
MODELING, SIMULATION, AND VERIFICATION OF BIOCHEMICAL PROCESSES

USING STOCHASTIC HYBRID SYSTEMS

By

Derek Riley

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

of the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

May, 2009

Nashville, Tennessee

Approved:

Professor Xenofon Koutsoukos

Professor Janos Sztipanovits

Professor Gabor Karsai

Professor Gautam Biswas

Professor Larry Dowdy



ACKNOWLEDGMENTS

I am grateful to all of those people with whom I have had the pleasure of working during

my time at Vanderbilt. I would like to especially thank my adviser Xenofon Koutsoukos for

his guidance, help, and patience with this work. I am also grateful to the members of my

committee: Janos Sztipanovits, Larry Dowdy, Gabor Karsai, and Gautam Biswas for their

insight and help. I would also like to thank Heath LeBlanc for helping me edit and prepare

this dissertation.

I would also like to thank my family for their support of my research, and I would

like to specifically thank my sister for her collaboration and input in this work. Also, this

work would not have been possible without the financial support of the National Science

Foundation CAREER CNS-0347440 grant awarded to Xenofon Koutsoukos.

ii



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Chapter

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

II. RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Stochastic Hybrid Modeling Paradigms . . . . . . . . . . . . . . . . . . 8
Stochastic Hybrid Systems . . . . . . . . . . . . . . . . . . . . . . 9
Deterministic Markov Processes . . . . . . . . . . . . . . . . . . . 11
Related Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Modeling Biochemical Processes . . . . . . . . . . . . . . . . . . . . . 15
Relational Models . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Dynamical Models . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Biochemical Modeling Based on Hybrid Systems . . . . . . . . . . . . . . 21
Biological Protein Regulatory Networks . . . . . . . . . . . . . . . . 21
Reactive Biological Systems . . . . . . . . . . . . . . . . . . . . . 22
Biomolecular Network Modeling . . . . . . . . . . . . . . . . . . . 22
Multi-Affine Hybrid Systems . . . . . . . . . . . . . . . . . . . . . 23

Simulation of Stochastic Dynamical Systems . . . . . . . . . . . . . . . . 24
Stochastic Simulation Algorithm . . . . . . . . . . . . . . . . . . . 24
Simulation of Stochastic Differential Equations . . . . . . . . . . . . 25
ODE/SSA Simulation Methods . . . . . . . . . . . . . . . . . . . . 26
Variable Step Methods . . . . . . . . . . . . . . . . . . . . . . . . 26
Simulation of Stochastic Hybrid Systems . . . . . . . . . . . . . . . 27
Modeling and Simulation Tools . . . . . . . . . . . . . . . . . . . . 28
Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Verification of Hybrid Systems . . . . . . . . . . . . . . . . . . . . 29

iii



Verification of Stochastic Systems . . . . . . . . . . . . . . . . . . 31
Verification of Stochastic Hybrid Systems . . . . . . . . . . . . . . . 31

Monte Carlo Methods for Reachability Analysis of SHS . . . . . . . . . . 33
Reachability Analysis Using Monte Carlo Methods . . . . . . . . . . 33
Adaptive Monte Carlo Methods . . . . . . . . . . . . . . . . . . . 34
Rare Event Detection . . . . . . . . . . . . . . . . . . . . . . . . 34

Comparison with Related Work . . . . . . . . . . . . . . . . . . . . . . 36
Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

III. MODELING OF BIOCHEMICAL SYSTEMS USING SHS . . . . . . . . . . 39

Stochastic Hybrid Systems . . . . . . . . . . . . . . . . . . . . . . . . 41
Modeling Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Sugar Cataract Development . . . . . . . . . . . . . . . . . . . . . . . 47

SHS Sugar Cataract Development Model (SCD1) . . . . . . . . . . . 47
SHS SCD Model with Medication Control (SCD2) . . . . . . . . . . . 49
SHS SCD Model with Probabilistically-Delayed Medication Effect (SCD3) 50

A Biodiesel Processor . . . . . . . . . . . . . . . . . . . . . . . . . . 51
SHS Biodiesel Process Model . . . . . . . . . . . . . . . . . . . . . . 53

Glycolysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
SHS Glycolysis Model . . . . . . . . . . . . . . . . . . . . . . . . . 56

Water/Electrolyte Balance . . . . . . . . . . . . . . . . . . . . . . . . 57
SHS Water Balance Model . . . . . . . . . . . . . . . . . . . . . . . 59

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

IV. SIMULATION OF SHS . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Fixed Time Step Simulation . . . . . . . . . . . . . . . . . . . . . . . 64
Numerical Integration of SDEs . . . . . . . . . . . . . . . . . . . . . 64
Absorbing Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . 66
Reflecting Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . 67
Probabilistic Transitions . . . . . . . . . . . . . . . . . . . . . . . . 69
SHS Simulation Algorithms . . . . . . . . . . . . . . . . . . . . . . 69

Adaptive Time Step Simulation . . . . . . . . . . . . . . . . . . . . . . 72
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
SDE Error Approximation . . . . . . . . . . . . . . . . . . . . . . . 73
Adaptive Time Stepping for SDEs . . . . . . . . . . . . . . . . . . . 74
Adaptive Time Stepping for SHS . . . . . . . . . . . . . . . . . . . . 74
Adaptive Time Stepping Simulation Algorithm . . . . . . . . . . . . . 75

Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Validation of SCD Using Simulation . . . . . . . . . . . . . . . . . . 77

iv



Validation of the Biodiesel Model . . . . . . . . . . . . . . . . . . . . 78
Absorbing Boundary Crossing Detection . . . . . . . . . . . . . . . . 81
Adaptive Time Stepping . . . . . . . . . . . . . . . . . . . . . . . . 83

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

V. EXHAUSTIVE VERIFICATION OF SHS . . . . . . . . . . . . . . . . . . 87

Stochastic Verification . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Numerical Methods Based on Dynamic Programming . . . . . . . . . . 90
Parallel Decomposition of the Verification Algorithm . . . . . . . . . . 93

Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Navigation Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . 96
Room Heater Benchmark . . . . . . . . . . . . . . . . . . . . . . . . 97
Sugar Cataract Development . . . . . . . . . . . . . . . . . . . . . 100
Biodiesel Processor . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

VI. MONTE CARLO METHODS FOR SHS . . . . . . . . . . . . . . . . . . 110

Reachability Analysis Using Monte Carlo Methods . . . . . . . . . . . . 111
Rare Event Detection Using Multilevel Splitting . . . . . . . . . . . . . 112

Reachability and Safety with Rare Events . . . . . . . . . . . . . . 113
Multilevel Splitting for SHS . . . . . . . . . . . . . . . . . . . . . . 114

SHS Multilevel Splitting Algorithm . . . . . . . . . . . . . . . . . 116
MLS Parameter Selection . . . . . . . . . . . . . . . . . . . . . 118
MLS Accuracy and Efficiency . . . . . . . . . . . . . . . . . . . 120
Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Choosing Parameters for MLS . . . . . . . . . . . . . . . . . . . 122
Comparison with the Exhaustive Verification Algorithm . . . . . . . 128
Scalability of Parallel Methods . . . . . . . . . . . . . . . . . . . 130

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

VII. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . 133
Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Appendix

A. SOFTWARE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Monte Carlo Methods . . . . . . . . . . . . . . . . . . . . . . . . . 137

v



Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Computational Resources . . . . . . . . . . . . . . . . . . . . . . . . 137

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

vi



LIST OF TABLES

Table Page
1. Modeling paradigm comparison . . . . . . . . . . . . . . . . . . . . . . . . 15
2. Modeling technique comparison . . . . . . . . . . . . . . . . . . . . . . . . 21
3. Example reactions, reaction rates, and resets . . . . . . . . . . . . . . . . . . 45
4. Sugar cataract reactions and kinetic coefficients . . . . . . . . . . . . . . . . 48
5. Continuous state variables for the chemical concentrations of the reactions . . . . 52
6. Biodiesel reactions and kinetic rate equations . . . . . . . . . . . . . . . . . . 53
7. Glycolysis chemical species . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8. Glycolysis chemical reactions . . . . . . . . . . . . . . . . . . . . . . . . . 57
9. Water balance model coefficients . . . . . . . . . . . . . . . . . . . . . . . . 61
10. Initial conditions and constants for the SCD models . . . . . . . . . . . . . . 78
11. Initial conditions for water balance model . . . . . . . . . . . . . . . . . . . 82
12. Execution times at various resolutions for the water balance model . . . . . . . 83
13. Performance data for the navigation benchmark . . . . . . . . . . . . . . . . 97
14. Resolution for the VTBD model . . . . . . . . . . . . . . . . . . . . . . 107
15. Parallel performance results for the glycolysis model . . . . . . . . . . . . . 132
16. Software developed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

vii



LIST OF FIGURES

Figure Page
1. General stochastic hybrid system . . . . . . . . . . . . . . . . . . . . . . . 9
2. Stochastic hybrid system . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 . Concurrent SHS aircraft coordination example . . . . . . . . . . . . . . . . . 11
4. PDMP model of a biochemical system . . . . . . . . . . . . . . . . . . . . . 12
5. Composition of two CPDMP . . . . . . . . . . . . . . . . . . . . . . . . . 13
6. A directed gene graph example . . . . . . . . . . . . . . . . . . . . . . . . 16
7. A Bayesian network example . . . . . . . . . . . . . . . . . . . . . . . . . 17
8. An example fast/slow model . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9. The stochastic simulation algorithm . . . . . . . . . . . . . . . . . . . . . . 25
10. An example of an absorbing boundary . . . . . . . . . . . . . . . . . . . . 28
11. General stochastic hybrid system model . . . . . . . . . . . . . . . . . . . . 43
12. SHS model of SCD1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
13. SHS model of medication-controlled SCD2 . . . . . . . . . . . . . . . . . . 49
14. SHS model of medication-controlled SCD3 with delays . . . . . . . . . . . . . 51
15. SHS model of the VTBD system . . . . . . . . . . . . . . . . . . . . . . . 54
16. Network of glycolysis reactions . . . . . . . . . . . . . . . . . . . . . . . . 58
17. SHS model of glycolysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
18. Water balance SHS model . . . . . . . . . . . . . . . . . . . . . . . . . . 59
19. Boundary reflection problem . . . . . . . . . . . . . . . . . . . . . . . . . 68
20. Probabilistic transition firing method . . . . . . . . . . . . . . . . . . . . . 70
21. SCD model validation results . . . . . . . . . . . . . . . . . . . . . . . . . 79
22. SHS model of the CTBD system . . . . . . . . . . . . . . . . . . . . . . . 80
23. Model and experimental results comparison . . . . . . . . . . . . . . . . . . 80
24. Error of simulated CTBD model . . . . . . . . . . . . . . . . . . . . . . . 81
25. Absorbing boundary in the water balance model . . . . . . . . . . . . . . . . 82
26. Reflecting boundary in the water balance model . . . . . . . . . . . . . . . . 83
27. Step size comparison for water balance model . . . . . . . . . . . . . . . . . 84
28. Variable step example of the water balance model . . . . . . . . . . . . . . . 85
29. Error comparison of time stepping methods for the VTBD model . . . . . . . 86
30. Parallel decomposition of the state space . . . . . . . . . . . . . . . . . . . 95
31. The navigation benchmark state space . . . . . . . . . . . . . . . . . . . . 97
32. Value function for the navigation benchmark . . . . . . . . . . . . . . . . . 98
33. Automaton for the room heater benchmark . . . . . . . . . . . . . . . . . . 99
34. Room heater benchmark safe states for q = [110]T . . . . . . . . . . . . . . 100
35. Graphical depiction of the unsafe and target sets . . . . . . . . . . . . . . 101
36. Safety results for SCD1, SCD2, and SCD3 . . . . . . . . . . . . . . . . . 103
37. Differences between the safety results for the SCD models . . . . . . . . . . 104
38. Reachability results for SCD1, SCD2, and SCD3 . . . . . . . . . . . . . . 105
39. Differences between the reachability results for the SCD models . . . . . . . 106
40. Value function for the VTBD reachability results . . . . . . . . . . . . . . 108
41. Value function for the CTBD reachability results . . . . . . . . . . . . . . 108
42. Difference between the value functions for the VTBD and CTBD models . . . 109
43. An example MLS scenario . . . . . . . . . . . . . . . . . . . . . . . . . 113

viii



44. MLS for safety analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 114
45. MLS for reachability analysis . . . . . . . . . . . . . . . . . . . . . . . . 115
46. Example MLS problem in a hybrid state space . . . . . . . . . . . . . . . 115
47. Monte Carlo results for the glycolysis model . . . . . . . . . . . . . . . . . 123
48. Boundary placement scenarios for the glycolysis model . . . . . . . . . . . . 123
49. Splitting policies for the glycolysis model . . . . . . . . . . . . . . . . . . 124
50. Comparison of the variance for the MLS methods for the glycolysis model . . 124
51. Comparison of the efficiency for the MLS methods for the glycolysis model . . 125
52. Monte Carlo results for the VTBD model . . . . . . . . . . . . . . . . . . 126
53. Boundary placement scenarios for the VTBD model . . . . . . . . . . . . . 126
54. Splitting policies for the VTBD model . . . . . . . . . . . . . . . . . . . 127
55. Comparison of the variance for the MLS methods for the VTBD model . . . . 127
56. Comparison of the efficiency for the MLS methods for the VTBD model . . . 128
57. Dynamic programming verification results for the double integrator . . . . . 129
58. Monte Carlo analysis results for the double integrator . . . . . . . . . . . . 130
59. Monte Carlo analysis results for the VTBD model . . . . . . . . . . . . . . 131
60. Difference between Monte Carlo and dynamic programming results . . . . . . 131

ix



CHAPTER I

INTRODUCTION

Formal modeling and analysis methods hold great promise to help further discovery and

innovation for biochemical systems. Domain experts from physicians to chemical engineers

can use computational modeling and analysis tools to clarify and demystify complex sys-

tems. Models can be tested and adapted inexpensively providing new insights. However,

development of accurate and efficient modeling methodologies and analysis techniques are

open challenges for biochemical systems.

Biochemical systems often contain continuous, discrete, and stochastic dynamics, so

accurate models must capture these dynamics as well as potential interactions between them

[70, 98]. This work is based on the Stochastic Hybrid Systems (SHS) modeling paradigm.

SHS provide a formal framework that combines Stochastic Differential Equations (SDEs)

with discrete dynamics to capture stochastic continuous dynamics, deterministic transitions,

and probabilistic transitions. Further, simulation and other analysis methods for SHS are

promising for the study of complex systems [61, 81].

In this dissertation we develop a SHS framework for modeling and analysis of biochemical

systems. We use realistic case studies to demonstrate the modeling capabilities of SHS

and our proposed methodologies. These case studies include models of sugar cataract

development in the lens of a human eye [120], a commercial biodiesel production system

[126], glycolysis, which is a cellular energy conversion mechanism found in every living cell

[125], and the water and electrolyte balance system in humans [123].

We develop SHS analysis methods that include algorithms for simulation, verification,

and Monte Carlo-based reachability analysis. We develop accurate, efficient simulation

methods for SHS using both fixed step and adaptive step algorithms. We also present

an exhaustive verification method based on dynamic programming that can be used to

determine reachability or safety probabilities for every state of the system [83], as well as

a parallelization method that allows the application of the approach to realistic systems

[122]. For systems too large for exhaustive verification we develop Monte Carlo-based
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reachability analysis methods [123]. We extend Monte Carlo methods with a rare event

variance reduction method called MultiLevel Splitting (MLS) to improve accuracy and

efficiency [125, 126].

Another contribution of this work is the software tools developed. The analysis meth-

ods are implemented and tested using our case studies to demonstrate performance and

efficiency with realistic systems. Software implementations of the modeling methodology

and the analysis methods provide a platform for testing existing models as well as new

models. Parallelized versions of both the exhaustive verification method as well as the

Monte Carlo methods are developed to improve efficiency and enhance the applicability of

the methods to large systems.

In the rest of this chapter, we describe the motivation for our work followed by challenges

and specific research objectives. We then discuss the contributions of this dissertation, and

conclude with the organization of the rest of the dissertation.

Motivation

As biomedical research advances into more complicated systems, there is an increasing

need to model and analyze these systems to better understand them. Realistic biochemical

systems often involve continuous, discrete, and stochastic dynamics [128], so it is important

to use a modeling paradigm that can capture all of these dynamics in an extensible, formal

framework.

The modeling and analysis tools that are currently available are typically designed for

specific biochemical systems and are limited in accuracy or scalability [11, 18, 101]. Further,

many current analysis techniques are not built upon formal methods [128, 70], and efficiency

challenges often limit the application of the techniques to realistic systems. Therefore, it

is important to create formal, accurate, and scalable modeling techniques in addition to

accurate and efficient analysis tools to further the understanding of complex biochemical

systems.

Simulation is a powerful analysis tool because it can expose the behavior of a system in

conditions where traditional experimentation is costly or impossible. Accurate and efficient

simulation of biochemical systems based on SHS is difficult because of the inherent error that
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is introduced by the interplay of continuous, discrete, and stochastic dynamics. Accuracy

can usually be improved by using finer approximation methods, but this comes at the cost

of efficiency. Adaptive time stepping is an effective method for improving the efficiency

of simulation methods, but it poses difficulty for SHS because of the challenges of error

estimation methods for stochastic dynamics [90].

Simulation methods are useful for establishing potential outcomes, but often a more

comprehensive understanding of the system is required. Exhaustive verification methods

can be used to formally compute properties such as reachability or safety for every state

of the system [83, 9, 20]. Verification of reachability or safety properties for biochemical

systems is a critical problem because the results of the verification can help scientists gain

insights into the modeled systems, expose flaws, or validate the intended function more

robustly than simple simulations [15, 14, 59].

While exhaustive verification techniques are useful for small systems, usually they are

subject to the curse of dimensionality and are not scalable for large systems [120]. An

alternative to exhaustive verification algorithms is Monte Carlo methods, which can be used

to determine reachability or safety properties for stochastic systems. Monte Carlo methods

utilize multiple individual simulations from a single initial state to determine reachability

probabilities for that state [125].

Efficiency and accuracy of Monte Carlo methods are degraded significantly when rare

events are present, so variance reduction methods are necessary to maintain accuracy. MLS

is an adaptation of Monte Carlo methods that can be used to reduce the variance and

increase the efficiency of the estimator when a rare event is present [53]. While MLS holds

great promise to improve accuracy and efficiency of Monte Carlo methods, it also poses

challenges in determining appropriate parameters for optimal performance. Monte Carlo

and MLS methods can be parallelized to further improve efficiency.

Challenges

There are many open problems in the fields of modeling and analysis of biochemical

systems. We focus on the challenges that relate to computational aspects of modeling and

analysis methods.
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Modeling realistic systems Many simple, small biochemical models exist, but larger,

more accurate, realistic models are rare because they are significantly more difficult to

develop and analyze. Modeling methodologies typically require dynamics and parameters

to be fully specified to create a valid model. Once a model has been created, the model

should be thoroughly tested and compared to experimental data to validate the correctness

of the model. Validation can be challenging because error can be introduced in the modeling

method, the provided parameters, or the analysis technique. Further, experimental results

are not available for many biochemical systems because of physical or ethical restrictions,

so experimental-based model validation is not possible for every model.

Simulation methods Simulation is challenging for SHS because of the interplay of the

discrete, continuous, and stochastic dynamics. Discrete transitions can cause discontinuities

that can create significant error if handled improperly. Detecting boundary crossing in

the presence of stochastic dynamics is also inherently inaccurate. Stochastic dynamics

must also be carefully simulated to ensure bias is not introduced. Existing fixed time

stepping methods require very small time steps to generate accurate approximations, which

is computationally expensive. Adaptive time stepping methods have been developed for

SDEs, but error estimation methods can decrease accuracy significantly if not handled

carefully.

Reachability analysis of SHS Exhaustive verification methods can be used to deter-

mine reachability properties for SHS, but they are either designed for special cases, or they

are computationally expensive. General exhaustive verification techniques are plagued by

the curse of dimensionality, which dictates that as the state space grows linearly, the com-

putation required to analyze the system grows exponentially. To date, only simple examples

have been used to demonstrate verification methods.

Monte Carlo analysis can also be used to determine reachability properties for SHS, but

when Monte Carlo methods are used with inaccurate simulation trajectories, the accuracy of

the results are compromised. Pseudo-random number generators can also introduce bias into

Monte Carlo estimates that must be handled. Further, Monte Carlo methods can become

prohibitively inefficient and inaccurate for systems with rare events, so variance reduction

methods may be necessary. Variance reduction methods are challenging for SHS because
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of discontinuities caused by discrete transitions. Also, variance reduction methods are

controlled by adjustable parameters that require tuning to achieve good results. Methods

for determining the optimal parameter settings do not exist for high-dimensional systems.

Even with variance reduction methods, some rare events may not be accurately estimated.

Interdisciplinary bridge One of the significant challenges for modeling realistic sys-

tems is the interdisciplinary nature of the task. Systems that would benefit from modeling

typically require extensive domain knowledge, and methods that can provide the modeling

and analysis tools require extensive knowledge to implement and use.

Contributions

This dissertation presents realistic biochemical case studies along with accurate and

efficient computational analysis methods and experimental results.

1. Modeling realistic biochemical systems This dissertation presents a modeling

methodology for biochemical systems using SHS. Biochemical processes are inherently

stochastic and often contain both continuous and discrete behavior, so SHS are an

ideal modeling paradigm for capturing their complex dynamics. We present several

realistic SHS models of various sizes and complexity.

We present models of (a) sugar cataract development in the lens of a human eye, (b)

a commercial biodiesel production system, (c) glycolysis, which is a cellular energy

conversion mechanism found in every living cell, and (d) the water and electrolyte

balance system in humans. We present these models as case studies to demonstrate

the effectiveness and accuracy of our modeling methodology. We validate the sugar

cataract development model using a highly accurate fine-grained simulation method

called the stochastic simulation algorithm. We also validate the biodiesel model using

published results collected from an experimental processor.

2. Simulation methods for SHS We develop an advanced simulation technique for

SHS that employs improved boundary crossing detection methods for absorbing and

reflecting boundaries using probabilistic sampling. Further, we develop and present

an adaptive time stepping simulation method for SHS that improves the accuracy and
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efficiency. Experimental results of the improved simulation methods using our case

studies are also presented to demonstrate the performance and accuracy improvements

of these methods.

3. Verification of SHS We present an exhaustive verification method based on dynamic

programming that can be used to determine reachability or safety probabilities for

SHS. The verification method suffers from the curse of dimensionality, so we develop

a parallel dynamic programming implementation of the verification algorithm that

improves the performance of the algorithm. Although scalability is a limiting factor,

this work demonstrates that the parallel technique is feasible for realistic biochemical

systems.

4. Reachability analysis using Monte Carlo and variance reduction methods

We develop Monte Carlo methods for SHS that utilize our advanced simulation meth-

ods as well as parallel computing techniques to further enhance accuracy and efficiency.

We develop a MLS variance reduction method for SHS that improves the accuracy

and efficiency of Monte Carlo methods in the presence of rare events. Results for

the biodiesel and glycolysis models using MLS are presented to demonstrate its effec-

tiveness for realistic systems. We also present MLS parameter selection methods and

experimental results to help choose appropriate MLS configuration parameters.

Organization

Chapter II presents the related work to provide a survey of the current research.

Stochastic hybrid modeling paradigms, methods for modeling biochemical systems, and

non-stochastic hybrid modeling paradigms are presented. Several methods for simulating

stochastic dynamical systems as well as verification methods are also discussed. Monte

Carlo approaches including variance reduction methods are presented to provide context

for our later work. The chapter is completed with a comparison of the related work and

the contributions of the dissertation.

Chapter III presents our modeling methodology and the biochemical models we devel-

oped. The modeling methodology is designed to model any biochemical system with known
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chemical reactions and kinetic coefficients. The method is demonstrated for several models

including sugar cataract development in the eyes of humans, a biodiesel production system,

glycolysis, a cellular energy conversion process, and water electrolyte balance in humans.

Chapter IV presents simulation methods for SDEs and probabilistic transitions as well as

detection methods for absorbing boundaries and reflecting boundaries. Improved stochastic

methods for absorbing and reflecting boundaries are presented as well as high-order methods

for simulating SDEs. These methods are combined to create improved simulation algorithms

for SHS. An error estimation method is developed as well as an adaptive SHS simulation

algorithm. Simulation results are presented from the sugar cataract development model,

biodiesel model, and water balance model to demonstrate the performance and accuracy

improvements of our simulation methods.

Chapter V presents our exhaustive verification method for SHS based on dynamic pro-

gramming. It is computationally expensive for high-dimensional systems, so we develop a

parallel implementation of the verification algorithm, and we present experimental results

for a navigation benchmark and room heater benchmark. We also present results for the

sugar cataract development system and biodiesel model.

Chapter V I presents Monte Carlo methods for SHS. The reachability problem for SHS

is formulated, and it is shown how Monte Carlo methods can be used to solve the reacha-

bility problem. The MLS rare event detection method for SHS is developed along with a

discussion of parameter configuration for improved variance reduction. The chapter contin-

ues with experimental results demonstrating methods for choosing MLS parameters and a

comparison of the MLS results with the results generated using our dynamic programming

exhaustive verification methods.

Chapter V II summarizes the contributions of this dissertation. Limitations of the

approach are described, and future directions are also discussed.
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CHAPTER II

RELATED WORK

In this chapter we present research related to modeling and analysis of Stochastic Hybrid

Systems (SHS) and biochemical systems. We compare and contrast the related work to

provide context for our research contributions. There are six related research areas that

we describe: (a) stochastic hybrid models, (b) biochemical process models, (c) biochemical

modeling based on hybrid systems, (d) simulation of stochastic systems, (e) verification of

stochastic systems, and (f) analysis using Monte Carlo methods.

We present stochastic hybrid modeling paradigms to provide the context and justify our

use of SHS through comparison with related formal modeling paradigms. We describe bio-

chemical process modeling techniques to highlight previous efforts and identify the strengths

and weaknesses of each approach. We also present biochemical models based on hybrid sys-

tems to compare our work with non-stochastic models.

Many analysis techniques exist, so we present related analysis methods for stochastic,

hybrid, and biochemical systems to frame the contributions of our work. We consider related

work in simulation of stochastic dynamical systems to justify our simulation methods and

provide a context for our contributions. We also describe related verification techniques,

discuss their limitations, and compare them with our methods. Lastly, we consider Monte

Carlo-based analysis methods to provide a context for our approach on reachability analysis

of SHS using Monte Carlo techniques.

Stochastic Hybrid Modeling Paradigms

Stochastic hybrid modeling paradigms are attractive for modeling biochemical systems

because they combine continuous, discrete, and stochastic aspects in a formal context. How-

ever, several stochastic hybrid modeling paradigms exist, and they differ in the ways that

they allow the incorporation of stochasticity. Some models allow the use of Stochastic Dif-

ferential Equations (SDEs) to express the continuous dynamics, but others use Ordinary

Differential Equations (ODEs). Two types of discrete dynamics can be found in stochas-
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tic models: probabilistic transitions and deterministic transitions. The former determines

when to fire the transition using a probabilistic distribution, while the latter utilizes guards

and invariants to switch modes in the system deterministically. Both types are found in

stochastic hybrid modeling paradigms, but each paradigm has different restrictions on the

types of transitions that can be used.

Stochastic Hybrid Systems

General Stochastic Hybrid Systems In our work we use the General Stochastic

Hybrid System (GSHS) model presented in [26]. GSHS combine stochastic, continuous,

and discrete dynamics in a formal framework and utilize well-defined semantics for execu-

tion. Both probabilistic and deterministic transitions can be used for a GSHS model. The

attributes of GSHS make it ideal for modeling biochemical systems that often require the

combination of all the capabilities of GSHS.
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Figure 1: General stochastic hybrid system

Figure 1 shows a generic SHS model with two discrete states and two transitions (one

probabilistic and one deterministic). The initial state of the system is q1, and the continuous

dynamics of the system evolve according to the SDE associated with q1 until the probabilistic

transition fires. The firing is determined by an exponentially decaying function defined by

the firing rate λ [18]. Upon firing of a transition, the state resets according to the given reset

map R. The state then evolves according to the SDE associated with q2 until x crosses the

boundary defined by ∂Xq2. A formal definition of GSHS and their execution are provided

in Chapter III.
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Stochastic Hybrid Systems SHS are introduced in [66] as a stochastic extension of

hybrid systems using SDEs instead of ODEs. GSHS are introduced as an extension to SHS.

SHS differ from GSHS in the fact that they lack probabilistic transitions. Only deterministic

transitions are allowed between modes of the SHS restricting the types of systems that can

be modeled by this paradigm. Figure 2 shows a diagram of an example SHS.

q1

q2

11

22

Figure 2: Stochastic hybrid system

The focus of [66] is on maximization or minimization of the reachability or safety prob-

abilities for SHS. Embedded Markov chains are introduced by sampling from stochastic

executions to aid in the calculation of the safety and reachability problems. The embedded

Markov chain captures all the necessary details for safety and reachability analysis and is

useful since explicit expressions for the execution of the SHS are impossible to obtain in

general. Details on how to create the embedded Markov chain for any SHS can be found in

[66]. The invariant distribution and exit probability from an interval of the Markov chain

are studied, and it is shown that they converge to their counterparts for the solution to

the original SDE as the limit of the discretization step goes to zero. Because SHS are a

simplification of GSHS, virtually all of the analysis techniques for GSHS can be applied to

SHS with only slight modifications.

SHS are used to model several important realistic systems. These include air traffic

management [21], flexible manufacturing systems [48], biological systems [68], power man-

agement [65], and others.
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Concurrent SHS Concurrent SHS (CSHS) are developed in [18] to incorporate inputs,

outputs, hierarchy, and concurrency into SHS. The modeling tool Charon was modified to

handle the stochastic dynamics of concurrent SHS. Charon utilizes a graphical user inter-

face and allows parallel composition, instantiation, and information hiding that improve

the readability of the models created. It also allows the use of shared variables for commu-

nication between the concurrent processes.

Charon includes a simulation engine that employs simple boundary crossing detection

and the Euler-Maruyama method for SDE simulation. The modeling paradigm allows non-

determinism, so a stochastic mechanism for selecting from multiple transitions is also em-

ployed. Examples such as aircraft coordination and hard drive power management are

modeled in Charon using concurrent SHS [18]. Figure 3 shows an example of a CSHS

model of aircraft coordination with three aircraft and an air traffic controller. In this ex-

ample the three aircraft models execute concurrently and the positions of the aircraft are

shared variables.

Air Traffic Controller

Plane 1 Plane 2 Plane 3

Figure 3: Concurrent SHS aircraft coordination example

Probabilistic transitions are not explicitly built into the language; however, they can be

incorporated using the technique described in Chapter IV .

Deterministic Markov Processes

Piecewise Deterministic Markov Processes Piecewise Deterministic Markov Pro-

cesses (PDMP) allow randomness in discrete transitions, but employ ODEs for the con-

tinuous dynamics. Similar to GSHS, PDMP utilize two types of autonomous transitions:

discrete and probabilistic transitions. The dynamics are deterministic except for a sequence
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of random transitions that can be defined at fixed or random times. Continuous time

Markov chains can be thought of as a special class of PDMP; however, PDMP do not allow

any diffusion in the continuous dynamics thereby limiting the types of systems that can be

modeled.

x=b(q1,x)

�
(q,x)=k7x5   /  x5-=d1;

x6>250 / x6+=d2;

x6<250 / x6-=d2;

x=b(q2,x)

�
(q,x)=k7x5   /  x5-=d1;

Figure 4: PDMP model of a biochemical system

PDMP are used to model queuing systems, storage inventory models, insurance mathe-

matics models, and other systems [33]. Figure 4 shows an example of a PDMP biochemical

model with two modes, two guarded transitions, and two probabilistic transitions. Reach-

ability methods have been presented for PDMP in [25]. Because diffusion terms are not

allowed, analysis techniques are simpler; however, many biochemical systems cannot be

adequately modeled with PDMP.

Communicating PDMP Communicating Piecewise Deterministic Markov Processes

(CPDMP) introduce automata to PDMP to make them compositional [131]. Defining com-

position in the formalism allows models to be compact for readability while retaining the

inherent complexity of the model. CPDMP only allow ODEs for the continuous dynamics,

so stochastic dynamics can only be introduced through discrete transitions. One-way syn-

chronization is utilized between the concurrent components using ‘passive transitions’ where

the active partner can influence the passive partner, but not vice versa. Passive transitions

also occur independently of boundary-hit and probabilistic transitions.

Composition of CPDMP components is formally defined in [131]. Figure 5 shows an

example of a CPDMP. Guarded, passive, and probabilistic transitions are respectively pic-

tured as solid, dashed, and solid (with a box) arrows. Passive transitions are triggered by

active transitions in a concurrent system. This model supports parallel components and
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the execution engine handles the composition, which is typically exponential in size.

a
1

a
2

a
3 a

4

Figure 5: Composition of two CPDMP

CPDMP are used in examples of air traffic management [38]. CPDMP have been ex-

tended to accept multiple inputs and allow broadcasting to multiple components simulta-

neously. Future research has been proposed for extending the discrete communication to

continuous interaction to increase the flexibility of the paradigm [132].

Related Models

Several related modeling paradigms utilize similar methods to describe stochastic dy-

namical systems.

Switching Diffusion Processes The Switching Diffusion Process (SDP) is a modeling

paradigm that utilizes stochastic continuous dynamics and a controlled Markov chain to

describe discrete jumps [47]. Both the continuous and discrete dynamics depend on the

hybrid state of the system. SDP do not allow deterministic transitions or invariants, so the

types of systems that they can model is limited. Fault tolerant control systems, failure-

prone manufacturing systems, and multiple target tracking systems are some examples that

have been modeled with SDP [47].

The focus of recent research on SDP has been on optimal control and stability. In

[47] a non-random Markov policy that minimizes the pathwise long-run average cost is

presented in the context of optimal control. In [97] schemes for stochastic stabilization
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and destabilization with only partial control are presented. Continuing research is being

conducted in improving efficiency and reducing complexity for SDP [97].

Jump Linear Stochastic Systems Jump Linear Stochastic Systems (JLSS) are found

in the earliest stochastic hybrid literature and differ from SDP in the fact that they use

a single differential equation to describe the dynamics instead of utilizing Markov chains.

The equation that describes the evolution of the system is

dxt = Axtdt + σdw + Bu(t)dt + Rxtdpt

where the first two terms are from the standard SDE, u(t) is an input signal, and pt

is a Poisson process. The input should be thought of as a disturbance that generates

nondeterministic behavior rather than an external control input. Like SDP, JLSS do not

allow deterministic transitions, which limits the types of systems that can be effectively

modeled by them.

JLSS have been used to model target tracking, fault tolerant control, manufacturing

processes, and other systems [109]. The earliest SHS models are based on JLSS since

there is a large volume of work available on them. Most recent research has focused on

controllability, stability, and optimal control [99], as well as bisimulation that can guarantee

that two JLSS satisfy the same reachability or safety properties within a certain bound [74].

Taxonomy

In Table 1 we compare various modeling paradigms in the related literature. All of the

modeling paradigms combine discrete, continuous, and stochastic aspects, but the way the

stochasticity is incorporated varies. Concurrency is found in some models, but these are all

extensions of previous modeling paradigms designed for enhanced usability.

Trade offs between the modeling paradigms motivate the use of one technique over

another. Because our modeling contributions focus on biochemical systems, we choose to use

GSHS because they support stochastic, continuous, and all types of discrete dynamics. The

expressiveness of the language causes analysis methods to be computationally expensive;

however, we demonstrate the feasibility of the simulation, verification, and Monte Carlo
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Table 1: Modeling paradigm comparison

SDE ODE Prob trans. Guarded trans. concurrency
GSHS X X X
SHS X X

CSHS X X X X
PDMP X X X

CPDMP X X X X
SDP X X
JLS X X

techniques for realistic systems. From this point on in this chapter we refer to GSHS simply

as SHS for simplicity.

Modeling Biochemical Processes

Biochemical systems can be inherently difficult or costly to analyze using traditional

experimentation, so modeling and simulation methods have been developed to capture the

unique nature of these systems. Biochemical models vary in the granularity of their focus

as well as the complexity and types of interactions modeled. Some models incorporate

stochastic dynamics, while others consider only deterministic interactions. Continuous and

discrete dynamics can be used individually or combined within a model. We present the

related biochemical modeling methods to provide the motivation and context for our work.

The first set of modeling methods we present are coarser models that describe the interaction

between components of a biochemical system. The second type of models we present are

finer, dynamical models that capture the evolution of the individual aspects of a system

over time.

Relational Models

Relational models are useful for describing rudimentary biochemical systems relations

because they are easy to create, and analysis methods are simple to implement.

Directed and Undirected Graphs One of the simplest methods for modeling bio-

chemical processes is a graph-based method where vertices correspond to genes and edges

correspond to interactions between the genes. Directed graphs can be used to indicate inhi-
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bition or promotion between pairs of genes. In Figure 6, gene A inhibits C and C promotes

D.

A

C

B

D

- -

+

-

Figure 6: A directed gene graph example

This type of modeling is compact, easy to explore for large systems, and easy for pre-

dicting interactions. Furthermore, large databases exist that contain information about

inhibition and promotion amongst genes. However, only a small number of operations can

be performed on the graphs, and no quantitative analysis can be performed because of the

simplicity of the model. It is possible to identify feedback loops by looking for cycles in the

graph, and searching for paths between two genes can expose redundancy in the network

[36].

Bayesian Networks A genetic regulatory system can be modeled using Bayesian net-

works as a directed acyclic graph where the vertices are genes (with corresponding random

variables) and the edges imply direct regulators. The random variable corresponding to the

vertices describe the expression level of that gene. In Figure 7 a simple Bayesian network

is shown. This formalism has a solid basis in statistics that makes it attractive to capture

the stochastic aspects of gene expressions [36].

Bayesian networks can also be used with an incomplete knowledge of the system, which

is not necessarily true for other modeling methods. Artificial intelligence methods can be

used to learn unknown interactions in Bayesian networks as well. Unfortunately, dynamical

aspects of the regulatory system are left implicit, which can sometimes be overcome through

generalizations in the modeling paradigm [44, 110].

Boolean Networks Boolean networks are based on elementary genetic principles and

can be used model genes as being active (on) or inactive (off). A vector of 1s and 0s is
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A

C

B

D

Figure 7: A Bayesian network example

sufficient to store the state of the system. Interactions between genes are expressed through

boolean functions that define the next state of one gene from the current states of other

genes. Boolean networks are efficient for revealing the behavior of large genetic networks

by making strong simplifying assumptions about the dynamics and structure of the system

[78]. One application of this method includes identification of suitable drug targets for

cancer therapy [130].

Extensions to boolean networks to include stochasticity have been made to enhance

their usefulness. In [130] it is shown that the properties that can be derived in a Bayesian

network can be derived from a probabilistic boolean network as well. While these models

are useful, they are fairly coarse-grained, so it can be difficult to discern precise relationships

that can be discovered in finer models.

Generalized logical networks are another extension of boolean networks that allow more

than binary values for genes. Logical variables are used as an abstraction of the actual

concentrations of the genes in the system. Regulatory interactions are described by logical

equations [134].

Dynamical Models

Dynamical models are useful for modeling systems that evolve over time. They are espe-

cially well suited for biochemical systems because chemical concentrations can be modeled

using continuous and/or discrete dynamics in a formal way. Many methods exist, so we

present several of the relevant paradigms to provide a context for our methods.

Nonlinear Ordinary Differential Equations Often, finer-grained modeling approaches
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are necessary to capture the intricate behaviors of some biochemical systems. ODEs have

been used extensively to model individual biochemical concentrations such as proteins,

molecules, RNA, and other time-dependent variables. Interactions between the components

are captured by the equations used to model the concentrations. Each equation contains a

term for every influence on the concentration in the system, and since there can be many

influences, these models can become very complicated, or the modeler must choose which

interactions to include and which to leave out. Furthermore, the dynamics of each interac-

tion can be challenging to accurately model because experimental results can be difficult to

find, often requiring the use of estimated values [36].

Suppose we have a system of M chemical reactions and N chemical species. We define

xi as the concentration of the ith chemical species in micro-Molarity (µM), Mfast as the

number of reactions, aj as the reaction rate of the jth reaction, and the stoichiometric

matrix v as a (Mfast × N) matrix whose values represent the number of chemical species

lost or gained in each reaction. The dynamics for each of the i chemical species is described

by

dxi =
Mfast∑

j=1

vjiaj(x(t))dt (1)

Due to the nonlinearity of the differential equations, analytical solutions are not gen-

erally available. Several integration methods exist that adequately handle ODE models.

ODE models have been constructed for systems such as the lac operon in E. coli, the de-

velopmental cycle of bacteriophage T7, the expression of the HIV virus, circadian rhythms

in Drosophilia, and others [36].

Discrete Stochastic Models Discrete models are a natural modeling paradigm for

biochemical systems because they can capture the fine-grained changes of the concentrations

of the involved reactants and products based on the stoichiometry defined by the biochemical

reactions. In a discrete model, when the reaction fires, the concentrations of the reactants

and products are reset to the appropriate updated values.

The rate at which chemical reactions occur is calculated using the stoichiometry defined

by the type of reaction assuming temperature and pressure are constant. For example,

the reaction V + X → Y + Z, has a reaction rate a = kvx where chemical species V , X,
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Y , and Z have concentrations v, x, y, and z, respectively, and k is the reaction’s kinetic

coefficient. The rates of other types of reactions can be calculated similarly [62]. When

the rate at which the reaction fires is determined by stoichiometry, the reactions can be

simulated individually and the chemical species’ concentrations updated individually [51].

This type of model is fairly easy to generate and highly accurate; however, because of

the fineness of the approximation, simulation methods are very slow for large or complicated

systems. A biochemical system drug model based on physical interactions at the molecular

level has been developed in [118]. Additional examples can be found in [128].

Stochastic Master Equations The Stochastic Master Equation (SME) was derived

in [51] to express the rate of change of each chemical concentration in a well-mixed solution.

The rate of change of each chemical species is calculated using the chemical dynamics from

the biochemical reactions. Suppose that we have a system of M chemical reactions and N

chemical species. We define xi as the concentration of the ith chemical species in micro-

Molarity (µM), Mfast as the number of fast reactions, aj as the reaction rate of the jth

reaction, w as an Mfast-dimensional Wiener process, and the stoichiometric matrix v as a

(Mfast × N) matrix whose values represent the concentration of chemical species lost or

gained in each reaction. The dynamics for each of the i chemical species are described by

dxi =
Mfast∑

j=1

vjiaj(x(t))dt +
Mfast∑

j=1

vji

√
aj(x(t))dwj . (2)

This method is very effective for systems with large concentrations of chemicals, but if

some concentrations are low, the model decreases in accuracy because infrequent interac-

tions are not captured effectively. The addition of the stochastic term improves the accuracy

of the model and does not significantly decrease the efficiency of the analysis methods.

A modeling technique that uses polynomial SHS to construct models for chemical reac-

tions is presented in [62]. This technique utilizes a simplification of the SME formulation to

model biochemical dynamics. A SHS model of a genetic regulatory network is compared to

a deterministic model in [68]. The SHS model is derived from the specific dynamics of the

genetic regulatory network and incorporates stochasticity using probabilistic transitions.

Fast/Slow Biochemical Reactions Discrete stochastic models such as the Stochastic
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Simulation Algorithm (SSA) describe a reaction as firing at a rate calculated using the

chemical concentrations and the kinetic coefficient. Slow reactions occur when reaction rates

and concentrations are small enough and they can be modeled and simulated efficiently using

discrete stochastic techniques. However, discrete simulations become inefficient when there

are large concentrations of molecules and/or fast reaction rates. When discrete models

become inefficient, reactions can be accurately modeled as continuous stochastic models

using the chemical master equation [128].

Biochemical systems can contain a mixture of both fast and slow reactions. When

fast and slow dynamics must both be considered it is most efficient to use a combined,

hybrid modeling approach to take advantage of the efficiency of continuous modeling for the

fast reactions while still keeping the accuracy of discrete modeling for the slow reactions.

Determining which reactions are fast or slow is based on analysis of the rates using the

kinetic coefficients and chemical concentrations. To determine the slowest rate, the smallest

possible concentrations for each chemical species are used. Similarly, the fastest rate can be

determined by using the highest possible concentrations. Since the reaction rates depend

on the concentrations, reactions may be classified as either fast or slow dynamically based

on the system state. Figure 8 shows an example of a fast/slow system of reactions in a SHS

format with one slow transition. The fast dynamics are captured by the SDEs and the slow

reaction is captured by the single self-loop transition.

dx=b(q,x)dt+�(q,x)dW

�
(q,x)=k7x5   /  x5-=d1;

Figure 8: An example fast/slow model

Taxonomy

In Table 2 we compare the modeling techniques from this section. We consider the
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resolution of the systems (coarse or fine), the discrete or continuous nature of the method,

whether or not it incorporates stochasticity, and whether it is qualitative or quantitative.

Table 2: Modeling technique comparison

Coarse/Fine Discrete/Continuous Stochastic Qual/Quant
Directed graphs Coarse - No Qual

Bayesian Networks Coarse Discrete/Continuous Yes Quant
Boolean Networks Coarse Discrete No Qual

ODE Fine Continuous No Quant
SSA Very Fine Discrete Yes Quant
SME Fine Continuous Yes Quant

Fast/Slow Fine Discrete/Continuous Yes Quant

Each modeling method has advantages and disadvantages when compared to the other

available methods. Coarse modeling methods are typically easier to generate and contain

more global information; however, because of the lack of quantitative analysis methods,

we do not consider them in our work. Both continuous and discrete methods inherently

have advantages, so we consider both, and we also consider combinations of them. Because

biochemical systems are inherently stochastic due to the uncertainty of molecular motion,

our work focuses on stochastic systems.

Biochemical Modeling Based on Hybrid Systems

Hybrid systems are an appropriate modeling paradigm for biochemical systems because

the systems often include continuous and discrete components. Furthermore, formal analysis

techniques and tools are readily available for many classes of hybrid systems. A recently

renewed interest in the field of biochemical hybrid system modeling has increased the quality

and diversity of the models created.

Biological Protein Regulatory Networks

Biological protein regulatory networks have been modeled with linear hybrid systems

in [50]. The presented modeling technique uses linear differential equations to describe

the changes in protein concentrations and discrete switches to activate or deactivate the

continuous dynamics based on protein thresholds. Symbolic parametric backward reachable
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sets are computed from the equilibria of the hybrid system model and are guaranteed to be

conservative underapproximations of the actual reachable sets. A multi-affine hybrid model

of lactose metabolism is developed and analyzed with reachability analysis in [59].

The proposed technique is implemented in Matlab and results generated using the tech-

nique are presented [50]. The method is also applied to a piecewise affine hybrid system

model of lateral inhibition through delta-notch signaling in [49]. A piecewise linear hybrid

model for the lac operon used for regulating lactose metabolism in E. Coli is presented in

[136] and studied in [39]. Hybrid systems are used in order to accurately model the behav-

ior of excitable cells and cardiac tissue in [58, 138]. Our modeling technique uses similar

switching dynamics to these techniques; however, we allow nonlinear, stochastic dynamics

that can be used to improve the accuracy of the model.

Reactive Biological Systems

Two examples of hybrid system models of reactive biological systems are presented in

[94]. Both systems model the concentration of the involved molecular species with contin-

uous dynamics and other abstractions, approximations, and nonlinear effects with discrete

dynamics. One models glucose metabolism and the other models the B. Subtilis sporu-

lation inhibitor. Sigmoidal nonlinearities found in these real biological systems are mod-

eled as piecewise linear functions to improve the accuracy over purely discrete models [94].

These modeling techniques are similar to our proposed method; however, our method allows

stochastic dynamics and does not require nonlinear dynamics to be modeled with discrete

transitions.

These models are implemented in HybridSAL [69]. The tool allows for safety analysis of

the system using abstraction and a model checking algorithm. HybridSAL also allows for

composition of multiple systems, which is ideal for creating large biological models. Hybrid-

SAL models can be abstracted into finite-state discrete transition systems automatically for

simulation or verification [69].

Biomolecular Network Modeling

Biomolecular network modeling using hybrid systems is accomplished by using differen-
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tial equations to model feedback mechanisms and discrete transitions to model changes in

the underlying dynamics. Hybrid system models for the replessilator network and quorum

sensing in bacteria are good examples because they highlight the benefits of using hybrid

systems. Furthermore, the modeling tool Charon is presented in [7] along with the mod-

els to highlight the use of concurrency and communication often found in realistic models.

Using hierarchical modeling tools such as Charon can help to aid in the creation of larger,

more accurate models. Also, Charon supports stochastic simulation; however, it is not as

accurate as our proposed simulation methods.

An abstraction method for medium-scale biomolecular networks using hybrid systems is

presented in [59]. The method utilizes continuous multi-affine dynamics and allows for the

automation of nonlinear rate laws that are not as accurate as our modeling techniques but

allows for simpler verification. The abstraction method is useful for correctly identifying

coarse, emergent features of the system and connecting them to the details of the underlying

molecular dynamics. An example model of the lac operon is presented along with a method

using reachability analysis that identifies parameter values using the steady state model

structure. An approximation is constructed for an ODE model of the lac operon, and it is

shown that the abstraction passes experimental tests that are used to test the original model.

The system exhibits bistability and switching behavior arising from positive feedback in the

expression mechanism of the lac operon [59].

Multi-Affine Hybrid Systems

Multi-affine hybrid systems with rectangular invariants are used to model phenomena

such as quorum sensing [15], the stringent response [14], and lactose metabolism [59]. Reach-

ability analysis for these multi-affine hybrid systems can be performed using the tool d/dt

[15]. D/dt may not be able to perform reachability analysis in certain hybrid systems, but

it is very efficient for some restricted cases of hybrid systems. In [14], it is shown that safety

and reachability can be easily solved for a limited class of restricted systems. A multi-affine

hybrid system model was created for analysis of bistability of the lactose induction system

regulated by glucose and lactose [17]. A reachability method for multi-affine hybrid systems

based on conical over approximation along with analysis results is also presented in [17].
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Our modeling and verification method does not restrict the dynamics to affine but is less

efficient for certain restricted systems.

Simulation of Stochastic Dynamical Systems

Simulation is a powerful analysis tool because simulation data can be directly compared

to experimental data for validation of a model. Simulation data can also be useful in condi-

tions where traditional experimentation is costly or impossible. Because biochemical system

experimentation often has inherent disadvantages related to safety or cost, simulation is use-

ful for these systems. Accurate and efficient simulation is important but challenging due to

the inherent complexity found in biochemical systems.

Stochastic Simulation Algorithm

The Stochastic Simulation Algorithm (SSA) discretely simulates chemical reactions con-

suming reactants and creating products one reaction at a time. Probabilities of occurrence

aj are calculated for each reaction, and a stochastic sampling method is used to choose

which reaction µ fires at each iteration as shown in Figure 9. Once a reaction fires, the

quantities of reactants and products are updated [51]. The time step for the SSA can be

determined using the following equation

∆t =
1
a0

ln
1
U

where U is a uniformly-distributed number in [0, 1].

The SSA is very accurate, but it can be inefficient for large systems or fast reactions

because many iterations must be completed before results can be observed. To efficiently

handle practical systems, computational improvements such as R-leaping have been devised

for the SSA [12]. R-leaping increases the number of reactants consumed and products

produced in each step by a factor of R. This increases the efficiency of the approximation,

but decreases the accuracy as well. Because updates are made based on concentrations, the

overall time step can vary throughout the simulation. An implementation of SSA can be

found in the SimBiology package in Matlab [100]. We also develop our own implementation
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Figure 9: The stochastic simulation algorithm

of the SSA algorithm with R-leaping to use as a comparison with our simulation methods

[120].

The Finite State Projection (FSP) algorithm can be applied to the solution of the

chemical master equation as an alternative to the SSA algorithm and Monte Carlo methods

[105]. The approach has been extended to systems with multiple time scales [106]. FSP

utilizes a method of model reduction based on knowledge about a specific system. While

this method is efficient, it is restricted to a finite-time horizon. Further, small changes to

the model (such as medication effects) may change the model reduction. The lattice of

states generated by the FSP could be used by our verification method and incorporating

the model reduction technique into our SHS framework is a promising research direction.

Simulation of Stochastic Differential Equations

Simulation of SDEs can be performed using the Euler-Maruyama (EM) method, a first-

order Taylor scheme [80]. The Milstein Method (MM) is a second-order Taylor scheme that
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is more accurate while maintaining an acceptable efficiency. It extends the EM method by

adding terms to the approximation; however, if the diffusion coefficient σ is constant, all

higher order approximation terms are zero [80]. We describe the EM and MM methods in

detail in Chapter IV .

ODE/SSA Simulation Methods

Several modeling and simulation techniques have been developed that combine other

modeling techniques to improve the overall accuracy of the methods. Methods that combine

the use of ODEs with the SSA are described in [6, 16, 79, 57]. A method that combines

τ -leaping and the next reaction technique is described in [60]. These methods do not

formally allow for the inclusion of external discrete dynamics, nor do they include stochastic

continuous dynamics. Tools for the stochastic simulation of chemical reactions using these

methods have been developed in [64, 4].

Variable Step Methods

Adjustable step integration methods are preferable to fixed step methods in general

because efficiency and accuracy can potentially be improved through their use. However,

variable step methods for stochastic systems are challenging because approximation of the

Wiener process for variable steps is difficult, and exact characterization of the error at each

step is impossible. Two types of variable step methods have been proposed: exponential

time stepping and adaptive step methods [71, 90].

Simulation of SDEs can be performed using exponential time steps instead of fixed-size

steps. The calculation of exponential time steps does not require Gaussian random variables,

so the implementation is more efficient compared to fixed step methods. Furthermore,

exponential boundary crossing tests can easily be performed between steps further increasing

accuracy. No proof of convergence has been derived for the methods yet, and they are limited

to multidimensional Brownian motion or single dimensional SDEs [71, 72].

Simulation of SDEs can also be performed using adaptive time step methods. These

methods require an estimation of the error at each step to control the adaptive step size.

Since the error cannot be explicitly calculated for most stochastic systems, general adaptive
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algorithms do not exist. Furthermore, explicit calculation of the error bounds in general do

not yet exist, so error estimation is required. While adaptive time step methods typically

increase efficiency for systems with restricted dynamics, no order of convergence analysis is

available [90].

Simulation of Stochastic Hybrid Systems

Simulation of SHS is challenging because it must accurately combine numerical inte-

gration methods for SDEs and detection/approximation of boundary crossings and reflec-

tions. Numerical integration of SDEs is accurate if the trajectory is sufficiently far from

any boundaries; however, when the trajectory is close to a boundary, large errors can be

incurred. Simulation methods for SHS have been developed for the modeling language

Charon, but the focus is on concurrency, and the behavior close to the boundaries is not

studied [18].

During the execution of a SHS, the process can hit a switching boundary defined by

the invariants or guards. At a switching boundary the continuous process is halted and

restarted in a new state after executing any transition resets. Switching boundaries can

therefore be treated as absorbing boundaries. It is important to accurately estimate the

time and location that the process is absorbed to minimize the error introduced into the

approximation.

The easiest way to detect an absorbing boundary crossing is to check the state against

the invariants at each step of the approximation. Let us assume the state at time t is X(t).

If X(t) ∈ Xq, but X(t + ∆t) /∈ Xq, then the process is rolled back to time t and restarted

in the new state. An example of this is shown in Figure 10. In this example, the actual

trajectory is shown by the dark line and actually crosses the boundary and returns without

being detected. This type of error can be reduced by using smaller time steps. However, to

avoid large error very small time steps may be required that could cause prohibitively slow

computation [111].

An improved, stochastic method for absorbing boundary crossing detection based on

stochastic sampling is developed in [56], and we present the details of this method in Chap-

ter IV . A technique for accurately detecting absorbing boundaries has been developed for
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Figure 10: An example of an absorbing boundary

one-dimensional systems [96], and extensions have been proposed that scale to higher di-

mensional systems [91]. The boundary crossing detection algorithm presented in [111] uses

analysis of moments to improve the accuracy of the approximation.

Reflecting boundaries are difficult to approximate because the crossing must be detected,

and the reflection must be applied without incurring too much error. Approximating the

crossing of the reflecting boundary incurs similar error to approximating the crossing of

the absorbing boundary. Error generated in the approximation of the crossing is multiplied

when calculating the reflection, so care must be taken when approximating the crossing.

The traditional way to reflect the process is to detect the first crossing of the boundary and

reverse the dynamics to force the system back into the valid bounds. This type of reflection

may not be appropriate for the process, and care must be taken to ensure that the process is

reflected into a valid state. Methods for approximating reflecting boundaries have also been

studied previously [30]. We will present a stochastic methods for approximating reflecting

boundaries from [56] in Chapter IV .

Modeling and Simulation Tools

Much development has gone into modeling and simulation software for biological systems

because of the promise that these tools hold. One such tool Matlab’s SimBiology, which

allows modeling, designing, simulation, and analysis of biochemical pathways [100]. Another

software package is SynBioSS that was developed as a tool for modeling biochemical systems
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using the fast/slow method described previously. Further, SynBioSS is a repository for

kinetic coefficients to aid in the development of large and complex models. It also provides

a parallel implementation for improved efficiency with large systems [63]. The core of the

simulation algorithm for SynBioSS is the Hy3S tool [129].

Taxonomy

We present simulation methods for stochastic dynamical systems to demonstrate the

variability between and limitations of the available simulation methods. Methods range in

simplicity from the most simple SSA algorithm to the complex SynBioSS software package.

Efficiency of the methods is also highly variable from the efficient, but less accurate SDE

methods to the highly accurate but less efficient SSA methods. Using a combination of SSA

and ODE or SDE methods is effective for improving accuracy and efficiency, and further

improvements can be made through formalization of the combination and by incorporating

variable step methods. While the SHS simulation methods are the most flexible, accuracy

and efficiency of these methods can be a challenge because of the inherent complexity of

the interactions between the dynamics.

Verification

Exhaustive verification is an important task because it can take advantage of computa-

tional relationships in the model to provide an efficient, complete analysis. It is a challenging

problem because of the inherent complexity of such a task, and systems with discrete and

continuous dynamics further complicate the analysis of the dynamics. In this section we

consider the verification of hybrid systems, stochastic systems, and SHS since these topics

are related to our verification method.

Verification of Hybrid Systems

This section presents existing computational methods for (non-stochastic) hybrid sys-

tems. Hybrid systems can be verified by two types of techniques: over-approximative and

convergent [135].

Over-Approximative Techniques In over-approximative verification techniques, each
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step of the verification algorithm is designed to produce an over-approximation of the for-

ward or backward reachable set. These methods use set representations such as polyhedra

or ellipsoids and have been reported to scale well up to about six dimensions for general hy-

brid systems. If the reachable set is not initially found to be safe, it is required to tighten the

verification variables and approximations. Therefore, multiple attempts may be necessary

to verify a system, and it cannot be guaranteed that a solution can always be found.

The d/dt tool uses an over-approximation based on convex sets using griddy polyhedra

expressed as closed-unit hypercubes with integer vertices [11]. Polyhedral approximations

of flow pipes are used to calculate the forward reachable sets from an initial polyhedral

set for linear dynamics. CheckMate is a Matlab-based tool that has similar requirements

and uses a similar verification algorithm as d/dt [28]. VeriSHIFT is a tool that employs

ellipsoidal sets and time-varying linear dynamics to calculate the reachable set using a

similar technique as d/dt [22]. The predicate abstraction technique reported in [8] requires

the specification of appropriate predicates that divide the state space into a finite number

of regions. Continuous and discrete successors are calculated similarly to d/dt, but the

predicate abstraction technique only calculates the intersection of the successors with other

abstract states instead of the union with previous reachable states like d/dt, CheckMate, or

VeriSHIFT [8].

Performance results have been reported in [40] for a navigation benchmark using d/dt

and the predicate abstraction method. Because the performance of the verification using

either technique varies with the choice of initial state, several initial states are tested. While

some tests complete in just seconds, others are unable to return a solution. Some of the

problems that d/dt could not verify are verified using predicate abstraction in as much as

78 minutes on an instance of the navigation benchmark with 9 discrete states. These tests

were executed on a four processor Sun Enterprise 3000 with 4GB of memory.

Convergent Techniques Convergent approximative techniques solve the verification

problem by approximating the hybrid system with another model of computation for which

there exist well-understood verification methods. These techniques generally use grids to

discretize the state space and allow the user to choose the resolution of the approximation.

Examples of this technique include the Level Sets Method (LSM) [101] and our approxima-
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tion using locally consistent discrete Markov processes.

The LSM is based on two-person, zero-sum game theory to determine an implicit rep-

resentation of the boundary of the reachable set. Performance results are not as good

as over-approximative methods, but the LSM has been used on systems with five dimen-

sions [135]. One benefit of convergent techniques is that they generally do not restrict the

dynamics of the system or the shape of the reachable set.

Verification of Stochastic Systems

Verification of stochastic systems is a difficult problem, so few methods exist. In [89],

dynamics of state transitions are modeled as a discrete time Markov chain and an on-line

model estimation method is presented as well as a goodness of fit test that statistically

validates the model. A stochastic temporal logic called iLTL is created in order to specify

aggregate behaviors of large scale systems. A method for verifying safety properties of

hybrid systems is extended to include systems with stochastic dynamics in [115].

Stochastic π-calculus is a modeling framework that is able to express systems of con-

current components [88]. These components (or processes) each define a continuous time

Markov chain, and therefore, they can be simulated using Gillespie’s algorithm. Several

tools have been created that implement the semantics of Gillespie’s algorithm for stochas-

tic π-calculus models [112, 116]. The models are countably infinite, so verification can

only be performed symbolically, and current symbolic verification techniques are unable to

handle nonlinear dynamics. Nonlinear dynamics are common in biochemical systems, so

verification of realistic systems with this technique is limited.

Verification of SHS

A technique for stochastic verification for discrete-time SHS based on an optimal control

formulation has been presented in [9]. The reachability problem for discrete-time SHS

is formulated as a finite-horizon optimal control problem and is solved with a dynamic

programming technique in [1], and is shown for both reachability and safety in [3]. An

approximate dynamic programming approach for mitigating the curse of dimensionality

when verifying SHS is presented in [2]. Computational methods based on theorem provers
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for analyzing reachability of SHS based on the theory on Dirichlet forms have been presented

in [24]. A method for safety verification based on over-approximation of the safe set using

barrier certificates has been developed in [113].

SHS can be viewed as an extension of piecewise-deterministic processes [33] that in-

corporate stochastic continuous dynamics. Reachability of such systems has been studied

in [25]. CPDMP have been presented in [131] with an emphasis on concurrency. Optimal

control of piecewise deterministic processes has been studied in [34] where it is proved that

the value function is the unique viscosity solution of a first-order Hamilton-Jacobi-Bellman

equation. The work in [34] is based on a dynamic programming argument for characteriz-

ing the value function as a fixed point of an appropriate recursive operator and considers a

discounted optimal control criterion that ensures that the recursive operator is contractive

in order to prove convergence.

Reachability properties for continuous and hybrid systems have been characterized as

viscosity solutions of variants of HJB equations in [95, 101]. Extensions of this approach

to SHS and a toolbox based on level set methods have been presented in [102]. Level set

methods are also based on a discretization of the state space and they offer computational

advantages for many problems since the computation is limited to a neighborhood of the

reachable set.

Discrete approximation methods based on finite differences have been studied extensively

in [87] and the references therein. Convergence results justifying the use of discrete approx-

imation techniques for stochastic optimal control problems have been presented in [43, 87].

Based on discrete approximations, the reachability problem can be solved using algorithms

for discrete processes [117, 31, 35]. The approach has been applied for optimal control of

SHS given a discounted cost criterion in [81]. For verification of reachability properties, the

discount term cannot be used and convergence of the value function can be ensured only for

appropriate initial conditions. A related grid-based method for safety analysis of stochastic

systems with applications to air traffic management has been presented in [67].
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Monte Carlo Methods for Reachability Analysis of SHS

Monte Carlo methods are useful for analyzing stochastic models as an efficient alter-

native to exhaustive verification methods. In this section we describe the solution of the

reachability problem using Monte Carlo methods. Adaptive Monte Carlo methods and rare

event detection methods are also presented as accuracy and efficiency improvement methods

for traditional Monte Carlo methods.

Reachability Analysis Using Monte Carlo Methods

Reachability analysis for SHS can be performed using Monte Carlo methods because

reachability can be described as the expectation of an indicator function [21]. If the in-

dicator function describes the reachability of a state, then Monte Carlo analysis can be

used to determine the reachability probability given an initial state [114]. Accuracy and

efficiency can be tuned by adjusting the number of simulations. Stochastic roadmap simula-

tion extends the Monte Carlo technique by analyzing multiple trajectories simultaneously to

determine ensemble properties. The analysis of these ensemble properties can significantly

improve the understanding of the entire system [10].

Monte Carlo analysis is performed by generating N trajectories from the same initial

conditions with different Brownian motion and averaging the outcomes generated by the

indicator function. The number of trajectories sampled directly affects the accuracy of the

computed expected value. Because Monte Carlo techniques are based on sampling from

simulations, error is introduced into the approximations [21].

Error is introduced into a Monte Carlo reachability analysis in two ways: time dis-

cretization error and statistical error. Time discretization error is introduced into the ap-

proximation through the integration method. Statistical error is introduced through the

number of realizations of simulations that are used to determine the expected value [103].

To control the statistical error, it is necessary to change the number of Monte Carlo

realizations. An accuracy can be achieved with a certain confidence by adjusting the number

of independent extractions [114]. However, bounding the statistical error cannot guarantee

the error of the entire approximation will be less than any value, so adaptive time stepping

methods must be considered.
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Adaptive Monte Carlo Methods

For certain systems it is important to bound the error of the approximation, so adaptive

methods for switching diffusion processes have been created that adjust the time step size as

well as the number of realizations to ensure that the error is less than a desired amount. The

goal of adaptive time stepping algorithms is to choose the most efficient step size such that

the error is less than a certain amount. Adaptive methods can use a priori or a posteriori

knowledge at each time step to adjust the step size based on error estimation. Typically

step sizes are adjusted by doubling or halving the step, and the step size is bounded to

ensure that the solution is eventually found [103]. Care must be taken when approximating

the Wiener process for a non-fixed time step, so generation algorithms for adaptive Wiener

processes have been developed [90].

There are several different variable time stepping algorithms for approximating SDEs.

In one algorithm, the step sizes vary in time, but are the same for all Monte Carlo samples

[104]. Another algorithm uses step sizes that vary for different samples in the Monte Carlo

approximation. The first method is useful for systems with small noise or singularities at

deterministic times. The second method can be more efficient for certain systems and is

better for systems with singularities at random times [104].

The biggest challenge of adaptive time stepping algorithms is the computation of the

error estimation at each time step. A method for calculating the error along with examples

is presented in [133]. This method is fairly efficient and can be used with both deterministic

and stochastic variable time stepping methods. Another method for computing the error

estimation uses a simpler approach based on the derivative of the trajectory, but it does

not include any proven error bounds, unlike other methods [129].

Rare Event Detection

Certain models of systems such as air traffic management or health care require very

strict error bounds that can require prohibitively expensive computation using Monte Carlo

methods. Rare events such as entering an unsafe region of the state space are difficult to

detect for most systems. For some specific problems techniques have been developed that
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isolate rare events and calculate their impact on the system more efficiently [86].

One general solution to this problem is to characterize the expected value of the reacha-

bility probability as a product of conditional probabilities of intermediate events leading to

it. This type of analysis requires significant domain knowledge and cannot provide absolute

error guarantees, but it can provide significantly more efficient simulations for these rare

event scenarios [86].

Importance sampling is a rare event detection method that requires the adjustment of the

probability laws that drive the system to increase the sampling near the rare event [55, 23].

Importance sampling has been used for switching diffusions [86] and a large SHS model

in [20], and the main challenge is determining appropriate ways to adjust the probability

laws. Much research work has focused on improving importance sampling; however, each

system must be analyzed individually to determine the appropriate change of measure for

the dynamics to reduce the variance. If the incorrect change of measure is utilized, the

results may turn out worse than if traditional Monte Carlo methods are used [53].

MultiLevel Splitting (MLS) is more effective for many systems and easier to implement

than importance sampling, and is therefore the method that we present in detail in a later

section. The original concept of splitting is presented in [76]. Previous MLS algorithms have

been applied to SDEs [93], but to our knowledge have not been applied to SHS. MLS has

two main implementations: fixed-splitting and fixed-effort. Fixed-splitting methods require

a fixed value for the number of trajectories to split at each level, and can be performed in a

depth-first manner. Fixed-effort methods choose a maximum number of trajectories to be

split at each level and divide the split trajectories at each level in a breadth-first approach.

Fixed-effort requires more memory and processing but can have improved performance for

certain systems. Fixed-splitting is faster, more efficient, and simpler to tune, so it is the

method that we use in our work [93].

A MLS splitting policy has been proposed to replace the boundaries and splitting levels

with a splitting function. The evaluation of the function determines the appropriate time

and number of forks for splitting the trajectory. This method allows the use of any type of

function, so it is a generalization of the MLS method [93].

In order to reduce the variance optimally, it has been shown that trajectories with
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the highest probability of leading to the region of interest should be split [54]. The main

challenge of MLS methods is placing boundaries and choosing splitting policies or functions

in the best way [93].

Comparison with Related Work

The goal of this dissertation is to develop computationally efficient, accurate methods

for modeling and analyzing biochemical systems. The related work presented in this chapter

is intended to provide a context for the contributions of our work. Our contributions extend

previous work in three major areas: modeling, simulation, and verification.

Modeling

While relational biochemical models [36, 44, 110, 78, 134] are useful for fast prototyping,

they cannot be used for quantitative analysis, so we use a dynamical modeling paradigm.

Discrete dynamical models can be very accurate, but are also very inefficient to analyze,

and continuous models are efficient, but can be inaccurate. Our modeling approach allows

both discrete and continuous dynamics to take advantage of the strengths and avoid the

weaknesses of each method. Our approach also allows easy inclusion of realistic dynam-

ics such as drug interactions or temperature fluctuations, which previous models did not

include.

Our modeling approach uses the framework of SHS to formalize and extend similar

previous modeling methods [128]. We use GSHS because they allow for continuous and

discrete dynamics in the a general, formal, and stochastic framework. Most other modeling

approaches combine some of these attributes, but not all of them (as seen in Tables 1 and

2). Concurrency and hierarchy are not part of the formal SHS definition, but they could be

added easily to our modeling tools as in [18].

Modeling the effect of drugs and specifically enzyme inhibitors, is an important task

because it can enhance the understanding prior to the execution of actual experiments that

have inherent disadvantages. Previous drug modeling has focused mainly on the physical

interactions at the molecular level [118, 5, 42]. Modeling of enzyme inhibitors has not, to

our knowledge been attempted in conjunction with chemical reactions.
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We present a modeling methodology that can be used to model a large class of biochem-

ical systems, and we also present realistic case studies to demonstrate the methodology.

While modeling methodologies have been previously presented [128], only small, simple ex-

amples are presented to demonstrate the results. Further, we present experimental results

from our case studies to demonstrate the realistic usability of our methodology.

Simulation

Accurate simulation of dynamical models is a challenge that has been addressed previ-

ously [80, 71, 72, 90, 111, 30], but has not been extended for SHS. We take the previous

results, combine and improve them to create an improved comprehensive SHS simulation

algorithm.

A simulation engine for SHS has been developed for the modeling tool Charon [18], but

it is based on simple numerical integration and boundary crossing detection methods, which

limits its accuracy and efficiency. In this dissertation we develop an advanced simulation

technique for SHS that employs improved boundary crossing detection methods for absorb-

ing and reflecting boundaries utilizing probabilistic methods to improve both accuracy and

efficiency.

Previous methods that utilize adaptive time stepping do not consider discrete dynamics

[90, 71, 72]. We incorporate the adaptive time stepping ideas from these methods into our

SHS simulation algorithms to take advantage of our improved methods and avoid error that

can be caused by discrete transitions.

Verification

Our work in verification considers a reachability criterion for SHS for which the value

function is a viscosity solution of a set of coupled second-order Hamilton-Jacobi-Bellman

equations. The results of [34] cannot be applied because the presence of stochastic con-

tinuous dynamics and the absence of a discount factor in the reachability criterion require

new techniques for proving convergence. The dynamic programming approach that we use

is generally simpler to implement and captures the dependency of the value function be-

tween discrete modes. The approach also allows us to show the convergence of the solution
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obtained using the numerical methods to the solution of the SHS.

It is difficult to compare our verification performance results with other approaches be-

cause the performance of our algorithm is not dependent on a set of initial states unlike

most over-approximation techniques. Furthermore, our technique verifies SHS with nonlin-

ear continuous dynamics. We have verified a stochastic version of the collision avoidance

problem described in [135], and we found that our method has similar performance to the

LSM. One of the advantages of our method is that it is easily parallelized by applying known

decomposition methods from parallel dynamic programming [19].

Monte Carlo methods for reachability analysis of SHS have been proposed previously

[114]. The use of adaptive error control methods for Monte Carlo simulation of SDP have

been proposed as well [103]. Our work utilizes the higher order simulation techniques with

adaptive time stepping and improved boundary crossing detection to create a more accurate

Monte Carlo simulation engine for SHS.

Variance reduction methods for SHS have been previously presented [86, 20]; however,

these methods use importance sampling or conditional probability methods that can be

complex to implement and require a detailed understanding of the dynamics. MLS has been

presented previously [93], but it has not been used for systems with discrete dynamics. We

also present practical methods for determining parameters for MLS along with experimental

results to demonstrate tangible improvements in both accuracy and efficiency.
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CHAPTER III

MODELING OF BIOCHEMICAL SYSTEMS USING SHS

As biomedical research advances into more complex systems, there is an increasing de-

mand for accurate, extensible modeling methods specifically suited to biochemical systems.

Models of biochemical processes can provide insight into the modeled systems and allow

development and testing of hypotheses that may not be possible to test in the real system

because of physical or cost limitations. Further, models can be extended, compared, and

refined to increase their long term utility.

Modeling for biochemical systems is challenging because the systems are typically highly

interconnected and complex. Most current biochemical modeling methods are either too

simple for realistic problems or too complicated for domain experts to easily adopt. Further,

models are often custom generated and difficult to enhance or change by the domain expert.

Also, few biochemical models are based in formal methods, so it can be difficult to formally

analyze system properties.

We present a biochemical system modeling framework using Stochastic Hybrid Systems

(SHS). Because biochemical processes are inherently stochastic and often contain both con-

tinuous and discrete behavior, SHS capture their combined dynamics effectively. We present

a method for modeling the effect of temperature on the reactions as well as deterministic

and stochastic methods for modeling medication administration. These modeling methods

provide a framework for modeling complex, realistic models.

In this chapter we present several realistic models to demonstrate the flexibility and

usability of our methodology with realistic systems. Each model is presented to demonstrate

a different aspect of our modeling methodology. The systems range in size from three

continuous dimensions to 22.

We present three sugar cataract development models that have varying medication

administration policies to demonstrate the flexibility and ease of modeling medications

[121, 120, 122, 124]. The first model describes the biochemical process of sugar cataract

development without the presence of medication. The two subsequent models extend the
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first model to include the effect of medication on the system. The first medicated model as-

sumes that the effect of the drug on the system is instantaneous, while the second medicated

model is designed to incorporate stochastic delay to model absorption and metabolization.

We describe the biodiesel production process, establish realistic parameters for its sim-

ulation, and we present a SHS model for the biodiesel processor and reactions. Our model

incorporates temperature fluctuations due to a thermostat-controlled heater and models the

resulting effects on the chemical reaction kinetics. It also incorporates glycerol separation,

a process used to increase product quality in real biodiesel production systems [119, 126].

Biodiesel is a well-studied process that offers many experimental data sets, so we present

validation of the model using experimental data in Chapter IV .

Glycolysis is a biochemical process found in virtually every living cell that converts

sugars into usable energy molecules for the cell [125]. We present a model of glycolysis that

incorporates a feeding mechanism. The continuous state space has 22 dimensions, and there

are two discrete modes to describe the feeding process. We present this model because it

is a large, yet well developed system that demonstrates the limitations of existing analysis

methods.

The water balance problem in humans is regulated by a robust system that we model to

demonstrate the ability of SHS to capture macro-scale behavior in a realistic system [123].

All organisms must regulate the balance of water and electrolytes in their bodies. In humans,

this regulation is part of a system that involves the kidneys, circulatory system, pituitary

gland, and other minor components. Certain aspects of the water balance problem exhibit

challenges for accurate simulation, so we present this model to demonstrate the ability of

SHS to accurately model these types of behavior.

The rest of the chapter presents the formal SHS model followed by our SHS modeling

methodology for biochemical systems and several example case studies and SHS models. The

first case studies are of the sugar cataract development process using multiple medication

administration policies, the next model is the biodiesel production process, followed by the

glycolysis system and the water/electrolyte balance system. We conclude the chapter with

a summary of the work.
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Stochastic Hybrid Systems

In our work we use the General Stochastic Hybrid System model presented in [26].

GSHS combine stochastic, continuous, and discrete dynamics in a formal framework and

utilize a well-defined semantics for execution. These attributes make it ideal for modeling

biochemical systems that often require the combination of all the capabilities of GSHS.

To establish the notation we let Q be a set of discrete states. For each q ∈ Q, we consider

the Euclidean space Rd(q) with dimension d(q) and we define an invariant as an open set

Xq ⊆ Rd(q). The hybrid state space is denoted as S =
⋃

q∈Q{q} × Xq. Let S̄ = S ∪ ∂S

and ∂S =
⋃

q∈Q{q} × ∂Xq denote the completion and the boundary of S respectively. The

Borel σ-field in S is denoted as B(S).

Definition 1 A GSHS is defined as H = ((Q, d,X ), b, σ, Init, λ, R) where

• Q is a set of discrete states (modes),

• d : Q → N is a map that defines the continuous state space dimension for each q ∈ Q,

• X : Q → Rd(·) is a map that describes the invariant for each q ∈ Q as an open set

Xq ⊆ Rd(q),

• b : Q×Xq → Rd(q) and σ : Q×Xq → Rd(q)×p are drift vectors and dispersion matrices

respectively,

• Init : B(S) → [0, 1] is an initial probability measure on S,

• λ : S̄ → R+ is a nonnegative transition rate function, and

• R : S̄ × B(S̄) → [0, 1] is a transition measure.

To define the execution of the system, we denote (Ω,F , P ) the underlying probability

space, and consider an Rp-valued Wiener process w(t) and a sequence of stopping times {t0 =

0, t1, t2, . . .}. Let the state at time ti be s(ti) = (q(ti), x(ti)) 1 with x(ti) ∈ Xq(ti). While
1When there is no confusion, we use interchangeably the notation (q, x) and s for the hybrid state to

simplify complex formulas and often we use the notation sti = (qti , xti) for brevity.
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the continuous state stays in Xq(ti), x(t) evolves according to the Stochastic Differential

Equation (SDE)

dx = b(q, x)dt + σ(q, x)dw (3)

where the discrete state q(t) = q(ti) remains constant and the solution of (3) is understood

using the Itô stochastic integral [73]. A sample path of the stochastic process is denoted

by xt(ω), t > ti, ω ∈ Ω. The next stopping time ti+1 represents the time when the system

transitions to a new discrete state. The discrete transition occurs either because the contin-

uous state x exits the invariant Xq(ti) of the discrete state q(ti) or based on an exponential

distribution with transition rate function λ. Therefore, ti+1 can be defined as the mini-

mum between two other stopping times: (i) The first hitting time of the boundary ∂Xq(ti)

defined as t∗i+1 = inf{t ≥ ti, x(t) ∈ ∂Xq(ti)} and (ii) a stopping time τi+1 described by an

exponential distribution with survivor function

M(t, ω) = exp
(
−

∫ t

ti

λ(q(ti), xz(ω))dz,

)
, ω ∈ Ω.

Thus, the time of the next discrete transition ti+1 is a stopping time whose distribution is

defined by the survivor function

F (t, ω) = I(t<t∗i+1)
exp

(
−

∫ t

ti

λ(q(ti), xz(ω))dz

)

where I denotes the indicator function. 2

At time ti+1 the system transitions to a new discrete state and the continuous state

may jump according to the reset measure R. The trajectory of x(t) is assumed to be left-

continuous, so we denote x(t−i+1) the solution of (3) at t = ti+1 and s(t−i+1) = (q(t−i+1), x(t−i+1))

where q(t−i+1) = q(ti) the discrete state before the transition. If ti+1 = ∞, the system con-

tinues to evolve according to (3) with q(t) = q(ti). If ti+1 < ∞, the system jumps at ti+1 to a

new state s(ti+1) = (q(ti+1), x(ti+1)) according to the transition measure R(s(t−i+1), A) with

A ∈ B(S). The evolution of the system is then governed by the SDE (3) with q(t) = q(ti+1)

until the next stopping time.
2Given a set A ∈ F the indicator function is defined as IA(ω) = 1 if ω ∈ A and 0 if ω /∈ A.

42



1

),(),(

1

11

X

dwxqdtxqbdx

q

σ+=

)),,((
11

AxqRx ∈′→λ

)),,((
22

2
AxqRxXx

q
∈′→∂∈

2

22 ),(),(

2

X

dwxqdtxqbdx

q

σ+=

guarded

probabilistic

Figure 11: General stochastic hybrid system model

Figure 11 shows a generic GSHS model with two states and two transitions (one prob-

abilistic and one deterministic). The continuous dynamics of each state are defined by

the associated SDE. The probabilistic transition fires at the firing rate λ, and the guarded

transition fires when x hits the boundary x ∈ ∂Xq2 . The logical condition x ∈ ∂Xq2 is

often referred to as the guard of the transition. Upon firing of a transition, the state resets

according to the map R((q, x), A).

The following assumptions are imposed on the model. The functions b(q, x) and σ(q, x)

are bounded and Lipschitz continuous in x for every q, and thus the SDE (3) has a unique

solution. The transition rate function λ is a bounded and measurable function that is

assumed to be integrable for every xt(ω). For the transition measure, it is assumed that

R(·, A) is measurable for all A ∈ B(S), R(s, ·) is a probability measure for all s ∈ S̄, and

R((q, x), dz) is a stochastic continuous kernel. An important characteristic of the model

used in our analysis is that it satisfies the strong Markov property [26].

Let Nt =
∑

i

It≥ti denote the number of jumps in the interval [0, t]. It is assumed that

the expected number of jumps is finite for every initial state s ∈ S, that is Es[Nt] < ∞.

A sufficient condition for ensuring finitely many jumps can be formulated by imposing

restrictions on the transition measure R(s, A). Let s = (q, x) be the state after a discrete

transition. If for every x ∈ A, d(x, ∂Xq) ≥ ε > 0 3 and ∃δ > 0 such that P [inf{t >

ti+1, x(t) ∈ ∂Xq} ≥ δ] = 1 then ti+1 − ti > δ, i = 1, 2, . . . with probability 1. This condition

is satisfied if the continuous state after a jump is in the interior of an invariant. For the
3d(x, ∂Xq) denotes the Euclidean distance between x and ∂Xq
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rest of this dissertation we refer to GSHS as SHS for simplicity.

Modeling Methodology

All cellular function of living organisms is governed by complex systems of coupled

biochemical reactions. A reaction specifies all chemical species that react (reactants) and

are produced (products). A kinetic constant k associated with each reaction quantifies

the affinity for the reactants to produce the products in defined temperature and pressure

conditions.

Experimental analysis can be used to physically measure the variation in individual

concentrations of the chemical species in a biochemical system. However, understanding

the dynamical behavior of biochemical systems requires running many experiments that

can be time consuming, tedious, prone to error, unsafe, or costly. Developing and analyzing

dynamical models for capturing the evolution of individual chemical species concentrations

can reduce the number of experiments needed and accelerate the understanding of the

system.

Discrete models are a natural modeling paradigm for biochemical systems because reac-

tions can be considered as occurring at specific points in time, and when a reaction occurs,

individual molecules interact and produce new molecules. Discrete models update the con-

centrations of the involved reactants and products at a certain reaction rate based on the

stoichiometry defined by the reaction.

Chemical reactions are inherently stochastic because of the unpredictability of molecular

motion [37], so their dynamics are best described by stochastic models. Discrete stochastic

models of reactions can be created by describing a reaction j as firing at a rate aj [27].

When the reaction fires, the concentrations of the reactants and products are reset to the

appropriate updated values. Table 3 shows the rates and resets for several examples of

different types of reactions. For example, when the reaction X → Z occurs, a molecule of

X is consumed and a molecule of Z is produced denoted by x− = 1 and z+ = 1 respectively,

where x and z are the quantities of molecules of chemical species X and Z, and ki is the

kinetic constant for reaction i.

Reactions occur at different speeds depending on the concentrations of chemicals and
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Table 3: Example reactions, reaction rates, and resets

Reaction aj Reset
X → Z k1x x− = 1; z+ = 1;

X + Y → 2Z k2xy x− = 1; y− = 1 ; z+ = 2;
2X → Z 1/2 ∗ k3x(x− 1) x− = 2; z+ = 1;

2X + Y → 2Z 1/2 ∗ k4x(x− 1)y x− = 2; y− = 1; z+ = 2;
3X → Z 1/6 ∗ k5x(x− 1)(x− 2) x− = 3; z+ = 1;

the kinetic constant for each reaction. ‘Slow’ reactions occur when reaction rates and

concentrations are small enough and they can be modeled and simulated efficiently using

discrete stochastic techniques. However, discrete simulations become inefficient when there

are large concentrations of molecules and/or fast reaction rates. In such cases the reaction

occurs very frequently and the discrete simulation needs to consider a large number of

transitions in a short period of time. “Fast” reactions occur at a rate that is fast enough or

in high enough concentrations to consider as occurring at a constant rate. Such reactions

can be modeled more efficiently as stochastic continuous models assuming the reactions

occur in a well-mixed solution [128].

The rate of change of each chemical species is calculated using the chemical dynamics

from the biochemical reactions. Suppose that we have a system of M chemical reactions and

N chemical species. We define xi as the concentration of the ith chemical species in micro-

Molarity (µM), Mfast as the number of fast reactions, aj as the reaction propensity of the

jth reaction, and W as an Mfast-dimensional Wiener process. The stoichiometric matrix

v is a (Mfast X N) matrix that holds values representing the concentration of chemical

species lost or gained in each reaction. The following equation describes the dynamics for

each of the i chemical species [128].

dxi =
Mfast∑

j=1

vjiaj(x(t))dt +
Mfast∑

j=1

vji

√
aj(x(t))dWj (4)

Discrete and continuous models consider only slow or only fast chemical reactions, but

real biochemical systems often contain a mixture of both fast and slow reactions. In such

a situation it is most efficient to use a hybrid modeling approach to take advantage of the
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efficiency of continuous modeling while still keeping the accuracy of discrete modeling [128].

Stochastic hybrid systems are ideal for modeling biochemical systems with both fast

and slow chemical reactions systems because they are able to model continuous and dis-

crete dynamics in a stochastic framework. Fast reactions are modeled using the continuous

stochastic dynamics techniques presented earlier, and slow reactions are modeled as discrete

transitions with stochastic rates and resets.

To determine which reactions are fast or slow, one must analyze the rates using the

kinetic parameters and quantities of each reactant involved. The reaction rate range can

be determined by analyzing the rate aj from Table 3 over the entire range of possible

chemical concentrations. To determine the smallest rate, the smallest concentrations for

each chemical species should be used. Similarly, the largest rate can be determined by

using the highest concentrations in the range. Reactions can be considered slow if the

reaction rate never exceeds 100 reactions per second, otherwise reactions can be modeled

as fast reactions. If a reaction has a range that spans 100 reactions per second, the reaction

can be classified as either fast or slow.

All chemical reaction rates are effected by the temperature at which they occur. The

higher the temperature, the more likely that the individual molecules will interact and

eventually react. The chemical reaction rate k is most often defined for a single temperature

and pressure, but most chemical reactions are exothermic or endothermic and therefore

inherently change the temperature.

Furthermore, it is advantageous to control the reaction rates by applying or removing

heat to ensure that the system behaves correctly. The effect of temperature on the reaction

rate, k, is given by k = Ae
−Ea
RT where A is a constant for each reaction, Ea is the activation

energy for each reaction, R is the gas constant (1.9872), and T is the temperature in Kelvin

(for example see [32]). Using this equation we can determine the reaction rates for each

reaction at any temperature and therefore model the fluctuating reaction speeds.

A heating (or cooling) apparatus generally heats or cools in a binary manner (on or off),

so a discrete model of heating control is necessary. Temperature can easily be included in

a stochastic model as another continuous state. The temperature can then be used to help

calculate the reaction rates for the individual reactions.
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Sugar Cataract Development

This section describes three SHS models of the biochemical process of Sugar Cataract

Development (SCD). The first model describes the biochemical process of SCD. The two

subsequent models extend the first model to include the effect of medication on the system.

The medicated model we present first assumes that the effect of the drug on the system

is instantaneous, while the second medicated model incorporates stochastic delay to model

absorption and metabolization.

These models are not only used to demonstrate the modeling methodology, but also

our analysis methods. In the Chapter IV we present simulation trajectories of the SCD

models, and we validate the SCD models using the SSA algorithm. In Chapter V we present

verification analysis of the three SCD models.

SHS Sugar Cataract Development Model (SCD1)

A sugar cataract distorts the light passing through the lens of an eye by attracting

water to the lens when an excess of sorbitol is present. Often these cataracts are formed in

the eyes of diabetic patients who have highly fluctuating blood sugar levels. Several factors

affect the accumulation of sorbitol including the amount of the enzyme SDH. SDH catalyzes

the reversible oxidation of sorbitol and other polyalcohols to the corresponding keto-sugars

[98]. There are 8 chemical species involved in the reaction: NADH( x1), E−NADH (x2),

NAD+ (x3), E − NAD+ (x4), SDH (x5), Fructose (x6), Sorbitol (x7), and the inactive

form of SDH (Z).

A SHS model for SCD (SCD1) has been previously presented in [128, 120]. The bovine

lens data is used as a standard model for human cataract development. The ranges are

bounded and are estimated using realistic concentration values derived from experimental

data and Michaelis-Menten constants (Km) defined as the rate of the reaction at half-

maximal velocity [98]. Table 4 describes the seven reactions and rates involved in SCD.

The rates are calculated based on the average concentrations for each chemical species and

the kinetic coefficients presented in Table 4. The first six reactions are classified as fast and

the seventh is classified as slow because it is significantly slower than the other reactions.
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Table 4: Sugar cataract reactions and kinetic coefficients

Reaction Kinetic coefficient Rate
SDH + NADH → E −NADH k1 = 6.2 31.1
E −NADH → SDH + NADH k2 = 33 151

E −NADH + F → E −NAD+ + S k3 = 0.0022 6
E −NAD+ + S → E −NADH + F k4 = 0.0079 19.5

E −NAD+ → SDH + NAD+ k5 = 227 998
SDH + NAD+ → E −NAD+ k6 = .61 3.2

SDH → Z k7 = 0.0019 0.002

Each of the six fast reactions are modeled using the SDE (4). The inactive form of SDH

(Z) is not a reactant in any of the chemical equations, so its concentration is not modeled.

The equations describe the rates of change of the individual chemical species and are

dx1 = (−k1x1x5 + k2x2)dt−
√

k1x1x5dw1 +
√

k2x2dw2

dx2 = (k1x1x5 − k2x2 − k3x2x6 + k4x4x7)dt +
√

k1x1x5dw1

−
√

k2x2dw2 −
√

k3x2x6dw3 +
√

k4x4x7dw4

dx3 = (k5x4 − k6x3x5)dt +
√

k5x4dw5 −
√

k6x3x5dw6

dx4 = (k3x2x6 − k4x4x7 − k5x4 + k6x3x5)dt +
√

k3x2x6dw3

−
√

k4x4x7dw4 −
√

k5x4dw5 +
√

k6x3x5dw6

dx5 = (−k1x1x5 + k2x2 + k5x4 − k6x3x5)dt−
√

k1x1x5dw1

+
√

k2x2dw2 +
√

k5x4dw5 −
√

k6x3x5dw6

dx6 = (−k3x2x6 + k4x4x7)dt−
√

k3x2x6dw3 +
√

k4x4x7dw4

dx7 = (k3x2x6 − k4x4x7)dt +
√

k3x2x6dw3 −
√

k4x4x7dw4

The single slow reaction SDH → Z describes the conversion of the enzyme (SDH) into

its inactive form at a rate of k7x5. When the reaction occurs, the number of molecules of x5

is decreased by one and the concentration is decreased by d1 = 10−21 µM. The SHS model

can be seen in Figure 12. The reset on the transition (x5− = d1) describes the effect of

the single slow reaction on the concentration of x5. For the SCD system, the classifications
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dx=b(q,x)dt+�(q,x)dW

�
(q,x)=k7x5   /  x5-=d1;

Figure 12: SHS model of SCD1

of the reactions do not change dynamically because the kinetic coefficients are significantly

different and the chemical concentrations do not fluctuate widely.

SHS SCD Model with Medication Control (SCD2)

Drugs can help patients who are at high risk of developing sugar cataracts. These drugs

work by inhibiting the enzyme SDH, thereby reducing the rate at which SDH reacts with

other molecules in the system. This initially results in less sorbitol production; however,

since the reversible reactions are tightly coupled, the results can have side effects such as

increasing the fructose levels.

We create a new SHS model (SCD2), shown in Figure 13, of drug-modulated SCD to

include the effect that the drug has on the system. The application of the drug is represented

as a new discrete mode that represents drug-influenced dynamics where the reaction rates

k1,k6, and k7 are reduced by 50% to model the inhibition of the enzyme. Since the drug is

metabolized slowly and the amount that the rates are reduced is directly proportional to the

concentration of the drug, modeling a constant concentration is a reasonable approximation.

dx=b(q1,x)dt+�(q1,x)dW

�
(q,x)=k7x5   /  x5-=d1;

x6
�

d3 / x6+=d2;

x6
�

d3 / x6-=d2;

dx=b(q2,x)dt+�(q2,x)dW

�
(q,x)=k7x5   /  x5-=d1;

Figure 13: SHS model of medication-controlled SCD2

We model the drug administration based on an elevated level of fructose. It is assumed
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that patients self-monitor and self-administer the medication. When the amount of fructose

in the blood rises above a threshold d3 = 250 µM, we use a guarded transition to drive the

system to a new state that introduces the effect of the drug. When the fructose level

drops back below d3, we use another guarded transition to transition to the original state

essentially removing the effect of the drug. We also include resets on the mode transitions

to avoid infinitely fast switching that arises due to the stochastic nature of the Wiener

process. The reset increases or decreases the fructose concentration by d2 = 1 µM.

Fast switching could also be avoided by using guards that do not overlap (a slightly

larger value for increasing guards and a slightly smaller value for decreasing guards). We

selected to use state resets in order to reduce the number of the states required by the

discrete approximation of the SHS. Although this type of guard eliminates the need for the

reset on the transition, we found that this is not appropriate for this model, and it adds

complexity to the analysis of the system.

SHS SCD Model with Probabilistically-Delayed Medication Effect (SCD3)

The SCD2 model is effective for demonstrating the effect of medication on the reac-

tions; however, realistically the effect of the drug is not immediate because of variable drug

metabolism rates. Drugs are generally administered in a form called a prodrug that allows

the transport of the actual drug to the appropriate cells. This prodrug is metabolized into

an active form of the drug at different rates for different people. Furthermore, once a pa-

tient discontinues taking a drug, the body can metabolize the residual drug at variable rates

depending on many factors.

We develop a model (SCD3), seen in Figure 14, that incorporates two new states to

model the delay of the conversion from prodrug to drug (q2) and metabolism after dosage

is discontinued (q4). We use guarded transitions to model exiting the medicated and non-

medicated states and entering the respective delay states. We then use probabilistic transi-

tions to model the exit from the delay states to model the stochastic nature of the conversion

and metabolism rates. The value d4 = 0.05 is the rate of an exponential distribution that

models the delay incurred by the conversion of prodrug to drug, and d5 = 0.05 is the value

that models the exponential distribution corresponding to the drug metabolism delay. These

50



q1

dx=b(q1,x)dt+�(q1,x)dW

�
(q,x)=k7x5   /  x5-=d1;
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�
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dx=b(q2,x)dt+�(q2,x)dW
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dx=b(q4,x)dt+�(q4,x)dW�
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�
(q,x)=d4�
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Figure 14: SHS model of medication-controlled SCD3 with delays

values were chosen so the average delay is on the order of one hour that is reasonable for the

SCD system, but the values could be easily changed to model other types of medications.

SHS can also incorporate the continuous state into the transition rate if necessary.

The continuous dynamics of the medicated (q3) and non-medicated (q1) states are con-

sistent with SCD2. The dynamics of the delay state q2 are the same as those in state q1 to

reflect the lack of change while the prodrug is being converted into the drug. The dynamics

in the delay state q4 model the metabolism of the drug after the administration is removed,

so the kinetic coefficients are adjusted to reflect their half-life values. These coefficients can

be adjusted to model various drugs.

A Biodiesel Processor

This section describes our SHS model of a biodiesel production system. We present

this model to demonstrate our temperature modeling methodology, and we demonstrate its
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correctness by validating the model in the next chapter. We also present the analysis of

the biodiesel model using exhaustive verification in Chapter V . We compare the exhaus-

tive verification analysis with verification using Monte Carlo methods in Chapter V I to

demonstrate the correctness of both methods.

Biodiesel is made from vegetable oil and other chemicals by a process called transester-

ification [108]. The process involves six chemical species (Table 5) and six highly-coupled

reactions (Table 6). Vegetable oil in its purest form is made up of triglycerides (TG); how-

ever, it breaks down into diglycerides (DG) and monoglycerides (MG) as it is heated. An

alcohol, methanol (M), is combined with the TGs, DGs, and MGs to convert them into

biodiesel esters (E) and glycerol (GL).

The concentrations of the chemical species for this process are given in Table 5. We

choose chemical concentration ranges that are realistic for a 5 liter, experimental batch

processor [139]. The reactions involved in the biodiesel process along with their kinetic rate

equations are given in Table 6. The kinetic rate equations are used to calculate the kinetic

coefficients of each reaction at various temperatures. Since temperature significantly effects

the rates at which reactions occur, it is important to use accurate models of the kinetic

coefficients. Our kinetic rate equations were derived using the Arrhenius equation and

known dynamics of the reactions [108].

Table 5: Continuous state variables for the chemical concentrations of the reactions

Reactant Variable [Min, Max] (Moles)
TG x1 [0, 3]
DG x2 [0, 3]
MG x3 [0, 3]
E x4 [0, 9]
M x5 [0, 9]
GL x6 [0, 1]
T x7 [20,70]

It is critical to determine whether or not a biodiesel processor can produce high quality

biodiesel that passes the American Society for Testing and Materials (ASTM) biofuels tests.

Studies show that the amounts of GLs and TGs that are less than one percent still allow

the resulting fuel to meet ASTM specifications [41]. The ASTM requirements also limit the
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Table 6: Biodiesel reactions and kinetic rate equations

Reaction Kinetic Rate
TG + M → DG + E k1 = 3.13× 107e

−6500
T

DG + E → TG + M k2 = 4.62× 105e
−4500

T

DG + M → MG + E k3 = 4.71× 1013e
−10100

T

MG + E → DG + M k4 = 7.89× 109e
−6500

T

MG + M → GL + E k5 = 4280e
−3200

T

GL + E → MG + M k6 = 17200e
−4600

T

amount of methanol that is dissolved in the biodiesel; however, to meet this requirement

most biodiesel production systems use post-processing washing techniques that clean the

excess methanol from the biodiesel after the main reactions fully complete [139].

To accurately model the reactions, the rate at which the individual reactions fire must

be calculated using accurate temperature and pressure dynamics. The rate ai at which

chemical reactions occur can be calculated using the stoichiometry defined by the type of

reaction. We consider reactions of the form: V +X → Y +Z where chemical species V , X,

Y , and Z have concentrations v, x, y, and z, and ki is the kinetic coefficient for reaction i.

For these types of reactions the reaction rate is ai = kivx. For other types of reactions, the

rate can be calculated similarly [62].

SHS Biodiesel Process Model

We present our Variable Temperature BioDiesel (VTBD) model. The continuous dy-

namics in each state model the fluctuations in chemical concentrations and temperature.

As seen in Figure 15, the model has two discrete states. One models the system heating

q1, and the other models the cooling state q2. The glycerol separation is modeled using the

self-loop transitions in each discrete state.

Since chemical dynamics are inherently stochastic, SDEs are an ideal modeling paradigm

for the chemical concentrations. We use the method presented in [51] to model the concen-

trations of the chemicals in the system at each mode. The following equations model the

biodiesel chemical species concentration fluctuations where xi is the concentration of the

ith chemical species and Wi is an element of an Mf -dimensional Wiener process.
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q1

dx=b(q1,x)dt+�(q1,x)dW

x7>77/x7:=x7+0.1

x7<75/x7:=x7-0.1

q2

dx=b(q2,x)dt+�(q2,x)dW

x6>.005/x6:=10-5 x6>.005/x6:=10-5

Figure 15: SHS model of the VTBD system

dx1 = (−k1(x7)x1x5 + k2(x7)x2x4)dt

−
√

k1(x7)x1x5dW1 +
√

k2(x7)x2x4dW2

dx2 = (k1(x7)x1x5 − k2(x7)x2x4 − k3(x7)x2x5 + k4(x7)x3x4)dt

+
√

k1(x7)x1x5dW1 −
√

k2(x7)x2x4dW2

−
√

k3(x7)x2x5dW3 +
√

k4(x7)x3x4dW4

dx3 = (k3(x7)x2x5 − k4(x7)x3x4 − k5(x7)x3x5 + k6(x7)x6x4)dt

+
√

k3(x7)x2x5dW3 −
√

k4(x7)x3x4dW4

−
√

k5(x7)x3x5dW5 +
√

k6(x7)x6x4dW6

dx4 = (k1(x7)x1x5 − k2(x7)x2x4 + k3(x7)x2x5

+k4(x7)x3x4 + k5(x7)x3x5 − k6(x7)x6x4)dt

+
√

k1(x7)x1x5dW1 −
√

k2(x7)x2x4dW2 +
√

k3(x7)x2x5dW3

+
√

k4(x7)x3x4dW4 +
√

k5(x7)x3x5dW5 −
√

k6(x7)x6x4dW6

dx5 = (−k1(x7)x1x5 + k2(x7)x2x4 − k3(x7)x2x5

−k4(x7)x3x4 − k5(x7)x3x5 + k6(x7)x6x4)dt

−
√

k1(x7)x1x5dW1 +
√

k2(x7)x2x4dW2 −
√

k3(x7)x2x5dW3

−
√

k4(x7)x3x4dW4 −
√

k5(x7)x3x5dW5 +
√

k6(x7)x6x4dW6

dx6 = (k5(x7)x3x5 − k6(x7)x6x4)dt

+
√

k5(x7)x3x5dW5 −
√

k6(x7)x6x4dW6
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Biodiesel is made in processors that use heaters and thermostats to regulate the temper-

ature because the chemical reactions involved are highly sensitive to temperature. Heating

the reacting liquid is necessary to ensure production of high quality biodiesel, but using

too much heat wastes time and money. Therefore, processors generally have built-in ther-

mostats that control the temperature. To model this, we use two discrete states of the

system, one for heating and one for cooling. We model the thermostat controller using

guarded transitions between the heating and cooling states.

The SDE for modeling the temperature in each state is given by

dx7 =





.02(300− x7)dt + .01dW q1

.01(−x7)dt + .01dW q2

(5)

We designed the equations to model traditional heating and cooling dynamics and chose

the constants to model realistic heating and cooling characteristics of similar liquids and

heaters. We assume that the chemical reactions are neither exothermic nor endothermic,

which is realistic for this system. The temperature (x7) affects the reaction rates, so accurate

modeling is imperative. The resets (R((q, x), dy)) are used to ensure that the dynamics are

sufficiently moved to avoid infinite switching behavior.

As the chemical reactions produce biodiesel, glycerol (GL) is formed as a byproduct

of the reaction. Since the presence of glycerol inhibits the successful production of high

quality biodiesel, separation of the glycerol from the reacting liquid is necessary. Glycerol is

significantly denser than biodiesel so it can be removed using gravity settling or a centrifuge

depending on the type of processor [139]. We model the glycerol separation using self-

transitions in the heating and cooling states. Once the concentration of glycerol rises

above a certain level, the transition is enabled and the reset on the transition reduces the

concentration of the glycerol.

Glycolysis

We present the glycolysis model to demonstrate our modeling methodology for a large,

complex biochemical system. We use this model to present our simulation methods as well

55



as the Monte Carlo methods since it is too large for exhaustive verification. Further, the

glycolysis model is used to present variance reduction methods to demonstrate accuracy

and efficiency gains.

Glycolysis is a series of biochemical reactions that converts carbohydrates into various

waste products and energy in a currency useful to cells (ATP). As it is a fundamental

process to all living cells, it has been studied and modeled extensively in many organisms.

Baker’s yeast (Saccharomyces cerevisiae) is a well-established model organism for the study

of glycolysis [70]. Although the individual steps of glycolysis have been thoroughly exam-

ined, the interaction of glycolytic enzymes, substrates, and products with the intracellular

environment is not fully understood. Modeling and simulating glycolysis using SHS can

further our understanding of contextual cellular respiration.

SHS Glycolysis Model

Twenty-two chemical species have been identified that play an important role in glycoly-

sis and can be seen in Table 7. The chemical species interact in a series of 37 interconnected

chemical reactions (as seen in Table 8). Glucose (Glc) is added to the system, and glycogen

(Glyc), ethanol (EtOH), ATP , and other minor chemicals are produced. The reaction

rates for the system are developed in previous work [70]. The network of chemical reactions

can be seen in Figure 16.

Table 7: Glycolysis chemical species

Chemical Starting value Chemical Starting Value Chemical Starting Value
Glcx 4.25 NADH 0.3 AMP 0.25
Glc 2.75 PEP 0.041 BPG 0.0003

ATP 2.1 Pyr 22 CN−
x 5.6

G6P 4.4 ACA 1.6 NAD+ 0.7
ADP 1.5 ACAx 1.4 Glycx 2.8
F6P 0.6 EtOH 20 DHAP 3.1
FBP 5 EtOHx 17
GAP 0.1 Glyc 4.4

The model presented in [70] is a deterministic model, but the chemical reactions in the

real system actually behave in a stochastic manner due to the uncertainty of molecular
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Table 8: Glycolysis chemical reactions

Reaction Reaction
Glcx  Glc ATP + AMP  2ADP

Glc + ATP → G6P + ADP EtOHx →
G6P  F6P Glycx →

F6P + ATP  FBP + ADP ACAx →
FBP  GAP + DHAP ACAx + CN−

x →
DHAP  GAP CN−

x 
GAP + NAD+  BPG + NADH Glcx 

BPG + ADP  PEP + ATP Glyc  Glycx

PEP + ADP → Pyr + ATP ACA  ACAx

Pyr → ACA G6P + ATP → ADP
ACA + NADH → EtOH + NAD+ ATP → ADP

EtOH  EtOHx DHAP + NADH → Glyc + NAD+

motion. Therefore, we incorporate stochastic dynamics into the model using the method

described previously. We also incorporate discrete dynamics into the glycolysis model to

capture the concept of ‘feeding’ the yeast. Glucose must be added to the system to continue

production of the energy molecules, and when the concentration of glucose diminishes, the

amount of energy molecules that the system can produce decreases. In many organisms,

this reduction in energy output triggers mechanisms that encourage the introduction of

more glucose (i.e, feeding).

We model the glycolysis system using a SHS with two states: saturated and deficient

as shown in Figure 17. In the saturated state the glucose intake rate is less than the in

deficient state. Switching between the states is regulated by the concentration of ATP (x3).

When the amount of ATP drops below a certain level, the discrete state switches from the

saturated to the deficient state. If the level of ATP climbs back above a certain level, then

the state switches back to the saturated mode from the deficient mode.

Water/Electrolyte Balance

We present a model of the water/electrolyte balance system in humans. Our model is

a relatively simple, extensible model intended to demonstrate the ability of SHS to model

macro-sized biochemical systems. It is used in Chapter IV to demonstrate the accuracy

and efficiency of our proposed SHS simulation algorithms.
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Figure 16: Network of glycolysis reactions
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Figure 17: SHS model of glycolysis

Water/electrolyte balance regulation in mammals is vital to life. If too much salt is

present, dehydration occurs, leading to discomfort, performance degradation, and even

death. If too much water is present, arterial pressure rises dangerously and the nervous

system begins to malfunction. Therefore, virtually every living organism has a system that

regulates water balance.

Anti-Diuretic Hormone (ADH) is a nine amino acid peptide hormone secreted by the hy-

pothalamus. ADH is released when the body senses the intake of too much salt or a shortage

of water. Upon these conditions ADH signals to the kidneys to retain water to compensate

and bring the body back to equilibrium. Upon secretion, ADH travels through the blood-

stream to exert the majority of its effects on specific receptors (arginine vasopressin receptor
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2; AVPR2) in specialized cells within the kidney tubules. When ADH binds AVPR2, a chain

of intracellular signaling events takes place. The succession of signaling events ultimately

results in additional insertion of extra water channels (aquaporins;AQP2) into the apical

membrane of the cell. Aquaporins allow water to pass out of the nephrons and be re-

collected into the cells. Once the water is reabsorbed, a smaller, more concentrated amount

of urine is excreted [123].

The insertion of AQP2 channels into the cell’s outer membrane is a highly regulated,

multistep process. AQP2 is synthesized in the cell and inserted into intracellular membrane

structures called vesicles. When called upon by ADH-AVPR2 interaction and resulting

intracellular signaling, attachment and tethering proteins specifically direct the vesicles to

fuse with the outer membrane of the cell. The fusion event results in the addition of the

AQP2 molecules to the outer membrane. The total number of available AQP2-containing

vesicles and the attachment and tethering proteins are both inherently limited in any given

cell resulting in a saturation point for sensitivity of the cell to ADH [107].

When ADH is withdrawn, AQP2 accumulates in special membrane domains (clathrin-

coated pits), which are subsequently engulfed (endocytosed) by the cell. Endocytosed AQP2

receptors are then recycled within the cells, ready for the next ADH signal. AQP2 is

continuously and quickly recycled between the cell surface and intracellular compartments,

rebounding between upper and lower limits for AQP2 cell surface localization. This behavior

results in a reflection of the observed effects at the ADH saturation limit [107].

SHS Water Balance Model

normal

dx=b(q1,x)dt+�(q1,x)dw

0<x3<12

dehydrated

dx=b(q2,x)dt+�(q2,x)dw

0<x3<12

x1<18.65x2

x1>18.8x2

Figure 18: Water balance SHS model

We develop a SHS model of the water/electrolyte balance system, seen in Figure 18. The
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SHS has been adapted from the SDE model in [92] to include the thirst/dehydration mech-

anism described in [77]. The model includes two discrete states: normal and dehydrated.

Transitions between the normal and dehydrated modes are defined by the transition guards

in Figure 18 and are based on the ratio of water to salt (or electrolyte concentration) in the

body derived from data in [77].

We define three continuous states: total body water x1, total body salt x2, and ADH

x3 within each discrete state. The dynamics for the water and salt variables were based

on simple input/output differences in the system with an added diffusion term that models

uncertainty and system variability [92]. SDEs are used with constant diffusion because

of the uncertainty of molecular interactions in these types of biochemical systems. Fluid

output is directly dependent on the ADH concentration that is in turn affected by the

fluid/salt ratio in the body.

The following SDEs describe the continuous dynamics in the normal state

dx1 = (fin − 45x−.76
3 )dt + .1dw1

dx2 = (sin − sout)dt + .1dw2

dx3 = (−4.5)dt + .1dw3

where fin describes the amount of fluid input to the system per unit time, sin describes

the amount of salt input to the system per unit time, sout describes the amount of salt

output from the system per unit time, and w = [w1, w2, w3]T is a three-dimensional Wiener

process.

The next set of equations describe the dynamics when the body is in the dehydrated

state determined by the electrolyte concentration.

60



dx1 = (fin − 45x−.76
3 )dt + .1dw1

dx2 = (sin − sout)dt + .1dw2

dx3 =
(

80 ∗ x2

x1

)
dt + .1dw3

The constants for the continuous dynamics were adapted from [92] to match the exper-

imental data in [77]. We fit the experimental data to curves and determined appropriate

adaptations for the dynamics when necessary. The values we used for our experiments can

be found in Table 9. The fluid input fin can be modeled as a continuous stream or discrete

input, so for simplicity we consider only the continuous stream. Our focus is primarily on

the water balance, so we modeled sin and sout as constant functions; however, these could be

easily extended to model more realistic behavior if salt balance is the focus of the analysis.

Table 9: Water balance model coefficients

Variable Value
fin 40
sin 2
sout 2

Because ADH is only valid for non-negative values, a reflective boundary is defined for

x3 at the value of zero. We also define a reflective boundary at x3 = 12 to mimic the

saturation limit of ADH in the kidneys. The limit is defined by the invariants in the system

x3 ∈ [0, 12]. This range may not be the same for every person, but seems reasonable based

on experimental data from [77].

Summary

In this chapter we present a biochemical system modeling methodology using SHS as well

as several models that demonstrate the capabilities and accuracy of the modeling method.

The models are intended to provide realistic examples to be used with analysis techniques.
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We present three models of SCD that demonstrate multiple medication administra-

tion modeling methods. We also present a biodiesel process model that incorporates

temperature-dependent chemical dynamics and a heating controller. We present a model of

glycolysis that models the conversion of sugars into usable energy molecules for a cell. The

final model we present is the water and electrolyte balance system in humans. This model

demonstrates the ability of SHS to capture macro behavior in a realistic system.

The modeling methodology and models we present provide a sample of the types of

systems that can be accurately and efficiently modeled with SHS. The models provide a

platform for future development as well as a basis for comparison for SHS analysis methods.
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CHAPTER IV

SIMULATION OF SHS

Biochemical processes are inherently stochastic and often contain both continuous and

discrete behavior, so Stochastic Hybrid Systems (SHS) provide an ideal framework for

modeling these types of systems [29, 75]. Simulation methods for SHS can be implemented

by combining simulation methods for continuous and discrete dynamics. However, SHS

simulation methods are challenging because the complex dynamics can introduce error and

inefficiencies. Adaptive time stepping methods for Stochastic Differential Equations (SDEs)

have been proposed [90], and hold promise to significantly improve the efficiency and control

the error of SHS simulation methods.

Simulation of SHS using fixed-step methods is challenging because of the inherent in-

accuracies of simulating stochastic dynamics and the small step sizes required to achieve

good approximations [123]. Stochastic continuous dynamics can be difficult to accurately

and efficiently approximate, and while simulation methods for SDEs exist, the implemen-

tation of the methods for high-dimensional systems is non-trivial [80]. Discrete transitions

can also be difficult to accurately and efficiently approximate because of the inherent chal-

lenge of detecting boundary crossings [123]. SHS simulation algorithms require the use of

significantly small step sizes to improve accuracy, but this comes at the cost of efficiency.

Adaptive time step methods for SHS hold promise to improve accuracy and efficiency,

but they are challenging because error can be introduced in many forms and exact error

computation is not possible for complex systems. Error approximation methods exist, but

they must be used carefully to ensure that they approximate relevant error [90]. Further,

using various step sizes can cause difficulty when approximating the Brownian motion of

the system and can introduce bias if not handled carefully. Adaptive time stepping for SHS

is further complicated by the presence of boundaries that must be handled appropriately

to avoid introducing unnecessary error.

In this chapter we describe simulation methods for SHS. We describe two methods

for simulating SDEs as well as traditional and advanced methods for detecting absorbing
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and reflecting boundary crossings. We develop two fixed step SHS simulation algorithms

using the traditional and advanced simulation methods. We also develop an adaptive time

stepping SHS algorithm based on an adaptive SDE time stepping algorithm. We describe

several methods for approximating the error, choosing appropriate time step adjustments,

and generating noise for variable SHS time steps.

We present experimental results for several systems to demonstrate our methods. We

compare our SHS simulation method results with simulations of the SSA for the SCD

system to demonstrate the correctness of our modeling and simulation methods [124]. We

also compare our SHS simulation method with the results of experimental data for the

biodiesel model to show the accuracy of both the simulation method and the model [126].

In this chapter we also demonstrate the improvements of our advanced SHS simulation

algorithms using the water balance model [123]. We present results of step size comparisons

and a demonstration of the adaptive time stepping algorithm. We also present an analysis of

the accuracy and efficiency of the adaptive time stepping SHS algorithm using the Variable

Temperature BioDiesel (VTBD) model.

Fixed Time Step Simulation

Simulation of SHS requires the combination of simulation methods for SDEs, detection of

switching boundaries, approximation of reflecting boundaries, and detection of probabilistic

transitions. At each time step, the values of the continuous variables must be updated,

boundaries must be tested for crossings, and probabilistic transitions must be tested for

firings. We present the individual simulation methods and we describe the combination of

the methods to create SHS simulation algorithms.

Numerical Integration of SDEs

Simulation of SDEs can be performed using Taylor schemes of various orders. The

simplest Taylor approximation scheme is the Euler Maruyama (EM) method that is a first-
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order approximation. The kth component of the EM scheme is given by

Xk
n+1 = Xk

n + bk∆t +
m∑

j=1

σk,j∆W j

for k = 1, 2, ..., d where ∆W j is the normally-distributed increment of the jth component

of the d-dimensional Wiener process W assuming a d-dimensional drift coefficient b and a

d×m diffusion coefficient σ.

To formalize the notion of accuracy, we present the concept of order of convergence. The

order of convergence is used to quantify the quality of the approximation when considering

simulation of stochastic systems. An approximation X∆t(T ) at time T with step size ∆t

converges with order γ strongly to the actual trajectory x(T ) if there exists c > 0 such

that E
(∣∣x(T )−X∆t(T )

∣∣) ≤ c∆tγ . X∆t(T ) converges with order γ weakly to x(T ) if there

exists c > 0 such that E
(∣∣f(x(T ))− f(X∆t(T ))

∣∣) ≤ c∆tγ for a given class of measurable

functions f [80]. Strong convergence implies that the trajectory is a possible trajectory of

the system, and weak convergence implies that the computed trajectory only preserves the

moments of the actual trajectory. The EM method is simple to implement, but achieves a

strong convergence of γ = 0.5 and weak convergence γ = 1.0, so small time steps must be

used to generate accurate approximations.

The Milstein Method (MM) is a second-order Taylor scheme. The higher order terms

require more computation; however, the approximation maintains an acceptable efficiency

for most systems.

The kth component of the MM scheme is described by

Xk
n+1 = Xk

n + bk∆t +
m∑

j=1

σk,j∆W j +
m∑

j1,j2=1

Lj1σk,j2I(j1,j2)

where

Lj =
d∑

k=1

σk,j d

dxk
and I(j1,j2) =

∫ τn+1

τn

∫ s1

τn

dwj1
s2

dwj2
s .

For the cases where j1 = j2, the multiple stochastic (Stratonovich) integral can be calculated
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by

I(j1,j1) =
1
2
((∆W j1)2 −∆t)

I(j1,j2) cannot, in general, be calculated using only ∆W j values. To approximate I(j1,j2),

multiple stochastic integrals are used in the following equation assuming j1 6= j2.

Ip
(j1,j2) = ∆t(

1
2
ξj1ξj2 +

√
pp(µj1,pξj2 − µj2,pξj1)) +

∆t

2π

p∑

r=1

1
r
(ζj1,r(

√
2ξj2 + ηj2,r)− ζj2,r(

√
2ξj1 + ηj1,r))

where

pp =
1
12
− 1

2π2

p∑

r=1

1
r2

ξj =
1√
∆t

∆W j

and µj,p, ηj,r, and ζj,r are independent Gaussian random variables with mean 0 and standard

deviation 1 for j = 1, ...,m and r = 1, ..., p. The accuracy of the approximation Ip
(j1,j2) of

I(j1,j2) can be improved by using larger values of p. To obtain a strong convergence of order

γ = 1.0, p = p(∆t) ≥ K
∆t must be chosen where K is some positive constant [80].

Taylor schemes for solving SDEs can have strong order of convergence of γ = 0.5 to

γ = 3.0 and weak order of convergence of γ = 1.0 to γ = 6.0 depending on the number

of approximating terms [80]. The computation of higher order terms requires many more

operations and can be prohibitively complicated and expensive; therefore, a trade off must

be reached to achieve the appropriate accuracy and efficiency. Using MM is effective for

improving accuracy while maintaining sufficient efficiency.

Absorbing Boundaries

During the execution of a SHS, the process can hit a switching boundary defined by

the invariants. At a switching boundary the continuous process is halted and re-started in

a new state after executing any transition resets. Because the process is stopped when a

boundary is encountered, switching boundaries can be treated as absorbing boundaries that

are restarted in a new state after being absorbed in the current state [56]. It is important
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to accurately estimate the time and location that the process is absorbed to minimize the

error introduced into the approximation.

The easiest way to detect an absorbing boundary is to check the state against the

invariants at each step of the approximation. Let us assume the state at time t is X(t). If

X(t) ∈ Xq, but X(t + ∆t) /∈ Xq, then the process is rolled back to time t and re-started in

the new state. This method has a strong order of convergence of γ = 0.5 [111].

An improved method for absorbing boundary crossing detection based on stochastic

sampling was developed in [56]. The approach can be used with boundaries that are hyper-

planes or sufficiently smooth. The biochemical models we consider have boundaries that

are hyperplanes, so this approach is valid for these systems. The probability that the state

trajectory has hit the boundary between t and t + ∆t is

P (hit) = exp

(−2(n.(Xt −Xab))(n.(Xt+∆t −Xab))
n.(σ(Xt)σ∗(Xt)n)∆t

)

where the switching boundaries are hyperplanes ∂Xq =
{

x ∈ Rd(q) : n.(x−Xab) = 0
}

, n

is the unit vector normal to the boundary ∂Xq, Xab ∈ Rn is the position of the absorbing

boundary, and Xt is the computed continuous state at time t. For simplifying the notation

we choose to describe the diffusion σ(Xt) as only depending on the continuous state, but the

actual diffusion may depend on the discrete state as well. This improved method achieves

a weak order of γ = 1.0 assuming that the boundary is sufficiently smooth [56].

Reflecting Boundaries

Invariants can define reflective boundaries in addition to switching boundaries. Reflec-

tive boundaries are those where the process is reflected obliquely when it encounters the

boundary [56]. For example, all biochemical systems are limited to nonnegative concentra-

tions of any chemicals, or some biochemical processes also have saturation limits that impose

upper limits on concentrations. In both cases when the process reaches the boundary, it is

reflected to mimic the behavior of the real system.

The traditional way to handle reflective boundaries is to detect the boundary crossing

and reset the state to a position within the valid state space [56]. The most common way
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Figure 19: Boundary reflection problem

to reset the state is to place it inside the state space the same distance that it covered

after it crossed the boundary. This type of reflection guarantees that the invariants are

always satisfied, but it is not always accurate for real systems. For example, biochemical

systems require non-negative chemical concentrations, so if the simulation is reflected using

the traditional method, the number of atoms involved in the system may be reset to a value

that invalidates conservation of matter properties. A simple example of this is shown in

Figure 19.

We formally define the boundary reflection problem. Let us assume a system has an

invariant Xq with a reflective boundary, and the state at time t is X(t). If X(t) ∈ Xq, but

X(t + ∆t) is computed to be outside of Xq, then the process is reflected in the direction

normal to the boundary X(t + ∆t).n = X(t).n where n is the unit vector normal to the

boundary. The traditional method of boundary reflection has a weak order of convergence

of γ = 0.5 [56].

The improved method described in [56] defines a new diffusion process that adds the

effect of the reflection to the original SDE:

dx = b(q, x)dt + σ(q, x)dw + n(q, x)dk

where n(q, x) is a unit vector normal the boundary at state (q, x), k =
∫ t
0 1X∈∂Ddk, ∂D is

the reflective boundary, and Xrb is the position of the reflective boundary.
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The approximation of the process is calculated using:

Xt+∆t = Xt + b∆t + σ∆W + n∆k

where ∆W is a normally-distributed pseudo-random number and ∆k = kt − kt+∆t. Ap-

proximating kt is achieved using the technique described in [56]:

kt = max (0, zt) .n

zt = Xt −Xrb +
1
2

(
σW + bt +

√
|σ|2 V + (σW + bt)2

)

where V = ε(1/2t) is an exponentially-distributed random variable independent of W . This

equation is derived from the solution to the Skorohod problem and results in a weak order

1.0 approximation of the reflecting boundary [56].

Probabilistic Transitions

Firing of the probabilistic transitions (according to the transition rate λ) can be handled

by the technique described in [18]. A graphical representation of this algorithm can be seen

in Figure 20. First, a new process Z must be defined

Z(t) = −U + e−
∫ tlt

t λ(x(s))ds

where U ∈ [0, 1] is a uniformly-distributed random number and tlt is the time of the last

probabilistic transition. A sample is drawn from the uniform distribution and Z is tested

at each time step. When Z crosses 0, the transition is fired.

SHS Simulation Algorithms

Our first, and most simple, algorithm is the Hybrid Euler-Maruyama HEM method. We

use the Euler-Maruyama method for computing the SDE values, and we use the traditional

(non-stochastic) methods for detecting boundaries. Discrete transitions are incorporated

into the EM approximations by analyzing the state between steps of updating the continuous

dynamics. If a guard condition on a transition is satisfied, then the transition is fired and
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Figure 20: Probabilistic transition firing method

resets are executed. Once the state is updated, the EM algorithm continues in the new state.

Probabilistic transition firing is determined for HEM using the technique described earlier.

We draw a sample from a uniform distribution and test the exponential decay at various

times to determine the jump time for each probabilistic transition. When the exponential

decay is greater than or equal to the random value, the transition is fired. The pseudocode

for a step of HEM is given below where ∆t is the step size, guard is the boolean guard on

a single discrete transition, Xrb is the location of the reflective boundary, and ttl is the time

the last probabilistic transition fired. Multiple guarded or probabilistic transitions may be

included by adding multiple tests.

Algorithm 4.1: HEMstep(Xt)

Xt+∆t = Xt + b∆t + σ∆W

if guard == true

then FireGuardedTransition

if Xt+∆t < Xrb

then ReflectBoundary

if U1 = rand(0, 1) < exp(−λ(t− ttl))

then FireProbabilisticTransition

t = t + ∆t

return (Xt)

Our second simulation algorithm HMM incorporates the MM, stochastic absorbing,

and reflective boundary simulation methods. To include the improved reflective boundary
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method we store the previous ∆k value and calculate the new ∆k at each step. If the

trajectory is close to a reflecting boundary, we add ∆k to the MM computation. Because

there may be multiple absorbing boundaries that could be hit at the same time, at each

time step we calculate the probability of hitting all nearby boundaries. We then select the

boundary with the highest hitting probability and compare the probability to a uniformly-

distributed number U1. When U1 < max(P ), then we consider the boundary to be hit, and

we execute the transition resets and restart the process in the new state. The pseudocode

for a step of HMM is as follows where xab,ξ is the location of absorbing boundary ξ, n

is the direction normal to the associated reflected or absorbing boundary, and V is an

exponentially distributed random variable independent of U1.

Algorithm 4.2: HMMstep(Xt)

kt+∆t = Xt −Xrb + 1
2

(
σW + b(t + ∆t) +

√
|σ|2 V + (σW + b(t + ∆t))2

)

∆k = max(kt+∆t, 0).n− prev∆k

Xt+∆t = Xt + b∆t + σ∆W +
m∑

j1,j2=1

Lj1σk,j2I(j1,j2) + n(∆k)

GuardedProb = max(exp(−2(n.(Xt−Xab,ξ))(n.(Xt+∆t−Xab,ξ))
n.(σσ∗(Xt)n)∆t ), ξ)

if U1 = rand(0, 1) < GuardedProb

then FireGuardedTransition

if U2 = rand(0, 1) < exp(−λ(t− ttl))

then FireProbabilisticTransition

t = t + ∆t

return (Xt)

Error is introduced into the calculated SHS trajectory in several different ways. Ap-

proximation of the SDE introduces higher-order errors that are not calculated due to com-

putational inefficiency. Error due to the use of pseudo-random numbers is typically not a

concern for smaller simulations, but large simulations must use pseudo-random generators

that do not repeat as often as the efficient generators to avoid this type of error. Finally,

step size inherently introduces error in the SDE and boundary calculations as described

earlier by the order of convergence γ.

The approximations using the EM or MM method, boundary methods, and probabilistic
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transitions converge to the actual solution individually as the step size is decreased to

zero, so their combination also converges to the correct solution. By combining methods

with higher order convergence, we reduce approximation error more quickly than the lower

order methods thereby improving efficiency and accuracy. The traditional absorbing and

reflecting boundary algorithms have a weak order of convergence of γ = 0.5, while the

improved methods both have a weak order of convergence of γ = 1.0 [56]. Therefore the

HEM algorithm has a strong order of convergence of γ = 0.5, and the HMM algorithm has

a strong order of convergence of γ = 1.0.

Accurate simulation of the trajectory near intersections of boundaries is a difficult prob-

lem, and must be handled carefully to minimize error. When the trajectory is in close prox-

imity to multiple reflecting or absorbing boundaries, our algorithm considers the boundary

with the highest hitting probability at each time step.

Adaptive Time Step Simulation

Error in a simulation method due to the step size can be decreased by decreasing the

step size, but this comes at the cost of efficiency. Dynamically adjusting the time step of

the simulation has been shown to increase the accuracy and efficiency of the approximation

by allowing the step size to adjust to compensate for variable step size error. However,

adaptive time stepping for stochastic systems is difficult because of the challenge of error

approximation in the presence of stochastic dynamics [90]. Adaptive time stepping for SHS

is further complicated by the discrete discontinuities, so additional care must be taken when

a simulation trajectory approaches a boundary.

Background

Fixed step integration methods are easy to implement and are effective for generating

approximations to differential equations, but they can be unnecessarily inefficient. Adap-

tive time stepping can improve efficiency by adjusting the time step of the approximation

dynamically based on the error of the approximation.

Exact error amounts cannot be determined for general systems, so error estimations

must be used. Error estimation methods aim to determine the amount of error generated
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in a time step by examining the dynamics of the simulation. If the estimated error is too

large, then the given time step should be decreased. Conversely, if the error is sufficiently

small, the step size can be increased because the error introduced will be relatively small.

Accurate approximations of the error due to the step size must be made to ensure the

step size is adjusted appropriately. For ordinary differential equations, error approximations

and step size adjustments are fairly strait forward [90]. However, adaptive time stepping for

SDEs is not as simple for multiple reasons. Not only is error introduced by several sources

(that all must be accurately estimated), but also the Brownian path must be computed

accurately when the step size changes to ensure randomness is preserved. Therefore, we

begin by examining error estimates for SDEs.

SDE Error Approximation

Time discretization error for SDEs can be categorized into two types: drift and diffu-

sion error. Neither type of error can be computed exactly because there are no analytical

methods for computing the error of SDEs. However, both types of error can be estimated

separately and decisions about the time step can be made based on the amount of either or

both forms of error.

The error introduced by the diffusion term can be estimated by computing higher-order

approximation terms. Given a SDE such as Equation 3, we examine the higher-order terms

of the Strantonovich-Taylor expansion of the original SDE J10b
′σ, J01σ

′b, 1
6J3

1σ′σσ, and

1
6J3

1σ′σ′σ where J1,J10, and J01 are multiple Strantonovich integrals [90]. Only the last

term can be computed efficiently, so it is the best term to estimate the diffusion-influenced

error:

Eσ = ∆W 3σ′2σ.

This method has been shown to be effective for estimating the diffusion error previously in

[90].

Error can also be introduced by the drift term, so we must also consider this error in

our estimation methods. ODE-like error computation methods can be used to estimate the

drift error using the SDE. Using the O(h2) error terms from the Milstein error expansion,
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the drift error can be estimated by

Eb = ∆t2b′b.

This method has been shown to be effective for estimating the drift error previously in [90].

Adaptive Time Stepping for SDEs

Before each step of the approximation, the drift and diffusion errors of the approximation

are computed (Eb,Eσ), and the step is rejected or accepted depending on the amount of

either type of error. If the step is rejected because either Eb or Eσ is too large, the step

size is reduced to decrease the error until both error estimates are sufficiently small. If the

two types of error are both determined to be smaller than a threshold, the step size can be

increased to improve efficiency. Step sizes are typically halved and doubled in stochastic

systems to simplify the computation of the Wiener process [90].

Brownian motion must be appropriately approximated for the variable time steps to

ensure bias is not introduced. To simplify the process, a binary tree structure is used to store

the noise values. The Wiener process is sampled at fixed intervals ∆wk = w(k)− w(k − 1)

for k = 1..N . Intermediate intervals on level j of the tree are calculated if needed by

∆w2k−1,j+1 = 1
2∆wk,j + yk,j , ∆w2k,j+1 = 1

2∆wk,j − yk,j for j = 1, 2, .. where yk,j is a

normally distributed random variable with mean 0 and variance 2−j [45].

Adaptive Time Stepping for SHS

The dynamics of SHS introduce further complication into the estimation of the error

for an approximation method. Significant error can be introduced for near boundaries as

we showed in the previous section, and larger step sizes exacerbate this error. Traditional

error estimation methods for SDEs do not consider boundaries, so large step sizes near

boundaries are possible. Therefore, we must test and prevent large step sizes near reflecting

or absorbing boundaries before a step size is accepted.

Error introduced near boundaries can be significantly reduced by shrinking the step size

when a trajectory is near a boundary. Therefore, we test if Xt −Xab < Ψ or Xt −Xrb < Ψ
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where Ψ is a minimum boundary distance threshold, and we decrease the step size to a

small, predetermined value ∆tmin if either condition is satisfied to ensure the most accurate

boundary approximation. When the conditions are not satisfied, we allow the variable step

algorithm to adjust the step size according to the traditional SDE adaptive algorithm. This

method ensures that the adaptive time stepping methods do not increase the error from the

boundary approximations in SHS.

Adaptive Time Stepping Simulation Algorithm

Adaptive time stepping extends the fixed step method by computing error estimates and

adjusting the step size before a step is computed. We introduce a new algorithm ATHMM

that incorporates adaptive time stepping into the HMM algorithm. The algorithm tests

both error estimates Eb and Eσ, and if either is above an upper threshold, the step size is

cut in half. If either error estimate is below a lower threshold, the step size is doubled. If

the error is between the two thresholds, then the step size is not adjusted. To avoid large

step sizes near boundaries, the algorithm tests the distance to any reflecting or absorbing

boundaries and changes the step size to ∆tmin if it is sufficiently close to a boundary. The

following pseudocode describes a single step of ATHMM.
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Algorithm 4.3: ATHMMstep(Xt)

while ∆t2b′b + J3
1σ′2σ > UpperThreshold

do ∆t = ∆t
2

while ∆t2b′b + J3
1σ′2σ < LowerThreshold

do ∆t = 2∆t

if |Xt −Xab,ξ| < 1 or |Xt −Xrb| < 1

then ∆t = ∆tmin

kt+∆t = Xt −Xrb + 1
2

(
σW + b(t + ∆t) +

√
|σ|2 V + (σW + b(t + ∆t))2

)

∆k = max(kt+∆t, 0).n− prev∆k

Xt+∆t = Xt + b∆t + σ∆W +
m∑

j1,j2=1

Lj1σk,j2I(j1,j2) + n(∆k)

GuardedProb = max(exp(−2(n.(Xt−Xab,ξ))(n.(Xt+∆t−Xab,ξ))
n.(σσ∗(Xt)n)∆t ), ξ)

if U1 = rand(0, 1) < GuardedProb

then FireGuardedTransition

if U2 = rand(0, 1) < exp(−λ(t− tTimeOfLastF ire))

then FireProbabilisticTransition

t = t + ∆t

return (Xt)

Experimental Results

We present the experimental results of our simulation methods to demonstrate the cor-

rectness of our models and the performance and accuracy of our methods. We begin by

validating the SCD model by comparing the trajectories of the SSA and HEM to demon-

strate the correctness of our simulation methods and the modeling methodology. We next

validate the biodiesel model using experimental results to compare our simulation results to

realistic data. This comparison shows that our modeling and simulation methods virtually

match the experimental data.

In this section we also focus on demonstrating the differences between the existing

methods (HEM) and our improved simulation methods (HMM). We use the water balance

model to demonstrate the improvements of both the absorbing and reflecting boundary
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cases. We also use the water balance model to demonstrate the accuracy and performance

aspects of using various step sizes. We complete the section by presenting experimental

results generated using our ATHMM algorithm for the water balance and Variable Time

BioDiesel (VTBD) models that demonstrate the accuracy and efficiency of our methods.

Validation of SCD Using Simulation

To better understand and validate our models, we present SCD simulation results using

a variant of the SSA algorithm and the HEM algorithm. The SSA simulates chemical

reactions consuming reactants and creating products one reaction at a time. Individual

reactions in a system are assigned probabilities of occurrence, and probability distributions

are used to choose which reaction fires at each iteration. Once a reaction fires, the quantities

of reactants and products are updated [51]. The SSA is very accurate because of its level of

precision, but it can be inefficient for large systems or fast reactions because many iterations

must be completed before results can be observed. To efficiently handle practical systems,

computational improvements such as τ -leaping or R-leaping have been devised for the SSA

[52, 12]. R-leaping increases the number of reactants consumed and products produced in

each step by a factor of R. This increases the efficiency of the approximation, but degrades

the accuracy for certain systems.

For simulation of SCD2 and SCD3, we have created a new algorithm, the Hybrid

Stochastic Simulation Algorithm HSSA, that implements the SSA using R-leaping and dis-

crete transitions between modes. The standard R-leaping SSA is extended to incorporate

the discrete dynamics that are found in the SCD2 and SCD3 models. After each iteration

of the SSA, the guards for all valid transitions are tested, and a transition that validates

its guard conditions is fired if possible. Once the transition resets have been executed, the

SSA algorithm resumes in the new state.

One iteration of the SSA describes the evolution of the chemical system over a very small

unit of time and is considered to be equivalent to solving the chemical master equation for

that state and time step. Interrupting the multiple iterations of the SSA required to define

a longer time span does not affect the convergence of the SSA, and is used in all fast/slow

chemical simulation techniques for decomposing the problem to make it more efficient.
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Therefore, the HSSA can be considered as equivalent to solving the CME with discrete

switches.

The SSA algorithm is used to simulate the stochastic time evolution of chemical reactions

with high accuracy [12], so we compare the results of our HSSA and HEM algorithms to

demonstrate accuracy of the SHS models and our simulation algorithms. In Figure 21 we

compare the sorbitol and fructose concentrations for the SCD1, SCD2, and SCD3, models

respectively. We chose sorbitol and fructose because they are the two chemicals that are

most directly correlated with the development of cataracts. The initial conditions and

parameters for all the experiments are shown in Table 10 from [121]. Figure 21 (a), (b),

and (c) display the average concentration at each time step for sorbitol and fructose for 100

runs of the three models. The figures display the comparison between the HSSA and HEM

approximation for sorbitol and fructose to demonstrate the correctness of the SCD models.

The 100 HSSA simulations completed in 98 hours, and the 100 HEM simulations took 8

minutes on a 3GHz desktop computer.

Table 10: Initial conditions and constants for the SCD models

Initial Cond. Value (µM)
x1 5.0
x2 0.0
x3 5.0
x4 0.0
x5 1.0
x6 253.0
x7 0.0

Constant Value
d1 10−21 µM
d2 5 µM
d3 250 µM
d4 .05
d5 .05

HEM step 0.0001
R 10

Validation of the Biodiesel Model

The biodiesel process model is an ideal candidate for validation because experimental

data from actual systems is easily gathered and available. However, there are many varia-

tions in the types of systems, and experimental data is not available for the exact system we

have modeled. Therefore, we have created the Constant Temperature BioDiesel (CTBD)

model to more accurately reflect the dynamics of the experimental reactors used to gather

the experimental data. Experimental biodiesel reaction systems are designed to isolate as
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Figure 21: SCD model validation results
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Figure 22: SHS model of the CTBD system

many variables as possible, so the temperature of the system is kept constant. Therefore, we

have modified our VTBD model to eliminate temperature fluctuations. The CTBD model

has only one discrete state where the temperature is constant. A graphical depiction of the

model is shown in Figure 22. The continuous dynamics are kept the same as the VTBD

model assuming the temperature is kept constant.

To validate the correctness of our SHS CTBD model, we compare HMM simulation

results with the experimental biodiesel system data presented in [108]. Data is available

for various mixing methods, but since we only consider a well-mixed reaction, we use their

data from the most highly mixed reactions NRe = 6200.
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Figure 23: Model and experimental results comparison

A comparison of the experimental results and the results from our model can be seen in

Figure 23. We consider three separate temperatures (30 F, 40 F, and 70 F) and we present

the experimental results as well as our simulation results for comparison. We present the
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difference between the experimental results and the results from our simulation methods in

Figure 24. It can be seen that as the simulations progress the accuracy improves implying

that the actual mixing in the real reactor is not ideal as we have assumed in our model.
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Figure 24: Error of simulated CTBD model

Absorbing Boundary Crossing Detection

To compare differences between boundary crossing detection methods, we compared

simulations of HEM and HMM for the water balance model. We used the same Brownian

motion for each set of simulation comparisons to highlight the algorithmic differences. In

Figure 25 the switching electrolyte boundary is presented for the HEM algorithm and

the HMM algorithm, and the difference between the detection times is shown by the gap

between the indicated detection points. The advanced method anticipates the boundary

crossing using stochastic methods to avoid error incurred by over-shooting the crossing,

while the HEM method restarts the process only after the crossing is detected. It is evident

that the anticipatory methods of the improved technique significantly alter the resulting

trajectory, thereby reducing the error incurred. In the water/electrolyte system this may

mean that the actual system may react sooner than the traditional simulation of the model

predicts. For these simulations we used a step size of ∆t = .05 and initial conditions shown

in Table 11.

We consider the ADH concentration to demonstrate the reflecting boundary algorithm

differences between the HEM algorithm and the HMM algorithm. In Figure 26 the reflecting
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Figure 25: Absorbing boundary in the water balance model

Table 11: Initial conditions for water balance model

Variable x1 x2 x3

Absorbing 39790 2132 1
Reflecting 39700 2132 11

boundary is represented by the dark line at ADH = 12. Using the HEM algorithm, the

trajectory reaches the boundary and is kept within the valid state. However, the dynamics of

the actual system are not accurately represented because the real system reaches a reflecting

saturation level at the boundary. Using the HMM method, the trajectory highlights the

stochastic effect of the reflected saturation boundary. The receptors in the real system

cannot maintain the full concentration at 12 because the molecules of ADH have to be

released to permit new molecules to bind. The receptors cannot fire in an unbound state, so

the influence of the ADH concentration must be reduced, as is evidenced by the small drops

in concentration near the boundary. These drops eventually lead to a distinct difference

between the outcomes of the two trajectories. While both trajectories eventually reach an

equilibrium (not included in the figure), the difference in the dynamics leading to equilibrium

may reveal new insights into the system. For these simulations, we used a step size of

∆t = .05 and initial conditions shown in Table 11.
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Figure 26: Reflecting boundary in the water balance model

Performance results for the fixed step implementations are presented in Table 12. We ran

1000 sequential simulations of each algorithm at the given resolution. The HMM algorithm

increases the running time relative to the HEM method; however, the increase is small,

the method scales well, and the accuracy improvement is significant. The simulations were

performed on a 3GHz desktop computer with 1GB of RAM.

Table 12: Execution times at various resolutions for the water balance model

Resolution HEM (sec) HMM (sec)
.0001 352 374
.0002 176 189
.0005 70 75
.001 37 38

Adaptive Time Stepping

We present experimental results using our ATHMM algorithm for the water balance and

VTBD models. We demonstrate the accuracy of the ATHMM method near boundaries by

comparing it to the HMM method using the water balance model. We also demonstrate

the accuracy and efficiency of the ATHMM algorithm using the VTBD model.

83



Water Balance Model The step size of the approximation directly influences the

accuracy of the approximation, so we use the water balance model to demonstrate the per-

formance of the adaptive time stepping algorithm. In Figure 27, we compare four different

step sizes of the HMM algorithm and resulting trajectories. We used the Wiener process

from the highest-resolution trajectory with each lower-resolution simulation to ensure the

comparison is accurate. Using more accurate approximation techniques with higher orders

of convergence ensures that larger time steps can be used to maintain acceptable accuracy.
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Figure 27: Step size comparison for the water balance model

We compare simulations of the HMM algorithm (with time step ∆t = .01) with the

adaptive time stepping ATHMM algorithm in Figure 28. It can been seen in the figure

that as the trajectory becomes less steep, the step size increases to increase efficiency, and

when the trajectory crosses the threshold near the boundary, the variable time stepping

algorithm uses the highest resolution step to accurately estimate the boundary crossings.

The fixed step implementation required 1,000 steps for the approximation while the variable

step method with step error bounds of |Eb|+|Eσ| < .01 required only 295 steps, over tripling

the efficiency. The figure shows that the accuracy is not significantly hindered by using the

variable step size algorithm. Tighter error bounds can be used to create more accurate

approximations at the cost of efficiency.
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Figure 28: Variable step example of the water balance model

VTBD Model We use the VTBD model to demonstrate the performance and accuracy

advantage of using adaptive time stepping methods. We consider the VTBD model with ini-

tial conditions: x1 = 0, x2 = .8, x3 = 3, x4 = 0, x5 = 10, x6 = 0, and x7 = 70. We used the

HMM algorithm with time steps: ∆t = .001, .0001, .00001, .000001. The ATHMM algorithm

requires upper and lower error bounds, so we used the following bounds: UpperThreshold =

.01, .001, .0001, .00001 and LowerThreshold = .0001, .00001, .000001, .0000001. We present

the execution times and resulting overall error estimates for the fixed and adaptive meth-

ods in Figure 29. It can be seen in the figure that the adaptive time step methods provide

significant accuracy and efficiency improvements over fixed time step methods.

Summary

In this work we present the individual components of SHS simulation methods along

with several complete SHS simulation algorithms. We describe two methods for simulating

SDEs as well as traditional and advanced methods for simulating switching and reflecting

boundaries. We also present a method for simulating probabilistic transitions and an adap-

tive time stepping algorithm for SHS. Our advanced SHS simulation methods presented

in this chapter demonstrate an improvement over previous methods in both accuracy and

efficiency.
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Figure 29: Error comparison of time stepping methods for the VTBD model

SHS simulation methods that improve efficiency and accuracy are important to develop

to improve the utility of SHS models. In this chapter we compare the results of our SHS

simulation method with simulations of the Stochastic Simulation Algorithm (SSA) for the

SCD models to demonstrate the correctness of our methods. We also compare our SHS

simulation method with experimental results for the biodiesel model to show the accuracy

of both the simulation method and the model. We also demonstrate the improvements of

our advanced SHS simulation algorithm (HMM) by comparing various boundary scenarios

for the water balance model. We demonstrate improvements in both the switching and

reflective boundaries by comparing the HEM and HMM algorithms. We also present results

of step size comparisons and a demonstration of the ATHMM algorithm and the related

efficiency improvements.
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CHAPTER V

VERIFICATION OF SHS

Simulation methods can determine the outcome of individual trajectories of a model,

but they are not sufficient to verify the behavior of a system. Therefore, advanced analy-

sis methods such as verification are useful for determining properties such as reachability

or safety for a system. Exhaustive verification methods can be used to determine these

properties for any initial state of the system [81]. Verification of reachability properties for

Stochastic Hybrid Systems (SHS) aims at determining the probability that the system will

reach a set of desirable or unsafe states. Reachability analysis is an important problem

because it provides a formal framework to analyze complex, realistic systems that operate

in the presence of uncertainty and variability [83]. Verification of reachability properties for

such systems is a critical problem because the results of the verification can help scientists

gain insights into the modeled systems and expose flaws or validate the intended function.

Developing sound computational methods for verification is challenging because of the

interaction between the discrete and the continuous stochastic dynamics. A formal analysis

framework is necessary to ensure these dynamics are handled properly. Further, compu-

tational restrictions of exhaustive verification can limit the size of the system that can be

handled, so efficient, scalable methods are required [25].

In this chapter we present a dynamic programming verification method for SHS that

utilizes Markov decision processes and a value iteration technique for analysis [83]. We also

present a parallel decomposition of the algorithm that can be used to scale the analysis

method for significantly large and realistic systems. While the method is constrained by

the curse of dimensionality, we show that it is useful for realistic systems [120].

We also present experimental results for four different systems to demonstrate the flex-

ibility and applicability of the analysis method. We present a navigation benchmark [40],

a room heating benchmark [40], the SCD models [120], and the Variable Temperature

BioDiesel (VTBD) model [119]. We present reachability or safety analysis results for each

system as well as performance results to show the methods applicability to realistic systems.
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Stochastic Verification

Safety is a special case of the reachability problem, so we formulate the reachability

problem first and then the safety problem. The target and unsafe sets for SHS are unions

of target and unsafe sets respectively for multiple modes. Let T = ∪q∈QT
{q}×T q and U =

∪q∈QU
{q}×U q be subsets of S representing the set of target and unsafe states respectively.

We assume that T q and U q are proper open subsets of Xq for each q, i.e. ∂T q ∩ ∂Xq =

∂U q ∩ ∂Xq = ∅ and the boundaries ∂T q and ∂U q are sufficiently smooth. We define

Γq = Xq \ (T̄ q ∪ Ū q) and Γ = ∪q∈Q{q} × Γq. The initial state (that, in general, can be a

probability distribution) must lie outside the sets T and U . The transition measure R(s,A)

is assumed to be defined so that the system cannot jump directly to U or T .

Consider the stopping time τ = inf{t ≥ 0 : s(t) ∈ ∂T ∪ ∂U} corresponding to the first

hitting time of the boundary of the target or unsafe set. Let s be an initial state in Γ, then

we define the function V : Γ̄ → R+ by

V (s) =





Es[I(s(τ−)∈∂T )], s ∈ Γ

1, s ∈ ∂T

0, s ∈ ∂U

where Es denotes the expectation of functionals given the initial condition s and I denotes

the indicator function. The function V (s) can be interpreted as the probability that a

trajectory starting at s will reach the set T while avoiding the set U . If the state hits

the boundary of the unsafe or target set, then the value function takes the value 0 and 1

respectively and it is assumed that the execution of the SHS terminates.

Given the assumptions on the sets T and U and their boundaries, we can construct a

bounded function c : S̄ → R+ continuous in x such that

c(q, x) =





1, if x ∈ ∂T q

0, if x ∈ ∂U q ∪ ∂Xq
.
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We define a counting process p∗ by

p∗(t) =
∞∑

i=1

I(t≥ti)I(s(ti− )∈∂S).

The process p∗(t) counts the number of times the trajectory hits the boundary ∂S and

jumps up to time t [33]. Then, the value function V can be written as

V (s) = Es

[∫ ∞

0
c(qt− , xt−)dp∗(t)

]
. (6)

The formulation of the reachability problem described above can be modified to describe

safety. In a safety problem, we are given a set of safe states and we want to compute the

probability that the system execution from an arbitrary (safe) initial state will go outside

the safe set. Let B = ∪q∈QB
{q} × Bq be a subset of S representing the set of safe states.

We assume that the set of unsafe states Xq \ Bq for each q is a proper subset of Xq, i.e.

∂Xq ∩ ∂Bq = ∅. The initial state must lie inside the safe set B and the transition measure

R(s,A) is defined so that the system cannot jump out of the safe set directly to the unsafe

set. We can transform the safety problem to a reachability problem by defining the target

set as T q = Xq \Bq and the unsafe set as U q = ∅. Note that in this case, the definition of

Γq becomes Γq = Xq \ (T q ∩ U q) = Bq. Clearly with this transformation, the probability

that the system is unsafe can be computed as the value function described by (6) similarly

to the reachability problem [84].

Using a dynamic programming argument, it can be shown that the value function V for

the reachability problem of stochastic hybrid systems is similar to the value function for the

exit problem of a standard stochastic diffusion, but the running and terminal costs depend

on the value function V itself. A detailed proof of the derivation can be found in [85]. We

define LV (q, x) = λ(q, x)
∫
Γ V (y)R((q, x), dy), ψV (q, x) = c(q, x)+

∫
Γ V (y)R((q, x), dy), and

Λ(t) = exp
{
− ∫ t

0 λ(q0, xz)dz
}

. Then for s ∈ Γ

V (s) = Es

[∫ t∗1

0
Λ(t)LV (qt− , xt−)dt + Λ(t∗1)ψ

V (qt∗1 , xt∗1)

]
. (7)
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Equation (7) is similar to the discounted cost criterion with a target set of a standard

stochastic diffusion [87]. The main difference is that the running cost LV (q, x) and the

terminal cost ψV (q, x) depend on the value function. It should be noted that the SHS

satisfies the strong Markov property, and the same procedure can be repeated every time

a jump occurs. Further, it can be shown under the non-degeneracy assumption that V is

bounded and continuous [85]. Then, based on the results of [87] V can be characterized as

the viscosity solution of a system of Hamilton-Jacobi-Bellman equations. In particular, V

is the unique viscosity solution of the system of equations

HV

(
(q, x), V,DxV, D2

xV
)

= 0 in Γq, q ∈ Q (8)

with boundary conditions

V (q, x) = ψV (q, x) on ∂Γq, q ∈ Q (9)

where

HV

(
(q, x), V, DxV, D2

xV
)

= b(q, x)DxV +
1
2
tr(a(q, x)D2

xV ) + λ(q, x)V + LV (q, x).

Equation (8) describes a set of coupled second-order partial differential equations (one

for each discrete state), with boundary conditions given by (9), that can be viewed as a

set of HJB equations associated with the reachability problem for the SHS. The coupling

between the equations arises because the value function in a particular mode depends on

the value function in the adjacent modes and is formally captured by the dependency of

the running and terminal costs LV (q, x) and ψV (q, x) on the value function V .

Numerical Methods Based on Dynamic Programming

One of the advantages of characterizing reachability as a viscosity solution is that for

computational purposes we can use well known numerical algorithms. In this paper we

employ the finite difference method presented in [87] to compute locally consistent Markov

Chains (MC) that approximate the original stochastic process while preserving local mean

90



and variance. We consider a discretization of the state space denoted by S̄h = ∪q∈Q{q}×S̄h
q

where S̄h
q is a set of discrete points approximating Xq and h > 0 is an approximation

parameter characterizing the distance between neighboring points. By abuse of notation,

we denote the sets of boundary and interior points of S̄h
q by ∂Sh

q and Sh
q respectively. By

the boundness assumption, the approximating Markov chain has finitely many states that

are denoted by sh
n = (qh

n, ξh
n), n = 1, 2, . . . , N .

First, we consider the continuous evolution of the SHS between jumps and assume that

the state is (q, x). The local mean and variance given by the Stochastic Differential Equation

(SDE) (3) on the interval [0, δ] are

E[x(δ)− x] = b(q, x)δ + o(δ)

E[(x(δ)− x)(x(δ)− x)T ] = a(q, x)δ + o(δ).

Let {qh
n = q, ξh

n} describe the MC on Sh
q ⊂ Xq with transition probabilities denoted by

ph
D((q, x), (q′, x′)). A locally consistent MC must satisfy

E[∆ξh
n] = b(q, x)∆th(q, x) + o(∆th(q, x))

and

E[(∆ξh
n −E[∆ξh

n])(∆ξh
n − E[∆ξh

n])T ] = a(q, x)∆th(q, x) + o(∆th(q, x))

where ∆ξh
n = ξh

n+1− ξh
n, ξh

n = x and ∆th(q, x) are appropriate interpolation intervals (or the

“holding times”) for the MC.

The diffusion transition probabilities ph
D((q, x), (q′, x′)) and the interpolation intervals

can be computed systematically from the parameters of the SDE (details can be found

in [87]). For a uniform grid with ei denoting the unit vector in the ith direction, the

transition probabilities are

ph
D((q, x), (q, x± hei)) =

aii(q, x)/2 + hb±i (q, x)
Q(q, x)
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ph
D((q, x), (q, x + hei + hej)) = ph

D((q, x), (q, x− hei − hej)) =
a+

ij(q, x)
2Q(q, x)

ph
D((q, x), (q, x− hei + hej)) = ph

D((q, x), (q, x + hei − hej)) =
a−ij(q, x)
2Q(q, x)

and the interpolation intervals are ∆t(q, x) = h2/Q(q, x) where

Q(q, x) =
∑

i

aii(q, x)−
∑

i,j:i6=j

|aij(x)|
2

+
∑

i

h|bi(q, x)|

, and a+ = max{a, 0} and a− = max{−a, 0} denote the positive and negative parts of a

real number.

Next, we consider the jumps with transition rate λ(q, x) and transition measure R((q, x), A).

Suppose that at time t the state is {qh
n = q, ξh

n = x}. The probability that a jump will occur

on [t, t + δ) conditioned on the past data can be approximated by

P [(q, x) jumps on [t, t + δ)|q(s), x(s), w(s), s ≤ t] = λ(q, x)δ + o(δ).

The ith jump of the approximating process is denoted by ζ((q, x), ρi) where ρi are inde-

pendent random variables with distribution R̄ = {ρ : ζ((q, x), ρi) ∈ A} = R((q, x), A) with

compact support Π. Let ζh be a bounded measurable function such that |ζh((q, x), ρ) −
ζ((q, x), ρ)| → 0 as h → 0 uniformly in x for each ρ and that satisfies ζh((q, x), ρ) ∈ S̄h.

If x ∈ Sh
q , then with probability ph

jump(q, x) = λ(q, x)∆th(q, x) + o(∆th(q, x)) there is a

jump and the next state is (qh
n+1, ξ

h
n+1) = ζh((q, x), ρi) and with probability 1− ph

jump(q, x)

the next state is determined by the diffusion probabilities ph
D, thus the transition probabil-

ities are given by

ph((q, x), (q′, x′)) =

(1− ph
jump(q, x))ph

D((q, x), (q′, x′)) + ph
jump(q, x)R̄{ρ : ζh((q, x), ρ) = (q′, x′ − x)}. (10)

For the points x ∈ ∂Sh
q in the boundary, the next state is determined by ζh((q, x), ρi) with
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probability 1 and the transition probabilities are given by

ph((q, x), (q′, x′)) = R̄{ρ : ζh((q, x), ρ) = (q′, x′ − x)} (11)

Let T̄ h = S̄h ∩ T̄ and Ūh = S̄h ∩ Ū denote the discretized target and unsafe sets

respectively. We denote by ni the times of the jumps between modes and νh the stopping

time representing that (qh
n, ξh

n) ∈ T̄ h ∪ Ūh, then the value function V can be approximated

by

V h(s) = Es

[
νh∑

n=0

c(qh
n, ξh

n)I(n=ni)

]
.

The function V h can be computed using a value iteration algorithm. We initialize the

value function Ṽ h
0 (q, x) = 0 for every (q, x), then the dynamic programming iteration is

given by

Ṽ h
n+1(q, x) =


∑

q′,x′
p̃h((q, x), (q′, x′))Ṽ h

n (q′, x′)




This converges to the value function V of the SHS as h → 0. The proof of the convergence

can be found in [85].

Analysis of the computational complexity of value iteration algorithms is usually based

on the contraction property of the iteration operator. The iteration operator used for verifi-

cation of SHS corresponds to an undiscounted criterion and showing that it is a contraction

mapping is more involved. We have proved that the iteration operator restricted to an

appropriate set is a contraction mapping with respect to some weighted infinity norm and

the polynomial-time complexity of the algorithm [85]. Reachability analysis of stochastic

hybrid systems is polynomial on the number of states of the approximating Markov pro-

cess; however, this number grows exponentially with the dimension of the continuous state

space. Therefore, application of the approach is limited to low dimensional systems. Al-

though scalability is a limiting factor, using parallel methods make the approach feasible

for realistic systems.

Parallel Decomposition of the Verification Algorithm

Storing the values for the value iteration algorithm for even reasonably-sized models
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requires several gigabytes of memory, so we have developed a parallel value iteration imple-

mentation to improve the scalability of the algorithm. Parallel algorithms traditionally can-

not take full advantage of the increased computing capabilities because slow intra-computer

communication delays computation. Some algorithms require more communication than

others, and increased communication further decreases efficiency of the algorithm. There-

fore, algorithms that minimize communication maximize parallel algorithm performance.

Dynamic programming algorithms are very natural to parallelize because of the repet-

itive nature of the algorithms and the minimal communication required; however, care

must be taken to ensure that the algorithm converges to the correct solution in a parallel

implementation. The value iteration algorithm is guaranteed to converge in a parallel im-

plementation as long as communication between the partitions happens periodically [19].

The discrete switches in our system affect the structure of the state space, but do not change

the overall convergence results. The way the state space is partitioned directly affects the

efficiency of the parallel method, so the partitioning must be chosen carefully to minimize

communication required.

To partition the problem for multiple processors we divide the state space in half p

times into 2p equally-sized partitions and assign each partition to a processor 4. A graphical

depiction of the decomposition can be seen in Figure 30. Each partition is then executed

independently and the values at the boundaries that are shared with other partitions are

periodically updated to guarantee convergence to the solution. The processors routinely

calculate the collective amount of change to determine when value iteration can complete.

We use a parallel communication formalism Message Passing Interface (MPI) to execute

the communication between processors to ensure efficient communication.

For all of our parallel experiments we used p = 5 for simplicity. To divide the state space

in an effort to minimize communication required, we choose the five largest dimensions

and split each into two parts. The first split defines 2 partitions and 1 communication

boundary, the second defines a total of 4 partitions and 4 communication boundaries, the

third defines a total of 8 partitions and 12 communication planes, the fourth defines a total

of 16 partitions and 32 communication hyperplanes, and the fifth defines all 32 partitions
4p must be less than or equal to the number of continuous dimensions of the model
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Figure 30: Parallel decomposition of the state space

and 80 communication hyperplanes. The 32 processors are assigned to the 32 partitions to

minimize the required communication to minimize the overhead required by the technique.

More processors could be used to further enhance the scalability of this technique, but we

found that 32 is an adequate number for this size of a problem.

Experimental Results

In this section we present experimental results for several SHS models to demonstrate the

usability and performance of the exhaustive verification algorithm. We begin by describing

the navigation benchmark which is a four dimensional system eight discrete modes [40]. It

is a reasonably-sized system that can be verified without parallel methods.

The next system we consider is the room heater benchmark from [40]. The model is

a three dimensional model with twelve discrete modes; however, it can easily be expanded

to incorporate more continuous dynamics and discrete modes. This model allows us to

demonstrate both the simple and parallel versions of our algorithm.

We also present experimental results for the SCD models. We compare the differences

between the value functions of these models to examine both the safety and reachability

problems. Because of the size and complexity of the systems, we use parallel methods to

perform the analysis.

Our last model that we verify is the biodiesel model. This model is also large and

complex, so we use parallel methods to analyze the system. We present the results of this
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analysis because they are used in the next chapter to compare to the results of our Monte

Carlo-based verification methods.

Navigation Benchmark

We first illustrate our approach using a stochastic version of the navigation benchmark

presented in [40] and used in [83]. The benchmark describes an object moving within a

bounded 2-dimensional region partitioned into cells Xq, q ∈ {0, 1, . . . , Nc} as shown in

Figure 31. Let x = [x1, x2]T and v = [v1, v2]T denote the position and the velocity of the

object respectively. The behavior is defined by the ODE v̇ = A(v − vq
d) where A ∈ R2×2

and vq
d = [sin(qπ/4), cos(qπ/4)]T . Selecting the matrix A and adding a diffusion term, the

dynamics of the object are described by the SDE

dx = (Ãx + B̃uq
d)dt + Σdw

where x = [x1, x2, v1, v2]T , uq
d = [0, 0, vq

d]
T , w(t) is an R4-valued Wiener process,

Ã =




0 I2

0 A


 , A =



−1.2 0.1

0.1 −1.2


 , and Σ = 0.1I4.

Consider the target set T and the unsafe set U shown in Figure 31. Given an initial

state s0 = (q0, x0), we want to compute the probability that the state will reach T while

avoiding U . Figure 31 also shows sample trajectories. In order to apply the approach

described in this paper, we under-approximate each cell Xq by X̃q by considering a smooth

boundary ∂X̃q. We also define a transition measure R((q, x), A) so that the state jumps

into an adjacent cell if it hits an “inner” boundary and jumps into the same cell if it hits

an “outer” boundary. The transition rate is assumed to be zero. We discretize the state

space using a uniform grid with approximation parameter h > 0 and apply the verification

method to compute V h(q, x). As h → 0, V h(q, x) converges to the solution V (q, x) of the

stochastic approximation of the benchmark problem.

Since the continuous state space of the example is 4-dimensional, we select to plot a

projection of V h for initial velocity v0 = [0, 0]T . Figure 32 shows this projection for h = 0.1
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Figure 31: The navigation benchmark state space

Table 13: Performance data for the navigation benchmark

h Time (minutes) Number of States
.5 .5 2500
.25 7 32400
.1 200 1147041
.05 5110 17147881

that describes the probability that a trajectory starting from (q, [x1, x2, 0, 0]T ) will reach

T while avoiding U . The computational performance of the algorithm is illustrated in

Table 13. All data was collected using a 3.0 GHz desktop computer with 1 GB RAM and

they are consistent with the polynomial-time complexity of the algorithm.

Room Heater Benchmark

A modeling benchmark of a room heating problem has been presented for a simple three

room system in [40]. The benchmark models the temperature dynamics of a building with

three rooms and two mobile heaters. The temperature in each room xi depends on the

temperature of the adjacent rooms, the outside temperature u, and whether a heater is in

the room and turned on.
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Figure 32: Value function for the navigation benchmark

We have generated a stochastic version of the benchmark. The SDE describing the

continuous dynamics of the system is

dx = (Ax + Bu + Cq) dt + Σdw

where

A =




−.9 .5 0

.5 −1.3 .5

0 .5 −.9




, B =




.4

.3

.4




,

C = diag(6, 7, 8), u = 4, Σ = diag(0.1), q is a vector consisting of 0’s and 1’s representing

the position and state of the heaters, and w(t) is an R3-valued Wiener process.

The discrete states of the system describe the position and condition of the heaters in

the rooms. If a heater is in a room and on, then a one is placed in the corresponding

position of that room. If the heater is not in the room or is in the room but off, then a zero

is placed in the corresponding position. The heating benchmark has twelve heater modes

as shown in Figure 33. Mode transitions are denoted by the arcs between nodes and are

defined using a control policy for moving the heater. The control policy is captured by the

invariants of the discrete states. We consider the following control policy for rooms i and

98



j. If a heater is present in room i, but off, it is switched on if xi ≤ 19 and a heater that

is on is switched off if xi ≥ 20. A heater is moved from room j to an adjacent room i if

the following conditions are true: (i) room i is without a heater, (ii) room j currently has

a heater, (iii) xi ≤ 17, and (iv) xj − xi ≥ 1.

q = [100]T

q = [010]T q = [110]T

q = [000]T

q = [101]T

q = [100]T q = [000]T

q = [001]T

q = [000]T

q = [001]T q = [011]T

q = [010]T

Heaters in room 1 and 2

Heaters in room 1 and 3

Heaters in room 2 and 3

Figure 33: Automaton for the room heater benchmark

We discretized the continuous state space by assuming that the safe set is described by

xi = (10, 20), i = 1, 2, 3 and the approximation parameter is set to h = 0.25. Since there are

12 discrete modes, the number of states of the approximating process is 12× 423 = 889056

(including the boundary of the safe set). The room heater benchmark evolves in a three-

dimensional continuous state space, hence it is difficult to visualize the value function. To

illustrate our results, we have set a pre-defined threshold (0.1) that describes the acceptable

probability for reaching the unsafe set. Then, for each initial mode we plot the “safe” set as

the set of states that have a probability below the threshold to reach the unsafe set. Figure

34 shows the safe set. The iterative algorithm executed in approximately 49 minutes on a

3.0 GHz desktop computer.

An important characteristic of the room heater benchmark is that it can be easily
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Figure 34: Room heater benchmark safe states for q = [110]T

scaled up to an arbitrary number of rooms that determine the dimension of the continuous

state space. Using parallel methods for dynamic programming [19], we have verified a

6-dimensional version of the room heater benchmark. For approximation parameter h =

0.25, the discrete approximation is verified in approximately 103 min in a high-performance

computer cluster with 4 processors.

Sugar Cataract Development

In this section we present the implementation details and the results of the verification

of the SCD models from Chapter III. We also describe performance characteristics of the

system at various resolutions of the state space.

Biologists have determined that a ratio of sorbitol to fructose that is greater than one is

correlated to the beginning stages of sugar cataract formation [13]. It has been shown that

fructose and SDH play a significant role in the accumulation of sorbitol in the eye, which

in turn begins the formation of sugar cataracts.

Simulations can determine whether or not a certain starting state will eventually lead to

sugar cataract formation; however, it is much more useful to examine all possible starting

states, which can be accomplished through verification. Since a ratio of sorbitol to fructose

that is greater than one is correlated to the beginning stages of sugar cataract formation,

we have identified those states that meet that criteria as the set of unsafe states. States
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with a sorbitol to fructose ratio greater than 0.5 but less than 1 correspond to eyes that are

possibly at risk, but not at high risk of cataract formation. States with a ratio of less than

0.5 are at low risk, and therefore, are desirable, or target states. The unsafe and target sets

are depicted in Figure 35.

Sorbitol (uM)

Fructose 
(uM)

0

0

500

500

unsafe

target

Figure 35: Graphical depiction of the unsafe and target sets

Medication can be administered to inhibit the enzyme SDH, which is intended to help

keep sugar cataracts from forming in high risk patients. The safety probability for the

medicated model describes the probability that an initial state will transition to an unsafe

state given the administration policy for the drug. The reachability probability for a state

describes the probability that the patient will transition from the current state to a state

without first reaching the unsafe states under the given drug administration policy.

The SCD1, SCD2, and SCD3 models are implemented using the constants presented in

Table 10. In order to apply the approach described in this paper we under-approximate

each discrete region Xq by X̃q by considering a smooth boundary ∂X̃q. The discrete

approximations must be created using the finest resolution possible to ensure an accurate

result, but increasing the fineness of the resolution causes a significant increase in the number

of states, so a balance of accuracy and efficiency must be found. Using scaling parameters

similar to the resolution of measurement equipment resulted in reasonable results for the

SCD system. The resolution used resulted in an MC with approximately 550 million states.

To visualize our results we plot projections of the data for different concentrations of

the chemicals involved. Specifically, these projections show the safety probability for entire

range of sorbitol and fructose levels for certain values of the five other variables. Multiple
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selections of the five other variables can be chosen to show a more comprehensive view of

the data.

Figures 36 and 38 show projections of the value function for the safety and reachability

results where x1 = 1.0, x2 = 1.0, x3 = 1.0, x4 = 1.0, and x5 = 0.1. These figures show

the safety or reachability analysis of the non-medicated SCD1 model (a), medicated SCD2

model (b) and medicated with delay SCD3 (c) model.

The differences between the safety verification results are shown in Figure 37 to highlight

the differences between the analysis of the three models. Figure 37 (a) shows the difference

between the SCD1 and SCD2 models. The difference between the value functions for these

models is negligible for fructose values under 250 uM corresponding to the fact that the

drug is not administered below 250 uM . Figure 37 (b) displays the difference that including

the drug absorption and metabolization creates. The difference between SCD2 and SCD3

is especially large for situations where the concentrations of fructose and sorbitol are low.

Figure 39 displays the differences between the calculated reachability values for SCD1,

SCD2 (a) and SCD2, SCD3 (b). Both (a) and (b) show that the differences between the

models are greater closer to the target set than the unsafe set. This implies that the effects

of the drug are most influential to patients who are less likely to develop cataracts. This

is most likely caused by the side effects of the drug that can adversely affect the patients

fructose levels.

Analyzing the data generated by these experiments could possibly help predict sugar

cataracts by demonstrating where the safest and most unsafe concentrations exist. Examin-

ing the differences between the various medication models could also possibly help further

the understanding of how drugs are converted from prodrugs and metabolized. It could

also give guidance for choosing the most effective or economical treatment to avoid cataract

development. Furthermore, analysis can possibly guide doctors to better understand and

predict why some drugs are more effective than others in different situations and better

predict side effects for individual patients.

If the original dynamics of the model are changed by the user, the MDP must be

regenerated with the new dynamics and the value iteration must be rerun. The computed

value function from the original model can be used as the initial value function for the
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(a) SCD1

(b) SCD2

(c) SCD3

Figure 36: Safety results for SCD1, SCD2, and SCD3
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(a) SCD1 - SCD2

(b) SCD2 - SCD3

Figure 37: Differences between the safety results for the SCD models
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(a) SCD1

(b) SCD2

(c) SCD3

Figure 38: Reachability results for SCD1, SCD2, and SCD3
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(a) SCD1 - SCD2

(b) SCD2 - SCD3

Figure 39: Differences between the reachability results for the SCD models
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altered model to significantly improve the efficiency of the value iteration convergence. The

amount of the improvement depends on the dynamics of the system and the changes that

are made. The difference between the original model and the new model can be easily

quantified using statistical methods by comparing the original value function and the newly

computed result.

Biodiesel Processor

We use the exhaustive verification algorithm to verify the VTBD and CTBD models us-

ing parallel methods to improve the efficiency of the analysis. The value iteration algorithm

is still guaranteed to converge in a parallel implementation as long as updated values are

used periodically [19]. We use the range values for each variable presented in Table 5. Since

the ranges for the variables are different, multiple individual resolutions must be considered

(Table 14). The resolutions were chosen by decreasing each step size individually until

no appreciable difference between the value functions at differing step sizes is observable.

We then set h = 1 for scaling the entire system. These resolutions result in a state space

consisting of almost 500 million states.

Table 14: Resolution for the VTBD model

Reactant Resolution Scaling (M)
TG 0.125
DG 0.125
MG 0.125
E 0.5
M 0.5
Gl 0.25
T 10

To visualize our results we plot projections of the data for different concentrations of the

chemicals involved. Our figures display the full ranges of monoglycerides (MG) and Esters

(x3, x4) for under the following restrictions x1 = 0.00001, x2 = 1.0, x5 = 9.0, x6 = 0.5, and

x7 = 70.0. Figure 40 shows the projection of the reachability probability for the VTBD

model, Figure 41 shows the projection of the reachability probability for the CTBD model,

and Figure 42 shows the difference between the two figures. The target set is indicated in
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Figure 40: Value function for the VTBD reachability results

the figures.

Figure 41: Value function for the CTBD reachability results

It can be seen in the figures that the temperature model significantly affects value

function of the system. These results indicate that the temperature controller does not

work effectively for this system because the probability of success for many of the states

is fairly low. Further experiments can be performed to determine the ideal temperature to

use the heater to maximize efficiency and minimize the use of the heater.

Summary

Advanced analysis methods such as exhaustive verification are useful because verification

can be used to determine properties such as reachability or safety for a system. Exhaustive
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Figure 42: Difference between the value functions for the VTBD and CTBD models

verification of reachability properties for SHS aims at determining the probability that the

system reaches a set of desirable or unsafe states. Reachability analysis is an important

problem because it provides a formal framework to analyze complicated, realistic systems

that operate in the presence of uncertainty and variability.

Developing sound computational methods for verification is challenging because of the

interaction between the discrete and the continuous stochastic dynamics. These interactions

cause discontinuities that are difficult to handle with many systems, so a framework is nec-

essary to ensure these dynamics are handled properly. Further, computational restrictions

of exhaustive verification can limit the size of the system that can be handled, so efficient,

scalable methods are required.

In this chapter we present a dynamic programming verification method for SHS that uti-

lizes Markov decision processes and a value iteration technique for analysis. We also present

a parallel decomposition of the algorithm that can be used to scale the analysis method for

significantly large and realistic systems. While the method is constrained by the curse of

dimensionality, we show that it is useful for realistic systems by presenting experimental

results for a navigation benchmark, a room heating benchmark, the sugar cataract devel-

opment system, and the biodiesel system. We present the reachability or safety analysis

results for each system as well as the performance results to show the methods’ applicability

to realistic systems.

109



CHAPTER VI

MONTE CARLO METHODS FOR SHS

Exhaustive verification can provide significant analysis information for Stochastic Hybrid

System (SHS) models, but many realistic models are too large for exhaustive verification

analysis. Therefore, it is important to develop scalable analysis methods that can deter-

mine reachability or safety properties. Monte Carlo methods can be used to determine

reachability and safety probabilities for large SHS systems [114].

Monte Carlo methods for SHS must use accurate, efficient simulation methods to ensure

the analysis results are reliable. If events critical to the system happen rarely, the accuracy

and efficiency of the Monte Carlo analysis will be significantly diminished. Variance reduc-

tion methods can be used to increase accuracy and efficiency of Monte Carlo methods for

these systems [93]. Variance reduction methods use information known about the system to

refine simulations in predetermined regions. Variance reduction methods such as MultiLevel

Splitting (MLS) must be carefully implemented for SHS to ensure boundary conditions are

handled properly for improved efficiency. Further, large systems with rare events may still

require prohibitively large numbers of simulations, so parallel methods may be necessary.

In this chapter we present a method for solving the reachability and safety problems for

SHS using Monte Carlo methods. Further, we develop a variance reduction method using

MLS for SHS. We demonstrate an effective method for choosing boundary placement and

splitting policies for SHS to demystify the parameter choices for such systems. We also

develop a parallel version of our methods to provide further efficiency enhancements along

with scalability analysis using the glycolysis model.

We present experimental results to demonstrate the variance and efficiency gains for

various MLS parameters using the glycolysis and Variable Temperature BioDiesel (VTBD)

models. We next present a comparison of our exhaustive verification method with the Monte

Carlo methods to show the correctness of both methods. We conclude this chapter with a

comparison of traditional Monte Carlo methods with our variance reduction methods using

MLS to demonstrate the performance and accuracy gains attainable.
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Reachability Analysis Using Monte Carlo Methods

Consider a strong Markov process {s(t)}, we define two disjoint subsets U and T for

the unsafe and target sets respectively. The stopping times τU = inf {t > 0 : s(t) ∈ U} and

τT = inf {t > 0 : s(t) ∈ T} occur when the trajectory hits either the unsafe or target set.

For the reachability problem we want to determine the probability PR = P [τT < τU < τmax],

or that s(t) will hit the target set T without first hitting the unsafe set U on the time interval

(0, τmax), τmax < ∞.

Monte Carlo methods estimate PR by executing n independent simulations of the process

{s(t)}. The number of trajectories that reach the set T before reaching the set U or

time τmax are divided by the total number of trajectories n to determine the reachability

probability. This is given by P̂R = 1
n

n∑

i=1

HR,i where

HR =





1 if τT < τU < τmax

0 otherwise

The formulation of the reachability problem can be modified to describe safety. For a

safety problem, we are given a set of unsafe states and we want to compute the probability

that the system execution from an arbitrary (safe) initial state will avoid the unsafe set. It

is given by PS = P [τU < τmax].

Monte Carlo methods can also be used to estimate PS . The number of runs that reach

the set U before time τmax are divided by the total number of runs n to determine the

safety probability given by P̂S = 1
n

n∑

i=1

HS,i where

HS =





0 if τU < τmax

1 otherwise

The variance of the hitting probability for Monte Carlo methods for both reachability
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or safety is given by

V ar[P̂ ] =

n∑

i=1

(
Hi − P̂

)2

n

If n is very small, then the estimate P̂ will have a large variance and may not be reliable.

The only way to reduce the variance of the estimator using traditional Monte Carlo methods

is to increase n [93, 127]. Rare events in a system can strongly increase the variance of the

reachability or safety results of Monte Carlo methods. As an influential event becomes more

rare, the error it can create increases dramatically, so variance reduction methods for rare

events are necessary.

Rare Event Detection Using Multilevel Splitting

MLS is a variance reduction method for rare events that extends Monte Carlo methods

by splitting individual trajectories of the Monte Carlo estimator in the region of the a rare

event. This regional splitting reduces the variance of the estimator by increasing the density

of the trajectories in the region near the rare event, but care must be taken to choose when

and how the trajectories are split to guarantee reasonable efficiency improvements. We

define the region of the state space where the rare event exists A as a subset of the state

space.

Regions of the state space may include events that occur rarely but have a large influence

on the system. We define a region of the state space where an influential event is reached

with a probability of less than two percent as a rare event region A. We define MLS splitting

levels which create proper supersets of the set A: A ⊂ A1 ⊂ A2 ⊂ . . . Ag. When a simulated

trajectory crosses from a larger set Ak into a smaller set Ak−1, the trajectory is split into

j new trajectories which evolve using unique Wiener processes. An example MLS scenario

is shown in Figure 43.

Trajectories are assigned importance values vi to represent the amount of influence the

trajectory has on the approximation. Initially vi = 1/n where n is the original number of

trajectories. When a trajectory is split, the importance value is divided evenly between

the split forks of the trajectory, and the total number of trajectories nm is incremented

112



A

x

A
1

A
2

Figure 43: An example MLS scenario

nm+ = j − 1. Multiple splitting policies can be used to split trajectories differently at

different levels according to the variance reduction desired.

The variance of the Monte Carlo estimator is reduced by increasing the number of

samples n to nm for a region of the state space around A. An artificial drift is created

toward the region A by the reinforcement of trajectories through splitting. The variance

reduction is unbiased despite the fact that the trajectories are not completely independent

[46]. Further, the variance reduction is accomplished with a significantly improved efficiency

compared to traditional Monte Carlo methods [93].

Reachability and Safety with Rare Events

Rare events may occur in any region of the state space, but they are most often found

as part of the unsafe set U , so we assume that the rare set is given by A ⊆ U . We define

rare event problems for the safety and reachability problems where the rare event is found

in the unsafe set.

Safety Problem MLS methods can be adapted for safety analysis to reduce the variance

of the Monte Carlo estimator. The safety probability for MLS is determined by P̂S =
nm∑

i=1

HS,ivi. Splitting in the region near A will increase the total number of trajectories nm
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and change the influence of trajectories that are split vi.

An example of where the rare event may be found in the unsafe region is an air traffic

control problem where the unsafe region defines a collision. A collision is a rare event for

most simulation trajectories, and it is very important to have a high confidence in the

estimate of the probability of a collision. A graphical example of this is shown in Figure 44.

U=A

Figure 44: MLS for safety analysis

Reachability Problem MLS methods can be adapted for reachability analysis to re-

duce the variance of the Monte Carlo estimator. The reachability probability for MLS is

determined by P̂R =
nm∑

i=1

HR,ivi. Splitting in the region near A will increase the total number

of trajectories nm and change the influence of trajectories that are split vi.

An example of where the rare event may be found in the unsafe region for the reachability

problem is a drug administration model where it is rare and unsafe for a patient to die, and

where the goal or target of the policy is to reach a healthy state. In this situation it is very

important to understand the probability that the patient successfully recovers and avoids

death. A graphical example of this is shown in Figure 45.

Multilevel Splitting for SHS

MLS with discrete mode changes requires further care to ensure the problem is solved

accurately and efficiently. To extend MLS for SHS the standard notion of a Markov process

is extended to include discrete modes q(t): {s(t)} = {x(t), q(t)}. We can redefine the

stopping times τU = inf {t > 0 : s(t) ∈ U} and τT = inf {t > 0 : s(t) ∈ T} to extend the

notions of reachability and safety to the hybrid case.
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U=A

T

Figure 45: MLS for reachability analysis

The discrete transitions found in SHS can cause discontinuities that require special care

in the presence of splitting boundary crossings. Figure 46 shows an example SHS where the

trajectory crosses a splitting and discrete boundary simultaneously. The trajectory starts

at state s0 = (q1, x0), and evolves until it reaches the boundary for A2 or the guards for

a discrete transition are satisfied. In this example both the discrete transition is fired and

the splitting level is crossed simultaneously, and the reset of the discrete transition updates

the state of the trajectory to s = (q2, xt).

U

U

s0

A2

A1

A2

A1

q1

q2

Figure 46: Example MLS problem in a hybrid state space

Because the new state is not in the splitting region A2, splitting the trajectory before

applying the reset may not necessarily reduce the variance, and could decrease the efficiency,

so it should be avoided. This problem is further exacerbated if the splitting coefficient j
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is large. Therefore, care must be taken to ensure that discrete transitions are fired before

testing splitting boundaries.

Another situation that must be handled is where the trajectory begins outside a splitting

region, and the reset causes the trajectory to jump into a splitting region Ai. In this case,

it is important to split the trajectory if it has not been previously split to maintain the

greatest variance reduction. It is possible that the trajectory will jump into a region such

as A1 before it has entered the superset A2. In this case, the splitting coefficient j must be

chosen to ensure the variance is effectively reduced while the efficiency is not unnecessarily

decreased. Our algorithm tests for these cases to ensure that they are handled appropriately.

Further, the use of accurate simulation methods including detection and handling of

boundaries is important because MLS and Monte Carlo methods require highly accurate

trajectories to ensure appropriate estimates. If low order methods or large step sizes are

used, the Monte Carlo methods may not provide a reliable result.

Unfortunately, MLS cannot reduce the variance of an estimator for systems where rarity

is created by events that cannot be decomposed into a series of less rare events. These

systems can also be identified through sample trajectory testing.

SHS Multilevel Splitting Algorithm

We create a depth-first implementation of the SHS MLS algorithm that handles the

discrete splitting challenges presented earlier. Splitting boundary crossings are tested after

every step, and if the trajectory crosses a splitting boundary at time t, the state st = (qt, xt)

is saved for future splitting. After the original trajectory is complete, the most recently saved

state is reloaded and the simulation is continued with a new Wiener process. Multiple splits

may occur, so all split trajectories must be completed before a new Monte Carlo trajectory

is begun. This depth-first approach to simulating split trajectories requires a small amount

of memory and computational overhead. The split trajectories evolve according to unique

Wiener processes wj thus reducing the variance of the overall estimate.

We also consider the handling of transitions between the modes because a discrete

transition may cause the trajectory to cross one or more splitting boundaries, i.e. st /∈
A2 and st+∆t ∈ A1. Therefore we test for this and split the trajectory in the new state as
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many times at it would have been split had it crossed through all the levels separately. This

ensures that the variance reduction is preserved.

We extend our previous simulation algorithms to implement the MLS technique for

SHS. Each step of the extended simulation method includes testing and forking for the

splitting boundary crossings. The boundary crossing conditions are tested after the state is

fully updated and any discrete transitions are completed to avoid the potentially inefficient

situation where the discrete transition and splitting level conditions are both satisfied, but

the reset moves the state to a region away from A. StartNextSplitTrajectory keeps a list

of the split trajectories and conditions when the trajectories were split and starts the most

recently split trajectory in the while loop. If no split trajectories exist, the function exits

the while loop and starts the next new trajectory in the for loop. The pseudocode for the

algorithm is given below for the fourth type of rare event scenario where Ak is the location

of the nearest MLS boundary. The pseudocode can be easily manipulated to handle the

other three types of rare event scenarios by adjusting the control conditions for the while

loop and if check within the while loop.
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Algorithm 6.1: MLSforSHS(τmax)

for j = 1; j < n; j + +



t = 0

ResetInitialConditions()

influencej = 1
n

while Xt /∈ U and Xt /∈ T and t < τmax

do





ATHMMstep(Xt)

if Xt ∈ Ak

then ForkTrajectory(j), split(influencej)

if Xt ∈ U

then unsafecount+ = influencej , StartNextSplitTrajectory

if Xt ∈ T

then targetcount+ = influencej , StartNextSplitTrajectory

if t > τmax

then StartNextSplitTrajectory

return ( targetcount
n , unsafecount

n )

MLS Parameter Selection

MLS has the potential to significantly reduce the variance and improve the efficiency of

the estimator; however, set placement and splitting policies must be appropriately chosen

to ensure the method performs well. If the Ak sets are chosen to be too close to A, not

enough splitting will occur, and the variance reduction will be small (although the efficiency

will be high). If the sets are too far away, too much splitting may occur, and the efficiency

will be adversely affected without significant variance reduction. Splitting more trajectories

at each set boundary has the potential to further reduce variance, but if the boundaries

are placed improperly, the efficiency can be significantly decreased without a significant

decrease in variance.

There is no universally optimal method for choosing the placement of the sets Ak for a

multidimensional system; however, it has been determined that they should be chosen to

cause splitting of the trajectory in regions that are most likely to lead to the rare set A for
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optimal efficiency [93]. Because this choice is crucial to the efficiency of MLS, we introduce

a general method for determining the best locations to place the boundaries.

First, it must be determined which states are most likely to transition to the set A. To do

this we use Monte Carlo methods with initial conditions in the region near A to determine

the safety probability of each location reaching the rare set A. Using more starting locations

provides more accurate information but takes more computational time, so a trade off must

be found.

We can use the safety probabilities in the region near A to determine where the sets are

best placed by including the regions that are most likely to lead to the set A. The region

of highest probability (typically > .9) of leading to A is chosen to be A1. Monte Carlo

simulations can then be used to determine the regional probabilities of transitioning to the

new region A1, and A2 can be defined by the states that have highest probability of leading

to A1. This method can be used to recursively define all sets Ak.

The number of levels to use k must be determined to create an efficient implementation

of the MLS algorithm. Using more levels has the potential to reduce the variance further,

but also decreases the efficiency (sometimes significantly). Therefore, a trade off must be

found to choose the number of levels to use. Typically a small number of levels (< 5)

reduces the variance while maintaining sufficient efficiency.

The splitting coefficient j is another important parameter that has implications on the

performance and accuracy of MLS. If more trajectories are forked, the overall efficiency is

decreased, but the variance may also be significantly decreased.

If the Ak sets and splitting policy are chosen well, the efficiency gains over traditional

Monte Carlo simulation can be significant. Efficiency can also be further improved by

terminating trajectories if they stray far from the rare event region A, target set T , or

unsafe set U . This ensures that trajectories that do not influence the outcome of the

system do not reduce the efficiency of the approximation; however, care must be taken to

ensure trajectories are not prematurely terminated if they may eventually affect the system

outcome.
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MLS Accuracy and Efficiency

MLS methods can reduce the variance of Monte Carlo methods, and thus increase the

accuracy of the approximation by increasing the number of simulations in a certain region.

The specific amount of variance reduction is dependent upon the system dynamics, the

placement of the sets Ai, and the splitting policy, but MLS has the potential to reduce

the variance by at least an order of magnitude [93]. The hybrid state space increases the

difficulty of determining the optimal boundary placement and splitting coefficient j, but

most non-optimal solutions still provide good variance reduction.

If the variance reduction is necessary for only a very small region of the state space, the

splitting regions can be small to ensure a large reduction in variance and efficiency increase.

If the region of interest is larger, then the levels can be arranged to encompass a larger

region, but the variance reduction may not be as significant and the efficiency may not

improve as much.

The efficiency of the estimator P̂ is dictated by the set placement, splitting policy, and

dynamics of the model. We define the efficiency as Eff
[
P̂

]
= 1

V ar[P̂ ]C(P̂) where C
(
P̂

)
is

the expected execution time to compute the estimator [93]. The efficiency can be increased

by decreasing the variance and/or decreasing the computation time.

Simulating more trajectories decreases the efficiency of the estimator by increasing the

execution time C, so it is important to ensure that the trajectories are split in regions

of interest, so the variance is ultimately reduced to improve efficiency. MLS decreases

C quickly compared to traditional Monte Carlo methods by partially reusing previously

computed paths and therefore reducing the cost C to achieve the same variance reduction

V ar for a limited region of the state space. Knowledge of the dynamics in the regions of

interest is important to determine the most effective placement of the boundaries to ensure

efficient and accurate results. For SHS, it is important that the most up-to-date state

information is used to determine if switching boundaries are crossed to ensure that wasteful

splitting does not increase C.
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Parallelization

The number of required simulations may still be quite large even when using variance

reduction methods, so parallel Monte Carlo methods using MLS methods may be neces-

sary. There are no dependencies between the individual trajectories, so the algorithm can

be parallelized by running multiple trajectories concurrently on multiple processors. After

all trajectories are complete on all processors, the results can be compiled and reported.

Because the collection of the results is the only overhead necessary, the speedup is nearly

linear, so parallelization is quite effective at improving the efficiency. This type of paral-

lelization has been used previously with Monte Carlo methods [137], and care must be taken

to ensure that the random number generators used to generate the Wiener processes do not

introduce bias.

Experimental Results

We present the experimental results of our Monte Carlo methods using MLS to demon-

strate their usability and performance enhancements. We begin by presenting methods for

choosing the splitting policy and boundary placement. We use the glycolysis and VTBD

models to demonstrate the implications of these parameter selections because they are

large, complex, realistic systems. We show that small adjustments in the splitting policy

or boundary placement can significantly effect the variance and efficiency of the method.

Results from a comparison of traditional Monte Carlo methods and Monte Carlo methods

using MLS are presented as well. We present this comparison to motivate the use of MLS

and provide perspective for the performance and accuracy gains.

We next compare the Monte Carlo reachability results with reachability results calcu-

lated using the exhaustive verification method. We present a model of a double integrator

which is a small, simple model that can be easily verified. We compare the results of the

double integrator analysis for the entire state space to show the robustness of the algorithm.

We next present a comparison of the Monte Carlo reachability analysis and exhaustive ver-

ification analysis for the VTBD model. The Monte Carlo results are only presented for

a subset of the state space because the state space is so large. We also present parallel
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performance results to demonstrate the performance potential of Monte Carlo methods.

Choosing Parameters for MLS

Glycolysis Model Glycolysis is understood as a global process, but the subtleties of

the interrelations between the individual reactions are still not fully understood. Simulating

the model under various conditions can reveal intricacies of the model, and analysis of the

model with Monte Carlo methods can further enhance the understanding of both the global

and local behavior of the model. These understandings can help to expose inaccuracies in

the model that correlate to misunderstandings in the modeled system.

Glycolysis is a process that turns glucose into energy in a cell, so the supply of glucose is

crucial to the function of the system. If the amount of glucose drops below a certain level,

a cascade of problems is set off ultimately leading to insufficient energy production and

potentially cell death. Therefore, we define an unsafe condition for the system when Glcx ≤
2.75, and we examine the safety probability of the system. The probability of the system

reaching the unsafe state is small, so the rare event region A ⊆ U . We perform analysis of

the system using initial conditions from Table 7, and we generate safety probabilities for

the system.

To evaluate the variance and efficiency of Monte Carlo methods, we tested the outcomes

of the safety probability for the glycolysis system using various numbers of iterations n.

The results of this analysis can be seen in Figure 47. It can be seen from the figure that

increasing the number of iterations n decreases the efficiency and the variance, but the

efficiency decreases much faster than the variance. This motivates the need for variance

reduction methods to improve efficiency.

We first demonstrate the importance of choosing appropriate splitting levels by exam-

ining MLS methods with various placements of the splitting boundaries. We examine the

safety problem for the glycolysis model where Glcx < 2.75 is the unsafe region. The starting

value for Glcx = 4.25 usually causes the system to avoid the unsafe region, but it is reached

rarely, so it is a rare event scenario of type 1.

We use three splitting levels (L1, L2, and L3) as shown in Figure 48. We used three

different placements of the splitting boundaries where placement A uses a wide spacing
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Figure 47: Monte Carlo results for the glycolysis model

near the unsafe region, placement B uses a medium spacing, and placement C uses a tight

spacing.
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Figure 48: Boundary placement scenarios for the glycolysis model

We demonstrate the importance of choosing appropriate MLS splitting policies by ex-

amining three different example splitting policies. We consider three splitting levels for the

glycolysis model (L1, L2, and L3) and we use three different splitting policies where policy

I splits all trajectories two times at each level, policy II splits all trajectories four times at

each level, and policy III splits the trajectory in two at L1, in four at L2, and six at L3.

Examples of these splitting methods are shown in Figure 49.
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Figure 49: Splitting policies for the glycolysis model

We compared the three boundary placement schemes and three splitting policies using

1000 initial MLS trajectories. In Figure 50 we show the variance results for all nine pos-

sible combinations of methods. The variance is significantly reduced when using MLS in

comparison to traditional Monte Carlo methods; however, the choice of splitting policy and

boundary placement is important. It can be seen that the variance is reduced the most by

using the boundary placement scheme B with splitting policy II.
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Figure 50: Comparison of variance for the MLS methods for the glycolysis model

In Figure 51 we show the efficiency results for all nine possible combinations of methods.
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It can be seen that the efficiency is largest when using the boundary placement scheme

C with splitting policy I; however, this combination has a large variance. Compromises

between efficiency and variance can be found depending on whether variance reduction or

efficiency improvement are higher priority. Any of these methods work adequately to reduce

the variance and improve the efficiency when compared to traditional Monte Carlo methods.

Tuning to the methods holds potential for further variance reduction and efficiency gains.
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Figure 51: Comparison of efficiency for the MLS methods for the glycolysis model

Biodiesel Model We examine the variance and efficiency of Monte Carlo methods for

the VTBD model to better understand performance and accuracy of Monte Carlo methods

and compare with our variance reduction methods. We analyze the VTBD model for reach-

ability to determine whether biodiesel is successfully produced. The unsafe conditions where

methanol is depleted rarely happens, but when it does, the system will be detrimentally

affected, so we use reachability analysis with MLS methods to analyze this system.

We tested simple Monte Carlo simulations of the model using various numbers of it-

erations n to demonstrate the variance and efficiency of the methods. The results of this

analysis can be seen in Figure 52. It can be seen from the figure that increasing the number

of iterations n decreases the efficiency and the variance, but the efficiency is decreased sig-

nificantly faster than the variance. This motivates the need for variance reduction methods

to improve efficiency.
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Figure 52: Monte Carlo results for the VTBD model

We demonstrate the importance of choosing appropriate splitting levels by examining

MLS methods with various placements of the splitting boundaries. We examine the reacha-

bility problem for the VTBD model which is a rare event scenario type 2 because the unsafe

set is hit rarely. We use three splitting levels (L1, L2, and L3) as shown in Figure 53. We

used three different placements of the splitting boundaries where placement A uses a wide

spacing near the unsafe region, placement B uses a medium spacing, and placement C uses

a tight spacing.
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Figure 53: Boundary placement scenarios for the VTBD model

We demonstrate the importance of choosing appropriate MLS splitting policies by ex-

amining three different example splitting policies. We consider three splitting levels (L1,

L2, and L3) and we use three different splitting policies where policy I splits all trajectories
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two times at each level, policy II splits all trajectories four times at each level, and policy

III splits the trajectory in two at L1, in four at L2, and six at L3. Examples of these

splitting methods are shown in Figure 54.
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Figure 54: Splitting policies for the VTBD model

We compared the three boundary placement schemes and three splitting policies using

1000 initial MLS trajectories. Figure 55 shows the variance results for all nine possible

combinations of methods. All the methods we tested reduced the variance far more than

traditional Monte Carlo methods with 10, 000 trajectories, but some reduced the variance

more than others. It can be seen that the variance is reduced the most by using the boundary

placement scheme C with splitting policy II.
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Figure 55: Comparison of the variance for the MLS methods for the VTBD model
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In Figure 56 we show the efficiency results for all nine methods. The efficiency for

traditional Monte Carlo methods using n = 1000 and n = 10, 000 are Eff = .14 and

Eff = .014 respectively. While the MLS methods do not achieve the same efficiency

as traditional Monte Carlo methods with the same number of iterations n, the efficiency

is close, and the variance reduction is significant. It can be seen that the efficiency is

largest when using the boundary placement scheme C with splitting policy I; however, this

combination does not maximally reduce the variance. However, scheme C with splitting

policy II produces the best variance reduction of our tests as well as good efficiency. Further

refinements could be made to the methods to further enhance accuracy and efficiency, but

these results show that analysis such as we present is sufficient to distinguish appropriate

methods and significant gains over traditional Monte Carlo methods.
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Figure 56: Comparison of the efficiency for the MLS methods for the VTBD model

Comparison with the Exhaustive Verification Method

To ensure that our Monte Carlo MLS analysis method is valid, we compare it with the

results of the exhaustive verification method presented in the previous chapter.

Double Integrator The first SHS model we consider for comparison is the two-

dimensional double integrator benchmark from [82]. The double integrator is a plant that is

controlled by discrete actions. The double integrator model may used as a simple example

for satellite control by modeling the relation between the angular position and velocity and

the reaction jets. The differential equations that model the dynamics of the system are
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given by 


dx1

dx2


 =







x2

0


 +




0

1


 r(t)


 dt +




.1

.1


 dw

where r(t) can take values −1 or 1 depending on the state of the system. The boundaries

of the state space are defined by −ν1 < x1 < ν1 and −ν2 < x2 < ν2. The goal is to drive

the system to a steady state within the boundaries.

The analysis of the double integrator requires safety analysis, and does not have any

rare events to consider. The unsafe region for this system is defined around the outside of

the state space. We use this model because it is simple, small and can be easily exhaustively

verified. It is also small enough that Monte Carlo analysis can be performed on it at the

same resolution as the verification for complete comparison. Figure 57 shows the verification

analysis results using our exhaustive verification technique. Figure 58 shows the results of

the Monte Carlo analysis on the same system.

The Monte Carlo results were generated by performing the Monte Carlo analysis starting

a trajectory at every grid point used by the exhaustive verification algorithm. It can be seen

that the results are very similar, which demonstrates the correctness of both methods. The

differences between the results can be explained by the different Wiener processes generated

by the two methods. The analysis using the verification is several orders of magnitude faster

because it is much more efficient at exhaustively analyzing a system.

Figure 57: Dynamic programming verification results for the double integrator
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Figure 58: Monte Carlo analysis results for the double integrator

Biodiesel Model We compare the exhaustive verification results and parallel Monte

Carlo results for the VTBD model to demonstrate the correctness of both approaches.

Because the VTBD model is quite large, we consider only the portion of the state space.

We use traditional Monte Carlo analysis, and we only incorporate MLS methods if a rare

event is impactful on the outcome of the analysis for the specific initial conditions. Figure

40 shows the dynamic programming verification results, Figure 59 shows the Monte Carlo

results, and Figure 60 shows the difference between the methods. The analysis shows a

strong similarity between the results of the two methods. The differences between the

results can be explained by the different Wiener processes used for the two methods.

Scalability of Parallel Methods

Glycolysis Model We performed experiments to test the parallel scalability of our

algorithm using the glycolysis model with MLS. We found that the parallel MLS algorithm

took virtually the same amount of time regardless of the number of processors used, as seen

in Table 15. The slight super linear speedup can be explained by the variability of the noise

of the system. Noise causes the splitting policies to use different amounts of time because

of the varying times the splitting and boundary hitting happen.
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Figure 59: Monte Carlo analysis results for the VTBD model

Figure 60: Difference between Monte Carlo and dynamic programming results

Summary

In this chapter we develop Monte Carlo methods for SHS along with variance reduction

methods for rare events. These methods are useful for determining reachability or safety

probabilities for systems that are too large to exhaustively verify using our dynamic pro-

gramming method. In this chapter we formalize the reachability and safety problem and

show how it could be solved using Monte Carlo methods. We also define efficiency as a

performance metric and variance as an accuracy metric to quantify the improvements of

our methods.

After describing the Monte Carlo and MLS techniques for SHS, we provide a description

of the appropriate methods for choosing parameters for both methods. We demonstrate the
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Table 15: Parallel performance results for the glycolysis model

Processors Time to Execute
16 8.6
8 8.5
4 8.2
2 8.3
1 8.5

accuracy of our methods by presenting experimental results to demonstrate the performance

and accuracy gains for MLS using the glycolysis and VTBD models. We also demonstrate

the performance gains of using MLS over using traditional Monte Carlo methods.

In this chapter we compare the experimental results of the Monte Carlo analysis with

those generated using our exhaustive verification method to demonstrate the correctness of

both approaches. We use a simple double integrator model to demonstrate the results for

the entire system and the VTBD model to demonstrate the results for a realistic model. We

feel that these results demonstrate the accuracy and viability of these methods as realistic

techniques for analyzing complex SHS.
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CHAPTER VII

CONCLUSIONS

In this dissertation we develop a Stochastic Hybrid System (SHS) modeling methodology

for biochemical systems as well as advanced simulation methods, verification methods, and

Monte Carlo-based reachability analysis methods. We present several example systems

that demonstrate the various benefits of our modeling methodology as well as our analysis

methods.

Summary of Contributions

Our contributions focus on computation challenges in biochemical system modeling,

simulation methods for SHS, verification methods for SHS, as well as Monte Carlo methods

using variance reduction.

Biochemical Modeling using SHS We present a biochemical systems modeling frame-

work for SHS that accurately models fast and slow dynamics in a stochastic framework [124].

We develop several case studies to demonstrate the modeling methodology. We create a

SCD model with multiple types of drug treatments [124]. We develop a biodiesel production

system model with temperature control and glycerol separation modeling [119]. We create

a glycolysis model that is large and robust [125]. Finally, we develop a water/electrolyte

balance system model that uses reflecting boundaries to describe physical limitations of the

system [123].

SHS Simulation We develop improved SHS simulation algorithms that are utilize high-

order simulation methods. We implement first and second-order Taylor-based simulation

methods for SDEs [122]. We also implement improved methods for approximating absorbing

and reflecting boundaries [122, 123]. We combine the Milstein method simulation algorithm

with both improved absorbing and reflecting boundary methods to create a comprehensive

weak order γ = 1.0 SHS simulation method [123]. We also develop and implement an

adaptive time stepping algorithm for SHS that improves the accuracy and efficiency of the

methods.
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Computational Methods for Verification of SHS We present an exhaustive verifica-

tion method for SHS based on dynamic programming. We develop a parallel version of the

verification algorithm along with partitioning methods [120]. We use benchmarks and our

case studies to demonstrate the effectiveness of the method for realistic systems. We present

the reachability analysis of the room heater and navigation benchmarks [85]. We analyze

reachability properties of the sugar cataract development system and consider the effects

of various types of medication administration on the system [124]. We also analyze reacha-

bility properties of the variable temperature biodiesel model and the constant temperature

biodiesel model, and we compare the results [119].

Monte Carlo Methods for SHS with Variance Reduction We develop an imple-

mentation of Monte Carlo-based reachability analysis methods for SHS using our advanced

simulation methods [125]. We create MLS methods for SHS along with a method for choos-

ing MultiLevel Splitting (MLS) parameters. We present examples of the MLS methods

along with the efficiency and accuracy improvement results [126]. We develop and analyze

a parallel version of the Monte Carlo methods as well. We also present a comparison of

the MLS methods with our verification methods to demonstrate the correctness of both

methods.

Future Directions

There are several directions that this research can take in the future. We present our

ideas for further pursuit in the areas of modeling, simulation, verification, and variance

reduction.

While there are many models of biochemical systems that currently exist, there are many

more influential models that can be developed. Modeling traditionally lies in an interdis-

ciplinary region where creation of a model requires expertise in not only the biochemical

aspects of the system but also in the modeling and analysis paradigms. While our work

in this dissertation aims at bridging the gap, further effort can be made to make modeling

and analysis tools more usable for domain experts. Developing more examples will help,

but additions such as plug-and-play tools or visual modeling methods are required to make

these modeling and analysis tools more usable.
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More complex, robust models can also be developed that will improve the general relia-

bility of our modeling and analysis methods. Future models of complex biochemical phenom-

ena should be developed with the collaboration of domain experts to not only demonstrate

the usability of our methods, but also identify weaknesses and unanticipated challenges with

the modeling and analysis tools.

While our improved simulation methods demonstrate an improvement over previous

methods, further refinement can be achieved. Much development can be performed in the

areas of adaptive time stepping to determine better algorithms for error estimation and step

size adjustment. Higher order simulation methods can also be investigated; however, related

research indicates that higher order methods are prohibitively expensive. Development of

absolute error bounds for the approximation would also be useful for mission critical systems.

Our exhaustive verification method holds great promise to be able to analyze larger

systems as computational power increases. Exciting potential for these methods is held

when using multi-core systems and GPUs. Further research could also be completed in

variable resolution grids and other computational methods for improving efficiency.

Monte Carlo-based reachability analysis methods using MLS hold a lot of promise for

providing reachability and safety results for SHS, and their power could be further en-

hanced through the development of new boundary placement methods and splitting policies.

Breadth first splitting methods and other variance reduction techniques found in related

literature could be implemented to be directly compared with our methods as well.

SHS can potentially be used to model biochemical networks with dynamic structures.

The dynamic nature of these systems can cause challenges and opportunities for analysis

methods to take advantage of the interrelationships within the system.
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APPENDIX A

SOFTWARE

Modeling

We developed a modeling framework in software for SHS based on the chemical reaction

modeling presented in the modeling chapter. To implement this methodology for simulation

we created a scalable model for sequences of chemical reactions and chemical species. Our

modeling system requires the input of the chemical system in a text file which specifies the

number of chemical species, chemical reactions, and which chemical species are involved in

which reactions.

We capture the details of the reactions through a sparse matrix where the columns are

the chemical species and the rows are the chemical reactions. If a chemical species a is a

reactant in reaction 1, then a -1 is placed in the matrix in position (1,a). If the chemical

species is a product then a 1 is placed in the position (1,a). If more than one chemical

species is consumed or produced, the integer is placed in the position instead of 1. In this

way all possible chemical reactions can be expressed.

Our modeling software uses the input file of the chemical species and reactions combined

with information about the reaction rates to generate the simple reaction model in software.

This model can me modified to include discrete or probabilistic transitions by including them

in the simulation code. Other attributes such as temperature can also be included using

simple modifications included in the simulation code.

Simulation

Our simulation software includes C++ implementations of all the simulation methods

we presented in previous chapters. The program implements both the EM and MM methods

as well as traditional and probabilistic boundary detection and reflection. Adaptive time

stepping is also implemented with both error estimation methods allowing the user to choose

the appropriate method or combination of methods.
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Verification

We have implemented the dynamic programming verification method presented earlier.

It allows the user to input a model of up to 8 continuous dimensions, and it is written to

use MPI parallelization for up to 32 processors. Because of the complexity of the method

our software requires the user to directly manipulate the model in the software. Automated

model input methods were tested, but they were found to be too inefficient.

Monte Carlo Methods

Our Monte Carlo software implementation is an extension of our simulation methods.

Any simulation method can be used and the approximation statistics are automatically

calculated. Our software is designed to be used in both parallel and standalone situations.

We use MPI for the parallel implementation.

Summary

We present a comparison and summary of the software developed in Table 16.

Table 16: Software developed

Simulation -hybrid Euler-Maruyama, first-order
-hybrid Milstein method, second-order
-adaptive time stepping

Exhaustive -based on dynamic programming
Verification -parallelization
Monte Carlo-based -reachability or safety
analysis -parallelization

-multilevel splitting

Computational Resources

We used a standard desktop computer with a 3.0 GHz processor and 1GB RAM for all

of the small simulations or scalar verification results. All the parallel results were collected

using the computational resources provided by ACCRE at Vanderbilt 5. Over 2000 processor
5http://www.accre.vanderbilt.edu
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cores are available through ACCRE of different types and connectivity. We used IBM

PowerPC processors with 2.2GHz and 750MB RAM with Myrinet connectivity for low

latency.
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