COMPUTER SCIENCE

AGILE TECHNIQUES FOR DEVELOPING AND EVALUATING LARGE-SCALE
COMPONENT-BASED DISTRIBUTED REAL-TIME AND EMBEDDED SYSTEMS

JAMES H. HILL

Dissertation under the direction of Professor Aniruddha Gokhale

Agile techniques are a promising approach to facilitate the development of large-scale
component-based distributed real-time and embedded (DRE) systems. Conventional agile
techniques help ensure functional concerns of such systems continuously throughout the
software lifecycle. Ensuring quality-of-service (QoS) concerns of large-scale component-
based DRE systems using conventional agile techniques, however, is hard due in large part
to an observed gap between agile development and component-based software engineering
(CBSE) caused by the serialized-phasing development problem.

This dissertation presents novel techniques in the form of algorithms, analytics, pat-
terns, and tools to bridge the gap between agile development and CBSE for large-scale
DRE systems to overcome the serialized-phasing development problem. Furthermore, this
dissertation shows how our techniques can facilitate evaluation of QoS concerns continu-
ously throughout the software lifecycle. The techniques discussed in this dissertation have
been validated the context of representative large-scale component-based DRE systems

from production projects in several mission-critical domains.

Approved Date

AGILE TECHNIQUES FOR DEVELOPING AND EVALUATING LARGE-SCALE
COMPONENT-BASED DISTRIBUTED REAL-TIME AND EMBEDDED SYSTEMS
By
James H. Hill
Dissertation
Submitted to the Faculty of the
Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY
in
Computer Science
May, 2009

Nashville, Tennessee

Approved:
Professor Aniruddha Gokhale
Professor Douglas C. Schmidt

Professor Janos Sztipanovits
Professor Larry Dowdy

Professor Jeff Gray

To my family for their unconditional love and patience

and

To my friends for their never-ending support

i1

ACKNOWLEDGMENTS

First and foremost, I would like to express great gratitude to my advisor, and superb
mentor, Prof. Aniruddha Gokhale. I joined the DOC Group at Vanderbilt University un-
der his supervision after being a Teacher’s Assistant for his Operating Systems course.
Throughout my tenure at Vanderbilt University, which I never will forget, his confidence
and trust in me always reassured me that graduate school is where I belonged. More impor-
tantly, his never-ending support and guidance towards my research efforts, and occasional
jokes (smile) during the toughest times, kept me pushing forward in the right direction.

Secondly, I would like to express great thanks to Prof. Douglas C. Schmidt. I am
very grateful for the opportunity to work with such an extrodinary person. The benefits
of his support on top of my advisor’s support cannot be explained in words. I must say,
it made me truly feel as if I was part of a family. I am also thankful for Prof. Schmidt’s
industry contacts, and his willingness to promote my research so that I may have real-world
problems to validate my research efforts.

I would also like to acknowlege Prof. Larry Dowdy. I remember when I interviewed
for graduate school at Vanderbilt University, Prof. Dowdy was the last on my list. We
were schedule to meet for 30 minutes. Our meeting, however, lasted for almost 1 hour,
and would have lasted longer. The joy of bouncing research ideas off one another is an
experience I will never forget. I am happy to say that it was a major contributing factor in
selecting Vanderbilt University for gradate school. I would also like to thank Prof. Dowdy
for the fun conversations inside and outside of the classroom—especially during football
season.

I would like to thank Prof. Janos Sztipanovits and Prof. Jeff Gray for serving as mem-
bers of my dissertation committee. The advice and guidance they provided on my disser-

tation has been very helpful and will definitely inspire future work. I would also like to

il

acknowledge Prof. Gray for his invaluable advice during the toughest part of my post-
graduate career—job selection. Lastly, watching the work ethic of each person on my
dissertation committee has instilled in me priceless values that I will not find anywhere
else.

One of the biggest challenges of a researcher is having real-world use cases to apply
their research efforts. During the summer to 2005, I had the opportunity to be a visiting
researcher at Raytheon in Portsmouth, RI. During this summer, John M. Slaby was my
supervisor on a DARPA ARMS project. More importantly, John was the personal inves-
tigator (PI) of the project that gave birth to CUTS, which is an artifact of my dissertation.
Ever since that summer, John and has been instrumental in advocating CUTS to many
stakeholders, and ensuring the CUTS vision became a reality.

I would also like to express deep gratitude to my family for their undying love and
support—especially my mom and dad: Cheryl & Nathaniel H. Hill, Sr. The occasional
phone call to make sure everything was going well, and the homecooked meals to ensure
I was well nourished always came when I needed them the most. Dad, I hope this work
makes you proud (not that you aren’t already) because I just realized I am going to be an
educator just like you—Ilike father, like son.

My dissertation research was sponsored by a variety of sponsoring agencies, which
include: Air Force Research Lab, BBN Technologies, DARPA, General Electric (GE) Re-
search, Lockheed Martin ATL, and Raytheon. I would like to thank each agency for their
support and willingness to sponsor my researach and provide real-world problems.

Last but not least, I would like to express great thanks to all my friends in Nashville,
TN. Without you, this long journey definitely would have been a LOT harder. I especially
would like to acknowledge Kenneth L. Martin, Mary E. Fleming, M.D., Kinika Young,

J.D., and Gabriel L. Best, II. Your friendship and support is irreplaceable.

v

TABLE OF CONTENTS

Page
DEDICATION e ii
ACKNOWLEDGMENTS e e iii
LISTOF TABLES e ix
LISTOFFIGURES e X
Chapter
L Introductiono 1
I.1. Emerging Trends of Large-scale DRE Systems 1
I.2. Open Issues for Agile Development of Large-scale Component-
based DRE Systems 3
[.2.1. The Effects of Serialized-phasing Development 4
1.2.2. The Effects of Unique Deployments on Software Per-
formance Engineering 5
I.3. Research Approach 7
I.4. Dissertation Organization 10
IL Related Research 11
II.1. Behavior and Workload Modeling 11
II.1.1. Behavior Modeling Languages 11
I1.1.2. Workload Modeling Languages 12
II.1.3. Formal Languages 13
I1.2. Techniques for Implementing Reusable Model Interpreters 13
II.2.1. Visitor Implementation Techniques 14
I1.2.2. Model Interpretation Techniques 14
I1.2.3. Strategic Programming 15
II.3. Component-based Distributed System Unit Testing and Analysis 15
IL.3.1. Distributed System Unit Testing 16
I1.3.2. Component-based Distributed Systems Analysis 16
I1.4. Continuous System Integration Testing 17
I1.4.1. Integrating SEM Tools with Continuous Integration En-
VIIONMEeNtso e 17
II.4.2. Continuous QoS Testing 18
IL.5. Techniques for Addressing Testing and Experimentation Config-
urability and Scalability 19
I1.5.1. Model-driven Engineering Techniques 19

IL.5.2. Programmatic Techniques 20
I1.6. Software Peformance Engineering for Component-based DRE

Systemso 20
I1.6.1. Compositional Performance Model 20
I1.6.2. Queuing Network Model 21
I1.6.3. Event-based Performance Model. 21
I1I. Domain-Specific Modeling Languages for Overcoming Serialized-phasing
Development 23
III.1. Case Study: A Distributed Stockbroker Application 25
II1.2. Modeling Component Behavior & Workload for QoS Validation . 28
II1.2.1. The Component Behavioral Modeling Language 29
I1.2.2. The Workload Modeling Language 38
II1.3. Integrating Behavioral and Structural DSMLs 41
II1.4. Preserving Formal Semantics of High-level Behavior Models . . 44
II.4.1. Brief Overview of Semantic Anchoring 44
II1.4.2. Transforming CBML into Timed I/O Automata 45
II1.4.3. Simulating Timed I/O Automata Models 49
II1.5. Code Generation Techniques for Facilitating Emulation 49
III.6. Chapter Summary 51
IV. Generative Programming Techniques for Enabling Reuse Domain-specific
Modeling Language Model Interpreters 53

IV.1. Case Study: Emuluating Multiple Component-based Architectures 55
IV.1.1. Commonality and Variability in Contemporary Component-

based Architectures 55
IV.1.2. Inflexibility of Conventional Visitor-based Implemen-
tation Techniques 56

IV.2. Enabling Reuse and Handling Variability in Model Interpreters . 60
IV.2.1. Overview of Template-based Generative Programming . 60
IV.2.2. Guidelines to Handle Variability in Points-of-Visitation

and Generation 61

IV.2.3. MIME Framework for Handling Variability in Points-
of-Visitation and Generation 63

IV.2.4. Using MIME in Component Implementation Visitor Ex-
ample 67
IV.2.5. Reuse within Composite Model Interpreters 71
IV.2.6. Guidelines for Using MIME 71
IV.2.7. Enhancing the User-friendliness of MIME 72
IV.3. Chapter Summary, 73
V. Unit Testing Techniques for Evaluating Component-based DRE System QoS 74
V.1. Case Study: The QED Project 76

V.2. UNITE: High-level Specification and Analysis of QoS Concerns . 80

Vi

V.2.1. Specification and Extraction of Metrics from Text-based

SystemLogs 80

V.2.2. Unit Test Specification for Analyzing QoS Concerns . . 82

V.2.3. Evaluating QoS Unit Tests 84

V.3. Applying UNITE to the QED Project 88

V3.1. ExperimentSetup 88

V.3.2. ExperimentResults 91

V4. Chapter Summary, 94

VL Techniques for Facilitating Continuous System Integration Testing 96

VI.1. Case Study: RACE and the Baseline Scenario 98

VIL.1.1. Overviewof RACE 99

VI.1.2. RACE’s Baseline Scenario 100

VI.2. Overview of CiCUTS 101

VIL.3. Evaluating Design Alternatives for CiCUTS 102
VIL.3.1. Alternative 1: Extend profiling infrastructure of SEM

tools to capture domain-specific metrics. 102

VI1.3.2. Alternative 2: Capture domain-specific performance met-
rics in format understood by continuous integration en-

VIFONMENtES. v v oo e e 103

VI1.3.3. Alternative 3: Capture domain-specific performance met-
rics in an intermediate format. L. 104
VI1.3.4. The Structure and Functionality of CiCUTS 106
VI1.4. Continuous System Integration Testing Experiment & Results . . 107
VI.4.1. ExperimentDesign 108
VI.4.2. Experiment Results 110
VLS. Chapter Summary 115

VIL Template Patterns for Improving Configurability and Scalability of Testing
and Experimentation 116
VII.1.Case Study: Revisiting the QED Project 118
VIIL.2.Template Patterns for Testing and Experimentation 119
VIL.2.1. Variable Configuration Pattern 120
VIL.2.2.Batch Variable Configuration Pattern 124
VIIL.2.3.Dynamic Variable Configuration Pattern 128
VII.2.4.Batch Dynamic Variable Configuration Pattern 132
VIL.3.Quantitative Analysis of Template Patterns 135
VIL.3.1.Revisiting the Multi-stage Workflow 135
VIL.3.2.Quantitative Analysisof Results 136
VIL.4.Chapter Summary, 138
VIIIL. Technique for Predicting End-to-End Response Time of Unique Deploy-

ments of Low Utilized Systems 139
VIII.1Case Study: The SLICE Shipboard Computing Scenario 141

vii

VIII.1.10verview of the SLICE Scenario 141
VIIIL.1.2Contention in the SLICE Scenario 142
VIII.2Using Baseline Profiles to Evaluate Unique Deployments 143
VIIIL.2.1Understanding the Unique Deployment Solution Space . 143
VIII.2.2Using Baseline Profiles to Analyze the Deployment So-

lution Space L. 146

VIII.3Evaluating the SLICE Scenario 149

VIIL.3.1Experimental Setup 149

VIII.3.2Experimental Results 150

VIIL4Chapter Summary 154

IX. Concluding Remarks, 157
Appendix

A. ISISIab o 163

REFERENCES e 165

viii

Table

III.1.

V.1.

V.2

V.3.

VL1.

VIIL1.

VIIL.2.

LIST OF TABLES

Page
Predicted usage pattern of the Distributed Stock Application based on
USETLYPE & v v v v e 26
Log format variable types supported by UNITE 81
Example data set produced from log messages 88
Average end-to-end (E2E) response time (RT) for multiple publishers
sendingeventsat 7SHz o L oL 92
Importance values of the RACE baseline scenario operational strings . . 109
Example of unique deployments in the SLICE scenario 144
Analysis of elongated service times for critical path components in a
single deployment of the SLICE scenario 151

X

Figure

L.1.

L.2.

L.3.

I.4.

LS.

III.1.

I1.2.
II1.3.
I11.4.
IIL.5.
I11.6.
II1.7.
I11.8.
II1.9.
I1.10.
II.11.
II.12.
II.13.

II1.14.

LIST OF FIGURES

Traditional software engineering vs. componenent-based software engi-
neering for large-scale DRE systems

Observed gap between conventional agile development techniques and
QoSevaluation

Serialized-phasing development in large-scale component-based DRE
SYSIEMS . . v v v e e e e e e e e e e e e e e

Characteristics of conventional system execution modeling tools

Overview of the CUTS workflow

High-level structural composition of the Distributed Stockbroker Appli-
CatioN L e e

Primary elements for constructing behavioral models in CBML
Example CBML behavioral model inGME
Example of sharing behaviorinCBML
View of shared behavior in CBML from the interpretation perspective . .
Example CBML behavioral model with output actions
Example CBML behavioral model with variables
CBML’s domain-specific extensions to I/O automata
High-level compositional overview of WML
Example CBML model parameterized with WML actions
Conceptual model of integrating behavioral and structural DSMLs
Realization of integrating CBML and WML with PICML in CoSMIC . .
Simplified version of the database component inthe DSA

Code generation architecture for emulation

33

34

35

36

39

40

43

43

IV.1.

IV.2.

IV.3.

Iv4.

IV.S.

IV.6.

V.1.

V.2

V.3.

V4.

V5.

V.6.

VLI1.

VI.2.

VIL3.

VI.4.

VLS.

VI.6.

VL7.

VLS.

VLO.

Subset of commonalities and variabilities in components from component-

based architectures L Lo 55
Conceptual model of single interpreter’s implementation 57
Conceptual model of a strategized interpreter’s implementation 59
Conceptual model of a template method interpreter’s implementation . . 60
Handling variability in points-of-visitation 61
Handling variability in points-of-generation 62

Separation of functional and QoS testing in component-based distributed

SYSIBIMS . . . o ot e e e e e 74
Conceptual model of QED in the context of the GIG 77
Four types of causal relations that can occur in a component-based DRE

SYSIEIM . . . L L e e e e e 84
CUTS model of the multi-stage workflow test scenario 89

Data trend graph of average end-to-end response time for multiple pub-
lishers sendingeventsat 7S Hz 92

Data trend of the system placed in near optimal publishrate 93

CiCUTS: Combining SEM tools with continuous integration environments 97

Architecture of RACE 99
Conceptual model of design alternative 1 103
Conceptual model of design alternative2 104
Conceptual model of design alternative 3 105
Structure of CiCUTSo oo oo 106

Structural model of the replicated operational string for the RACE base-
linescenario 108

Graphical analysis of static deployments (bottom) vs. dynamic deploy-
ments (top) usingRACE o 111

Overview analysis of continuously executing the RACE baseline scenario 114

X1

VII.1. Template patterns that are building blocks for CUTE

VIII.1. High-level structural composition of the SLICE scenario

VIII.2. Inital results of SLICE scenario to motivate software contention.

VIIL.3. Simple graph of component-based system deployment solution space
VIIL4. Directed graph of component-based system deployment solution space

VIIL.5. N-planar directed graph of component-based system deployment solu-

tion space for N QoS dimensions L.

VIIL.6. Percentage error between initial measured and predicted end-to-end re-

sponse time of SLICE critical path for unique deployments

VIIL.7. Percent error in predicted vs. measured component response time error

in relation to host utilization

VIIL.8. Predicted vs. measured end-to-end response time of SLICE scenario

under low utilization conditions

VIIL.9. Adjusted predicted vs. measured end-to-end response time of SLICE

scenario under low utilizations

VIII.10.Percent error of predicted end-to-end response time for multiple deploy-

ment and configurations

A.1. ISISlab at Vanderbilt University

Xii

. 145

CHAPTER I

INTRODUCTION

I.1 Emerging Trends of Large-scale DRE Systems
Large-scale distributed real-time and embedded (DRE) systems, such as air traffic con-
trol systems, mission avionics systems, shipboard computing environments, and traffic
management systems, are a class of systems that are very commonplace in today’s soci-
ety. Large-scale DRE systems also possess serveral characteristics that contribute to their

uniqueness and complexity, such as:

* Large-scale DRE systems must satisfy quality-of-service (QoS) properties, such as
low latency, high reliability, fault tolerance, in addition to meeting their functional

requirements [133].

* Large-scale DRE systems possess heterogeneity in both their operating environment
(e.g., target architecture) and techonologies (e.g., programming language and mid-

dleware) [71].

» Large-scale DRE systems are traditionally developed as stove-piped, monolithic ap-
plications, which makes them very brittle, and difficult to implement, maintain, and

update [107].

These characteristics as well as others not only increase large-scale DRE system complex-
ity, but they also complicate the software lifecycle. Moreover, these characteristics and
others have caused elongated software lifecycles realized at the expense of overrun project
deadlines and effort [73, 116].

Due to the increasing complexity of large-scale DRE systems and their complicated
software lifecycles, component-based software engineering (CBSE) [44] is becoming the

de facto standard for developing large-scale DRE systems. CBSE is a promising approach

Applications [Applications]

Domain-Specific Services
c \ y,
g s -4
8 Common Services
% ommo v Component-based
= Architecture Middleware
< Distribution Middleware ' '
o
% Infrastructure Middleware
-
Operating System & Operating System &
Communication Protocols Communication Protocols
Hardware Devices Hardware Devices
Traditional Development Component-based Development

Figure I.1: Traditional software engineering vs. componenent-based software engi-
neering for large-scale DRE systems

for developing large-scale DRE systems because, as illustrated in Figure 1.1, it raises the
level of abstraction for software development. Software developers therefore focus more
on the “business-logic” of the application, instead of low-level infrastructure concerns as
in traditional development of such systems, such as the different layers of middleware
that are implemented and managed by component-based architecture middlware. More
importantly, the “business-logic” of the application is encapsulated in components, which
are stand-alone entities, that can be reused across different application domains. This not
only helps promote reuse of core intellectual property, but it helps expedite the software
lifecyle [75], which contributes to addressing the concern of elongated software lifecyles
in traditional software engineering for large-scale DRE systems.

CBSE is also enabling the realization of larger, and more complex DRE systems. Be-
cause the complexity of DRE systems is constantly increasing, it is ideal to have processes
in place that ensure the system under development meets its requirements throughout the

software lifecycle—especially for such systems that take many years to realize.

Agile development [97] is a promising software engineering approach for addressing
such software quality assurance concerns. Agile development focuses on delivering func-
tioning software continuously throughout the software lifecycle instead of waiting until
the end of the software lifecycle to validate software functionality as in traditional soft-
ware engineering. More importantly, agile development has lightweight processes that can
adapt to changes in the software specification, which is commonplace for elongated soft-
ware lifecycles, and ensure modifications to the software specification do not break existing
functionality. Examples of conventional agile development techignues include, but are not

limited to: continuous integration [33], Scrum [102], and test-driven development [53].

.2 Open Issues for Agile Development of Large-scale Component-based DRE

Systems

Although agile development has processes that improve functional quality assurance of
large-scale component-based DRE systems, conventional agile development techniques do
not address all the concerns of such systems. More specifically, large-scale component-
based DRE systems are within the class of large-scale DRE systems, and large-scale DRE
systems have QoS concerns that must be met in addition to their functional concerns.

As illustrated in Figure 1.2, conventional agile development techniques focus primarily

i | i Colnventlolniall . ‘ QoS Concerns

I >

System Integration (production)

Software Lifecycle Timeline

(design)

Figure 1.2: Observed gap between conventional agile development techniques and
QoS evaluation

on functional conerns of component-based DRE systems, and not QoS concerns. Instead,
QoS concerns of large-scale component-based DRE systems are not evaluated until com-
plete system integration time. The observed gap between agile development and evaluating
QoS concerns of component-based DRE systems not only impedes seamless application of
agile development for large-scale component-based DRE systems, but also makes it hard
to locate and rectify problems that are negatively impacting QoS at the cost of elongated

system integation phases within the software lifecycle.

1.2.1 The Effects of Serialized-phasing Development

The observed gap between agile development and evaluation of QoS concerns for large-
scale component-based DRE systems stems from a development process called serialized-
phasing development, which is a hallmark of large-scale component-based DRE system de-
velopment. In serialized-phasing development, the system is developed in different layers

based on its level of abstraction within the overall system, which is illustrated in Figure 1.3.

(N Infrastructure components
under development; need
applications for testing
C
.0
o=
O
©
+= s
@ Application components
< waiting to be developed
©
©
>
)
-
Target Infrastructure
>
(design)

Software Lifecycle Timeline (production)

Figure 1.3: Serialized-phasing development in large-scale component-based DRE
systems

As illustrated in Figure 1.3, the target architecture, such as a representative testbed, is

ready for testing and validating the system under development while the infrastruture-level
components are being developed. The development of the application-level components,
however, cannot begin until development of the infrastructure-level components is com-
plete. Once development of the infrastructure-level components is complete, development
of the application-level components begins.

Likewise, the infrastructure-level components are ready for testing on the target archi-
tecture, however, this process cannot begin until the development of the application-level
components that utilize the infrastructure-level components is complete. After develop-
ment of the application-level components is complete—which can be years into the soft-
ware lifecycle—the infrastructure- and application-level components are tested together on
the target architecture during a phase called complete system integration.

During complete system integration, software system developers and testers are able
to validate the functional requirements of the system under development because exist-
ing conventional agile techniques help improve functional quality assurance continuously
throughout the software lifecycle [105, 106]. Software developers and testers, however,
realize their system under development fails to meet its QoS requirements. Because QoS
evaluation on the target architecture does not occur until complete system integration time,
it is hard to locate and rectify the QoS problems, which could be at the level of the
target architecture, and/or infrastructure- or application-level components. More impor-
tantly, serialized-phasing development prevents seemless application of agile development
to large-scale CBSE, and facilitation of continuous system integration for large-scale component-

based DRE systems.

1.2.2 The Effects of Unique Deployments on Software Performance Engineering
As discussed in Section 1.1, components are stand-alone entities that encapsulate core
intellectual property for reuse with its application domain, and across many different ap-

plication domains. Because components are stand-alone entities, this implies that within a

single application, a component can be deployed to, i.e., placed and executed on, any host
in the target environment that can support both its functional and QoS requirements.

The nature of components also means that given a single large-scale component-based
DRE system composed of many components, there will be many ways to deploy the sys-
tem, which we call unique deployments, when realizing it within its target operating en-
vironment. Due to hardware and software contention [77, 104, 112, 114], not all unique
deployments enable the system to meets its QoS requirements, such as performance.

When examining the unique deployment solution space of a given system, the number

of unique deployments D can be represented by Equation 1.1:

D =H¢ (L1)

where H is the number of hosts in the target environment and C is the number of compo-
nents in the system. !

Since not all unique deployments will meet performance requirments, such as end-to-
end response time, software system developers and testers must rely on analytical tech-
niques, such as software perfomance engineering (SPE), to assist in searching the unique
deployment solution space and locating valid deployments that will meet their performance
needs. Conventional SPE technique, such as queueing networks [77, 112], layered queu-
ing network [129], and Petri-nets [60, 104] can suffice for analyzing performance. Such
techniques, however, are parameterizable only by workload. The location of a component,
or its deployment, is also a factor that can affect performance due to both hardware and
software contention on the target host, which conventional SPE techniques do not take into
account.

Because component location is not in input factor to conventional SPE techniques, it

implies that software system developers and testers must construct individual performance

"Equation I.1 assumes there are no constaints on where components can be deployed and all hosts are
considered unique regardless of their makeup.

models for each unique deployment of the system. As the number of host and components
increases, the size of the unique deployment solution space increases. Consequently, this
impedes application of conventionl SPE techniques to analyzing the performance of unique
deployments. More importantly, this complexity contributes to the gap between agile devel-
opment and evaluation QoS concerns of large-scale component-based DRE systems since

the process is not lightweight and adaptable in favor of agile development principles [97].

I.3 Research Approach

Evaluating QoS concerns, such as performance, reliability, and security, of a system
under development continuously throughout the software lifecycle is accomplished tradi-
tionally using system execution modeling (SEM) tools [112]. As illustrated in Figure 1.4,

while the current system is under development, SEM tools:

1. Provide techniques for validating system specification and requirements. This helps

ensure that the proper system will be, and is being, developed.

2. Provide techniques for validating that the system conforms to its specification. This
helps to ensure the system under development does not diverge from is original spec-

ification.

3. Provide techniques that enable software system developers and testers to conduct
“what if” scenarios. This allows software system developers and testers to under-
stand how changes at different levels of abstraction, such as specification, implemen-

tation, or operational environment, will affect the system under development.

Conventional SEM tools, however, are analytical and/or simulation model based [36, 60,
63, 113], and cannot account for all complexities of component-based DRE systems, such
as the target architecture and operational environment.

Because of the shortcomings of conventional SEM tools in the context of CBSE, our ap-

proach to overcoming the gap between agile development and CBSE is to advance the state

Validate
Design
Conformance

Conduct
‘What I
Analysis

Figure 1.4: Characteristics of conventional system execution modeling tools

of conventional SEM tools. More specifically, our research approach leverages domain-
specific modeling languages (DSMLs) [38, 121] for enhancing SEM tools. We elected
to leverage DSMLs because DSMLs capture the semantics and constraints of a target do-
main, such as CBSE, while providing intuitive abstractions for modeling and addressing
concerns within the target domain, such as overcoming serialized-phasing development or
performance evaluation of unique deployments for a large-scale component-based DRE
system.

Our research approach uses DSML-based SEM tools as a bridge, i.e., similar to the
Bridge software design pattern [34], to fill the gap between agile development and QoS
evaluation of large-scale component-based DRE systems. Our research approach using
DSML-based SEM tools has resulted in algorithms, analytics, patterns, and tools for eval-
uating large-scale component-based DRE system QoS, such as performance, continuously
throughout the software lifecyle, as opposed to waiting to complete system integration to
conduct such tests.

Furthermore, our research approach has been realized in an open-source reseach artifact

called The Component Workload Emulator (CoWorkEr) Utilization Test Suite (CUTS). As

illustrated in Figure 1.5, software developers and testers leverage CUTS using the following

steps:

1. Model the behavior of a large-scale component-based DRE system and characterize

its workload at a high-level of abstraction using DSMLs;

2. Auto-generating a complete test system for emulation that conforms to the behav-

ior/workload model and to the target architecture;

3. Execute the auto-generated test system on its target architecture and in its target

environment to generate realistic data;

4. Construct a high-level analysis model, which operates independent of data and sys-
tem complexity, for processing collected data; and analyze QoS, such as perfor-
mance, and determine a proper plan of action based on obtained results, such as

execute more performance tests, or rectify current performance problems.

produces
generates _ _ - > .(Java = =~ _ _
-
-

.cp ' @

Source Files AN reads
=> Executables S

Results
(database)

Behavior/
Workload
Model

®

models

models Analysis ‘

@\> Model

analyzes 1
1
’

o

creates

Legend

zzzzzzzzzzz

QQJ System developer
—> Manual process
- > Automated process

@ Main workflow step

Performance Results

Figure 1.5: Overview of the CUTS workflow

The algorithms, analytics, patterns, and tools realized in CUTS and applied in the
context of representative large-scale component-based DRE systems help bridge the gap
between agile development and QoS evaluation for large-scale component-based DRE
systems. More importantly, CUTS facilitates evaluation of QoS concerns continuously
throughout the software lifecycle, which helps increase confidence levels in quality assur-

ance for the system under development.

I.4 Dissertation Organization

Our research on algorithms, analytics, patterns, and tools for advancing SEM tools to
bridge the gap between agile development and CBSE has reduced the complexity of eval-
uating component-based DRE system QoS continuously throughout the software lifecycle.
This dissertation is organized as follows: Chapter II discusses existing research related to
the algorithms, analytics, patterns, and tools we present in later chapters; Chapter III dis-
cusses our technique for modeling behavior and workload of large-scale component-based
DRE systems independent of its target architecture, platform, and technology; Chapter IV
discusses our approach for using generative programming techniques to target different
languages, technologies, and architectures using a single behavior and workload model;
Chapter V discusses our technique for evaluating large-scale DRE system QoS indepen-
dent of data and system complexity; Chapter VI evaluates different approachs for integrat-
ing DSML-based SEM tools, such as CUTS, with continuous integration environments;
Chapter VIII presents our approach for using SPE analytical models to evaluate unique
deployments of a component-based DRE system where both workload and deployment
are input factors to the model; and Chapter IX provides concluding remarks and lessons

learned from our research.

10

CHAPTER 11

RELATED RESEARCH

This chapter discusses current research related to our research on techniques for bridg-
ing the gap between agile development techniques and continuous QoS evaluation for
large-scale component-based DRE systems. The remainder of this chapter is organized
as follows: Section II.1 discusses related research on behavior and workload modeling
for large-scale component-based DRE systems; Section II.2 presents existing techniques
for implementing reusable model interpreters for target different contexts from the same
domain-specific modeling language (DSML); Section II.3 discusses existing research on
unit testing and analysis for large-scale component-based DRE systems; Section I1.4 pre-
senting existing research on realizing continuous system integration testing; Section II.5
dicusses existing research for improving testing and experimentation (T&E) configurabil-
ity and scalability; and Section 1.6 dicusses existing research for software performance

engineering of large-scale component-based DRE systems.

II.1 Behavior and Workload Modeling
This section compares our research on using DSMLs for modeling system behavior and
workload to evaluate component-based systems with other related research on behavior
and workload modeling for component-based distributed systems. Our research on using

DSMLs for modeling system behavior and workload modeling is discussed in detail in

Chapter III.

II.1.1 Behavior Modeling Languages

WinFX Workflow [15] is a process modeling language developed by Microsoft, which

is a part of the Windows Workflow Foundation. Similar to our research approach, WinFX

11

allows developers to express workflows but it is coupled with workload. WinFX also fa-
cilitates code generation, but is confined to the Microsoft .NET framework whereas our
generative programming technique is technology and tool independent and can be applied
to multiple middleware platforms including Microsoft .NET.

Java Workflow Tooling (JWT) [31] is a process modeling language for J2EE applica-
tions, however, it is still under development. Similar to our behavior modeling modeling
approach, JWT allows developers to model the process of J2EE applications at a higher-
level of abstraction using artifacts that are similar to their domain. Our research approach
on behavior modeling extends JWTs efforts because, unlike JWT, our approach is not cou-
pled to a specific programming language or technology. Moreover, our research approach
has formal semantics that allow it to be used either for emulation or simulation purposes.

The Business Process Modeling Notation (BPMN) [92] is a standard developed by
Business Process Management Initiative (BPMI) that allows developers to model business
processes in the form of workflows. Similar to our research approach, BPMN is not plat-
form, programming language, or technology dependent. Our research approach, however,
extends BPMN by formally defining semantics based on semantic anchoring techniques so
that it can leverage existing tools and techniques designed to operate on the formal language

to which it is transformed.

I1.1.2 Workload Modeling Languages

Executable UML (xUML) [76] and the Action Language [87] are both for defining
workload that can map to the desired target architecture. Our research approach is orthog-
onal to both xXUML and the Action Language efforts. Our research approach, however,
operates at higher level of abstraction. xXUML and the Action Language require devel-
opers to write abstract implementation code, which requires knowledge of programming
semantics, whereas our research approach leverages pre-existing objects and methods (i.e.,

workload generators) that are defined by the user for code generation.

12

II.1.3 Formal Languages

Statecharts [41] gained widespread usage when they were integrated with the STATE-
MATE [42] modeling tool, and since then a variant has become part of UML (i.e., UML
Statecharts) [30]. Similar to our research approach, statecharts can be used to describe
behavior of large complex systems. Our research approach extends Statecharts by clearly
separating component behavior from workload. The generative techniques associated with
variants of statecharts are targeted towards simulation and runtime verification [48, 83].
Our generative techniques can be extended to simulation and runtime verification tools [64]
as well. Furthermore, our generative techniques and concepts are not tied to a specific
technology or tool, whereas the technique presented in [86] et al., is bound to a specific
tool.

The Abstract State Machine Language (AsmL) [40] developed at Microsoft Research
is an executable specification language based on the theory of Abstract State Machines.
AsmlL is useful when developers need precise, non-ambiguous methods to specify a system,
either software or hardware. AsmL, however, is not a graphical modeling language like our
research approach. Furthermore, users of CBML operate at a high-level and do not require
in-depth knowledge of the underlying formalism, whereas AsmL requires developers to
have some understanding of abstract state machines and programming formalisms, which
can restrict its applicability (e.g., for system testers who have no knowledge of complex

formalisms or programming).

II.2 Techniques for Implementing Reusable Model Interpreters
This section compares our research on addressing the limitations of the Visitor software
design pattern [34], which is explained in detail in Chapter IV, with related research be-
yond the contexts of model interpreters. We also compare our research with other model

interpretation strategies.

13

I1.2.1 Visitor Implementation Techniques

Nguyen et al. [85] present a technique for addressing the limitations of Visitor-based
implementations in the context of grammar parsers to create flexible and extensible parsers.
In their technique, when a term in the grammar is visited, the parsing token uses the Ab-
stract Factory design pattern [34] to generate the correct visitor for that token. This provides
specialization on a per term basis. Our research approach is similar to theirs because we
can strategize the visitation of each element type in a model (similar to a term in a gram-
mar) and the artifacts generated from the model element. Our research approach differs
from theirs since we completely decouple the generation logic from the visitation logic.
When Nguyen’s technique is applied to large models (i.e., models with large number of
elements), it suffers from the excessive memory allocation anti-pattern [112]. Our research
approach does not incur this overhead.

Neff [84] and Schordan [109] present a technique for implementing a grammar parser
using a variant of the Visitor pattern called the bivisit Visitor. This allows them to perform
preprocessing/postprocessing operations before/after visiting terms in the grammar. The
visitation logic however is still coupled with the generation logic. The bivisit variant of
the Visitor can be used in conjunction with aspects in C++ [24] to achieve similar goals as
ours. However, we are also able to separate the generation logic from the visitation logic.
Moreover, our research approach can transparently customize the generation and visitation

logic on a per use case basis.

I1.2.2 Model Interpretation Techniques

AndroMDA [61] and 0AW [94] provide tools that allow developers to implement model
interpreters using template parsing and workflow engines. Developers use high-level con-
structs that dictate how to transform existing models into artifacts. Our research approach
is similar to both AndroMDA and oAW because all three rely on generative programming

techniques to implement model interpreters. We have learned, however, that reusability is

14

less of an issue in these tools. Our research approach is tailored to DSML tools that require
a Visitor-based implementation for the model interpreters.

Agrawal et al. [4] and Muller et al. [81] each present a technique that use DSMLs
and model transformations to implement model interpreters. Developers use a DSML that
models how to transform existing models into artifacts. Model interpreters for the trans-
formation language then generate interpreters that perform the specified transformations.
Although their technique is a level of abstraction higher, neither has explicitly addressed
reusing transformations and generated interpreters within other use cases as we did with

the Visitor design pattern.

I1.2.3 Strategic Programming

Strategic Programming (SP) [62] is a well known generic programming technique based
on programmer-definable, reusable, generic traversal abstractions that allow separation of
type-specific actions from traversal specifications. Strategic programming provides a set of
basic combinators, which can be composed in different ways to realize custom traversals of
heterogeneous data structures. The objectives of our research approach are closely related
to that of strategic programming. As such the basic primitives for handling the variabilities
in the points-of-visitation could form the building blocks to define combinators. Our re-
search approach is also tailored towards handling the variability in the points-of-generation
in addition to the points-of-visitation, whereas stategic programming focuses only on the

latter.

II.3 Component-based Distributed System Unit Testing and Analysis
This section compares our research on unit testing techniques for evaluating large-scale
component-based DRE system QoS to related research on unit testing and component-
based distributed system analysis. Our research on unit testing techniques for evaluating

large-scale component-based DRE system QoS is explained in detail in Chapter V.

15

I1.3.1 Distributed System Unit Testing

Coelho et. al [21] and Yamany et. al [139] describe techniques for unit testing multi-
agent systems using so-called mock objects. Their goal for unit testing multi-agent systems
is similar to UNITE, though they focus on functional concerns, whereas our research ap-
proach focuses on QoS concerns of a distributed system during the early stages of develop-
ment. Moreover, Coelho et. al unit test a single multi-agent isolation, whereas our research
approach focuses on unit testing systemic properties (i.e., many components working to-
gether). Our research approach can also be used to unit test a component in isolation, if
necessary.

Quet. al [99] present a tool named DisUnit that extends JUnit [74] to enable unit testing
of component-based distributed systems. Although DisUnit supports testing of distributed
systems, it assumes that metrics used to evaluate a QoS concern are produced by a single
component. As a result, DisUnit cannot be used to test QoS concerns of a distributed
system where metrics are dispersed throughout a system execution trace, which can span
many components and hosts in the system. In contrast, our research approach assumes that
data need to evaluate a test can occur in any location and at any time during the system’s

execution.

I1.3.2 Component-based Distributed Systems Analysis

Mania et. al [72] discuss a technique for developing performance models and analyz-
ing component-based distributed systems using execution traces. The contents of traces
are generated by system events, similar to log messages in our research approach. When
analyzing the systems performance, however, Mania et. al rely on synchronized clocks to
reconstruct system behavior. Although this technique suffices in tightly coupled environ-
ments, if clocks on different hosts drift, then the reconstructed behavior and analysis may
be incorrect. Our research approach improves upon their technique by using data within the

event trace that is common in both cause and effect messages, thereby removing the need

16

for synchronized clocks and ensuring that log messages (or events in a trace) are associated
correctly.

Similarly, Mos et. al [80] present a technique for monitoring Java-based components
in a distributed system using proxies, which relies on timestamps in the events and implies
a global unique identifier to reconstruct method invocation traces for system analysis. Our
research approach improves upon their technique by using data that is the same between
two log messages (or events) to reconstruct system traces given the causal relations between
two log formats. Moreover, our research approach relaxs the need for a global identifier.

Parsons et al. [95] present a technique for performing end-to-end event tracing in com-
ponent-based distributed systems. Their technique injects a global unique identifier at the
beginning of the event’s trace (e.g., when a new user enters the system). This unique
identifier is then propagated through the system and used to associate data for analytical
purposes. Our research approach improves upon their technique by relaxing the need for a
global unique identifier to associate data for analysis. Moreover, in a large- or ultra-large-
scale component-based distributed system, it can be hard to ensure unique identifiers are

propagated throughout components created by third parties.

I1.4 Continuous System Integration Testing

This section compares our research on realizing continuous system integration testing to
other related research on continuous integration environments and SEM tools. Our research

on realizing continuous system integration testing is discussed in detail in Chapter V1.

I1.4.1 Integrating SEM Tools with Continuous Integration Environments

Little prior work has evaluated techniques for integrating continuous integration envi-
ronments with SEM tools, nor has prior work evaluated integrating SEM tools and continu-

ous integration environments with an emphasis on improving test management. Bowyer [14]

17

et. al discuss their experience using continuous integration environments to assess under-
graduates experience using test-driven development (TDD) [53]. CiCUTS extends their ef-
fort by evaluating different techniques for integrating continuous integration environments
with external processes/tools. Moreover, our research approach automatically processes
collected metrics to simplify the analysis process, which Bowyer mentions as future work.

Prior work has also explored the benefits of using continuous integration environments,
such as automating the build process [14], only releasing modules after they pass all au-
tomated test cases [115], and reducing integration risk by finding errors earlier in the life-
cycle [46]. Our research approach also shows the benefits of using continuous integra-
tion environments to automate key aspects of the testing process. Our research approach,
however, extends prior work by showing how to combine SEM tools with continuous in-
tegration environments to manage and execute performance tests that evaluate QoS. This
combination allows developers and testers to focus on resolving performance issues instead

of managing and executing custom test frameworks.

I1.4.2 Continuous QoS Testing

The design and application of a continuous integration test suite for J2EE is discussed
in [9, 128]. Although our research approach also focuses on continuous system integration
testing, it combines continuous integration environments and SEM tools instead of imple-
menting a custom environment for end-to-end system integration. Our research approach
also extends the work in [9, 128] by focusing on automating the execution of a large num-
ber of tests to increase the fidelity of the QoS results, whereas [9, 128] focus on validating
functional correctness.

Real-time Technology Solutions (RTTS) [12] discusses how to achieve continuous
system integration testing of applications by testing at the component and system level
throughout development. Our research approach is similar to RTTS in that it validates if

an analyzed system satisfies its functional and performance requirements. Likewise, both

18

RTTS and our research approach achieve end-to-end testing by combining preexisting test-
ing tools, such as SEM tools and continuous integration environments. Our research ap-
proach, however, extends the RTTS work by focusing on an environment for systematically

executing a large numbers of tests to validate system QoS.

IL.5 Techniques for Addressing Testing and Experimentation Configurability and
Scalability

This section compares our work on improving testing and experimentation (T&E) con-
figurability and scalability to existing research efforts. Our research on improving T&E

configurability and scalability is explained in detail in Chapter VII.

IL.5.1 Model-driven Engineering Techniques

Model-driven engineering (MDE) [108] is a common solution for improving T&E con-
figurability and scalability. Existing MDE tools, such as GME [65], GEMS [137], and
Microsoft DSL Tools [23], enable testers to construct domain-specific modeling languages
(DSMLs) that capture the context and constaint of an application domain, such as T&E.
Moreover, models constructed using a DSML can be tranformed by model interpreters into
concrete archifacts, such as T&E configuration files. Such tools, however, facilate genera-
tion of single instance configuration files only.

Our research approach extends existing MDE techniques by replacing single instance
configuration files with template files, and delay realization single instance configuration
files using their template patterns. Furthermore, our research approach synergizes with
existing MDE techniques because it is possible to generate the configuration templates from
constructed models. This, therefore, reduces the number of models that tester must create
to evaluate a component-based DRE system under different configurations and operating

scenarios (or environments).

19

I1.5.2 Programmatic Techniques

Template libraries, such as Google Templates [37] and CodeSmith [125], enable de-
velopers to programmtically construct template engines for generating files, such as T&E
configuration files. End-users, such as testers, then define dictionaries to derive concrete
files via the Template Configuration pattern. In a similar fashion, our research approach
enables derivation of single instance configuration files using the Variable Configuration
Pattern. Our research approach extends existing template engines by enabling batch pro-
cessing of configuration templates. We are aware that such support can be added to existing
template engines by handling multiple configurations sequentially.

CodeSmith also has the notion of what we would consider dynamic variables in its
template engine. Unlike our research approach, CodeSmith evaluates its dynamic variables
outside of its target environment, such as the testbed for T&E. Our research approach ex-
tends CodeSmith’s effort by allowing evaluating dynamic variables based on its target op-
erating environment. Consequently, this improves both the configurability and flexibility

of our research approach’s template engine above and beyond CodeSmith’s capabilities.

I1.6 Software Peformance Engineering for Component-based DRE Systems

This section compares our research on software performance engineering (SPE) tech-
niques to other related research on evaluating large-scale component-based DRE system
QoS. Our research on improving SPE techniques to evaluate large-scale component-based

DRE systems is discussed in detail in Chapter VIII.

I1.6.1 Compositional Performance Model

Hissam et. al [45] demonstrated the feasibility of using a compositional model, i.e.,
performance predictions based on how components are assembled and taking into account

their structure, to predict the performance of component-based systems. Their technique

20

was applied to the COMTEK component architecture, which was developed the US En-
vironmental Protection Ageny (EPA) Department of Water Quality. Their approach aug-
mented the modeling tools for the technology to support prediction of latencies using quan-
titative analytical models. Based on their results, Hissam were able to predict the latency
of assemblies within 10% error.

Bondarev et. al [13] also demonstrated the feasibility of using a compositional model
to predict resource usage of component-based real-time systems for predicting end-to-end
response times. Their approach extends a existing scenario-based approach by allowing
developers to model the behavior of the application and underlying component technol-
ogy. The results of their analysis determine if the constructed design will meet end-to-end
performance requirements so developers can move onto the implementation phase of the

system.

I1.6.2 Queuing Network Model

Liu et. al [67] demonstrated that it is possible to construct traditional queuing network
models for service- oriented architectures, such as CORBA Component Model [93], Enter-
prise Java Beans [120], and Microsoft.NET [79]. Their approach focuses on predicting the
performance of systems that communicate via their exposed services, which is analagous
to a remote method invocation. Liu first benchmark the system, which includes bench-
marking the component’s underlying architecture. Once this process is completed, they are
able to construct a quantitative model of the system that can be parameterized to predict the
performance of the system. Their approach predicts the performance of the system within

11% error of the actual performance.

11.6.3 Event-based Performance Model.

Liu et. al [68] extended their previous efforts to constructing queuing network models

for component-based systems that communicate asynchronously using events. Using their

21

technique for constructing a geueing network model, Liu are able to predict performance
within 10% error with a maximum error of 15%, which is claimed to occur infrequently.
Their approach assumes that all components in the server are collocated, which implies
work between components in the system is not truly distributed. Moreover, if the deploy-
ment changes, their approach requires benchmarking the new deployment before parame-

terizing the model to predict its performance.

22

CHAPTER III

DOMAIN-SPECIFIC MODELING LANGUAGES FOR OVERCOMING
SERIALIZED-PHASING DEVELOPMENT

Model-driven engineering (MDE) [108] techniques, such as domain-specific model-
ing languages (DSMLs) [38], are increasingly being used to address many of the de-
velopment and operational lifecycle complexities of large-scale component-based DRE
systems. Although there have been many advances in MDE for large-scale component-
based systems, MDE techniques to date have focused primarily on (a) structural issues of
system development, such as component assembly, packaging, configuration and deploy-
ment [35, 94, 135], and (b) functional and behavioral issues, such as model checking for
functional correctness (e.g., Bogor [103] and Cadena [43]) or runtime validation of perfor-
mance (i.e., running empirical benchmarks at integration time to validate performance).

Although DSMLs raise the level of abstraction of large-scale component-based DRE
systems and address many of their complexities, there remains a major gap in evaluating
system quality of service (QoS), e.g., performance and reliability, continuously throughout
the software lifecycle, which would enable design flaws to be rectified earlier in the devel-
opment lifecycle. This impediment is due primarily to the serialized-phasing development
problem within the software lifecycle. As explained in Chapter I, during serialized-phasing
development, the system is developed in layers (e.g., first the components at the infras-
tructure layer(s) and then the application layer(s)). Throughout the development of each
layer, the business-logic encapsulated within individual components is thoroughly tested
for functional correctness (i.e., whether it performs the expected operations).

Due to the composite nature of large-scale component-based DRE systems, complete

system QoS validation can proceed only when all the system components are available

23

and deployed in the runtime infrastructure [66]. Consequently, waiting too late in the de-
velopment lifecycle (e.g., integration time when all components are available) to resolve
any performance problems can be too costly to resolve. System developers and testers,
therefore, need improved techniques and methodologies to help address QoS validation not
only at complete system integration and production time, but continuously throughout the
software lifecycle before performance problems become too hard to locate and resolve.

Solution approach: Validating QoS via emulation techniques. A promising solution
to address the challenge of evaluating QoS at all stages of development entails accurately
emulating system components for QoS validation while the “real” components are being
developed. This chapter describes our novel MDE-based solution to address the challenges
of serialized phasing development and QoS validation continuously throughout the soft-
ware lifecycle.

At the core of our solution are two DSMLs named the Component Behavior Modeling
Language (CBML) and the Workload Modeling Language (WML), which allow devel-
opers to define the behavior and workload, respectively, of large-scale component-based
DRE systems at a higher-level of abstraction from that provided by third generation pro-
gramming languages, such as C++, C# and Java. The behavior in CBML is captured using
formalisms of Timed I/O Automata (TIOA) [70] and can be parametrized with executable
operations (i.e., workload) from WML. Our DSMLs, however, do not require system de-
velopers and testers to possess a priori knowledge of TIOA. Lastly, we illustrate how we
are able to preserve the sematics of TIOA at the modeling level using a technique called
semantic anchoring [18, 19, 82], which uses well-defined transformations to map a DSML
to an existing formal language (e.g., Timed I/O Automata [70] and timed-automata [7]) to
validate and formally define the semantics of the DSML.

Chapter organization. The remainder of this chapter is organized as follows: Sec-

tion III.1 presents modeling challenges for overcoming serialized-phasing development;

24

Section II1.2 describes the structure and functionality of our DSML for emulating compo-
nent behavior and workload; Section I11.3 explains how we integrate our DSMLs with ex-
isting structural DSMLs to associate behavior and workload models with structural models;
Section II1.4 explains how we use semantic anchoring to preserve the semantics of TIOA
at the modeling level; Section II1.5 explains how we facilitate code generation for QoS val-
idation using emulation techniques; and Section II1.6 summarizes the contributions of this

chapter.

III.1 Case Study: A Distributed Stockbroker Application

This section describes the challenges in developing a solution that addresses the need
for early QoS evaluation of large-scale component-based DRE systems affected by serialized-
phasing development. We use a representative example taken from the financial domain [122]
as a motivating example to illustrate the serialized phasing problem and how our research
artifacts described in this paper enable us to provide early QoS validation. Our case study is
called the Distributed Stockbroker Application (DSA), which is an online web application

for viewing stock information.

Client A

© Naming > Logging

Service Component

N

|Gateway ______ ,' Identity *I Stock *__J Database

Component -—---- > Manager ---> Component <~ Component

=

Client B

Figure lll.1: High-level structural composition of the Distributed Stockbroker Appli-
cation

25

Figure I1I.1 shows a high-level representation of the DSA and its communication flows
between components. The DSA is composed of six different components. The Naming
Service component allows client applications to locate the Gateway Component for the ap-
plication. The location (i.e., the binding IP address and port number) of the naming service
component is therefore persistent. The Gateway Component serves as the entrance to the
stock application, which all clients must pass through. The Gateway Component accepts
the username and password of the user and sends it to the Identity Manager component.
The Identity Manager component is responsible for verifying the username and password,
and 1nitializing the correct QoS policies based on user type. Once the access is granted to
the client, it is given direct access to a Stock Component. The Stock Component is cre-
ated on-demand and initialized with the correct QoS specified by the Identity Manager.
The Stock Component interacts with a MySQL database that contains the stock informa-
tion. Lastly, all components in the system—both application and infrastructure—log their
activities to a Logging Component.

The DSA has two user classes: Basic and Gold. Gold users are persons who use the
service frequently, whereas Basic users use the service infrequently. Table III.1 provides
the projected usage pattern and desired response times (i.e., QoS) of each user for the DSA.
Due to the serialized-phasing development process, the underlying infrastructure of the
DSA (i.e., all the components illustrated in Figure III.1) may complete their development
at different times in the software lifecycle. Evaluating system design decisions on the
target architecture to understand and evaluate system QoS, therefore, has to wait until all

the “real” components are available.

Table lll.1: Predicted usage pattern of the Distributed Stock Application based on
user type

Type Percentage Response Time (msec)
Basic (Client A) 65% 300
Gold (Client B) 35% 150

26

The application components of DSA are implemented as Lightweight CORBA Com-
ponent Model (CCM) [91] components. The target architecture comprises three hosts for
deploying all its components. Lastly, the software platform version is Fedora Core 4 using
ACE+TAO+CIAO 5.1 middleware platform available at www .dre.vanderbilt .edu.

To achieve the vision of early QoS validation in the presence of serialized phasing, such
as in the case of the DSA case study, the proposed solution must address the following

challenges:

* Challenge 1: Capture business logic — The components must resemble their coun-
terparts in both supported interfaces and behavior. For emulation, the target environ-
ment should allow seamless replacement of faux components with real components
as they become available. For simulation, however, seamless replacement is not ap-
plicable. The configuration files for simulation must define elements (e.g., inputs,
outputs, and transitions) that resemble their real counterpart to preserve similarity

and contextual representation.

In the context of the DSA, emulated components should be used to evaluate QoS at
early stages of development, and as the “real” components are available they should
replace the emulated components to achieve more accurate QoS metrics. Likewise,
the simulated components should be used to verify properties such as functional cor-

rectness and reachability.

* Challenge 2: Realistic mapping of behavior — The behavior specification should
operate at a high-level of abstraction (i.e., at the application level) and map to realistic
operations (e.g., memory allocations and deallocations, file operations, or database

transactions).

For example, in the DSA, the high-level database behavior should “realistically”

27

www.dre.vanderbilt.edu

query a database for stock information when using emulation. In the context of sim-
ulation, the behavior should map to well-defined elements of the underlying formal

language that represent querying a database.

* Challenge 3: Technology independence — The behavior specification should not be
tightly coupled to a programming language, middleware platform, hardware technol-

ogy, or MDE tool.

In the context of the DSA, if we wanted to evaluate the system on CCM or Mi-
crosoft .NET [78], or use multiple modeling tools [65, 136], then we should be
able to reuse the same concepts and models. Likewise, if we wanted to simulate
the DSA under different tools such as Tempo (www.veromodo.com) or UP-

PAAL (www.uppaal.com), we should be able to reuse the same models.

The remainder of this chapter describes our solution to resolve these challenges.

III.2 Modeling Component Behavior & Workload for QoS Validation

Addressing the challenges of continuous system integration and QoS evaluation in the
face of serialized-phasing development requires mechanisms to mimic application compo-
nent behavior. This section describes our research approach on two DSMLs named the
Component Behavior Modeling Language (CBML) and the Workload Modeling Language
(WML). CBML is a DSML for capturing the behavior of a component, and WML is a
DSML for parameterizing the behavior with “realistic” application-level operations. The
remainder of this section discusses both languages in detail explaining how these help re-

solve the challenges presented in Section III.1.

28

(www.veromodo.com)
(www.uppaal.com)

III.2.1 The Component Behavioral Modeling Language

Any mechanism that mimics component behavior must incorporate the design princi-
ples and semantics of component architectures. In such architectures, systems are com-
posed of components that react to method invocations and events received on their input
ports. This “reaction” causes a sequence of activities that can be defined by a series of
states and transitions. Although the range of activities performed in the course of a compo-
nent’s execution can vary broadly, they can be divided into two distinct operational classes:
internal and communication.

Internal operations are those not observable from outside a component (e.g., memory
allocations/deallocations and database transactions executed by the database component in
the DSA case study). Communication operations are representative of sending/receiving an
event to/from another component (e.g., input and output events transmitted between each
of the components in the DSA case study).

When trying to emulate a component’s behavior (i.e., addressing Challenge 1 in Sec-
tion III.1), it is desirable to capture it as close as possible to its real counterpart using
combinations of internal and communication operations. It is also desirable to represent
the behavior based on a formal mathematical foundation because it will (1) facilitate trans-
formation of existing models between different formal behavioral languages (e.g., timed-
automata, StateCharts [41] and Petri Nets [98]), and (2) assist in proving any formal prop-
erties of the system (e.g., correctness and stability). Likewise, it will also facilitate reverse
transformations (i.e., from models in other languages to models of this language). We be-
lieve that lack of formal semantics can limit the capabilities and scope of such behavior
modeling languages. At the same time, it should not be dependent on any programming
language or software/hardware platform, and be as general purpose as possible.

Based on the desired functionality for modeling component behavior, we have re-

searched and designed CBML. CBML is a DSML based on the mathematical formalism

29

of Input/Output (I/O) automata [70] . 'We chose I/O automata as its foundation because,
analogous to component behavior, I/O automata is ideal for asynchronous and reactive sys-
tems. We developed CBML in the Generic Modeling Environment (GME) [65], which is
a metamodeling environment that allows the creation of DSMLs and its models. CBML,
however, is not coupled to GME, and can be ported to any MDE tool that supports meta-
model specification (e.g., Eclipse Modeling Framework (EMF) [16], Generic Eclipse Mod-
eling System (GEMS) [136], or Microsoft DSML tools [39]). Developers use CBML to
capture component behavior at a high-level of abstraction and use model interpreters to
generate configuration and source files for backend emulation tools, which is explained in

detail in Chapter IV.

1I1.2.1.1 Structure of CBML

As explained in Section II1.2.1, we developed CBML based on the mathematical for-
malism called I/O automata [70]. We, therefore, defined CBML so that it has the necessary
subset of elements from I/O automata that will preserve its formal semantics. Users of
CBML do not need prior knowledge of I/O automata to use CBML. Keeping that in mind,
we formally define the behavioral model BM = (V,S,0,1,0,A,E,T) of a component in
CBML as:

a set V of internal variables,

a set S Cval(V) of states where val(V) is the value of the internal variables at any

given point in time, or the current state of the component,

* anonempty set @ C § of start states,

a set I of input actions, which are events received from an external source, e.g., a

connected component,

I'The details of I/O automata are beyond the scope of this dissertation.

30

* a set O of output actions, which are events sent to an external destination, e.g., a

connected component, and

* aset A of actions, which are events (or actions) visible only to the component hosting

the behavior, i.e., internal operations.

Figure II1.2 highlights each of these elements in BM as their representative artifacts in

CBML.

1 () o 0

Input Action ~ State Action Output Action Variable

Figure 11l.2: Primary elements for constructing behavioral models in CBML

In order to construct valid behavioral models in CBML, developers must specify a se-
quential flow between different actions Q = (/U OUA) and states S. I/O automata partially
supports this requirment via its set of effects E, which determines how to move from a

given action to a new state and is defined in Equation III.1 as:

I'(a) — s, (IIL.1)

such that I' € E and a € Omega.

On the other hand, I/O automata, has no notion of action sequencing since actions are
always enabled and can occur at any time. We, therefore, extended I/O automata at the
modeling level, i.e., within CBML, to support a concept called transitions. Transitions de-

termines how to move from a given state to another action, and is defined by Equation I11.2:

A(s) — a, (111.2)

suchthat A€ T and o € (AU O).

31

Realizing behavior models in CBML. Figure I11.3 shows the complete realization of
BM using the respective CBML artifacts illustrated in Figure III.2, Equation (III.2) and
Equation (IIL.1) in the context the DSA database component. In CBML, all behavior spec-
ifications begin with an Input Action element. Each Input Action in the behavior model
is connected to an initial State element. The remainder of the behavioral specification is
defined by a sequence of Action to State transitions. For example, the behavioral model
for the database component in Figure III.3 illustrates that an input action causes a query for

stock information.

query_sit_)ck_i nfo

Figure 111.3: Example CBML behavioral model in GME

To specify the end of a behavior sequence in the modeling realm, a Finish connection
(i.e., the dashed line) is used to connect the final State to the starting Input Action. We
require this connection because we allow sharing of behavioral sequences to simplify mod-
eling (illustrated in Figure I11.4). For example, the DSA has two type of users who have the
same behavior. It is possible to model each person’s input to the database component (or
any component) separately but share the same behavior as illustrated in Figure I11.4.> The
explicit finish connections therefore help resolve ambiguity when determining where each
user type’s behavior terminates.

During the interpretation process of CBML, we treat shared behavioral sequences as

separate sequential flows to preserve the validity of Equation (III.2) and Equation (III.1).

2Shared behavior is a modeling optimization we allow to help reduce the size of constructed models
because automata-based models are affected by state-space explosion as they grow in the number of elements.

32

BasicType_Ingut

GOlATYE IAPUL oo |

Figure 111.4: Example of sharing behavior in CBML

Figure IIL.5 illustrates how Figure I11.4 is handled during the interpretation process to gen-
erate either emulation or simulation files. As shown in Figure II1.5, there are now 4 dif-
ferent states and 2 different actions, thus preserving the validity of Equation (II1.2) and

Equation (IIL.1).

BasicType_Input query_stock_info

O—— :i T @—»)
GoldType_Input query_stock_info

Figure lll.5: View of shared behavior in CBML from the interpretation perspective

Specifying output actions in CBML. CBML defines behavior as an input action that
causes a series of “internal” operations and results in a set of output actions, if any. Based
on the definitions of a transition A from Equation (III.2), it is clear that output actions O
have the same modeling semantics as actions A.

Figure II1.6 illustrates an example behavioral model with output actions, which are rep-
resented by the three rightmost squares labeled basic_response, gold_response
and log_status for the database component in the DSA. After the component com-
pletes its query to the database for stock information, it outputs information back to the

requester, and outputs a status message to the external logging component.

33

- -0 -0 -0 -

BasicType_Input query_gigck_mfo basic_response

\ '—>I’—> IV
- - log_status
‘ @ M >

GoldType_Input__query._stock.info.gold_response. . §

Figure 111.6: Example CBML behavioral model with output actions

Preconditions, postconditions, and variables in CBML. CBML allows users to de-
fine variables V in behavioral models to preserve information that represents the current
state of the component, val(V). Preconditions, which are associated with transitions A,
operate on the variables to enable and/or disable the execution of individual transitions.
Likewise, postconditions, which are associated with effects I, modify the values of vari-
ables to change the current state of the component, or system. Formally, preconditions and

postconditions are defined as follows:

* For preconditions:

A(s) < pre(val(V)) (IIL.3)
where pre(X) determines if the current value of X is true.

» Upon execution of effect I" associated with action a

post(a) — val(V)', (II1.4)

where a € Q and val(V)' is the new state of the system such that S C val(V)'.

As illustrated in Figure II1.7 in the context of CBML, a variable is represented by the
element with the star image. Users use variables in their behavioral model by referencing
them in the preconditions and postconditions of the transition (i.e., connection from a state

to an action), and effect (i.e., connection from an action to a state) connections, respectively.

34

3%

Postcondition:
basic_count ++
basic_count

BasicType_Input query stock_info basic_response :

log_status
gold_count

GoldType_Input quew_g[.:_;ck_info gold_response

Postcondition:
gold_count ++

Figure 111.7: Example CBML behavioral model with variables

This allows developers to create more “realistic” behavioral models, such as counting the
number of users of each type executing queries on the database and/or guarding a workload
until the system reaches a certain state.

Domain-specific extensions in CBML. Some input events that are critical in the do-
main of component-based systems (e.g., lifecycle events such as activation and passivation
or monitoring notification events such as degradation of QoS) are not first class entities in
I/O automata. I/O automata does not distinguish between these kinds of events because it is
a general-purpose language that is not tied to any particular domain (e.g., component-based
systems). We therefore extended I/O automata (without affecting its formal semantics) in
CBML to capture this aspect of component behavior more expressively as discussed below

and illustrated in Figure I11.8:

* Environment events, £ C /, represent input actions to a component that are trig-
gered by the hosting system rather than another component (e.g., lifecycle events
from the hosting container or fault-tolerance notifications to serialize the state of a

component).

* Periodic events, P C I, represent input actions from the hosting environment that

occur periodically (e.g., setting/receiving a timeout event to periodically transmit

35

status updates). We also allow a distribution class to be associated with periodic

events, such as constant or exponential distribution.

» Application task, AT C I, represents a one-time occuring input action into a com-

ponent on a separate thread of control.

(database component)

activate open_connection

------- B ——(

& gold_user gold_request
o
) basic. user _ basic_request
(user component)

Figure 11.8: CBML's domain-specific extensions to I/O automata

In the context of the DSA, when the database component is activated it creates an initial
connection to the database (illustrated in upper half of Figure I11.8). Likewise, we can use
periodic events (illustrated in the lower half of Figure II1.8) to model the behavior of each
user type by associating each one with correct probability (e.g., 0.35 and 0.65 for Gold and
Basic type, respectively) and sequencing it with an output event within a “user” component
(also illustrated in Figure II1.8).

Usability extensions in CBML. One of the main goals of defining behavior at a high-
level of abstraction is simplicity and ease of use. If the size of the behavioral model is
“huge” and CBML adheres strictly to its current representation of I/O automata, its ease of
use is compromised because one of the major drawbacks of many automata languages is
scalability [41]. To address this issue we defined the following usability extensions, which

do not violate the definition of BM in CBML:

36

* Composite Action, CA € A, is a modeling element that allows developers to create
reusable behavior workflows that can help reduce the amount of clutter in the model.

A composite action has the same definition as BM. We, however, define a constraint

that requires composite actions to contain only a single input action, i.e., |I| = 1.
This is necessary because composite actions encapsulate a single, reusable behavior

workflow and not multiple behavior workflows.

* Log Action is an attribute of an Action element that determines if the action should
be logged. The semantics of “logged” are dependent on how the model is interpreted.
For example, a modeler might choose to log “network send” actions and not “memory

allocation” actions.

To address the usability concerns in the modeling aspect, we also leveraged GME add-
ons that assist users in creating models rapidly by auto-generating required elements (e.g.,
states) and connections depending upon the context. Although this feature is GME-specific,
most MDE tools provide support for implementing features that help improve the user

experience [127].

I11.2.1.2 Supporting Timing Semantics in CBML

I/O automata is ideal for modeling asynchronous, reactive systems, such as large-scale
component-based DRE systems. When trying to evaluate QoS, however, I/O automata
lacks several aspects, such as timing, that would allow developers to verify QoS properties
about components, and the system (e.g., end-to-end deadlines, expected execution time,
etc.).

To address this limitation, Timed Input/Output Automata (TIOA) [57] was defined as
an extension I/O automata to support timing aspects. TIOA has the same formal seman-
tics as I/0 automata, but it is extended to support both discrete and continuous variables.
The continuous variables (e.g., a clock or temperature) define how the state of the system

changes with respect to time.

37

Because CBML was originally based on the semantics of I/O automata, it also lacked
the same properties that would allow developers to validate QoS properties from a sim-
ulation standpoint. We, therefore, extended CBML to support the notion of timing to be

consistent with TIOA. In CBML, timing is defined by the following equation:

clock’ = clock +time(a) (IIL.5)

where clock is the current timing variable for the component, time(a) is the execution
duration of a € A, and clock’ is the new clock time after completing a. In CBML, we only
associate timing with internal actions A because we, currently, make the assumption that

all input / and output O actions are instantaneous.

II1.2.2 The Workload Modeling Language

CBML described in Section III.2.1 gives developers the ability to model behavior via
generic actions and properties. For analysis techniques, such as simulation, CBML is
enough to capture the behavior of the component (e.g., its actions, states, and respective
transitions), which can be interpreted to define configuration files for simulation tools. For
emulation purposes, however, these actions do not exemplify the “business logic” of com-
ponents because they do not capture the workload of reusable objects within a component
(e.g., objects and their methods). Moreover, when defining the workload of components
using CBML, it is hard to specify realistic workloads that map to executable operations for
an emulated component. To address this challenge (i.e., Challenge 2 in Section III.1) we
developed the Workload Modeling Language (WML).

WML is a middleware and hardware platform-independent and programming language-
independent DSML that allows developers to define workload generators that contains ac-
tions to represent realistic operations (e.g., memory allocations/deallocations and database
transactions) at a high-level of abstraction. Model interpreters associated with WML parse

the constructed models and use generative programming techniques to map the abstract

38

representation to executable operations in the target programming language and platform
(see Section II1.3).

We implemented WML in GME, but similar to CBML, it can be ported to any MDE
tool that supports metamodel specification. The remainder of this section discusses WML

in detail.

II1.2.2.1 Structure of WML

WML is a DSML that allows developers to create workload generators (called workers)
with executable actions for emulation. Figure II1.9 illustrates the compositional overview
of WML. We designed WML using a hierarchical structure that resembles common object-
oriented programming techniques to be consistent with conventional component technolo-

gies.

Legend: D ﬂ
a @ Worker

Package

Figure 111.9: High-level compositional overview of WML

The outermost containment elements in WML are library elements. Library elements
represent reusable containers (e.g., modules) for grouping common workers. The library
elements are composed of multiple files, which represent a concrete location on disk that
defines its contained workers (recall that workers are workload generators). File elements
can contain packaging elements that act as a scoping mechanism so that workers can have

the same name and appear in the same file (similar to C++ namespaces or Java packages).

39

Workers contain executable actions that represent its “business logic’” operations (or work-
loads). Lastly, actions can contain optional properties that define configurable parameters

(e.g., input arguments) for the action executed by the parent.

I11.2.2.2 Parameterizing CBML with executable operations

When WML is integrated with CBML, it enables developers to model the component
behavior using executable operations. From a modeling perspective, workers in WML have
the same modeling semantics as variables in CBML, and worker actions in WML have the
same modeling semantics as actions in CBML. This design feature allows us to integrate

WML with CBML.

(&) WML
r) & /) X
Database_Worker query_stock_info stock_symbol
sy ey SV ey v Sy svan bwen Swe B9 Se Sye sve aven e o

T T TR
CBML .|
i \\/ T [references)
w V7 T
basic_count db_handle
BasicType_Input db_handle basic_respofjse

[query_stock_info |

AN v

’ log_status
gold_count
> O—

GoldType_Input db.handle gold_response

[query_stock_info |

Figure 1I1.10: Example CBML model parameterized with WML actions

Figure II1.10 illustrates the behavior model of the database component from Figure I11.7
in Section II1.2.1.1 that has been parameterized with WML actions. The top portion of the
image illustrates the WML composition for a database worker. In the bottom portion of
the image, the actor (i.e., db_handle) is a variable that references the database worker.
The action is a modeling instance of the worker action in the top portion of the image

whose name must match the name of its parent worker variable. We made this design

40

requirement because it (1) helps resolve ambiguity when determining what action belongs
to what parent since it is possible to include the same worker variable type multiple times
in a behavior model, and (2) reduces modeling clutter as opposed to explicitly creating a

directed connection between a parent and its action.

III.3 Integrating Behavioral and Structural DSMLs

In Section III.2, we described a behavioral DSML named CBML and illustrated how
it allows us to capture the behavior (Challenge 1 of Section III.1) and map the behavior to
realistic operations (Challenge 2 of Section III.1). Although CBML allows us to capture the
behavior of a component, the models are insufficient to generate simulation code directly
without knowing the structural composition of the system and its components for QoS
validation since the latter determines the end-to-end workflows.

We, therefore, integrated CBML with the Platform Independent Component Model
Language (PICML) [10] because PICML captures the structural aspects of large-scale
component-based DRE systems, such as deployment, interface definitions, and packaging.
Moreover, since both PICML and CBML provide platform and programming language in-
dependent modeling capabilities, their integration and model interpretations provide a tech-
nology independent approach to continuous QoS evaluation (Challenge 3 in Section II1.1).
Although we chose PICML as the structural DSML to integrate CBML, our integration
concepts can be applied to any structural DSML—provided the structural DSML clearly
differentiates between input and output ports of a component.

When we examine structural DSMLs, such as PICML, it facilitates modeling different
ports of a component (e.g., facet/receptacles and event sources/sinks). The facets/event
sinks represent inputs to a component, while receptacles/event sources represent outputs
from a component. We, therefore, can formally define the structural aspect of a basic

component C = (M,N) as:

41

* a set M of input ports for receiving events from external sources, e.g., connected

components, and

* a set N of output ports for sending events to external destinations, e.g., connected

components.

Structural DSMLs, however, capture structural input/output (I/O) elements without any
correlating behavior (i.e., there is no clean representation to associate the I/O elements
of structural models with the I/O actions in behavioral models). We, therefore, extended
the structural definition of a component C = (M,N,®,¥) to define a set of functions that
enable developers to connect the I/O elements in the structural model with corresponding
I/O elements in the behavioral model BM (see Section II1.2.1.1) based on the following

equations:

e LetmeM,icland ¢ € P, then

¢ (m) — i. (I11.6)

e LetneN,o€ Oand y €Y, then

v(0) — n. (11L.7)

Figure II1.11 illustrates how structural DSMLs (e.g., PICML) that define components that
have I/0 ports and behavioral DSMLs (e.g., CBML) that have I/O actions can be inte-
grated by having the structural DSML “contain” the behavioral DSML and applying Equa-
tion (II1.6) to the structural DSML and Equation (III.7) to the behavioral DSML.

In the modeling realm, we require a component to contain the behavior. Additionally,
we define a modeling connection between the input port and input action to implement
Equation (II1.6), but require that the name of the output action match the name of the

corresponding output port to implement Equation (III.7). We made this design decision

42

(structural model)

(behavioral model)

Figure llIl.11: Conceptual model of integrating behavioral and structural DSMLs

because explicitly defining a connection between an output action and port will clutter the
model since there is a many-to-one mapping between an output action and an output port.
To further illustrate this concept, Figure I11.12 shows the realization of integrating a be-
havioral and structural DSML. The outer rectangle of Figure III.12 illustrates the PICML
model of the database component. The inner rectangle highlights the same database com-
ponent with CBML from Figure II1.7 integrated into PICML, thus allowing us to model the
same behavior exemplified in Section II1.2 with its respective structure (e.g., interface and

attributes).

IPICML [» CBML »

I l
| |basic_count gold_count]
¥ : . =/
| D]n_. O— uj %asuc_response |
|G<:»ldT'ype_lnput query_stock_info basu:_respo.'se r_\ I
| log_status Puld response |
| : |
V) Ag— O— D
BasmT\me_lnpuq query_stock_info.. 90ld_response l!og_status]

_ e ————_— e —

Figure 11.12: Realization of integrating CBML and WML with PICML in CoSMIC

43

II1.4 Preserving Formal Semantics of High-level Behavior Models

In Section II1.3, we discussed how we integrated CBML with structural DSMLs (e.g.,
PICML) to associate behavior models with structural models. In this section, we discuss
how we use semantic anchoring [18, 19, 82] to preserve the formal semantics of CBML and
generate configuration files for simulation tools based TIOA. We limit our discussion to the
generation of configuration files for individual components, and not the entire system (e.g.,

nodes, communication channels, etc.) because it is outside the scope of this dissertation.

II1.4.1 Brief Overview of Semantic Anchoring

One of the main benefits of a DSML is its ability to allow developers to work with
artifacts that are familiar to their domain. Although a DSML can help raise the level of
abstraction — and simplify the development process by automating tedious and error-prone
tasks — many DSMLs lack methods for proving their validity through formal specification
of their semantics. Because it can be hard to formally define the semantics of a DSML in
ways similar to formal mathematical languages such as I/O automata, Timed Automata, and
Statecharts, it is becoming common practice to leverage semantic anchoring as a method
to formally define the semantics of a DSML.

In semantic anchoring, developers rely on well-defined transformations that map ele-
ments of the DSML in question to elements of an existing formal language. This alleviates
the necessity to formally define the semantics of a DSML because if the transformation
functions are well-defined and the target language is semantically valid, then one can argue
that the semantics of DSML in question is formally defined in the context of the target
language. The remainder of this section discusses how we use semantic anchoring to map

CBML to TIOA.

44

II1.4.2 Transforming CBML into Timed I/O Automata

When we originally designed CBML, we based its definition on aspects from I/O
automata because I/0O automata possessed many of the same characteristics of compo-
nents. In order to validate QoS from a simulation standpoint—as opposed to an emulation
standpoint—we extended CBML to support timing so it would be consistent with TIOA.
This would permit us to start understanding QoS properties such as end-to-end deadlines,
service rates, and expected execution times, from a simulation perspective.

In TIOA, an automaton <7 = (f3,1,0) is a tuple where
* B=(X,0,0,E.H,2,.7) is a timed automata,
[and O partition E into input and output actions, respectively.

We do not present the complete definition of B and its properties in this dissertation, and
encourage the reader to see [57] for more details.

In order to leverage TIOA for semantic anchoring, we must first define a set of transfor-
mations that map CBML to TIOA. It is obvious that many of the elements in the definition
of BM, which is used to formally define CBML, already occur in .«/. Therefore, when we

use the following transformation function:

trans(Xpy) — Yo, (IIL.8)

where X is an element in the definition of BM that is being transformed into element Y in

the definition of .o, we define the following transformations:

trans(Vpy) — X7, (111.9)

trans(Spy) — Q. (II1.10)

45

trans(Opy) — Oy, (IL11)

trans(Ipy) — Ly, (II1.12)
trans(Opp) — Oy, (II1.13)
trans(Apy) — Hy, (II1.14)
trans(Tgy) — Doy, (II1.15)
trans(Epy) — Sy, (II1.16)

where s, € Q.

To further illustrate the transformation, we have applied the transformation functions
to a simplified version of the database component in the DSA illustrated in Figure III.13.
The simplified version of the database component contains an input action named Basic—
Type_Input and an internal action named (query_stock_info). It also contains a
single output action named (send_result). When we apply Equation (II1.9) through
Equation (III.16) to the CBML model in Figure II1.13, we produce the TIOA configuration

file presented in Listing II1.1.

— —6— ——()

4

BasicType_Input -_auew_sto(:k_i nfo send_result

Figure 111.13: Simplified version of the database component in the DSA

46

0NN N BN

DN DN DN DD DN NN NN = = = = = = e e e
O 0 AN N PH W= OOUWKIONWN kAW~ OO

30
31
32
33
34
35

Listing Ill.1: Timed Input/Output Automaton configuration file for the simplified

automaton DatabaseComponent (M: type)
signature
input BasicType_Input (m: M)
internal handle_BasicType_Input
internal query_stock_info
output send_result (n: N)

states
next: Int := 1;
queue_BasicType_Input : Seq[M] := {};
clock : Int := O0;

transitions
input BasicType_Input (m)
eff queue_BasicType_Input :=
queue_BasicType_Input |— m;

internal handle_BasicType_Input
pre next =1 /\
queue_BasicType_Input ~= {};
eff queue_BasicType_Input =
tail (queue_BasicType_Input);
next := 2;

internal query_stock_info
pre next = 2;
eff next := 3; clock := clock + 10;

output send_result
pre next = 3;
eff next := 1;

trajectories
trajdef thread
evolve d(clock) = 1;

database component.

DatabaseComponent that has a generic message type for receiving events. Each of the
actions (i.e., input, output, and internal) are converted to their equivalent TIOA element

based on Equation (III.12), Equation (III.13) and Equation (III.14), respectively. Lastly,

As shown in Listing III.1, the database component is converted to a single TIOA named

47

there is implicit corresponding internal action named handle_BasicInput_Event
that is responsible for triggering the behavior sequence when an event is received on
BasicInput_Event and placed in the corresponding event queue.

The DatabaseComponent automaton also contains three variables that hold the cur-
rent state of the component (i.e., val(V)). The next variable—which every component
defines—determines what action to execute next in the behavior sequence since CBML se-
quences its behavior workflow. The queue_BasicType_Input is the event queue that
stores events received on BasicType_Input. Each input action in CBML that is associ-
ated with an input event channel of a component always has an associated event queue. The
clock variable is a continuous variable that represents time of execution. Its evolution is
defined in the trajectories section of the automaton. Lastly, although the database
component does not contain any explicit CBML variables, if the behavior model has any
CBML variables, they are defined in the states section of the automaton.

Each of the CBML actions (i.e., input, output, and internal) are converted to their re-
spective TIOA elements. Because CBML forces a sequencing of the operations, we also
defined TIOA preconditions (pre statements) and effects (e £ £ statements) that will en-
force this sequencing. As highlighted in Listing III.1, handle_BasicInput_Event
is not enabled until BasicInput_Event has fired (i.e., successfully executed its ef-
fects to change the automaton’s state). Likewise, query_stock_info cannot fire un-
til handle_BasicInput_Event fires and send_result cannot fire until query—
_stock_info fires. Because internal actions have a timing aspect associated with them,
the effect of firing an internal actions also modifies the clock variable by the specified
time, i.e., Equation (IIL.5), to simulate the execution duration of the associated action.
Lastly, it is clear that we only allow a single event to be active per behavior sequence,

and not per component; however, we do not show this in the presented example.

48

II1.4.3 Simulating Timed I/O Automata Models

Once CBML models are converted to TIOA models, developers can use them to define
simulations that check different properties of individual components. The TIOA compo-
nents we generate do not define complete simulations of the components because from a
simulation standpoint, we do not know how developers want to follow different trajectories
defined in the components. Instead, we generate the minimal sized component that allows
developers to combine them with other TIOA models that define more trajectories, or sim-
ulations threads, to exercise the components. Moreover, since the models are converted
to TIOA, developers can also leverage tools such as Tempo (www.veromodo.com),
which has tools and plug-ins to convert TIOA models to Timed Automata models, and

other models types for theorem proving tools, thus satisfying Challenge 3 in Section III.1.

III.S Code Generation Techniques for Facilitating Emulation

This section describes our approach for achieving code generation for emulation, which
enables us to overcome serialized-phasing development and facilitate QoS validation dur-
ing the early stages of the software lifecycle. Our current effort allows developers to gen-
erate emulation code for the CUTS, however, our code generation architecture is not de-
pendent on CUTS (e.g., Challenge 3 in Section III.1). Figure III.14 illustrates a conceptual
model of our code generation architecture, which is composed from three technology inde-

pendent, but programming language dependent layers of abstraction:

* Emulation — This layer represents the application layer’s “business logic”. The el-
ements in WML used to parameterize the CBML behavior are mapped to this layer
when model interpreters parse the model. For example, the query_stock_info action

is generated at this layer in C++ code.

» Templates — This layer acts as a bridge [34] between the upper emulation layer

and lower benchmarking layer. This allows both layers to evolve independently of

49

(www.veromodo.com)

;< Component) / Component

\
[Emulation } [Emulation J Top Level

— | Templates | | Templates

al

Figure 11l.14: Code generation architecture for emulation

Lower Level

each other. For example, if we want to provide support for other benchmarking
frameworks we do not have to alter the generated code because the templates will
provide the mapping. Likewise, if we ported the DSA to a different technology (or
language) the code generator can tailor the source code to plug into this layer given

we support the target programming language.

* Benchmarking — This layer represents the underlying benchmarking framework
(e.g., CUTS). Methods in this layer are invoked by the template layer above to cap-
ture workload metrics, such as execution timing of a database query by the database

component, or response time of each user type in the context of the DSA.

Lastly, the encapsulating object for each of the three layers is the actual component hosted
by the target architecture, which is language and technology dependent. The component
is generated so that it has the same structure as its “real” counterpart (e.g., same interfaces

and attributes).

void DatabaseComponent::

push_BasicType_Input (QueryEvent =)

{
/l get activation record for this thread
CUTS_Log_Record % record = CUTS_LOG_RECORD ();

DN~ W N =

50

6 this —>basic_count_ ++;

7

8 record —>perform_action_no_logging (

9 CUTS_Database_Worker ::

10 query_stock_info (this —>db_handle_));

11

12 CUTS_CCM_Event_T <OBV_QueryResponse> __event_1__;
13 this —>ctx_—>push_basic_response (__event_I__.in ());
14

15 CUTS_CCM_Event_T <OBV_LogStatus> __event_2__;

16 this —>ctx_—>push_log_status (__event_2__.in ());
17 |}

Listing 1ll.2: Excerpt of generated code from a PICML model extended with CBML
and WML

Listing II1.2 illustrates the generated code for a portion of the database component in
the DSA. As illustrated in Listing I11.2, the push_BasicType_Input method is the realiza-
tion of implementing the BasicType_Input input event port in CCM. Each line of source
code represents the WML actions used to parameterize the CBML behavior. The record is
the template object that allows the emulation operations to be adapted for monitoring and

analysis by benchmarking frameworks, such as CUTS.

III.6 Chapter Summary

This chapter described a model-driven engineering approach for overcoming serialized-
phasing development of large-scale component-based DRE systems, and facilitate QoS
evaluation continuously throughout the software lifecycle. Our approach defined two DSMLs,
namely CBML and WML, that capture the behavior and workload of application compo-
nents at a high-level. We then integrated these DSMLs with PICML, which models struc-
tural properties of component-based DRE systems. Lastly, we used model interpreters to
tranform the behavior specifications to executable operations that leverage existing emula-
tion frameworks, such as CUTS.

This approach also lays the foundation for facilitating continuous system integration

and QoS validation of the large-scale component-based DRE systems, which is discussed

51

in Chapter VI because as more is learned about the components, the behavior can be refined
and regenerated for emulation. This implies that our approach is bridging the gap between
agile developent methodologies and QoS evalation. Likewise, as the real application com-
ponents are ready, they can replace the emulated components and their impact on system
QoS can be observed. Lastly, we expect the results of real versus emulated components to
match provided, the behavioral models of the emulated components approximate the real

component behavior closely.

52

CHAPTER IV

GENERATIVE PROGRAMMING TECHNIQUES FOR ENABLING REUSE
DOMAIN-SPECIFIC MODELING LANGUAGE MODEL INTERPRETERS

Component-based software engineering (CBSE) envisions the rapid development of
large scale systems by assembling and deploying units of application functionality that
is modularized into reusable components. Model-driving engineering (MDE) [108] is a
dominant technology to realize the CBSE promise by automating the tasks of system spec-
ification, assembly, deployment and testing. Examples of MDE tools include (but are not
limited to): Generic Modeling Environment (GME) [65], Eclipse Modeling Framework
(EMF) [16], Domain-Specific Language Tools [39], openArchitectureWare [94], Matlab/-
Simulink [123] and MetaEdit++ [124].

An important artifact of MDE frameworks are model interpreters, which provide gen-
erative capabilities to synthesize a variety of artifacts including deployment descriptors,
interface descriptions, inputs to analysis tools, and testing code, among others. A common
implementation technique used by model interpreters to implement the interpreter logic
(i.e., the logic to traverse the model hierarchy and generate the artifacts) is based on the
Visitor [34] design pattern. The Visitor pattern separates the data structure (in our case the
model) from the interpreter logic.

Despite the advantages of the Visitor design pattern, we have observed that contempo-
rary approaches to implementing the model interpreters tightly couple both the traversal
logic and generation logic thereby preventing any reuse when either or both of some of the
traversal and generation requirements change. Furthermore, in component-based systems-
of-systems, multiple modeling languages are often developed for individual subsystems

that must be composed when these subsytems must be integrated. New design techniques

53

are, therefore, needed to improve model interpreters implemented using the Visitor soft-
ware design pattern to eliminate reinvention, as much as possible, and promote reuse of the
interpreter logic.

Solution approach: Interpreter reuse via generative programming. A promising
technique for promoting reuse in the core model interpreter logic is to use generative pro-
gramming [24]. Generative programming is an attractive choice because it allows transpar-
ent alteration of core implementation (such as source code) on a per use case basis without
affecting other entities that utilize the same core implementation.

This chapter describes Metaprogrammable Interpreters for Model-driven Engineering
(MIME), which is a metaprogrammable model interpretation technique to address the chal-
lenge of reinvention in model interpreters that use the Visitor pattern for generating differ-
ent artifacts, and for composite DSMLs. First, we describe two contemporary approaches
to developing model interpreters using the Visitor software design pattern and outline the
reasons for reinvention manifested in these approaches. Second, we show how we can use
templates to capture the correct visitation logic and generation logic of the target DSML.
Lastly, we show how we use generative programming to generate interpreters that reuse (as
opposed to reinvent) the core interpreter logic, but target different generated artifacts when
implemented using the Visitor design pattern. Our experience using the MIME technique
shows that we are able to implement model interpreters using the Visitor pattern that pro-
mote reuse of core interpreter logic but can be specialized on a per use case basis, such as
suppressing or altering element visitation and varying generated artifacts.

Chapter organization. The remainder of this chapter is organized as follows: Sec-
tion IV.1 discusses interpreter writing techniques wherein we illustrate the reasons for rein-
vention of the interpretation logic that use the Visitor pattern; Section IV.2 describes our
generative programming solution for overcoming the reinvention required in existing so-
lutions using the Visitor design pattern; and Section IV.3 summarizes the contributions of

this chapter.

54

IV.1 Case Study: Emuluating Multiple Component-based Architectures
This section discusses current techniques for implementing MDE-based model inter-
preters using the Visitor design pattern. We discuss their limitations in the context of rein-

venting core interpreter logic.

IV.1.1 Commonality and Variability in Contemporary Component-based Architec-
tures

Figure IV.1 illustrates a feature model highlighting several common artifacts of com-

ponents from contemporary component-based architectures, such as CORBA Component

Model (CCM), Enterprise Java Beans (EJB), and Microsoft. NET. The commonalities in-

clude a component, remote method invocation (RMI) ports, and event-based ports. The

. Inclusive OR
—4@ Mandatory Feature Component
—() Optional Feature
|
RMIPort EventPort
P Receptacle InEventPort | | OutEventPort

Figure IV.1: Subset of commonalities and variabilities in components from
component-based architectures

variability is incurred along many dimensions: how the components are specified; the no-
tion of a EventPort (e.g., a port on the component in the context of CCM, a port to the
Java Messaging Service (JMS) in the context of Java, or not applicable in Microsoft.NET);
type of remote method invocation (e.g., RMI in EJB versus IIOP in CCM); different pro-
gramming languages (e.g., C++ in the context of CCM, Java in the context of EJB, and C#
in the context of Microsoft.NET); and many more not captured in Figure I'V.1.

As explained in Chapter I, large-scale component-based DRE systems are often realized

55

by integrating heterogeneous technologies, such as the aforementioned component-based
architectures. DSML-based SEM tools used to assist with the development of large-scale
component-based DRE systems—especially when emulating the system during the early
stages of the software lifecycle to overcome serialized-phasing development—must support
such characteristics. It is, therefore, desirable that model interpreters be able to provide
maximal reuse for common artifacts across the different component-based architectures.
At the same time, however, such model interpreters must be flexible enough to account for
the variability of component-based architectures.

In the context of visitor-based model interpreters, we define the following terms, which

are used throughout the remainder of this chapter:

* Points-of-Visitation — A point-of visitation defines how the model is traversed and

how the model elements are visited.

* Points-of-Generation — A point-of-generation defines the code segment that gener-

ates specific artifacts for the visited model elements.

* Interpreter Logic — Interpreter logic is the entire interpreter code, which is the col-

lection of points-of-visitation and points-of-generation.

Note that the variability in the component-based architectures described above incurs cor-
responding variability in the points-of-visitation and points-of-generation in the interpreter
logic. Our goal, therefore, is to develop the techniques to handle such variability while

promoting reuse of interpreter logic.

IV.1.2 Inflexibility of Conventional Visitor-based Implementation Techniques

There are two primary techniques we have observed for implementing model inter-
preters using the Visitor design pattern. The first technique we denote as single interpreta-

tion and the second technique strategized interpretation.

56

IV.1.2.1 Single Interpretation

Single interpretation is the simplest—and sometimes the quickest—approach for writ-
ing model interpreters using the Visitor design pattern. In single interpretation, the core
interpreter logic visits (or traverses) only elements of interest. When each element of in-
terest is visited, the interpreter logic generates artifacts that correspond to that particular

element.

.- T vold Visit_Component (const Component & o) |
:CCM_Impl_Visitor o rmeein o hisy
+Visit_Component(in c) 9 c.InEventPorts ().Accept (*this); \
+Visit_InEventPort(in p) } —
+Visit_Facet(in f) The visitor decouples
T : the traversal algorithm
+Visit_OutputEvent(in e
_Up (in e)g from the data
| structure. This
i Visit_OutputEvent {const OQutputEwvent &=) | traversal shows three
: £/ publish event to CCM Event Source points of visitation

I::_EJB_ImpI_V|5|For | void Visit Component (const Component & o |
+V|5|t_Component{m C} c.InEventPorts () .hccept (*this);
+Visit_InEventPort(in p) } S

+Visit_OutputEvent(in e)

The accept method
provides a double-

wold Visit OutputEvent {(const OutputEvent &e) | dispat‘:h mechanism b)l'
// publish ewvent to Java Messaging Service {(JMS) passing the visitor to the
; type to be visited

Figure IV.2: Conceptual model of single interpreter’s implementation

As illustrated in Figure V.2, we have defined two different interpreters, which generate
source code for two different component-based architectures, namely CCM_Impl_ Vi-
sitor and EJB_Impl_Visitor. Both implementations use the Visitor software de-
sign pattern for traversing models constructed using the modeling languages introduced
in Chapter III. In Figure IV.2, the CCM_TImpl_Visitor highlights 4 points-of-visitation
(i.e., Visit_Component,Visit_InEventPort,Visit_Facet,andVisit_Out-
putEvent) whereas EJB_Impl_Visitor highlights three points-of-visitation. Both
interpreters have the same number of points-of-generation as the number of points-of-
visitation. All visit methods (i.e., Visit_ methods) both captured and not captured

in Figure IV.2 represent reinvented interpreter logic in both implementations.

57

The main advantage of single interpretation model interpreters is that each interpreter
contains efficient model traversing logic (within the limits of the Visitor design pattern)
because it visits only elements of interest. The drawback of this approach is that each
interpreter has to reinvent the core traversing logic only because it gets tangled with the

generation logic.

IV.1.2.2 Strategized Interpretation

One approach to partially overcome the drawbacks of single interpretation is to use the
Strategy [34] design pattern to implement a base class that contains points-of-generation
as methods. The core interpreter logic is then implemented in terms of the base strategy
class. Each model interpreter implements concrete classes derived from the base strategy
that override the points-of-generation to generate the appropriate metadata. Lastly, the
concrete class is used to strategize the core interpreter logic implemented in terms of the
base strategy class.

As illustrated in Figure I'V.3, the base class Impl__ St rategy contains three points-of-
generation: generateFacet, generateInEventPort, generateOutputEvent.
Each concrete class derived from the base strategy class can override each point-of-generation
to generate the appropriate artifact(s). If a point-of-generation is not overridden, then
the default method—usually an empty method—is used. Similar to the single interpre-
tation, the traversal logic is implemented using the Visitor pattern. The main difference
is that instead of coupling the traversal logic with the generation logic, the traversal logic
(i.e., Component_Impl_Visitor) contains a base pointer to the appropriate strategy
for the generation logic (i.e., Impl_Strategy) which invokes the appropriate point-of-
generation to generate the correct artifacts.

The advantage of strategized interpretation is that the traversal logic is decoupled from
the generation logic, which permits reuse of the traversal logic. The drawback of this

approach is that all points-of-generation are invoked for each strategy—even if it is not

58

s:Compeonent_Impl_Visitor

sintesfacan
Fetrategy :Impl_Sirategy == = = = = = = = = = = = = Impl_Strategy
:i\';i[[_ilng ' ImpI_StlrFmg;g_ void visit_Component (const Component &c) | Wa:::ags'ﬁ:‘}:gdﬁ)
isit_Component(in c)o+—— = .) o s, +genetatelnEven in p)
+Visit InEventPort(in &) c.InEventPorts (] .A\,\,epl_: (*this); ateOutputEvant(in 8)
+\Visit_Facet(in) c.Facets ().Accept (*this); g
+Visit_OutputEverfgin e) }
void Visit InEventPort (const InEventFort &ap) | ‘
strategy ->generateInEventPort (p); COM Imel St
b |_Impl_Strategy
} -
i mpl_Stralegly +oenerateFacet()
+generateinEventPort(in p) +generateinEventPort(in intf)
void generateCutputEvent ({const QutputEvent &e) | +generateCupuiEvent(in &) +generateCuiputEvent(in conn)
// publish event to Java Messaging Service (JMS) T
}

void generateCutputEvent (const CutputEvent &e) |
/f publish event to CCM Event Source
1

W

Figure IV.3: Conceptual model of a strategized interpreter’s implementation

explicitly overridden—because the interpreter invokes methods on the base class and not
the concrete class. As illustrated in Figure IV.3, EJB_Impl_Strategy does not override
generateFacet; however, Component_Impl_Visitor is not aware that EJB_—
Impl_Strategy ignores this method.

A special case of strategized interpretation is to use a template approach, which we call
parameterized strategy interpretation. As illustrated in Figure V.4, the main interpreter
logic (i.e., Component_Impl_Visitor) is written as a template class that is parame-
terizable by concrete types (e.g., CCM_Impl_Strategy or EJB_Impl_Strategy).
Similar to the strategized interpreter, the interpreter logic is implemented by invoking
points-of-generation on the template class, i.e., STRATEGY_TYPE, where the template
class is implemented using the strategy design pattern.

The advantage of parameterized strategy interpretation is that each interpreter is capa-
ble of reusing the core interpreter logic and does not pay the penalty of invoking each
point-of-generation. For example, EJB_Impl_Strategy is not concerned with the
generateFacet point-of-generation and does not override this method. When Compo-

nent_Impl_Visitor is parameterized with EJB_Impl_Strategy, it will use the

default implementation for generateFacet—an empty method. Since generateFacet

59

| ________ b |
1 STRATEGY_TYPE |

T M |

::Component_Impl_Visitor

-strategy_ : STRATEGY_TYPE
+Visit_Component(in c) O

+Visit_InEventPort(in p)
+Visit_Facet(in f)

+Visit_OutEvent(in e) (o]

void Visi t_:".; cet {const Facet &f) |
strategy_ .generateFacet (fL};

!

f

Figure IV.4: Conceptual model of a template method interpreter’s implementation

would be considered dead code [20], the C++ compiler will eliminate it from the executable
as an optimization [131].

Although this approach is flexible in handling the variability in the points-of-generation,
it is rigid with respect to the points-of-visitation. We seek a capability that allows us flexi-

bility in both these artifacts while promoting maximal reuse.

IV.2 Enabling Reuse and Handling Variability in Model Interpreters
We now present our generative programming solution based on template metapro-
gramming [3] to promote reuse in model interpreters while addressing variability in the
points-of-visitation and points-of-generation. Our solution is realized in a framework called
MIME (Metaprogrammable Interpreters for Model-driven Engineering), which uses C++

template metaprogramming and facilities offered by the Boost library [55].

IV.2.1 Overview of Template-based Generative Programming

Generative programming is a style of computer programming that uses programs to
write programs, or to transform existing programs. Several flavors of generative pro-
gramming exist including, but not limited to, aspect-oriented programming [59], feature-

oriented programming [11], and template metaprogramming in C++ [3].

60

Our solution approach focuses on leveraging template metaprogramming in C++ to en-
able reuse of model interpreter logic. In C++ template metaprogramming, applications rely
on templates (and template specialization) to derive the final behavior of the application.
More importantly, the derivation is done at compile-time enabling the compiler to evaluate

and optimize the final executable as much as possible.

IV.2.2 Guidelines to Handle Variability in Points-of-Visitation and Generation
Figure IV.5 depicts the general guidelines to using template metaprogramming to han-

dle the variability in the points-of-visitation and modularize them into reusable model inter-

preter code blocks. These guidelines enhance the parameterized strategy implementation

illustrated in Figure [V.4.

sComponent_Impl_Visitor

o i Tied o . cans af Lo 1
+isit_Componant(ine) O 'D___ﬂ LF]:E Idfmpffenﬁ l=en ﬂt I J_ITLP:I]'JE']'Jt- £ . .
+Visit_|InEventPort(in p) visit <5TRATEGY TYPE> (c.InEventForts ()}, this);
+Visit_Facet(in f) vizit <S5TRATEGY TYPE> (c.Facets ()}, this):

=Yisit_QutputEvent(in &)

Figure 1V.5: Handling variability in points-of-visitation

Specialization of the traversal logic is the ability to transparently customize how the
model is traversed (visited) without actually modifying the existing overall interpreter
logic. In order to promote specialization of the traversal logic, one must first determine
the different points-of-visitation.

Once these are determined, as alluded to in Figure IV.5, each point-of-visitation must
be wrapped by a parameterizable visit function. The visit function determines if

the element of interest is visitable by the interpreter of STRATEGY_TYPE type. If the

61

STRATEGY_TYPE interpreter is interested in the specified element type, then the inter-
preter logic will visit it. Otherwise, the interpreter logic will ignore it (i.e., remove its
implementation at compile time).

Similar to how we used template metaprogramming to handle the variability in the
points-of-visitation, we can also use it for points-of-generation. Figure IV.6 depicts the

general guidelines for doing so. As highlighted in Figure IV.6, each point-of-generation is

s Companent _Impl_Visitor

+isit_Component(in ¢} void Visit InkEventPfort (conat InEventPort & pl |
#figit_InEventPort(in p) ©— GenerateInEventPort <STRATECY TYPE>::generate (pl;
+Wisit_Facet(in f) i

#\isit_OutputEventiin g) o)
I

vold Visit_OutputEvent (const (utputEvent & e) |
GenerateCutoutEvent <STRATEGY TYPEx::generate (e);

1
I

Figure 1V.6: Handling variability in points-of-generation

an object that contains a static generate function. The point-of-generation object is pa-
rameterized by the STRATEGY_TYPE. If the point-of-generation is not specialized, then
the default implementation of the point-of-generation—usually an empty method whose
implementation is suppressed at compile time—is used; otherwise, the specialized imple-
mentation of STRATEGY_TYPE is used.

It is possible to use the parameterizable strategy interpreter technique discussed in Sec-
tion IV.1.2 to implement the specialization of points-of-generation. By specifying point-
of-generations in parameterizable objects, however, we can define traits that explicitly sup-
press points-of-generation, similar to how we handle points-of-visitation. This provides
greater flexibility and control for customizing the generalized interpreter logic on a per

interpreter basis.

62

IV.2.3 MIME Framework for Handling Variability in Points-of-Visitation and Gen-

eration

We now present how we have concretely realized the guidelines discussed in Sec-

tion IV.2.2 in MIME using C++ template metaprogramming. Listing I'V.1 highlights six

main C++ templates we have developed for modularizing the traversal logic, i.e., points-

of-visitation.

0N BN

L LW LW W W NN NN NN NDNDN /= s = e b e e
AW, O OO JIANUNDH WO, OOV W= O\

/1l legend:
/1S = interpreter; T = element(s); F = functor
struct NIL {
static inline bool execute (...)
{return false;}

}s

template <typename S, typename T, typename F>
struct visit_all_t {
static inline bool execute (T t, F f) {
std :: for_each (t.begin (), t.end (), f); return true;

}
}s

template <typename S, typename T, typename F>
struct visit_single_t {
static inline bool execute (T t, F f) {
f (t); return true;

}
}s

template <typename S, typename T>
struct visit_type {
static const bool result_type = true;

}s

template <typename S, typename T, typename F>
struct visit_t {
typedef typename if_then_else <
is_container <T>::result_type ,
visit_all_t <S, T, F>,
visit_single_t <S, T, F> >::result_type
result_type;

63

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

template <typename S, typename T, typename F>
inline bool visit (T t, F f) {
typedef typename
get_type <T, is_container <T>::result_type >::
result_type type;

typedef typename
if _then_else <
visit_type <S, type::result_type >::result_type ,
visit_t <S, T, F>::result_type ,
NIL>::result_type result_type;

return result_type ::execute (t, f);

Listing IV.1: Enabling transparent specialization of points-of-visitation.

* NIL (line 3) is the structure that suppresses the execution of a method at compile
time. Because the method never has any side effects and the return value is known a

priori, the compiler will use the return value directly when optimizations are enabled.

* visit_all_t (line 9) is an example iteration structure that is an adapter for the
Standard Template Library for_each function located in the <algorithm> header
file. It defines one static method called execute, which is needed so it can be used

by visit (line 37).

* visit_single_t (line 16) is another example iteration structure that is used
when interacting with non-container objects (e.g., a single element). It also defines

one static method named execute.

* visit_type (line 23) is a trait structure that determines if a particular element
type T is visitable by interpreter S. Each interpreter can specialize visit_type
to suppress visiting individual types, or all types. The default behavior is for each

interpreter type to visit all element types.

64

e visit_t (line 28) is the trait that determines how to iterate over the element(s) in
within object t, and what functor f to apply to t. The visit_t trait parameterizes
the 1f_then_else metaprogrammable template [130] with a conditional expres-
sion named is_container (line 30) that determines if t is a container object. If t
is a container object, then result_typeissetto visit_all_t; otherwise, itis
setto visit_single_t. Different interpreters can alter the iteration mechanisms

by specializing this structure as needed.

* visit (line 37) is the factory function that creates the correct iteration type. This
function parameterizes 1 f_then_else withthe result_typeofvisit_type,
the iteration type, and the NIL type. If the element type is visitable, the final
result_type will be the iteration type; otherwise, it will be the NIL type. The

last step is to invoke the execute method on the derived result_type.

By using the above templates (and others not captured in Listing IV.1) and specializing
them as needed, we are able to transparently alter the interpreter logic on a per interpreter
basis at compile-time.

A similar approach is used to handle the variability in the points-of-generation in MIME.
Listing IV.2 lists six primary C++ artifacts that allow us to transparently specialize the

generation-logic of interpreters:

1|// legend:

2 |1// G = generator; Pn = parameter n
3 |struct NIL {

4 static inline bool generate (...)
5 {return false;}

6|}

7

8 |template <typename T>

9 |struct is_nil {

10 static const bool result_type = false;
111}

12

13 |template < >

14 | struct is_nil <NIL> {

65

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

static const bool result_type = true;

)3

// O—parameter
template <typename G>
inline bool generate (void) {
typedef typename
if_then_else <is_nil <G>::result_type ,
NIL, G>::result_type result_type;

return result_type :: generate ();

}

// 1—parameter
template <typename G, typename Pl>
inline bool generate (Pl pl) {
typedef typename
if_then_else <is_nil <G>::result_type ,
NIL, G>::result_type result_type;

return result_type :: generate (pl);

}

// 5—parameter
template <typename G, typename Pl, typename P2,
typename P3, typename P4, typename P5>
inline bool generate (Pl pl, P2 p2, P3 p3,
P4 p4, PS5 p5) {
typedef typename
if_then_else <is_nil <G>::result_type ,
NIL, G>::result_type result_type;

return
result_type :: generate (pl, p2, p3, p4, pS5S);
}s

Listing IV.2: Enabling transparent specialization of points-of-generation.

* NIL (line 3) is the structure that suppresses a point-of-generation at compile time.
Because the method never has any side-effects and the return value is known a priori,

the compiler will use the return value directly when optimizations are enabled.

* is_nil (line 9) is a trait template that determines if a type T is NIL. The default

66

result_type is true (line 10). We specialized is_nil with NIL (line 14) so

that when is_nil is parameterized with NIL, its result_type is false.

* generate (line 20, 30, & 41) is an overloaded function that inserts points-of-
generation into interpreter logic. The function determines if the point-of-generation
is supported (or suppressed). If the point-of-generation is supported, it invokes the
generate method of G; otherwise, it invokes generate on the NIL object. The
points-of-generation currently can handle zero to five parameters (i.e., parameters
passed to the generate functor). Extending the generate function to support more
than five parameters simply requires adding more template parameters to support the

extra parameters.

By using the above templates (and others not captured in Listing IV.2) and specializing
them as needed, we are able to transparently alter the generation-logic on a per interpreter

basis at compile-time.

IV.2.4 Using MIME in Component Implementation Visitor Example

To illustrate how we can use the template approach discussed in Section IV.2.3, we
applied it to the component implementation visitor example presented in Section 1V.1.2.
Listing IV.3 contains a code snippet of the example that uses the template approach high-
lighted in Figure IV.5 to illustrate how the customization of the interpreter logic is achieved
on a per model interpreter basis. For completeness we implemented a trivial visit func-
tion, which is illustrated in Listing IV.1. Because the visit function is parameterizable,
developers may define more domain-specific visit functions using template specialization
techniques. For example, an interpreter developer may implement a visit function that

iterates over InEventPort elements in alphabetical order.

1|// Component_Impl_Visitor_T.cpp
2 |// Demonstrates how reusable interpreter code can be
3 |// developed using template metaprogramming.

67

4 |template <typename S>

5 |void Component_Impl_Visitor ::

6 | Visit_Component (const Component & c) {
7 visit <S> (c.InEventPorts (),

8 boost::bind (&InEventPort::accept, _1,
9 boost:: ref (xthis)));
10

11 visit <S> (c.Facets (),

12 boost::bind (&Facet::accept, _1,

13 boost:: ref (xthis)));
14 |}

15

16 |// EJB_Impl_Visitor.h.

17 |// Shows template specialization to override default
18 |// behavior. In this case we eliminate traversal to a
19 | // Facet.

20 |template < >

21 |struct visit_type <EJB_Impl_Strategy, Facet> {

22 static const bool result_type = false;

23 |}

24
25 |// instantiate a specialized visitor.

26 |typedef Component_Impl_Visitor <EJB_Impl_Strategy >
27 EJB_Impl_Visitor;

Listing IV.3: Specializing Points-of-visitation for Component Visitor Example.

As illustrated in Listing IV.3, we implemented Component_Impl_Visitor as a

template class that is parameterizable by the concrete interpreter’s type (e.g., CCM_Impl_—

Strategy or EJB_Impl_Strategy). We then use the visit function to insert cus-

tomizable points-of-visitation into the interpreter logic (i.e., lines 7-13). By default, all

elements will be visited by the interpreter logic. Since the EJB_Impl_Strategy inter-

preter does not visit Facet elements, we specialized the visit_type trait in EJB_—

Impl_Strategy header file (line 21), which is used by the visit function to de-

termine if an element is visitable. This causes Component_Impl_Visitor inter-

preter logic to suppress that point-of-visitation when constructing the implementation of

the Visit_Component method for EJB_Impl_Strategy.

A similar approach applies to the points-of-generation. Listing IV.4 contains a code

68

snippet of our example that uses MIME’s approach illustrated in Figure IV.6 to highlight

how customization of points-of-generation is achieved on a per model interpreter basis.

For completeness, Listing IV.2 defines the empty point-of-generation templates that are

specialized in Listing IV.4.

0NN N BN~

/! Component_DP_Visitor_T.cpp
/! Shows how to leverage MIME’s template metaprograms
// to develop reusable interpreters with modularized
// points —of—specialization.
template <typename S>
void Component_Impl_Visitor::
Visit_Facet (const Facet & f) {
generate <S:: GenerateFacet> (f);

}

template <typename S>

void Component_Impl_Visitor::

Visit_InEventPort (const InEventPort & p) {
generate <S:: GeneratelnEventPort> (p);

}

// CCM_Impl_Visitor.h
// Shows how to specialize the points—of—generation
/!l for connection.
class CCM_Impl_Strategy {
struct GenereateFacet {
bool generate (const Facet & p) {

// generate code to define the facet of a

// component

return true;

}
}s

struct GeneratelnEventPort {
bool generate (const InEventPort & conn) {
// generate code to read event from event
/! source on component
return true;
}
}s
// other methods not listed

}s

69

38

39 |// EJB_Impl_Visitor.h

40 | class EJB_Impl_Strategy {

41 |public:

42 // eliminate any generation for Port

43 typedef NIL GenerateFacet;

44

45 struct GeneratelnEventPort {

46 bool generate (const InEventPort &p) {
47 /!l generate code to read event from the
48 // Java Messaging Service

49 return true;

50 }

51 }s

52 // other methods not listed

53 |}

Listing IV.4: Specializing Points-of-Generation for Component Visitor Example.

As illustrated in Listing IV.4, Visit_Facet (line 6) and Visit_InEventPort
(line 12) are visitor methods that invoke their respective generation methods (e.g., Generate—
Facet and GenerateInEventPort). BothCCM_Impl_Strategyand EJB_Impl-
_Strategy implement the GenerateInEventPort point-of-generation (line 29 & 45,
respectively). The EJB_Impl_Strategy interpreter does not visit Facet elements (see
Listing IV.3, line 21), and, therefore, EJB_TImpl_Strategy does not implement the
GenerateFacet point-of-generation. On the other hand, CCM_TImpl_Strategy spe-
cializes the GenerateFacet point-of-generation (line 21), which enables its interpreter
to generate the necessary metadata for the Facet element.

Since we leveraged the MIME’s points-of-visitation and points-of-generation template
metaprogramming technique, we were able to reuse the interpreter logic with both example
interpreters. Moreover, we were able to transparently specialize the interpreter logic of the
EJB_Impl_Strategy model interpreter without affecting the interpreter logic of the

CCM_Impl_Strategy model interpreter.

70

IV.2.5 Reuse within Composite Model Interpreters

Composite domain-specific modeling languages (DSMLs) are those created from one
or more existing DSMLs. This allows the parent DSML (i.e., the one created from multiple
DSMLs) to use elements from the child DSML when constructing valid models. One of
the main benefits of this modeling technique is reuse of existing modeling languages that
capture a domain. This is very common when multiple subsystems need to be integrated to
form systems-of-systems.

Although DSMLs can be composed from other DSMLs, the parent DSML interpreter
is responsible for interpreting the child DSML. It is ideal for the parent DSML to reuse the
interpreter logic of the child DSML. This would eliminate the need for parent DSML from
having to reinvent the interpreter logic of the child DSML, which can be a complex task if
the child DSML is complex.

In Section IV.1.2 we showed how current techniques for implementing DSML model
interpreters using the Visitor pattern do not support reuse of interpreter logic for single
DSMLs. Existing techniques for implementing DSML model interpreters, therefore, do
not fully meet the needs of composite DSML model interpreters either. In Section 1V.2.3,
however, we showed how MIME can support interpreter logic reuse. Because MIME’s
implementation techniques allowed us to reuse the interpreter logic for single DSMLs, the

interpreter logic of the child DSML can also be reused by the composite DSML.

IV.2.6 Guidelines for Using MIME

The template classes and traits we discussed only allow interpreters to customize vis-
itation and generation code. Situations will arise that offer an opportunity to add cus-
tomization to interpreter logic that the current templates can not handle. For example, one

interpreter may want to visit the elements of a container in reverse order; whereas, another

71

interpreter may want to set an upper bound on the number of elements visited in a con-
tainer, or change the container type. To address this, we have developed simple guidelines

for such situations:

1. Create a trait class or function with a name that reflects its purpose. This makes it

easier to understand how it should be used.

2. Regardless of using a trait class or a template function, the first template parameter is
the concrete interpreter’s type. This allows the concrete interpreter to be the primary

specialization artifact.

3. If there are any remaining template parameters, they are classified as properties that

can influence the template’s final value (or behavior) via template specialization.

IV.2.7 Enhancing the User-friendliness of MIME

One major challenge of template metaprogramming is comprehending its implemen-
tation. Model interpreters that leverage MIME’s implementation technique will have vast
amounts of template logic embedded throughout its implementation. Although we strive to
make it easy to identify and understand the templates used by MIME, it may not appear as
simple to novice developers.

To address this challenge, we believe it is possible to use high-level scripting languages
to assist in generating the necessary skeleton code for different interpretation intentions.
We make this conjecture because the points-of-visitation and points-of-generations are well
defined. Moreover, any new metaprogrammable templates introduced into the core inter-
preter’s logic using the generalization technique discussed in Section IV.2.6 will also be
well-defined.

It may be feasible to define a high-level language with constructs that allow develop-

ers to define the general parsing logic for the modeling language. This high-level parsing

72

logic would then be transformed into an interpreter that uses MIME’s implementation tech-
nique. This is similar to how Java Emitter Templates behave. This would alleviate the need
for understanding how to write templates for MIME, and make MIME’s implementation
technique more acceptable to developers who have little experience with template metapro-

gramming.

IV.3 Chapter Summary

In this chapter we presented a generative programming technique that used C++ tem-
plate metaprogramming to promote reuse in Visitor design pattern-based DSML model
interpreters. The main goal of our technique is to enable reuse of core interpreter logic so
that different interpreters for the same DSML with the same interpretation goal do not have
to reinvent it. To meet our desired objectives, we implemented several C++ templates class
(and trait classes) that allow us to insert points-of-visitation and points-of-generation into
the core interpreter logic. Consequently, each individual model interpreter can customize
the interpreter logic to meet its needs while reusing the core interpreter logic.

Using our technique, not only are we able to reuse interpreter logic across multiple
model interpreters, such as those that target diffenent component-based architecture mid-
dleware, using the same DSML, but we are also able to reuse it within composite DSML
model interpreters. The parent DSML model interpreter does not have to worry about im-
plementing the interpreter logic of the child DSML because it is provided for them (similar
to a header file distributed with a shared or static C++ library). Furthermore, this allows
users of a DSML to define their own customized interpreters because the interpreter logic
for the DSML is already provided and they only need to specialize the default implemen-

tation to meet their needs.

73

CHAPTER V

UNIT TESTING TECHNIQUES FOR EVALUATING COMPONENT-BASED DRE
SYSTEM QOS

Unit testing [49, 74] is a software validation technique that involves testing functional
properties of software, such as setter/getter methods of a class. For large-scale component-
based DRE systems, unit testing traditionally tests the “business-logic”. As explained in
Chapter I, QoS concerns (such as end-to-end response time) of large-scale component-
based DRE systems typically occurs during the software integration phase since testing
such concerns requires a complete system [26]. The separation of testing functional and
QoS concerns in such systems also creates a disconnect between the two, as illustrated in
Figure V.1, which can result in unforeseen consequences on project development, such as

missed project deadlines due to failure to meet QoS requirements.

Functional Testing ‘ QoS Testing

I >

System Integration (production)

Software Lifecycle Timeline

(design)

Figure V.1: Separation of functional and QoS testing in component-based dis-
tributed systems

As illustrated in Chapter III and Chapter IV, DSML-based SEM tools, such as CUTS,
help bridge the gap between understanding how functional and QoS requirements affect
each other. DSML-based SEM tools (1) model the behavior of a system under develop-
ment and characterize its workload and (2) provide testers with artifacts to emulate the

constructed models on the target architecture and analyze different QoS concerns, such as

74

end-to-end response time. These tools enable system developers to evaluate QoS concerns
prior to system integration (i.e., before the system is completely developed).

DSML-based SEM tools, however, do not provide developers with techniques for unit
testing QoS requirements of a component-based distributed system. Key QoS requirements
include (1) identifying metrics of interest for data collection, (2) extracting such metrics for
analysis, and (3) formulating equations based on extracted metrics that analyze an individ-
ual QoS concern or unit test. Moreover, in a development environment where requirements
change constantly, system testers must also measure, evaluate, and reason about QoS con-
cerns at the same level of abstraction as system requirements, and in a similar manner as
functional concerns. Unfortunately, DSML-based SEM tools do not provide testers with
techniques for abstracting and mapping low-level metrics to high-level system require-
ments and specifications. New techniques are therefore needed to unit test QoS concerns
and reasoning about low-level system metrics at a higher-level of abstraction.

Solution Approach: High-level specification and analysis of QoS concerns. Evalu-
ating QoS concerns of a component-based distributed system typically requires gathering
metrics that are generated at different times while the system is executing in its target en-
vironment. For example, understanding a simple metric like system throughput requires
capturing data that represents the number of events/users processed, the lifetime of the sys-
tem, aggregating individual results, and calculating system throughput. For more complex
metrics, the evaluation process becomes harder, particularly for large-scale component-
based DRE systems or ultra-large-scale systems [51] composed of many components and
deployed across many hosts.

This chapter describes a methodology and tool called Understanding Non-functional
Intentions via Testing and Experimentation (UNITE) that is designed to alleviate the com-
plexity of specifying and analyzing QoS concerns of component-based distributed systems.
UNITE is based on relational database theory [8] where metrics used to evaluate a QoS unit

test are associated with each other via relations to construct a data table. The constructed

75

metric’s table is evaluated by applying an SQL expression based on a user-defined function.
Testers can use UNITE to evaluate QoS properties of their applications via the following

steps:

1. Use log messages to capture metrics of interests, such as time an event was sent or

values of elements in an event;

2. Identity metrics of interest within the log messages using message constructs, such

as: {STRING ident} sent message {INT eventId} at {INT time};

3. Define unit tests to analyze QoS concerns (such as overall latency, end-to-end re-
sponse time, or system reliability and security) by formulating equations using the

identified metrics, which can span many log messages.

Our experience applying UNITE to a representitive large-scale component-based DRE
system shows it is an effective technique for unit testing QoS concerns during the early
stages of system development. Moreover, as new concerns arise testers need only add
new log message(s) to capture the metric(s) along with high-level construct(s) to extract
the metric(s). UNITE thus significantly reduces the complexity of specifying QoS unit
tests while producing a repository of historical data that can be analyzed and monitored
throughout a distributed system’s software development lifecycle.

Chapter Organization. The remainder of this chapter is organized as follows: Sec-
tion V.1 summarizes a representative distributed system case study used to motivate the
need for UNITE; Section V.2 describes the structure and functionality of UNITE; Sec-
tion V.3 shows how we applied UNITE to our case study; and Section V.4 summarizes the

contributions of this chapter.

V.1 Case Study: The QED Project

The Global Information Grid (GIG) middleware [2] is a large-scale component-based

DRE system designed to ensure that different applications can collaborate effectively and

76

deliver appropriate information to users in a timely, dependable, and secure manner. Due
to the scale and complexity of the GIG, however, conventional implementations do not
provide adequate end-to-end quality-of-service (QoS) assurance to applications that must
respond rapidly to priority shifts and unfolding situations.

The QoS-Enabled Dissemination (QED) [69] project is a multi-organization collabora-
tion designed to improve GIG middleware so it can meet QoS requirements of users and
component-based distributed systems. QED’s aims to provide reliable and real-time com-
munication middleware that is resilient to the dynamically changing conditions of GIG

environments. Figure V.2 shows QED in the context of the GIG. At the heart of the QED

1
Application
il Application
/

Application

.| Application

Figure V.2: Conceptual model of QED in the context of the GIG

middleware is a Java-based information broker based on the Java Messaging Service and
JBoss that enables tailoring and prioritizing of information based on mission needs and
importance, and responds rapidly to priority shifts and unfolding situations. Moreover,
QED leverages technologies such as Mockets [126] and differentiated service queues [32]
to provide QoS assurance to GIG applications.

The QED project is in its first year of development and is slated to run for several
more years. Since the QED middleware is infrastructure software, applications that use it
cannot be developed until the middleware itself is sufficiently mature. It is, therefore, hard

for QED developers to ensure their software architecture and implementations are actually

77

improving the QoS of applications that will ultimately run on the GIG middleware. The
QED project thus faces a typical problem of serialized-phasing development as explained
in Chapter L.

To overcome the serialized-phasing development problem, QED developers are using
DSML-based SEM tools to execute performance tests against QED and continuously eval-
uate QoS properties throughout the software lifecycle. In particular, QED is using the
CUTS SEM tool (see Chapter I). As explained in Chapter III, system testers use CUTS
by modeling the behavior and workload of their component-based distributed system and,
as explained in Chapter IV, use generative programming techniques to generating a test
system for their target architecture using the constructed behavior and workload models.
System testers then execute the test system on their target architecture, and CUTS collects
performance metrics, which can be used to unit test non-functional concerns. This pro-
cess is repeated continuously throughout the software development lifecycle of the system
under development (see Chapter VI for more details).

In Chapter VI, we describe how integrating DSML-based SEM tools with continuous
integtration environments provide a flexible solution for executing and managing component-
based distributed system tests continuously throughout the development lifecycle. Before
we can realize continuous system integration by integrating with continuous integration
environments, we first need a methodology for presenting results to continuous integration
environments, such as a QoS unit test. More importantly, we must solve the following

challenges:

* Challenge 1: Extracting data for metrics of interest. Data extraction is the process
of locating relevant information in a data source that can be used for analysis. In
SEM tools, data extraction was limited to metrics that are known a priori, e.g., at
compilation time. It was therefore hard to identify, locate, and extract data for metrics

of interest, especially if a QoS unit test needed data that not known a priori.

78

The QED testers needed a technique to identify metrics of interest that can be ex-
tracted from large amounts of system data. Moreover, the extraction technique should
allow testers to identify key metrics at a high-level of abstraction and be flexible
enough to handle data variation to apply CUTS effectively to large-scale component-

based DRE systems.

* Challenge 2: Analysis and aggregation extracted data. Data analysis and aggre-
gation is the process of evaluating extracted data based on a user-defined equation,
and combining multiple results (if applicable) to a single result. This process is nec-
essary since unit testing operates on a single result—either simple or complex—to
determine whether it passes or fails. In conventional SEM tools, data analysis and
aggregation is limited to functions known a priori, which made it hard to analyze

extracted data via user-defined functions.

The QED testers need a flexible technique for collecting metrics that can be used
in user-defined functions to evaluate various system-wide non-functional concerns,
such as relative server utilization or end-to-end response time for events with differ-
ent priorities. Moreover, the technique should preserve data integrity (i.e., ensuring
data is associated with the execution trace that generated it), especially in absence of

a globally unique identifier to identify the correct execution trace that generated it.

Due to these challenges, it was hard for system developers to use CUTS for conducting
unit tests, which are executed by continuous integration environments, for QoS concerns
of QED. Moreover, this problem extends beyond the QED project and applies to other
large-scale component-based DRE systems that want to perform unit testing of QoS con-
cerns. The remainder of this chapter shows how we addressed these challeges by improving
CUTS so it can unit test QoS concerns of component-based distributed systems continu-

ously throughout the software lifecycle.

79

V.2 UNITE: High-level Specification and Analysis of QoS Concerns

This section presents the underlying theory of UNITE and describes how it can be used

to unit test QoS concerns of component-based distributed systems.

V.2.1 Specification and Extraction of Metrics from Text-based System Logs

System logs (or execution traces) are essential to understanding the behavior of a sys-
tem, whether or not the system is distributed [54]. Such logs typically contain key data that
can be used to analyze the system online and/or offline. For example, Listing V.1 shows a

simple log produced by a system.

activating LoginComponent

LoginComponent recv request 6 at 1234945638
validating username and password for request 6
username and password is valid

granting access at 1234945652 to request 6

03N BN

deactivating the LoginComponent

Listing V.1: Example log (or trace) produced by a system

As shown in Listing V.1, each line in the log represents a system effect that gener-
ated the log entry. Moreover, each line captures the state of the system when the en-
try was produced. For example, line 3 states when a login request was received by the
LoginComponent and line 6 captures when access was granted to the client by the
LoginComponent.

Although a system log contains key data to analyzing the system that produced it, the
log is typically generated in a verbose format that can be understood by humans. This
format implies that most data is discardable. Moreover, each entry is constructed from
a well-defined format, which we call a log format, that will not change throughout the

lifetime of the system execution. Instead, certain values (or variables) in each log format,

80

such as time or event count, will change over the lifetime of the system. We formally define

alog format LF = (V) as:
* A setV of variables (or tags) that capture data of interest in a log message.

Moreover, Equation V.1 determines the set of variables in a given log format LF;.

V =vars(LF,) (V.1

Implementing log formats in UNITE. To realize log formats and Equation V.1 in
UNITE, we use high-level constructs to identify variables v € V that contain data for ana-
lyzing the system. Users specify their message of interest and use placeholders—identified
by brackets { }—to tag variables (or data) that can be extracted from an entry. Each place-
holder represents variable portion of the message that may change over the course of the

systems lifetime, thereby addressing Limitation 1 stated in Section V.1. Table V.1 lists

Table V.1: Log format variable types supported by UNITE
Type Description

INT Integer data type
STRING String data type (with no spaces)
FLOAT Floating-point data type

the different placeholder types currently supported by UNITE. Finally, UNITE caches the
variables and converts the high-level construct into a regular expression. The regular ex-
pression is used during the analysis process (see Section V.2.3) to identify messages that
have candidate data for variables V in log format LF.

LFy: {STRING owner} recv request {INT reqid} at {INT recv}
LF,: granting access at {INT reply} to request {INT reqid}

Listing V.2: Example log formats for tag metrics of interest

81

Listing V.2 exemplifies high-level constructs for two log entries from Listing V.1. The
first log format (LF}) is used to locate entries related to receiving a login request for a
client (line 3 in Listing V.1). The second log format (LF,) is used to locate entries related
to granting access to a client’s request (line 6 in Listing V.1). Overall, there are 5 tags in
Listing V.2. Only two tags, however, capture metrics of interest: recv in LF| and reply
in LF;. The remaining three tags (i.e., owner, LF1.reqgid, and LF2.reqgid) are used

to preserve causality, which we explain in more detail in Section V.2.2.

V.2.2 Unit Test Specification for Analyzing QoS Concerns

Section V.2.1 disussed how we use log formats to identify entries in a log that contain
data of interest. Each log format contains a set of tags, which are representative of variables
and used to extract data from each format. In the trivial case, a single log format can be
used to analyze a QoS concern. For example, if a developer wants to know how many
events a component received per second, then the component could cache the necessary
information internally and generate a single log message when the system is shutdown.

Although this approach is feasible, i.e., caching data and generating a single message,
it is not practical in a component-based distributed system because individual data points
used to analyze the system can be generated by different components. Moreover, data
points can be generated from components deployed on different hosts. Instead, what is
needed is the ability to generate independent log messages and specify how to associate the
messages with each other to preserve data integrity.

In the context of unit testing QoS concerns, we formally define a unit test UT =

(LF,CR, f) as:

* a set LF of log formats that contain variables V identifying which data to extract

from log messages,

* a set CR of causal relations that specify the order of occurrence for each log format

such that CR; ; means LF; — LFj, or LF; occurs before LF;, and

82

* a user-defined evaluation function f based on the variables in LF.

Causal relations are traditionally based on time. UNITE, however, uses log format
variables to resolve causality because it alleviates the need for a globally unique identifier
to associate metrics (or data). Instead, one only needs to ensure that two unique log formats
can be associated with each other, and each log format is in at least one causal relation (or
association). UNITE does not permit circular relations because it requires human feedback
to determine where the relation chain between log formats begins and ends.

We formally define a causal relation CR; ; = (C;, E;) as:

* a set C; C vars(LF;) of variables that define the key to represent the cause of the

relation, and

* a set E; C vars(LF;) of variables that define the key to represent the effect of the

relation.

Moreover, |C;| = |E;| and the type of each variable (see Table V.1), i.e., type(v), in C;, E; is
governed by Equation V.2:

type(C;,) = type(Ej,) (V.2)

where C;, e C;and E;, € E;.

Implementing unit tests in UNITE. In UNITE, users define unit tests by selecting
what log formats should be used to extract data from message logs. If a unit test has more
than one log format, then users must create a causal relation between each log format.
When specifying casual relations, users select variables from the corresponding log format
that represent the cause and effect. Last, users define an evaluation function based on the
variables in selected log formats.

For example, if a QED developer wants to create a unit test to calculate the duration of
the login operation, then a unit test is created using LF; and LF, from Listing V.2. Next, a

causal relation is defined between LF and LF> as:

83

LF|.reqid = LF,.reqid. V.3)

Finally, the evaluation function is defined as:

LF,.reply — LF.recv. (V4)

The following section discusses how we evaluate the function of QoS unit tests for component-

based distributed systems.

V.2.3 Evaluating QoS Unit Tests

Section V.2.1 discussed how log formats can be used to identify messages that contains
data of interest. Section V.2.2 discussed how to use log formats and casual relations to
specify unit test for QoS concerns. The final phase of the process is evaluating the unit
test, i.e., the evaluation function f. Before we explain the algorithm used to evaluate a unit
test’s function, we must first understand different types of causal relations that can occur in
a component-based distributed system.

As shown in Figure V.3, there are four types of causal relations that can occur in a
component-based distributed system, which affect the algorithm used to evaluate a unit

test. The first type (a) is one-to-one relation, which is the most trivial type to resolve

O@ @
©
5

(a) (b) (c) (d)

Figure V.3: Four types of causal relations that can occur in a component-based
DRE system

LF4

84

between multiple log formats. The second type (b) is one-to-many relation and is a result
of a multicast event. The third type (c) is many-to-one, which occurs when many different
components send an event type to a single component. The final type (d) is a combination
of previous types (a) — (d), and is the most complex relation to resolve between multiple
log formats.

If we assume that each entry in a message log contains its origin (e.g., hostname) then
we can use a dynamic programming algorithm and relational database theory techniques
to reconstruct the data table of values for a unit test’s variables. Algorithm 1 lists our
algorithm for evaluating a unit test. As shown in Algorithm 1, we evaluate a unit test UT
given the collected log messages LM of the system. The first step to the evaluation process
is to create a directed graph G where log formats LF are nodes and the casual relations CR; ;
are edges. We then topologically sort the directed graph so we know the order to process
each log format. This step is necessary because when causal relation types (b) — (d) are in
the unit test specification, processing the log formats in reverse order of occurrence reduces
algorithm complexity for constructing data set DS. Moreover, it ensures we have rows in
the data set to accommodate the data from log formats that occur prior to the current log
format. After topologically sorting the log formats, we construct a data set DS, which is a
table that has a column for each variable in the log formats of the unit test.

Likewise, we sort the log messages by origin and time to ensure we have the correct
message sequence for each origin. This step is necessary if one wants to see the data trend
over the lifetime of the system before aggregating the results, which we discuss later in this
chapter. Once we have sorted the log messages, we match each log format in LF’ against
each log message in LM'. If there is a match, then we extract values of each variable from
the log message, and update the data set. If there is a cause variable set C; for the log
format LF;, we locate all the rows in the data set where the values of C; equal the values of
E;, which are set by processing the previous log format. If there is no cause variable set,

we append the values from the log message to the end of the data set. Finally, we purge

85

Algorithm 1 General algorithm evaluating a unit test via log formats and causal relations
1. procedure EVALUATEUT,LM)

2: UT': unit test to evaluate
3: LM: set of log messages with data
4: G < directed_graph(UT)
5 LF' — topological_sort(G)
6: DS «— variable_table(UT)
7: LM’ + sort LM ascending by (origin, time)
8:
9: for all LF, € LF' do
10: K «— C; from CRi,j
11:
12: for all LM; € LM’ do
13: if matches(LF;,LM;) then
14: V' « values of variables in LM;
15:
16: if K # 0 then
17: R — findrows(DS,K,V")
18: update(R,V')
19: else
20: append(DS,V')
21: end if
22: end if
23: end for
24: end for
25:
26: DS’ + purge incomplete rows from DS

27: return f(DS’) where f is evaluation function for UT
28: end procedure

all the incomplete rows from the data set and evaluate the data set using the user-defined
evaluation function for the unit test.

Handling duplicate data entries. For long running systems, it is not uncommon to
see variations of the same log message within the complete set of log messages. Moreover,
we defined log formats on a unit test to identify variable portions of a message (see Sec-
tion V.2.1). We therefore expect to encounter the same log format multiple times. When

constructing the data set in Algorithm 1, different variations of the same log format will

86

create multiple rows in the final data set. A unit test, however, operates on a single value,

and not multiple values. To address this concern, we use the following techniques:

* Aggregation — A function used to convert a data set to a single value. Examples of

an aggregation function are, but not limited to: AVERAGE, MIN, MAX, and SUM.

* Grouping — Given an aggregation function, grouping is used to identify data sets
that should be treated independent of each other. For example, in the case of causal
relation (d) in Figure V.3, the values in the data set for each sender (i.e., LF;) could

be considered a group and analyzed independently.

We require specifying an aggregation function as part of the evaluation equation f for a
unit test because it is known a priori if a unit test may produce a data set with multiple

values. We formally define a unit test with groupings UT' = (UT,T) as:
* aunit test UT for evaluating a QoS concern, and
e aset I' Cvars(UT) of variables from the log formats in the unit test.

Evaluating unit tests in UNITE. In UNITE, we implemented Algorithm 1 using the
SQLite relational database (sglite.org). To construct the variable table, we first in-
sert the data values for the first log format directly into the table since it has no causal
relations. For the remaining log formats, we transform its causal relation(s) into a SQL
UPDATE query. This allows us to update only rows in the table where the relation equals
values of interest in the current log message. Table V.2 shows the variable table constructed
by UNITE for the example unit test in Section V.2.2. After the variable data table is con-
structed, we use the evaluation function and groupings for the unit test to create the final
SQL query that evaluates the unit test.

SELECT AVG(LF2_reply — LFI1_recv) AS result
FROM vtablel123;

Listing V.3: SQL query for calculation average login duration

87

sqlite.org

Table V.2: Example data set produced from log messages
LF1_reqid LF1_recv LF2_reqid LF2_reply

6 1234945638 6 1234945652
7 1234945690 7 1234945705
8 1234945730 8 1234945750

Listing V.3 shows Equation V.4 as an SQL query, which is used to evaluate the data set

in Table V.2. The final result of this example—and the unit test—would be 16.33 msec.

V.3 Applying UNITE to the QED Project

This section analyzes results of experiments that evaluate how UNITE can address key

testing challenges of the QED project described in Section V.1.

V.3.1 Experiment Setup

As mentioned in Section V.1, the QED project is in its first year of development and is
expected to continue for several years. QED developers do not want to wait until system
integration time to validate the performance of their middleware infrastructure relative to
stated QoS requirements. QED testers therefore used CUTS and UNITE to perform early
intergration testing. All tests were run in a representative testbed based on ISISlab (see
Appendix A) configured with the Fedora Core 6 operating system.

To test the QED middleware, we first constructed several scenarios using CUTS’ mod-
eling languages (see Chapter III). Each scenario was designed such that all components
communicate with each other using a single server in the GIG (similar to Figure V.2 in
Section V.1). The first scenario was designed to test different thresholds of the underly-
ing GIG middleware to pinpoint potential areas that could be improved by the QED mid-
dleware. The second scenario was more complex and emulated a multi-stage workflow.

The multi-stage workflow is designed to test the underlying middleware’s ability to ensure

88

application-level QoS properties, such as reliability and end-to-end response time when

handling applications with different priorities and priviledges.

- -
publis! . . & publi .] publish deliverTo | . . .
Bubl publie i irecei Bubll ~® publish Jimie e publi &
deliverTo publi
‘ . Y . . . v \ . J
L SensorC.hent , Conﬂguratyon(;hent 5 EffectorClient
‘ [SensorClient] [ConfigurationClient] [EfiectorClient |
deliverTo - r deliverTo)
publish .
T i " - publi - e)
‘;;rpeucbel: publi publish ° deliverTo recei puhli & G irecei
PlannerClient AuthorizationClient UtilityClient
[AuthorizationClient | [UtilityClient]

[PlannerClient]

Figure V.4: CUTS model of the multi-stage workflow test scenario

As shown in Figure V.4, the multi-stage workflow has six types of components. Each
directed line that connects a component represents a communication event (or stage) that
must pass through the GIG (and QED) middleware before being delivered to the component
on the opposite end. Moreover, each directed line conceptually represents where QED will
be applied to ensure QoS between communicating components. Each component in the
multi-stage workflow has a behavior model (see Chapter III) that dictates its actions during
a test. Moreover, each behavior model contains actions for logging key data needed to
evaluate a unit test, similar to Listing V.1 in Section V.2.1.

Listing V.4 lists example log messages from the multi-stage workflow scenario.

MainAssembly . SurveillanceClient: Event 0: Published a

SurveillanceMio at 1219789376684

MainAssembly . SurveillanceClient: Event 1: Time to
publish a SurveillanceMio at 1219789376685

Listing V.4: Example log messages from the multi-stage workflow scenario

&9

These log message contain information about the event, such as the event id and the times-
tamp. Each component also generates log messages about the events it receives and its state
(such as its event count). In addition, each component sends enough information to create
a causal relation between itself and the receiver, so there is no need for a global unique
identifier to correlate data.

After contructing the behavior and workload model for each component in the multi-
stage workflow, we generated its source code such that it conforms to the GIG middleware
using the techniques presented in Chapter I'V. We next used UNITE to construct log formats
(see Section V.2.1) for identifing log messages during a test run that contain metrics of
interest. These log formats are also used to define unit tests that evaluate QoS concerns
described in Section V.2.2. Overall, we are interested in evaluating the following concerns

in our experiments:

* Multiple publishers. At any point in time, the GIG will have many components
publishing and receiving events simultaneously. We therefore need to evaluate the
response time of events under such operating conditions. Moreover, QED needs to
ensure QoS when the infrastructure servers must manage many events. Since the
QED project is still in the early stages of development, we must first understand the
current capabilities of the GIG middleware without QED in place. These results pro-
vide a baseline for evaluating the extent to which the QED middleware capabilities

improve application-level QoS.

* Time spent in server. One way to ensure high QoS for events is to reduce the time
an event spends in a server. Since the GIG middleware is provided by a third-party
vender, we cannot ensure it will generate log messages that can be used to calculate
how long it takes the server to process an event. Instead, we must rely on messages
generated from distributed application components whenever it publishes/sends an

event.

90

For an event that propogates through the system, we use Equation V.5 to calculate
how much time the event spends in the server assuming event transmission is instan-
tenous, i.e., negligible.

(end, — start,) — ZSCE (V.5)

c
As listed in Equation V.5, we calculate the time spent in the server by taking the
response time of the event e, and subtracting the sum of the service times of the event
in each component S.,. Again, since QED is in its early stages of development, this
unit test provides a baseline of the infrastructure and used continuously throughout

development.

V.3.2 [Experiment Results

We now present results for experiments of the scenarios discussed in Section V.3.1.
Since QED is still in the early stages of development, we focus our experiments on eval-
uating the current state of the GIG middleware infrastructure, i.e., without measuring the
impact of QED middleware on QoS, and UNITE’s ability to unit test non-functional con-
cerns.

Analyzing multiple publisher results. Table V.3 shows the results for the unit test that
evaluates average end-to-end response time for an event when each publisher publishes at
75 Hz. As expected, the response time for each importance value is similar. When we unit
tested this scenario using UNITE, the test results presented in Table V.3 were calculated
from two different log formats—the log format generated by a publisher and the subscriber.
The total number of log messages generated during the course of the test was 993,493.

UNITE also allows us to view the data trend for the unit test of this scenario to get
a more detailed understanding of performance. Figure V.5 shows how the response time
of the event increases over the lifetime of the experiment. We knew beforehand that this

configuration for the unit test would produce too much workload. UNITE’s data trend

91

Table V.3: Average end-to-end (E2E) response time (RT) for multiple publishers
sending events at 75 Hz

Publisher Name Importance Avg. E2E RT (msec)

ClientA 30 103931.14
ClientB 15 103885.47
ClientC 1 103938.33

and visualazation capabilities, however, helped make it clear the extent to which the GIG

middleware was being over utilized.

::263408 :
{

237067 |
184386 |
158045 |

msec

131704 |
105363 |

....................................

.........................

Event #

Figure V.5: Data trend graph of average end-to-end response time for multiple pub-
lishers sending events at 75 Hz

Analyzing maximum sustainable publish rate results. We used the multi-stage work-
flow to describe a complex scenario to test the limits of the GIG middleware without forcing
it into incremental queueing of events. Figure V.6 graphs the data trend for the unit test,
which is calculated by specifying Equation V.5 as the evaluation for the unit test, and was

produced by UNITE after analyzing (i.e., identifying and extracting metrics from) 193,464

92

log messages. The unit test also consisted of ten different log formats and nine different
causal relations, which were of types (a) and (b), discussed in Section V.2.3.

Figure V.6 illustrates the sustainable publish rate of the mutle-stage workflow in ISIS-
lab. As illustrated, the just-in-time compiler (JITC) and other Java features cause the mid-
dleware to temporarily increase the individual message end-to-end response time. By the
end of the test (which is not shown in the Figure V.6), the time an event spends in the server
reduces to normal operating conditions.

The multi-stage workflow results provides two insights to QED developers. First, their
theory of the maximum publish rate in ISISlab is confirmed. Second, Figure V.6 helps
developers speculate on what features of the GIG middleware might cause performance
bottlenecks, how QED could address such problems, and what new unit test are needed to
illustrate QED’s improvements to the GIG middleware. By providing QED testers compre-
hensive testing and analysis features, UNITE helps guide the development team to the next

phase of testing and integration of feature sets.

.....

msec
@
~n
o

éuun
éaan
| gagni gl Y
?4405' ‘

| 2203

Test Duraton

...

Figure V.6: Data trend of the system placed in near optimal publish rate

Evaluating the impact of UNITE on the experiment. Because of UNITE, we can
quickly construct unit tests to evaluate the GIG middleware. In the context of the multi-

stage workfow scenario, UNITE provids two insights to QED developers. First, their theory

93

of the maximum publish rate in ISISlab is confirmed. Second, the data trend and the visu-
alization capabilities of UNITE helped developers speculate on what features of the GIG
middleware might cause performance bottlenecks, how QED could address such problems,
and what new unit test are need to illustrate QED’s improvements to the GIG middleware.

In addition, UNITE’s analyical capabilities are not bounded by a unit test’s configura-
tion and data. As long as the correct log formats and their causal relations are specified,
UNITE can evaluate the unit test. Moreover, we do not need to specify a global unique
identify to associate data with its correct exeuction trace. If we require a global unique
identifier to associate data metrics, then we have to ensure that all components propogate
the identifer. Moreover, if we add new compoents to the multi-stage workflow, each compo-
nent would have to be aware of the global unique idenfier, which can inherently complicate
the logging specification.

By providing developers comprehensive testing and analysis capabilities, UNITE helps
guide the QED developers to the next phase of testing and integration of feature sets.
We therefore conclude that UNITE helped reduce the complexity of evaluating QoS con-
cerns of a component-based distributed system. Moreover, unit tests can be automated
and run continuously throughout the software lifecycle of QED using continuous integra-
tion environments, such as CruiseControl (cruisecontrol.sourceforge.net), as

explained in Chapter VI.

V.4 Chapter Summary

QoS concerns of large-scale component-based DRE systems have traditionally been
tested during integration. The earlier that QoS concerns are tested in the target envi-
ronment, however, the greater chance of locating problematic areas in the software sys-
tem [134, 138]. This chapter describes and evaluates a technique called Understanding

Non-functional Intentions via Testing and Experimentation (UNITE) for unit testing QoS

94

cruisecontrol.sourceforge.net

concerns of large-scale component-based DRE systems. UNITE uses log messages gener-
ated from a testing environment and message constructs that identify messages of interest.
Moreover, testers define functions in terms of variable data in log messages that are used
to evaluate QoS concerns of the system under development.

Our experience applying UNITE to a representative large-scale component-based DRE
system shows how it simplifies identifying and extracting of metrics of interest for ana-
lyzing QoS concerns. Furthermore, the methodologies realized in UNITE helps to further
bridge the gap between agile development methodologies and QoS evaluation experienced

during serialized-phasing development of large-scale component-based DRE systems.

95

CHAPTER VI

TECHNIQUES FOR FACILITATING CONTINUOUS SYSTEM INTEGRATION
TESTING

In Chapter I, we discussed how large-scale component-based DRE systems, such as air
traffic control systems, mission avionics systems, shipboard computing environments, and
traffic management systems, are traditionally affected by serialized-phasing development.
Likewise, in Chapter III and Chapter IV, we showed how DSML-based SEM tools, such
as CUTS, help overcome serialized-phasing development and bridge the gap between agile
development and QoS evalation for such systems.

Although DSML-based SEM tools assist with overcoming serialized-phasing devel-
opment experienced by large-scale component-based DRE systems, SEM tools have his-
torically focused on performance analysis [113] rather than efficient testing (as currently
shown throughout this dissertation). Moreover, due to the inherit complexities of serialized-
phasing development (e.g., portions of the system being developed in phases defer QoS
testing until integration testing) it is hard to use DSML-based SEM tools for evaluating
QoS continuously throughout software lifecycle. New techniques are therefore needed to
enhance the capabilities of existing DSML-based SEM tools, and improve their capabilities
for testing continuously throughout the software lifecycle.

Solution approach: Integrate SEM tools with continuous integration environments.
Continuous integration [33] environments, such as CruiseControl.NET, Build Forge, and
DART, continuously exercise the build cycle of software to validate its quality by (1) per-
forming automated system builds upon source code check in or successful execution and
evaluation of prior events, (2) executing suites of unit tests to validate basic system func-

tionality, (3) evaluating source code to ensure it meets coding standards, and (4) executing

96

code coverage analysis. Continuous integration environments, however, have been tradi-
tional used to evaluate functional concerns of large-scale component-based DRE systems
since it is a conventional agile development technique (see Chapter I).

This chapter describes the research and design of CiCUTS, which combines the contin-
uous integration environments with DSML-based SEM tools, such as CUTS. CiCUTS tests
are deployed into the target domain to enable system QoS testing. These tests are managed
by the continuous integration environment and dictate the behavior of CUTS, as shown

in Figure VI.1. This process is repeated continuously to help developers and testers en-

CiCUTS
(CUTS + CruiseControl.NET)

Tar_g—et Domain
(testing environment)

Development

Figure VI.1: CiCUTS: Combining SEM tools with continuous integration environ-
ments

sure system QoS meets—or is close to meeting—its specification throughout the software
lifecycle.

This chapter also describes how the methodology realized in CiCUTS can be applied
to a case study of a representative large-scale component-based DRE system. The re-
sults from our case study show how combining continuous integration environments with
DSML-based SEM tools enables system developers and testers to address the following

requirements:

97

1. Management and execution of large numbers of tests by allowing system develop-
ers and testers to focus on systematic creation of test scenarios instead of expending
time and effort building a custom testing framework. System developers and testers
can create scenarios via CiICUTS’s SEM tool and use its continuous integration en-

vironment to manage and execute them.

2. Creation of realistic scenarios by providing the capability of chaining scenarios
that exercise multiple aspects of the DRE system and target environment’s expected
behavior. System testers can use CiCUTS to create tests and compose them into more
complex/realistic tests scenarios that are managed and executed by its continuous

integration environment.

3. Automated processing and feedback of results using graphical displays that vi-
sualize simple and detailed views of active and completed test scenarios. System
developers and testers can use CiCUTS to ensure system performance is within QoS

specification throughout the development lifecycle.

Chapter organization. The remainder of this chapter is organized as follows: Sec-
tion VI.1 introduces our large-scale component-based DRE system case study; Section VI.2
describes how CiCUTS combines SEM tools with a continuous integration environment;
Section V1.4 shows how we used CiCUTS to evaluate the QoS of our case study; and

Section VI.5 summarizes the contributions of this chapter.

VI.1 Case Study: RACE and the Baseline Scenario
This section describes a large-scale component-based DRE case study from the do-
main of shipboard computing to motivate the need for, operation of, and benefits of in-
tegrating DSML-based SEM tools with continuous integration environments. This case
study is based on the Resource Allocation and Control Engine (RACE) [111], which is

an open-source distributed resource manager system we developed using the CIAO [28]

98

implementation of the Lightweight CORBA Component Model (CCM) [89] over the past
several years in conjunction with Lockheed Martin and Raytheon. RACE deploys and
manages Lightweight CCM application component assemblies (henceforth called opera-
tional strings) based on specifications of their resource availability/usage and QoS require-

ments [111].

VI.1.1 Overview of RACE
Figure VI.2 shows the architecture of RACE, which is composed of four components
assemblies (Input Adapter, Planner Analyzer, Planner Manager, and Output Adapter) that

collaborate to manage operational strings for the target domain. RACE is designed to

Input
Adapter

Planner
Analyzer

‘-.......(Operational String).

Planner
Mgr

Output

Adapter
N
_ — —

\j
(to Resource Layer)

Target Domain

Figure VI.2: Architecture of RACE

perform two types of deployment strategies:

* Static deployments are operational strings created offline by humans or automated
planners. RACE uses the information specified in a static deployment plan to map
each component to its associated target host during the deployment phase of a DRE

system. A benefit of RACE’s static deployment strategy is its low runtime overhead

99

since deployment decisions are made offline; a drawback is its lack of flexibility since

deployment decisions cannot adapt to changes at runtime.

* Dynamic deployments, in contrast, are operational strings generated online by hu-
mans or automated planners. In dynamic deployments, components are not given a
target host. Instead, the initial deployment plan contains component metadata (e.g.,
connections, CPU utilization, and network bandwidth) that RACE uses to map com-
ponents to associated target hosts during the runtime phase of a DRE system. A
benefit of RACE’s dynamic deployment strategy is its flexibility since deployment
decisions can adapt to runtime changes (e.g., variation in resource availability); a

drawback is its higher runtime overhead.

VI1.1.2 RACE’s Baseline Scenario

The case study in this chapter focuses on RACE’s baseline scenario. This scenario ex-
ercises RACE’s ability to evaluate resource availability (e.g., CPU utilization and network
bandwidth) with respect to environmental changes (e.g., node failure/recovery). Moreover,
it evaluates RACE’s ability to ensure that the lifetime of higher importance operational
strings deployed dynamically is greater than or equal to the lifetime of lesser importance
operational strings deployed statically based on resource availability.

Since RACE performs complex distributed resource management services—and thus
took several years to develop—we wanted to avoid the serialized-phasing development
problem outlined in Section I. In particular, we did not want to wait until final system
integration to determine whether RACE could evaluate resource availability with respect
to environmental changes to properly manage operational strings deployed dynamically
versus those deployed statically.

To avoid the problems outlined above, we used CUTS and the techniques introduced
in the previous chapters to analyze RACE’s ability to manage the operational strings with

respect to resource availability and environmental changes well before system integration

100

to determine if we are meeting its QoS requirements. Moreover, to continuously ensure
we are meeting the QoS requirements for RACE as we developed it, we combined CUTS
with the CruiseControl.NET continuous integration environment to create CiCUTS. The
remainder of this chapter describes CiCUTS and the results of our experiments that apply

it to evaluate RACE’s baseline scenario throughout its development lifecycle.

VI.2 Overview of CiCUTS

CiCUTS is a combination of continuous integration environments, such as Cruise-
Control.NET, and the CUTS SEM tool, which are two separately existing tools that work

individually as follows:

* CruiseControl. NET monitors source code repositories for changes at predefined in-
tervals. When changes are detected, it executes NAnt scripts that contain subtasks
for performing work, such as building the application or executing unit tests. Cruise-
Control.NET then uses the return status of the NAnt scripts, which is based on the
return value of the individual subtasks, to determine the success or failure of the

entire process for the detected modification.

* CUTS uses profiling techniques to capture performance metrics of executing sys-
tems. It uses intrusive [77] and non-intrusive [72, 95] monitoring to capture metrics
such as the service times of events in a component, the number of events received on

each individual port of a component, or the execution time of a database query.

By combining CruiseControl. NET with CUTS, CiCUTS provides developers and testers
with tools and analysis capabilities to improve testing features offered by system execution
modeling tools. Developers and testers create CiCUTS tests (see Figure VI.1), which are
NAnt subtasks that drive CUTS and the testing environment to create realistic scenarios
(Requirement 2). CruiseControl.NET then continuously manages and executes CiCUTS

tests throughout the development lifecycle (Requirement 1). Consequently, developers and

101

testers can focus on resolving performance issues identified by CiCUTS instead of spend-

ing time and effort manually deploying and analyzing performance tests (Requirement 3).

VI.3 Evaluating Design Alternatives for CiCUTS

Successfully combining SEM tools like CUTS with a continuous integration environ-
ment like CruiseControl. NET requires developers and testers to agree upon the following
profiling decisions: (1) what type of metrics to collect from the instrumented system being
analyzed, (2) how to capture the performance metrics efficiently, and (3) how to present the
metrics to a continuous integration environment so it can determine the testing result, e.g.,
success or failure, of the system being analyzed. When developing CiCUTS we identified
several ways to combine SEM tools with continuous integration environments. Below we

logically evaluate the pros and cons of three design alternatives we considered.

VI.3.1 Alternative 1: Extend profiling infrastructure of SEM tools to capture domain-

specific metrics.

Approach. SEM tools provide profiling infrastructures to collect predefined perfor-
mance metrics, such as execution times of events/function calls or values of method argu-
ments. As shown in Figure V1.3, it may be feasible to extend the profiling infrastructure,
i.e., the SEM data collector, to capture domain-specific metrics, such as the amount of time
needed to deploy an operational string.

Evaluation. A benefit of this approach is that it simplifies development of a complete
profiling framework. System developers and testers can leverage the SEM tool’s existing
infrastructure to collect and present domain-specific metrics to the continuous integration
environment. Moreover, it simplifies deciding how to capture the metrics because the exist-
ing profiling infrastructure already has a predetermined method and format for collecting
performance metrics. Developers and testers need only convert their target metrics into a

format understood by the SEM profiling infrastructure.

102

CiCUTS — — — —

— ~
e ~
/ _ > N
/ I \
(\
| processes \ | //
\/\/\/C SEM data collector) _
~ _ -

—_— -

Target Domain

Figure VI.3: Conceptual model of design alternative 1

A drawback with this approach, however, is that it requires system developers and
testers to ensure their domain-specific extensions to the SEM tool do not incur additional
performance overhead on the instrumented system. For example, testers may collect met-
rics from complex data types, such as nested structures, that must be iterated in their entirety
to obtain concrete data, but the runtime complexity of iteration process can adversely af-
fect performance. Moreover, this approach may not be feasible if a SEM tool is proprietary,

such that its profiling abilities cannot be extended by users.

VL.3.2 Alternative 2: Capture domain-specific performance metrics in format un-
derstood by continuous integration environments.

Approach. A continuous integration environment typically uses a predetermined for-
mat, such as verbose XML log files, to record and analyze the results of tests it manages. As
shown in Figure V1.4, it may be feasible to capture target performance metrics outside of
the profiling infrastructure using domain-specific data collectors and present performance
metrics in the format understood by the continuous integration environment.

Evaluation. A benefit of this approach is that it simplifies integrating continuous in-

tegration environments with SEM tools because an understood format is used to present

103

CiCUTS _ >~
/ : N
/ \
e [\
processes \ y
domain-specific
SN data collector 4
continuous |« — — ~ N e
integration Iogs ~ — -
format —— — —
Target Domain

Figure VI1.4: Conceptual model of design alternative 2

collected metrics. The continuous integration environment therefore already knows how to
analyze the collected metrics and present the results.

A drawback with this approach, however, is that additional effort is required to develop
a custom testing framework to collect performance metrics and feed them to the continuous
integration environment. Moreover, this approach couples SEM tools with the continuous
integration environment. If the project changes to a different continuous integration envi-
ronment, then developers and testers must reimplement the testing framework to present

metrics in a format understood by the new continuous integration environment.

VI.3.3 Alternative 3: Capture domain-specific performance metrics in an interme-
diate format.
Approach. SEM tools and continuous integration environments each have their own

method and format for collecting and using performance metrics. As shown in Figure VI.5,

it may be feasible to collect performance metrics outside of the existing profiling infrastructure—

similar to alternative 2—but capture domain-specific metrics in a intermediate format that
is not bound to any SEM tool or continuous integration environmentformat.
Evaluation. This approach applies the Bridge pattern [34] to capture metrics in an

intermediate format, such as XML or a BLOB in a centralized database, that is neither

104

— ~
CiCUTS P ' N
/ N\
//processes ‘)
\ domain-specific /
AN
. . - data collector S
intermedia -=~"logs ~_ — —

Target Domain

Figure VI.5: Conceptual model of design alternative 3

bound to a SEM tool nor the continuous integration environment format. A benefit of this
approach is that it decouples the SEM tools from the continuous integration environment.
Instead of presenting domain-specific performance metrics in a format understood by the
continuous integration environment, developers and testers simply extend the continuous
integration environment to understand the intermediate format for processing and analyzing
results. Likewise, developers and testers can use any data collection technique, such as log-
ging intercepters [50], to collect domain-specific performance metrics as long as they can
transform the metrics into the intermediate format. Finally, the data collection technique
does not interfere with the existing profiling infrastructure of the SEM tool.

A drawback with this approach, however, is that developers and testers must agree on
the intermediate format to represent the data. Likewise, they must extend the continuous
integration environment to understand the intermediate format for analyzing collected met-
rics. In practice, however, these drawbacks are not problematic because agreeing on an
intermediate format is straightforward. Moreover, continuous integration environments are
used in industrial development [14, 46] and support extension for domain-specific needs,

such as evaluating the success of results generated by domain-specific extensions.

105

V1.3.4 The Structure and Functionality of CiCUTS

After evaluating the pros and cons of the various approaches described above, we se-
lected alternative 3 for CiCUTS because it strongly decoupled of CUTS from CruiseCon-
trol.NET. As a result, if project collaborators decide to change to a different continuous
integration environment they are not bound to using CruiseControl.NET. Likewise, if por-
tions of RACE are redeveloped using a different SOA technology (e.g., Microsoft. NET or
J2EE), CruiseControl.NET can still be applied since it operates on the intermediate format,
not the SEM tool’s format. Moreover, testers and developers can use any data collection
technique specific to the target SOA technology, such as the Java Messaging Service [119]
for J2EE applications, as long as the collected performance metrics can be converted to
the intermediate format and the data collection overhead is within an acceptable thresh-
old. It is clear that alternative 3 offers the most flexibility when integrating CUTS with

CruiseControl.NET to create CiCUTS.

CiCUTS->log (“deploying operational
string: %s\n”, opstr_name) ;

s
/ — ‘ \\\
// T \\ CruiseControl.NET
/

polls

\ - bt <
Logger [_ _ _ _ ____————-
\
N / »
AN Benchmark Node Controller
N)) 0o
> e intermediate database
~ ~

Figure VI.6: Structure of CiCUTS

106

Figure V1.6 shows the structure of CiCUTS, which is composed of the following el-
ements: (1) loggers, which are domain-specific extensions to logging interceptors that
transparently collect domain-specific performance metrics, (2) an intermediate database
that stores performance metrics collected by the loggers, (3) CruiseControl. NET, which
is CiCUTS’s default continuous integration environment that manages and executes tests
based on analyzed performance metrics, and (4) Benchmark Node Controllers, which exe-
cute commands directed by continuous integration environments, such as terminating con-
tainer applications that host deployed operational strings. The loggers and the intermediate
database in the CiCUTS infrastructure enable the combination of CUTS with CruiseCon-
trol. NET without tightly coupling one to the other.

To use CiCUTS, developers instrument their source code with log messages, e.g., de-
bug statements, that capture the desired performance metrics. We chose log messages be-
cause they do not limit which performance metrics can be collected, as long as the metrics
can be represented as string literals. Likewise, testers create CICUTS test scenarios using
NAnt scripts that exercise different environment and system events, such as terminating/-
recovering nodes that affect the lifetime of deployed operational strings (i.e., Requirement
2). Finally, testers instruct CruiseControl.NET to manage and execute the CiCUTS tests
(i.e, Requirement 1) by (1) monitoring the source code repository for modifications, (2)
updating the testing environment with the latest development snapshot, (3) executing the
CUTS tests scenarios, and (4) analyzing metrics in the intermediate database collected by

the CUTS loggers (i.e., Requirement 3).

V1.4 Continuous System Integration Testing Experiment & Results
This section presents the design and results of experiments that applied CiCUTS to eval-
uate the QoS of RACE’s baseline scenario described in Section VI.1.2. These experiments
evaluated the following hypotheses: (H1) CiCUTS allows developers to understand the be-

havior and performance of infrastructure-level applications, such as RACE, before system

107

integration and (H2) CiCUTS allows developers to ensure that the QoS performance of
infrastructure-level applications is within performance specifications throughout the devel-
opment lifecycle more efficiently and effectively than waiting until system integration to

evaluate performance.

VI1.4.1 Experiment Design

To evaluate the two hypotheses in the context of the RACE baseline scenario, we con-
structed 10 operational strings. Each string was composed of the same components and
port connections, but had different importance values and resource requirements to reflect
varying resource requirements and functional importance between operational strings that
accomplish similar tasks, such as a primary and secondary tracking operation. Figure V1.7

shows a structural model for one of the baseline scenario’s operational strings—which was

— H :
5 tmea osmd e J sm2_A . sm3_4
emik B

emil 7
s wa o ' FEL TEZAT i~ Lem_#]

deilverTo

L3 3 ocnina it
”’ﬂ]— pant i)
S—

co_& ec_A el To

et ;"

Figure VL.7: Structural model of the replicated operational string for the RACE base-
line scenario

replicated 10 times to create the 10 operational strings in the baseline scenario—consisting

of 15 interconnected components represented by the rounded boxes.

108

The four components on the left side of the operational string in Figure VI.7 are sensor
components that monitor environment activities, such as tracking objects of importance
using a radar. The four components in the top-middle of Figure V1.7 are system observation
components that monitor the state of the system. The four linear components in the bottom-
center of Figure V1.7 are planner components that receive information from both the system
observation and sensor components and analyze the data, e.g., determine if the object(s)
detected by the sensor components are of importance and how to (re)configure the system
to react to the detected object(s). The planner components then send their analysis results
to the three components on the right side of Figure V1.7, which are effector components
that react as stated by the planner components (e.g., start recording observed data).

To prepare RACE’s baseline scenario for CiCUTS usage (see Section VI.3.4), we used
CUTS modeling languages, which are presented in Chapter III, to construct the 10 op-
erational strings described above. We then used the generative techniques presented in
Chapter IV to generate Lightweight CCM compliant emulation code that represented each
component in the operational string managed by RACE (see Figure VI.7) in the baseline
scenario. We also used PICML to generate the operational strings’ deployment and con-

figuration descriptors for RACE. The deployment for each string used the strategy is spec-

Table VI.1: Importance values of the RACE baseline scenario operational strings
Operational String Importance Value
A-H 90
-] 2

ified in Table VI.1. The importance values' assigned to each operational string reflects
its mission-critical ranking with respect to other operational strings. We chose extreme

importance values because RACE was in its initial stages of development and we wanted

IThese values are not OS priorities; instead, they are values that specify the significance of operational
strings to each other.

109

to ensure that it honored importance values when managing operational strings. Finally,
we annotated RACE’s source code with the logging mechanisms described in Section V1.2
to collect information, such as time of operational string deployment/teardown or time of
node failure recognition.

To run the experiments using CiCUTS, we created NAnt scripts that captured the se-
rialized flow of each experiment. The NAnt scripts contained commands that (1) signaled
RACE to deploy/teardown operational strings, (2) sent commands to individual nodes to
cause environmental changes, and (3) queried the logging database for test results. The
CruiseControl. NET part of CiCUTS then used the NAnt scripts to manage and execute the
experiments many times, e.g., every 30 minutes CruiseControl. NET checked for modifica-
tions in the RACE source code repository and, if so, executed the NAnt scripts.

When the RACE baseline scenario tests are executed under control of CruiseCon-
trol. NET, log messages containing the information outlined above were generated when
the RACE’s runtime execution reached that point of execution. These log messages were
stored in a database by the CUTS logger’s in CiCUTS for offline analysis by CruiseCon-
trol.NET, e.g., calculating the lifetime of operational strings or amount to time to deploy
operational strings and representing it as an integer value. The collected log messages were
also transformed into a graphically display (e.g., see Figure VI.8) to show whether the life-
time of dynamic deployments exceed the lifetime of static deployments based on resource

availability with respect to environmental changes.

V1.4.2 Experiment Results

This section presents the results of experiments that validate H1 and H2 about CiCUTS

when evaluating the QoS of the RACE baseline scenario.

110

VI1.4.2.1 Using CiCUTS to Understand the Behavior and Performance of Infrastructure-

level Applications

HI conjectures that CICUTS will assist in understanding the behavior and performance
of infrastructure-level applications, such as RACE, well before system integration. Fig-
ure VI.8 shows an example result set for the RACE baseline scenario (i.e., measuring the
lifetime of operational strings deployed dynamically vs. operational strings deployed stat-

ically) where 2 hosts were taken offline to simulate a node failure. The graphs in Fig-

d operational
M| 1008 string

/ failures swapout

g 111
Lifetime of Static Deployments
Legend
I Running (lesser importance) []Swapped Out
Il Running (greater impotance) I Failed

Figure VI.8: Graphical analysis of static deployments (bottom) vs. dynamic deploy-
ments (top) using RACE

ure VI.8—which are specific to RACE—were generated from the log messages stored in
the database via the CUTS loggers described in Section VI.3. The x-axis in both graphs
is the timeline for the test in seconds and each horizontal bar represents the lifetime of an
operational string, i.e., operational string A-J.

The graph at the bottom of Figure VI.8 depicts RACE’s behavior when deploying

and managing human-generated static deployment of operational string A-J. The graph

111

at the top of Figure V1.8 depicts RACE’s behavior when deploying and managing RACE-
generated dynamic deployment of operational string A-J. At approximately 100 and 130
seconds into the test run we instructed the Benchmark Node Controller to randomly kill 2
nodes hosting the higher importance operational strings, which is highlighted by the “node
failures” callout.

As shown in the static deployment (bottom graph) of Figure V1.8, static deployments
are not aware of the environmental changes. All operational strings on failed nodes (i.e.,
operational string A-G) therefore remain in the failed state until they are manually rede-
ployed. In this test run, however, we did not redeploy the operational strings hosted on the
failed nodes because the random “think time” required to manually create a deployment
and configuration for the 7 failed operational strings exceeded the duration of the test. This
result signified that in some cases it is too hard to derive new deployments due to stringent
resource requirements and scarce resource availability.

The behavior of dynamic deployment (top graph) is different than the static deployment
(bottom graph) behavior. In particular, when the Benchmark Node Controller kills the
same nodes at approximately the same time (i.e., section highlighted by the “node failure”
callout), RACE’s monitoring agents detect the environmental changes. RACE then quickly
tears down the lower importance operational strings (i.e., the section highlighted by the
“operational string swapout”) and redeploys the higher importance operational strings in
their place (e.g., the regions after the “node failure” regions).

The test run shown in Figure V1.8, however, does not recover the failed nodes to emulate
the condition where the nodes cannot be recovered (e.g., due to faulty hardware). This
failure prevented RACE from redeploying the lower importance operational strings because
there were not enough resources available. Moreover, RACE must ensure the lifetime of the
higher importance operational strings is greater than lower importance operational strings
(see Section VI.1). If the failed nodes were recovered, however, RACE would attempt to

redeploy the lower importance operational strings. Figure VI.8 also shows the lifetime of

112

higher importance operational strings was ~15% greater than lower importance operational
string. This test case showed that RACE can improve the lifetime of operational strings
deployed and managed dynamically vs. statically.

The results described above validate H1, i.e., that CiICUTS enables developer to un-
derstand the behavior and performance of infrastructure-level applications. Without Ci-
CUTS, we would have used ad hoc techniques, such as manually inspecting execution
trace logs distributed across multiple hosts, to determine the exact behavior of RACE. By
using CiCUTS, however, we collected the necessary log messages in a central location and
used them to determine the exact behavior of RACE. Moreover, the collected log mes-
sages helped determine if RACE was performing close to its QoS specifications. Without
CiCUTS, not only would we have had to rely on ad hoc techniques to understand the be-
havior of RACE and evaluate its performance, we would not have been able to do so well

in advance of final system integration.

VI1.4.2.2 Using CiCUTS to Ensure Performance is Within QoS Specifications

H2 conjectures that CiICUTS would help developers ensure the QoS of infrastructure-
level applications is within its performance specifications throughout the development life-
cycle. The results described in Section VI.4.2.1, however, represent a single test run of
the baseline experiment. Although this result is promising, it does not show conclusively
that CiCUTS can ensure RACE is within its QoS specifications as we develop and release
revisions of RACE.

We therefore used the CruiseControl.NET portion of CiCUTS to continuously execute
variations of the experiment previously discussed while we evolved RACE. Figure VI.9
highlights the maximum number of tests we captured from the baseline scenario presented
in Figure V1.8 after it was executed approximately 427 times over a 2 week period. The

number of executions corresponds to the number of times a modification (such as a bug

113

Target goal for improvement

Lower bound for improvement

Figure VI.9: Overview analysis of continuously executing the RACE baseline sce-
nario

fix or an added feature to RACE) was detected in the source code repository at 30 minute
intervals.

The vertical bars in Figure VI.9 represent the factor of improvement of dynamic de-
ployments vs. static deployments. The heights of the bars in this figure are low on the
left side and high on the right side, which stem from the fact that the initial development
stages of RACE had limited capability to handle dynamic (re-)configuration of operational
strings. As RACE’s implementation improved—and the modified code was committed to
the RACE source code repository—the CruiseControl.NET portion of CiCUTS updated
the testing environment automatically. The results in Figure V1.9 show how the CruiseC-
ontrol. NET part of CiCUTS manages and executes tests of RACE’s baseline scenario effi-
ciently because it automatically monitors the source code repository and reruns the tests if
modifications are detected.

The results in Figure V1.9 also show how CiCUTS allows developers to keep track of
RACE’s performance throughout its development. As the performance of RACE improved
between source code modifications, the vertical bars increased in height. Likewise, as
the performance of RACE decreased between source code modifications, the vertical bars
decreased in height. Lastly, since each vertical bar corresponds to a single test run, if the
performance of RACE changed between tests runs, developers could look at the graphical
display for a single test run (see Figure VI1.8) to further investigate RACE’s behavior.

The results described above validate H2, i.e., that CiCUTS helps developers ensure the

114

QoS of infrastructure-level applications is within its performance specifications throughout
the development lifecycle. As modifications where checked into the source code repository,
the CruiseControl.NET portion of CiCUTS detected the modifications and reran the QoS
tests. As shown in Figure V1.9, each set of modifications within a predefined time period
(e.g., every 30 minutes) corresponded to a single test run. As performance improved or
declined, developers can locate which modifications resulted in the changes.

Conducting this process without CiCUTS is hard because it requires testers to manually
(1) monitor the source code repository, (2) update the testing environment, (3) rerun the
performance tests, and (4) associate the test results with detected modifications. In contrast,
CiCUTS helps ensure system performance is within is QoS specifications more efficiently
and effectively. Its key contribution is automating the testing process and autonomously

providing feedback about whether the system is or is not within its QoS specification.

VL5 Chapter Summary

This chapter described the design and application of CiCUTS, which combines the
DSML-based SEM tools, such as CUTS, with continuous integration environments. We
evaluated the design alternatives we considered when integrating CUTS with continuous
integration environments and explained the structure and functionality of the approach we
selected. We also presented a case study that applied CiCUTS to a representative large-
scale component-based DRE system—called RACE—to evaluate its QoS and perform in-
tegration testing continuously throughout its development process to validate how well
revisions to the RACE software met—or did not meet—their QoS requirements.

Our case study showed how CUTS leveraged continuous integration capabilities to en-
hance its testing capabilities. More importantly, the integration of CUTS with continu-
ous integration environments bridges the gap between agile development methodologies
and QoS evaluation for large-scale component-based DRE systems plagued by serialized-

phasing development.

115

CHAPTER VII

TEMPLATE PATTERNS FOR IMPROVING CONFIGURABILITY AND
SCALABILITY OF TESTING AND EXPERIMENTATION

Large-scale component-based DRE systems, e.g., shipboard computing environments,
mission avionic systems, and air traffic control, possess characteristics that complicate ver-
ification and validation [51], such as complexity, heterogeneity, and scale. Testing and ex-
perimentation (T&E), i.e., running many tests of the system under different configurations
to exercise validation of large-scale component-based DRE systems, is the conventional
method for evaluating system behavior and quality-of-service (QoS). T&E of large-scale
component-based DRE systems in realistic environments and operating conditions also
helps increase confidence that the system being developed meets its functional and QoS
requirements [22, 47]. For example, large-scale component-based DRE system developers
can leverage dynamically configurable testbeds, such as Emulab [101], to produce real-
istic environments for understanding and evaluating system QoS throughout the software
lifecycle.

The T&E process, however, can be expensive and time consuming [47], even when
it is automated. Moreover, the effectiveness of T&E relates directly to the ability to test
many different system configurations (such as the number of hosts, the hreading model,
and the number of clients) in realistic and hypothetical operating conditions. For example,
understanding and evaluating the worst-case response time of critical execution paths in a
DRE system requires testing a DRE system under different workloads.

Existing techniques that address T&E configuration concerns include domain-specific
modeling languages [65], which can help alleviate the complexity of handcrafting config-
uration files via models and model interpreters. These techniques, however, rely largely on

single instance configurations, where one configuration is used to evaluate a system under

116

a single operating condition. To evaluate the system under different operating conditions,
large-scale component-based DRE system developers must produce multiple variants of the
same configuration file (or model), which is tedious, time-consuming, and error-prone. De-
velopers therefore need improved techniques and patterns to improve T&E configurability
and scalabilty to broaden their evaluation scope.

Solution approach: Template patterns. A template is an abstraction that captures the
fixed and variable portions of a context, such as an algorithm [3, 24], model transforma-
tion [56, 117], and configuration file [37, 125]. For example, the Template Method [34] de-
sign pattern enables developers to capture the fixed portion of an algorithm while deferring
certain variable steps to subclasses. Template patterns describe techniques for transforming
the variable portion of a given template, such as setting a variable in a configuration file’s
template based on it hostname. In general, templates help increase the configurability and
scalability of their application context, including offline situations where timing constraints
are not an issue.

This chapter describes the following related template patterns that help increase T&E
configurability and scalability: Variable Configuration, Batch Variable Configuration, Dy-
namic Variable Configuration, and Batch Dynamic Variable Configuration. We have imple-
mented variants of each pattern in the Component Workload Emulator (CoWorkEr) Utiliza-
tion Test Suite (CUTS) Template Engine (CUTE). CUTE uses a domain-specific language to
capture fixed and variable portions of T&E configurations, such as resolving the correct net-
work interface based on the operating environment of a test. Large-scale component-based
DRE system developers can use CUTE to decrease the number of single instance configu-
ration files for T&E, while increasing T&E configurablity and scope. This chapter shows
how the template patterns supported by CUTE help improve large-scale component-based
DRE systems evaluation capabilities, such as testing hypothetical workloads or migrating

between different operating environments.

117

Chapter organization. The remainder of this chapter is organized as follows: Sec-
tion VIIL.1 revisits an existing case study of a representative large-scale component-based
DRE system project to motivate the need for CUTE; Section VII.2 describes the four tem-
plate patterns that CUTE implements to improve T&E configurability and scalabilty; Sec-
tion VIL.3 provides quantitative analysis of these template patterns in the context of the case

study; and Section VII.4 summarizes the contributions of this chapter.

VII.1 Case Study: Revisiting the QED Project

In Chapter V Section V.1, we introduced the the QoS-Enabled Dissemination (QED) [1]
project, which is a large-scale, multi-team collaborative project involving Vanderbilt, Boe-
ing, BBN Technologies, and IHMC aimed at addressing QoS concerns within the Global
Information Grid (GIG) [2]. As explained in Chapter V Section V.1, the goal of the QED
project is to improve QoS concerns of the GIG, which involves evaluating many points-
of-variability, such as scalablity, operating environments, and workload. To evaluate that
GIG QoS concerns are addressed adequately, QED developers plan to test many different
candidate technologies and implementations, including Mockets [126] and differentiated
service queues [6, 52] under various deployment scenarios.

Conventional T&E techniques, such as handcrafted and hardcoded scripts or conven-
tional DSMLs, require QED testers to expend much time and effort conducting T&E on
the QED middleware. For example, if QED testers used domain-specific modeling lan-
guages to auto-generate configuration files, they would have to create a model for each
single instance configuration. More specifically, QED testers are faced with the following

challenges:

* Varying T&E scenario configurations with minimal effort. Each T&E scenario in

the QED project is expensive in both time and effort to create. Forcing QED testers to

118

(re)implement each scenario for each different configuration is also an expensive—
yet tedious and error prone—task to undertake. QED testers, therefore, need tech-
niques that will enable them to define a T&E scenario once and vary its configuration

without incurring the effort required to realize the original T&E scenario.

* Supporting multiple testers and operational environments for single T&E sce-
narios. Each stackholder in QED, such as BBN Technologies, Boeing, IHMC, and
Vanderbilt, have testers responsible for evaluating their respective development fea-
tures in QED against the GIG middleware under different scenarios. Moreover,
all tests are conducted in a dynamic testing environment named ISISlab (see Ap-
pendix A). Forcing QED testers to manage duplicate versions of a single T&E sce-
nario to account for the dynamics and heterogeneity of each individual tester and the
target testing environment is an expensive process. QED testers therefore need better

techniques to reduce such complexity when defining T&E scenarios.

The remainder of this chapter discusses four T&E template patterns we identified, imple-
mented, and analyzed to address the challenges of QED testers and to simplify T&E efforts,

while increasing evaluation capabilities of QED.

VIL2 Template Patterns for Testing and Experimentation

This section discusses four template patterns for T&E that increase configurability and
scalability. As shown in Figure VII.1, each pattern builds upon the other, and are the
building blocks of CUTE. The remainder of this chapter provides a detailed synopsis (i.e.,
problem statement and solution), evaluation, and application of each pattern in the context

of CUTE and the QED project case study described in Section VII.1.

119

CUTE \

Batch Dynamic Variable Configuration

Batch Variable Dynamic Variable
Configuration A Configuration

Variable Configuration

- /

Figure VIl.1: Template patterns that are building blocks for CUTE

VIL2.1 Variable Configuration Pattern

Problem statement. Traditional techniques for T&E rely on configuration files to deter-
mine the test scenario for the large-scale component-based DRE system under develop-
ment. The benefit of configuration files is that they decouple the implementation from
the configuration and behavior, i.e., enable late-binding. For example, component-based
middleware [90, 93] uses verbose XML files that determine how components intercom-
municate, what properties to set for the underlying middleware, and what values to set
for attributes of a component. System developers therefore implement the static portion
of the large-scale component-based DRE system in terms of the variable portion, and let
the variable portion (which realizes the decoupling) be controlled by external configuration
files.

In T&E, a single instance configuration file represents a single instance of a test run. To
evaluate a large-scale component-based DRE system, such as QED, under many different
scenarios (i.e., configurations), system developers must manually produce many different
configurations. In many cases, however, the size of the static portion of the configuration
has greater cost (e.g., time to generate, or number of characters) than the variable portion
of the configuration. Even in cases when the cost of the static portion is less than the cost
of the variable portion, manually producing multiple variants is both time-consuming and

€1ror prone.

120

Solution. The Variable Configuration pattern allows large-scale component-based DRE
system developers to define the static portion of a configuration file, such as the required
header information in an XML document, while using variables (or placeholders) to capture
the variable portion of the configuration. We formally define the Variable Configuration

pattern C = (S,V) as:
* aset S of characters that capture the static portion of the configuration C, and

» aset V of variables that define the variable portion of the configuration C.

A configuration instance is a single configuration used to execute a test scenario. It
is derived from a template configuration C by replacing the variable portions V of the
configuration with concrete values. Equation VII.1 defines the equation used to evaluate a

template configuration C.

C' = eval(C,D) (VIL1)

where C’ is a single instance configuration of C, and D is a set of tuples (K, v) determined by
system testers such that K € V and v = value(K) for configuration C'—which is analogous
to a dictionary.

Manifestation in CUTE and QED. We have realized the Variable Configuration pattern
in CUTE and applied it to the QED project. QED testers utilize the Variable Configuration

pattern using the following steps:

1. Define a text-based file that captures a single configuration.

2. Replace static portions of the single configuration with a template variable. This

represents a point-of-variablity in the template configuration. '

3. Define a dictionary file that consists of all key-value pairs for each variable in the
Variable Configuration. Developers also have the option of overriding keys in the

dictionary file at the command-line when invoking CUTE.

Tt is possible to combine this step and the previous step by auto-generating a template with its variables
already defined.

121

Using the user-defined template and dictionary, CUTE applies Equation VII.1 to produce
a single instance configuration. QED testers then use the derived configuration to evaluate

the system under development.

1]...

2 <configProperty >

3 <name>cpuTime </name>

4 <value >

5 <type><kind>tk_long </kind ></type >

6 <value ><long>${cpuTime } </long ></value >
7 </value >

8 </configProperty >

9 <configProperty >

10 <name>testOwner </name>

11 <value >

12 <type><kind>tk_string </kind ></type >

13 <value ><string >${testOwner } </string ></value >
14 </value>

15 </configProperty >

16

Listing VIl.1: Example of the deployment and configuration that uses the Variable
Configuration pattern

Listing VII.1 shows an excerpt from the deployment and configuration (D&C) file of a
test scenario from the QED project. Listing VII.1 contains two variables named cpuTime
(line 6) and testOwner (line 13), which are points-of-variability. Likewise, Listing VII.2
is an example dictionary for the template configuration in Listing VII.1, and Listing VIL.3

shows the concrete instantiation of the template configuration using the dictionary in List-

ing VIL.2.
1 [cpuTime=33.4
2 [testOwner=hillj

Listing VII.2: Dictionary for the D&C template.

<configProperty >
<name>cpuTime </name>
<value >

B W N =

122

<type><kind>tk_long </kind ></type >
<value><long >33.4</long ></value >
</value>
</configProperty >
<configProperty >
<name>testOwner </name>
<value >
<type><kind>tk_string </kind ></type>
<value><string >hillj </string ></value >
</value >
</configProperty >

Listing VII.3: Evaluation of the Variable Configuration pattern for the D&C.

Without the Variable Configuration pattern of the configuration, QED testers would have

to define each single instance configuration manually. Moreover, CUTE helps increase

the configurability and flexibility of T&E configuration by deferring realization of a single

instance configuration until as late as possible, i.e., not solely at test design time.

Pattern evaluation. The following is a list of benefits for using the Variable Configuration

pattern:

* Itreduces the number of single instance configurations that must be handcrafted since

system testers have to produce a template only once and use a dictionary to define

each configuration instance.

It reduces the amount of error that can be incurred from manually replicating each
configuration and modifying a small portion of it. In the case of tools that can auto-
generate configuration files, e.g., domain-specific modeling languages, it reduces the
amount of effort required to produce each configuration, such as manually modeling
each configuration via a cumbersome and tedious process. This also helps increase

the scalability of T&E.

It highlights the points-of-variability in a configuration. This makes is easier for

large-scale component-based DRE system developers to know what are the control

123

parameters in a test scenario (or configuration)—similar to control parameters in an

experiment. This also helps increase the scope of T&E.

Although the Variable Configuration pattern has many benefits, it also has several con-
sequences. The following is a list of consequences for using the Variable Configuration

pattern:

* Developers must define the value of each variable in V, or the configuration is con-
sidered to be invalid since all variables do not expand to a concrete value. This can
become problematic in situations where portions of the Variable Configuration can
be ignored, such as doing multiple passes in a single template using different con-
figuration dictionaries and each configuration dictionary contains a disjoint subset of
the variables in the template configuration. Developers must take this scenario into
account to ensure each variable is properly expanded before using the single instance

configuration.

* The usability of a configuration is unknown until it is applied to the system under
development in a test scenario. This can be overcome, however, if the mechanism
for generating the dictionary understands the contraints of the target context, similar

to constraints in domain-specific modeling languages.

VIL.2.2 Batch Variable Configuration Pattern

Problem statement. In Section VII.2.1, we discussed the Variable Configuration pattern
and how it enables developers to generate single instance configuration files using a tem-
plate and dictionary. This technique is acceptable when testing only a few different con-
figurations since the number of dictionaries required to realize each single instance con-
figuration is minimal. For example, if a developer wants to validate a single configuration
by executing a test run of the configuration, then the Variable Configuration pattern is a

satisfactory technique.

124

When trying to test many different configurations derived from a single template, how-
ever, it becomes problematic trying to manage many different dictionary files—where each
instantiates a single instance configuration. Moreover, it becomes hard to logically under-
stand how each dictionary relates without using ad hoc techniques, such as creating test
suites where each configuration is representative of each test in the test suite. For example,
a QED tester who is testing performance and security logically maintains each dictionary
for evaluating the respective concern in a directory that has the appropriate name, such as
./performacnce or ./security. Although this is acceptable, it negatively impacts

T&E maintainability and scalability.
Solution. The Batch Variable Configuration pattern builds upon the Variable Configura-
tion pattern and enables large-scale component-based DRE system developers to logically
group common configurations (i.e., dictionaries) that are evaluated at once. Developers
leverage the Batch Variable Configuration pattern by defining logically related dictionaries,
such that all the dictionaries used to generate configurations for evaluating performance, in
a single monolithic configuration.

The Batch Variable Configuration has the same formal definition as the Variable Config-
uration (see Section VII.2.1) since it is using a single template. It, however, has a different

evaluation function as illustrated by Equation VII.2:

C" = batcheval (C,D") = {¥Vd € D' : eval(C,D)} (VIL2)

where D' is the set of dictionaries such that if d € D’ then d is an instance of D (see
Section VII.2.1) and C” is the set of configurations such that C' = eval(C,d) and C' € C”.
Manifestation in CUTE and QED. We have realized the Batch Variable Configuration
pattern in CUTE and applied it to the QED project. QED testers leverage the Batch Variable

Configuration pattern using the following steps:

125

1. Define a text-based template configuration file that contains variables, similar to the

process in the Variable Configuration pattern (see Section VIIL.2.1).

2. Define a set of dictionaries in a single file where each individual dictionary defines

the key-value pair for each variable in the template configuration file.

Using the user-defined template file and batch configuration file, CUTE applies Equa-
tion VIL.2 to produce a set of configuration files. QED testers then use the derived con-

figuration files to evaluate system QoS.

config (lowCPU.cdp) ({
cpuTime=33.4
testOwner=hillj

}

config (highCPU.cdp) {
cpuTime=87.8
testOwner=hillj

O 00 N Ut B WIN =

}

Listing VII.4: Batch dictionary for the D&C template.

Listing VII.4 illustrates a set of dictionaries for the template configuration in List-
ing VII.1. As highlighted in Listing VII.4, there are two different, yet related, config-
urations for testing CPU workload named: 1owCPU.cdp (line 1) and highCPU. cdp
(line 6). Likewise, Listing VII.5 shows the concrete instantiation of the D&C excerpt for

the batch configurations in Listing VII.4.

/1 1lowCPU. cdp

<configProperty >
<name>cpuTime </name>
<value >
<type><kind>tk_long </kind ></type >
<value ><long >33.4</long ></value >
</value>
</configProperty >
<configProperty >

SO XN AW

—_—

126

11 <name>testOwner </name>

12 <value >

13 <type><kind>tk_string </kind ></type>
14 <value><string >hillj </string ></value >
15 </value >

16 </configProperty >

17

18

19 | // highCPU.cdp

20 | ...

21 <configProperty >

22 <name>cpuTime </name>

23 <value >

24 <type><kind>tk_long </kind ></type >
25 <value ><long >87.8 </long ></value >

26 </value >

27 </configProperty >
28 <configProperty >

29 <name>testOwner </name>

30 <value >

31 <type><kind>tk_string </kind ></type >
32 <value><string >hillj </string ></value >
33 </value >

34 </configProperty >

35

Listing VIIL.5: Evaluation of the Batch Variable Configuration pattern for the D&C.

Without the Batch Variable Configuraton pattern, QED testers would have a hard time
logically maintaining and producing multiple configuration files used to evaluate system
QoS.

Pattern evaluation. In addition to the benefits for using the Variable Configuration pattern,

the following is a list of benefits of using the Batch Variable Configuration pattern:

* It reduces the amount of single configurations that must be managed by large-scale
component-based DRE system developers. Developers can just define all valid con-

figurations in a single file and batch process it.

* It helps logically group together different configurations that can be processed at

once. For example, using the Batch Variable Configuration pattern, developers can

127

group configurations by ownership (i.e., who created the configuration) or by QoS
concerns for each individual configuration tests, such as performance, reliability, and

security.

Although the Batch Variable Configuration patterns has many benefits, it also has sev-
eral consequences. In addition to the consequences of the Variable Configuration pattern,

the following is a list of consequences for using the Batch Variable Configuration pattern:

* The Batch Variable Configuration is valid if and only if each individual configura-
tion is valid. It is, however, possible to suppress this consequence through partial
validity where it is acceptable to have invalid configurations in the batch configura-
tion, or ensuring each individual configuration is valid before including it in the batch

configuration.

* The Batch Variable Configuration can be a point-of-failure because multiple con-
figurations are defined in a single file. If the batch file is lost, then testers must
redefine the configuration file. This can be overcome, however, by chaining a batch
configuration using external configuration—similar to the C++ include preprocessor

definition.

VIL.2.3 Dynamic Variable Configuration Pattern
Problem statement. In Section VII.2.1 and Section VII.2.2, we discussed two template
patterns for improving both configurability and scalability of T&E. Both patterns, however,
do not fully take into account T&E concerns, such as the operating environment. For
example, testOwner in Listing VII.2 and Listing VII.4 is hardcoded to hi11j. There
can be situations where the value of testOwner needs to be determined by the username
of the person evaluating the configuration for accountability purposes.

Requiring large-scale component-based DRE system developers to maintain many dif-

ferent configuration files based on some side-effect of the operating environment—even in

128

the case of the Batch Variable Configuration pattern—can negatively affect adaptability and
configurability. For example, if developers are using dynamic testing environments, such as
ISISlab, and want to evaluate performance of the same large-scale component-based DRE
system under different experiments, then it requires developers to maintain different (yet
similar) configurations for each experiment since the operating environment is logically
different, e.g., different hostnames and IP addresses.

Solution. The Dynamic Variable Configuration pattern builds upon the Variable Config-
uration pattern and enables developers to capture the variable portion of a configuration
that depends on a context-based side-effect, such as the hostname of a node in an exper-
iment or the output of an equation evaluator. We formally define the Dynamic Variable

Configuration pattern DC = (C,A) as:

* a template configuration C that contains the static and variable portions of the con-

figuration file (see Section VII.2.1), and

* a set A of context-based side-effects (or dynamic variables) that capture dynamic
portions of configuration DC. We assume that € A produces a single line of text

that can be used in place of its respective dynamic variable in C.

We derive a single instance configuration of DC by first evaluating C using Equa-

tion VIL1 in Section VIL.2.1. Next, we evaluate the result C' using Equation VIIL.3:

DC' = eval(C',A) (VIL3)

where DC’ is a single instance configuration for the Dynamic Variable Configuration pat-
tern that large-scale component-based DRE system developers use for T&E.

Manifestation in CUTE and QED. We have realized the Dynamic Variable Configuration
pattern in CUTE and applied it to the QED project. QED testers leverage the Dynamic

Variable Configuration pattern using the following steps:

129

1. Define a text-based template configuration file that contains variables similar to the

process in the Variable Configuration pattern (see Section VIIL.2.1).

2. Replace portions of the configuration with dynamic variables that will perform a

side-effect to determine the value for that particular portion of the document.

3. Define a dictionary file that consists of all key-value pairs for each variable in the

configuration. Developers also have the option of overriding keys in the dictionary

file at the command-line when invoking CUTE.

Using the user-defined template, dictionary, and side-effects, CUTE uses Equation VII.1

and Equation VII.3 to evaluate the configuration. QED testers then use the derived single

instance configuration to evaluate system QoS.

0NN LN B W

O

10
11
12
13
14
15
16

<configProperty >
<name>cpuTime </name>
<value >
<type><kind>tk_long </kind ></type >
<value ><long>${cpuTime } </long ></value >
</value>
</configProperty >
<configProperty >
<name>testOwner </name>
<value >
<type><kind>tk_string </kind ></type>
<value><string >${userName } </string ></value >
</value >
</configProperty >

Listing VII.6: Example of the D&C that uses the Dynamic Variable Configuration
pattern

Listing VIL.6 illustrates an example configuration that uses the Dynamic Variable Con-

figuration pattern, which is a variant of the configuration from Listing VII.1. As highlighted

on line 13, we have replaced hil1lj with a variable named userName. Likewise, List-

ing VIL.7 lists an example dictionary for Listing VII.6, which produces the same single

130

instance configuration in Listing VII.32. In this case, userName is defined as a dynamic

variable where use rName is determined by the output of the command /usr/bin/whoami.

1 |[cpuTime=33.4
2 |userName= ‘/usr/bin/whoami °

Listing VII.7: Example dictionary for the Dynamic Variable Configuration pattern.

Without the Dynamic Variable Configuration pattern, QED testers would have to either
use ad hoc techniques of maintaining many different single instance configuration files
for different operating contexts, such as different developers executing tests or running
experiments on different hosts. CUTE, therefore, improves the adaptability, configurability,
and scalability of T&E.

Pattern evaluation. In addition to the benefits of using the Variable Configuration pattern,

the following is a list of benefits for using the Dynamic Variable Configuration pattern:

* It enables configurations to adapt to their operating environment. Developers do not

have to have multiple configurations for each context, such as different hosts or users.

* It greatly increases the agility and configurability of a configuration for T&E.

* Developers can implement user-defined side-effects that understand the execution
environment, such as auto-generating a UUID or binding to the appropriate network
interface, and can be applied to the configuration. This helps increase the configura-

tion flexibility for T&E.

Although the Dynamic Variable Configuration pattern has many benefits, it has several
consequences. In addition to the consequences from the Variable Configuration pattern, the

Dynamic Variable Configuration pattern has the following consequences:

* The configuration is valid if and only if C is valid and all side-effects in A execute
successfully. This means developers are not able to learn about the validity of the

configuration until it is evaluated in its target operating environment.

’The configuration in Listing VIL6 is invalid on standard Windows-based machines

131

* Even if each side-effect executes successfully, the result of each side-effect may pro-
duce an invalid value for its respective variable in the configuration. This can make

the Dynamic Variable Configuration invalid.

VIL.2.4 Batch Dynamic Variable Configuration Pattern

Problem statement. In Section VII.2.3 we discussed the Dynamic Variable Configuration
pattern, which enables developers to determine portions of a configuation using context-
based side-effects. Similar to the Variable Configuration pattern, the Dynamic Variable
Configuration only produces a single instance configuration. When trying to logically
group common configurations, it requires developers to rely on ad hoc techniques to re-
alize the logical associations, such as grouping all configurations generated by each user
based on tests that evaluate performance. Although this is acceptable in some cases, e.g.,
testing the validity of a single instance configuration, it can negatively impact the scalability
and maintainability of configurations for T&E.
Solution. The Batch Dynamic Variable Configuration pattern builds upon the Dynamic
Variable Configuration pattern and enables large-scale component-based DRE system de-
velopers to logically group common configurations that are derived at the same time. De-
velopers leverage the Batch Dynamic Variable Configuration pattern by defining logically
related dictionaries, such as all the dictionaries used to generate configurations for evaluat-
ing security, in a single monolithic dictionary.

The Batch Dynamic Variable Configuration has the same formal definition of the Dy-
namic Variable Configuration (see Section VII.2.3) since it is using a single template. It,

however, has a different evaluation function as illustrated by Equation VII.4:

DC" = batcheval (C,D',A) = {¥d € D' : eval(eval(C,d),A)} (VIL4)

132

where D’ is the set of dictionaries such that if d € D/, then d is an instance of D (see Sec-
tion VIL.2.1). DC” is the set of configurations such that C' = eval (C,d), DC' = eval (C',A),
and DC' € DC".

Manifestation in CUTE and QED. We have realized the Batch Dynamic Variable Config-
uration pattern in CUTE and applied it to the QED project. QED testers leverage the Batch

Dynamic Variable Configuration pattern using the following steps:

1. Define a template configuration file that contains variables and side-effects similar to

the process in the Dynamic Variable Configuration pattern (see Section VII.2.3).

2. Define a set of dictionaries in a single file where each individual dictionary defines

the key-value pair for each variable in the template configuration file.

Using the user-defined template file and batch configuration file, CUTE applies Equa-
tion VII.4 to produce a set of configuration files. QED testers then use the derived con-

figuration files to evalate the system under development.

1 |config (veryLowCPU.cdp) {

2 cpuTime=12.5

3 userName= ‘/usr/bin/whoami °
4 |}

5

6 [config (veryHighCPU.cdp) {

7 cpuTime=207.1

8 userName= ‘/usr/bin/whoami *
911}

Listing VII.8: Batch dictionary for D&C that uses the Dynamic Variable Configura-
tion pattern.

Listing VIL.8 illustrates a set of dictionaries for the template in Listing VIL.6. As high-
lighted in Listing VIIL.8, there are two different configurations named: veryLowCPU. cdp
(line 1) and veryHighCPU. cdp (line 6). Likewise, Listing VIL.9 shows the evaluation

of the D&C excerpt for the batch configurations in Listing VIL.8.

1|// veryLowCPU.cdp

133

0 3 ON BN

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Listing VII.9: Evaluation of the Batch Variable Configuration pattern for the D&C.

Without the Batch Dynamic Variable Configuration pattern, QED testers would have a
hard time logically maintaining and producing multiple configuration files used to evaluate

system QoS. CUTE, therefore, helps increase the adaptability and configurability of T&E

<configProperty >

<name>cpuTime </name>
<value >
<type ><kind>tk_long </kind ></type >
<value><long >12.5</long ></value >
</value>
</configProperty >
<configProperty >
<name>testOwner </name>
<value >
<type><kind>tk_string </kind ></type>
<value><string >hillj </string ></value >
</value>
</configProperty >

/1 veryHighCPU . cdp

<configProperty >

<name>cpuTime </name>
<value >
<type><kind>tk_long </kind ></type >
<value><long >207.1</long ></value >
</value>
</configProperty >
<configProperty >
<name>testOwner </name>
<value >
<type><kind>tk_string </kind ></type>
<value><string >hillj </string ></value >
</value >
</configProperty >

configurations.

Pattern evaluation. In addition to the benefits of the Dynamic Variable Configuration

134

and Batch Variable Configuration, the following is a benefit for using the Batch Dynamic

Variable Configuration pattern:

* Reduces the amount of single instance configurations needed to logically associate

common configurations.

Although the Batch Dynamic Variable Configuration pattern has many benefits, it has
several consequences. In addition to the consequences from the Dynamic Variable Configu-
ration and Batch Variable Configuration Pattern, the Batch Dynamic Variable Configuration

pattern has the following consequence:

* The batch configuration is valid if and only if all the individual configurations in the

batch file are valid.

VIL.3 Quantitative Analysis of Template Patterns

In this section, we quantify the that improvement testers gain for T&E from using each

template pattern in the context of an example test scenario from the QED project.

VIL.3.1 Revisiting the Multi-stage Workflow

In Chapter V Section V.3.1, we introduced the multi-stage workflow scenario as an ex-
ample T&E scenario designed to test QED’s ability to ensure application-level QoS prop-
erties, such as reliability and end-to-end response time, when handling applications with
different priorities and privileges. To reiterate, the multi-stage workflow illustrated in Fig-
ure V.4 is composed of six different components. Each component in the multi-stage work-
flow contains behavior and workload, which can be configured by QED testers at D&C time
using configuration files similar to the listings in Section VII.2. For example, developers
can configure the periodicity of the SensorClient depending on what aspects of the

QED they are testing (e.g., using high periodicity to produce high utilizations) or alter the

135

throughput ratio for an input event triggering an output event to produce different network
workloads.

In addition, all experiments involving the multistage worklow application are conducted
in ISISlab. Each development group on the QED project (i.e., BBN Technologies, Boeing,
and IMHC) uses the multistage workflow application to test their features in QED. This
means T&E for the multistage workflow application must be able to handle a wide variety
of configurations, operational scenarios, heterogeneity, such as different users executing
the same test scenario under different ISISlab projects, or varying the CPU workload or
event publish rate of each component to produce different effects on QED and the GIG
middleware. Overall, the multistage workflow application provides QED testers with 11
points-of-variability for T&E.

If the QED testers relied on traditional techniques, such as handcrafted configuration
files, then they would have a hard time managing T&E for the multistage workflow ap-
plication. QED testers, therefore, leverage CUTE and its template patterns to increase the
scalability and configurablity of the multistage workflow application. More importantly,
they elect to use CUTE because CUTE will help them increase their scope of T&E and
evaluate each point-of-variability. The remainder of this section quantifies the improve-

ments that the template patterns manifested in CUTE provide QED testers.

VIL3.2 Quantitative Analysis of Results

To evaluate the improvement gained from CUTE, we calculate the number of single
instance configuration files derived from each template pattern in Section VII.2, which is
analogous to the number of ad hoc configuration files QED testers would have to manually
create for T&E using traditional techniques. Although we discussed four template patterns

in Section VII.2, the Batch Variable Configuration, Dynamic Variable Configuration, and

136

Batch Dynamic Variable Configuration pattern are defined in terms of the Variable Con-
figuration pattern. The subtle difference is when testers realize the valid range of each
variable, i.e., the set of valid values for the variable.

We, therefore, can determine the number of single instance configuration files by ana-
lyzing the Variable Configuration pattern. Equation VIL5 highlights the equation for deter-
mining the number of single instance configuration files |S|—where S is the set of single
instance configuration files—based on the points-of-variability in a single configuration

(see Section VIL.2.1).

IS| = H |range(v)| (VIL5)

veV

As illustrated in Equation VIL5, range(v) is the set of valid values for variable v € V.
The number of single instance configurations § that is realizable from a single template
configuration, therefore, is determined by the product of the size in each variable’s range,
i.e., range(v). For example, using only a subset of the 11 points-of-variability in the
multistage workflow application, if each component has a cpuTime integer variable (see
Listing VII.1) that determines its CPU workload for the current test, and valid values for
cpuTime are [10,100] msec, then QED testers can derive (100 — 10) x 6 = 540 different
single instance configurations from a single template configuration. Likewise, if there are
5 different QED testers executing the multistage workflow application in different ISISlab
experiments and there is a dynamic variable named userName="/usr/bin/whoami®
to determine who is executing the test for accountability reasons, then the number of pos-
sible single instance configurations increases to 540 x 5 = 2700.

To QED testers, this is a great improvement over manually handcrafting 540 or 2700
different single instance configurations, especially when a large portion of the single in-
stance configuration is constant (or static) between different configurations. Instead, QED
testers focus on defining the different dictionaries used to instantiate the template configu-

ration. This also helps concentrate QED testers efforts on locating points-of-variability in

137

the T&E efforts, which can be used to conduct more controlled experiments against both

QED and the GIG.

VII.4 Chapter Summary

Increasing T&E scope and scale can improve understanding and evaluation of large-
scale component-based DRE system QoS concerns, such as performance, reliability, and
security. This chapter presented four template patterns for improving T&E configurabil-
ity and scalability. Each template pattern has been realized in the CUTE template engine.
Testers use CUTE by defining configuration templates, and delay realization of single in-
stance configuration until late in the system lifecycle, e.g., when enough detail is known
about the operating environment. Our analysis of CUTE on a representative large-scale
component-based DRE project showed that it can significantly increase T&E scope with-
out increasing the number of single instance configurations. Moreover, our quantitative
analysis showed that CUTE can improve large-scale component-based DRE system QoS

evaluation.

138

CHAPTER VIII

TECHNIQUE FOR PREDICTING END-TO-END RESPONSE TIME OF UNIQUE
DEPLOYMENTS OF LOW UTILIZED SYSTEMS

Component-based technologies are raising the level of abstraction so software system
developers of distributed real-time and embedded (DRE) systems can focus more on the
application’s “business-logic”. Moreover, component-based technologies are separating
many concerns, such as deployment (i.e., placement of component on host) and configu-
ration (i.e., setting of component properties) [27], management of the application’s lifecy-
cle [29], and management of the execution environment’s quality-of-service (QoS) poli-
cies [29, 110] of the application. The result of separating the concerns is the ability to fully
address each concern independently of the application’s “business-logic” (i.e., its imple-
mentation).

Although component-based technologies are separating many concerns of DRE system
development, realizing systemic (system wide) QoS properties, which is a key characteristic
of DRE systems, is being pushed into the realized system’s deployment and configuration
(D&C) [27] solution space. For example, it is hard for component-based DRE system
developers to fully understand systemic QoS properties, such as end-to-end response time
of system execution paths until the system has been properly deployed and configured in its
target environment. Only then would a component-based DRE system developer determine
if different components designed to collaborate with each other perform better when located
on different hosts compared to collocating them on the same host, which in turn might give
rise to unforeseen software contentions, such as waiting for a thread to handle an event, or
event/lock synchronization, or many known software design anti-patterns [112] in software
performance engineering (SPE) [77].

Outside of brute force trial and error, conventional SPE techniques [60, 77, 129] can

139

be used to evaluate different D&Cs. Although such techniques can assist in evaluating dif-
ferent D&Cs, existing techniques require manual construction of SPE models for each dif-
ferent deployment of the system. Unfortunately, this can be a daunting task as component-
based DRE systems grow larger and more complex. Component-based DRE system de-
velopers, therefore, need improved techniques that reduce the complexity of evaluating
systemic QoS properites of different D&Cs, such as end-to-end response time.

Solution approach: Use baseline profiles to evaluate deployments. Each individual
component in a component-based DRE system has a baseline profile that captures its per-
formance properties when deployed in isolation to other components. As components are
collocated (i.e., placed on the same host) with other components, their actual performance
may deviate from its baseline performance profile due to unforeseen software contentions.
Consequently, the component’s deviation from its baseline performance not only affects its
performance, but it also affects the performance of other components in the system, and
systemic QoS properties, such as end-to-end response time.

This chapter describes our solution approach called the Anti-deployment Solution sPace
Analytical Model (Anti-SPAM), which predicts end-to-end response time of execution paths
for different deployments of a component-based DRE system. Our approach uses baseline
profiles for each component, which are obtained by instrumenting and profiling the com-
ponents in a controlled environment. We then automatically construct an SPE analytical
model for each different deployment of a component-based DRE system using a behavior
graph of the system. Finally, we parameterize the workload of the auto-constructed SPE
model and approximate the end-to-end response time of execution paths in the component-
based DRE systems. This enables component-based DRE system developers to focus more
on evaluating D&C’s on their target architecture that are within acceptable error bounds, as

opposed to evaluating each individual D&C.

140

Chapter organization. The remainder of this chapter is organized as follows: Sec-
tion VIII.1 introduces a case study to highlight challenges of software contention; Sec-
tion VIIL.2 discusses our technique for evaluating unique deployments; Section VIIL.3 val-
idates our approach in the context of our case study; and Section VIII.4 summarizes the

contributions of the chapter.

VIII.1 Case Study: The SLICE Shipboard Computing Scenario

In this section we use a representative case study from the shipboard computing en-
vironment domain to highlight how different D&Cs can introduce different software con-

tention problems that impact systemic QoS properties.

VIII.1.1 Overview of the SLICE Scenario

The SLICE scenario is a representative example of a shipboard computing environment
application. As illustrated in Figure VIII.1, the SLICE scenario consists of 7 different

component instances, (i.e., the rectangular objects): SenMain, SenSec, PlanOne, PlanTwo,

SenMain EffMain
(Sensor) N (Effector)
N\ /s

SenSec EffSec
(Sensor) (Effector)

PlanOne PlanTwo Config
(Planner) (Planner) (ConfigOp)

Figure VIIl.1: High-level structural composition of the SLICE scenario

Config, EffMain, and EffSec. The directed lines between the components represent connec-
tions for inter-component communication, such as input/output events. The components in
the SLICE scenario are deployed across 3 computing nodes and SenMain and Ef fMain
are deployed on separate nodes to reflect the placement of physical equipment in the pro-

duction shipboard environment. Finally, events that propagate along the path marked by

141

the dashed lines in Figure VIII.1 represent an execution (or critical) path where meeting

end-to-end response time within a specified exucution time is desirable.

VII1.1.2 Contention in the SLICE Scenario

We define software contentions as the deviation in performance as a result of the sys-
tem’s implementation—also characterized as performance anti-patterns [112]. In many
cases, hardware contention does not have noticeable affects on resource utilization. For
example, it is possible to have high end-to-end response time and low CPU utilization if
different portions of the software components (e.g., threads of execution) unnecessarily
hold mutexes that prevent other portions of the software (or components) from executing.
The (software) component holding the mutex may not be executing on the CPU, however,
it can be involved in other activities, such as sending data across the network. Likewise, it
is possible to have high response time if too many components are sending event requests
to a single port of another component [96], which increases the queuing time for handling

events.

c

°

£ 1400

£

881050

2% 700 M
g 2

o= 350

S

:"E 0

S 1 2 3 4 5 6 7 8 9 10 11

Test Number

‘ ® Avg. Time O Worse Time

Figure VIII.2: Inital results of SLICE scenario to motivate software contention.

For example, Figure VIIL.2 illustrates some initial results for ad hoc testing of the
SLICE scenario in ISISLab to determine what unique deployments will have a end-to-end

critical path response time of 350 msec. As shown in Figure VIII.2, each test respresents

142

a different deployment and each deployment yields a different critical path end-to-end re-
sponse time. For example, tests 10 and 11 have a critical path end-to-end response time
difference of ~ 30 msec.

We believe this is due to unforeseen software contention resulting from collocating
components that were designed and implemented in isolation to other components. More
importantly, however, large-scale component-based DRE system developers would waste
time and effort evaluating the performance of unique deployments that may not meet their
performance needs, such as end-to-end response time. The remainder of this chapter, there-
fore, details how we use baseline profiles and SPE analytical models to understand the de-
ployment solution space and evaluate end-to-end response time of component-based DRE

systems.

VIIL.2 Using Baseline Profiles to Evaluate Unique Deployments

This section discusses our technique for using baseline profiles to automatically con-

struct SPE models to evaluate different deployments of component-based DRE systems.

VIIL.2.1 Understanding the Unique Deployment Solution Space

After system composition, a component-based system becomes operational after its
deployment and configuration in the target environment. There are, however, many ways
to deploy a component-based systems, such as the SLICE scenario in Section VIII.1. For
example, Table VIII.1 shows two unique deployments for the SLICE scenario where both
differ by the placement of one component; the SenMain component on either Hostl or
Host2.

When we consider all the unique deployments in the deployment solution space for a
component-based systems, it is possible to represent such a space as a graph G = (D, E)

where:

* D is a set of vertices d € D in graph G that represents a unique deployment d in

143

Table VIIl.1: Example of unique deployments in the SLICE scenario

Deployment
Host A B
1 SenMain, SenSec SenSec, Config
Config

EffSec, PlanOne EffSec, PlanOne

2 .
SenMain

3 PlanTwo, EffMain | PlanTwo, EffMain

the deployment solution space D. For example, deploying SenMain then SenSec on
a single host H; is the same as deploying SenSec then SenMain on the H;. This is

different from traditional bin packing, which is based on permutations [25].

e E is a set of edges e € E where ¢; ; is an edge between two unique deployments
i,j € D. Each edge e signifies moving a single component from one host to another

host in the system.

Definition VIIL2.1. If Cy,; is the set of components deployed on host h in system H for

deployment i, then a unique deployment is defined as:

hEH:Chi#Chjsi, jEDNI# (VIIL1)

dj dj

G

Figure VIII.3: Simple graph of component-based system deployment solution space

The resultant graph G, as shown in Figure VIIL.3, allows us to create a visual repre-

sentation of the deployment solution space. The visualization, however, has no concrete

144

meaning from the QoS perspective because developers cannot understand how one deploy-
ment differs from another deployment except for the unique combination of components
on each host. We address this problem by assigning a value to each edge e in graph G using
Equation VIII.2,

val(e) = 6 (VIIL.2)

which gives rise to a directed graph G'. Figure VIIL4 illustrates G’ where & represents
some difference of performance in a single QoS dimension, such as end-to-end response

time or system throughput.

G

Figure VIIL.4: Directed graph of component-based system deployment solution
space

QoS, however, is known to comprise a N-dimensional space [100], and G’ shown in
Figure VIIL.4 is the deployment solution space for a single dimension of QoS, i.e., visu-
alized on a single plane. When we consider N dimensions of QoS, we create an N-planar
graph G”. Figure VIIL5 illustrates G” where each plane represents a single QoS dimen-
sion. The value of each edge between unique deployments in different planes, i.e., QoS
dimensions, forms a N-tuple vector (8, &2, ..., 8,) where §; = val(e € G}) and i € QoS
dimension, G} € G”.

When also considering the N-planer graph of the N QoS dimension solution space,
an edge between the same deployment for each QoS dimension is governed by Prop-

erty VIIL.2.1. This results in a N-tuple vector equal to zero and is, therefore, ignored.

145

5,

i & 5 i
2
4 151, [, %50
i 1 T
% Lo
<‘ I
Foamn } % &,
‘< !GQ

o !q !G’1 Gn

Figure VIII.5: N-planar directed graph of component-based system deployment so-
lution space for N QoS dimensions

Property The value of an edge between the same unique deployment in different planes is

Z€10.

Due to the complexity of the N-dimensional QoS solution space in relation to component-
based system deployment, we focus on evaluating QoS in a single dimension in this chapter,
e.g., end-to-end response time. Moreover, even when evaluating QoS in a single dimension
the solution space grows exponential as the number of hosts/components increase. The
remainder of this section, therefore, discusses our technique for evaluating unique deploy-
ments using conventional SPE models with the goal of reducing the amount of testing on

the target architecture.

VIIL.2.2 Using Baseline Profiles to Analyze the Deployment Solution Space

To the best of our knowledge, this dissertation is the first research that investigates
using SPE analyitcal techniques to construct analytical models that take both workload and
deployment, or component placement, as input parameters to auto-construct SPE models.
To reduce the complexity of the problem and gain better understanding of the problem,
solution, and future research directions, we have limited the problem space to large-scale
component-based systems to the category of M/M/1 models [77].

When we assume all communication is instantaneous, i.e., neglect network workload,

146

the end-to-end response of a large-scale component-based DRE that communicates asy-

chronously using events can be predicted by Equation VIII.3
RTp =Y Ciyy (VIIL3)
i

where RTp is the end-to-end response time of execution path P and Cj,, is the response
time of a component, which is typically a port, in the execution path. In addition, since we
are within the M/M/1 modeling class, we know the response time of a given component, or

its individual port, is given by Equation VIIL.4 [77]:

1

CiRT = m

(VIIL4)
where u = % is the service rate, given S is the service time, of the component’s port and A
is the arrival rate of events into that particular component’s port.

In Section VIII.1.2, we illustrated that different unique deployments have different end-
to-end response times. Likewise, we also argued this is a result of contention experienced
between collocated components. Agrawal [5], which was later reiterated in Menasce et
al. [77], illustrate how you can elongate, or approximate, the service time in mixed models,
such as open/closed models, that are independent of each other but compete for the same
resources—similar to collocated components—based on the utilization of the other model

using Equation VIIL.5:
S

§=—"
I— Uused

(VIIL5)

where §' is the elongated service time and U,,, is the utilization of the other model. Using
Equations VIII.3— VIIL.5, Algorithm 2 lists our algorithm for automatically constructing a

SPE analytical model using both component placement and workload as input parameters.

As illustrated in Algorithm 2, given the assembly of the system and its entry points,

147

Algorithm 2 General algorithm for auto-constructing an Anti-SPAM models
1: procedure CONSTUCT(A,H,D,B,E)

2: A: set of components in the system and their interconnections
3: H: set of hosts in the system
4: D: mapping of components to hosts for A
5: B: set of baseline service times for all components
6: E: set of entry points into A
7: A=A
8: for all doe € E
9: A’ = propagate (A’, e;, A)
10: end for
11: DM =0
12: for all dod € D
13: DM = deploy (DM, d, A’, H)
14: end for
15: AM = elongate (DM, B)

16: return AM
17: end procedure

i.e., where events enter the system, we first propagate the arrival rate for each entry point
through the assembly A, or system (line 9). After we propogate the arrival rates through the
system, we construct a deployment model DM of the system (line 13) using the provided
deployment information D for each component in the system. Given the deployment model
of the system, we finally construct an analytical model AM by elongating the service times
(line 15) using Equation VIIL.5 where S is the baseline profile of component’s port and
U,seq 18 the sum of the baseline utilization for the other collocated components, which is
calculated using the propagated arrival rates and their corresponding baseline service times.
Using the returned analytical model AM, which contains the predicted arrival rate A and
elongated service time S’ for each component in the system, we then use Equation VIIL3 to
predict the end-to-end response time for a given path, without having to manually construct

an analytical model for each unique deployment of the system.

148

VIIL.3 Evaluating the SLICE Scenario

In Section VIIL.2, we presented a simple algorithm for predicting the end-to-end re-
sponse time of unique deployments for component-based systems that communicate asy-
chronously using events. This section presents our results for validating our algorithm
against the SLICE scenario to determine if we can predict the end-to-end response time

within 10-15% error.

VIIL.3.1 Experimental Setup

In Section VIII.1, we introduced the SLICE scenario. As explained in Section VIII.1,
the SLICE scnerio is composed of 7 components that communicate via asynchrounous
events. More importantly, the SLICE scenario contains a critical path and different unique
deployments of the SLICE scenario yield different end-to-end response times for its crit-
ical path. We therefore want to predict the end-to-end response time of the critical path,
which will help reduce the number of unique deployments that must be tested on the target
architecture continuously throughout the software lifecycle, i.e., test only the deployments
that are within acceptable error bounds of their actual end-to-end response time.

To validate Anti-SPAM’s end-to-end response time prediction capabilities, we used
early integration testing techniques presented in Chapter III to model the behavior and
workload of each component in the SLICE scenario. More specifically, we defined each
component in the SLICE scenario such that it is bound to CPU workload only, since it is
easy to emulate reliable CPU workload, and the CPU service time was randomly selected
from the range of [10-90] msec. Likewise, we randomly selected the arrival rates of the
events entering the system, i.e., events that enter the system via SenMain and SenSec,
from the range of [1-10] Hz. This enabled components in the SLICE scenario to obtain a
baseline utilization in the range of [1-90]% when deployed in isolation.

After constructing the behavior and workload models for the SLICE scenario, we used

the techniques presented in Chapter IV to generate emulation code for each component

149

in the SLICE scenario that targeted the CIAO component-based middlware architecture.
Likewise, we used the techniques in presented in Chapter VII to manage the complexity of
generating many different deployments and configurations for testing.

Each deployment and configuration of the SLICE scnerio was executed in ISISlab (see
Appendix A) for approximately 10 minutes. We chose to execute the system for 10 min-
utes because that was enough time for more than ~ 600 events, which resulted in ~ 1200
data points, to pass through the system and ensire the emulation of events arriving into
the system reached the specified arrival rate for the given test. Finally, we used the tech-
niques presented in Chapter V to analyzed data collected during each test run of the SLICE

scenario.

VIIL.3.2 Experimental Results

Initial Investigation. The main goal of Anti-SPAM is predict end-to-end response
time of execution paths, such as the critical path in the SLICE scenario, within 10-15%
error. Figure VIIL.6 highlights our initial results for predicting the end-to-end response
time of the critical path in the SLICE scenario. As illustrated in Figure VIII.6, the percent
error between our predicted and measured results were not within our desired 10-15% error
range.

Because the predicted end-to-end response time were not within our desired error range,
we decided to investigate the problem in depth. First, we started with the percent error of
the elongated service times since they are used to calculate the end-to-end response times.
Table VIII.2 illustrates the analysis of a single unique deployment in the SLICE scenario.

As highlighted in the Table VIII.2, the host(s) with the higher expected utilization, which
is obtained by summing the baseline utilization of each component, contained components
that had the higher percent errors in their elongated service times. To further understand

the effects of expected host utilization on the elongated response times for each component,

150

140

120

100 |-

80

60

40 |

20

Percent Error

-20

-40

-80

(=]

100

200

Unique Deployment

300

400

500

Figure VII.6: Percentage error between initial measured and predicted end-to-end
response time of SLICE critical path for unique deployments

Table VIIl.2: Analysis of elongated service times for critical path components in a
single deployment of the SLICE scenario

Instance Measured (msec)

Predicted (msec)

Percent Error Host Ultil.

SenMain
PlanOne
PlanTwo
Config
EffMain

107.365
19.829
10.036
149.27

101.625

206.478
12.58
11.4416
56.68
218.623

151

92.31
-36.52
14.01
-62.028
115.12

153
126
126
153
153

3500 T T T T T T T T

3000

2500

2000

++

1500

Percent Error

1000

e+ +

-
E R TS £ ST RS

500

L_&b 18§

1 0.2 03 04 0.5 0.6 0.7

e
%

09

Host Utilization

Figure VIII.7: Percent error in predicted vs. measured component response time
error in relation to host utilization

Figure VIIL.7 illustrates the percent error between the measure and predicted component re-
sponse time in relation to the expected host utilization for 500 different unique deployments
that were randomly selected. As illustrated in Figure VIIL.7, as we add more components to
a host, or increase its expected utilization, the more unstable and inconsistent the prediction
becomes. Moreover, the more we increase the host’s expected utilization, the greater the
percent error.

Figure VIII.7 also provided some insights. As alluded to before, the more we increase
the expected utilization, the greater the percent error is between expected versus meaured
component response time. Figure VIIL.7, therefore, helps us realize that if we bound the
utilization of a host to low utilization, then the approximation equations in Section VIII.2
leveraged by Anti-SPAM should be within the 10-15% error bounds.

Retargeting Investigation. Using our newfound understanding of why the perdicted

152

T
Predicted
140 - Measured N

120 e

100 e

80

60 - B

Avg. Response Time (msec)

40 | ,

20 | B

0 | | | | | | | | |

0 50 100 150 200 250 300 350 400 450 500

Unique Deployment

Figure VIII.8: Predicted vs. measured end-to-end response time of SLICE scenario
under low utilization conditions

end-to-end response time may be greater than our desired 15% error, we retargeted our
validation. This time we focused on low utilized system, such as systems currently expe-
riencing off-peak hours of operation. We therefore redesigned our experiments such that
the expected utilization of each host was no greater than 30% with collocated components,
which is what would be considered low utilization [77].

Figure VIIL8 illustrates the measured versus predicted end-to-end response time for
500 randomly unique deployments of a single configuration under low host utilization. As
illustrated in Figure VIIL.8, the predictions for each unique deployment in the retargeted
investigation was less than the measured end-to-end response time. Since our predictions
were less than the measured end-to-end response time—and were more consistent—we
used the average percent error to shift (or calibrate) the predicted end-to-end response time,

which was approximately 6 msec, or 8%. Figure VIIL.9 illustrates the calibrated predicted

153

T
Predicted

140 Measured

120 e

100 e

80

60 - B

Avg. Response Time (msec)

40 | ,

0 | | | | | | | | |

0 50 100 150 200 250 300 350 400 450 500

Unique Deployment

Figure VII.9: Adjusted predicted vs. measured end-to-end response time of SLICE
scenario under low utilizations

versus measured end-to-end response time for the configuration in Figure VIII.8 and two
other configurations of the SLICE scenario. Likewise, Figure VIII.10 shows the percent
error of the prediction for three different configurations of the SLICE scenario. As illus-
trated in Figure VIIL.9, the predicted end-to-end response times are closer to the measured
end-to-end response times. Figure VIII.10 also shows that our predictions (or approxima-
tions) are within a 10-15% error range. Likewise, the average error of in the approximation

1s < 10%.

VIIL.4 Chapter Summary

Poor deployment choices for a component-based system can have negative effects on
systemic QoS properties, such as end-to-end response time. In this chapter, we presented

a simple technique for predicting end-to-end response time of execution paths for different

154

100

T T T T T T T T T
Configuration | ———

Configuration 2

75 Configuration 3 —— |

50 i

25 B

Percent Error
[=]

MR WY T A TR e

25 4
.50 | 4

75 - 4

-100 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500

Unique Deployment

Figure VII.10: Percent error of predicted end-to-end response time for multiple de-
ployment and configurations

155

unique deployments. Our technique uses component location and workload, i.e., baseline
profiles of a component, as input parameters to automatically generate a SPE analytical
model. We also applied our approach to predicting the end-to-end response time of a rep-
resentative component-based DRE system that communicated using asynchrounous events
assuming we classified the system as M/M/1. Moreover, we were able to predict the end-to-
end response time of the representive component-based DRE systems critical path within

10-15% error when experiencing low utilizalation, such as off-peak hours of operation.

156

CHAPTER IX

CONCLUDING REMARKS

Component-based software engineering (CBSE) and agile development are address-
ing the functional concerns of development large-scale component-based distributed real-
time and embedded (DRE) systems. Conventional agile development techniques, however,
focus primarily on the functional concerns of such systems whereas evaluating quality-
of-service (QoS) conerns is done during complete system integration time. Consequently,
design flaws that negatively impact QoS are not discovered in a timely manner, and become
costly to locate and rectify.

In this dissertation, we showed how DSML-based system execution modeling (SEM)
tools can address the shortcomings of conventional agile development techniques, and
bridge the gap between agile development and QoS evaluation of large-scale component-
based DRE system. This is accomplished by (1) overcoming serailized-phasing develop-
ment, (2) enabling emulation of the system under development on the target architecture for
early QoS evaluation, and (3) doing so continuously throughout the software lifecycle. This
dissertation also showed how DSML-based SEM tools can reduce the complexity of tradi-
tional software performance engineering (SPE) analytical models and evaluate end-to-end
response time of a component-based DRE system where both deployment and workload are
input parameters to the performance model. In the future, as large-scale component-based
DRE systems become more complex and larger, such as ultra-large-scale systems [88] and
systems-of-systems [58, 118], DSML-based SEM tools will provide an excellent software
engineering approach for ensuring that both functional and QoS concerns are evaluated
continuously throughout the software lifecycle, while reducing the cost of realizing such

systems.

157

The following is a summary of lessons learned from the research work presented in this

dissertation:

» Using a DSML based on a mathematical formalism to define behavior of components
helps in specifying unambiguous behavior when generating code and configuration

files for emulation and simulation.

* Separating the workload, behavior, and structural models allows each to evolve in-
dependently of each other. Moreover, it encourages the same behavior model to be

supported in multiple structural models to increase portability, flexibility, and usabil-
ity.

* Currently, we make the assumption that only a single event can be active on a be-
havior sequence. Multiple events can be active as long as each event represents a
separate behavior sequence. Components, however, can have multiple events active
in a behavior sequence depending on the number of threads active for an input event.
We, therefore, need to extend semantic anchoring efforts to support the concept of

multi-threaded input events.

» Using generative programming with templates that are parameterized by actions from
behavior/workload models allows the DSML to easily adapt to different environ-

ments of execution.

* If changes to the DSML result in more points-of-generation, more points-of-visitation,
or mutations to C++ artifacts (e.g., adding/removing C++ classes that correspond to
model elements), then each interpreter that reuses the same modified interpreter logic

will be aware of these changes at compile-time and will need to be updated.

158

If a DSML has only one use case, then single interpretation is the preferred imple-
mentation technique for its model interpreters. If multiple use cases have been iden-
tified, then the template metaprogramming technique is the preferred implementation

technique for Visitor-based model interpreters.

It is not hard to convert a single interpretation style interpreter to a template metapro-
gramming style interpreter because the main interpreter logic is already defined. It is
“harder” to create a template metaprogramming interpreter from scratch because the

different use cases for interpreters may not fully be understood a priori.

Our template metaprogramming technique has greater benefit on model interpreters
for complex DSMLs (i.e., DSMLs with many elements and non-trivial parsing logic)

than on model interpreters for simple DSMLs.

C++ template metaprogramming incurs a steep learning curve for developers. When
combined with a complex visitor hierarchy generated by modeling tools for a given
modeling language, significant efforts must be expended to develop the interpreters.
It is desirable for modeling frameworks to hide the complex visitor hierarchy but ex-
pose only the points-of-visitation and points-of-generation to the developers, which

can enable rapid development of interpreters.

Our experience applying UNITE to a representative component-based distributed
system showed how it simplified identifying and extracting of metrics of interest

for analyzing QoS concerns.

UNITE help reduced the complexity of unit testing QoS concerns since it functioned

independent of both data and system complexity.

In many cases, only a subset of data extracted using UNITE needs to be processed,

such as when looking for a particular value of interest. Future research therefore

159

includes enabling support for parameterizing the causal relations to only extract data

of interest.

Before we had CiCUTS it was hard to produce and analyze large numbers of tests be-
cause developers and testers had to implement a custom testing framework to collect
performance metrics and analyze the results manually. With CiCUTS, developers
and testers could focus on resolving system performance issues instead of wrestling
with low-level testing issues. Moreover, testing could occur at all hours of the day,
especially during off-peak development hours (e.g., from late at night to early morn-

ing) when the most testing resources were available.

Prior to the creation of CiCUTS, we could not perform integration testing throughout
the development phase. With CiCUTS, we could focus on improving the quality of
RACE during its early stages of development instead of waiting until final integration
time when the entire system (i.e., infrastructure and application components) was

complete.

CiCUTS and UNITE use logging messages to collect performance metrics about the
system being analyzed. Although this approach simplifies the collection process, it
does not work well if the analyzed components (e.g., third-party components avail-
able only in binary format) do not generate the necessary log messages. Moreover,
it may be undesirable to augment source code with log messages because it may
negatively impact system performance, especially in mission-critical DRE systems.
In future work, we are integrating various interception techniques, such as dynamic
instrumentation and analysis [17, 132], to capture metrics from such components

transparently so they can be used within CiCUTS.

Handcrafting template configurations for T&E can be labor intensive, especially if
the template configurations are dense XML files. MDE techniques, such as domain-

specific modeling languages, help alleviate the complexity of handcrafting such files

160

via model interpreters that transform constructed models into concrete files. Our
future work will integrate the template patterns in CUTE with MDE tools, such as

GME, to improve the shortcomings of MDE tools and CUTE.

Although CUTE can generate many different single instance configuration using a
single template configuration, testers must manually run each configuration to evalu-
ate large-scale component-based DRE system QoS. Continuous integration environ-
ments, such as CruiseControl (cruisecontrol.sourceforge.net) alleviate
the complexity of manually executing tests via an autonomous build engine. Our fu-
ture work will combine CUTE with continuous integration environments to improve
the efficiency and effectiveness of running many tests continuously throughout the

software lifecycle, especially when integrated with system execution modeling tools.

Using deployment as an input parameter to the SPE analytical model allowed us to
focus mainly on deployments that had execution paths that would meet desired end-

to-end response time.

Since Anti-SPAM is the first research approach to the best of our knowledge to use
deployment as an input parameter into the model, we had to reduce the solution space
to M/M/1 systems. Future work, therefore, includes relaxing this assumption so Anti-
SPAM can evaluate the end-to-end response time of execution paths for many classes

of systems.

The approximiation technique in Anti-SPAM only works for systems experiencing
low utilization. Future work, therefore, includes improving the approximation tech-
nique and heuristic so it can work for systems experiencing different levels of utiliza-

tion.

Anti-SPAM uses an approximation technique to evaluate the end-to-response time of

an execution path. As we investigate the problem in more depth, we will begin to

161

cruisecontrol.sourceforge.net

learn more about performance characteristics of such systems. Future work, there-
fore, includes not only understanding such performance characteristics of these sys-
tesm, but doing so from a theoretical standpoint, such as using fundanmental queue-

ing theory principles.

The algorithms, analytics, patterns, and techniques described in this dissertation and real-
ized in the CUTS SEM tool are available in open-source format at the following location:

http://www.dre.vanderbilt.edu/CUTS.

162

http://www.dre.vanderbilt.edu/CUTS

APPENDIX A

ISISLAB

ISISlab (www.isislab.vanderbilt.edu)is an integration testbed at Vanderbilt
University powered by Emulab software [101]. The Emulab software allows developers
and testers to configure network topologies and operating systems on-the-fly to produce
a realistic operating environment for distributed unit and integration testing. Figure A.l
shows a representative illustration of ISISlab at Vanderbilt University.

As illustrated in Figure A.1, each host in ISISlab is an IBM Blade Type L20, dual-CPU
2.8 GHz processor with 1 GB RAM. Each IBM Blade also contains four network interfaces.
This allows complete separation of experiment-related network traffic from control-related
network traffic, such as remotely connecting to a host via SSH and controlling the exper-
iment. ISISlab is also configured with six Cisco 3750G-24TS network switches and one
Cisco 3750G-48TS. This gives ISISlab a total of 192 Gigabit ports to use when configuring

different network topologies for experimentation.

163

www.isislab.vanderbilt.edu

&th{0/2) for blace{1-12]

eth[02] for blade] 15-28]

eth{0i2] for blade]29-40]

ath[0V2] for blade43-54]

4 |BM blade centers (Type 8832)
192 Gigabit ports (6 x Cisco 3750G-24TS,
1 x Cisco 3750G-48TS)

56 HS20 blades:

2 x 2.8Ghz Xeon CPU

1GB RAM

40GB HDD

4 x 1Ghz network (2 online)

BSD/pf
firewall

sship/hitpsiTdp

Figure A.1: ISISlab at Vanderbilt University

164

REFERENCES

[1] BBN Technologies Awarded $2.8 Million in AFRL Funding to De-
velop System to Link Every Warfighter to Global Information Grid.
BBN Technologies—Press Releases, www.bbn.com/news_and_events/
press_releases/2008_press_releases/pr_21208_qged.

[2] Global Information Grid. The National Security Agency, www.nsa.gov/ia/industry/
gig.cfm?MenulD=10.3.2.2.

[3] David Abrahams and Aleksey Gurtovoy. C++ Template Metaprogramming: Con-
cepts, Tools, and Techniques from Boost and Beyond (C++ in Depth Series).
Addison-Wesley Professional, 2004.

[4] Aditya Agrawal, Tihamer Levendovszky, Jon Sprinkle, Feng Shi, and Gabor Karsai.
Generative Programming via Graph Transformations in the Model-Driven Archi-
tecture. In Workshop on Generative Techniques in the Context of Model Driven
Architecture (OOPSLA 02), 2002.

[5] Subhash C. Agrawal. Metamodeling: A Study of Approximations in Queueing Mod-
els. Massachusetts Institute of Technology, Cambridge, MA, USA, 1985.

[6] William A. Aiello, Yishay Mansour, S. Rajagopolan, and Adi Rosén. Competitive
Queue Policies for Differentiated Services. Journal of Algorithms, 55(2):113-141,
2005.

[7] Rajeev Alur and David L. Dill. A Theory of Timed Automata. Theoretical Computer

Science, 126(2):183-235, 1994. Available from World Wide Web: citeseer.
ist.psu.edu/alur94theory.html.

[8] Paolo Atzeni and Valeria De Antonellis. Relational Database Theory. Benjamin-
Cummings Publishing Co., Inc., Redwood City, CA, USA, 1993.

[9] Xiaoying Bai, Wei-Tek Tsai, Techeng Shen, Bing Li, and Ray Paul. Distributed
End-to-End Testing Management. In Proceedings of the 5th IEEE International
Conference on Enterprise Distributed Object Computing, Seattle, WA, 2001.

[10] Krishnakumar Balasubramanian, Jaiganesh Balasubramanian, Jeff Parsons, Anirud-
dha Gokhale, and Douglas C. Schmidt. A Platform-Independent Component Mod-
eling Language for Distributed Real-Time and Embedded Systems. In RTAS ’05:
Proceedings of the 11th IEEE Real Time on Embedded Technology and Applications
Symposium, pages 190-199, Washington, DC, USA, 2005. IEEE Computer Society.

[11] Don Batory. A Tutorial on Feature Oriented Programming and Product-lines. In

Proceedings of the 25th International Conference on Software Engineering (ICSE
'03), pages 753—-754. IEEE Computer Society, 2003.

165

citeseer.ist.psu.edu/alur94theory.html
citeseer.ist.psu.edu/alur94theory.html

[12] Jeffrey Bocarsly, Jonathan Harris, and Bill Hayduk. End-to-End
Testing of IT Architecture and Applications. www . ibm.com/
developerworks/rational/library/content/RationalEdge/
jun02/EndtoEndTestingJun02.pdf, 2002.

[13] Egor Bondarev, Peter de With, and Michel Chaudron. Towards Predicting Real-Time
Properties of a Component Assembly. In Proceedings of the 30" EUROMICRO
Conference, pages 601-610, September 2004.

[14] Jon Bowyer and Janet Hughes. Assessing Undergraduate Experience of Continuous
Integration and Test-driven Development. In Proceeding of the 28th International
Conference on Software Engineering (ICSE’06), pages 691-694, 2006.

[15] Don Box and Dharma Shukla. WinFX Workflow: Simplify Development with the
Declarative Model of Windows Workflow Foundation. MSDN Magazine, 21:54—62,
2006.

[16] Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, and Timothy J.
Grose. Eclipse Modeling Framework. Addison-Wesley, Reading, MA, 2003.

[17] Bryan Cantrill, Michael W. Shapiro, and Adam H. Leventhal. Dynamic instrumen-
tation of production systems. In Proceedings of the General Track: 2004 USENIX
Annual Technical Conference, pages 15-28, June 2004.

[18] Kai Chen, Janos Sztipanovits, Sherif Abdelwahed, and Ethan K. Jackson. Semantic
anchoring with model transformations. In ECMDA-FA, pages 115-129, 2005.

[19] Kai Chen, Janos Sztipanovits, and Sandeep Neema. Toward a Semantic Anchoring
Infrastructure for Domain-Specific Modeling Languages. In EMSOFT ’05: Proceed-
ings of the 5Sth ACM international conference on Embedded software, pages 35-43,
New York, NY, USA, 2005. ACM Press.

[20] Yih-Farn R. Chen, Emden R. Gansner, and Eleftherios Koutsofios. A C++ Data
Model Supporting Reachability Analysis and Dead Code Detection. In Proceedings
of the 6th European Conference held jointly with the 5th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, pages 414—431, New
York, NY, USA, 1997. Springer-Verlag New York, Inc.

[21] Roberta Coelho, Uird Kulesza, Arndt von Staa, and Carlos Lucena. Unit Testing in
Multi-agent Systems using Mock Agents and Aspects. In International Workshop
on Software Engineering for Large-scale Multi-agent Systems, pages 83-90, 2006.

[22] Giulio Concas, Marco Di Francesco, Michele Marchesi, Roberta Quaresima, and
Sandro Pinna. An Agile Development Process and Its Assessment Using Quantita-
tive Object-Oriented Metrics. Agile Processes in Software Engineering and Extreme
Programming, 9:83-93, 2008.

166

www.ibm.com/developerworks/rational/library/content/RationalEdge/jun02/EndtoEndTestingJun02.pdf
www.ibm.com/developerworks/rational/library/content/RationalEdge/jun02/EndtoEndTestingJun02.pdf
www.ibm.com/developerworks/rational/library/content/RationalEdge/jun02/EndtoEndTestingJun02.pdf

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Steve Cook, Gareth Jones, Stuart Kent, and Alan C. Wills. Domain-Specific Devel-
opment with Visual Studio DSL Tools. Addison-Wesley, 2007.

Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, Reading, Massachusetts, 2000.

Dionisio de Niz and Raj Rajkumar. Partitioning Bin-Packing Algorithms for Dis-
tributed Real-time Systems. International Journal of Embedded Systems, 2(3):196—
208, 2006.

Giovanni Denaro, Andrea Polini, and Wolfgang Emmerich. Early Performance Test-
ing of Distributed Software Applications. ACM SIGSOFT Software Engineering
Notes, 29(1):94-103, January 2004.

Gan Deng, Jaiganesh Balasubramanian, William Otte, Douglas C. Schmidt, and
Aniruddha Gokhale. DAnCE: A QoS-enabled Component Deployment and Con-
figuration Engine. In Proceedings of the 3rd Working Conference on Component
Deployment (CD 2005), pages 67-82, Grenoble, France, November 2005.

Gan Deng, Chris Gill, Douglas C. Schmidt, and Nanbor Wang. QoS-enabled Com-
ponent Middleware for Distributed Real-Time and Embedded Systems. In I. Lee,
J. Leung, and S. Son, editors, Handbook of Real-Time and Embedded Systems. CRC
Press, 2007.

Ada Diaconescu and John Murphy. Automating the Performance Management of
Component-based Enterprise Systems Through the Use of Redundancy. In Pro-
ceedings of the 20th IEEE/ACM International Conference on Automated Software
Engineering (ASE "05), pages 44-53, 2005.

Bruce Powel Douglass. UML Statecharts. www-md.e-technik.
uni-rostock.de/ma/gol/ilogix/umlsct.pdf.

Marc Dutoo and Florian Lautenbacher. Java Workflow Tool-
ing (JWT) Creation Review. www.eclipse.org/proposals/jwt/

JWT%20Creation%20Review %2020070117.pdf, 2007.

M.A. El-Gendy, A. Bose, and K.G. Shin. Evolution of the internet qos and support
for soft real-time applications. Proceedings of the IEEE, 91(7):1086-1104, July
2003.

Martin Fowler. Continuous Integration. www.martinfowler.com/articles/ continu-
ousIntegration.html, May 2006.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA,
1995.

167

www-md.e-technik.uni-rostock.de/ma/gol/ilogix/umlsct.pdf
www-md.e-technik.uni-rostock.de/ma/gol/ilogix/umlsct.pdf

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Aniruddha Gokhale, Krishnakumar Balasubramanian, Jaiganesh Balasubramanian,
Arvind S. Krishna, George T. Edwards, Gan Deng, Emre Turkay, Jeffrey Parsons,
and Douglas C. Schmidt. Model Driven Middleware: A New Paradigm for De-
ploying and Provisioning Distributed Real-time and Embedded Applications. The
Journal of Science of Computer Programming: Special Issue on Foundations and
Applications of Model Driven Architecture (MDA), 73(1):39-58, 2008.

Swapna Gokhale, Aniruddha Gokhale, and Jeff Gray. A Model-Driven Performance
Analysis Framework for Distributed, Performance-Sensitive Software Systems. In
Proceedings of the NSF NGS Workshop, International Conference on Parallel and
Distributed Processing Symposium (IPDPS) 2005, Denver, CO, April 2005.

google-ctemplate. google-ctemplate. code.google.com/p/
google—-ctemplate, 2007.

Jeff Gray, Juha-Pekka Tolvanen, Steven Kelly, Aniruddha Gokhale, Sandeep Neema,
and Jonathan Sprinkle. Domain-Specific Modeling. In CRC Handbook on Dynamic
System Modeling, (Paul Fishwick, ed.), pages 7.1-7.20. CRC Press, May 2007.

Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent. Software Factories:

Assembling Applications with Patterns, Models, Frameworks, and Tools. John Wiley
& Sons, New York, 2004.

Yuri Gurevich, Benjamin Rossman, and Wolfram Schulte. Semantic Essence of
AsmL. Theoretical Computer Science, 343(3):370-412, 2005.

David Harel. Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming, 8(3):231-274, June 1987. Available from World Wide Web:
citeseer.ist.psu.edu/article/harel87statecharts.html.

David Harel, Hagi Lachover, Amnon Naamad, Amir Pnueli, Michal Politi, Rivi
Sherman, Aharon Shtull-Trauring, and Mark B. Trakhtenbrot. STATEMATE: A
Working Environment for the Development of Complex Reactive Systems. Software
Engineering, 16(4):403—414, 1990. Available from World Wide Web: citeseer.
ist.psu.edu/harel90statemate.html.

John Hatcliff, William Deng, Matthew Dwyer, Georg Jung, and Venkatesh Prasad.
Cadena: An Integrated Development, Analysis, and Verification Environment for
Component-based Systems. In Proceedings of the 25th International Conference on
Software Engineering, pages 160—172, Portland, OR, May 2003.

George T. Heineman and William T. Councill, editors. Component-based Software

Engineering: Putting the Pieces Together. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2001.

168

code.google.com/p/google-ctemplate
code.google.com/p/google-ctemplate
citeseer.ist.psu.edu/article/harel87statecharts.html
citeseer.ist.psu.edu/harel90statemate.html
citeseer.ist.psu.edu/harel90statemate.html

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Scott Hissam, Gabriel Moreno, Judith Stafford, and Kurt Wallnau. Enabling Pre-
dictable Assembly. Journal of Systems and Software, 65(3):185-198, 2003.

Jesper Holck and Niels Jorgenson. Continuous Integration and Quality Assurance:
A Case Study of Two Open Source Projects. Australasian Journal of Information
Systems, pages 40-53, 2003-2004.

Chin-Yu Huang and Michael R. Lyu. Optimal Release Time for Software Systems
Considering Cost, Testing-Effort, and Test Efficiency. IEEE Transactions on Relia-
bility, 54(4):583-591, 2005.

Dongping Huang and Hessam Sarjoughian. Software and Simulation Modeling for
Real-Time Software-Intensive Systems. In Proceedings of the Eighth IEEE Inter-
national Symposium on Distributed Simulation and Real-Time Applications (DS-
RT’04), pages 196-203, Washington, DC, USA, 2004. IEEE Computer Society.

Andy Hunt and Dave Thomas. Pragmatic Unit Testing in C# with NUnit. The
Pragmatic Programmers, Raleigh, NC, USA, 2004.

Stephen D. Huston, James C. E. Johnson, and Umar Syyid. The ACE Programmer’s
Guide. Addison-Wesley, Boston, 2002.

Software Engineering Institute. Ultra-Large-Scale Systems: Software Challenge of
the Future. Technical report, Carnegie Mellon University, Pittsburgh, PA, USA, Jun
2006.

Internet Engineering Task Force. Differentiated Services Working Group (diffserv)
Charter. www.ietf.org/html.charters/diffserv-charter.html, 2000.

David Janzen and Hossein Saiedian. Test-Driven Development: Concepts, Taxon-
omy, and Future Direction. IEEE Computer, 38(9):43-50, 2005.

Nikolai Joukov, Timothy Wong, and Erez Zadok. Accurate and Efficient Replaying
of File System Traces. In FAST’05: Proceedings of the 4th conference on USENIX
Conference on File and Storage Technologies, pages 25-25, 2005.

Bjorn Karlsson. Beyond the C++ Standard Library: An Introduction to Boost.
Addison-Wesley Professional, September 2005.

Gabor Karsai, Aditya Agrawal, Feng Shi, and Jonathan Sprinkle. On the Use of
Graph Transformations in the Formal Specification of Computer-Based Systems. In
Proceedings of IEEE TC-ECBS and IFIP10.1 Joint Workshop on Formal Specifica-
tions of Computer-Based Systems, pages 19-27, Huntsville, AL, USA, April 2003.
IEEE.

Dilsun K. Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. The The-
ory of Timed 1/O Automata, Synthesis Lectures in Computer Science. Morgan and

169

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Claypool Publishers, San Rafael, CA, April 2006.

Charles Keating, Ralph Rogers, Resit Unal, David Dryer, Andres Sousa-Poza,
Robert Safford, William Peterson, and Ghaith Rabadi. System of Systems Engi-
neering. Engineering Management Journal, page 36, September 2003.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In
Proceedings of the 11th European Conference on Object-Oriented Programming,
pages 220-242, June 1997.

Samuel Kounev. Performance Modeling and Evaluation of Distributed Component-
Based Systems Using Queueing Petri Nets. [EEE Transactions on Software Engi-
neering, 32(7):486-502, 2006.

Joel Kozikowski. A Bird’s Eye View of AndroMDA. galaxy.andromda.org/
docs-3.1/contrib/birds-eye-view.html.

Ralf Lammel, Eelco Visser, and Joost Visser. The Essence of Strategic Program-
ming. 18 p.; Draft; Availableathttp://www.cwi.nl/~ralf, Octoberl5 2002.

K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. Int. Journal on
Software Tools for Technology Transfer, 1(1-2):134—152, October 1997.

Kim Guldstrand Larsen, Marius Mikucionis, and Brian Nielsen. Online testing of
real-time systems using uppaal. In FATES, pages 79-94, 2004. Available from World
Wide Web: springerlink.metapress.com/openurl.asp?genre=
article& issn=0302-9743& volume=3395& spage=79.

Akos Lédeczi, Arpad Bakay, Miklés Mar6ti, Péter Volgyesi, Greg Nordstrom,

Jonathan Sprinkle, and Gabor Karsai. Composing Domain-Specific Design Envi-
ronments. Computer, 34(11):44-51, 2001.

Zhongjie Li, Wei Sun, Zhong Bo Jiang, and Xin Zhang. BPEL4WS Unit Testing:
Framework and Implementation. In ICWS °05: Proceedings of the IEEE Interna-
tional Conference on Web Services (ICWS’05), pages 103—110, Orlando, FL, 2005.
IEEE Computer Society.

Yan Liu, Alan Fekete, and Ian Gorton. Design-Level Performance Prediction
of Component-Based Applications. IEEE Transactions on Software Engineering,
31(11):928-941, 2005.

Yan Liu and Ian Gorton. Performance Prediction of J2EE Applications using

Messaging Protocols. In Proceedings of the International SIGSOFT Symposium
Component-Based Software Engineering (CBSE), May 2005.

170

galaxy.andromda.org/docs-3.1/contrib/birds-eye-view.html
galaxy.andromda.org/docs-3.1/contrib/birds-eye-view.html
http://www.cwi.nl/~ralf
springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=3395&spage=79
springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=3395&spage=79

[69] Joseph Loyall, Marco Carvalho, Douglas Schmidt, Matthew Gillen, Andrew Mar-
tignoni III, Larry Bunch, James Edmondson, and David Corman. QoS Enabled
Dissemination of Managed Information Objects in a Publish-Subscribe-Query In-
formation Broker. In Defense Transformation and Net-Centric Systems, April 2009.

[70] Nancy Lynch and Mark Tuttle. An Introduction to Input/Output Automata. CWI-
Quarterly, 2(3):219-246, September 1989.

[71] Qusay H. Mahmoud. Middleware for Communications. John Wiley and Sons, 2004.

[72] Daniela Mania, John Murphy, and Jennifer McManis. Developing Performance
Models from Nonintrusive Monitoring Traces. IT&T, 2002. Available from World
Wide Web: citeseer.ist.psu.edu/541104.html.

[73] Joan Mann. The Role of Project Escalation in Explaining Runaway Information
Systems Development Projects: A Field Study. PhD thesis, Georgia State University,
Atlanta, GA, 1996.

[74] Vincent Massol and Ted Husted. JUnit in Action. Manning Publications Co., Green-
wich, CT, USA, 2003.

[75] Joe McKendrick. Ten companies where SOA made a difference in 2006.
blogs.zdnet.com/service-oriented/?p=781, December 2006.

[76] Stephen J. Mellor, Marc J. Balcer, Stephen Mellor, and Marc Balcer. Executable
UML: A Foundation for Model Driven Architecture. Addison-Wesley Professional,
May 2002.

[77] Daniel A. Menasce, Lawrence W. Dowdy, and Virgilio A. F. Almeida. Performance
by Design: Computer Capacity Planning By Example. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2004.

[78] Microsoft Corporation. Microsoft .NET Development. msdn.microsoft.com/
net/, 2002.

[79] Microsoft Corporation. Microsoft .NET Framework 3.0 Community. www.
netfx3.com, 2007.

[80] Adrian Mos and John Murphy. Performance Monitoring of Java Component-
Oriented Distributed Applications. In IEEE 9th International Conference on Soft-
ware, Telecommunications and Computer Networks (SoftCOM), pages 9-12, 2001.

[81] Pierre-Alain Muller, Franck Fleurey, Frédéric Fondement, Michel Hassenforder,
Rémi Schneckenburger, Sébastien Gérard, and Jean-Marc Jézéquel. Model-Driven
Analysis and Synthesis of Concrete Syntax. In International Conference on Model-
ing Driven Engineering and Languages Symposium (MoDELS 2006), pages 98—110,
2006.

171

citeseer.ist.psu.edu/541104.html
msdn.microsoft.com/net/
msdn.microsoft.com/net/
www.netfx3.com
www.netfx3.com

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

Anantha Narayanan and Gabor Karsai. Using Semantic Anchoring to Verify Be-
havior Preservation in Graph Transformations. Electronic Communications of the
EASST, 4(2006), January 2006. Available from World Wide Web: chess.eecs.
berkeley.edu/pubs/279.html.

Margaret Naughton, James McGrath, and Donal Heffernan. Real-time Software
Modelling using Statecharts and Timed Automata Approaches. In Proceedings of
the IEE Irish Signals and Systems Conference, Dublin, Ireland, June 2006.

Norman Neff. Attribute Based Compiler Implemented Using Visitor Pattern. In Pro-
ceedings of the 35th Technical Symposium on Computer Science Education (SIGCSE
04), pages 130—-134, New York, NY, USA, 2004. ACM Press.

Dung "Zung" Nguyen, Mathias Ricken, and Stephen Wong. Design Patterns for
Parsing. In Proceedings of the 36th Technical Symposium on Computer Science
Education (SIGCSE 05), pages 477481, New York, NY, USA, 2005. ACM Press.

Iftikhar Azim Niaz. Code Generation From Uml Statecharts. Available from World
Wide Web: citeseer.ist.psu.edu/635920.html.

Steven Nordstrom, Shweta Shetty, Di Yao, Shikha Ahuja, Sandeep Neema, and
Ted Bapty. The Action Language: Refining a Behavioral Modeling Language.
In Proceedings of the 12th IEEE International Conference on the Engineering of
Computer-Based Systems (ECBS 2005), Piscataway, NJ, USA, 2005. IEEE.

L. Northrop, P. Feiler, R. Gabriel, J. Goodenough, R. Linger, T. Longstaff, R. Kaz-
man, M. Klein, D. Schmidt, K. Sullivan, and K. Wallnau. Ultra-Large-Scale Sys-

tems: Software Challenge of the Future. Software Engineering Institute, Pittsburgh
PA, 2006.

Object Management Group. Lightweight CCM RFP, realtime/02-11-27 edition,
November 2002.

Object Management Group. Deployment and Configuration Adopted Submission,
OMG Document mars/03-05-08 edition, July 2003.

Object Management Group. Light Weight CORBA Component Model Revised Sub-
mission, OMG Document realtime/03-05-05 edition, May 2003.

Object Management Group. BPMN Information Home. www.bpmn.org, 2005.

Object Management Group. CORBA Components v4.0, OMG Document
formal/2006-04-01 edition, April 2006.

openArchitectureWare. openArchitectureWare. WWW .
openarchitectureware.org, 2007.

172

chess.eecs.berkeley.edu/pubs/279.html
chess.eecs.berkeley.edu/pubs/279.html
citeseer.ist.psu.edu/635920.html
www.openarchitectureware.org
www.openarchitectureware.org

[95] Trevor Parsons, Adrian, and John Murphy. Non-Intrusive End-to-End Runtime Path
Tracing for J2EE Systems. IEEE Proceedings Software, 153:149-161, August 2006.

[96] Trevor Parsons and John Murphy. Detecting Performance Antipatterns in Compo-
nent Based Enterprise Systems. PhD thesis, University College Dublin, Belfield,
Dublin 4, Ireland, 2007.

[97] Pekka Abrahamsson and Juhani Warsta and Mikko T. Siponen and Jussi Ronkainen.
New Directions on Agile Methods: A Comparative Analysis. In International Con-
ference on Software Engineering (ICSE), Portland, Oregon, May 2003. IEEE/ACM.

[98] J.L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall, Engle-
wood Cliffs, NJ, 1981.

[99] Runtao Qu, Satoshi Hirano, Takeshi Ohkawa, Takaya Kubota, and Radu Nicolescu.
Distributed Unit Testing. Technical Report CITR-TR-191, University of Auckland,
2006.

[100] Raghunathan Rajkumar, Chen Lee, John Lehoczky, and Dan Siewiorek. A Resource
Allocation Model for QoS Management. In In Proceedings of the IEEE Real-Time
Systems Symposium, December 1997.

[101] Robert Ricci, Chris Alfred, and Jay Lepreau. A Solver for the Network Testbed
Mapping Problem. SIGCOMM Computer Communications Review, 33(2):30-44,
April 2003.

[102] Linda Rising and Norman S. Janoff. The Scrum Software Development Process for
Small Teams. IEEE Software, 17(4), 2000.

[103] Robby, Matthew Dwyer, and John Hatcliff. Bogor: An Extensible and Highly-
Modular Model Checking Framework. In Proceedings of the 4" Joint Meeting of the
European Software Engineering Conference and ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE 2003), Helsinki, Finland, Septem-
ber 2003. ACM.

[104] Nilabja Roy, Akshay Dabholkar, Nathan Hamm, Larry Dowdy, and Douglas
Schmidt. Modeling Software Contention using Colored Petri Nets. In 16th Annual
Meeting of the IEEE International Symposium on Modeling, Analysis, and Simu-
lation of Computer and Telecommunication Systems (MASCOTS), Baltimore, MD,
September 2008.

[105] David Saff and Michael D. Ernst. Reducing Wasted Development Time via Continu-
ous Testing. In Proceedings of 14' h International Symposium on Software Reliability
Engineering, pages 281-292, November 2003.

173

[106] David Saff and Michael D. Ernst. An Experimental Evaluation of Continuous Test-
ing During Development. In Proceedings of the ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, pages 76—85, July 2004.

[107] Douglas C. Schmidt. Adaptive and Reflective Middleware for Distributed Real-time
and Embedded Systems. In EMSOFT 2001 : First Workshop on Embedded Software.,
Lake Tahoe, CA, October 2001.

[108] Douglas C. Schmidt. Model-Driven Engineering. IEEE Computer, 39(2):25-31,
2006.

[109] Markus Schordan. The Language of the Visitor Design Pattern. Journal of Universal
Computer Science, 12(7):849-867, 2006.

[110] Nishanth Shankaran, Xenofon Koutsoukos, Douglas C. Schmidt, and Aniruddha
Gokhale. Evaluating Adaptive Resource Management for Distributed Real-time Em-
bedded Systems. In Proceedings of the 4th Workshop on Adaptive and Reflective
Middleware, Grenoble, France, November 2005.

[111] Nishanth Shankaran, Douglas C. Schmidt, Yingming Chen, Xenofon Koutsoukous,
and Chenyang Lu. The Design and Performance of Configurable Component Mid-
dleware for End-to-End Adaptation of Distributed Real-time Embedded Systems.
In Proc. of the 10th IEEE International Symposium on Object/Component/Service-
oriented Real-time Distributed Computing (ISORC 2007), Santorini Island, Greece,
May 2007.

[112] Connie Smith and Lloyd Williams. Performance Solutions: A Practical Guide to

Creating Responsive, Scalable Software. Addison-Wesley Professional, Boston,
MA, USA, September 2001.

[113] Connie U. Smith and Lloyd G. Williams. Performance Engineering Evaluation
of Object-Oriented Systems with SPE*ED. In Proceedings of the 9th Interna-
tional Conference on Computer Performance Evaluation: Modelling Techniques and
Tools, pages 135-154, London, UK, 1997.

[114] Connie U. Smith and Lloyd G. Williams. Software Performance Antipatterns. In
WOSP °00: Proceedings of the 2nd international workshop on Software and perfor-
mance, pages 127-136, 2000.

[115] Suzanne Smith and Sara Stoecklin. What We Can Learn from Extreme Program-
ming. Journal of Computing Sciences in Colleges, 17(2):144-151, 2001.

[116] A. Snow and M. Keil. The Challenges of Accurate Project Status Reporting. In Pro-

ceedings of the 34th Annual Hawaii International Conference on System Sciences,
Maui, Hawaii, 2001.

174

[117] Software Composition and Modeling (Softcom) Laboratory. Constraint-
Specification Aspect Weaver (C-SAW). www.cis.uab.edu/ gray/Research/C-SAW,
University of Alabama, Birmingham, AL.

[118] Andrés Sousa-Poza, Samuel Kovacic, and Charles Keating. System of Systems En-
gineering: an Emerging Multidiscipline. International Journal of System of Systems
Engineering (IJSSE), 1:1-17, 2008.

[119] SUN. Java Messaging Service Specification. Jjava.sun.com/products/
jms/, 2002.

[120] Sun Microsystems. Enterprise JavaBeans Specification.
java.sun.com/products/ejb/docs.html, August 2001.

[121] Janos Sztipanovits and Gabor Karsai. Model-Integrated Computing. /EEE Com-
puter, 30(4):110-112, April 1997.

[122] Toufik Taibi, Lim Boon Ping, Ng Sheau Wen, Lai Kiat Sing, and Chew Keow Lim.
Developing a Distributed Stock Exchange Application using CORBA. In Proceed-

ing of the Student Conference on Research and Development (SCOReD), Putraiaya,
Malaysia, 2003.

[123] The Mathworks Inc. Simulink/Stateflow. www.mathworks.com/products/
simulink.

[124] Juha-Pekka Tolvanen. MetaEdit+: Domain-specific Modeling for Full Code Gener-
ation. In OOPSLA/GPCE °04: Companion to the 19th annual ACM SIGPLAN Con-

ference on Object-oriented Programming Systems, Languages, and Applications,
pages 3940, New York, NY, 2004. ACM.

[125] CodeSmith Tools. CodeSmith Tools. www.codesmithtools.com, 2009.

[126] Mauro Tortonesi, Cesare Stefanelli, Niranjan Suri, Marco Arguedas, and Maggie
Breedy. Mockets: A Novel Message-Oriented Communications Middleware for the
Wireless Internet. In International Conference on Wireless Information Networks
and Systems (WINSYS 2006), August 2006.

[127] Bruce Trask and Angel Roman. Model Driven Engineering Basics using Eclipse. In
Proceeding of ACM/IEEE 9" International Conference on Model Driven Engineer-
ing Languages and Systems (MoDELS), Genova, Italy, October 2006.

[128] Wei-Tek Tsai, Xiaoying Bai, Ray J. Paul, Weiguang Shao, and Vishal Agarwal. End-
To-End Integration Testing Design. In Proceedings of the 25th International Com-
puter Software and Applications Conference on Invigorating Software Development,
pages 166—171, Chicago, IL, October 2001.

175

java.sun.com/products/jms/
java.sun.com/products/jms/
www.mathworks.com/products/simulink
www.mathworks.com/products/simulink
www.codesmithtools.com

[129] Alexander Ufimtsev and Liam Murphy. Performance Modeling of a JavaEE Com-
ponent Application using Layered Queuing Networks: Revised Approach and a
Case Study. In Proceedings of the Conference on Specification and Verification
of Component-based Systems (SAVCBS ’06), pages 11-18, 2006.

[130] David Vandevoorde and Nicolai M. Josuttis. C++ Templates. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[131] Todd L. Veldhuizen. Five Compilation Models for C++ Templates. In First Work-
shop on C++ Template Programming, Erfurt, Germany, October 2000.

[132] Daniel G. Waddington, Nilabja Roy, and Douglas C. Schmidt. Dynamic Analy-
sis and Profiling of Multi-threaded Systems. In Pierre F. Tiako, editor, Designing
Software-Intensive Systems: Methods and Principles. Idea Group, 2007.

[133] Nanbor Wang, Douglas C. Schmidt, Aniruddha Gokhale, Craig Rodrigues, Bal-
achandran Natarajan, Joseph P. Loyall, Richard E. Schantz, and Christopher D. Gill.
QoS-enabled Middleware. In Qusay Mahmoud, editor, Middleware for Communi-
cations, pages 131-162. Wiley and Sons, New York, 2004.

[134] Elaine J. Weyuker. Testing Component-based Software: A Cautionary Tale. Soft-
ware, IEEE, 15(5):54-59, Sep/Oct 1998.

[135] Jules White, Andrey Nechypurenko, Egon Wuchner, and Douglas C. Schmidt. Re-
ducing the Complexity of Optimizing Large-scale Systems by Integrating Con-
straint Solvers with Graphical Modeling Tools. In Pierre F. Tiako, editor, Designing
Software-Intensive Systems: Methods and Principles. 1dea Group, 2007.

[136] Jules White and Douglas C. Schmidt. Simplifying the Development of Product-line
Customization Tools via Model Driven Development. In Proceedings of the MOD-
ELS 2005 workshop on MDD for Software Product-lines, Half Moon Bay, Jamaica,
October 2005.

[137] Jules White, Douglas C. Schmidt, and Aniruddha Gokhale. Simplifying autonomic
enterprise java bean applications via model-driven engineering and simulation. Jour-
nal of Software and System Modeling, 7(1):3-23, 2008.

[138] Ye Wu, Mei-Hwa Chen, and Jeff Offutt. UML-Based Integration Testing for
Component-Based Software. In Proceedings of the Second International Confer-
ence on COTS-Based Software Systems, pages 251-260. Springer-Verlag, 2003.

[139] Hany F. EL Yamany, Miriam A. M. Capretz, and Luiz F. Capretz. A Multi-Agent
Framework for Testing Distributed Systems. In 30th Annual International Computer
Software and Applications Conference, pages 151-156, 2006.

176

	Dedication
	Acknowledgments
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Emerging Trends of Large-scale DRE Systems
	Open Issues for Agile Development of Large-scale Component-based DRE Systems
	The Effects of Serialized-phasing Development
	The Effects of Unique Deployments on Software Performance Engineering

	Research Approach
	Dissertation Organization

	Related Research
	Behavior and Workload Modeling
	Behavior Modeling Languages
	Workload Modeling Languages
	Formal Languages

	Techniques for Implementing Reusable Model Interpreters
	Visitor Implementation Techniques
	Model Interpretation Techniques
	Strategic Programming

	Component-based Distributed System Unit Testing and Analysis
	Distributed System Unit Testing
	Component-based Distributed Systems Analysis

	Continuous System Integration Testing
	Integrating SEM Tools with Continuous Integration Environments
	Continuous QoS Testing

	Techniques for Addressing Testing and Experimentation Configurability and Scalability
	Model-driven Engineering Techniques
	Programmatic Techniques

	Software Peformance Engineering for Component-based DRE Systems
	Compositional Performance Model
	Queuing Network Model
	Event-based Performance Model.

	Domain-Specific Modeling Languages for Overcoming Serialized-phasing Development
	Case Study: A Distributed Stockbroker Application
	Modeling Component Behavior & Workload for QoS Validation
	The Component Behavioral Modeling Language
	The Workload Modeling Language

	Integrating Behavioral and Structural DSMLs
	Preserving Formal Semantics of High-level Behavior Models
	Brief Overview of Semantic Anchoring
	Transforming CBML into Timed I/O Automata
	Simulating Timed I/O Automata Models

	Code Generation Techniques for Facilitating Emulation
	Chapter Summary

	Generative Programming Techniques for Enabling Reuse Domain-specific Modeling Language Model Interpreters
	Case Study: Emuluating Multiple Component-based Architectures
	Commonality and Variability in Contemporary Component-based Architectures
	Inflexibility of Conventional Visitor-based Implementation Techniques

	Enabling Reuse and Handling Variability in Model Interpreters
	Overview of Template-based Generative Programming
	Guidelines to Handle Variability in Points-of-Visitation and Generation
	MIME Framework for Handling Variability in Points-of-Visitation and Generation
	Using MIME in Component Implementation Visitor Example
	Reuse within Composite Model Interpreters
	Guidelines for Using MIME
	Enhancing the User-friendliness of MIME

	Chapter Summary

	Unit Testing Techniques for Evaluating Component-based DRE System QoS
	Case Study: The QED Project
	UNITE: High-level Specification and Analysis of QoS Concerns
	Specification and Extraction of Metrics from Text-based System Logs
	Unit Test Specification for Analyzing QoS Concerns
	Evaluating QoS Unit Tests

	Applying UNITE to the QED Project
	Experiment Setup
	Experiment Results

	Chapter Summary

	Techniques for Facilitating Continuous System Integration Testing
	Case Study: RACE and the Baseline Scenario
	Overview of RACE
	RACE's Baseline Scenario

	Overview of CiCUTS
	Evaluating Design Alternatives for CiCUTS
	Alternative 1: Extend profiling infrastructure of SEM tools to capture domain-specific metrics.
	Alternative 2: Capture domain-specific performance metrics in format understood by continuous integration environments.
	Alternative 3: Capture domain-specific performance metrics in an intermediate format.
	The Structure and Functionality of CiCUTS

	Continuous System Integration Testing Experiment & Results
	Experiment Design
	Experiment Results

	Chapter Summary

	Template Patterns for Improving Configurability and Scalability of Testing and Experimentation
	Case Study: Revisiting the QED Project
	Template Patterns for Testing and Experimentation
	Variable Configuration Pattern
	Batch Variable Configuration Pattern
	Dynamic Variable Configuration Pattern
	Batch Dynamic Variable Configuration Pattern

	Quantitative Analysis of Template Patterns
	Revisiting the Multi-stage Workflow
	Quantitative Analysis of Results

	Chapter Summary

	Technique for Predicting End-to-End Response Time of Unique Deployments of Low Utilized Systems
	Case Study: The SLICE Shipboard Computing Scenario
	Overview of the SLICE Scenario
	Contention in the SLICE Scenario

	Using Baseline Profiles to Evaluate Unique Deployments
	Understanding the Unique Deployment Solution Space
	Using Baseline Profiles to Analyze the Deployment Solution Space

	Evaluating the SLICE Scenario
	Experimental Setup
	Experimental Results

	Chapter Summary

	Concluding Remarks
	ISISlab
	REFERENCES

