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CHAPTER I

INTRODUCTION

 Our abilities to learn, remember, adapt and respond to our environment are highly 

regulated processes essential to survival.  Small alterations to these vital systems can 

have a huge impact on cognitive function and quality of life.  When such alterations 

occur, they  may manifest as neurological disease, giving us a glimpse into the 

complicated workings of learning and memory.  Studying neurological diseases, such as 

Alzheimer’s disease, both progresses therapeutic research and identifies those integral 

components that make our everyday functioning possible.

 Alzheimer’s disease (AD) is a devastating form of dementia characterized by  

specific pathological hallmarks, namely beta amyloid (Aβ) plaques and neurofibrillary 

tangles (NFTs).  The extracellular deposits of Aβ, a product of the cleavage of amyloid 

precursor protein (APP), distinguish AD from other forms of dementia.  These Aβ 

plaques are accompanied by  NFTs, which are intracellular accumulations of the 

microtubule stabilizing protein tau, and a specific pattern of neuronal cell death.  This 

pattern of cell death results in the characteristic and progressive deficits in cognitive 

abilities and memory that interfere with daily function.  

 One of the first brain structures affected in AD is the hippocampal formation.  

Composed of the dentate gyrus, hippocampus proper, and subiculum, this structure is a 

key component of memory processing (Eichenbaum, et al., 1996). Together with 
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surrounding cortical areas in the temporal lobe such as the parahippocampal cortex, 

entorhinal cortex, and perihinal cortex, the hippocampal formation is essential for the 

formation of spatial and episodic memory  (Eichenbaum, 1999; LeDoux, et al., 1990; 

Nagahara, et al., 1995; Phillips & LeDoux, 1992).  Early AD is characterized by a 

specific pattern of memory loss and cognitive disfunction that results from loss of 

function in the entorhinal cortex and CA1 subfield (Braak & Braak, 1998; Ohm, et al., 

2003).  As the disease advances, neurodegeneration spreads progressively to include the 

entire hippocampal formation and increasing amounts of the surrounding cortex (Braak & 

Braak, 1998).  While the pathology of AD is well established, the etiology of the disease 

remains elusive.

 It is the formation of Aβ that is thought to direct the pathology  of AD, forming the 

basis for the “Aβ cascade hypothesis” of disease progression (Selkoe, 1991).  This 

hypothesis suggests that aberrant processing of APP results in overproduction of Aβ.  

This event then drives the formation of amyloid plaques, induces inflammation due to 

activation of astrocytes and microglia, and initiates development of neurofibrillary 

tangles due to alterations in cell signaling (Hardy & Allsop, 1991; Selkoe, 1991, 2002a; 

Tanzi, 2005).  These processes ultimately result in the synaptic and neuronal injury that 

cause cell death and dementia.  

 The Aβ hypothesis of AD developed in part due to studies of familial AD.  Early-

onset familial AD is a hereditary  form of AD that occurs prior to age 60.  This form of the 

disease stems from mutations in three known genes: APP, presenilin-1 (PS1), and 

presenilin-2 (PS2).   Mutations in PS1 and PS2, which cleave APP to form Aβ, selectively 

2



increase levels of Aβ42 over Aβ40 (Borchelt, et al., 1996; Citron, et  al., 1997; Duff, et al., 

1996; Scheuner, et al., 1996).  Aβ42 is the form of Aβ that is more highly prone to 

oligomerization and plaque formation (Bitan, et al., 2003; Burdick, et al., 1992; Jarrett, et 

al., 1993).  Inherited mutations in APP also increase Aβ production by altering processing 

of APP (Citron, et al., 1992; Goate, et al., 1991; Levy, et al., 1990; Suzuki, et al., 1994).  

Several of these human APP mutations have been translated into transgenic mice and 

display  alterations in Aβ production or accumulation.  For example, the 5X FAD mouse, 

a mouse expressing 5 familial AD (FAD) mutations including both human APP and PS1 

mutations, has Aβ42 accumulation at 1.5 months followed by synapse degeneration, 

neuron loss, and spatial learning deficits (Oakley, et al., 2006).  Mice expressing the 

Swedish double mutation (K595N/M596L) of human APP, also known as APP695Swe or 

Tg2576, also have numerous Aβ plaques accompanied by memory deficits by 9-10 

months of age (Hsiao, et  al., 1996; Ribe, et al., 2005; Westerman, et  al., 2002).  The 

PDAPP mouse, which expresses human APP mutation V717F under the human platelet 

derived growth factor b (PDGF-b) promoter, has significantly  increased Aβ levels, 

hippocampal atrophy, and impairments in learning and memory (G. Chen, et al., 2000; 

Games, et al., 1995; Gerlai, et al., 2001; Rockenstein, et al., 1995).

 While these transgenic models of AD help support the Aβ cascade hypothesis, this 

hypothesis is not without controversy.  The clinical progression of AD does not show a 

simple correlative relationship with the amount or temporal progression of amyloid 

deposits in the brain, making them of limited use for predicting neuropathological stages 

(Braak & Braak, 1998).  Likewise, Aβ can be found in the brains of the elderly without 
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associated dementia (Knopman, et al., 2003).  Furthermore, the majority  of AD cases are 

classified at late onset sporadic AD.  While all the pathological hallmarks are present, this 

form of AD is not associated with any of the autosomal dominant mutations present in 

familial AD.  Instead, the only known genetic risk factor for AD is allelic variation in 

apolipoprotein E (apoE).  This variation will be discussed in detail in the following 

section, but it is worthwhile to note that while the ε4 allele of apoE increases cerebral Aβ 

burden in late-onset AD patients (Rebeck, et al., 1993; Schmechel, et al., 1993), 

possession of this allele is not a causative factor in AD development. This suggests that 

modulatory factors can alter neuronal function prior to the formation of Aβ plaques, 

NFTs, or the onset of clinical AD.

 Recent research has identified apoE as a potential modulator of neuronal function.  

ApoE, and its receptors, associate with amyloid plaques (Arelin, et  al., 2002; Motoi, et 

al., 2004).  Further research identified a differential impact of the three human isoforms 

of apoE—apoE2, apoE3, and apoE4—on AD risk (Rebeck, et  al., 1993; Schmechel, et 

al., 1993).  These three human isoforms of apoE have the potential to alter a number of 

neuronal processes that impact AD development.  This includes inflammation (Guo, et 

al., 2004; Koistinaho & Koistinaho, 2005; LaDu, et al., 2001), Aβ production (Fagan, et 

al., 2002; Irizarry, et al., 2004) and deposition (Bales, et al., 1999; DeMattos, 2004), or 

signal transduction (Riemenschneider, et  al., 2002; Trommer, et al., 2005).  The role of 

apoE in modulating signal transduction is supported by  recent research identifying the 

necessity of the low density lipoprotein receptor (LDLR) family of apoE receptors in 
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maintaing proper synaptic plasticity, and the propensity for dysfunction in signaling by 

these receptors to lead to cognitive disorders.

The low density lipoprotein receptor family

The LDLR family is an evolutionarily conserved group  of multifunctional cell 

surface proteins with analogs found in Aplysia, C. elegans and Drosophila (Marx, 1985; 

Schonbaum, et al., 1995; Yochem & Greenwald, 1993). The LDLR family consists of 

seven known mammalian members: low-density-lipoprotein receptor (LDLR), very-low-

density-lipoprotein receptor (VLDLR), apolipoprotein E receptor 2 (apoER2), multiple 

epidermal growth factor (EGF) repeat-containing protein-7 (MEGF7), LDL-related 

protein (LRP), LDL-related protein-1B (LRP-1B) and megalin (figure 1).  There are also 

other related receptors that share some, but  not all, of the structural hallmarks of the 

LDLR family, including LRP5/LRP6 and sorting protein-related receptor (SORLA) 

(Beffert, Stolt, et al., 2004; Herz & Bock, 2002; Taira, et al., 2001).   

The LDLR family is characterized by shared structural elements (figure 1). Each 

receptor contains a ligand binding domain that  mediates the interaction between the 

receptor and apoB-100/apoE containing lipoproteins.  Additionally, each receptor also 

contains an EGF precursor homology domain, a YWTD β-propellor motif, a single 

transmembrane domain, and at  least one NPxY motif on the cytoplasmic tail.  The tetra-

amino acid NPxY motif is a putative interaction site for intracellular adaptor proteins and 

couples LDL receptors to specific signal transduction pathways (Nimpf & Schneider, 

2000; Trommsdorff, et al., 1999; Willnow, 1999; Willnow, et al., 1999).  These pathways
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The LDLR family of apoE receptors share structural features including a single transmembrane 
domain, a short cytoplasmic tail, ligand-binding repeats (also called complement-type repeats), 
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can enlist MAP kinases (Senokuchi, et al., 2004), tyrosine kinases (Bock & Herz, 2003; 

Gouni-Berthold & Sachinidis, 2004), lipid kinases (Bock, et  al., 2003) and ligand-gated 

ion channels (e.g. glutamate receptors (Beffert, et al., 2005; S. Qiu & Weeber, 2007; 

Sinagra, et al., 2005)).  Through these signaling events, the LDLR family  plays a role in a 

variety of cellular functions such as extracellular protein endocytosis, cross-membrane 

signal transduction, and modulation of synaptic function.

The function of the various LDLR family  members are defined, in part, by the 

restriction of expression of individual receptor to particular tissues.  The LDL receptor is  

highly  expressed in the liver where it mediates endocytosis of lipoprotein particles 

(Goldstein, et al., 1985; Jeon & Blacklow, 2005). This receptor is also expressed in the 

brain where there is greater expression in glia than neurons (Herz & Bock, 2002).  LRP1 

is also found in most tissues, and is abundant in hepatocytes and neurons (May, et  al., 

2004).  LRP1b is primarily expressed in the brain, but may also act as a tumor suppressor 

gene. This speculative function is suggested by inactivating mutations in LRP1b in lung 

cancer cell lines (Liu, et al., 2001).  Megalin, structurally similar to LRP and LRP1b, is 

highly  expressed in the epithelial cells that line the proximal tubes in the kidney 

(Willnow, 1999), with expression in the brain as well.  Unlike LDLR, VLDLR is not 

expressed in the liver, but is instead restricted to the heart, skeletal muscle, endothelial 

cells of major blood vessels, and the brain (Herz & Bock, 2002).  ApoER2, similarly, is 

not found in the liver, and expression of this receptor is almost exclusively  limited to the 

testes and brain (Herz & Bock, 2002).
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In addition to their structural similarities, members of the LDLR family are also 

characterized by shared ligands, namely receptor-associated protein (RAP) and apoE.  

RAP is a molecular chaperone that binds to LDL receptors in the endoplasmic reticulum, 

preventing the premature binding of ligands and potentially  assisting in folding (Bu & 

Schwartz, 1998). While RAP is not endogenously found in the extracellular space, it is a 

useful experimental tool as it  antagonizes ligand binding to all LDL receptors (Bu, 1998).    

The endogenous extracellular ligand apoE binds to all the major LDLR family members 

in the brain, LDLR, VLDLR, ApoER2, LRP1, and LRP1b.  However, these receptors and 

the remaining LDLR family members are distinguished in part by differential ligand 

binding  (table 1, (Bu, 2009; Herz & Bock, 2002; Herz & Strickland, 2001; May, et al., 

2005)).

The LDL receptor is the primary receptor for cholesterol homeostasis due to the 

strong interactions with both apoB-100- and apoE-containing lipoproteins (Goldstein, et 

al., 1985; Jeon & Blacklow, 2005). Mutations leading to the loss of LDLR function 

results in familial hypercholesterolemia and atherosclerosis. LRP1 also undergoes 

endocytosis to transport ligands across the cell membrane.  In addition to apoE, LRP1 

binds many other ligands including alpha-2-macrogloblin (α2M), tissue plasminogen 

activator (tPA), APP, Aβ, and many others (Herz & Strickland, 2001).  These interactions 

implicate LRP1 in a variety  of cellular processes beyond cholesterol transport such as  

APP trafficking, Aβ clearance, and coagulation regulation (Herz & Strickland, 2001; 

Rebeck, et al., 2001; Shibata, et al., 2000; Ulery & Strickland, 2000). The ~600kDa
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Receptor Ligands Primary biological functions

LDLR1,2,3,5,8 apoB, apoE transport of cholesterol and 
lipoproteins, clearance of Aβ (via 
apoE/Aβ complex)

apoER21,3,8 reelin, apoE, APP, F-
spondin, selenoprotein P

neuronal migration and cortical 
lamination, synaptic transmission, 
APP trafficking, male fertility

VLDLR1,3,8 reelin, apoE, lipoprotein 
lipase, tPA

neuronal migration and cortical 
lamination, synaptic transmission 

MEGF71 apoE, agrin limb patterning, formation of 
neuromuscular synapses

LRP11,3,4,7,8 apoE, chylomicron
remnants, α2M, tPA, APP, Aβ, 
protease/protease inhibitor 
complexes,
lipoprotein lipase, PDGF, 
TGFβ, MMP-9

endocytosis and metabolism of 
various ligands, synaptic 
transmission, APP trafficking, 
clearance of Aβ, embryonic 
development, blood coagulation, 
angiogenesis

LRP1b1,6 likely overlaps with LRP1 potential tumor suppressor

Megalin1,3,8,9 apoB, apoE, apoJ, albumin, 
cubilin, retinol-binding protein, 
Vitamin D-binding protein, 
sonic hedgehog, BMP-4

Nutrient resorption in kidney, sonic 
hedgehog signaling, embryonic 
cholesterol homeostasis, calcium 
homeostasis

LRP5 and 
LRP61,3

Wnts, Dkk1, Wise, SOST, R-
spondin

Wnt co-receptor, embryonic 
development, regulation of bone 
formation, stem cell maintenance 
and survival

SORLA1,3 APP, apoE, head activator 
peptide

APP trafficking, neurogenesis, 
intracellular trafficking in the kidney

1Bu, et al., 2009
2Goldstein, et al., 1985
3Herz & Bock 2002
4Herz & Strickland, 2001
5Jeon & Blacklow, 2005
6Liu et al., 2001
7May, et al., 2004
8May, et al., 2005
9Willnow, et al., 1999
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LRP1 is essential for early embryonic development, as deletion of the Lrp1 gene in mice 

is embryonic lethal (Herz, et  al., 1992).  LRP1 is also implicated in synaptic transmission 

and motor function in the central nervous system (CNS), as forebrain-specific knockout 

of Lrp1 results in a functional deficit without neurodegeneration (May, et al., 2004).

In addition to the endocytic properties of LDLR and LRP1, apoE receptors also 

couple with intracellular signal transduction cascades.  Most notable is the interaction of 

reelin with apoER2 and VLDLR to trigger signaling crucial to neuronal migration 

(Trommsdorff, et al., 1999), dendritic spine development (Niu, et al., 2004), and synaptic 

plasticity (Beffert, et al., 2005; Beffert, Weeber, et al., 2004).  Reelin signaling will be 

discussed in depth later in this chapter.  The remaining members of the LDLR family 

share structural similarities and overlapping ligand binding properties, but have a wide 

range of functions in various tissues. This includes nutrient reabsorption in the kidneys 

(megalin) (Willnow, et  al., 1999), potential tumor suppression (LRP1B) (Liu, et al., 

2001), limb patterning (MEGF7) (Johnson, et al., 2005) and Wnt-β-catenin signaling 

(LRP5 and LRP6) (He, et al., 2004).  While these receptors and their function are beyond 

the scope of this project, they have been extensively studied and are the subject of a 

number of reviews (Beffert, Stolt, et  al., 2004; Herz, 2009; Herz & Bock, 2002; Herz & 

Strickland, 2001; May, et al., 2005; S. Qiu, Korwek, & Weeber, 2006; Willnow, et  al., 

1999).

The four major apoE receptors in the CNS—LDLR, apoER2, VLDLR, and LRP1

—can undergo cleavage to produce soluble forms of the receptors.  LRP1 is synthesized 

as a single ~600 kDa polypeptide that is cleaved by  furin in the trans-Golgi network.  The 
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515 kDa ligand-binding portion and the 85 kDa transmembrane portion remain non-

covalently associated as the receptor is trafficked to the cell surface (Herz, et al., 1990).  

Subsequently, the extracellular domain is cleaved by metalloproteinases, producing a 

soluble form of the receptor with ligand binding properties (Grimsley, et al., 1998; K. A. 

Quinn, et al., 1997).  Further cleavage by  γ-secretase within the transmembrane domain 

releases the intracellular domain (ICD) (Kinoshita, et al., 2003; May, et al., 2002).  

ApoER2 and VLDLR are processed in a similar fashion.  Phorbol ester application can 

cause cleavage by metalloproteinases to release soluble receptors (Hoe & Rebeck, 2005), 

and the remaining C-terminal fragments are also cleaved by γ-secretase (May, et  al., 

2003).  Interestingly, the cleavage of apoER2 and VLDLR can be altered by  apoE 

isoform, with apoE2 inducing the greatest cleavage, apoE3 slightly  less, and apoE4 the 

least (Hoe & Rebeck, 2005).  LDLR also undergoes metalloproteinase-dependent 

cleavage to produce a soluble form similar to apoER2, VLDLR, and LRP1 (Begg, et al., 

2004).

The cleavage of lipoprotein receptors has the potential to alter neuronal function 

through modulation of cellular signaling.  While the physiologic consequences of soluble 

apoE receptors is still under investigation, the function of released extracellular domains 

of other proteins hints at the possibility  of similar cellular roles for soluble lipoprotein 

receptors.  This includes the ability to function at long distances from the cell similar to 

transforming growth factor-alpha (TGF-α) (Arribas & Massague, 1995), initiation of 

intracellular signaling by the release of the cytoplasmic domain as seen with the Notch 

receptor (Mumm, et al., 2000), and inhibition of signaling by binding of ligands, a 
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mechanism observed with several interleukins (Arend, et al., 1994; Fernandez-Botran, et 

al., 1996; Mortier, et al., 2004).  Inhibition of ligand binding has been shown with soluble 

apoER2, which blocks binding of the ligand reelin to apoER2 and VLDLR.  The 

physiological importance of signaling cascades normally initiated by  this binding 

emphasizes the necessity for tightly controlled modulation of lipoprotein receptor 

function.

Signaling by lipoprotein receptors

The LDLR family can induce alterations in cellular signaling due to coupling with 

intracellular effectors, such as MAP kinases, tyrosine kinases, or ion channels.  The 

NPxY motif on the cytoplasmic tails of these receptors mediates endocytosis and 

signaling of these receptors via intracellular adapter proteins.  There are an array  of 

intracellular ligands for the LDLR family that help couple these receptors to signaling 

cascades (table 2, for review see (Gotthardt, et al., 2000; Herz & Bock, 2002; Herz & 

Strickland, 2001)).  The physiological significance of these ligands continues to be 

elucidated.  One interaction that  has been characterized is that of Disabled-1 (Dab-1) with 

apoER2 and VLDLR to mediate reelin signaling.

ApoER2 and VLDLR exclusively mediate the binding of the extracellular matrix 

protein reelin.  Reelin, a ~400 kDa glycoprotein, was identified as the protein deleted in 

the reeler mutant mouse line (D'Arcangelo, et al., 1995).  This mouse displays a severely 

ataxic gait and failure of proper cortical lamination development. During neocortical
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Ligand Function

Disabled-1 (Dab-1)1,2,3,5 Activation of Src family kinases, neuronal 
migration

Disabled-2 (Dab-2)2,3 Endocytosis, vesicular trafficking 

JIP-1/JIP-21,2,3 Regulation of MAPK and SAPK, including JNK

PSD-951,2,3 Scaffolding in post synaptic density, coupling to 
NMDARs

Axin2,3 Wnt signaling

Fe652,3,4 APP processing, actin remodeling

OMP252,3 Mitochondrial transport

PIP4,5 kinase like protein2,3 Regulation of inositol signaling

CAPON1,2,3 Regulation of NO synthase

SEMCAP-11,2,3 Possible axon guidance, vesicular transport

Shc2,3 Activation of Ras

1Gotthardt, et al. 2000
2Herz & Bock, 2002
3Herz & Strickland, 2001
4Hoe et al., 2006
5Howell et al., 1997
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development, Cajal-Retizus cells in the pre-plate synthesize and express reelin.  Reelin is 

necessary  for the signaling that  controls neuronal migration along the radial glia as 

deletion of reelin results in a failure of the pre-plate to split. Each new generation of cells 

also fails to migrate past  the previously  born cells to form the characteristic “inside-out” 

lamination of the cortex (Tissir & Goffinet, 2003). Severe neuronal migration defects and 

improper lamination are seen in the hippocampus, cerebellum, and cortex.  Absence of 

both apoER2 and VLDLR or the intracellular adapter protein Dab-1 mimics the 

developmental phenotype seen with reelin deletion (D'Arcangelo, et al., 1995; Howell, et 

al., 1997; Sheldon, et al., 1997; Trommsdorff, et al., 1999).   

 In contrast, mice deficient in either apoER2 or VLDLR do not have a severe 

developmental phenotype suggesting that there are some overlapping or cooperative 

functions between these two receptors during development. Instead these mice show 

impaired associative learning and mild disruptions to hippocampus area CA1 long-term 

potentiation (LTP) (Weeber, et al., 2002). The finding of altered synaptic plasticity in the 

absence of a major developmental phenotype hints at a role for lipoprotein receptor 

signaling in neuronal function. This is supported by studies manipulating synaptic 

plasticity by altering lipoprotein receptors. Application of RAP to wild-type hippocampus 

slices inhibits LTP (Zhuo, et al., 2000). Similar results have been seen with the use of the 

CR-50 antibody  which specifically blocks ligand binding to apoER2 (Nakajima, et al., 

1997).  The acute involvement of lipoprotein receptors in synaptic plasticity is further 

demonstrated by the actions of endogenous reelin application in the adult brain.
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 After development, reelin is still present in the brain, primarily expressed by  

GABAergic interneurons in the hippocampus and cortex (Campo, et al., 2009). Reelin co-

localizes with the postsynaptic density (Beffert, et  al., 2005; Roberts, et al., 2005), and 

this physical presence has sparked intense investigation into the importance of reelin 

signaling in the adult hippocampus.  Application of reelin activates apoER2 and VLDLR 

and results in a significant  enhancement of LTP induction (Weeber, et al., 2002). This 

enhancement is abolished in the absence of either receptor (Weeber, et al., 2002), 

indicating a necessity  for normal reelin signaling in synaptic plasticity.  Reelin signaling 

is initialized by clustering of both apoER2 and VLDLR followed by  tyrosine 

phosphorylation of Dab-1 by Src family non-receptor tyrosine kinases (SFKs) (Arnaud, et 

al., 2003; Benhayon, et al., 2003; Bock & Herz, 2003; Hiesberger, et al., 1999; Strasser, 

et al., 2004).  Dab-1 docks to the NPxY sequence of apoER2 and VLDLR through its N-

terminal phosphotyrosine-binding (PTB) domain (Howell, et al., 1999). Phosphorylated 

Dab-1 likely serves as a docking site for the SH2 domain of SFKs, leading to increased 

Dab-1 activation and alterations in synaptic plasticity (Arnaud, et  al., 2003; Bock & Herz, 

2003). 

 The various intracellular pathways that are activated following reelin binding to 

apoER2 and VLDLR are illustrated in figure 2.  It is hypothesized that Reelin signaling 

via lipoprotein receptors alters synaptic plasticity  through signal transduction pathways 

that modulate N-methyl-D-aspartic acid (NMDA) receptor function.  SFKs activated by 

receptor clustering can phosphorylate tyrosine residues on the NMDA receptor subunits 
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Figure 2: Reelin signaling via apoER2/VLDLR 
Reelin interacts with the lipoprotein receptors apoER2 and VLDLR and initiates intracellular signaling.  This includes Dab-1, 
SFKs, PI3K, and CDK-5.  The downstream effects of this signaling can potentially modulate cellular processes such as 
microtubule stability, neuronal migration, glutamate receptor function, and synaptic plasticity.



NR2A or NR2B and enhance NMDA receptor-mediated currents (C. Chen & Leonard, 

1996; Kohr & Seeburg, 1996). Reelin-induced enhancement of NMDA receptor-mediated 

whole cell currents occurs through postsynaptic apoER2 receptors and requires the 

presence of the splice variant of apoER2 encoded by exon 19 (Beffert, et al., 2005). In 

addition, reelin contributes to the developmental change in subunit composition of 

NMDA receptors from NR2B to NR2A.  This is dependent on both LDL receptors and 

downstream SFK activity (Sinagra, et  al., 2005).  Increased calcium influx due to 

enhanced NMDA receptor function is likely to activate calcium-calmodulin dependent 

protein kinase II (CamKII), PKA, and PKC, which are known to be involved in the 

modulation of ligand-gated ion channels and LTP induction (L. Chen & Huang, 1992; 

Omkumar, et al., 1996; Tingley, et al., 1997; Zheng, et al., 1998).

  In addition, reelin signaling via lipoprotein receptors activates 

phosphatidylinostiol-3-kinase (PI3K)/protein kinase B (PKB/AKT) pathways.  This 

subsequently  inhibits the tau kinase glycogen synthase kinase 3 beta (GSK-3β) (Beffert, 

et al., 2002; Bock, et al., 2003).  Likewise, reelin couples to cyclin-dependent kinase 5 

(CDK5), a Ser/Thr kinase whose substrates include tau (Noble, et al., 2003). This links 

reelin signaling to microtubule stabilization, a hypothesis supported by the finding that 

animals deficient in either reelin or both apoER2 and VLDLR show hyper-

phosphorylation of the microtubule stabilizing protein tau (Hiesberger, et al., 1999). 

Thus, through these pathways reelin may also alter synaptic plasticity through its 

influences on cytoskeletal reorganization.
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 Furthermore, the signaling cascades initiated by  reelin can also affect 

glutamatergic tone by modulation of α-amino-3-hydroxyl-5-methyl-4-isoxazole-

propionate (AMPA) receptors.  Exposure to reelin enhances synaptically evoked whole 

cell AMPA currents.  While reelin does not change the levels of AMPA receptor subunit 

phosphorylation, it does alter total surface levels of these subunits (S. Qiu, Zhao, et al., 

2006). Furthermore, application of RAP or two distinct  PI3K inhibitors, wortmannin or 

LY294002, completely blocks reelin-induced enhancement of AMPA receptor currents (S. 

Qiu, Zhao, et  al., 2006).  While the mechanism of these changes is unknown, this finding 

complements the ability of lipoprotein receptors and reelin to alter NMDA receptor 

activity and synaptic plasticity.  This positions the reelin signaling system as an important 

modulator of synaptic plasticity.  With this comes the possibility that other lipoprotein 

receptor ligands, namely apoE, may be modulating this system as well.

Apolipoprotein E

 Apolipoprotein E (apoE) is a 34-kDa secreted glycoprotein with the primary 

function of mediating cholesterol transport and metabolism via receptor-mediated 

endocytosis.  The greatest expression of apoE is in the liver and the brain.  In the 

periphery, apoE circulates to help  transport very low density lipoproteins (VLDLs) that 

are synthesized by the liver (Wahrle & Holtzman, 2003; Wu, et al., 1998). ApoE, 

however, does not readily cross the blood brain barrier. In the brain, apoE is synthesized 

predominantly by astrocytes under basal conditions (Pitas, et al., 1987).  ApoE in the 

brain associates with a pool of lipoproteins that are separate from those in the periphery.  
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These CSF lipoproteins are similar in size and density to the smaller high density 

lipoproteins (HDLs) in the periphery (for reviews on CNS lipoproteins, see (Fagan, et al., 

2000; Ladu, et al., 2000; Wahrle & Holtzman, 2003). 

 Human apoE is a 299 amino acid protein. In a lipid-free state, apoE is composed 

of two independently  folded functional domains. The N-terminal domain, as determined 

by X-ray crystallography, is an elongated four-helix bundle (C. Wilson, et  al., 1991).  

Circular dichroism spectroscopy indicates that the C-terminal domain is also highly α-

helical, but its structure is unknown (Segrest, et al., 1992) (figure 3).  The receptor-

binding domain of apoE is located within the N-terminal domain (residues 136-150) 

(Siest, et al., 1995) while the major lipid-binding region is within the C-terminal domain 

(residues 244-272) (Pillot, et  al., 1999; Westerlund & Weisgraber, 1993). There are three 

commonly occurring apoE isoforms in the human population that differ at two amino 

acid positions: apoE2 (Cys112, Cys158), apoE3 (Cys112, Arg158), and apoE4 (Arg112, 

Arg158). These isoform variations can alter apoE structure/folding and thus alter 

associations with lipids and receptor binding (Hatters, et al., 2006). 

 Each apoE isoform has unique biophysical properties that may  contribute to the 

reported isoform-specific alterations in synaptic plasticity and learning and memory.  The 

residue at position 112 in apoE alters the conformation of the side chain of Arg61 as 

visualized in x-ray structures of the N-terminal domains of apoE3 and apoE4 (Dong, et 

al., 1994).  The presence of Arg112 in apoE4 results in the side chain of Arg61 being 

oriented away from the four-helix bundle structure of the N-terminal domain.  

Conversely, in the presence of cysteine at position 112, the side chain of Arg61 in apoE3
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Figure 3: Schematic diagram of human apolipoprotein E (apoE)
Human apoE contains two independently folded domains.  Receptor binding occurs 
within the N-terminal domain, lipid binding within the C-terminal domain.  Isoform 
variation occurs at residues 112 and 158 in the N-terminal domain as illustrated.  The 
residues responsible for domain interaction in apoE4, Arg61 and Glu255, are also 
indicated (Pillot, et al., 1999; Siest, et al., 1995; Westerlund & Weisgraber, 1993).
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is between two helicies.  This difference specifically allows for Arg61 in apoE4 to 

interact with Glu255 in the C-terminal domain (Dong & Weisgraber, 1996).

 Humans are unique in their possession of Arg61; apoE in all other species contain 

threonine at the equivalent position.  Thus, apoE in other species functionally behaves 

like human apoE3 (Hatters, et al., 2006).  For example, mouse apoE contains residues 

equivalent to Arg112 and Glu255 but does not show domain interaction.  However, 

domain interaction can be introduced by the mutation of threonine to arginine at the 

position equivalent to human Arg61 in mouse apoE (Raffai, et al., 2001).  This is 

sufficient to reproduce some of the properties of apoE4, such as the observed reduction in 

apoE4 levels versus wild type in hippocampus (Ramaswamy, et al., 2005).  

These changes in apoE conformation also alter the stability  of the N-terminal 

domain.  The three isoforms of apoE exhibit different thermal and chemical stabilities.  

The domain interaction of apoE4 correlates with a reduced resistance to thermal and 

chemical denaturation.  Of the three isoforms, apoE2 is the most resistant to this 

denaturation; apoE3 shows intermediate resistance (Morrow, et al., 2000). This 

conformational stability  and folding of the N-terminal has implications for lipid binding.  

Variation of the stability of the N-terminal domain may  contribute to isoform-specific 

differences in lipoprotein-binding preferences and other in vivo biological functions.

ApoE3 and apoE4 are distributed differently  among plasma lipoproteins.  Relative 

to apoE3, there is more apoE4 found in VLDL and LDL fractions than HDL (Gregg, et 

al., 1986; Weisgraber, 1990).  This preference for VLDLs is a result  of the domain 

interaction in apoE4; lipid binding is disrupted by the E255A mutation in apoE4,which 
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disrupts domain interaction (Dong & Weisgraber, 1996; Saito, et  al., 2004; Weisgraber & 

Mahley, 1996). This association may also underlie association of apoE4 with elevated 

plasma cholesterol and LDL concentration as well as increased risk for cardiovascular 

disease (Davignon, et al., 1988; Stengard, et al., 1995; Tiret, et al., 1994; Utermann, et al., 

1979; P. W. Wilson, 1995). Unfortunately, lipoproteins in the brain are not as readily 

isolated as their counterparts in the plasma.  It is known, however, that CSF lipoproteins 

have a size range between those of plasma HDL and LDL.  ApoE associates with those 

lipoproteins that are of the size range of approximately 18-22 nm (Koch, et al., 2001).  As 

apoE receptor affinity  is influenced by  the type and composition of bound lipid (Kowal, 

et al., 1990), apoE isoform-dependent variation in lipoprotein affinity may have 

implications on receptor binding.  

The biochemical properties of apoE isoforms also influence receptor binding 

affinities. ApoE3 and apoE4 have a similar high binding affinity with LDLR.  In contrast, 

binding of apoE2 is approximately  50-100 times weaker (Weisgraber, et al., 1982).  The 

effects of this are seen most readily in the periphery. ApoE2 is associated with type III 

hyperlipoproteinemia, which is characterized by increased plasma cholesterol and 

triglyceride levels and premature development of cardiovascular disease (Mahley & Rall, 

1995).  While the effect of apoE isoform on binding affinity to other lipoprotein receptors 

is unknown, it  is not unreasonable to hypothesize that the above biophysical properties 

underly  isoform-specific alterations to receptor-mediated processes such as neurite 

outgrowth (Bellosta, et al., 1995; Nathan, et al., 1994) or Aβ clearance (Bales, et al., 

1999; Holtzman, et al., 2000; Irizarry, et al., 2004; LaDu, et al., 1994).
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ApoE in the mammalian CNS

 The transport of cholesterol by apoE, mainly from astrocytes to neurons, helps 

maintain membranes and myelin sheaths (Ignatius, et al., 1986; Yip, et al., 2005).  Yet due 

to overlapping functions of other apolipoproteins, deletion of the murine APOE gene 

results in viable animals that develop without any gross brain anatomical abnormalities.  

However, apoE-deficient animals have impaired VLDL metabolism, display elevated 

plasma cholesterol levels, and spontaneously develop atherosclerosis (Nakashima, et al., 

1994).  The separation of plasma apoE and associated lipoproteins in the periphery from 

those in the brain suggests that peripheral cholesterol levels are not directly responsible 

for apoE-related changes in the brain (Bassett, et al., 2000; Pitas, et  al., 1987; Roheim, et 

al., 1979).

Even though apoE-deficient animals develop without gross brain anatomical 

deficits, there are numerous studies that illustrate the importance of apoE in maintaining 

proper neuronal networks. Several in vitro studies have illustrated the requirement of 

apoE-lipoprotein complexes in neurite outgrowth and synapse formation (Fagan, et al., 

1996; Mauch, et al., 2001).  In addition, mice that are deficient for apoE show an age-

dependent depletion in dendritic arborization and synapses in the hippocampus and 

frontal cortex as visualized by a decrease in microtubule associated protein 2 (MAP2) 

and synaptophysin (SYN) immunoreactivity. This decrease is accompanied by 

disruptions to dendritic-associated microtubules, suggesting that these mice are unable to 

maintain the necessary dendritic structures required for effective synaptic transmission 

(Masliah, et  al., 1995).  However, none of these deficiencies were observed in an line of 
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apoE-deficient animals with a different genetic background, illustrating the complicated 

relationship  between genetic background and apoE-dependent alterations in brain 

function (Anderson, et al., 1998). Genetic background of mice often changes physiology 

and behavior.  For example, the mice with a C57BL/6J background are more resistant to 

seizures than those on the 129/SvJ background (McKhann, et al., 2003).

 The role of apoE in maintaining neuronal networks can also be influenced by 

isoform variation and the lipidation state of apoE.  Application of apoE in combination 

with HDL results in isoform-specific increases neurite outgrowth in the CNS-derived cell 

line GT1-1 trk9; apoE3 has a greater effect  than apoE4 (Fagan, et al., 1996).  Much of 

this effect is blocked by  application of either RAP or anti-LRP1 antibody, indicating the 

role of the lipoprotein receptor family in general and the specific lipoprotein receptor 

LRP1 in mediating the actions of apoE in this specific process (Fagan, et al., 1996).  The 

lipidation state of apoE may  also play  a role in its function, as apoE/lipoprotein particles 

secreted by astrocytes have a higher affinity for LDLR than LRP1 (Fryer, et al., 2005).  

This is contrasted by the behavior of recombinant apoE, apoE-enriched lipoprotein 

particles, and HDL particles isolated from CSF, which all bind LRP1 more avidly than 

LDLR (Fagan, et al., 1996; Kowal, et al., 1990).  

 These findings emphasize the importance of apoE and lipoprotein receptors in 

neuronal function.  However, the role of apoE in human cognition is complicated by  the 

presence of isoform variation.  Unique to humans, these three isoforms have the potential 

to alter apoE-based signaling in the brain, ultimately  impacting cognitive processes and 

the development of neurological disorders.
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ApoE and AD


 The allelic variation of apoE exerts a differential risk on the development of AD, a 

finding first reported more than a decade ago (Corder, et al., 1993; Rebeck, et al., 1993).  

The three human isoforms, apoE2, apoE3, and apoE4, are maintained at different 

frequencies within human population groups (Corbo & Scacchi, 1999). The apoE3 allele 

is maintained at an allele frequency of 78% in populations of European descent (Corbo & 

Scacchi, 1999).  ApoE4, with an allele frequency  of 14%, is linked to an increased risk of 

developing sporadic AD in relation to apoE3, as well as decreased age of onset. In 

contrast, apoE2 expression decreases disease risk in relation to apoE3 (Corder, et al., 

1993; Strittmatter, et al., 1993).

Both apoE and apoE receptors have been found to co-localize with amyloid 

plaque deposits in human AD as well as animal models of AD, including the PDAPP and 

5x FAD mice (Arelin, et al., 2002; Poduri, et al., 1994; Shao, et  al., 1997). This physical 

interaction sparked studies into the relationship between apoE, apoE receptors, and Aβ.  

These studies revealed that there are several lines of evidence beyond physical interaction 

that suggest a role for apoE and its receptors in the modulation of APP processing and Aβ 

accumulation.

 The amyloid cascade hypothesis of AD centers around excessive formation of Aβ, 

a product of APP processing.  APP undergoes proteolysis by secretase enzymes to either 

release Aβ, which forms amyloid plaques, or the non-toxic soluble APP (sAPP) peptide.  

Cleavage by  an α-secretase releases sAPPα and precludes Aβ formation as the α-secretase 

cleave site is within the Aβ region (Turner, et  al., 2003).  Alternatively, APP is cleaved at 
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the β-secretase site by β-site APP cleaving enzyme (BACE) releasing sAPPβ.  The 

remaining C-terminal fragment, known as C99, is subsequently  cleaved by the γ-

secretase/presenilin complex within the transmembrane region to release Aβ peptide and 

APP intracellular domain (AICD) (Selkoe, 2002b). The magnitude by which this 

processing can be altered by genetics, age, or other modulatory factors is still being 

elucidated.  At sufficient concentrations, Aβ can form fibrils and oligomers that deposit 

into plaques within the brain.  The longer Aβ42 aggregates and forms fibrils more readily 

and is more neurotoxic than Aβ40 in vitro (Burdick, et al., 1992; Jarrett, et al., 1993; 

Snyder, et al., 1994).  As previously discussed this Aβ deposition is hypothesized to lead 

to neuronal injury and cell death by  altering synaptic efficacy, inducing inflammatory 

response in microglia and astrocytes, and inducing changes in cell signaling.  This 

widespread neuronal dysfunction and cell death manifests as dementia in the AD patient.

 Research within the context of the Aβ hypothesis is now focused on 

understanding how APP processing and Aβ deposition is modulated.  Importantly, apoE 

receptors appear to play a role in these processes.  For instance, LRP1, LRP1B, apoER2, 

and the related receptor SORLA interact with APP and can modulate processing to Aβ.  

For example, LRP1 binds and internalizes sAPPα and interacts with APP via the 

cytoplasmic adapter protein FE65 (Fiore, et  al., 1995; Knauer, et al., 1996).  

Antagonizing this interaction between APP and LRP1 with RAP in vitro results in an 

increase in cell surface APP and a decrease in Aβ production (Ulery, et al., 2000).  

Likewise, apoER2 associates with APP through f-spondin, an extracellular matrix-

associated protein (Hoe, Magill, et al., 2006).  Expression of f-spondin with apoER2 in 
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vitro results in reduced Aβ and β-CTFs, an effect that is inhibited by  pre-incubation with 

RAP (Hoe, Magill, et al., 2006).  Thus lipoprotein receptors play a dual role in the Aβ 

hypothesis, either directly interacting with APP or mediating the apoE/Aβ relationship.

 ApoE can interact with Aβ through a region in its C-terminal domain and act as a 

chaperone for Aβ clearance via lipoprotein receptors (Beffert, et al., 1998; Pillot, et al., 

1999; Tamamizu-Kato, et al., 2008).  The isoform variation of apoE alters this interaction.  

Both apoE2 and apoE3 bind Aβ and form stable complexes more readily  than apoE4 

(LaDu, et al., 1994; LaDu, et al., 1997; Pillot, et al., 1997). This interaction has the 

potential to influence both the clearance of Aβ and the accumulation of Aβ into plaques.  

ApoE treatment to both neuronal and non-neuronal cell culture also leads to the 

accumulation of APP c-terminal fragments, suggesting that apoE may modulate the 

gamma secretase cleavage of APP (Irizarry, et al., 2004).

 ApoE4 expression increases amyloid plaque load in AD mouse models 

(DeMattos, 2004; Holtzman, et al., 2000; Holtzman, et al., 1999), and in human AD 

(Schmechel, et al., 1993).  Crossing the Tg2576 mouse model of AD, which displays a 

10-15 fold increase in Aβ, with apoE3 or apoE4 knock-in mice results in a delay in the 

development of Aβ deposition versus murine apoE expression (Fryer, et  al., 2005).  

Furthermore, this biological effect of apoE correlates with a physiological consequence.  

For example, neurons cultured from animals expressing apoE4 have a greater 

susceptibility to Aβ42 -induced neurotoxicity  than wild-type, apoE-deficient, apoE2- or 

apoE3-expressing neurons (Manelli, et al., 2007).  Expression of apoE isoform under the 

endogenous murine promoter also influences susceptibility to Aβ-induced inhibition of 
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perforant path LTP in a manner that mirrors AD risk (E4>E3>E2) (Trommer, et al., 

2005).  Crossing the same apoE isoform-expressing animals with the PDAPP transgenic 

mouse model of AD results in isoform-specific alterations to beta amyloid levels (Bales, 

et al., 2009).  Brain Aβ and amyloid burden are significantly greater in the presence of 

apoE4 versus apoE2 or apoE3.  Additionally, about 90% of the apoE in the brains of the 

PDAPP animals expressing apoE4 is associated with Aβ, while only  about 25% of apoE2 

co-localizes with Aβ (Bales, et al., 2009), further emphasizing the role of apoE isoform in 

this interaction.

 ApoE isoform may function apart from interactions with Aβ to affect synaptic 

integrity  and function as well as memory  formation.  For instance, over-expression of 

human apoE3 but not apoE4 prevents age related neurodegeneration, namely the loss of 

SYN-positive presynaptic terminals and MAP2-positive neuronal dendrites in the 

neocortex and hippocampus that is seen in apoE-deficient mice (Buttini, et al., 1999).  

Similarly, spatial learning deficits observed in one line of apoE-deficient animals can be 

reversed by infusion of either human apoE3 or apoE4 (Masliah, et al., 1995).  In addition, 

there may be isoform specific alterations to the stability, expression, or uptake of apoE.  

In several brain areas, including the hippocampus, apoE4 is detected at lower levels than 

apoE3 (Ramaswamy, et al., 2005; Riddell, et al., 2008).  While all these investigations 

have yet to elucidate how apoE isoform specifically contributes to synaptic function, 

there is new evidence that this protein may play  a much more complicated role as a 

signaling ligand in the adult hippocampus.
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Receptor interactions and signaling by apoE

While the importance of apoE receptors has been emphasized in several studies, 

the role of apoE as a signaling molecule has only  begun to be considered. Recombinant 

apoE isoforms differentially affect intracellular calcium signaling and neurotoxicity  in 

cultured hippocampal neurons. ApoE4, but not apoE3, significantly increases 

neurotoxicity as measured by enhanced lactate dehydrogenase release. This neurotoxicity 

requires binding with LDLRs, activation of NMDARs, and subsequent increases in 

intracellular calcium (Z. Qiu, et al., 2004). ApoE also has isoform-specific effects on 

receptor turnover. ApoE4, but not apoE2 or apoE3, retards apoER2 retroendocytosis, or 

the resurfacing of the internalized receptor (J Herz, personal communication).  

Furthermore, apoE blocks reelin-induced increases in intracellular Ca2+ in an isoform 

specific manner, with apoE4 having the greatest effect and apoE2 the least (J Herz, 

personal communication).   These data suggest the presence of specific apoE isoform has 

the ability to alter receptor availability and subsequent signaling events that control 

cellular processes.

ApoE has also been implicated in at  least three major signal transduction 

pathways that are known to be  involved in synaptic plasticity: extracellular-regulated 

kinase (ERK), c-jun N-terminal kinase (JNK) and Dab-1/SFKs. In primary neuronal cell 

cultures, application of either full length apoE or a tandem repeat peptide of the receptor 

binding domain of apoE significantly enhances phosphorylation of extracellular signal-

regulated kinase 1/2 (ERK1/2) and Dab-1 while decreasing phosphorylation of c-jun N-
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terminal kinase 1/2 (JNK1/2).  These effects are mediated by interactions of apoE with 

LDL receptors (Hoe, et al., 2005). 

Interestingly, the apoE-mediated decrease in JNK1/2 phosphorylation requires 

activity of γ-secretase (Hoe, et al., 2005).  Proteolytic processing of APP by γ-secretase is 

required for the formation of the amyloidogenic Aβ.  As previously mentioned, several 

other transmembrane proteins, including the LDL receptors LRP1, VLDLR and apoER2, 

Notch, as well as APP also undergo cleavage mediated by  γ-secretase (Kopan & Ilagan, 

2004). ApoE stimulates γ-secretase dependent lipoprotein receptor processing to varying 

degrees based on isoform, with apoE2 having the greatest effect  and apoE4 the least  (Hoe 

& Rebeck, 2005).  The importance of this receptor processing has recently  become of 

increased interest due to the pervasiveness of soluble apoE receptors in the mammalian 

brain and the role these soluble receptors play in cell signaling (for review see (Rebeck, 

et al., 2006)).  For instance, soluble apoER2 binds membrane-bound apoER2 and 

VLDLR and blocks subsequent Reelin-induced signaling through these receptors in 

primary neuronal culture (Koch, et al., 2002) lending evidence to the hypothesis that 

apoE is involved in neuronal processes that extend beyond the transport of cholesterol.

The apoE targeted replacement mouse

 Many of the previously  mentioned findings are the result of in vitro studies in 

cultured neurons.  While these results are significant, interpretations about in vivo apoE 

function in animals or humans are limited.  Attempts to use apoE isoform transgenic 

animals have presented their own set of caveats, from varying expression levels between 
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isoforms to complications due to murine apoE.  Performing these studies in an animal 

that expressed human apoE isoforms under the control of the endogenous murine 

promoter, such as the apoE targeted replacement (apoE TR) mouse developed in Dr. 

Nobuyo Maeda’s laboratory, would greatly advance our understanding of the role of apoE 

in memory formation and synaptic function (Sullivan, et al., 1997).

 The apoE2, apoE3, and apoE4 TR animals express each of the human apoE 

isoforms under the control of the endogenous murine promoter thus preserving the 

natural expression patterns between isoforms (Sullivan, et  al., 2004; Sullivan, et al., 

1997). While there have been no developmental alterations reported, there are significant 

differences in synaptic plasticity  and behavior between isoform expressing animals.  

ApoE expression in apoE TR mice alters perforant  path LTP in an isoform specific 

manner.  ApoE3 TR and wild-type animals have the highest amount of LTP induction 

followed by apoE2 TR and apoE-deficient animals, and finally apoE4 TR animals with 

the least (Trommer, et al., 2005).  Conversely, in a separate but equivalent line of apoE 

TR animals, LTP induction measured in hippocampus area CA1 is increased in apoE4 TR 

animals over wild-type animals (Kitamura, et al., 2004).  This enhancement in CA1 LTP 

with apoE4 expression has been observed again in the apoE TR line developed by 

Sullivan et al., and apoE4 expression also blocks further enhancement of LTP by  reelin (J 

Herz, personal communication).  

 ApoE isoform expression in the apoE TR animals also alters learning and memory  

behavior. Female apoE4 TR mice have impairments in spatial memory  retention in 

comparison to apoE3 TR, apoE-deficient, and murine apoE-expressing animals 
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(Grootendorst, et al., 2005).  These deficits in the apoE4 TR mice persist with age (Bour, 

et al., 2008). However, apoE2 TR animals have not been tested along side apoE3 TR and 

apoE4 TR animals under the same conditions. Another study of these animals found no 

alterations to spatial memory.  Instead, apoE4 TR mice are impaired in anxiogenic tasks 

such as passive avoidance, light-dark, and elevated plus maze (Villasana, et al., 2006). 

Likewise, conflicting reports from previous behavioral studies also plague the literature 

involving apoE-deficient animals. Spatial learning in the apoE-deficient mouse is 

particularly variable. In several studies, spatial memory  is equivalent between apoE-

deficient and murine apoE-expressing animals (Anderson, et al., 1998; Anderson & 

Higgins, 1997; Grootendorst, et al., 2005; Raber, et al., 2000).  In others, spatial learning 

is impaired in the absence of apoE (Champagne, et al., 2002; Krzywkowski, et al., 1999; 

Masliah, et al., 1997; Oitzl, et al., 1997; Veinbergs, et  al., 1999), emphasizing the 

sensitivity of behavioral tests to genetic background, housing conditions, experimental 

designs, and other extrinsic factors (see table 4).   Thus, the field would benefit greatly 

from single study comparing apoE-deficient animals with all apoE TR animals at various 

ages.

Summary

 The main pathological hallmark and post-mortem diagnostic criterion for 

Alzheimer’s disease is the presence of extracellular plaques composed of Aβ.  Processed 

from the transmembrane protein APP, Aβ has been characterized as the main villain in the 
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development of AD.  Yet decades of research have shown that  Aβ is not the only  player in 

this neurodegeneration and attention has turned to other AD risk factors.

 In the context of AD research, a great deal of attention has been given to the 

LDLR family because of another ligand for these receptors—apolipoprotein E.  The three 

human isoform variants of apoE have been linked to altered risk of developing AD.  The 

molecular mechanisms for apoE isoform-dependent contributions to the etiology of AD 

are unclear. However, there is mounting evidence that apoE isoforms can differentially 

alter neuronal signaling and synaptic plasticity. These studies lend support to the idea that 

apoE isoforms are involved in both the pathogenesis and progression of AD and also 

contribute to neuronal function that can influence cognitive ability.  

 Studies to date illustrate the complicated interplay between apoE isoform, 

synaptic plasticity, and cognition.  Deciphering the mechanism by which apoE isoform 

alters AD risk is further complicated by the pathological changes associated with the 

disease.  Therefore, the only way to fully understand the involvement of this risk factor in 

the development of AD is to understand its normal function in both synaptic plasticity 

and learning and memory.  Fortunately, characteristics of hippocampus area CA1 make it 

ideally suited for studying these effects.   

 

Hypothesis and specific aims

 Signaling through lipoprotein receptors is necessary  for normal synaptic 

functioning in the adult hippocampus.  The capacity  of apoE to signal through these 

receptors is one of the many unanswered questions surrounding this receptor system.  The  
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potential interaction between apoE and ligands for specific lipoprotein receptors may 

alter signal transduction cascades essential to learning and memory processes.  Without 

an understanding of the normal role of apoE isoforms in synaptic plasticity, the 

mechanism by  which apoE isoform impacts Alzheimer’s disease risk will be nearly 

impossible to resolve.  

 The studies proposed here are the first to investigate the effect of both acute apoE 

isoform application and chronic apoE isoform expression on synaptic plasticity  in area 

CA1 of the hippocampus.  This project capitalizes on the currently  available apoE TR 

mice as well as isoforms of recombinant human apoE to test the hypothesis that apoE acts 

as an isoform-specific signaling ligand for lipoprotein receptors in the adult hippocampus 

to modulate neuronal synaptic plasticity.  Additionally, this study uses the apoE TR mice 

to test the effects of human apoE isoform on hippocampus-dependent learning and 

memory behavior.

Hypothesis 1: ApoE acts in an isoform-specific manner to modulate synaptic 
function in the adult hippocampus
 Specific aim 1: Determine the effect of apoE isoform on synaptic plasticity of the 
  CA1 dendritic field
 Specific aim 2: Determine the synaptic mechanisms involved in apoE 
  isoform-dependent modulation of synaptic plasticity.

 Efforts to effectively  determine the mechanism by which apoE isoform alters AD 

risk will be aided by an understanding of the actions of apoE isoforms in the non-AD 

brain.  The current literature is limited in this respect and is complicated  by  a variety of 

different techniques, apoE protein sources, and brain regions investigated which has 
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created a fractured, incomplete model and makes direct comparisons impossible.  

Therefore, this project was designed to address these confounds by  1) utilizing both acute 

apoE treatment with recombinant human apoE isoforms and chronic apoE expression in 

the apoE TR mice; 2) focusing on hippocampus area CA1, which is extremely well-

characterized, important in learning and memory, and enriched in LDLRs; and 3) 

comparing all three human apoE isoforms to each other, as well as apoE deficiency to 

murine apoE in order to eliminate inter-experimental variables.

 Chapters II and III respectively  describe the effects of acute and chronic human 

apoE isoform exposure on synaptic transmission, short- and long-term plasticity in area 

CA1 of the hippocampus.  Further electrophysiological techniques confirmed the role of 

apoE as a signaling molecule in the adult hippocampus.  Finally, combination of 

electrophysiological and biochemical techniques were used to investigate the mechanism 

by which apoE isoform alters synaptic plasticity.

Hypothesis 2: Human apoE isoform expression differentially affects learning and 
memory in the targeted replacement mouse.
 Specific aim 3: Determine the effect of apoE isoforms on learning and memory 
  behavior.
 

 The apoE TR mouse is a valuable tool in the elucidation of the role of apoE 

isoforms in normal learning and memory and in the understanding of AD development in 

terms of cognitive ability.  However, it is necessary  to establish a baseline behavioral 

profile for all three human isoforms prior to further manipulations to understand AD 

etiology, such as crossing the apoE TR animals with other AD mouse models.  As 
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described in Chapter IV, this study investigated the behavioral consequences apoE 

isoform in these targeted replacement animals.  Using young adult (3-5 months) animals, 

this study reports changes in performance of learning and memory behavior tasks, 

focusing on motor learning, working memory, spatial memory, and associative learning. 
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CHAPTER II

ISOFORM-DEPENDENT CHANGES IN HIPPOCAMPUS SYNAPTIC FUNCTION 
WITH ACUTE APOE ISOFORM EXPOSURE

Introduction

 Located within the medial temporal lobe, the hippocampus is essential for proper 

memory formation (Amaral & Lavenex, 2006; Eichenbaum, 1999).  It receives both 

direct and indirect input from all sensory  areas of the cortex as well as modulatory  input 

from various areas of the brainstem.  The hippocampus proper has three major pathways 

(figure 4):  1) the perforant  pathway that projects from the entorhinal cortex to the 

granule cells of the dentate gyrus; 2) the mossy  fiber pathway  composed of granule cell 

axons that project to pyramidal cells in area CA3 of the hippocampus; and 3) the Schaffer 

collateral pathway that connects CA3 pyramidal cells with those in area CA1.  

 The pathways of the hippocampus are very sensitive to the stimulation that they 

have received. Brief, high-frequency stimulation will increase the amplitude of excitatory 

postsynaptic potentials specifically  in the target neurons of the stimulated pathway  (Bliss 

& Lomo, 1970).  This enhancement, called long-term potentiation (LTP), can last for 

hours in the hippocampal slice and for days to weeks in the intact animal (Bliss & Lomo, 

1970).  LTP has been intensely studied since its discovery and has been loosely defined as 

a model of learning and memory, albeit with certain caveats.  While many genetic or 

pharmaceutical manipulations that enhance LTP also enhance learning and memory 

function, there are a myriad of examples that show the opposite relationship or no 
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Figure 4: Major pathways in the hippocampal circuit
The hippocampus proper consists of a primarily uni-directional network.  Input 
from the entorhinal cortex forms connections with the dentate gyrus and CA3 
pyramidal neurons via the perforant path.  The mossy fiber pathway consists of 
the dentate gyrus granule cells that extend to CA3 pyramidal cells.  CA3 
pyramidal neuron axons subsequently extend to CA1 forming the Schaffer 
collaterals.  CA1 neurons also received input from the perforant path and 
subsequently send axons to the subiculum; these neurons then in turn project back 
to the entorhinal cortex.
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relationship  at  all (Allen, et al., 2000; Gu, et al., 2002; Jun, et  al., 1998; Meiri, et al., 

1998; Migaud, et al., 1998; Minichiello, et al., 1999; Pavlov, et al., 2002; Walther, et al., 

1998).  This is likely  due to the fact that while plasticity  of neuronal communication 

underlies learning and memory, we know that memories are not stored in the 

hippocampus.  Thus changes in artificially induced plasticity do not directly relate to 

plasticity in other areas of the brain.  In addition, there are other forms of plasticity  in the 

hippocampus, including long-term depression (LTD), which have also been implicated as 

a mechanism of memory formation.  Despite these shortcomings, the study  of LTP in the 

different areas of the hippocampus has been valuable in understanding the molecular 

mechanism underlying synaptic plasticity.

 The CA areas of the hippocampus are so named due to the historical description 

of hippocampus anatomy as a “ram’s horn”, or Cornu Ammonis (Amaral & Lavenex, 

2006). While LTP is possible in all pathways of the hippocampus, this project focuses on 

changes within the population of pyramidal cells of area CA1.  Along with the entorhinal 

cortex, area CA1 is one of the first brain areas to show AD pathology (Braak & Braak, 

1998).  In addition, the basic mechanism of synaptic plasticity  in area CA1 is well 

characterized and the lipoprotein receptors are known to modulate area CA1 synaptic 

function.

 The axons that  compose the Schaffer collaterals arise from cells in area CA3, 

synapse on the dendrites from cells in area CA1, and use glutamate as their 

neurotransmitter. During normal synaptic transmission, glutamate is released from the 

presynaptic terminal and binds to glutamate receptors on the postsynaptic terminal. While 
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the glutamate binds to both NMDA and non-NMDA (AMPA) receptors, only the AMPA 

receptors are activated and allow sodium and potassium ions to flow across the cell 

membrane. The NMDA receptors remained blocked by magnesium ions in the channel 

pore at resting membrane potential (Waxham, 2003).

 The induction of LTP at these synapses requires concurrent presynaptic release of 

glutamate and postsynaptic depolarization. The cooperative firing of several axons 

depolarizes the postsynaptic cell and releases the magnesium block from the NMDA 

receptor channel. Once this block is released, calcium can flow into the postsynaptic cell 

and trigger second messenger systems that lead to changes within the postsynaptic cell 

and LTP (for review, see (Dingledine, et al., 1999)).

 The intracellular signaling events initiated by calcium influx are modulated by a 

variety of other signaling pathways that can increase, decrease, or occlude LTP induction.    

Most relevant to this study is the modulation of LTP induction by reelin signaling.  Reelin 

binding to its two partners, the lipoprotein receptors apoER2 and VLDLR, initiates 

signaling cascades that  ultimately lead to the enhancement of LTP (Weeber, et al., 2002). 

Reelin also induces trafficking of AMPA receptors and reduces the number of silent 

synapses, thereby increasing synaptic efficacy (S. Qiu, Zhao, et al., 2006).

 The interplay between the NMDA receptor and lipoprotein receptors is also vital 

to the study of the role of apoE isoforms in synaptic plasticity.  The NMDA receptor, 

specifically the NR1 subunit, interacts with apoER2 via its extracellular domain; the NR2 

subunit links to apoER2 via binding to PSD95 (Beffert, et al., 2005; Hoe, Pocivavsek, 

Chakraborty, et al., 2006).  This places apoER2 in close proximity to the NMDA receptor 
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and means that signaling by ligands such as apoE through this receptor could have effects 

on NMDA receptor function.

 Both NR2A and NR2B can be tyrosine phosphorylated by the SFKs src and fyn 

(Cheung & Gurd, 2001), which regulates receptor activity. SFK-dependent  tyrosine 

phosphorylation increases during LTP, suggesting that  it is intimately linked to synaptic 

plasticity and neuronal functioning (Lu, et al., 1998).  Reelin signaling, as previously 

discussed, can modulate the signaling pathways that lead to tyrosine phosphorylation of 

the NMDA receptor, suggesting the hypothesis that apoE binding to apoER2 and VLDLR 

may either alter signaling by reelin or similarly initiate signaling events that alter NMDA 

receptor phosphorylation and synaptic plasticity.

 There is also mounting evidence that apoE may act as a signaling molecule to 

otherwise alter synaptic transmission. For instance, the ERK1/2 signaling pathway, 

activated by calcium influx through NMDA receptors, plays a key  role in synaptic 

plasticity and cell survival (Sweatt, 2004; Thomas & Huganir, 2004).  ApoE can activate 

ERK1/2 in an isoform dependent manner in neuronal cultures, a process that requires 

calcium influx through the NMDA receptor.  In addition, apoE decreases activation of 

JNK1/2 and increases PI3K activation via Dab-1 (Hoe, et al., 2005).  This suggests that 

apoE may act as an isoform-specific signaling molecule in the adult brain.

 In this study, I explore the ability of apoE isoforms to modulate CA1 synaptic 

plasticity in the adult mouse. I use field recording techniques to test acute effects of 

recombinant human apoE isoforms on synaptic plasticity. I also use both 
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electrophysiological and biochemical techniques to investigate the potential mechanism 

by which apoE isoform alters synaptic plasticity.  

Methods

Animal maintenance

 ApoE knock-out animals were obtained from Jackson Laboratories (Bar Harbor, 

ME).  Animals were on a fully  backcrossed C57BL/6J background and bred in a 

homozygous fashion for experimentation. Animals were housed in a standard 12 hour 

light cycle and bred and maintained in accordance with the Vanderbilt University 

Institutional Animal Care and Use Committee protocol.  Animals were given ad libitum 

access to standard mouse chow (LabDiet, PMI Nutrition International) and water. 

Electrophysiology

 Hippocampus slices were prepared from 3- to 5-month old mice for field 

electrophysiology.  The animals were sacrificed by cervical dislocation and the brain was 

rapidly removed and placed in ice-cold high sucrose cutting saline solution containing (in 

mM) 110 sucrose, 60 NaCl, 3 KCl, 28 NaHCO3, 1.25 NaH2PO4, 5 glucose, 0.6 ascorbate, 

7 MgCl2, and 0.5 CaCl2 with continuous perfusion of 95% O2/5% CO2 Horizontal 

400µm sections were cut in high sucrose cutting solution using a vibratome.  Slices were 

maintained in cold, oxygenated cutting solution until dissection of the hippocampus from 

the surrounding tissue.
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 After dissection, the hippocampus slices were transferred to room temperature 

cutting solution diluted 1:1 with artificial cerebral spinal fluid (ACSF).  ACSF contains, 

in mM, 125 NaCl, 2.5 KCl, 26 NaHCO3, 1.25 NaH2PO4, 25 glucose, 1 MgCl2, and 2 

CaCl2.  Slices were maintained in this solution with constant 95% O2/5% CO2 perfusion 

for 10 min before transferring to the interface brain slice recording chamber (Fine 

Science Tools, San Francisco, CA).  

 The recording chamber was maintained at 30°±0.5°C with a laminar ACSF flow 

rate of approximately  1 mL/min.  Field excitatory  postsynaptic potentials (fEPSPs) were 

recorded from area CA1 stratum radiatum via glass micropipettes pulled to an 

approximate 1 µm tip diameter (1-4 MΩ) and filled with ACSF.  Responses were 

generated by stimulation of fibers arising from the CA3 region.  Stimulating electrodes 

consisting of formvar-coated nichrome wire delivered biphasic stimulus pulses (1-15 V, 

100 µsec duration, 0.05 Hz).  Delivery of stimulation, controlled by pClamp 9.0 software 

(Axon Instruments, Forster City, CA), was via the Digidata 1322A interface (Axon 

Instruments) and a stimulus isolator (model 2200, A-M  Systems, Sequim, WA).  Signals 

were amplified using a differential amplifier (model 1800, A-M Systems), filtered at 1 

kHz and digitized at 10 kHz.  For all experiments, baseline stimulus intensity was set at 

the level that elicited 40-50% of the maximum fEPSP response as determined from the 

input-output curve. 

 Paired-pulse facilitation was induced by delivery of two stimuli in close temporal 

proximity.  Intervals between stimuli began at 20 ms and increased to 300 ms in 20 ms 
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intervals.  Paired-pulse facilitation was calculated by the percent facilitation of fEPSP 

slope of second response from first response.

 Long-term potentiation (LTP) was induced by  theta-burst protocol.  Theta-burst 

LTP protocol consisted of five trains of 10 bursts at a 5Hz frequency with each burst 

consisting of 4 stimulations delivered at  100Hz and an inter-train interval of 20 seconds. 

NMDAR field potentials were isolated by incubating slices on the rig in ACSF containing 

0.1 mM Mg2+ for 30 minutes followed by addition of 20 µM 6-cyano-7-

nitroquinoxaline-2,3-dione (CNQX) and 25 µM picrotoxin.  After 20 minutes of 

stabilization, slices were treated with 100 nM  of recombinant human apoE isoforms 

(Calbiochem).  

 Electrophysiological data was also analyzed using one-way ANOVA with 

Bonferroni’s post hoc tests.  Significance was set at p<0.05 for all tests.

Biochemistry

 Slices were obtained from apoE-deficient mice in an identical fashion as for 

electrophysiology (see above). Slices (n=3-4 per treatment) were incubated in ACSF at 

30°C for 1 hour prior to the addition of 100 nM recombinant human apoE2, apoE3 or 

apoE4 (Calbiochem) for 40 minutes.  Slices were then flash frozen on dry ice and CA1  

was dissected.  

 NMDAR subunit phosphorylation - Pooled tissue was sonicated in modified RIPA 

buffer (Tris/HCl pH 7.4, 2 mM EDTA, 150 mM NaCl, 0.1% SDS, 0.5% sodium 

deoxycholate, 1% Triton X100, 1X phosphatase inhibitors I and II (Sigma), and 1X 
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complete protease inhibitors (Sigma). Protein concentrations were determined by  BCA 

Protein Assay. A total of 400 µg of protein lysate was used to immunoprecipitate either 

NMDA-NR2A (NMDAε1, Santa Cruz Biotechnology) or NMDA-NR2B (NMDAε2, 

Santa Cruz Biotechnology) overnight  at 4°C with agitation. Protein A/G magnetic beads 

(New England BioLabs) were added to each reaction (25 µl bead slurry/reaction) and 

samples were incubated for 2 hours at  4°C with agitation. Following three wash cycles, 

the protein was eluted with 1X Laemmli sample buffer separated by SDS-page on 4-15% 

Tris-HCl gradient gels (BioRad) and transferred to PVDF membranes. Membranes were 

probed with goat anti-NMDAε1, rabbit anti-NMDA, or mouse anti-pTyr (PY99) (Santa 

Cruz Biotechnology) in 2% BSA-TBST. Membranes were developed using HRP-

conjugated secondary antibodies and enhanced chemiluminescence. 

 ERK/JNK activation – Pooled tissue was homogenized in NP-40 lysis buffer 

containing (in mM) 50 Tris-HCl pH 8.0, 150 NaCl, 1 EDTA, 1 PMSF, 1 Na3VO4, 1 NaF, 

1 µg/mL each of aprotinin, leupeptin and pepstatin, and 1% NP-40.  Protein concentration 

was determined by Bradford Assay (BioRad). Ten µg of protein was resolved on 10% 

SDS-PAGE.  Membranes were probed with rabbit anti-ERK1/2, anti-ERK1/2 pTpY185/187, 

anti-JNK1/2, anti-JNK1/2 pTpY183/185 (Invitrogen) diluted in 0.24% I-block.  Membranes 

were developed using HRP-conjugated secondary antibodies and enhanced 

chemiluminescence. 

 Optical density  of immunoreactivity was quantified by densitometry  using Image 

J software (NIH).
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Results

Acute exposure to apoE isoforms alters LTP induction

ApoE-deficient animals develop normally without gross pathological changes to 

brain organization, suggesting that other lipoproteins are able to compensate for the lack 

of apoE during development.  In the hippocampus, synaptic transmission is also 

unaffected by the lack of apoE: the relationship between fiber volley amplitude and field 

excitatory postsynaptic potential (fEPSP) slope is equivalent between apoE-deficient and 

murine apoE-expressing animals (data not shown).  This ensures that there are not major 

synaptic transmission deficiencies in the apoE-deficient animals that would inhibit study 

in the effect of apoE isoforms.

To isolate the effects of apoE isoforms on synaptic plasticity, apoE-deficient slices 

were perfused with 100 nM  of recombinant human apoE2, apoE3, or apoE4 (rhapoE) for 

five minutes prior to experimentation.  Short term plasticity  was measured with paired-

pulse facilitation.  Two stimuli were delivered in close temporal proximity, increasing in 

20 ms intervals from 20 to 300 ms.  The fEPSP slope elicited for both stimulations was 

measured and the percent increase of the second response calculated.  ApoE-deficient 

slices in the absence of rhapoE displayed the typical percent facilitation (figure 5A).  

Perfusion with rhapoE2, rhapoE3, or rhapoE4 did not change this relationship (figure 

5A).

 High frequency stimulation of Schaeffer collateral synapses using a standard theta 

burst stimulation protocol induces robust potentiation (Larson, et al., 1986).  Long-term 
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potentiation was successfully induced in apoE-deficient mice using five trains of theta 

burst stimulation. To test the hypothesis that apoE isoforms differentially modulate 

synaptic activity, apoE-deficient hippocampal slices were perfused with 100 nM  rhapoE 

isoforms beginning five minutes prior to the start  of baseline recording and continuing for 

the duration of the experiment. Following theta burst stimulation there was an isoform-

dependent change in synaptic plasticity  (figure 5B).  Quantification of the average fEPSP 

slope of the last 20 minutes of recording shows that treatment  with rhapoE4 significantly 

increased LTP induction over rhapoE2, respectively (figure 5C, ANOVA, p=0.0112).  

Effect of apoE isoform exposure on NMDAR function and phosphorylation

 The NMDA receptor is intimately  associated with many forms of synaptic 

plasticity and long-term potentiation, including theta-burst-induced LTP (Larson & 

Lynch, 1988).  In addition, signal transduction via apoE receptors is linked to NMDA 

receptor maturation (S. Qiu & Weeber, 2007; Sinagra, et al., 2005), increased NMDA 

receptor currents (S. Qiu, Zhao, et al., 2006), and activation of signaling pathways that 

involve NMDA receptor function (Beffert, et  al., 2005; Hoe, Pocivavsek, Chakraborty, et 

al., 2006; Weeber, et al., 2002).  These results lead to the hypothesis that the observed 

alterations in LTP may be due to apoE isoform-specific changes in NMDA receptor 

function. Thus, I next investigated the effect of apoE isoform on CA1 NMDA receptor 

function.

 NMDA receptor field potentials were isolated first  incubating slices in ACSF with 

reduced Mg2+ (0.1 mM) for 30 minutes followed by application of 20 µM of the AMPA
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Figure 5: Acute apoE isoform exposure alters LTP in apoE-deficient hippocampus 
slices
ApoE-deficient slices treated with 100 nM of rhapoE beginning five minutes prior to 
recording and continuing throughout the duration of the experiment.  A. Paired-pulse 
facilitation as measured by percent facilitation of second response. Second stimuli 
delivered at 20 ms intervals from 20 to 300 ms from first stimuli.  B. LTP induced by 5 
trains of theta burst stimulation (arrow).  Slope fEPSP standardized to first 20 minutes of 
recording. C. Average slope fEPSP of last 20 minutes of recording. control = black, n=8; 
rhapoE2 = blue, n=8; rhapoE3 = purple, n=7; rhapoE4 = red, n=6. Data expressed as 
mean ± SEM.*p<0.05, ANOVA with Bonferroni’s posttest.



receptor antagonist CNQX for 20 minutes. Slices were subsequently  treated with 100nM 

rhapoE2, rhapoE3 or rhapoE4 for 40 minutes, with the NMDAR-mediate field potentials 

monitored throughout.  While I hypothesized that the enhanced LTP seen in the presence 

of apoE4 was related to increased NMDA receptor currents similar to the effect of reelin 

application, addition of either recombinant apoE2 or apoE4 significantly  reduced NMDA 

field potentials from control levels (figure 6, p=0.0015). Interestingly, there was no effect 

on NMDAR field potentials with the application of rhapoE3.

 Tyrosine phosphorylation of NMDA-receptor subunits has been shown to 

influence NMDA receptor trafficking and assembly  (Ferrani-Kile & Leslie, 2005; Kohr & 

Seeburg, 1996).  NMDA receptor currents are potentiated by  increases activity of protein 

tyrosine kinases (PTKs) and reduced by  decreasing PTK activity (Y. T. Wang & Salter, 

1994; Y. T. Wang, et al., 1996) This tyrosine phosphorylation, mediated by SFKs such as 

fyn, plays an integral role in hippocampal synaptic plasticity and LTP (Ho, et al., 2004; 

Sala & Sheng, 1999; Zheng, et al., 1998). With the identification of reduced NMDA 

receptor-dependent field potentials with rhapoE2 and rhapoE4, I hypothesized that apoE 

may be altering the state of NMDA-receptor subunit tyrosine phosphorylation by 

decreasing src-dependent phosphorylation, increasing phosphatase activity, or both. 

 Hippocampus slices from apoE-deficient animals were treated with 100 nM 

rhapoE isoforms for 40 minutes.  These slices were flash frozen and the CA1 region was 

dissected.  We then immunoprecipitated the NMDA receptor subunits NR2A and NR2B 

from these pooled CA1 samples then probed for tyrosine phosphorylation.  There was a 

trend towards reduced tyrosine phosphorylation of NR2A with application of rhapoE2, 
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Figure 6: Application of rhapoE alters NMDAR-mediated field potentials
A. NMDAR-mediated field potentials isolated by application of 20 µM CNQX (dashed 
line). Field potentials measured in presence of 100 nM rhapoE (solid line), standardized 
to first 20 minutes of recording.  B. Average slope fEPSP of last 20 minutes of 
recording. control = black, n=8; rhapoE2 = blue, n=8; rhapoE3 = purple, n=7; rhapoE4 = 
red, n=6. Data expressed as mean ± SEM. *p<0.05, **p<0.01 versus control, ANOVA 
with Bonferroni’s posttest.
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rhapoE3, or rhapoE4; control was significantly different from rhapoE4 (figure 7A, 

ANOVA p=0.0216). Levels of NR2A were unchanged with apoE isoform application 

(figure 7B, ANOVA p=0.1699). There were no significant differences in the ratio of 

pNR2A to NR2A between any of the conditions (figure 7C, ANOVA p=0.8550). Also 

unchanged were levels of pNR2B and NR2B (figure 7D,E ANOVA pNR2B p=0.3287, 

NR2B p=0.9079). Similarly, there were no significant differences in pNR2B to NR2B 

ratios with apoE isoform exposure (figure 7F, ANOVA p=0.2655).

Effect of apoE isoform exposure on signal transduction

 ApoE has been previously shown in neuronal cell culture to have isoform specific 

effects on signal transduction pathways crucial to synaptic plasticity such as ERK and 

JNK (Hoe, et al., 2005).  As those effects were blocked by  LDL receptor inhibitors and 

the NMDA receptor antagonist MK-801, we hypothesized that these signaling pathways 

may also be involved in the isoform-specific alterations in CA1 LTP.  To test this 

possibility, apoE-deficient hippocampus slices were isolated and incubated with 100 nM 

rhapoE for 40 minutes before flash freezing on dry ice and rapidly  dissecting out CA1.  

Tissue samples were probed by western blot analysis for pERK, pJNK, ERK and JNK.  

 ApoE isoform application did not significantly alter total pERK or ERK levels 

(figure 8A,B ANOVA pERK p=0.5100, ERK p=0.8693).  There were no significant 

differences in the pERK/ERK ratio (figure 8C, ANOVA p=0.7154).  Furthermore, acute 

apoE isoform application did not  significantly alter either JNK or pJNK levels, or pJNK/

JNK ratio (figure 8D-F, ANOVA pJNK p=0.7900, JNK p=0.7627, pJNK/JNK p=0.8414). 
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Figure 7: Effect of acute apoE isoform exposure on NR2A and NR2B tyrosine 
phosphorylation
ApoE-deficient slices treated with 100 nM rhapoE isoforms. 
Immunoreactivity of A) pTyr and B) NR2A following immunoprecipitation by NR2A. C) Ratio 
of pNR2A to NR2A 
Immunoreactivity of D) pTyr and E) NR2B following immunoprecipitation by NR2B. F) Ratio 
of pNR2B to NR2B. control= C, black (n=6), rhapoE2 = E2, blue (n=7), rhapoE3 = E3, purple 
(n=5), rhapoE4 = E4, red (n=5). Data expressed as mean ± SEM. 
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Figure 8: Effects of acute apoE isoform exposure on ERK1/2 and JNK1/2 activation
CA1 of apoE-deficient animals treated with 100 nM rhapoE isoforms (n=6 for each). 
Quantification of A) pERK, B) ERK, and C) pERK/ERK ratio 
Quantification of D) pJNK, E) JNK, and F) pJNK/JNK ratio. 
Representative western blots showing levels of pERK, ERK, pJNK, JNK, and actin.  control= C, 
black, rhapoE2 = E2, blue, rhapoE3 = E3, purple, rhapoE4 = E4, red. Data expressed as mean ± 
SEM. 



Discussion

 The identification of apoE as an isoform specific risk factor for AD in 1993 

brought much excitement and speculation to the field (Corder, et al., 1993; Rebeck, et al., 

1993).  Due to the localization of apoE and its receptors within senile plaques, many 

hypothesized that apoE isoforms selectively altered the clearance of Aβ or the formation 

of plaques (Arelin, et al., 2002; Carter, 2005; Jiang, et al., 2008; Koistinaho, et  al., 2004).  

However, there are also numerous studies that implicate proper apoE function in other 

neuronal functions such as calcium homeostasis (Z. Qiu, et  al., 2004), neurite outgrowth 

(Ji, et al., 2003; Nathan, et al., 1994; Nathan, et  al., 2002), neurotransmission (Kitamura, 

et al., 2004; Krugers, et al., 1997; Krzywkowski, et al., 1999), and signal transduction 

(Hoe, et al., 2005; Hoe & Rebeck, 2005).  Changes in signal transduction based on apoE 

isoform are particularly  intriguing to AD researchers as these differences may contribute 

to alterations seen in AD risk.  

 While changes in AD risk may be due to chronic exposure to apoE isoform, there 

is a precedent for the study of acute apoE isoform signaling.  ApoE expression levels 

increase after percussive brain injury in rats versus sham treated animals (Iwata, et  al., 

2005).  Additionally, the presence of apoE4 increases the amount of damage seen in the 

brain following ischemic injury in mice (Mori, et al., 2003).  Administration of an apoE 

peptide composed of amino acids 133-149 during closed head injury improves functional 

outcome as well as reduces microglial activation and brain inflammation and suppresses 

Aβ42 expression (H. Wang, et al., 2007). Isolation of apoE signaling events by the use of 
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acute isoform exposure will add tremendously to our knowledge of apoE signaling and 

complement previous studies.

 In this study, I used hippocampal slices from apoE-deficient animals as a medium 

for testing the effects of recombinant human apoE isoforms on synaptic plasticity and 

signal transduction.  This allowed for the isolation of the effect of apoE isoforms without 

complications due to the presence of murine apoE.  Previous studies of apoE-deficient 

animals have shown minimal, if any, alterations in synaptic function.  ApoE-deficient 

animals develop  normally, but can show decreased synaptic density  with age (Masliah, et 

al., 1995).  Krywkowski et al. (1999) demonstrated a defect in CA1 LTP in apoE-

deficient animals with one train of TBS, but this effect was not seen with 3 trains of TBS. 

Likewise, I was able to induce robust potentiation in apoE-deficient slices with 5 trains of 

TBS.  However, in perforant path apoE-deficient animals show reduced LTP elicited by 3 

trains of 100 Hz stimulation in comparison to murine- and apoE3-expressing animals 

(Trommer, et  al., 2004).  This suggests that apoE may have differential effects based on 

hippocampal area; further study will be required to elucidate the mechanism of these 

differences.

 While apoE-deficiency may  result in some changes in synaptic plasticity, this 

study was focused on the additional effects that the presence of apoE isoform would 

cause. There were no gross defects in brain anatomy observed in apoE-deficient animals.  

Slices obtained from apoE-deficient animals displayed robust LTP induction with no 

changes in short-term plasticity  or synaptic transmission. This is beneficial to this study 
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as it allows for us to study a risk factor for AD without the confounding neuro-

degeneration that plagues other mouse models of AD.

 Addition of rhapoE2, rhapoE3, or rhapoE4 did not alter synaptic transmission or 

short-term plasticity. While not significantly different from control, LTP induction was 

increased with application of rhapoE4 and decreased with application of rhapoE2. There 

was a significant difference in LTP induction between rhapoE2 and rhapoE4. ApoE3 

application did not significantly alter LTP induction from control levels. Thus acute 

application of apoE has an isoform-dependent effect on the induction of LTP. This 

suggest a role for apoE as an isoform-specific signaling ligand that modulates the 

machinery responsible for synaptic plasticity.

 Acute stimulation of the LDL receptor family  by ligands like reelin can activate 

signal transduction pathways that modulate synaptic plasticity.  This modulation is 

accomplished by activation of specific signaling pathways that alter the responsiveness of 

the postsynaptic neuron.  Reelin binding to apoER2 and VLDLR specifically induces 

phosphorylation of NMDA receptor subunits via SFK activation resulting in increased 

NMDA receptor conductance and enhanced LTP (S. Qiu, Zhao, et al., 2006). As ligands 

for these same receptors, apoE is hypothesized to be another signaling molecule that can 

modulate synaptic plasticity.  By acting through apoER2, apoE could share the capacity 

to alter NMDAR function.  However, unlike reelin, application of exogenous apoE 

isoforms did not increase NMDAR field potentials.  Both rhapoE2 and rhapoE4 decrease 

NMDAR field potentials, a finding that contrasts their dissimilar effects on LTP 

induction. In light of the physical (Beffert, et al., 2005; Hoe, Pocivavsek, Chakraborty, et 
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al., 2006) and signaling (Hoe, et al., 2005; S. Qiu, Zhao, et al., 2006; Sinagra, et al., 

2005) link between lipoprotein receptors and NMDA receptors, apoE application may 

have isoform-specific effects on either the surface expression or function of NMDA 

receptors that results in a decrease in NMDAR field potentials

 The disparity between an increase in LTP coupled with a decrease in NMDAR 

field potentials in the presence of rhapoE4 could indicate apoE-isoform specific changes 

in other signal transduction pathways central to LTP.  Likewise, the decreases in NMDAR 

field potentials in the presence of rhapoE2 and rhapoE4 but not rhapoE3 may indicate 

changes in NMDAR function, such as that seen with alterations in tyrosine 

phosphorylation.  Acute exposure to exogenous reelin increases NMDAR tyrosine 

phosphorylation (S. Qiu, Zhao, et al., 2006).  However, acute exposure to rhapoE 

isoforms does not have the same effect (figure 7).  There are no significant differences in 

pNR2A/NR2A or pNR2B/NR2B ratios between control, rhapoE2, rhapoE3 or rhapoE4 

treated slices.

 Although there were no significant differences in NMDAR subunit tyrosine 

phosphorylation, there was a trend towards a decreased ratio in the presence of apoE 

isoforms.  Importantly, this study looked at total tyrosine phosphorylation, not specific 

sites. Further study will be required to determine if apoE isoform alters phosphorylation 

of specific residues, and how this altered phosphorylation correlates with alterations in 

NMDAR mediated field potentials and LTP induction. In addition, while this trend 

towards decreased phosphorylation may underlie the changes in NMDAR field potentials 

seen in the presence of rhapoE2 and rhapoE4, the same change in phosphorylation was 
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observed in the presence of rhapoE3 which did not alter NMDAR field potentials.  This 

indicates that other factors may  be altering NMDAR function, such as changes in 

receptor localization or a reduction in the number of silent synapses that ultimately 

change LTP induction but are not measurable by the assays performed in this study.

 In addition to changes in NMDAR function, apoE isoforms have the potential to 

significantly alter signal transduction pathways that are central to LTP induction.  Two of 

the more obvious candidates are the ERK1/2 and JNK1/2 pathways. Previous 

investigations have revealed that recombinant apoE and apoE-peptide can alter activation 

of ERK1/2 and JNK1/2 in neuronal cultures (Hoe, et  al., 2005).  These actions are also 

tied to NMDA receptor function, which stems from the intimate association of certain 

LDLRs with NMDA receptor subunits (Hoe, Pocivavsek, Chakraborty, et al., 2006). To 

connect these changes in signal transduction with alterations in LTP, I probed for changes 

in ERK1/2 and JNK1/2 activation in apoE-deficient CA1 samples that had been treated 

with rhapoE isoforms.  Unlike the previous study, I did not see any changes in these 

signal transduction pathways with apoE isoform exposure.  This may reflect basal 

differences in the treatment of apoE and its receptors in neuronal cortical culture and 

acutely  prepared CA1 slices, or may instead stem from more basic experimental 

differences such as the commercial source of recombinant apoE.  Further investigation 

will be required to distinguish between these possibilities.

 Without  changes in ERK1/2 and JNK1/2 activation or NMDAR-subunit tyrosine 

phosphorylation, how can apoE isoform exposure have such dramatic effects on LTP 

induction?  The answer may lie at the junction between the direct effects of apoE 
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isoforms and the indirect effects of apoE on reelin signaling.  ApoE may be 

simultaneously  inducing changes in neuronal function while also altering the ability  of 

reelin to signal via lipoprotein receptors. A recent unpublished study has shown that apoE 

isoform differentially alters receptor turnover, with apoE4 delaying apoER2 

retroendocytosis, or the re-expression of this receptor on the cell surface as an alternative 

to degradation in the lysosomes (J. Herz, personal communication).  This could have a 

profound impact on NMDAR function, either through the direct physical interaction with 

apoER2 or though alterations in signal transduction, as illustrated in figure 9.  The 

reduction in surface apoER2 in the presence of rhapoE4 also effectively alters reelin 

signaling by increasing the ratio of reelin to available receptors.  Upon stimulation, slices 

treated with rhapoE4 have been “primed” due to increased reelin signaling, resulting in a 

selective increase in LTP induction.  This selective difference between rhapoE4 and 

rhapoE2 could be further exaggerated by  apoE-dependent alterations in reelin expression 

or processing, but this mechanism remains to be tested.

 The experimental design of this study imitates previous studies of lipoprotein 

receptor signaling pathways.  The acute exogenous application of rhapoE isoforms is a 

convenient way to study the signaling capabilities of apoE within a narrow window.  This 

design, however, is not  the best approximation of how apoE performs in vivo.  Many of 

the results presented in this study may be influenced by the experimental set-up, namely 

the application of a bolus of non-lipidated apoE in a short  period of time. A 

complementary  study of the effects of chronic apoE expression would give further insight  

into isoform-specific changes to synaptic plasticity. 
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Figure 9: Proposed model of acute apoE isoform effects on synaptic plasticity
Application of apoE2 or apoE4 initiates endocytosis of lipoprotein receptors, including 
apoER2 and VLDLR.  This endocytosis may underly the observed decreases in 
NMDAR-mediated field potentials, either directly or indirectly. ApoE4 delays 
retroendocytosis of receptors.  In addition, apoE isoform may modulate reelin 
metabolism, with apoE4 increasing the availability of active reelin fragments.  Together 
these changes can modulate reelin-mediated signaling and thereby alter LTP induction.
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CHAPTER III

ISOFORM-DEPENDENT CHANGES IN HIPPOCAMPUS SYNAPTIC FUNCTION 
WITH CHRONIC APOE ISOFORM EXPRESSION

Introduction

 Both acute and chronic manipulations to the signal transduction pathways that 

center around the LDLR family  can alter synaptic plasticity and learning and memory 

function. As previously mentioned in Chapter II, acute activation of LDLRs can increase 

LTP while blocking the same receptors inhibits LTP induction (Battey, et al., 1994; 

Strasser, et al., 2004; Weeber, et al., 2002). In vivo manipulations to this system also 

result in alterations to LTP.  For example, a chronic decrease in reelin levels as seen in the 

heterozygote reeler mouse (HRM) alters LTP, long-term depression (LTD), and 

associative learning (S. Qiu, Korwek, Pratt-Davis, et al., 2006). Likewise, deletion of 

VLDLR or apoER2 also alters LTP and associative learning performance (Weeber, et al., 

2002).  

 Chronic apoE isoform expression may also alter synaptic plasticity and learning 

and memory by modulating lipoprotein receptor signaling.  An in vivo system featuring 

apoE isoform expression would allow for investigation into these effects.  Such a system 

would also facilitate study of the interactions between LDLRs, apoE, and other ligands 

such as reelin.  Fortunately, a promising system has already been developed: the apoE 

targeted replacement mouse.
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 Targeted replacement apoE isoform expressing mice (apoE TR) mice were 

developed by  targeting human apoE exons 2-4 to the complementary region in the mouse 

genome.  This strategy resulted in a chimeric gene possessing human coding sequences in 

place of mouse without disturbing the known normal murine regulatory  sequences 

(Sullivan, et al., 1997).  Initial studies showed that total levels of human apoE3 mRNA 

was equivalent to levels of murine apoE in wild-type littermates (Sullivan, et al., 1997).  

This equal expression as well as the high degree of conservation between murine and 

human apoE receptors allows for these mice to be used as a model for direct comparison 

of apoE isoforms (Herz & Bock, 2002).  

 Subsequent studies, however, indicated that  there may be variation in apoE 

protein levels based on isoform.  Within a particular brain region, apoE levels are similar 

between isoform (Sullivan, et  al., 2004).  However, this finding appears to be dependent 

on the methods used to extract and/or quantify apoE levels.  ApoE4 levels are equivalent  

to apoE3 when measured by quantitative ELISA (Sullivan, et al., 2004).  When measured 

by western blot, apoE4 levels are significantly reduced in both apoE TR hippocampal 

tissue (Ramaswamy, et al., 2005; Riddell, et  al., 2008) and in conditioned media from 

human astrocytomas (Riddell, et al., 2008). The significance of these findings remain 

open to interpretation.  However, these results do introduce the possibility that there may 

be isoform-specific variation in release or reuptake of apoE in these animals.  This 

possibility is just now being explored; preliminary  evidence indicates that apoE4 inhibits 

retroendocytosis of apoER2, thus altering receptor expression patterns and apoE levels (J. 

Herz, personal communication).

62



 Despite the obvious involvement of lipoprotein receptors and their ligands in 

synaptic plasticity, the characterization of hippocampus synaptic plasticity in the apoE 

TR has only begun in the past few years.  The most complete past investigation focused 

on perforant path LTP.  In this study, LTP induction varied by isoform: wild-type = apoE3 

TR > apoE-deficient = apoE2 TR > apoE4 TR (Trommer, et al., 2004).  The effects of 

apoE on LTP appear to depend on the hippocampal region that is being investigated.  In a 

similar, independently developed line of apoE TR animals, young apoE4 TR mice have 

an enhancement of CA1 LTP over wild-type controls (Kitamura, et al., 2004).  Additional 

comparison of the effect of chronic apoE isoform expression on CA1 synaptic plasticity 

in the remaining apoE TR lines was unfortunately absent.

 In this study, I investigated the effects of chronic apoE isoform expression on 

CA1 synaptic plasticity  in the adult mouse.  I used field recording techniques to monitor 

changes in synaptic plasticity between apoE2, apoE3, and apoE4 TR mice as well as 

between apoE-deficient and murine apoE-expressing animals.  Together with these 

electrophysiological techniques, I also observed biochemical changes due to apoE 

isoform expression.  These findings allowed me to determine a preliminary mechanism 

by which chronic apoE isoform expression alters hippocampus synaptic plasticity.
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Methods

Animal maintenance

 ApoE2, apoE3 and apoE4 targeted replacement animals were obtained from a 

colony  maintained at  Taconic (Hudson, NY).  ApoE knock-out and C57BL/6J (wild-type) 

animals were obtained from Jackson Laboratories (Bar Harbor, ME).  All animals were 

fully  backcrossed on a C57BL/6J background. Animals were housed in a standard 12 

hour light cycle.   Animals were bred for experimentation in a homozygous fashion and 

maintained in accordance with the Vanderbilt University Institutional Animal Care and 

Use Committee protocol.  Animals were given ad libitum access to standard mouse chow 

(LabDiet, PMI Nutrition International) and water. 

Electrophysiology

 Hippocampus slices were prepared from 3- to 5-month old mice for field 

electrophysiology.  The animals were sacrificed by cervical dislocation and the brain was 

rapidly removed and placed in ice-cold high sucrose cutting saline solution containing (in 

mM) 110 sucrose, 60 NaCl, 3 KCl, 28 NaHCO3, 1.25 NaH2PO4, 5 glucose, 0.6 ascorbate, 

7 MgCl2, and 0.5 CaCl2 with continuous perfusion of 95% O2/5% CO2 Horizontal 

400µm sections were cut in high sucrose cutting solution using a vibratome.  Slices were 

maintained in cold, oxygenated cutting solution until dissection of the hippocampus from 

the surrounding tissue.
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 After dissection, the hippocampus slices were transferred to room temperature 

cutting solution diluted 1:1 with artificial cerebral spinal fluid (ACSF).  ACSF contains  

(in mM) 125 NaCl, 2.5 KCl, 26 NaHCO3, 1.25 NaH2PO4, 25 glucose, 1 MgCl2, and 2 

CaCl2.  Slices were maintained in this solution with constant 95% O2/5% CO2 perfusion 

for 10 min before transferring to the interface brain slice recording chamber (Fine 

Science Tools, San Francisco, CA).  

 The recording chamber was maintained at 30°±0.5°C with a laminar ACSF flow 

rate of approximately  1 mL/min.  Field excitatory  postsynaptic potentials (fEPSPs) were 

recorded from area CA1 stratum radiatum via glass micropipettes pulled to an 

approximate 1 µm tip diameter (1-4 MΩ) and filled with ACSF.  Responses were 

generated by stimulation of fibers arising from the CA3 region.  Stimulating electrodes 

consisting of formvar-coated nichrome wire delivered biphasic stimulus pulses (1-15 V, 

100 µsec duration, 0.05 Hz).  Delivery of stimulation, controlled by pClamp 9.0 software 

(Axon Instruments, Forster City, CA), was via the Digidata 1322A interface (Axon 

Instruments) and a stimulus isolator (model 2200, A-M  Systems, Sequim, WA).  Signals 

were amplified using a differential amplifier (model 1800, A-M  Systems), filtered at        

1 kHz and digitized at 10 kHz.  For all experiments, baseline stimulus intensity was set at 

the level that elicited 40-50% of the maximum fEPSP response as determined from the 

input-output curve. 

 Paired-pulse facilitation was induced by delivery of two stimuli in close temporal 

proximity.  Intervals between stimuli began at 20 ms and increased to 300 ms in 20 ms 
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intervals.  Paired-pulse facilitation was calculated by the percent facilitation of fEPSP 

slope of second response from first response.

 Long-term potentiation (LTP) was induced by  theta-burst protocol.  Theta-burst 

LTP protocol consisted of five trains of 10 bursts at a 5Hz frequency with each burst 

consisting of 4 stimulations delivered at  100Hz and an inter-train interval of 20 seconds.  

NMDAR-independent LTP was induced by 2 one-second trains of stimulation delivered 

at 200Hz; concurrent application of 100 µM  2-amino-5-phosphonovaleric acid (APV) 

confirmed NMDAR independence.

 Electrophysiological data was also analyzed using one-way ANOVA with 

Bonferroni’s post hoc tests.  Significance was set at p<0.05 for all tests.

Biochemistry

 Slices were obtained from apoE2 TR, apoE3 TR, apoE4 TR, apoE-deficient, and 

C57BL/6J mice in an identical fashion as for electrophysiology (see above).  The slices 

were frozen on dry ice and CA1 dissected unless otherwise stated.

 ApoE/ApoER2 levels - Bilateral dissections of the whole hippocampus from aged 

(1 year old) animals were performed.  Brain tissue was rapidly  dissected and flash frozen 

on dry ice.  Tissue was homogenized in NP-40 lysis buffer containing (in mM) 50 Tris-

HCL ph 8.0, 150 NaCl, 1 EDTA, 1 PMSF, 1 Na3VO4, 1 NaF, 1 µg/mL each of aprotinin, 

leupeptin and pepstatin, and 1% NP-40.  Protein concentration was determined by 

Bradford Assay (BioRad). For western blot analysis, 10 µg of protein was resolved by 

SDS-PAGE on 4-20% gradient Tris-HCl gels (BioRad).  The proteins were then 
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transferred to PVDF membranes.  Membranes were probed  with goat anti-human apoE 

(Academy Bio-medical, Houston TX), rabbit anti-apoER2 (a gift of Drs. Gary Olson and 

Ray Burk, Vanderbilt University), and rabbit anti-actin (Sigma) diluted in 0.24% I-block 

(Tropix).  Membranes were developed using HRP-conjugated secondary antibodies and 

enhanced chemiluminescence.   

 NMDAR subunit phosphorylation - Pooled CA1 tissue was sonicated in modified 

RIPA buffer (Tris/HCl pH 7.4, 2 mM EDTA, 150 mM  NaCl, 0.1% SDS, 0.5% sodium 

deoxycholate, 1% triton X100, 1X phosphatase inhibitors I and II (Sigma), and 1X 

complete protease inhibitors (Sigma). Protein concentrations were determined by  BCA 

protein assay  (BioRad). For immunoprecipitation, a total of 400 µg of protein lysate was 

used to immunoprecipitate either NMDA-NR2A (NMDAε1, Santa Cruz Biotechnology) 

or NMDA-NR2B (NMDAε2, Santa Cruz Biotechnology) overnight at 4°C with agitation. 

Protein A/G magnetic beads (New England BioLabs) were added to each reaction (25 ul 

bead slurry/reaction) and samples were incubated for 2 hours at 4°C with agitation. 

Following three wash cycles, the protein was eluted with 1X Laemmli sample buffer 

separated by SDS-PAGE on 4-15% Tris-HCl gradient gels (BioRad) and transferred to 

PVDF membranes. Membranes were probed with goat anti-NMDAε1, rabbit anti-

NMDA, or mouse anti-pTyr (PY99) (Santa Cruz Biotechnology) in 2% BSA-TBST. 

Membranes were developed using HRP-conjugated secondary antibodies and enhanced 

chemiluminescence. For western blot analysis, ten µg of protein was resolved by SDS-

PAGE on 4-15% Tris-HCL gradient gels (BioRad) and transferred to PVDF membrane.  

Membranes were probed with rabbit anti-NR2A, rabbit anti-NR2B (Upstate), mouse anti-
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phosphotyrosine, clone 4G10 and mouse anti-NR1 (Millipore) diluted in 0.24% I-block 

(Tropix).  Membranes were developed using HRP-conjugated secondary antibodies and 

enhanced chemiluminescence.

 ERK/JNK activation – Pooled CA1 tissue was homogenized in NP-40 lysis buffer 

containing (in mM) 50 Tris-HCl pH 8.0, 150 NaCl, 1 EDTA, 1 PMSF, 1 Na3VO4, 1 NaF, 

1 µg/mL each of aprotinin, leupeptin and pepstatin, and 1% NP-40.  Protein concentration 

was determined by Bradford Assay (BioRad). Ten µg of protein was resolved by  SDS-

PAGE on 10% Tris-HCl gels.  Membranes were probed with rabbit  anti-ERK1/2, anti-

ERK1/2 pTpY185/187, anti-JNK1/2, anti-JNK1/2 pTpY183/185 (Invitrogen) diluted in 0.24% 

I-block.  Membranes were developed using HRP-conjugated secondary antibodies and 

enhanced chemiluminescence.

 Optical density  of immunoreactivity was quantified by densitometry  using Image 

J software (NIH).

Results

LTP induction in apoE TR animals is isoform dependent

 Much like apoE-deficient animals, apoE TR mice develop normally without gross 

pathological changes to brain organization. Hippocampal slices from 3-5 month old 

animals appear equivalent to wild-type hippocampi on a gross level. This suggests that 

isoform variation in apoE signaling does not significantly impact neuronal migration 

during development. This stands in contrast to reelin-deficient mice (D'Arcangelo, et al., 
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1999), giving the apoE TR and apoE-deficient mice a clear advantage when examining 

synaptic function.

 Supporting the lack of structural changes, hippocampus area CA1 synaptic 

transmission does not vary  significantly with apoE isoform expression (figure 10A).  

These data ensure an important parameter in plasticity studies: that specific input elicits 

an equivalent output  regardless of genotype.  Thus, subsequent variation in plasticity can 

be attributed to apoE isoform rather than changes in CA1 synaptic connectivity. 

Determination of short-term plasticity using paired-pulse facilitation revealed typical 

percent facilitation between apoE TR, apoE-deficient and wild-type mice (figure 10B). 

 Using five trains of theta burst stimulation, I successfully induced potentiation in 

wild-type (C57BL/6J), apoE-deficient, apoE2, apoE3, and apoE4 TR mice. The 

magnitude of potentiation, however, was dramatically different between apoE isoforms.  

Immediately  following stimulation and persisting for the duration of the experiment, 

apoE4 TR mice had increased LTP induction (figure 10C).  Potentiation in apoE4 TR 

mice was significantly increased from that seen in the apoE2 TR (figure 10D; ANOVA, 

p=0.0198).  LTP induction in the apoE-deficient mice was intermediate between apoE2 

TR and apoE4 TR, but this trend was not significant.  There was no significant difference 

in the magnitude of LTP induction between wild-type, apoE-deficient, and apoE3 TR 

animals. Interestingly, the finding of increased LTP in the apoE4 TR is contradictory  to 

perforant path LTP in the same animals (Trommer, et  al., 2004), suggesting a differential 

role for apoE in perforant path and CA1 synaptic plasticity.    
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Figure 10: ApoE TR animals show altered LTP induction without changes in 
synaptic transmission.
A) Input-output curve generated from the slope fEPSP versus fiber volley  amplitude 
measured at increasing stimulus intensities.  B) Paired pulse facilitation. Second stimuli 
delivered at  20 ms intervals from 20 to 300 ms from first stimuli.  Percent facilitation of 
fEPSP slope of second response as percentage of first response.  C) Long-term 
potentiation induced by 5 trains of theta-burst stimulation (arrow).  Expressed as slope of 
fEPSP, standardized to the first 20 minutes of recording.  Representative traces 5 minutes 
before (black lines) and 40 minutes after (colored lines) stimulation for apoE4 (red) and 
apoE2 TR (blue). Scale: 0.5 mV, 2 ms. D) Average potentiation of last 20 minutes of 
recording. C57BL/6J = WT, green, n=12; apoE-deficient = E0, black, n=12; apoE2 TR = 
E2, blue, n=17; apoE3 TR = E3, purple, n=6; apoE4 TR = E4, red, n=14. Data expressed 
as mean ± SEM. *p<0.05, ANOVA with Bonferroni’s posttest.



 Previous studies have shown that alterations in apoER2 expression (Weeber, et al., 

2002) and reelin expression (S. Qiu, Korwek, Pratt-Davis, et al., 2006) can adversely 

affect spatial memory as well as LTP induction.  To ensure that changes in receptor 

availability or ligand concentration were not underlying the isoform-specific effects on 

LTP in the apoE TR mouse, I probed for changes in overall expression levels of apoER2, 

the main apoE receptor in the brain.  Isolated hippocampal tissue was probed for apoER2 

expression using western blot analysis. Figure 11 indicates that apoE2, apoE3 and apoE4 

TR animals exhibit  no alterations in apoER2 levels in the hippocampus (ANOVA, 

p=0.8269). ApoE-deficient and murine apoE-expressing animals are also equivalent in 

receptor expression (t-test, p=0.6175). In addition, I also verified that targeted 

replacement did not alter overall apoE expression levels in the hippocampus as there 

were no significant differences in hippocampal apoE levels between apoE2, apoE3, and 

apoE4 TR mice (figure 11, ANOVA, p=0.6912).

Effect of apoE isoform expression on NMDA receptors

 Theta-burst induced LTP in the hippocampus requires proper NMDAR function 

(Larson & Lynch, 1988; Larson, et al., 1986).  Signal transduction via apoE receptors can 

alter this function by influencing NMDA receptor maturation (S. Qiu & Weeber, 2007; 

Sinagra, et al., 2005), increasing NMDAR currents (S. Qiu, Zhao, et  al., 2006) and 

activating other signaling pathways that  involve NMDA receptor function (Beffert, et  al., 

2005; Hoe, Pocivavsek, Chakraborty, et al., 2006; S. Qiu, Zhao, et al., 2006).  The 

association between NMDAR function and apoE receptors lead to the hypothesis that the
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Figure 11: ApoE isoform expression does not affect apoER2 expression levels 
Representative western blots showing levels of apoE (A) and apoER2 (B) 
immunoreactivity in whole hippocampus of aged animals. Quantification of 
immunoreactivity standardized to actin (n=8 for WT, E0, E2, E4, n=5 for E3).  C57BL/
6J (WT, white), apoE-deficient (E0, light grey), apoE2 TR (E2, medium grey), apoE3 
TR (E3, dark grey), apoE4 TR (E4, black). Data expressed as mean ± SEM.



 observed alterations in LTP may be due to apoE isoform-specific changes in NMDA 

receptor function.

 To test  this hypothesis, NMDA receptor-independent LTP was induced by 

delivering two one-second trains of 200 Hz stimulation concurrent with application of the 

NMDA receptor antagonist APV (100 µM).  This induced long-lasting potentiation in 

wild type, apoE-deficient, and apoE TR animals.  The isoform-dependent alterations in 

LTP induction, however, were eliminated with this protocol (figure 12), suggesting that 

apoE isoform expression may be modifying NMDAR function.

 As apoE4 increased LTP in a NMDAR-dependent manner similar to what is seen 

with reelin application, I hypothesized that apoE4 expression may also be increasing 

tyrosine phosphorylation of NMDA receptor subunits.  Reelin application significantly 

increases both NR2A and NR2B tyrosine phosphorylation in a Src-dependent manner (S. 

Qiu, Zhao, et al., 2006).  To test hypothesis that apoE isoform may be altering the state of 

NMDAR subunit tyrosine phosphorylation, I attempted to immunoprecipitate the NMDA 

receptor subunits NR2A and NR2B from area CA1 of the hippocampus of apoE TR, 

wild-type, and apoE-deficient animals then probe for tyrosine phosphorylation. 

 When immunoprecipitating NR2A, the levels of detected NR2A were 

significantly reduced in apoE4 TR animals (figure 13B, ANOVA p=0.0050).  This was 

accompanied by a significant increase in pNR2A as measured by pTyr immunoreactivity 

in the apoE4 TR versus apoE2 and apoE3 TR (figure 13A, ANOVA p=0.0023).  The 

resulting ratio of tyrosine phosphorylated NR2A to total NR2A was significantly 

increased in apoE4 TR over apoE2 TR (figure 13C, ANOVA p=0.0406). In contrast, there
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Figure 12: NMDA receptor-independent LTP is not affected by apoE isoform 
expression
A. Long term potentiation induced by 2 trains of 200 Hz stimulation (arrow) with 
application of 100 µM  APV for 5 minutes before and 20 minutes after 200 Hz 
stimulation.  Expressed as slope of fEPSP, standardized to the first 20 minutes of 
recording.  B. Average potentiation of last 20 minutes of recording. C57BL/6J = WT, 
green, n=5; apoE-deficient = E0, black, n=8; apoE2 TR = E2, blue, n=8; apoE3 TR = 
E3, purple, n=7; apoE4 TR = E4, red, n=6. Data expressed as mean ± SEM.



 were no significant differences in pNR2A or NR2A between wild-type and apoE-

deficient animals.

   Detected pNR2B levels also were significantly  higher in apoE4 TR versus apoE2 

and apoE3 TR animals (figure 13D, ANOVA p=0.0004).  Combined with a reduction in 

NR2B levels in the apoE4 TR (figure 13E, ANOVA p=0.0282), this resulted in a 

significant increase in the ratio of tyrosine phosphorylated NR2B to total NR2B in the 

apoE4 TR (figure 13F, ANVOA p=0.0029).  As the magnitude of this increase was very 

large, approximately 400% of levels seen in apoE-deficient animals, it was necessary  to 

validate these findings in a parallel study not involving immunoprecipitation.

 In order to ensure that excessive phosphorylation in the apoE4 TR samples was 

not altering the ability to immunoprecipitate NMDAR subunits, I subjected  CA1 samples 

from apoE TR animals to western blot analysis of NR1, NR2A, NR2B, and tyrosine 

phosphorylation.  In these samples, there were no significant differences in the ratio of 

NR2A to NR1 or NR2B to NR1 between any of the apoE TR animals (figure 14A,B 

ANOVA NR2A/NR1 p=0.4828, NR2B/NR1 p=0.0941).  Total tyrosine phosphorylation 

at the molecular weight corresponding to NR2A and NR2B was also unchanged between 

apoE2, apoE3, and apoE4 TR animals (figure 14C, ANOVA p=0.1117).
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Figure 13: Immunoprecipitation of NMDAR subunits is hindered in apoE TR 
animals
Immunoprecipitation of NR2A from CA1 followed by immunodetection of A) pNR2A 
with anti-pTyr antibody and B) NR2A. C) Ratio of pNR2A/NR2A. 
Immunoprecipitation of NR2B from CA1 followed by immunodetection of D) pNR2B 
with anti-pTyr antibody and E) NR2B. F) Ratio of pNR2B/NR2B.  Representative blots 
show immunodetection of pTyr and NR2A or NR2B. C57BL/6J = WT, green; apoE-
deficient = E0, black; apoE2 TR = E2, blue; apoE3 TR = E3, purple; apoE4 TR = E4, 
red. Data expressed as mean ± SEM. *p<0.05 ANOVA with Bonferroni’s posttest.
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ApoE isoform expression alters signal transduction

 Previous studies of acute apoE application in neuronal culture have shown that 

apoE can activate ERK1/2 phosphorylation in an isoform-dependent manner (Hoe, et  al., 

2005) and it  is know that  ERK1/2 activation is important for synaptic plasticity and 

learning and memory. However, we have yet to see any activation of the ERK signaling 

pathway with reelin application (unpublished observation), or with acute application of 

rhapoE isoforms.  It is likely, however, that prolonged exposure to endogenous apoE 

isoform can alter activation of signal transduction pathways and thereby  influence 

synaptic plasticity.

 The effect of apoE isoform expression on ERK signaling was investigated by 

isolating CA1 tissue and probing by western blot analysis for pERK1/2 and ERK1/2.  

While there was no change in pERK between wild-type and apoE-deficient animals, 

pERK was significantly increased in apoE4 TR over both apoE2 and apoE3 TR animals 

(figure 15A, ANOVA p=0.0003).  There were no corresponding changes in ERK levels in 

any of the animals (figure 15B, WT vs E0 t-test  p=0.4788, E2 vs E3 vs E4 ANOVA 

p=0.3922).  Therefore, the ratio of pERK to ERK was significantly increased in apoE4 

TR versus apoE2 TR and apoE3 TR animals and there were no significant differences 

between apoE-deficient and murine apoE-expressing animals (figure 15C, WT vs E0 t-

test p=0.0.0547, E2 vs E3 vs E4 ANOVA p=0.0005).

 Activation of JNK was altered by  both the absence of apoE and the presence of 

apoE isoforms.  There was significantly less pJNK activation in apoE-deficient animals 

versus wild-type (figure 15D, t-test p=0.0003).  pJNK levels were significantly increased 
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in apoE4 TR versus apoE2 TR and apoE3 TR animals (figure 15D, ANOVA p=0.0075 ).  

There were no significant differences in JNK levels (figure 15E, WT vs E0 t-test 

p=0.0.9167, E2 vs E3 vs E4 ANOVA p=0.4572).  Thus there was a significant difference 

in pJNK/JNK ratio between wild-type and apoE-deficient animals (figure 15F, t-test 

p=0.0015). The pJNK/JNK ration in apoE4 TR animals was also significantly  different 

from that seen in apoE2 TR and apoE3 TR animals (ANOVA p=0.0025). 

79



80

W
T

E
0

0

50

100

150

200

250

p
E

R
K

(p
e
rc

e
n
t 

o
f 

E
0
)

W
T

E
0

0

50

100

150

200

250

E
R

K
(p

e
rc

e
n
t 

o
f 

E
0
)

W
T

E
0

0

50

100

150

200

250

p
E

R
K

/E
R

K
(p

e
rc

e
n
t 

o
f 

E
0
)

W
T

E
0

0

200

400

600
*

p
J
N

K
(p

e
rc

e
n
t 

o
f 

E
0
)

W
T E0

0

50

100

150

200

J
N

K
(p

e
rc

e
n

t o
f E

0
)

W
T

E
0

0

200

400

600
*

p
J
N

K
/J

N
K

(p
e
rc

e
n
t 

o
f 

E
0
)

E2 E3 E4

*

E2 E3 E4

E2 E3 E4

*

E2 E3 E4

*

E2 E3 E4

E2 E3 E4

*

A. D.

B. E.

C. F.

Figure 15: Chronic apoE isoform expression alters activation of ERK1/2 and JNK1/2
Quantification of levels of A) pERK or B) ERK immunoreactivity in CA1 of apoE TR, wild-
type, and apoE-deficient animals.  C)  pERK/ERK ratio.  
Quantification of levels of D) pJNK or E) JNK immunoreactivity in CA1 of apoE TR, wild-
type, or apoE-deficient animals. F) pJNK/JNK ratio.  Quantification of immunoreactivity 
normalized to background (n=5). C57BL/6J (WT, green), apoE-deficient (E0, black), apoE2 TR 
(E2, blue), apoE3 TR (E3, purple), apoE4 TR (E4, red). Data expressed as mean ± SEM. 
*p<0.05, ANOVA with Bonferroni’s posttest.



Discussion

 Sporadic AD is, in essence, a chronic disease.  Barring a catastrophic event like 

inheritance of an early-onset  gene mutation, an individual only  develops AD after a 

lifetime of living with genetic and environmental risk factors.  With the identification of 

some of these risk factors, such as apoE isoform, the question now is: what is apoE doing 

in the pre-dementia state and how do we slow or halt disease progression?

 The study of chronic apoE isoform exposure is facilitated by  the use of the apoE 

TR mouse.  Utilizing the endogenous murine promoter helps preserve endogenous 

expression patterns regardless of isoform.  The high degree of conservation in the apoE 

receptors also aids these studies by isolating the effects of the presence of human apoE 

isoforms from the absence of murine apoE.  While these animals have been studied by 

many groups, there are still many unanswered questions about the actions of apoE 

isoforms in the brain.  I designed this study with the following goals: 1) to compare all 

three human apoE isoform-expressing animals to each other and apoE-deficient to murine 

apoE-expressing animals in order to gain a more complete picture of the effects of 

chronic apoE isoform expression and 2) to focus on hippocampus area CA1 to isolate 

region-specific effects of apoE isoforms and allow for the comparison of my results with 

the established learning and memory literature.

 Previous studies of synaptic plasticity  in the apoE TR have focused on the 

perforant path, finding that LTP induction in apoE2 and apoE4 TR as well as apoE-

deficient mice was significantly reduced from that seen in wild-type or apoE3 TR animals 

(Trommer, et al., 2004).  In this study of CA1 LTP, however, the greatest amount of LTP 
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induction is seen in the apoE4 TR.  Interestingly, LTP induction in the apoE2 TR is 

significantly lower than apoE4; apoE3 TR and apoE-deficient have an intermediary level 

of LTP induction that is not significantly different from either apoE2 or apoE4.

 Based on the previous studies of perforant  path LTP, these results were surprising.  

However, on closer examination it appeared that apoE4 may be acting similarly  to 

exogenously  applied reelin.  A similar enhancement of LTP is seen with bath application 

of reelin, and this enhancement correlates with both increased tyrosine phosphorylation 

of NMDA receptors and cell surface insertion of AMPA receptors (S. Qiu, Zhao, et al., 

2006).  Preliminary  evidence suggests that apoE4 expression occludes the enhancement 

of LTP by  reelin (J. Herz, personal communication). In addition, the lack of isoform-

dependent changes in LTP with a NMDAR-independent stimulation protocol helps 

support the hypothesis that chronic apoE isoform expression is signaling via lipoprotein 

receptors similar to reelin.

 Reelin application increases tyrosine phosphorylation of NMDA receptors (S. 

Qiu, Zhao, et al., 2006). I initially hypothesized that chronic apoE exposure also increases 

tyrosine phosphorylation of NMDAR subunits, either through direct  signaling or indirect 

enhancement of reelin signaling.  When immunoprecipitating NR2A or NR2B from CA1 

samples, there was a significant increase in tyrosine phosphorylation and a significant 

decrease in detected NR2A/B in the apoE4 TR.  This raises questions about the 

specificity  of the immunoprecipitation experiments. For instance, could 

hyperphosphorylation of NR2A/B interfere with antibody specificity?  Are the changes in 

total protein levels limited to the pool of NR2A/B that is available for 
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immunoprecipitation? The antibodies used for these immunoprecipitation experiments 

were raised against epitopes that do not overlap with any of the known, major tyrosine 

phosphorylation sites for NR2A or NR2B (Kennedy & Manzerra, 2001).

 To test the possibility  that the immunoprecipitation conditions may be 

preferentially  accessing a specific pool of NMDA receptors, I performed a parallel study 

with whole CA1 extracts.  This revealed that NR2A/NR1 and NR2B/NR1 ratios were 

equivalent between apoE2, apoE3 and apoE4 TR animals.  Additionally, there were no 

changes in the amount of tyrosine phosphorylation at the molecular weight corresponding 

to NR2A and NR2B between apoE isoforms in these total denatured samples (figure 14).  

This is in contrast to the isoform-specific changes seen when immunoprecipitating 

NR2A or NR2B from the same samples.  Therefore, the ability to immunoprecipitate 

NR2A and NR2B may be hindered by differential treatment of NMDA receptors within 

neurons due to apoE signaling and the immunoprecipitation protocol is not sensitive 

enough to overcome these differences.

 The current study  establishes the effect of chronic apoE exposure on ERK1/2 and 

JNK1/2 signaling.  These pathways are well validated as essential to the underlying 

mechanisms of LTP (Kanterewicz, et al., 2000; Schmitt, et al., 2005; Selcher, et al., 2003; 

Sweatt, 2001; Winder, et al., 1999), as well as learning and memory  (Cestari, et al., 2006; 

Fischer, et al., 2007; Giovannini, 2006; Satoh, et al., 2007).  Modulation of these 

pathways by  either pharmacological or genetic manipulation has dramatic effects on both 

synaptic plasticity  and memory  formation. Thus the enhanced LTP seen with apoE4 
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expression may be due to the ability of apoE to act as an isoform-specific signaling 

ligand and alter signal transduction in the hippocampus.

 While further study will be necessary to determine the mechanism of apoE-

isoform specific alterations to LTP induction, the results presented here suggest that 

specific changes in signal transduction pathways may underlie these differences in 

synaptic plasticity.  Chronic changes in signaling can result in slight alterations to 

NMDAR subunit composition, localization or function that cumulatively exert a 

physiologic effect  on LTP.  As shown by figure 16, alterations in signal transduction via 

apoER2 have the potential to impact NMDA receptor function.  For instance, apoE4 

specifically increases ERK1/2 activation.  As reelin is unable to induce ERK1/2 

activation through apoER2 or VLDLR, this effect may be mediated by other lipoprotein 

receptors, likely LRP1.  There are additional isoform-specific differences in JNK1/2 

activation which may stem from the interaction of apoER2 with JIP.  These observed 

alterations in signal transduction cascades complement NMDAR-dependent changes, 

culminating in apoE isoform-specific changes in synaptic plasticity.

 The exact mechanism of apoE isoform-dependent modulation of CA1 synaptic 

plasticity is still under investigation. Both apoE isoforms and reelin can bind to the same 

family of lipoprotein receptors.  The role of reelin in synaptic function and memory 

formation is now well established, and specific apoE isoform expression can have a direct 

effect on reelin signaling and modulation of synaptic function (J Herz, personal 

communication). Thus, apoE isoforms may function by  changing reelin’s ability to 

modulate NMDA receptors and activate specific signal transduction pathways by as yet 
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unknown mechanisms. ApoE expression may also induce specific signaling events 

through lipoprotein receptors that are distinct from other ligands. Furthermore, changes in 

apoE availability, due to spatial changes or associations with other proteins, may have a 

profound affect on synaptic function in the different subfields of the hippocampus. Taken 

together with the lack of LTP deficit in apoE-deficient mice, the results presented here 

highlight the role of apoE as a modulator of hippocampal synaptic plasticity.
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Figure 16: Proposed model of chronic apoE isoform effects on synaptic plasticity 
Reelin interacts exclusively with the lipoprotein receptors apoER2 and VLDLR, with a much 
higher affinity for apoER2.  ApoE binds to all lipoprotein receptors and undergoes endocytosis.  
Chronic apoE4 exposure enhances ERK1/2 activation, likely through interactions with the LRP1 
receptor.  In contrast, chronic apoE2 and apoE3 expression reduce activation of JNK1/2 and 
ERK1/2 activation. Together with proper NMDAR function, these changes culminate in 
alterations in LTP induction with chronic apoE2 isoform expression.



CHAPTER IV

APOE ISOFORM-SPECIFIC EFFECTS ON LEARNING AND MEMORY

Introduction

 The synaptic plasticity mechanisms discussed in the previous chapters attempt to 

decipher the complicated processes of learning and memory.  Learning, or acquiring a 

changed behavior response due to an environmental stimulus, is a highly regulated 

survival mechanism. Learning is complemented by memory, the storage of learned 

information, and recall, retrieving that stored information in order to perform the altered 

behavior (Kandel, et al., 2001). Measuring these processes requires both an 

understanding of the type of learning and memory being investigated and a prediction of 

how behavior will change with environmental manipulation.

 Learning is typically divided into two main types: unconscious and conscious. 

Unconscious learning can be recalled consciously, as seen in taste learning and operant 

conditioning, or unconsciously, such as in habituation, pavlovian conditioning, or motor 

learning (Sweatt, 2003).  Conscious learning is recalled consciously  during spatial and 

declarative learning tasks (Sweatt, 2003).  These types of learning and memory tasks 

require long-term, persistent biochemical changes for maintenance.  In contrast, short-

term working memory persists in changes in neuronal firing patterns rather than 

biochemical changes (Kandel, 2001).
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 This definition of learning corresponds with the classical division of human 

memory into two categories: declarative (explicit) and non-declarative (implicit) (Kandel, 

et al., 2001).  Non-declarative memory is recalled unconsciously  and is typically involved 

in reflexive training and procedural learning. This involves brain areas such as the 

neocortex, striatum, amygdala, and cerebellum (Sweatt, 2003). In contrast, declarative 

memory concerns facts and events and is recalled consciously.  These memories require 

the medial temporal lobe, making them especially vulnerable to temporal lobe damage or 

neurodegeneration, such as seen in AD (Sweatt, 2003).

 The medial temporal lobe contains many structures involved in learning and 

memory, including medial temporal cortex, the amygdala, the hippocampal formation, 

and the entorhinal, perirhinal, and parahippocampal cortices.  The hippocampal formation 

contains the hippocampus proper, subiculum, and dentate gyrus.  Experimental lesions of 

this area have revealed its essential function in the creation of new memories 

(Eichenbaum, 1999; Eichenbaum, et al., 1996).  This role is further supported by the 

progression of neurodegeneration and corresponding deficits in learning and memory  in 

AD.

 The first clinical stages of AD are characterized by  loss of episodic memory, 

slight difficulty  with complex tasks, and limited spatial disorientation (Braak & Braak, 

1998).  These changes correlate chronologically with neurodegeneration in the entorhinal 

cortex and CA1, as well as increases in amyloid plaques and intracellular NFTs 

principally composed of hyperphosphorylated formed of the microtubule-associated 

protein tau (Spillantini & Goedert, 1998). Dysfunction and neurodegeneration 

88



subsequently  progresses to include the other areas of the hippocampus, the amygdala, and 

the limbic nuclei of the thalamus (Braak & Braak, 1998). In late stage AD, 

neurodegeneration has reached the cerebral cortex; and patients have a severe decline in 

cognition, a loss of episodic memory, and difficulty communicating (Braak & Braak, 

1998).  

 Prior to the clinical manifestations of AD, cell death and other pathological 

changes, there are alterations to signal transduction and synaptic plasticity.   As described 

in the previous chapters, apoE and the LDLR family are poised to play a role in cognitive 

changes that happen prior to the clinical onset of AD.  While neither necessary  nor 

sufficient to cause AD, apoE4 is well established as a disease risk factor (Corder, et al., 

1993).  The preclinical role of apoE in altering cognitive function is supported by studies 

associating apoE4 expression with alterations in learning (Baxter, et al., 2003) and 

memory (Bondi, et al., 1995; R. S. Wilson, et al., 2002), and other structural and 

functional abnormalities (Cohen, et al., 2001; Reiman, et al., 2004).

 Experimental studies on the effects of apoE on learning and memory have focused 

on the use of genetically  modified animals, namely apoE-deficient and apoE TR animals.  

The apoE-deficient mouse has been the subject of a number of behavioral studies.  In 

several studies spatial memory is equivalent between apoE-deficient and murine apoE-

expressing animals (Anderson, et al., 1998; Anderson & Higgins, 1997; Grootendorst, et 

al., 2005; Raber, et al., 2000).  In others, spatial learning is impaired in the absence of 

apoE (Champagne, et al., 2002; Grootendorst, et al., 2001; Krzywkowski, et  al., 1999; 

Masliah, et al., 1995; Oitzl, et al., 1997; Veinbergs & Masliah, 1999).  These studies, 
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while yielding valuable information, emphasize the sensitivity  of behavioral tests to 

genetic background, housing conditions, experimental designs, and other extrinsic 

factors.

 For testing the effects of apoE isoform expression on learning and memory 

behavior, the apoE TR mouse is a valuable tool. Previous studies have shown significant 

differences in particular behaviors with apoE isoform expression. Female apoE4 TR mice 

have impaired spatial recognition versus apoE3 TR and apoE-deficient  animals 

(Grootendorst, et  al., 2005).  While apoE3 TR female mice perform worse during water 

maze training, their spatial memory retention during the probe trial is on par with male 

apoE3 TR, apoE-deficient, and murine apoE-expressing animals. In contrast, both male 

and female apoE4 TR animals have impaired spatial memory retention (Grootendorst, et 

al., 2005).  These impairments persist with age in female apoE4 TR animals (Bour, et al., 

2008).  Another study failed to replicate this deficit, likely  due to differences in training 

protocol, but instead showed decreased performance in apoE4 TR mice is some, but  not 

all, tests measuring anxiety behaviors (Villasana, et al., 2006).

 In this study, I use young adult (3-5 month) male apoE TR mice to measure the 

effects of apoE isoform expression on learning and memory.  To investigate the necessity 

of apoE in these behaviors, a parallel investigation of apoE-deficient and murine apoE-

expressing animals was conducted.  This study focuses on types of learning and memory 

behaviors known to be affected either by manipulations to the lipoprotein receptor system 

or in AD.  Specifically, I have focused on working memory, associative learning, and 
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spatial memory with control experiments testing general locomotion, motor learning and 

coordination, sensorimotor gating, and nociception.

Methods

Animal maintenance and general behavioral assessment

 ApoE2, apoE3 and apoE4 TR animals were obtained from a colony maintained at 

Taconic (Hudson, NY).  ApoE knock-out and C57BL/6J animals were obtained from 

Jackson Laboratories (Bar Harbor, ME).  All animals were fully  backcrossed on a 

C57BL/6J background and bred in-house for at least 2 generations prior to selection for 

behavior.  Animals were housed in a standard 12 hour light  cycle and bred and 

maintained in accordance with the Vanderbilt University Institutional Animal Care and 

Use Committee protocol.  Age-matched males were used for all behavioral testing.  

Animals were selected for behavioral testing at 3 months of age. Animals progressed 

through the behavioral tests from least to most invasive: open field, rotorod, novel object 

recognition, water maze. A second cohort of animals were housed and tested in the 

Murine Neurobehavioral Laboratory at University  of South Florida.  After confirming 

that the general behavior profile of animals housed at this location did not differ from 

those housed at Vanderbilt University, these animals were utilized for pre-pulse 

inhibition, acoustic startle, fear conditioning, and shock threshold. 

 General activity  was measured by  the open field task.  This task consists of a 27 

cm by  27 cm chamber containing 16 photoreceptor beams on each side of the chamber.  
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Locomotion measurements were analyzed by the computer-operated animal activity 

session (Med Associates, St. Albans, VT) during the 15 minute session.  To assess motor 

coordination and motor learning, animals were subjected to the accelerating rotating rod 

(rotorod) task (Ugo Basile, Comerio Italy). In each 300 second session, the rod 

accelerated from 4 to 40 rpm; animals were given 4 sessions per day for 2 consecutive 

days and latency to fall was measured.

Learning and memory behavior assessment

 Working memory: The novel object recognition task assesses working memory in 

mice.  During training, two distinct objects were placed in the 49.5 x 33 x 28 cm arena 

and the animal was allowed to explore for three 5-minute trials with a 5 minute inter-trial 

interval.  For the test trial (5 minutes), one of the previously explored objects was 

replaced with a novel object.  The objects and arena were cleaned with 70% ethanol 

between each trial to eliminate olfactory cues.  The test was quantified in a genotype-

blind fashion by the experimenter.  The ability of the animal to distinguish between the 

novel and familiar objects was expressed as the discrimination index, or the percentage of 

time exploring the novel object versus the total object exploration time. Object 

exploration was defined as the nose of the animal coming within 2 cm of the object.

 Sensorimotor gating: Pre-pulse inhibition was measured by  placing the animal in 

an isolation chamber on top of a high sensitivity weight transducer to measure movement 

(Panlab, Barcelona Spain).  After a five minute habituation with background white noise 

at 65 dB, the animals were presented with seven different auditory stimuli in a pseudo 
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random order: 1) a 120 dB pulse at 8000 Hz lasting for 40 ms; 2-6) a 20 ms pre-pulse at 

74, 78, 82, 86, or 90 dB followed by the 120 dB pulse; 7) no pulse.  Each animal received 

6 blocks of these seven trials, and peak startle amplitude within 70 ms of the pulse was 

analyzed.  Pre-pulse inhibition was calculated as the amount of reduction of the startle 

amplitude with each of the pre-pulse dB levels versus the startle amplitude to the pulse 

alone.  

 Associative learning: The fear conditioning was conducted in an apparatus 

consisting of a 250x250x250 mm plexiglass chamber with a metal grid floor capable of 

delivering a mild foot shock housed within a soundproof chamber with white noise 

generated by a small fan. Movement was measured by a high-sensitivity weight 

transducer (Panlab, Barcelona Spain). During conditioning, animals were allowed to 

explore the chamber under white light for 2 minutes prior to the onset of the conditioned 

stimulus (CS), an 85 dB tone with a 30 second duration.  The unconditioned stimulus 

(US), a 0.5 mA foot shock, was delivered during the last  2 seconds of the CS.  A second 

CS-US pairing occurred 90 seconds after the first, and the mouse was returned to the 

home cage after a total time of 7 minutes.  Contextual memory tests were performed both 

1 and 24 hours after training.  Animals were placed back into the conditioning chamber 

for 3 min and freezing behavior was measured.  Freezing was defined as a lack of 

movement for 2 seconds. 

 Shock threshold was determined by returning the animals to the fear conditioning 

chamber.  Foot shock intensity began at 0.05 mA and increased in 0.1 mA intervals from 

0.1 mA every  30 seconds to a maximum of 0.8 mA.  The shock intensity necessary to 
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induce flinching, jumping or vocalization was recorded and the experiment was 

terminated upon vocalization.

 Spatial learning: Testing of spatial learning and memory was conducted by using 

the Morris hidden platform water maze test.  A 91.5 cm diameter plastic Nalgene pool 

was filled with room temperature (~22°C) and made opaque with white non-toxic 

tempera paint.  Prominent extra-maze cues were present around the room.  For training, 

mice were placed in one of four starting locations along the pool wall and allowed to 

swim until finding an 8 cm x 8 cm Plexiglas platform submerged 1 cm below the water 

surface or a maximum of 60 seconds.  Upon finding the platform, or being placed on the 

platform by the experimenter at the end of the 60 second trial, mice remained on the 

platform for 20 seconds before being returned to their home cage.  Latency  to reach 

platform, distance traveled to platform and swim speed was obtained using automated 

video tracking software (ANY-Maze, Stoelting).  Mice were trained with four trials per 

day (1 hr inter-trial interval) for eight consecutive days.  At one hour and 24 hours 

following the last  training session a probe trial was performed.  The probe trial consisted 

of a 60 second free swim with the submerged platform removed.  Number of crossings of 

the platform location and percent  time spent in the target quadrant was calculated for 

each probe trial.  Visual acuity was measured at  the end of the probe trials by  latency to 

find a flagged submerged platform in a novel location.

Statistics

Data was analyzed between wild-type and apoE-deficient animals with a two-tailed t-test 

and across apoE TR genotypes using one-way ANOVA with Bonferroni’s post  hoc tests. 
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Data is expressed as mean ± SEM, percent of apoE-deficient where appropriate.  

Significance was set at p<0.05 for all tests.

Results

General behavior performance

 In this study, I hypothesized that specific apoE isoform expression will 

differentially alter performance of learning and memory tasks, in particular those tasks 

that require proper hippocampus function such as spatial learning and contextual 

associative learning.  These tests require complex behavior responses and depend not 

only on hippocampus function but the ability of an animal to gather sensory information, 

properly  integrate this information, and perform the desired behavior.  To control for any 

differences that apoE isoform expression or apoE-deficiency may have on these abilities, 

I began this study with a series of general behavioral assessments.

 There have not been any  previously  reported changes in general locomotion with 

apoE expression in apoE TR mice.  General locomotive behavior was quantified by the 

open field task.  During the 15 minute test, there were no differences in total distance 

traveled between any of the apoE TR animals or between apoE-deficient and wild-type 

animals (figure 17A, WT vs E0 t-test p= 0.3070, E2 vs E3 vs E4 ANOVA p=0.1304).  

Capitalizing on the tendency of mice to avoid open, well-lit areas while exploring a novel 

environment, we used the ratio of distance traveled in the center of the open field arena to 

total distance traveled as a rough measurement of anxiety.  Highly anxious rodents will 
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Figure 17: General locomotion is unaltered by absence of apoE or apoE isoform 
expression
A. Distance traveled during 15 minute open field session, expressed as percent of 
apoE-deficient (E0). B. Ratio of distance traveled in center portion of open field arena to 
total distance traveled, expressed as percent of E0. WT=wild-type  n=8; E0=apoE-
deficient n=12; E2=apoE2 TR n=12; E3=apoE3 TR n=8; E4=apoE4 TR n=12.  Data 
expressed as mean ± SEM, percent of E0.



often preferentially  avoid the center portion of the arena.  There were no significant 

differences in this ratio between apoE-deficient and wild-type animals, or between apoE2 

TR, apoE3 TR, and apoE4 TR animals (figure 17B WT vs E0 t-test p=0.7572, E2 vs E3 

vs E4 ANOVA p=0.0697).

 Testing of spatial and associative learning requires proper motor coordination.  

Therefore, we tested the animals using the accelerating rotating rod (rotorod). Animals 

were placed on the rotating rod, which accelerate from 4 revolutions per minute (RPM) to 

40 RPM over a 5 minute period, and latency  to fall was measured.  All animals were able 

to learn the task after four trials per day for two consecutive days (figure 18A,C).  

However, apoE3 TR animals performed worse than apoE2 TR and apoE4 TR animals on 

early trials resulting in an overall reduced average latency (figure 18C,D ANOVA 

p=0.0065). While this may indicate a deficit in motor learning, the animals do reach a 

similar performance on the final training session as the other groups.

Effect of apoE isoform expression on working memory

  Working memory  was tested using the novel object recognition task.  During the 

test trial, time exploring the novel object and the familiar object was recorded  These 

times were used to calculate the discrimination index, or the time exploring the novel 

object versus the total object exploration time. 

 All groups showed a preference for the novel object  as shown by a discrimination 

index greater than 50 (figure 19A). There were no significant differences in 

discrimination index between apoE-deficient and wild-type animals, or between apoE2 
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Figure 18: Performance on accelerating rotorod
A. Latency to fall from rotating rod for each trial for wild-type and apoE-deficient 
animals. B. Average  latency over all trials. 
C. Latency to fall from rotating rod for each trial for apoE2, apoE3, and apoE4 TR 
animals.  D. Average latency over all trials
WT=wild-type n=6; E0=apoE-deficient n=6; E2=apoE2 TR n=7; E3=apoE3 TR n=9; 
E4=apoE4 TR n=6.  Data expressed as mean ± SEM.  *p<0.05, ANOVA with 
Bonferroni’s post-test
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TR, apoE3 TR, and apoE4 TR animals (figure 19A Wt vs E0 t-test p=0.8796, E2 vs E3 vs 

E4 ANOVA p=0.1984).  Total object exploration time was also not significantly different 

between apoE-deficient and wild-type animals (figure 19B, t-test p=0.5489). There was 

greater variability  in total object exploration time in apoE TR animals; apoE4 TR animals 

had a lower average total object exploration time than apoE2 TR and apoE3 TR animals 

(figure 19B, ANOVA p=0.0097). 

Effect of apoE isoform expression on associative learning

 As hippocampal function and associative learning is highly  dependent on sensory  

input, I first tested for normal sensory  response and sensorimotor gating.  Auditory 

function was evaluated by measuring startle response to a 40 ms, 120 dB tone. The peak 

amplitude of startle response within 70 ms of the tone was compared to the startle 

response from an identical time block not preceded by a tone.  As expected, all groups 

showed a significant startle response (figure 20).  There was no significant difference in 

startle response between wild-type and apoE-deficient animals (figure 20A, t-test 

p=0.0991).  Notable, however, is the reduction in overall startle amplitude in apoE2 TR 

animals as compared to apoE3 TR and apoE4 TR animals (figure, 20A ANOVA 

p=0.0039).  The apoE2 TR does show significant startle behavior to the tone (t-test pulse 

versus no pulse, p=0.0070), which indicates that these animals can hear and react to the 

tone.  However, the lower startle amplitude may reflect a deficit in sensorimotor gating.

  

99



100

Figure 19: Working memory performance in the novel object recognition task
A. Working memory behavior as measured by discrimination index - time exploring 
novel object versus total object exploration time - during five minute test trial. B. Total 
object exploration time. WT=wild-type n=8; E0=apoE-deficient n=9; E2=apoE2 TR 
n=12; E3=apoE3 TR n=8; E4=apoE4 TR n=12.  Data expressed as mean ± SEM.
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 When a weaker stimulus is presented prior to a stronger one, the nervous system 

can temporarily  adapt to reduce the reaction to the strong stimulus.  This phenomenon, 

called pre-pulse inhibition (PPI), is impaired by  conditions that alter sensorimotor gating, 

the most classic example being schizophrenia (D. Braff, et al., 1978; D. L. Braff, et al., 

2001).In mice, PPI is induced when a lower intensity pre-pulse tone of 74-90 dB is given 

100 ms prior to the 120 dB test tone.  PPI normally increases with increased pre-pulse 

decibel.  We observed this typical pattern in our wild-type animals, confirming our PPI 

protocol (figure 20B).  ApoE-deficient animals also showed this typical behavior, albeit 

with some variability, but these differences were not significant (figure 20B).  The 

maximum PPI measured was equivalent in both the apoE2 and apoE3 TR animals; apoE4 

TR animals reached a lower maximum PPI but this difference was not significant.  

 Classical associative learning and memory  is measured in the mouse by the fear 

conditioning paradigm (Fanselow, 1980; Fanselow & Tighe, 1988).  Animals were placed 

in a novel environment—a plexiglass cage with an electrified floor within a sound-

attenuating chamber—and allowed to explore for 2 minutes. Subsequently  animals were 

given two pairings of the unconditioned stimulus (US), a mild foot  shock, and the 

conditioned stimulus (CS), an 85 dB tone.

 With this test, animals must make associations between the context, the CS, and the 

US.  Fear response is measured by the percent time spent displaying the typical freezing 

posture, defined for this study as a lack of movement for 2 seconds.  All groups 

demonstrated this freezing behavior which increased with each CS-US pairing during 

training, indicating all animal groups correctly respond to the US (figure 21A).
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Figure 20: Startle amplitude and pre-pulse inhibition
A. Amplitude of startle response in the absence (no pulse) or presence (pulse) of 120 dB 
tone for wild-type (C57BL/6J) and apoE-deficient (i)  and apoE2, apoE3, apoE4 TR (ii) 
animals.  B.  Percent inhibition of startle response to pulse by a preceding pre-pulse for 
wild-type and apoE-deficient (i)  and apoE2, apoE3, apoE4 TR (ii) animals. WT=wild-
type n=7; E0=apoE-deficient n=4; E2=apoE2 TR n=9; E3=apoE3 TR n=8; E4=apoE4 TR 
n=9. Data expressed as mean ± SEM. *p<0.05, ANOVA with Bonferroni’s post-test.
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 Proper formation of associative memories was tested by re-exposing animals to the 

context, the training box without the CS or US, one hour after training.  This testing of 

contextual associative memory requires proper functioning of both the hippocampus and 

amygdala.  When re-exposed to the context one hour after training, we found equivalent 

freezing behavior in both the wild-type and apoE-deficient  animals as well as the apoE2, 

apoE3, and apoE4 TR animals (figure 21B WT vs E0 t-test p=0.2742, E2 vs E3 vs E4 

ANOVA p=0.2046).  Long term retention of this memory was measured by re-exposure 

to the context 24 hours post-training.  During this test, percent freezing was significantly 

different between apoE2 TR and apoE4 TR mice (figure 21C, ANOVA p=0.0023).  

Percent freezing was not significantly different  between wild-type and apoE-deficient 

animals (figure 21C, t-test P=0.9463)

 Differences in nociception could complicate the interpretation of the fear 

conditioning results since increased or reduced sensitivity  to the foot shock would impact 

association of US to context and CS.  In order to ensure there were no such nociceptive 

differences, the threshold of foot shock necessary to elicit  flinching, jumping, or 

vocalization was measured.

 After at least one week recovery from fear conditioning, animals were placed back 

into the  experimental chamber.  A one-second foot shock was given every thirty seconds

starting at 0.05 mA and increasing in 0.1 mA intervals from 0.1 to 0.8 mA or until 

vocalization.  At low shock intensities, both wild-type and apoE3 TR animals had a 

tendency to flinch earlier than apoE-deficient or apoE2 and animals, respectively  (figure 

22A, WT vs E0 t-test p=0.0042, E2 vs E3 vs E4 ANOVA p=0.0343).  In contrast, there 
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Figure 21:  Associative memory performance in fear conditioning test
A. Percent time spent freezing during training for fear conditioning test.  Arrows indicate 
foot shocks for wild-type and apoE-deficient (i)  and apoE2, apoE3, apoE4 TR (ii) 
animals.  B. One hour and C. 24 hour contextual testing.  Percent time displaying 
freezing behavior when re-exposed to training context. WT=wild-type n=7; E0=apoE-
deficient n=4; E2=apoE2 TR n=9; E3=apoE3 TR n=8; E4=apoE4 TR n=9. Data 
expressed as mean ± SEM, percent of E0.  *p<0.05, ANOVA with Bonferroni’s post-test.



were no differences in the shock threshold required to induce jumping or vocalization 

(figure 22B,C).  Importantly, the foot shock amplitude used in fear conditioning is in the 

middle of this range (0.5 mA), showing that there are similar nociceptive responses 

regardless of apoE isoform.

ApoE isoform expression and spatial memory

 To determine if apoE isoform expression affects spatial learning, the Morris hidden 

platform water maze test was used.  Animals were trained to find the hidden platform 

using four trials per day for 8 consecutive days.  All animals were able learn the task and 

utilize spatial memory  to find the hidden platform without any effect of apoE isoform 

(figure 23).  As a control, visual acuity was by measuring latency to find the platform 

when identified with a conspicuous flag.  All groups were able to find the visually 

identified platform; there were no significant difference between apoE TR groups and no 

group averaged more than 20 seconds to find the platform (figure 23B).  In addition, 

there were no significant differences in overall swim speed (figure 23C).

 One hour after training on day 8, the platform was removed for a probe trial to test  

short-term spatial memory.  Animals that have learned the task will also spend more time 

in the target quadrant than the other three quadrants.  During the 60 second probe trial, all 

animal groups spent significantly more time in the target quadrant (TQ) than the other 

quadrants (figure 24A, ANOVA WT p<0.001, KO p<0.001, E2 p=0.0029, E3 p<0.001, 

E4 p<0.001).
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Figure 22: Foot shock threshold
Foot shock intensity required to induce flinching (A), jumping (B), or vocalization (C) in 
wild-type and apoE-deficient and apoE2 TR, apoE3 TR, and apoE4 TR animals. 
WT=wild-type n=7; E0=apoE-deficient n=4; E2=apoE2 TR n=9; E3=apoE3 TR n=8; 
E4=apoE4 TR n=9.. Data expressed as mean ± SEM.



 Twenty-four hours after the last training session, another probe trial was given to 

test for long-term retention of spatial memory.  At this time, percent time in target 

quadrant was significantly greater than at least one other quadrant for all mice except 

apoE4 TR (figure 24B). Wild-type animals spend significantly more time in the target 

quadrant than any other quadrant (figure 24B, ANOVA WT p=0.002).  ApoE-deficient 

animals spend significantly more time in the target quadrant than two of the three other 

quadrants  (figure 24B, ANOVA E0 p<0.001). 

 ApoE3 TR animals also spend significantly more time in the target quadrant than 

any other quadrant during the 24 hour probe trial (figure 24B, ANOVA p=0.0017).  In 

contrast, the time spent by  apoE2 TR animals is only significant from the opposite 

quadrant (figure 24B, ANOVA p=0.0448). ApoE4 TR animals revealed no significant 

differences in percent time in the target quadrant from any other quadrant (figure 24B, 

ANOVA p=0.0517). 
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Figure 23: Water maze training
A.  Animals were trained with four trials per day (1 hour inter-trial interval) for 8 
consecutive days.  Average latency to find submerged hidden platform each day.  B. 
Latency to find submerged platform visually identified with flag. C. Mean swim speed. 
WT=wild-type n=6; E0=apoE-deficient n=9; E2=apoE2 TR n=9; E3=apoE3 TR n=6; 
E4=apoE4 TR n=8 Data expressed as mean ± SEM.  
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O=opposite, R=right, L=left. 
A. Percent time in quadrant during probe trial consisting of a 60 second free swim 
without platform performed one hour after conclusion of training on day 8.   
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Discussion

 These behavioral studies were designed to test  the hypothesis that specific apoE 

isoform expression will elicit equally specific effects on cognitive ability, in particular 

learning paradigms dependent on normal hippocampus function such as spatial learning. 

This hypothesis evolved from the finding that alterations to lipoprotein receptors, 

specifically apoER2 and VLDLR, can alter spatial learning and memory and associative 

learning (S. Qiu, Korwek, Pratt-Davis, et al., 2006; Weeber, et  al., 2002).  As a ligand for 

these receptors and a modulator of synaptic function, apoE may also affect the complex 

processes underlying learning and memory behavior in the adult mouse.  ApoE has the 

potential to alter cognitive function based on specific isoform expression due to its 

interactions with known signaling pathways in the hippocampus (for review see (S. Qiu, 

Korwek, & Weeber, 2006)). To date, there are numerous studies linking apoE isoforms to 

changes in human cognitive function (Bennett, et  al., 2005; Caselli, et al., 2001; Lind, et 

al., 2006) and mouse behavior (Bour, et al., 2008; Grootendorst, et  al., 2005; Hartman, et 

al., 2001; Villasana, et al., 2006). In this study, I addressed both the necessity of apoE in 

specific learning and memory  behaviors as well as the role of human apoE isoforms in 

modulating such behavior. To do this, I compared the behavioral profile of apoE2, apoE3 

and apoE4 TR animals as well as apoE-deficient and murine apoE-expressing animals 

(wild-type) in a single study, thus separating the effects of the presence of human apoE 

from the consequences of the absence of murine apoE. 

 Behavioral studies are highly sensitive to non-experimental extenuating factors 

such as housing, handling, genetic background, maternal care, and external stimuli.  The 
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design of my study aims to minimize this inter-lab variability by testing all three lines of 

apoE TR mice at the same time to isolate apoE isoform-dependent changes in learning 

and memory.  I focused on three types of memory: working, associative, and spatial. 

These types of memory are usually  impaired in early  AD and may be susceptible to 

alterations in signal transduction pathways that  rely  on apoE signaling. Moreover, I can 

compare the non-hippocampal working memory test of novel object recognition to the 

hippocampus-dependent spatial learning paradigm of the hidden platform water maze test 

and contextual fear conditioning.

 This study both complements and expands upon previous studies of the same apoE 

TR animals. I confirmed a lack of changes to general locomotion in male animals 

(Grootendorst, et al., 2005) and as well as previously reported reductions in rotorod 

latencies in apoE3 TR animals (Villasana, et al., 2006).  Other than the difference in 

rotorod latencies, I did not find any other general behavioral differences in the apoE TR. 

There were no significant differences in motor learning, nociception, sensorimotor gating, 

or auditory  response.  The apoE2 TR animals did have less response overall startle 

response to the auditory stimulus.  However, their overall startle response to the stimulus 

was greater than their response in the lack of auditory stimulus.  Combined with the lack 

of changes in PPI, it is likely that the overall reduction in startle amplitude in apoE2 TR 

animals is not indicative of a sensorimotor gating deficit sufficient to impact other 

behavioral tests rather an altered reflex response.

 Our short-term working memory is essential for our ability to function in our day-to 

-day lives.  Without it  we would struggle with remembering why we walked into a room, 
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who we wanted to call when we picked up the phone, or what we had for breakfast—or if 

we had breakfast at all.  AD patients struggle with deficits in working memory which 

significantly impairs function and quality of life (Bailey, et al., 2004).  I sought to 

investigate the role of apoE isoform on this type of memory in apoE TR animals with the 

novel object recognition task. The novel object recognition task capitalizes on the natural 

inclination to preferentially explore new additions to their environment over the familiar.  

While widely regarded as hippocampus independent, this activity is linked to temporal 

lobe structures such as the perirhinal cortex (Morris, et al., 1982). There were no 

significant differences in working memory as measured by novel object recognition.  

Total object  exploration time did vary with apoE isoform. However, the constant 

preference to spend more time exploring the novel object, as evidenced by a 

discrimination index greater than 50, makes it unlikely that these changes in exploration 

time are masking a working memory  deficit. While AD patients do experience working 

memory deficits, the apoE TR mice do not develop AD-like pathologies as seen in other 

mouse models of the disease.  Thus, it is reasonable to assume that the apoE TR animals 

will not recapitulate all of the behavioral hallmarks of AD but rather allow us to isolate 

those behaviors that are specifically modulated by apoE isoforms.  

 The hippocampus is central to muti-modal processing, incorporating direct and 

indirect sensory inputs, modulatory inputs from the brain stem, and cortical connectivity 

as it  coordinates associative learning and memory consolidation (Eichenbaum, 1999).  

These abilities are impaired by  hippocampal lesions or neurodegeneration leading to 

dementia (Mayes, et al., 2004; Rawlins & Tanner, 1998; Weniger, et al., 2004). Using the 
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fear conditioning paradigm, which has been well validated in mice (Phillips & LeDoux, 

1992), I tested the effect of apoE isoform on associative learning and memory.  

Associative learning varied with apoE isoform, as apoE2 TR mice showed a significant 

difference in freezing to the fear conditioning context 24 hours after training as compared 

to apoE4 TR mice.  This is a specific change in long-term retention of associative 

memory as both groups showed equivalent response to both the fear conditioning training 

and testing of short-term contextual associative memory. This finding means that 

possession of apoE2 or apoE4 is sufficient to alter long-term associative memory without 

alterations to learning or short-term memory.  The absence of changes in apoE-deficient 

or apoE3 TR animals suggests that the effects seen in the presence of apoE2 or apoE4 are 

due to active modulation of cognitive processes by these isoforms. 

 Creating a spatial map of ones environment invokes the hippocampus; spatial 

learning and memory is especially sensitive to hippocampal lesions (Logue, et al., 1997; 

Morris, et  al., 1982).  The formation of these and other new long-lasting memories 

requires a highly orchestrated set of biochemical changes, including protein synthesis-

dependent changes within neurons that generate a persistent biochemical signal .  Spatial 

memory in particular also appears to be sensitive to proper lipoprotein receptor signaling. 

Studies of apoER2 and LRP deficiency show defects in hidden platform spatial learning 

(May, et al., 2004; Weeber, et al., 2002). 

 In this study, long term spatial memory retention is decreased in apoE4 TR animals.  

ApoE4 TR animals did not show significantly more target platform crossings than any 

other quadrant during the probe trial testing spatial memory 24 hours after the completion 
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of water maze training. Previous studies have found spatial memory deficit in female 

apoE4 TR (Bour, et al., 2008; Grootendorst, et al., 2005), and this study expands this 

deficit to male mice.  The effect of apoE2 on spatial memory is less clear, as these 

animals do spend significantly more time in the target quadrant than the opposite 

quadrant.  Expansion of the search radius by an animal often results in time being spent 

in the left and right quadrants, so it is possible that these animals do not have 

impairments in long term spatial memory retention.  Additional testing with a second 

cohort of animals will confirm spatial memory performance in apoE2 and apoE4 animals 

and reveal possible differences in search strategy.

 Likewise, apoE-deficient animals in this study also spend significantly more time in 

the target quadrant  than both the opposite and right quadrants.  While a detailed analysis 

of quadrant time is not available for all previous studies in the literature, there is a 

prescient for both impairments and no impairments in spatial memory in apoE-deficient 

mice. Findings of impaired spatial memory attributable to procedural differences in 

training protocols, for instance massed training sessions instead of spaced (Oitzl, et al., 

1997), or sex or age differences in the mice used in those studies (Masliah, et al., 1997; 

Veinbergs, et  al., 1999) versus the young adult male mice used in this study.  In contrast, 

other studies support  the findings of this study  (Anderson, et al., 1998; Anderson & 

Higgins, 1997; Bour, et al., 2008), demonstrating the subtlety of behavioral testing for 

learning and memory.  The absence of a spatial memory  deficit in the apoE3 TR animals 

also emphasizes the specificity of apoE isoform dependent modulation of learning and 

memory.
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 The two tests of hippocampus-dependent learning and memory in this study, fear 

conditioning and water maze, yielded different results.  ApoE4 TR animals are not 

deficient in associative learning but are deficient in spatial memory. The finding that the 

effects of apoE isoform on learning and memory vary  with behavioral paradigm 

demonstrates both the subtlety and specificity of apoE isoform-dependent modulation.  

Such small changes in behavior are not uncommon with alterations to the pathways 

surrounding apoE receptors.  For example, selenoprotein P-1 (Sepp1) deficient mice 

display  normal associative learning and memory, but impaired acquisition of spatial 

learning (Peters, et  al., 2006).  As Sepp1 binds to and signals through apoER2, much like 

apoE, this supports our finding that alterations to the modulators of the lipoprotein 

receptor system can have subtle yet notable implications on learning and memory.

 While tests of associative and spatial memory  do tap into similar neurological 

pathways, each recruits different brain regions with varying levels of complexity.  Water 

maze spatial learning is severely impaired with hippocampal lesions (Logue, et  al., 1997); 

performance is also impaired by lesions of the medial septum/diagonal band, the 

entorhinal/peririhinal cortex, or by treatment with cholinergic and glutamate receptor 

antagonists (Decker & Majchrzak, 1992; McNamara & Skelton, 1993; Nagahara, et al., 

1995; Nilsson & Gage, 1993).  This task requires the formation and refinement of a 

spatial map over a period of days, as well as the ability to retain the memory  of that map.  

The complexity of this task contrasts the more straight-forward contextual fear 

conditioning.  Fear conditioning requires a different set of sensory and motor abilities, 

and capitalizes on an animal’s natural response to fear-inducing stimuli.  Much like water 
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maze, fear conditioning utilizes the hippocampus but also involves the amygdala, 

subiculum, cingulate cortex, prefrontal cortex, perirhinal cortex, sensory cortex, and 

medial temporal lobe (Eichenbaum, et al., 1996; Fanselow & Kim, 1994; LeDoux, et al., 

1990; Logue, et al., 1997; Phillips & LeDoux, 1992; Squire & Zola, 1996).  Thus, the 

variation seen in the effect of apoE isoforms on learning and memory based on task may 

stem from the involvement of particular brain regions and the specific effects that apoE 

isoforms have on function.  Such differences are not unprecedented, as apoE isoform-

dependent effects on synaptic plasticity  vary widely between the perforant path 

(Trommer, et al., 2004) and area CA1 (chapter III) in the hippocampus.

 The behavioral profile of the apoE TR animals combined with the lack of major 

deficiencies in apoE-deficient mice supports the view that  apoE and its receptors are 

modulators of learning and memory.  Absence of apoE does not turn “off” synaptic 

function nor does the presence of apoE turn it “on”.   The synaptic mechanisms altered by 

apoE isoforms are beginning to be elucidated (see chapters 2 and 3).  Making a direct 

connection between synaptic plasticity  and behavior is difficult  at best.  However, the 

findings presented here support the hypothesis that apoE isoform expression plays an 

active role in the modulation of cognitive function and establishes a basal behavioral 

profile for apoE TR animals that will be useful in future studies.
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CHAPTER V

DISCUSSION

 During memory formation, the integration of incoming somatosensory inputs with 

pre-existing experience determines the importance of the combined signal and influences 

the production of new memories. However, ultimate control over these processes is 

performed at the level of neuronal modulation. Changes in the expression of specific cell 

surface receptors, sensitivity to neurotransmitter release or activation of transmitter-

dependent signal transduction cascades allows for surprising flexibility  and control over 

synaptic plasticity  and cognitive ability.  While a multitude of molecules contribute to 

this process, those with the potential to modify synaptic function to the greatest  extent are 

proteins that can play  a role in all of the molecular changes listed above. The lipoprotein 

receptor system, and its ligand apoE, firmly fit into this category of important modulatory 

proteins. Dysfunction or altered function within this receptor system are linked to several 

disease states and altered cognitive function.  Yet little is known about how different 

human isoforms of apoE signal through their receptors, if isoform variation changes 

signal transduction capability, or the consequences of these differences in synaptic 

plasticity and cognitive ability. 

 ApoE and its highly conserved family of receptors appear to have been co-opted 

from simple cholesterol transport  to regulate neuronal function. Poised on the surface of 

neurons, the LDL receptor family mediates transport of apoE and other ligands across the 
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cell membrane.  Among these other ligands is one in particular that has the ability to 

induce cellular signaling sufficient to alter synaptic function: the extracellular matrix 

protein reelin. Well characterized in the literature, reelin signaling through lipoproteins 

receptors modulates both neuronal positioning during development and neuronal 

signaling in the adult brain.  Our understanding of reelin signaling and its importance in 

normal CNS function gives valuable insight into the potential actions of other ligands 

known to signal through this lipoprotein receptor family, such as apoE.

 The coupling of signaling pathways initiated by reelin signaling through 

lipoprotein receptors to physiologic changes in the hippocampus supports the hypothesis 

that other ligands of the lipoprotein receptor family  have the capability to play a role in 

neuronal physiology  as well. The ability  for apoE to bind to all members of the family  of 

lipoprotein receptors initiated the present study investigating the potential for apoE to act 

as an isoform-specific signaling ligand in the hippocampus. For this study, I utilized the 

tools developed from previous investigations of the effect of reelin on synaptic plasticity 

and signal transduction as a primer to investigate the effects of apoE.  The experimental 

design of my study allowed for multiple lines of comparison including: 

1) Direct comparison of all three endogenous human apoE isoforms in apoE TR mice.

2) Comparison of the signaling effects of exogenous apoE application to reelin mediated 

signaling.

3) Comparison between the effects of chronic apoE expression and acute apoE exposure.

Thus, the experimental design of this study  was specifically considered to create a more 

complete picture of lipoprotein receptor signaling in the hippocampus, establish a 
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baseline for future studies of apoE signaling and begin to dissect  out potential 

mechanisms for isoform specific changes in neuronal function.

Implications of acute apoE application

 In hippocampus area CA1, either chronic apoE isoform expression or acute apoE 

isoform exposure produces the same response to a theta-burst protocol for inducing LTP.  

The presence of apoE4 results in the greatest LTP induction while the presence of apoE2 

results in the least; both the presence of apoE3 and apoE-deficiency are intermediary  to 

these two extremes (figures 5 & 10). Initially this appeared to indicate that apoE acts as 

an isoform-specific signaling molecule, and that the two delivery  methods have 

equivalent effects.  As the enhanced LTP induction in the presence of apoE4 looked 

remarkably  similar to that seen in the presence of exogenous reelin (Weeber, et al., 2002), 

it was reasonable to interpret that apoE4 may be increasing NMDA receptor function 

similar to reelin and supported the hypothesis that an isoform of apoE could have a 

physiologic response similar to reelin (S. Qiu, Zhao, et al., 2006).  It was in the 

investigation of this hypothesis that  the differences between chronic apoE expression and 

acute apoE exposure became apparent.

 With the apoE4-induced enhancement of LTP induction, it was hypothesized that 

acute apoE4 application would also increase NMDAR-mediated field potentials, again 

similar to that seen with reelin application.  Instead, both apoE2 and apoE4 application 

reduce NMDAR-mediated field potentials (figure 6). This change in NMDA receptor 

function could be due to changes in phosphorylation. In fact, activation of lipoprotein 
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receptors by  reelin alters tyrosine phosphorylation of NMDA receptors, which correlates 

nicely with the changes seen in LTP induction and NMDAR currents (S. Qiu, Zhao, et al., 

2006).  Yet no such interaction is seen with application of rhapoE2 and rhapoE4 isoforms 

despite enriching for NMDAR subunits by immunoprecipitation of NR2A or NR2B to 

increase signal-to-noise ratios for quantitative western blot analysis.  There is a trend 

towards decreased tyrosine phosphorylation in the presence of apoE isoforms as 

compared to control levels (figure 7).  Although not statistically significant, this trend 

could be indicative of reduced phosphorylation of NMDARs and may contribute, at least 

in part, to the observed decreases in NMDAR-mediated field potentials.  However, this 

trend towards reduced tyrosine phosphorylation is seen in the presence of all three apoE 

isoforms, including apoE3, which does not have an effect on NMDAR-mediated field 

potentials with acute application. 

 Nevertheless, site-specific loss of phosphorylation is likely to have a differential 

effect on NMDAR function. Importantly, quantification of phosphorylation was 

performed using a pan-antibody for phosphorylated tyrosine and specific sites of tyrosine 

phosphorylation were not identified.  Both NR2A and NR2B contain a number of specific 

tyrosine phosphorylation sites that are acted upon by specific protein kinases (Cheung & 

Gurd, 2001; Gardoni, et al., 2001; Liao, et al., 2001; Nakazawa, et al., 2001; Omkumar, 

et al., 1996; Yang & Leonard, 2001; Zheng, et al., 1998).  While the functional 

significance of many of these sites remains inconclusive, alterations in phosphorylation at 

one or several sites could potentially  alter NMDA receptor function in a way that impacts 

synaptic plasticity.  NMDA receptor activity can be upregulated through phosphorylation 
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by SFKs (for review see (Ali & Salter, 2001)).  This enhancement can be blocked by 

mutating specific tyrosine residues in NR2A (Y1105, Y1267, Y1387) to phenylalanine 

(Zheng, et al., 1998).  Paradoxically, the principal site of fyn phosphorylation in NR2B, 

Y1472, does not correspond to the src sites in NR2A (Nakazawa, et al., 2001).  This 

phosphorylation of this site, however, does increase following LTP induction in 

hippocampal slices and after transient global ischemia (Nakazawa, et al., 2001).  The 

equivalent Y1472 site in NR2A surrounded by a clathrin adapter-2 (AP2)-binding 

domain; this can mediate NMDA-receptor internalization when not masked by  binding to 

the PDZ domain of PSD-95 (Roche, et al., 2001).  Therefore increase in tyrosine 

phosphorylation of this site may regulate receptor turnover.  A decrease in NR2A tyrosine 

phosphorylation in the presence of rhapoE could thus alter NMDAR function or surface 

expression, and either possibility  could manifest as a reduction in NMDAR-mediated 

field potentials.

 Furthermore, the cytoplasmic tails of NMDA receptors also are subject to 

phosphorylation by other kinases, such as CDK5.  CDK5 is found localized with NMDA 

receptors at glutamatergic postsynaptic sites (Li, et al., 2001). Inhibition of CDK5 

reduces current through the NMDA receptor and blocks LTP induction in hippocampal 

slices (Li, et al., 2001), illustrating the importance of non-tyrosine phosphorylation in the 

regulation of NMDA receptor function. Hyper-phosphorylation of these non-tyrosine 

residues could potentially  mask immunoreactivity of other sites.   Such an interaction 

could account for the differing results seen with immunoprecipitation of NR2A and 

NR2B versus total CA1.  Thus, in this context, slight changes in NMDAR total tyrosine 
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phosphorylation can have unknown changes in NMDAR function, such as either 

promoting or inhibiting LTP induction. 

 Other than altered phosphorylation, there can be actual physical changes that 

would result in reduced NMDAR function. This is a distinct possibility in light of recent 

studies showing that  apoER2 is physically  associated with NMDA receptors by PSD-95 

(Beffert, et al., 2005; Hoe, Pocivavsek, Chakraborty, et  al., 2006).  Increased receptor 

binding and endocytosis in the presence of apoE2 or delayed retroendocytosis in the 

presence of apoE4 could therefore alter the distribution of NMDA receptors on the cell 

membrane. Furthermore, apoER2 internalization could also alter NMDAR function by 

disruption of signal transduction pathways known to modulate NMDA receptors (Beffert, 

et al., 2002; Petit-Turcotte, et al., 2005; S. Qiu, Zhao, et al., 2006; Weeber, et  al., 2002).  

The resulting effect would be an isoform-specific decrease in NMDAR-mediated field 

potentials in the presence of apoE2 and apoE4 but not apoE3. 

 Acute application of apoE isoform does not significantly alter activation of 

ERK1/2 or JNK1/2 (figure 8).  These signal transduction pathways are key players in 

synaptic plasticity, and were previously shown to be modulated by  apoE application in 

neuronal cultures (Hoe, et al., 2005).  The absence of changes in ERK1/2 and JNK1/2 

with acute apoE application in this study is interesting in light of the fact that reelin 

application does not change ERK1/2 activation (unpublished observation). The ability  for 

apoE to bind to all lipoprotein receptors, in particular apoER2 and VLDLR, raises the 

possibility that acute apoE application can significantly  modulate normal reelin signaling. 

ApoE2 and apoE4 may induce greater receptor internalization or slower turnover than 

122



apoE3.  This is supported by findings showing reduced retroendocytosis of the apoER2 

receptor in the presence of apoE4 (J. Herz, personal communication).  While apoE2 is 

deficient in binding LDLR, its affinity for apoER2 is unknown.  The finding of increased 

apoE2 levels by  other groups (Riddell, et al., 2008; Sullivan, et al., 2004), however, may 

increase the probability of receptor binding by this isoform thereby decreasing receptor 

availability for reelin.  ApoE3, in contrast, displays neither of these traits.

 Simultaneously, apoE2 and apoE4 could have divergent effects on reelin 

processing and metabolism.  Preliminary results suggest an increase in active reelin 

fragments in the presence of apoE4, and a decrease in the presence of apoE2 (data not 

shown).  In addition, apoE4 expression occludes reelin-induced enhancement of LTP (J. 

Herz, personal communication).  Thus, apoE4 application may increase the signal-to-

noise ratio of reelin signaling, priming the synapses for increased response to stimulation 

which manifests as an increase in LTP induction (see figure 9).

Implications of chronic apoE expression

 The creation of the apoE TR model allows for expression of specific apoE 

isoforms that is “chronic” and unchanging throughout development and postnatal life.  

Chronic apoE expression in apoE TR mice contrasts many of the findings seen with acute 

apoE exposure.  The isoform-specific alterations in LTP induction require NMDA 

receptor function, but determining the mechanism of these NMDAR-dependent changes 

proved difficult.  These technical difficulties arose in part due to the potential confounds 

and caveats that would accompany investigation of the entire hippocampus versus area 
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CA1. For example, attempts to immunoprecipitate NR2A or NR2B from apoE TR CA1 

samples resulted in a high noise to signal ratio ultimately  leading to widely varying levels 

of total subunits detected (figure 14).  The magnitude of these changes combined with a 

lack of change in NR1 levels brought the validity of these results into questions.  A 

parallel study of total CA1 extracts without immunoprecipitation failed to replicate the 

isoform-specific changes in subunit or phosphorylation levels.  This lack of confirmation 

indicates that the current immunoprecipitation protocol does not adequately control for 

the differential treatment of NMDA receptors with chronic apoE isoform exposure.  The 

observed hyper-phosphorylation may be indicative of other apoE-dependent effects, such 

as changes in receptor localization that will be determined in future studies.

 Although the effect of apoE expression on NMDAR function is unclear, the 

effects on signal transduction are much more apparent.  Both ERK1/2 and JNK1/2 

activation are significantly increased in apoE4 TR animals versus apoE2 TR and apoE3 

TR.  It is likely that the changes to synaptic plasticity depend heavily on these changes in 

neuronal signal transduction. JNK interacting protein (JIP) interacts with the amino acids 

encoded by exon 19 of apoER2.  This sequence is also required for interaction with 

PSD-95, reelin-induced increases in LTP, and reelin-induced increases in NMDA receptor 

subunit phosphorylation and potentials (Beffert, et  al., 2005).  Likewise, ERK1/2 function 

is also necessary for synaptic plasticity. NMDAR-dependent LTP in CA1 is associated 

with an increase in active ERK2 (English & Sweatt, 1996), and this type of LTP is 

blocked by inhibition of MAP kinase kinase (MEK), the sole activator of ERK2 (English 

& Sweatt, 1997). Isoform-dependent activation of these pathways is therefore implicated 
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in alterations in LTP induction. However, the results presented here cannot eliminate 

alterations to NMDA receptor function or indirect effects on reelin signaling as 

contributors to the apoE isoform-dependent changes in LTP induction.  As illustrated by 

figure 16, it  is more likely  that the cooperative effect of changes in signal transduction 

and potential alterations to NMDAR phosphorylation are together combining to alter 

synaptic plasticity in the chronic expression state. 

Alterations in apoE binding may also change the ability  of lipoprotein receptors to 

bind other ligands, such as reelin.  The previous reports of reduced levels of apoE4 in the 

brain (Ramaswamy, et al., 2005; Riddell, et al., 2008) could correlate with increases in 

the number of receptors available for reelin binding. Increased reelin levels, and 

presumably increased binding to receptors, could initiate signal transduction cascades 

culminating in enhanced LTP induction much like that  seen with apoE4 expression.  

Stability  of apoE conversely mirrors LTP induction, with the least stable apoE4 inducing 

the greatest LTP induction and the most stable apoE2 the least.  Combined with the 

finding of reduced spatial memory, this suggests that the increase in LTP with apoE4 may 

be a pathological release of inhibition.  The neuroprotective effects of apoE2 may stem 

from an ability to suppress excess stimulation. This is complemented by finding that 

while modest increases in reelin enhance learning, excess reelin actually inhibits learning 

and memory.

 The findings of this study  are summarized in table 3. While contributing to our 

knowledge about the effects of apoE isoform, the results presented here also raise another 

interesting question: Why is there a mechanistic difference between acute and chronic 
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Acute (rhapoE) Chronic (apoE TR)

5x TBS LTP E4 > E2 E4 > E2

200 Hz LTP n.d. n.s.

NMDAR-mediated field 
potentials

E2, E4 < control n.d.

pNR2A/NR2A (IP of 
NR2A)

n.s. (trend towards 
reduced pNR2A in E4)

E4> E2, E3

pNR2B/NR2B (IP of 
NR2B)

n.s. E4> E2, E3

NR2A/NR1 (total CA1) n.d. n.s.

NR2B/NR1 (total CA1) n.d. n.s.

pTyr (total CA1) n.d. n.s.

pERK/ERK n.s. E4> E2, E3

pJNK/JNK n.s. E4 > E2, E3
WT> E0
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Table 3: Summary of electrophysiology and biochemistry results: comparison between 
acute (rhapoE treatment) and chronic (apoE TR) conditions

n.s. - not significant
n.d. - not determined



apoE isoform treatments?  It is possible that the mechanistic differences simply stem 

from the duration of apoE exposure, and that extended exposure to recombinant apoE 

isoforms would eventually  mimic exactly  the physiologic and biochemical changes seen 

in the apoE TR mice.  However, the two treatments, with their apparent divergent 

mechanisms, both result in the same apoE isoform-dependent changes in LTP.  While this 

finding should not be discounted, the results of this study suggest that biophysical 

differences between recombinant and endogenous apoE may  separate these two models.  

These biophysical differences, and their implications, will be discussed in the next 

section.

Molecular implications of apoE isoform variation

Deciphering the biophysical properties of apoE isoforms is beyond the scope of 

this study  and is currently  under investigation by many other research laboratories.  

However, the biophysical properties of individual apoE isoforms support my hypothesis 

that apoE can act as an isoform-specific signaling molecule.  Each isoform has a specific 

affinity for particular lipoproteins and receptors.  This in turn alters the extent to which 

apoE induces receptor endocytosis and intracellular signaling.  Furthermore, variation in 

the level of available apoE due to variation in stability  or expression can also alter the 

amount of receptor binding and signaling by apoE. In the apoE TR animals, these 

interactions are presumably  preserved and thus the isoform-specific changes in synaptic 

plasticity, learning and memory are a manifestation of these biophysical properties.  In 

contrast, the rhapoE isoforms are applied without lipids.  The disconnect between the 
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actions of these rhapoE isoforms and the results obtained with apoE TR animals may 

reflect the particular processes that are dependent upon proper binding of apoE/

lipoprotein complexes to receptors. This also emphasizes the importance of using 

naturally  lipidated apoE particles to determine the mechanism of apoE isoform-dependent 

alterations in synaptic plasticity.

There may be additional explanations for the disconnect  in the data collected 

between the acute and chronic experiments.  In the apoE TR animals, apoE isoforms are 

present throughout life and presumably exerting any isoform-specific differences on 

signaling, synaptic plasticity, and behavior continuously.  Thus the measured differences 

between isoforms are a reflection of both signaling changes in the adult animal as well as 

any compensatory changes necessary  to maintain homeostasis.  Similarly, the absence of 

apoE can also induce signaling or other compensatory  changes.  However, with the 

exception of JNK activation, there were no significant differences in synaptic plasticity or 

signaling measure in apoE-deficient mice as compared to wild-type mice in this study. 

Application of rhapoE isoforms is sufficient to mimic changes in LTP induction but not 

changes in ERK1/2 activation.  There are at least three possible explanations for this: 1) 

rhapoE is not inducing the same signaling pathways as endogenous apoE due to the 

absence of physiologically relevant lipidation, 2) rhapoE is inducing signaling but there 

are additional mechanisms at work that reverse these changes prior to the time points 

measured in this study, or 3) these alterations are compensatory changes in the apoE TR 

mice that will not be seen with acute application of rhapoE.
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Support for the first possibility  has been raised in both the introduction and in this 

section; apoE isoform affects lipoprotein affinity, and the state of lipid binding to apoE 

has implications for receptor interactions.  The second possibility  is strengthened by  the 

different time courses used in this study.  In the synaptic plasticity experiments, rhapoE is 

applied to slices for five minutes and remains in perfusion for 20 minutes prior to LTP 

induction and 20 minutes after.  For the biochemistry experiments, rhapoE is in perfusion 

for the 40 minutes prior to flash freezing on dry ice to terminate cellular processes.  Thus, 

there is a 20 minute period in which any changes in signaling that lead to the observed 

alterations in synaptic plasticity could be reversed.

Treatment of primary  neurons with apoE activates ERK1/2 in a time dependent 

fashion.  Levels of pERK are equal to control after 30 minutes, peak at 2 hours, and are 

near control levels again by 6 hours (Hoe, et al., 2005).  While the time course will be 

different in hippocampal slices, it is feasible that similar time-dependent effects are 

occurring in this study.  Application of a bolus of rhapoE could quickly  induce changes in 

ERK1/2 activation, NMDAR phosphorylation, or other cellular pathways that peak at or 

near 20 minutes of exposure.  Subsequently, mechanisms to reverse these changes, such 

as activation of protein phosphatases or receptor desensitization, return the system to 

levels that are indistinguishable from control in the assays used in this study.  An in-depth 

analysis of the time course of rhapoE-induced activation of signaling pathways will help 

validate this possibility.

In the apoE TR mice, chronic exposure to apoE isoforms has resulted in 

homeostatic changes that are not seen with acute exposure.  For instance, apoE isoform 
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expression could change the rate of lipoprotein receptor turnover, surface level 

expression of lipoprotein receptors, or NMDA receptor desensitization.  In this study, 

chronic apoE4 expression results in a significant increase in ERK1/2 activation.  This 

could be the result of compensatory changes in signaling that are necessary  to maintain 

homeostasis.  In addition, this elevated ERK1/2 activation could result in downstream 

inhibition to the targets of the MAPK cascade, such as cAMP response element binding 

(CREB).  Inhibition of CREB and downstream gene transcription processes could result 

in learning and memory deficiencies in the apoE4 TR mice. Neither of these effects 

would occur with acute application of apoE.  Therefore, the failure of acute apoE 

application to replicate all of the changes in signal transduction seen in the apoE TR mice 

may stem from the effects of chronic apoE isoform expression rather than the properties 

of rhapoE itself.

Implications for learning and memory

 One great utility of the apoE TR mouse is the ability  for this model to undergo 

behavioral testing to determine specific effects of naturally lipidated, chronic apoE 

exposure on learning and memory.  While there is no overall change in general 

locomotion, this study confirmed deficits in spatial memory in apoE4 animals, expanding 

this to include male animals as well as the previously  studied female animals 

(Grootendorst, et al., 2005).  In addition to this spatial memory deficit, there is a 

significant difference in associative learning ability between apoE2 and apoE4 TR mice.  
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A comparison of the findings of this study with the three other major studies focusing on 

the apoE TR mice (Bour, et al., 2008; Grootendorst, et al., 2005; Villasana, et al., 2006) is 

presented in table 4.  As evidenced by  this table, small differences in experimental design 

can alter the behavioral profile of identical strains of animals.  This does not take into 

consideration other immeasurable influences on behavior, such as housing conditions or 

experimenter handling, or data interpretation, such as the sensitivity  limits of a particular 

behavioral apparatus.

 Likewise, the effects of the absence of apoE on learning and memory  are 

somewhat controversial. In several studies, spatial learning is impaired in the absence of 

apoE (Champagne, et al., 2002; Grootendorst, et al., 2001; Krzywkowski, et  al., 1999; 

Masliah, et  al., 1997; Oitzl, et al., 1997; Veinbergs, et al., 1999).  These differences may 

be attributable to procedural differences in training protocols, for instance massed 

training sessions instead of spaced (Oitzl, et al., 1997), or sex or age differences in the 

mice used in those studies (Masliah, et al., 1997; Veinbergs, et  al., 1999) versus the young 

adult male mice in this study.  In others studies, spatial memory is equivalent between 

apoE-deficient and murine apoE-expressing animals (Anderson, et al., 1998; Anderson & 

Higgins, 1997; Grootendorst, et al., 2005; Raber, et al., 1998; Raber, et al., 2000).

 In this study, apoE-deficient animals are behaviorally indistinguishable from wild-

type and apoE3 TR animals in many tasks.  One possible interpretation of this finding is 

that murine apoE and apoE3 do not have an effect on these behaviors, in essence doing 

“nothing.”  While this is a possibility, other studies show that lack of apoE does in fact 

have deleterious effects on learning and memory.  Therefore, it is more likely that the 
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Table 4: Summary of behavioral studies of apoE TR mice: comparison between current and previous studies

n.s. - not significant   n.d. - not determined
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Table 4 (continued): Summary of behavioral studies of apoE TR mice: comparison between current and previous studies

n.s. - not significant   n.d. - not determined



experimental conditions or design of individual tests in this study  are unable to 

distinguish the subtle consequences due to the lack of apoE.  Interestingly, these tests are 

able to identify  changes in learning and memory due to the presence of apoE2 or apoE4.  

As no corresponding alterations are seen in apoE3 TR animals, this indicates that 

alterations seen in apoE2 TR and apoE4 TR animals are specifically related to the 

presence of these isoforms.

 The findings presented here and the ongoing study into the biochemistry of apoE 

signaling will help  elucidate the mechanism of apoE isoform-dependent modulation of 

cognitive function.  Despite this progress, it is imperative to note that it is exceedingly 

difficult to directly associate learning and memory  with neuronal physiology.  While 

there are multiple instances where increases in LTP correspond to increases in learning 

and memory performance, there are also circumstances of inverse correlation or no 

relationship  at all between behavior and synaptic plasticity.  For example, animals lacking 

Fmr2, disruptions of which lead to FRAXE mental retardation syndrome in humans, 

display  enhanced LTP but are severely impaired in long-term contextual associative 

memory (Gu, et al., 2002). Similarly, mutation of PSD-95 increases LTP induction but 

significantly reduces spatial learning and memory (Migaud, et al., 1998).

 In this study, increases in synaptic plasticity in the apoE4 TR animals correlated 

with both an increase in ERK1/2 activation and a decrease in spatial memory retention.  

Hippocampal ERK activation is necessary for spatial memory formation.  Administration 

of the MEK inhibitor SL327 in mice selectively impairs performance on the hidden 

platform test (Selcher, et al., 1999).  Likewise ERK activation is seen in the CA1/CA2 
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subfield hippocampus following watermaze training (Blum, et al., 1999).  Yet in the 

current study, both decreased spatial memory  and increased ERK activation is seen in the 

apoE4 TR animals. The possibility exists that the observed increase in basal ERK 

activation actually interferes with the formation of new long-term memories.  If 

hippocampal ERK activation and synaptic plasticity is constantly elevated prior to 

learning and memory, then this could interfere with the induction of changes necessary 

for the encoding of a persistent memory trace in the hippocampus.

 A key  consideration in the interpretation of these findings is the idea of occlusion.  

If apoE4 expression increases LTP and activates signaling pathways in the basal state, 

then further increases in LTP may not be possible.  Thus learning deficits should arise due 

to a loss of capacity  for hippocampus synaptic plasticity.  Saturating hippocampal LTP 

does impair spatial memory (Castro, et al., 1989; McNaughton, et al., 1986).  

Specifically, animals that receive saturating LTP stimulation to the perforant path do not 

spend significantly  more time in the target quadrant during a probe trial following water 

maze training (Moser, et  al., 1998).  In contrast, animals receiving non-saturating LTP 

stimulation, low frequency stimulation, or no stimulation are not impaired in spatial 

learning (Moser, et al., 1998).  Thus, apoE4 expression supports the point that more is not 

always better. The observed changes in LTP and signal transduction in these animals may 

indicate a reduction in the capacity for further alterations in synaptic plasticity. 

 Due to its negative association with AD risk, cardiovascular disease risk, and 

prognosis following traumatic brain injury, apoE4 has been portrayed as a biological 

villain in much of the literature.  Interestingly, the apoE4 allele is carried at different 
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frequencies among world populations (Corbo & Scacchi, 1999), and the preservation of 

this allele despite disease risk might indicate an advantageous ancestral role for this 

allele.  Several human studies have indicated that apoE4 bestows beneficial properties 

early in life but  escalate deficiencies with age.  ApoE4 has been associated with increased 

intelligence in young women (Mondadori, et al., 2007), but a more rapid cognitive 

decline in older women (Mortensen & Hogh, 2001).  Young apoE4 carriers also have 

differences in cerebral blood flow as measured by  BOLD fMRI, most notably an increase 

in hippocampus activation during memory encoding (Filippini, et al., 2009).  A 

longitudinal study of individuals from age 11 to 70 did not find a correlation between IQ 

and apoE isoform expression in children, but childhood IQ and apoE did interact to affect 

processing speed and nonverbal cognition in old age (Luciano, et al., 2009).  Likewise, 

the increased LTP seen in young adult  apoE4 TR may  be a manifestation of changes in 

neuronal processes that, with age, have a progressive negative impact  on cognitive 

function.

Experimental limitations and considerations

The findings of this study stress the importance of using physiologically  relevant 

forms of apoE to study  isoform-dependent effects on synaptic plasticity.  The 

recombinant apoE isoforms used in this study were non-lipidated.  Various forms of 

lipidated and non-lipidated apoE have been used somewhat interchangeably  in the 

literature, from apoE peptides and recombinant apoE, to artificially lipidated apoE, to 

CSF-derived apoE/lipoprotein particles (Bellosta, et al., 1995; Fagan, et al., 1999; Hoe, et 
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al., 2005; Hoe, Pocivavsek, Dai, et al., 2006; LaDu, et al., 1995).  This lipidation state, 

however, has significant consequences for the structure and domain interaction of apoE.  

Domain interaction of apoE4 depends on lipid type (Hatters, et al., 2005).  Additionally, 

apoE must be bound to lipids for full, high-affinity binding to receptors (Hatters, et al., 

2006) and removal of Aβ (Hirsch-Reinshagen, et al., 2005; Jiang, et al., 2008; Wahrle, et 

al., 2005; Wahrle, et al., 2004).  This could have unforeseen consequences on studies 

using recombinant or non-lipidated forms of apoE.  To minimize these confounding 

variables, future synaptic plasticity studies should focus on forms that preserve 

physiological lipidation, such as glial-derived apoE (Manelli, et al., 2007) or the apoE TR 

animals.

The apoE TR animals, however, are not without their own limitations.  While the 

endogenous murine apoE promotor is preserved, the remainder of the apoE gene is 

human.  The gene product therefore is, in essence, foreign.  As murine apoE behaves like 

human apoE3, the conformational differences of apoE2 or apoE4 may have consequences 

on expression, transport, or reuptake. Therefore, this study operates under the assumption 

that human apoE isoforms are able to effectively interact  with the murine system.  

Fortunately, the apoE receptors involved in transducing apoE-dependent signals across 

the membrane are highly conserved across species, and in particular between mammals 

with 90-97% sequence similarity depending on the specific apoE receptor (Herz & Bock, 

2002).  Thus, when presented in a physiologically relevant lipidation state, human apoE 

isoforms should be able to interact with murine apoE receptors in a way that reflects their 
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differential binding abilities in the human. However, further study will be necessary to 

confirm this assumption.

The apoE TR animals used in this study were homozygous for each particular 

apoE allele.  In using these animals, we are attempting to model chronic apoE expression 

that can be related human conditions.  In reality, however, the likelihood of an individual 

possessing two ε2 or two ε4 is quite low (Corbo & Scacchi, 1999; Siest, et al., 1995).  

This limits the ability to directly translate the findings of this study to the human brain as 

there may be interactions between different apoE isoforms that have additional effects on 

synaptic plasticity.

Summary

 In total, the results of this study demonstrate a specific, isoform-dependent role 

for apoE in the modulation of synaptic plasticity and cognitive function.  ApoE4 

increases LTP induced by theta burst stimulation in area CA1 of the hippocampus; the 

magnitude of this LTP induction is significantly greater than that seen in the presence of 

apoE2.  This change in LTP induction is accompanied by  increased ERK1/2 and JNK1/2 

phosphorylation when apoE4 is chronically expressed in the apoE TR mouse but not 

when acutely applied.  Acute apoE2 and apoE4 application significantly  decreases 

NMDAR-mediated field potentials but this is not accompanied by a significant  decrease 

in tyrosine phosphorylation of NR2A or NR2B.  The effects of chronic apoE expression 

on NMDAR function are less clear.  While NMDA receptors are required for the isoform-

specific effects on LTP induction, subunit expression and phosphorylation levels were 

138



equivalent in total CA1 samples. Attempts to immunoprecipitate NR2A and NR2B 

revealed increased tyrosine phosphorylation and decreased subunit detection in the 

presence of apoE4.

 As illustrated by figures 9 and 16, apoE may induce isoform-specific changes in 

synaptic plasticity through alterations in signaling cascades, namely ERK1/2 and JNK1/2, 

and NMDAR function.  While having the same final effect on theta burst-induced CA1 

LTP, acute apoE exposure and chronic apoE expression may be divergent in mechanism.  

Chronic apoE expression, specifically apoE4, alters signaling cascades known to be 

involved in synaptic plasticity, and likely alters NMDAR function although this remains 

unconfirmed.  Acute apoE exposure, however, does not alter these signal transduction 

cascades but does reduce NMDAR-mediated field potentials.  Further experimentation 

will be required to determine if these differences are attributable to the lack of 

physiologically relevant lipidation of the acutely applied apoE, the time course of apoE 

application, adaptation due to the chronic expression of apoE isoform, or a combination 

of these factors.

 The apoE isoform-specific modulation of synaptic plasticity is complemented by 

alterations in learning and memory performance in the apoE TR mice.  This study builds 

upon previous research, confirming a spatial memory deficit  in apoE4 TR mice.  

Furthermore, apoE2 TR mice also have impaired spatial memory, and there is a 

significant difference in associative memory  performance between apoE2 and apoE4 TR 

animals.  These changes are seen without any alterations to general locomotion, motor 

learning, or working memory.  While direct  correlations can not be made between LTP 
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and learning and memory  behavior, both parts of this study show more dramatic apoE 

isoform-induced changes in the presence of apoE2 or apoE4 versus apoE3.  Overall, this 

study demonstrates that apoE isoform specifically  acts to modulate neuronal signaling in 

the adult  hippocampus resulting in alterations to both synaptic plasticity and learning and 

memory and establishes a baseline for future studies into the role of apoE isoforms in the 

human CNS. 

Future directions

 The findings presented here bring valuable insight to the growing apoE field.  The 

identification of baseline levels of synaptic plasticity  and learning and memory behavior 

in apoE TR mice creates a foundation for future research.  The clear caveat to these 

studies is that  the apoE TR animals are expressing human apoE but possess receptors 

designed for the binding and uptake of mouse apoE. However, the family of apoE 

receptors likely involved in transducing these signals across the membrane are highly 

conserved across species, and in particular between mammals with 90-97% sequence 

similarity depending on the specific apoE receptor (Herz & Bock, 2002).  The apoE TR 

mice are therefore valuable for future studies combining apoE isoform expression with 

other AD models or alterations in lipoprotein receptor signaling.  

 Studies combining apoE expression with other manipulations have already begun.  

In apoE TR mice crossed with a mouse model of AD, the PDAPP mouse, expression of 

apoE4 dramatically  increases brain Aβ levels.  This is accompanied by isoform-specific 

changes in brain apoE, E4<E3<<E2, but  no change in apoE mRNA by isoform (Bales, et 
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al., 2009).  Estradiol treatment in aged apoE TR mice to mimic hormone replacement 

therapy selectively increased perforant path LTP in apoE4 TR versus apoE3 TR (Yun, et 

al., 2007) but these aged apoE4 TR animals did not show the same basal reduction in 

perforant path LTP previously reported in young animals (Trommer, et al., 2004).  

Induction of experimental autoimmune encephalomyelitis, a model of multiple sclerosis, 

in apoE4 knock-in mice induces an early  spatial memory  decline and a decline in choline 

acetyltransferase in the hippocampus as compared to wild-type animals (Tu, et al., 2009).  

With the results presented in this study, the interpretation of these and future results can 

take basal changes in synaptic plasticity  and learning and memory  due to apoE4 

expression into consideration. Furthermore, the studies listed above underscore the ability 

of non-murine apoE isoforms to elicit physiological changes related to human disease 

states.

 Another interesting finding of my research is the effect of apoE isoform on 

NMDA receptors.  A full characterization of this effect first requires validation of the 

experimental procedures, especially  immunoprecipitation, used to isolate and analyze 

NMDA receptor subunits in this study.  This assay  can then be used to measure changes 

in NMDAR subunit composition or phosphorylation in the presence of apoE isoforms, 

and may  also reveal alterations to subcellular localization or surface distribution.  The 

present studies revealed changes changes in pan-phosphotyrosine levels; however 

identification of specific tyrosine phosphorylated residues will help further refine the 

mechanism of apoE activity  in the hippocampus. Future studies may also determine that 

activation of other signaling pathways is involved in phosphorylation of NMDA receptors 
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at other residues.  For example, there was no investigation of serine or threonine 

phosphorylation of NMDARs that can also influence calcium conductance.  These types 

of biochemical investigations would be technically  difficult and time consuming, but may 

shed light on both apoE-dependent changes in synaptic function as well as biophysical 

properties of NMDA receptor function

  Insight in to the mechanism of the biochemical effects of apoE isoforms can also 

be gathered from additional plasticity studies.  For instance, apoE isoform presumably 

alters synaptic plasticity through lipoprotein receptors but does this then occlude reelin-

dependent changes in plasticity?  Likewise, we now know that  apoE isoforms have 

different effects on perforant path LTP versus CA1 LTP; does this correlate with any 

differences in the activity  of reelin between these two areas?  Reelin enhances LTP in 

area CA1 but the effect of reelin application of perforant path LTP is unknown.  This 

simple experiment may strengthen the link between the integration of reelin signaling and 

apoE signaling in the hippocampus.  Along the lines of further plasticity  study  is the 

investigation of isoform specific changes in other forms of synaptic plasticity, such as 

LTD or chemically induced LTP (i.e. phorbol-ester induced synaptic facilitation).  These 

types of studies will help define changes induced by both acute and chronic apoE 

application and can be useful in understanding the potential mechanisms underlying 

cognitive deficits in the apoE TR mice

 Additional studies utilizing whole cell electrophysiology could isolate the 

particular modulation to ion channels that contribute to changes in synaptic plasticity.  

These studies in particular would benefit from the isolation and use of lipidated apoE 
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isoforms.  If these particles mimic the physiological state, application during whole cell 

recording would allow for the investigation of the time course of apoE signaling. In 

addition, this would be the ideal experimental set-up  for the investigation of the pathways 

of apoE signaling as inhibitors of particular kinases, such as SFKs or PI3K, could be 

either bath applied or delivered intracellularly via the recording pipette.

 Further insight into the mechanism of apoE isoform-dependent changes on 

synaptic plasticity could also be garnered by breeding strategies that incorporate apoE TR 

mice in combination with one of the many lipoprotein-deficient transgenic mice or by 

utilizing molecules that block ligand binding to specific lipoprotein receptors.  This 

would confirm that apoE isoforms are acting through lipoprotein receptors as well as 

indicate which receptors are expressly involved in mediating apoE-specific effects.  The 

identification of the specific lipoprotein receptors involved in apoE isoform-dependent 

changes to synaptic plasticity will also hint at the role of reelin in this process.  This will 

be further clarified by  continuation of the study of the role of apoE isoform in reelin 

metabolism. Recent work in the Weeber lab indicates that apoE4 increases metabolism of 

reelin to produce the active fragment. In contrast apoE2 reduces metabolism and reduces 

the amount of active fragment. The differential effect of apoE isoform on reelin may 

support the different effects of apoE isoforms on plasticity and learning and memory.

 The ultimate goal of all of the research into isoform-specific actions of apoE is to 

understand how these changes culminate into altered AD risk.  While the apoE TR 

animals do not develop AD-like pathologies, they  nonetheless could be used as an animal 

model for the testing of therapeutic interventions.  In the apoE4 TR mouse, for example, 
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the success of a therapeutic could be measured by  its ability to return the 

electrophysiological, biochemical, and behavioral profile to that which resembles the 

apoE3 TR.  The interaction between apoE and lipid metabolism makes the investigation 

of dietary interactions especially interesting.  For instance, there is currently  controversy 

in the literature about the effectiveness of omega-3 fatty acids, specifically 

docosahexenoic acid (DHA), in the progression of AD symptoms and pathologies 

(Devore, et al., 2009; Hashimoto, et al., 2008; Hooijmans, et al., 2009).  Lim et al. 

reported a decrease in Aβ levels with dietary  DHA supplements in an aged animal model 

of AD (Tg2576 mice) (Lim, et al., 2005).  Two recent studies in humans, however, 

suggest restraint should be used when recommending DHA supplements to AD patients.  

Quinn et al. found that DHA treatment did not slow mental decline in AD patients.  

However, there appears to be an effect of apoE isoform, as non-ε4 carriers have a slower 

rate of decline than those with the ε4 allele (J. F. Quinn, et al., 2009).  In addition, DHA 

supplements improve memory  function in healthy adults with age related cognitive 

decline (Yurko-Mauro, et al., 2009).  The interaction between DHA and apoE4 could be 

further investigated in the the apoE TR which may ultimately lead to a refinement of 

dietary therapeutic recommendations for AD patients.

Conclusion

 The identification of apoE isoform expression influencing the risk of developing 

AD was a seminal finding and refocused much attention of the AD research community 

on the role of specific apoE isoforms in AD pathology. Incredibly, there has been little 
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attention given to the potential role of these isoforms as signaling molecules in the CNS 

or their role in synaptic function and memory  formation. Until these potential roles have 

been identified a full appreciation of how isoform expression integrates into AD 

symptomology, etiology and pathology will never be realized. The studies described 

within this dissertation represent  the important first-step in addressing the deficiencies in 

this area of AD research. Here I have performed a broad-based characterization of basic 

behavioral and physiologic changes in a mouse model expressing human proteins. In 

addition, restricted biochemical and electrophysiological experimentation was included to 

provide an insight on possible mechanisms underlying any  isoform specific changes in 

learning and memory. 

 The studies within this dissertation show for the first time that there is an isoform-

dependent modulation of LTP induction in area CA1 of the hippocampus that appears to 

be dependent on NMDA receptor activation. In addition, expression of specific isoforms 

can affect at least  two signal transduction pathways that are well known for their 

involvement in synaptic plasticity and memory  formation. Moreover, these biochemical 

and physiologic changes may underlie perceptible differences in learning and memory in 

adult male mice. Taken together, the novel results presented here firmly establish apoE 

isoforms as a modulator of both synaptic plasticity and learning and memory, and provide 

a foundation for future apoE research that can be integrated into forthcoming models of 

Alzheimer’s disease. 
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