        

 

CXCR2 Recycling using 125I-CXCL8 Binding  

Cells were transfected 48 hours prior to experiments with vector, myc-

RhoB WT, T19N, or Q63L.  Cells were pretreated for 30 minutes at 37˚C with 20 

μg/ml cycloheximide to inhibit new receptor synthesis then stimulated with 

vehicle (0.1% BSA/PBS) or 100 ng/ml CXCL8 for 30 minutes, washed twice with 

DMEM/10% FBS and CXCR2 surface expression was recovered by placing cells 

in DMEM/10% FBS containing 20 μg/ml cycloheximide for 0 minutes, 30 minutes, 

or 60 minutes at 37˚C.  Cells were washed three times with ice-cold binding 

buffer (DMEM/1% BSA).  0.1 nM 125I-CXCL8 prepared in binding buffer 

containing 20 μg/ml cycloheximide was added and incubated for 2 hours on ice.  

Following binding, cells were washed three times with ice-cold binding buffer and 

lysed in 1% SDS/0.1 N NaOH, collected, and the level of radioactivity quantitated 

by γ-counter.  Experiments were performed in triplicate and percent total binding 

was calculated by dividing the average radioactive counts for each recovery time 

by the radioactive counts for the vehicle treated cells (Total Binding).   

 

Preparation of Triton-soluble and –insoluble fractions 

Triton-soluble and –insoluble fractions were prepared as described 

previously (Minamide et al., 1997).  Briefly, HEK293 cells stably expressing 
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CXCR2 and transiently transfected with empty vector, myc-RhoB T19N, or myc-

RhoB Q63L were washed four times with ice-cold PBS and lysed in 10mM Tris-

HCl, pH 7.5, 2mM MgCl2, 0.5mM DTT, 2mM Ethyleneglycol-bis(2-

aminoethylether)-N,N,N′,N′-tetraacetic Acid (EGTA), 1% Triton X-100, and 7.5% 

glycerol containing protease and phosphatase inhibitors.  Soluble and insoluble 

fractions were prepared by centrifugation at 170,000 X g for 20 minutes.  Actin in 

each fraction was detected by western blot analysis. 

 

Statistical Analysis 

  Statistically significant differences between two groups with the same 

treatment were determined using the non-parametric two-tailed Mann Whitney U 

test (Wilcoxin rank sum test).  Significant differences between two groups with 

several treatments were determined using non-parametric analysis of variance 

(ANOVA) (Kruskal-Wallis test). Individual p-values were calculated using the 

Dunn’s post test.  All statistical analysis was performed using GraphPad Prism 5 

software (GraphPad software, Inc., San Diego, CA).   

 

Results  

 

RhoB is activated upon CXCL8 stimulation  

In order to determine whether RhoB is activated upon stimulation with the 

CXCR2 ligand CXCL8, we utilized the Rho-binding domain of rhotekin (TRBD) 

GST-fusion protein to isolate GTP-bound (active) RhoB from HEK293 cells stably 
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expressing CXCR2.  It has been previously demonstrated that Epidermal growth 

factor (EGF) activates RhoB (Gampel et al., 1999); therefore EGF was used as a 

positive control for RhoB activation.  The GTPase-deficient activated (Q63L) 

RhoB mutant was used as an additional positive control for GTP-bound RhoB.  

Cells were transfected with WT myc-RhoB or with Q63L myc-RhoB and either 

stimulated with vehicle (untreated), EGF for 60 minutes, or CXCL8 for 5 minutes, 

30 minutes, or 60 minutes.  Following stimulation, GTP-bound RhoB was isolated 

using GST-TRBD and analyzed by SDS-PAGE and western blot with detection 

using RhoB antibody.  Activation of exogenous RhoB was detected after CXCL8 

stimulation (Figure 2).  These experiments were repeated numerous times and 

the activation of RhoB after 5 minutes of CXCL8 stimulation was statistically 

significant (p ≤ 0.05, Mann Whitney U test).  Activation of RhoB after 30 minutes 

and 60 minutes of CXCL8 stimulation was also observed in some experiments.  It 

is expected that the localized activation of RhoB stronger and more biologically 

relevant than the overall detection observed by the pull-down assay.  

Discrepancies in specific time point of activation may be due to the two 

differentially localized forms of RhoB and variations among different preparations 

of the GST-TRBD fusion protein.       

 

Dominant negative (T19N) and GTPase-deficient activated (Q63L) RhoB mutants 
impair CXCR2-mediated chemotaxis 
 

To assess whether CXCR2 function is regulated by RhoB, CXCR2-

mediated chemotaxis was investigated using the Boyden chamber chemotaxis 

assay in cells stably expressing CXCR2.  Cells were transiently transfected with  
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Figure 2:  RhoB is activated upon CXCL8 stimulation.   
Western blot analysis with anti-RhoB antibody of input lysates (Total RhoB) and 
GST-TRBD bound RhoB (GTP-RhoB) separated by SDS-PAGE.  HEK293 cells 
stably expressing CXCR2 were transiently transfected with myc-WT RhoB or 
myc-Q63L RhoB mutant.  Cells transfected with myc-Q63L RhoB were 
stimulated with vehicle.  Cells transfected with myc-WT RhoB were stimulated 
with 100ng/ml EGF for 60 minutes (EGF), vehicle (Unt), or 100 ng/ml CXCL8 for 
5 minutes, 30 minutes, or 60 minutes.  Lysates were incubated with GST-TRBD 
(rhotekin Rho binding domain) to isolate GTP-bound RhoB.  Data shown are 
representative from three separate experiments.  The fold induction at the 5 
minute and 60 minute time points when normalized to total RhoB was 1.6 and 
1.1, respectively in the experiment shown here.     
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empty pcDNA3 vector, myc-RhoB T19N (dominant negative) or myc-RhoB Q63L 

mutants (activated).  Cells transfected with the empty vector demonstrate a 

characteristic bell-shaped chemotactic response.  In contrast, cells expressing 

either the myc-RhoB T19N or myc-RhoB Q63L mutants exhibit a two-fold 

reduction in the number of migrated cells (Figure 3A,B).  We also examined 

CXCR2-mediated chemotaxis in cells expressing myc-RhoB WT and found that 

there was no effect on chemotaxis when WT RhoB is expressed (Figure 3C).  To 

investigate whether the decrease in chemotaxis was a result of impaired actin 

polymerization, we examined F-actin by phalloidin staining and confocal 

microscopy and prepared Triton-soluble and –insoluble fractions and performed 

western blot analysis for actin.  Expression of RhoB T19N or Q63L did not alter 

the appearance of F-actin staining or actin levels in Triton-soluble and –insoluble 

fractions (Figure 4).  These data suggest that the effect of altering RhoB GTPase 

activity on CXCR2 function is not due to a more general impairment of actin 

polymerization.    The RhoB T19N mutant is GTP binding-deficient and acts as a 

dominant negative by binding and sequestering guanine nucleotide exchange 

factors (GEFs) and making them unavailable to endogenous RhoB.  Therefore, in 

order to rule out the possibility that the phenotype associated with this mutant is 

nonspecific, we examined the effect of knocking down endogenous RhoB on 

chemotaxis.  Knocking down endogenous RhoB expression using siRNA also 

results in impaired CXCR2-mediated chemotaxis (Figure 5).  
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Figure 3: RhoB T19N and Q63L mutants impair CXCR2-mediated 
chemotaxis.  
Boyden chamber assay assessing chemotaxis of HEK293 cells stably expressing 
CXCR2 and transiently transfected with empty vector, myc-RhoB T19N, or myc-
RhoB Q63L. A two-fold reduction in CXCR2-mediated chemotaxis was observed 
when myc-RhoB T19N and myc-RhoB Q63L mutants were expressed.  No effect 
on chemotaxis was observed when myc-RhoB WT was expressed. CXCR2-
mediated chemotaxis of cells expressing myc-RhoB T19N (A), myc-RhoB Q63L 
(B), and myc-RhoB WT (C).  The graphs display number of cells from twenty  



 31

Figure 3, continued 
separate fields using the 20X objective lens ± S.E.M.  Significant differences of 
vector versus myc-RhoB T19N or -RhoB Q63L transfected cells are indicated by 
asterisks (p-value < 0.05, ANOVA).  Data shown are representative from three 
separate experiments. 
 

 

Figure 4:  Expression of myc-RhoB T19N or Q63L mutants does not alter F-
actin staining with phalloidin or actin content in Triton-soluble and –
insoluble fractions.   
(A) Confocal images of F-actin staining with Oregon Green 488 phalloidin in 
HEK293 cells stably expressing CXCR2 and transfected with empty vector, myc-
RhoB T19N, or myc-RhoB Q63L.  Cells were stimulated with vehicle (0 min) or 
100 ng/ml CXCL8 for 30 minutes.  Transfected cells were identified by staining 
with anti-myc antibody. Bars, 5 μm (B) Western blot analysis of Triton-soluble (S) 
and –insoluble (I) actin isolated from cells expressing empty pcDNA 3 vector, 
myc-RhoB T19N, or myc-RhoB Q63L mutants that were stimulated with vehicle 
(Unt) or 100 ng/ml CXCL8 for 30 minutes. 
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Figure 5: RhoB siRNA impairs CXCR2-mediated chemotaxis.  
(A)Boyden chamber chemotaxis assay used to assess chemotaxis of HEK293 
cells stably expressing CXCR2 and transiently transfected with either control 
(Ctrl) siRNA or RhoB-specific siRNA.  The graphs display number of cells from 
twenty separate fields using the 20X objective lens ± S.E.M.  Significant 
differences between Ctrl siRNA transfected cells versus RhoB-specific siRNA 
transfected cells are indicated asterisks (p-value < 0.05, ANOVA).  (B) Western 
blot analysis of RhoB protein levels from Ctrl siRNA or RhoB-specific siRNA 
transfected cells used in Boyden chamber assay.  β-tubulin western blot is shown 
as a control to monitor equal loading of protein.  Data shown are representative 
from three separate experiments.    
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Expression of dominant negative (T19N) RhoB alters trafficking of CXCR2 
following 3 hours of CXCL8 stimulation 
 

Because RhoB activation occurs upon EGF stimulation and is involved in 

the intracellular trafficking of the EGF receptor (Gampel et al., 1999; Wherlock et 

al., 2004), we sought to investigate whether RhoB similarly regulates the 

trafficking of CXCR2.  In order to investigate, we transiently expressed empty 

vector or myc-RhoB T19N in HEK293 cells stably expressing CXCR2.  CXCR2 

trafficking was evaluated by immunofluorescence staining and confocal 

microscopy.  Previous studies in our laboratory revealed that the majority of 

CXCR2 enters the perinuclear Rab11a-positive recycling compartment and 

recycles back to the plasma membrane after periods of CXCL8 stimulation 

greater than 30 minutes and less than 1 hour.  However, upon longer periods of 

stimulation with saturating concentrations of CXCL8, the majority of CXCR2 no 

longer enters the recycling compartment and instead traffics to the late 

endosomal compartment where it is then transferred to the lysosome for 

degradation (Fan et al., 2003).  In the current study, CXCR2 substantially co-

localized with the lysosomal marker LAMP-1 upon 3 hours of CXCL8 stimulation 

in vector transfected cells (44.4 ± 15.8 % ) and cells transfected with myc-RhoB 

WT (56.6 ± 22.6 %) (Figure 6A,C and Figure 7).  In contrast, HEK293 cells 

expressing the myc-RhoB T19N mutant exhibited minimal co-localization of 

CXCR2 with the lysosomal marker LAMP-1 (12.9 ± 8 %) after 3 hours of CXCL8 

stimulation (Figure 6B,C).  Similarly, knocking down endogenous RhoB with 

siRNA also resulted in a significant decrease in co-localization of CXCR2 with 

LAMP-1 after 3 hours of CXCL8 stimulation (12.8 ± 3% co-localization) when  



 34

 

 

 



 35

 
 
 
 
 
 
 
 
 
Figure 6: Expression of dominant negative (T19N) RhoB alters trafficking of  
CXCR2 following 3 hours of CXCL8 stimulation.  
Confocal images of immunofluorescence staining of HEK293 cells stably 
expressing CXCR2.  CXCR2 and LAMP-1 staining in cells transfected with vector 
(A) or myc-RhoB T19N (B) and stimulated with vehicle (Untreated) or 100 ng/ml 
CXCL8 for 3 hours.  Transfected cells were identified by staining with anti-myc 
antibody. Overlay images are pseudocolored where red is CXCR2, green is 
LAMP-1, and blue is myc-RhoB T19N.  Bars, 10 μm (C) Quantitation of co-
localization of CXCR2 with LAMP-1 in cells transfected with vector, myc-RhoB 
WT, or myc-RhoB T19N.  Values are shown as mean ± S.E.M.  Significant 
differences of vector or myc-RhoB WT versus myc-RhoB T19N transfected cells 
are indicated by asterisks (p-value ≤ 0.05, Mann Whitney U test).  CXCR2 and 
Rab11a staining in cells transfected with empty vector (D) or myc-RhoB T19N (E) 
stimulated with vehicle (Untreated) or 100 ng/ml CXCL8 for 3 hours.  Transfected 
cells were identified by staining with anti-myc antibody.  Overlay images are 
pseudocolored where red is CXCR2, green is Rab11a, and blue is myc-RhoB 
T19N.  Bars, 10 μm (F) Quantitation of co-localization of CXCR2 with Rab11a in 
cells transfected with vector, myc-RhoB WT, or myc-RhoB T19N.  Values are 
shown as mean ± S.E.M.  Significant differences of vector or myc-RhoB WT 
versus myc-RhoB T19N transfected cells are indicated by asterisks (p-value < 
0.05, Mann Whitney U test).  Quantitation of the percentage of CXCR2 co-
localized with LAMP-1 or Rab11a in 20 fields was performed using the 
MetaMorph Imaging system (Universal Imaging).  Images were processed using 
Photoshop (Adobe Systems, San Jose, CA).  Data shown are representative 
from three separate experiments.    
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Figure 7: Confocal images of immunofluorescence staining of HEK293 cells 
stably expressing CXCR2 and transfected with myc-RhoB WT.  
CXCR2 and LAMP-1 staining (A) or Rab11a staining (B) in cells stimulated with 
vehicle (Untreated) or 100 ng/ml CXCL8 for 3 hours.  Transfected cells were 
identified by staining with anti-myc antibody.  Overlay images are pseudocolored 
where red is CXCR2, green is LAMP-1 (A) or Rab11a (B), and blue is myc-RhoB 
WT. Bars, 10 μm  
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compared to control siRNA (36.5 ± 7.6 % co-localization) (Figure 8).  

Furthermore, there was minimal co-localization of CXCR2 with Rab11a after 3 

hours of CXCL8 stimulation in cells expressing empty vector (24.8 ± 11.6 %) or 

myc-RhoB WT (18.7 ± 6.8 %) (Figure 6D,F and Figure 7).  In contrast to vector 

and myc-RhoB WT transfected cells, HEK293 cells expressing myc-RhoB T19N 

exhibited extensive CXCR2 accumulation in the Rab11a compartment (70.7 ± 

9.9 %) (Figure 6E,F).  At earlier time periods of CXCL8 stimulation there was no 

difference observed in CXCR2 localization in myc-RhoB T19N transfected cells 

when compared to vector transfected cells.  

 

Expression of dominant Negative RhoB T19N leads to co-fractionation of CXCR2 
with the Rab11a compartment in density gradients 
 
  In order to determine whether expression of RhoB T19N effects a change 

in the movement of CXCR2 through endosomal compartments that can be 

observed biochemically, iodixanol density gradients were used to fractionate 

endosomal compartments of HEK293 cells stably expressing CXCR2 and 

transiently expressing either empty vector or myc-RhoB T19N mutant following   

3 hours of  CXCL8 stimulation.  As shown by western blot in Figure 9A, CXCR2 

co-fractionates with the lysosomal marker LAMP-1 following 3 hours of CXCL8 

stimulation in cells expressing the empty vector.  However, in cells expressing 

the RhoB T19N mutant, there is substantial co-fractionation of CXCR2 with the 

Rab11a compartment after 3 hours of CXCL8 stimulation (Figure 9B).  These 

data suggest that RhoB activity is required for the movement of CXCR2 into the 

lysosomal compartment after prolonged ligand stimulation.              
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Figure 8: Transfection of cells with RhoB-specific siRNA decreases co-
localization of CXCR2 with LAMP-1 following 3 hours of CXCL8 stimulation.   
Confocal images of immunofluorescence staining of HEK293 cells stably 
expressing CXCR2.  CXCR2 and LAMP-1 staining in cells transfected with Ctrl 
siRNA (A) or RhoB-specific siRNA (B) and stimulated with vehicle (Untreated) or 
100 ng/ml CXCL8 for 3 hours.  Transfected cells were identified by Cy3-siRNA.  
Overlay images are pseudocolored where red is CXCR2, green is LAMP-1, and 
blue Cy3-siRNA. Images were processed using Photoshop (Adobe Systems, San 
Jose, CA). Bars, 10 μm (C) Quantitation of co-localization of CXCR2 with LAMP-
1 in cells stimulated with vehicle and cells stimulated with CXCL8 for 3 hours. 
Values are shown as mean ± S.E.M.  Quantitation of the percentage of CXCR2  
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Figure 8, continued 
co-localized with LAMP-1 in 20 fields was performed using the MetaMorph 
Imaging system (Universal Imaging). Significant differences of Ctrl siRNA 
transfected cells versus RhoB-specific transfected cells are indicated by asterisks 
(p-value < 0.05, Mann Whitney U test). (D) Western blot analysis of RhoB protein 
levels from Ctrl siRNA or RhoB-specific siRNA transfected cells used for 
immunofluorescence staining.  β-tubulin western blot is shown as a control to 
monitor equal loading of protein.  Data shown are representative from three 
separate experiments. 
 

 

 

 



 40

 
 
 
 
 
 
 
 
 
 
 
Figure 9:  Expression of dominant negative RhoB T19N leads to co-
fractionation of CXCR2 with the Rab11a compartment in density gradients 
after 3 hours of CXCL8 stimulation.  
Western blot analysis of fractions collected from iodixanol density gradients from 
cells stimulated with vehicle (Untreated) or 100 ng/ml CXCL8 for 3 hours. (A) 
Fractionation of HEK293 cells stably expressing CXCR2 and transiently 
transfected with empty pcDNA3 vector.  Top: fractionation of compartments from 
vehicle stimulated (Untreated) cells, Bottom: fractionation of compartments from 
cells stimulated with CXCL8 for 3 hours.  The boxed region indicates the 
fractions that contain CXCR2 and LAMP-1 (B) Fractionation of HEK293 cells 
stably expressing CXCR2 and transiently transfected with myc-RhoB T19N.  Top: 
fractionation of compartments from vehicle stimulated (Untreated) cells, Bottom: 
fractionation of compartments from cells stimulated with CXCL8 for 3 hours.  The 
boxed region indicates the fractions that contain CXCR2 and Rab11a.  Data 
shown are representative from at least three separate experiments.     
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Expression of RhoB T19N does not alter Rab11a-positive endosome motility 

 To evaluate whether the accumulation of CXCR2 in the Rab11a 

compartment is related to endosome motility and actin polymerization, the effects 

of actin disrupting agents on CXCR2 trafficking were examined.  Indeed, it has 

been previously demonstrated that cytochalasin D impairs CXCR2 recycling 

(Zaslaver et al., 2001).  HEK293 cells stably expressing CXCR2 were stimulated 

with vehicle or CXCL8 for 30 minutes and treated with either Latrunculin B or 

Cytochalasin D.  CXCR2 and Rab11a were then examined by 

immunofluorescence staining and confocal microscopy.  Both Latrunculin B and 

Cytochalasin D treatment resulted in accumulation of CXCR2 in the Rab11a 

compartment (Figure 10).  These data suggest that actin polymerization is not 

required for movement of CXCR2 into the perinuclear recycling compartment but 

it may be required for the exiting of the receptor from that compartment.     

We hypothesized that the accumulation of CXCR2 in the Rab11a 

compartment in cells expressing RhoB T19N is a result of a defect in actin-

dependent endosome motility.  In order to test this hypothesis, we examined 

Rab11a-GFP endosomes in live cells using time-lapse confocal microscopy.  

HEK293 cells stably expressing CXCR2 were either transiently co-transfected 

with a EGFP-Rab11a construct and the myc-RhoB T19N mutant or the EGFP-

Rab11a construct and the empty vector.  Cells were then stimulated with vehicle 

or 100ng/ml CXCL8 for 30 minutes and examined using time-lapse confocal 

microscopy.  The movement of the EGFP-Rab11a-positive endosomal structures 

was manually tracked as described in Materials and Methods.  The average  
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Figure 10:  Actin disrupting agents Latrunculin B and Cytochalasin D cause 
CXCR2 accumulation in the Rab11a compartment.  
Confocal images of immunofluorescence staining of CXCR2 and Rab11a in 
HEK293 cells stably expressing CXCR2.  Overlay images are pseudocolored 
where red is CXCR2 and green is Rab11a.  (A) Cells stimulated with vehicle 
(Untreated) or 100 ng/ml CXCL8 for 30 minutes and treated with 0.1 μM 
Latrunculin B for 10 minutes.  (B) Cells stimulated with vehicle (Untreated) or 100 
ng/ml CXCL8 for 30 minutes and treated with 2 μM Cytochalasin D for 60 
minutes.  Images were processed using Photoshop (Adobe Systems, San Jose, 
CA). Bars, 10 μm.  Images shown are representative of at least twenty cells from 
three separate experiments.        
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velocities and distances traveled are displayed in Table 1.  No detectable 

differences were observed in untreated or 30 minutes CXCL8 stimulation 

between vector- and myc-RhoB T19N-transduced cells in either Rab11a-positive 

endosome velocity or the maximum distance traveled from the point of origin.  

These results indicate that RhoB GTPase activity is not required for Rab11a-

positive endosome motility.      

We also examined receptor recovery to the plasma membrane after ligand 

stimulation using radioligand binding to determine if expression of myc-RhoB 

T19N impaired return of CXCR2 to the plasma membrane.  We found that the 

reappearance of CXCR2 at the plasma membrane following ligand stimulation in 

the presence of cycloheximide was not impaired in cells expressing myc-RhoB 

T19N (Figure 11).  Receptor recycling was also assessed using FACS analysis 

and no defect in recycling was observed using this method (data not shown).  

These data suggest that the expression of the RhoB T19N mutant did not result 

in the accumulation of CXCR2 in the Rab11a compartment, but rather the 

enhanced recycling of CXCR2 even after long-term ligand stimulation.     

 

Expression of RhoB T19N impairs CXCR2 degradation following 3 hours of 
CXCL8 stimulation  
 

Upon long-term stimulation with CXCL8, CXCR2 traffics to the lysosome 

and is degraded.  Because very little CXCR2 co-localized with LAMP-1 after 3 

hours of CXCL8 in HEK293 cells expressing myc-RhoB T19N, we suspected that 

degradation of the receptor was impaired.  In order to examine whether 

expression of myc-RhoB T19N impairs CXCL8-induced CXCR2 degradation, we  
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Table 1: Average velocities and maximum distance traveled from origin of 
Rab11a-positive endosomes in untreated and CXCL8 stimulated cells 

 
 

 

 

 

Figure 11:  Expression of myc-RhoB T19N does not impair CXCR2 
recycling.   
125I-CXCL8 binding in HEK293 cells stably expressing CXCR2 and transfected 
with empty vector or myc-RhoB T19N.   Cells were pretreated with 20 μg/ml 
cycloheximide for 30 minutes and placed in the presence of 20 μg/ml 
cycloheximide throughout the experiment.  Cells were stimulated with vehicle 
(Total Binding) or 100 ng/ml CXCL8 for 30 minutes, CXCL8 was removed, and 
cells were allowed to recover for 0 minutes, 30 minutes, or 60 minutes.  Cells 
were incubated with 0.1 nM 125I-CXCL8 (specific activity = 2200 Ci/mmol) for 2 
hours, washed to remove non-specific binding, and subjected to gamma counting 
as described in Materials and Methods.  Values represent three independent 
experiments and are shown as percent of Total Binding ± S.E.M.  Data shown 
are representative from three separate experiments.      
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examined CXCR2 protein levels following 30 minutes, 180 minutes, and 360 

minutes of CXCL8 stimulation in the presence of cycloheximide.  The CXCR2 

band runs at a slightly higher molecular weight following stimulation due to 

phosphorylation.  In addition, CXCR2 is glycosylated and these forms of the 

receptor are visible by western blot analysis.  In vector transfected cells, a 

significant amount of CXCR2 is degraded after 180 minutes (69.1 ± 6.3% 

remaining) and 360 minutes of CXCL8 stimulation (48.9 ± 9.2% remaining).  

Expression of myc-WT RhoB did not inhibit CXCL8-induced CXCR2 degradation 

(Figure 12).  Expression of the RhoB T19N mutant severely impairs CXCR2 

degradation after 180 minutes (94 ± 7.3% remaining) and 360 minutes of CXCL8 

stimulation (97.1 ± 3.1% remaining) (Figure 13).  This is presumably because of 

enhanced CXCR2 recycling and marked reduction in receptor trafficking to the 

lysosome.    

 

Expression of GTPase-deficient activated (Q63L) RhoB mutant alters trafficking 
of CXCR2 following 30 minutes of CXCL8 stimulation 
 

We have previously demonstrated that CXCR2 is recycled back to the 

plasma membrane when stimulated with CXCL8 for short periods of time (Fan et 

al., 2003).  In order to characterize more extensively the role of RhoB in CXCR2 

trafficking, we examined the effects of a GTPase-deficient RhoB-mutant (Q63L) 

on CXCR2 trafficking using immunofluorescence and confocal microscopy.  

CXCR2 co-localizes with the recycling endosomal marker Rab11a following 30 

minutes of CXCL8 stimulation in CXCR2-expressing HEK293 cells transfected 

with empty vector (53.3 ± 17.6 %) or myc RhoB WT (40.9 ± 1.0 %) (Figure 14A,C  
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Figure 12: CXCL8-induced CXCR2 degradation following 3 hours of CXCL8 
stimulation in HEK293 cells stably expressing CXCR2 and transfected with 
myc-RhoB WT.  
Representative western blot analysis of CXCR2 expression in vector and myc-
RhoB WT transfected cells in the presence of 20 μg/ml cycloheximide following 
stimulation with vehicle (Unt) or 100 ng/ml CXCL8 for 30 minutes, 180 minutes, 
or 360 minutes.    Actin western blot is shown as a control to monitor for equal 
loading of protein.  Data shown are representative from three separate 
experiments. 
 
 
 
 

 
 
Figure 13:  Expression of myc-RhoB T19N impairs CXCL8-induced CXCR2 
degradation following 3 hours of CXCL8 stimulation.  
Representative western blot analysis of CXCR2 expression in vector and myc-
RhoB T19N transfected cells in the presence of 20 μg/ml cycloheximide following 
stimulation with vehicle (Unt) or 100 ng/ml CXCL8 for 30 minutes, 180 minutes, 
or 360 minutes.    Actin western blot is shown as a control to monitor for equal 
loading of protein.  Data shown are representative from three separate 
experiments.     
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Figure 14: Expression of GTPase-deficient RhoB (Q63L) mutant alters 
trafficking of CXCR2 following 30 minutes of CXCL8 stimulation.  
Confocal images of immunofluorescence stained HEK293 cells stably expressing 
CXCR2.  CXCR2 and Rab11a staining in cells transfected with empty vector (A) 
or myc-RhoB Q63L (B) and stimulated with vehicle (Untreated) or 100 ng/ml 
CXCL8 for 30 minutes.  Transfected cells were identified by staining with anti-
myc antibody.  Overlay images are pseudocolored where red is CXCR2, green is 
Rab11a, and blue is myc-RhoB Q63L.  Bars, 10 μm (C) Quantitation of co-
localization of CXCR2 with Rab11a in cells transfected with vector, myc-RhoB 
WT, or myc-RhoB Q63L.  Values are shown as mean ± S.E.M.  Significant 
differences of vector or myc-RhoB WT versus myc-RhoB Q63L transfected cells 
are indicated by asterisks (p-value ≤ 0.05, Mann Whitney U test).  CXCR2  
staining and EGFP-Rab7 in cells transfected with empty vector (D) and myc-
RhoB Q63L (E) and stimulated with vehicle (Untreated) or 100 ng/ml CXCL8 for 
30 minutes.  Transfected cells were identified by staining with anti-myc antibody.  
Overlay images are pseudocolored where red is CXCR2, green is EGFP-Rab7, 
and blue is myc-RhoB Q63L.  Bars, 10 μm (F) Quantitation of co-localization of 
CXCR2 with EGFP-Rab7.  Values are shown as mean ± S.E.M.  Significant 
differences of myc-RhoB Q63L transfected cells versus vector are indicated by 
asterisks (p-value < 0.05, Mann Whitney U test).  Quantitation of the percentage 
of CXCR2 co-localized with Rab11a or EGFP-Rab7 in 20 fields was performed 
using the MetaMorph Imaging system (Universal Imaging). Images were 
processed using Photoshop (Adobe Systems, San Jose, CA). Data shown are 
representative from three separate experiments.   
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and Figure 15).When cells were transfected with the myc-RhoB Q63L mutant, 

less co-localization with Rab11a is observed (18.2 ± 8.2 %) (Figure 14B,C).  

There is very little co-localization with the EGFP-Rab7, a late endosomal marker, 

in vector transfected cells (5.4 ± 8.1 %) (Figure 14D,F).  In contrast, there is 

substantial co-localization with EGFP-Rab7 (39.7 ± 16.7 %) (Figure 14E,F) in 

cells transfected with myc-RhoB Q63L.     

         One interpretation of the data obtained showing altered trafficking of 

CXCR2 in RhoB T19N or RhoB Q63L transfected cells is that RhoB plays a 

general role in the sorting of internalized receptors and that alteration of its 

activity disturbs the  composition/function of the respective endosomal 

compartments.  For example, it is possible that the Rab7 endosomal 

compartment is mislocalized in cells expressing myc-RhoB Q63L.  To clarify 

these issues, we investigated whether expression of the myc-RhoB-Q63L mutant 

alters the trafficking of the transferrin receptor (TfnR), which normally recycles 

through the Rab11a compartment and is not sorted to the late endosome.  We 

utilized immunofluorescence and confocal microscopy to observe the co-

localization of TfnR with EGFP-Rab7 in cells transfected with either empty vector 

or myc-RhoB Q63L.  Expression of myc-RhoB Q63L did not result in co-

localization of the TfnR with EGFP-Rab7 (Figure 16).  These results suggest that 

CXCR2 sorting occurs in a RhoB-dependent manner while TfnR sorting occurs 

through a RhoB-independent mechanism.  Moreover, these results argue against 

a generalized effect that mutant RhoB alters the localization of various Rabs in 

the endosomal compartments.     
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Figure 15: Confocal images of immunofluorescence staining of HEK293 
cells stably expressing CXCR2 and transfected with myc-RhoB WT.  
CXCR2 and Rab11a staining in cells stimulated with vehicle (Untreated) or 100 
ng/ml CXCL8 for 30 minutes.  Transfected cells were identified by staining with 
anti-myc antibody.  Overlay images are pseudocolored where red is CXCR2, 
green is Rab11a, and blue is myc-RhoB WT. Bars, 10 μm.  Data shown are 
representative from three separate experiments.  
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Figure 16: Expression of myc-RhoB Q63L does not cause transferrin 
receptor to co-localize with EGFP-Rab7.   
Confocal images of immunofluorescence stained transferrin receptor and EGFP-
Rab7 in HEK293 cells stably expressing CXCR2 and transiently transfected with 
EGFP-Rab7 and empty vector or myc-RhoB Q63L. Overlay images are 
pseudocolored where transferrin receptor is red and EGFP-Rab7 is green.  
Images were processed using Photoshop (Adobe Systems, San Jose, CA) and 
are representative of thirty fields. Bars, 10 μm.  Data shown are representative 
from three separate experiments.   
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Expression of RhoB Q63L does not impair CXCR2 recycling  

Because CXCR2 traffics to the late endosomal compartment following 30 

minutes of CXCL8 stimulation in RhoB Q63L transfected cells, we expected that 

the receptor would not efficiently recycle back to the plasma membrane in these 

cells.  We examined receptor recovery to the plasma membrane after ligand 

stimulation using radioligand binding.  Surprisingly, we found that the 

reappearance of CXCR2 at the plasma membrane following ligand stimulation in 

the presence of cycloheximide was not impaired in cells expressing myc-RhoB 

Q63L (Figure 17).  Receptor recycling was also examined using FACS analysis 

and results were similar (data not shown).  This indicates that CXCR2 can return 

to the plasma membrane without entering the Rab11a perinuclear recycling 

compartment.     

 
Expression of RhoB Q63L impairs CXCR2 degradation and co-localization with 
lysosomal markers 

 
To determine whether CXCR2 degradation occurs at early time periods of 

CXCL8 stimulation in RhoB Q63L transfected cells where it is prematurely sorted 

to the late endosomal compartment, CXCR2 levels were determined by western 

blot in the presence of cycloheximide in vehicle treated cells and cells stimulated 

with CXCL8 for 30 minutes, 180 minutes, or 360 minutes.  This experiment 

revealed that CXCR2 is degraded upon 180 minutes (69.1 ± 6.3% remaining) 

and 360 minutes (48.9 ± 9.2% remaining) of CXCL8 stimulation in vector 

transfected cells.  Unexpectedly, CXCR2 degradation was actually impaired in 

cells expressing myc-RhoB Q63L after 180 minutes (97.5 ± 8% remaining) and  
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Figure 17:  Expression of myc-RhoB Q63L does not impair CXCR2 
recycling.   
125I-CXCL8 binding in HEK293 cells stably expressing CXCR2 and transfected 
with empty vector or myc-RhoB Q63L.   Cells were pretreated with 20 μg/ml 
cycloheximide for 30 minutes and placed in the presence of 20 μg/ml 
cycloheximide throughout the experiment.  Cells were stimulated with vehicle 
(Total Binding), 100 ng/ml CXCL8 for 30 minutes, CXCL8 was removed, and 
cells were allowed to recover for 0 minutes, 30 minutes, or 60 minutes.  Cells 
were incubated with 0.1nM 125I-CXCL8 (specific activity = 2220 Ci/mmol) for 2 
hours, washed to remove non-specific binding, and subjected to gamma counting 
as described in Materials and Methods.  Values represent three independent 
experiments and are shown as percent of Total Binding ± S.E.M.  Data shown 
are representative from three separate experiments.      
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360 minutes (94.2 ± 5% remaining) of CXCL8 stimulation (Figure 18A).  These 

results suggest that CXCR2 traffics to the late endosomal (Rab7-positive) 

compartment in myc-RhoB Q63L expressing cells, but it is unable to transfer to 

the lysosome for degradation.  The ability of CXCR2 to enter the lysosome in 

cells expressing the RhoB Q63L mutant was also examined by 

immunofluorescence staining of CXCR2 and the LAMP-1 and CD63 lysosomal 

markers.  CXCR2 did not co-localize with either the LAMP-1 or CD63 lysosomal 

markers in cells transfected with RhoB Q63L (Figure 18B).   

 

Expression of Q63L RhoB results in co-localization of CXCR2 with Rab4 and 
Mannose-6-phosphate receptor 

 
Our data showing that CXCR2 is unable to enter the Rab11a-positive 

perinuclear recycling compartment or the lysosome in cells expressing myc-

RhoB Q63L suggest that CXCR2 utilizes an alternative recycling pathway to 

return to the plasma membrane.  Therefore, we sought to investigate the 

mechanism by which CXCR2 returns to the plasma membrane in cell expressing 

myc-RhoB Q63L.  There are two main endosomal recycling pathways, a slow 

and a rapid recycling process to which Rab11a and Rab4 can contribute, 

respectively.  The second pathway bypasses the Rab11a-positive perinuclear 

endosomes and mediates rapid recycling of receptors through Rab4-positive 

endosomes (Sheff et al., 1999; Sonnichsen et al., 2000).  We examined whether 

CXCR2 co-localized with Rab4 following 30 minutes of CXCL8 stimulation in 

vector transfected and myc-RhoB Q63L transfected cells.  There was only 4.1 ± 

2.4 % co-localization of CXCR2 with Rab4 in vector transfected cells  
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Figure 18:  Expression of myc-RhoB Q63L impairs CXCL8-induced CXCR2 
degradation and does not result in co-localization with lysosomal markers.  
(A)Western blot analysis of CXCR2 expression in vector and myc-RhoB Q63L 
transfected cells in the presence of 20 μg/ml cycloheximide following stimulation 
with vehicle (Unt) or 100 ng/ml CXCL8 for 30 minutes, 180 minutes, or 360 
minutes.  Actin western blot is shown as a control to monitor for equal loading of 
protein. (B) Confocal images from three independent experiments of 
immunofluorescence stained HEK293 cells stably expressing CXCR2 and 
transiently transfected with myc-RhoB Q63L.  Transfected cells were identified by 
staining with anti-myc antibody.  CXCR2 and LAMP-1 (Top) or CD63 (Bottom) 
staining in cells stimulated with vehicle (Untreated) or 100ng/ml CXCL8 for 30 
minutes.  Overlay images are pseudocolored where red is CXCR2, green is 
LAMP-1 or CD63, and blue is myc-RhoB Q63L. Images were processed using 
Photoshop (Adobe Systems, San Jose, CA). Bars, 10μm.  Data shown are 
representative from three separate experiments.    
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(Figure 19A,C).  In contrast, there was substantial co-localization of CXCR2 with 

Rab4 in cells transfected with myc-RhoB Q63L (49.7 ± 18 % co-localization) 

following 30 minutes of CXCL8 stimulation (Figure 19B,C).  These data suggest 

that in part, myc-RhoB Q63L transfected cells utilize the rapid recycling pathway 

to return CXCR2 to the membrane following ligand stimulation.     

An alternative but hypothetical pathway for recycling to the plasma 

membrane might involve the trans-Golgi.  The cation-dependent mannose-6-

phosphate receptor (MPR) delivers acid hydrolases from the trans-Golgi network 

to the late endosomal system.  The receptor binds its cargo and traffics from the 

Golgi to the endosome and is then recycled back after the release of the 

hydrolases into late endosomes (reviewed in (Ghosh et al., 2003; Hille-Rehfeld, 

1995; Le Borgne and Hoflack, 1998)).  We examined whether CXCR2 co-

localized with this receptor in cells expressing myc-RhoB Q63L.  In vector 

transfected cells CXCR2 only minimally co-localizes with MPR after 30 minutes 

of CXCL8 stimulation (13.2 ± 7.8 % co-localization) (Figure 19D,F).  Surprisingly, 

CXCR2 significantly co-localized with MPR in cells expressing myc-RhoB Q63L 

after 30 minutes of CXCL8 stimulation (74.1 ± 11.1 % co-localization) (Figure 

19E,F).  Therefore, it is possible that in myc-RhoB Q63L transfected cells 

CXCR2 enters the Golgi from the sorting endosome and returns to the plasma 

membrane from the trans-Golgi.  These data suggest that CXCR2 may utilize 

alternative recycling pathways when it is unable to enter the Rab11a perinuclear 

recycling pathway in cells expressing myc-RhoB Q63L.      
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Figure 19: Expression of Q63L RhoB results in co-localization of CXCR2 
with Rab4 and Mannose-6-phosphate receptor (MPR).   
Confocal images of immunofluorescence stained HEK293 cells stably expressing 
CXCR2.  CXCR2 and Rab4 staining in cells transfected with empty vector (A) or 
myc-RhoB Q63L (B) and stimulated with vehicle (Untreated) or 100 ng/ml CXCL8 
for 30 minutes.  Transfected cells were identified by staining with anti-myc 
antibody.  Overlay images are pseudocolored where red is CXCR2, green is 
Rab4, and blue is myc-RhoB Q63L.  Bars, 10 μm (C) Quantitation of co-
localization of CXCR2 with Rab4. Values are shown as mean ± S.E.M.  
Significant differences of myc-RhoB Q63L versus vector transfected cells are 
indicated by asterisks (p-value <0.0005, Student's t-test).  CXCR2  
and MPR staining in cells transfected with empty vector (D) or myc-RhoB Q63L 
(E) and stimulated with vehicle (Untreated) or 100 ng/ml CXCL8 for 30 minutes.  
Transfected cells were identified by staining with anti-myc antibody.  Overlay 
images are pseudocolored where red is CXCR2, green is M6PR, and blue is 
myc-RhoB Q63L.  Bars, 10 μm (F) Quantitation of co-localization of CXCR2 with 
MPR.  Values are shown as mean ± S.E.M.  Significant differences of myc-RhoB 
Q63L versus vector transfected cells are indicated by asterisks (p-value <0.0005, 
Student's t-test).  Quantitation of the percentage of CXCR2 co-localized with 
Rab4 or MPR in 20 fields was performed using the MetaMorph Imaging system 
(Universal Imaging).  Images were processed using Photoshop (Adobe Systems, 
San Jose, CA).  Data shown are representative from three separate experiments.  
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Discussion     

Early studies revealed that RhoB regulates the transport of the EGF 

receptor from late endosomes to the lysosome (Mellor et al., 1998).  Because 

RhoB interacts with a number of proteins that are not isoform-specific, the 

function of RhoB has been difficult to establish.  One possibility is that RhoB may 

regulate signaling events by recruiting effectors to the endosomal compartments.  

For example, Protein kinase C-related kinase 1 (PRK1) co-localizes with RhoB 

on endosomal compartments and expression of the kinase-dead mutant PRK1 

antagonizes the effect of RhoB on EGF receptor trafficking (Gampel et al., 1999; 

Mellor et al., 1998).  Recent work identified RhoB-positive endosomes as a 

source of new actin polymerization through the action of Scar1 (WAVE1) in a src-

dependent manner (Sandilands et al., 2004).  We have shown here that RhoB 

plays a role in the intracellular CXCR2 sorting decision and that interference with 

RhoB function alters CXCR2-mediated chemotaxis.   

The RhoB T19N and myc-RhoB Q63L mutants as well as RhoB siRNA 

severely impair CXCR2-mediated chemotaxis.  Although the membranes were 

coated with Collagen IV for these experiments, it does not appear that 

differences in invasion contribute significantly to the inhibition.  We did not 

observe any difference in the migration of vector and myc-RhoB T19N 

transduced cells in the absence of CXCL8, suggesting that there is no difference 

in the ligand independent invasiveness of these two cell lines.  Although there is 

a decrease in the number of migrated cells in the absence of CXCL8 when myc-

RhoB Q63L is expressed, this would not account for the significant inhibition of 
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CXCL8-mediated chemotaxis.  We did not observe any significant differences in 

activation of the MAPK or PI3K signaling pathways over a 30 minute time course 

as measured by phosphorylation of ERK1/2 and Akt, respectively, when either 

mutant was expressed.  However, it is possible that localized signaling is affected 

when these mutants are expressed.      

Expression of the dominant negative (T19N) RhoB mutant results in 

accumulation of CXCR2 in the perinuclear recycling compartment and enhanced 

recycling to the plasma membrane after long-term ligand stimulation (Figure 20).  

Also, CXCR2 degradation is impaired when this mutant is expressed.  These 

results suggest that RhoB GTPase activity is required for CXCR2 entry to the 

lysosome after long-term ligand stimulation.  However, this accumulation of 

CXCR2 in the perinuclear recycling compartment and failure to enter the 

lysosome and degrade are not a result of the inability of CXCR2 to exit the 

recycling compartment and return to the cell surface, since 125I-CXCL8 binding 

studies reveal that the receptor does return to the plasma membrane and bind 

ligand.  We hypothesize that the accumulation of CXCR2 in the Rab11a 

compartment is a result of the system being “overloaded” due to the fact that 

virtually all of the CXCR2 in the cells is passing through this compartment to 

return to the plasma membrane. CXCR2 is likely rapidly re-internalized upon 

return to the plasma membrane, reducing the time that it resides at the plasma 

membrane.  This may contribute to the inability to visualize the receptor at the 

plasma membrane by microscopy.    Moreover, there are no differences in 

EGFP-Rab11a endosome motility so differences in the rate of movement of the  
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Figure 20:  Schematic representation of T19N and Q63L RhoB mutant 
effects on CXCR2 trafficking.   
After 30 minutes of CXCL8 stimulation CXCR2 traffics to the Rab11a perinuclear 
recycling compartment and recycles back to the plasma membrane.  CXCR2 
traffics to the lysosome and is degraded after 3 hours of CXCL8 stimulation.  
Expression of T19N RhoB mutant results in constitutive recycling of CXCR2 
through the Rab11a perinuclear recycling compartment after 3 hours of CXCL8 
stimulation (blue arrows).  Expression of Q63L RhoB mutant results in the 
inability of CXCR2 to enter the Rab11a perinuclear recycling compartment after 
30 minutes of CXCL8 stimulation and leads to CXCR2 recycling to the plasma 
membrane by alternative pathways (red arrows).    
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endosomes cannot account for the failure to enter the lysosome.  Thus, it 

appears that expression of myc-RhoB T19N impairs the ability of CXCR2 to enter 

the lysosome and causes prolonged CXCR2 recycling.   

Because expression of the RhoB T19N mutant results in decreased 

degradation and increased recycling of CXCR2, we expected that chemotaxis 

might be enhanced in cells expressing this mutant.  Surprisingly, the opposite 

effect was observed and chemotaxis was impaired in cells expressing RhoB 

T19N.  Although CXCR2 is efficiently recycled in these cells, the recycled 

receptor may not be functional upon return to the plasma membrane.  For 

example, the dephosphorylation of the receptor is thought to be necessary for 

subsequent resensitization of CXCR2.  Prior studies have shown that when the 

CCR5 receptor is stimulated with an amino-terminally modified CCL5 ligand, the 

receptor fails to efficiently respond to subsequent ligand challenge (Mack et al., 

1998; Proudfoot et al., 1999).  Further investigation revealed that when 

stimulated with this modified ligand, CCR5 is not dephosphorylated and therefore 

has only a very brief period of residency at the plasma membrane before being 

re-internalized (Signoret et al., 2000).  In addition, studies examining the 

interaction of protein phosphatase 2A (PP2A) and CXCR2 demonstrated that 

inhibition of PP2A activity by treatment with okadaic acid impairs CXCR2-

mediated chemotaxis and calcium mobilization in response to CXCL8 (Fan et al., 

2001b).  These studies suggest that receptor dephosphorylation may not be 

required for recycling but for establishing a functional receptor back at the 

plasma membrane.  Interestingly, a novel interaction between RhoB and the 
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catalytic subunit of PP2A was recently identified, further suggesting a potential 

link between dephosphorylation and RhoB (Lee et al., 2007).  It is not clear 

where in the endosomal trafficking pathway CXCR2 is dephosphorylated.  In the 

future it will be of interest to examine whether CXCR2 dephosphorylation is 

affected in cells expressing RhoB T19N.            

Treatment of cells with the actin disrupting drugs Cytochalasin D and 

Latrunculin B resulted in a similar accumulation of CXCR2 in the Rab11a 

compartment as the RhoB T19N mutant.  Since RhoB coordinates actin 

polymerization on endosomes (Fernandez-Borja et al., 2005; Sandilands et al., 

2004), we suspected that RhoB was regulating the motility of the Rab11a-

positive endosomes in an actin-dependent manner.  To explore this possibility we 

examined the motility of EGFP-Rab11a-positive endosomes using time-lapse 

confocal microscopy.  The overall velocity of these endosomes and maximum 

distance traveled did not significantly differ between the vector and RhoB T19N 

transfected cells.  These results indicate that the Rab11a-positive endosomes 

are able to exit the perinuclear region and return to the plasma membrane when 

RhoB T19N is expressed.   

It is not clear whether the RhoB T19N mutant actually promotes the 

trafficking of CXCR2 to the Rab11a compartment or merely inhibits the ability of 

the receptor to enter the lysosome for degradation, which results in receptor 

recycling by default.  Moreover, it is unclear whether the RhoB Q63L mutant 

inhibits entry into the perinuclear recycling compartment or actually promotes 

accumulation in the sorting endosome and co-localization with Rab4, mannose-
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6-phoshate receptor, and Rab7.  Similarly, expression of activated RhoB Q63L 

enhances localization of rhophilin-2 to late endosomes but not to the lysosome 

(Steuve et al., 2006).  Studies with the EGF receptor combined with our results 

suggest a broad role for RhoB in receptor sorting which is not limited to a specific 

sorting decision.  Alternatively, RhoB may play a variant role in the trafficking of 

receptors such as CXCR2 that can be differentially sorted to the recycling 

endosome or the lysosome in comparison to those receptors such as the EGF 

receptor that are predominantly sorted to the lysosome.  RhoB can recruit 

proteins that may be involved in intracellular trafficking to endosomal membranes 

such as Dia1 (Fernandez-Borja et al., 2005) and PRK1 (Mellor et al., 1998).  The 

recruitment of different effectors to RhoB may mediate the various responses 

elicited by RhoB.   

 Interestingly, the RhoB Q63L mutant impairs the ability of CXCR2 to enter 

the perinuclear recycling compartment but the receptor is still able to recycle 

back to the plasma membrane (Figure 20).  The degradation of CXCR2 and co-

localization of CXCR2 with lysosomal markers is also impaired when the Q63L 

mutant is expressed.  This finding implicates not only the ability of RhoB to 

exchange GDP for GTP but also the ability of RhoB to hydrolyze GTP for proper 

function.  It appears that GDP-bound RhoB specifies sorting to the Rab11a 

perinuclear recycling compartment while GTP-bound RhoB and subsequent GTP 

hydrolysis is necessary for lysosomal sorting.   

The co-localization of CXCR2 with Rab4 and the mannose-6-phosphate 

receptor indicate that CXCR2 enters the sorting compartment and recycles back 
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to the plasma membrane through alternative recycling pathways.  It is interesting 

that CXCR2 may enter the trans-Golgi network and recycle back to the plasma 

membrane through this compartment.  Our data indicate that CXCR2 recycling is 

a default pathway, while degradation is largely CXCL8- or RhoB activation-

mediated.     

 In summary, the dominant negative (T19N) RhoB mutant, the 

GTPase-deficient activated (Q63L) RhoB mutant, and siRNA directed against 

RhoB impair CXCR2-mediated chemotaxis.  This impairment is accompanied by 

the failure of CXCR2 to traffic appropriately.  The normal activity of RhoB is 

essential for CXCR2 degradation in the lysosome and recycling through the 

perinuclear Rab11a-positive compartment.  We therefore propose that RhoB 

plays a role in the CXCR2 sorting decision.  The ability of the cell to differentially 

sort chemokine receptors is critical for the chemotactic response.  These results 

establish for the first time that RhoB plays a role in the differential sorting of a 

chemokine receptor.   
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CHAPTER III 

 

IDENTIFICATION OF NOVEL CXCR2-INTERACTING PROTEINS THROUGH 

PROTEOMIC ANALYSES 

 

Introduction  

Chemokine receptors activate many intracellular signaling pathways 

through their coupling to G proteins.  However, recent evidence suggests the 

importance of G protein-independent signaling pathways in the chemotactic 

response.  The specific adaptor molecules that link activated chemokine 

receptors to these alternative signaling pathways are largely unknown.  The 

importance of chemokine receptors in a number of pathological conditions such 

as inflammation, angiogenesis, and cancer make them ideal for therapeutic 

targeting.  Proteomic screening for the identification of novel interacting proteins 

is an ideal technique because it allows components of large signaling complexes 

within the cell to be elucidated.  The technology not only allows identification of 

the proteins but the conditions under which these proteins interact under 

physiological conditions. 

In the current study, we describe identification of ligand-mediated 

receptor/protein interactions using immunoprecipitation followed by proteomics 

analysis.  This approach has a number of benefits.  First, proteins that bind 

CXCR2 indirectly can be identified using this method.  Second, conformation-

specific and modification-specific interactions can be identified.  Third, 
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interactions mediated through other intracellular domains of the receptor in 

addition to the carboxyl-terminus can be identified.  Finally, immunoprecipitation 

of CXCR2-associating proteins in cells stimulated with ligand allows identification 

of dynamic and transient interactions.  Use of this approach led to the 

identification of several novel CXCR2-interacting proteins that may be involved in 

the intracellular trafficking of the receptor, initiation of the chemotactic response, 

and activation of signaling pathways. 

IQGAP1 was identified as a novel CXCR2-interacting protein.  It is a major 

scaffolding protein involved in cytoskeletal organization and signaling through 

regulation of a number of cellular functions including adhesion, migration, and 

integration of complex signaling pathways within the cell.  IQGAP1 is large 

protein that contains multiple domains (Figure 21) and localizes to the leading 

edge in migrating cells where it cross-links actin filaments (Briggs and Sacks, 

2003; Noritake et al., 2005).  Interestingly, IQGAP1 contains a RasGAP 

homology domain but does not stimulate the GTPase activity.  In fact, it inhibits 

the intrinsic GTPase activity of Rac1 and Cdc42, stabilizing them in their active 

forms (Hart et al., 1996; Ho et al., 1999).  As expected, IQGAP1 has a 

fundamental role in cell motility.  Expression of dominant negative IQGAP1, a 

form that is unable to bind Rac1 and Cdc42, or siRNA directed against IQGAP1 

severely impairs cell motility and invasion (Mataraza et al., 2003).  Specifically, it 

plays an essential role in polarization of a migrating cell through its interactions 

with Rac1/Cdc42, APC, and CLIP-170 (reviewed in (Noritake et al., 2005)).  Not 

only does IQGAP1 play a fundamental role in cell migration, it also serves as a  
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Figure 21: Schematic of domain structure of IQGAP1, interacting proteins, 
and cellular functions.   
Domains: calponin homology domain (CHD), poly-proline protein–protein domain 
(WW), IQ motif (IQ), Ras GTPase-activating protein related domain (GRD) and 
C-terminus CT). Numbers represent amino acids. 
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scaffold for the MAP kinase signaling cascade (Roy et al., 2004; Roy et al., 

2005), suggesting that it may also play an important role in cell proliferation 

(Figure 21).    

        

Materials and Methods 

 

Cell culture 

For all described experiments HL-60 cells were differentiated along the 

neutrophilic lineage as described previously (Servant et al., 1999).  Briefly, cells 

were cultured in RPMI 1640 medium supplemented with 25 mM HEPES (pH 7.4), 

10% fetal bovine serum (Atlanta Biologicals, Atlanta, GA), L-glutamine, 100 

units/ml pen/strep (Mediatech, Inc., Herndon, VA). Cells were subcultured every 

3-4 days to a cell density of 1 X 106 cells/ml. To differentiate HL60 cells along the 

granulocytic lineage, cells were inoculated at a density of 2 x 105 cells/ml in 

antibiotic-free medium containing 1.3% Dimethyl sulfoxide (DMSO) (endotoxin-

free, Sigma) and cultured for 6-7 days.   

 

Immunoprecipitation of CXCR2 protein complexes 

Normal rabbit IgG antibodies (Jackson Immunoresearch, West Grove, PA) 

and rabbit polyclonal anti-CXCR2 antibodies were coupled to NHS-activated 

Sepharose 4 Fast Flow matrix (GE Healthcare, Piscataway, NJ) at a 4:1 ratio 

(mg antibody: ml matrix).  Anti-CXCR2 affinity purified polyclonal antibody was 

generated in our laboratory and described previously (Mueller et al., 1994).  
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Coupled antibody beads were blocked with ethanolamine (Sigma, St. Louis, MO) 

to minimize non-specific binding of proteins to matrix.  For immunoprecipitations, 

HL-60 cells stably expressing CXCR2 were differentiated for 7 days in 1.3% 

DMSO and stimulated with vehicle (0.1% BSA/PBS) or 100 ng/ml CXCL8 for 1 

minute.  Cells were resuspended in lysis buffer (50mM Tris-HCl, pH 7.5, 0.05% 

Triton X-100, 300 mM NaCl), cleared by centrifugation, and pre-cleared with 

normal rabbit IgG-coupled beads.  Precleared lysates were then incubated with 

normal rabbit IgG-coupled beads (Mock) or anti-CXCR2 rabbit antibody-coupled 

beads and associating proteins were eluted with 2X Laemmli sample buffer, 

heated for 55˚C for 10 minutes, loaded directly onto a 10% polyacrylamide gel 

with no stacker gel.  The electrophoresis was continued until the dye front ran 

approximately 1 cm into the gel and proteins were stained with colloidal blue 

stain (Invitrogen, Carlsbad, CA).  Excised gel bands were subjected to in-gel 

trypsin digest (Manza et al., 2005) and tryptic peptides submitted for LC/MS/MS 

analysis.   

 

LC/MS/MS analysis and protein identification 

One dimensional LC/MS/MS analysis was performed as described 

previously (Lapierre et al., 2007).  Briefly, analysis was performed using a 

Thermo Finnigan LTQ ion trap mass spectrometer and peptides were separated 

on a packed capillary tip (100μm X 11 cm) with C18 resin (Monitor C18, 5μm, 

100Å, Column Engineering, ON, Canada).  MS/MS spectra of peptides was 

performed using data-dependent scanning in which one full MS spectrum, using 
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a full mass range of 400-200 amu, was followed by 3 MS-MS spectra.  Protein 

matches were preliminarily filtered using the criteria described previously 

(Lapierre et al., 2007).  Once the peptides were filtered based on these criteria, 

all matches that had less than two peptide matches were eliminated.  These 

filtering criteria achieved a false positive rate of <1% in all datasets.   

 

Immunofluorescence staining and confocal microscopy 

Cells in serum-free RPMI were seeded on glass coverslips coated with 

100 μg/ml human fibronectin (BD Biosciences, San Diego, CA) and stimulated 

globally with vehicle (0.1% BSA/PBS) or 100 ng/ml CXCL8 diluted in 0.1% 

BSA/PBS at 37˚C for indicated times.  Cells were fixed in 4% paraformaldehyde 

for 10 min, permeabilized in 0.2% Triton X-100/PBS for 5 min, blocked in 10% 

normal donkey serum for 30 min (Jackson Immunoresearch Laboratories, Inc., 

West Grove, PA).  Anti-CXCR2 rabbit polyclonal (Mueller et al, 1994) and anti-

IQGAP1 mouse monoclonal (Invitrogen, Carlsbad, CA) primary antibodies were 

added and incubated for 2 hours at room temperature.  After washing three times 

with 0.1% Tween 20/PBS, the coverslips were incubated with fluorescence-

conjugated secondary antibodies for 1 hour.  After final three washes with 0.1% 

Tween 20/PBS, coverslips were mounted with ProLong Gold antifade reagent 

(Invitrogen, Carlsbad, CA).  Confocal images were acquired using a LSM-510 

Meta laser scanning microscope (Carl Zeiss, Thornwood, NY) with a 63X 1.3 

numerical aperture oil immersion lens and images were processed by Photoshop 

software (Adobe Systems, San Jose, CA).  
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Construction of GST-IQGAP1 plasmids and preparation of recombinant GST-
IQGAP1 protein from Escherichia coli      

 

The pGEX-2T-IQGAP1-amino-terminus (NT) (aa 1-863) and –carboxyl-

terminus (CT) (aa 864-1657) was a generous gift from Dr. David Sacks and were 

described previously (Hart et al., 1996).  To prepare the cDNA for GST-IQGAP1 

1-160 and GST-IQGAP1 1-265 PCR was performed on pGEX-2T-IQGAP1-NT 

using the forward primers containing a 5’ BamHI site and a 3’ XhoI site.  The 

same forward primer was used to prepare both fragments.  The following primers 

were used for 1-160 amplification: forward-5’ ctctagggatccatgtccgccgcagacgaggtt 

3’ and reverse- 5’ ctagctctcgagttagaacaggtacaaactgac 3’.  The following reverse 

primer was used for 1-265 amplification: 5’ctagctctcgagttaagcctggtaaagtatat 

cctgg 3’.  Fragments were amplified and digested with BamHI and XhoI, purified, 

and ligated into the pGEX-6P1 vector. All plasmids were purified using Sigma 

DNA maxiprep kits (Sigma, St. Louis, MO) according to the manufacturer's 

instructions.  GST-fusion proteins were prepared from Escherichia coli     as 

described previously.  Briefly, cultures were inoculated and grown until OD600 = 

0.6-0.8 and expression was induced with 10μM isopropyl β-D-1-

thiogalactopyranoside (IPTG) (Sigma, St. Louis, MO) 4 hours at 30˚C.  Bacteria 

were harvested, proteins extracted by sonication, and isolated by incubation with 

glutathione-agarose (Sigma, St. Louis, MO).   
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Direct binding of purified IQGAP1-NT and GST-CXCR2 carboxyl-terminus 

The GST tag was cleaved from purified GST-IQGAP1-NT coupled to 

glutathione-agarose by incubating with thrombin (10 units/1mg total protein) (GE 

Healthcare, Piscataway, NJ) for 16 hours at 25˚C.  Cleaved protein was 

incubated with Benzamidine sepharose 4 Fast Flow matrix (GE Healthcare, 

Piscataway, NJ) to remove thrombin.  Glutathione agarose beads coupled to 

GST or GST-CXCR2 carboxyl-terminus and reaction tubes were blocked with 1% 

BSA for 1 hour at 25˚C prior to binding assay.  50μg total GST-fusion proteins on 

beads were incubated with 10μg purified IQGAP1-NT for 1 hour at 4˚C in binding 

buffer (50mM Tris-HCl, pH 7.5, 300 mM NaCl, 0.01% Triton X-100).  Beads were 

washed four times with binding buffer.  Bound proteins were eluted with 2X 

Laemmli sample buffer and subjected to SDS-PAGE and western blot analysis 

using an anti-IQGAP1 rabbit polyclonal antibody directed against the amino-

terminus of the protein (Santa Cruz Biotechnology, Inc., Santa Cruz, CA)        

 

Results 

 
Development of a proteomics approach to identify novel CXCR2-interacting 
proteins 
  

In order to identify proteins that differentially associate with the 

unstimulated receptor versus the activated receptor it was important to 

immunoprecipitate receptor-protein complexes from a physiologically relevant 

cell type.  The analysis was conducted in the HL-60 cell line differentiated into 

the human neutrophil lineage because CXCR2 is essential for the inflammatory 
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response due to its involvement neutrophil recruitment.  Differentiated HL-60 

cells naturally express low levels of CXCR2, however, in order to maximize co-

immunoprecipitating proteins, CXCR2 was stably over-expressed in the cell lines 

used in these experiments.  An additional obstacle of performing these analyses 

is the presence of high amounts of IgG from immunprecipitation which makes it 

difficult to detect spectra of peptides from less abundant proteins.  In order to 

address this problem, normal rabbit IgG and anti-CXCR2 rabbit antibodies were 

covalently coupled to sepharose beads.  This allowed protein complexes to be 

eluted from the beads without IgG contamination.   

Cells were stimulated with either vehicle or 100 ng/ml CXCL8 for 1 minute 

and lysed in a mild buffer in order to maintain weak interactions within protein 

complexes.  Normal rabbit IgG- (mock control) and anti-CXCR2-coupled beads 

were then used to immunoprecipitate complexes from lysates and eluted using 

Laemmli sample buffer.  Eluted proteins were then loaded directly onto a 

polyacrylamide resolving gel and allowed to run into the gel approximately 1 cm.  

Protein bands were stained with colloidal blue stain and excised from the gel.  

Tryptic peptides were generated by in-gel trypsin digest and subjected to 

LC/MS/MS analysis.  Proteins were identified using the cluster version of the 

SEQUEST algorithm (Yates et al., 1995) using the human subset of the 

Uniref100 database (www.uniprot.org).  Detailed methodology is described in the 

Materials and Methods section above.  Unique proteins in each group were 

identified using an in-house Vanderbilt database program called CHIPS 

(Complete Hierarchical Integration of Protein Searches).  This allowed non-
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specific identifications from the mock control immunoprecipitations to be 

subtracted from the two experimental groups.  A schematic of the approach used 

to identify novel CXCR2-interacting proteins is shown in Figure 22.           

 

Identification of novel ligand-independent and -dependent CXCR2-interacting 
proteins 

 
The proteomics analysis was repeated four times for reproducibility.  

Proteins were considered consistent identifications if present in at least three of 

the four experiments and for which the spectra for at least three tryptic peptides 

matched.  It should be noted that a number of proteins identified in the yeast-2-

hybrid experiments were identified in this proteomics approach including, PP2A, 

AP-2, cyclophilin A, and clathrin.  Consistent identifications included eleven 

proteins with the unstimulated receptor, eight proteins with the activated receptor, 

and six proteins common to the unstimulated and activated receptor (Table 2).  

These proteins ranged in functionality from those involved in modification of the 

actin cytoskeleton (ie: VASP, gelsolin, Arp 2/3, and Lasp-1), intracellular 

trafficking (ie: annexin 1, dynein, and SCAMP2), and signaling scaffolding (ie: 

IQGAP1, 14-3-3 zeta, and LIN-41).     

 

IQGAP1 is a novel CXCR2 interacting protein 

 The signaling scaffolding protein IQGAP1 was consistently identified with 

both the unstimulated and activated receptor immunoprecipitations using this 

approach.  The interaction of IQGAP1 with CXCR2 was verified by 

immunoprecipation followed by western blot analysis.  In support of the  
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Figure 22:  Schematic of representation of proteomics approach used to 
identify novel CXCR2-interacting proteins. 
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Table 2: List of identified proteins from untreated and CXCL8 stimulated cells in 
LC/MS/MS analysis.  
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proteomics analyses, western blot analysis shows an apparently equal amount of 

immunoreactive IQGAP1 co-IPs with CXCR2 in untreated cells and cells 

stimulated with CXCL8 for 1 minute.  Interestingly, IQGAP1 no longer co-IPs with 

CXCR2 following 5 minutes of CXCL8 stimulation (Figure 23A).  Intracellular 

localization of IQGAP1 was also examined upon CXCL8 stimulation by 

immunofluorescence staining and confocal microscopy.  In unstimulated cells, 

IQGAP1 is localized just below the plasma membrane and accumulates in 

membrane ruffles with CXCR2 upon 1 minute of CXCL8 stimulation (Figure 23B).  

Consistent with the immunoprecipitation experiments, very little IQGAP1 

localizes to membrane ruffles as the receptor internalizes after 5 minutes of 

CXCL8 stimulation (Figure 23B).  These data suggest that IQGAP1 is important 

for early events (0-1 minutes) in response to ligand. 

 

CXCR2 interacts with the amino-terminus of IQGAP1 specifically through amino 
acids 1-160 
  

To determine the domain of IQGAP1 that interacts with CXCR2, GST-

IQGAP1-amino-terminus (NT) (residues 1-863) and –carboxyl-terminus (CT) 

(residues 864-1657) fusion proteins were produced (Figure 24A).  Pulldown 

reactions were performed using these proteins and lysates from differentiated 

HL-60 cells stably expressing CXCR2.  As shown in Figure 24B, the amino 

terminus of IQGAP1 interacts with CXCR2 from HL-60 cells.  GST fusion proteins 

of successively smaller domains within the amino-terminus of IQGAP1 were 

generated to further define the interaction domain.  Amino acids 1-265 and 1-160 

were both able to efficiently interact with CXCR2 from HL-60 cells (Figure 24C).   
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Figure 23: IQGAP1 is a novel CXCR2 interacting protein.  
(A) IQGAP1 co-immunoprecipitates with CXCR2. Lysates from cells stimulated 
with vehicle (Mock, Untreated) or cells stimulated with 100 ng/ml CXCL8 for 1 
min or 5 min were incubated with either normal rabbit IgG- (Mock IgG) or rabbit 
anti-CXCR2 antibody-coupled sepharose.  Beads were washed and 
immunoprecipitated proteins were eluted with Laemmli sample buffer. Samples 
were analyzed by SDS-PAGE and western blot (IB) for CXCR2 and IQGAP1 (B) 
Co-localization of CXCR2 and IQGAP1.  Immunofluorescence confocal images 
of CXCR2 and IQGAP1 staining in differentiated HL60 cells stably expressing 
CXCR2 and stimulated with vehicle (0 min) or 100 ng/ml of CXCL8 for 1 minute 
or 5 minutes.  Cells were stained with rabbit polyclonal anti-CXCR2 and mouse 
monoclonal anti-IQGAP1 antibodies, and incubated with species specific Cy2- 
and Cy3-conjugated secondary antibodies.  Co-localization is seen at 0 minutes 
and 1 minute stimulation.  Overlay images are pseudocolored where green is 
CXCR2 and red is IQGAP1.  Bars, 5μm.  Data shown are representative of three 
separate experiments. 
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Figure 24: CXCR2 interacts with the amino-terminus of IQGAP1 specifically 
through amino acids 1-160.   
(A) Domains contained in GST-IQGAP1 fusion constructs.  Western blot analysis 
with anti-CXCR2 antibody of lysates (Input) and eluates from  (B) GST, GST-
IQGAP1-N-terminus (NT), and IQGAP1-C-terminus (CT) pulldown reactions and 
(C) GST, GST-IQGAP1-1-265, and -1-160.  Data shown are representative of 
three separate experiments.   
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GST fusion proteins containing residues 1-44 and 160-431 were also generated 

and used in pulldown reactions.  These two fusion proteins failed to interact with 

CXCR2.  These data suggest that a region of IQGAP1 located between residues 

44 and 160 is likely the CXCR2-interaction domain.     

 

CXCR2 directly interacts with the amino-terminus of IQGAP1 

 We next sought to determine whether the IQGAP1 interaction with CXCR2 

is direct or occurs through an intermediate adaptor protein.  To investigate this, 

recombinant IQGAP1-amino-terminus (NT) and GST-CXCR2-carboxyl-terminus 

were purified.  These proteins were then used in direct binding assays in order to 

assess whether the two proteins can interact in the absence of other cellular 

proteins.  These assays demonstrated that purified IQGAP1-NT and GST-

CXCR2 carboxyl-terminus are able to bind in vitro (Figure 25).  These data 

suggest that CXCR2 directly interacts with the amino-terminus of IQGAP1.    

 

Interaction of IQGAP1 with Cdc42 is enhanced by CXCL8 stimulation 

 A number of studies have demonstrated that the interaction of IQGAP1 

with the small GTPases Rac and Cdc42 is affected by various different stimuli 

such as cell-cell adhesion (Fukata et al., 1999; Kuroda et al., 1999; Takahashi et 

al., 2006), cell-matrix adhesion (Takahashi and Suzuki, 2006), and Ca2+ signaling 

(Ho et al., 1999).  Because Cdc42 is activated upon CXCR2 stimulation, we 

sought to investigate whether the association of Cdc42 with IQGAP1 was altered 

upon CXCL8 stimulation. We examined if the association of IQGAP1 with Cdc42  
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Figure 25: Purified IQGAP1/N-terminus binds directly to GST CXCR2/C-
terminus.   
Western blot analysis of purified IQGAP1/N-terminus (NT) and purified protein 
bound to glutathione sepharose beads with GST alone or GST-CXCR2/C-
terminus (CT). Briefly, fusion protein-bound glutathione beads were blocked with 
1% BSA for 1h at room temp and incubated for 1h at 4˚C with 10μg purified 
IQGAP1/N-terminus in binding buffer.  Beads were washed 3X with binding 
buffer and bound protein eluted and analyzed by SDS-PAGE and western blot 
(IB) for IQGAP1.  Data shown are representative of three separate experiments. 
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was altered upon CXCL8 stimulation.  To investigate this, we immunoprecipitated 

IQGAP1 from differentiated HL-60 cells expressing CXCR2 stimulated with 

CXCL8 and examined association of Cdc42 by western blot analysis.  These 

experiments demonstrated that co-immunoprecipitation of Cdc42 with IQGAP1 is 

slightly enhanced with CXCL8 stimulation (Figure 26A).  This experiment was 

repeated twice with similar results demonstrating an average of a 1.23 fold 

(range = 0.06) increase in co-immunoprecipitated Cdc42 following 1 minute of 

CXCL8 stimulation (Figure 26B).  This establishes a potential functional link 

between CXCR2 activation and modulation of IQGAP1 activities within the cell.        

 

Discussion 

 We have developed a highly effective approach to identify novel dynamic 

chemokine receptor-interacting proteins.  This approach allows protein 

complexes to be isolated from cells following various periods if ligand stimulation 

and has the potential to temporally define the components of chemokine 

receptor-associating complexes within the cell.  This has important implications 

for the current understanding of the chemotactic response.        

Among the proteins identified in the untreated samples was 14-3-3 

gamma.  14-3-3 gamma is a signaling adaptor molecule that can bind regulators 

of G-protein signaling (RGS) proteins and inhibit their activity (Benzing et al., 

2000; Niu et al., 2002).  RGS proteins are GTPase activating proteins (GAPs) 

that specifically activate the Gα subunit (Ishii and Kurachi, 2003; Ross and 

Wilkie, 2000).  It has been previously shown that RGS12 interacts with CXCR2  
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Figure 26: Interaction of IQGAP1 with Cdc42 is enhanced by CXCL8 
stimulation.   
Lysates from cells stimulated with vehicle (Mock, Untreated) or cells stimulated 
with 100 ng/ml CXCL8 for 1 min or 5 min were incubated with either normal 
rabbit IgG- (Mock IgG) or rabbit anti-IQGAP1 antibody and Protein A/G agarose 
beads.  Beads were washed and immunoprecipitated proteins were eluted with 
Laemmli sample buffer. Samples were analyzed by SDS-PAGE and western blot 
(IB) for IQGAP1 and Cdc42.  (A) Western blot is a representative from two 
separate experiments (B) Graph is an average fold increase of two separate 
experiments.  Bars represent the range between the two experiments.        
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through its PDZ (PSD95/DlgA/ZO-1) domain (Snow et al., 1998).  Therefore, the 

interaction of CXCR2 with 14-3-3 gamma represents a potential novel link to 

signaling pathways through its function as an adaptor molecule that is a known 

regulator of RGS proteins.      

A number of proteins that regulate the actin cytoskeleton were also 

identified using this approach.  p21-Arc is a subunit from the actin-related protein 

(Arp) 2/3 complex, which also localizes to sites of actin polymerization (Welch et 

al., 1997).  In addition, another subunit from the Arp 2/3 complex was also 

identified with this approach.  The Ena/VASP family of proteins can enhance 

actin polymerization by recruiting profilin-actin complexes to sites of acting 

remodeling, such as the lamellipodia in migrating cells (Krause et al., 2003; Sechi 

and Wehland, 2004).  LIM and SH3 domain protein-1 (Lasp-1) is a component of 

the focal adhesion that has recently been shown to play an important role in cell 

migration and cell survival (Grunewald et al., 2006b; Grunewald et al., 2007; Lin 

et al., 2004).  Each of these actin regulating proteins may provide a link between 

the activated chemokine receptor and the acting cytoskeleton.        

 Two components of microtubule motor proteins were also among the 

proteins identified with this approach.  These proteins may play a role in the 

intracellular trafficking of chemokine receptors, as well as in signaling by 

transporting signaling proteins to appropriate cellular locations.  For example, 

kinesins are microtubule motor proteins that are involved in transporting vesicles 

and organelles along microtubules.  Interestingly, it was found that 14-3-3 

interacts with kinesin light chain-2 in a phosphorylation-dependent manner 
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(Ichimura et al., 2002).  Dynein heavy chain, another microtubule motor protein, 

was also identified in complexes from stimulated cells.  Furthermore, 

microtubules are known to play a role in the endocytosis of other G protein-

coupled receptors such as beta2-adrenoceptor (Vroon et al., 2007) and m3-

muscarinic receptors (Popova and Rasenick, 2004).  Additional proteins that may 

play a role in the intracellular sorting of internalized CXCR2 were among the 

novel CXCR2-interacting proteins.  Valosin-containing protein is a molecular 

chaperone that is involved in the ubiquitin-proteosome degradation pathway 

(Brunger and DeLaBarre, 2003; Wang et al., 2004).  Rab39 is a golgi-associated 

GTPase that can facilitate endocytosis (Chen et al., 2003a).  Nipsnaps are a 

family of proteins that have a potential role in vesicular trafficking because of 

their homology to synaptosomal-associated proteins ((SNAP) (Seroussi et al., 

1998).  In addition, NIPSNAP4 was shown to interact with the Salmonella 

enterica factor SpiC, which inhibits lysosomal maturation (Lee et al., 2002).         

            IQGAP1 binds to CXCR2 in the absence of CXCL8 stimulation and no 

longer binds following prolonged stimulation.  It is likely that once CXCR2 

internalizes, IQGAP1 dissociates from the receptor.  CXCL8 stimulation induces 

CXCR2 phosphorylation, Cdc42 activity, and a rise in intracellular Ca2+ levels.  

Activated Cdc42 and Ca2+/calmodulin both modulate IQGAP1 activities and 

binding partners (reviewed in (Briggs and Sacks, 2003; Noritake et al., 2005)) .  It 

has been previously demonstrated that inhibition of Ca2+/calmodulin by the cell-

permeable inhibitor CGS 9343B impairs the Ca2+-dependent interaction of E-

cadherin with IQGAP1 (Li et al., 1999).  Therefore, we are interested in whether 
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CXCR2 phosphorylation, Cdc42 activity, and Ca2+/calmodulin influence 

CXCR2/IQGAP1 binding.  In the future, it will be of interest to express dominant 

negative and activated Cdc42 mutants and determine whether the interaction 

between CXCR2 and IQGAP1 is enhanced or disrupted.  Additionally, 

investigation into the effects of inhibition of CXCR2 phosphorylation using 

phosphorylation-deficient receptor mutants and inhibition of Ca2+/calmodulin 

through use of a cell-permeable calcium chelator on the CXCR2/IQGAP1 

interaction will be of interest. 

 It is of interest that CXCR2 interacts with IQGAP1 between amino acids 

44 and 160 because this region also contains the calponin homology domain 

(Figure 21).  This region of IQGAP1 is necessary and sufficient for its high affinity 

interaction with F-actin (Mateer et al., 2004).  Studies utilizing point mutations in 

the calponin homology domain demonstrated that the IQGAP1 interaction with F-

actin is essential for its role in the promotion of cell motility (Mataraza et al., 

2007).  In addition, interaction of IQGAP1 with calmodulin has been shown to 

inhibit the binding of IQGAP1 to actin (Mateer et al., 2002).  Therefore, it is 

possible that CXCR2 competes with actin for binding to the calponin homology 

domain of IQGAP1 similar to the phenomenon seen with calmodulin.   

 Investigation into the functional significance of the interaction between 

CXCR2 and IQGAP1 will also be of great interest in the future.  We have 

identified amino acids 1-160 of IQGAP1 as the CXCR2 interaction domain.  This 

domain can be utilized to specifically antagonize the CXCR2/IQGAP1 interaction 

in differentiated HL-60 cells.  The effects of antagonizing the receptor/IQGAP1 
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interaction on CXCR2-mediated chemotaxis and CXCL8-mediated Rac/Cdc42 

activation should be investigated.  The effects on cell polarization in response to 

directional CXCL8 stimulation should be assessed by examining the ability of the 

cells to reorient the microtubule organizing center (MTOC) in the direction of the 

CXCL8 source.  Because IQGAP1 has been shown to modulate activation of the 

MAP kinase pathway and cell proliferation, effects on CXCL8-mediated MAP 

kinase pathway activation and CXCL8-mediated cell proliferation will also be of 

interest to examine when the CXCR2/IQGAP1 interaction is antagonized. 

We describe a novel and effective technique to identify components of 

dynamic chemokine receptor protein complexes within the cell.  A number of 

interesting proteins have been identified that potentially regulate chemokine 

receptor function.  These proteins range in function from intracellular trafficking 

and cytoskeletal modification.  The characterization of these interactions will 

greatly impact or current understanding of how the chemotactic response is 

relayed from activated chemokine receptors to the cytoskeleton and intracellular 

signaling cascades.   
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CHAPTER IV 

 

VASP IS A NOVEL CXCR2-INTERACTING PROTEIN THAT REGULATES 

CXCR2-MEDIATED LEUKOCYTE RECRUITMENT 

 

Introduction 

Chemokines mediate the chemotactic response through binding of their 

seven transmembrane G protein-coupled receptors.  CXCR2-mediated 

chemotaxis is completely inhibited by treatment of pertussis toxin indicating that 

the majority of CXCR2 couples to Gαi (Jones et al., 1995).  In addition, studies 

have demonstrated that specific Gβγ subunits coupled to the Gαi, but not the Gαi 

subunit itself is required for chemotaxis (Neptune et al., 1999).  These data 

suggest that cAMP-protein kinase A (PKA)-mediated signaling pathways play a 

minimal role in the chemotactic response.  These signaling pathways activated 

as a result of the uncoupling of the Gβγ subunit from the heterotrimeric complex 

involved in chemotaxis include activation of phospholipase Cβ (PLC-β), 

phosphatidylinositol 3 kinase (PI3K), and mitogen-activated proteins (MAPKs).  

Furthermore, these studies demonstrate that additional signaling pathways that 

mediate the chemotactic response may be activated via G protein-independent 

mechanisms, perhaps through novel receptor-interacting proteins (Luttrell et al., 

1999; Richardson et al., 1998; Tilton et al., 2000).  

Upon binding ligand, CXCR2 chemokine receptors are internalized largely 

through clathrin-mediated endocytosis.  The proteins that mediate the 
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internalization of chemokine receptors and link activated receptors to signaling 

pathways are poorly defined.  Of particular interest are the proteins that initiate 

and propagate the chemotactic response once a chemokine binds its receptor.  

In order to more completely understand these processes, the identification of 

protein complexes that associate with the receptor upon ligand binding is 

necessary.   

Previous investigators in our laboratory have addressed this question by 

utilizing the carboxyl-terminal domain of CXCR2 in a yeast-2-hybrid analysis in 

order to identify interacting proteins (Fan et al., 2001a; Fan et al., 2002; Fan et 

al., 2001b).  Although the yeast-2-hybrid analysis identified a number of 

important interacting proteins, this approach does not allow for identification of 

receptor/protein complexes that form upon ligand stimulation.  We describe here 

the identification of a ligand-mediated receptor/protein interaction using 

immunoprecipitation followed by proteomics analysis.  This approach has a 

number of benefits, including the ability to identify the dynamics of both direct 

and indirect receptor/protein interactions and those interactions that are 

conformation-specific, for example, dependent on phosphorylation.   

One CXCR2-interacting protein identified by receptor immunoprecipitation 

followed by proteomics analysis is vasodilator-stimulated phosphoprotein 

(VASP).  VASP is a member of the Ena/VASP family of proteins that mediate 

actin filament elongation (Sechi and Wehland, 2004).  The Ena/VASP family 

members enhance actin filament elongation by recruiting profilin:actin complexes 

to sites of active actin remodeling, such as the lamellipodia and focal adhesions 
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(Kang et al., 1999; Korenbaum et al., 1998; Nyman et al., 2002). Localization of 

VASP at the barbed ends of actin filaments promotes filament elongation and 

prevents the binding of capping proteins (Barzik et al., 2005).  In addition, VASP 

can enhance the activity of the Arp2/3 complex involved in actin filament 

nucleation (Samarin et al., 2003; Skoble et al., 2001).  VASP contains two 

conserved EVH (Ena/VASP homology domains), a central proline rich region, 

and a number of conserved serine/threonine residues that can be 

phosphorylated by PKA and PKG (Eigenthaler et al., 1992; Gertler et al., 1996; 

Lambrechts et al., 2000) (Figure 27).    Phosphorylation of Ena/VASP proteins at 

the conserved amino-terminal serine leads to a major conformational change 

which results in an electrophoretic mobility shift and alterations in protein-protein 

interactions (Gertler et al., 1996; Halbrugge et al., 1990; Lambrechts et al., 

2000).  VASP contains three phosphorylation sites, Ser157, Ser239, and Thr278 

and phosphorylation at these residues influences the interaction of VASP with 

actin (Harbeck et al., 2000; Laurent et al., 1999). More specifically, in vitro 

phosphorylation of VASP at Ser239 decreases the anti-capping and filament 

bundling activity (Barzik et al., 2005).  VASP Thr278 can be minimally 

phosphorylated in vitro by PKA and PKG (Butt et al., 1994) and recent studies 

identified VASP Thr278 as a substrate for AMP-activated protein kinase (AMPK) 

(Blume et al., 2007).  However, the contribution of these kinases to Thr278 

phosphorylation in vivo and the functional significance of this phosphorylation  

remain largely uncharacterized.  Interestingly, phosphorylation of VASP at 

Thr278 is associated with decreased cellular F-actin content, suggesting that 
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Figure 27:  Schematic of VASP domain structure. 
EVH1: Ena/VASP Homology 1, PRR: proline-rich region, EVH2: 
Ena/VASP Homology 2.  Circled letters indicate phosphorylation sites  
(S-serine, T-threonine).  The numbers indicate amino acid residues for 
phosphorylation sites in mouse and human proteins. 
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phosphorylation of this residue plays a negative role in the F-actin assembly 

(Blume et al., 2007).  It is clear that differential phosphorylation of VASP at each 

of the three residues modulates its functional diversity, likely through differential 

cellular localization of various the phosphorylated forms of the protein.                    

Because of their roles in formation of actin-based structures essential for 

cell migration, Ena/VASP proteins have an obvious role in cell migration.  

However, the specific role may be cell type specific and vary depending on 

experimental conditions.  Fibroblasts lacking either Mena or VASP move faster in 

random motility assays (Bear et al., 2000).  Cardiac fibroblasts deficient in VASP 

exhibit sustained Rac activation (Garcia Arguinzonis et al., 2002).  However, the 

role of VASP in persistent directional cell migration has not been extensively 

investigated.  Futhermore, its role in the regulation of CXCR2-mediated 

neutrophil chemotaxis remains largely undefined.     

In the current study, VASP was identified as a novel CXCR2-interacting 

protein in differentiated HL-60 cells using proteomic analysis.  We show that 

CXCR2 directly interacts with VASP through the conserved EVH2 domain.  In 

addition, we demonstrate that VASP is phosphorylated upon CXCL8 stimulation 

on serine residues 157 and 239.  These phosphorylations occur via PKA- and 

PKC-dependent signaling pathways and modulate the interaction between 

CXCR2 and VASP.  We have demonstrated for the first time that a chemokine 

receptor interacts with a member of the Ena/VASP family of proteins.  We have 

also shown that VASP is phosphorylated in response to chemokine and this 

phosphorylation enhances the interaction.   
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Materials and Methods 

 

Materials and Antibodies 

Anti-CXCR2 affinity purified polyclonal antibody was generated in our 

laboratory and described previously (Mueller et al., 1994).  Normal rabbit IgG 

was obtained from Jackson Immunoresearch, Inc. (West Grove, PA).  Anti-VASP 

polyclonal, anti-VASP phospho-serine 157, and anti-VASP phospho-serine 239 

monoclonal antibodies were purchased from Calbiochem (San Diego, CA).  Anti-

GFP polyclonal antibody was obtained from Abcam (Cambridge, MA).  PKA 

inhibitor H-89, PKC inhibitor Ro-32-0432, and PKCδ inhibitor Rottlerin were 

acquired from Calbiochem (San Diego, CA).  Phosphate buffered saline (PBS) 

was produced by dissolving 8g NaCl, 0.2g KCl, 1.44g Na2HPO4, and 0.24g 

KH2PO4 in 1L dH2O and adjusting pH to 7.4.  Bovine serum albumin (BSA) 

(Fraction V, ~99% purity, γ-globulin-free) was purchased from Sigma (St. Louis, 

MO)    

 

Plasmids, cell culture, and transfection 

Constructs for glutathione S-transferase (GST) fusion proteins of the C-

terminal residues of CXCR2 were generated previously (Fan et al., 2001a) using 

PCR-amplified fragments.  The HL-60 cell line stably expressing human CXCR2 

was generated previously by retroviral infection (Sai et al., 2006).  For all 

described experiments HL-60 cells were differentiated along the neutrophilic 

lineage as described previously (Servant et al., 1999).  Briefly, cells were 
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cultured in RPMI 1640 medium (Invitrogen, Carlsbad, CA) supplemented with 

25mM HEPES (pH 7.4) (Sigma, St. Louis, MO), 10% fetal bovine serum (Atlanta 

Biologicals, Atlanta, GA), L-glutamine, 100 units/ml pen/strep (Mediatech, Inc., 

Herndon, VA). Cells were subcultured every 3-4 days to a cell density of 1 X 106 

cells/ml. To differentiate HL60 cells along the granulocytic lineage, cells were 

inoculated at a density of 2 X 105 cells/ml in antibiotic-free medium containing 

1.3% Dimethyl sulfoxide (DMSO) (endotoxin-free, Sigma, St. Louis, MO) and 

cultured for 6-7 days.   

 MVD7 cells were cultured as described previously (Bear et al., 2000).  

Briefly, cells were grown at 32˚C in DMEM with 15% FBS, 100 units/ml pen/strep 

(Mediatech, Inc., Herndon, VA), L-glutamine, and 50 U/ml of mouse interferon-

gamma (Sigma, St. Louis, MO).   

 

CXCR2 immunoprecipitations and proteomics analyses  

Purified normal rabbit IgG (Jackson Immunoresearch Laboratories, Inc., 

West Grove, PA) and anti-CXCR2 polyclonal antibodies were coupled to NHS-

activated sepharose beads (GE Healthcare, Piscataway, NJ) following the 

manufacturer’s protocol.  For immunoprecipitations, HL-60 cells stably 

expressing CXCR2 were differentiated for 7 days in 1.3% DMSO and stimulated 

with vehicle (0.1% BSA/PBS) or 100 ng/ml CXCL8 for 1 minute.  Cells were 

resuspended in lysis buffer (50mM Tris-HCl, pH 7.5, 0.05% Triton X-100, 300 

mM NaCl), cleared by centrifugation, and pre-cleared with normal rabbit IgG-

coupled beads.  Pre-cleared lysates were then incubated with normal rabbit IgG-
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coupled beads (Mock) or anti-CXCR2 rabbit antibody-coupled beads and 

associating proteins were eluted with Laemmli sample buffer, loaded onto a 10% 

polyacrylamide gel, stained with colloidal blue stain (Invitrogen, Carlsbad, CA) 

and bands were subjected to in-gel trypsin digest.  Tryptic peptides were then 

analyzed by LC/MS/MS using a Thermo Finiigan LTQ ion trap mass 

spectrometer equipped with a Thermo MicroAS autosampler and Thermo 

Surveyor HPLC pump, Nanospray source, and Xcalibur 1.4 instrument control.  

Analysis and protein identification procedures were described previously 

(Lapierre et al., 2007).  Unique proteins in each group were identified using an in-

house database program called CHIPS (Complete Hierarchical Integration of 

Protein Searches).  Only proteins identified in at least three of the four replicate 

experiments by multiple peptides were analyzed further.                         

 

Immunofluorescence staining and confocal microscopy 

Cells in serum-free RPMI were seeded on glass coverslips coated with 

100 μg/ml human fibronectin (BD Biosciences, San Diego, CA) and stimulated 

globally with vehicle (0.1% BSA/PBS) or 100 ng/ml CXCL8 diluted in 0.1% 

BSA/PBS at 37˚C for indicated times or directionally using a Zigmond chamber 

(Neuroprobe, Inc., Gaithersburg, MD).  Cells were fixed in 4% paraformaldehyde 

for 10 minutes, permeabilized in 0.2% Triton X-100/PBS for 5 minutes, blocked in 

10% normal donkey serum for 30 minutes (Jackson Immunoresearch 

Laboratories, Inc., West Grove, PA),  primary antibodies were added and 

incubated for 2 hours at room temperature.  After washing three times with 0.1% 
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Tween 20/PBS, the coverslips were incubated with fluorescence-conjugated 

secondary antibodies for 1 hour.  After final three washes with 0.1% Tween 

20/PBS, coverslips were mounted with ProLong Gold antifade reagent 

(Invitrogen, Carlsbad, CA).  Confocal images were acquired using a LSM-510 

Meta laser scanning microscope (Carl Zeiss, Thornwood, NY) with a 63X 1.3 

numerical aperture oil immersion lens and images were processed by Photoshop 

software (Adobe Systems, San Jose, CA).          

 

Recombinant protein expression and purification 

Recombinant His6-tagged full length and EVH2 domain of VASP were 

purified from Escherichia coli as described previously (Barzik et al., 2005).  

Recombinant GST and GST-CXCR2 carboxyl-terminus proteins were purified 

from Escherichia coli.  Bacteria inoculated from glycerol stock encoding GST 

proteins were cultured overnight at 37˚C.  The following morning, cultures were 

diluted 1:10 and grown until OD600 = 0.8 and protein expression was induced by 

incubating bacteria at 30˚C in the presence of 50μM isopropyl-1-thio-β-D-

galactopyranoside (IPTG) for 2 hours.  Bacteria was collected by centrifugation, 

washed with PBS, resuspended in 0.5% Triton X-100/PBS containing bacterial 

protease inhibitor cocktail (Sigma, St. Louis, MO), and sonicated.  Lysates were 

cleared by centrifugation at 12,000 X g for 30 minutes and cleared lysates were 

incubated with glutathione agarose (Sigma, St Louis, MO) for 45 min at 4˚C.  

Agarose was washed three times with 0.5% Triton X-100/PBS and resuspended 

in PBS.           
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Direct binding of GST-CXCR2 331-355 and His6-VASP 

Assay was performed similarly to an assay previously described (Shimada 

et al., 2005).  GST proteins were isolated as described above and eluted from 

glutathione agarose with an equal volume of elution buffer (50mM Tri-HCl, pH 

8.0, 10 mM reduced glutathione).  96-well polyvinyl plates were coated with 

3μg/ml eluted GST or GST-CXCR2 331-355, blocked with 0.5% Tween20/0.5% 

Triton X-100/PBS, and incubated with 15, 7.5, 3.25, 1.9, or 0.9 ng/μl His6-VASP 

for 1 hour at room temperature.  Plates were washed six times with 0.1% 

Tween20/PBS, incubated with 0.5μg/ml His-Probe-HRP (Pierce, Milwaukee, WI), 

and washed six more times with 0.1% Tween20/PBS.  Peroxidase substrate 

solution [50 mM sodium citrate buffer, pH 4.2, 90 mM 2,2’-azino-bis (3-

ethylbenzothiazoline-6-sulfonic acid) (ABTS) (Sigma, St. Louis, MO), 0.05 mM 

H2O2] was added to each well.  Reactions were terminated with an equal volume 

of 1% Sodium dodecyl sulfate (SDS) (Sigma, St. Louis, MO) (w/v) solution.  

Substrate color intensities were measured at 405 nm using an ELX800NB plate 

reader (Bio-Tek Instruments, Winooski, VT).  Assays were performed in triplicate.     

 

Phosphorylation of His6-VASP EVH2 with PKA 

The His6-VASP EVH2 domain was purified from Escherichia coli and 

protein was concentrated using Amicon Ultra centrifugal filter devices (MWCO 

5,000 Da) (Millipore, Billerica, MA).  50μg purified His6-VASP EVH2 was 

incubated with 2500 units cAMP-dependent Protein Kinase A (PKA) catalytic 
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subunit (New England Biolabs, Inc, Ipswich, MA) with 100 mM ATP for 30 

minutes at 30˚C.    

 

GST pulldown reactions with MVD7 cell lysates 

GST or GST-CXCR2 carboxyl-terminus recombinant proteins were 

purified from Escherichia coli as described above.  MVD7 cells were lysed in lysis 

buffer (50 mM Tris-HCl pH 7.5, 0.05% Triton X-100, 300 mM NaCl) containing 

mammalian protease inhibitor cocktail and phosphatase inhibitor cocktails I and II 

(Sigma-Aldrich, St. Louis, MO).  Lysates were cleared by centrifugation and 

incubated with 50μg GST or GST-CXCR2 carboxyl-terminus coupled to 

glutathione agarose for 1 hour at 4˚C.  Glutathione agarose was washed three 

times with lysis buffer, bound proteins were eluted with 2X Laemmli sample 

buffer, and subjected to SDS-PAGE and western blot analysis.       

 

Statistical Analysis 

 Statistically significant differences between two groups were determined 

using the non-parametric two-tailed Mann Whitney U test (Wilcoxin rank sum 

test).  All statistical analysis was performed using GraphPad Prism 5 software 

(GraphPad software, Inc., San Diego, CA).   
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Results 

 

VASP is a novel CXCR2-interacting protein 

 Proteomics analysis was utilized to identify novel ligand-independent and 

–dependent CXCR2-interacting proteins.  In order to identify physiologically 

relevant interacting proteins, HL-60 myeloid leukemia cells stably over-

expressing human CXCR2 were differentiated into neutrophil-like cells.  These 

cells were stimulated with vehicle or CXCL8 for 1 minute and CXCR2 was 

immunoprecipitated with associating proteins from lysates using rabbit polyclonal 

antibodies directed against the amino-terminus of the receptor coupled to 

sepharose beads.  As a negative control, proteins were also immunopreciptated 

using normal rabbit IgG coupled to sepharose beads.  Eluted proteins were 

digested with trypsin and the tryptic peptides were subjected to LC/MS/MS 

analysis.  Spectra from tryptic peptides were compared to known spectra using 

the Sequest and Protein Prophet algorithms to identify proteins.  Proteins 

identified from control rabbit IgG samples were subtracted from CXCR2 antibody 

samples.  Detailed methodology is included in the Materials and Methods section 

of this manuscript.  This analysis was repeated four times and proteins 

consistently identified were validated by immunoprecipitation assay. 

 Vasodilator-stimulated phosphoprotein (VASP) was consistently identified 

in CXCR2-immunoprecipitate samples from CXCL8 stimulated cells.  Interaction 

of VASP with CXCR2 in differentiated HL-60 cells was confirmed by 

immunoprecipitation and western blot analysis.  VASP co-immunoprecipitates 
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with CXCR2 in untreated cells and cells stimulated with CXCL8 for both 1 minute 

and 5 minutes (Figure 28A).  Interestingly, VASP is phoshorylated upon CXCL8 

stimulation, indicated by the electrophoretic mobility shift, and there is a 

significant increase in the amount of phosphorylated VASP that co-

immunoprecipitates with CXCR2 (Figure 28B).  In order to verify that CXCR2 and 

VASP were interacting in differentiated HL-60 cells we also performed the 

reverse immunoprecipitation experiment.  We observed an electrophoretic 

mobility shift of CXCR2 upon CXCL8 stimulation indicating that the receptor is 

phosphorylated.  However, these higher molecular weight bands are not clearly 

visible in the immunoprecipitation samples due to IgG heavy chain present at the 

same molecular weight obscuring the bands.  Indeed, CXCR2 also associates 

with immunoprecipitated VASP from HL-60 cell lysates (Figure 28C). 

 To determine whether CXCR2 and VASP co-localize upon CXCL8 

stimulation in differentiated HL-60 cells, we performed immunofluorescence 

staining and confocal imaging on cells stimulated with CXCL8 globally and 

directionally.  As shown in Figure 29A, VASP primarily localizes to the cytoplasm 

and minimal plasma membrane localization is seen in vehicle stimulated cells.  

However, upon global stimulation with CXCL8, both VASP and CXCR2 localize 

to membrane ruffles.  This localization is observed in cells stimulated for both  

1 minute and 5 minutes, consistent with co-immunoprecipitation data.  In 

addition, CXCR2 and VASP localize to the tips of F-actin-rich lamellipodia in the 

leading edge of the differentiated HL-60 cells that are directionally stimulated with 
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Figure 28: CXCR2 and VASP interact in differentiated HL-60 cells. 
(A) VASP co-immunoprecipitates with CXCR2. Lysates from cells stimulated with 
vehicle (Mock, Unt) or cells stimulated with 100 ng/ml CXCL8 for 1 minute or 5 
minutes were incubated with either normal rabbit IgG- (Mock IgG) or rabbit anti-
CXCR2 antibody-coupled sepharose.  Beads were washed and 
immunoprecipitated proteins were eluted with Laemmli sample buffer. Samples 
were analyzed by SDS-PAGE and western blot (IB) for CXCR2 and VASP (B) 
Quantitation of unphosphorylated (Unphospho-VASP) and phosphorylated 
(phospho-VASP) VASP that co-immunoprecipitates with CXCR2.  Values are 
normalized to total VASP levels.  Significant differences between the amount of 
unphosphorylated and phosphorylated VASP that co-IPs with CXCR2 are 
indicated by the asterisks (p-value ≤ 0.05, Mann Whitney U test) (C) CXCR2 co-
immunoprecipitates with VASP.  Cells were stimulated with vehicle (Mock, Unt) 
or 100 ng/ml CXCL8 for 1 minute or 5 minutes.  Lysates were incubated with 
normal rabbit IgG (Mock IgG) or rabbit anti-VASP antibody.  Immunoprecipitated 
proteins were immobilized on protein A/G agarose, eluted with Laemmli sample 
buffer, and subjected to SDS-PAGE and western blot analysis (IB) for VASP and 
CXCR2.  Data shown are representative from three separate experiments.   
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Figure 29: CXCR2 and VASP both localize to plasma membrane ruffles 
upon global and directional CXCL8 stimulation. 
(A) Immunofluorescence confocal images of CXCR2 and VASP staining in 
differentiated HL-60 cells stably expressing CXCR2 and stimulated globally with 
vehicle (0 minutes) or 100 ng/ml of CXCL8 for 1 minute or 5 minutes.  Overlay 
images are pseudocolored where green is CXCR2 and red is VASP (B) 
Immunofluorescence confocal images of CXCR2, VASP, and F-actin staining in 
differentiated HL-60 cells stably expressing CXCR2 and stimulated directionally 
with 50 ng/ml CXCL8 in Zigmond chamber for 5 minutes.  Arrow indicates 
direction of CXCL8.  Overlay image is pseudocolored where green is VASP, red 
is CXCR2, and blue is F-actin.  Images were processed using Photoshop (Adobe 
Systems, San Jose, CA). Bars, 5μm. 
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CXCL8 in a Zigmond chamber (Figure 29B).  VASP exhibits a punctate staining 

pattern in the lamellipodia with the most concentrated regions co-localizing with 

CXCR2.  It is possible that these concentrated co-localizing regions represent the 

phosphorylated VASP that interacts strongly with CXCR2.  These data indicate 

that VASP is a novel CXCR2-interacting protein that localizes with CXCR2 in the 

leading edge of cells stimulated with a CXCL8 gradient.  These results suggest 

that the interaction of CXCR2 with VASP in the leading edge may play an 

important role in the organization of the actin cytoskeleton in response to 

chemokine.   

 

CXCR2 directly interacts with VASP  

 The EVH2 domain of VASP interacts with a number of proteins including 

actin.  Therefore, it was of interest to investigate whether the interaction between 

CXCR2 and VASP is direct or occurs indirectly through an additional protein.  

Purified regions of GST-CXCR2 carboxyl-terminus (residues 311-330 or 331-

355) and full length His-tagged VASP were utilized in binding assays.  Purified 

His-VASP interacts specifically with residues 331-355 from the carboxyl-terminus 

of CXCR2 (Figure 30).  These results suggest that CXCR2 directly interacts with 

VASP and this interaction does not require additional adaptors.     

 
 
VASP is phosphorylated on Ser157 and Ser239 in response to CXCL8 
stimulation through PKA- and PKC-mediated signaling pathways 
  

Immunoblotting for VASP following immunoprecipitation with CXCR2 

antibody revealed an increased amount of the higher molecular weight band of 
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Figure 30:  Purified His6-VASP interacts specifically with amino acids 331-
355 from the CXCR2 carboxyl-terminus.   
96-well polystyrene plates were coated with 3μg/ml GST, GST-CXCR2 311-330, 
or GST-CXCR2 331-355.  Wells were blocked with 0.5%Tween/0.5%TritonX-
100/PBS and incubated with various concentrations of His-VASP (0.06 ng/ml-60 
ng/ml).  Bound His-VASP was detected using a nickel activated HRP.  ABTS 
substrate was added and plates were read at 405nm.  The assay was performed 
in triplicate. His-VASP binding to GST-CXCR2 331-355 was statistically higher 
than to GST alone or GST-CXCR2 311-330.   Statistical significance in Abs 
405nm of GST versus CXCR2 311-331 versus CXCR2 331-355 is indicated by 
the astericks (p-value ≤ 0.05, Mann Whitney U test).  Data shown are 
representative of at least three separate experiments.        
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VASP present in immunoprecipitated samples, which represents VASP that is 

phosphorylated (Figure 28B).  In addition, there is an increase in the overall 

amount of the phosphorylated form of VASP in samples stimulated with CXCL8, 

suggesting that VASP is phosphorylated in response to CXCL8 stimulation.  To 

confirm that the higher molecular weight band was indeed representative of 

VASP phosphorylation upon CXCL8 stimulation, western blot analysis was 

performed on lysates from vehicle and CXCL8 stimulated cells using a phospho-

Ser157 VASP-specific antibody (Figure 31A).  In addition, VASP was 

phosphorylated on Ser239 in response to CXCL8 stimulation based upon 

western blot analysis and detection with a phosphor-serine 239-specific antibody 

(Figure 31B). 

In order to determine what signaling pathways mediate the 

phosphorylation of VASP on Ser 157, phosphorylation was examined upon 

CXCL8 stimulation in cells treated with the PKA inhibitor, H89 or the broad 

classical PKC inhibitor Ro-32-0432.  Basal phosphorylation of VASP is 

significantly inhibited by H89 treatment and CXCL8-induced VASP 

phosphorylation on Ser157 is also significantly inhibited by pretreatment with H89 

(Figure 32A and 32B).  Although not as striking, there is also inhibition of both  

basal and CXCL8-induced VASP phosphorylation at serine 157 upon treatment 

with Ro-32-0432 (Figure 32C and 32D).  This suggests that basal 

phosphorylation at Ser157 is largely PKA-mediated and stimulation with CXCL8 

activates PKA-mediated signaling pathways.    
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Figure 31: VASP is phosphorylated on Ser157 and Ser 239 in response to 
CXCL8 stimulation.   
HL-60 cells stably expressing CXCR2 were stimulated with vehicle (Untreated) or 
100 ng/ml CXCL8 for 1 minute or 5 minutes.  Cell lysates were subjected to SDS-
PAGE and western blot analysis (IB) using antibodies specific for VASP 
phospho-serine 157 (A) or VASP phosho-serine 239 (B).  Data shown are 
representative of three separate experiments.     
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Figure 32:  Phosphorylation of VASP upon CXCL8 stimulation is mediated 
through PKA and PKC.   
(A) Western blot analysis of lysates from HL-60 cells stably expressing CXCR2 
pretreated with DMSO (vehicle) or 20μM H89 for 60 minutes and stimulated with 
vehicle (0 minutes) or 100 ng/ml CXCL8 for 1 minute or 5 minutes using 
antibodies specific for VASP and VASP phospho-serine 157 (B) Quantitation of 
normalized density of VASP phospho-serine157 in DMSO treated samples 
versus 20μM H89 treated samples.  Statistical significance of DMSO versus H89 
treatment is indicated by the asterick (p-value ≤ 0.05, Mann Whitney U test) (C) 
Western blot analysis of lysates from HL-60 cells stably expressing CXCR2 
pretreated with DMSO (vehicle) or 10 μM Ro-32-0432 for 30 minutes and 
stimulated with vehicle (0 minutes) or 100 ng/ml CXCL8 for 1 minute or 5 minutes 
using antibodies specific for VASP and VASP phospho-serine 157 (D) 
Quantitation of normalized density of VASP phospho-serine157 in DMSO treated  
samples versus 10μM R032-0432 treated samples (E) Western blot analysis of 
lysates from HL-60 cells stably expressing CXCR2 pretreated with DMSO 
(vehicle), 5 μM Rottlerin for 15 minutes, or 10 μM Ro-32-0432 for 30 minutes and 
stimulated with vehicle (0 minutes) or 100 ng/ml CXCL8 for 1 minute or 5 minutes 
using antibodies specific for VASP and VASP phospho-serine 239 (F) 
Quantitation of normalized density of VASP phospho-serine239 in DMSO treated 
samples versus 5μM Rottlerin treated samples.  Statistical significance of DMSO 
versus Rottlerin treatment is indicated by the asterick (p-value ≤ 0.05, Mann 
Whitney U test) (G) Quantitation of normalized density of VASP phospho-
serine239 in DMSO treated samples versus 10μM R032-0432 treated samples. 
Data shown are representative of at least three separate experiments.      
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The pathways that mediate the phosphorylation of VASP at Ser239 were 

also investigated using the PKA inhibitor H89, the broad classical PKC inhibitor 

Ro-32-0432, and the specific PKCδ inhibitor Rottlerin.  No effect on basal or 

CXCL8-induced phosphorylation at Ser239 was observed with H89 treatment.  In 

contrast, CXCL8-induced phosphorylation of VASP on Ser239 was almost 

completely ablated with pretreatment with the PKCδ-specific inhibitor Rottlerin 

(Figure 32E and 32F).  The broad PKC inhibitor Ro-32-0432 (Figure 32E and 

32G) also inhibited this phosphorylation although this was not significant.  This 

suggests that phosphorylation of VASP on Ser239 occurs through a PKCδ-

mediated signaling pathway.      

These results indicate that CXCL8 stimulation of CXCR2 results in 

activation of both PKA and PKC which are responsible for phosphorylation of 

VASP at serine residues 157 and 239.  In addition, phosphorylation of VASP on 

one or more of these residues may regulate the interaction between CXCR2 and 

VASP.         

 

Phosphorylation of VASP on Serine 239 regulates the interaction between 
CXCR2 and VASP  

 
Double homozygous mutant VASP/Mena mouse embryonic fibroblasts 

that also lack EVL expression (MVD7 cells) (Bear et al., 2000) were utilized in the 

following studies.  These cells provide a valuable system in which to study 

Ena/VASP function because they lack expression of all Ena/VASP family 

members and various GFP-tagged murine VASP deletion mutants and domains 
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can be re-expressed in these cells to investigate the roles of the various 

domains.  In order to determine whether phosphorylation of the serine and 

threonine residues in the EVH2 domain of VASP mediate its interaction with 

CXCR2, GST pull-down reactions were performed with lysates from MVD7 cells 

stably expressing GFP-tagged phosphorylation-deficient murine VASP.  As 

shown in Figure 33A, mutation of both serine 235 and threonine 274 to alanine 

results in loss of GST-CXCR2 carboxyl-terminus binding.  Interestingly, mutation 

of serine 153 in combination with either of the residues in the EVH2 domain does 

not result in loss of binding to GST-CXCR2 carboxyl-terminus, suggesting that 

phosphorylation of serine 235 and threonine 274 of VASP is important for 

CXCR2 binding.   

We next sought to determine whether whether the phosphorylation 

induces a favorable conformational change necessary for interaction with CXCR2 

or if the phosphorylated residues in the EVH2 domain actually serve as the 

interaction site.  In order to distinguish between these possibilities, purified His6-

tagged VASP EVH2 domain was phosphorylated in vitro with the catalytic subunit 

of PKA.  The phosphorylated VASP EVH2 domain was then used to determine 

the effects on binding to GST-CXCR2 331-355.  Incubation of His6-VASP EVH2 

domain with the PKA catalytic subunit results in robust phosphorylation on serine 

235 as indicated by western blot with a phospho-specific antibody (Figure 33B).  

Importantly, phosphorylation of the His6-VASP EVH2 domain results in a 

significant increase in the binding of GST-CXCR2 331-355 (Figure 33C).  These  
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Figure 33:  Phosphorylation of VASP on Serine 239 regulates the 
interaction between CXCR2 and VASP.   
(A) Western blot analysis for GFP (IB) of GST pulldowns with GST or GST-
CXCR2 carboxyl-terminus using lysates from MVD7 cells stably expressing GFP-
VASP WT, S153A/S235A, S153/T274A, and S235A/T274A (B) Western blot 
analysis of purified His6-VASP EVH2 domain incubated with catalytic subunit of 
PKA with and without ATP using a phospho-Ser235-specific antibody (C) Binding 
of His6-VASP EVH2 domain incubated with and without ATP to either GST or 
GST-CXCR2 331-355.  Binding was detected by measuring absorbance at 405 
nm.  Statistical significance of binding to GST-CXCR2 with ATP versus without 
ATP is indicated by the asterick (p-value ≤ 0.05, Mann Whitney U test).  Data 
shown are representative of three separate experiments.             
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data demonstrate that phosphorylation of residues in the VASP EVH2 domain 

mediate the interaction with CXCR2.   

 

CXCR2 carboxyl-terminus preferentially interacts with VASP over Mena and EVL  

 To more specifically identify the domain of VASP that is necessary for 

CXCR2 binding, GST pull-down experiments were performed using the purified 

CXCR2 carboxyl-terminus and lysates from MVD7 cells expressing GFP-VASP 

domains and deletion mutants.  Because the EVH1 and EVH2 domains of the 

three Ena/VASP family members are highly conserved, we investigated whether 

the CXCR2 interaction was specific for VASP or could occur with other family 

members.  GST pulldown experiments were performed using the carboxyl-

terminus of CXCR2 and lysates from MVD7 stably expressing GFP-VASP, -Mena, 

or –EVL.  CXCR2 preferentially interacted with GFP-VASP as compared to GFP-

Mena and –EVL (Figure 34).  This suggests that CXCR2 may interact with a 

domain specific for VASP and does not likely occur through a conserved region 

among the family members.   

 

CXCR2 interaction with VASP occurs through the VASP EVH2 domain and 
requires the coiled-coil region 

 
In order to determine the region of VASP that is necessary for the CXCR2 

interaction, a series of GST pulldown reactions were performed using the 

carboxyl-terminus of CXCR2 and lysates from MVD7 cells stably expressing GFP-

EVH1 or -EVH2 domains.  Lysates from cells that express GFP-VASP in which  
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Figure 34:  CXCR2 preferentially interacts with VASP as opposed to Mena 
or EVL.   
Western blot analysis for GFP (IB) of GST pulldowns with GST or GST-CXCR2 
carboxyl-terminus using lysates from MVD7 cells stably expressing GFP-VASP,  
-Mena, or –EVL.  Data shown are representative of three separate experiments.   
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the central proline-rich region was deleted were also utilized in pulldown 

reactions.  The GFP-EVH2 domain of VASP efficiently interacted with the GST- 

carboxyl-terminus of CXCR2 in pulldown reactions (Figure 35A).  The EVH1 

domain was not sufficient for binding and deletion of the proline-rich region of 

VASP did not ablate binding, suggesting that these regions are not important for 

the CXCR2 interaction.   

 In order to identify the precise region necessary for interaction with 

CXCR2, additional GST pulldown reactions were performed using lysates from 

MVD7 cells expressing GFP-VASP in which the F-actin binding (FAB) and 

tetramerization coiled-coil (COCO) regions were deleted.  Deletion of the FAB 

region has no effect on GST-CXCR2 carboxyl-terminus binding (Figure 35B).  In 

contrast, deletion of the tetramerization COCO region completely eliminates the 

interaction with CXCR2, suggesting that either tetramerization of VASP creates 

the actual binding site for CXCR2 or tetramerization maintains VASP in an 

orientation that is essential for the interaction with CXCR2.  The latter is more 

likely the possibility since GST pulldown reactions with lysates from MVD7 cells 

expressing a reverse coiled-coil (LH COCO) VASP mutant also reveal a binding 

deficiency (Figure 35C).  These results further suggest that phosphorylated 

residues in the EVH2 domain of VASP are sufficient to mediate the interaction 

with CXCR2 and establish that the right-handed coiled-coil conformation that 

mediates tetramerization of VASP is critical for the interaction with CXCR2.        
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Figure 35: CXCR2 interaction with VASP occurs through the VASP-EVH2 
domain and requires the coiled-coil region.   
Western blot analysis for GFP (IB) to detect GFP-VASP of GST pulldowns with 
GST or GST-CXCR2 carboxyl-terminus using (A) lysates from MVD7 cells stably 
expressing GFP-VASP-EVH1, -VASP-EVH2, or –VASP-∆Pro (deletion of proline-
rich region) (B) lysates from MVD7 cells stably expressing GFP-VASP-EVH2-WT, 
-∆COCO (coiled-coil deletion), or -∆FAB (F-Actin binding domain deletion) (C) 
lysates from MVD7 cells stably expressing GFP-VASP-WT or –LHCOCO 
(reversed coiled-coil).  Data shown are representative of three separate 
experiments. 
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F-Actin is necessary for localization of VASP to membrane ruffles and interaction 
with CXCR2 

 

The phosphorylation of VASP on serine and threonine residues in the 

EVH2 domain interferes with its ability to interact with F-actin (Barzik et al., 2005;  

Harbeck et al., 2000; Laurent et al., 1999).  In addition, we have shown that 

phosphorylation of VASP on serine residue 239 significantly enhances the 

VASP/CXCR2 interaction.  These results suggested that CXCR2 and F-actin 

might be mutually exclusive in their binding to VASP.  In order to investigate this 

hypothesis, we treated cells with Cytochalasin D to disrupt F-actin, 

immunoprecipitated CXCR2, and examined whether an increased amount of 

VASP was associated with CXCR2.  In contrast to predicted results, 

Cytochalasin D treatment disrupts the CXCR2/VASP interaction (Figure 36A).  

Importantly, this disruption was not due to lack of VASP phosphorylation in 

response to CXCL8 as robust phosphorylation at serine residues 157 and 239 is 

still occurs with Cytochalasin D treatment (Figure 36B).  These data indicate that 

not only is the VASP interaction with F-actin not competitive with CXCR2 but that 

the presence of F-actin is necessary for VASP to interact with CXCR2.  

Furthermore, pulldown experiments for which proper intracellular localization is 

not necessary, with the CXCR2 carboxyl-terminus and lysates from MVD7 cells 

expressing a VASP-FAB deletion mutant did not demonstrate a deficiency in 

binding. These data in combination suggest that the interaction of VASP with F-

actin is necessary for proper VASP localization to membrane ruffles and 

subsequent interaction with CXCR2.  In order to test this, we treated cells with  
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Figure 36:  F-actin is necessary for localization of VASP to membrane 
ruffles and interaction with CXCR2.   
Cells were pretreated for 30 minutes with 25 nM cytochalasin D (Cyto D) or 
DMSO (vehicle) and stimulated with vehicle (Mock, Unt) or 100 ng/ml CXCL8 for 
1 minute (A) Lysates were incubated with normal rabbit IgG- (Mock IgG) or rabbit 
anti-CXCR2 antibody-coupled sepharose.  Immunoprecipitated proteins were 
eluted with Laemmli sample buffer. Samples were analyzed by SDS-PAGE and 
western blot (IB) for CXCR2 and VASP (B) Western blot analysis (IB) using 
antibodies specific for VASP phospho-serine 157 or VASP phosho-serine 239 of 
lysates (C) Immunofluorescence confocal images of CXCR2, VASP, and F-Actin 
staining in differentiated HL-60 cells stably expressing CXCR2 and stimulated 
directionally with 50 ng/ml CXCL8 in Zigmond chamber for 5 minutes.  The arrow 
indicates direction of CXCL8.  Overlay image is pseudocolored where green is 
VASP, red is CXCR2, and blue is F-Actin.  Images were processed using 
Photoshop (Adobe Systems, San Jose, CA). Bars, 5μm.  Data shown are 
representative of three separate experiments.     
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Cytochalasin D, stimulated directionally with CXCL8, and examined localization 

of VASP.  Cells treated with Cytochalasin D exhibited largely cytoplasmic VASP 

distribution and diminished recruitment of VASP to leading edge membrane 

ruffles with CXCR2 (Figure 36C).  The requirement for F-actin to properly localize  

VASP for interaction with CXCR2 is illustrated by loss of co-immunoprecipitation 

and recruitment of VASP to membrane ruffles with Cytochalasin D treatment. 

 

VASP is essential for efficient CXCL8-mediated leukocyte recruitment in vivo.   

 To assess the functional relevance of the CXCR2/VASP interaction in 

physiological processes, mice with a homozygous deletion of VASP were utilized 

in a peritoneal model of leukocyte recruitment.  Three VASP -/- mice and three 

age-matched VASP +/+ mice were administered an intraperitoneal injection of 

1ml sterile saline (0.85% NaCl) or 50 ng CXCL8.  Four hours post-injection, 

peritoneal lavage was performed and the number of leukocytes from the lavage 

were counted with a hemacytometer.  To distinguish between general defects in 

cell motility and defects in CXCL8-mediated chemotaxis, mice (three of each 

genotype) were also injected with 3% thioglycolate broth to induce peritoneal 

inflammation.  VASP +/+ mice exhibited robust peritoneal leukocyte recruitment 

upon CXCL8 and thioglycolate injection (Table 3) (Figure 37).  In contrast, 

peritoneal leukocyte recruitment in response to CXCL8 injection in VASP -/- mice 

was ablated.  Interestingly, VASP -/- mice have a higher number of basal 

leukocytes in the peritoneal cavity (see saline control numbers in Table 3).   
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Table 3: VASP is essential for efficient CXCL8-mediated leukocyte 
recruitment in vivo.   
Three VASP +/+ and VASP -/- mice were administered intraperitoneal injections 
with vehicle (sterile saline) 50 ng CXCL8 or 3% thioglycolate broth.  Infiltrated 
cells were harvested by peritoneal lavage 4 hours post-injection and total cell 
numbers were counted.  Values represent total cell numbers (106) ± SEM.   
 

 
 

 

Figure 37:  VASP -/- mice exhibit a significant decrease in CXCL8-mediated 
leukocyte recruitment.   
Fold increase in total leukocyte number over saline control upon intraperitoneal 
injection of CXCL8 and thioglycolate.  Statistical significance of CXCL8-mediated 
increase in total leukocyte number in VASP +/+ mice versus VASP -/- mice is 
indicated by the asterick (p-value ≤ 0.05, Mann Whitney U test).  Data shown are 
the average from three animals of each genotype.  Bars represent SEM.             
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Previous studies have shown that fibroblasts lacking Ena/VASP proteins exhibit 

enhanced random motility (Bear et al., 2000).  In addition, introduction of 

Ena/VASP functional blocking peptides into primary human neutrophils induces 

F-actin in resting cells while F-actin formation and chemotaxis in response to 

fMLP was reduced (Anderson et al., 2003).  Therefore, it is possible that random 

motility in leukocytes from VASP -/- mice is enhanced, while CXCR2-mediated 

chemotactic responses are impaired.  Indeed, there was a statistically significant 

difference in the fold increase in leukocyte number over saline controls between 

VASP +/+ and VASP -/- animals (Figure 37).  Peritoneal leukocyte recruitment in 

response to thioglycolate injection in VASP -/- was also impaired, although not as 

severely as in response to CXCL8 (Table 3).  This suggests that other non-

CXCL8-mediated mechanisms may be recruiting leukocytes with thioglycolate 

injection.  We also examined the number of neutrophils present in the peritoneal 

lavages by measuring myeloperoxidase (MPO) activity.  MPO is most abundant 

in neutrophil granules and measurement of MPO activity correlates to neutrophil 

number.  A deficiency in the CXCL8-mediated neutrophil recruitment was 

observed in the VASP -/- mice as compared to the VASP +/+ mice (Table 4) 

(Figure 38).  There was a trend for difference in the fold increase of MPO activity 

over saline controls between VASP +/+ and VASP -/- and upon examining 

additional animals, it is expected that these differences will be statistically 

significant.  These results imply that CXCL8-mediated neutrophil responses 

specifically are largely dependent on VASP.  While the number of mice available  
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Table 4:  Number of peritoneal recruited neutrophils is decreased in  
VASP -/- mice.   
Total neutrophil number quantitated by MPO assay.   
Values represent MPO activity (abs 490 nm/time (min)) ± SEM.   
 

 
 
 

 

Figure 38:  VASP -/- mice exhibit a decrease in CXCL8-mediated neutrophil 
recruitment.   
Fold increase in MPO activity over saline control upon intraperitoneal injection of 
CXCL8.  Data shown are the average from three animals of each genotype.  
Bars represent SEM.   
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for these studies was limited, these data suggest the CXCR2/VASP interaction 

has physiological importance in leukocyte trafficking to sites of inflammation.                             

 

Discussion 

 We have demonstrated for the first time a direct interaction between a 

chemokine receptor and a member of the Ena/VASP family of proteins.  This 

interaction represents a direct link between CXCR2 and a regulator of the actin 

cytoskeleton and also potentially serves as a mechanism to link CXCR2 to other 

cellular signaling pathways, which has important implications for the current 

understanding of the chemotactic response.  Upon CXCR2 activation by 

chemokine, a number of intracellular signaling pathways, such as the MAP 

kinase, PI3 kinase, and Ca2+-dependent pathways are initiated through 

uncoupling of the G βγ subunits from the heterotrimeric complex.  These 

signaling events are essential for the chemotactic response.  Data from these 

studies indicate that VASP is a novel CXCR2-interacting protein.   

We have also demonstrated that VASP is phosphorylated upon CXCL8 

stimulation on serine residues through PKA- and PKC-mediated pathways.  More 

specifically, VASP is phosphorylated on serine residue 239 by PKC-δ and this 

phosphorylation enhances the interaction with CXCR2.  This suggests that PKC-

δ is an important intermediate player in the CXCR2/VASP interaction.  In 

addition, the fact that CXCL8-mediated leukocyte recruitment is severely 

impaired in VASP -/- mice suggests a novel essential role for PKC-δ-mediated 

signaling events in the chemotactic response.   
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 The phosphorylation of VASP in the EVH2 domain mediates its 

interaction with actin.  Phosphorylation of VASP in the EVH2 domain reduces its 

filament bundling activity (Barzik et al., 2005) and impairs actin fiber formation 

(Zhuang et al., 2004).  Therefore, it is of great interest that CXCL8 stimulation 

induces VASP phosphorylation on serine residue 239 and that this affects the 

binding of CXCR2 to VASP.  If binding of VASP to CXCR2 is mutually exclusive 

with the F-actin interaction, this presents perhaps a novel role for VASP in 

mediating the CXCR2-mediated chemotactic response.  Alternatively, binding of 

phosphorylated VASP to CXCR2 may allow interaction with F-actin even when 

VASP is phosphorylated in the EVH2 domain.  Our data using the VASP-∆COCO 

(coiled-coil) and -LH-COCO mutants in pulldown experiments suggest that the 

CXCR2 interaction domain is contained within this region and the requirement for 

phosphorylation in the EVH2 domain allows a favorable conformation for this 

interaction to occur via the COCO domain.  This is a likely scenario as 

preliminary structural studies (unpublished results from Dr. Dorit Hanein at 

Burnham Institute) examining VASP interaction with F-actin place the coiled-coil 

domain in a freely accessible conformation (Figure 39).  Recent studies have 

examined the role of phosphorylation of VASP on serine 239 on nitric oxide-

induced lamellipodia protrusions (Lindsay et al., 2007).  This study indicated that 

phosphorylation on serine 239 disrupts VASP localization to lamellipodial edge 

and retraction of lamellipodia.  These observations in combination with our data 

present an intriguing possibility that CXCR2 interaction allows phosphorylated  
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Figure 39: Structural model of VASP tetramer in complex with F-actin.   
This is a preliminary model of the structure of VASP tetramer in complex with  
F-actin provided by Dr. Dorit Hanein at Burnham Institute.  The numbers 
represent the amino acid residues of VASP.  Colors represent different VASP 
domains where light blue is the EVH1 domain, green is the central poly-proline 
domain, yellow is the G-Actin binding (GAB) domain, red is the F-actin binding 
(FAB) domain, and pink is the coiled-coil (CC) domain.  The dark blue represents 
F-actin and the position of the barbed end is indicated.  Note the freely 
accessible coiled-coil domain.  The * symbol indicates a possible interaction site 
for CXCR2.          
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VASP to remain localized to the plasma membrane.  Currently, studies are 

underway to determine if the presence of the CXCR2 carboxyl-terminus 

enhances the filament bundling activity of the phosphorylated VASP EVH2 

domain.   

Furthermore it is unlikely that CXCR2 binding to VASP inhibits F-actin 

binding, representing competition between the two proteins.  Our data 

demonstrate that treatment of cells with cytochalasin D ablates co-

immunoprecipitation of VASP with CXCR2.  In addition, VASP does not 

accumulate in plasma membrane ruffles with CXCR2 with cytochalasin D 

treatment.  This finding is consistent with previously published results illustrating 

displacement of Ena/VASP proteins from the leading edge upon low dose 

cytochalasin D treatment (Bear et al., 2002).  These results suggest that barbed  

ends of F-actin are required for targeting of VASP to the membrane where the 

interaction with CXCR2 takes place.        

Due to its multi-domain structure VASP also has an important role as an 

adaptor molecule.  VASP interacts with several proteins in the focal adhesions 

through its EVH1 domain and a number of SH3 domain-containing proteins 

through its proline-rich region.  Not only does the interaction of VASP with 

CXCR2 represent a direct link to the actin cytoskeleton, which has important 

implications for the chemotactic response, but it may also serve as an adaptor 

linking CXCR2 to several additional potential mediators of the chemotactic 

response.  For example, Ena/VASP proteins are known to interact with src 

homology 3 (SH3) domain-containing proteins, such as the Src family of kinases, 
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through their central proline-rich region (Ahern-Djamali et al., 1999; Gertler et al., 

1995).  Src tyrosine kinases play a role in the neutrophil chemotactic response 

(Di Cioccio et al., 2004; Montecucco et al., 2006; Zhang et al., 2005) 

(unpublished observations in Richmond laboratory).  The EVH1 domains of 

Ena/VASP proteins are responsible for binding proteins that harbor a F/LPPPP 

motif, including several focal adhesion proteins (Brindle et al., 1996; Carl et al., 

1999; Drees et al., 2000; Krause et al., 2000; Niebuhr et al., 1997) and recently 

lamellipodin (Lpd) (Krause et al., 2004).  Lpd plays a crucial role in lamellipodial 

dynamics and is targeted to the leading edge in migrating cells through its PH 

domain that specifically interacts with phosphatidylinositol 3,4-bisphosphate 

(PI(3,4)P2) (Krause et al., 2004). 

All Ena/VASP family members share a common domain structure with all 

three members containing EVH1, EVH2, and proline-rich regions as well as a 

conserved serine phosphorylation site flanking the proline-rich region.  Moreover, 

all three members can hetero-tetramerize via their EVH2 domains (Bachmann et 

al., 1999).  Therefore, the observation that CXCR2 specifically interacts with the 

EVH2 domain of VASP is surprising and suggests a unique characteristic of this 

region in VASP.  Little is known regarding the role of the unique threonine 

phosphorylation site in the EVH2 domain of VASP.  However, results from the 

pulldown reactions using lysates from MVD7 expressing the double S235/T274A 

mutation indicate a loss of CXCR2 binding to this mutant.  This observation, 

combined with the fact that the CXCR2 interaction is highly specific for VASP, 

suggests that perhaps phosphorylation at both EVH2 domain sites is important 
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for the interaction.  Lack of binding to EVL is not as surprising since it lacks the 

serine phosphorylation site in the EVH2 domain that we have shown enhances 

VASP interaction with CXCR2.  It is intriguing that despite the presence of a 

phosphorylation site in the EVH2 domain of Mena, it also fails to interact with 

CXCR2.  These findings, together with the observation of impaired leukocyte 

recruitment in VASP -/- mice, argue for a unique function of VASP in CXCR2-

mediated responses in leukocytes.  Unique roles for VASP in other cellular 

systems have been identified previously.  For example, cardiac fibroblasts 

isolated from VASP -/- mice exhibit highly dynamic lamellipodia and increased 

cell spreading accompanied by sustained Rac activation and decreased cell 

motility (Garcia Arguinzonis et al., 2002).  In addition, studies utilizing VASP 

knockdown by siRNA revealed that VASP is critical for migfilin-mediated 

regulation of cell migration in breast cancer cells (Zhang et al., 2006).   

We have identified for the first time that VASP is a novel CXCR2-

interacting protein.  Moreover, we have demonstrated that VASP phosphorylation 

on two distinct sites is induced upon CXCL8 stimulation.  These phosphorylations 

are mediated through PKA- and PKC-dependent signaling pathways initiated by 

ligand binding to receptor.  Phosphorylation of VASP on serine 239 enhances 

CXCR2 interaction with VASP, which likely occurs through the coiled-coil 

domain.  This interaction requires barbed-end F-actin to properly localize VASP 

to the plasma membrane.  Our findings demonstrate a potentially novel role for 

CXCR2 in mediating interaction of phosphorylated VASP with F-actin.  Finally, 
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VASP -/- mice exhibit a severely impaired CXCR2-mediated peritoneal leukocyte 

recruitment indicating a unique role for VASP in inflammatory responses.          
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CHAPTER V 

 

DELETION OF THE CARBOXYL-TERMINUS OF CXCR4 LEADS TO 

CONSTIUTIVE RECYLCING AND INCREASED BREAST TUMOR GROWTH 

 

Introduction 

The CXCR4 chemokine receptor has recently been shown to be important 

in breast cancer metastasis (Chen et al., 2003b; Li et al., 2004; Liang et al., 

2005; Muller et al., 2001).  The expression of this receptor on tumor cells may 

mediate preferential metastasis to target organs that express the ligand for this 

receptor, stromal-derived factor-1 alpha (SDF-1α), also known as CXCL12.  

CXCR4 is upregulated in metastatic breast cancer cells and neutralization of the 

CXCR4/SDF-1α interaction with CXCR4-specific antibodies impairs the 

metastasis of breast cancer cell lines (Muller et al., 2001).  In addition, both RNAi 

of CXCR4 and the synthetic polypeptide TN14003 that mimics SDF-1α have 

been shown to individually inhibit primary tumor growth and metastasis of the 

highly metastatic MDA-MB-231 breast cancer cell line  (Chen et al., 2003b; 

Lapteva et al., 2005; Liang et al., 2005).   

Although, the effectiveness of inhibitors of CXCR4 such as RNAi or small 

molecule inhibitors to reduce metastasis of aggressive breast cancer cell lines 

has been extensively characterized, the role of CXCR4 in the switch from an 

adenocarcinoma to a metastatic carcinoma remains to be elucidated.  HER2 

(neu) is a potent oncogene and plays a major role in the progression of a number 
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of human breast cancers (Slamon et al., 1989; Yarden and Sliwkowski, 2001; Yu 

and Hung, 2000).  It has recently been reported that upregulation of CXCR4 is 

essential for human epidermal growth factor receptor (HER2)-mediated tumor 

metastasis (Li et al., 2004).  In addition, SDF-1α stimulation of MDA-MB-231 

breast cancer cells leads to activation of matrix metalloproteinases MMP-2 and 

MMP-9 (Fernandis et al., 2004).  These findings further validate the possibility of 

targeting CXCR4 in the treatment of metastatic breast cancer.   

CXCR4 antibodies have limited therapeutic potential because a majority of 

the antibodies are directed against conformation-specific epitopes of CXCR4.  

This may result in limited effectiveness in a clinical setting.  Similarly, RNAi 

technology is not particularly stable and may prove to be a challenge as a 

feasible therapeutic modality.  Therefore, it is necessary to develop novel 

approaches to target CXCR4 in metastatic breast cancer.  The internalization of 

chemokine receptors plays an important role in chemotaxis and activation of 

intracellular signaling (Ben-Baruch et al., 1995; Kraft et al., 2001; Richardson et 

al., 2003; Richardson et al., 1998; Roland et al., 2003; Signoret et al., 1997; 

Zimmermann et al., 1999).  Two adaptor molecules that are involved in CXCR4 

internalization are β-arrestin and the heterotrimeric protein complex Adaptin-2.  

These two adaptors mediate the interaction of the receptor with clathrin and are 

necessary for clathrin-mediated endocytosis.  Investigation into the development 

of alternative strategies to inhibit CXCR4 function has been limited.  We 

hypothesize that targeting CXCR4 internalization by antagonizing its interaction 

with adaptor molecules will inhibit activation of MAP kinase and PI3 kinase 
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pathways, chemotaxis, and metastasis of breast cancer cells in vivo.  We 

propose to target CXCR4 internalization by transducing a peptide derived from 

the carboxyl-terminal domain of CXCR4 containing the Adaptin-2 (AP-2) di-

leucine binding motif into breast cancer cells.  Previous studies using 

mutagenesis of residues in the carboxyl-terminus identified the di-leucine motif 

(Ile-328 and Leu-329) as essential for efficient SDF-1α-mediated CXCR4 

internalization (Orsini et al., 1999).  When these residues are mutated, CXCR4 

internalization is severely impaired.  This study also demonstrated that serine 

residues 324 and 325 were important for CXCR4 internalization (Orsini et al., 

1999).  Moreover, AP-2 binds clathrin and β-arrestin-2 during endocytosis 

(Laporte et al., 1999) and β-arrestin-2 is required for CXCR4-mediated MAP 

kinase activation and chemotaxis (Sun et al., 2002).  Previous studies in our 

laboratory revealed that mutation of the di-leucine motif in the CXCR2 chemokine 

receptor impaired receptor internalization.  As a result, CXCR2-mediated 

chemotaxis was also inhibited (Fan et al., 2001b).  Interestingly, Hip (Hsc/Hsp70 

Interacting Protein) also binds to the leucine rich domain in the CXCR2 carboxyl-

terminus.  Furthermore, CXCR2 and CXCR4 internalization are impaired in cells 

expressing a non-functional mutant of Hip (Fan et al., 2002).  These data suggest 

that the di-leucine motif in the carboxyl-terminus may be important in a number of 

interactions that may regulate internalization.  

These data support the idea that transduction of a peptide containing the 

di-leucine motif of CXCR4 may act as a dominant negative and serve as a novel 

inhibitor of CXCR4 function.  In addition, it may be possible to deliver this peptide 
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in a cell-permeable form as a therapeutic agent in the treatment of metastatic 

breast cancer.  The approach of using receptor domains as dominant negatives 

to interfere with protein-protein interactions has been successfully used in a 

number of instances.  This includes G protein-coupled receptors such as beta-2 

adrenergic receptor (Okamoto et al., 1991) and D2 dopamine receptor (George 

et al., 2003).  Furthermore, it is possible to exogenously deliver the domain as a 

transactivator of transcription (TAT) fusion peptide (Fawell et al., 1994; Mann and 

Frankel, 1991), Antennapedia protein (Derossi et al., 1994), or membrane-

permeable sequence peptide (Zhang et al., 1998).  These peptides contain 

protein transduction domains (PTD).   PTDs are short cationic peptide sequences 

that include the HIV-1 TAT protein.  A number of TAT-fusion proteins have been 

successfully delivered into cells (reviewed in (Lindsay, 2002)).  In addition, TAT-

fusion peptides have the ability to enter non-dividing cells, have high transduction 

efficiency, and low toxicity.  Transduction of peptides inhibits the function of 

biological targets both in vitro and in vivo.  For example, delivery of 

phosphopeptides derived from fibroblast growth factor receptor (FGFR) inhibits 

FGF-stimulated phosphatidylinositol hydrolysis (Hall et al., 1996).  Furthermore, 

the delivery of peptides that block the interaction of NEMO with the IKK complex 

to mice inhibits acute inflammatory responses (May et al., 2000).  This offers a 

unique therapeutic opportunity and may represent an alternative strategy to the 

treatment of metastatic breast cancer. 

In the current study, we sought to investigate whether expression of wild 

type CXCR4 in non-metastatic MCF-7 cells results in increased primary tumor 
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growth and metastatic capacity.  Conversely, we investigated whether expression 

carboxyl-terminally-truncated CXCR4 in MCF-7 cells decreases primary tumor 

growth and metastatsis.  The purpose of these studies was to evaluate the 

feasibility of using peptides derived from the carboxyl-terminus of CXCR4 as a 

novel therapeutic for metastatic breast cancer.  Surprisingly, these studies 

revealed that truncation of the CXCR4 carboxyl-terminus results in enhanced 

proliferation, motility, and metastasis.         

 

Materials and Methods 

 

Cell culture and reagents 

MCF-7 cells (purchased from the American Type Culture Collection, 

Manassas, VA) were maintained in DMEM supplemented with 10% heat-

inactivated FCS and 2 mmol/L L-glutamine. Cells were incubated at 37°C in 

humidified air with 5% CO2. All tissue culture reagents were from Life 

Technologies, Inc. (Rockville, MD).  

 

Plasmid constructs 

pBMN-IRES-EGFP-wild type CXCR4 and -∆CTD CXCR4 plasmids were 

generated previously.  MCF-7 cell lines stably expressing empty vector or these 

plasmids were also generated previously using retroviral infection (Ueda et al., 

2006).   
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CXCR4-mediated chemotaxis assays 

Chemotaxis was assessed using a modified Boyden chamber assay as 

previously described (Neel et al., 2007).  Briefly, a 96-well chemotaxis chamber 

(Neuroprobe, Gaithersburg, MD) and 10µm pore size polycarbonate membranes 

(Neuroprobe, Gaithersburg, MD) coated on both sides with 20 µg/ml human 

collagen type IV were used for chemotaxis assays.  The lower compartment of 

the chamber was loaded with 400µl of 1 mg/ml BSA/DMEM (chemotaxis buffer) 

or CXCL12 diluted in the chemotaxis buffer (2.5–250 ng/ml).  Cells were lifted 

with enzyme-free cell dissociation buffer (Invitrogen, Carlsbad, CA), resuspended 

in chemotaxis buffer, and 1 X 105 cells were added to the top chamber.  The 

chamber was then incubated for 4.5 hours at 37°C in a 5% CO2 atmosphere.  

Cells on the top of the membrane were gently removed prior to fixation.  The 

membrane was fixed with Diff-Quik® fixative (DADE Behring Inc, Miami, FL) and 

stained with 1% Crystal violet.  The number of cells were counted in 20 

microscope fields (20X objective).   

 

Orthotopic nude mouse xenograft mammary fat pad injections 

One week prior to injection MCF-7-wild type-CXCR4 and -∆CTD-CXCR4 

cells were sorted by FACS analysis for equivalent membrane receptor 

expression.  Cells were dissociated using enzyme-free cell dissociation buffer 

(Invitrogen, Carlsbad, CA) and resuspended in sterile saline (0.85% NaCl).  A 

total of 2 X 106 cells in a volume of 30 μl were injected into the cleared mammary 

fat pad of 4-6 week old female athymic nu/nu mice.  A total of five mice were 
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injected for each cell line.  Appearance of tumors was monitored by daily 

palpation and tumor growth was monitored by caliper measurements taken three 

times weekly.  Tumor volume was calculated using the following equation: 

Volume (V) = (L X W2) X 0.5 where L is the longest measurement and W is the 

shortest measurement of the tumor.  Mice were sacrificed when any tumor 

dimension reached 1.5 cm.  Primary tumors, kidneys, liver, and spleen were 

harvested.  Lungs were perfused with Bouin’s fixative, extracted, incubated for 48 

hours in fixative, photographed to document surface metastases, washed with 

50% ethanol, and embedded in paraffin for sectioning.    

 

Tissue sectioning and immunohistochemical staining of paraffin embedded tissue 

 Tissue sections were deparaffinized with xylene, re-hydrated, and antigen 

retrieval was performed using 10mM sodium citrate buffer, pH 6.0 and boiling.  

Slides were then blocked with 10% normal donkey serum (Jackson 

Immunoresearch Laboratories, Inc., West Grove, PA) and incubated overnight at 

4˚C in polyclonal rabbit anti-GFP antibody (Abcam, Cambridge, MA) or normal 

rabbit IgG isotype control antibody (Jackson Immunoresearch Laboratories, Inc., 

West Grove, PA).  The slides were then incubated with a biotinylated secondary 

antibody and streptavidin-HRP in the R.T.U. Elite Vectastain ABC Kit (Vector 

Laboratories, Burlingame, CA).  Staining was then detected using a 3,3’-

diaminobenzidine (DAB) detection reagent (Vector Laboratories, Burlingame, 

CA).  Slides were counterstained with hematoxylin (Sigma, St. Louis, MO).  
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Images were captured on a Zeiss Axiophot upright microscope (Carl Zeiss 

MicroImaging, Inc., Thornwood, NY).    

 

Quantitation of GFP-positive immunohistochemical tissue staining 

 GFP-positive staining in lung sections from mice was quantitated in a total 

of 60 randomly selected 20X microscopic fields from all three mice from each 

group.  Quantitation was performed using the Metamorph Imaging System 

software package (Molecular Devices Corporation, Sunnyvale, CA).  Color 

threshold levels were kept consistent for analysis of all samples.  Percent of total 

area positive for GFP staining was quantitated.      

  

Immunofluorescent staining and confocal microscopy 

Cells were immunostained as described previously (Neel et al, 2007).  The 

primary antibodies used were monoclonal αCXCR4 (clone 12G5, MAB170, R&D 

Systems), αCXCR4 (clone 44708, MAB171, R&D Systems), and αRab11a (a gift 

from Dr. James Goldenring, Vanderbilt University Medical School, Nashville, TN). 

These proteins were visualized with appropriate fluorophore-conjugated 

secondary antibodies. Fluorescent images were captured on a LSM-510 Meta 

laser scanning microscope (Carl Zeiss MicroImaging, Inc., Thornwood, NY).  

 

Fluorescence-activated cell sorting analysis 

Cells were lifted with cell dissociation buffer (Invitrogen, Carlsbad, CA), 

labeled with αCXCR4 antibody (12G5, MAB170), and then incubated with 
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phycoerythrin (PE)–conjugated α-mouse IgG (Jackson ImmunoResearch, 

Westgrove, PA). To monitor background staining for the primary and secondary 

antibodies, cells were incubated with normal mouse IgG (Jackson 

ImmunoResearch, Westgrove, PA) followed by PE-conjugated α-mouse IgG. 

Cells were washed and a total of 20,000 stained cells were analyzed using a 

FACSCalibur flow cytometer (Becton Dickinson, Mansfield, MA). 

 

Statistical Analysis 

 Statistically significant differences between two groups were determined 

using the non-parametric two-tailed Mann Whitney U test (Wilcoxin rank sum 

test).  Significant differences between more than two groups were determined 

using non-parametric analysis of variance (ANOVA) (Kruskal-Wallis test).  

ANOVA was followed by the Dunn’s post test to determine the p-value for the 

significance between two groups.  All statistical analysis was performed using 

GraphPad Prism 5 software (GraphPad software, Inc., San Diego, CA).   

 

Results 

 

MCF-7 cells expressing ∆CTD (carboxyl-terminally deleted)-CXCR4 exhibit 
enhanced cell motility and lack of responsiveness to CXCL12 
  

MCF-7 cells stably expressing empty vector, WT-CXCR4, or ∆CTD-

CXCR4 were generated to assess the effects of CXCR4 truncation on breast 

cancer cells growth, signaling, motility, tumorigenesis, and metastasis.  

Expression of the CXCR4 receptor lacking the carboxyl-terminus results in 
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increased cell proliferation and constitutive MAPK signaling (Ueda et al., 2006).  

These data are in contrast to the predication that truncation of the carboxyl-

terminus of CXCR4 would result in deficient CXCR4-mediated responses.  

Furthermore, these results suggest that the carboxyl-terminus of the receptor 

contains a region that may negatively regulate CXCR4-mediated signaling 

events.  

 CXCL12-mediated chemotaxis was examined in the cells expressing 

∆CTD-CXCR4.  As shown in Figure 38, cells expressing WT-CXCR4 exhibited a 

typical bell-shaped CXCL12-mediated chemotactic response.  In contrast, cells 

expressing ∆CTD-CXCR4 displayed enhanced ligand-independent random 

motility that was not affected by presence of CXCL12 (Figure 40).  These data 

suggest that ∆CTD-CXCR4 is constitutively active and insensitive to further 

stimulation by CXCL12.   

 
 
Truncation of the cytoplasmic carboxyl-terminus of CXCR4 results in constitutive 
and accelerated CXCL12-mediated recycling 

   
Binding of certain clathrin adaptor molecules such as β-Arrestin and AP-2 

to serine residues and the di-leucine motif, respectively, in the carboxyl-terminus 

plays an important role in the internalization of CXCR4.  In addition, sequences 

contained within the carboxyl-terminus may be important for mediating 

intracellular trafficking events.  We sought to investigate whether the intracellular 

trafficking of the ∆CTD-CXCR4 receptor was altered.   
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Figure 40:  MCF-7 cells expressing ∆CTD (carboxyl-terminally deleted)-
CXCR4 exhibit enhanced cell motility and lack of responsiveness to 
CXCL12.   
Boyden chamber chemotaxis assay used to assess CXCL12-mediated 
chemotaxis in MCF-7-vector, -WT-CXCR4, and -∆CTD-CXCR4 cells.  The graph 
displays number of cells from twenty separate fields using the 20x objective lens 
± S.E.M.  Data shown are representative from three separate experiments.   
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 CXCR4 recycling dynamics were examined by immunofluorescence 

staining for CXCR4 and the perinuclear recycling compartment marker Rab11a in  

MCF-7 cells stably expressing WT- and ∆CTD-CXCR4.  In unstimulated cells, the 

majority of WT CXCR4 is localized to the plasma membrane.  In contrast, a large 

percentage of ∆CTD-CXCR4 is localized to the Rab11a-positive perinuclear 

recycling compartment (Figure 41).  Upon 30 minutes of CXCL12 stimulation, WT 

CXCR4 is internalized and exhibits a punctate endosomal staining pattern, while 

the majority of ∆CTD CXCR4 strongly co-localizes with Rab11a (Figure 41).  

Finally, WT CXCR4 is predominantly localized to the Rab11a compartment with 

minimal plasma membrane localization following 60 minutes of CXCL12 

stimulation, while ∆CTD CXCR4 is displayed on the plasma membrane at this 

time point.  These data suggest that ∆CTD CXCR4 exhibits constitutive recycling 

in the absence of CXCL12 and the CXCL12-induced recycling is accelerated.   

 

MCF-7 cells expressing ∆CTD-CXCR4 exhibit enhanced tumor growth in vivo 

 In order to assess the potential role of the carboxyl-terminus of CXCR4 in 

primary tumorigenesis and metastasis, an orthotopic nude mouse mammary 

tumor model was employed.  MCF-7 cells stably expressing empty vector, WT 

CXCR4, or ∆CTD CXCR4 were injected into the cleared mammary fat pad of 

female athymic nu/nu mice and primary tumor growth and metastasis to the 

lungs were examined.   
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Figure 41: CXCR4 co-localization with Rab11a in the perinuclear recycling 
compartment following CXCL12 stimulation in MCF-7 cells expressing WT 
CXCR4, or ∆CTD CXCR4.   
Cells were stimulated with vehicle (0.1% BSA/PBS) (Untreated) or 500ng/mL 
CXCL12 for 30min or 60min.  Immunofluorescence staining for CXCR4 
(MAb171) and Rab11a was performed and confocal images were taken with a 
slice thickness of 0.48μm.  These images are representative of at least ten 
images for each cell type and treatment.  Overlay images are pseudocolored 
where red is CXCR4 and green is Rab11a. 
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 Tumor size was monitored over time by caliper measurements.  As 

expected, mice injected with MCF-7 cells expressing ∆CTD-CXCR4 cells 

displayed palpable tumors only one week after injection, while mice injected with 

cells expressing empty vector or WT-CXCR4 had delayed onset of palpable  

tumors (Figure 42A).  Furthermore, the average rate of tumor growth was 

significantly accelerated in mice injected with cells expressing ∆CTD-CXCR4 

(Figure 42A).      

All mice were sacrificed and tumors harvested when any dimension of the 

tumor reached 1.5 cm.  However, analyzing final tumor volume by water 

displacement revealed that tumor final tumor volumes differed among the three 

groups of mice.  Tumors from mice injected with WT-CXCR4 expressing cells 

showed a substantial increase in final tumor volume when compared to tumors 

from mice injected with vector expressing cells.  Furthermore, tumors from mice 

injected with ∆CTD-CXCR4 expressing cells were significantly larger than those 

from mice in the vector expressing group (Figure 42B).         

 

MCF-7 cells expressing ∆CTD-CXCR4 exhibit enhanced metastasis to the lung  

 Because MCF-7 parental cells normally exhibit a minimally invasive 

phenotype (Noel et al., 1991; Thompson et al., 1993), it was of interest to 

determine whether expression of WT- or ∆CTD-CXCR4 results in development of 

metastasis in an orthotopic in vivo model.  These cells contain an IRES site that 

drives the simultaneous expression of GFP with the receptor.  This allows 

metastatic lesions within secondary sites, such as the lung, to be easily identified 
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Figure 42:  MCF-7 cells expressing ∆CTD-CXCR4 exhibit enhanced tumor 
growth in vivo.   
Circles represent MCF-7-vector, squares represent MCF-7-WT-CXCR4, and 
triangles represent MCF-7-∆CTD-CXCR4 expressing tumors.  Each data point 
represents an individual mouse (A) Tumor volume over time.  There is a 
statistically significant increase in the tumor growth rate of cells expressing 
∆CTD-CXCR4 versus those cells expressing vector of WT-CXCR4 as 
determined by ANOVA (p-value < 0.05).  (B) Final tumor volume.  There is a 
statistically significant difference in final tumor volume of mice injected with cells 
expressing ∆CTD-CXCR4 versus those injected with cells expressing vector.  
Each group contains n=3.   
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in these studies.  Lungs extracted from tumor bearing mice were infused with 

Bouin’s fixative and examined for the presence of surface metastatic lesions prior 

to paraffin embedding and sectioning.  As shown in Figure 43A, no surface 

metastatic lesions were visible upon gross examination of the lungs from any of  

the three groups.  However, immunohistochemical staining of lung tissue 

sections with an anti-GFP antibody revealed the presence of micrometastic 

lesions in the lungs (Figure 43B).  A statistically significant increase in GFP-

positive staining (Figure 43C) and a greater from number of metastatic lesions 

(Table 5) were observed in lungs from mice injected with the MCF-7 cells 

expressing ∆CTD-CXCR4 when compared to mice injected with cells expressing 

vector or WT-CXCR4.    

 

Discussion 

 These data reveal that truncation of the cytoplasmic carboxyl-terminus of 

CXCR4 results in constitutive, ligand-independent CXCR4 activity.  This 

constitutive activation is accompanied by increased motility, proliferation, MAPK  

signaling, and recycling.  These findings are quite surprising and are in contrast 

to our original hypothesis that this truncation would decrease CXCR4-mediated 

functions.  However, a similar phenomenon does occur naturally in patients with 

a rare autosomal dominant immune deficiency disease known as WHIM (warts, 

hypogammaglobulinemia, infections, and myelokathexis) syndrome.  This  
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Figure 43:  MCF-7 cells expressing ∆CTD-CXCR4 exhibit enhanced 
metastasis to the lung. 
(A) Images of lungs extracted from mice injected with MCF-7 cells expressing 
empty vector, WT-CXCR4, or ∆CTD-CXCR4 cells and infused with Bouin’s 
fixative.  There were no visible macroscopic surface metastatic lesions on any of 
the lungs from any of the mice in all three groups (B) Images of 
immunohistochemical staining of lung sections using a rabbit IgG control 
antibody or an anti-GFP rabbit antibody taken with 20X objective.  Red arrows 
indicate GFP-positive lesions that were quantitated for each group.  Bars, 100μm 
(C) Quantitation of percent GFP-positive area of 60 randomly selected 20X 
microscopic fields of lung sections from mice injected with cells expressing 
vector, WT-CXCR4, or ∆CTD-CXCR4.  Statistical significance between vector 
and WT-CXCR4 groups versus the ∆CTD-CXCR4 group is indicated by the 
asterick (p-value ≤ 0.05, Mann Whitney U test).     
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Table 5:  Lungs extracted from mice injected with MCF-7 cells expressing 
∆CTD-CXCR4 exhibit an increased number of micrometastatic lesions. 
Number of GFP-positive micrometastatic lesions in lung sections in 30 random 
20X microscopic fields. Numbers represent Mean ±SD. 
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disease causes severe neutropenia and is a result of truncation mutations in 

CXCR4.  This mutant receptor leads to increased motility, calcium flux, and 

recycling in response to CXCL12 in primary human CD34+ cells (Kawai et al., 

2005).  These data are in contrast to our results in breast cancer cells expressing 

the truncated receptor, which exhibit constitutive activation and seem to be 

largely insensitive to further stimulation with CXCL12.  These studies also found 

that there was decreased internalization of the truncated receptor, which the 

authors claim is the cause of enhanced and prolonged signaling.  This 

discrepancy with our results may be a result of the methods used to detect 

receptor internalization.  For example, it may be difficult to distinguish decreased 

internalization from rapid recycling back to the plasma membrane.  In addition, it 

is well established that different monoclonal antibodies directed against CXCR4 

only recognize specific receptor conformations and staining with these antibodies 

only represents a fraction of the total population of CXCR4 (Baribaud et al., 

2001).   

 Cells expressing ∆CTD-CXCR4 exhibited enhanced migration and were 

non-responsive to further stimulation with CXCL12, suggesting ligand-

independent signaling occurs.  This hyper-motile phenotype in these cells is 

accompanied by gene expression changes associated with an epithelial-to-

mesenchymal (EMT)-like transition.  These cells demonstrate down-regulation of 

Zonula occludens (ZO-1) and E-cadherin expression.  In addition, microarray 

analysis revealed upregulation of several mesenchymal markers in these cells 
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(Ueda et al., 2006).  These cells also exhibit constitutive ERK 1/2 activation 

which may in part be contributing to the changes in gene expression.                

 These findings present a potential novel role for CXCR4 in the 

development of metastatic disease.  The data suggest that not only can CXCR4 

promote metastasis through the homing of cancer cells to secondary sites but 

may regulate gene expression of other proteins involved in the progression of 

metastatic disease.  Recent evidence also suggests that CXCR4 cooperates with 

other tumor promoters to enhance the invasive phenotype.  For example, it has 

been shown that CXCR4 can transactivate the epidermal growth factor receptor 

(EGFR) and this is involved in the proliferation of ovarian cancer cells (Porcile et 

al., 2005).  In addition, studies have also demonstrated that upregulation of 

CXCR4 in breast cancer cells is essential for HER2-mediated tumor metastasis 

(Li et al., 2004).  Further evidence indicates that crosstalk exists between 

CXCR4-mediated and BCR-ABL oncoprotein-mediated signaling through the src 

family of kinases in leukemia cells (Ptasznik et al., 2002).  Because cells 

expressing ∆CTD-CXCR4 are significantly more metastatic than cells expressing 

WT-CXCR4 and the ∆CTD-CXCR4 receptor is constitutively active, it would be of 

interest to examine whether long-term stimulation with the CXCR4 ligand 

CXCL12 also leads to increases in the metastatic phenotype.   

 Overall, these data indicate that targeting the entire intracellular carboxyl-

terminal domain of CXCR4 may not be the best approach for therapeutic 

intervention.  However, the importance of this domain for receptor function and 

mediating pro-tumorigenic events is made apparent by these results.  This region 
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of the receptor apparently contains residues that key for both positive and 

negative regulation of receptor function.  These studies suggest that targeting 

specific receptor-protein interactions may be a more viable approach with which 

to target receptor-mediated functions.  Therefore, further investigation into the 

regulation of receptor function through interacting proteins is warranted.             
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CHAPTER VI 

 

CONCLUSIONS AND SIGNIFICANCE 

 

 The role of chemokines and their seven transmembrane G protein-

coupled receptors in multiple aspects of tumorigenesis makes them ideal 

therapeutic targets for the treatment of cancer.  The elucidation of mechanisms 

that mediate signaling initiated by activated chemokine receptors and the 

intracellular trafficking of chemokine receptors will identify novel therapeutic 

approaches.   

The CXCR2 chemokine receptor is the major receptor for CXCL8 

(Interleukin-8) and CXCL1 (MGSA/Gro-α).  CXCL8 has a well established role in 

angiogenesis associated with malignancies, such as lung carcinoma (Arenberg 

et al., 1996; Smith et al., 1994; Yatsunami et al., 1997), ovarian carcinoma 

(Gawrychowski et al., 1998; Yoneda et al., 1998), melanoma (Luca et al., 1997; 

Singh et al., 1994), and gastrointestinal cancers (Kitadai et al., 1998; Wente et 

al., 2006).  CXCL1 contributes to the tumorgenicity of melanoma (Balentien et al., 

1991; Haghnegahdar et al., 2000; Owen et al., 1997) glioma (Zhou et al., 2005), 

colorectal carcinoma (Wang et al., 2006b), ovarian carcinoma (Furuya et al., 

2007; Son et al., 2007; Yang et al., 2006) esophageal cancer (Wang et al., 

2006a) and breast carcinoma (Yang et al., 2008).  Moreover, CXCR2 is a major 

chemoattractive receptor expressed on neutrophils, which are key mediators of 

the inflammatory response and there is strong link between tumorigenesis and 
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chronic inflammation.  In addition, CXCR2 expressed on endothelial cells plays a 

major role in tumor angiogenesis and thus tumor growth.  Therefore, CXCR2 

represents an attractive therapeutic target for multiple diseases. 

CXCR4 was initially appreciated in disease for its role as a co-receptor in 

HIV infection (Feng et al, 1996) but recent evidence has established CXCR4 as 

an important mediator of metastasis (Zlotnik, 2006).  It is also critically involved in 

the homing of recruited bone marrow-derived circulating cells (RBCCs) (Ruiz de 

Almodovar et al., 2006), a process that contributes significantly to tumor 

angiogenesis (Grunewald et al., 2006a).  The CXCR4/CXCL12 axis is involved in 

the recruitment of Gr-1+CD11b+ myeloid cells into mammary tumors, which 

promote tumor metastasis (Yang et al., 2008).  Testing of currently available 

CXCR4 inhibitors has proved successful in some preclinical animal models, 

however, the development of new modalities are needed for successful 

application in the clinic.  Development of these novel targeting approaches will be 

more effective through understanding the regulation of the function of CXCR4.       

We have demonstrated that RhoB plays an essential role in the proper 

intracellular trafficking of CXCR2 and as a consequence CXCR2-mediated 

functions.  These studies not only emphasize the importance of recycling of 

CXCR2 to the plasma membrane but illustrate that the route of recycling is just 

as significant.  This is supported by the finding that RhoB-Q63L mutant leads to 

recycling of CXCR2 through alternative pathways.  Moreover, expression of this 

mutant severely impairs CXCR2-mediated chemotaxis.  These data support our 

hypothesis that CXCR2 function is regulated by the small GTPase RhoB through 
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intracellular trafficking.  These results are also suggestive that functional receptor 

not only exists at the plasma membrane but that intracellular signaling mediated 

by the receptor may be just as critical for the chemotactic response.  This raises 

an entirely novel set of questions to be answered regarding the cellular functions 

mediated through chemokine receptors. 

The components of the protein complex that accumulates at the 

cytoplasmic domains of chemokine receptors upon their activation are largely 

unknown.  We propose that this chemokine receptor complex is analogous to the 

immune synapse in T-cells and focal adhesions.  These structures are composed 

of dynamic and functional complexes that regulate the cellular responses elicited 

by these structures.  We have developed a proteomics approach to identify novel 

ligand-dependent chemokine receptor interacting proteins.  With this method, a 

number of interesting protein interactions have been identified that link CXCR2 to 

actin cytoskeleton, intracellular trafficking, and signaling pathways.  Many of the 

identified proteins associate with the receptor in its unstimulated state, 

suggesting that these protein complexes are preformed within the cell.  This 

represents a unique model for the association of proteins with the activated 

receptor.  Previous experimental data suggested that the majority of chemokine 

receptor-associating proteins are actively recruited to activated chemokine 

receptors but our data indicate that this may not be the case for all mediators.  

Our data also support the notion that post-translational modifications, such as 

phosphorylation, of the receptor and its interacting proteins in response to ligand 

binding plays a critical role in regulating the chemotactic response.     
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Among the proteins identified is the multi-domain scaffolding protein 

IQGAP1.  The interaction between CXCR2 and IQGAP1 may prove to be 

essential for the establishment of cell polarity during the chemotactic response.  

A key event in the establishment of cell polarity is the reorientation of the 

microtubule organizing center (MTOC), a process regulated by cdc42 and 

IQGAP1.  IQGAP1 serves as a bridge between the actin cytoskeleton, through its 

interactions with the small GTPases rac and cdc42 and N-WASP, and the 

microtubule cytoskeleton via its interactions with cytoplasmic linker protein-170 

(CLIP-170) and adenomatous polyposis coli (APC).  The chemotactic response 

requires the proper coordination of these two systems in order for productive cell 

motility to occur.  The protrusion of the dominant leading edge lamellipodia 

requires actin filament elongation and branching both of which are regulated by 

small GTPases and WAVE-2.  Additionally, IQGAP1 may represent a direct link 

between CXCR2 and major signaling pathways involved in other cellular 

processes such as proliferation.  In this manner, IQGAP1 serves as a central 

signaling “hub” to integrate multiple signaling pathways, particularly those 

initiated by chemokine receptors.           

 An additional protein identified in the proteomics screen for novel CXCR2 

interacting proteins is the actin cytoskeletal modulator VASP.  The Ena/VASP 

family of proteins are critical regulators of actin filament elongation and play a 

prominent role in the dynamics of lamellipodia.  Interaction of CXCR2 specifically 

with VASP in a phosphorylation-dependent manner represents a direct link 

between CXCR2 and the actin cytoskeleton.  Phosphorylation of VASP in the 
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EVH2 domain negatively regulates the interaction with F-actin (Barzik et al., 

2005; Harbeck et al., 2000; Zhuang et al., 2004).  Our studies demonstrate that 

the CXCR2/VASP interaction is enhanced by the EVH2 phosphorylation and F-

actin is essential for the interaction.  Therefore, our data suggests that VASP is 

able to interact with F-actin in the presence of CXCR2 and may have important 

implications for the mechanism of VASP binding to F-actin.           

These studies establish the critical importance of the route of chemokine 

receptor recycling, regulated at least in part by RhoB, in maintaining a productive 

chemotactic response.  Through these studies we have learned that there is an 

essential role for chemokine receptor-mediated endosomal signaling in 

chemotaxis.  Previously, it was thought that recycling of a GPCR back to the 

plasma membrane was all that was required for resentization and as a result, 

continued cellular responses mediated by the receptor.  However, our data and 

other recent evidence suggest that signaling that occurs on specific endocytic 

compartments is critical for the continued cellular response.  Additionally, 

IQGAP1 and VASP have been identified as novel receptor-interacting proteins 

that link CXCR2 to the actin cytoskeleton and major signaling pathways.  

Furthermore, loss of VASP results in severely impaired CXCL8-mediated 

leukocyte trafficking in vivo.  These studies provide knowledge for specific 

interruption of the CXCR2 interaction with VASP and IQGAP1 as a means of 

specifically targeting CXCR2 function.     

We further demonstrate the importance of chemokine receptor trafficking 

on the biological function through our findings that constitutive recycling of a 
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truncated CXCR4 receptor leads to increased tumorigenesis and metastasis of 

breast cancer cells in vivo.  Together these data ascertain the biological 

significance of chemokine receptor trafficking in the regulation of their function 

and implicate a new model for chemokine receptor-associated protein complexes 

in the cellular responses initiated by these receptors.      
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