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CHAPTER I 

 

INTRODUCTION 

 

The objective of this research is to develop an understanding of the properties of 

multiple cell upsets (MCUs) in static random access memory (SRAM) fabricated in 

highly scaled geometries (< 250 nm). Early work in MCU properties on SRAMs [Mu96] 

categorized the observed upset cross sections in terms of single-cell upsets and double-

cell upsets. As the deposited energy increased, the amount of double-cell upsets of MCUs 

increased, but the amount of single-cell upsets decreased. Techniques for error rate 

prediction apply standard failure curves that monotonically increase [Pe97]. So, 

categorizing SRAM single event upsets (SEUs) into n-tuples (e.g., single, double, triple) 

leads to failure analysis that does not always monotonically increase or fit standard 

failure models. This type of categorization still exists today, though the number of MCUs 

observed has significantly increased. This research has evaluated the underlying soft error 

mechanisms of an individual SRAM cell and an SRAM array and has developed a 

modeling and simulation approach to determine the MCU characteristics. This research 

enables the categorization of MCUs observed in SRAM radiation effects testing so that 

the fundamental theories of failure can be applied to estimate soft error rates in a given 

radiation environment.  

This dissertation is composed of ten more chapters. Chapter II, Background, will 

introduce basic concepts which are the buildings blocks for the remainder of the 

document. In this chapter, some basic concepts in semiconductor physics and single event 
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physics, as well as approaches for modeling single events in semiconductors, are 

presented. 

Chapter III, Single Event Charge Collections Mechanisms, and Chapter IV, Well-

Collapse Source-Injection, provide a description of the previously known charge 

collection mechanisms and the mechanism identified in this research. The mechanism, 

well-collapse source-injection, is introduced in Chapter III, but is the sole subject of 

Chapter IV. 

Chapter V and Chapter VI discuss the SRAM cell and SRAM array, respectively. 

In Chapter V, the SRAM cell is described along with the application of the charge 

collection mechanisms. Chapter VI extends this discussion to an SRAM array. In this 

chapter, the relationship of the charge collection mechanisms to MCU observations will 

be made. 

Chapter VII, Modeling and Simulation of SRAM, describes the single event 

models for SRAM cells and arrays that were developed and applied to this research. 

These models enabled the determination of the well-collapse source-injection mechanism 

and the determination of how many SRAM cells in the array were affected. 

Chapter VIII, Experimental Results of Single Event Effects in SRAM, describes 

experiments performed with heavy ions. These data are correlated to the array upset 

mechanisms and used to assess the range of the well-collapse source-injection 

mechanism. 

Chapter IX and Chapter X extend the discussion of the mechanism beyond 

SRAM. Chapter IX, Implications of Well-Collapse Source-Injection Mechanism, shows 

that this mechanism is applicable to several different research areas currently pursued in 
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single event effects. Chapter X, Well-Collapse Mitigation Approaches, presents some 

hardening approaches that can be applied to retard the well-collapse and reduce the 

specific number of MCUs per single event. 

Finally, Chapter XI concludes the document. This will summarize the major 

contributions of the research and highlight the future extensions of this work. 
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CHAPTER II 

 

BACKGROUND 

 

Semiconductor Physics 

 

Carrier Physics 

This section briefly presents the fundamental physics of semiconductor carriers 

(electrons and holes) in terms of mobility, resistivity, and current densities. The equations 

discussed in this section will be used later in this dissertation. This section is largely 

based on Chapter 1 on Muller and Kamins [Mu03], which provides a more detailed 

discussion of the topic. 

Mobility describes how easily a carrier will move in response to an applied 

electric field. As seen in the following two equations, the carrier drift velocity is directly 

related to its respective mobility and the applied electric field. In equations 1 and 2, vd is 

the drift velocity (with subscript e or h for the type of carrier), μn is the electron mobility, 

μp is the hole mobility, and ξ is the electric field. 

ξμnde
v −=  (1)

ξμ pdh
v =  (2)

The mobilities depend upon the carrier charge, mean scattering time, and the effective 

mass. Electrons typically have higher mobilities, by a factor of 2-3 times. Also, carrier 

mobilities tend to decrease with either increased carrier density or increased temperature. 
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The current density in an applied electric field is a function of the number of 

carriers that pass through a unit volume per unit time and is related to the equations for 

drift velocity. The total current density due to electrons and holes is given in equation 3, 

where J is the current density, n is the number of electrons/cm3, p is the number of 

holes/cm3, and q is the electron charge.  

ξμμ )( pn pqnqJ +=  (3)

Equation 3 is a form of Ohm’s law where the quantity in the parentheses is the 

conductivity of the material. Since resistivity is the inverse of conductivity, the material’s 

resistivity is calculated by equation 4. 

)(
1

pn pqnq μμ
ρ

+
=  

(4)

Even though carrier mobility decreases with carrier density, the general trend in 

resistivity is to decrease with increased carrier density. In this research, carrier mobilities 

and densities will be taken from simulation results, and equation 4 will be used to 

calculate the material resistivity. Equation 5 will then be applied to calculate the 

resistances in the semiconductor layout. In this equation, l is the length between resistor 

ends, and A is the area that the carriers traverse. 

A
lR ρ

=  
(5)

Besides the motion of carriers in an electric field, the other important concept 

related to single event effects (SEE) is diffusion current (i.e., the diffusion of carriers). 

The diffusion of carriers is based on a gradient of carrier concentration, namely, a change 

in carriers per unit distance. Equation 6 gives the diffusion current density due to carrier 

gradients. In this equation, k is Boltzmann’s constant, and T is temperature in Kelvin. 
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dx
dp

q
kTq

dx
dn

q
kTqJ pn )()( μμ −=  

(6)

The quantities inside the parentheses in equation 6 can be replaced with the diffusion 

constants Dn and Dp, respectively.  

 

P-N Junction Diode Characteristics 

Diodes formed by p-n junctions in semiconductors play an extremely important 

role in the determination of single event effects. In reverse bias, the diodes have an 

electric field to move carriers from one type of doping to the next. In forward bias, the 

diodes inject minority carriers into the semiconductor. The first p-n junction diode 

characteristic to be discussed is the built-in potential, which is related to the material 

dopings. This term is important in this research for two reasons: (1) to help interpret the 

technology computer aided design (TCAD) output plots and (2) to know when a p-n 

junction diode has been maximally forward biased. Φn is the potential at the neutral edge 

of the n-doped material, Φp is the potential at the neutral edge of the p-doped material, 

and Φi is the built-in potential. All three potentials are calculated using the following 

three equations. 
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In these equations, Nd is the doping density in the n-type material, Na is the doping 

density in the p-type material, and ni is the intrinsic carrier density.  

In reverse bias, the important diode characteristics are the depletion region width 

and the maximum electric field in the depletion region. Equation 10 provides the 

calculation of the depletion region width as a function of applied voltage, Va. In this 

equation, xd is the depletion region width, and εs is the permittivity of the semiconductor. 

))(11(
2

ai
da

s
d V

NNq
x −Φ+=

ε
 

(10)

Note that in reverse bias, the applied voltage is negative and only serves to increase the 

depletion region width. The maximum electric field can be calculated from equation 11. 

This equation is derived for step junctions, but it does serve to show the trend of the 

electric field versus applied voltage. 

d

ai

x
V )(2

max
−Φ

=ξ  
(11)

It is easy to see that, even in the absence of an applied voltage, there still is an electric 

field to cause carrier drift. There just tends to be no current flow without an applied 

reverse bias voltage. 

In forward bias, the p-n junction diode will become a source of minority carriers. 

For small forward bias, equations 12 and 13 will demonstrate this basic concept for low-

level carrier injection. In these equations, np means the electron density in the p-type 

material at the edge of the depletion region, and np0 means the equilibrium electron 

density when there is no applied voltage. pn and pn0 are the hole densities in the n-type 

material. 
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The equations for high-level injection, where the injected carrier densities are at or above 

the doping density, are not presented. The research will rely on the TCAD tools to solve 

for the carrier densities in that case. Equations 12 and 13 are only valid at the edge of the 

depletion region. If the diode were to remain in a constant forward bias, the minority 

carrier concentration would exponentially decrease as the carriers get farther away from 

the depletion region edge. The exponential decay is then a function of the carrier 

lifetimes. Once again, this research will make use of the TCAD tools to provide the 

carrier distributions, but the physics presented here provides the underlying principles. 

 

Single Event Physics 

 

Carrier Generation 

Radiation environments consist of charged particles (electrons, protons, alphas, 

and heavy ions) and neutral particles (neutrons). In space orbits around the Earth, there 

are proton and electron belts with significant abundance of those charged particles. 

Galactic cosmic rays and solar flares produce heavy ions. Alpha particles are emitted 

from radioactive impurities found in microelectronics packaging material. Neutrons are 

secondary radiation particles resulting from the interaction of heavy ions with 

atmospheric particles [Ba01].  
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Radiation particles can interact with all materials or regions in a microelectronics 

device. As radiation particles pass through a semiconductor material, they lose energy by 

Coulomb scattering with the nuclei of the lattice. Energy is transferred from the particle 

to bound electrons which are ionized into the conduction band, thus leaving a track of 

electron-hole pairs (EHPs). This is referred to as direct ionization and is demonstrated in 

Figure 1. The figure shows a charge track down through the silicon after some initial 

charge transport with charge generation of approximately 2x1019 carriers/cm3 in the 

center of the track with a radius of approximately 0.5 μm. The radius of the charge track 

is the result of the initial charge transport. This plot is an example from a TCAD 

simulation where the charge generation in charge/length and a track radius are input 

parameters. EHPs generated in the metal layers of the microelectronics are generally of 

no consequence. EHPs generated in the oxides typically contribute to total ionizing dose 

(TID) effects. The EHPs generated in the semiconductor regions contribute to single 

event effects. Incident radiation particles can also create a nuclear interaction between the 

target nuclei and the incident ion, such as the Si, O, doping elements, metallization 

materials, and processing impurities. A nuclear interaction can result in an ionized heavy 

ion, which can then create EHPs through direct ionization. The incident radiation particle 

then creates EHPs through indirect ionization. 

The rate of this energy loss to EHP creation is often expressed as stopping power 

or linear energy transfer (LET), which has the dimensions of energy per unit length along 

the path of the particle. The LET of an ion depends on the charge of the ion, as well as 

the density of the target material. Thus, units of LET are usually MeV-cm2/mg, or 

converted to MeV/μm in a specific target material. In Si, the charge generation is 
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approximately 0.01 pC/μm for an LET of 1 MeV-cm2/mg. So, in Figure 1, the charge 

track is simulating a heavy ion with LET of approximately 20 MeV-cm2/mg. It is 

important to note that the charge generation along an ion’s track is random in nature; 

these approximations are averaged over long path lengths.  

 

 

Figure 1. Example of heavy ion charge generation track, (charge deposition = 0.2 pC/μm). 

 

Equilibrium Recovery 

The previous section discussed how a single event can generate excess carriers 

(EHPs) in the semiconductor material. This section briefly discusses the physical 

processes that return the material to equilibrium carrier concentrations. The excess 

carriers, like the carriers already present in the material, are governed by the same 
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principles of motion. In the presence of an electric field, the carriers will drift, and in the 

presence of a carrier gradient, they will diffuse. Note that the initial EHP generation on 

the ion track will automatically create a carrier gradient for both electrons and holes. In 

general, the minority carrier gradient is much higher, resulting in increased disbursement 

from the original ion track. An example of this is shown in Figure 2 from the same charge 

track given in Figure 1. In the example, the charge track was in a highly doped p-

substrate, where the holes are the majority carriers. In the image on the right, there is a 

small gradient near the top of the silicon where the substrate is more lightly doped, but 

the gradient is still only about two orders of magnitude. However, in the image on the 

left, the gradient for electrons is about 20 orders of magnitude and will diffuse more 

rapidly. This is why it is not important to match the radius of the heavy ion charge track 

in simulation, since the immediate carrier motion due to diffusion will overwhelm any 

difference in the radius. 

The excess carriers will be reduced in the semiconductor material by encountering 

and interacting with another region of the microelectronics device or through 

recombination. Carriers that encounter a semiconductor-oxide interface typically do not 

move into the oxide. So, the semiconductor-oxide interface can be interpreted as a 

reflecting boundary. Carriers that encounter a metal boundary can cross the boundary and 

be removed from the semiconductor region. The last process governing the return to 

equilibrium is recombination. It is noted that the time scale for recombination is typically 

much longer than the single event responses seen in this document, so it does not play a 

role in the single event response. 
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Figure 2. Examples of minority (electron) carrier densities and majority (holes) carrier densities 1 ps after 
the charge generation. 

 

Single Event Modeling 

In the previous section, the charge generation by a single penetrating ion was 

discussed as well as the guiding physics that control the charge motion and the return to 

equilibrium. This section will briefly introduce the modeling approaches used in this 

research. The goal is to model the relationship between the single event charge generation 

and the response of the microelectronics circuit. These models can then be used to: (1) 

assess the response of an individual circuit to specific heavy ions, (2) assess the single 

event response of multiple circuits placed in close proximity in the microelectronics 

design, (3) develop and simulate the effectiveness of hardening schemes, and (4) predict 
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the single event response for particles that cannot be easily evaluated in ground-based 

testing facilities. 

 

Device Single Event Modeling and Simulation 

Tools that solve the transport equations for carriers (electrons and holes) by 

applying the semiconductor physics equations in a spatial rendering are called device 

simulations and are part of a TCAD set of tools. Device tools typically support both two-

dimensional (2-D) and three-dimensional (3-D) modeling. These tools numerically solve 

the Poisson and carrier continuity equations for specified device conditions. The user 

provides the spatial information about the layout of the circuit to be modeled (e.g., 

transistor size), builds the circuit using process information (e.g., shallow trench isolation 

(STI) depth and doping profiles), and applies circuit connectivity through contact 

boundary conditions. The user then must mesh spatial nodes for the simulator to perform 

numerical solutions. This last step is critical to the results; using too many mesh points 

can result in long simulation times, while using too few mesh points can result in 

inaccurate results [Bu01, Law06]. An example of a 3-D device model is shown in Figure 

3. This full SRAM cell model was used in this research. In Figure 3b, note the difference 

in height of the Field Effect Transistors (FETs) and well contacts from the well. This is 

typical of advanced processes using STI. In this model, the STI is modeled as air, which, 

in simulation, is a reflective barrier to both the electrons and holes. An example of mesh 

points is shown in Figure 4. The FETs are highly meshed (points are indistinguishable in 

the figure), the n-well and p-substrate around the FETs are meshed with lower density, 

and the rest of the model receives the lowest meshing.  
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(a) Top view 

n-well

p-substrate

pMOSFETn-well contacts

 

(b) Side view 

Figure 3. Sample 3-D device circuit model rendered in 2-D showing (a) top view and (b) side view. 

 

 

Figure 4. Sample 3-D device circuit model showing mesh points in top view. 

 

For single events, these device tools are used to model the collection dynamics of 

the charge deposited by a heavy ion. The single event is described as a charge deposition 

in units of pC/μm. TCAD modeling has many advantages for single event simulation. All 

of the single event mechanisms discussed in the next section are typically modeled. In 

fact, the use of TCAD modeling enabled the identification of the advanced mechanisms 
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described in this dissertation. Device single event modeling and simulation has one 

severe limitation. The size of the circuit to be implemented is fairly limited. The most 

useful device simulation will be 3-D; however, a small SRAM circuit would require 

hundreds of thousands of nodes to process. The computational time needed to process 

that number of nodes for two nanoseconds of simulation time can be quite large. 

 

Compact Single Event Modeling and Simulation 

Compact tools model the electrical responses of elements (e.g., transistors, diodes, 

resistors) in a circuit. The models of the transistors can vary from very simple to very 

complex, depending on the source of the model. Transistor models from the process 

foundry will typically fall into the complex category and include many inherent parasitic 

resistances and capacitances within the modeled device. Subcircuits are created by wiring 

the components either by writing a ‘netlist’ or graphically developing a schematic circuit 

diagram [Bu01]. 

At this level of SEE modeling, the specific locations of transistors and their 

respective distances to well contacts are not known. Thus, it is difficult to model and 

simulate the exact charge generation from the ion strike, especially given the potential 

charge generation near two or more components. Another disadvantage of compact 

modeling is that the transistor model lumps parameters together so that the charge 

generation mechanism cannot be physically implemented. Though it may be difficult to 

model and simulate the charge generation as it would actually occur (i.e., as the initial 

single event circuit response propagates through transistors and circuit elements), this 

type of modeling becomes much more useful. The transistor models are designed to 
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simulate time-dependent and frequency-dependent transfer functions. So, if one can 

accurately represent the initial circuit response, then the propagated outputs or circuit 

responses will represent the actual response. Although compact modeling does not play a 

direct role in this research, it is included in the background because the research makes 

use of many previous efforts that developed compact models for SEE simulation.  

  

Mixed-Mode Single Event Modeling and Simulation 

The term mixed-mode refers to a simulator that combines device modeling with 

compact modeling to create a unified simulation environment in which the effects of 

single events on a particular circuit element can be studied at the circuit level. Early 

mixed-mode simulation tools were developed for circuits in which a device model existed 

for a critical component, but for which compact circuit models were unavailable or 

difficult to create for a physical characteristic or interaction of interest [Rl88]. The SPICE 

and PISCES simulation engines were bridged with appropriate software to permit a 

PISCES device model to run in conjunction with simple SPICE-level models for the 

remainder of the circuit elements. The advantages of this technique quickly became 

apparent in the radiation effects community, and today many commercial TCAD 

simulators support mixed-level simulations for single event effects. 

There is one primary difficulty with compact circuit SEE modeling and 

simulation, namely, the generation of an accurate circuit response. But, once that 

response is generated within the circuit, these tools become a lot more accurate in 

propagating the signals. Device simulators can much more accurately represent the circuit 

response due to the single event charge generation, but are limited by the size of a circuit 
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that can be modeled. Mixed-mode SEE modeling and simulation it is widely used 

because it removes these two limitations. 

In a mixed-mode simulation of SEE, the struck device is modeled in the “device 

domain” (i.e., using 3-D device simulation), while the rest of the circuit is represented by 

compact circuit models, as illustrated in Figure 5. The two regimes are tied together by 

the boundary conditions at contacts, and the solution to both sets of equations is rolled 

into one matrix solution [Rl88, My93]. The advantage is that only the struck transistor is 

modeled in multiple dimensions, while the rest of the circuit consists of computationally-

efficient compact models. This decreases simulation times over multiple-transistor device 

models and greatly increases the complexity of the external circuitry that can be modeled.  

 

 

Figure 5. Mixed-mode simulation example of cross-coupled inverters (after [Bu01]). 

 

A potential drawback of the mixed-mode method is that coupling effects between 

adjacent transistors have been shown to exist at the device level using 2-D simulations 

[Fu85] and later in 3-D simulations [Bl05, Ol05]. These effects cannot be taken into 



 18

account when only one transistor, the struck transistor, is modeled at the device level. To 

consider multiple node charge generation in mixed-mode simulation, more than one 

transistor needs to be simulated. One method, and the method generally applied in this 

research, is to simply model an entire cell in a 3-D device tool. Roche et al. performed 

mixed-mode modeling with a full 3-D device model of an SRAM cell. The authors 

compared the results to standard mixed-mode simulations and found that, in cases where 

no coupling effects between transistors existed, mixed-mode simulations were adequate 

to reproduce the full SRAM cell results. For some strike locations; however, coupling 

effects were observed between adjacent transistors. Mixed-mode simulations with a 

single transistor device in the device simulator are incapable of predicting such effects 

[Ro98]. Although this research modeled an entire SRAM cell in 3-D TCAD, it also used 

mixed-mode modeling through the addition of passive components to model radiation 

hardening techniques. 

 

 



 19

CHAPTER III 

 

SINGLE EVENT CHARGE COLLECTION MECHANISMS 

 

Chapter II introduced the concept of charge generation and deposition in a 

semiconductor region. These excess carriers will move through drift and diffusion 

mechanisms. Charge deposition deep into the bulk of the semiconductor is typically of no 

consequence; it will eventually recombine. However, charge that is deposited at the top 

of the semiconductor, near p-n junctions, can lead to unintended charge collection and 

single event currents. There are several mechanisms for this single event charge 

collection; these are divided into direct and indirect processes.   

 

Direct Charge Collection 

Direct charge collection processes that lead to a prompt single event current 

include depletion region drift collection and field-assisted funnel collection. Another 

process, diffusion collection, can lead to a delayed single event current. 

 

Prompt Charge Collection 

Figure 6 shows an ion penetrating the depletion region of a p-n junction. The 

built-in electric field causes electrons to be swept to the n-doped region, while holes 

move to the p-doped region. All p-n junctions will have a depletion region and an electric 

field, so carriers will be swept, whether forward or reversed biased. However, current 

pulses typically occur only when there is an applied reverse bias in addition to the built-in 
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voltage. Early on in the investigations of ionizing particle effects on junctions, Hsieh et 

al. recognized [Hs81] that the creation of a highly-concentrated free carrier track within a 

junction depletion region perturbs the region itself. Therefore, the simplified depletion 

current density calculation in equation 3 does not adequately describe the actual charge 

collection. Hsieh showed that the generated carrier track created as an alpha particle 

penetrates a junction severely distorts the potential gradients along the track length, 

creating a field funnel. As a result, the prompt current from a single event through a 

depletion region is the combination of the depletion region drift charge collection and the 

field-assisted funnel collection as shown in Figure 7. 

 

 

Figure 6. Depletion region drift charge collection in a p-n junction (after [Ma93]). 
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Figure 7. Typical shape of the total direct charge collection single event current at a p-n junction. 

 

Delayed Charge Collection 

Charge generated outside the funnel region, but within a diffusion length of a p-n 

junction, can diffuse to the junction and then be swept across the depletion region, 

leading to another direct charge collection mechanism [Ki79]. Diffusion charge 

collection will occur in the struck p-n junction, but may also occur in other neighboring 

p-n junctions, as shown in Figure 8. Diffusion is a much slower process, so this current 

component is delayed with respect to the prompt mechanisms illustrated in Figure 7. 

Typical time domains are hundreds of picoseconds to nanoseconds for diffusion 

collection. Because of the complex, three-dimensional nature of the diffusion charge 

transport, charge collection by this method depends strongly on the geometry of the 

circuit layout and the distance from the strike location to junctions in close proximity. 
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Figure 8. Diffision of charge to neighboring circuit nodes (after [Mc82]). 

 

Charge Collection Enhancements and Indirect Charge Collection 

Along with the direct charge collection mechanisms, there are a few indirect 

charge collection mechanisms and enhancements. Many of these have been discovered 

through the use of TCAD device modeling of the charge deposition and collection, as 

was the field-assisted funnel charge collection process. While the direct charge collection 

mechanisms exist in all semiconductor types, some indirect charge collection 

mechanisms are only prominent in certain types of semiconductors. The charge collection 

enhancements discussed are the Alpha Particle Source-Drain Penetration (ALPEN) effect 

and parasitic bipolar enhancement. The indirect charge collection mechanisms discussed 

are ion shunt and well-collapse source-injection. The last of these is a finding in this 

research effort. 
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Alpha Particle Source-Drain Penetration (ALPEN) Effect 

The ALPEN charge collection mechanism results from a disturbance in the 

channel potential that Takeda et al. referred to as a funneling effect [Ta88]. The effect is 

illustrated in Figure 9, and was based upon an ion strike that passes through both the 

source and the drain. Immediately following the ion strike, there is no longer a potential 

barrier between the source and channel. This can lead to significant source-drain 

conduction current, which mimics the Metal-Oxide-Semiconductor Field Effect 

Transistor (MOSFET) device being on. This mechanism was revealed by 3-D alpha-

particle simulations and has been experimentally verified [Do99, Ta88]. 

 

 

Figure 9. Illustration of the ALPEN effect (after [Ta88]). 

 

Parasitic Bipolar Enhancement  

An effect first observed in Silicon-on-Insulator (SOI) MOSFET devices, which 

now can also be important in bulk MOSFET devices, is parasitic bipolar enhancement. If 

the potential near the hit is large enough to cause minority carrier injection across the 

body source junction, then parasitic bipolar action can be created between the source and 
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drain. The current created by the ion strike is in effect the base current for this parasitic 

bipolar transistor; this base current can be amplified to create a large collector current at 

the sensitive node. Thus, the single event current is amplified with the gain of the 

parasitic bipolar transistor [Ke89]. The interesting item of note in this mechanism is that 

direct charge collection processes are the sources of the base current. So, the parasitic 

bipolar action tends to amplify the direct charge collection [Wo93]. 

 

Ion Shunt 

Figure 10 shows a unique and interesting phenomenon that had become important 

in modern, dense integrated circuits where geometries are scaled to small dimensions. 

This indirect charge collection mechanism is called ion shunt, but in current state-of-the-

art microelectronics processing generations (e.g., 65-nm, 90-nm, 130-nm), ion shunting 

appears no longer important. In this figure, an ion track of free carriers has penetrated 

two proximal junctions. Since the ion track, while it exists with a high carrier 

concentration, acts as a conductive path, the path between the two n regions in the figure 

can act as a current conduit, or resistive connection, between the regions. Charge that was 

not even generated by the ion hit can move through this conduit just as current through a 

wire [Ha85, Zo87]. 
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Figure 10. Simplified view of the ion shunt effect (after [Ha85]). 

 

There are many possible reasons why the ion shunt mechanism does not apply for 

the current state-of-the-art microelectronics generations. However, this research focuses 

on one main reason. In order for the ion shunt to form and maintain a conduit for current, 

the n+-doped drain must start at a low potential, the p-doped well must start at a low 

potential, and the n-doped substrate must start at a high potential. Also, when the ion 

strike occurs, the potentials of the well and substrate must remain relatively constant, 

keeping the p-n junctions reversed biased. Thus, the well and substrate region near the 

strike must have a low resistance connection to power, VDD, or ground, VSS. Consider the 

single event current generated at the well/substrate p-n junction as a current sink. This 

current must be supplied from the VDD or VSS contact(s). This current is limited by Ohm’s 

law as demonstrated in equation 14. In this equation, Ip,limit is the limit of single event 

current that can be supplied through these contact(s), and Rc is the resistance from the 

well/substrate strike to the contact. 

c

DD
itlim.p R

VI =  
(14)
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Any single event current draw approaching the limit will result in a significant potential 

drop from the contact to the well/substrate charge collection location. So, in order to 

maintain the well or substrate potential, either VDD must be high or Rc must be low or a 

combination of the two. These are both challenges in current state-of-the-art 

microelectronics technology generations. VDD is about 1 V and RC is high due to 

processing with STI. This will be demonstrated with more detail later in this document. 

 

Well-Collapse Source-Injection 

Indirect charge collection from the well-collapse source-injection mechanism is 

one key finding of this research. It is introduced here to discuss the similarities and 

differences with the ion shunt mechanism. The next chapter provides additional details of 

the mechanism.  

Like the ion shunt mechanism, the well-collapse source-injection mechanism 

requires charge collection at a well/substrate p-n junction. The second similarity is that 

the effect is related to the single event current limit given in equation 14. The main 

difference is that this mechanism requires the well potential to collapse, whereas the ion 

shunt requires the well potential to remain constant.  

For the example to follow, the substrate is p-doped and contacted to VSS and the 

well is n-doped and contacted to VDD. Also, the contact resistance for the substrate is 

considered small. If the single event current draw due to a well/substrate charge 

collection approaches its limit, then the potential near the charge collection will be close 

to VSS. Any p+-doped sources in the n-well near this charge collection region will 

observe a forward bias and a resistance. This forward-biased diode will supply some of 
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the needed single event current through the resistor. But, the diode will also inject holes 

into the n-doped well [Wo93]. This increase in carriers can reduce the resistance as seen 

by the source. In essence, the p+-doped sources are seen as an almost limitless source of 

single event current, since they can modulate the resistance to the well/substrate charge 

collection area. As the single event current needs increase with increased charge 

collection, the forward-biased sources become the dominant suppliers of current and 

significant sources of carriers. In fact, the amount of carriers near the source of a 

transistor can become much higher than what could possibly diffuse to that location. 

Therefore, this mechanism does not require and may not receive any direct charge 

collection. 
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CHAPTER IV 

 

WELL-COLLAPSE SOURCE-INJECTION 

 

Well/Substrate P-N Junction Charge Collection 

In modern complementary metal-oxide-semiconductor (CMOS) circuits, there are 

many p-n junctions for the collection of single event current. To fabricate an n-channel 

metal-oxide-semiconductor field effect transistor (nMOSFET), n+-doped source/drain 

regions are placed on a p-doped body region. The source/body and drain/body junctions 

each form a p-n junction. To fabricate a p-channel metal-oxide-semiconductor field effect 

transistor (pMOSFET), p+-doped source/drain regions are placed on an n-doped body 

region, once again creating two p-n junctions: source/body and drain/body. But, the 

overall circuit needs to have two types of bodies for the formation of both transistors. To 

provide both types of bodies, the manufacturing process begins with one type of doped 

substrate, e.g., p-type to form the nMOSFETs, and then add n-doped wells where the 

pMOSFETs are located. The n-doped well and p-doped substrate boundaries then form 

very large p-n junctions for charge collection. An example of the amount of area that n-

wells occupy in a sample design is given in Figure 11. Note that this is a very substantial 

portion of the design, and is much more area than the source/body or drain/body 

junctions. 
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Figure 11. Sample CMOS circuit top view showing location of n-well implant in yellow. Each n-well 
contains ~24 pMOSFETs. The circuit is built in 90-nm CMOS technology and the dimensions of the layout 
are ~225 μm x ~65 μm. 

 

Not only do well/substrate p-n junctions consume a lot of surface area when 

examining a typical CMOS design in the layout view, they also have a large volume with 

respect to drain or source volumes. Figure 12 shows a sample 3-D drawing of two n-wells 

in a p-substrate. N-wells are typically long in one dimension of the layout, though it is 

possible to have shorter wells. The n-well has a couple of important dimensions, height 

(wh) and width (ww). In general, the top of the well is the STI and the bottom is the depth 

of the n-well implant. In a 90-nm process, wh is approximately 700 nm. The well length 

is based on the need to encompass all pMOSFETs and/or well contacts. In 90-nm SRAM, 

ww is approximately 900 nm, and in 65-nm SRAM, ww is approximately 500 nm. In 

standard cell CMOS layouts, the well length is typically greater than the well width, on 

the order of two to four times larger. The other dimension provided on Figure 12 is the 

well spacing, ws. This dimension describes how close the wells are to each other. In 

SRAMs, ws will be about the same as ww. However, in standard cell CMOS layouts, ws 

is usually less than ww. 

 



 30

p-substrate

n-well

wh

ww

ws

 

Figure 12. Example of a 3-D drawing of two n-wells in a p-substrate. 

 

Charge collection in a p-n junction depends on the number of carriers generated in 

the depletion region or nearby, typically within one diffusion length. It also depends on 

the volume of the depletion region where the charge collection occurs. Based upon the 

structure of the n-well, it has a large volume inside for the generation of carriers. It also 

has very large volumes of depletion region within one diffusion length of just about any 

ion strike through the n-well. The magnitude of charge collection at the well/substrate p-n 

junctions is typically much higher in the denser layout of SRAMs than in less dense 

layouts like standard cell, since ww and ws are relatively small. Electrons generated 

outside of the well can also collect at the well/substrate p-n junctions. However, only one 

or two sides of the well/substrate p-n junctions will collect charge via a strike outside of 

the well. If ws is small, it is possible to collect charge on multiple well/substrate junctions 

due to the diffusion of the electrons. So, in modern microelectronics processes, the 
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well/substrate p-n junctions have the highest probability of charge collection, and they 

can contribute to the largest single event currents. 

 

Supplying Current to the Single Event Charge Collection 

The charge collection at the well/substrate p-n junction is viewed as a current sink 

and not as a supply. Thus, the current has to be supplied from the power and ground 

connections in the design. There are two ways to supply the current: (1) through the well 

contacts and (2) through p+-sources. Each method of current supply has a resistance from 

its respective contact to the strike location in the well/substrate p-n junction. 

 

Well Resistance 

A well from Figure 12 can be viewed as a long rectangular box as drawn in Figure 

13. If the two ends are considered the two terminals of the resistor, then the well 

resistance can simply be calculated from equation 4 and equation 5. The model of the 

well resistance used in this research is a series of resistors per unit of well length as 

shown in Figure 13. For example, if the well was doped n-type with ND = 7.8x1017 cm-3 

and μn = 318 cm2-V/s, then the well resistivity is calculated by equation 4.  

)(
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=  
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Then, taking ww = 900 nm, wh = 700 nm, and a unit well length of 1 μm, the resistance 

per unit length is calculated from equation 5. 
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Figure 13. Model of the well resistance. 

 

Well Contacts 

The well is contacted to metal by implanting a highly doped region near the 

surface of the semiconductor, with the same doping type as the well. In the era when 

local oxidation of silicon (LOCOS) was used to isolate transistors and well/substrate 

contacts, the well contact implant was virtually at the top of the well (Figure 14). The 

implant extended down below any isolation oxide, leaving a very low resistive path from 

the contact to the well. But, in the current era of STI, the top of the well is some distance 

from the top of the semiconductor, where the transistors are formed. Figure 15 shows a 

drawing of two well contact semiconductor regions that are surrounded by STI. This 

structure essentially forms a vertical resistor. The model of this resistor, including the 

well resistance and the connection to VDD, is also shown in Figure 15. 
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Figure 14. Side view of pMOSFET (gate - red, source/drain – blue) and n+-body contact (yellow) in both 
LOCOS and STI microelectronics processes. 

 

 

Figure 15. Model of well contacts to VDD. 

 

The resistance of each well contact is calculated similarly to the well resistance, 

except that it is from top to bottom rather than from left to right. It is assumed that the 

very highly doped implant has very low resistance, so it is not included in the resistance 

calculation. This is done by subtracting the STI depth from the implant depth. If ND = 6.6 

x 1016 cm-3, μn = 743 cm2-V/s, STI depth = 360 nm, implant depth = 100 nm, and well 

contact area = 120 nm x 800 nm, then the well contact resistance can be calculated using 

equation 4 and equation 5. 
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As defined in equation 14, the single event current provided by the well contacts 

is current-limited. Figure 16 shows the current limits of the well contacts developed using 

the examples from this section. For the context of the figure, one well contact is located 

at x = 0 μm (left) and another is located at x = 10 μm (right). Given VDD = 1.2 V, the 

figure shows the current limit for the well contact on each side and the total current limit 

provided by both of them. The figure includes some rough approximations, such as the 

locations of the single event current sinks at the top of the well, rather than at the bottom 

or along the sides. However, the figure does demonstrate that the resistance of the well 

contact(s) to the well is the dominant factor.  

The resistance associated with well contacts generally increases with scaling. 

Thus, the ability of a well contact to supply the current for well/substrate p-n junction 

charge collection decreases with scaling. The change from LOCOS to STI has an obvious 

impact by adding resistance from the well contact to the well itself. Also, scaling can 

decrease the length of the resistor by the scaling factor, but the area can decrease by the 

scaling factor squared (equation 5). So, the resistances are increasing with scaling. 

Scaling should only further limit the well contacts as a current source. However, the 
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current produced from a single event is not decreasing, so other sources must be 

contributing to this response. 
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Figure 16. Example of current limiting of well contacts to supply single event current. 

 

MOSFET Sources 

 Besides the well contacts, the other supplies for the well/substrate single event 

current are MOSFET sources inside the n-well. If the current drawn from the single event 

is significant with respect to the limit of the well contacts, then the well potential will 

have a large current-resistor (IR) drop from the well contact to the well/substrate charge 

collection region. This could drop the well potential from VDD to near VSS. P+-sources in 

an n-well near the well/substrate charge collection region can then become forward 

biased. A drawing of the well with some transistor implants is given in Figure 17. This 

figure shows 12 regions where one p+-source is shared with two p+-drains (though the 
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actual source/drains are not specified). The layout is indicative of the 90-nm SRAM 

layout of 12 SRAM cells between the two well contacts. The figure also shows the full 

model for supplying single event current to the well/substrate charge collection region. In 

STI, the implants for the source/drains are surrounded by STI, much like the well 

contacts. Also, the p+ implant is about the same depth, so the resistor in series with the 

diode in the model is very similar to the well contact resistor except for the area term. 

 

 

Figure 17. Full model of single event current supply to a well/substrate p-n junction charge collection. 

 

The resistance from the p+-n source/body diode to the well is calculated in the 

same manner as the well contact resistance. Again, it is assumed that the resistance in the 

p+ region is insignificant and that the length of the resistor extends from the bottom of 

the implant to the top of the well. If ρ = 0.027 Ω-cm, STI depth = 360 nm, implant depth 

= 100 nm, and source/drain area = 200 nm x 920 nm, then the well contact resistance can 

be calculated. 
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Ω= k.R 791  

If the resistance is considered fixed and there is a nominal 0.7 V forward bias drop 

through the diode, the maximum current that the p+-source can supply is calculated by 

subtracting the forward bias drop from VDD and dividing by the resistance. This is about 

0.28 mA, which is very similar to the amount of current that can be provided from each 

well contact, but less than the sum of both of the well contacts. However, the resistance 

in this path is not constant in the forward bias condition, as discussed in subsequent 

sections. 

 

Resistivity Modulation 

A TCAD simulation is presented to demonstrate the supply of the single event 

current to a well/substrate p-n junction charge collection. A top view of the transistors 

simulated is given in Figure 18. There are two pMOSFET transistors in an n-well on p-

substrate. The well extends a little more than five μm both to the left and the right where 

the well contacts are located. The resistance parameters match all the examples calculated 

in the previous section except for the p+-source diode to well resistance. Note that in this 

figure, there is only one p+-drain, and not two as in the calculation. The reduction in the 

one dimension from 920 nm to 680 nm increases the resistance from 1.79 kΩ to 2.43 kΩ. 

The ion strike is shown with the X and proceeds at an angle of 60 degrees from normal to 

the surface in the direction shown. The simulated charge deposition was 0.12 pC/μm. 

A current versus time plot for the n-well contacts and the two p+-sources is given 

in Figure 19. It is noted that p+-source 1 is the one on the bottom of Figure 18 nearer the 

well/substrate charge collection region. The ion strike is initiated at 1 ns in simulation  
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Figure 18. Top view of 3-D TCAD design to demonstrate well/substrate p-n junction single event current 
supply. 

 

time. This figure clearly demonstrates a current limit on the well contacts of about 0.2 

mA. This differs from the 0.44 mA predicted by the resistance calculations. The main 

reason for the difference is that the resistivity is not constant due to the retrograde well. 

With respect to the current supplied by the p+-sources, one peaks at 1.4 mA and the other 

just above 0.6 mA. The predicted maximum is approximately 0.20 mA for a p+-source 

near the charge collection. It is observed that the p+-source near the charge collection is 

providing significantly more current than possible given the assumption that the 

resistance is constant. 

The next series of figures show the well potential and the hole density near the 

p+-source on the bottom of Figure 18, as shown by the dashed cut line. The first two 

figures show the equilibrium condition where the n-well and p+-sources are at 1.2 V and 

the substrate and n+-source are at 0 V. Figure 20 shows the potential in the equilibrium 

condition. This plot is included as a reference for how to read the outputs from the TCAD  
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Figure 19. Supply current versus time for sample TCAD simulation on two p+-sources and two n-well 
contacts. 

 

simulator, since the potential everywhere is exactly 1.2 V. The p+-source/drain regions at 

the top are shown as VDD plus Φp, where Φp is defined by equation 8. The n-well region 

in the rest of the figure is shown as VDD plus Φn (defined by equation 7). Figure 21 shows 

the equilibrium hole density. Figure 22 and Figure 23 capture the device state 5 ps 

following the ion strike, and show the potential and the hole density, respectively. The 

potential demonstrates that the p+-n source/body diode has become forward biased, since 

it is difficult to distinguish much color difference in the figure. In comparing Figure 22 to 

Figure 20, it is observed that the p+-source remains at 1.2 V. Since the color is the same 

in the n-region below the source, it means that Φn less Φp is essentially dropped across 

the diode. This is the same as saying the diode has a forward bias of approximately Φi per 

equation 9. In Figure 23, the hole density mainly shows the initial diffusion of carriers 

from the ion strike.  
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The potential and the hole density are also examined at the height of the current 

draw. The potential, shown in Figure 24, still shows a forward bias of Φi on the 

source/body diode, as would be expected. Figure 25 shows that the hole density is highest 

at the edge of the diode. This is expected, as a forward bias diode injects minority carriers 

as seen in equations 12 and 13. But, the most interesting item is that the density of the 

minority carriers is higher than originally generated by the single event. The carrier 

densities were found to be n = 1.85x1018 cm-3 and p = 1.65x1018 cm-3 at a point sampled 

near the source in the n-well. Both of these densities are more than an order of magnitude 

higher than the doping level. Using these carrier densities along with mobilities of μn = 

603 cm2-V/s and μp = 273 cm2-V/s, the resistance from the source to the well can be 

recalculated. 
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This value of resistance is significantly different from the equilibrium case. So, as a result 

of the forward bias, the source injects minority carriers into the well, which in turn, 

modulates its resistivity by a significant amount. This allows the p+-sources in the well to 

supply much more single event current than the well contacts, since they can overcome 

the implant-to-well resistance. 
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Figure 20. Plot of the equilibrium potential of the TCAD simulation along the cut line shown in Figure 18. 

 

 

Figure 21. Plot of the hole density of the TCAD simulation along the cut line shown in Figure 18. 
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Figure 22. Plot of the potential just after the ion strike. 

 

 

Figure 23. Plot of the hole density just after the ion strike. 
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Figure 24. Plot of the potential at the height of the single event current draw. 

 

 

Figure 25. Plot of the hole density at the height of the single event current draw. 
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MOSFET Response 

When the source/body p-n junctions become forward biased due to well/substrate 

charge collection, the next question is the response of the MOSFET in this condition. The 

answer is that the transistor ceases to operate as a FET and reverts to acting as a lateral 

bipolar junction transistor (BJT). Standard MOSFET operation does not have either the 

drain/body or source/body diodes in forward bias. These diodes either have no applied 

voltage or have a reverse bias applied. However, if the source/body p-n junction is 

forward biased while the drain/body p-n junction has no applied voltage or a reverse bias 

is applied, then the voltage describes a bipolar forward active operation.  

The lateral p-n-p BJT for a pMOSFET in an n-well is shown in Figure 26. The 

source becomes the emitter, the drain becomes the collector, and the well contact 

becomes the base. The physical base of the device is actually the body of the MOSFET 

between the source and drain. As the source/body or emitter/base diode increases in 

forward bias, the BJT will enter the saturation operating point. As a result, the 

emitter/collector potential, VEC, will become VEC,sat, which is typically on the order of 0.1-

0.2 mV. 

 

Comparison to Other Radiation Effect Responses 

The well-collapse source-injection charge collection mechanism is similar to a 

couple of radiation effects responses. It is similar to the parasitic bipolar enhancement 

(PBE) single event charge collection response. The ion strike in both cases causes the 

source/body p-n junction diode to enter a forward bias condition [Wo93]. However, there 

are a few distinctions. First, the charge collection responsible for the initiation of PBE is  
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Figure 26. Sideview of pMOSFET layout in n-well with STI and BJT model. 

 

the drain/body p-n junction of the MOSFET. This single event current modulates the base 

potential, thereby creating the forward bias in the source/body. In the well-collapse 

source-injection mechanism, the well/substrate p-n junction is the location of the charge 

collection. This single event current draw then displaces the body potential of the 

MOSFET. The second distinction is that PBE, by definition, can only affect MOSFETs in 

the OFF state. The well-collapse source-injection can and will be present on all 

MOSFETs where the source enters a forward bias. The well/substrate p-n junction is 

always in reverse bias, so this mechanism is possible under all conditions. 
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The other radiation effect response to be compared is dose-rate response. 

Messenger examined the conductivity modulation in diffused resistors under very high 

dose rate levels [Me79]. This work derived a dose-rate dependence within the resistor 

based on the single event current generation of excess carriers that alter the material 

conductivity. This work looked at conductivity modulation when the excess carrier 

densities were at or above the starting doping density. The resistor value was shown to be 

reduced at higher dose rates, by up to a factor of five. This trend would have continued as 

the dose rate increased. So, this is similar in concept to the resistivity modulation 

presented in this chapter, with the only difference being the source of the excess carriers. 

Massengill then examined the single event current generation in an SRAM cell as the 

basis for rail span collapse [Ma84]. In this analysis, it was observed that the 

well/substrate p-n junction was the largest source of single event current and contributed 

the most of the sag of the local VDD and VSS rails. 

 

Single Event Modeling Impact 

There are a couple of impacts of the well-collapse source-injection mechanism 

with respect to single event modeling and simulation. The first relates to TCAD 

modeling. Assume that a single event charge track results in: (1) a current limiting 

condition on a well or substrate contact, and/or (2) the forward biasing of a source in a 

well. Then, the TCAD model should include all relevant current sources for the single 

event current. In the example presented in this chapter, two pMOSFETs were modeled in 

a large n-well. Since the well contact became current limited and both the pMOSFETs 

were forward biased, it is likely that excluding the modeling of the other pMOSFET 
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sources in the well leads to an inaccurate response. It is also noted that the path from the 

pMOSFET source to the well is resistive and affects the current supply to the charge 

collection. This means that the resistor geometry must represent the actual design as well. 

In the example presented in this chapter, the resistance was about 50% more than the 

actual case due to one source being shared with two drains. So, it is important to model 

all the sources of current for the well/substrate charge collection, and it is also important 

to accurately model the resistor from the implant depth to the top of the well. 

The second impact of the well-collapse source-injection mechanism with respect 

to modeling is related to compact modeling. The model provided in Figure 17 is a model 

that could be made to fit a compact model. The main challenges with adapting that figure 

to a compact model are: (1) obtaining a relationship for the high injection case of the 

diode (i.e., providing the voltage drop and the carrier density) and (2) obtaining a 

relationship for the resistor with excess carriers. Messenger had already developed an 

equation for the modulation of the conductivity with respect to excess carriers, which 

likely can be modified for use in a compact model [Me79]. There are also closed-form 

equations for a diode at high injection that can be adapted. This chapter has shown a 

relationship between the magnitude of the forward bias current and the MOSFET 

response, so it is likely that a compact model could be developed for this mechanism. 
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CHAPTER V 

 

STATIC RANDOM ACCESS MEMORY CELL 

 

SRAM is one of two main types of volatile memory, the other type being dynamic 

random access memory (DRAM). SRAM typically is faster in operation, in terms of 

write and read speeds. DRAM, on the other hand, typically is the more dense memory, so 

single DRAM microcircuits contain more memory than those of SRAM in the same 

technology. In processing systems, SRAM is typically used for memory that is closest to 

the processor because it is accessed more frequently. So, SRAM is used for the cache 

memory on processing microcircuits. DRAM is then used farther away from the 

processor, where more memory is needed, but it is not accessed as often.  

The other major characteristic of SRAM is that the memory should hold its state 

as long as it is powered. This is unlike DRAM, where the contents of the memory have to 

be refreshed from time to time. 

 

Schematic Diagram and Electrical Characteristics 

A schematic diagram of a basic SRAM cell is shown in Figure 27. This cell 

consists of six MOSFETs, two pMOSFETs, and four nMOSFETs. The four internal 

transistors (MN0, MN1, MP0, and MP1) are used to hold the state of the SRAM. The 

other two (MN2, MN3) are access pass-gate transistors that are used to write and read the 

contents of the cell. MOSFETs MN0 and MP0 form one inverter and MOSFETs MN1 

and MP1 form another. These two inverters are then cross coupled so that the held state is 
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reinforced by feedback; the memory cell can hold the state until it is overwritten or 

powered down. In the diagram, WL stands for word line and BL stands for bit line. 

 

VDD

VSS

WL WL

BL BL

MP0 MP1

MN0 MN1

MN3MN2 A B

 

Figure 27. SRAM cell schematic diagram. 

 

The cross-coupled inverter circuit has two stable states, one with node A being 

logic high and the other with node B being logic high. Note that in those two stable 

states, each node is the opposite of the other. If WL is logic low, the SRAM is not being 

accessed and is intended to hold its current state. When WL is logic high, the SRAM is 

connected to BL and its complement, BL . In general, the bit lines are highly capacitive, 

so if BL and BL  are at opposite logic values, that state will be written into the cell, 

overcoming its previous state. On the other hand, if BL and BL  are at equal voltages, the 

SRAM cell will pull one bit line up slightly and pull one bit line down slightly. This 
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difference is then fed to a sense amplifier to read the given state of the cell. For most of 

the time, WL is low, and the cell is in a static hold mode, so that is the state of most 

concern for radiation effects. 

The cross-coupled inverters also potentially have a meta-stable state. Consider an 

ideal cell where MN0 matches MN1, MP0 matches MP1, and MN2 matches MN3. 

During the power-up sequence, the SRAM cell nodes A and B will rise to some midpoint 

between the voltage at VDD and ground, but they will be identical. At some point, all the 

transistors will be ON, and a high current condition will exist in the SRAM cell. 

However, almost all actual SRAM cells will have a built-in preference for a power-up 

state and will enter it. Even if a cell is balanced and becomes meta-stable, this is not a 

long-lived state. A noise difference on nodes A versus B will drive the cell into one stable 

state or the other. While meta-stability does not factor into radiation effects, this 

condition does introduce the concept of SRAM cell imbalance. 

It is noted here that there are some SRAM design variations beyond what is 

shown in Figure 27, many of them related to radiation effects mitigation. The first design 

variation is a change in the access pass-gate transistors from nMOSFET to pMOSFET. 

The nMOSFET access transistors are typically used since they provide greater drive at 

the minimum size than the pMOSFET alternative. If speed is not a driving factor in the 

SRAM cell design, then this alternative is fine. Also, with strain in the channel making 

pMOSFET drive strength on par with nMOSFET drive strength, the design choice of 

access transistors may only be by preference. Other design variations will add passive 

devices or additional transistors to mitigate the radiation effects. These types of 
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alternative designs will not be studied in this research, though the findings could be 

applied [Ro88, Li92, Ca96]. 

 

Layout 

There are a couple of different priorities in the layout of a SRAM cell. In a strict 

commercial sense, the primary driver for the layout is cell size. The smaller the cell size, 

the higher the density of memory that can be placed in a microcircuit. There is some 

consideration placed into the specific layout of the cell in terms of length and width, since 

metals lines containing VDD, VSS, WL, BL, and BL  must be routed to each cell. Some of 

these are shared with adjacent cells, but there is still some restriction at the metal routing 

level. As a side note, the SRAM memory array layout is very regular, so typical design 

rules for metal spacings do not completely apply, and they can be relaxed for a denser 

cell layout. 

The basic SRAM layout that was studied in this research is shown in Figure 28. 

This figure shows the node names on all the gates, drains, and sources of all the 

MOSFETs. This layout is based on the schematic diagram presented in Figure 27. The 

two nMOSFETs drawn above the n-well are MN0 and MN2 from left to right. In the n-

well, pMOSFET MP0 is in the upper left and pMOSFET MP1 is in the bottom right. 

Finally, the two transistors on the bottom at MN4 and MN1 from left to right. A dashed 

box is drawn around the cell itself to provide a view of the SRAM layout that is 

duplicated in the array. The VDD, VSS, BL and BL  connections are shared with adjacent 

cells to the left and right, so only half of the diffusion counts for the building block size. 
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Figure 28. Example of a SRAM cell layout. 

 

In the layout presented in Figure 28, the two pMOSFETs share the n-well, and the 

two sets of nMOSFETs are on opposite sides of the well. There are many potential design 

variations to the basic cell layout that can be made. In older technologies, designers 

would lay the transistors out in both directions to obtain a better density, making use of 

angling the polysilicon routing (shown in red). In the microelectronics processing 

generations presented in this document, the design rules prohibit this type of design. 
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Also, newly formed design rules force the orientation of transistors in one direction and 

do not allow them in both. So, this design is fairly indicative of most designs at these 

processing nodes. One potential design variation is to place all the nMOSFETs on the 

same side of the well. Another would place all the nMOSFETs between two n-wells and 

have one pMOSFET on top and one on bottom, as in the inverse of the layout shown in 

Figure 28. If pMOSFETs are ever going to be considered for the access transistors, this is 

the type of layout that might be considered. 

 

Single Event Upset Mechanisms 

 

Historical Basis 

The study and analysis of SRAM SEU has been ongoing since the late 1970s 

[Ko79, Si79]. The schematic diagram for the SRAM cell is redrawn in Figure 29 with 

just the two cross coupled inverters. Diehl et al. identified strikes to the OFF nMOSFET 

drain and OFF pMOSFET drain as being the underlying events responsible for SRAM 

SEU and used circuit modeling to demonstrate the mechanism [Di82]. The schematic 

diagram in Figure 29 shows the NHIT and PHIT locations for the SRAM state when node 

A is logically high. A current source is used to model the single event at an OFF drain as 

shown in the figure. It was noted in this work that there was a difference in the amount of 

charge it took to upset the cell in either the NHIT or PHIT single event.  

Dodd et al. expanded upon this basic theory of SRAM SEU mechanisms and 

described the modes of upset in terms of the underlying charge collection mechanisms. 

Figure 30 shows four different configuration for ion strikes that collect at one node; two 
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of the strikes are to ON transistor drains and the other two are to OFF transistor drains. In 

each case the source and direction of charge collection current are noted. In general, 

strikes to OFF transistor drains can cause upsets, and strikes to ON transistor drains will 

not cause upset. However, there was an ion shunt mechanism for a strike to an ON 

transistor in a well that could cause an upset (Figure 30d) [Do96]. 

 

PHIT

NHIT

VDD

A
B

 

Figure 29. PHIT and NHIT SRAM upset mechanisms (after [Di82]). 

 

Research Findings 

This research extends the basic understanding of SRAM SEU with the well-

collapse source-injection mechanism. At low charge depositions, the direct charge 

collection mechanisms dominate the conditions for upset on the cell. If the SRAM cell is 

struck in an OFF drain, drift and diffusion of the excess carriers will collect on the node, 

creating a single event current, and possibly inducing upset in the cell. If the SRAM cell 

is struck somewhere near an OFF drain, the minority carriers can diffuse to the node, 

collect, and create a single event current that induces upset in the cell. As the charge track 
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moves farther away from the OFF drain, it requires more charge deposition to induce an 

upset.  

 

 

Figure 30. SRAM SEU mechanisms based upon charge collection at single node (after [Do96]). 

 

At some point, the charge deposition becomes enough to induce the well-collapse 

source-injection mechanism. This can occur for any ion strike, inside or outside the well.  
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For this mechanism, the charge collection at all the transistors becomes important. To 

illustrate this transition, consider an ion strike in the center of the SRAM cell, normal to 

the surface, as shown in Figure 31. This particular TCAD simulation includes a single 

SRAM cell and two well contacts 5 μm on either side of the cell. At a charge deposition 

of 0.05 pC/μm (LET is approximately 5 MeV-cm2/mg), the charge collection exhibits 

standard characteristics of direct collection via diffusion, as demonstrated in Figures 31 

through 33. Figure 32 presents the currents that supply the charge collection. It is noted 

that both of the sources are forward biased, and the n-well contacts are current limited. 

However, this is all for a very short period of time (20-30 ps). Figure 33 shows the 

pMOSFET drain currents for the same strike. A negative drain current on MP0 shows 

charge collection due to diffusion and/or well-collapse source-injection, while the 

positive drain current on MP1 shows charge collection only due to diffusion. Well-

collapse source-injection only has a negative current component. Diffusion charge 

collection at the ON drain, where there is a depletion region but no applied voltage, 

results in a reverse current due to a gradient of majority carriers in the source. The 

voltage plots of the two internal circuit nodes are given in Figure 34, showing that this 

particular charge deposition at this location does not induce upset or even come close to 

doing so. 
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Figure 31. SRAM cell layout showing center ion strike location in blue. 
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Figure 32. Single event current supply for center ion strike, 0.05 pC/μm. 
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Figure 33. pMOSFET drain currents for center ion strike, 0.05 pC/μm. 
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Figure 34. SRAM node voltages for center ion strike, 0.05 pC/μm. 

 

Increasing the charge deposition from 0.05 pC/μm to 0.10 pC/μm (LET is 

approximately 10 MeV-cm2/mg) changes the dominant mechanism from direct charge 

collection to well-collapse source-injection. The single event supply currents are shown 

in Figure 35. In this case, the p+-sources are in forward bias for much longer times and 

recover much more slowly. The large current drive of the sources lasts for about 80 ps, 

though the forward bias condition lasts for 200 ps. The pMOSFET drain currents are 
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given in Figure 36. The ON drain MP0 shows an initial positive current, and then reverts 

to a negative current, indicative of the well-collapse source-injection. This particular 

current also returns to zero at the 200 ps timeframe, again giving evidence to the length 

of time the source is in forward bias. The node voltages are plotted in Figure 37. This 

figure demonstrates the impact of well-collapse source-injection on the SRAM cell. 

Basically, both of the pMOSFET sources become forward biased, and the drain voltages 

follow as in the bipolar saturation condition. Both of the nMOSFETs turn ON and match 

the respective drain currents. This figure also indicates that the SRAM cell recovery 

begins at 200 ps after the strike, which coincides with the removal of the forward bias 

condition. 
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Figure 35. Single event current supply for center ion strike, 0.10 pC/μm. 

 

To summarize the findings of this research with respect to individual SRAM cell 

SEU, a diagram showing the SRAM cell SEU mechanism as a function of deposited 

charge is given in Figure 38. At low deposited charge, there is not enough charge 
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Figure 36. pMOSFET drain currents for center ion strike, 0.10 pC/μm. 
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Figure 37. SRAM node voltages for center ion strike, 0.05 pC/μm. 

 

collection to induce an upset on the cell. The charge strike may cause some variation in 

the node voltages, but the cell will return to the previous state. Onset is defined as the 

deposited charge that can cause upset through direct charge collection mechanisms. This 

occurs with an ion strike directly to an OFF drain. As the deposited charge increases, the 

mode changes from direct charge collection as the dominant mechanism to well-collapse 
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source-injection as the dominant mechanism. This is observed when both p+-sources 

forward bias in the SRAM and both pMOSFET drains have a negative current.  
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Figure 38. SRAM cell SEU modes as a function of deposited charge. 

 

One more point should be noted with respect to SEU mechanisms relating to the 

ion shunt mechanism. There was no evidence in any of the simulations that demonstrated 

the ion shunt mechanism having a role in the upset for this cell at the 90-nm fabrication 

technology. The following figures compare two normal ion strikes of 0.15 pC/μm each, 

one to the ON pMOSFET drain and one near the ON pMOSFET drain, as shown in 

Figure 39. The node voltages for the ion strike directly to the ON pMOSFET drain are 

shown in Figure 40, and the node voltages for the ion strike near the ON pMOSFET drain 

are shown in Figure 41. The ON drain potential, Node B, does not collapse towards VSS 

any differently in either of these plots. Thus, there is no shunt created between the ON 

drain and the substrate. 
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Figure 39. SRAM cell layout showing ion strike locations for ion shunt experiment. 
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Figure 40. SRAM cell node voltage plot following ion strike to ON pMOSFET drain. 
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Figure 41. SRAM cell node voltage plot following ion strike near to ON pMOSFET drain. 

 

To Flip or Not to Flip, That is the Question 

Examining the figures from the previous discussion, it could be argued that the 

well-collapse source-injection places the SRAM into a meta-stable state. The two 

pMOSFETs are in bipolar operation, and the two nMOSFETs are ON. So, this begs the 

question of what state will the SRAM cell produce once it recovers. The key issue is 

whether or not the post-strike state of the cell is flipped or not with respect to the pre-

strike state. To answer the question, it has to be divided into different domains: (1) well-

collapse – no nMOSFET direct charge collection, (2) well-collapse – OFF nMOSFET 

direct charge collection, and (3) well-collapse – ON nMOSFET direct charge collection. 

 

Well-Collapse – No nMOSFET Direct Charge Collection 

The first domain is a strike inside the well that induces well-collapse source-

injection, but does not diffuse significant charge to either nMOSFET device. Consider the 

following set of ion strikes, all normal to the surface, shown in Figure 42. The figure 

labels the locations I-VI and shows the locations of the p+-sources and the drains that 
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hold the node voltages. At first glance, locations I and VI are closer to the OFF 

pMOSFET drain (node A) than the ON pMOSFET drain (node B), and should flip the 

cell. Locations IV and V are closer to node B than node A and should hold the cell state. 

Finally, locations II and III are almost equidistant from each drain, though location II is 

closer to node A and location III is closer to node B, so ion strikes at location II should 

flip the cell, and ion strikes at location III should not. The following six figures show the 

pMOSFET source currents and the node voltages versus time for each of the locations. In 

each figure the two voltages, node A and node B, are referenced to the left axis, and the 

two currents, MP0-IS and MP1-IS, are referenced to the right axis. 
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Figure 42. Ion strike locations for 0.10 pC/μm charge deposition to examine SRAM output state for well-
collapse source-injection to pMOSFETs only. 
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Figure 43. Node voltages and pMOSFET source currents versus time for ion strike location I as depicted in 
Figure 42. 
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Figure 44. Node voltages and pMOSFET source currents versus time for ion strike location II as depicted 
in Figure 42. 
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Figure 45. Node voltages and pMOSFET source currents versus time for ion strike location III as depicted 
in Figure 42. 
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Figure 46. Node voltages and pMOSFET source vurrents versus time for ion strike location IV as depicted 
in Figure 42. 
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Figure 47. Node voltages and pMOSFET source vurrents versus time for ion strike location V as depicted 
in Figure 42. 
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Figure 48. Node voltages and pMOSFET source currents versus time for ion strike location VI as depicted 
in Figure 42. 

 

The results of these simulations followed the initial expectation for four of the six 

locations. Locations I, II, III, and IV responded as might be expected based upon distance 

to a respective drain. However, locations V and VI did not match this model. Although 
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location V is closer to the ON drain, a strike at that location did flip the cell. The strike at 

location VI did not flip the cell even though it was closer to the OFF drain.  

Instead the output state of the SRAM cell at these strike locations is deterministic 

based upon well-collapse source-injection. Whichever p+-source in the SRAM provides 

more current dictates the final state of the SRAM cell. This is a key point which will be 

used later to perform MCU pattern identification. For the SRAM cell example, when 

MP0-Is is higher than MP1-Is, Node A has a logic low output state, and when the currents 

are reversed, Node A has a logic high output state. Note that all the previous simulations 

were consistent with that model. The main factor that determines which source will 

provide the most current is dependent on the resistive path from the source to the location 

of the well-collapse. 

The following example demonstrates that this difference is based upon the 

resistive path. It is assumed that the resistive path from the bottom of the source junction 

to the top of the well is identical for each source, given the design of the TCAD model. 

The resistance from the well-collapse point to the region where the source resistance 

meets the well is calculated by integrating the resistive path. To illustrate, consider the 

two resistive paths as shown in Figure 49. The resistive path to MP0 is wider, but longer 

than the resistive path to MP1. Note that this is a two dimensional rendering of the 

resistive path; in reality it is 3-D and much more complicated. 
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Figure 49. Image of resistive path to each p+-source (distances given in nm). 

 

To calculate a comparative resistance value to each source, the following 

procedure is followed: 

1. Calculate the angle formed at the ion strike location with respect to the 

path to the source, α. 

2. Divide the angular sweep into 10 equal intervals. 

3. Calculate the distance from the ion strike location to where it reaches the 

source for each angle in the interval (11 total distances). 

4. Average the distances for each interval. This provides the resistive length 

term, l (10 average distances). 

5. Calculate the arc path length near the source that is swept by the angular 

interval. This is calculated by the following equation. 

lw πα2=  (15)

6. Calculate the resistance for each interval, assuming a nominal width at the 

ion strike (20 nm) and assuming a constant depth, d, in the third 

dimension. This calculation is based upon the following derivation using 

Figure 50. 
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7. Calculate the combined resistance term by placing the 10 resistances in 

parallel. 

Table 1 and Table 2 provide the results of applying this resistance calculation to each 

path shown in Figure 49. These tables start with the angle, α, and break it up into ten 

pieces. The second to seventh columns show the distances calculated as above, and are all 

provided in nanometer dimensions. The R-piece is calculated using equation 16, though 

no depth was used for either table; thus, the R-piece is a resistance per depth value. G-

piece is the inverse of R-piece, and R-total is the inverse of the sum of the G-piece 

values. R-piece is provided for comparison between the two paths and is not an actual 

resistance value. From these calculations, it is noted that the path to MP0 is less than the 
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path to MP1, which is as expected. It is noted that this is a very simple calculation (i.e., a 

two dimensional representation of a 3-D problem), so it is important that the TCAD tool 

perform the simulation, as it can determine this resistive path automatically. This exercise 

demonstrates that the resistive path controls the p+-source current, which in turn 

determines the output state of the SRAM cell. As a result, an upset (flip) is observed on 

the cell if the OFF source is the less resistive path to the well-collapse charge collection 

region. Otherwise, the cell will revert to its original state following the well-collapse 

source-injection. 

 

s w

lx0  

Figure 50. View of resistive path from small interval to large interval. 

 

Well-Collapse – OFF nMOSFET Direct Charge Collection 

The second domain is a strike inside or outside the well that induces well-collapse 

source-injection and has direct charge collection at the OFF nMOSFET. Consider the set 

of ion strikes, all normal to the surface, shown in Figure 51. The figure labels the location  

VII-X and shows the locations of the p+-sources and the drains that hold the node 

voltages. At a very similar charge deposition to the first domain, 0.12 pC/μm, the cell 

output state completely follows the well-collapse source-injection, as presented in the 
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Table 1. Quasi-resistance term calculation for path to MP0. 

α 1.0914 radians
α/10 0.1091 radians

Interval xdist, nm ydist, nm length, nm l, nm w, nm s, nm R-piece G-piece R-total
0 -0.2200 0.4700 0.5189

0.49660.4700-0.16031
2 -0.1049 0.4700 0.4816
3
4
5

0.47290.4700-0.0521
-0.0006 0.4700 0.4700

6
7
8
9

0.4700 0.4728
0.1037 0.4700 0.4813
0.0509

0.1590 0.4700 0.4962
0.2186 0.4700 0.5184
0.2846 0.4700 0.5495

0.5078
0.4891
0.4772
0.4714
0.4714
0.4770
0.4887

0.0554 0.0200 14.6110 0.0684
0.0534 0.0200 14.3837 0.0695
0.0521 0.0200 14.2361 0.0702
0.0515 0.0200 14.1632 0.0706
0.0514 0.0200 14.1624 0.0706
0.0521 0.0200 14.2337 0.0703
0.0533 0.0200 14.3796 0.0695

14.9183 0.0670
0.5073 0.0554 0.0200 14.6050

10 0.3600 0.4700 0.5920
0.0652

1.4494

0.5707 0.0623 0.0200 15.3320

0.0685
0.5339 0.0583 0.0200

 

 

Table 2. Quasi-resistance term calculation for path to MP1. 

α 0.7848 radians
α/10 0.0785 radians

Interval xdist, nm ydist, nm length, nm l, nm w, nm s, nm R-piece G-piece R-total
0 0.2400 0.3300 0.4080

0.3887 0.0305 0.0200 15.6208 0.0640

1.5083

1 0.2400 0.2808 0.3694
0.3543 0.0278 0.0200 14.9573 0.0669

2 0.2400 0.2398 0.3393
0.3274 0.0257 0.0200 14.4055 0.0694

3 0.2400 0.2049 0.3155
0.3061 0.0240 0.0200 13.9451 0.0717

4 0.2400 0.1743 0.2966
0.2890 0.0227 0.0200 13.5612 0.0737

5 0.2400 0.1470 0.2815
0.2839 0.0223 0.0200 13.4433 0.0744

6 0.2552 0.1300 0.2864
0.3131 0.0246 0.0200 14.0984 0.0709

0.0298 0.0200 15.4606
7 0.3139 0.1300 0.3397
8 0.4001 0.1300 0.4207

0.5413 0.1300 0.5567

0.0647
0.4887 0.0383 0.0200 17.3372 0.0577
0.3802

0.0496
10 0.8200 0.1300 0.8302

0.6935 0.0544 0.0200 20.1670
9

 

 

preceding paragraph, with the exception of hit location VIII. The less resistive path to the 

p+-sources is as follows per hit location: VII – MP0, VIII, IX, and X – MP1. If the output 
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state model is based solely upon well-collapse source-injection, VII would flip states, and 

the rest would hold their states. The node voltages and source currents are plotted in 

Figure 52, Figure 53, Figure 54, and Figure 55. Normally, a higher source current at MP0 

would indicate that Node A returns to logic low, but the ion strike at VIII flips under 

these conditions. It is noted that the two source currents are very close, so diffusion to the 

OFF nMOSFET is a factor in this particular location. This shows that a strike close to the 

OFF nMOSFET drain can enable direct charge collection to have an impact on the final 

state. 
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Figure 51. Ion strike locations for 0.12 pC/μm charge deposition to examine SRAM output state for well-
collapse source-injection to pMOSFETs and direct charge collection for OFF nMOSFET. 
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Figure 52. Node voltages and pMOSFET source currents versus time for ion strike location VII as depicted 
in Figure 51. 
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Figure 53. Node voltages and pMOSFET source currents versus time for ion strike location VIII as 
depicted in Figure 51. 
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Figure 54. Node voltages and pMOSFET source currents versus time for ion strike location IX as depicted 
in Figure 51. 
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Figure 55. Node voltages and pMOSFET source currents versus time for ion strike location X as depicted 
in Figure 51. 

 

A most interesting result of the well-collapse source-injection mechanism is now 

shown with a direct strike to the OFF nMOSFET drain. This particular ion strike should 

upset for any charge deposition greater than 0.005 pC/μm. This is generally the case. 

However at a charge deposition of 0.45 pC/μm, the SRAM flips its state due to the direct 
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charge collection, but then flips again due to the well-collapse source-injection 

mechanism. This is shown in Figure 56. It is noted that once the cell flips, MP0 becomes 

the OFF pMOSFET. Since it is the least resistive p+-source to the well-collapse region, 

the cell reverts back to its original state. This is the first time a direct strike to an OFF 

nMOSFET above the critical charge of the SRAM is demonstrated to upset twice (or 

result in no observable upset). 
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Figure 56. Ion strike, 0.45 pC/μm, to OFF nMOSFET drain showing double upset. 

 

Well-Collapse – ON nMOSFET Direct Charge Collection 

The last domain is a strike inside or outside the well that induces well-collapse 

source-injection and has direct charge collection at the ON nMOSFET. Consider the set 

of ion strikes, all normal to the surface, shown in Figure 57. The figure labels the location 

XI-XIV and shows the locations of the p+-sources and the drains that hold the node 

voltages. It takes a larger charge deposition than the first and second domains, 0.20 
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pC/μm, for the cell output state to somewhat follow the well-collapse source-injection 

mechanism. If that mechanism was dominant in all locations, XI, XII, and XIII would flip 

(resistance to MP0 is less than resistance to MP1) and XIV would not (resistance to MP0 

is greater than resistance to MP1). In the data shown in Figure 58, Figure 59, Figure 60, 

and Figure 61, locations XII and XIII provide alternate results. This means that the direct 

charge collection by the ON nMOSFET drain is playing a role. However, it is noted that 

this is just a small region that does not exactly follow the mechanism; strikes to the left of 

XI will induce a cell upset and strikes to the right of XIV will not induce a cell upset. 
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Figure 57. Ion strike locations for 0.20 pC/μm charge deposition to examine SRAM output state for well-
collapse source-injection to pMOSFETs and direct charge collection for ON nMOSFET. 
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Figure 58. Node voltages and pMOSFET source currents versus time for ion strike location XI as depicted 
in Figure 57. 
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Figure 59. Node voltages and pMOSFET source currents versus time for ion strike location XII as depicted 
in Figure 57. 
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Figure 60. Node voltages and pMOSFET source currents versus time for ion strike location XIII as 
depicted in Figure 57. 
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Figure 61. Node voltages and pMOSFET source currents versus time for ion strike location XIV as 
depicted in Figure 57. 

 

SRAM Cell Recovery 

This subject has been touched upon briefly in this chapter, but this section 

describes the process by which the individual SRAM cell recovers. As the charge 

deposition increases, the amount of single event current generated at the well/substrate p-
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n junction increases. This causes the p+-sources in the well to forward bias and inject 

more minority carriers into the well, in addition to the ones generated from the charge 

track. Once the single event current subsides, the well potential starts to restore, and the 

forward bias on the p+-sources reduces. When the forward bias declines to where the 

bipolar operation of the pMOSFETs is no longer dominant, the cell recovers to a stable 

state. So, it is the exit of the forward bias condition that determines when the cell 

recovers. 

 

Impact of Well-Collapse Source-Injection on SRAM Cell SEU 

In the case of direct charge collection, when the SEU cross section approaches the 

area of the SRAM cell, the half of the cell nearest the OFF drains would be the expected 

regions of upset, while the other half would be the expected regions of no upset. With 

well-collapse source-injection, the half of the cell with the lowest resistive path to the 

OFF p+-source accounts for the expected region of upset, while the other half is for no 

upset. It amounts to a 50% region of upset in the first case and a 50% region of upset in 

the second case. While this mechanism does not alter the overall vulnerability within an 

SRAM cell, it does provide an improved understanding of SEU within a full SRAM 

array. This is discussed in the next chapter.  

However, there is one note about the fabrication of SRAM cells and the fact that 

there are variations in the formation of the STI. As a result, the resistance for the p+-

sources to the well will vary depending upon the area of the semiconductor region. If the 

variance is significant, the SRAM cell may have a preferred output state following the 

well-collapse source-injection event. This preference will not be produced 100% of the 
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time, but there may be some percentage difference in the output state instead of an even 

50-50 split. In Chapter X, there will be additional discussion of this point. 
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CHAPTER VI 

 

STATIC RANDOM ACCESS MEMORY ARRAY 

 

In this chapter, the SRAM array is discussed with respect to single event effects. 

The main emphasis of the research is to determine the multiple cell upset (MCU) patterns 

so that SEU testing can be matched to mechanisms. In this chapter, the single SRAM cell 

SEU mechanisms will be projected to potential observed SRAM array MCU patterns. 

The following two chapters provide the TCAD modeling in support of the SRAM array 

MCUs and the correlation of SRAM array SEU test data. So, this chapter mainly serves 

to form the hypothesis that the next two chapters are testing. 

 

Characteristics 

An SRAM circuit block or full SRAM chip is a very complex system. The SRAM 

cells are the bulk of the design, but there are many supporting circuits to write and read 

the contents of the cells. First, there are sense amplifiers, used to read small differential 

signals from the BL and BL  wires. Second, there are other memory circuits, latches and 

flip-flops, which are used to store the row and column addresses as well as the data 

words. Finally, there is also a control circuit to distribute internal timing signals to the 

circuit block or full chip. Taking all these items together, the potential single event effects 

that could result are numerous. This research, however, only focuses on the SRAM cells 

in the array and their respective single event upset characteristics. 
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Layout 

Figure 62 shows a sample SRAM array composed of the basic SRAM cell layout 

provided in Figure 28. This has twelve rows and four columns. The metallization is not 

shown, just the n-well (yellow), n+ source/drains (light blue), p+ source/drains (light 

green), and polysilicon (red). There are a few items of note with respect to this layout. 

First, the wells are oriented in long strips, top to bottom in this figure. There are no well 

contacts shown. In commercial SRAM layouts, the well contacts are sparse, every 10-25 

μm (10 μm is approximately the width of this layout in 90-nm microelectronics 

technology). In radiation hardened SRAM layouts, the well contacts are a little more 

regular to aid in mitigating single event latchup. Second, the n+-source/drains (light blue) 

that are to the left and the right of the n-well form a narrow continuous opening through 

the STI. This aspect of the array layout will impact MCU response due to direct charge 

collection. Third, the p+-source/drains each have one source and two drains with the 

exception of the top and bottom cells. That the source is shared with two adjacent SRAM 

cells is important for direct charge collection MCU. However, this also plays a role in the 

MCU patterns observed following well-collapse source-injection. Lastly, a column of 

SRAM cells alternately share BL and BL  connections with the exception of the top and 

bottom cells. This vertically aligns both the true node and the complement node within 

the column. For purposes of this dissertation, it is always assumed that BL is always on 

the left of a column and BL  is on the right. There are some instances where SRAM 

arrays alternate BL and BL  orientation from column to column, but this topology is not 

discussed. 
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Figure 62. Sample layout of SRAM array (12 x 4). 

 

Single Event Upset Observations 

 

Historical Perspective 

Over the years, as SRAM cells have scaled down in size, a new effect was 

observed: multiple cell upsets (MCU) from a single event [Ma87]. Dodd et al. used 

mixed-mode device/circuit modeling to demonstrate that the MCU mechanism is due to 

charge collection in adjacent SRAM cells [Do94]. Still, the primary mechanism for a 

single SRAM cell to flip was charge collection at an OFF transistor drain due to direct 

charge collection.  
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Characterizing SRAM SEU only by direct charge collection (drift and diffusion) 

restricts the range of possible MCU outcomes. Figure 63 shows the range of MCU 

outcomes from ion strikes normal to the surface. The strike marked A is on or near a 

shared p+-source with two p+-drains. Depending on the initial SRAM array configuration 

and the amount of charge collected on each drain, there can be zero, one, or two upsets. If 

both of the transistors in this region are ON, then there are no upsets from direct charge 

collection. If they are in opposite conditions, there can be one upset. However, both of 

the transistors have to be off for there to be two upsets. To encourage this mode for 

testing SRAM arrays, it is best to test with a constant pattern in each column, all zeros or 

all ones. In that manner, all the cells in the array are configured the same, so one half of 

the shared p+-source/drain regions will have two OFF MOSFETs and the other half will 

have two ON MOSFETs.  

The ion strike marked as B is outside of the well and is centered about four 

adjacent nMOSFET drains which belong to different SRAM cells. Like the previous case, 

there are a number of deterministic outcomes based on the pre-existing storage states of 

the SRAM cell and the charge collection at each drain. A strike that is on or near this 

location can cause zero, one, two, three, or four upsets. As in the previous discussion, the 

best case for this is to load the memory with the same state in each column, but alternate 

logic high and logic low every other column. The nMOSFET drains between two wells 

will either all be ON or all be OFF.  

Stepping beyond normal incident ions and considering all potential incoming 

angles, the number of affected cells can grow through direct charge collection, but it is 

possible to bound the range of outcomes depending on the direction and angle of 
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incidence. The major source of MCUs will be grazing angles along the well direction. In 

this direction, charge collection will be in only one of the transistors in each SRAM cell. 

Figure 64 shows a plot of the number of SRAM cells traversed for an ion traveling in this 

direction versus the ion strike angle. It is assumed that the ion starts in a drain of the first 

cell. It is also assumed that drains are spaced at 800 nm intervals. Two depths of ion 

penetration are plotted; 360 nm is for the bottom of the STI, and 1120 nm is for the 

bottom of the n-well. It is noted that both of these curves see sharp increases greater than 

80o. At 60o, a typical limit for SEU testing, the cells traversed are one and three, 

respectively. At 75o, the cells traversed are two and six respectively. This shows how the 

ground-based testing can limit a realistic view of the MCUs, even just considering direct 

charge collection. 

 

Well-Collapse Source-Injection Considerations 

The potential MBU outcomes expand when the amount of charge deposition 

exceeds the crossover point; in this case, the SRAM SEU response is characterized by 

well-collapse source-injection. Figure 65 shows an example of an ion strike in the n-well, 

location C, in SRAM cell in row #6. Assuming the starting state of all the SRAM cells in 

this column is logic low (locations of OFF drain regions are displayed as a crossed 

pattern surrounded by thick lines) and assuming all the cells in the column are affected by 

the single event, the following list of results will occur. 
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A

B

 

Figure 63. Top view of the sample SRAM array showing potential region of MBUs characterized by direct 
charge collection. 
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Figure 64. Number of SRAM cells traversed by an ion versus strike angle for two assumed depths. 
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Figure 65. Top view of the sample SRAM array showing potential ion strike location inside the well for 
MBUs characterized by well-collapse source-injection. 

 

1. SRAM cell in row #6 can upset depending on the specific well-collapse 

region and the resistive paths from its two p+-sources. This is as described 

in the previous chapter. 

2. SRAM cells in rows #1 to #5 will output in a state dictated by which p+-

source is on the bottom of the SRAM cell layout. This p+-source has the 

least resistive path to the well/substrate charge collection. As a result, 

these SRAM cells will recover with the lower pMOSFET being ON. Thus, 
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SRAM cells in rows #1, #3, and #5 will flip to logic high, and SRAM cells 

in rows #2 and #4 will recover to logic low. 

3. SRAM cells in rows #7 to #12 will output a state dictated by which p+-

source is on the top of the SRAM cell layout. SRAM cells in rows #8, #10, 

and #12 will flip to logic high, and SRAM cells in rows #7, #9, and #11 

will recover to logic low. 

The two possible observed error patterns are shown in Figure 66. 

 

Range = 3 Cells Range = 5 Cells

 

Figure 66. Possible observed error patterns for normal ion strike at location C in Figure 65 assuming all 
cells are affected by well-collapse source-injection mechanism. SRAM cells that do not upset are shown in 
green and SRAM cells that upset are shown in red. 

 

 The well-collapse source-injection mechanism will not always affect all the cells. 

So, a key parameter in predicting the specific MCU patterns is the range of effect. If the 

range of effect of the mechanism is one adjacent cell in the column in either direction, the 

potential MCU patterns are "■■■" and "■■■." If the range is two adjacent cells in either 

direction, then the MCU patterns are "■■■■■" and "■■■■■" (Figure 66). An input 

condition where all the SRAM cells hold the same state is not ideal to test the affected 

range from well-collapse source-injection. Ideally, all the SRAM cells above the struck 

location should be biased so that the top of each SRAM cell has the ON pMOSFET. 

Likewise, all the SRAM cells below the struck location should be biased so that the 
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bottom of each SRAM cell has the ON pMOSFET. Since it is generally impossible to 

know the strike location in single event tests outside of laser or microbeam, this type of 

SRAM cell state programming is impossible. So, the recommended starting SRAM cell 

state to determine the range of effect is alternating logic high and logic low going down 

the column. Returning to the example shown in Figure 65, loading the odd SRAM cells 

with logic low and the even SRAM cells with logic high will bias all the SRAM cells as 

shown in Figure 67. So, an ion strike at SRAM cell #6 would result in MCU patterns of 

"■■■■■■■■■■■■" or "■■■■■■■■■■■■," assuming every SRAM  
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Figure 67. Top view of the sample SRAM array showing pre- and post-single event OFF MOSFETs for 
alternating data pattern assuming well-collapse source-injection. 

 



 91

cell in the column is affected. With this input condition, the resulting MCU pattern will 

indicate half of the range of the well-collapse source-injection mechanism. 

The previous discussion centered on an ion strike location primarily in the well. 

The other possibilities for ion strikes normal to the surface are outside the well or 

between two wells as shown in Figure 68. In these cases, the resulting output MCU 

patterns are similar to the case inside the well, but are manifested in two columns. 

Examining the left column, the outcome will match the inside-the-well ion strike case 

with the exception of SRAM cells #6 and #7. Those cells will recover or flip depending 

on the respective starting SRAM cell states and the specific region of the well-collapse. 

In the exact case that is depicted in Figure 68, SRAM cells #6 and #7 will output with the 

pMOSFETs at the right of the cell ON, or logic high. With respect to the right column, 

the SRAM cells are just inverted. So, if the starting state in column #2 is the opposite of 

column #1 as depicted, then the MCU pattern in each row should be identical. To 

differentiate ion strikes to the well and between the wells, it is best to keep the same 

pattern in each column. For example, if the starting state in the two columns is 

LL 
HH 
LL 
HH 
LL 
HH 
LL 
HH 
LL 
HH 
LL 
HH 

 
then an ion strike as shown in Figure 68 affecting all SRAM cells with well-collapse 

source-injection will result in  
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Figure 68 Top view of the sample SRAM array showing potential ion strike location outside the well for 
MBUs characterized by well-collapse source-injection. 
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or the MCU pattern 

‘■■■■■■■■■■■■’ 
■■■■■■■■■■■■ 

Thus, with this starting SRAM state, the range of the well-collapse source-injection can 

be determined in both directions. Also, the MCU results from ion strikes inside the well 

can be separated from those strikes outside the well. 

Moving the discussion from normal incidence to other angles provides some 

interesting options for the well-collapse source-injection mechanism. The first angled 

scenario to consider is an ion strike down the direction of the well, either inside it or 

outside it. Near where the ion enters the top of the semiconductor, the SRAM cells will 

be affected either by direct charge collection or by well-collapse source-injection, 

depending on the amount of deposited charge. However, near the well/substrate p-n 

junction charge collection, the effect will be dominated by well-collapse source-injection. 

If the range of the well-collapse source-injection mechanism extends back to the cells 

where the ion entered, then the output state will be determined by this mechanism. Cells 

that may have been flipped due to direct charge collection may flip again in response to 

well-collapse source-injection. Also, cells that did not flip due to direct charge collection 

may now flip. So, the result of this type of angular ion strike will be a combination of 

well-collapse source-injection and direct charge collection. 

The second angled scenario to consider is one that goes perpendicular to the well 

direction. In this case, the ion may travel through many wells, collapsing some to all of 

them. Once again, near the ion’s point of entry into the semiconductor, the nearby cells 

may be affected by direct charge collection and/or well-collapse source-injection. Direct 

charge collection will dominate in ion strikes near the surface of the semiconductor, 
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above the well, and when the ion distance through the well is small. The resulting MCU 

patterns of this type of ion strike can extend over many rows and columns. The number 

of columns affected is determined by the angle of the ion strike with respect to normal, 

and the cell width and the number of rows affected is determined by the range of well-

collapse source-injection. 

Most ion angles will not conform to these two scenarios, so the general MCU 

outcomes are some combination of the two scenarios described above. Angles that are 

close to the first scenario will generally match its pattern, while most angles will match 

the second scenario. However, modeling and testing with these two scenarios will give 

plenty of data to project the MCU possibilities at all angles. 

 

MCU Pattern Identification 

A summary of the potential MCU patterns is provided in Table 3. The table is 

based on the discussions provided in this chapter. Both “best” test conditions are applied 

in all variations of angles, so that it is possible to distinguish one mechanism from 

another during testing. Chapter VII discusses TCAD modeling of the SRAM array to 

provide a basis for these observed MCUs. This chapter also discusses the models to 

determine the range of effect of both the direct and well-collapse source-injection 

mechanisms. Chapter VIII then presents data from SRAM SEU testing and relates the 

data back to these predictions for the MCU patterns. 
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Table 3. MCU patterns determined from primary charge collection mechanism, incident angle, direction, 
and input test condition. 

Charge 
Collection 

Mechanism 

Incident 
Angle 

(degrees) 

Direction Input 
Test 

Condition 

MCU Patterns 

Direct 0-30 - LLLL 
LLLL 

■■ ■ 
■ 

■■ 
■■ 

■■ 
■■ 

■■ 
■■ 

Direct 0-30 - LLLL 
HHHH 

■■ 
■■ 

    

Direct 30-90 Parallel 
to the 
Well 

LLLL 
LLLL 

■ 
.. 
■ 

■■ 
.. 
■■ 

■■ 
■■ 

.. 
■■ 

■■ 
■■ 

.. 
■■ 
■■ 

■■ 
■■ 

.. 
■■ 
■■ 

Direct 30-90 Parallel 
to the 
Well 

LLLL 
HHHH 

■ 
■ 
■ 
.. 

■■ 
■■ 
■■ 

.. 

   

Direct 30-90 Normal 
to the 
Well 

LLLL 
LLLL 

■..■ ■..■ 
■..■ 

■■..■ 
■■..■ 

■■..■■ 
■■.. ■■ 

■■..■■ 
■■..■■ 

Direct 30-90 Normal 
to the 
Well 

LLLL 
HHHH 

■■■.. ■■■.. 
■■■.. 

   

Well-
collapse 
source-

injection 

0-30 - LLLL 
LLLL 

■ 
■ 
■ 
.. 

■■ 
■■ 
■■ 

.. 

   

Well-
collapse 
source-

injection 

0-30 - LLLL 
HHHH 

■ 
.. 
■ 
■ 
.. 
■ 

■■ 
.. 
■■ 
■■ 

.. 
■■ 

■■ 
.. 
■■ 
■■ 
■■ 

.. 
■■ 

■■ 
.. 
■■ 
■■ 
■■ 

.. 
■■ 

 

Well-
collapse 
source-

injection 

30-90 Parallel 
to the 
Well 

LLLL 
LLLL 

■ 
■ 
■ 
.. 

■■ 
■■ 
■■ 

.. 

   

Well-
collapse 
source-

injection 

30-90 Parallel 
to the 
Well 

LLLL 
HHHH 

■ 
.. 
■ 
■ 
.. 
■ 

■■ 
.. 
■■ 
■■ 

.. 
■■ 

■■ 
.. 
■■ 
■■ 
■■ 

.. 
■■ 

■■ 
.. 
■■ 
■■ 
■■ 

.. 
■■ 

 

Well-
collapse 
source-

injection 

30-90 Normal 
to the 
Well 

LLLL 
LLLL 

■■■ .. 
■■■ .. 
■■■ .. 

.. 

    

Well-
collapse 
source-

injection 

30-90 Normal 
to the 
Well 

LLLL 
HHHH 

■■■ .. 
.. 

■■■ .. 
■■■ .. 

.. 
■■■ ..  
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CHAPTER VII 

 

MODELING AND SIMULATION OF STATIC RANDOM ACCESS MEMORY 

 

In device and circuit modeling, the SRAM cell is created to be ideally balanced, 

meaning that the device is perfectly symmetric between the two inverters both physically 

and electrically. An ideally balanced SRAM cell will most likely power up in a 

metastable state and will need some initial condition in order to drive the cell into one of 

the two stable states. However, SRAM cells are not ideally balanced in practice. There 

are a number of manufacturing variations, such as threshold voltage variation and 

metallization loading, which will unbalance the SRAM cell. In addition, there are some 

environmental variations, such as noise, which will also work to unbalance the SRAM 

cell. An unbalanced SRAM cell will power up into one of the two stable states [Fl87, 

Ax88].  

In device modeling, the parameters related to well-collapse source-injection are 

also implemented ideally. The p+-source/n-body diodes are balanced, and the resistance 

parameters (resistivity, length, and area) are identical. As a result, the well-collapse 

source-injection mechanism will respond ideally in device models. However, doping 

variations in the n-well will affect the resistivity, and lithography variations will affect 

the length and area terms. Depending on these variations, the SRAM cell may have a 

preferred recovery state from the well-collapse source-injection mechanism. 

This chapter of the dissertation presents the different TCAD models that were 

implemented to study the SEU response of the SRAM cell and array. Each section of the 
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chapter presents a TCAD model and discusses results from single event simulations. 

Models 1 through 4 were developed specifically to analyze the SRAM cell and array, 

while Models 5 and 6 examine special considerations of the well-collapse source-

injection mechanism. All models are 3-D and were constructed using Synopsys Dessis. 

 

Model 1: SRAM Cell 

The initial TCAD model used in this research was a six-transistor SRAM cell. 

This model was built by Dennis Ball of Vanderbilt University for BAE Systems to study 

SRAM cell hardening against single event effects. A top view of the cell is shown in 

Figure 69. An expanded view of the SRAM cell with node labels was provided in Figure 

28. The SRAM cell is representative of an unhardened 90-nm SRAM cell produced on an 

epi-substrate. The TCAD design was ideally matched using symmetry in the doping 

definitions and meshing of the node points. This SRAM design was shown to upset in 

TCAD simulation with a charge deposition of 5 fC/μm (LET is approximately 0.5 MeV-

cm2/mg) due to an ion strike directly on the drain of the OFF nMOSFET (NHIT).  

 

 

Figure 69. SRAM Cell Model. 
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All of the TCAD simulations presented in the preceding six chapters are results 

from this SRAM cell model. This particular model led to: (1) the identification of the 

well-collapse source-injection mechanism described in Chapter IV and (2) the response 

of the SRAM cell to this mechanism described in Chapter V. The models presented later 

in this chapter are all derived from the original SRAM cell model. 

The original SRAM cell model is ideal for examining the onset of upset due to 

direct charge collection from ion strikes to the OFF drains, but it is inadequate to fully 

characterize SEU response with respect to diffusion and to the well-collapse source-

injection mechanism in either the SRAM cell or array. As discussed in Chapter VI, 

SRAM cells placed in an array share bit lines, VDD, and VSS contacts with adjacent cells. 

This alters the semiconductor region that exists above the bulk semiconductor. The 

nMOSFETs located above and below the n-well form long, continuous openings in the 

STI. Yet in the SRAM cell model, diffusing carriers in the nMOSFET regions above the 

bulk substrate have STI boundaries on the left and right that would not actually exist in a 

full SRAM cell array. Further, the area of the region containing the pMOSFETs within 

the n-well do not match the actual areas since there are two drains for each source. Thus, 

the resistance from the p+-source/n-body junctions to the n-well is modeled to be higher 

than the actual value. Finally, the SRAM cell model does not include all the p+-sources 

from the SRAM array that are contained in this n-well. Thus, all the sources of current for 

the well/substrate p-n junction charge collection are not modeled. 
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Model 2: N-Well with No P+ Implant Model 

The first variation from the SRAM cell model is just a basic 3-D model of the n-

well in the p-substrate with no transistors. The intent of this model is to examine the 

response when only the well contacts can supply current to the well/substrate charge 

collection. A top view of this TCAD model is shown in Figure 70. This is the exact n-

well and n-well contacts found in the original SRAM TCAD model. 

 

 

Figure 70. Top view of N-Well with No P+ Implant Model. 

 

Model 2 demonstrates the issues that may be encountered when simulating ion 

strikes without sources in the well. In this case, the well/substrate p-n junction will 

become forward-biased; this does not happen when the p+-sources are included and 

biased at 1.2 V. The source/body p-n junctions will become forward-biased before the 

well/substrate p-n junction and aid in maintaining the well potential. Thus, Model 1 may 

provide unrealistic results for ion strikes located far outside of the cell. In this case, the 

well/substrate p-n junction may forward-bias due to the resistance from the p+-source to 

the ion strike location. 

To demonstrate the charge collection response of this model, an ion strike is 

simulated in the center of the n-well with a charge deposition of 0.10 pC/μm. The 

potential of the n-well and p-substrate prior to the simulated ion strike is shown in Figure 
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71. This is a side view of the TCAD model using a cut line down the center of the n-well. 

The potential of the model just following the ion strike is shown in Figure 72. There is a 

1.2 V drop from the well contacts to the ion strike location in the n-well at this point. 

Figure 73 shows the potential at 125 ps after the ion strike. This plot shows that the 

well/substrate p-n junction has forward-biased, indicated by the similar color of the 

potential in both the n-well at the ion strike and the substrate. The substrate potential does 

not exhibit much change. This is primarily due to the model being based on an epi-

substrate, which is verified later in another TCAD model. 

 

 

Figure 71. N-Well with No P+ Implant Model potential prior to ion strike. 
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Figure 72. N-Well with No P+ Implant Model potential just after ion strike. 

 

The hole density for this simulation is shown in Figure 74. This shows that 

minority carriers (holes) are being injected into the n-well under this condition. Lastly, 

Figure 75 compares Model 2 to the original SRAM TCAD model, showing the n-well 

currents that supply the single event current. Model 2 provides more current from the n-

well contacts than the original SRAM model because a higher voltage drop occurs from 

the contact to the region of the well/substrate charge collection. However, the pulse width 

of the prompt charge collection is exactly the same. These simulations demonstrate that 

accurate modeling during single event current generation requires the sources to be 

included; the sources maintain the well potential and provide a source for the single event 

current. 
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Figure 73. N-Well with No P+ Implant Model potential at 125 ps after ion strike. 

 

 

Figure 74. N-Well with No P+ Implant Model hole density at 125 ps after ion strike. 
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Figure 75. N-well current versus time for N-Well with No P+ Implant Model and SRAM Cell Model. 

 

Model 3: N-Well with P+-Sources Model 

In Chapter IV, it was theorized that single event current for charge collection at 

the well/substrate p-n junction was supplied by well contacts and p+-sources in the n-

well. The previous section further assumes that the p+-sources help to maintain the well 

potential, which limits the single event current supply from the well contacts. To examine 

these hypotheses, a TCAD model was produced of an n-well with p+-sources in the same 

positions as the pMOSFET source/drains from the original SRAM model. The purpose of 

Model 3 is to compare the single event response to the previous models to ensure that the 

p+-sources were responsible for maintaining the well potential. Also, Model 3 can verify 

whether the p+-sources were the first p-n junctions to forward-bias.  

Figure 76 presents a side view of a pMOSFET in the n-well from the original 

SRAM model, showing the complex doping profile implemented in the model. The drain 
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is on the left in this figure and the source is on the right. Figure 77 shows how Model 3 

differs. This model uses a flat doping profile so that it can easily be meshed in the TCAD 

tool. Since the pMOSFET has a more complex doping profile, it requires many more 

mesh points to model. So, the implementation of the flat doping profile will allow for 

more p+-sources to be implemented in a single TCAD model. 

 

 

Figure 76. SRAM Cell Model pMOSFET side view showing drain (left) and source (right) in the n-well. 

 

The top view of Model 3 is shown in Figure 78. The two p+ implants in the center 

apply the flat doping profile shown in Figure 77. The first step in the simulation was to 

calibrate the diode characteristics. The area for the p+-sources in this model exactly 

matches the area of the pMOSFETs in the original SRAM model, so the resistances from 

the junctions to the top of the well are identically modeled. The p+-source current during  
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Figure 77. N-well with p+-source side view. 

 

the single event current generation depends on the p+-n diode current density, the diode 

area, and the resistance. By using the same doping profile and resistance, the only 

parameter that differs between the original SRAM model and Model 3 is the diode area. 

The p+-source takes up about half of the area in the SRAM model, whereas the p+-source 

in the model in Figure 78 takes up the whole area. Thus, it was expected that the p+-

source current could be off by a factor of two during the initial simulations. 

Model 3 was calibrated by executing 20 single event simulations. The choices of 

the ion strike locations and charge deposition were matched to the original SRAM model 

data sets. A subset of those results is given in the next few figures using a charge 

deposition of 0.1 pC/μm. The first two sets of results are for normal ion strikes at Points 

A and B in Figure 78. A side-by-side comparison of the single event current sources for 



 106

A

B

III

V

 

Figure 78. Top view of N-Well with P+-Sources Model showing sample ion strike locations. 

 

Point A is shown in Figure 79. The n-well current is in good agreement, but the two 

sources show a difference in the current profile. In the case of modeling just the p+-

sources, the two source currents are the same due to location of the ion strike. This is not 

the case for the original SRAM model, where the initial MOSFET operation of the 

transistors affects the current profile. However, the currents do not differ by a factor of 

two as expected; instead, there is approximately 25% difference in the currents for the 

MP1-source.  

The side-by-side comparison for Point B is shown in Figure 80. This ion strike 

location corresponds to the OFF nMOSFET drain in the original SRAM model. As a 

result, there are some differences in the currents. In the SRAM model (left), the p+-

source currents show a small perturbation and then enter forward-bias due to the direct 

charge collection. However, once the SRAM has exhibited the well-collapse source-

injection mechanism, the overall current profiles appear similar. However, the initial 

perturbation in the original SRAM model causes differences at the maxima and in the 

timing between the two models. Since Model 3 includes a source/body diode with more 

than twice the area as the original SRAM model, it was anticipated that there might be 

factor of two difference between the source currents observed in the simulations. 
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However, the resistance from the source/body junction to the top of the well appears to be 

the dominant characteristic that determines the source current. The differences observed 

in these simulations are mainly due to the MOSFET operation in the SRAM model, 

which is not included in Model 3. 
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Figure 79. Side-by-side comparison of single event current sources during ion strike at center of SRAM 
Cell Model (left) and N-Well with P+-Sources Model (right) – point A in Figure 78. 
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Figure 80. Side-by-side comparison of single event current sources during ion strike outside of the n-well 
for the SRAM Cell Model (left) and N-Well with P+-Sources Model (right) – point B in Figure 78. 

 

Figure 81, Figure 82, and Figure 83 show current profiles for simulated ion strikes 

at Points I, II, and V, respectively, from Figure 78. These locations correspond to the 

same ion strikes provided in Figure 42. For all these cases, the current profiles match 
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very well between Model 3 and the original SRAM model. This is because the well-

collapse source-injection mechanism dominates early in time. These plots verify that the 

diode area does not determine the forward-bias current during the prompt charge 

collection. Instead, the resistance between the p+-source and the top of the well is the 

determining characteristic. Following the prompt pulse of current, the curves differ, so 

diode area is important. Since SRAM upset is primarily based on prompt charge 

collection current overcoming the cell’s restoring current, the model should match best in 

the prompt region. Thus, Model 3 is an accurate model for studying the well-collapse 

source-injection mechanism as long as the resistance from the p+-source to the well is 

modeled correctly. However, this model is not a great match when other mechanisms are 

significantly involved. 
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Figure 81. Comparison of single event current sources during ion strike at point I in Figure 78 for the 
SRAM Cell Model and N-Well with P+-Sources Model (diodes). 
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Figure 82. Comparison of single event current sources during ion strike at point II in Figure 78 for the 
SRAM Cell Model and N-Well with P+-Sources Model (diodes). 
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Figure 83. Comparison of single event current sources during ion strike at point V in Figure 78 for the 
SRAM Cell Model and N-Well with P+-Sources Model (diodes). 

 

Model 4: SRAM Array Model 

 

Model Description 

The SRAM Array Model was proposed earlier in the discussion of the well-

collapse source-injection mechanism. It is shown again in Figure 84. The previous 
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section demonstrated that the well-collapse source-injection mechanism can be simulated 

using p+-sources with a flat doping profile in the place of pMOSFET source/drains; 

therefore, this method was used to construct Model 4 in TCAD. This model contains the 

largest number of 3-D mesh points of any model used in the study, but all the p+-sources 

were modeled in the n-well. Replicating the original SRAM model is infeasible because it 

contains almost as many mesh points as required by Model 4. This new model enables 

the study of the well-collapse source-injection mechanism for an array of SRAM cells. 

Figure 85 shows the top view of Model 4 as implemented in TCAD. Several ion strike 

locations (Points A through E) were chosen to examine the response variation due to: (1) 

the distance to the well contacts and (2) the variation in strike angle. 

 

 

Figure 84. SRAM Array Model for eell-collapse source-injection mechanism study. 

 

Upset Threshold Based on Forward-Bias Current 

Since the original SRAM array model only provides the source currents as 

outputs, a threshold current value must be used to denote a cell upset. This value is used 

to observe the range of the well-collapse source-injection. Using the original SRAM 

model, a set of simulations was performed with normal ion strikes to the left of the 
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Figure 85. Top view of SRAM Array Model showing simulated ion strike locations. P+-source locations 
are marked with Xs and with hashes on the x-axis. The x-axis is in units of μm and referenced to the center 
of the model. 

 

SRAM cell. The current for the OFF pMOSFET source was examined at the onset of cell 

upset. For an ion strike 1 μm to the left of the SRAM cell center, a charge deposition of 

approximately 0.066 pC/μm caused an upset. Figure 86 shows a plot of the node voltages 

and pMOSFET source currents for this case. From this simulation, the peak current for 

the OFF pMOSFET source (MP1-Is) is slightly greater than 0.6 mA.  

The charge deposition required to cause an upset at a distance of 2 μm to the left 

of the center of the SRAM cell is approximately 0.08 pC/μm. The plot of the SRAM 

node voltages and pMOSFET source currents is given in Figure 87. In this case, the peak 

current for the OFF pMOSFET source is just less than 0.6 mA. The current profile has a 

longer duration than shown in Figure 86. It was previously stated that simulations far 

away from the p+-source may not give accurate results due to the well-collapse 

enhancements. However, since the magnitude of the OFF pMOSFET source currents 

were both near 0.6 mA for upset, this will be considered the threshold for upset in the 

SRAM array model. This approximation is used because SRAM upset is primarily based 
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on the magnitude of the prompt charge collection to the OFF drain, which is related to the 

magnitude of the forward-bias current at the OFF source. 
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Figure 86. SRAM Cell Model node voltages and pMOSFET source currents for an ion strike 1 μm to the 
left of the center of the SRAM cell (0.066 pC/μm). 
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Figure 87. SRAM Cell Model node voltages and pMOSFET source currents for an ion strike 2 μm to the 
left of the center of the SRAM cell (0.08 pC/μm). 
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Simulation Results from Normal Ion Strikes 

Figure 88 plots three different charge depositions at Point A from Figure 85. The 

data from the SRAM array model is presented by plotting the pMOSFET source currents 

versus their respective location in the well for each ion strike (i.e., a plot of the peak 

source current observed in the simulation). For a normal strike, a significant amount of 

charge deposition is required to cause more than the two center pMOSFETs to exceed the 

threshold condition. Figure 89 shows the simulation results for Point B, which is very 

close to a single pMOSFET source instead of being centered between two sources. This 

exhibits nearly the same shape as in the first case, except that three pMOSFETs exceed 

the threshold for the highest charge deposition simulated. The ion strike location nearest 

the well contact, Point C, showed some difference in the simulation (Figure 90). This 

location is similar to Point A in that it is exactly between two pMOSFET sources. 

However, since this location is near the well contact and near the well boundary, it has 

higher currents at the two closest pMOSFET sources. So, the charge deposition required 

to induce this mechanism would be slightly less at this point than in the center of the 

well. Also, the 0.05 pC/μm case never exceeded the threshold for these ion strikes. This 

is consistent with the SRAM cell model simulations. 
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Figure 88. pMOSFET source currents for ion strike location A from Figure 85. 
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Figure 89. pMOSFET source currents for ion strike location B from Figure 85. 
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Figure 90. pMOSFET source currents for ion strike location C from Figure 85. 

 

Simulation results from Model 4 are shown for an ion strike location outside the 

n-well (Figure 91). In this case, the resistance for the pMOSFET sources nearest that side 

of the well is less, at least for the sources in the center of the well. So, the data curve 

looks slightly different, though it exhibits some of the same basic qualities. There is still a 

falloff from the closer high current sources to the neighboring sources, and the width of 

the effect seems to track. This shows that normal ion strikes outside of the n-well, but 

near it, can induce well-collapse source-injection.  

The main difference in the charge collection inside the well versus outside the 

well is the amount of surface area of the well/substrate p-n junction collecting the charge. 

For ion strikes inside the well, the holes generated inside the well can move to three 

nearby surfaces of the junction (bottom or the well and the two sides), while the electrons  
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Figure 91. pMOSFET source currents for ion strike location D from Figure 85. 

 

generated outside the well can move generally to one surface of the junction (bottom of 

the well). On the other hand, for ion strikes outside of the well, only the electrons 

generated outside the well contribute to the charge collection, though two surfaces may 

collect (the side nearest the ion strike and the bottom of the well). For the simulations at 

Point A and Point D, there is an approximate 75% difference in the charge collection 

when considering the well-collapse source-injection mechanism. 

 

Simulation Results from Angled Ion Strikes 

The next set of simulations examine the effect of angular ion strikes to induce the 

well-collapse source-injection mechanism. It is expected that ion strikes angled in the 

direction of the well will follow effective LET theory [Ko84]. So, ion strikes at a 60o 

angle will deposit twice as many holes inside the well and twice as many electrons 
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outside of the well for charge collection at the well/substrate p-n junction. Ion strikes 

angled perpendicular to the well should not follow this trend. The well is narrow in this 

dimension, and ion strikes that exit the well are going to be moving away rapidly from 

the well/substrate p-n junction. The holes generated within the well should match the path 

length of the ion through the well, but the electrons collected at the junction will depend 

upon where the charge track leaves the well.  

Figure 92 and Figure 93 show simulation results for angled ion strikes at Point A 

and Point D respectively (Figure 85). The points represent where the ion enters at the top 

of the well. The ion path forms an angle of 60o from normal to the surface in a negative X 

direction (i.e., to the left). These strikes show a significant increase in the range of the 

well-collapse source-injection mechanism. At this angle, the number of pMOSFET 

sources that exceed the threshold is much higher. This is observed for the both the angled 

ion strike inside the well and outside of it. The main difference in these simulations is 

that for angled ion strike outside the well, the location of the peak pMOSFET source 

current stays the same. For the angled ion strikes inside the well, the peak shifted from 

the point of well exit for the smallest charge deposition to the point of well entry for the 

highest charge deposition. 
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Figure 92. pMOSFET source currents for ion strike location A from Figure 85 at an incident angle 60o from 
normal to the surface traveling in a negative x direction. 
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Figure 93. pMOSFET source currents for ion strike location D from Figure 85 at an incident angle 60o from 
normal to the surface traveling in a negative x direction. 
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Simulations of angled ion strikes with a direction perpendicular to the well 

(negative Y direction on Figure 85) were performed at Points A and E. At an angle of 

incidence of 60o to normal, the path length of the ion through the well is approximately 

0.52 μm for Point A and approximately 1.03 μm for Point E. The path length in the well 

for normal ion strikes is 0.76 μm. The angled simulations from Point A should have less 

forward-bias current than the normal ion strike at Point A, which in turn, should be less 

than the forward-bias current for the angled ion strike at Point E. The simulation results 

for the angled ion strikes in the negative Y direction are given in Figure 94 for Point A 

and Figure 95 for Point E. The results for Point A are not as expected. The forward-bias 

currents at the two center p+-sources are higher than the normal ion strike at Point A. 

However, the forward-bias currents are lower for the rest of the p+-sources. This occurs 

because the charge collection of the well-substrate p-n junction is located at the side of 

the n-well rather than at the bottom. The resistive path for the two center sources is less 

for the charge collection at the side of the n-well than at the bottom. On the other hand, 

the simulation results for Point E follow the path length argument. The path of this 

particular ion exits the n-well near its bottom, so the resistance to the well/substrate 

charge collection is similar to the normal ion strike location.  
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Figure 94. pMOSFET source currents for ion strike location A from Figure 85 at an incident angle 60o from 
normal to the surface traveling in a negative y direction. 
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Figure 95. pMOSFET source currents for ion strike location E from Figure 85 at an incident angle 60o from 
normal to the surface traveling in a negative y direction. 
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Well Potential and Minority Carrier Density 

Beyond observing the range of the well-collapse source-injection mechanism, the 

SRAM array model also provide an interesting look at the potentials and the minority 

carriers in the n-well. The next three figures show TCAD simulation plots for a normal 

ion strike at Point A with a charge deposition of 0.05 pC/μm. Figure 96 shows the top 

view, and Figure 97 shows the side view for the potential in the TCAD model. There is 

some voltage drop from Point A to the well contacts. However, all of the p+-sources are 

forward-biased and aid in holding the well potential so that the well/substrate p-n 

junction does not forward-bias. Figure 98 shows the side view of the hole density. This 

shows that holes are being injected from each p+-source, though the p+-sources in the 

middle are providing the most. This is the indicator of the well-collapse source-injection 

mechanism.  

 

 

Figure 96. Top view of SRAM Array Model showing potential 50 ps following a normal ion strike at 
location A with a charge deposition of 0.05 pC/μm. 
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Figure 97. Side view of SRAM Array Model showing potential 50 ps following a normal ion strike at 
location A with a charge deposition of 0.05 pC/μm. 

 

 

Figure 98. Side view of SRAM Array Model showing hole density 50 ps following a normal ion strike at 
location A with a charge deposition of 0.05 pC/μm. 
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Model 5: Electron Diffusion TCAD Model 

Models 1 to 4 represent the focus of the research in this dissertation with Model 4 

representing the culmination of all the other models. The last two models were developed 

to answer questions that came up in the study. Model 5 examines the diffusion of carriers 

following an ion strike. The purpose of the model is to compare the charge collection 

mechanisms of PBE and well-collapse source-injection. This model also provided insight 

into which deposited carriers contribute to prompt charge collection. Finally, Model 4 

examines the characteristics of charge transport for the long/thin semiconductor areas 

above the substrate containing the nMOSFETs shown in the SRAM array layout (Figure 

62).  

One component of direct charge collection that has not been included in the 

previous models is the diffusion of the minority carriers. Diffusion of carriers is a well-

known process, but the diffusion following an ion strike is a very complex process 

involving very high diffusion gradients, ambipolar diffusion, and complex 3-D structures 

with boundary conditions. To briefly study the diffusion of minority carriers, a TCAD 

model was constructed with no p-n junctions. Figure 99 depicts the TCAD model used to 

study the electron diffusion. The areas above the substrate are where the nMOSFETs 

would be located in the SRAM array for two adjacent rows. The height of this region is 

normally 360 nm with a number of p-n junctions 260 nm above the substrate. Since there 

are no p-n junctions implemented in the model, the height was raised to 10 μm to allow 

the carriers to move as though they were swept across the junction electric field. It is 

noted that this is not an ideal TCAD simulation, but it will provide insight into the carrier 

motion and range of diffusion. 
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P-Substrate
 

Figure 99. Electron Diffusion TCAD Model. 

 

Model 5 was used with normal ion strikes in the substrate between the two raised 

semiconductor areas. Figure 100 shows a plot of the electron density just after an ion 

strike with charge deposition of 0.05 pC/μm. This plot is a cut line in the substrate 

between the two raised areas, and only shows the carriers in the substrate itself. Figure 

101 shows the same plot 50 ps later in time. It is observed that the electrons have spread 

out slightly, but most of the electrons are still very close to the ion strike. The electron 

density falls off one order of magnitude at a radius of 0.6 μm and two orders of 

magnitude at a radius of 0.8 μm. This means that 90% of the excess electrons are within 

0.6 μm of the charge track, and 99% of them are within 0.8 μm of the charge track for the 

prompt charge collection. So, this provides an indication of how close generated carriers 

must be to p-n junctions to contribute to prompt single event current. Since all the p+-

sources in Model 4 are forward-biased, some of which are located more than 8 μm from 

the ion strike, it is not realistic to consider this to be the result of PBE. Instead, the well-

collapse source-injection mechanism is the best explanation for the charge collection at 

those locations. 
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Figure 100. Electron density immediately after ion strike to substrate centered between the two raised 
semiconductor areas (0.05 pC/μm). 

 

 

Figure 101. Electron density 50 ps following ion strike to substrate centered between the two raised 
semiconductor areas (0.05 pC/μm). 
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Another aspect of this simulation is the propagation of the electrons to the p-type 

semiconductor regions above the substrate. Figure 102 shows the electron density for a 

cut line that includes one of the two narrow regions. This shows how the boundary 

conditions participate in the motion of the electrons. The direction into the paper is the 

narrow direction. Since the carriers are reflected at this boundary, the density lines form 

generally in the vertical direction. This also shows that 10 μm of height of the 

semiconductor above the substrate may not be enough to reduce the effect of a non-

physical boundary in that dimension.  

 

 

Figure 102. Electron density 50 ps following ion strike to substrate centered between the two raised 
semiconductor areas (0.05 pC/μm). Cut line now includes one of the raised semiconductor areas. 

 

Other sets of simulations were performed using the model for strikes in a raised 

semiconductor region to look at angular ion strikes. Figure 103 shows an electron density 
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plot using the same cut line as Figure 102 for an ion strike in that region at an incident 

angle of 60o. The charge track is drawn in this figure to show the starting point and the 

direction. The starting point is the physical location of the top of the semiconductor. This 

shows the same general characteristics as the previous examples. All of the simulation 

results provided from this model are as expected, and they provide insight as to the range 

of carriers that can contribute to prompt charge collection. 

 

 

Figure 103. Electron density 50 ps following angled ion strike to substrate In one of the raised 
semiconductor areas (0.05 pC/μm). Cut line includes one of the raised semiconductor areas. 

 

Model 6: No Epi-Substrate Models 

An issue that occurred when reviewing the test data presented in the next chapter 

was that the SRAM evaluated was not manufactured on an epi-substrate. A few models 

were developed to analyze the difference in the SRAM cell and array response due to a 

different substrate material. Model 2 was updated to examine this response. With the epi-
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substrate, the substrate potential was not affected much with the simulation of an ion 

strike. After replacing the substrate with lower doped material, removing the large 

substrate contact at the bottom of the model, and adding substrate contacts similar to the 

well contacts, it was determined that the substrate potential near the ion strike did change 

significantly. Since the well-collapse source-injection mechanism is based upon the well-

collapse, the fact that the substrate potential raises will obviously impact the mechanism.  

To gauge how much effect the application of a lower doped substrate might have, 

Model 4 was rebuilt. Since this model does not contain n+-sources in the p-substrate, 

there is nothing to control the substrate potential. However, the SRAM array model with 

the epi-substrate is the extreme case where the substrate potential cannot change much, 

and the SRAM array model without the epi-substrate and with no n+-sources is the other 

extreme case where the substrate potential can change the most. So, the actual result will 

be somewhere in the middle. The reason n+-sources were not implemented is that the 

model was already the maximum size possible. 

Simulation results for the updated SRAM array model without an epi-substrate 

are shown in Figure 104. This demonstrates that the p+-sources still forward-bias, just 

that the forward-bias current is lower. The difference between the two SRAM array 

models is more than a factor of ten. This difference means that the crossover point 

between direct charge collection and well-collapse source-injection may occur at a higher 

charge deposition for the lower doped substrate than for the epi-substrate. But, the well-

collapse source-injection mechanism will still be observed. 
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Figure 104. pMOSFET source currents for ion strike location A from Figure 85 with a low doped p-
substrate. 
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CHAPTER VIII 

 

EXPERIMENTAL RESULTS OF SINGLE EVENT EFFECTS IN STATIC RANDOM 

ACCESS MEMORY  

 

The previous chapter detailed the modeling of the well-collapse source-injection 

mechanism and centered around a 90-nm SRAM cell design on an epi-substrate. 

However, all of the analysis is applicable to the general class of SRAM SEU analysis 

when the SRAM is implemented on an STI process with various substrates. Certainly, the 

mechanism will be easier to observe on designs that use an epi-substrate with the smallest 

available feature sizes. The best available SRAM to compare to the well-collapse source-

injection mechanism was a small test array of 65-nm SRAM cells designed by Texas 

Instruments (TI). This represents the smallest feature size available for study where the 

mapping of the cells (i.e., data bits) is known by row and column address. 

 

SRAM Test Chip Overview 

This section will present a few details of the TI SRAM cell and array design in 

order to interpret the set of data. It is not a complete description of the SRAM cell, 

SRAM array, or processing technology, as those items are proprietary. For the purposes 

of this dissertation, it is enough to know that the 65-nm SRAM cell layout is similar to 

the 90-nm SRAM cell layout (Figure 28) that was investigated. The similarity lies in the 

locations of the MOSFETs with respect to the n-well, with the two nMOSFETs being on 
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either side of the n-well. As a result, the MCU patterns that were developed in Chapter VI 

should apply to this test chip. 

The topology of the TI SRAM test chip is shown in Figure 105. The rows 

addressed by the row address bits are numbered in consecutive order from bottom to top. 

The 16 data bits form the major division in the other dimension. Figure 106 shows the 

division of the data bits into 32 columns. This also shows the orientation of BL and BL  

with respect to adjoining columns. Finally, this figure shows the orientation of the n-

wells with respect to row and column addressing. It is also noted that the rows and 

columns are not continuous. There are well and substrate contacts at specific intervals of 

rows. The data bits are also divided into a left and right memory bank. 

 

Data
Bit
0

Data
Bit
1

Data
Bit
2

Data 
Bit
15

Rows

 

Figure 105. TI SRAM test chip topology – top level. 
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Figure 106. TI SRAM test chip topology – second level. 

 

Two important items need to be considered concerning test patterns written into 

the TI SRAM array. First, if the same 16-bit word is written into all the row and column 

address locations, some effects may not be observable. Consider the nMOSFETs between 

columns 0 and 1 in Figure 106. If the data written in all these SRAM cells are the same, 

then the tops of each cell will hold the ON (OFF) nMOSFET and the bottom of the cell 

will hold the OFF (ON) nMOSFET. Thus, there is no way for two adjacent columns to 

have the adjoining nMOSFETs both OFF. The only difference will be in the transition 

from one data bit to the next in the topology. If opposite states are written into successive 

data bits, then the end columns will either have two OFF nMOSFETs or two ON 

nMOSFETS. The second important item to consider is the writing of alternating patterns 
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down the well as proposed in Chapter VI. This requires that the data bits be alternated 

every other row. 

There is one other characteristic of the TI SRAM array that is important. The test 

design allows independent voltage supply to the n-well contacts and to the VDD connected 

to the p+-sources. This option was included to minimize standby current in the array by 

enabling the pMOSFETs to have a negative gate voltage with respect to the body. As a 

result, SEU or MCU variation can be observed by changing the well bias with respect to 

VDD. 

 

Heavy Ion Tests 

The TI SRAM test chip has been evaluated for heavy ion single event effects in 

cyclotrons at both Texas Agricultural and Mechanical University (TAMU) and Lawrence 

Berkeley National Laboratories (LBNL). The TAMU testing was conducted by personnel 

from the National Aeronautics and Space Administration Goddard Space Flight Center 

(NASA-GSFC) and their contractors. The LBNL testing was conducted by Vanderbilt 

University. Jeffrey Black and Alan Tipton led the testing, and Dr. Robert Reed and 

Estevan Bunker provided testing support.  

Both sets of tests used the same hardware/software to control the testing, though 

difference devices were used for each test. The hardware used to control the testing was 

the NASA-GSFC Spartan-3 Field Programmable Gate Array (FPGA) Low Cost Tester 

[Ho06] board with a daughter card containing the SRAM device under test. The SRAM is 

programmed and read via the FPGA that is controlled through a computer serial port. The 

serial data stream defines when the SRAM is written and/or read as well as returns the 
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locations of incorrect (upset) data bits. The FPGA firmware and the Labview control 

software were both developed by NASA-GSFC. Due to the nature of the test hardware, 

all the row and column addresses were written with the same data pattern. The primary 

data pattern used and analyzed alternated between logic high and logic low in the data 

bits. 

The procedures were similar for the TAMU and LBNL tests. The list that follows 

is the procedure that was followed at LBNL. 

1. Select ion and particle flux and calibrate the dosimeters. Repeat this step a 

few times to observe the dosimetry uncertainty. The flux was selected to 

obtain a minimal 30 seconds of ion beam exposure to reach the total 

particle fluence. It was noted that the flux was kept low for the cyclotron 

and that the dosimetry uncertainty was on the order of a factor of two. 

2. Select incidence angle and direction for the exposure. Center the SRAM 

device in the particle beam. 

3. Select the VDD and N-Well bias for the exposure. 

4. Perform a pre-irradiation write and read of the SRAM and track the bad 

bits. Since this SRAM is a test chip, there are a number of bad bits per 

device. The number of bits that were bad varied as a function of the n-well 

bias. At a low bias (0.7 V), there were approximately 15 bad bits in the 

SRAM array. At a normal bias (1.2 V), there were approximately 50 bad 

bits in the SRAM array. Finally, at the low standby power bias (1.8 V), 

there were approximately 70 bad bits. The number of bad bits did not 

affect the testing as there were over four million SRAM bits evaluated. 
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5. Expose the device to a set fluence. The goal of the exposure was to have 

about 1000 SEUs in the SRAM. More upsets would push the limit of the 

FPGA controlling the test and would increase the probability for co-

incidence ion strike locations. 

6. Read the SRAM array contents, remove the pre-irradiation bad bit 

addresses, and record the location of SEUs. 

There is one final note about the testing. The TI SRAM array has shown 

susceptibility to single event latchup (SEL). Since the devices are bonded to a daughter 

card, it is not a trivial cost to prepare devices for test. So, ions, angles, and VDD were 

generally restricted to avoid SEL. In addition, the current to the device was limited and 

monitored during the testing. There were no unexpected increases in device current 

observed during the testing, so it is assumed that SEL was not encountered. 

 

TAMU Test Results 

The test log of the TAMU SEU testing on the TI SRAM array is provided in 

Table 4. There were three ions used in the testing: Ne, Ar, and Kr. The tests also covered 

normal angle of incidence and two other angles in directions both parallel and 

perpendicular to the n-well. All the tests were performed with the same biases. The rows 

highlighted in red are the test runs that will be the focus of the analysis for this research. 

Based upon the TCAD modeling results, it was evident that the well-collapse source-

injection mechanism is more easily observed at high angles of incidence.  
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Table 4. TAMU SEU test log. 

LET Eff. Fluence Incident Angle VDD N-Well Bias
MeV-cm2/mg particles/cm2 degrees volts volts

5-9 20Ne 2.8 2.5x105 0 - 1.2 0.7
10-14 20Ne 2.8 2.5x105 45 Parallel 1.2 0.7
15-20 20Ne 2.8 1.0x105 78.5 Parallel 1.2 0.7
21-26 40Ar 8.6 3.5x104 78.5 Parallel 1.2 0.7
27-34 40Ar 8.6 1.1x105 45 Parallel 1.2 0.7
35-39 40Ar 8.6 1.5x105 0 - 1.2 0.7
40-45 84Kr 28.9 7.1x104 0 - 1.2 0.7
46-50 84Kr 28.9 3.7x104 45 Parallel 1.2 0.7
51-60 84Kr 28.9 1.4x104 78.5 Parallel 1.2 0.7
61-62 84Kr 28.9 2.0x104 0 - 1.2 0.7
63.67 84Kr 28.9 4x104 45 Perpendicular 1.2 0.7
68-77 84Kr 28.9 1.0x104 78.5 Perpendicular 1.2 0.7
78-82 40Ar 8.6 3.1x104 78.5 Perpendicular 1.2 0.7
83-87 40Ar 8.6 1.0x105 45 Perpendicular 1.2 0.7
88-89 40Ar 8.6 1.0x105 0 - 1.2 0.7
90-92 20Ne 2.8 1.0x105 0 - 1.2 0.7
93-97 20Ne 2.8 2.5x105 45 Perpendicular 1.2 0.7
98-103 20Ne 2.8 1.1x105 78.5 Perpendicular 1.2 0.7

Run # Ion Direction

 

All of the highlighted test runs were analyzed by hand to examine the upset 

patterns. It is challenging to extract the patterns automatically since the SRAM cells 

themselves are not ideal in layout. So, the upset patterns do not completely conform to  

the predicted patterns listed in Table 3. To present an overview of the data set, each of the 

data sets was split into MCU groups. The groups were then analyzed and categorized by 

the type of MCU pattern observed. If the MCU pattern was consistent with direct charge 

collection, then it was categorized as “direct.” On the other hand, if the MCU pattern 

indicated well-collapse source-injection, it was categorized as “well-collapse.” If the 

MCU pattern contained elements of both, it was still categorized as “well-collapse.” In 

general, MCU patterns categorized as well-collapse fit the later condition. 
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 For the data sets that were parallel to the long n-well direction, each set had some 

of the MCU observations fit the well-collapse source-injection mechanism. For Ne (LET 

= 2.8 MeV-cm2/mg), there were a total of 540 MCUs observed with 30 of those 

exhibiting well-collapse source-injection (5.6%). Some of the MCU patterns observed are 

shown in Figure 107, with the most prevalent patterns being A and B. For Ar (LET = 8.6 

MeV-cm2/mg), there were a total of 415 MCUs observed with 75 exhibiting well-

collapse source-injection (18.1%). A selection of observed MCU patterns is shown in 

Figure 108. Patterns A through F occur most frequently. All of these patterns, excluding 

Pattern A, are a long chain of direct charge collection upsets with a well-collapse source-

injection tail. This is likely near where the ion exits the n-well. When the LET of the 

incident ion is increased to 28.9 MeV-cm2/mg, most of the observed MCU indicate the 

well-collapse source-injection mechanism. It was very difficult to decipher the patterns as 

they were large and of numerous shapes. Also, since the average MCU was between 20 

and 30 SEUs, it did not take many ion strikes to arrive at 1000 upsets. In the data set, 

there were 212 MCUs observed with 183 clearly exhibiting the well-collapse source-

injection mechanism. The remaining 29 observations (13.7%) spread out over multiple 

columns. It is possible that the well-collapse source-injection mechanism was involved, 

but the patterns were inconclusive in these cases. A few sample MCU patterns for this ion 

are shown in Figure 109. These are some of the shorter patterns observed, but give a good 

indication of the complexity of the patterns. 
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A B C D E F G

 

Figure 107. Examples of observed MCU patterns for TAMU SEU test (LET = 2.8 MeV-cm2/mg, incident 
angle = 78.5o, parallel to the n-well).  

 

A B C D E F G H

 

Figure 108. Examples of observed MCU patterns for TAMU SEU test (LET = 8.6 MeV-cm2/mg, incident 
angle = 78.5o, parallel to the n-well). 

 

A B C D E F G H I

 

Figure 109. Examples of observed MCU patterns for TAMU SEU test (LET = 28.9 MeV-cm2/mg, incident 
angle = 78.5o, parallel to the n-well). 
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When the ion strikes are angled perpendicular to the n-well direction, there are no 

observed well-collapse source-injection MCU patterns for Ne or Ar. This agrees with the 

angled TCAD simulations from Chapter VII. However, with the Kr ions, most of the 

MCU patterns indicate the well-collapse source-injection mechanism; 134 of the 170 

MCU patterns or 78.8% fit that category. These patterns are spread out over multiple 

columns as seen in Figure 110. 

 

 

Figure 110. Examples of observed MCU patterns for TAMU SEU test (LET = 28.9 MeV-cm2/mg, incident 
angle = 78.5o, perpendicular to the n-well). 

 

The results of the SEU testing of the TI SRAM at TAMU support the well-

collapse source-injection mechanism concepts. It is easier to observe the mechanism with 

highly incident angles down the well rather than perpendicular to the well. However, at 

the highest LET tested, both directions exhibit the characteristics of the well-collapse 

source-injection mechanism, which is also as predicted. 
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LBNL Test Results 

Since the TAMU SEU tests of the TI SRAM produced MCU patterns consistent 

with the well-collapse source-injection mechanism, the LBNL tests focused on voltage 

variations. The TI SRAM has the ability to independently control the VDD connected to 

the p+-sources and the n-well bias. All of the TAMU data were taken with the same VDD 

and n-well bias, 1.2 V and 0.7 V, respectively. 

Varying the n-well bias controls the body bias of the pMOSFETs in the SRAM. 

Increasing the n-well bias with respect to VDD effectively increases the magnitude of the 

threshold voltage of the pMOSFETs. As a result, the OFF pMOSFET will have less 

leakage current, and the overall SRAM array standby current will be less. However, the 

increase in the body potential will also increase the reverse bias for the drain/body and 

source/body p-n junctions. The depletion regions for these junctions will be larger as will 

the electric fields in the depletion regions. With respect to SEU, the increase in the well 

bias is expected to harden the cell due to the increased noise margin in the cell. This 

hardening should manifest itself when charge deposition is near the onset of SEU. 

However, it is not expected to have an effect when charge deposition is much greater than 

required to upset the cell. Thus, variations in the n-well bias should have no significant 

effect on the SEU cross section of the TI SRAM for most of the heavy ions tested. 

On the other hand, increasing the VDD of the SRAM is expected to affect the SEU 

or MCU response of the TI SRAM array. VDD is connected to the p+-sources and sets the 

potential at that terminal of the p-n source/body junction diodes. This is very important 

for the well-collapse source-injection mechanism, as the well potential does not have to 

reduce as much to forward-bias the source/body diodes. So, increasing VDD is expected to 
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increase the effect of the well-collapse source-injection mechanism. Conversely, SEU 

response from direct charge collection should decrease with an increased VDD. Increasing 

VDD will: (a) increase the depletion region and electric field in the OFF nMOSFET, (b) 

decrease or maintain the depletion region and electric field in the pMOSFETs, and (c) 

increase the noise margin of the SRAM cell. All but (a) will act to harden the cell to 

direct charge collection. The change in the nMOSFET depletion region and electric field 

should have no effect when the charge deposition is much greater than required to upset 

the SRAM cell. In summary, increasing the SRAM cell VDD should increase the SEUs 

due to the well-collapse source-injection mechanism, while not increasing SEUs due to 

direct charge collection. 

A summary of the LBNL SEU testing on the TI SRAM array is given in Table 5. 

These are a subset of the testing that was performed showing only the experiments related 

to voltage variations. In general, the test results were as expected. The variation in the 

well bias did not affect the observed SEU cross section. The only difference is seen in the 

first two columns for the B ion. It is possible there is a higher cross section for the higher 

well bias, but there is no way to conclude that. The B ion beam was very unstable in flux, 

so it is quite possible that the difference is the result of a testing error. 

The test results for the VDD variation also followed expectation. Increasing VDD 

from 1.2 to 1.4 V, while maintaining the well bias at 1.8 V, showed a significant increase 

in the number of SEUs observed for both directions. For the direction that was parallel to 

the n-well, the data for VDD = 1.2 V showed a small percentage of double column MCUs. 

Due to the nature of the SRAM array topology, the generally constant pattern made it 

difficult to attain double column MCUs with direct charge collection (there were very 
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few cases where OFF nMOSFET drains from two columns were adjacent). However, the 

data for VDD = 1.4 V showed mostly double column MCU patterns. The double column 

MCU patterns are the result of the well-collapse source-injection mechanism. For the 

direction that was perpendicular to the n-well, the data shows a similar result. For VDD = 

1.2 V, there are few double column MCUs; while most of the MCUs for VDD = 1.4 V 

cross two columns. Thus, the increase in the number of upsets for VDD = 1.4 V is a direct 

result of increasing the susceptibility to the well-collapse source-injection mechanism. 

 

Table 5. LBNL SEU test results. 

LET Incident Angle VDD Well Bias Fluence Eff. Fluence Cross Section
MeV-cm2/mg Degrees volts volts particles/cm2 particles/cm2 cm2

B 0.89 0 - 1.2 1.8 4.0x105 4.0x105 776 1.94x10-3

B 0.89 0 - 1.2 0.7 8.0x105 8.0x105 1360 1.70x10-3

Cu 21.17 45 Perpendicular 1.2 0.7 4.0x104 2.8x104 1884 6.66x10-2

Cu 21.17 60 Parallel 1.2 0.7 4.0x104 4.0x104 1717 8.59x10-2

Cu 21.17 60 Parallel 1.2 1.8 6.0x104 3.0x104 2714 9.05x10-2

Cu 21.17 45 Perpendicular 1.2 1.8 4.0x104 2.8x104 1900 6.72x10-2

Kr 30.86 45 Parallel 1.2 0.7 5.0x104 3.5x104 1843 5.21x10-2

Kr 30.86 45 Parallel 1.2 1.8 6.0x104 4.2x104 2165 5.10x10-2

Kr 30.86 45 Parallel 1.4 1.8 6.0x104 4.2x104 3608 8.50x10-2

Kr 30.86 45 Perpendicular 1.2 0.7 6.0x104 4.2x104 2543 5.99x10-2

Kr 30.86 45 Perpendicular 1.2 1.8 6.0x104 4.2x104 2474 5.83x10-2

Kr 30.86 45 Perpendicular 1.4 1.8 6.0x104 4.2x104 4763 1.12x10-1

Ion Direction SEUs
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CHAPTER IX 

 

IMPLICATIONS OF WELL-COLLAPSE SOURCE-INJECTION MECHANISM 

 

Multiple Node Charge Collection 

In highly scaled geometries (< 250 nm), the effect of a single ion track has been 

observed on multiple circuit nodes. For multiple transistors in a common well, the charge 

collection may be the direct result of drift or diffusion. Alternatively, the collapse of the 

well potential by a single ion strike can induce the well-collapse source-injection 

mechanism in some or all of the transistors. Previous work by Black et al. examined two 

pMOSFETs in an n-well and the charge collection on each drain [Bl05]. Figure 111 

shows the results of a device simulation of two transistors. In the top cross section, the 

transistors have a well contact between the drains, and in the lower cross section, there is 

no well contact. An ion strike was simulated on the drain on the right. Without the well 

contact, the well-collapse extended to the channel of the device on the left. As a result, 

this device collected charge, even though it was not directly struck. Figure 112 shows the 

two cases of drain current for the left device. Note the significant increase when the well 

contact did not exist. 

One implication the well-collapse source-injection mechanism is the knowledge 

that a p+-source diode placed in the center of these two pMOSFETs instead of the n-well 

contact would have provided better isolation. The well contact can only supply so much 

single event current, where the p+-source diode can supply much more and aid in 

maintaining the well potential. 
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Figure 111. Two transistor simulation showing well-collapse (after [Bl05]). 

 

 

Figure 112. Simulated current on device in same well as ion strike (after [Bl05]). 

 

Another implication of understanding the well-collapse source-injection 

mechanism is examining multiple node charge collection between: (1) pMOSFETs inside 

the n-well and (2) nMOSFETs near the n-well. SRAM cell TCAD simulations showed 
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that charge collection outside the well can collapse its potential very much like ion strikes 

inside the well. Thus, a single ion strike can cause charge collection via drift and 

diffusion on nMOSFETs near the well and cause charge collection via well-collapse 

source-injection to pMOSFETs inside the well.  

The multiple node charge collection discussed in the preceding paragraphs 

spawned various studies in deep submicron charge collection. Amusan et al. examined 

charge collection and charge sharing in 130-nm technology [Am06]. This study resulted 

in an assessment of the parasitic bipolar enhancement on the secondary node charge 

collection. Figure 113 shows one result of this study where the diffused charge to the 

secondary node was demonstrated to have parasitic bipolar enhancement for pMOSFETs. 

This also shows that diffusion is more pronounced between nMOSFETs, but the bipolar 

enhancement makes the pMOSFET to pMOSFET charge sharing the worst case at higher 

charge depositions. It is more likely that the passive pMOSFET with source charge 

collection is the result of the well-collapse source-injection than parasitic bipolar 

enhancement, though the mechanisms are similar. 
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Figure 113. Parasitic bipolar enhancement study of secondary node collection showing significant effect in 
pMOSFET devices in 130-nm technology. (after [Am06]). 

 

Single Event Transient Generation 

Another implication of the well-collapse source-injection mechanism is seen in 

the generation of single event transients (SETs) in combinational logic. Narasimham et 

al. examined the generation of single event transients in modern scaled silicon 

technology. While single event transients may not be important to the understanding of 

SRAM, this work highlighted the importance of proper modeling of the collection region 

and the well and substrate contacts. It has been shown that changing the location of ion 

strike, while keeping the charge deposition constant, changes the amount of charge 

collected on a node. This work demonstrated the proximity of the well and substrate 

contacts in varying the observed width of the single event transients; this directly relates 

to collected charge and is shown in Figure 114 [Na07]. The closer the well contact is to 

the ion strike, the better the contact can supply single event current; the well contact has a 

less resistive path. So, it is consistent that the SET pulse width would decrease when the 

ion strike is closer to the well contact. 
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Figure 114. Single event transient pulse width as a function of ion strike distance to well contact in two 
scaled technology nodes showing large variation (after [Na07]). 

 

Beyond the location of the well contacts are the locations of the p+-sources in the 

n-well. P+-sources that are close to the ion strike location will affect the pulse width. 

They can supply single event current and can enable the n-well to recover faster. The 

TCAD modeling in this research showed that the current pulses are shorter when all the 

p+-sources were included in the model, so it is reasonable that the SETs will be affected 

by the proximity of sources to the ion strike location. Further, the well-collapse source-

injection mechanism affected all the sources in the SRAM array model, even those many 

micrometers away from the ion strike. Depending on the input/output mapping of the 

combinational logic, a variety of SET responses may be observed. The SET pulse may be 

lengthened, shortened, or blocked from propagation depending on the state of the input 

and outputs. As a result, the potential SETs generated in a logic block may have a very 

wide distribution. 
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Low Voltage Operation 

The LBNL test results showed a MCU dependence on the power supply, VDD. 

The increase in VDD led to an increase in susceptibility to the well-collapse source-

injection mechanism. There are circuit design concepts to reduce VDD to a very small 

level to operate the MOSFETs in the subthreshold region. Certainly circuits designed for 

such a small power supply will be more susceptible to direct charge collection, as the 

noise margins have been significantly reduced. The values of the critical charge for these 

circuits should be much lower than for circuits using the normal MOSFET operation. 

However, it is not clear whether or not low voltage operation will completely reduce the 

susceptibility of the well-collapse source-injection mechanism. The single event current 

generation will be the same, and that current will still need to be supplied. The well 

contacts will be further limited by the reduced power supply, so the p+-sources in the n-

well and n+-sources outside of the n-well will have to supply the single event current. 

This likely will result in the well/substrate p-n junction forward-biasing. So, 

susceptibility to the well-collapse source-injection mechanism may actually increase with 

lower VDD as well. This is an area of further research. 

 

Resistive Hardening 

The other interesting implication of the well-collapse source-injection mechanism 

and the crossover point is that it bounds the hardness that can be achieved by adding 

resistance to the feedback path of the SRAM cell. If the basic layout of the SRAM cell is 

not modified, but feedback resistors are added through other means (e.g., within the 

metallization layers), then the crossover to well-collapse source-injection defines a 
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maximum achievable point for the onset of upset of the hardened SRAM cell. Figure 115 

shows the node voltages and source currents for the SRAM cell with no resistive 

hardening. Figure 116 shows the resulting node voltages and source currents when the 

SRAM cell is implemented with 10 kΩ feedback resistors and struck with the same 0.10 

pC/μm single event. These simulations are virtually the same. So, once the upset 

mechanism is dominated by well-collapse source-injection, feedback resistors do not 

provide any hardening. This type of upset is dependent on the source/body diode 

resistance to the well and is not dependent on the feedback resistance. 
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Figure 115. Node voltages and source currents for SRAM cell with no resistive feedback. 
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Figure 116. Node voltages and source currents for SRAM cell with 10kΩ resistive feedback. 
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CHAPTER X 

 

WELL-COLLAPSE MITIGATION APPROACHES 

 

The chapter briefly discusses a few approaches to mitigate the well-collapse 

source-injection mechanism. It is not a thorough review of mitigation techniques. Instead, 

it is an introduction to areas of further study. 

 

Improving Well Contact Single Event Current Supply 

One conclusion that can be reached from the epi-substrate versus non-epi-

substrate simulations is that a low resistive contact (epi-substrate) can keep the substrate 

potential pinned. It is the highly resistive well contact that enables the well potential to 

collapse. When the resistance to the well and substrate is equalized, the well potential 

decreases and the substrate potential increases, as in the non-epi-substrate simulations. 

From this, there are two methods to mitigate the well-collapse source-injection 

mechanism. 

The first method is to reduce the well contact resistance to all regions of the well. 

The bulk of the contact resistance was in the region where the well contact was implanted 

above the well. A layout option to reduce this resistance is to increase the well contact 

area, but that has some limitations. Increases in well contact area will reduce 

semiconductor layout area available for design elements, so it is not desirable to make 

well contacts too large. A processing option to reduce this resistance is to change the well 

contact design. It would be better to make the well contact virtually on top of the well, as 
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was the case with LOCOS isolation. Replacing the well contact with either a longer, 

highly doped region down into the well or with some kind of metal plug would serve this 

purpose. If the contact resistance down to the well can be significantly reduced, then the 

resistance through the well becomes the limiting factor. The highly doped substrate 

region provides low resistivity to all areas of the substrate. A highly doped region within 

the bottom part of the well could aid in reducing the well resistance per unit length. If the 

well contact resistance can be significantly reduced, then the well contact can supply 

most to all of the well/substrate p-n junction single event current. 

The second method is to follow the lightly doped substrate concept and make the 

contact resistance equivalent for the well and for the substrate. This can reduce the 

forward-bias current that is observed at the p+-sources, but may enable forward-bias 

current in the n+-sources outside the well. Nonetheless, the application of a lower doped 

substrate with a reduction in the operating voltage likely reduces the ability for the 

source/body junctions to forward-bias. The radiation challenge that this option adds is the 

potential for SEL. Allowing the well and substrate local voltages to modulate creates a 

sufficient condition for latchup. So, this would not be a desirable option for most 

radiation hardened designs. 

 

Using P+-Sources to Pin the N-Well Voltage 

A design hardening concept that was initially thought to be very effective against 

well-collapse source-injection was increasing the voltage connection on one of the p+-

sources in the n-well. In the SRAM array model, there were 12 p+-sources in the n-well, 

all biased at 1.2 V. If one of them is biased at 1.5 V, while the rest remain at 1.2 V along 
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with the well bias, then this one p+-source is much closer to forward-biasing than the 

rest. It was theorized that, during an ion strike that causes well-collapse, this source/body 

p-n junction would forward-bias earliest and pin the well potential, keeping the other p+-

sources from forward biasing. This had the advantage of overcoming the p+-source 

resistance to the well; however, it could not overcome the resistance down the well. A 

summary plot of the forward-bias currents for three different ion strikes normal to the 

semiconductor surface is shown in Figure 117. These data were for a charge deposition of 

0.20 pC/μm. The plot in Figure 118 is the same ion strikes given the case that the p+-

sources at -0.4 μm bias was altered to 1.5 V. The results for these simulations show that 

the increased source bias aids in restricting the region of the well-collapse source-

injection. The curves for ion strike at -4.0 and -2.0 μm shows less forward-bias current on 

the right side of the figure. The change in current is only a factor of two to three in this 

case, so this hardening approach does not seem too effective. However, this was not a 

complete analysis of the mitigation approach and there may other ways to “steer” the 

single event current away from critical circuit areas to designed single event current 

sources. 
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Figure 117. SRAM array forward-vias currents for three different ion strikes with all p+-sources at 1.2 V. 
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Figure 118. SRAM array forward-bias currents for three different ion strikes with p+-source at -0.4 μm 
biased at 1.5 V and the rest biased at 1.2 V. 
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Defining a SRAM Preferred Recovery State 

Since the recovery from the well-collapse source-injection mechanism is based 

upon the lowest resistance path to a p+-source, it is possible to design the SRAM cell to 

prefer one state over the other when subjected to this mechanism. The best way to do this 

is to increase the size of one pMOSFET with respect to the other. A significant size 

increase is not required since most of the resistance is from the bottom of the source to 

the top of the well. The SRAM cell will still flip due to direct charge collection, so the 

post-single event state of the SRAM cell may not always be the preferred state. However, 

if the dominant mechanism for MCUs is well-collapse source-injection, then the cells 

will recover to a preferred state. 

There are a couple of applications for a preferred recovery state. The first 

application is the case when error detection and correction is employed in the SRAM 

array. If one error type, for example, logic high to logic low, is much more likely, then 

error correcting codes can be defined to take advantage of that fact. This would have the 

potential of restricting the overhead associated with encoded bits or improve the error 

correcting ability of the SRAM array. The second application is the case when the need 

for SRAM storage is mostly one of the two states. If the SRAM is storing an image that is 

typically of a dark background, most of the SRAM storage may be logic low. For this 

situation, it would be best to have a preferred recovery state of logic low to reduce to 

overall error rate of the SRAM for this application.  
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CHAPTER XI 

 

SUMMARY 

 

The study of SRAM SEU mechanisms in this research project led to the 

identification of the well-collapse source-injection mechanism. This mechanism was 

encountered when charge collection in the well/substrate p-n junction exceeds what can 

be supplied by the well and/or substrate contacts. When this occurs, the single event 

current was supplied by p+-source/n-body junction diodes in the well or by n+-source/p-

body diodes in the substrate. The forward-bias condition injects minority carriers near the 

MOSFET drain that induces drain current. The SRAM cell recovery from well-collapse 

source-injection was defined by which p+-source had the lowest resistive path to the 

well/substrate charge collection.  

This research project developed many TCAD models to study the well-collapse 

source-injection mechanism. Early on it was determined that to examine MCU properties, 

it was important to model as many devices as possible. The concept of replacing the 

MOSFETs in the model with diodes enabled many more devices to be simulated in one 

model. It was this breakthrough that enabled the MCU properties of the well-collapse 

source-injection mechanism to be understood. 

Two SEU data sets for a 65-nm SRAM were analyzed for the well-collapse 

source-injection mechanism. TCAD modeling had indicated that ion strikes at high 

incident angles would demonstrate the mechanism better than low incident ion strikes. 

The TI data set from TAMU verified this result as well as provided many examples of 
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MCU patterns from the well-collapse source-injection mechanism. The patterns were 

complex, which meant that the patterns had to be hand analyzed. The second set of data 

was based upon SRAM bias voltage variations. It was shown that well bias voltage 

variations do not affect the upset cross section. However, increasing the SRAM VDD did 

significantly affect the observed upset cross section. The increase in the number of upsets 

was shown to be due to the well-collapse source-injection mechanism. 

There are many implications of the well-collapse source-injection mechanism. 

The primary implication is being able to identify and categorize MCU patterns in an 

SRAM array. This research has shown how this identification and categorization can be 

achieved. Beyond SRAM, the mechanism has implications in multiple node charge 

collection, SET pulse width generation, and low-voltage circuit operation. Within SRAM, 

the well-collapse source-injection mechanism can identify the bound for resistive 

hardening. The mechanism was shown not to depend upon the feedback resistance. 

As a final note, this research points out the importance of including all relevant 

structures in TCAD modeling. The SRAM cell model by itself is one of the largest 

TCAD models that can be simulated today. However, it was shown to be inadequate by 

itself to study the well-collapse source-injection mechanism or even study upsets due to 

diffusion charge collection. It is common practice in single event TCAD modeling to 

validate the meshing density and simulation time step. This research adds that models 

may need to include nearby sources to accurately model the supply of the single event 

current. Thus, TCAD modeling should validate whether nearby sources are necessary in 

the model to capture the observed behavior in actual devices.  
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