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CHAPTER I

INTRODUCTION

My dissertation focuses on the partial identi�cation of distribution function of

treatment e¤ects. When individuals bene�t di¤erently from a given program (i.e., when

treatment e¤ects are believed to be heterogeneous), policy evaluation often requires knowl-

edge of the distribution function of potential treatment e¤ects. These cannot be point-

identi�ed unless information is available on the dependence structure between the potential

outcomes with and without the treatment. At best, it can be partially identi�ed by �nding

the upper and lower bounds. This dissertation develops a new approach to the partial iden-

ti�cation and inference problem. Employing this approach for the evaluation of treatment

e¤ects expands the scope of the existing treatment e¤ects literature toward a more explicit

consideration of the heterogeneity of treatment e¤ects.

The �rst essay presents statistical inference tools that are used in later chapters.

It analyzes the inference problem for some partially identi�ed parameters initiated and

solved by Imbens and Manski (2004). Despite its beauty and simplicity, their solution

has two �aws: that it assumes the supere¢ ciency of the asymptotic distribution of the

estimator for each bound; and that it is applicable only to one-dimensional parameters.

Stoye (2007) solved the former problem by using the shrinkage estimators but left the second

unsolved. On the other hand, the general inference tools for parameters de�ned by moment

equalities and inequalities proposed by Andrews and Guggenberger (2007) are applicable to

high dimensional parameters but their con�dence sets are potentially conservative. In this

essay, we exploit the duality between hypothesis testing and the construction of con�dence

sets to derive new con�dence sets that are asymptotically uniformly valid under the same
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assumptions as in Stoye (2007) and Andrews and Guggenberger (2007). The con�dence

sets are generalizable to parameters de�ned by moment equalities and inequalities as in

Andrews and Guggenberger (2007), and, in addition, are non-conservative.

The second essay considers treatment e¤ects in the context of a randomized exper-

iment. Contrary to existing literature on the treatment e¤ects, whose interest is mainly the

identi�cation of the average treatment e¤ects (ATE), the parameter of interest in the second

essay is the distribution of treatment e¤ects. The ATE delivers insu¢ cient information on

the treatment e¤ects when treatment e¤ects are heterogeneous, which is the case in many

program evaluations (e.g., see Bitler, Gelbach, and Hoynes (1996)). We study the distribu-

tion of treatment e¤ects since it is one of the measures that can further our understanding

of heterogeneous treatment e¤ects. Without imposing a particular dependence structure

between the treated and control outcomes, however, the heterogeneity and unobservability

of individual treatment e¤ects preclude point-identi�cation of the distribution of the treat-

ment e¤ects. At best, it is possible only to identify pointwise sharp bounds in which the

true distribution lies.

In this essay, we examine partial identi�cation of the distribution of treatment

e¤ects, propose a nonparametric estimator for each bound, and derive the asymptotic dis-

tribution of the estimator. Due to the asymptotic distribution�s discontinuity on the model

parameters, the con�dence sets we proposed in the �rst essay are not directly applicable

here. In the second essay, therefore, we develop only the procedure for inference on each

bound and leave the inference on the true parameter for future work.

The discontinuity of the asymptotic distributions of the estimators for the bounds

of the distribution of treatment e¤ects has led our interest to the quantiles of the treatment

e¤ects. It should be recognized that the quantiles of treatment e¤ects (QTE) are di¤erent
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from the quantile treatment e¤ects (QTE) which are widely used in treatment e¤ects liter-

ature. The QTE is only a special case of the QTE where the treated and control outcomes

are assumed to exhibit the rank preservation property. However, this assumption is often

too restrictive and, sometimes, even, unrealistic. In the third essay, we focus on the quan-

tiles of treatment e¤ects which allow any dependence structure. Here, we show the bounds

for the quantiles of treatment e¤ects, propose nonparametric estimators, and provide their

asymptotic distribution. Since the limiting distribution of the estimators for the bounds is

asymptotically normal, the inference methods developed in the �rst essay are applicable to

the quantile of treatment e¤ects.

We also propose new methods of constructing con�dence intervals for the bounds

and the true quantiles. Contrary to conventional methods which require the estimation

of distribution density functions of the marginal distributions of the treated and control

outcomes, our new methods do not need that information. Monte Carlo simulations with

various marginal distributions show the new methods outperform other methods.

The fourth essay is an empirical study on treatment e¤ects in Project STAR.

Project STAR is a randomized experiment designed to investigate the e¤ects of class size

reduction (CSR) on students�performances. Based on data from this experiment, a sizable

literature has already emerged to examine the positive e¤ects of class size reduction (e.g.,

see Folger and Breda (1989), Nye, Hedges, and Konstantopoulos (1999), and Krueger and

Whitmore (2001)). However, most work in the existing literature considers only the ATE,

abstracting away from the possibility of heterogeneous treatment e¤ects. A notable excep-

tion is Ding and Lehrer (2005), who reject the homogeneous treatment e¤ects assumption

and use the QTE to study heterogeneous treatment e¤ects of Project STAR.

In this essay, I estimate the bounds for the QTE of CSR and examine the hetero-
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geneity of the program e¤ects. In addition to application of theories developed in previous

essays, I also propose methodology that allows partial identi�cation of the distribution of

treatment e¤ects conditional on pre-treatment outcomes. This methodology facilitates an-

swering the question of "who bene�ts and who loses." The results con�rm that: i) there

existed heterogeneity in the CSR e¤ects; ii) the pattern of heterogeneity in treatment e¤ects

might not be as simple as Ding and Lehrer (2005) asserted; iii) di¤erent subgroups might

have di¤erent patterns of heterogeneity in treatment e¤ects; iv) there could be students

who were actually worse o¤ due to the CSR.
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CHAPTER II

CONFIDENCE SETS FOR SOME PARTIALLY IDENTIFIED PARAMETERS

Introduction

Partial identi�cation of parameters of interest is common in many areas of eco-

nomics, see Manski (2003) for a survey in microeconometrics, Chernozhukov, Hong, and

Tamer (2007) (CHT henceforth) for an extensive list of examples in microeconomics, and

Moon and Schorfheide (2007) for examples in macroeconomics. The distribution and quan-

tile of the e¤ects of a binary treatment studied in Chapter III and IV for randomized exper-

iments and Fan and Wu (2007) for switching regimes models add to the already extensive

list of partially identi�ed parameters.

In the seminal paper of Imbens and Manski (2004) (IM henceforth), they proposed

con�dence intervals (CI) for interval identi�ed parameters that are asymptotically uniformly

valid under maintained assumptions. Since IM, numerous papers on inference for partially

identi�ed parameters have appeared in the literature. They can be classi�ed into two groups;

those based on re-sampling techniques such as subsampling and bootstrap; and those that

do not reply on re-sampling. The former includes Bugni (2006), CHT, Romano and Shaikh

(2005a,b) and the latter includes IM, Stoye (2007), Rosen (2005), Soares (2006), Beresteanu

and Molinari (2006), and Andrews and Guggenberger (2007) (AG (2007) henceforth). More

recently, Moon and Schorfheide (2007) present a Bayesian approach to this problem.

The simplicity of the CIs of Imbens and Manski (2004) and Stoye (2007) makes

them appealing, but their dependence on the speci�c structure of interval identi�ed para-

meters and the asymptotic normality of estimators of the lower and upper bounds on the
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true parameter makes them hard to generalize to parameters de�ned by general moment

equalities/inequalities. In a series of papers, Andrews and Guggenberger (2005a,b,c, 2007,

AG hereafter) developed several general methods of constructing uniform con�dence sets

(CS) in non-regular models. In AG (2007), they propose a simple plug-in asymptotic CS

(PA-CS) for parameters de�ned by moment equalities/inequalities. Compared with the sub-

sampling CS, AG (2007) showed that the PA-CS may be asymptotically conservative when

there are restrictions on moment inequalities such that if one moment inequality holds as

an equality, then another moment inequality can not be satis�ed as an equality. A notable

example of this is the interval identi�ed parameter case unless the true parameter is point

identi�ed. In contrast, the CIs of IM and Stoye (2007) take into account such restriction

and are not asymptotically conservative.

One contribution of the current chapter is to extend the CI of IM to parameters

de�ned by general moment equalities/inequalities. To do this, we �rst re-examine the set-up

of IM by using the general approach of constructing CSs by inverting a two-sided hypothesis

test for the true parameter. We obtain an asymptotically uniformly valid, non-conservative

CI by taking into account the restriction on the interval bounds and we show that it reduces

to that of IM when there exists a super-e¢ cient estimator of the length of the identi�ed

interval. We also show that the CI of Stoye (2007) can be obtained by inverting two

one-sided tests for the true parameter. Unlike the CI of Stoye (2007), our CI shares the

natural nesting property with that of IM, i.e., the CI with a larger nominal con�dence level

includes the CI with a smaller nominal con�dence level. As a by-product, we note that our

CI can be easily adapted to the case where estimators of the lower and upper bounds on

the true parameter are not asymptotically normally distributed, provided their asymptotic

distribution does not exhibit a discontinuity as a function of parameters of the model.
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For interval identi�ed parameters, the CI of Stoye (2007) and our new CI take

into account the restriction on the interval bounds by estimating the length of the iden-

ti�ed interval with a shrinkage estimator. To construct asymptotically non-conservative

CSs for parameters de�ned by general moment equalities/inequalities, we use shrinkage es-

timators of the so-called slackness parameters, one for each moment inequality. The value

of a slackness parameter reveals to what extent the correpsponding moment inequality is

binding. For interval identi�ed parameters, a weighted sum of the two slackness parameters

is identical to the length of the identi�ed interval and the use of shrinkage estimators of

the slackness parameters plays the same role as the use of a shrinkage estimator of the

length of the identi�ed interval. Compared with existing CSs for parameters de�ned by

moment equalities/inequalities, our CS is easy to implement; no re-sampling is required

and no optimization is involved.

We carried out a simulation study on interval data and applied our new con�dence

interval, that of Stoye (2007), and the PA-CS of AG (2007) to three arti�cially created DGPs

from the March 2000 wave of the Current Population Survey (CPS) data. The three DGPs

represent respectively the point identi�ed case, interval identi�ed case with a small interval

length, and interval identi�ed case with a large interval length. Our general �nding is that

our new con�dence interval and that of Stoye (2007) perform comparably, but the PA-CS of

AG (2007) can over-cover especially when the sample size is large. Moreover, the simulation

results support the theoretical �nding of Stoye (2007) and the current chapter, i.e., it is

essential to use the shrinkage estimator when the length of the identi�ed interval is zero or

small.

The rest of this chapter is organized as follows. In Section 2, we re-examine the case

of interval identi�ed parameters and construct a new CI for the true parameter by inverting a
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two-sided hypothesis test. In addition, we show that the CI of Stoye (2007) can be obtained

by inverting two one-sided tests. In Section 3, we extend our new CI for interval identi�ed

parameters to a CS for parameters de�ned by general moment equalities/inequalities and

show that it is asymptotically uniformly valid and non-conservative. Section 4 presents a

simulation study and Section 5 concludes. Technical proofs are presented in Appendix A

and some algebraic derivations are given in Appendices B and C.

Con�dence Intervals for Interval Identi�ed Parameters

Let �l � �0 � �u, where �0 = �0 (P ) is the object of interest which depends

on a probability distribution P ; P must lie in a set P that is characterized by ex ante

constraints. The bounds �l; �u are identi�ed, but �0 may not be. IM �rst introduced a

uniform con�dence interval (CI) for �0 under the assumption of asymptotic joint normality

of �̂l; �̂u and other assumptions, including super-e¢ ciency of the estimator of � � �u � �l,

where �̂l; �̂u are consistent estimators of �l; �u respectively. Stoye (2007) proposed a CI that

does not depend on the super-e¢ ciency condition used in IM.

Useful examples of partial identi�cation in some economic situations are illustrated

below starting with the examples in IM. Other examples of interval identi�ed parameters

include the two-sided mean/interval data example, the quantile/distribution of the treat-

ment e¤ects in Chapter III and IV, and the correlation coe¢ cient between the potential

outcomes in a Gaussian switching regimes model (SRM) in Vijverberg (1993).

Example 1 (Two-Sided Mean/Interval Data). The parameter of interest is

the population mean of a random variable Y , E (Y ). We do not observe the realizations

of Y , but rather we observe the realizations of two random variables YL; YU such that

P (YL � Y � YU ) = 1. Let fYLi; YUigni=1 be i.i.d. with the same distribution as fYL; YUg.
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Let �l = E (YL) and �u = E (YU ). Both �l and �u are point-identi�ed from the sample

information, but the parameter of interest �0 = E (Y ) is interval identi�ed unless �l = �u:

�l � �0 � �u. The estimators of the lower and upper bounds are given by �̂l = n�1
Pn
i=1 YLi

and �̂u = n�1
Pn
i=1 YLi.

Example 2 (Quantile of the Treatment e¤ects). We consider a binary treat-

ment and use Y1 to denote the potential outcome from receiving treatment and Y0 the

outcome without treatment. Let F1(�) and F0(�) denote the distribution functions of Y1 and

Y0 respectively. Let � = Y1 � Y0 denote the treatment e¤ects and F�(�) its distribution

function. Given the marginals F1 and F0, sharp bounds on the quantile function of the

treatment e¤ects � can be found in Williamson and Downs (1990), see also Chapter III.

Speci�cally, for 0 < p < 1, let �0 = F�1� (p),

�l = inf
u2[p;1]

[F�11 (u)� F�10 (u� p)]; and �u = sup
u2[0;p]

[F�11 (u)� F�10 (1 + u� p)]:

It is known that �l � �0 � �u. With randomized data, F1 and F0 are identi�ed and thus �l,

�u are identi�ed. Estimators of �l; �u can be constructed by replacing F1 and F0 with their

consistent estimators such as the empirical distributions in the above expressions.

Example 3 (Correlation Between the Outcomes). Consider the following

SRM:

Y1i = X 0
i�1 + U1i;

Y0i = X 0
i�0 + U0i;

Di = IfW 0
i
+�i>0g; i = 1; : : : ; n; (II.1)

where fXi;Wig denote individual i�s observed covariates and fU1i; U0i; �ig individual i�s

unobserved covariates. Here, Di is the binary variable indicating participation of individual
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i in the program or treatment; it takes the value 1 if individual i participates in the program

and takes the value zero if she chooses not to participate in the program, Y1i is the outcome

of individual i we observe if she participates in the program, and Y0i is her outcome if she

chooses not to participate in the program. For individual i, we always observe the covariates

fXi;Wig, but observe Y1i if Di = 1 and Y0i if Di = 0. The errors or unobserved covariates

fU1i; U0i; �ig are assumed to be independent of the observed covariates fXi;Wig. We also

assume the existence of an exclusion restriction, i.e., there exists at least one element of Wi

which is not contained in Xi.

The textbook Gaussian model assumes that fU1i; U0i; �ig is trivariate normal:0BBBBBB@
U1i

U0i

�i

1CCCCCCA � N

0BBBBBB@

0BBBBBB@
0

0

0

1CCCCCCA ;
0BBBBBB@

�21 �1�0�10 �l�1�

�1�0�10 �20 �0�0�

�l�1� �0�0� 1

1CCCCCCA

1CCCCCCA (II.2)

Based on the sample information alone, �10 is not identi�ed. Using the fact that the

covariance matrix of the errors is positive semi-de�nite, Vijverberg (1993) showed �L �

�10 � �U , where

�L = �1��0� �
q
(1� �21�)(1� �20�); �U = �1��0� +

q
(1� �21�)(1� �20�):

Note that �L and �U depend on the identi�ed parameters only and hence are themselves

identi�ed, but �10 is only interval identi�ed unless �L = �U . Estimators of �L; �U are

straightforward to construct once the parameters �1�; �0� are estimated by standard methods

including maximum likelihood or the two-step approach of Heckman.

While Example 1 falls in the framework of parameters de�ned by moment inequal-
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ities, Examples 2 and 3 do not.

Review of IM and Stoye (2007)

IM proposed a CI for �0 as follows:

CIIM �
�
�̂l �

c��̂lp
n
; �̂u +

c��̂up
n

�
;

where c� solves

�

 
c� +

p
n�̂

max f�̂l; �̂ug

!
� � (�c�) = 1� �: (II.3)

in which �̂ = �̂u � �̂l and �̂l; �̂u; �̂l; �̂u are de�ned in the following assumptions. These are

the assumptions under which IM show the uniform validity of CIIM .

Assumption IM (i) There are estimators �̂l; �̂u that satisfy

p
n

0BB@ �̂l � �l
�̂u � �u

1CCA) N

0BB@
0BB@0
0

1CCA ;
0BB@ �2l ��l�u

��l�u �2u

1CCA
1CCA

uniformly in P 2 P, and there are estimators
�
�̂2l ; �̂

2
u; �̂
�
that converge to their population

values uniformly in P 2 P.

(ii) For all P 2 P, �2 � �2l ; �2u � �2 for some positive and �nite �2 and �2, and

� � � <1.

(iii) For all � > 0, there are v > 0;K; and N0 such that n � N0 implies that

Pr
�p
njb���j > K�v� < �

uniformly in P 2 P.

Under Assumption IM (i)-(iii), IM showed that

lim
n!1

inf
�2�

inf
P :�0(P )=�

P (�0 2 CIIM) = 1� �,

11



i.e., CIIM is asymptotically uniformly valid (limn!1 inf�2� infP :�0(P )=� P (�0 2 CIIM) �

1� �); and non-conservative (limn!1 inf�2� infP :�0(P )=� P (�0 2 CIIM) = 1� �).

Stoye (2007) pointed out that Assumption IM (iii) is a super-e¢ ciency condition

on the estimator b� of the length of the identi�ed interval and may be violated in impor-

tant applications. In addition, Assumption IM (i)-(ii) and (iii) are mutually consistent for

sequences of distributions Pn such that �n ! 0 only if �2l ��2u ! 0 and �! 1 for all those

sequences. To relax Assumption IM (iii), Stoye (2007) proposed the following CI for �0 and

veri�ed its asymptotic uniform validity and non-conservativeness under Assumption IM (i)

and (ii) only:

CIS �

8>><>>:
h
�̂l � cl�̂lp

n
; �̂u +

cu�̂up
n

i
if �̂l � cl�̂lp

n
� �̂u + cu�̂up

n

? otherwise

;

where (cl; cu) minimize (cl�̂l + cu�̂u) subject to the constraint that

Z cl

�1
�

 
�̂p
1� �̂2

z +
cu�̂u +

p
n��

�̂u
p
1� �̂2

!
d� (z) � 1� �;

Z cu

�1
�

 
�̂p
1� �̂2

z +
cl�̂l +

p
n��

�̂l
p
1� �̂2

!
d� (z) � 1� �; (II.4)

if �̂ < 1 and

� (cl)� �
�
�cu�̂u +

p
n��

�̂u

�
� 1� �;

� (cu)� �
�
�cl�̂l +

p
n��

�̂l

�
� 1� �;

if �̂ = 1, in which �� is a shrinkage estimator of � de�ned as

�� =

8>><>>:
�̂ if �̂ > bn

0 if otherwise,

(II.5)

and bn is some pre-assigned sequence such that bn ! 0 and bn
p
n!1. As shown in Stoye

12



(2007), if Assumption IM (iii) holds, then CIS reduces to that of IM (2004) except that CIS

uses �� and CIIM uses �̂.

New Con�dence Interval for �0

The CIs of IM and Stoye (2007) are compositionally simple, but they rely heavily

on the asymptotic normality of
�
�̂l; �̂u

�
, i.e., Assumption IM (i), and the speci�c structure

of the identi�ed set [�l; �u] through the use of �̂ or ��, see e.g., (II.3) and (II.4). As pointed

out in Rosen (2005), Soares (2006), Pakes, Porter, Ho, and Ishii (2006) (PPHI henceforth),

and AG (2007), many economic models imply moment equality/inequality constraints on

parameters of interest and the identi�ed set for these parameters may not be of the simple

interval form.

In this subsection, we re-visit the issue of constructing CIs for interval identi�ed

parameter �0 by using the general approach of inverting a hypothesis test, aiming at un-

derstanding the roles played by the asymptotic normality of
�
�̂l; �̂u

�
and the estimator

of the length of the identi�ed interval. By taking into account the interval structure of

the identi�ed set for �0, we establish an asymptotically non-conservative CI and show its

uniform validity under Assumption IM (i) and (ii) only. Like Stoye (2007), we show that

our CI reduces to the CI of IM when supere¢ ciency holds. Unlike the CI of Stoye (2007),

our CI shares the natural nesting property with that of IM, i.e., CIs with a larger nominal

con�dence level include CIs with a smaller nominal con�dence level. More importantly,

this approach allows us to generalize the CI of IM to some asymptotically non-normally

distributed
�
�̂l; �̂u

�
and parameters de�ned by moment equalities/inequalities.

We follow the notation in AG (2007). So, 
1 = (
1l; 
1u) with 
1l = (� � �l) =�l

and 
1u = (�u � �) =�u, 
2 = (�; �), 
3 denotes the remaining parameters in P . The

13



parameter space is

� =

8>><>>:

 � (
1; 
2; 
3) : for some (�; P ) 2 P; where P is de�ned in Assumption IM (i) and (ii),


1l � 0; 
1u � 0; �u
1u + �l
1l = �;�1 � � � 1:

9>>=>>;
Noting that

�0 = argmin
�

(�
�l � �
�l

�2
+

+

�
�u � �
�u

�2
�

)
;

where (x)� = min fx; 0g, (x)+ = max fx; 0g, we use the test statistic Tn(�0) de�ned below

to construct CSs for �0:

Tn(�0) = n

 
�̂l � �0
�̂l

!2
+

+ n

 
�̂u � �0
�̂u

!2
�

: (II.6)

A 1� � CS for �0 is de�ned as

CSn = f� : Tn(�) � c1�� (�)g ;

where c1�� (�) is an appropriately chosen critical value to guarantee that CSn has uniform

asymptotic coverage rate of 1 � �. As discussed in AG (2007), other test statistics can be

used as well, but CSs based on them may not reduce to the CI of IM with super-e¢ ciency.

Let
�

!n;h : n � 1

	
�
��

!n;h;1; 
!n;h;2; 
!n;h;3

�
: n � 1

	
denote a sequence of pa-

rameters in � for which !
1=2
n 
!n;h;1 ! h1 � (hl; hu) ; 
!n;h;2 ! h2 � (h�; h�). De�ne

H =
�
(h1; h2) 2 R41 : 9 a subsequence f!ng of fng and a sequence

�

!n;h : n � 1

		
:

Let h = (h1; h2) and Jh denote the limiting distribution of Tn(�0) under
�

!n;h

	
. We show

in Appendix A that Jh is the distribution function of the random variable
�
Zl;h� � hl

�2
+
+

14



�
Zu;h� + hu

�2
�, where0BB@Zl;h�

Zu;h�

1CCA � N

0BB@
0BB@0
0

1CCA ;
0BB@ 1 h�

h� 1

1CCA
1CCA :

Since Jh depends on h2 only through h�, we use cv1�� (hl; hu; h�) to denote the

1�� quantile of Jh. Likewise we denote Jh as J(hl;hu;h�). We construct two CSs for �0 using

Jh corresponding to di¤erent values of h. The �rst one de�nes the critical value c1�� (�) in

CSn as cv1�� (0; 0; �̂). This is the analog of PA-CS introduced in AG (2007) for parameters

de�ned by moment equalities/inequalities. Speci�cally,

CIAG = f� : Tn(�) � cv1�� (0; 0; �̂)g :

We show in Appendix B that CIAG is in fact an interval, since cv1�� (0; 0; �̂) does not depend

on �. Note that hl � 0, hu � 0, and Jh is stochastically decreasing in hl; hu. It follows

that the PA-CS CIAG is asymptotically uniformly valid, but it is in general conservative, as

for any �, (hl; hu; �) = (0; 0; �) may not belong to H unless �l = �u. This is because hl; hu

satisfy �uhu + �lhl = lim (
p
n�). In the special case where �̂ = 1, J(0;0;1) is �2[1] and the

PA-CS CIAG reduces to the symmetric CI for the identi�cation region [�l; �u] �rst proposed

in Horowitz and Manski (2000):

�
�̂l �

z��̂lp
n
; �̂u +

z��̂up
n

�
;

see also (2) in IM, where z� is chosen such that

� (z�)� � (�z�) = 1� �:

An asymptotically non-conservative CI can be constructed by taking into account

15



the restriction: �uhu + �lhl = lim (
p
n�). De�ne

CIFP =
�
� : Tn(�) � c�1�� (�̂)

	
;

where

c�1�� (�̂) = max

�
cv1��

�
0;

p
n��

�̂u
; �̂

�
; cv1��

�p
n��

�̂l
; 0; �̂

��
; (II.7)

in which �� is the shrinkage estimator de�ned in (II.5).

Theorem 1 Suppose Assumption IM (i) and (ii) hold and 0 < � < 1=2. Then CIFP
satis�es limn!1 inf�2� infP :�0(P )=� Pr (�0 2 CIFP) = 1� �.

Similar to CIAG, CIFP is an interval, as c�1�� (�̂) does not depend on �. As shown

in Appendix B, if � = 1, then

Jh(x) � J(hl;hu;�) (x)

= �
�
hl +

p
x
�
� �

�
�hu �

p
x
�
:

Hence c�1�� (1) satis�es
1

�
�q

c�1�� (1)
�
� �

�
�
p
n��

�̂u
�
q
c�1�� (1)

�
� 1� �;

�

�p
n��

�̂l
+
q
c�1�� (1)

�
� �

�
�
q
c�1�� (1)

�
� 1� �;

or equivalently

�

� p
n��

max f�̂l; �̂ug
+
q
c�1�� (1)

�
� �

�
�
q
c�1�� (1)

�
= 1� �: (II.8)

It follows from (II.8) and the form of CIFP established in Appendix C that with super-

e¢ ciency or �̂ = 1, CIFP reduces to the uniform CI for �0 proposed in IM except that CIFP

uses ��, while IM uses �̂. In this sense, CIFP can be regarded as a natural extension of

1As explicitly stated in II.8, the critical values for IM in II.3 are comparable with
p
c�1�� (1) instead of

c�1�� (1).
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IM to the general case without super-e¢ ciency condition.

Remark. (i) It is easy to see that CIFP is nested; (ii) The asymptotic validity

of CIFP with c�1�� (�̂) de�ned in (II.7) does not depend on the asymptotic normality of�
�̂l; �̂u

�
, as long as the asymptotic distribution of

�
�̂l; �̂u

�
does not exhibit discontinuity

as a function of parameters in the model; (iii) The distribution of the treatment e¤ects in

Chapter III provides an example of interval identi�ed parameters for which the asymptotic

distribution of estimators of the sharp bounds exhibits discontinuity as a function of para-

meters in the model. Park (2007a) is working on an extension of CIFP to inference for the

distribution of the treatment e¤ects for randomized data.

CI of Stoye (2007) � Revisited

Instead of inverting a two-sided test, we can also invert two one-sided tests for H0.

For example, de�ne

Tnl(�0) = n

 
�̂l � �0
�̂l

!2
+

and Tnu(�0) = n

 
�̂u � �0
�̂u

!2
�

:

Then a CI for �0 can be de�ned as

CIS = f� : Tnl(�) � cl \ Tnu(�) � cug

=

�
� : �̂l �

p
cl
�̂lp
n
� � � �̂u +

p
cu
�̂up
n

�
; (II.9)

where cl; cu are chosen to guarantee the correct level of coverage.2 (II.9) reveals that CIS

is of the same form as the CI proposed by Stoye (2007). Note that under
�

!n;h

	
,0BB@Tnl(�0)

Tnu(�0)

1CCA)

0BB@
�
Zl;h� � hl

�2
+�

Zu;h� + hu
�2
�

1CCA :
2We changed the de�nition of cl and cu in (II.4) to be consistent with other parts in the chapter. As a

result, cl and cu in (II.4) are
p
cl and

p
cu here. We will use

p
cl and

p
cu hereafter.
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We obtain

lim
n!1

inf
�2�

inf
P :�0(P )=�

Pr
�
�0 2 CIS

�
= inf

H
Pr
�
Zl;h� � hl +

p
cl \ Zu;h� � �hu �

p
cu
�

= inf
h�
min

8>><>>:
Pr
�
Zl;h� �

p
cl \ Zu;h� � �

p
n�
�u

�pcu
�
;

Pr
�p

n�
�l

+ Zl;h� �
p
cl \ Zu;h� � �

p
cu

�
9>>=>>;

= inf
h�
min

8>><>>:
�
�p
cu +

p
n�
�u

�
� �

�
�pcl;

p
cu +

p
n�
�u
;h�

�
;

�
�p
cu
�
� �

�
�pcl �

p
n�b�l ;pcu;h�

�
9>>=>>; (II.10)

where

� (x; y; �) =

Z y

�1

Z x

�1

1

2�
p
1� �2

exp

�
�1
2

�
s2 � 2�st+ t2

1� �2

��
dsdt:

The second equality follows from concavity of Pr
�
Zl;h� � hl +

p
cl \ Zu;h� � �hu �

p
cu
�

expressed as a function of hl (Stoye 2007).

To determine cl and cu, we minimize the length of the CIS : �̂u
p
cu + �̂l

p
cl + �̂

such that

min

8>><>>:
Pr
�
Zl;�̂ �

p
cl \ Zu;�̂ � �

p
n��b�u �pcu

�
;

Pr
�p

n��b�l + Zl;�̂ �
p
cl \ Zu;�̂ � �

p
cu

�
9>>=>>;

= min

8>><>>:
�
�p
cu +

p
n��b�u

�
� �

�
�pcl;

p
cu +

p
n��b�u ; �̂

�
;

�
�p
cu
�
� �

�
�pcl �

p
n��b�l ;

p
cu; �̂

�
9>>=>>;

= 1� �:

It can be easily shown that this leads to the same CI as that of Stoye (2007).

Parameters De�ned by Moment Equalities/Inequalities

We follow the notation of AG (2007). Suppose there exists a true value �0 that
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satis�es the moment conditions:

Emj (Wi; �0) � 0 for j = 1; :::; p and (II.11)

Emj (Wi; �0) = 0 for j = p+ 1; :::; p+ v;

where fmj (�; �) : j = 1; :::; p+ vg are known real-valued moment functions and fWi : i � 1g

are observed i.i.d. random vectors3 with joint distribution P . The true value �0 is not

necessarily point identi�ed, but the moment equalities/inequalities in (II.11) restrict the set

of values of �0, referred to as the identi�ed set of �0. In many economic/econometric models,

the parameters of interest are de�ned by a �nite number of moment equalities/inequalities

in (II.11). One widely studied example of partially identi�ed models in microeconometric

literature is an entry game, see Bresnahan and Reis (1991), Berry (1992), Tamer (2003),

and Ciliberto and Tamer (2004). In the simple version with only two players, depending

on the entry decision of the second �rm, Firm 1 either does not enter market, or operates

as monopolist, or operates as duopolist. Assuming that the outcome of the entry game

in each market is a pure strategy Nash equilibrium, it is straightforward to show that the

Nash equilibrium is unique, except when both �rms are pro�table as monopolist but not

as duopolist. In the latter case, the model is silent about which �rm actually enters the

market. As a result, it only delivers bounds for the probability of observing a particular

monopoly.

Example 5 (Simultaneous Entry Game) Let Yj be the player j�s entry de-

cision for j = 1; 2. Yj = 1 if the stochastic payo¤ function �j (Yj ; Y�j) > 0; 0 oth-

erwise. Let�s assume a simple linear payo¤ function, that is, �j (Yj ; Y�j) = Xj�j �

djY�j + vj , E [vj jXj ; X�j ] = 0, and dj > 0: Then, because there exist multiple equilib-

3The i.i.d. assumption is made for ease of exposition. This can be relaxed, see AG (2007).
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ria, E [Y1 (1� Y0) jX1; X2] = P (Y1 = 1; Y0 = 0jX1; X2) is partially identi�ed i.e.

P(1;0)L � P (Y1 = 1; Y0 = 0jX1; X2) � P(1;0)U

where

P(1;0)L = P (v1 > �X1�1 + d1; v2 � �X2�2 + d2)

+P (�X1�1 < v1 � �X1�1 + d1; v2 � �X2�2) ;

P(1;0)U = P (v1 > �X1�1; v2 � �X2�2 + d2) :

Similar bounds can be construct for E [Y1 (1� Y0) jX1; X2] = P (Y1 = 0; Y0 = 1jX1; X2) :

Another example is that of regression models with interval outcomes in Manski

and Tamer (2002) . Additional examples can be found in the references in the Introduction.

Example 6 (Regression Models with Interval Outcomes) Suppose a re-

gressor vector Xi is available and the conditional mean of unobserved Yi is modeled using

the linear function X 0
i�. It is known that P (YLi � Yi � YUi) = 1. The parameter � satis�es

E [YLijXi] � X 0
i� � E [YUijXi] :

These conditional restrictions imply the inequalities

E [YLiZi] � �0E [XiZi] � E [YUiZi] ; (II.12)

where Zi is a vector of positive transformations of Xi, see CHT (2007). Let Zi be of

dimension q. This falls in the moment inequality framework of (II.11) with p = 2q; v = 0,

see also CHT (2007), AG (2007), and Beresteanu and Molinari (2006).

In general, the identi�ed set for �0 de�ned in (II.11) does not have a simple interval

structure, preventing CIFP and CIS from being directly applicable. The purpose of this

section is to extend CIFP to �0 in (II.11) and clarify its relation to existing non-resampling
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based CSs in Rosen (2005), Soares (2006), PPHI (2006), and AG (2007).

Let

m (Wi; �) = (m1 (Wi; �) ; :::;mk (Wi; �)) ;

where k = p+v. We make the same assumptions as AG (2007) and refer the reader to their

paper for details. De�ne 
1 =
�

1;1; :::; 
1;p

�0 2 Rp+ by writing the moment inequalities in
(II.11) as moment equalities:

��1j (�)Emj (Wi; �)� 
1;j = 0 for j = 1; :::; p;

where �2j (�) = V ar (mj (Wi; �)). Moon and Schorfheide (2007) refer parameters 
1;j ; j =

1; ::; p to as the slackness parameters. Let

Tn (�) = n

pX
j=1

�
mn;j (�)

�̂n;j (�)

�2
�
+ n

p+vX
j=p+1

�
mn;j (�)

�̂n;j (�)

�2
;

where �̂2n;j (�) is a consistent estimator of �
2
j (�). Let 
 = 
(�) = Corr (m (Wi; �)).

Let 
2 =
�

2;1; 
2;2

�
= (�; vech� (
)), where vech� (
) denotes the vector of ele-

ments of 
 that lie below the main diagonal, and 
3 the remaining parameters in the model.

AG (2007) showed that under the local sequence
�

!n;h

	
,

Tn (�) =) Jh �
pX
j=1

�
Zh2;2;j + h1

�2
� +

p+vX
j=p+1

�
Zh2;2;j

�2
;

where h = (h1; h2) in which h1 = lim
�
!
1=2
n 
!n;h;1

�
and h2 � (h2;1; h2;2) = lim

�
!
1=2
n 
!n;h;1

�
,

Zh2;2 =
�
Zh2;2;1; :::; Zh2;2;k

�0 � N �0k;
h2;2� and 
h2;2 can be consistently estimated by

̂n (�) = D̂

�1=2
n (�) �̂n (�) D̂

�1=2
n (�)
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with D̂n (�) = Diag
�
�̂n (�)

�
and

�̂n (�) = n
�1

nX
i=1

(m (Wi; �)�mn (�)) (m (Wi; �)�mn (�))
0 :

Let cv1�� (h1; h2) denote the 1 � � quantile of Jh. Note that two types of para-

meters appear in Jh: h1 and h2;2 or 
h2;2 . To ease the exposition, we rewrite cv1�� (h1; h2)

as a function of h1 and 
h2;2 : cv1��
�
h1;
h2;2

�
. Although 
h2;2 can be consistently esti-

mated, h1 can not. To circumvent this problem, AG (2007) proposed a PA-CS for �0 by

using the critical value cv1��
�
0; 
̂n (�)

�
. They show that the PA-CS is not asymptotically

conservative provided there are no restrictions on the moment inequalities such that sat-

isfaction of one inequality as an equality implies violation of another. But as they noted,

such restrictions do arise in some examples, including the two-sided mean example and

regression models with interval outcome data. In these examples, the vector of slackness

parameters 
1 is restricted to be in a subset of R
p
+. For example, for the two-sided mean

or interval identi�ed parameters, 
1 2 f
1l � 0; 
1u � 0; �u
1u + �l
1l = �g � R2+ unless

� = 0. Provided �0 is not point identi�ed, the restriction: �u
1u + �l
1l = �; implies that

if one inequality is satis�ed as an equality, e.g., 
1l = 0, then the other inequality can not

be satis�ed as an equality, as 
1u = �=�u > 0. By taking into account this speci�c struc-

ture or restriction on the moment inequalities, the CI we constructed for interval identi�ed

parameters are not asymptotically conservative. However, it does not allow for a straight-

forward generalization to the case characterized by general moment equalities/inequalities,

as there is no such simple characterization of restrictions of this type. Instead we propose

the following remedy: for j = 1; :::; p; we de�ne


�1;j (�) =

8>><>>:
mn;j(�)
�̂j(�)

if mn;j (�) > bn

0 otherwise
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Let 
�1 (�) =
�

�1;1 (�) ; :::; 


�
1;p (�)

�
and de�ne

CSMC =
n
� : Tn(�) � cv1��

�p
n
�1 (�) ; 
̂n (�)

�o
;

Theorem 2 Under the same assumptions as Theorem 2 (a) of AG (2007), we have

lim
n!1

inf
�2�

inf
P :�0(P )=�

Pr (�0 2 CSMC) = 1� �:

It is interesting to observe that the CSs of Rosen (2005), Soares (2006), PPHI

(2006), and the PA-CS of AG (2007) are all4 based on cv1��
�
h1; 
̂n (�)

�
except that

they use di¤erent values of h1: The CS of PPHI (2006) and the PA-CS of AG (2007)

use cv1��
�
0; 
̂n (�)

�
and are asymptotically conservative when there are restrictions on

the moment inequalities such that satisfaction of one inequality as an equality implies vio-

lation of another; Rosen (2005) and Soares (2006) use cv1��
�
0; ::; 0;1; ::;1; 
̂n (�)

�
with

p� zeros, where p� is an upper bound on the number of binding inequality constraints in

Rosen (2006) and p� is the number of binding moment inequalities chosen via some mo-

ment selection criterion in Soares (2006). It is thus expected that the CS of Soares (2006)

is less conservative than those of Rosen (2005), PPHI (2006), and the PA-CS of AG (2007).

However, as Soares (2006) pointed out, this procedure may be compositionally intensive

depending on the dimension of �.

Interval-Identi�ed Parameters. Instead of estimating � = �u � �l by the

shrinkage estimator ��, we estimate 
1l and 
1u by shrinkage:


�1l =

8>><>>:
���̂l
�̂l

if � � �̂l > bn

0 otherwise

; 
�1u =

8>><>>:
�̂u��
�̂u

if �̂u � � > bn

0 otherwise

:

An alternative CS for �0 can be de�ned as follows:

CSIP =
�
� : Tn(�) � cv1��

�p
n
�1l;

p
n
�1u; �̂

�	
:

4Rosen (2005) uses a di¤erent test statistic from Tn (�).
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Note that the use of shrinkage estimators 
�1l and 

�
1u in CSIP automatically takes into

account the restriction on the moment inequalities. To see this, suppose 
1l = 0 so that

� = �l. This implies 
1u = � > 0 unless � = 0. For large enough samples, � � �̂l would

be smaller than bn and thus, 
�1l = 0. In contrast, 
�1u would approach �=�u. At the

boundaries, the two CSs: CIFP and CSIP behave similarly.

Regression Models with Interval Outcomes. In addition to CSMC, if q = 1,

we can also extend CIFP to �0. Let Wi = (YLi; YUi; Xi; Zi),

m1 (Wi; �) = �
0 [XiZi]� YLiZi; m2 (Wi; �) = YUiZi � �0 [XiZi] :

Let 0BB@Z1;�
Zu;�

1CCA) N

0BB@
0BB@0
0

1CCA ;
0BB@ �2l (�) �l (�)�u (�) � (�)

�l (�)�u (�) � (�) �2u (�)

1CCA
1CCA

and Jh denote the distribution function of the random variable (Zl;� � hl)2+ + (Zu;� + hu)
2
�

with � = � (�). Note that � � mu (�) �ml (�) = E [YUiZi] � E [YLiZi] is point identi�ed

and can be consistently estimated by

�̂ =
1

n

nX
i=1

(YUi � YLi)Zi:

This can be taken into account to construct a CS for �0 that is not asymptotically conser-

vative. Let cv1�� (h) denote the 1� � quantile of Jh. Note that the CS in AG (2007) uses

the critical value cv1�� (0; 0; �̂ (�)), where

�̂ (�) =
n�1

Pn
i=1 [mli (�)�ml (�)] [mui (�)�mu (�)]

�̂l (�) �̂u (�)
:
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We propose to use:

c1�� (�) = sup
0�hl�

p
n��
�̂l(�)

cv1��

�
hl;

p
n�� � �̂l (�)hl

�̂u (�)
; �̂ (�)

�
; (II.13)

in which �� is a shrinkage estimator of � de�ned as

�� =

8>><>>:
�̂ if �̂ > bn

0 otherwise

:

Numerical Studies

In this section, we �rst present a numerical comparison of the critical values of �ve

CIs at 0.95 nominal level: CIFP, CIS, CIAG, and CIIM , and then present some results from

a small-scale simulation study on the �nite sample performance of CIFP, CIS, and CIAG.

Computation and Comparison of Critical Values

We recall that CIFP uses c�1�� (�) in (II.7):

c�1�� (�̂) = max

�
cv1��

�
0;

p
n��

�̂u
; �̂

�
; cv1��

�p
n��

�̂l
; 0; �̂

��
;

where cv1�� (hl; hu; �) is the 1 � � quantile of Jh for a given h = (hl; hu; �) and Jh is the

distribution function of the random variable, (Zl;� � hl)2+ + (Zu;� + hu)
2
�.

We �rst show that

c�1�� (�̂) =

8>><>>:
cv1��

�p
n��

�̂l
; 0; �̂

�
if �̂l � �̂u

cv1��
�
0;
p
n��

�̂u
; �̂
�
if �̂l < �̂u

: (II.14)

From the symmetry of the joint distribution of (Zl;�; Zu;�), it follows that the random

variables (Zl;�)
2
++
�
Zu;� +

p
n�
�u

�2
�
and

�
Zl;� �

p
n�
�u

�2
+
+(Zu;�)

2
� have the same distribution
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function. But (�
Zl;� �

p
n�

�l

�2
+

+ (Zu;�)
2
�

)
�
(�

Zl;� �
p
n�

�u

�2
+

+ (Zu;�)
2
�

)

=

�
Zl;� �

p
n�

�l

�2
+

�
�
Zl;� �

p
n�

�u

�2
+

� 0 a.s. if �l � �u; � 0 a.s. if �l < �u,

implying (II.14).

So to compute c�1�� (�), we just need to compute cv1��
�p

n��b�l ; 0; �̂
�
or cv1��

�
0;
p
n��b�u ; �̂

�
depending on which of �̂l; �̂u is larger. One method for computing cv1�� (h) for a given

h is by simulation. Alternatively, one can invert Jh numerically. In Appendix B, we show

that for j�j < 1;

Jh(x) � J(hl;hu;�) (x)

= �
�
hl +

p
x
�
�
Z hl+

p
x

�1
�

0@��z + hu +
q
x� (z � hl)2+p
1� �2

1A d� (z) ;
If � = 1; then

Jh(x) = �
�
hl +

p
x
�
� �

�
�hu �

p
x
�
;

Let hmax = max fhl; hug and hmin = min fhl; hug. If � = �1, then

Jh(x) =

8>><>>:
� (hmin +

p
x) if x � (hmax � hmin)2

�

�
hmax+hmin+

p
2x�(hmax�hmin)2
2

�
if (hmax � hmin)2 < x

:

For any �xed x, the value of Jh(x) can be computed numerically using the above expressions.

We have written a Gauss program for computing c�1�� (�̂) which is available upon request.

The CIs: CIAG and CIHM are respectively based on cv1�� (0; 0; �) and
p
cv1�� (0; 0; 1).

In Figure 1, we plotted
p
cv0:95 (0; 0; �) against � 2 [�1; 1]. We note that

p
cv0:95 (0; 0; �)

decreases as � increases and approaches to ��1 (1� �=2) = 1:96 as � ! 1: But for small
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values of �, cv1�� (0; 0; �) can be much larger than cv1�� (0; 0; 1).

Figure 1.
p
cv0:95 (0; 0; �) and ��1 (0:975)

In Figure 2, we plotted the critical values in CIFP, CIS, and CIIM against
p
n�=max f�l; �ug

for � = �0:4; 0; 0:4; 1.

The critical values for CIFP and CIIM depend on �l; �u through
p
n�=max f�l; �ug

only. But the critical value of CIS also depends on the values of �l; �u. We chose two sets

of values:
�
�2l ; �

2
u

�
= (2; 2) and

�
�2l ; �

2
u

�
= (1; 2). When �2l = �

2
u, Stoye�s lower and upper

critical values are the same. They are denoted as Stoye. When �2l 6= �2u, they di¤er and are

denoted as StoyeL and StoyeU respectively. In the graphs, StoyeL > StoyeU for all of the

settings.

Several interesting conclusions can be made based on Figure 2. First, when

p
n�=max f�l; �ug > 2:5, all the critical values become almost identical to ��1 (1� �) =

1:645. Second, when
p
n�=max f�l; �ug is small, the critical values for di¤erent CIs di¤er

and the di¤erence becomes larger as � approaches to �1. Third, when � is positive and
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Figure 2. Comparison of Critical Values

�l = �u, the critical values of CIIM and CIS are numerically indistinguishable. Lastly, when

� = 1, the critical values of CIFP and CIIM coincide and they coincide with that of CIS if

�l = �u. But if �l 6= �u; the critical values of CIS di¤er from that of CIFP or CIIM .

Simulation: Population Mean with Interval Data

We apply CIFP, CIS, and CIAG to the example of two-sided mean or interval

data. Like CHT (2004) and Beresteanu and Molinari (2006), we use the March 2000 wave

of the Current Population Survey (CPS) data. The variable Y is the logarithm of wages
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and salaries of white men ages 20 to 50 only. The �population�of study consists of 13290

observations summarized in Table 1.

Table 1. Summary Statistics of DGP1: CPS Data
Variable # of Values Mean Std Dev Min Max
exp (Y ) (wages and salaries, in $) 13290 66943:2 52465:0 1 513472
Y 13290 4:539 0:985 0 5:711

In the simulation, the �population�or DGP consists of population values of the

lower bound YL and the corresponding values of the upper bound YU : From this DGP, we

draw random samples of sizes n = 500; 1000; 2000; 8000 respectively denoted as fYLi; YUigni=1.

The estimators of the lower and upper bounds are given by �̂l = n�1
P
i YLi and �̂u =

n�1
P
i YLi.

We considered three DGPs designed to shed light on the performance of CIFP,

CIS, and CIAG in three typical cases: point-identi�ed case, interval identi�ed case with

a small �, and interval identi�ed case with a large �. For point identi�ed case, the

DGP (DGP1) is the CPS data set, from which we draw two types of random samples

fYLi; YUigni=1; one with YLi = YUi = Yi for i = 1; :::; n and the other with fYLigni=1; fYUig
n
i=1

being independent. For interval identi�ed case with small �, the DGP (DGP2) consists of

the logarithms of the bracketed wages and salaries data in CHT (2004) and Beresteanu

and Molinari (2006). There are 16 brackets: the values of YL and YU are the loga-

rithms of the bracketed wages and salaries. These brackets are (written in thousand $):

[0:001; 5] ; [5; 7:5] ; [7:5; 10] ; [10; 12:5] ; [12:5; 15] ; [15; 20] ; [20; 25] ; [25; 30] ;

[30; 35] ; [35; 40] ; [40; 50] ; [50; 60] ; [60; 75] ; [75; 100] ; [100; 150] ; [150; 100000] :For large

�, we combined the �rst eight brackets into one: [0:001; 30] and the last eight into the other

one: [30; 100000] and the DGP (DGP3) consists of the logarithms of the two bracketed wages

and salaries. The summary statistics of [YL; YU ] for the latter two DGPs are presented in
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Table 2.

Table 2. Summary Statistics of DGP2 and DGP3
Brackets Variable # of Values [�l; �u] [�l; �u] � �

16 [YL; YU ] 13290 [4:4409; 4:9059] [1:10; 0:861] 0:495 0:4650

2 [YL; YU ] 13290 [3:5283; 7:2534] [1:830; 1:440] 1:0 3:7251

The length of the identi�ed interval � in the 16 bracket case is eight times smaller

than that of the 2-bracket case. Moreover, the magnitude of � in the 16 bracket experiment

is almost half of �l and �u. So, �l and �u in the 16 bracket case are close enough for us to

expect bn to play a role at least in small samples. In contrast, in the two bracket case, � is

large almost twice of max f�l; �ug.

To implement CIFP and CIS, we need to choose bn. We used bn = s:d:
�
�̂
�
c= ln (n)

with c 2 f0; 3:5; 4g. When c = 0, bn = 0 which does not satisfy our conditions on bn in

Theorem 1. We chose this bn to illustrate two points. First, when the parameter �0 is point

identi�ed or when � is small, it�s possible that �̂l is larger than �̂u in which case, the e¤ect

of using the shrinkage estimator with bn = 0 is to replace negative �̂�s with zero; Second,

when � is large enough, the shrinkage estimator with bn = 0 is the same as the original

estimator and in this case, we�ll observe the performance of CIFP and CIS using the original

estimator �̂. When c = 3:5; 4, bn satis�es the conditions of Theorem 1, CIFP and CIS are

uniformly asymptotically valid and non-conservative in all cases.

Throughout the simulation, we used � = 0:05 and 2000 replications. We compare

the �nite sample performance of CIFP, CIS, and CIAG via their minimum coverage rates

referred to as �nite sample con�dence sizes, see AG (2007). Given that their asymptotic

con�dence sizes are achieved at either �l (hl = 0) or �u (hu = 0), we report the respective

coverage rates of CIFP, CIS, and CIAG for � = �l; �u.
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Point-Identi�ed Case

We �rst present results for YLi = YUi for i = 1; ::; n. In this case, �̂l = �̂u, so �̂ = 0

and all three CIs are the same given by:

CIn =

�
�̂l �

1:96�̂lp
n
; �̂l +

1:96�̂lp
n

�
:

This is also the CI of IM and Horowitz and Manski (2000).

Table 3. Summary Statistics for CIn
n CR(�0) Width

500 0:9485 0:1720

1000 0:9525 0:1219

2000 0:950 0:0861

8000 0:9520 0:0431

Its coverage rates denoted by CR(�0) and width over 2000 simulations are reported

in Table 3. As expected, the coverage rate is very close to the nominal level (0:95) for all

sample sizes considered.

In the second experiment, fYLigni=1 6= fYUig
n
i=1, even though E [YLi] = E [YUi]. In

this case, �̂ may not be exactly zero. In fact, it is possible that �̂ is negative. Since we

drew random samples fYLig and fYUig independently, we would expect this to happen at

about 50% of the simulations. In Table 4, we presented the proportion of simulations with

�̂ < bn denoted by P (��). This is the proportion of simulations in which the shrinkage

estimator �� plays a role. When c = 0, P (��) shows the proportion of simulations with

negative �̂. It is about 0.5 for all sample sizes. In addition, we reported the coverage rates

and width of each CI based on each value of bn together with the average of
p
c1�� denoted

as Avg(
p
c1��)5.

Several conclusions emerge from Table 4: First, the con�dence sizes of all three

5For CSSn , we provide
�p
cl;1��;

p
cu;1��

�
which correspond (cl;1��; cu;1��) in the original Stoye�s nota-

tion.
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Table 4. Summary Statistics when � = 0
n c P (��) Avg(

p
c1��) CR(�0) Width

500 CIS 0 0:497 (1:8487; 1:8268) 0:9495 0:1619
(3:5; 4) 1 (1:9553; 1:9558) 0:9495 0:1722

CIFP 0 0:497 1:9087 0:9480 0:1701
(3:5; 4) 1 2:0569 0:9480 0:1833

CIAG 2:0569 0:9480 0:1833

1000 CIS 0 0:4945 (1:8476; 1:8318) 0:9425 0:1146
3:5; 4 1 (1:9546; 1:9555) 0:9435 0:1218

CIFP 0 0:4945 1:9110 0:9430 0:1206
(3:5; 4) 1 2:0569 0:9445 0:1298

CIAG 2:0569 0:9445 0:1298

2000 CIS 0 0:496 (1:8459; 1:8323) 0:9455 0:0806
(3:5; 4) 1 (1:9551; 1:9547) 0:9455 0:0857

CIFP 0 0:496 1:9101 0:9425 0:0849
(3:5; 4) 1 2:0569 0:9425 0:0915

CIAG 2:0569 0:9425 0:0915

8000 CIS 0 0:499 (1:844; 1:833) 0:9470 0:0404
(3:5; 4) 1 (1:9547; 1:9549) 0:9470 0:0430

CIFP 0 0:499 1:9087 0:9480 0:0425
(3:5; 4) 1 2:0568 0:9480 0:0458

CIAG 2:0568 0:9480 0:0458

CIs are almost the same for all sample sizes and are close to the nominal level, ranging from

0.9421 to 0.9495; Second, the coverage rates of each of CIFP and CIS are almost the same

across the three values of c. The one with c = 0 shows slightly narrower CI than c = 3:5; 4;

Third, CIFP with c = 3:5; 4 is the same as CIAG, as P (��) = 1 in both cases; Fourth, the

critical values in this case are no longer 1.96 as in the case fYLigni=1 = fYUig
n
i=1, as � = 0

in this case.

Interval-Identi�ed Case

Sixteen Brackets: Small � The coverage rates for �l and �u along with some summary

statistics are presented in Table 5.

In sharp contrast to the point identi�ed case, the con�dence sizes of CIFP and CIS

in this case di¤er signi�cantly for c = 0 and c = 3:5; 4. Note that when c = 0, P (��) = 0;
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Table 5. Summary Statistics for 16 Brackets
n c P (��) Avg(

p
c1��) Width CR(�l) CR(�u)

500 CIS 0 0 (1:6449; 1:6449) 0:6082 0:9235 0:9360
(3:5; 4) 1 (1:9024; 2:0263) 0:6353 0:9550 0:9725

CIFP 0 0 1:6449 0:6082 0:9235 0:9360
(3:5; 4) 1 1:9759 0:6371 0:9595 0:9655

CIAG 1:9759 0:6371 0:9595 0:9655

1000 CIS 0 0 (1:6449; 1:6449) 0:5653 0:9230 0:9340
3:5; 4 1 (1:9020; 2:0260) 0:5845 0:9535 0:9715

CIFP 0 0 1:6449 0:5653 0:9230 0:9340
(3:5; 4) 1 1:9760 0:5857 0:9570 0:9630

CIAG 1:9760 0:5857 0:9570 0:9630

2000 CIS 0 0 (1:6449; 1:6449) 0:5367 0:9335 0:9370
3:5 0:4655 (1:7641; 1:8228) 0:5429 0:9515 0:9625
4 1 (1:9015; 2:0263) 0:5503 0:9570 0:9685

CIFP 0 0 1:6449 0:5367 0:9335 0:9370
3:5 0:4655 1:7990 0:5433 0:9570 0:9580
4 1 1:9761 0:5512 0:9640 0:9630

CIAG 1:9761 0:5512 0:9640 0:9630

8000 CIS (0; 3:5; 4) 0 (1:6449; 1:6449) 0:5013 0:9450 0:9435
CIFP (0; 3:5; 4) 0 1:6449 0:5013 0:9450 0:9435
CIAG 1:9761 0:5086 0:9720 0:9705

so the shrinkage estimator didn�t play any role in CIFP and CIS. Comparing the con�dence

sizes of CIFP and CIS for c = 0 and c = 3:5, we see clearly the role played by the shrinkage

estimator ��: When c = 0, P (��) = 0 and both CIFP and CIS under cover except when

n = 8000, but when c = 3:5; P (��) = 1 for n = 500; 1000 and P (��) = 0:4655 for

n = 2000, the con�dence sizes of both CIFP and CIS are closer to 0.95. When c = 4;

P (��) = 1 for n = 500; 1000; 2000 and the con�dence size of CIFP is the same as that of

CIAG. When n = 8000; P (��) = 0 for all c and the con�dence size of both CIFP and CIS

is 0:9435 as opposed to 0:9705 for CIAG, con�rming the non-conservative nature of CIFP

and CIS. In general the width of CIFP is slightly larger than that of CIS.

It is very interesting to compare the con�dence sizes of CIFP for c = 0 across

n. For all n, CIFP for c = 0 uses the one-sided critical value ��1 (1� �). But when

n = 500; 1000; 2000,
p
n� is not large enough for the asymptotics to take e¤ect leading
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to smaller con�dence size. In contrast, when n = 8000,
p
n� is large enough leading to

the con�dence size of 0:9435, the same as the con�dence size for c = 3:5; 4. These results

demonstrate clearly the role of c or bn when
p
n� is not large enough (see n = 500, e.g.):

increase the critical values so as to correct the con�dence size. When
p
n� is large enough,

c or bn is no longer e¤ective and the asymptotics kick in.

Two Brackets: Large � In this case,
p
n� is large enough for all sample sizes considered

and bn does not play any role, i.e., P (��) = 0 for all c and all sample sizes.

Table 6. Summary Statistics for Two Brackets
n Avg(

p
c1��) Width CR(�l) CR(�u)

500 CIS (1:6449; 1:6449) 3:9655 0:9435 0:9580
CIFP 1:6449 3:9655 0:9435 0:9580
CIAG 1:960 4:0115 0:9655 0:9775

1000 CIS (1:6449; 1:6449) 3:8949 0:9455 0:9495
CIFP 1:6449 3:8949 0:9455 0:9495
CIAG 1:960 3:8949 0:9685 0:9785

2000 CIS (1:6449; 1:6449) 3:8453 0:9480 0:9495
CIFP 1:6449 3:8453 0:9480 0:9495
CIAG 1:960 3:8453 0:9680 0:9745

8000 CIS (1:6449; 1:6449) 3:8753 0:9465 0:9515
CIFP 1:6449 3:8753 0:9465 0:9515
CIAG 1:960 3:8753 0:9760 0:9735

The �rst observation from Table 6 is that CIS and CIFP are identical with con�-

dence size being very close to the nominal level 0.95 for all sample sizes. However, CIAG is

quite di¤erent from CIS and CIFP: it overcovers for all sample sizes. Secondly, the critical

value for CIAG is ��1 (1� �=2) = 1:96; while that for CIS and CIFP is ��1 (1� �) = 1:645:

Since the critical value for CIAG does not depend on �, the reason that the critical value

for CIAG is ��1 (1� �=2) is because �̂ = 1: See Figure 2. On the other hand, the reason

the critical value for CIS and CIFP is 1.645 is because
p
n� is large enough for all sample

sizes considered.

34



Conclusion and Current Research

In this chapter, we provided a detailed theoretical and numerical study on CIs for

interval identi�ed parameters. By inverting a test for the value of the interval identi�ed

parameter, we not only developed a new CI, but also established its relationship with

existing CIs, including that of IM, Horowitz and Manski (2000), Stoye (2007), and AG

(2007). This approach allows straightforward extensions to interval identi�ed parameters

for which the estimators of the interval bounds are not asymptotically normally distributed,

provided they do not have discontinuity as a function of model parameters. Moreover, we

are able to generalize our new CI for interval identi�ed parameters to parameters de�ned

by general moment equalities/inequalities.

The simulation results presented in this chapter support the theoretical �nding of

Stoye (2007) and the current chapter: it is essential to use the shrinkage estimator of the

length of the identi�ed interval or that of the slackness parameters in the general case of

parameters de�ned by moment equalities/inequalities. The shrinkage estimator essentially

distinguishes between binding and non-binding moment inequalities.

The CI or CS developed in this chapter has applicability in a wide range of eco-

nomic/econometric models with partially identi�ed parameters. Moreover, the idea under-

lying them can be extended to partially identi�ed models for which at least one of the

assumptions in this chapter is violated. For example, the validity of CIFP relies on the

assumption that the asymptotic distribution of
�
�̂l; �̂u

�
does not have a discontinuity in

the model parameters. This may be violated in some applications. One of the authors is

currently working on two such cases.

Park (2007a) investigates inference for the distribution of the treatment e¤ects of

a binary treatment. Using the same notation as in Example 2, but de�ne �0 = F�(�),

35



�l = supymax(F1(y)� F0(y � �); 0) and �u = 1+ infymin(F1(y)� F0(y � �); 0). Then it is

known that �l � �0 � �u. Again, with randomized data, F1 and F0 are identi�ed and thus

�l, �u are identi�ed. Estimators of �l; �u can be constructed by replacing F1 and F0 with

their consistent estimators such as the empirical distributions in the above expressions.

However, the estimators of �l; �u do not satisfy Assumption IM (i), as their asymptotic

distribution exhibits discontinuity depending on the value of supy(F1(y) � F0(y � �)) and

infy(F1(y) � F0(y � �)). Park (2007b) is an application of this to the Project STAR.

Project STAR, conducted by Tennessee State Department of Education in 1985-1988, is a

randomized experiment to investigate the e¤ect of class size reduction (CSR) on students�

performances. Although the potential heterogeneity of treatment e¤ects of Project STAR

has been well-awared (for example, Ding and Lehrer 2005), the heterogeneity has not been

fully investigated empirically.

Another extension of the partial identi�cation is Park (2007c). It studies the �mix-

ing problem�discussed by Manski (1997, 2003). The �mixing problem�arrises, for example,

when we want to "extrapolate the results from a randomized experiment (Manski 2003)". It

is because we do not know the �treatment shares�i.e. the possibility that people comply the

rule and do not. When we do not know the �treatment shares�, the probability of a certain

range of outcome, say y 2 B, to occur is bounded in [max fF1 (y 2 B) + F0 (y 2 B)� 1; 0g ;

min fF1 (y 2 B) + F0 (y 2 B) ; 1g], hence the boundary problem at 0 or 1 exist here, too.

Park (2007c) studies on the statistical inference of this problem.
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Appendix A. Technical Proofs

Proof of Theorem 1

Let

c1�� (�) = sup
0�hl�

p
n�
�l

cv1��

�
hl;

p
n�� �lhl
�u

; �

�
(II.15)

and

CIFP = f� : Tn(�) � c1�� (�)g :

Similar to the proof of Theorem 2 in AG (2007), it is straightforward to show that under

Assumption IM (i) and (ii), Assumption A0 and Assumption B0 in AG (2007) are satis�ed.

As a result, a similar argument to AG (2005b, 2007) yields:

lim
n!1

inf
�2�

inf
P :�0(P )=�

P
�
�0 2 CIFP

�
= 1� �:

De�ne

W (hl) � (Zl;� � hl)2+ + (Zu;� + hu)
2
�

= (Zl;� � hl)2+ +
�
Zu;� +

p
n�

�u
� �l
�u
hl

�2
�
:

Since W (hl) is convex on
h
0;
p
n�
�l

i
a.s., we obtain,

sup
hl2

h
0;
p
n�
�l

iW (hl) = max

�
W (0) ;W

�p
n�

�l

��

= max

(
(Zl;�)

2
+ +

�
Zu;� +

p
n�

�u

�2
�
;

�
Zl;� �

p
n�

�l

�2
+

+ (Zu;�)
2
�

)
;

i.e.,

c1�� (�) = max

�
cv1��

�
0;

p
n�

�u
; �

�
; cv1��

�p
n�

�l
; 0; �

��
:
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We now show that the result holds when c1�� (�) is replaced with c�1�� (�̂). Since

�̂l, �̂u, and �̂ are uniformly consistent estimators of �l, �u, and � respectively, the result

holds with

ec1�� (�̂) = max�cv1���0; pn�
�̂u

; �̂

�
; cv1��

�p
n�

�̂l
; 0; �̂

��
:

Finally we need to justify the use of ��. We follow the same argument as Stoye

(2007). Let cn =
�
n�1=2bn

�1=2
. Then cn ! 0 and n1=2cn ! 1. We consider two cases:

Case I. �n � cn; Case II. �n < cn.

Case I. �n � cn. In this case, n1=2�n � n1=2cn ! 1, so either hl = 1 or

hu =1 or both. Suppose hl =1. Then

Pr [�0 2 CIFP]

= Pr

�
Tn (�0) � max

�
cv1��

�
0;

p
n��

�̂u
; �̂

�
; cv1��

�p
n��

�̂l
; 0; �̂

���
! Pr

�
(Zl;� � hl)2+ + (Zu;� + hu)

2
� � max

�
cv1��

�
0;

p
n��

�̂u
; �̂

�
; cv1��

�p
n��

�̂l
; 0; �̂

���
! Pr

�
(Zu;� + hu)

2
� � max

�
cv1��

�
0;

p
n��

�u
; �

�
; cv1��

�p
n��

�l
; 0; �

���
! Pr

h
(Zu;� + hu)

2
� � max fcv1�� (0;1; �) ; cv1�� (1; 0; �)g

i
� Pr

h
(Zu;�)

2
� � max fcv1�� (0;1; �) ; cv1�� (1; 0; �)g

i
� 1� � ,

where we have used the result that Pr
h
�� = �̂

i
! 1 because of Pr

h
�̂ > bn

i
! 1. The

proof for hu = 1 is similar. Suppose both hl = 1 and hu = 1. Then it is easy to see

that Pr [�0 2 CIFP]! 1.

Case II. �n < cn. In this case, Stoye (2007) shows that �� = 0 � � with
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probability approaching one. Note that

Pr [�0 2 CIFP]

= Pr

�
Tn (�0) � max

�
cv1��

�
0;

p
n��

�̂u
; �̂

�
; cv1��

�p
n��

�̂l
; 0; �̂

���
! Pr

�
(Zl;� � hl)2+ + (Zu;� + hu)

2
� � max

�
cv1��

�
0;

p
n��

�u
; �

�
; cv1��

�p
n��

�l
; 0; �

���
� Pr

h
(Zl;� � hl)2+ + (Zu;� + hu)

2
� � cv1�� (0; 0; �)

i
� Pr

h
(Zl;�)

2
+ + (Zu;�)

2
� � cv1�� (0; 0; �)

i
= 1� �.

The proof is completed by noting that when � = 0, Pr [�0 2 CIFP]! 1� �.

Proof of Theorem 2

We prove the result when p = 2. The general case is similar. Similar to the proof

of Theorems 2.1, we need to justify the use of 
�1 (�) =
�

�1;1 (�) ; 


�
1;2 (�)

�
, where


�1;j (�) =

8>><>>:
mn;j(�)
�̂j(�)

if mn;j (�) > bn

0 otherwise

Let cn =
�
n�1=2bn

�1=2
. Then cn ! 0 and n1=2cn !1.

Case I. 
1;j (�) � cn, j = 1; 2. In this case, n1=2
1;j (�) � n1=2cn !1. Thus,

Pr (�0 2 CSMC) ! Pr

0@ p+vX
j=p+1

�
Zh2;2;j

�2 � cv1�� (1;1;
n (�0))
1A

= 1� �:

Case II. 
1;j (�) < cn, j = 1; 2. Similar to Stoye (2007), one can show that
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�1;j (�) = 0 � 
1;j with probability approaching one. Thus,

Pr (�0 2 CSMC)

! Pr

0@ pX
j=1

�
Zh2;2;j + h1

�2
� +

p+vX
j=p+1

�
Zh2;2;j

�2 � cv1�� (0; 0;
n (�0))
1A

� Pr

0@ pX
j=1

�
Zh2;2;j

�2
� +

p+vX
j=p+1

�
Zh2;2;j

�2 � cv1�� (0; 0;
n (�0))
1A

= 1� �:

Case II. Suppose 
1;1 (�) < cn, but 
1;2 (�) � cn. The other case is similar. Then


�1;1 (�) = 0 � 
1;1 with probability approaching one and n1=2
1;2 (�) � n1=2cn ! 1.

Thus,

Pr (�0 2 CSMC)

! Pr

0@ pX
j=1

�
Zh2;2;j + h1

�2
� +

p+vX
j=p+1

�
Zh2;2;j

�2 � cv1�� (0;1;
n (�0))
1A

� Pr

0@�Zh2;2;1�2� + p+vX
j=p+1

�
Zh2;2;j

�2 � cv1�� (0;1;
n (�0))
1A

= 1� �:

The proof is completed by noting that when all the inequalities are binding,

Pr (�0 2 CSMC)! 1� �.

40



Appendix B. An Expression for Jh (x)

In this section, we derive a closed form expression for Jh (x). This should be useful

in constructing CSs in moment inequality models when there are two moment constraints.

Let � (zl; zu; �) and � (zl; zu; �) denote respectively the pdf and cdf of (Zl;�; Zu;�): the

standard bivariate normal distribution with correlation coe¢ cient �. De�ne

A1 (x) =
�
(zl; zu) 2 R2 : zl < hl and zu > �hu

	
;

A2 (x) =
�
(zl; zu) 2 R2 : zl < hl and � hu �

p
x � zu � �hu

	
;

A3 (x) =
�
(zl; zu) 2 R2 : hl � zl � hl +

p
x and zu > �hu

	
;

A4 (x) =
�
(zl; zu) 2 R2 : hl � zl � hl +

p
x;�hu �

p
x � zu � �hu;

and (zl � hl)2 + (zu + hu)2 � x
o
;

A (x) = A1 (x) [A2 (x) [A3 (x) [A4 (x) :

If j�j < 1, then

Jh (x) = J(hl;hu;�) (x)

= P
�
(Zl;� � hl)2+ + (Zu;� + hu)

2
� � x

�
= P ((Zl;�; Zu;�) 2 A1 (x) [A2 (x) [A3 (x) [A4 (x))

=

Z 1

�1

Z 1

�1
I f(zl; zu) 2 A (x)g� (zl; zu; �) dzldzu;

where I (A) = 1 if A happens; 0 otherwise. Graphically, A (x) is given by the shaded area

below.
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Hence,

Jh (x) = Pr
h
(Zl;� � hl)2+ + (Zu;� + hu)

2
� � x

i
= �

�
hl +

p
x
�
� �

�
hl;�hu �

p
x
�
�
Z hl+

p
x

hl

Z �hu�
q
x�(zl;��hl)

2

�1
� (zl; zu; �) dzudzl

= �
�
hl +

p
x
�
�
Z hl

�1
� (z) �

 
��z + hu +

p
xp

1� �2

!
dz

�
Z hl+

p
x

hl

� (z) �

0@��z + hu +
q
x� (z � hl)2p

1� �2

1A dz
= �

�
hl +

p
x
�
�
Z hl+

p
x

�1
� (z) �

0@��z + hu +
q
x� (z � hl)2+p
1� �2

1A dz:
If � = 1, then

n
(Zl;� � hl)2+ + (Zu;� + hu)

2
� � x

o
=
n
Z : (Z � hl)2+ + (Z + hu)

2
� � x

o
,
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where Z is a standard normal random variable. A similar analysis shows that

n
Z : (Z � hl)2+ + (Z + hu)

2
� � x

o
=

�
hl < Z � hl +

p
x
	
[
�
�hu �

p
x � Z < �hu

	
[ f�hu � Z � hlg

=
�
�hu �

p
x < Z � hl +

p
x
	
:

Therefore, we get

J(hl;hu;1) (x) = Pr
�
(Zl;� � hl)2+ + (Zu;� + hu)

2
� � x

�
= �

�
hl +

p
x
�
� �

�
�hu �

p
x
�
:

If � = �1, then

Pr
�
(Zl;� � hl)2+ + (Zu;� + hu)

2
� � x

�
= Pr

�
(Z � hl)2+ + (�Z + hu)

2
� � x

�
= Pr

�
(Z � hl)2+ + (Z � hu)

2
+ � x

�
:

Let max fhl; hug = hmax and min fhl; hug = hmin.

We can rewrite the event
n
(Z � hl)2+ + (Z � hu)

2
+ � x

o
as:

n
(Z � hl)2+ + (Z � hu)

2
+ � x

o
= B1 (x) [B2 (x) [B3 (x) [B4 (x) ;

where Bj (x), j = 1; 2; 3; 4 correspond to the four possibilities in terms of the signs of

(Z � hl) ; (Z � hu). For example,

B1 (x) =
n
Z : Z � hl > 0, Z � hu > 0, and (Z � hl)2+ + (Z � hu)

2
+ � x

o
:
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Note that Z � hl > 0 and Z � hu > 0 is equivalent to Z > hmax. In this case,

n
Z : (Z � hl)2+ + (Z � hu)

2
+ � x

o
=

(
Z :

�
Z � hl + hu

2

�2
� 2x� (hl � hu)2

4

)

=

8<:Z : Z � hl + hu +
q
2x� (hl � hu)2

2

9=; provided 2x � (hl � hu)2

=

8<:Z : Z � hmax + hmin +
q
2x� (hmax � hmin)2

2

9=; provided 2x � (hmax � hmin)2 :

Also,

hmax <
hmax + hmin +

q
2x� (hmax � hmin)2

2
=) (hmax � hmin)2 < x:

Therefore, we get

B1 (x) =

8<:Z : hmax < Z � hmax + hmin +
q
2x� (hmax � hmin)2

2

9=;
provided x > (hmax � hmin)2 ;

B1 (x) = ? if x � (hmax � hmin)2 :

Similarly, we can show:

B2 (x) =
�
Z : hmin � Z < min

�
hmax; hmin +

p
x
		

B3 (x) =
�
Z : hmin � Z < min

�
hmax; hmin +

p
x
		

B4 (x) = fZ : Z � hming :
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Combining them altogether, we get

n
(Z � hl)2+ + (Z � hu)

2
+ � x

o

=
�
�1;min

�
hmax; hmin +

p
x
	�
[

8>><>>:
? if x � (hmax � hmin)2�
hmax;

hl+hu+
p
2x�(hmax�hmin)2

2

�
otherwise

=

8>><>>:
(�1; hmin +

p
x) if x � (hmax � hmin)2�

�1; hl+hu+
p
2x�(hmax�hmin)2

2

�
otherwise

Therefore,

Pr
�
(Zl;� � hl)2+ + (Zu;� + hu)

2
� � x

�

=

8>><>>:
� (hmin +

p
x) if x � (hmax � hmin)2

�

�
hmax+hmin+

p
2x�(hmax�hmin)2
2

�
if (hmax � hmin)2 < x

:
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Appendix C. The Form of the Con�dence Set CSn

In this section, we derive a more explicit form for CSn:

CSn = f� : Tn (�) � c1��g

=

8<:� : n
 
�̂l � �
�̂l

!2
+

+ n

 
�̂u � �
�̂u

!2
�

� c1��

9=; :
We need to distinguish between two cases. Case I. �̂l � �̂u and Case II. �̂l � �̂u.

For Case I, it is easy to show that

CSn =

�
� : �̂l �

p
c1��

�̂lp
n
� �̂l

�
[
�
� : �̂u � � � �̂u +

p
c1��

�̂up
n

�
[
n
�̂l � � � �̂u

o
=

�
� : �̂l �

p
c1��

�̂lp
n
� �̂u +

p
c1��

�̂up
n

�
:

Case II is more complicated. We�ll examine it in detail. Note that

CSn = CSn1 [ CSn2 [ CSn3;

where

CSn1 =

8<:� : n
 
�̂l � �
�̂l

!2
+

+ n

 
�̂u � �
�̂u

!2
�

� c1��; � � �̂u < �̂l

9=; ;
CSn2 =

8<:� : n
 
�̂l � �
�̂l

!2
+

+ n

 
�̂u � �
�̂u

!2
�

� c1��; �̂u < �̂l � �

9=; ;
CSn3 =

8<:� : n
 
�̂l � �
�̂l

!2
+

+ n

 
�̂u � �
�̂u

!2
�

� c1��; �̂u � � � �̂l

9=; :
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By de�nition, we obtain

CSn1 =

8<:� : n
 
�̂l � �
�̂l

!2
� c1��

9=; \ n� : � � �̂u < �̂lo
=

�
� : �̂l �

p
c1��

�̂lp
n
� �
�
\
n
� : � � �̂u < �̂l

o

=

8>><>>:
n
� : �̂l �

p
c1��

�̂lp
n
� � � �̂u

o
if �̂l �

p
c1��

�̂lp
n
� �̂u

? otherwise

;

and

CSn2 =

8<:� : n
 
�̂u � �
�̂u

!2
�

� c1��

9=; \ n�̂u < �̂l � �o

=

8<:� : n
 
� � �̂u
�̂u

!2
+

� c1��

9=; \ n�̂u < �̂l � �o
=

�
� : � � �̂u +

p
c1��

�̂up
n

�
\
n
�̂u < �̂l � �

o

=

8>><>>:
n
� : �̂l � � � �̂u +

p
c1��

�̂up
n

o
if �̂l � �̂u +

p
c1��

�̂up
n

? otherwise

:

Now,

CSn3

=

8<:� : n
 
�̂l � �
�̂l

!2
+

+ n

 
� � �̂u
�̂u

!2
+

� c1��

9=; \ n�̂u � � � �̂lo
=

n
� :
�
�̂2u + �̂

2
l

�
�2 � 2

�
�̂2u�̂l + �̂

2
l �̂u

�
� + �̂2u�̂

2

l + �̂
2
l �̂
2

u �
c1��
n
�̂2l �̂

2
u

o
\
n
�̂u � � � �̂l

o
=

8><>:� :
 
� �

 
�̂2u�̂l + �̂

2
l �̂u

�̂2u + �̂
2
l

!!2
� �̂2l �̂

2
u

n
�
�̂2u + �̂

2
l

�
264c1�� � n

�
�̂l � �̂u

�2�
�̂2u + �̂

2
l

�
375
9>=>; \

n
�̂u � � � �̂l

o
:

1. If n�̂2 >
�
�̂2l + �̂

2
u

�
c1��, then CSn3 = CSn1 = CSn2 = ?. So CSn = ?:
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2. If n�̂2 �
�
�̂2l + �̂

2
u

�
c1��, then

CSn3

=

8><>:� :
 
� �

 
�̂2u�̂l + �̂

2
l �̂u

�̂2u + �̂
2
l

!!2
� �̂2l �̂

2
u

n
�
�̂2u + �̂

2
l

�
264c1�� � n

�
�̂l � �̂u

�2�
�̂2u + �̂

2
l

�
375
9>=>;

\
n
� : �̂u � � � �̂l

o
= f� : A � � � Bg \

n
� : �̂u � � � �̂l

o
;

where

A � �̂2u�̂l + �̂
2
l �̂u

�̂2u + �̂
2
l

�

vuuuut �̂2l �̂
2
u

n
�
�̂2u + �̂

2
l

�
264c1�� � n

�
�̂l � �̂u

�2�
�̂2u + �̂

2
l

�
375;

B � �̂2u�̂l + �̂
2
l �̂u

�̂2u + �̂
2
l

+

vuuuut �̂2l �̂
2
u

n
�
�̂2u + �̂

2
l

�
264c1�� � n

�
�̂l � �̂u

�2�
�̂2u + �̂

2
l

�
375:

Simple algebra shows that �̂u � B and �̂l � A implying

CSn3 = [A;B] \
h
�̂u; �̂l

i
=
h
max

n
A; �̂u

o
;min

n
B; �̂l

oi
:

Now, one can show:

�̂u �A =
�̂2u�̂

�̂2u + �̂
2
l

+

vuut �̂2l �̂
2
u

n
�
�̂2u + �̂

2
l

� "c1�� � n�̂2�
�̂2u + �̂

2
l

�#

=

8>><>>:
> 0 if c1�� > n

�̂2l
�̂2

� 0 if c1�� � n
�̂2l
�̂2

=)

8>><>>:
max

n
A; �̂u

o
= �̂u if �̂2l c1�� > n�̂

2

max
n
A; �̂u

o
= A if �̂2l c1�� � n�̂2

;
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and

B � �̂l =
�̂2l �̂

�̂2u + �̂
2
l

+

vuut �̂2l �̂
2
u

n
�
�̂2u + �̂

2
l

� "c1�� � n�̂2�
�̂2u + �̂

2
l

�#

=

8>><>>:
> 0 if c1�� > n

�̂2u
�̂2

� 0 if c1�� � n
�̂2u
�̂2

=)

8>><>>:
min

n
B; �̂l

o
= �̂l if �̂2uc1�� > n�̂

2

min
n
B; �̂l

o
= B if �̂2uc1�� � n�̂2

:

Summarizing, when n�̂2 �
�
�̂2l + �̂

2
u

�
c1��, we get

CSn =

�
�̂l �

p
c1��

�̂lp
n
; �̂u

�
[
h
max

n
�̂u; A

o
;min

n
�̂l; B

oi
[
�
�̂l; �̂u +

p
c1��

�̂up
n

�

=

8>>>>>>>>>><>>>>>>>>>>:

h
�̂l �

p
c1��

�̂lp
n
; �̂u +

p
c1��

�̂up
n

i
if n�̂2 � c1��min

�
�̂2l ; �̂

2
u

	
h
�̂l �

p
c1��

�̂lp
n
; B
i

if c1���̂2u < n�̂
2 � c1���̂2lh

A; �̂u +
p
c1��

�̂up
n

i
if c1���̂2l < n�̂

2 � c1���̂2u

[A;B] if c1��max
�
�̂2u; �̂

2
u

	
< n�̂2 � c1��

�
�̂2u + �̂

2
l

�
:
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CHAPTER III

SHARP BOUNDS ON THE DISTRIBUTION OF THE TREATMENT EFFECTS AND
THEIR CONFIDENCE INTERVALS

Introduction

Evaluating the e¤ect of a treatment or a program is important in diverse disciplines

including social sciences and medical sciences. In medical sciences, randomized clinical

trials are often used to evaluate the e¢ cacy of a drug or a procedure in the treatment or

prevention of disease. The central problem in the evaluation of a treatment is that any

potential outcome that program participants would have received without the treatment

is not observed. Because of this missing data problem, most work in the treatment e¤ect

literature has focused on the evaluation of various average treatment e¤ects such as the mean

of the treatment e¤ects, see the recent book by Lee (2005) for discussion and references.

However, empirical evidence strongly suggests that treatment e¤ect heterogeneity prevails

in many experiments and various interesting e¤ects of the treatment are missed by the

average treatment e¤ects alone, see Djebbari and Smith (2004) who studied heterogeneous

program impacts in social experiments such as PROGRESA; Black, Smith, Berger, and

Noel (2003) who evaluated the Worker Pro�ling and Reemployment Services system; and

Bitler, Gelbach, and Hoynes (2006) who studied the welfare e¤act of the change from Aid

to Families with Dependent Children (AFDC) to Temporary Assistance for Needy Families

(TANF) programs. Other work focusing on treatment e¤ect heterogeneity includes Heckman

and Robb (1985), Manski (1990), Imbens and Rubin (1997), Lalonde (1995), Dehejia (1997),

Heckman and Smith (1993), Heckman, Smith, and Clements (1997), Lechner (1999), Abadie,
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Angrist, and Imbens (2002).

When responses to treatment di¤er among otherwise observationally equivalent

subjects, the entire distribution of the treatment e¤ects or other features of the treatment

e¤ects than its mean may be of interest. Two approaches have been proposed in the lit-

erature to study the distribution of the treatment e¤ects. The �rst one is the bounding

approach originated in Manski (1997a). Assuming monotone treatment response, Manski

(1997a) developed sharp bounds on the distribution of the treatment e¤ects. In the sec-

ond approach, restrictions are imposed on the dependence structure between the potential

outcomes such that their joint distribution and the distribution of the treatment e¤ects

are identi�ed, see, e.g., Heckman, Smith, and Clements (1997), Biddle, Boden, and Reville

(2003), Carneiro, Hansen, and Heckman (2003), Aakvik, Heckman, and Vytlacil (2003),

among others.

In this chapter, we take the bounding approach and study the estimation and in-

ference on sharp bounds on the distribution of the treatment e¤ects, which are potentially

useful when treatment e¤ects are heterogeneous. Unlike Manski (1997a), we do not assume

monotone treatment response. Instead, we assume the marginal distributions of the poten-

tial outcomes are identi�ed, but their dependence structure is not. One prominent example

of this is provided by ideal randomized experiments. In an ideal randomized experiment,

participants of the experiment are randomly assigned to a treatment group and a control

group. Because of random assignment, observations on the outcome of participants in the

treatment group identify the distribution of the potential outcome with treatment and ob-

servations on the outcome of participants in the control group identify the distribution of

the potential outcome without treatment, but the two independent random samples do not

have any information on the dependence structure between the two potential outcomes.
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As a result, neither the joint distribution of the potential outcomes nor the distribution

of the treatment e¤ects (de�ned as the di¤erence between the two potential outcomes) is

identi�ed.

Sharp bounds on the joint distribution of the potential outcomes with identi�ed

marginals are given by the Frechet-Hoe¤ding lower and upper bound distributions, see

Heckman and Smith (1993), Heckman, Smith, and Clements (1997), and Manski (1997b)

for their applications in program evaluation. For randomized experiments, Heckman, Smith,

and Clements (1997) proposed nonparametric estimates of the Fréchet-Hoe¤ding distribu-

tion bounds and developed a test for the �common e¤ect�model by testing the lower bound

of the variance of the treatment e¤ects. They also suggested an alternative test based on

the di¤erence between the quantile functions of the marginal distributions of the potential

outcomes referred to as the quantile treatment e¤ects (QTE), see Firpo (2005) or Section

2 for more references.

Sharp bounds on the distribution of the treatment e¤ects� the di¤erence between

two potential outcomes with identi�ed marginals� are known in the probability literature.

A. N. Kolmogorov posed the question of �nding sharp bounds on the distribution of a sum

of two random variables with �xed marginal distributions. It was �rst solved by Makarov

(1981) and later by Rüschendorf (1982) and Frank, Nelsen, and Schweizer (1987) using

di¤erent techniques. Frank, Nelsen, and Schweizer (1987) showed that their proof based

on copulas can be extended to more general functions than the sum. Sharp bounds on the

respective distributions of a di¤erence, a product, and a quotient of two random variables

with �xed marginals can be found in Williamson and Downs (1990). More recently, Denuit,

Genest, and Marceau (1999) extended the bounds for the sum to arbitrary dimensions and

provided some applications in �nance and risk management, see Embrechts, Hoeing, and
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Juri (2003) and McNeil, Frey, and Embrechts (2005) for more discussions and additional

references.

By making use of the expressions in Williamson and Downs (1990), we propose

nonparametric estimators of sharp bounds on the distribution of the treatment e¤ects for

randomized experiments and establish their asymptotic properties. It turns out that the

asymptotic distributions of these bounds may be discontinuous as functions of the values of

the marginal distributions, providing additional examples for which the standard bootstrap

with the same sample size may not be asymptotically valid. The failure of the standard

bootstrap (bootstrap with the same sample size) in non-regular cases has been pointed out

in Andrews (2000), Bickel, Götze, and van Zwet (1997), Beran (1997) and the references

therein. Subsampling and fewer-than-n bootstrap have been proposed to rectify the failure

of the standard bootstrap, see Andrews (2000), Bickel, Götze, and van Zwet (1997), and

Beran (1997) for discussion and references. Subsampling was �rst proposed by Wu (1990)

and extended by Politis and Romano (1994), see Politis, Romano, and Wolf (1999) for

more applications of subsampling. Bickel, Götze, and van Zwet (1997) provide numerous

examples for which fewer-than-n bootstrap works, while standard bootstrap fails. In this

chapter, we apply the fewer-than-n bootstrap (Bickel, Götze, and Zwet (1997) and Bickel

and Sakov (2005)) to constructing con�dence intervals for these sharp bounds. The �nite

sample performances of the asymptotics based on the standard normal critical values, the

standard bootstrap with the same sample size, and the fewer-than-n bootstrap are compared

in a simulation study.

Given sharp bounds on the distribution of the treatment e¤ects, we obtain bounds

on the class of D-parameters introduced in Manski (1997a). One example of a D-parameter

is any quantile of the treatment e¤ect distribution. In addition, we obtain bounds on the
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class of D2-parameters of the treatment e¤ect distribution, see Stoye (2005) or Section 2

for the de�nition of a D2-parameter. As pointed out in Stoye (2005), many inequality and

risk measures are D2-parameters. These results shed light on the relation and distinction

between QTE and the quantile of the treatment e¤ect distribution.

As an initial investigation of a uni�ed approach to bounding or partially iden-

tifying the distribution of the treatment e¤ects, this chapter has focused on randomized

experiments. Numerous extensions of the methodologies developed in this chapter are pos-

sible and worthwhile. Of immediate concern is the incorporation of covariates into the

analysis. We extend sharp bounds in Williamson and Downs (1990) to take into account

the presence of covariates under the selection-on-observables assumption commonly used in

the treatment e¤ect literature, see, e.g., Rosenbaum and Rubin (1983a, b), Hahn (1998),

Heckman, Ichimura, Smith, and Todd (1998), Dehejia and Wahba (1999), among others.

In general, taking into account observable covariates tightens the bounds.

The rest of this chapter is organized as follows. In Section 2, we review sharp

bounds on the distribution of a di¤erence of two random variables and provide bounds on

parameters of the treatment e¤ect distribution that respect either �rst or second order sto-

chastic dominance.1 In Section 3, we propose nonparametric estimators of the distribution

bounds, establish their asymptotic properties, and describe the fewer-than-n bootstrap pro-

cedure we use to construct con�dence intervals for the distribution bounds. Results from a

detailed simulation study are provided in Section 4. In Section 5, we summarize the asymp-

totic properties of nonparametric estimators of the distribution of a ratio of two random

variables, a measure of the relative treatment e¤ects. Section 6 provides sharp bounds on

the treatment e¤ect distribution when covariates are available. Section 7 concludes and
1Horowitz and Manski (1995) �rst used the concept of �respect stochastic dominance�. Manski (1997a)

referred to parameters that respect �rst order stochastic dominance as D-parameters.
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discusses interesting extensions. Proofs are collected in Appendix A. Appendix B presents

expressions for the sharp bounds on the distribution of the treatment e¤ects for certain

known marginal distributions.

Throughout the chapter, we use =) to denote weak convergence. All the limits

are taken as the sample size goes to 1.

Sharp Bounds on the Distribution of the Treatment E¤ects and
D-Parameters

The notation in this chapter follows the convention in the treatment e¤ect liter-

ature. We consider a binary treatment and use Y1 to denote the potential outcome from

receiving treatment and Y0 the outcome without treatment. Let F (y1; y0) denote the joint

distribution of Y1; Y0 with marginals F1(�) and F0(�) respectively.

The characterization theorem of Sklar (1959) implies that there exists a cop-

ula2 C(u; v): (u; v) 2 [0; 1]2 such that F (y1; y0) = C(F1(y1); F0(y0)) for all y1; y0. Con-

versely, for any marginal distributions F1(�); F0(�) and any copula function C, the func-

tion C(F1(y1); F0(y0)) is a bivariate distribution function with given marginal distributions

F1; F0. This theorem provides the theoretical foundation for the widespread use of the

copula approach in generating multivariate distributions from univariate distributions. For

reviews, see Joe (1997) and Nelsen (1999). Since copulas connect multivariate distributions

to marginal distributions, the copula approach provides a natural way to study the joint

distribution of potential outcomes and the distribution of the treatment e¤ects.

For (u; v) 2 [0; 1]2, let CL(u; v) = max(u+v�1; 0) and CU (u; v) = min(u; v) denote

the Fréchet-Hoe¤ding lower and upper bounds for a copula, i.e., CL(u; v) � C(u; v) �
2A copula is a bivariate distribution with uniform marginal distributions on [0; 1].
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CU (u; v). Then for any (y1; y0), the following inequality holds:

CL(F1(y1); F0(y0)) � F (y1; y0) � CU (F1(y1); F0(y0)): (III.1)

The bivariate distribution functions CL(F1(y1); F0(y0)) and CU (F1(y1); F0(y0)) are referred

to as the Fréchet-Hoe¤ding lower and upper bounds for bivariate distribution functions

with �xed marginal distributions F1 and F0. They are distributions of perfectly negatively

dependent and perfectly positively dependent random variables respectively, see Nelsen

(1999) for more discussions.

Heckman and Smith (1993), Heckman, Smith, and Clements (1997), and Manski

(1997b) applied (III.1) in the context of program evaluation. Lee (2002) applied (III.1)

to bound correlation coe¢ cients in sample selection models. Fan (2006) developed valid

statistical inference procedures for CL(F1(y1); F0(y0)) and CU (F1(y1); F0(y0)) based on two

independent random samples from F1(y1); F0(y0) respectively.

Sharp Bounds on the Distribution of the Treatment E¤ects

Let � = Y1 � Y0 denote the treatment e¤ect or outcome gain and F�(�) its dis-

tribution function. Given the marginals F1 and F0, sharp bounds on the distribution of �

can be found in Williamson and Downs (1990).

Lemma 1 Let FL(�) = supymax(F1(y)� F0(y � �); 0) and FU (�) = 1 + infymin(F1(y)�
F0(y � �); 0). Then FL(�) � F�(�) � FU (�).

We note the following alternative expressions for FL(�) and FU (�) :

FL(�) = max(sup
y
fF1(y)� F0(y � �)g ; 0); (III.2)

FU (�) = 1 +min(inf
y
fF1(y)� F0(y � �)g ; 0):
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At any given value of �, the bounds (FL(�); FU (�)) are informative on the value of F�(�)

as long as [FL(�); FU (�)] � [0; 1]. Viewed as an inequality among all possible distribution

functions, the sharp bounds FL(�) and FU (�) cannot be improved, because it is easy to

show that if either F1 or F0 is the degenerate distribution at a �nite value, then for all �;

we have FL(�) = F�(�) = FU (�). In fact, given any pair of distribution functions F1 and

F0; the inequality: FL(�) � F�(�) � FU (�) cannot be improved, that is, the bounds FL(�)

and FU (�) for F�(�) are point-wise best-possible, see Frank, Nelsen, and Schweizer (1987)

for a proof of this for a sum of random variables and Williamson and Downs (1990) for a

general operation on two random variables.

Lemma 1 implies that the treatment e¤ect distribution F� �rst order stochastically

dominates FU and is �rst order stochastically dominated by FL. Let %FSD denote the �rst

order stochastic dominance relation. Then

FL %FSD F� %FSD FU :

We note that unlike sharp bounds on the joint distribution of Y1; Y0, sharp bounds on the

distribution of � are not reached at the Fréchet-Hoe¤ding lower and upper bounds for the

distribution of Y1; Y0.

Let Y 01 ; Y
0
0 be perfectly positively dependent and have the same marginal distri-

butions as Y1; Y0 respectively. Let �0 = Y 01 � Y 00 . Then the distribution of �0 is given

by

F�0 (�) = E1fY 01 � Y 00 � �g =
Z 1

0
1fF�11 (u)� F�10 (u) � �gdu;

where 1 f�g is the indicator function the value of which is 1 if the argument is true, 0 other-

wise. Similarly, let Y 001 ; Y
00
0 be perfectly negatively dependent and have the same marginal
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distributions as Y1; Y0 respectively. Let �00 = Y 001 �Y 000 . Then the distribution of �00 is given

by

F�00 (�) = E1fY 001 � Y 000 � �g =
Z 1

0
1fF�11 (u)� F�10 (1� u) � �gdu:

Interestingly, we show in the next lemma that there exists a second order stochas-

tic dominance relation among the three distributions F�; F�0 ; F�00 . Let %SSD denote the

second order stochastic dominance relation.

Lemma 2 Let F�; F�0 ; F�00 be de�ned as above. Then

F�0 %SSD F� %SSD F�00 :

Theorem 1 in Stoye (2005) shows that F�0 %SSD F� is equivalent to E [U(�0)] �

E [U(�)] or E [U(Y 01 � Y 00)] � E [U(Y1 � Y0)] for every convex real-valued function U .

Corollary 2.3 in Tchen (1980) implies the conclusion of Lemma 2, see also Cambanis, Si-

mons, and Stout (1976).

Bounds on D-Parameters

The sharp bounds on the treatment e¤ect distribution implies bounds on the class

of �D-parameters�introduced in Manski (1997a), see also Manski (2003). One example of

�D-parameters� is any quantile of the distribution. Stoye (2005) introduced another class

of parameters which measure the dispersion of a distribution, including the variance of the

distribution. In this section, we show that sharp bounds can be placed on any dispersion

or spread parameter of the treatment e¤ect distribution in this class. For convenience, we

restate the de�nitions of both classes of parameters from Stoye (2005). He refers to the

class of �D-parameters�as the class of �D1-parameters�.

De�nition 1 A population statistic � is a D1-parameter if it increases weakly with �rst-
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order stochastic dominance, that is,

F %FSD G implies �(F ) � �(G):

Obviously if � is a D1-parameter, then Lemma 1 implies:

�(FL) � �(F�) � �(FU ):

For example, taking � as a quantile of the treatment e¤ect distribution, we obtain imme-

diately its sharp bounds from Lemma 1. In the following, we will use G�1(u) to denote

the generalized inverse of a nondecreasing function G, that is, G�1(u) = inf fxjG(x) � ug :

Then Lemma 1 implies: for 0 � q � 1,

(FU )�1(q) � F�1� (q) � (FL)�1(q).

For the quantile function of a distribution of a sum of two random variables, expressions

for its sharp bounds in terms of quantile functions of the marginal distributions are �rst

established in Makarov (1981). They can also be established via the duality theorem, see

Schweizer and Sklar (1983). Using the same tool, one can establish the following expressions

for sharp bounds on the quantile function of the distribution of the treatment e¤ects, see

Williamson and Downs (1990).

Lemma 3 For 0 � q � 1, (FU )�1(q) � F�1� (q) � (FL)�1(q), where

(FL)�1(q) =

�
infu2[q;1][F

�1
1 (u)� F�10 (u� q)] if q 6= 0

F�11 (0)� F�10 (1) if q = 0;

(FU )�1(q) =

�
supu2[0;q][F

�1
1 (u)� F�10 (1 + u� q)] if q 6= 1

F�11 (1)� F�10 (0) if q = 1:

Like bounds on the distribution of the treatment e¤ects, bounds on the quan-

tile function of � are not reached at the Fréchet-Hoe¤ding bounds for the distribution of

(Y1; Y0). The following lemma provides simple expressions for the quantile functions of the

treatment e¤ects when the potential outcomes are either perfectly positively dependent or
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perfectly negatively dependent.

Lemma 4 For q 2 [0; 1], we have (i) F�1�0 (q) =
�
F�11 (q)� F�10 (q)

�
if
�
F�11 (q)� F�10 (q)

�
is an increasing function of q; (ii) F�1�00 (q) =

�
F�11 (q)� F�10 (1� q)

�
.

The proof of Lemma 4 follows that of Proposition 3.1 in Embrechts, Hoeing, and

Juri (2003). In particular, they showed that for a real valued random variable Z and a

function ' increasing and left continuous on the range of Z, it holds that the quantile

of '(Z) at quantile level q is given by '
�
F�1Z (q)

�
, where FZ is the distribution function

of Z. For (i), we note that F�1�0 (q) equals the quantile of
�
F�11 (U)� F�10 (U)

�
, where U

is a uniform random variable on [0; 1]. Let '(U) = F�11 (U) � F�10 (U). Then F�1�0 (q) =

'(q) = F�11 (q) � F�10 (q) provided that '(U) is an increasing function of U . For (ii), let

'(U) = F�11 (U) � F�10 (1 � U). Then F�1�00 (q) equals the quantile of '(U). Since '(U) is

always increasing in this case, we get F�1�00 (q) = '(q).

Note that the condition in (i) is a necessary condition; without this condition,�
F�11 (q)� F�10 (q)

�
can fail to be a quantile function. Doksum (1974) and Lehmann (1974)

used
�
F�11 (F0(y0))� y0

�
to measure treatment e¤ects. Recently,

�
F�11 (q)� F�10 (q)

�
has

been used to study treatment e¤ects heterogeneity and is referred to as the quantile treat-

ment e¤ects (QTE), see e.g., Heckman, Smith, and Clements (1997), Abadie, Angrist, and

Imbens (2002), Chernozhukov and Hansen (2005), Firpo (2005), Imbens and Newey (2005),

among others, for more discussion and references on the estimation of QTE. Manski (1997a)

referred to QTE as �D-parameters and the quantile of the treatment e¤ect distribution as

D�-parameters. Assuming monotone treatment response, Manski (1997a) provided sharp

bounds on the quantile of the treatment e¤ect distribution.

It is interesting to note that Lemma 4 (i) shows that QTE equals the quantile

function of the treatment e¤ects only when the two potential outcomes are perfectly posi-

tively dependent AND QTE is increasing in q. Example 1illustrates a case where QTE is

60



decreasing in q and hence is not the same as the quantile function of the treatment e¤ects

even when the potential outcomes are perfectly positively dependent. In contrast to QTE,

the quantile of the treatment e¤ect distribution is not identi�ed, but can be bounded, see

Lemma 3. At any given quantile level, the lower quantile bound (FU )�1(q) is the smallest

outcome gain (worst case) regardless of the dependence structure between the potential

outcomes and should be useful to policy makers. For example, (FU )�1(0:5) is the minimum

gain of at least half of the population.

De�nition 2 A population statistic � is a D2-parameter if it increases weakly with second
order stochastic dominance, i.e.

F %SSD G implies �(F ) � �(G):

If � is a D2-parameter, then Lemma 2 implies

�(F�0) � �(F�) � �(F�00):

Stoye (2005) de�ned the class of D2-parameters in terms of mean-preserving spread. Since

the mean of � is identi�ed in our context, the two de�nitions lead to the same class of D2-

parameters. In contrast to D1-parameters of the treatment e¤ect distribution, bounds on

D2-parameters of the treatment e¤ect distribution are reached when the potential outcomes

are perfectly dependent on each other. One example of D2-parameters is the variance of

the treatment e¤ect �. Using results in Cambanis, Simons, and Stout (1976), Heckman,

Smith, and Clements (1997) provided bounds on the variance of � and proposed a test

for the common e¤ect model by testing the value of the lower bound of the variance of �.

Stoye (2005) presents many other examples of D2-parameters, including many well-known

inequality and risk measures.
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Illustrative Example

In this subsection, we provide explicit expressions for sharp bounds on the distrib-

ution of the treatment e¤ects and its quantiles when Y1 � N
�
�1; �

2
1

�
and Y0 � N

�
�0; �

2
0

�
.

In addition, we provide explicit expressions for the distribution of the treatment e¤ects

and its quantiles when the potential outcomes are perfectly positively dependent, perfectly

negatively dependent, and independent.

Distribution Bounds

Explicit expressions for bounds on the distribution of a sum of two random vari-

ables are available for the case where both random variables have the same distribution

which includes the uniform, the normal, the Cauchy, and the exponential families, see

Alsina (1981), Frank, Nelsen, and Schweizer (1987), and Denuit, Genest, and Marceau

(1999). Using the alternative expressions in (III.2), we now derive sharp bounds on the

distribution of � = Y1 � Y0.

First consider the case �1 = �0 = �. Let �(�) denote the distribution function of

the standard normal distribution. Simple algebra shows

sup
y
fF1(y)� F0(y � �)g = 2�

�
� � (�1 � �0)

2�

�
� 1 for � > �1 � �0;

inf
y
fF1(y)� F0(y � �)g = 2�

�
� � (�1 � �0)

2�

�
� 1 for � < �1 � �0:

Hence,

FL (�) =

8>><>>:
0 if � < �1 � �0

2�
�
��(�1��0)

2�

�
� 1 if � � �1 � �0

(III.3)
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FU (�) =

8>><>>:
2�
�
��(�1��0)

2�

�
if � < �1 � �0

1 if � � �1 � �0
(III.4)

When3 �1 6= �0, we get

sup
y
fF1(y)� F0(y � �)g = �

�
�1s� �0t
�21 � �20

�
+�

�
�1t� �0s
�21 � �20

�
� 1;

inf
y
fF1(y)� F0(y � �)g = �

�
�1s+ �0t

�21 � �20

�
� �

�
�1t+ �0s

�21 � �20

�
+ 1;

where s = � � (�1 � �0) and t =
r
s2 +

�
�21 � �20

�
ln
�
�21
�20

�
. For any �, one can show that

supy fF1(y)� F0(y � �)g > 0 and infy fF1(y)� F0(y � �)g < 0. As a result,

FL (�) = �

�
�1s� �0t
�21 � �20

�
+�

�
�1t� �0s
�21 � �20

�
� 1;

FU (�) = �

�
�1s+ �0t

�21 � �20

�
� �

�
�1t+ �0s

�21 � �20

�
+ 1:

For comparison purposes, we provide expressions for the distribution F� in three

special cases.

Case I. Perfect positive dependence. In this case, Y0 and Y1 satisfy Y0 =

�0 +
�0
�1
Y1 � �0

�1
�1:Therefore,

� =

8>><>>:
�
�1��0
�1

�
Y1 +

�
�0
�1
�1 � �0

�
; if �1 6= �0

�1 � �0; if �1 = �0:

3Frank, Nelsen, and Schweizer (1987) provided expressions for the sharp bounds on the distribution of a
sum of two normal random variables. We believe there are typos in their expressions, as a direct application
of their expressions to our case would lead to di¤erent expressions from ours. They are:

FL (�) = �

�
��1s� �0t
�20 � �21

�
+�

�
�0s� �1t
�20 � �21

�
� 1;

FU (�) = �

�
��1s+ �0t
�20 � �21

�
+�

�
�0s+ �1t

�20 � �21

�
:
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If �1 = �0, then

F� (�) =

8>><>>:
0 and � < �1 � �0

1 and �1 � �0 � �
: (III.5)

If �1 6= �0, then

F� (�) = �

�
� � (�1 � �0)
j�1 � �0j

�
:

Case II. Perfect negative dependence. In this case, we have Y0 = �0 �

�0
�1
Y1 +

�0
�1
�1. Hence,

� =
�1 + �0
�1

Y1 �
�
�0
�1
�1 + �0

�
;

F� (�) = �

�
� � (�1 � �0)
�1 + �0

�
:

Case III. Independence. This yields

F� (�) = �

 
� � (�1 � �0)p

�21 + �
2
0

!
: (III.6)

Figure 3plots the bounds on the distribution F� (denoted by F_L and F_U)

and the distribution F� corresponding to perfect positive dependence, perfect negative

dependence, and independence (denoted by F_PPD, F_PND, and F_IND respectively) of

potential outcomes for the case Y1 � N(2; 2) and Y0 � N(1; 1). For notational compactness,

we use (F1; F0) to signify Y1 � F1 and Y0 � F0 throughout the rest of this chapter.

First we observe from Figure 3 that the bounds in this case are informative at all

values of � and are more informative in the tails of the distribution F� than in the middle.

In addition, Figure 3 indicates that the distribution of the treatment e¤ects for perfectly

positively dependent potential outcomes is most concentrated around its mean 1 implied by
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Figure 3. Bounds on the Distribution of the Treatment E¤ect: (N (2; 2) ; N (1; 1))

the second order stochastic relation F_PPD %SSDF_IND %SSDF_PND. In terms of the

corresponding quantile functions, this implies that the quantile function corresponding to

the perfectly positively dependent potential outcomes is �atter than the quantile functions

corresponding to perfectly negatively dependent and independent potential outcomes, see

Figure 4.

Quantile Bounds

By inverting (III.3) and (III.4), we obtain the quantile bounds for the case �1 =

�0 = �:

(FL)�1 (q) =

8>><>>:
any value in (�1; �1 � �0] for q = 0;

(�1 � �0) + 2���1
�
1 + q

2

�
otherwise;

(FU )�1 (q) =

8>><>>:
(�1 � �0) + 2���1

�q
2

�
for q 2 [0; 1) ;

any value in [�1 � �0;1) for q = 1:
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When �1 6= �0; there is no closed-form expression for the quantile bounds. But

they can be computed numerically by either inverting the distribution bounds or using

Lemma 3. We now derive the quantile function for the three special cases.

Case I. Perfect positive dependence. If �1 = �0; we get

F�1� (q) =

8>>>>>><>>>>>>:

any value in (�1; �1 � �0) for q = 0;

any value in [�1 � �0;1) for q = 1;

unde�ned for q 2 (0; 1) :

When �1 6= �0; we get

F�1� (q) = (�1 � �0) + j�1 � �0j��1 (q) for q 2 [0; 1] :

Note that by de�nition, QTE is given by

F�11 (q)� F�10 (q) = (�1 � �0) + (�1 � �0)��1 (q)

which equals F�1� (q) only if �1 > �0, i.e., only if the condition of Lemma 4 (i) holds. If

�1 < �0,
�
F�11 (q)� F�10 (q)

�
is a decreasing function of q and hence can not be a quantile

function.

Case II. Perfect negative dependence.

F�1� (q) = (�1 � �0) + (�1 + �0) ��1 (q) for q 2 [0; 1] :

Case III. Independence.

F�1� (q) = (�1 � �0) +
q
�21 + �

2
0�

�1 (q) for q 2 [0; 1] :

In Figure 4, we plot the quantile bounds for � (FL^{-1} and FU^{-1}) when

Y1 � N(2; 2) and Y0 � N(1; 1) and the quantile functions of � when Y1 and Y0 are per-

fectly positively dependent, perfectly negatively dependent, and independent (F_PPD^{-
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1}, F_PND^{-1}, and F_IND^{-1} respectively).

FL^{-1}

FU^{-1}

F_PPD^{-1}

F_IND^{-1}

F_PND^{-1}

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-6

-4

-2

2

4

6

8

q

F^{-1}

Figure 4. Bounds on the Quantile Function of the Treatment E¤ect: (N (2; 2) ; N (1; 1))

Again, Figure 4 reveals the fact that the quantile function of � corresponding to

the case that Y1 and Y0 are perfectly positively dependent is �atter than that corresponding

to all the other cases. Keeping in mind that in this case, �1 > �0, we conclude that the

quantile function of � in the perfect positive dependence case is the same as QTE. Figure

4 leads to the conclusion that QTE is a conservative measure of the degree of heterogeneity

of the treatment e¤ect distribution.

Nonparametric Estimators and Their Asymptotic Properties

Suppose random samples fY1ign1i=1 � F1 and fY0ig
n0
i=1 � F0 are available. Let Y1

and Y0 denote respectively the supports4 of F1 and F0. Note that the bounds in Lemma 1
4In practice, the supports of F1 and F0 may be unknown, but can be estimated by using the corre-

sponding univariate order statistics in the usual way. This won�t a¤ect the results to follow. For notational
compactness, we assume that they are known.
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can be written as

FL(�) = sup
y2R

fF1(y)� F0(y � �)g ; FU (�) = 1 + inf
y2R

fF1(y)� F0(y � �)g ; (III.7)

since for any two distributions F1 and F0, it is always true that supy2R fF1(y)� F0(y � �)g �

0 and infy2R fF1(y)� F0(y � �)g � 0.

When Y1 = Y0 = R, (III.7) suggests the following plug-in estimators of FL(�) and

FU (�):

FLn (�) = sup
y2R

fF1n(y)� F0n(y � �)g, FUn (�) = 1 + inf
y2R

fF1n(y)� F0n(y � �)g; (III.8)

where F1n(�) and F0n(�) are the empirical distributions de�ned as

Fkn (y) =
1

nk

nkP
i=1
1 fYki � yg ; k = 1; 0.

When either Y1 or Y0 is not the whole real line, we derive alternative expressions

for FL(�) and FU (�) which turn out to be convenient for both computational purposes and

for asymptotic analysis. For illustration, we look at the case: Y1 = Y0 = [0; 1] in detail and

provide the results for the general case afterwards.

Suppose Y1 = Y0 = [0; 1]. If 1 � � � 0, then (III.7) implies

FL(�)

= max

(
sup
y2[�;1]

fF1(y)� F0(y � �)g ; sup
y2(�1;�)

fF1(y)� F0(y � �)g ;

sup
y2(1;1)

fF1(y)� F0(y � �)g
)

(III.9)

= max

(
sup
y2[�;1]

fF1(y)� F0(y � �)g ; sup
y2(�1;�)

F1(y); sup
y2(1;1)

f1� F0(y � �)g
)

= max

(
sup
y2[�;1]

fF1(y)� F0(y � �)g ; F1(�); 1� F0(1� �)
)

= sup
y2[�;1]

fF1(y)� F0(y � �)g ; (III.10)
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and

FU (�)

= 1 +min

�
inf

y2[�;1]
fF1(y)� F0(y � �)g ; inf

y2(�1;�)
fF1(y)� F0(y � �)g ;

inf
y2(1;1)

fF1(y)� F0(y � �)g
�

= 1 +min

�
inf

y2[�;1]
fF1(y)� F0(y � �)g ; inf

y2(�1;�)
F1(y); inf

y2(1;1)
f1� F0(y � �)g

�
= 1 +min

�
inf

y2[�;1]
fF1(y)� F0(y � �)g ; 0

�
;

If �1 � � < 0, then

FL(�)

= max

(
sup

y2[0;1+�]
fF1(y)� F0(y � �)g ; sup

y2(�1;0)
fF1(y)� F0(y � �)g ;

sup
y2(1+�;1)

fF1(y)� F0(y � �)g
)

(III.11)

= max

(
sup

y2[0;1+�]
fF1(y)� F0(y � �)g ; sup

y2(�1;0)
f�F0(y � �)g ; sup

y2(1+�;1)
fF1(y)� 1g

)

= max

(
sup

y2[0;1+�]
fF1(y)� F0(y � �)g ; 0

)
; (III.12)

and

FU (�)

= 1 +min

�
inf

y2[0;1+�]
fF1(y)� F0(y � �)g ; inf

y2(�1;0)
fF1(y)� F0(y � �)g ;

inf
y2(1+�;1)

fF1(y)� F0(y � �)g
�

= 1 +min

�
inf

y2[0;1+�]
fF1(y)� F0(y � �)g ; inf

y2(�1;0)
f�F0(y � �)g ; inf

y2(1+�;1)
fF1(y)� 1g

�
= 1 + inf

y2[0;1+�]
fF1(y)� F0(y � �)g :
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Based on (III.10) and (III.12), we propose the following estimator of FL(�) :

FLn (�) =

8>><>>:
supy2[�;1] fF1n(y)� F0n(y � �)g if 1 � � � 0;

max
n
supy2[0;1+�] fF1n(y)� F0n(y � �)g ; 0

o
if � 1 � � < 0:

Similarly, we propose the following estimator for FU (�) :

FUn (�) =

8>><>>:
1 + min

�
infy2[�;1] fF1n(y)� F0n(y � �)g ; 0

	
if 1 � � � 0;

1 + infy2[0;1+�] fF1n(y)� F0n(y � �)g if � 1 � � < 0:

We now summarize the results for general supports Y1 and Y0. Suppose Y1 = [a; b]

and Y0 = [c; d] for a; b; c; d 2 R � R [ f�1;+1g ; a < b; c < d with F1 (a) = F0 (c) = 0

and F1 (b) = F0 (d) = 1. It is easy to see that

FL(�) = FU (�) = 0; if � � a� d and

FL(�) = FU (�) = 1; if � � b� c:

For any � 2 [a� d; b� c]
T
R; let Y� = [a; b]

T
[c+ �; d+ �]. A similar derivation to the

case Y1 = Y0 = [0; 1] leads to

FL(�) = max

(
sup
y2Y�

fF1(y)� F0(y � �)g ; 0
)
;

FU (�) = 1 +min

�
inf
y2Y�

fF1(y)� F0(y � �)g ; 0
�
;

which suggest the following plug-in estimators of FL(�) and FU (�):

FLn (�) = max

(
sup
y2Y�

fF1n(y)� F0n(y � �)g ; 0
)
;

FUn (�) = 1 +min

�
inf
y2Y�

fF1n(y)� F0n(y � �)g ; 0
�
:

For any �xed �, the consistency of FLn (�) and F
U
n (�) is obvious. In the rest of

this section, we will establish the asymptotic distributions of
p
n1
�
FLn (�)� FL(�)

�
and
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p
n1
�
FUn (�)� FU (�)

�
. By using FLn (�) and F

U
n (�), we can provide bounds on e¤ects of

interest other than the average treatment e¤ects including the proportion of people receiving

the treatment who bene�t from it, see Heckman, Smith, and Clements (1997) for discussion

on some of these e¤ects.

Asymptotic Distributions

De�ne

ysup;� = arg sup
y2Y�

fF1(y)� F0(y � �)g , yinf;� = arg inf
y2Y�

fF1(y)� F0(y � �)g ;

M(�) = sup
y2Y�

fF1(y)� F0(y � �)g ; m(�) = inf
y2Y�

fF1(y)� F0(y � �)g ;

Mn(�) = sup
y2Y�

fF1n(y)� F0n(y � �)g ; mn(�) = inf
y2Y�

fF1n(y)� F0n(y � �)g :

Then

FLn (�) = max fMn(�); 0g ; FUn (�) = 1 +min fmn(�); 0g :

We make the following assumptions.

(A1) (i) The two samples fY1ign1i=1 and fY0ig
n0
i=1 are each i.i.d. and are independent of each

other; (ii) n1=n0 ! � as n1 !1 with 0 < � <1.

(A2) The distribution functions F1 and F0 are twice di¤erentiable with bounded density

functions f1 and f0 on their supports.

(A3) (i) For every � > 0, supy2Y� :jy�ysup;�j�� fF1(y)� F0(y � �)g < fF1(ysup;�)� F0(ysup;� � �)g;

(ii) f1 (ysup;�)� f0 (ysup;� � �) = 0 and f 01 (ysup;�)� f 00 (ysup;� � �) < 0.

(A4) (i) For every � > 0, infy2Y� :jy�yinf;�j�� fF1(y)� F0(y � �)g > fF1(yinf;�)� F0(yinf;� � �)g;

(ii) f1 (yinf;�)� f0 (yinf;� � �) = 0 and f 01 (yinf;�)� f 00 (yinf;� � �) > 0.
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The independence assumption of the two samples in (A1) is satis�ed by data

from ideal randomized experiments. (A2) imposes smoothness assumptions on the mar-

ginal distribution functions. (A3) and (A4) are identi�ability assumptions. For a �xed

� 2 [a� d; b� c]
T
R, (A3) requires the function y 7�! fF1(y)� F0(y � �)g to have a

well-separated interior maximum at ysup;� on Y�, while (A4) requires the function y 7�!

fF1(y)� F0(y � �)g to have a well-separated interior minimum at yinf;� on Y�. If Y� is com-

pact, then (A3) and (A4) are implied by (A2) and the assumption that the function y 7�!

fF1(y)� F0(y � �)g have a unique maximum at ysup;� and a unique minimum at yinf;� in

the interior of Y�.

We �rst establish the asymptotic distributions of Mn(�) and mn(�).

Proposition 1 Suppose (A1) and (A2) hold. For a given �, let

�2L = F1(ysup;�) [1� F1(ysup;�)] + �F0(ysup;� � �) [1� F0(ysup;� � �)] and
�2U = F1(yinf;�) [1� F1(yinf;�)] + �F0(yinf;� � �) [1� F0(yinf;� � �)] :

Then (i) if (A3) also holds, then
p
n1[Mn(�) �M(�)] =) N(0; �2L); (ii) if (A4) also holds,

then
p
n1[mn(�)�m(�)] =) N(0; �2U ):

Following Fan (2006), we obtain immediately Theorem 3by using Proposition 1.

Theorem 3 (i) Suppose (A1)-(A3) hold. De�ne1�1 =1. For any � 2 [a� d; b� c]
T
R,

if min fa� c; b� dg < �, thenpn1[FLn (�)� FL(�)] =) N(0; �2L); otherwise

p
n1[F

L
n (�)� FL(�)] =)

�
N
�
0; �2L

�
if M(�) > 0;

max
�
N(0; �2L); 0

	
if M(�) = 0;

and Pr
�
FLn (�) = 0

�
! 1 if M(�) < 0:

(ii) Suppose (A1), (A2), and (A4) hold. De�ne1�1 = �1. For any � 2 [a� d; b� c]
T
R,

if � < max fa� c; b� dg, thenpn1[FUn (�)� FU (�)] =) N(0; �2U ); otherwise

p
n1[F

U
n (�)� FU (�)] =)

�
N
�
0; �2U

�
if m (�) < 0;

min
�
N(0; �2U ); 0

	
if m (�) = 0;

and Pr
�
FUn (�) = 1

�
! 1 if m(�) > 0:

Theorem 3 shows that the asymptotic distribution of FLn (�) (F
U
n (�)) depends on

the value of M(�) (m(�)). For example, if � is such that M(�) > 0 (m(�) < 0), then FLn (�)
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(FUn (�)) is asymptotically normally distributed, but if � is such that M(�) = 0 (m(�) = 0),

then the asymptotic distribution of FLn (�) (F
U
n (�)) is truncated normal.

Two Examples

We present two examples to illustrate the various possibilities in Theorem 3. For

the �rst example, the asymptotic distribution of FLn (�) (F
U
n (�)) is normal for all �. For the

second example, the asymptotic distribution of FLn (�) (F
U
n (�)) is normal for some � and

non-normal for some other �. More examples can be found in Appendix B.

Example 1 (Continued). Let Yj � N
�
�j ; �

2
j

�
for j = 0; 1 with �21 6= �20: As

shown in Section III.2.3, M(�) > 0 and m(�) < 0 for all � 2 R: Moreover,

ysup;� =
�21s+ �1�0t

�21 � �20
+ �1 and yinf;� =

�21s� �1�0t
�21 � �20

+ �1

are unique interior solutions, where s = � � (�1 � �0) and t =
r
s2 + 2

�
�21 � �20

�
ln
�1
�0
.

Theorem 3 implies that the asymptotic distribution of FLn (�) (F
U
n (�)) is normal for all

� 2 R. Inferences can be made using asymptotic distributions or standard bootstrap with

the same sample size.

Example 2. Consider the following family of distributions indexed by a 2 (0; 1).

For brevity, we denote a member of this family by C (a). If X � C (a), then

F (x) =

8>><>>:
1

a
x2 if x 2 [0; a]

1� (x� 1)
2

(1� a) if x 2 [a; 1]
and

f(x) =

8>><>>:
2

a
x if x 2 [0; a]

2 (1� x)
(1� a) if x 2 [a; 1]

:

Suppose Y1 � C
�
1
4

�
and Y0 � C

�
3
4

�
. The functional form of F1 (y) � F0 (y � �)

di¤ers according to �: For y 2 Y�, using the expressions for F1 (y)� F0 (y � �) provided in
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Appendix B, one can �nd ysup;� and M (�). They are:

ysup;� =

8>>>>>><>>>>>>:

1+�
2 if � 1 + 1

2

p
2 < � � 1�

0; 1+�2 ; 1 + �
	
if � = �1 + 1

2

p
2

f0; 1 + �g if � 1 � � < �1 + 1
2

p
2

;

M (�) =

8>>>>>><>>>>>>:

4 (� + 1)2 � 1 if � 1 � � � �3
4

�4
3
�2 if � 3

4
� � � �1 + 1

2

p
2

�2
3 (� � 1)

2 + 1 if � 1 + 1
2

p
2 � � � 1

:

Figure 5 plots ysup;� and M (�) against �.

-1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1

-1

-0.5

0.5

1

delta

M(δ)

ysup,δysup,δ at boundaries

M(δ) < 0

Figure 5. M (�) and ysup;�:
�
C
�
1
4

�
; C
�
3
4

��

Figure 6 plots F1 (y) � F0 (y � �) against y 2 [0; 1] for a few selected values of

�. When � = �5
8 (Figure 6(a)), the supremum occurs at the boundaries of Y�: When

� = �1 +
p
2
2 (Figure 6(b)); fysup;�g =

�
0; 1+�2 ; 1 + �

	
, i.e., there are three values of ysup;�;

one interior and two boundary solutions. When � > �1 +
p
2
2 , ysup;� becomes a unique

interior solution. Figure 6(c) plots the case where the interior solution leads to a value 0

for M(�) and Figure 6(d) a case where the interior solution corresponds to a positive value
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for M(�).

Figure 6. F1 (y)� F0 (y � �) for M (�)

In the simulation study in the next section, we focus on the case of a unique interior

solution for ysup;�. Depending on the value of �, M(�) can have di¤erent signs leading to

di¤erent asymptotic distributions for FLn (�). For example, when � = 1�
p
6
2 (Figure 6(c));

M (�) = 0 and for � > 1�
p
6
2 ; M (�) > 0. Since M(�) = 0 when � = 1�

p
6
2 ; ysup;� = 1�

p
6
4

is in the interior, and f 01 (ysup;�) � f 00 (ysup;� � �) = �16
3 < 0, Theorem 3 implies that at

� = 1�
p
6
2 ;

p
n1[F

L
n (�)� FL(�)] =) max

�
N(0; �2L); 0

�
where �2L =

(1 + �)

4
:

When � = 1
8 (Figure 6(d)),

ysup;� =
9

16
; M(�) =

47

96
> 0; f 01 (ysup;�)� f 00 (ysup;� � �) = �

16

3
< 0:
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Theorem 3 implies that when � = 1
8 ;

p
n1[F

L
n (�)� FL(�)] =) N(0; �2L) where �

2
L = (1 + �)

7007

36 864
:

We now illustrate both possibilities for the upper bound FU (�). Suppose Y1 �

C
�
3
4

�
and Y0 � C

�
1
4

�
: Then using the expressions for F1 (y) � F0 (y � �) provided in

Appendix B, we obtain

yinf;� =

8>>>>>><>>>>>>:

1+�
2 if � 1 � � � 1�

p
2
2�

�; 1+�2 ; 1
	
if � = 1�

p
2
2

f�; 1g if 1� 1
2

p
2 � z � 1

;

m (�) =

8>>>>>><>>>>>>:

2
3 (� + 1)

2 � 1 if � 1 � � � 1�
p
2
2

4

3
�2 if 1�

p
2
2 � � � 3

4

�4 (1� �)2 + 1 if 34 � � � 1

:

The graphs of yinf;� and m (�) are in Figure 7.

-1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1

-1

-0.5

0.5

1

delta

m(δ)

yinf ,δ

yinf ,δ at boundaries

m(δ) > 0

Figure 7. m (�) and yinf;�:
�
C
�
3
4

�
; C
�
1
4

��

Graphs of F1 (y)� F0 (y � �) against y for selective ��s are presented in Figure 8.
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Figures 8(a) and 8(b) illustrate two cases each having a unique interior minimum, but in

Figure 8(a), m(�) is negative and in Figure 8(b), m(�) is 0. Figure 8(c) illustrates the case

with multiple solutions: one interior minimizer and two boundary ones, while Figure 8(d)

illustrates the case with two boundary minima.

Figure 8. F1 (y)� F0 (y � �) for m (�)

In the simulation study, we considered the case with a unique interior solution

corresponding to Figures 8(a) and (b). When � =

p
6

2
�1; we obtain yinf;� =

p
6

4
; m(�) = 0;

and f 01 (yinf;�)� f 00 (yinf;� � �) =
16

3
> 0. By Theorem 3, we get

p
n1[F

U
n (�)� FU (�)] =) min

�
N(0; �2U ); 0

�
; where �2U =

1 + �

4
:

When � = �1
8
, we get yinf;� = 7

16 ; m(�) = �
47
96 < 0; and f

0
1 (yinf;�)�f 00 (yinf;� � �) =

16

3
> 0.

Hence

p
n1[F

U
n (�)� FU (�)] =) N(0; �2U ) where �

2
U = (1 + �)

7007

36 864
:
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Inference on the Bounds

In the next section, we investigate the performance of the fewer-than-n bootstrap

in constructing con�dence intervals for FL(�) and FU (�) for � values corresponding to ysup;�

(yinf;�) being an interior solution with M(�) > 0 and M(�) = 0 (m(�) < 0 and m(�) = 0).

To implement the fewer-than-n bootstrap, we need to choose the subsample size. We use

the procedure suggested in Bickel and Sakov (2005). Let m denote the subsample size and

m̂ the value of m chosen by the procedure in Bickel and Sakov (2005) (see below for a

detailed description of this rule applied to our case). As shown by Bickel and Sakov (2005),

bm has the desirable property that under general regularity conditions, when the standard

bootstrap fails, m̂!1 in probability and m̂=n = op(1); and when the standard bootstrap

works, m̂=n = Op(1). As a result, there is no loss in e¢ ciency in using the fewer-than-

n bootstrap with this adaptive rule of choosing the subsample size. On the other hand,

subsampling requires a strictly smaller subsample size.

We now describe this rule for the lower bound FL (�). For notational clarity, we

consider the case n1 = n0. Let fY �1igmi=1 be i.i.d. from F1n(�) and fY �0igmi=1 i.i.d. from

F0n(�) where m � n. Denote the bootstrap estimators of the sharp bounds by F �Lm;n(�)

and F �Um;n(�) and the bootstrap estimators of �
2
L and �

2
U by �̂

2�
m;L and �̂

2�
m;U . Let T

�LT
m;n =

p
m
�
F �Lm;n(�)� FLn (�)

�
=�̂�m;L. To choose m, we follow the steps below.

Step 1. Consider a sequence of m�s of the form:

mj =
�
qjn
�
for j = 0; 1; 2; � � � ; 0 < q < 1

where [
] denotes the largest integer � 
:

Step 2. For each mj ; let L�mj ;n denote the empirical distribution of values of T
�LT
m;n over a

large number (B) of bootstrap repetitions.
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Step 3. Let m̂ = argminmj

�
supx

n���L�mj ;n (x)� L
�
mj+1;n (x)

���o� :
Once m̂ is chosen, the con�dence intervals can be constructed in the usual way.

For example, the 100 � (1� �)% two-sided equal-tailed bootstrap con�dence interval for

FL(�) is

�
FLn (�)�

1

n

cbm;(1��=2)
�̂L

; FLn (�) +
1

n

cbm;�=2
�̂L

�
;

where cm;� = inf
�
x : L�m;n (x) � �

	
.

Simulation

In this section, we examine the �nite sample accuracy of the nonparametric esti-

mators of the treatment e¤ect distribution bounds and investigate the coverage rates of the

asymptotic, the standard bootstrap and the fewer-than-n bootstrap con�dence intervals for

the lower and upper bounds at di¤erent values of �. The data generating processes (DGP)

being used in this simulation study are respectively Example 1 and Example 2 introduced

in Sections 2 and 3. The detailed simulation design will be described in the subsections

below.

Estimates of FL and FU

Computation of FLn and F
U
n

The quantile functions of FUn and FLn provide consistent estimators of the lower

and upper bounds on the quantile function of F�. For 0 < q < 1, Lemma 3 (the duality

theorem) implies that the quantile bounds (FUn )
�1(q) and (FLn )

�1(q) can be computed as
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follows:

(FLn )
�1(q) = inf

u2[q;1]

�
F�11n (u)� F

�1
0n (u� q)

�
;

(FUn )
�1(q) = sup

u2[0;q]

�
F�11n (u)� F

�1
0n (1 + u� q)

�
;

where F�11n (�) and F
�1
0n (�) represent the quantile functions of F1n (�) and F0n (�) respectively.

To estimate the distribution bounds, we compute the values of (FLn )
�1(q) and

(FUn )
�1(q) at evenly spaced values of q in (0; 1). One choice that leads to easily computed

formulas for (FLn )
�1(q) and (FUn )

�1(q) is q = r=n1 for r = 1; : : : ; n1, as one can show that

(FLn )
�1(r=n1) = min

l=r;:::;(n1�1)
min

s=j;:::;k
[Y1(l+1) � Y0(s)]; (III.13)

where j =
h
n0

�
l�r
n1

�i
+ 1 and k =

h
n0

�
l�r+1
n1

�i
, and

(FUn )
�1(r=n1) = max

l=0;:::;(r�1)
max

s=j0;:::;k0
[Y1(l+1) � Y0(s)]; (III.14)

where j0 =
h
n0

�
n1+l�r
n1

�i
+ 1 and k0 =

h
n0

�
n1+l�r+1

n1

�i
. In the case where n1 = n0 = n,

(III.13) and (III.14) simplify:

(FLn )
�1(r=n) = min

l=r;:::;(n�1)
[Y1(l+1) � Y0(l�r+1)];

(FUn )
�1(r=n) = max

l=0;:::;(r�1)
[Y1(l+1) � Y0(n+l�r+1)]:

The empirical distribution of (FLn )
�1(r=n1), r = 1; :::; n1 provides an estimate of the lower

bound distribution and the empirical distribution of (FUn )
�1(r=n1), r = 1; :::; n1 provides

an estimate of the upper bound distribution.

Simulation Design

The DGPs being used in this experiment are: (i) F1 = N(2; 1) and F0 = N(1; 1);

(ii) F1 = N(2; 2) and F0 = N(1; 1); (iii) F1 = C(1=4) and F0 = C(3=4); (iv) F1 = C(3=4)
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and F0 = C(1=4). For each set of marginal distributions, random samples of sizes n1 =

n0 = n = 1; 000 are drawn and FLn and F
U
n are computed. This is repeated for 500 times.

Below we present four graphs. In each graph, we plotted FLn and F
U
n randomly chosen from

the 500 estimates, the averages of 500 FLn s and F
U
n s; and the simulation variances of F

L
n

and FUn multiplied by n: Each graph consists of 8 curves. The true distribution bounds

FL and FU are denoted as F^L and F^U, respectively. Their estimates (FLn and F
U
n ) are

Fn^L and Fn^U. The lines denoted by avg(Fn^L) and avg(Fn^U) show the averages of

500 FLn s and F
U
n s: The simulation variances of F

L
n and F

U
n multiplied by n are denoted as

n*var(Fn^L) and n*var(Fn^U).

Figures 9(a) and (b) correspond to DGP (i) and (ii), while Figures 10(a) and (b)

correspond to DGP (iii) and (iv). In all cases, we observe that Fn^L and avg(Fn^L) are

very close to F^L at all points of its support (the same holds true for F^U). In fact, these

curves are barely distinguishable from each other. The largest variance in all cases for all

values of � is less than 0.0005.

Figure 9. FLn and F
U
n for DGP (i) and (ii)
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Figure 10. FLn and F
U
n for DGP (iii) and (iv)

Coverage Rates

Computation

Construction of the con�dence intervals requires estimation of the variances �2L

and �2U which depend on ysup :� and yinf :�: Based on

FLn (�) = max fMn (�) ; 0g and FUn (�) = 1 +min fmn (�) ; 0g ;

we now describe a method for computingMn (�), mn (�) and the corresponding ysup;�, yinf;�.

Suppose we know Y�. To compute Mn (�) or mn (�), we just need to consider

Y1i 2 Y� and Y0i 2 Y� � �. If Y� is unknown, we can estimate it by

Y�n =
�
Y1(1); Y1(n1)

�T �
Y0(1) + �; Y0(n0) + �

�
;

where
�
Y1(i)

	n1
i=1

and
�
Y0(i)

	n0
i=1

are the order statistics of fY1ign1i=1 and fY0ig
n0
i=1 respectively

(in ascending order). In the discussion below, Y� can be replaced by Y�n if Y� is unknown.
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We de�ne a subset of the order statistics fY1ign1i=1 denoted as
�
Y1(i)

	s1
i=r1

as follows:

r1 = argmin
i

h�
Y1(i)

	n1
i=1

T
Y�
i
and s1 = argmax

i

h�
Y1(i)

	n1
i=1

T
Y�
i
:

In words, Y1(r1) is the smallest value of
�
Y1(i)

	n1
i=1

T
Y� and Y1(s1) is the largest. Then,

Mn (�) = max
i

�
i

n1
� F0n

�
Y1(i) � �

��
for i 2 fr1; r1 + 1; � � � ; s1g and

mn (�) = min
i

�
i

n1
� F0n

�
Y1(i) � �

��
for i 2 fr1; r1 + 1; � � � ; s1g :

To estimate �2L and �
2
U ; we use the following method. De�ne two sets IM and Im such that

IM =

�
i : i = argmax

i

�
i

n1
� F0n

�
Y1(i) � �

���
and

Im =

�
i : i = argmin

i

�
i

n1
� F0n

�
Y1(i) � �

���
:

Then the estimators �2Ln and �
2
Un can be de�ned as

�2Ln =
i

n1

�
1� i

n1

�
+ �F0n

�
Y1(i) � �

� �
1� F0n

�
Y1(i) � �

��
and

�2Un =
j

n1

�
1� j

n1

�
+ �F0n

�
Y1(j) � �

� �
1� F0n

�
Y1(j) � �

��
;

for i 2 IM and j 2 Im: Since IM or Im may not be singleton, we may have multiple estimates

of �2Ln or �
2
Un: In the simulation, we experimented with di¤erent ways of selecting �

2
Ln or

�2Un and the results are very similar.

Simulation Results

We looked at pointwise coverage rates of the lower and upper bounds separately

at deliberately chosen points. The true marginal distributions and the values of � used in

the simulation are summarized in Table 7.

For Example 1, both Y1 and Y0 are normally distributed. As shown in Section

III.3.2, M (�) > 0 and m (�) < 0 for all three values of �. Hence the standard bootstrap
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Table 7. DGPs Used in the Simulation
Estimators Marginal Distributions �
for F1 F0 �1 �2 �3

Example 1 FL (�) N (2; 2) N (1; 1) 1:3 2:6 4:5
FU (�) N (2; 2) N (1; 1) �2:4 �0:6 0:7

Example 2 FL (�) C
�
1
4

�
C
�
3
4

�
1
8 1�

p
6
2 �

FU (�) C
�
3
4

�
C
�
1
4

�
�1
8

p
6
2 � 1 �

works for all ��s. The values of � are chosen such that FL (�1) � FU (�1) � 0:15; FL (�2) �

FU (�2) � 0:5; and FL (�3) � FU (�3) � 0:85 to see the e¤ect of the relative position of � on

the coverage rates. For Example 2, M (�1) > 0 and m (�1) < 0 while M (�2) = m (�2) = 0

for both FL (�) and FU (�). Hence the standard bootstrap works for �1 but not for �2.

For each DGP described in Table 7, we generated random samples of the same

size n from F1 and F0 respectively. The sample sizes are n = 1; 000; 2; 000; 4; 000 and the

number of simulations was 1000. To select the number of bootstrap repetitions B, we

followed Davidson and Mackinnon (2004; pp163-165) by choosing B such that � (B + 1)

is an integer. Speci�cally, we used B = 999 for � = 0:05: For Example 1, we constructed

con�dence intervals for FL (�) and FU (�) for each � by three methods. The �rst is the

con�dence interval based on the standard normal distribution. We denote the corresponding

results by �Asymptotics�in Table 8 below. The second method used the standard bootstrap

con�dence intervals and the results are denoted by �n-bootstrap�in Table 8. Finally, we used

the �fewer-than-n-bootstrap�con�dence intervals. In the �fewer-than-n-bootstrap�, we used

q = 0:95: Here only one value for q was used, because the �fewer-than-n bootstrap�was only

used for comparison purposes (the standard bootstrap works for this case). For Example 2,

we used the standard normal distribution (�Asymptotics�in Table 9), the standard bootstrap

(�n-bootstrap�in Table 9), and the �fewer-than-n-bootstrap�with two values for q: 0:75 and

0:95.
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Table 8. Coverage Rates for Example 1
FL (�) FU (�)

n Method �1 �2 �3 �1 �2 �3
1; 000 Asymptotics .929 .944 .937 .931 .949 .926

n-bootstrap .942 .954 .950 .950 .953 .939
q = 0:95 Fewer-than-n bootstrap .948 .949 .948 .952 .951 .942
2; 000 Asymptotics .942 .944 .934 .943 .946 .927

n-bootstrap .949 .944 .946 .946 .952 .937
q = 0:95 Fewer-than-n bootstrap .941 .944 .952 .949 .950 .939
4; 000 Asymptotics .935 .953 .936 .949 .949 .928

n-bootstrap .945 .957 .953 .951 .952 .936
q = 0:95 Fewer-than-n bootstrap .944 .957 .952 .951 .952 .939

Table 9. Coverage Rates for Example 2
FL (�) FU (�)

n Method �1 �2 �1 �2
1; 000 Asymptotics .933 .935 .947 .935

n-bootstrap .941 .961 .951 .958
Fewer-than-n bootstrap (q = 0:75) .943 .963 .951 .960
Fewer-than-n bootstrap (q = 0:95) .945 .963 .947 .962

2; 000 Asymptotics .952 .955 .940 .940
n-bootstrap .951 .970 .947 .959
Fewer-than-n bootstrap (q = 0:75) .944 .971 .946 .959
Fewer-than-n bootstrap (q = 0:95) .951 .969 .946 .959

4; 000 Asymptotics .948 .944 .952 .946
n-bootstrap .947 .963 .946 .963
Fewer-than-n bootstrap (q = 0:75) .949 .964 .947 .965
Fewer-than-n bootstrap (q = 0:95) .949 .962 .951 .961

First, we discuss the coverage rates for normal distributions in Table 8. Clearly

the coverage rates depend critically on the location of �. For �2, all three methods lead to

con�dence intervals with very accurate coverage rates for both FL and FU . The coverage

rates at �1 and �3 depend on the methods being used. Although in theory all three methods

are asymptotically valid, in �nite samples, con�dence intervals based on normal critical

values often substantially under cover the true values at �1 and/or �3. For example, the

coverage rates of con�dence intervals based on normal critical values for FL(�) at � = �1

and �3 are respectively :929 and :937 when n = 1; 000 and :935 and :936 when n = 4; 000.

On the other hand, the standard bootstrap leads to coverage rates of :942 and :950 when
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n = 1; 000 and :945 and :953 when n = 4; 000, supporting the asymptotic re�nement of

the standard bootstrap over asymptotic normality in this case. The fewer-than-n bootstrap

delivers similar coverage rates to the standard bootstrap.

Table 9 provides the results for Example 2. All three methods: the �Asymptotics�

based on normal critical values, the n-bootstrap and the fewer-than-n bootstrap with di¤er-

ent values of q perform similarly at �1 except when n = 1000, the �Asymptotics�undercovers

for FL(�1) with coverage rate :933. At �2, the n-bootstrap leads to coverage rates higher

than :95 for almost all sample sizes, while the fewer-than-n bootstrap produces coverage

rates that are slightly better than the n-bootstrap, but not by much. On the other hand,

the �Asymptotics�provides coverage rates that are closer to :95 except when n = 1000.

Table 10. MSE and Bias for Example 1
FL (�) FU (�)

n Statistics �1 �2 �3 �1 �2 �3
1; 000

p
MSE .0209 .0194 .0118 .0123 .0198 .0215

Bias .0094 .0070 .0046 �:0054 �:0082 �:0107
2; 000

p
MSE .0143 .0135 .0083 .0086 .0138 .0149

Bias .0064 .0040 .0033 �:0030 �:0052 �:0077
4; 000

p
MSE .0102 .0094 .0060 .0062 .0097 .0103

Bias .0045 .0028 .0022 �:0022 �:0034 �:0053

Table 11. MSE and Bias for Example 2
FL (�) FU (�)

n Statistics �1 �2 �1 �2
1; 000

p
MSE .0202 .0216 .0204 .0221

Bias .0080 .0147 �:0087 �:0155
2; 000

p
MSE .0139 .0149 .0144 .0153

Bias .0044 .0101 �:0057 �:0104
4; 000

p
MSE .0098 .0102 .0100 .0103

Bias .0033 .0069 �:0033 �:0069

Tables 10 and 11 present the bias and RMSE of FLn (�) and F
U
n (�) for the values

of � used to evaluate coverage rates. As expected, as the sample size n increases, both the

bias and the MSE of the lower and upper bound estimators decrease regardless of the values
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of � for both examples. Also for both examples, the lower bound estimator FLn (�) is biased

upward and the upper bound estimator FUn (�) is biased downward for all sample sizes and

for all values of � considered.

Estimation and Inference on the Distribution of the Relative Treatment
E¤ects

When the potential outcomes are almost surely positive, an alternative measure of

the treatment e¤ects is the relative risk de�ned as the ratio of the two potential outcomes.

Let R = Y1
Y0
: A value of R larger than 1 indicates e¤ectiveness of the treatment and a value of

R smaller than 1 indicates ine¤ectiveness of the treatment. Williamson and Downs (1990)

showed that the sharp bounds on the distribution of R are:

FLR (�) = sup
y
max(F1(y)� F0(y=�); 0) and

FUR (�) = 1 + inf
y
min(F1(y)� F0(y=�); 0):

Let Y1 = [a; b] and Y0 = [c; d] for a; b; c; d 2 R+
S
f0;1g denote the supports

of Y1 and Y0 respectively. De�ne Y�;R = [a; b]
T
[�c; �d] for � 2

�
a
d ;
b
c

�T
R+ with obvious

de�nitions of ad and
b
c when one or more of a; b; c; d 2 f0;1g. Then it can be shown that

FLR (�) = max

(
sup
y2Y�;R

[F1(y)� F0(y=�)] ; 0
)
� max (MR (�) ; 0) and

FUR (�) = 1 +min

�
inf

y2Y�;R
[F1(y)� F0(y=�)] ; 0

�
� 1 + min(mR (�) ; 0);

where

MR (�) = F1(ysup;�R)� F0(ysup;�R=�) and

mR (�) = F1(yinf;�R)� F0(yinf;�R=�)
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in which

ysup;�R = arg sup
y2Y�;R

(F1(y)� F0(y=�)) and

yinf;�R = arg inf
y2Y�;R

(F1(y)� F0(y=�)) :

Consistent estimators of FLR (�) and F
U
R (�) are:

FLnR(�) = max

(
sup
y2Y�;R

(F1n(y)� F0n(y=�)) ; 0
)
and

FUnR(�) = 1 +min

�
inf

y2Y�;R
(F1n(y)� F0n(y=�)) ; 0

�
:

To provide the asymptotic distributions of FLnR(�) and F
U
nR(�), we modify (A3) and (A4)

to (A3R) and (A4R) below.

(A3R) (i) For every � > 0,

sup
y2Y�;R:jy�ysup;�Rj��

fF1(y)� F0(y=�)g < fF1(ysup;�R)� F0(ysup;�R=�)g ;

(ii) f1 (ysup;�R)� 1
�f0 (ysup;�R=�) = 0 and f

0
1 (ysup;�R)� 1

�2
f 00 (ysup;�R=�) < 0.

(A4R) (i) For every � > 0,

inf
y2Y�;R:jy�yinf;�Rj��

fF1(y)� F0(y=�)g > fF1(yinf;�R)� F0(yinf;�R=�)g ;

(ii) f1 (yinf;�R)� 1
�f0 (yinf;�R=�) = 0 and f

0
1 (yinf;�R)� 1

�2
f 00 (yinf;�R=�) > 0.

Theorem 4 (i) Suppose (A1),(A2) and (A3R) hold. De�ne 0
0 =

1
1 = 1. For any � 2�

a
d ;
b
c

�T
R+, if min

�
a
c ;
b
d

	
< �, then

p
n1[F

L
nR(�)� FLR (�)] =) N(0; �2LR); otherwise

p
n1[F

L
nR(�)� FLR (�)] =)

�
N
�
0; �2LR

�
if MR(�) > 0;

max
�
N
�
0; �2LR

�
; 0
	
if MR(�) = 0;

and Pr
�
FLnR (�) = 0

�
! 1 if MR(�) < 0;
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where

�2LR = F1(ysup;�R) [1� F1(ysup;�R)] + �F0(ysup;�R=�) [1� F0(ysup;�R=�)] :

(ii) Suppose (A1), (A2), and (A4R) hold. De�ne 0
0 =

1
1 = 0. For any � 2�

a
d ;
b
c

�T
R+, if max

�
a
c ;
b
d

	
> �, then

p
n1[F

U
nR(�)� FUR (�)] =) N(0; �2UR); otherwise

p
n1[F

U
nR(�)� FUR (�)] =)

�
N
�
0; �2UR

�
if mR(�) < 0;

max
�
N
�
0; �2UR

�
; 0
	
if MR(�) = 0;

and Pr
�
FUnR (�) = 1

�
! 1 if mR(�) > 0;

where

�2UR = F1(yinf;�R) [1� F1(yinf;�R=�)] + �F0(yinf;�R=�) [1� F0(yinf;�R=�)] .

The proof of Theorem 4 is similar to that of Theorem 3 and is thus omitted. Like

Theorem 3, Theorem 4 implies that in general, the standard asymptotics and bootstrap

may fail to provide valid inference on the sharp bounds FLR (�) and F
U
R (�). Instead the

fewer-than-n bootstrap or subsampling should be used to make inferences on these bounds.

Sharp Bounds on the Distribution of Treatment E¤ects with Covariates

In many applications, observations on a vector of covariates for individuals in the

treatment and control groups are available. In this section, we extend our study on sharp

bounds to take into account these covariates. For notational compactness, we let n = n1+n0

so that there are n individuals altogether. For i = 1; :::; n; let Xi denote the observed vector

of covariates and Di the binary variable indicating participation; Di = 1 if individual i

belongs to the treatment group and Di = 0 if individual i belongs to the control group. Let

Yi = Y1iDi + Y0i(1�Di)

denote the observed outcome for individual i. We have a random sample fYi; Xi; Digni=1 :

In the literature on program evaluation with selection-on-observables, the following two
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assumptions are often used to evaluate the e¤ect of treatment or program, see e.g., Rosen-

baum and Rubin (1983a,b), Hahn (1998), Heckman, Ichimura, Smith, and Todd (1998),

Dehejia and Wahba (1999), and Hirano, Imbens, and Ridder (2000), to name only a few.

(C1) Let (Y1; Y0; D;X) have a joint distribution. For all x 2 X (the support of X), (Y1; Y0)

is jointly independent of D conditional on X = x.

(C2) For all x 2 X , 0 < p(x) < 1, where p(x) = P (D = 1jx).

In the following, we present sharp bounds on the distribution of � under (C1) and

(C2). For any �xed x 2 X , Lemma 1 provides sharp bounds on the conditional distribution

of � given X = x:

FL(�jx) � F�(�jx) � FU (�jx);

where

FL(�jx) = sup
y
max(F1(yjx)� F0(y � �jx); 0);

FU (�jx) = 1 + inf
y
min(F1(yjx)� F0(y � �jx); 0):

Here, we use F�(�jx) to denote the conditional distribution function of � given X = x. The

other conditional distributions are de�ned similarly. Conditions (C1) and (C2) allow the

identi�cation of the conditional distributions F1(yjx) and F0(yjx) appearing in the sharp

bounds on F�(�jx). To see this, note that

F1(yjx) = P (Y1 � yjX = x) = P (Y1 � yjX = x;D = 1)

= P (Y � yjX = x;D = 1); (III.15)

where (C1) is used to establish the second equality. Similarly, we get

F0(yjx) = P (Y � yjX = x;D = 0): (III.16)
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Given the random sample fYi; Xi; Digni=1 ; nonparametric estimators of the bounds

FL(�jx); FU (�jx) can be easily constructed from nonparametric estimators of F1(y1jx) and

F0(y0jx). Their asymptotic properties extend directly from those of FL(�); FU (�) estab-

lished in Section III.3.

Sharp bounds on the unconditional distribution of � follow from those of the

conditional distribution:

E
�
FL(�jX)

�
� F�(�) = E (F�(�jX)) � E

�
FU (�jX)

�
:

We note that if X is independent of (Y1; Y0), then the above bounds on F�(�) reduce to

those in Lemma 1. In general, X is not independent of (Y1; Y0) and the above bounds are

tighter than those in Lemma 1.

Let F̂1(y1jx) and F̂0(y0jx) denote nonparametric estimators of F1(y1jx) and F0(y0jx)

respectively. The bounds E
�
FL(�jX)

�
; E
�
FU (�jX)

�
can be estimated respectively by

1

n

nX
i=1

max

�
sup
y

n
F̂1(yjXi)� F̂0(y � �jXi)

o
; 0

�

and

1 +
1

n

nX
i=1

min

�
inf
y

n
F̂1(yjXi)� F̂0(y � �jXi)

o
; 0

�
:

For the sake of space, we will present a complete asymptotic theory for these estimators in

a separate paper.

Conclusion and Extensions

This chapter is the �rst to study nonparametric estimation and inference for sharp

bounds on the distribution of a di¤erence between two random variables. In the context

91



of program evaluation or evaluation of a binary treatment, the di¤erence between the two

potential outcomes measures the program e¤ect or e¤ect of the treatment and hence plays

an important role. We have also extended our results to a ratio of two random variables,

a measure of the relative treatment e¤ects. As we mentioned in the Introduction, sharp

bounds on the distribution of a sum are important in �nance and risk management. The

results developed in this chapter are directly applicable to a sum of two random variables

by rede�ning the second random variable.

Much work remains to be done. In terms of the sharp bounds, those in this chapter

do not make use of any prior information on the possible dependence between the potential

outcomes. When such information is available, these bounds can be tightened. In a di¤erent

paper, we explore sharp bounds taking account of dependence information such as values

of dependence measures of the potential outcomes. The focus on randomized experiments

in this chapter allows the identi�cation of the marginal distributions. In cases where the

marginal distributions themselves are not identi�able but bounds on them can be placed

(see, e.g., Manski (1994, 2003), Manski and Pepper (2000), Shaikh and Vytlacil (2005),

Blundell, Gosling, Ichimura, and Meghir (2006), Honore and Lleras-Muney (2006)), we can

also place bounds on the treatment e¤ect distribution.

In terms of statistical inference, this chapter looked at inference on the sharp

bounds themselves. The lower and upper bounds represent respectively the minimum and

maximum probabilities that the treatment e¤ects do not exceed a given value. Inference on

them should be useful on its own right. Alternatively, as initiated in Horowitz and Manski

(2000) and Imbens and Manski (2004), followed by Chernozhukov, Hong, and Tamer (2007),

and Romano and Shaikh (2006), among others, one may construct con�dence sets for the

identi�ed set or the true distribution instead of its bounds. However, existing con�dence
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sets may not directly apply to our context, as the asymptotic distributions of the bounds

themselves are discontinuous functions of the model parameters. One of the authors is

currently investigating this issue by using the general approach developed in Andrews and

Guggenberger (2005a, b).

Another extension that we are currently exploring is to relax the assumption that

ysup;� (yinf;�) is a unique interior solution. As we demonstrated in Example 2, when the

supports of F1 and F0 are compact, there are often boundary solutions, i.e., ysup;� or yinf;�

lie on the boundary of Y�. Moreover, it is also possible to have multiple solutions for ysup;�

and yinf;�, some in the interior and some on the boundary. The asymptotic distributions of

FLn (�) and F
U
n (�) allowing for these possibilities will be much more complicated than those

in Theorem 3.2. We will report inference for this general case in a separate paper.
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Appendix A. Technical Proofs

Proof of Proposition 1: Since the proofs of (i) and (ii) are similar, we provide

a proof for (i) only. Let

Qn(y; �) = F1n(y)� F0n(y � �); Q(y; �) = F1(y)� F0(y � �):

De�ne

ŷsup;� = arg sup
y
Qn(y; �):

ThenMn(�) = Qn(ŷsup;�; �) andM(�) = Q(ysup;�; �). LetMn(�) = Qn(ysup;�; �). Obviously,

p
n1
�
Mn(�)�M(�)

�
=) N(0; �2L). We will complete the proof of (i) in three steps:

1. We show that ŷsup;� � ysup;� = op(1);

2. We show that ŷsup;� � ysup;� = Op(n�1=31 );

3.
p
n1 (Mn(�)�M(�)) has the same limiting distribution as

p
n1
�
Mn(�)�M(�)

�
.

Proof of 1. By the classical Glivenko-Cantelli theorem, the sequences supy jF1n(y)�

F1(y)j and supy jF0n(y � �)� F0(y � �)j converge in probability to zero. Consequently, the

sequence supy j[F1n(y)� F0n(y � �)]� [F1(y)� F0(y � �)] j also converges in probability to

zero. This and A3(i) imply that the sequence ŷsup;� converges in probability to ysup;�, see

e.g., Theorem 5.7 in van der Vaart (1998).

Proof of 2. We use Theorem 3.2.5 in van der Vaart and Wellner (1996) to

establish the rate of convergence for ŷsup;�. Given (A2), the map: y 7! Q(y; �) is twice

di¤erentiable and has a maximum at ysup;�. By (A3), the �rst condition of Theorem 3.2.5

in van der Vaart and Wellner (1996) is satis�ed with � = 2. To check the second condition

of Theorem 3.2.5 in van der Vaart and Wellner (1996), we consider the centered process:
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p
n1(Qn �Q)(�; �) =

p
n1(F1n � F1)(�)�

p
n1(F0n � F0)(� � �)

� Gn1 (�)�
p
n1p
n0
Gn0 (� � �) :

For any � > 0,

E sup
jy�ysup;�j<�

jpn1(Qn �Q)(y; �)�
p
n1(Qn �Q)(ysup;�; �)j

� E sup
jy�ysup;�j<�

jGn1 (y)�Gn1 (ysup;�) j

+

p
n0p
n1
E sup
jy�ysup;�j<�

jGn0 (y � �)�Gn0 (ysup;� � �) j:

Note that the envelope function of the class of functions

fI f(�1; y]g � I f(�1; ysup;�g : y 2 [ysup;� � �; ysup;� + �]g

is bounded by I f(ysup;� � �; ysup;� + �)g which has a squared L2-norm bounded by 2
�
supy f1(y)

�
�.

Since the class of functions I fY1i � �g has a �nite uniform entropy integral, Lemma 19.38

in van der Vaart (1998) implies:

E sup
jy�ysup;�j<�

jGn1 (y)�Gn1 (ysup;�) j . �1=2: (III.17)

Similarly, we can show that

E sup
jy�ysup;�j<�

jGn0 (y � �)�Gn0 (ysup;� � �) j . �1=2: (III.18)

Consequently,

E sup
jy�ysup;�j<�

jpn1(Qn �Q)(y; �)�
p
n1(Qn �Q)(ysup;�; �)j . �1=2:

Hence the second condition of Theorem 3.2.5 in van der Vaart and Wellner (1996) is satis�ed

leading to the rate of n�1=31 .
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Proof of 3. For a �xed �, we get

p
n1 (Mn(�)�M(�))

=
p
n1 (F1n(ŷsup;�)� F0n(ŷsup;� � �))�

p
n1 (F1(ysup;�)� F0(ysup;� � �))

=
p
n1(Qn �Q)(ŷsup;�; �) +

p
n1 (F1(ŷsup;�)� F0(ŷsup;� � �))

�pn1 (F1(ysup;�)� F0(ysup;� � �))

=
p
n1(Qn �Q)(ysup;�; �)

+
p
n1 [F1(ŷsup;�)� F0(ŷsup;� � �)� F1(ysup;�)� F0(ysup;� � �)] + op(1)

=
p
n1
�
Mn(�)�M(�)

�
+
1

2

p
n1
�
f 01(y

�
sup;�)� f 00(y�sup;� � �)

	
(ŷsup;� � ysup;�)2 + op(1)

=
p
n1
�
Mn(�)�M(�)

�
+ op(1);

where y�sup;� lies between ŷsup;� and ysup;� and we have used stochastic equicontinuity of the

process:
p
n1(Qn �Q)(�; �) and the �rst order condition for supy fF1(y)� F0(y � �)g.
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Appendix B. Functional Forms of ysup;�; yinf;�; M (�) and m (�) for Some
Known Marginal Distributions

Denuit, Genest, and Marceau (1999) provided the distribution bounds for a sum of

two random variables when they both follow shifted Exponential distributions or both follow

shifted Pareto distributions. Below, we augment their results with explicit expressions for

ysup;�; yinf;�; M (�) and m (�) which may help us understand the asymptotic behavior of

the nonparametric estimators of the distribution bounds when the true marginals are either

shifted Exponential or shifted Pareto.

First, we present some expressions used in Example 2.

Example 2 (continued). In Example 2, we considered the family of distributions

denoted by C(a) with a 2 (0; 1). If X � C (a), then

F (x) =

8>><>>:
1

a
x2 if x 2 [0; a]

1� (x� 1)
2

(1� a) if x 2 [a; 1]
and

f(x) =

8>><>>:
2

a
x if x 2 [0; a]

2 (1� x)
(1� a) if x 2 [a; 1]

:

Suppose Y1 � C (a1) and Y0 � C (a0). We now provide the functional form of

F1 (y)� F0 (y � �).

1. Suppose � < 0. Then Y� = [0; 1 + �] :

(a) If a0 + � � 0 < a1 � 1 + �, then

F1 (y)� F0 (y � �) =

8>><>>:
y2

a1
�
�
1� (y���1)2

(1�a0)

�
if 0 � y � a1�

1� (y�1)2
(1�a1)

�
�
�
1� (y���1)2

(1�a0)

�
if a1 � y � 1 + �

;
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(b) If 0 � a0 + � � a1 � 1 + �, then

F1 (y)� F0 (y � �) =

8>>>>>><>>>>>>:

y2

a1
� (y��)2

a0
if 0 � y � a0 + �

y2

a1
�
�
1� (y���1)2

(1�a0)

�
if a0 + � � y � a1�

1� (y�1)2
(1�a1)

�
�
�
1� (y���1)2

(1�a0)

�
if a1 � y � 1 + �

;

(c) If a0 + � � 0 � 1 + � � a1, then

F1 (y)� F0 (y � �) =
y2

a1
�
 
1� (y � � � 1)

2

(1� a0)

!
if 0 � y � 1 + �;

(d) If 0 � a0 + � < 1 + � � a1, then

F1 (y)� F0 (y � �) =

8>><>>:
y2

a1
� (y��)2

a0
if 0 � y � a0 + �

y2

a1
�
�
1� (y���1)2

(1�a0)

�
if a0 + � � y � 1 + �

;

(e) If 0 < a1 � a0 + � � 1 + �, then

F1 (y)�F0 (y � �) =

8>>>>>><>>>>>>:

y2

a1
� (y��)2

a0
if 0 � y � a1�

1� (y�1)2
(1�a1)

�
� (y��)2

a0
if a1 � y � a0 + ��

1� (y�1)2
(1�a1)

�
�
�
1� (y���1)2

(1�a0)

�
if a0 + � � y � 1 + �

:

2. Suppose � � 0. Then Y� = [�; 1].

(a) If � < a0 + � � a1 < 1, then

(i) if a1 6= a0 and � 6= 0, then

F1 (y)� F0 (y � �) =

8>>>>>><>>>>>>:

y2

a1
� (y��)2

a0
if � � y � a0 + �

y2

a1
�
�
1� (y���1)2

(1�a0)

�
if a0 + � � y � a1�

1� (y�1)2
(1�a1)

�
�
�
1� (y���1)2

(1�a0)

�
if a1 � y � 1

;

(ii) if a1 = a0 = a and � = 0, then

F1 (y)� F0 (y � �) = 0 for all y 2 [0; 1] :
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(b) If � � a1 � a0 + � � 1, then

F1 (y)� F0 (y � �) =

8>>>>>><>>>>>>:

y2

a1
� (y��)2

a0
if � � y � a1�

1� (y�1)2
(1�a1)

�
� (y��)2

a0
if a1 � y � a0 + ��

1� (y�1)2
(1�a1)

�
�
�
1� (y���1)2

(1�a0)

�
if a0 + � � y � 1

;

(c) If � � a1 < 1 � a0 + �, then

F1 (y)� F0 (y � �) =

8>><>>:
y2

a1
� (y��)2

a0
if � � y � a1�

1� (y�1)2
(1�a1)

�
� (y��)2

a0
if a1 � y � 1

;

(d) If a1 < � < a0 + � � 1, then

F1 (y)� F0 (y � �) =

8>><>>:
�
1� (y�1)2

(1�a1)

�
� (y��)2

a0
if � � y � a0 + ��

1� (y�1)2
(1�a1)

�
�
�
1� (y���1)2

(1�a0)

�
if a0 + � � y � 1

;

(e) If a1 < � < 1 � a0 + �, then

F1 (y)� F0 (y � �) =
 
1� (y � 1)

2

(1� a1)

!
� (y � �)

2

a0
if� � y � 1:

(Shifted) Exponential marginals. The marginal distributions are:

F1 (y) = 1� exp
�
�y��1

�1

�
for y 2 [�1;1) and

F0 (y) = 1� exp
�
�y��0

�0

�
for y 2 [�0;1) , where �1; �1; �0; �0 > 0:

Let �c = (�1 � �0)�min f�1; �0g (ln�1 � ln�0) :

1. Suppose �1 < �0.
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(a) If � � �c,

FL (�) = max fM (�) ; 0g = 0;

where M (�) =

 �
�0
�1

� �1
�1��0

�
�
�0
�1

� �0
�1��0

!
exp

�
�� � (�1 � �0)

�1 � �0

�
< 0;

and yinf;� =
�0�1 (ln�1 � ln�0) + �1�0 � �0�1 + �1�

�1 � �0
(an interior solution).

FU (�) = 1 +min fm (�) ; 0g = 1 +m (�) ;

where m (�) = min
n
exp

�
�maxf�1�(�+�0);0g

�0

�
� exp

�
�maxf�0+���1;0g

�1

�
; 0
o

and ysup;� = max f�1; �0 + �g or 1 (boundary solution).

(b) If � > �c,

FL (�) = max fM (�) ; 0g =M (�) > 0;

where M (�) = 1� exp
�
� �+�0��1

�1

�
and yinf;� = �0 + �:

FU (�) = 1 +min fm (�) ; 0g = 1

since m (�) = 0 and ysup;� =1:
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2. Suppose �1 = �0 = �. Then

FL (�) = max fM (�) ; 0g =M (�) ;

where M (�) =

8>><>>:
0 if � � �1 � �0

1� exp
�
� ��(�1��0)

�

�
> 0 if � > �1 � �0

and yinf;� =

8>>>>>><>>>>>>:

1 if � < �1 � �0

any point in R if � = �1 � �0

�0 + � if � > �1 � �0

:

FU (�) = 1 +min fm (�) ; 0g = 1 +m (�) ;

where m (�) =

8>><>>:
exp

�
� �1�(�+�0)

�

�
� 1 < 0 if � < �1 � �0

0 if � � �1 � �0

and ysup;� =

8>>>>>><>>>>>>:

�1 if � < �1 � �0

any point in R if � = �1 � �0

1 if � > �1 � �0

:

3. Suppose �1 > �0.

(a) If � < �c,

FL (�) = max fM (�) ; 0g = 0 , since M (�) = 0 and yinf;� =1:

FU (�) = 1 +min fm (�) ; 0g = 1�m (�) ;

where m (�) = exp

�
��1 � (� + �0)

�0

�
� 1 < 0, ysup;� = �1:
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(b) If � � �c;

FL (�) = max fM (�) ; 0g =M (�) ;

where M (�) = max
n
exp

�
�maxf�1�(�+�0);0g

�0

�
� exp

�
�maxf�0+���1;0g

�1

�
; 0
o

and yinf;� = max f�1; �0 + �g or 1 (boundary solution).

FU (�) = 1 +min fm (�) ; 0g = 1 +m (�) ;

where m (�) =

 �
�0
�1

� �1
�1��0

�
�
�0
�1

� �0
�1��0

!
exp

�
�� � (�1 � �0)

�1 � �0

�
< 0

and ysup;� =
�0�1 (ln�1 � ln�0) + �1�0 � �0�1 + �1�

�1 � �0
(an interior solution).

(Shifted) Pareto marginals. The marginal distributions are:

F1 (y) = 1�
�

�1
�1 + y � �1

��
for y 2 [�1;1) and

F0 (y) = 1�
�

�0
�0 + y � �0

��
for y 2 [�0;1) , where �; �1; �1; �0; �0 > 0:

De�ne

�c = (�1 � �0)� (max f�1; �0g)
�

�+1

�
�

1
�+1

1 � �
1

�+1

0

�
:

1. Suppose �1 < �0.
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(a) If � � �c, then

FL (�) = max fM (�) ; 0g =M (�) ;

where M (�) =
�
�

�
�+1

0 � �
�

�+1

1

�0@ �
�

�+1

1 � �
�

�+1

0

� � �0 + �1 � �1 + �0

1A� > 0
and yinf;� =

(� + �0 � �0)�
�

�+1

1 + (�1 � �1)�
�

�+1

0

�
�

�+1

1 � �
�

�+1

0

(an interior solution).

FU (�) = 1 +min fm (�) ; 0g = 1 +m (�) ;

where m (�) = min

��
�0

�0 +max f�1 � � � �0; 0g

��
�
�

�1
�1 +max f�0 + � � �1; 0g

��
; 0

�
and ysup;� = max f�1; �0 + �g or 1 (boundary solution).

(b) If � > �c, then

FL (�) = max fM (�) ; 0g =M (�) ;

where M (�) = 1�
�

�1
�1 + �0 + � � �1

��
� 0 and yinf;� = �0 + �:

FU (�) = 1 +min fm (�) ; 0g = 1

since m (�) = 0 and ysup;� =1:
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2. Suppose �1 = �0 = �. Then

FL (�) = max fM (�) ; 0g =M (�) ;

where M (�) =

8>><>>:
0 if � � �1 � �0

1�
�

�

�+ � � (�1 � �0)

��
� 0 otherwise

and yinf;� =

8>>>>>><>>>>>>:

1 if � < �1 � �0

any point in Y if � = �1 � �0

�0 + � if � > �1 � �0

:

FU (�) = 1 +min fm (�) ; 0g = 1 +m (�) ;

where m (�) =

8>><>>:
�

�

�� � + (�1 � �0)

��
� 1 if � < �1 � �0

0 if � � �1 � �0

and ysup;� =

8>>>>>><>>>>>>:

�1 if � < �1 � �0

any point in Y if � = �1 � �0

1 if � > �1 � �0

:

3. Suppose �1 > �0.

(a) If � < �c, then

FL (�) = max fM (�) ; 0g = 0 since M (�) = 0 and

yinf;� = 1:

FU (�) = 1 +min fm (�) ; 0g = 1 +m (�) ;

where m (�) =

�
�0

�0 + �1 � � � �0

��
� 1 � 0 and

ysup;� = �1:
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(b) If � � �c, then

FL (�) = max fM (�) ; 0g =M (�) ;

where M (�) = max

��
�0

�0 +max f�1 � � � �0; 0g

��
�
�

�1
�1 +max f�0 + � � �1; 0g

��
; 0

�
and yinf;� = max f�1; �0 + �g or 1 (boundary solution).

FU (�) = 1 +min fm (�) ; 0g = 1 +m (�) ;

where m (�) =
�
�

�
�+1

0 � �
�

�+1

1

�0@ �
�

�+1

1 � �
�

�+1

0

� � �0 + �1 � �1 + �0

1A� < 0
and ysup;� =

(� + �0 � �0)�
�

�+1

1 + (�1 � �1)�
�

�+1

0

�
�

�+1

1 � �
�

�+1

0

(an interior solution).
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CHAPTER IV

CONFIDENCE SETS FOR THE QUANTILE OF TREATMENT EFFECTS

Introduction

In evaluating the e¤ect of a treatment such as a social program implementation,

the gain or loss in the outcome from the treatment or the amount of treatment e¤ect may

di¤er across individuals in the presence of heterogeneous response to treatment among indi-

viduals.1 Researchers take the heterogeneity into consideration by estimating, for instance,

the Average Treatment E¤ect (ATE) conditional upon some observable covariates. However,

if there exists heterogeneity due to unobservable characteristics, the amount of gain from

the treatment may di¤er across those with the same observable covariates. In this case, the

distributional e¤ect of a treatment may not be fully identi�ed even with the conditional

ATE on the observable covariates.

In this chapter, we focus on a binary treatment and de�ne the individual treatment

e¤ect as the di¤erence between the two potential outcomes: the individual�s potential out-

come when he/she is assigned to the treated group and the potential outcome when he/she is

assigned to the control group. Given that only one of the two potential outcomes is observed

for any individual, we cannot observe the individual�s outcome gain. This missing value

problem is the fundamental obstacle to the identi�cation of the distribution of the treat-

ment e¤ects when there is unobserved heterogeneity. Without imposing strong dependence

structure on the potential outcomes, Chapter III investigated the (partial) identi�cation

1We are going to use �outcome gain� and �treatment e¤ect� interchangably throughout the rest of this
paper.
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of the distribution of the e¤ects of a binary treatment in a randomized experiment. In a

randomized experiment, the marginal distributions of the potential outcomes are identi�ed.

Given the marginal distributions, the distribution of the treatment e¤ects is partially (inter-

val) identi�ed. Chapter III established asymptotic properties of nonparametric estimators

of the bounds of the identi�ed interval and provided valid inference procedures for the true

bounds.

In this chapter, we take a di¤erent approach to tackle the heterogeneity of treat-

ment e¤ects. Di¤erently from Chapter III, we will focus on the quantiles of the treatment

e¤ects denoted as QTE (p) for quantile level 0 < p < 1. The QTE (p) is of interest in vari-

ous situations. For example, policy makers may want to know if the median outcome gain

(p = 1=2) is positive or not. When we investigate the changes of income due to a pro-

gram, we want to trace out the changes of income of a certain quantile. Various inequality

measures are functions of quantiles.

The importance of the QTE (p) in capturing the heterogeneity of treatment e¤ects

has been recognized in the literature. Most existing literature, however, focus on the Quan-

tile Treatment E¤ects (QTE) - the di¤erence between the quantiles of the outcomes of the

treated and control groups at a given quantile level p - rather than the QTE (p). The QTE

has been used as an indicator of the presence of heterogeneity in treatment e¤ects since

Lehmann (1974) and Doksum (1974) �rst introduced the concept. For example, Bitler,

Gelbach, and Hoynes (1996) used QTE to show that ATE only is not enough to capture

the distributional impact of social programs. Recently, due to rapidly growing interest on

the heterogeneity in the treatment e¤ects, QTE has received a great deal of attention. To

name only a few: Abadie, Angrist, and Imbens (2002) estimated QTE and investigated the

heterogeneity of treatment e¤ects in the training program provided under the Job Training
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Partnership Act (JTPA); Djebbari and Smith (2008) showed heterogeneous treatment ef-

fects in PROGRESSA by estimating QTE; Millimet, Daniel L. and Abdullah Kumas (2007)

studied the heterogeneous impact of taxation on the US�foreign direct investment by in-

vestigating QTE; Ma and Koenker (2006) estimated QTE of class size on the performance

of Dutch primary school students.

Chapter III showed that the QTE thus de�ned is the same as the QTE (p) only

under the assumption that the two potential outcomes are perfectly positively dependent

(Firpo (2007) called this a rank preservation assumption) and when the QTE is nonde-

creasing in the quantile level p. More fundamental di¤erence between QTE and QTE (p)

is that the QTE, being the di¤erence between the quantiles of the marginal distributions

of the potential outcomes, is identi�ed as long as the marginal distributions are identi�ed

whereas QTE (p) can only be partially identi�ed unless strong dependence structure is im-

posed on the potential outcomes. Estimation and statistical inference procedures about the

QTE have been established (see, for example, Chernozhukov and Hansen 2006 for para-

metric framework and Firpo 2007 for nonparametric framework) while, to the best of our

knowledge, no systematic study on the identi�cation and inference on QTE (p) is currently

available except for a preliminary attempt to �nd bounds for the QTE (p) by extending

the concept of QTE with various correlations between two potential outcomes (Heckman,

Smith, and Clements 1997).

In this chapter, we explore the partial identi�cation of QTE (p) and provide non-

parametric estimators for its identi�ed bounds. We establish asymptotic properties of these

estimators and provide con�dence intervals (CI) for these bounds and con�dence set (CS)

for the QTE (p) itself. Due to the partial identi�cation of QTE (p), we make use of the recent

developments in inference procedures for partially identi�ed models to construct CSs for
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QTE (p).

The rest of this chapter is organized as follows. In Section 2, we introduce sharp

bounds for QTE (p), provide their nonparametric estimators, and develop the asymptotic

theory for these estimators. In contrast to the asymptotic distributions of estimators of

the distribution bounds studied in Chapter III, the asymptotic distributions of estimators

of the bounds for QTE (p) are continuous in model parameters which simplify statistical

inference procedures for the bounds and the QTE (p). Section 3 presents various con�dence

sets. For each bound, we propose a new con�dence interval which does not require the

estimation of the probability density functions of the potential outcomes. In addition to

the direct application of the CSs in Chapter II to QTE (p), we also present a new CS for

the true QTE (p) which does not require the estimation of the density functions of the

potential outcomes. Monte Carlo Simulation results are presented in Section 4. Section 5

concludes. Technical proofs are gathered in Appendix A. Appendix B presents the graphs of

the distribution functions and density functions used to generate the potential outcomes in

the simulation study. Appendices C and D present respectively tables of simulation results

for the bounds and the QTE (p).

Nonparametric Estimators of Sharp Bounds on QTE (p) and Their
Asymptotic Properties

Sharp Bounds on QTE (p) and Their Estimators

The notation in this chapter follows the convention in the treatment e¤ect liter-

ature. We consider a binary treatment and use Y1 to denote the potential outcome from

receiving treatment and Y0 the outcome without treatment. Let F (y1; y0) denote the joint

distribution of Y1; Y0 with marginals F1(�) and F0(�) respectively. Let � = Y1 � Y0 denote
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the treatment e¤ect or outcome gain and F�(�) its distribution function. Let F�1� (�) denote

the generalized inverse of F� (�). For a given quantile level p, QTE = QTE (p) = F�1� (p).

Given the marginals F1 and F0, sharp bounds on the QTE can be found in Williamson and

Downs (1990). They are restated in the following lemma.

Lemma 5 For 0 < p < 1, QL(p) � QTE (p) � QU (p), where

QU (p) = inf
u2(p;1)

[F�11 (u)� F�10 (u� p)];

QL(p) = sup
u2(0;p)

[F�11 (u)� F�10 (1 + u� p)];

and these bounds are sharp.

Example. When Y1 � N
�
�1; �

2
1

�
and Y0 � N

�
�0; �

2
0

�
. Provided that usup;p 6= 0:5

and 1 + usup;p � p 6= 0:5 and that uinf;p 6= 0:5 and uinf;p � p 6= 0:5; de�ne usup;p and uinf;p

such as

usup;p = argu2(0;p)

��
��1 (u)

�2 � ���1 (1 + u� p)�2 = ln �0
�1

�
for any p 6= 1;

uinf;p = argu2(p;1)

��
��1 (u)

�2 � ���1 (u� p)�2 = ln �0
�1

�
for any p 6= 0:

Then,

QU (p) = �1 � �0 + �1��1 (uinf;p)� �1��1 (uinf;p � p) ;

QL(p) = �1 � �0 + �1��1 (uinf;p)� �1��1 (1 + usup;p � p) :

Suppose random samples fY1ign1i=1 � F1 and fY0ign0i=1 � F0 are available. For a

p 2
h

1
maxfn1;n0g ; 1�

1
maxfn1;n0g

i
, we provide the following estimators of QL(p) and QU (p) :

QLn(p) = sup
u2
h

1
maxfn1;n0g

;p
ifF�11n (u)� F�10n (1 + u� p)g, (IV.1)

QUn (p) = inf
u2
h
p;1� 1

maxfn1;n0g

ifF�11n (u)� F�10n (u� p)g; (IV.2)
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where F1n(�) and F0n(�) are the empirical distributions de�ned as

Fkn (y) =
1

nk

nkP
i=1
1 fYki � yg ; k = 1; 0,

and F�11n (�) and F
�1
0n (�) are the generalized empirical quantile functions.

For any �xed p, the consistency of QLn(p) and Q
U
n (p) is obvious. In the next

subsection, we will establish the asymptotic distributions of

p
n1

0BB@QLn(p)�QL(p)
QUn (p)�QU (p)

1CCA :

Asymptotic Distributions

We make the following assumptions.

(A1) (i) The two samples fY1ign1i=1 and fY0ig
n0
i=1 are each i.i.d. and are independent of each

other; (ii) n1=n0 ! � as n1 !1 with 0 < � <1.

(A2) (i) The distribution functions F1 and F0 are twice di¤erentiable with positive, bounded

density functions f1 and f0 on their supports;

(ii) infu f1
�
F�11 (u)

�
> 0 and infu f0

�
F�10 (u)

�
> 0.

(A3) The function u 7�!
�
F�11 (u)� F�10 (1 + u� p)

	
has a unique maximum at usup;p in

the interior of [0; p].

(A4) The function u 7�!
�
F�11 (u)� F�10 (u� p)

	
has a unique minimum at uinf;p in the

interior of [p; 1].
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(A1) is satis�ed in a randomized experiment. Under (A3) and (A4), we can de�ne

usup;p and uinf;p as follows:

usup;p = arg sup
u2(0;p)

�
F�11 (u)� F�10 (1 + u� p)

	
;

uinf;p = arg inf
u2(p;1)

�
F�11 (u)� F�10 (u� p)

	
:

(A3) and (A4) can be restrictive. In general, if both Y1 and Y0 have unbounded supports,

then the interiority of usup;p and uinf;p is not questionable but the uniqueness is not always

guaranteed. If either of them has a bounded support from above, below, or both, then

neither the interiority nor the uniqueness is guaranteed. In future work, we will relax (A3)

and (A4).

With such usup;p and uinf;p, we have:

QU (p) = F�11 (uinf;p)� F�10 (uinf;p � p); (IV.3)

QL(p) = F�11 (usup;p)� F�10 (1 + usup;p � p): (IV.4)

Theorem 5 below provides the asymptotic distribution of (QLn(p); Q
U
n (p)). For the

ease of exposition, we de�ne

ûsup;p = inf

8><>:arg sup
u2
h

1
maxfn1;n0g

;p
ifF�11n (u)� F�10n (1 + u� p)g

9>=>; ;
ûinf;p = inf

8<:arg inf
u2
h
p;1� 1

maxfn1;n0g

ifF�11n (u)� F�10n (u� p)g
9=; :

Then we have

QUn (p) = F
�1
1n (ûinf;p)� F

�1
0n (ûinf;p � p); QLn(p) = F

�1
1n (ûsup;p)� F

�1
0n (1 + ûsup;p � p):

Theorem 5 Suppose (A1)-(A4) hold. Then

p
n1

�
QLn (p)�QL (p)
QUn (p)�QU (p)

�
) N

��
0
0

�
;

�
�2L �LU
�LU �2U

��
;
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where

�2L =
usup;p (1� usup;p) + �(1 + usup;p � p)(p� usup;p)�

f1
�
F�11 (usup;p)

��2 ;

�2U =
uinf;p (1� uinf;p) + �(uinf;p � p)(1� uinf;p + p)�

f1
�
F�11 (uinf;p)

��2 ;

�LU =
min fusup;p; uinf;pg � usup;puinf;p
f1
�
F�11 (usup;p)

�
f1
�
F�11 (uinf;p)

� +
�
min f1 + usup;p � p; uinf;p � pg � (1 + usup;p � p) (uinf;p � p)

f1
�
F�11 (usup;p)

�
f1
�
F�11 (uinf;p)

� :

We note that Theorem 5 is valid for a given probability measure P satisfying (A1)-

(A4). It is possible to strengthen (A1)-(A4) to convert Theorem 5 to a uniform result in P .

We leave this to future work.

Con�dence Sets

Con�dence Intervals for Each Bound

Given the asymptotic normality of the estimator of each bound, we can apply the

standard approach to constructing con�dence intervals for each bound. So, the following

lemma holds.

Lemma 6 Let f̂1 (u) be a consistent estimator of f1 (u) and de�ne the followings:

�̂2L =
ûsup;p (1� ûsup;p) + �(1 + ûsup;p � p)(p� ûsup;p)h

f̂1
�
F�11n (ûsup;p)

�i2 ;

�̂2U =
ûinf;p (1� ûinf;p) + �(ûinf;p � p)(1� ûinf;p + p)h

f̂1
�
F�11n (ûinf;p)

�i2 :

i) Suppose (A1)-(A3) hold. Then,

limPr

�
QLn(p)� z1��=2

�̂Lp
n1
� QL(p) � QLn(p) + z1��=2

�̂Lp
n1

�
= 1� �:

ii) Suppose (A1), (A2), and (A4) hold. Then,

limPr

�
QUn (p)� z1��=2

�̂Up
n1
� QU (p) � QUn (p) + z1��=2

�̂Up
n1

�
= 1� �:
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The CIs provided in Lemma 6 for the bounds require the consistent estimation of

the density function f1. Although a kernel density estimator of f1 may be used, the choice

of the bandwidth is troublesome. To avoid the estimation of f1, we propose a new approach,

which extends the well-known con�dence intervals for univariate quantiles based on order

statistics (see e.g., van der Vaart (1998)) to our case.

There are two problems we have to address in applying that approach for our case.

First, the sharp bounds are given by the di¤erences between two univariate quantiles, see

(IV.3) and (IV.4). Second, the quantile levels involved are unknown, as usup;p and uinf;p are

unknown. We now explain how we handle both problems. The following lemma extends

CIs based on order statistics for univariate quantiles (see e.g., Example 21.8 in van der

Vaart (1998)) to QL(p) and QU (p), but assuming usup;p and uinf;p are known. Let [k] be

the largest integer that does not exceed k. De�ne

u0 sup;p =
1

n0
argj

�
F�10n (1 + usup;p � p) = Y0(j)

	
;

u0 inf;p =
1

n0
argj

�
F�10n (uinf;p � p) = Y0(j)

	
;

where Y0(j) is the jorder statistic of fY0ign1i=1.
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Lemma 7 i) Suppose (A1)-(A3) hold. De�ne

uA1nL = usup;p � z1��=2
usup;p (1� usup;p)

p
n1

q
usup;p (1� usup;p) + 1

�u0 sup;p (1� u0 sup;p)
;

uA0nL = u0 sup;p + z1��=2
u0 sup;p (1� u0 sup;p)

p
n1

q
usup;p (1� usup;p) + 1

�u0 sup;p (1� u0 sup;p)
;

uB1nL = usup;p + z1��=2
usup;p (1� usup;p)

p
n1

q
usup;p (1� usup;p) + 1

�u0 sup;p (1� u0 sup;p)
;

uB0nL = u0 sup;p � z1��=2
u0 sup;p (1� u0 sup;p)

p
n1

q
usup;p (1� usup;p) + 1

�u0 sup;p (1� u0 sup;p)
:

Then

limPr
h
Y1([n1uA1nL])

� Y0([n0uA0nL]) � Q
L(p) � Y1([n1uB1nL]) � Y0([n0uB0nL])

i
= 1� �:

ii) Suppose (A1), (A2), and (A4) hold. De�ne

uA1nU = uinf;p � z1��=2
uinf;p (1� uinf;p)

p
n1

q
uinf;p (1� uinf;p) + 1

�u0 inf;p (1� u0 inf;p)
;

uA0nU = u0 inf;p + z1��=2
u0 inf;p (1� u0 inf;p)

p
n1

q
uinf;p (1� uinf;p) + 1

�u0 inf;p (1� u0 inf;p)
;

uB1nU = uinf;p + z1��=2
uinf;p (1� uinf;p)

p
n1

q
uinf;p (1� uinf;p) + 1

�u0 inf;p (1� u0 inf;p)
;

uB0nU = u0 inf;p � z1��=2
u0 inf;p (1� u0 inf;p)

p
n1

q
uinf;p (1� uinf;p) + 1

�u0 inf;p (1� u0 inf;p)
:

Then

limPr
h
Y1([n1uA1nU ])

� Y0([n0uA0nU ]) � Q
U (p) � Y1([n1uB1nU ]) � Y0([n0uB0nU ])

i
= 1� �:

We note that in general it�s very hard to extend the con�dence intervals for univari-

ate quantiles based on order statistics to other settings including the di¤erence between two

quantiles. In our case, QL(p) and QU (p) are de�ned by di¤erences between two quantiles,

but the quantile levels in the respective quantiles are related by the �rst order conditions.

For example, consider QL(p) = F�11 (usup;p)� F�10 (1 + usup;p � p). The two quantile levels
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usup;p and [1 + usup;p � p] satisfy the following �rst order condition:

f1
�
F�11 (usup;p)

�
= f0

�
F�10 (1 + usup;p � p)

�
,

which is why we are able to construct con�dence intervals in Lemma 7.

In the next result, we show that estimating usup;p and uinf;p in the con�dence

intervals in Lemma 7 by ûsup;p and ûinf;p does not a¤ect their validity. De�ne

û0 sup;p =
1

n0
argj

�
F�10n (1 + ûsup;p � p) = Y0(j)

	
;

û0 inf;p =
1

n0
argj

�
F�10n (ûinf;p � p) = Y0(j)

	
;

Theorem 6 i) Suppose (A1)-(A3) hold. De�ne

ûA1nL = ûsup;p � z1��=2
ûsup;p (1� ûsup;p)

p
n1

q
ûsup;p (1� ûsup;p) + 1

� û0 sup;p (1� û0 sup;p)
;

ûA0nL = û0 sup;p + z1��=2
û0 sup;p (1� û0 sup;p)

p
n1

q
ûsup;p (1� ûsup;p) + 1

� û0 sup;p (1� û0 sup;p)
;

ûB1nL = ûsup;p + z1��=2
ûsup;p (1� ûsup;p)

p
n1

q
ûsup;p (1� ûsup;p) + 1

� û0 sup;p (1� û0 sup;p)
;

ûB0nL = û0 sup;p � z1��=2
û0 sup;p (1� û0 sup;p)

p
n1

q
ûsup;p (1� ûsup;p) + 1

� û0 sup;p (1� û0 sup;p)
:

Then

limPr
h
Y1([n1ûA1nL])

� Y0([n0ûA0nL]) � Q
L(p) � Y1([n1ûB1nL]) � Y0([n0ûB0nL])

i
= 1� �:

ii) Suppose (A1), (A2), and (A4) hold. De�ne

ûA1nU = ûinf;p � z1��=2
ûinf;p (1� ûinf;p)

p
n1

q
ûinf;p (1� ûinf;p) + 1

� û0 inf;p (1� û0 inf;p)
;

ûA0nU = û0 inf;p + z1��=2
û0 inf;p (1� û0 inf;p)

p
n1

q
ûinf;p (1� ûinf;p) + 1

� û0 inf;p (1� û0 inf;p)
;

ûB1nU = ûinf;p + z1��=2
ûinf;p (1� ûinf;p)

p
n1

q
ûinf;p (1� ûinf;p) + 1

� û0 inf;p (1� û0 inf;p)
;

ûB0nU = û0 inf;p � z1��=2
û0 inf;p (1� û0 inf;p)

p
n1

q
ûinf;p (1� ûinf;p) + 1

� û0 inf;p (1� û0 inf;p)
:
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Then

limPr
h
Y1([n1ûA1nU ])

� Y0([n0ûA0nU ]) � Q
U (p) � Y1([n1ûB1nU ]) � Y0([n0ûB0nU ])

i
= 1� �:

In contrast to the CIs in Lemma 6, the CIs in Theorem 7 do not require estimating

f1.

Con�dence Sets for QTE (p)

Lemma 5 shows that for a given quantile level p, the true quantile QTE (p) is

interval identi�ed. Various inference procedures have been developed lately for partially

identi�ed parameters including interval identi�ed parameters as a special case. We�ll apply

one of the CSs developed in Chapter II to QTE (p) to show that direct applications of the

existing CSs require consistent estimation of the density function f1. To avoid this, we

combine the idea of Chernozhukov, Lee, and Rosen (2007) and that used in subsection 3.1

to construct a new CS for QTE (p).

Fan and Park�s Approach

For notational simplicity, we let � = QTE (p) and � the identi�cation region for �,

i.e., � =
�
QL (p) ; QU (p)

�
. De�ne

Tn (�) = n1

�
QLn (p)� �

�̂L

�2
+

+ n1

�
QUn (p)� �

�̂U

�2
�

and

J(hl;hu;�) (x) = Pr
h
(Zl;� � hl)2+ + (Zu;� + hu)

2
� � x

i
where x+ = max fx; 0g and x� = min fx; 0g and (Zl;�; Zu;�)0 follows the standard bivariate

normal distribution with correlation coe¢ cient �.

In Chapter II, we proposed several CSs for interval identi�ed parameters that are
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asymptotically uniformly valid. One of these CSs applied to our context is:

CIFP =

(
� : Tn(�) � max

(
J�1�
0;
p
n��
�̂U

;�̂
� (1� �) ; J�1�p

n��
�̂L

;0;�̂
� (1� �)

))
; (IV.5)

where �̂ = �̂LU
�̂L�̂U

;

�̂LU =
min fûsup;p; ûinf;pg � ûsup;pûinf;p
f̂1
�
F�11n (ûsup;p)

�
f̂1
�
F�11n (ûinf;p)

�
+�
min f1 + ûsup;p � p; ûinf;p � pg � (1 + ûsup;p � p) (ûinf;p � p)

f̂1
�
F�11n (ûsup;p)

�
f̂1
�
F�11n (ûinf;p)

� ;

�� =

8>><>>:
QUn (p)�QLn (p) if QUn (p)�QLn (p) > bn;

0 if otherwise,

for bn that satis�es bn ! 0 and
p
nbn !1.

Extension of �New Approach�

The con�dence sets for the true quantile QTE (p) presented in the previous subsec-

tion depend on a consistent estimation of the density function f1. To avoid it, we combine

the idea in Chernozhukov, Lee, and Rosen (2007) with that in Theorem 7.

De�ne


n = �
�
�dn1fQUn (p)�QLn(p)>0g

�
QUn (p)�QLn (p)

��
;

~�n = (1� 
n)�

for a dn such that dn !1 and dn=
p
n1 ! 0: Chernozhukov, Lee, and Rosen (2007) showed

that

lim
n1!1

inf
�2�

Pr
n
� 2

h
k̂l1�~�n ; k̂

u
1�~�n

io
= 1� �;
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where

k̂l1�~�n = QLn (p)� ��1 (1� ~�n)
�̂Lp
n1
;

k̂u1�~�n = QUn (p) + �
�1 (1� ~�n)

�̂Up
n1
: (IV.6)

One fundamental di¤erence between (IV.5) and (IV.6) is that (IV.5) depends on

a consistent estimator of the correlation coe¢ cient �, while (IV.6) does not. Let

ûA1nL = ûsup;p � ��1 (1� ~�n)
ûsup;p (1� ûsup;p)

p
n1

q
ûsup;p (1� ûsup;p) + 1

� û0 sup;p (1� û0 sup;p)
;

ûA0nL = û0 sup;p +�
�1 (1� ~�n)

û0 sup;p (1� û0 sup;p)
p
n1

q
ûsup;p (1� ûsup;p) + 1

� û0 sup;p (1� û0 sup;p)
;

ûB1nU = ûinf;p +�
�1 (1� ~�n)

ûinf;p (1� ûinf;p)
p
n1

q
ûinf;p (1� ûinf;p) + 1

� û0 inf;p (1� û0 inf;p)
;

ûB0nU = û0 inf;p � ��1 (1� ~�n)
û0 inf;p (1� û0 inf;p)

p
n1

q
ûinf;p (1� ûinf;p) + 1

� û0 inf;p (1� û0 inf;p)
:

It follows from the proof of Theorem 6 that

limPr

�
QLn (p)� ��1 (1� ~�n)

�̂Lp
n1
� QL (p)

�
= limPr

h
Y1([n1ûA1nL])

� Y0([n0ûA0nL]) � Q
L(p)

i
;

limPr

�
QU (p) � QUn (p) + ��1 (1� ~�n)

�̂Up
n1

�
= limPr

h
QU (p) � Y1([n1ûB1nL]) � Y0([n0ûB0nL])

i
:

Consequently, we obtain

lim
n1!1

inf
QTE (p)2�

Pr
n
QTE (p) 2

h
Y1([n1ûA1nL])

� Y0([n0ûA0nL]); Y1([n1ûB1nL]) � Y0([n0ûB0nL])
io
= 1��:

Simulation Study

This section presents results from an extensive simulation study on the �nite sam-

ple performances of the CIs for the bounds and for the true quantile developed in the
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previous sections. For each bound, we applied the CI based on the standard asymptotics,

see Lemma 6 and the CI based on order statistics in Theorem 6. For the true quantile, we

applied CIFP and the new CI based on order statistics. We report their coverage rates and

their widths.

To see the e¤ects of the underlying marginal distributions on the performances

of these CIs, we used 6 di¤erent distributions to generate Y1 and Y0: Below are their cdfs

and pdfs. Their graphs are provided in Appendix B. <Model 1> is the combination of

two normals, <Model 2> is taken from Chapter III, and <Model 3> to <Model 6> are

modi�cations of normal mixtures in Marron and Wand (1992).

<Model 1> Y1 � N (2; 2) and Y0 � N (1; 1)

<Model 2> Y1 � C
�
1
4

�
and Y0 � C

�
3
4

�
, where

X � C (a) =) P (X � x) =

8>><>>:
1

a
x2 if x 2 [0; a]

1� (x� 1)
2

(1� a) if x 2 [a; 1]

<Model 3> Two skewed unimodal distributions:

F1 (x) =
1

4

3P
i=0
N

 
3

 
1�

�
2

3

�i!
+
29

36
;

�
2

3

�2i!
;

F0 (x) =
1

2

1P
i=0
N

 
3

 �
2

3

�i
� 1
!
+
3

2
;

�
2

3

�2i!
:

<Model 4> Two bimodal distributions:

F1 (x) =
3

4
N

 
5

4
;

�
3

4

�2!
+
1

4
N

 
17

4
;

�
1

4

�2!
;

F0 (x) =
1

2
N

 
1

2
;

�
1

3

�2!
+
1

2
N

 
3

2
;

�
1

3

�2!
:
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<Model 5> Two kurtotic distributions:

F1 (x) =
1

10
N (2; 1) +

9

10
N

 
2;

�
1

10

�2!
;

F0 (x) =
1

2
N (1; 1) +

1

2
N

 
1;

�
1

10

�2!
:

<Model 6> Y0 follows a skewed unimodal distribution and Y1 a bimodal distrib-

ution:

F1 (x) =
3

4
N

 
5

4
;

�
3

4

�2!
+
1

4
N

 
17

4
;

�
1

4

�2!
;

F0 (x) =
1

4

3P
i=0
N

 
3

 
1�

�
2

3

�i!
� 7

36
;

�
2

3

�2i!
:

In simulations, we drew n1 = n0 = n = 1000; 2000; 4000; and/or 6000 samples of

Y1 and Y0 and estimated QLn (p) and Q
U
n (p) for p = 0:1; 0:3; 0:5; 0:7; and 0:9: The number

of replications is 1,000 for each setting. The nominal coverage level is 95%.

Con�dence Intervals for Each Bound

The con�dence intervals were constructed for each bound based on the �new ap-

proach�and the standard asymptotic approach. For the latter, we need to estimate f1 (�)

and f0 (�). We used the kernel density estimation with three di¤erent bandwidths to see

the sensitivity of the CIs to the value of the bandwidth. The �rst bandwidth we used is

hS = (4=3)
1=5 �̂n�1=5 where �̂ is the sample standard deviation of Y1 and/or Y0. The second

is hR = (4=3)
1=5 (R=1:34)n�1=5 where R is the interquartile range of Y1 and/or Y0: Lastly,

we used hM = 0:9Mn�1=5 where M = min f�̂; R=1:34g : The second and the third band-

widths are supposed to work better than hS if the underlying distributions are long-tailed

or skewed2.
2Silverman (1986) pp. 45-48.
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To save space, only parts of results and summaries are provided here. Appendix

C includes the details. In the tables in Appendix C and below, New stands for the �new

approach� and A (�) the standard asymptotic approach with speci�ed bandwidths in the

parentheses. C(�) means the coverage rates and W(�) the width of con�dence intervals. For

example, the table below shows, for p = 0:1 and n = 1000 for <Model 1>, the average

coverage rates of the con�dence intervals of the �new approach�are 0.943 for QL (p) and

0.965 for QU (p). The average widths for the con�dence intervals are 0.4586 for QL (p) and

0.3211 for QU (p).

<Model 1> p = 0:1; n = 1000
C
�
QL
�

C
�
QU
�

W
�
QL
�

W
�
QL
�

New .943 .965 .4586 .3211
A (hS) .942 .942 .4669 .3248
A (hR) .942 .942 .4671 .3251
A (hM ) .937 .939 .4620 .3219

In the above table, the methods that gave the closest average coverage rate to the

nominal level is New for QL, A (hS) and A (hR) for QU : The method that made the width of

con�dence interval the smallest is New for both QL (p) and QU (p) : In the following tables,

we provide these information in one cell. Each cell contains two brackets. The upper bracket

shows the methods that gave the closest coverage rates for QL (p) to the left and QU (p)

to the right. The lower bracket shows the methods that made the narrowest con�dence

intervals for QL (p) to the left and QU (p) to the right of the bracket. For example, the cell

for <Model 1> for p = 0:1 and n = 1000 is

[New;A (hS ; hR)]
[New;New]

where A (hS ; hR) is a shorthand notation for A (hS) and A (hR). It means the

asymptotic approach with hS and hR have the same number of cases which have minimum
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deviation from the nominal level for QU .

Table 12. Summary of Model 1
p = 0:1 p = 0:3 p = 0:5

n = 1; 000 [New;A (hS ; hR)] [New;New] [A (hS ; hR) ; A (hS ; hR)]
[New;New] [New;New] [New;New]

n = 2; 000 [New;New] [All; A (hS ; hR)] [New;New]
[New;New] [New;New] [New;New]

n = 4; 000 [All;New] [New;New] [A (hS ; hR) ; New]
[New;New] [New;New] [New;New]

n = 6; 000 [A (hS ; hR) ; New] [New;A (hS ; hR)] [New;All]
[New;New] [New;New] [New;New]

p = 0:7 p = 0:9
n = 1; 000 [New;New] [A (hS ; hR) ; A (hS)]

[New;New] [New;A (hM )]
n = 2; 000 [New;New] [New;A (hS ; hR)]

[New;New] [New;A (hM )]
n = 4; 000 [A (hS ; hR) ; A (hM )] [New;A (hS ; hR)]

[New;New] [New;New]
n = 6; 000 [New;A (hS ; hR)] [New;A (hS ; hR)]

[New;New] [New;New]

C
�
QL
�

C
�
QU
�

W
�
QL
�

W
�
QU
�

New 14 9 20 18
A (hS) 7 10 0 0
A (hR) 7 9 0 0
A (hM ) 2 2 0 2

Table 12 presents the results for <Model 1>. Here, All stands �all methods�. It

means all methods gave the same number of best coverage rates or the smallest widths.

New appears 14 times in the coverage for QL (p), which is twice as many as A (hS) and

A (hM ) do and seven times as A (hM ) does. This implies that the �new approach�generated

the closest coverage rates to the nominal level two times or seven times frequently on

average compared to others. As to the coverage rates for QU , New, A (hS), and A (hR)

appear almost the same times (9-10 times). Only A (hM ) is worse than the others. When

the widths of con�dence intervals are considered, New is outstanding. It produced the

minimum widths in 20 (for the width for QL) and 18 (for the width for QU ) out of 20 cases.

The reason that New produces the narrowest intervals on average yet covers true values of

QL and QU most accurately is because the con�dence intervals constructed from New are
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asymmetric around QLn or Q
U
n . In all simulation models, the con�dence intervals for Q

L

have a wider range to the left of QLn than to the right and that for Q
U are the opposite. In

summary, (i) New performs the best in C
�
QL
�
with the narrowest con�dence intervals. (ii)

the asymptotic approach denoted by A(.) is sensitive to the value of the bandwidth.

Table 13. Summary of Model 2
p = 0:1 p = 0:3 p = 0:5

n = 1; 000 [New; (New;A (hR))] [A (hM ) ; New] [A (hS) ; New]
[New;A (hM )] [New;A (hM )] [New;A (hM )]

n = 2; 000 [New;New] [New;New] [A (hM ) ; New]
[New;A (hM )] [New;A (hM )] [New;A (hM )]

n = 4; 000 [A (hM ) ; A (hS)] [A (hR) ; New] [A (hR) ; All]
[New;A (hM )] [New;A (hM )] [New;A (hM )]

n = 6; 000 [A (M) ; New] [New;All] [New;New]
[New;A (hM )] [New;A (hM )] [New;A (hM )]

p = 0:7 p = 0:9
n = 1; 000 [New;New] [New;A (hR)]

[New;A (hM )] [New;New]
n = 2; 000 [New;New] [New;A (hR)]

[New;A (hM )] [New;New]
n = 4; 000 [New;A (hM )] [New;New]

[A (hM ) ; A (hM )] [New;New]
n = 6; 000 [New;New] [New;A (hR)]

[New;A (hM )] [New;New]

C
�
QL
�

C
�
QU
�

W
�
QL
�

W
�
QU
�

New 13 13 19 4
A (hS) 1 3 0 0
A (hR) 2 6 0 0
A (hM ) 4 3 1 16

Table 13 summarizes the results for <Model 2>. Roughly speaking, the same

pattern with <Model 1> exists except for W
�
QU
�
. New appears most frequently in C

�
QL
�
,

C
�
QU
�
, and W

�
QL
�
. In W

�
QU
�
, A (hM ) is the most frequent. New covers QL most

accurately with the smallest con�dence interval.
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Table 14 shows that for <Model 3>. Di¤erently from <Model 1> and <Model

2>, New and A (hM ) are the two dominant methods for di¤erent parameters in C
�
QL
�

and C
�
QU
�
respectively. In C

�
QL
�
, New; A (hS), and A (hR) show similar performance,

although New is slightly better. In C
�
QU
�
, A (hM ) and New are better compared to the

other two. In this setting, none of the methods were �best�in the sense that no methods

considered generated most coverage with smallest con�dence intervals. For example, A (hM )

that generated the smallest con�dence intervals for QL most frequently were the worst in

C
�
QL
�
and A (hM ), the best in C

�
QU
�
, was 0 in W

�
QU
�
.

Table 14. Summary of Model 3
p = 0:1 p = 0:3 p = 0:5

n = 1; 000 [New;A (hM )] [All; A (hS)] [New;New]
[A (hM ) ; New] [A (hM ) ; New] [A (hM ) ; New]

n = 2; 000 [New;A (hM )] [A (hS ; hR; hM ) ; A (hR)] [A (hS ; hR) ; New]
[A (hM ) ; New] [A (hM ) ; New] [A (hM ) ; New]

n = 4; 000 [A (hS ; hR) ; A (hM )] [New;A (hM )] [A (hS ; hR) ; A (hM )]
[A (hM ) ; New] [A (hM ) ; New] [A (hM ) ; New]

n = 6; 000 [A (hS ; hR; hM ) ; (New;A (hR))] [New;A (hS ; hR)] [New;New]
[A (hM ) ; New] [A (hM ) ; New] [A (hM ) ; New]

p = 0:7 p = 0:9
n = 1; 000 [New;A (hM )] [A (hS ; hR) ; (New;A (hM ))]

[A (hM ) ; New] [A (hM ) ; New]
n = 2; 000 [A (hM ) ; A (hM )] [New;A (hM )]

[A (hM ) ; New] [New;New]
n = 4; 000 [A (hS ; hR) ; (New;A (hM ))] [A (hS ; hR; hM ) ; A (hM )]

[A (hM ) ; New] [A (hM ) ; New]
n = 6; 000 [New;New] [New;New]

[A (hM ) ; New] [A (hM ) ; New]

C
�
QL
�

C
�
QU
�

W
�
QL
�

W
�
QU
�

New 11 8 1 20
A (hS) 9 2 0 0
A (hR) 9 3 0 0
A (hM ) 5 11 19 0
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As presented in Table 15, with <Model 4>, New generated the narrowest con�-

dence intervals for both QL and QU on average and appears to perform the best in C
�
QL
�

and C
�
QU
�
. In C

�
QU
�
, A (hM ) is as good as New however other h�s were not as good as

hM .

Table 15. Summary of Model 4
p = 0:1 p = 0:3 p = 0:5

n = 1; 000 [New;A (hM )] [New;New] [New;New]
[New;New] [New;New] [New;New]

n = 2; 000 [New;New] [New;A (hM )] [New; (New;A (hM ))]
[New;New] [New;New] [New;New]

n = 4; 000 [New; (New;A (hM ))] [A (hM ) ; New] [New;New]
[New;New] [New;New] [New;New]

n = 6; 000 [(New;A (hM )) ; A (hM )] [A (hM ) ; A (hM )] [A (hS) ; New]
[New;New] [New;New] [New;New]

p = 0:7 p = 0:9
n = 1; 000 [New;New] [New;A (hS ; hR; hM )]

[New;A (hR)] [New;New]
n = 2; 000 [New;A (hS)] [New;A (hS ; hR; hM )]

[New;A (hR)] [New;New]
n = 4; 000 [New;New] [New;A (hS ; hR; hM )]

[New;New] [New;New]
n = 6; 000 [A (hM ) ; New] [New;A (hS ; hR; hM )]

[New;New] [New;New]

C
�
QL
�

C
�
QU
�

W
�
QL
�

W
�
QU
�

New 16 11 20 18
A (hS) 1 5 0 0
A (hR) 0 4 0 2
A (hM ) 4 10 0 0
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For <Model 5>, New is better than others (in C
�
QL
�
) or as good as others (in

C
�
QU
�
;W
�
QL
�
, and/or W

�
QU
�
). A (hS) works poorly in C

�
QL
�
and C

�
QU
�
while A (hM )

works as good as New in C
�
QU
�
. See Table 16.

Table 16. Summary of Model 5
p = 0:1 p = 0:3 p = 0:5

n = 1; 000 [New;New] [A (hR) ; New] [New;New]
[A (hS) ; A (hS)] [A (hM ) ; New] [New;New]

n = 2; 000 [New;A (hM )] [(New;A (hR)) ; New] [New;A (hM )]
[A (hS) ; A (hS)] [A (hM ) ; New] [New;New]

n = 4; 000 [New;A (hS)] [A (hR) ; A (hM )] [New;A (hM )]
[A (hS) ; A (hS)] [A (hM ) ; New] [New;New]

n = 6; 000 [New;A (hR)] [A (hS) ; (New;A (hR))] [A (hR) ; A (hR)]
[A (hS) ; A (hS)] [A (hM ) ; New] [New;New]

p = 0:7 p = 0:9
n = 1; 000 [A (hM ) ; New] [New;A (hR)]

[New;A (hM )] [A (hS) ; A (hS)]
n = 2; 000 [New;A (hR; hM )] [New;New]

[New;A (hM )] [A (hS) ; A (hS)]
n = 4; 000 [A (hM ) ; A (hM )] [A (hR; hM ) ; New]

[New;A (hM )] [A (hS) ; A (hS)]
n = 6; 000 [(New;A (hM )) ; A (hR; hM )] [New;A (hM )]

[New;A (hM )] [A (hS) ; A (hS)]

C
�
QL
�

C
�
QU
�

W
�
QL
�

W
�
QU
�

New 13 8 8 8
A (hS) 1 1 8 8
A (hR) 5 6 0 0
A (hM ) 4 8 4 4
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In <Model 6>, New clearly outperforms the others. See Table 17.

Table 17. Summary of Model 6
p = 0:1 p = 0:3 p = 0:5

n = 1; 000 [New;A (hM )] [New;A (hM )] [New;A (hM )]
[New;New] [New;New] [New;New]

n = 2; 000 [New;New] [New;A (hS)] [New;NewA (hM )]
[New;New] [New;New] [New;New]

n = 4; 000 [New;A (hM )] [A (hM ) ; New] [A (hS) ; New]
[New;New] [New;New] [New;New]

n = 6; 000 [(New;A (hM )) ; A (hS ; hM )] [A (hM ) ; New] [A (hS ; hR) ; New]
[New;New] [New;New] [New;New]

p = 0:7 p = 0:9
n = 1; 000 [New;New] [New;New]

[New;A (hR)] [New;New]
n = 2; 000 [New;A (hR)] [New;A (hR)]

[New;A (hR)] [New;New]
n = 4; 000 [New;A (hR)] [New;New]

[New;A (hM )] [New;New]
n = 6; 000 [A (hM ) ; A (hR)] [New; (New;A (hM ))]

[New;A (hM )] [New;New]

C
�
QL
�

C
�
QU
�

W
�
QL
�

W
�
QU
�

New 15 10 20 16
A (hS) 2 2 0 0
A (hR) 1 4 0 2
A (hM ) 4 7 0 2

From the simulation results, we can see: i) the �new approach�covers the QL and

QU most accurately in general; ii) in some cases such as QL in <Model 1>, <Model 2>,

<Model 4>, <Model 5>, <Model 6> and QU in <Model 4>, <Model 5>, and <Model

6>, the �new approach�was the best in the sense that not only it covers the true values

most accurately but also it does that with the smallest con�dence intervals; iii) the choice of

bandwidth changes the performance of the asymptotic method but there is no generalizable

pattern. In addition to the simulation results, it makes the �new approach� preferable

that the �new approach�doesn�t require estimating f1 (�) where as the results based on the

standard asymptotics are sensitive to the choice of the bandwidth.
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Con�dence Intervals for QTE (p)

This section provides the simulation results on the coverage rates and the widths of

con�dence intervals for the true quantiles for <Model 1> through <Model 6>. The meth-

ods implemented in this subsection are: CIFP and the modi�ed �new approach�(denoted

as New).

In the simulations, we modi�ed the de�nition of the shrinkage estimator for � like

in Chapter II. Originally,

�� =

8>><>>:
QUn (p)�QLn (p) if QUn (p)�QLn (p) > bn;

0 if otherwise.

However, noticing that QUn (p)�QLn (p) can be arbitrarily large by choosing di¤erent mea-

surement units, we de�ned

�� =

8>><>>:
QUn (p)�QLn (p) if QUn (p)�QLn (p) > bn�̂�;

0 if otherwise,

where �̂2� � �̂2L+ �̂2U � 2�̂LU . Having used �̂2�, �̂2L, and �̂2U , the con�dence intervals from

CIFP are subject to the choice of the bandwidth h. In the tables in Appendix D, we used

CIFP (hs), CIFP (hR), and/or CIFP (hM ) to distinguish among di¤erent h�s. The New

needs not be distinguished because New does not depend on h. We used bn = n
�1=3
1 and

dn = 1=bn in the simulations.

The coverage rates are computed forQ (p) = QL (p), QU (p), and
�
QL (p) +QU (p)

�
=2:

We used C
�
QL
�
to indicate the coverage rates for Q (p) = QL (p) and C

�
QU
�
for Q (p) =

QU (p) but, since the coverage rates for Q (p) =
�
QL (p) +QU (p)

�
=2 were always 1, we

omitted C
��
QL (p) +QU (p)

�
=2
�
. We present a summary here and provide detailed tables

in Appendix D. Below is a representative table.
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<Model 1> p = 0:1; n = 1; 000

C
�
QL
�

C
�
QU
�

W(Q)
New .949 .941 4.3596
CIFP (hS) .901 .884 4.2726
CIFP (hR) .902 .883 4.2728
CIFP (hM ) .894 .882 4.2693

For p = 0:1 and n = 1; 000 in <Model 1>, the minimum of the average coverage

rate of the New method is 0.941, which is the closest of all methods to the nominal level.

In the followings, we will say this the best minimum coverage rate to indicate the closest

minimum coverage rates to the nominal level. With this expression, it can be said that

New presented the best minimum coverage rate for p = 0:1 and n = 1; 000 in <Model 1>.

The average width of con�dence intervals generated by CIFP (hM ) is the smallest. As in

the previous subsection, we summarize this result as [New;CIFP (hM )], i.e. the left entry in

the bracket shows the method by which the best minimum coverage rate was generated and

the right entry is the method by which the smallest average width of con�dence intervals.

In <Model 1> - <Model 3>, as presented in Table 18, New outperformed others

because it provided the best minimum coverage rates in all settings although it did not

generated the smallest con�dence intervals. The smallest con�dence intervals were generated

by CIFP (hM ) in all settings.

Table 19 presents the results of <Model 4>. New provided the best minimum

coverage rates in 19 settings. Of the four settings that New generated the smallest con�-

dence intervals, it provided the best minimum coverage rates in three settings. CIFP (hM )

generated the smallest con�dence intervals on average in 15 settings.

In <Model 5>, as presented in Table 20, the results are slightly complex. New

provided the best minimum coverage rates in 17 settings with providing the smallest con�-

dence intervals in none of them. Contrary to <Model 1> - <Model 4>, CIFP (hS) generated
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Table 18. Summary of Model 1 - Model 3
p = 0:1 p = 0:3 p = 0:5

n = 1; 000 [New;CIFP (hM )] [New;CIFP (hM )] [New;CIFP (hM )]

n = 2; 000 [New;CIFP (hM )] [New;CIFP (hM )] [New;CIFP (hM )]

n = 4; 000 [New;CIFP (hM )] [New;CIFP (hM )] [New;CIFP (hM )]

n = 6; 000 [New;CIFP (hM )] [New;CIFP (hM )] [New;CIFP (hM )]

p = 0:7 p = 0:9
n = 1; 000 [New;CIFP (hM )] [New;CIFP (hM )]
n = 2; 000 [New;CIFP (hM )] [New;CIFP (hM )]
n = 4; 000 [New;CIFP (hM )] [New;CIFP (hM )]
n = 6; 000 [New;CIFP (hM )] [New;CIFP (hM )]

New CIFP (hS) CIFP (hR) CIFP (hM )

minC(Q) 20 0 0 0
W(Q) 0 0 0 20

Table 19. Summary of Model 4
p = 0:1 p = 0:3 p = 0:5

n = 1; 000 [New;CIFP (hM )] [New;CIFP (hM )] [New;CIFP (hM )]

n = 2; 000 [New;CIFP (hM )] [New;CIFP (hM )] [New;CIFP (hM )]

n = 4; 000 [New;CIFP (hM )] [New;CIFP (hM )] [New;CIFP (hM )]

n = 6; 000 [New;CIFP (hM )] [New;CIFP (hM )] [New;CIFP (hM )]

p = 0:7 p = 0:9
n = 1; 000 [New;CIFP (hR)] [New;New]
n = 2; 000 [New;CIFP (hM )] [CIFP (hM ) ; New]
n = 4; 000 [New;CIFP (hM )] [New;New]
n = 6; 000 [New;CIFP (hM )] [New;New]

New CIFP (hS) CIFP (hR) CIFP (hM )

minC(Q) 19 0 0 1
W(Q) 4 0 0 15

the best minimum coverage rates in 5 settings, yet none of which are accompanied with the

smallest con�dence interval. CIFP (hM ) generated the smallest con�dence intervals on av-

erage in 12 settings.

The results of <Model 6> are quite similar to that of <Model 1> - <Model 3>.

New presented the best minimum coverage rates in 18 settings and CIFP (hM ) generated

the smallest con�dence intervals in 19 settings. See Table 21.

To summarize, New outperformed the other methods because it presented the

best minimum coverage rates as was the case for each bound. Contrary to each bound,
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Table 20. Summary of Model 5
p = 0:1 p = 0:3 p = 0:5

n = 1; 000 [New;CIFP (hS)] [CIFP (hS) ; CIFP (hM )] [New;CIFP (hM )]

n = 2; 000 [New;CIFP (hS)] [(New;CIFP (hS)) ; CIFP (hM )] [New;CIFP (hM )]

n = 4; 000 [New;CIFP (hS)] [(New;CIFP (hS)) ; CIFP (hM )] [New;CIFP (hM )]

n = 6; 000 [New;CIFP (hS)] [New;CIFP (hM )] [New;CIFP (hM )]

p = 0:7 p = 0:9
n = 1; 000 [CIFP (hS) ; CIFP (hM )] [New;CIFP (hS)]
n = 2; 000 [New;CIFP (hM )] [New;CIFP (hS)]
n = 4; 000 [New;CIFP (hM )] [New;CIFP (hS)]
n = 6; 000 [CIFP (hS) ; CIFP (hM )] [New;CIFP (hS)]

New CIFP (hS) CIFP (hR) CIFP (hM )

minC(Q) 17 5 0 0
W(Q) 0 8 0 12

Table 21. Summary of Model 6
p = 0:1 p = 0:3 p = 0:5

n = 1; 000 [New;CIFP (hM )] [New;CIFP (hM )] [New;CIFP (hM )]

n = 2; 000 [New;CIFP (hM )] [New;CIFP (hM )] [New;CIFP (hM )]

n = 4; 000 [New;CIFP (hM )] [New;CIFP (hM )] [CIFP (hR) ; CIFP (hM )]

n = 6; 000 [New;CIFP (hM )] [New;CIFP (hM )] [New;CIFP (hM )]

p = 0:7 p = 0:9
n = 1; 000 [New;CIFP (hR)] [New;CIFP (hM )]
n = 2; 000 [New;CIFP (hM )] [New;CIFP (hM )]
n = 4; 000 [New;CIFP (hM )] [New;CIFP (hM )]
n = 6; 000 [New;CIFP (hM )] [CIFP (hM ) ; CIFP (hM )]

New CIFP (hS) CIFP (hR) CIFP (hM )

minC(Q) 18 0 1 1
W(Q) 0 0 1 19

though, the good performance of New in terms of coverage rate did not go along with the

performance in terms of con�dence interval width. New appeared both in the left and

right entry at the same time in only three settings out of 120 in total. Another notable

di¤erence to the each bound case is that CIFP were not as sensitive to the choice of h.

CIFP (hM ) generated the smallest con�dence interval in general in all models and CIFP (hS)

and CIFP (hR) did not contribute much except for <Model 5> where CIFP (hS) achieved

the best minimum coverage rates in 5 settings and smallest con�dence intervals in 8 settings.

The Monte Carlo study in this section provided evidences that the �new approach�for both
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each bound and the true quantile is better than other methods considered in terms of

performance in coverage rates and in that it is not subject to the choice of the bandwidth.

Conclusion

This chapter is the �rst to develop nonparametric estimation and inference pro-

cedures for sharp bounds on the quantile of the e¤ect of a binary treatment de�ned as the

di¤erence between the two potential outcomes. In addition to CIs based on the standard

asymptotics, we construct novel CIs for both the bounds and the true quantile of treatment

e¤ect that avoid the estimation of the marginal density functions. Extensive simulation

results show that the new CIs outperformed the ones based on the standard asymptotics

and the performance of the latter is sensitive to the choice of the bandwidth.

Much work remains to be done. In terms of the sharp bounds, those in this chapter

are the worst bounds in the sense that they do not make use of any prior information on the

possible dependence between the potential outcomes. When such information is available,

these bounds can be tightened. The focus on randomized experiments in this chapter allows

the identi�cation of the marginal distributions. In cases where the marginal distributions

themselves are not identi�able but bounds on them can be placed (see, e.g., Manski (1994,

2003), Manski and Pepper (2000), Shaikh and Vytlacil (2005), Blundell, Gosling, Ichimura,

and Meghir (2006), Honore and Lleras-Muney (2007)), we can also place bounds on the

quantile function of the treatment e¤ect.

In terms of statistical inference, the results developed in this chapter rely on the

uniqueness of usup;p and uinf;p as assumed in (A3) and (A4). Although the simulation results

in this chapter show that the new CIs performed very well for both the bounds themselves

and the true quantile, it remains to see if this condition might be relaxed.
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Appendix A. Technical Proofs

<Proof for Theorem 5>

We follow the same steps as in the proof of Proposition 1 in Chapter III. We prove

the QL part only. Let

	n (u; p) = F
�1
1n (u)� F

�1
0n (1 + u� p) ; 	(u; p) = F

�1
1 (u)� F�10 (1 + u� p) :

QLn (p) = 	n (ûsup;p; p) and QL (p) = 	 (usup;p; p). Let Qn(p) = 	n (usup;p; p). (A2) guar-

antees
p
n1
�
Qn (p)�QL (p)

�
=) N

�
0; �2L

�
(see Csrög½o 1983, p.10). We will complete the

proof of (i) in three steps:

1. We show that ûsup;p � usup;p = op (1) ;

2. We show that ûsup;p � usup;p = Op
�
n
�1=3
1

�
;

3.
p
n1
�
QLn (p)�QL (p)

�
has the same limiting distribution as

p
n1
�
Qn (p)�QL (p)

�
.

Proof of 1. By Corollary 1.4.2 in Csrög½o (1983),

sup
1
n1
�u�1� 1

n1

��F�11n (u)� F�11 (u)
��! 0; sup

1
n0
�u�1� 1

n0

��F�10n (u)� F�10 (u)
��! 0:

Therefore,

sup
1
n1
�u�p

���F�11n (u)� F�10n (1 + u� p)�� �F�11 (u)� F�10 (1 + u� p)
���

= sup
1
n1
�u�1� 1

n1

���F�11n (u)� F�11 (u)
�
�
�
F�10n (1 + u� p)� F

�1
0 (1 + u� p)

���
� sup

1
n1
�u�1� 1

n1

���F�11n (u)� F�11 (u)
���+ sup

1
n0
�u�1� 1

n0

���F�10n (1 + u� p)� F�10 (1 + u� p)
���

! 0:

This and A3(i) imply that the sequence ûsup;p converges in probability to usup;p, see e.g.,

Theorem 5.7 in van der Vaart (1998).
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Proof of 2. We use Theorem 3.2.5 in van der Vaart and Wellner (1996) to

establish the rate of convergence for ûsup;p. Given (A2) and (A3), the map: u 7! 	(u; p)

is twice di¤erentiable and has a unique maximum at usup;p. By (A3), the �rst condition of

Theorem 3.2.5 in van der Vaart and Wellner (1996) is satis�ed with � = 2. To check the

second condition of Theorem 3.2.5 in van der Vaart and Wellner (1996), we consider the

centered process:

p
n1 (	n �	) (u; p)

=
p
n1
�
F�11n � F

�1
1

�
(u)�pn1

�
F�10n � F

�1
0

�
(u+ 1� p)

= � 1

f1
�
F�11 (u)

�pn1 �F1n �F�11 (u)
�
� u
�

+
1

f0
�
F�10 (1 + u� p)

�pn1p
n0

p
n0
�
F0n

�
F�10 (u+ 1� p)

�
� (u+ 1� p)

�
+op (1)

� Gn1 (u)�
p
n1p
n0
Gn0 (u+ 1� p) + op (1) ;

where

Gn1 (u) =
1p
n

n1X
i=1

[I fF1 (Y1i) � ug � u]
f1
�
F�11 (u)

� ;

Gn0 (u) =
1p
n

n1X
i=1

[I fF0 (Y0i) � ug � u]
f0
�
F�10 (1 + u� p)

� :
Thus, we obtain

E sup
ju�usup;pj<�

jpn1 (	n �	) (u; p)�
p
n1 (	n �	) (usup;p; p)j

� E sup
ju�usup;pj<�

jGn1 (u)�Gn0 (usup;p)j

+
p
�E sup

ju�usup;pj<�
jGn0 (u+ 1� p)�Gn0 (usup;p + 1� p)j :
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Assuming infu f1
�
F�11 (u)

�
> 0 and infu f0

�
F�10 (u)

�
> 0, we conclude that

E sup
ju�usup;pj<�

jGn1 (u)�Gn1 (usup;p) j . �1=2 (IV.7)

and

E sup
ju�usup;pj<�

jGn0 (1 + u� p)�Gn0 (1 + usup;p � p) j . �1=2: (IV.8)

Indeed, the envelope function of the class of functions

fI f(�1; u]g � I f(�1; usup;pg : u 2 [usup;p � �; usup;p + �]g

is bounded by I f(usup;p � �; usup;p + �)g which has a squared L2-norm bounded by 2�.

Since the class of functions I fY1i � �g has a �nite uniform entropy integral, Lemma 19.38

in van der Vaart (1998) implies the above results. Consequently,

E sup
ju�usup;pj<�

jpn1(	n �	)(u; p)�
p
n1(	n �	)(usup;p; p)j . �1=2

Hence the second condition of Theorem 3.2.5 in van der Vaart and Wellner (1996) is satis�ed

leading to the rate of n�1=31 .
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Proof of 3. For a �xed p, we get

p
n1
�
QLn (p)�QL (p)

�
=

p
n1
�
F�11n (ûsup;p)� F

�1
0n (1 + ûsup;p � p)

�
�pn1

�
F�11 (usup;p)� F�10 (1 + usup;p � p)

�
=

p
n1 (	n �	) (ûsup;p; p) +

p
n1	(ûsup;p; p)�

p
n1	(usup;p; p)

=
p
n1 (	n �	) (usup;p; p)

+
p
n1 [	 (ûsup;p; p)�	(usup;p; p)] + op (1)

=
p
n1
�
Qn (p)�QL (p)

�
+
1

2

p
n1

"
@	
�
u�sup;p; p

�
@u

#
(ûsup;p � usup;p)2 + op (1)

=
p
n1
�
Qn (p)�QL (p)

�
+ op (1) ;

where u�sup;p lies between ûsup;p and usup;p and we have used stochastic equicontinuity of the

process:
p
n1(	n �	)(�; p) and the �rst order condition for sup	 (u; p).

<Proof for Lemma 7>

We prove (i) and (ii) is similar. Lemma 21.7 in van der Varrt (1998), along with
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f1
�
F�11 (usup;p)

�
= f0

�
F�10 (1 + usup;p � p)

�
, implies

Y1([n1uA1nL])
� Y0([n0uA0nL])

= F�11n (usup;p)

�z1��=2
usup;p (1� usup;p)

p
n1

q
usup;p (1� usup;p) + 1

� (1 + usup;p � p) (p� usup;p)f1
�
F�11 (usup;p)

�
�F�10n (1 + usup;p � p)

�z1��=2
(1 + usup;p � p) (p� usup;p)

p
n0

q
usup;p (1� usup;p) + 1

� (1 + usup;p � p) (p� usup;p)f0
�
F�10 (1 + usup;p � p)

�
+op

�
1
p
n1

�
= F�11n (usup;p)� F

�1
0n (1 + usup;p � p)

�z1��=2

q
usup;p (1� usup;p) + 1

� (1 + usup;p � p) (p� usup;p)
p
n1f1

�
F�11 (usup;p)

� + op

�
1
p
n1

�
= Qn(p)� z1��=2

�Lp
n1
+ op

�
1
p
n1

�
;

where Qn(p) = F
�1
1n (usup;p)� F

�1
0n (1 + usup;p � p) :

Similarly, we obtain

Y1([n1uB1nL])
� Y0([n0uB0nL]) = Qn(p) + z1��=2

�Lp
n1
+ op

�
1
p
n1

�
:

The conclusion in (i) follows from:
p
n1
�
Qn (p)�QL (p)

�
=) N

�
0; �2L

�
.

<Proof for Theorem 6> By the stochastic equicontinuity of the quantile
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processes and the proof of Lemma 7, we obtain:

Y1([n1ûA1nL])
� Y0([n0ûA0nL])

= F�11n
�
ûA1nL

�
� F�10n

�
ûA0nL

�
=

��
F�11n

�
ûA1nL

�
� F�10n

�
ûA0nL

��
�
�
F�11

�
ûA1nL

�
� F�10

�
ûA0nL

��	
+
�
F�11

�
ûA1nL

�
� F�10

�
ûA0nL

��
=

�
F�11n

�
uA1nL

�
� F�10n

�
uA0nL

��
�
�
F�11

�
uA1nL

�
� F�10

�
uA0nL

��
+
�
F�11

�
ûA1nL

�
� F�10

�
ûA0nL

��
+ op

�
1
p
n1

�
=

h
Y1([n1uA1nL])

� Y0([n0uA0nL])
i

+
��
F�11

�
ûA1nL

�
� F�10

�
ûA0nL

��
�
�
F�11

�
uA1nL

�
� F�10

�
uA0nL

��	
+ op

�
1
p
n1

�
= Qn(p)� z1��=2

�Lp
n1

+
��
F�11

�
ûA1nL

�
� F�10

�
ûA0nL

��
�
�
F�11

�
uA1nL

�
� F�10

�
uA0nL

��	
+ op

�
1
p
n1

�
= Qn(p)� z1��=2

�Lp
n1
+ op

�
1
p
n1

�
;

where
�
F�11

�
ûA1nL

�
� F�10

�
ûA0nL

��
�
�
F�11

�
uA1nL

�
� F�10

�
uA0nL

��
= op

�
n
�1=2
1

�
; by Taylor se-

ries expansion, f1
�
F�11 (usup;p)

�
= f0

�
F�10 (1 + usup;p � p)

�
, and ûsup;p�usup;p = Op

�
n
�1=3
1

�
.

Similarly, we obtain

Y1([n1ûB1nL])
� Y0([n0ûB0nL]) = Qn(p) + z1��=2

�Lp
n1
+ op

�
1
p
n1

�
:

The conclusion in (i) follows from:
p
n1
�
Qn (p)�QL (p)

�
=) N

�
0; �2L

�
.
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Appendix B. Graphs of Data Generating Processes

<Model 1> Y1 � N (2; 2) and Y0 � N (1; 1)

<Model 2> Y1 � C
�
1
4

�
and Y0 � C

�
3
4

�
where

X � C (a) =) P (X � x) =

8>><>>:
1

a
x2 if x 2 [0; a]

1� (x� 1)
2

(1� a) if x 2 [a; 1]
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<Model 3> Two skewed unimodal distributions
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<Model 4> Two bimodal distributions
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<Model 5> Two kurtotic distributions
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<Model 6> Y0 follows a skewed unimodal distribution and y1 a bimodal distribu-
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Appendix C. Tables of simulation results for Each Bound

<Model 1>

p=0.1 p=0.3
C(QL) C(QU ) W(QL) W(QU ) C(QL) C(QU ) W(QL) W(QU )

n=1000 New 0.943 0.965 0.4586 0.3211 0.951 0.958 0.3339 0.2880
A (hS) 0.942 0.942 0.4669 0.3248 0.957 0.938 0.3396 0.2922
A (hR) 0.942 0.942 0.4671 0.3251 0.957 0.938 0.3399 0.2924
A (hM ) 0.937 0.939 0.4620 0.3219 0.954 0.936 0.3364 0.2895

n=2000 New 0.954 0.960 0.3241 0.2245 0.952 0.958 0.2346 0.2011
A (hS) 0.945 0.926 0.3266 0.2272 0.948 0.943 0.2377 0.2050
A (hR) 0.944 0.927 0.3267 0.2273 0.948 0.943 0.2379 0.2051
A (hM ) 0.943 0.925 0.3242 0.2256 0.948 0.937 0.2360 0.2035

n=4000 New 0.958 0.956 0.2266 0.1578 0.952 0.954 0.1654 0.1426
A (hS) 0.951 0.943 0.2295 0.1593 0.940 0.945 0.1668 0.1439
A (hR) 0.951 0.943 0.2296 0.1594 0.940 0.945 0.1669 0.1440
A (hM ) 0.949 0.942 0.2282 0.1585 0.940 0.942 0.1659 0.1431

n=6000 New 0.952 0.957 0.1849 0.1284 0.943 0.959 0.1348 0.1161
A (hS) 0.950 0.941 0.1869 0.1297 0.932 0.950 0.1359 0.1173
A (hR) 0.950 0.941 0.1869 0.1297 0.932 0.950 0.1359 0.1173
A (hM ) 0.949 0.941 0.1860 0.1291 0.931 0.948 0.1352 0.1167

p=0.5 p=0.7
C(QL) C(QU ) W(QL) W(QU ) C(QL) C(QU ) W(QL) W(QU )

n=1000 New 0.956 0.958 0.2973 0.2970 0.949 0.958 0.2857 0.3318
A (hS) 0.951 0.944 0.3039 0.3031 0.945 0.941 0.2923 0.3392
A (hR) 0.951 0.944 0.3040 0.3033 0.944 0.941 0.2925 0.3395
A (hM ) 0.948 0.943 0.3010 0.3002 0.942 0.939 0.2896 0.3359

n=2000 New 0.951 0.951 0.2088 0.2087 0.951 0.944 0.2015 0.2344
A (hS) 0.942 0.944 0.2128 0.2124 0.946 0.928 0.2051 0.2375
A (hR) 0.942 0.942 0.2128 0.2125 0.946 0.928 0.2052 0.2376
A (hM ) 0.941 0.939 0.2112 0.2108 0.945 0.924 0.2037 0.2358

n=4000 New 0.961 0.947 0.1474 0.1470 0.967 0.960 0.1421 0.1650
A (hS) 0.948 0.954 0.1495 0.1493 0.942 0.955 0.1439 0.1670
A (hR) 0.948 0.954 0.1495 0.1493 0.942 0.955 0.1439 0.1670
A (hM ) 0.946 0.954 0.1487 0.1484 0.941 0.954 0.1431 0.1661

n=6000 New 0.954 0.953 0.1201 0.1207 0.939 0.958 0.1159 0.1346
A (hS) 0.942 0.950 0.1217 0.1215 0.935 0.943 0.1172 0.1359
A (hR) 0.941 0.950 0.1217 0.1216 0.935 0.943 0.1172 0.1359
A (hM ) 0.940 0.950 0.1211 0.1210 0.934 0.942 0.1166 0.1353
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p=0.9
C(QL) C(QU ) W(QL) W(QU )

n=1000 New 0.969 0.959 0.3205 0.4678
A (hS) 0.943 0.944 0.3243 0.4689
A (hR) 0.943 0.943 0.3245 0.4691
A (hM ) 0.941 0.943 0.3214 0.4644

n=2000 New 0.945 0.964 0.2232 0.3256
A (hS) 0.939 0.950 0.2270 0.3276
A (hR) 0.939 0.950 0.2271 0.3277
A (hM ) 0.936 0.949 0.2254 0.3252

n=4000 New 0.935 0.961 0.1572 0.2279
A (hS) 0.945 0.949 0.1592 0.2294
A (hR) 0.945 0.949 0.1593 0.2295
A (hM ) 0.941 0.947 0.1584 0.2281

n=6000 New 0.939 0.959 0.1285 0.1850
A (hS) 0.930 0.949 0.1295 0.1863
A (hR) 0.930 0.949 0.1296 0.1864
A (hM ) 0.926 0.946 0.1289 0.1854
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<Model 2>

p=0.1 p=0.3
C(QL) C(QU ) W(QL) W(QU ) C(QL) C(QU ) W(QL) W(QU )

n=1000 New 0.943 0.965 0.4586 0.3211 0.951 0.958 0.3339 0.2880
A(hS) 0.942 0.942 0.4669 0.3248 0.957 0.938 0.3396 0.2922
A(hR) 0.942 0.942 0.4671 0.3251 0.957 0.938 0.3399 0.2924
A(hM ) 0.937 0.939 0.4620 0.3219 0.954 0.936 0.3364 0.2895

n=2000 New 0.954 0.960 0.3241 0.2245 0.952 0.958 0.2346 0.2011
A(hS) 0.945 0.926 0.3266 0.2272 0.948 0.943 0.2377 0.2050
A(hR) 0.944 0.927 0.3267 0.2273 0.948 0.943 0.2379 0.2051
A(hM ) 0.943 0.925 0.3242 0.2256 0.948 0.937 0.2360 0.2035

n=4000 New 0.958 0.956 0.2266 0.1578 0.952 0.954 0.1654 0.1426
A(hS) 0.951 0.943 0.2295 0.1593 0.940 0.945 0.1668 0.1439
A(hR) 0.951 0.943 0.2296 0.1594 0.940 0.945 0.1669 0.1440
A(hM ) 0.949 0.942 0.2282 0.1585 0.940 0.942 0.1659 0.1431

n=6000 New 0.952 0.957 0.1849 0.1284 0.943 0.959 0.1348 0.1161
A(hS) 0.950 0.941 0.1869 0.1297 0.932 0.950 0.1359 0.1173
A(hR) 0.950 0.941 0.1869 0.1297 0.932 0.950 0.1359 0.1173
A(hM ) 0.949 0.941 0.1860 0.1291 0.931 0.948 0.1352 0.1167

p=0.5 p=0.7
C(QL) C(QU ) W(QL) W(QU ) C(QL) C(QU ) W(QL) W(QU )

n=1000 New 0.956 0.958 0.2973 0.2970 0.949 0.958 0.2857 0.3318
A(hS) 0.951 0.944 0.3039 0.3031 0.945 0.941 0.2923 0.3392
A(hR) 0.951 0.944 0.3040 0.3033 0.944 0.941 0.2925 0.3395
A(hM ) 0.948 0.943 0.3010 0.3002 0.942 0.939 0.2896 0.3359

n=2000 New 0.951 0.951 0.2088 0.2087 0.951 0.944 0.2015 0.2344
A(hS) 0.942 0.944 0.2128 0.2124 0.946 0.928 0.2051 0.2375
A(hR) 0.942 0.942 0.2128 0.2125 0.946 0.928 0.2052 0.2376
A(hM ) 0.941 0.939 0.2112 0.2108 0.945 0.924 0.2037 0.2358

n=4000 New 0.961 0.947 0.1474 0.1470 0.967 0.960 0.1421 0.1650
A(hS) 0.948 0.954 0.1495 0.1493 0.942 0.955 0.1439 0.1670
A(hR) 0.948 0.954 0.1495 0.1493 0.942 0.955 0.1439 0.1670
A(hM ) 0.946 0.954 0.1487 0.1484 0.941 0.954 0.1431 0.1661

n=6000 New 0.954 0.953 0.1201 0.1207 0.939 0.958 0.1159 0.1346
A(hS) 0.942 0.950 0.1217 0.1215 0.935 0.943 0.1172 0.1359
A(hR) 0.941 0.950 0.1217 0.1216 0.935 0.943 0.1172 0.1359
A(hM ) 0.940 0.950 0.1211 0.1210 0.934 0.942 0.1166 0.1353
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p=0.9
C(QL) C(QU ) W(QL) W(QU )

n=1000 New 0.969 0.959 0.3205 0.4678
A(hS) 0.943 0.944 0.3243 0.4689
A(hR) 0.943 0.943 0.3245 0.4691
A(hM ) 0.941 0.943 0.3214 0.4644

n=2000 New 0.945 0.964 0.2232 0.3256
A(hS) 0.939 0.950 0.2270 0.3276
A(hR) 0.939 0.950 0.2271 0.3277
A(hM ) 0.936 0.949 0.2254 0.3252

n=4000 New 0.935 0.961 0.1572 0.2279
A(hS) 0.945 0.949 0.1592 0.2294
A(hR) 0.945 0.949 0.1593 0.2295
A(hM ) 0.941 0.947 0.1584 0.2281

n=6000 New 0.939 0.959 0.1285 0.1850
A(hS) 0.930 0.949 0.1295 0.1863
A(hR) 0.930 0.949 0.1296 0.1864
A(hM ) 0.926 0.946 0.1289 0.1854
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<Model 3>

p=0.1 p=0.3
C(QL) C(QU ) W(QL) W(QU ) C(QL) C(QU ) W(QL) W(QU )

n=1000 New 0.953 0.959 0.4923 0.2857 0.955 0.956 0.3736 0.1927
A(hS) 0.939 0.961 0.4955 0.3002 0.945 0.947 0.3707 0.2092
A(hR) 0.938 0.962 0.4956 0.3005 0.945 0.946 0.3710 0.2093
A(hM ) 0.934 0.957 0.4922 0.2947 0.945 0.941 0.3697 0.2041

n=2000 New 0.950 0.952 0.3468 0.1938 0.945 0.956 0.2611 0.1367
A(hS) 0.941 0.955 0.3473 0.2048 0.948 0.947 0.2613 0.1452
A(hR) 0.941 0.954 0.3473 0.2050 0.948 0.948 0.2614 0.1453
A(hM ) 0.939 0.950 0.3455 0.2017 0.948 0.940 0.2607 0.1425

n=4000 New 0.959 0.975 0.2442 0.1370 0.949 0.961 0.1843 0.0962
A(hS) 0.946 0.971 0.2447 0.1417 0.943 0.961 0.1841 0.1009
A(hR) 0.946 0.972 0.2448 0.1418 0.943 0.961 0.1842 0.1010
A(hM ) 0.944 0.966 0.2438 0.1400 0.943 0.959 0.1838 0.0995

n=6000 New 0.960 0.948 0.1990 0.1112 0.944 0.946 0.1508 0.0784
A(hS) 0.946 0.947 0.1995 0.1148 0.925 0.950 0.1502 0.0818
A(hR) 0.946 0.948 0.1995 0.1148 0.925 0.950 0.1502 0.0818
A(hM ) 0.946 0.945 0.1988 0.1136 0.925 0.944 0.1500 0.0807

p=0.5 p=0.7
C(QL) C(QU ) W(QL) W(QU ) C(QL) C(QU ) W(QL) W(QU )

n=1000 New 0.955 0.950 0.3168 0.1704 0.948 0.954 0.2705 0.1764
A(hS) 0.939 0.966 0.3132 0.1891 0.925 0.962 0.2686 0.1951
A(hR) 0.939 0.965 0.3132 0.1892 0.925 0.961 0.2685 0.1953
A(hM ) 0.939 0.963 0.3129 0.1835 0.926 0.947 0.2680 0.1888

n=2000 New 0.954 0.957 0.2228 0.1207 0.966 0.962 0.1903 0.1226
A(hS) 0.947 0.940 0.2213 0.1304 0.949 0.963 0.1898 0.1342
A(hR) 0.947 0.940 0.2213 0.1304 0.949 0.963 0.1897 0.1343
A(hM ) 0.945 0.933 0.2211 0.1273 0.950 0.956 0.1895 0.1308

n=4000 New 0.959 0.962 0.1573 0.0847 0.959 0.954 0.1338 0.0865
A(hS) 0.945 0.961 0.1563 0.0901 0.946 0.955 0.1339 0.0926
A(hR) 0.945 0.961 0.1563 0.0901 0.946 0.956 0.1338 0.0927
A(hM ) 0.944 0.957 0.1563 0.0884 0.945 0.954 0.1337 0.0907

n=6000 New 0.944 0.950 0.1283 0.0688 0.945 0.953 0.1094 0.0703
A(hS) 0.926 0.949 0.1276 0.0728 0.934 0.958 0.1093 0.0748
A(hR) 0.926 0.949 0.1276 0.0728 0.934 0.957 0.1092 0.0748
A(hM ) 0.924 0.943 0.1276 0.0716 0.933 0.954 0.1092 0.0735
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p=0.9
C(QL) C(QU ) W(QL) W(QU )

n=1000 New 0.956 0.959 0.2344 0.2257
A(hS) 0.946 0.963 0.2343 0.2521
A(hR) 0.946 0.965 0.2342 0.2524
A(hM ) 0.945 0.959 0.2331 0.2433

n=2000 New 0.951 0.957 0.1640 0.1574
A(hS) 0.944 0.960 0.1648 0.1728
A(hR) 0.944 0.960 0.1648 0.1729
A(hM ) 0.943 0.949 0.1642 0.1680

n=4000 New 0.959 0.945 0.1162 0.1109
A(hS) 0.947 0.953 0.1161 0.1189
A(hR) 0.947 0.955 0.1161 0.1190
A(hM ) 0.947 0.950 0.1159 0.1164

n=6000 New 0.951 0.958 0.0948 0.0900
A(hS) 0.940 0.963 0.0946 0.0958
A(hR) 0.940 0.963 0.0946 0.0959
A(hM ) 0.939 0.960 0.0945 0.0940
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<Model 4>

p=0.1 p=0.3
C(QL) C(QU ) W(QL) W(QU ) C(QL) C(QU ) W(QL) W(QU )

n=1000 New 0.954 0.972 0.2267 0.1911 0.957 0.950 0.1788 0.1799
A(hS) 0.979 0.976 0.2712 0.2246 0.973 0.979 0.2128 0.2144
A(hR) 0.976 0.973 0.2666 0.2207 0.972 0.971 0.2089 0.2100
A(hM ) 0.967 0.959 0.2522 0.2089 0.963 0.961 0.1979 0.1992

n=2000 New 0.941 0.950 0.1609 0.1340 0.950 0.947 0.1261 0.1264
A(hS) 0.969 0.965 0.1839 0.1529 0.976 0.967 0.1445 0.1454
A(hR) 0.969 0.961 0.1817 0.1510 0.973 0.962 0.1426 0.1434
A(hM ) 0.963 0.952 0.1738 0.1446 0.965 0.952 0.1366 0.1374

n=4000 New 0.949 0.957 0.1133 0.0944 0.962 0.948 0.0891 0.0894
A(hS) 0.974 0.966 0.1258 0.1047 0.961 0.964 0.0989 0.0996
A(hR) 0.972 0.962 0.1248 0.1039 0.959 0.963 0.0982 0.0987
A(hM ) 0.965 0.957 0.1205 0.1003 0.957 0.957 0.0948 0.0953

n=6000 New 0.952 0.963 0.0922 0.0766 0.943 0.960 0.0724 0.0729
A(hS) 0.962 0.969 0.1011 0.0840 0.958 0.965 0.0795 0.0799
A(hR) 0.963 0.967 0.1005 0.0835 0.956 0.962 0.0790 0.0794
A(hM ) 0.952 0.959 0.0975 0.0810 0.948 0.957 0.0767 0.0770

p=0.5 p=0.7
C(QL) C(QU ) W(QL) W(QU ) C(QL) C(QU ) W(QL) W(QU )

n=1000 New 0.954 0.947 0.1811 0.2214 0.954 0.947 0.3659 0.8295
A(hS) 0.972 0.971 0.2161 0.2652 0.986 0.943 0.4134 0.6311
A(hR) 0.970 0.965 0.2118 0.2589 0.982 0.928 0.4028 0.6268
A(hM ) 0.965 0.961 0.2009 0.2458 0.983 0.929 0.3927 0.6572

n=2000 New 0.952 0.945 0.1279 0.1568 0.940 0.955 0.2459 0.4899
A(hS) 0.967 0.969 0.1468 0.1803 0.984 0.953 0.2829 0.4685
A(hR) 0.967 0.962 0.1447 0.1770 0.980 0.940 0.2775 0.4624
A(hM ) 0.959 0.955 0.1387 0.1698 0.977 0.934 0.2679 0.4670

n=4000 New 0.951 0.945 0.0900 0.1097 0.944 0.951 0.1704 0.3121
A(hS) 0.960 0.972 0.1005 0.1231 0.969 0.969 0.1917 0.3328
A(hR) 0.958 0.966 0.0996 0.1217 0.967 0.958 0.1891 0.3286
A(hM ) 0.953 0.959 0.0962 0.1177 0.963 0.959 0.1832 0.3229

n=6000 New 0.928 0.952 0.0735 0.0893 0.936 0.951 0.1393 0.2515
A(hS) 0.948 0.968 0.0807 0.0988 0.966 0.966 0.1542 0.2707
A(hR) 0.944 0.962 0.0802 0.0979 0.962 0.960 0.1524 0.2675
A(hM ) 0.943 0.960 0.0778 0.0950 0.956 0.958 0.1482 0.2618
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p=0.9
C(QL) C(QU ) W(QL) W(QU )

n=1000 New 0.951 0.884 0.1702 2.4675
A(hS) 1.000 1.000 0.3972 3.3368
A(hR) 1.000 1.000 0.3573 7.9198
A(hM ) 1.000 1.000 0.3142 26.2168

n=2000 New 0.953 0.886 0.1191 2.2881
A(hS) 1.000 1.000 0.2526 3.6706
A(hR) 1.000 1.000 0.2306 8.4325
A(hM ) 0.999 1.000 0.2038 32.1941

n=4000 New 0.949 0.887 0.0830 2.1670
A(hS) 1.000 1.000 0.1594 4.8924
A(hR) 0.999 1.000 0.1484 11.4761
A(hM ) 0.999 1.000 0.1321 53.1956

n=6000 New 0.942 0.897 0.0677 2.1125
A(hS) 1.000 1.000 0.1230 5.8978
A(hR) 1.000 1.000 0.1155 16.1382
A(hM ) 0.998 1.000 0.1034 96.5903
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<Model 5>

p=0.1 p=0.3
C(QL) C(QU ) W(QL) W(QU ) C(QL) C(QU ) W(QL) W(QU )

n=1000 New 0.940 0.946 0.4506 0.3348 0.937 0.961 0.1141 0.0368
A(hS) 0.929 0.926 0.3658 0.2786 0.968 0.999 0.1183 0.0629
A(hR) 0.921 0.940 0.3845 0.3214 0.946 0.970 0.1072 0.0406
A(hM ) 0.920 0.942 0.3838 0.3261 0.943 0.962 0.1071 0.0395

n=2000 New 0.926 0.963 0.3031 0.2243 0.942 0.950 0.0763 0.0257
A(hS) 0.923 0.930 0.2591 0.2042 0.971 0.998 0.0815 0.0424
A(hR) 0.923 0.942 0.2727 0.2180 0.958 0.942 0.0746 0.0279
A(hM ) 0.922 0.944 0.2731 0.2186 0.959 0.938 0.0744 0.0273

n=4000 New 0.947 0.965 0.2081 0.1532 0.960 0.973 0.0523 0.0182
A(hS) 0.932 0.948 0.1836 0.1448 0.967 0.995 0.0552 0.0268
A(hR) 0.932 0.956 0.1938 0.1507 0.949 0.972 0.0516 0.0193
A(hM ) 0.930 0.953 0.1942 0.1508 0.948 0.968 0.0516 0.0189

n=6000 New 0.952 0.930 0.1673 0.1239 0.938 0.950 0.0424 0.0148
A(hS) 0.934 0.928 0.1515 0.1205 0.954 0.991 0.0453 0.0219
A(hR) 0.945 0.935 0.1588 0.1227 0.938 0.950 0.0420 0.0156
A(hM ) 0.947 0.934 0.1592 0.1228 0.938 0.947 0.0419 0.0153

p=0.5 p=0.7
C(QL) C(QU ) W(QL) W(QU ) C(QL) C(QU ) W(QL) W(QU )

n=1000 New 0.952 0.958 0.0431 0.0433 0.967 0.958 0.0369 0.1147
A(hS) 0.998 0.999 0.0708 0.0708 0.997 0.973 0.0629 0.1182
A(hR) 0.962 0.971 0.0474 0.0474 0.963 0.940 0.0406 0.1070
A(hM ) 0.959 0.966 0.0461 0.0462 0.956 0.938 0.0395 0.1069

n=2000 New 0.952 0.954 0.0304 0.0303 0.950 0.961 0.0257 0.0760
A(hS) 0.998 0.997 0.0473 0.0479 0.999 0.975 0.0418 0.0823
A(hR) 0.964 0.958 0.0326 0.0326 0.963 0.949 0.0279 0.0738
A(hM ) 0.961 0.947 0.0320 0.0319 0.959 0.949 0.0272 0.0737

n=4000 New 0.955 0.962 0.0213 0.0214 0.963 0.955 0.0181 0.0520
A(hS) 0.994 0.997 0.0306 0.0306 0.998 0.969 0.0268 0.0552
A(hR) 0.961 0.962 0.0226 0.0226 0.961 0.953 0.0193 0.0515
A(hM ) 0.957 0.956 0.0222 0.0222 0.957 0.952 0.0190 0.0514

n=6000 New 0.945 0.958 0.0173 0.0173 0.957 0.945 0.0148 0.0421
A(hS) 0.991 0.993 0.0250 0.0251 0.992 0.964 0.0219 0.0455
A(hR) 0.947 0.948 0.0182 0.0183 0.959 0.950 0.0156 0.0419
A(hM ) 0.945 0.945 0.0180 0.0180 0.957 0.950 0.0153 0.0418
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p=0.9
C(QL) C(QU ) W(QL) W(QU )

n=1000 New 0.953 0.938 0.3372 0.4457
A(hS) 0.923 0.935 0.2697 0.3793
A(hR) 0.940 0.941 0.3014 0.5521
A(hM ) 0.940 0.937 0.3013 0.9053

n=2000 New 0.935 0.951 0.2223 0.3047
A(hS) 0.909 0.946 0.1972 0.2674
A(hR) 0.925 0.954 0.2113 0.2934
A(hM ) 0.925 0.955 0.2113 0.2984

n=4000 New 0.954 0.934 0.1535 0.2077
A(hS) 0.941 0.920 0.1441 0.1856
A(hR) 0.948 0.925 0.1492 0.1994
A(hM ) 0.948 0.925 0.1492 0.2007

n=6000 New 0.941 0.959 0.1239 0.1662
A(hS) 0.933 0.937 0.1198 0.1516
A(hR) 0.936 0.941 0.1223 0.1603
A(hM ) 0.938 0.944 0.1223 0.1610
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<Model 6>

p=0.1 p=0.3
C(QL) C(QU ) W(QL) W(QU ) C(QL) C(QU ) W(QL) W(QU )

n=1000 New 0.956 0.954 0.2301 0.2610 0.959 0.962 0.1812 0.3280
A(hS) 0.976 0.957 0.2688 0.2752 0.970 0.961 0.2099 0.3462
A(hR) 0.982 0.957 0.2794 0.2845 0.977 0.966 0.2181 0.3582
A(hM ) 0.968 0.952 0.2575 0.2703 0.965 0.959 0.2013 0.3396

n=2000 New 0.943 0.951 0.1627 0.1839 0.947 0.943 0.1274 0.2300
A(hS) 0.964 0.946 0.1831 0.1913 0.973 0.951 0.1433 0.2400
A(hR) 0.973 0.948 0.1893 0.1967 0.981 0.955 0.1481 0.2470
A(hM ) 0.963 0.942 0.1770 0.1888 0.969 0.947 0.1387 0.2367

n=4000 New 0.950 0.963 0.1147 0.1294 0.958 0.948 0.0898 0.1616
A(hS) 0.973 0.956 0.1256 0.1338 0.959 0.958 0.0985 0.1671
A(hR) 0.977 0.960 0.1293 0.1370 0.964 0.960 0.1014 0.1713
A(hM ) 0.965 0.952 0.1223 0.1325 0.957 0.955 0.0960 0.1653

n=6000 New 0.956 0.947 0.0934 0.1057 0.942 0.948 0.0731 0.1317
A(hS) 0.962 0.950 0.1011 0.1086 0.954 0.956 0.0793 0.1354
A(hR) 0.965 0.952 0.1038 0.1110 0.960 0.957 0.0814 0.1384
A(hM ) 0.956 0.950 0.0988 0.1077 0.950 0.956 0.0775 0.1342

p=0.5 p=0.7
C(QL) C(QU ) W(QL) W(QU ) C(QL) C(QU ) W(QL) W(QU )

n=1000 New 0.951 0.953 0.1827 0.4510 0.949 0.967 0.3574 0.9214
A(hS) 0.969 0.954 0.2103 0.4766 0.982 0.932 0.3921 0.7380
A(hR) 0.973 0.957 0.2189 0.4889 0.980 0.931 0.4015 0.7035
A(hM ) 0.961 0.950 0.2020 0.4662 0.979 0.925 0.3790 0.7568

n=2000 New 0.948 0.949 0.1286 0.3111 0.941 0.969 0.2416 0.6469
A(hS) 0.964 0.953 0.1436 0.3270 0.974 0.940 0.2651 0.5224
A(hR) 0.969 0.955 0.1487 0.3371 0.980 0.942 0.2759 0.5087
A(hM ) 0.959 0.949 0.1392 0.3215 0.967 0.930 0.2578 0.5204

n=4000 New 0.946 0.951 0.0907 0.2192 0.941 0.973 0.1678 0.4099
A(hS) 0.952 0.960 0.0989 0.2282 0.964 0.946 0.1810 0.3652
A(hR) 0.964 0.960 0.1020 0.2347 0.970 0.953 0.1880 0.3638
A(hM ) 0.946 0.959 0.0965 0.2253 0.961 0.941 0.1771 0.3606

n=6000 New 0.937 0.954 0.0737 0.1795 0.945 0.968 0.1371 0.3089
A(hS) 0.947 0.958 0.0796 0.1851 0.959 0.945 0.1462 0.2950
A(hR) 0.953 0.959 0.0819 0.1899 0.968 0.952 0.1513 0.2978
A(hM ) 0.945 0.956 0.0779 0.1831 0.954 0.943 0.1435 0.2910
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p=0.9
C(QL) C(QU ) W(QL) W(QU )

n=1000 New 0.954 0.953 0.1762 0.3609
A(hS) 0.998 0.956 0.2886 0.3844
A(hR) 1.000 0.956 0.3218 0.3793
A(hM ) 0.997 0.962 0.2606 0.3843

n=2000 New 0.954 0.954 0.1229 0.2550
A(hS) 0.995 0.958 0.1868 0.2788
A(hR) 0.999 0.953 0.2103 0.2765
A(hM ) 0.989 0.954 0.1710 0.2745

n=4000 New 0.948 0.950 0.0854 0.1797
A(hS) 0.996 0.963 0.1210 0.1960
A(hR) 0.999 0.970 0.1368 0.2007
A(hM ) 0.991 0.959 0.1122 0.1915

n=6000 New 0.940 0.964 0.0697 0.1476
A(hS) 0.992 0.972 0.0952 0.1578
A(hR) 0.998 0.976 0.1074 0.1642
A(hM ) 0.983 0.964 0.0888 0.1546
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Appendix D. Tables of simulation results for QTE (p)

<Model 1>

p=0.1 p=0.3 p=0.5
C(QL) C(QU ) W(Q) C(QL) C(QU ) W(Q) C(QL) C(QU ) W(Q)

n= New 0.949 0.941 4.3596 0.963 0.943 3.5685 0.957 0.949 3.3961
1000 CIFP (hS) 0.901 0.884 4.2726 0.918 0.887 3.5064 0.916 0.888 3.3400

CIFP (hR) 0.902 0.883 4.2728 0.918 0.887 3.5065 0.916 0.889 3.3401
CIFP (hM ) 0.894 0.882 4.2693 0.915 0.884 3.5039 0.913 0.886 3.3376

n= New 0.951 0.921 4.2578 0.960 0.939 3.4905 0.947 0.948 3.3242
2000 CIFP (hS) 0.898 0.878 4.2043 0.923 0.896 3.4533 0.914 0.896 3.2904

CIFP (hR) 0.898 0.878 4.2044 0.923 0.896 3.4534 0.914 0.897 3.2905
CIFP (hM ) 0.897 0.876 4.2027 0.921 0.895 3.4520 0.913 0.893 3.2891

n= New 0.959 0.938 4.1849 0.940 0.947 3.4357 0.939 0.957 3.2710
4000 CIFP (hS) 0.904 0.908 4.1528 0.912 0.919 3.4131 0.897 0.919 3.2507

CIFP (hR) 0.904 0.908 4.1528 0.912 0.918 3.4132 0.897 0.919 3.2507
CIFP (hM ) 0.903 0.907 4.1519 0.911 0.918 3.4124 0.896 0.919 3.2500

n= New 0.953 0.945 4.1582 0.946 0.948 3.4125 0.942 0.951 3.2504
6000 CIFP (hS) 0.911 0.909 4.1339 0.906 0.914 3.3956 0.899 0.921 3.2347

CIFP (hR) 0.912 0.909 4.1340 0.906 0.914 3.3956 0.899 0.921 3.2347
CIFP (hM ) 0.910 0.908 4.1333 0.905 0.913 3.3951 0.895 0.920 3.2342

p=0.7 p=0.9
C(QL) C(QU ) W(Q) C(QL) C(QU ) W(Q)

n= New 0.942 0.954 3.5621 0.953 0.971 4.3656
1000 CIFP (hS) 0.900 0.901 3.5023 0.892 0.895 4.2665

CIFP (hR) 0.900 0.902 3.5025 0.893 0.895 4.2667
CIFP (hM ) 0.894 0.896 3.4998 0.888 0.895 4.2634

n= New 0.948 0.946 3.4875 0.931 0.957 4.2604
2000 CIFP (hS) 0.902 0.893 3.4499 0.896 0.909 4.2042

CIFP (hR) 0.902 0.893 3.4500 0.896 0.909 4.2043
CIFP (hM ) 0.900 0.889 3.4485 0.895 0.906 4.2026

n= New 0.937 0.954 3.4333 0.938 0.956 4.1871
4000 CIFP (hS) 0.910 0.917 3.4106 0.900 0.905 4.1529

CIFP (hR) 0.910 0.917 3.4107 0.900 0.906 4.1530
CIFP (hM ) 0.910 0.915 3.4099 0.900 0.902 4.1520

n= New 0.934 0.954 3.4114 0.926 0.955 4.1562
6000 CIFP (hS) 0.895 0.917 3.3943 0.881 0.914 4.1310

CIFP (hR) 0.894 0.917 3.3943 0.881 0.914 4.1311
CIFP (hM ) 0.893 0.917 3.3938 0.879 0.914 4.1304
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<Model 2>

p=0.1 p=0.3 p=0.5
C(QL) C(QU ) W(Q) C(QL) C(QU ) W(Q) C(QL) C(QU ) W(Q)

n= New 0.950 0.956 0.6552 0.952 0.943 0.6292 0.932 0.947 0.6754
1000 CIFP (hS) 0.923 0.890 0.6462 0.914 0.871 0.6194 0.892 0.885 0.6650

CIFP (hR) 0.934 0.891 0.6469 0.923 0.873 0.6197 0.903 0.884 0.6654
CIFP (hM ) 0.912 0.887 0.6454 0.907 0.873 0.6189 0.883 0.884 0.6646

n= New 0.945 0.936 0.6425 0.953 0.937 0.6171 0.936 0.949 0.6632
2000 CIFP (hS) 0.919 0.874 0.6368 0.926 0.882 0.6109 0.900 0.881 0.6569

CIFP (hR) 0.923 0.875 0.6372 0.928 0.882 0.6111 0.903 0.881 0.6570
CIFP (hM ) 0.909 0.873 0.6364 0.920 0.883 0.6106 0.897 0.879 0.6566

n= New 0.941 0.945 0.6345 0.943 0.949 0.6087 0.940 0.952 0.6545
4000 CIFP (hS) 0.913 0.896 0.6308 0.909 0.897 0.6049 0.902 0.911 0.6507

CIFP (hR) 0.914 0.897 0.6310 0.911 0.897 0.6050 0.904 0.911 0.6509
CIFP (hM ) 0.902 0.897 0.6306 0.905 0.897 0.6048 0.898 0.912 0.6506

n= New 0.949 0.944 0.6310 0.939 0.953 0.6049 0.926 0.935 0.6509
6000 CIFP (hS) 0.924 0.901 0.6282 0.903 0.910 0.6021 0.902 0.902 0.6482

CIFP (hR) 0.932 0.901 0.6283 0.906 0.911 0.6022 0.902 0.901 0.6483
CIFP (hM ) 0.917 0.900 0.6281 0.898 0.909 0.6021 0.900 0.901 0.6481

p=0.7 p=0.9
C(QL) C(QU ) W(Q) C(QL) C(QU ) W(Q)

n= New 0.886 0.945 0.7593 0.907 0.966 0.8847
1000 CIFP (hS) 0.810 0.874 0.7460 0.825 0.898 0.8695

CIFP (hR) 0.812 0.875 0.7463 0.828 0.900 0.8702
CIFP (hM ) 0.809 0.871 0.7457 0.818 0.895 0.8687

n= New 0.895 0.942 0.7464 0.893 0.948 0.8690
2000 CIFP (hS) 0.831 0.877 0.7383 0.833 0.905 0.8600

CIFP (hR) 0.832 0.877 0.7385 0.839 0.908 0.8604
CIFP (hM ) 0.827 0.876 0.7382 0.827 0.902 0.8596

n= New 0.894 0.954 0.7376 0.889 0.947 0.8589
4000 CIFP (hS) 0.825 0.907 0.7328 0.811 0.887 0.8531

CIFP (hR) 0.827 0.908 0.7329 0.813 0.891 0.8533
CIFP (hM ) 0.824 0.906 0.7327 0.803 0.886 0.8529

n= New 0.870 0.944 0.7339 0.874 0.942 0.8546
6000 CIFP (hS) 0.815 0.896 0.7303 0.810 0.896 0.8502

CIFP (hR) 0.818 0.896 0.7303 0.811 0.897 0.8504
CIFP (hM ) 0.812 0.896 0.7302 0.807 0.893 0.8501
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<Model 3>

p=0.1 p=0.3 p=0.5
C(QL) C(QU ) W(Q) C(QL) C(QU ) W(Q) C(QL) C(QU ) W(Q)

n= New 0.955 0.949 4.3453 0.956 0.947 3.3602 0.959 0.951 2.8402
1000 CIFP (hS) 0.904 0.933 4.2464 0.902 0.922 3.2972 0.907 0.924 2.7895

CIFP (hR) 0.905 0.933 4.2465 0.902 0.922 3.2974 0.906 0.922 2.7896
CIFP (hM ) 0.899 0.928 4.2427 0.902 0.912 3.2946 0.908 0.914 2.7870

n= New 0.946 0.950 4.2333 0.962 0.954 3.2856 0.962 0.962 2.7775
2000 CIFP (hS) 0.900 0.910 4.1724 0.911 0.909 3.2443 0.921 0.918 2.7429

CIFP (hR) 0.900 0.910 4.1725 0.911 0.909 3.2444 0.921 0.916 2.7429
CIFP (hM ) 0.900 0.906 4.1704 0.911 0.903 3.2429 0.920 0.910 2.7415

n= New 0.960 0.953 4.1621 0.945 0.961 3.2367 0.955 0.952 2.7314
4000 CIFP (hS) 0.905 0.930 4.1240 0.911 0.938 3.2118 0.913 0.930 2.7108

CIFP (hR) 0.904 0.931 4.1240 0.911 0.938 3.2118 0.913 0.930 2.7108
CIFP (hM ) 0.904 0.926 4.1229 0.910 0.934 3.2110 0.913 0.924 2.7100

n= New 0.942 0.963 4.1301 0.941 0.959 3.2129 0.957 0.955 2.7116
6000 CIFP (hS) 0.911 0.920 4.1014 0.903 0.919 3.1943 0.905 0.929 2.6956

CIFP (hR) 0.910 0.920 4.1014 0.903 0.919 3.1944 0.905 0.929 2.6956
CIFP (hM ) 0.910 0.917 4.1006 0.903 0.918 3.1938 0.905 0.926 2.6951

p=0.7 p=0.9
C(QL) C(QU ) W(Q) C(QL) C(QU ) W(Q)

n= New 0.952 0.964 2.5954 0.946 0.968 2.7691
1000 CIFP (hS) 0.902 0.931 2.5488 0.898 0.946 2.7241

CIFP (hR) 0.902 0.931 2.5489 0.898 0.947 2.7243
CIFP (hM ) 0.903 0.922 2.5459 0.896 0.933 2.7199

n= New 0.957 0.955 2.5358 0.960 0.964 2.7090
2000 CIFP (hS) 0.916 0.927 2.5070 0.924 0.935 2.6802

CIFP (hR) 0.916 0.925 2.5070 0.924 0.937 2.6802
CIFP (hM ) 0.915 0.910 2.5054 0.923 0.930 2.6779

n= New 0.949 0.959 2.4948 0.941 0.970 2.6647
4000 CIFP (hS) 0.918 0.933 2.4764 0.915 0.945 2.6442

CIFP (hR) 0.918 0.934 2.4764 0.915 0.945 2.6443
CIFP (hM ) 0.918 0.930 2.4756 0.915 0.943 2.6431

n= New 0.955 0.956 2.4754 0.942 0.959 2.6451
6000 CIFP (hS) 0.911 0.923 2.4620 0.906 0.938 2.6297

CIFP (hR) 0.911 0.923 2.4620 0.906 0.938 2.6297
CIFP (hM ) 0.911 0.918 2.4614 0.905 0.934 2.6289
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<Model 4>

p=0.1 p=0.3 p=0.5
C(QL) C(QU ) W(Q) C(QL) C(QU ) W(Q) C(QL) C(QU ) W(Q)

n= New 0.973 0.958 2.4848 0.959 0.956 2.2337 0.947 0.947 2.2772
1000 CIFP (hS) 0.951 0.925 2.4551 0.938 0.920 2.2131 0.939 0.930 2.2572

CIFP (hR) 0.966 0.933 2.4664 0.954 0.933 2.2228 0.951 0.931 2.2684
CIFP (hM ) 0.946 0.919 2.4492 0.931 0.911 2.2081 0.929 0.918 2.2515

n= New 0.956 0.949 2.4263 0.958 0.956 2.1879 0.951 0.953 2.2251
2000 CIFP (hS) 0.928 0.915 2.4073 0.936 0.928 2.1736 0.933 0.926 2.2110

CIFP (hR) 0.942 0.930 2.4138 0.945 0.938 2.1792 0.946 0.927 2.2174
CIFP (hM ) 0.925 0.908 2.4041 0.932 0.917 2.1709 0.932 0.923 2.2080

n= New 0.960 0.949 2.3908 0.956 0.949 2.1557 0.963 0.943 2.1889
4000 CIFP (hS) 0.934 0.925 2.3784 0.930 0.928 2.1467 0.947 0.918 2.1802

CIFP (hR) 0.945 0.932 2.3820 0.949 0.934 2.1498 0.957 0.930 2.1838
CIFP (hM ) 0.932 0.921 2.3767 0.927 0.924 2.1453 0.942 0.912 2.1786

n= New 0.951 0.943 2.3736 0.942 0.949 2.1410 0.941 0.946 2.1729
6000 CIFP (hS) 0.928 0.918 2.3639 0.928 0.933 2.1342 0.925 0.925 2.1660

CIFP (hR) 0.935 0.925 2.3665 0.936 0.939 2.1365 0.934 0.936 2.1686
CIFP (hM ) 0.926 0.914 2.3627 0.925 0.930 2.1332 0.922 0.925 2.1648

p=0.7 p=0.9
C(QL) C(QU ) W(Q) C(QL) C(QU ) W(Q)

n= New 0.952 0.971 3.0731 0.960 0.965 2.2546
1000 CIFP (hS) 0.979 0.936 2.8786 0.990 0.985 2.2873

CIFP (hR) 0.972 0.935 2.8548 0.999 0.989 2.3151
CIFP (hM ) 0.978 0.918 2.8720 0.981 0.968 2.2689

n= New 0.946 0.959 2.8095 0.941 0.946 2.2110
2000 CIFP (hS) 0.953 0.933 2.7434 0.982 0.964 2.2280

CIFP (hR) 0.964 0.933 2.7458 0.995 0.980 2.2469
CIFP (hM ) 0.946 0.926 2.7366 0.971 0.954 2.2177

n= New 0.959 0.949 2.6824 0.959 0.960 2.1821
4000 CIFP (hS) 0.963 0.918 2.6529 0.979 0.970 2.1902

CIFP (hR) 0.972 0.921 2.6597 0.993 0.978 2.2018
CIFP (hM ) 0.960 0.912 2.6490 0.968 0.961 2.1844

n= New 0.940 0.951 2.6416 0.955 0.962 2.1670
6000 CIFP (hS) 0.938 0.931 2.6209 0.977 0.971 2.1726

CIFP (hR) 0.953 0.934 2.6268 0.994 0.983 2.1815
CIFP (hM ) 0.934 0.930 2.6182 0.970 0.956 2.1684
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<Model 5>

p=0.1 p=0.3 p=0.5
C(QL) C(QU ) W(Q) C(QL) C(QU ) W(Q) C(QL) C(QU ) W(Q)

n= New 0.982 0.967 1.5649 0.960 0.940 0.5396 0.953 0.952 0.4245
1000 CIFP (hS) 0.920 0.932 1.4107 0.959 0.989 0.5340 0.994 0.991 0.4389

CIFP (hR) 0.926 0.935 1.4366 0.911 0.921 0.5199 0.937 0.930 0.4192
CIFP (hM ) 0.921 0.936 1.4397 0.910 0.909 0.5194 0.936 0.924 0.4182

n= New 0.980 0.966 1.4295 0.965 0.956 0.5130 0.957 0.956 0.4127
2000 CIFP (hS) 0.916 0.937 1.3447 0.956 0.995 0.5109 0.982 0.981 0.4209

CIFP (hR) 0.929 0.937 1.3586 0.925 0.930 0.5027 0.933 0.942 0.4093
CIFP (hM ) 0.924 0.937 1.3591 0.922 0.924 0.5024 0.923 0.931 0.4087

n= New 0.974 0.961 1.3423 0.960 0.952 0.4979 0.958 0.949 0.4049
4000 CIFP (hS) 0.924 0.936 1.2944 0.952 0.983 0.4968 0.989 0.983 0.4096

CIFP (hR) 0.930 0.933 1.3014 0.933 0.927 0.4921 0.937 0.933 0.4029
CIFP (hM ) 0.929 0.933 1.3016 0.932 0.921 0.4920 0.934 0.926 0.4025

n= New 0.966 0.952 1.3044 0.945 0.946 0.4912 0.947 0.962 0.4015
6000 CIFP (hS) 0.905 0.928 1.2716 0.942 0.983 0.4903 0.974 0.984 0.4048

CIFP (hR) 0.913 0.929 1.2761 0.915 0.926 0.4870 0.930 0.933 0.3999
CIFP (hM ) 0.914 0.928 1.2762 0.913 0.923 0.4868 0.923 0.928 0.3997

p=0.7 p=0.9
C(QL) C(QU ) W(Q) C(QL) C(QU ) W(Q)

n= New 0.957 0.963 0.5386 0.970 0.980 1.5684
1000 CIFP (hS) 0.995 0.953 0.5320 0.928 0.915 1.4130

CIFP (hR) 0.930 0.906 0.5178 0.932 0.922 1.4650
CIFP (hM ) 0.926 0.903 0.5172 0.931 0.924 1.4927

n= New 0.950 0.949 0.5135 0.965 0.974 1.4299
2000 CIFP (hS) 0.991 0.933 0.5104 0.934 0.910 1.3443

CIFP (hR) 0.926 0.901 0.5022 0.935 0.919 1.3625
CIFP (hM ) 0.922 0.900 0.5019 0.930 0.918 1.3646

n= New 0.947 0.950 0.4978 0.957 0.972 1.3420
4000 CIFP (hS) 0.984 0.942 0.4963 0.935 0.928 1.2935

CIFP (hR) 0.923 0.917 0.4916 0.934 0.931 1.3012
CIFP (hM ) 0.912 0.916 0.4915 0.934 0.930 1.3017

n= New 0.939 0.962 0.4914 0.960 0.963 1.3030
6000 CIFP (hS) 0.983 0.948 0.4904 0.928 0.917 1.2706

CIFP (hR) 0.923 0.930 0.4871 0.929 0.927 1.2752
CIFP (hM ) 0.917 0.929 0.4870 0.929 0.927 1.2755
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<Model 6>

p=0.1 p=0.3 p=0.5
C(QL) C(QU ) W(Q) C(QL) C(QU ) W(Q) C(QL) C(QU ) W(Q)

n= New 0.955 0.945 2.8916 0.953 0.956 2.7884 0.948 0.954 3.2540
1000 CIFP (hS) 0.944 0.913 2.8595 0.946 0.923 2.7568 0.941 0.924 3.2099

CIFP (hR) 0.954 0.914 2.8681 0.950 0.926 2.7655 0.952 0.924 3.2192
CIFP (hM ) 0.935 0.910 2.8527 0.938 0.917 2.7504 0.934 0.917 3.2022

n= New 0.948 0.946 2.8246 0.951 0.943 2.7200 0.941 0.945 3.1611
2000 CIFP (hS) 0.931 0.917 2.8032 0.944 0.911 2.6988 0.938 0.917 3.1355

CIFP (hR) 0.938 0.919 2.8080 0.948 0.913 2.7038 0.948 0.919 3.1419
CIFP (hM ) 0.927 0.916 2.7995 0.931 0.906 2.6955 0.934 0.913 3.1314

n= New 0.956 0.946 2.7804 0.946 0.956 2.6748 0.934 0.963 3.1071
4000 CIFP (hS) 0.937 0.911 2.7663 0.935 0.931 2.6614 0.925 0.946 3.0903

CIFP (hR) 0.946 0.913 2.7692 0.940 0.934 2.6645 0.936 0.949 3.0943
CIFP (hM ) 0.931 0.905 2.7643 0.930 0.930 2.6597 0.914 0.945 3.0880

n= New 0.941 0.959 2.7584 0.937 0.951 2.6533 0.920 0.958 3.0813
6000 CIFP (hS) 0.913 0.930 2.7478 0.923 0.926 2.6433 0.914 0.938 3.0687

CIFP (hR) 0.923 0.931 2.7499 0.932 0.928 2.6455 0.919 0.941 3.0717
CIFP (hM ) 0.907 0.928 2.7464 0.914 0.922 2.6420 0.911 0.936 3.0672

p=0.7 p=0.9
C(QL) C(QU ) W(Q) C(QL) C(QU ) W(Q)

n= New 0.937 0.956 4.7842 0.963 0.962 3.5672
1000 CIFP (hS) 0.977 0.889 4.5115 0.991 0.936 3.5658

CIFP (hR) 0.975 0.898 4.4986 0.998 0.931 3.5780
CIFP (hM ) 0.969 0.887 4.5142 0.987 0.936 3.5541

n= New 0.954 0.957 4.5973 0.964 0.955 3.4898
2000 CIFP (hS) 0.963 0.898 4.4270 0.989 0.929 3.4886

CIFP (hR) 0.974 0.900 4.4241 0.999 0.925 3.4979
CIFP (hM ) 0.960 0.889 4.4238 0.980 0.927 3.4801

n= New 0.948 0.961 4.4279 0.958 0.947 3.4402
4000 CIFP (hS) 0.949 0.913 4.3609 0.980 0.929 3.4389

CIFP (hR) 0.959 0.923 4.3630 0.995 0.936 3.4478
CIFP (hM ) 0.946 0.910 4.3574 0.973 0.926 3.4333

n= New 0.949 0.953 4.3704 0.956 0.957 3.4160
6000 CIFP (hS) 0.949 0.908 4.3316 0.979 0.954 3.4152

CIFP (hR) 0.955 0.915 4.3348 0.991 0.956 3.4229
CIFP (hM ) 0.946 0.906 4.3288 0.963 0.948 3.4112
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CHAPTER V

HETEROGENEOUS EFFECTS OF CLASS SIZE REDUCTION: RE-VISITING
PROJECT STAR

Introduction

In previous chapters, I presented econometric theoretical developments on partial

identi�cation and the statistical inference on identifying the distribution of treatment e¤ects

and their quantiles in the context of a randomized experiment. In this chapter, I will apply

those to the �eld data. The randomized experiment I consider in this chapter is Project

STAR. Project STAR, the acronym of The Student/Teacher Achievement Ratio, is a large

scale, longitudinal, randomized experiment conducted by the Tennessee State Department

of Education during 1985 - 1989 in order to see if the class size reduction improves students�

academic attainment.

Based on their �ndings, Glass and Smith suggested 1:15 is the optimal students-

teacher ratio and reducing the class size to that ratio would improve students�achievement

(Glass and Smith 1978, 1979). If this is true, the class sizes at that time were 33%-

133% larger than the optimal size. However, class size reduction (CSR) incurs costs. CSR

means more teachers, educational instruments, buildings, and schools. Lacking conclusive

evidence, the Tennessee state government had decided to conduct a large scale experiment

on the e¤ect of CSR in elementary schools prior to implementation, called Project STAR.

This chapter uses the data from Project STAR. Particularly, I follow Ding and

Lehrer (2005) in focusing on the achievement in kindergarten because the randomness of

the experiment after the completion of kindergarten seemed contaminated by intent to
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treat, selective attrition, and new participants in each grade. In terms of randomness, the

kindergarten achievement is the most intact.1 See Ding and Lehrer (2004).

A large existing literature has investigated the e¤ects of CSR using the same data.

With few exceptions, these papers sough to identify the average treatment e¤ects (ATE)

of the CSR. A key exception in the literature that used Project STAR data is Ding and

Lehrer (2005). Instead of identifying the ATE of CSR, they investigated the heterogeneity

of treatment e¤ects in CSR by using quantile regressions and found strong evidences that

e¤ects of CSR are heterogeneous on the ability of students. Based on the results, they

concluded, �higher ability students gain the most from CSR while many low ability students

do not bene�t from these reductions.�

Essentially, they estimated the �quantile treatment e¤ects�(QTE). As pointed out

in Chapter III and IV, the QTE agrees the quantiles of treatment e¤ects (QTE) only under

speci�c assumptions on the dependent structure between treated and controlled outcomes.

Therefore, their conclusion based on the estimation of QTE may not hold in general. In this

chapter, I will adopt a partial identi�cation approach in order to identify the distribution

of treatment e¤ects of CSR and also provide a new way to looking at the heterogeneous

treatment e¤ects.

The rest of the chapter is organized as follows. In Section 2, I will brie�y describe

about Project STAR, its historical backgrounds, and its �ndings including results of recent

research. In Section 3, I will summarize some of the key �ndings from the previous chapters

that I will use in this chapter and add some additional concepts and a theorem which are

important in analyzing the CSR. The empirical �ndings are discussed in Section 4 and

1Even kindergarten achievement needs cautious interpretation. As Ding and Lehrer (2005) pointed out,
Kindergarten was not mandatory in Tennessee. Potentially, di¤erent group of people may have had di¤erent
level of accessibility to Kindergarten. In other words, Project STAR experiment could not control for
selection at the very initial level. However, the pursuit of the issue is beyond the scope of this paper.
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Section 5 concludes.

Project STAR

Brief Historical Background

The e¤ect of the CSR has been debated for decades but the conclusion was contro-

versial. Some surveys suggested theoretical channels through which smaller classes helped

students attain higher scores.

Hallinan and Sorensen (1985) reported that teachers�morale and job satisfaction

are higher in small classes and teachers reported that students had better attitudes and

motivations. Filby, Cahen, McCutsheon, and Kyle (1980) found teachers were more able

to help students when they needed it in smaller classes. In the survey, teachers responded

that their work load became lighter, which enabled them to make the classroom climate

more positive.

However, empirical research did not provide conclusive evidences. In their Meta-

Analysis with 77 existing studies, Glass, Cahen, and Smith (1978) asserted that they found

a trend that the students�achievement decreases as class size increased and they claimed

the greatest gains occurred when student-teacher ratio was 1:15 or below. On the contrary,

Robinson and Wittebols (1986) found only 35 studies out of the 85 they considered to be

relevant reported small classes were better, 18 supported larger classes, and the rest 32 did

not support either.

Prior to the launch of Project STAR, Whittington, Bain, and Achilles (1985)

investigated the e¤ect of CSR from 1:25 to 1:15 by doing a small scale experimental study

with �rst grade students in the Metro Nashville School District. They reported the students
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in classes of 15 students performed better than those in classes of 25 in reading and math.

On the other hand, Dennis (1986) could not observe any di¤erence between the treated

group and control groups in the following year. Bourke (1986) found the class size itself

did not a¤ect students� attainment directly. It was, he claimed, teachers�practices that

enhanced student achievement. Moreover, teachers do not change their teaching practices

when class size is reduced. (Robinson 1990).

There continue to be debates on the e¤ectiveness of CSR. For example, Hanushec

(1998) could �nd �little reason to believe that smaller class sizes systematically yield higher

student achievement�, while Krueger (2002) found exactly the opposite and said �when

studies are assigned weights in proportion to the �impact factor�... class size is systematically

related to achievement.�

Because the CSR was costly, and the results of proceeding researches were not

conclusive, the Tennessee State Government decided to conduct a well-designed randomized

experiment to investigate whether or not the CSR would be e¤ective before implementing

the CSR. In May, 1985, the Tennessee Legislature passed House Bill (HB) 544, which

authorized and funded an experimental study on the e¤ect of CSR, which was Project

STAR.

The project was conducted by a consortium of persons from Tennessee State De-

partment of Education, Memphis State University, Tennessee State University, University

of Tennessee at Knoxville, Vanderbilt University, representatives from the State Board of

Education and the State Superintendents�Association. Only a few months after the pass

of the legislation, the consortium was able to set up major parts of the project and to

implement it from the fall semester of 1985-1986 schooling year, which continued up until

1988-1989 schooling year.
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Design of Project STAR

Tennessee had been regulating the student/teacher ratio even before Project STAR.2

By the time Project STAR started, the ratio could not exceed 1:25. The average of the

ratios was 1:22-24. The legislation regulated the ratio in small classes to be between 1:13

and 1:17. So the main question that Project STAR should answer was whether 1:13-17

would be better than 1:22-24 for students�academic achievements.

The consortium decided to divide the class sizes/environment into three categories;

small class (1:13-17), regular class (1:22-25), and regular class with teacher aide (1:22-25).

The consortium chose 79 schools from four di¤erent areas; inner-city (schools located in

metropolitan areas plus those that had more than half of their students on free of reduced

cost lunch), suburban (schools located in the outlying areas of metropolitan cities), urban

(schools located in a town of over 2,500 and serving primarily an urban population), and

rural (all other schools).

The project schools were chosen out of 180 volunteers from 141 school systems all

over the state. Because the consortium designed the project to make the �within-school�

comparison available as well, each school had to have certain number of students so that

it had at least one class of each type. After an investigation, the consortium chose 79

schools as the participants for the 1985-1986 schooling year. Initially, a school should plan

to remain in the project for the whole years but 1-3 schools left. The initial objective was

to have about 100 classes of each type. In the �rst year, there were 128 small classes, 101

regular classes, and 99 regular classes with teacher aide. Each participating school had to

agree to assign students and teachers randomly in three types of classes and not to make

any signi�cant changes in their provision of education other than class size. Roughly 6,000

2This subsection is a summary of the technical report of the STAR project (Word et. al. 1990b), which
I will refer as Technical Report.
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students participated in the project every year.

Table 22 is the number of participating schools.

Table 22. Project Star Schools
Kindergarten Grade 1 Grade 2 Grade 3

Inner City 17 15 15 15
Suburban 16 15 15 15
Rural 38 38 38 38
Urban 8 8 7 7
Total 79 76 75 75
* Technical Report, p6.

To identify whether or not the Hawthorne E¤ect3 existed, the consortium chose

comparison group from non-participant schools and compared their achievements with the

counterparts of participants. They found the Hawthorne E¤ect was not a signi�cant factor.

The kindergarten student academic achievements were measured by Stanford Early

School Achievement Test II (SESAT II) in Math, Sounds and Letters, Words and Sentences,

and Reading. Higher graders used the Stanford Achievement Tests (SAT), the State of

Tennessee�s criterian-referenced Basic Skills First (BSF) tests. In this chapter, I will use

the data of kindergarten students on math and reading only.

E¤ects of CSR

After the project was over, Word reported the followings (Word et. al. (1990b),

pp.17-19).

1. Small-class advantages are present in all locations and all grades. Students in

small classes showed higher performance than those in regular classes or regular classes with

3Originally, the Hawthorne E¤ect was coined by Henry A. Landsberger (1955) in order to indicate�a
short-term improvement caused by observing worker performance.�However, the de�nition is broadened in
various scholarly discplines. Generally, the Hawthorn E¤ect refers to the changes in behaviors of people in
response to the attention they receive (see Jex 2000).
In the context of the STAR project, this e¤ect means systematic di¤erences between the participant

schools and non-participant schools even though all other things were equal between them. If this e¤ect
exists, the di¤erences between S and R, for example, may also be contaminated by this e¤ect.
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teacher aide.

2. Small-class e¤ects diminish after �rst grade but are signi�cant at the end of

third grade.

3. Teacher aides were less e¤ective than CSR in enhancing student performance

at each grade level.

4. The e¤ects in Math and reading are similar.

5. Small classes help low socioeconomic students as much as they helped high

socioeconomic students. In reading, low socioeconomic students appeared to bene�t more

whereas in math the high socioeconomic student did.4

A follow-up study on the mid term e¤ects of CSR found a signi�cantly larger

proportion of the small class students than regular or regular with aids class students had

passed the Tennessee Competency Examination (TCE) requirement at eighth grade. (Pate-

Bain et. al. 1997) Another follow-up study showed similar results. Students in small

classes were more likely to take ACT or SAT exams and the di¤erence in proportions of

students who took a college entrance exam out of Project STAR participants di¤ered across

races. The di¤erence was larger for black students, which indicates CSR bene�ted black

students more in the long run. In addition, the average scores of small class students were

signi�cantly higher than that of large class students (Krueger and Whitmore 2001).

Including the project reports, almost all of existing literature focuses on the average

e¤ect of treatment (CSR) gains with the consideration of observable heterogeneities such

as sex, age, race, and the socioeconomic status. One notable exception is Ding and Lehrer

4Students� socioeconomic status is measured by a dummy variable indicating whether or not student
joined a free or reduced price lunch program. If they joined, they were considered to be poor or of low
socioeconomic status.
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(2005). They estimated the following equation with the kindergarten data:

Yij = �
0Xij + �

0CSij + vj + "ij

where Yij is the level of achievement for child i in school j; Xij a vector of student and teacher

characteristics, CSij the actual number of students in the class where child i belonged to, vj

a school �xed e¤ect, and "ij the random and idiosyncratic unobservable factors. They used

quantile regression to estimate � for di¤erent quantiles of Yij . Each estimate of �, for both

math and reading, over di¤erent quantiles have negative signs, indicating that the student

outcomes decreases as class size increases.

More interesting are the magnitudes of ��s. They increase generally as quantile

level increases. For example, � for the 0.05 quantile is about -0.15 whereas that for the 0.95

quantile is about -1.85 in math. In reading, � for the 0.05 quantile is about 0 but that for

the 0.95 quantile is about -1.3. Ding and Lehrer interpreted this as an evidence that higher

ability students gain more from the CSR. Their interpretation, though, is only valid when

we consider QTE as if they are QTE. They implicitly assumed so-called rank preservation

property in the sense that those ��s measure the e¤ects of CSR between the same quantiles.

In this chapter, I will re-examine their �ndings by adopting the partial identi�ca-

tion framework discussed in the previous three chapters in regard with the QTE.

Partial Identi�cation of the Parameters of Interest

Quantiles of Treatment E¤ects

As in the previous chapters, I will use Y1 and Y0 to denote the (potential) outcomes

from treatment and control respectively. The distributions of Y1 and Y0 are F1 and F0
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respectively. The outcomes are standardized test scores in math and reading. I considered

small class (S hereafter) and regular class with aide (A) as two treatments and regular class

(R) as the control as if S and A were two potential policies being considered to alter R, the

status quo. The treatment e¤ects, �, is the outcome gap between S and R or between S

and A depending on the situation.

The �rst parameter of interest is Q (p) = arg inf� fF� (�) � pg, the quantile func-

tion of �. As discussed in Chapter III, Q (p) is partially identi�ed with the identi�cation

region
�
QL(p); QU (p)

�
for any p 2 (0; 1), where

QU (p) = inf
u2(p;1)

[F�11 (u)� F�10 (u� p)];

QL(p) = sup
u2(0;p)

[F�11 (u)� F�10 (1 + u� p)]:

I proposed the nonparametric estimators of QL (p) and QU (p), QLn (p) and Q
U
n (p) respec-

tively,

QLn(p) = sup
u2
h

1
maxfn1;n0g

;p
ifF�11n (u)� F�10n (1 + u� p)g, (V.1)

QUn (p) = inf
u2
h
p;1� 1

maxfn1;n0g

ifF�11n (u)� F�10n (u� p)g; (V.2)

and their joint asymptotic distribution under (A1)-(A4), which is;

p
n1

0BB@QLn(p)�QL(p)
QUn (p)�QU (p)

1CCA) N

0BB@
0BB@0
0

1CCA ;
0BB@ �2L �LU

�LU �2U

1CCA
1CCA

when iid samples of Y1 and Y0 (of size n1 and n0 respectively) are available.

Of the methods to construct con�dence intervals, I will use CIFP and the extension
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of �new approach�(CINEW) in this chapter. For each p 2 (0; 1) and � < 1
2 ,

CIFP =

(
x : Tn (p) � cv1��

 p
n1
�
QUn (p)�QLn (p)

�
max f�̂L; �̂Ug

; �̂

!)
;

CINEW =
h
Y1([n1ûA1nL])

� Y0([n0ûA0nL]); Y1([n1ûB1nL]) � Y0([n0ûB0nL])
i

Refer to the previous chapters for the de�nitions of �̂; �̂L; �̂U ; ûA1nL; û
A
0nL; û

B
1nL; and û

B
0nL.

The � and �̂ in Chapter I mean QU (p)�QL (p) and QUn (p)�QLn (p) in regard of current

chapter�s discussion.

Q (p) is the outcome gain that p-th quantile person bene�ts. Therefore QL (p) and

QU (p) are the minimum and maximum amounts of outcome gain of p-th quantile person.

If QU (p) � 0 for a p then at least 100 � p % of population will lose or not gain at the best

from the treatment. On the other hand, if QL (p) � 0 for a p then it means 100 � (1� p) %

of population will gain nonnegative amount from the treatment.

More generally, let pU = supp2(0;1)Q
U (p) � 0 and pL = infp2(0;1)QL (p) � 0. Let

p+ be the proportion of population who do not get hurt and p� the proportion who do not

bene�t from the treatment.

Lemma 8 p+ and p� are partially identi�ed. Their sharp identi�cation regions are;

p+ 2 [1� pL; 1� pU ] ;
p� 2 [pU ; pL] :

The concept of p+ and p� can serve as a criterion to choose a policy among many

candidates. Imagine two policies S and A are being considered to alter a status quo R: Let

QR!S be the quantile functions of outcome gains from the policy change of R to S and

QR!A the quantile function of outcome gain from R to A. If we can observe the QR!S

and QR!A then we can adopt stochastic dominance to evaluate whether R ! S change

will be better than R! A change or vice versa. However, when QR!S and QR!A are only

partially identi�ed as is in the chapter, we cannot have a dominance ranking between two
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changes.

However, we may use pL and pU as our criteria. If policy makers focus on the

minimizing the number of people who get hurt by policy changes, they may want to choose

the policy that has the least pU because larger pU implies larger fraction of population will

get hurt for sure by the change. If, instead, policy makers focus on the number of people

who bene�t from the policy change, they may want to choose a change that has the smallest

pL because by doing so they can maximize the minimum proportion of population who gain

from the treatment.

Another use of
�
QL (p) ; QU (p)

�
is that the region can provide a test for the �com-

mon treatment e¤ects�or �homogeneous treatment e¤ects�. If the treatments are constant

over all p then Q (p) is constant for all p 2 (0; 1) and supQL (p) � inf QU (p). Graphically,

Figure 11(A) allows for Q (p) be a constant while Figure 11(B) does not. Therefore, if

supQL (p) < inf QU (p) then we can reject the homogeneous treatment e¤ects hypothesis.

QU

QL

p0

QU

QL

p0

(A) (B)

Q(p)=const. Q(p)=const.

Figure 11. Concept of Testing for �Homogeneous Treatment E¤ects�

In practice, we have QLn and Q
U
n instead of QL and QU . So, we can use the
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following steps to see if the homogeneous treatment hypothesis is consistent with data.

1) Construct con�dence sets for Q (p) for p 2 (0; 1) at a given signi�cant level of

�.

2) Find the maximum of the lower bounds and the minimum of the upper bounds

of con�dence intervals for all p at a given �.

3) Conclude the homogeneous treatment hypothesis is not consistent with the

data available if the maximum of the lower bounds is larger than the minimum of the upper

bounds.

Bounds on the Conditional Distribution of Treatment E¤ects upon Pre-
Treatment Outcomes

In some cases, researchers may be interested in the changes themselves of outcomes

rather than the output gains due to a treatment. For example, researchers may want to

know how a policy changes lowest quintile people�s income instead of net outcome gains.

The knowledge on the distribution of outcome gains conditional upon the pre-treatment

outcomes can provide insightful information on that. Let �i = Y1i � Y0i as in Chapter II

and III where Y1i �iid F1 and Y0i �iid F0 for all i. Then Pr [�i � 0jY0i 2 B] tells us the

probability that an individual obtains no loss from treatment when his/her pre-treatment

outcome is in B. If we can identify this conditional probability, it can help us to better

understand the heterogeneity in the treatment e¤ects. The following de�nitions and lemmas

formulate basic ideas.5

De�nition 3 If � is a constant, the treatment e¤ects are homogeneous. If � is indepen-
dent of Y0, the treatment e¤ects are weakly homogeneous. If treatment e¤ects are neither
homogeneous nor weakly homogeneous, they are heterogeneous.

5The concepts here are de�ned without any covariate. But the basic ideas can be extendable trivially
to the covariates by considering �jX instead of �. For instance, the concept of weak homogeneity can be
extended as the independence of �jX of Y0. In other words, the heterogeneity being considered here is the
heterogeneity on unobservables.
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The weak homogeneity is an extension of homogeneity of treatment e¤ects. Under

the assumption of weak homogeneity, F� is point-identi�ed. Heckman, Smith, and Clements

(1997) showed

F� (�) =
1

2
+
1

2�

Z 1

�1

1

it

 
eit�

E
�
e�itY1

�
E [e�itY0 ]

� e�it�
E
�
eitY1

�
E [eitY0 ]

!
dt

when � ? Y0jD = 1.

If treatment e¤ects are weakly homogeneous, then E [�jY0] = E [�]. The homo-

geneity of treatment e¤ects implies the weak homogeneity but not vice versa. From the

de�nition, the following two lemmas hold. Let us de�ne Pr [� � �jY0 2 ?] = 0 for all �:

Lemma 9 If the treatment e¤ects are weakly homogeneous, Pr [� � �jY0 2 B] is not a func-
tion of B.

Lemma 10 The treatment e¤ects are homogeneous if and only if Pr [� � �jY0 2 B] is ei-
ther 0 or 1 for all � and B.

The use of the conditional probability of � on Y0 allows us to develop the concept

of the conditional heterogeneity of �: First, de�ne two functions

�� (B) = Pr [� > �jY0 2 B] and 	� (B) = Pr [� > �jY0 62 B] :

I will focus on �� (y) � Pr [� � �jY0 � y] and 	� (y) � Pr [� � �jY0 � y].6 In

words, �� (y) is the probability that an individual bene�ts by no less than � when his/her

potential �controlled outcome�or �pre-treatment outcome�is at most y. Or it is the propor-

tion of �poor�people (in the sense that they earn no more than y in pre-treatment state)

who will gain by � or more if the treatment is implemented.7 On the other hand, 	� (y)

is the probability that the gains from treatment is at least � given that the pre-treatment

outcome is no less than y: So, in a sense, it tells us the proportion of �rich�people (those

6I assume Y0 is continuous here. Further, I will assume Y1 is also continuous.
7Interpreting �� (y) in this way, I have in mind a situation that a society tests a policy (treatment) in

a small-sized randomized experiment situation prior to implementation. To highlight this interpretation, I
will use �pre-treatment outcome�from this point forward.
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who are earning no less than y in pre-treatment state)�whose gains from treatment are no

less than �.

While the concept of Q (p) or F� (�) focuses on �how many people will gain a

certain amount of outcome di¤erence when a policy is implemented�, �� (B) and 	� (B)

focus more on �how people�s outcome will change after the policy implementation when

their current outcomes are in a speci�c range.�

De�nition 4 If �� (y) = Pr [� � �jY0 � y] is not a function of y, the treatment e¤ects
above � are conditionally homogeneous at the lower margin. If 	� (y) = Pr [� � �jY0 � y]
is not a function of y, the treatment e¤ects above � are conditionally homogeneous at the
upper margin. If they are not conditionally homogeneous on respective margins, they are
conditionally heterogeneous at the respective margins.

The two functions measure the conditional heterogeneity in di¤erent ways. Because

limy!1 �� (y) = Pr [� � �], �� (y) measured at a large value of y does not provide mean-

ingful information of the conditional heterogeneity on pre-treatment outcomes. It mainly

provides information on conditional heterogeneity at the lower quantiles of Y0. 	� (y) is the

opposite. It contains signi�cant information of the conditional heterogeneity at the upper

quantiles of Y0. The information that �� (y) and 	� (y) carry is meaningful. To see this,

assume �� (y) and 	� (y) are decreasing in y. That means the �poorer�is a person in pre-

treatment state, the higher is the change of bene�tting by � or more from the treatment.

With the slight abuse of the concept of being progressive or regressive, I will de�ne the

progressiveness or regressiveness of the heterogeneity of conditional treatment e¤ect above

�.

De�nition 5 If �� (y) is strictly decreasing (increasing) in y, the treatment e¤ects above
� at lower margin are progressively (regressively) heterogeneous in Y0: If 	� (y) is strictly
decreasing (increasing) in y, the treatment e¤ects above � at upper margin are progressively
(regressively) heterogeneous in Y0: If both �� (y) and 	� (y) are decreasing (increasing) in
y, the treatment e¤ects above � are progressively (regressively) heterogeneous in Y0.
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Although intuitive, these concepts are not implementable because, as is F� (�),

�� (y) and 	� (y) are only partially identi�ed. So, we cannot observe �� (y) and 	� (y) but

do observe the bounds of them. Theorem 7 provides their bounds. See Appendix A for the

proof.

Theorem 7 Let Y1 and Y0 be continuous random variables. For y such that F0 (y) 2 (0; 1) ;
�L� (y) � �� (y) � �U� (y) ; and 	L� (y) � 	� (y) � 	U� (y), where

�L� (y) = min

�
max

�
supx�y fF0 (x)� F1 (� + x)g

F0 (y)
; 0

�
; 1

�
;

�U� (y) = max

�
min

�
infx�y fF0 (x)� F1 (� + x)g+ 1

F0 (y)
; 1

�
; 0

�
;

	L� (y) = min

�
max

�
supx�y fF0 (x)� F1 (� + x)g � F0 (y)

1� F0 (y)
; 0

�
; 1

�
;

	U� (y) = max

�
min

�
1 +

infx�y fF0 (x)� F1 (� + x)g
1� F0 (y)

; 1

�
; 0

�
:

and these bounds are sharp.

The interpretation of these bounds is not as intuitive as that of QL or QU . �L� (y)

is the minimum fraction of subpopulation whose pre-treatment outcomes are no more than

y who bene�t at least � from the treatment. Consider y = F�10 (p). Then, at least

100*�L0
�
F�10 (p)

�
% of low p-th quantile people (measured by pre-treatment outcomes) will

bene�t from the treatment. �U0
�
F�10 (p)

�
is the maximum fraction of bene�ters. Therefore

at least 100*
�
1� �U0

�
F�10 (p)

�	
% of low p-th quantile people (in terms of pre-treatment

outcomes) will lose from the treatment. The interpretation of 	L� (y) and 	
U
� (y) are analo-

gous except that these two consider the sub-population whose pre-treatment outcomes are

equal to or higher than y:

These bounds can be used to test for the homogeneity. Since the homogeneity of

treatment e¤ects implies �� (y) = 	� (y) 2 f0; 1g for all � and y, if we �nd
�
�L� (y) ;�

U
� (y)

�
or
�
	L� (y) ;	

U
� (y)

�
that is a proper subset of [0; 1], it is decisive evidence against the

homogeneity.
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In addition, these bounds can be used to test for the weak homogeneity. Figure

12 shows the concept.

0

1

( )yL
δΛ

( )yU
δΛ

y

0

1

( )yL
δΛ

( )yU
δΛ

y

( )yδΛ

( )yδΛ

(A)

(B)

Figure 12. Concept of Testing for �Weakly Homogeneous Treatment E¤ects�

Weak homogeneity implies �� (y) and 	� (y) should be �at in y for all �. Figure

12 (A) provides a type of �L� (y) and �
U
� (y) that allow the treatment e¤ects to be weakly

homogeneous. The �L� (y) and �
U
� (y) shown in Figure 12 (A) can be bounds for a �at �� (y)

such as the one shown in the �gure. On the contrary, The �L� (y) and �
U
� (y) in Figure 12

(B) cannot be bounds for a �at �� (y). Therefore, if we see �L� (y) and �
U
� (y) such as the

ones in Figure 12 (B) then the treatment e¤ects cannot be weakly homogeneous. More

formally, if we �nd some � at which

sup
y
�L� (y) > infy

�U� (y) or sup
y
	L� (y) > infy

	U� (y) ;

then the weak homogeneity assumption is rejected.
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What these bounds cannot tell us is whether the conditional heterogeneity of

treatment e¤ects above � is progressive, regressive, or neither. It�s because these bounds

do not degenerate typically. Nonetheless, I suggest to use these bounds as a crude measure

of progressiveness of the conditional treatment e¤ects because the decreasing or increasing

behavior of those bounds can be of interest to the policy maker. The reason is, recalling

�U� (y) is the maximum probability that an individual bene�ts more than or equal to � when

this person�s pre-treatment outcome is no greater than y, we can see if �U� (y) is increasing

then the policy change can be favorable to the rich. Similar arguments apply to the other

three concepts. For this use, I suggest the following de�nitions.

De�nition 6 The treatment e¤ects above � are progressively heterogeneous at the extreme
if y < y0 implies

either
�
�L�
�
y0
�
;�U�

�
y0
��
�
�
�L� (y) ;�

U
� (y)

�
or
�
	L�
�
y0
�
;	U�

�
y0
��
�
�
	L� (y) ;	

U
� (y)

�
but does not imply

�L�
�
y0
�
> �L� (y) , �

U
�

�
y0
�
> �U� (y) , 	

L
�

�
y0
�
> 	L� (y) , or 	

U
�

�
y0
�
> 	U� (y)

for all �. The �regressiveness at the extreme�can be de�ned in a similar manner.

The expression �at the extreme�is to emphasize the idea that the progressiveness

or regressiveness happens at the boundaries of the identi�cation regions of �� (y) and 	� (y),

not �� (y) and 	� (y) themselves.

The nonparametric estimators I use in this chapter for the bounds for �� (y) and

	� (y) are;

�L�n (y) = min

�
max

�
supx�y fF0n (x)� F1n (� + x)g

F0n (y)
; 0

�
; 1

�
;

�U�n (y) = max

�
min

�
infx�y fF0n (x)� F1n (� + x)g+ 1

F0n (y)
; 1

�
; 0

�
;

	L�n (y) = min

�
max

�
supx�y fF0n (x)� F1n (� + x)g � F0n (y)

1� F0n (y)
; 0

�
; 1

�
;

	U�n (y) = max

�
min

�
1 +

infx�y fF0n (x)� F1n (� + x)g
1� F0n (y)

; 1

�
; 0

�
;
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for y such that 0 < Fn0 (y) < 1.

The asymptotic theory of these estimators remains to be established. I will leave

it for future research.

Empirical Results

Bounds for Quantiles

Figure 11 shows the bounds for the quantile function of the treatment e¤ects in

reading. As described earlier, I considered two sets of treatment and control pairs: One

S and R pair and the other A and R pair. Throughout this section, QSR is the quantile

function of treatment e¤ects when the treatment and control pair is S and R and QAR is

the quantile function of the treatment for the pair of A and R: The bounds for the quantile

functions were estimated at 101 equally scattered points in [0:015; 0:985] including the two

boundary points.8 I will use the subscript n to denote the estimates. All of the con�dence

intervals presented are for the true quantile at the 0.95 con�dence level. Black color is used

for the S and R pair and red (gray on black and white prints) for the A and R pair. Solid

lines are the estimates of the QL and QU functions and dashed lines present the con�dence

intervals.

For CIFP, I used nonparametric density estimation with the bandwidth 1.34*in-

terquartile range. bn = n
�1=3
1 for CIFP and dn = n

1=3
1 for CINEW , where n1 is the number of

data points in Y1. To avoid unnecessary complexity on the graphs below, I presented CINEW

only. For all cases, CIFP were slightly tighter than CINEW . However, based on the results

on Chapter III on the skewed distributions in that CINEW worked better than CIFP, and

8To simplify wordings, I will use �for all p�to mean �for all points at which the bounds are estimated�.
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observing the density estimates of the distribution of student scores are skewed unimodal in

Ding and Lehrer (2005), I present CINEW only. I also de�ne p̂U = supp2[0;1]Q
U
n (p) � 0 and

p̂L = infp2[0;1]Q
L
n (p) � 0 indicating p̂U and p̂L are the estimators of pU and pL. However,

no statistical inference on them were made.

Figure 13. Estimates of the bounds of QTE in Reading

First I show QSR and QAR in Figure 13. QUSRn > Q
U
ARn for all p and, moreover,

QUSRn for p � 0:9077 are above the upper bound of con�dence intervals for QAR implying

QUSR is signi�cantly larger than QUAR pointwise. Although it is not clear on the graph,

QLSRn � QLARn and Q
L
ARn are smaller than the lower bounds of CI for QSR for p > 0:55,

which implies QLSR are signi�cantly larger than Q
L
AR pointwise from p � 0:694. p̂L and p̂U

are shown in Table 23.

Table 23. p̂L and p̂U for Reading
Reading p̂L;SR p̂L;AR p̂U;SR p̂U;AR
All sample 0.8977 0.9559 <0.015 0.0538

About 10% of the population will gain for sure if the policy change is R! S while
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R ! A bene�ts only 4.5% of the population. In terms of losses, 5.4% of the population

are estimated to lose from R ! A whereas less than 1.5% lose from R ! S: Based on

the discussion of Section V.2.1, S appears to be preferred by policy makers if S and A are

equally costly.

Figure 14. Estimates of the bounds of QTE in Math

For math, we have Figure 14. Similar patterns appear but, in a sense, with less

certainty. Although QUSRn > Q
U
ARn, Q

U
SRn at no p exceed the upper bound of the con�dence

intervals of QAR constantly. p̂L and p̂U are in Table 24. Although it is less convincing than

the case of reading, focusing on QUn , we still can say S might be preferred.

Table 24. p̂L and p̂U for Math
Math p̂L;SR p̂L;AR p̂U;SR p̂U;AR
All sample 0.9074 0.9365 <0.015 0.0829

To see how the heterogeneity in treatment e¤ects di¤ers with students�character-

istics, I split the whole sample into eight subgroups according to student�s sex, race, and

socioeconomic status. The socioeconomic status is measured by whether or not student
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received free lunch. The subgroups9 and related descriptive statistics are as follows.

Table 25. Subgroup Categories
Reading Math

Group Class # of obs. Average # of obs. Average
First (Male, Free Lunch: MP) S 418 428.8 421 475.1
Catego- A 494 425.4 501 468.0
rization R 495 422.4 502 467.1

(Male, No Free Lunch: MR) S 471 446.8 478 502.8
A 541 441.1 556 490.5
R 520 437.6 524 486.1

(Female, Free Lunch: FP) S 400 435.2 406 482.5
A 513 429.0 518 473.6
R 452 429.0 458 476.2

(Female, No Free Lunch: FR) S 443 449.9 450 501.1
A 468 446.8 473 499.9
R 511 449.3 520 502.4

Second (White, Free Lunch: WP) S 399 432.5 402 481.2
Catego- A 444 427.7 446 476.1
rization R 426 428.3 428 475.2

(White, No Free Lunch: WR) S 784 449.4 798 503.9
A 889 444.6 903 496.6
R 908 444.5 917 494.7

(Non White, Free Lunch: NP) S 419 431.4 425 476.3
A 563 426.8 573 466.8
R 521 423.3 532 468.4

(Non White, No Free Lunch: NR) S 130 441.3 130 490.5
A 120 437.1 126 482.1
R 123 435.4 127 490.5

Throughout the rest of chapter, I will abbreviate notations for each group. Except

for NR, all subgroups have enough observations for Small, Regular-With-Aide, and Regular

classes. Due to data limitations, we need be careful when interpreting the result of NR. For

NR, I report the con�dence intervals only for p 2 [0:1; 0:9]. Table 26 provides the summary

for p̂L and p̂U . It should be emphasized that these numbers are all estimates without

testing if one is signi�cantly di¤erent from another.

By the same argument for the entire sample case, S may be desired by policy mak-

ers for all subsample categories in reading. However, the actual p̂L and p̂U are quite di¤erent

across subgroups implying that di¤erent subgroups may bene�t by di¤erent amount. In the

�rst categorization, if the policy change is R ! S, then almost 13% of MR will have non-

9As is evident, the subgroups are not mutually exclusive. I did not construct mutually exclusive subgroups
due to the concern about the number of observations in each subgroup. Another method that can be used
is a nonparametric or semiparametric estimation with covariates.
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Table 26. p̂L and p̂U for Subgroups
Reading Math

p̂L;SR p̂L;AR p̂U;SR p̂U;AR p̂L;SR p̂L;AR p̂U;SR p̂U;AR
MP 0.8589 0.8977 <0.015 0.0344 0.888 0.8783 0.0247 0.1023
MR 0.8298 0.9462 <0.015 0.0344 0.8201 0.9074 <0.015 0.0441
FP 0.9074 0.9462 <0.015 0.1217 0.8783 0.9462 0.0441 0.112
FR 0.9462 0.985 0.0441 0.0926 0.9462 0.9462 0.0732 0.0829
WP 0.9074 0.9559 0.0247 0.0829 0.8977 0.9074 0.0538 0.1023
WR 0.888 0.9656 0.0247 0.0635 0.8686 0.9365 0.0247 0.0538
NP 0.8589 0.9171 <0.015 0.0441 0.888 0.9074 0.0344 0.112
NR 0.8492 0.8977 <0.015 0.1411 0.8492 0.9365 0.0829 0.112
* All 0.8977 0.9559 <0.015 0.0538 0.9074 0.9365 <0.015 0.0829

negative bene�ts for sure while the proportion is only about 5% in FR. When the change is

R ! A then now MP has the largest fraction who bene�t. About 10% of MP will bene�t

for certain while FR is still the least. Moreover, at least 4.4% of FR will lose under the

change of R! S: This measures the heterogeneous e¤ects of CSR. If instead the change is

R! A, then FP has the highest fraction of people who will get hurt while more than 12%

of FP will lose for sure.

In the second categorization, the S ! R seems most bene�cial to NR and NP.

About 15% of each group will bene�t for certain. In terms of the fractions who lose for

certain, still NP and NR are the best. Less than 1.5% of each group lose from the change.

However, the disadvantage of NR is the change from S ! A in terms of the fraction of

people who lose for certain. The S ! R is most bene�cial to MR in the �rst categorization

in terms of both the fractions bene�ting and losing. The e¤ect on NR is controversial. NR

have the biggest bene�ting fraction yet the biggest losing fraction of people su¤er from for

certain loss as well.

Since suppQ
L (p) > infpQ

U (p) provides evidence of non-homogeneous treatment

e¤ects, Table 27 and 28 show whether the homogeneous treatment hypothesis is admissible

or not. All cases considered revealed suppQ
L
n (p) > infpQ

U
n (p), which suggests the e¤ects

of both S and A treatments are not likely to be homogeneous.
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Table 27. suppQ
L
n (p) and infpQ

U
n (p) (Reading)

Reading
maxQLSRn minQUSRn maxQLARn minQUARn

MP 7 4 2 -2
MR 12 4 3 -6
FP 17 2 3 -6
FR 4 -4 0 -8
WP 5 0 2 -11
WR 7 0 2 -4
NP 10 4 12 -2
NR 10 1 15 -8
* All 7 4 2 -2

Table 28. suppQ
L
n (p) and infpQ

U
n (p) (Math)

Math
maxQLSRn minQUSRn maxQLARn minQUARn

MP 11 0 13 -14
MR 43 5 26 0
FP 12 0 5 -15
FR 8 -6 5 -17
WP 10 -12 13 -12
WR 29 0 7 -8
NP 26 0 6 -17
NR 11 -43 5 -55
* All 26 4 6 -8

The statistical tests for the homogeneous treatment e¤ect hypothesis is the test of

H0 : FL (�) = 0 and FU (�) = 1 for some �;

HA : FL (�) > 0 or FU (�) < 1 for all �;

where FL (�) and FU (�) are the bounds for F� (�) de�ned in Chapter II. We can test the

pointwise version of these hypotheses by extending Chapter II to develop a test for the

homogeneous treatment e¤ect hypothesis or by using the con�dence intervals established in

the chapter directly. Let

H 0
0 : FL (�) = 0 and FU (�) = 1 for a given �;

H 0
A : FL (�) > 0 or FU (�) < 1 for a given �:

To test H 0
0, we can simply construct two one-sided con�dence intervals for F

L (�)
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Table 29. Tests for H 0
0

Reading Math
Reject?(SR) � Reject?(AR) � Reject?(SR) � Reject?(AR) �

MP ? . ? . ? . Yes 1.28
MR Yes 8.4 Yes 3.2 Yes 11.87 Yes 0.98
FP ? . Yes -2.8 Yes 95 Yes -5.98
FR Yes -0.98 Yes -4 Yes -3.92 ? .
WP Yes 6 ? . Yes 1.42 Yes -2.16
WR Yes 2.68 ? . Yes 12.34 ? .
NP ? . ? . ? . Yes 0.7
NR ? . Yes 0.5 Yes -8.27 Yes -7.09
All ? . Yes 1.32 Yes 4.06 Yes 0

and FU (�) and see if they contain 0 and 1 respectively. Table 29 presents the results of

this tests. �?�in the table means none of ��s considered rejected H 0
0. Under the change of

R! S, MR, FR, WP, and WR rejected the hypothesis of homogeneity of treatment e¤ects

in reading. In math under R ! S, MR, FP, FR, WP, WR, and NR rejected it. When

R ! A is considered, MR, FP, FR, and NR rejected the hypothesis in reading. In math

under R! S, almost all of subgroups rejected it except for FR and WR.

Estimation of Bounds for the Conditional Distribution of Treatment Ef-
fects upon Pre-Treatment Outcomes

Next, I plotted the estimated bounds for �SR;� (y), �AR;� (y) ;	SR;� (y) ;	AR;� (y)

against quantiles of Y0 for � = 0. Since � = 0, the conditional probability considered here is

the probability that an individual will bene�t from each treatment when the individual is at

the lower margin (�� (y)) or upper margin (	� (y)). By construction, �Ln;� (y) and �
U
n;� (y)

(solid lines) are more informative at lower quantiles and 	Ln;� (y) and 	
U
n;� (y) (dashed lines)

are more informative at upper quantiles. In the estimation, �UnSR;0 (y) = �UnAR;0 (y) = 1

and 	LnSR;0 (y) = 	
L
nAR;0 (y) = 0 for almost all y considered. Therefore, �

L
n;0 (y) (solid lines

at the lower part of each graph) and 	Ln;0 (y) (solid lines at the upper part of each graph)

deserve more attention. As in the previous section, the black color indicates S treatment
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and A treatment uses the red color. From here on, I will omit the subscript 0 from above

functions for the sake of notational convenience as long as the omission does not disrupt

understanding.

Figure 15. Estimates of bounds for �0 (y) and 	0 (y)

First, let us look at the reading (Figure 15). �LnSR and �
L
nAR are above from 0

and 	UnAR are substantially smaller than 1. From this, the rejection of the homogeneity

assumption for both of SR and AR seems likely. �LnSR (y) > �
L
nAR (y) for all y considered,

implying that certain fraction of students will bene�t from R ! S are more than from

R ! A. Both of the treatments S and A appear to be progressively heterogeneous at the

extreme. �LnSR (y) at y = F
�1
0 (0:1) is 0.335, meaning that if a student�s score in a regular

sized class is below the 10 percentile of pre-treatment outcome, the probability that his

score will increase after the CSR is 0.335. In other way of interpreting it is about 33.5% of

students in the 10th percentile or lower will be better after the CSR.

The bounds are roughly constant or downward sloping. So, the treatment e¤ects

are progressively heterogeneous at the extreme, which implies more of less-able students
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will bene�t non-negative amounts for sure from both S and A than more-able students.

Also the maximum possible proportion of bene�ters is larger between less-able students

than between more-able students. This is along the lines of the �ndings of Ding and Lehrer

(2005).

Figure 16. Bounds for � (y) and 	(y) (Category 1)

The bounds for � and 	 for subgroups are presented in Figure 16. The homo-

geneity seems to be rejected in both of the treatments in all subgroups, as well. �LnSR (y) �

�LnAR (y) for all y in all subgroups except for the low quantile of FR group, which implies

more students bene�t for sure from R ! S then from R ! A. The actual �LnSR (y) dif-

fer greatly across subgroups from the highest of 0.62 for F�10 (0:1) of MR to the lowest of

0.024 for F�10 (0:3) of FR. The downward sloping �Ln (y) in FP and MR means less-able

students have more for certain fractions of bene�ters in those subgroups. In FR, however,

the fraction of for certain bene�ters decreases initially as y increases and increases from
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y = F�10 (0:3) to y = F�10 (0:3) suggesting Ding and Lehrer (2005)�s �nding may not hold

for all subgroups.

Since 1�	UnAR is the minimum fraction of people who will lose from R! A, the

upward sloping 	UnAR in FP means more-able students in FP will lose less from R ! A.

This upward tendency of 	Un at the upper quantiles exists in all subgroups. A is less

desirable than S in this regard, too.

Figure 17. Bounds for � (y) and 	(y) (Category 2)

Figure 17 is the second categorization. Non-trivial fractions of more-able students

in WP and NR appear to lose from R ! S as can be seen from the pattern of 	UnSR (y).

	UnSR
�
F�10 (0:9)

�
is 0.957 in NP and 0.877 in WP. Therefore, at least 4.3% of highly able

students in NP and 12.3% of those in WP will experience losses from the CSR. The �LnSR (y)

for WR provides more evidence that Ding and Lehrer (2005)�s �nding may not hold in some

subgroups.
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NR having the largest �Ln (y) overall suggests that they are gain the largest bene�ts.

The C group in general has larger �Ln (y) than the W group. This supports the �nding that

non-white students bene�ted more from the CSR. None of the two treatment e¤ects look

either progressive or regressive at the extreme. We can analyze the treatment e¤ects in

math similarly. See Appendix C for the graphs and discussions in math.

We can assess the heterogeneity in the treatment e¤ects in a di¤erent manner. I

presented graphs of �� (y) and 	� (y) at �xed y�s but at di¤erent ��s. To understand the

use of them, let us consider two students whose scores are F�10 (0:2) and F�10 (0:8) and the

functions ��
�
F�10 (0:2)

�
and 	�

�
F�10 (0:8)

�
. By de�nition, ��

�
F�10 (0:2)

�
is the probability

that a student whose pre-treatment score is no more than F�10 (0:2) (a low ability student)

gains � when the class environment changes and 	�
�
F�10 (0:8)

�
is the probability that a

student whose pre-treatment score is no less than F�10 (0:8) (a high ability student) gains �

when the class environment changes.

Figure 18. Bounds for � (y) and 	(y0) (Category 1)

Figure 18 presents the estimated bounds for ��
�
F�10 (0:2)

�
and 	�

�
F�10 (0:8)

�
in
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reading for � 2 [0; 15] in R! S for the whole sample (denoted by �All�) and the subgroups

in Category 1. F�10 (0:2) in reading was 410 and F�10 (0:8) was 456. The solid lines are

the bounds for ��
�
F�10 (0:2)

�
and the dashed lines are for 	�

�
F�10 (0:8)

�
. For the entire

sample, the lower bounds for 	�
�
F�10 (0:8)

�
are 0 for all � and the upper bounds are

downward sloping from 0 to 0.621. Since the lower bounds are 0, the F�10 (0:8) student may

not bene�t at all. 	U�n
�
F�10 (0:8)

�
= 0:621 for � = 15 means that only 62.1% of high ability

students (students whose scores are higher than or equal to 456) will gain an additional 15

points or more when the class size reduces. For the F�10 (0:2) student, the lower bounds at

� = 1 is 0.207, which means that at least 20.7% of low ability students (those whose scores

are lower than or equal to 410) will score at least 1 point more after the CSR. When we

consider � = 10, the lower bound for ��
�
F�10 (0:2)

�
is 0.094, which means at least 9.4% of

low ability students will score at least 10 points more after CSR.

When we look into subgroups, the gains vary. The upper bounds for 	�
�
F�10 (0:8)

�
for MP at � = 0 is 0.981. 98.1% of high ability students in MP group gain non negative

amounts from the treatment and the remaining 1.9% will score less after the CSR. The

upper bounds for 	�
�
F�10 (0:8)

�
for FR at � = 0 is 0.963. 4.7% of high ability FR students

will score less after CSR. FR is the subgroup that bene�ts the least of the four, also, in

terms of the minimum certainty gainers. The lower bounds for ��
�
F�10 (0:2)

�
at � = 0 is

only 0.038, meaning that just 3.8% of low ability students in FR will gain non-negative

amounts for sure from CSR. The MR, on the other hand, shows the highest lower bounds

for ��
�
F�10 (0:2)

�
at � = 0, which is 0.316.

Figure 19 shows the results for the other categorization. The upper bound for

	�
�
F�10 (0:8)

�
for WP at � = 0 is 0.951. At least about 4.5% of high ability students in

the WP will hurt from the CSR. 	�
�
F�10 (0:8)

�
being 0.972 for NR at � = 0 means at least
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Figure 19. Bounds for � (y) and 	(y0) (Category 2)

2.8% of high ability students in the NR group will lose. 16% of NP and 17% of the WP will

gain additional 15 points or more after the CSR.

Conclusion

In this chapter, I investigated the potential heterogeneous treatment e¤ects of

class size reduction (CSR) experimented in Project STAR conducted by the Tennessee

State Department of Education. This chapter strengthened the �ndings of Ding and Lehrer

(2005) on the heterogeneous treatment e¤ects. However, di¤erently from them, I found the

direction of heterogeneity is not as simple as they concluded based on quantile regression

results.

To make my �ndings most general and robust, I used the bounding approach

and the new inference method in Chapter II. This approach does not assume any type of

dependence structure between Y1 and Y0 whereas the quantile regressions or QTE implicitly
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assume the perfect positive dependence. I furthered the ideas in Chapter III to develop tools

to investigate heterogeneity more closely by de�ning weak homogeneity and conditional

heterogeneity of treatment e¤ects upon pre-treated outcomes and by providing the bounds

of conditional distribution of treatment e¤ects on the pre-treatment outcomes.

Applying those theories, I constructed the bounds for unconditional distribution

and the heterogeneity of conditional treatment e¤ects on pre-treatment outcomes and found

the following: i) there is strong evidence of heterogeneity of treatment e¤ects in both A

and S treatments for all subgroups; ii) the features of heterogeneity di¤er across subgroups;

iii) the distributional impact of treatment e¤ects should not be ignored; iv) the condi-

tional heterogeneity on pre-treatment outcomes are meaningful for policy evaluation and

implementation.

To conclude, the partial identi�cation approach (bounding approach in this case),

when applied to Project STAR, indicates that the heterogeneity of treatment e¤ect is im-

portant and should be addressed in empirical work. Further, the results suggest that we

may not restrict our research on a particular dependence structure without any theoretical

basis in general by using ATE or QTE.

There are many things to be done. In the econometric theoretical point of view, the

construction of the uniformly valid con�dence interval for the true F� (�), the asymptotics

of the estimators for the bounds of �� (y) and 	� (y), and the inference on the conditional

distributions of treatment e¤ects on observables are in progress. Extension of the present

chapter are also needed in regards to the empirical application of Project STAR. My cur-

rent research dealt with just kindergarten students�performances. To extend this chapter

to higher year�s accomplishment, we need to know how to handle the selection on unobserv-

ables. Fan and Wu (2007) may be useful on this issue. In addition, if we may investigate
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potential results of policy implementation prior to the implementation of it by conducting a

randomized experiment. Manski (1997, 2003) called this a �mixing problem�. The inference

on the mixing problem is also of interest. All of these topics remain for the future work.
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Appendix A. Technical Proof

I will provide the bounds for Pr [� � �; Y0 � y0] then the bounds for �� (y0) can

be computed by

�� (y0) = Pr [� > �jY0 � y0] = 1�
Pr [� � �; Y0 � y0]

Pr [Y0 � y0]
:

LetX = �Y0. Then Pr [� � �; Y0 � y0] = Pr [� � �;X � �y0]. De�neW (u; v) =

max fu+ v � 1; 0g and M (u; v) = min fu; vg. Also de�ne H (y1; x) = Pr [Y1 � y1; X � x].

Pr [� � �;X � �y0] is the H-volume of upper left half plane surrounded by the

lines Y1 +X = � and X = �y0:

1Y X δ+ =

0y−

X

1Y

( ),x xδ −

( )1 ,H xδ

( ),x xδ −

( )0 0,y yδ + −

( ),H x xδ −

As in Nelson (1993), Pr [� � �;X � �y0] is bounded from below by supx��y0 H (� � x; x).
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Therefore,

Pr [� � �;X � �y0]

� max

(
sup
x��y0

H (� � x; x)�H (� � x;�y0) ; 0
)

� max

(
sup
x��y0

[max fF1 (� � x) + FX (x)� 1; 0g �min fF1 (� � x) ; FX (�y0)g] ; 0
)

= max

(
sup
y�y0

[max fF1 (� + y)� F0 (y) ; 0g �min fF1 (� + y) ; 1� F0 (y0)g] ; 0
)

= max

(
sup
y�y0

fF1 (� + y)� F0 (y)� 1 + F0 (y0)g ; 0
)

For the upper bound, we know

Pr [� � �;X � �y0]

� inf
x��y0

f1� FX (�y0)�H1 (�; x)g

= inf
x��y0

f1� FX (�y0)� f1� F1 (� � x)� FX (x) +H (� � x; x)gg

� inf
x��y0

f�FX (�y0) + F1 (� � x) + FX (x)�max fF1 (� � x) + FX (x)� 1; 0gg

= inf
y�y0

fF0 (y0) + F1 (� + y)� F0 (y)�max fF1 (� + y)� F0 (y) ; 0gg

= F0 (y0) + min

�
inf
y�y0

fF1 (� + y)� F0 (y)g ; 0
�

The proof for 	� (y0) require the bounds for Pr [� � �; Y0 � y0]. The proof is

analogous except that we have to start with

sup
x��y0

H (� � x; x)

� Pr [� � �;X � �y0]

� inf
x��y0

fFX (x) +H (� � x;�y0)�H (� � x;�x)g :

The reason that these bounds are sharp is analogous to Lemma 1.
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Appendix B. Graphs of the Estimates for the Bounds for QTE (p) for
Subgroups
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Appendix C. Graphs of �0 (y) and 	0 (y) in Math
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CHAPTER VI

Conclusion

It has been widely agreed that individuals receive di¤erent bene�ts from treat-

ments such as social programs or policy implementation (i.e. treatment e¤ects are not

homogeneous over individuals). While observed heterogeneity in individual characteristics

accounts for part of the heterogeneity in treatment e¤ects, heterogeneous treatment e¤ects

remain even after controlling for observed heterogeneity in individual characteristics. Con-

sequently, the average treatment e¤ect (ATE), or the ATE conditional upon some observed

covariates, provides too little information when we need to know the distributional aspect

of treatment e¤ects.

A direct look into the distribution of treatment e¤ects is a solution. However, of

the two parts of information we need in order to �nd the distribution of treatment e¤ects -

information on the outcomes with and without the treatment -, only one is observed for a

given individual. This fundamental missing data problem precludes the point-identi�cation

of distribution of treatment e¤ects even in a randomized experiment without imposing

additional (often non-reputable) assumptions such as rank preservation assumption.

Instead of imposing such assumptions, this dissertation takes the bounding ap-

proach. As is thoroughly investigated in Williamson and Downs (1990), the distribution

of a random variable which is an arithmetic function of two random variables is bounded

by two probability distributions. Because the treatment e¤ect is de�ned by the di¤erence

between two outcomes, the distribution of treatment e¤ects is also bounded, thus partially

identi�ed.
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The �rst essay develops the econometric tools for inference on partially identi�ed

parameters. The second essay examines the partial identi�cation of the distribution of

treatment e¤ects extensively. There, we develop the asymptotic distribution of the estimator

for each bound. We leave the statistical inference on the distribution of treatment e¤ects

for future work and, instead, focus on the quantile function of treatment e¤ects in the

third essay. Since this function is the inverse of the distribution of treatment e¤ects, it is

partially identi�ed as well. We develop the asymptotics of the estimators for the bounds

of quantiles of treatment e¤ects and apply the tools developed in the �rst essay for the

statistical inference. We also propose a new technique of statistical inference here. The last

essay applies the theories and techniques developed in other three essays to Project STAR

and �nds substantial evidence of heterogeneous treatment e¤ects of class size reduction

(CSR) on kindergarten students�achievement.

The dissertation contributes to related streams of literature in several ways. The

con�dence sets in the �rst essay are applicable not only to the identi�cation of treatment

e¤ects but also to various economic problems in which parameters are only partially identi-

�ed. The partial identi�cation of the distribution or quantile function of treatment e¤ects

provides robust techniques that enable a deeper understanding of heterogeneous treatment

e¤ects. The concept of distribution of treatment e¤ects conditional on pre-treatment out-

come in the fourth essay enables us to answer the question of "who gains from treatment,

who loses, and by how much" more explicitly. The empirical study on Project STAR pro-

vides more convincing evidence of the heterogeneity of the e¤ects of CSR. In addition, the

fourth essay shows that the pattern of heterogeneity due to unobservable factors, such as

individual ability, may di¤er in relation with observable characteristics such as gender or

ethnicity. This suggests that earlier research on Project STAR, which found that the CSR
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bene�ted low socioeconomic group more in reading and higher ability students overall, may

not fully capture the complex patterns of heterogeneity in treatment e¤ects.

Many things remain undone. The asymptotics in the second essay necessitates the

advancement of the �rst essay to allow for cases where asymptotic distribution of model pa-

rameters is discontinuous. The inference on the distribution of treatment e¤ects conditional

upon covariates is a generalization that is also being considered. It is of interest because

the distribution of treatment e¤ects conditional upon covariates can allow us to better un-

derstand the pattern of heterogeneity of treatment e¤ects. The very idea presented in the

third essay will be applied to what Manski called the �mixing problem�. Additionally, the

assumptions that underpin the inference techniques developed in the second essay will be

relaxed in future work. This relaxation will enable the inference on the true distribution of

treatment e¤ects conditional on pre-treatment outcomes. Finally, the application of these

theories to existing social program data is another interest of the author.
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