
GESTURE RECOGNITION AND MIMICKING IN A HUMANOID ROBOT 

By 

 

Sean Michael Begley 

 

Thesis 

Submitted to the Faculty of the 

Graduate School of Vanderbilt University 

in partial fulfillment of the requirements 

for the degree of 

 

MASTER OF SCIENCE 

in 

Electrical Engineering 

 

May, 2008 

 

Nashville, Tennessee 

 

Approved: 

Professor Richard A. Peters II 

Professor D. Mitchell Wilkes 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ETD - Electronic Theses & Dissertations

https://core.ac.uk/display/216048238?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


    ii 

 

 

 

 

 

 

 

 

To my mother and father who have always supported me in everything I have every 

wanted to do 

 

 

 

 

 

 

 

 

 

 

 

 

 



    iii 

ACKNOWLEDGEMENTS 

 

This work, and in fact the degree for which I am to receive, would not have been 

possible without the financial, and academic, support of Vanderbilt University.  I am 

grateful to the University for granting me a full tuition scholarship allowing me to pursue 

my studies further.  It would have been infinitely more difficult for me to complete this 

degree without said funding. 

My family, of course, has always been truly loyal.  While it goes without saying, I 

would like take this opportunity to thank them for their unending support and say that I 

love them.  My father, Brian, whose footsteps I have followed, has provided me with the 

greatest of role models.  My mother, Margo, has always had my best interests at heart 

and continues to do anything, and everything, she can to encourage me in my varied 

endeavors.  To the rest of my family I thank you as well.  To grandparents, aunts, 

uncles, cousins, and my brother, you have always supported me and it has shaped who 

I have become. 

I would like to thank the entirety of the engineering faculty and staff.  Throughout 

my six year tenure at Vanderbilt I have learned an immense amount and grown as an 

individual.  Each teacher that I have had the privilege of working with has added to my 

life.  In particular I would like to thank Dr. Richard Alan Peters II.  I first met Dr. Peters 

as a junior after enquiring about doing some independent study work with him.  Since 

them he has been my constant friend and advisor.  Dr. Peters worked with me through 

three independent studies and was instrumental in my coming back to Vanderbilt to 

earn my Master’s Degree.  Since then he has always supported me, not only in my 



    iv 

research, but in my life as a whole.  I am continually impressed by the effort he puts into 

helping others and the selfless attitude he takes towards his student’s wellbeing, putting 

them ahead of himself. 

 

 



    v 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS ............................................................................................... iii 

TABLE OF CONTENTS .................................................................................................. v 

LIST OF FIGURES........................................................................................................ viii 

LIST OF ACRONYMS..................................................................................................... x 

I. INTRODUCTION.................................................................................................. 1 

I.1. Problem Statement ........................................................................................... 2 

I.2. Background & Motivation .................................................................................. 4 

II. THE COMPLETE SYSTEM.................................................................................. 5 

II.1. ISAC ................................................................................................................. 5 

II.1.1. Cameras .................................................................................................... 5 

II.1.2. Arms .......................................................................................................... 8 

II.1.3. Controllers ............................................................................................... 18 

II.2. OpenCV .......................................................................................................... 20 

II.3. CalTech Image Calibration Toolbox for Matlab............................................... 22 

II.4. Previously Developed Code............................................................................ 23 

II.4.1. PXC Drivers ............................................................................................. 23 

II.4.2. Connected Components Extraction ......................................................... 25 

II.4.3. New Neural Network / PID Controller....................................................... 26 

III. THE COMPLETE SYSTEM................................................................................ 29 

III.1. Vision Subsystem ........................................................................................... 31 

III.1.1. Object Detection ...................................................................................... 31 



    vi 

III.1.2. Haar Face Detection................................................................................ 34 

III.1.3. Object Tracking........................................................................................ 37 

III.1.4. Calculating 3D Locations ......................................................................... 40 

III.1.5. drawTargets Function .............................................................................. 44 

III.2. Processing Subsystem ................................................................................... 45 

III.2.1. avgFaceLoc Function............................................................................... 48 

III.2.2. flipY Function ........................................................................................... 50 

III.2.3. Filtering the Coordinates.......................................................................... 53 

III.2.4. Compressing the Coordinates ................................................................. 61 

III.2.5. Fitting the Coordinates to ISAC’s Workspace .......................................... 66 

III.2.6. Calculating Joint Angles........................................................................... 71 

III.2.7. interpolateAngles Function ...................................................................... 78 

III.2.8. Uploading The Coordinates To ISAC’s Control Systems......................... 80 

III.3. Control/Arm System........................................................................................ 82 

III.3.1. The Controller .......................................................................................... 82 

III.3.2. The Modifications..................................................................................... 83 

III.3.3. Integration with the Vision & Processing Systems ................................... 83 

IV. EXPERIMENT .................................................................................................... 85 

IV.1. Goals........................................................................................................... 85 

IV.2. Procedure.................................................................................................... 86 

IV.3. Results ........................................................................................................ 87 

IV.4. Discussion ................................................................................................... 87 

V. WRAP-UP........................................................................................................... 90 



    vii 

V.1. Conclusion ...................................................................................................... 90 

V.2. Recommendations for Future Work ................................................................ 90 

V.2.1. Improvements to the Current System ...................................................... 91 

V.2.2. Tangent Projects Built on the Current System......................................... 93 

REFERENCES.............................................................................................................. 96 

APPENDIX .................................................................................................................. 100 

 



    viii 

LIST OF FIGURES 

 

Figure 1: ISAC's Eyes ..................................................................................................... 6 

Figure 2: Single Camera FOV ......................................................................................... 7 

Figure 3: Stereopsis FOV................................................................................................ 8 

Figure 4: Rubbertuator .................................................................................................... 8 

Figure 5: ISAC's Left Arm.............................................................................................. 11 

Figure 6: 2 Pair Muscles Configuration ......................................................................... 12 

Figure 7: Universal Elbow/Wrist Joint............................................................................ 13 

Figure 8: Regulator Valve Array .................................................................................... 15 

Figure 9: Encoders........................................................................................................ 17 

Figure 10: MOTENC-Lite: PCI Board (pn 7541 & 7544)................................................ 18 

Figure 11: DAC/ADC/Encoder Termination Board for MOTENC-Lite (pn 7525) ........... 19 

Figure 12: IplImage Structure (condensed) [31] ............................................................ 21 

Figure 13: PXC Code Example ..................................................................................... 24 

Figure 14: Green Hue Mask Example ........................................................................... 25 

Figure 15: Neural Network ............................................................................................ 28 

Figure 16: Solution Outline............................................................................................ 30 

Figure 17: detectObject code (condensed) ................................................................... 32 

Figure 18: Extended Set of Haar-like Features [17] ...................................................... 34 

Figure 19: haarFaceDetect code................................................................................... 36 

Figure 20: Main Vision Loop code (condensed) ............................................................ 39 

Figure 21: Depth from Disparity [23] ............................................................................. 41 



    ix 

Figure 22: Depth from Disparity equations [23] ............................................................. 42 

Figure 23: calcuateXYZ code (condensed) ................................................................... 43 

Figure 24: drawTarget code (condensed) ..................................................................... 45 

Figure 25: Processing routine ....................................................................................... 46 

Figure 26: avgFaceLoc pseudo-code............................................................................ 49 

Figure 27: flipY pseudo-code ........................................................................................ 51 

Figure 28: Pixel Area WRT to Distance......................................................................... 54 

Figure 29: Motion Artifact Illustration............................................................................. 55 

Figure 30: Difference Filter Equations........................................................................... 57 

Figure 31: Difference Filter on Y ................................................................................... 58 

Figure 32: filterCoords pseudo-code ............................................................................. 60 

Figure 33: compressCoords pseudo-code .................................................................... 63 

Figure 34: Compression on Y........................................................................................ 65 

Figure 35: fitCoordsToISAC pseudo-code..................................................................... 69 

Figure 36: calcJointAngles pseudo-code....................................................................... 72 

Figure 37: Angle 0 graphs and equations...................................................................... 74 

Figure 38: Angles 1 & 2 graph and equations ............................................................... 75 

Figure 39: Angle 4 graph & equation............................................................................. 76 

Figure 40: simpleInverseKinematics pseudo-code........................................................ 77 

Figure 41: interpolateAngles pseudo-code.................................................................... 79 

Figure 42: uploadCoordsToNNbatch (condensed)........................................................ 81 

Figure 43: Experiment Tests ......................................................................................... 86 

Figure 44: Experiment Results ...................................................................................... 87 



    x 

LIST OF ACRONYMS 

 

Acronym Meaning 
  

.CPP C++ source (file) 

.H c++ Header (file) 

2D 2-Dimensional or 2-Dimensions 

3D 3-Dimensional or 3-Dimensions 

ADC Analog to Digital Converter 

BGR Blue Green Red 

BMP BitMaP 

BNC Bayonet Neill-Concelman 

CCD Charge-Coupled Device 

CPU Central Processing Unit 

DAC Digital to Analog Converter 

DLL Dynamic-Link Library 

EOF End Of File 

FOV Field Of View 

FPS Frames Per Second 

FT. FeeT 

GB GigaByte 

GUI Graphical User Interface 

HSV Hue Saturation Value 

IN. INches 



    xi 

IPL (intel’s) Image Processing Library 

IPP (intel’s) Integrated Performance Primitives 

ISAC Intelligent SoftArm Control 

NN Neural Network 

OpenCV (intel’s) Open Computer Vision (library) 

PC Personal Computer 

PCI Peripheral Component Interconnect 

PID Proportional-Integral-Derivative 

PPT PowerPoinT (presentation) 

RAM Random Access Memory 

SVM  Support Vector Machine 

WRT With Respect To 

XML eXtensible Markup Language 

 



    1 

CHAPTER I 

 

INTRODUCTION 

I. INTRODUCTION 

Humanoid robots generally have manipulators that approximate human 

extremities [11,36, 46].  Their “arms” often have many degrees of freedom and can 

approach a task, such as grasping, in a variety of ways.  This complexity has made it 

necessary for researchers to come up with generalized ways to abstract movement, 

control, and teaching.  It is simply too complicated, and time consuming, to attempt to 

control every joint, muscle, or servo individually all the way up the chain of command 

[26].  The process of compartmentalizing control signals is very common in 

programming of all types.  The issue of movement, and its associated control, has given 

rise to many control algorithms such as Neural Networks [22], Fuzzy Logic Controllers 

[5], and Machine Learning Controllers [16].  All of these controllers have to be tuned and 

trained in order to be able to accurately translate theoretical coordinates and trajectories 

into actual, physical, movements.  This training generally involves the robot working 

through a set of movements and creating a mapping relating what control signals were 

asserted to what movement was observed.  These techniques allow the user to know, 

with varying degrees of accuracy, how the robot will respond to a set of control signals 

but they do not overcome the problem of efficiently teaching the robot new skills and 

movements.  To address this problem, a robot must first have the capability of 



    2 

observing and understand human gestures.  This particular sub-problem is what this 

thesis aims to address. 

 

I.1. Problem Statement 

 

At Vanderbilt University resides a humanoid robot named ISAC.  ISAC has 

stereo vision and two manipulators, powered by McKibben artificial pneumatic muscles, 

which approximate human arms.  The goal of this work is the creation of a system by 

which ISAC will gain the ability to track the gestures made by the moving hands of a 

human being and then repeat those gestures back to the human operator as best he 

can given his own limited workspace and movement capabilities. This ability will support 

experiments in Imitation Learning. 

It was important that the system require as little extraneous equipment as 

possible.  A sub-goal was to have this system be able to interact with an untrained 

operator.  Several other projects similar to this one used encoders mounted directly to 

user’s arms to record exact joint angles.  This is probably not a practical solution to an 

everyday gesture recognition system.  Therefore this system was designed to require 

only that the user wear a pair of brightly colored gloves to make identification of their 

hands easier.  This requirement can be eliminated easily should an effective method of 

locating un-emphasized human hands be developed. 

The system, devised for this thesis, can be broken down into two major 

subsystems: a hand tracking component and an arm control component.  The hand 

tracking component uses ISAC’s two Sony XC-999 Cameras for color stereopsis.  The 



    3 

human operator, whose gestures ISAC is to mimic, wears two different brightly colored 

gloves.  As the person moves his or her hands, images are taken periodically by said 

cameras which represent ISAC’s right and left “eyes.”  A left-right pair of images taken 

simultaneously is called a conjugal pair.  Each image in the pair is analyzed to find the 

areas occupied by the - gloves.  The center point (center of mass) of each glove’s area 

is located in both.  A depth from disparity [23] method is used to calculate the relative 

3D position of each glove with respect to the camera head.  This position is calculated 

for each conjugal pair over time and the relative 3-D coordinates are recorded.  At the 

end of a gesture, the movement of the gloves becomes small.  This is detected and the 

set of 3D coordinates is partitioned into segments.  The partition boundaries correspond 

to significant changes in direction.   Each segment contains a set of points that 

approximate one continual movement of the human operator’s hands.  This small set of 

points that can be translated into via points for ISAC to follow.  The via points are used 

to construct a control policy for arm motion by ISAC so that the robot may mimic the 

perceived motion with its own articulated arms,  The set of points is analyzed for size 

constraints and then adjusted to ensure that all points fall within ISAC’s workspace.  If 

necessary the gesture is scaled up to span as much of ISAC’s workspace as possible.  

Then a trajectory is calculated for ISAC to reach each via point from the last.  The 

trajectory is analyzed by a Neural Network controller that translates the sequence of 3D 

coordinates to air pressure values for individual air muscles.  These air pressure values 

are coded as voltages which are sent directly to the valves, which control the airflow to 

ISAC’s muscles, via controller cards. 

 



    4 

I.2. Background & Motivation 

 

ISAC has existed in a form, similar to his current, for many years.  In that time, a 

wide variety of projects have been undertaken to provide him with many different 

abilities.  Several low level controllers have been created to allow more generalized 

control of his arms [20, 33].  Vision systems have been implemented to give him the 

ability to track objects and make sense of the visual world around him [35].  

Microphones have been placed in proximity of his head to experiment with data 

acquisition via sound [25].   Methods have been developed to allow ISAC to keep track 

of objects in his immediate vicinity whose presence has been detected through a variety 

of methods [24].  The work described herein enables ISAC to track the movement of 

human hands then to mimic them much as a small child would [21].  This is useful for 

several reasons.  Pedagogically, it allows people with no special training to interact with 

ISAC to learn, first hand, about robotic perception and action.  Functionally, this type of 

behavior is the basis for an entire field of study known as Imitation Learning.  Giving 

ISAC the ability to identify, interpret, and then repeat the actions of a human trainer 

opens the door for research into methods of classifying, retaining, recalling, and 

combining those actions.  Providing ISAC with this function will act as the first step to 

giving him the ability to behave more like a human being 



    5 

CHAPTER II 

 

DESCRIPTION OF TOOLS 

II. THE COMPLETE SYSTEM 

This project has made use of a wide variety of tools, both hardware and software.  

This section describes the most important of them. 

 

II.1. ISAC 

The robot used for this work is known as ISAC.  ISAC stands for Intelligent 

SoftArm Control and resides in a lab on the third floor of Vanderbilt’s Featheringill Hall 

building.  ISAC has been designed as a humanoid robot and has various features that 

help him to emulate humans in a variety of ways.   

Firstly, ISAC has two color cameras that act as his eyes. Secondly, ISAC has two 

arms actuated by air muscles known, commonly, as McKibben artificial muscles or 

Rubbertuators.  Rotary Encoders at each joint provide data to calculate the location and 

orientation of the links and the end-effector. 

 

II.1.1. Cameras 

ISAC is capable of stereopsis, via two Sony XC-999 color CCD (Charge-Coupled 

Device) cameras [18] which sit side by side in a quasi-anthropomorphic configuration 

atop Directed Perception Pan-Tilt bases [6]. The latter give ISAC active vision — the 



    6 

ability to “look around” by panning and tilting each of the cameras independently.  

(Figure 1) 

 

 

 

Figure 1: ISAC's Eyes 

 

 

The cameras have a native resolution of 768×493, however, the ISAC system has them 

operating at a resolution of 320x240.  This is generally suitable for vision problems and 

drastically reduces the number of pixels (from 378,624 down to 76,800: a reduction of 

80%) that must be analyzed in raster-scan style functions.  The pan-tilt bases have a 



    7 

resolution of 0.0514 degrees, although, in this project, the eyes are kept steady and 

thus, the pan-tilt bases are not utilized.  Each camera has a measured horizontal FOV 

(Field of View) of approximately 55.77° and vertical FOV of 42.78° as shown in Figure 2 

(not to scale).  The face recognition software used in this project is reliable up to about 5 

ft.  The cameras are located 11 in. apart from one another.  This provides a working 

area for stereopsis 47 in. high and 51 in. width at a range of 5 ft. in front of ISAC as 

displayed in Figure 3 (not to scale). 

 

 

 

Figure 2: Single Camera FOV 

 

 



    8 

 

Figure 3: Stereopsis FOV 

 

 

II.1.2. Arms 

ISAC has two arms which are actuated by agonistic pairs of pneumatic air 

muscles (McKibben Artificial Muscles).  They are commonly known as Rubbertuators 

since that was the commercial name for the McKibben actuators that were 

manufactured by Bridgestone in the 1980s [44].  (Figure 4) 

 

 

 

Figure 4: Rubbertuator 



    9 

The concept behind a Rubbertuator is simple; it is a rubber tube surrounded by a 

flexible fabric mesh that encloses a constant volume.  When the muscle is pressurized it 

expands.  The mesh, holding the volume constant, causes the tube to contract.  It 

thereby converts radial force into a contraction force when filled with pressurized air.  

Rubbertuators can only exert contractual force; therefore Rubbertuators are generally 

used in antagonistic pairs to allow for a restoring force to exist. 

Rubbertuators have qualities that make them good actuators for a humanoid 

robot designed to interact with people.  They are not rigid, they are compliant.  In other 

words, they give a bit when an opposing force is applied, even at maximum contraction.  

Mechanical compliance is necessary for a robot that operates in the vicinity of 

untrained, or lightly trained, human operators.   Rubbertuators have the largest strength-

to-weight among actuators on the human scale.  Once filled with air they can hold the 

position indefinitely (within the limits of air loss) without the application of continuous 

power.   

One problem with Rubbertuators is that they are inaccurate compared to many 

electric motor actuators.  That is, the uncertainty in  expected output given a known 

input is large by comparison.  This characteristic is caused, in part, by changes in the 

flexibility of the rubber due to changes in temperature and humidity.  Interestingly, this 

characteristic is analogous to the effect of temperature on biological muscles [21] and to 

the idea that humans can perform approximate motion with no visual feedback and 

reach an approximate locaiton.  Each of ISAC’s arms has 12 Rubbertuators paired to 

work antagonistically on a manipulator chain with 6 degrees of freedom.  Figure 5, 



    10 

below, shows ISAC’s left arm.  The older, beige Rubbertuators made by Bridgestone [1] 

and the newer black ones, made by Shadow Robotics [29] are clearly visible. 

 

 



    11 

 

Figure 5: ISAC's Left Arm 



    12 

ISAC’s joints are typically numbered from 0 to 5 starting at his trunk and working out 

toward the end effector.  Angle 0 corresponds to his entire arm rotating, at the shoulder, 

about the Z axis.  This joint is controlled by a single pair of pneumatic muscles.  Angle 1 

is the shoulder joint that rotates the arm about an axis parallel to the Y axis.  This angle 

too is controlled by a pair of pneumatic muscles.  Angle 2 refers to the elbow joint which 

lifts the forearm about an axis parallel to the Y axis.  Angle 3 rotates the forearm and 

wrist about an axis parallel to the forearm.  Angle 4 controls the pitch of the hand.  

Angle 5 controls the roll of the hand.  The construction of ISAC is a bit complex in that 

Angles 2 and 3 are controlled by the same set of 4 air muscles.  Angles 4 and 5 are also 

controlled by a single set of 4 air muscles.  Each set is arranged in a square.  Figure 6 

displays this arrangement. 

 

 

 

Figure 6: 2 Pair Muscles Configuration 

 

 



    13 

If the elbow joint is taken as an example, ISAC can lift up his forearm but also rotate it.  

This varied action is accomplished using a universal joint in conjunction with the 4 

muscles set.  The combination is show, below, in FIGURE X.  In reference to Figure 6, 

the forearm can be lifted by contracting muscles 2 & 4 and relaxing muscles 1 & 3.  

Clockwise rotation of the forearm can be achieved by contracting muscles 2 & 3 and 

relaxing muscles 1 & 4. 

 

 

 

Figure 7: Universal Elbow/Wrist Joint 

 

 



    14 

The Rubbertuator’s disadvantages are many.  Their performance variability due to 

temperature and humidity, combined with their compliance, can make them difficult to 

control accurately in a complex system.  Despite their good strength to weight ratio, the 

fact that they are powered by compressed air and rubber imposes severe limits on the 

weight they can move.  Lastly, Rubbertuators are, for the most part, unsuitable for 

mobile robots due to their reliance on compressed air.  The associated equipment is too 

large to be attached to a small mobile robot in a practical way. 

The compressed air that powers a Rubbertuator is provided by a compressor 

tank that maintains a constant pressure.  The air is fed through a a filter to clean and a 

cooler to minimize the temperature variance of the muscles.  The air is then fed to SMC 

ITV2050-312CN4 Electro-Pneumatic Regulator valves [30], one per muscle, which 

regulates how much air will be provided to the actual Rubbertuator.  The valves, when 

supplied with an input voltage from 0 to 5 volts will respond by allowing a proportional 

amount of air pressure to be passed on to the muscles.  When a lower voltage is 

supplied, than was previously, the current air is exhausted out a port in the back of the 

regulator until a satisfactory pressure is obtained.  An array of these valves is mounted 

on ISAC’s chest and back.  His chest, covered in valves, can be seen in Figure 8 below. 

 



    15 

 

Figure 8: Regulator Valve Array 

 

 



    16 

The valves are controlled by 3 MOTENC-Lite controller cards [40] which sit in a 

Windows 2000 based PC (Personal Computer).  The controller cards allow simple 

control of the valves and are described below in section II.1.3. 

ISAC has encoders at every joint that provide feedback to the system.  Joints 

with a single axis of rotation interface with a single encoder.  The universal joints, 

located at the elbow and wrist, have 2 axes of rotation and, therefore, require 2 

encoders.  The set of encoders on the universal joints report the angular offset of both 

the left and right side of the joint which are each controlled by a conjugate pair of 

Rubbertuators.  These angles can then be used to calculate the final angle of rotation 

on both axes.  The encoders on ISAC are either SUMTAK [37] or Epson-Seiko [7] rotary 

encoders.  In Figure 9, a SUMTAK is on the left and an Epson-Seiko is on the right.  

The encoders rotate with an angular resolution of 0.345 degrees.  If they are properly 

initialized, the instantaneous angle of each joint can be monitored within the resolution 

listed above.   

 

 



    17 

 

Figure 9: Encoders 

 

 

Unfortunately, these encoders are obsolete; they are out of production and very little 

information is available on them.  All rotary encoders, however, work in a similar way by 

generating electrical pulses as a shaft rotates.  Two signals, which are out of phase, are 

constantly sent out while rotation is present.  The signals consist of pulses which can be 

counted to calculate how much rotation has occurred.  By looking at which signal is 

“ahead,” due to their difference in phase, one can tell which direction the rotation is in.  

The encoders are read by the same MOTENC-Lite controller cards as control the 

valves. 

 



    18 

II.1.3. Controllers 

ISAC’s encoders are read by, and his valves are controlled by, Vital Systems 

MOTENC-Lite controller cards shown below in Figure 10. 

 

 

 

Figure 10: MOTENC-Lite: PCI Board (pn 7541 & 7544) 

 

 

These cards interface with a PC through the standard PCI (Peripheral Component 

Interconnect) bus and use drivers written by Vital Systems.  They are designed so that 

several cards can be used in the same system.  This is done by assigning each card a 

unique identifier via jumpers on the board itself.  ISAC’s control system has three of 

these cards to control his 24 muscles and read his 12 encoders.  Large ribbon cables 



    19 

extend from each card and run to DAC/ADC/Encoder Termination Boards (pn 7525) 

shown below in Figure 11 [41].   

 

 

 

Figure 11: DAC/ADC/Encoder Termination Board for MOTENC-Lite (pn 7525) 

 

 

The black terminal blocks on the short edges of the Termination Board are ADC (analog 

to digital converter) and DAC (digital to analog converter) blocks.  They connect to the 

control lines of the valves to read from them and write to them.  The larger blue terminal 

blocks on the long edges are connections specifically designed to read from encoders.  

As the image shows, four encoders can be read by single card so the three cards 

support ISAC’s twelve encoders.  It is a bit harder to see, but each board is capable of 

supporting eight valves which, again, is in perfect harmony with ISAC’s 24 air muscles. 

 



    20 

II.2. OpenCV 

Much of the computer vision software in the system is built on top of Intel’s 

OpenCV (Open Computer Vision) Library [15, 27, 34].  OpenCV, in its simplest form, is 

a collection of functions that facilitate computer vision related programming.  The 

efficiency of OpenCV depends on the presence of Intel’s IPP (Integrated Performance 

Primitives) [13] which are a commercial library of functions that perform routines related 

to multimedia processing and multi-core functionality at the assembly and machine code 

level.  IPP is designed only to work with Intel microprocessors.  While the software 

developed for this thesis does not use IPP due to the associated cost, it could easily be 

installed to increase the performance of the system’s computer vision components. 

OpenCV is, in actuality, not just a random collection of functions but is, instead, a 

well organized set of tools that a programmer can use to quickly implement solutions to 

computer vision problems.  All computer vision functions in OpenCV are designed to 

operate on the IplImage structure, also defined in OpenCV.  The typedef for an 

IplImage is shown in Figure 12. 

 

 

 

 

 

 

 

 



    21 

typedef struct _IplImage 

{ 

    int  nSize;         /* sizeof(IplImage) */ 

    int  ID;            /* version (=0)*/ 

    int  nChannels;     /* Most of OpenCV functions support 1,2,3 or 4  

       channels */ 

    int  alphaChannel;  /* ignored by OpenCV */ 

    int  depth;         /* pixel depth in bits: IPL_DEPTH_8U,  

       IPL_DEPTH_8S, IPL_DEPTH_16U, 

                            IPL_DEPTH_16S, IPL_DEPTH_32S, IPL_DEPTH_32F  

        and IPL_DEPTH_64F are supported */ 

    char colorModel[4]; /* ignored by OpenCV */ 

    char channelSeq[4]; /* ditto */ 

    int  dataOrder;     /* 0 - interleaved color channels, 1 - separate  

                           color channels.  cvCreateImage can only  

       create interleaved images */ 

    int  origin;        /* 0 - top-left origin, 

                           1 - bottom-left origin (Windows bitmaps  

       style) */ 

    int  align;         /* Alignment of image rows (4 or 8).  OpenCV  

       ignores it and uses widthStep instead */ 

    int  width;         /* image width in pixels */ 

    int  height;        /* image height in pixels */ 

    struct _IplROI *roi;/* image ROI. when it is not NULL, this  

        specifies image region to process */ 

struct  _IplImage *maskROI; /* must be NULL in OpenCV */ 

void   *imageId;  /* ditto */ 

struct _IplTileInfo *tileInfo;/* ditto */ 

int imageSize;  /* image data size in bytes 

    (=image->height*image->widthStep 

    in case of interleaved data)*/ 

char *imageData;  /* pointer to aligned image data */ 

int widthStep;  /* size of aligned image row in bytes */ 

int BorderMode[4];   /* border completion mode, …*/ 

int BorderConst[4];  /* … ignored by OpenCV */ 

char *imageDataOrigin;  /* pointer to a very origin of image data 

                              (not necessarily aligned) - 

                              it is needed for correct image  

    deallocation */ 

} 

IplImage; 

Figure 12: IplImage Structure (condensed) [31] 

 

 

The IplImage structure was designed by Intel for their Intel Image Processing Library 

(IPL).  The Intel IPL is no longer a supported product [14] and has since been integrated 

into the Intel Performance Primitives product.  OpenCV allows for many complex image 



    22 

operations to be done via a single, one line, functions.  In addition to premade functions 

OpenCV also comes bundled with HighGUI [32] which allows a programmer to setup a 

simple GUI (Graphical User Interface), for testing, extremely quickly.  Details on the 

specific, usage of the OpenCV library are discussed further in the Vision System section 

III.1. 

 

II.3. CalTech Image Calibration Toolbox for Matlab 

Computer Vision is used in a wide variety of applications and can be built upon 

anything from a $10 web-cam with an old laptop to setups that costs many thousands of 

dollars with state-of-the-art equipment.  The precision of any computer vision system 

depends on accurate knowledge of the projective transformations imposed by the 

cameras. Those transformations depend on the camera’s focal length, sensor size and 

density, sensor noise characteristics, optical distortion including the point-spread 

function and radial position deviation, etc.  Some of these parameters are published by 

the camera manufacturer, particularly for higher end equipment.  However, information 

on some of the more subtle camera parameters can be hidden even for the expensive 

components.  For an amateur, with a web-cam that was pulled out of an old box of 

electronics, it is very possible that none of this information is readily available.  That is 

where the CalTech Image Calibration Toolbox [3] comes in handy. 

Dr. Jean-Yves Bouguet [4] of the Computer Vision Research Group at CalTech 

saw this problem and designed a tool to help overcome it.  The Calibration Toolbox 

works in the following way.  It takes, as input, a set of images with a test sheet in 

different orientations.  This test sheet is a checkerboard pattern with identical squares of 



    23 

known sizes.  The software uses its a priori knowledge of the checkerboard pattern to 

analyze the set of images distorted by the camera.  The analysis returns estimates of 

the parameters which are used to estimate the projective transformations.  This allows 

the user to then design computer vision software optimized for the camera’s unique 

parameters.  For this research, the camera parameters were estimated with the 

CalTech software.   

 

II.4. Previously Developed Code 

To expedite creation of the system, code that had been previously developed by 

other students was used.  For the most part, that code included low level drivers and 

interfaces for components like the cameras and arm control.  Each instance of borrowed 

code is described below. 

 

II.4.1. PXC Drivers 

ISAC’s cameras provide data to a PC in the form of a stream of video frames that 

are delivered via Phase 1 Technology PS-99SU Frame Grabbers.  Software drivers are 

necessary to interface with these frame grabbers.  Code, called PCX, that makes the 

frames accessible to C++ programs was preexisting in the lab although it is unclear who 

wrote it. 



    24 

Modifications were made by Katherine Achim in February of 2005 and by this author, for 

this project, in January 20081.  The PXC code works as follows:  Create a camera 

object, initialize it, and then get an image.   In order for this image to be used by 

OpenCV it must be reopened as an IplImage.  The example code in Figure 13, below, 

shows how this can be done. 

 

 

CPXCk_FG camera; //initialize a PXC camera object 
char *image = (char*)"C:/Temp/image.bmp"; //specify a temp location 

IplImage *frame; //initialize an IplImage 

 

camera.Initialize(0);  //initialize the camera (PXC function) 

camera.GetImage(image); //grab a frame & save it to temp (PXC function) 

frame=cvLoadImage(temp); //load the image into the IplImage structure 

 

Figure 13: PXC Code Example 

 

 

Once the image is read from the Frame Grabber into in a BMP (bitmap), and then 

opened as an IplImage, it is in a suitable form to be sent to almost any OpenCV 

function. 

 

                                            

1
 The actual drivers appear to be in DLLs located at I:\etc\pxc2\ and include pxc_95.dll, frame_32.dll, 

pxc_nt.dll, pxc_31.dll and frame_16.dll.  It appears that pxc_95.dll, pxc_nt.dll, and pxc_31.dll are drivers 
that correspond to Windows 95, Windows NT, and Windows 3.1 and that frame_16.dll and frame_32.dll 
correspond to either 16 and 32 bit architectures or 16 and 32 bit images.  It seems more likely that they 
correspond to 16 and 32 bit architectures since a 24 bit version should be included if they corresponded 
to images.  The software that makes the drivers accessible in C++ is contained in PXCk_FG.h and 
PXCk_FG.cpp.  All of the PXC code is located at I:\etc\pxc2\. 



    25 

II.4.2. Connected Components Extraction 

In Computer Vision it is often necessary that objects be found in a scene and 

then isolated (segmented).  This system uses color to segment and track objects. 

Segmentation is performed via hue filtering.  To do this an image mask is used.2  Any 

pixels that are, say, green, are marked as foreground in the mask all others are marked 

background.  This mask has is black wherever there is background and white wherever 

there is foreground.  Figure 14, below, shows an example of a frame, on the left, and its 

associated mask, on the right, when a green hue is the target.  This particular image 

also displays the results of a morphological erode and dilate.  Usage of such a function 

is described further in section III.1.1. 

 

 

 

Figure 14: Green Hue Mask Example 

                                            

2
 An image mask is a binary image with the same dimensions as the image that is being masked.  The 

polarity of a pixel in the mask typically indicates that the corresponding pixel in the image is of interest or 
not.  For example a one might indicate that the pixel has a specific feature, zero indicates that it does not. 



    26 

Multiple objects are distinguished using Connected Component labeling.  A Connected 

Component is simply a set of foreground pixels that are all touching one another.  If 

there is a break between foreground pixels, by background, then those pixels are 

deemed to be part of separate connected components.  A previously written program for 

connected component labeling, written by Tom Billings and Jack Noble, was used to 

accomplish this task.  This author made minor modifications to it removing some hard 

coded values for image height and width and replacing them with values gleaned from 

the image structure itself.   From the list of connected components, returned by the 

program, the largest was selected as the object of interest.  

 

II.4.3. New Neural Network / PID Controller 

The first part of this project involved the tracking of an object in 3D and second 

revolves around filtering out its generalized motion.  The third, and final, objective is to 

cause ISAC’s arms to move so as to mimic the motion of the object.  Several controllers 

have been created that cause ISAC to move an arm to a specific 3D location in its 

workspace.  One of these is a combination Neural Network [42] and PID controller.  

That controller was modified by this investigator for this project.  The Neural Network 

portion of the controller works by training ISAC to associate muscle pressures and 3D 

locations of the end-effector (hand).  The PID portion of the controller moves the arm to 

minimize the distance between the desired location and the actual location as computed 

from the outputs of the joint position encoders.  The controller is fast relative to the 

speed of arm motion so the resultant motion is fairly smooth.  The composite controller 

initiates the neural network which moves the arm to a rough approximation of the target 



    27 

location within a time interval that can be set by the designer.  A common interval might 

be on the order of 500ms.    Then it initiates the PID controller to make final, precision, 

adjustments.  In this system, only the Neural Network is considered, the PID controller 

has been disabled.  This is primarily for safety.  The system is designed to interact with 

human being.  Since the Neural Network is entirely open-loop if it encounters an 

obstacle, such as a person, it will not continue to try to work through it [38].  A PID 

controller, on the other hand, is closed-loop and thus it will notice that it is not at its 

desired location and will continue to instruct the manipulator to go there possibly 

causing injury to the human obstacle.  Furthermore, the Neural Network based 

controller more closely mirrors the muscle memory operations of a human.  If an actual 

human were to repeat an observed gesture, such as a wave, the attempt would be 

primarily from muscle memory with little, if any, visual feedback being utilized place. 

The Neural Network used in this controller is not extraordinary in any way and 

follows from the standard model.  It is known, more specifically, as a Back-Propagation 

Neural Network with a Generalized Delta Rule.  This is an excellent choice for the 

system due to the non-linearity of the McKibben muscles caused by hysterysis which 

derives from the friction of the woven membrane on the outside of the muscles.  

Because of this hysterysis two separate Neural Networks have been created.  One 

applies only to forward motion, the other only to backward motion. 

 

 



    28 

 

Figure 15: Neural Network 

 

 

As is shown in Figure 15, the input and output layers of the Neural Network each 

consist of a single neuron.  The middle layer consists of ten neurons.  The system was 

trained with a 10,000 epochs, between 150 and 250 data points, a learning rate of 

0.001, and 1,000,000 iterations.  This gave rise to errors of only a few degrees which 

was deemed suitable for this system [8].  



    29 

CHAPTER III 

 

THE COMPLETE SYSTEM 

III. THE COMPLETE SYSTEM 

The goal of this project was to create a system by which ISAC would be able to 

see a person making an arm gesture and then repeat it (given the limitations imposed 

by ISAC’s workspace).  Figure 16 is a list of the tasks that must be accomplished for 

ISAC to achieve the goal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



    30 

1. Initialize ISAC’s cameras 

2. Retrieve a frame from ISAC’s left and right cameras 

3. Detect the object of interest in both the left and right frame 

4. Calculate the 3D location of the objects of interest 

5. Save the 3D location along with its relative timestamp 

6. Repeat steps 2 – 5 until the gesture is complete.  A list of 3D coordinates is now 

saved 

7. Filter the list of 3D points to eliminate artifacts and noise 

8. Compress the list of 3D points down to as few points as are necessary to capture 

the general motion of the object of interest 

9. Scale the list to fit within ISAC’s workspace 

10. Calculate Joint Angles via Inverse Kinematics 

11. Upload the list of joint angles to ISAC’s arm control system (located on a 

separate PC from the vision control system) 

12. Iterate through the list of joint angles and have ISAC move his arm to the 

associated location 

Figure 16: Solution Outline 

 

 

The rest of this section provides details of the implementation (e.g., the routines and 

parameters used) and a description how it works. 

 

 



    31 

III.1. Vision Subsystem 

ISAC’s vision system operates from the PC in the Cognitive Robotics Lab named 

Sally, which runs Windows XP.  Two Sony XC-999 Cameras, each mounted on its own 

Directed Perception pan-tilt unit, connect to twin Phase 1 Technology PS-99SU Frame 

Grabbers which in turn plug into PCI capture cards in the computer.  Frames are 

retrieved using the PXC software, described in section II.4.1, and are made available to 

the rest of the program which is described, in detail, below.3 

 

III.1.1. Object Detection 

Object detection is performed on a per-frame per-object basis.  That is to say, in 

order for the system to track two objects using two cameras, the object detection routine 

is run four times.  The function is show below in Figure 17. 

 

 

void detectObject(IplImage* img, CvTarget *tar, int low, int high) 

{ 

 //Temporary Images 

 IplImage* hsv = cvCreateImage(cvGetSize(img), 8, 3); 

 IplImage* hue = cvCreateImage(cvGetSize(img), 8, 1); 

 IplImage* sat = cvCreateImage(cvGetSize(img), 8, 1); 

 IplImage* val = cvCreateImage(cvGetSize(img), 8, 1); 

 IplImage* maskH = cvCreateImage(cvGetSize(img), 8, 1); 

 

 //kernel for use with erode/dilate 

IplConvKernel * selem =  

cvCreateStructuringElementEx(3,3,1,1,CV_SHAPE_RECT);  

 

 //Extract Hue/Sat/Val from BGR Image 

                                            

3 The code examples have been cleaned up, condensed, and formatted so that they fit cleanly in 
this document.  However, none of the functionality has been changed.  Comments have simply been 
rearranged or taken out.  When necessary, lengthy code has been replaced with more concise pseudo-
code. 



    32 

cvCvtColor(img, hsv, CV_BGR2HSV); //convert from BGR to HSV 

 cvSplit (hsv, hue, sat, val, 0); //extract hue/sat/val channels 

  

 //Filter by Hue 

 cvInRangeS(hue, cvScalar(low), cvScalar(high), maskH);  

  

 //Erode/Dilate maskH to eliminate noise 

 cvErode(maskH,maskH,selem,3);       

 cvDilate(maskH, maskH, selem, 3); 

 

 //Find the largest positive object 

 getConnectedComps(maskH,Comps);     

 

 if (comptot != 0) 

 { 

  //find largest component 

  maxcomp = 0; 

  maxarea = Comps[0]->area; 

  for (int j = 0; j < comptot; j++) 

  { 

   if (Comps[j]->area > maxarea) 

   { 

    maxarea = Comps[j]->area; 

    maxcomp = j; 

   } 

  } 

   

  //get center 

tar->x = Comps[maxcomp]->rect.x + Comps[maxcomp]-> 

rect.width/2; 

tar->y = Comps[maxcomp]->rect.y + Comps[maxcomp]-> 

rect.height/2; 

 

  //get radius 

if (Comps[maxcomp]->rect.width > Comps[maxcomp]- 

>rect.height) tar->r = Comps[maxcomp]->rect.width/2; 

  else tar->r = Comps[maxcomp]->rect.height/2;  

 } 

 

 //Release Images 

 cvReleaseImage(&hsv); 

 cvReleaseImage(&hue); 

 cvReleaseImage(&sat); 

 cvReleaseImage(&val); 

 cvReleaseImage(&maskH); 

}  

Figure 17: detectObject code (condensed) 

 

 



    33 

The function is called detectObject.  It takes a pointer to an IplImage (img), a lower 

hue bound (low) and an upper hue bound (high) as inputs.  A pointer to a CvTarget 

object (tar) is used as an output.  The process begins by converting the image from 

the 32-bit per pixel, BGR (Blue Green Red) representation provided by the frame 

grabber into a 32-bit HSV (Hue Saturation Value) representation.  The HSV image, 

which is a single three-band image, is then split into three, 8-bit, one-band images: hue, 

saturation, and value.  The saturation and value bands are not used.  The hue image is 

then segmented for a specific range of hues that have been computed from earlier 

images of the target object.  A black and white mask is created by a raster scan 

thresholding of the hue image.  If the hue value of a pixel is between the low bound and 

the high bound (the extrema of the specified hue range) then the corresponding pixel in 

the mask image is colored white.  Otherwise it is colored black.  The mask image is then 

eroded and dilated with a 3×3 square structuring element [9, 10].  The erosion gets rid 

of noise by eliminating any small instances of foreground (white) in the mask.  The 

dilation then returns the foreground areas that survived the erosion back to their original 

sizes.4  The mask is then analyzed by the getConnectedComps function (cf.  section 

II.4.2)  which returns a list connected foreground components.  This list is searched for 

the largest component.  Its radius and center point are then found and stored in the tar 

variable.  The tar variable is returned with the location and size of the largest object of 

a particular color.  Lastly the image variables are released to free up that memory. 

 

                                            

4
 Erosion followed by dilation with the same structuring element is called opening. 



    34 

III.1.2. Haar Face Detection 

To effectively find the location of the user’s face, a detection algorithm that takes 

advantage of Haar-like features was used [12, 39].  These Haar-like features allow for 

classification, of an object of interest, to be described by its light and dark regions and 

their proximity to one another.  Figure 18 displays the current, extended, set of Haar-like 

features. 

 

 

 

Figure 18: Extended Set of Haar-like Features [17] 

 

Each one of the features listed above can be applied to an object of interest.  Take a 

human face, for example.  Edge feature (b) would be applied to the forehead/eye socket 

region because the eye sockets cause that area of the face to be darker then the 

forehead which reflects light well.  Line feature (a) would be inverted and then applied to 

the eyes and nose because, again, the eye sockets cause the left and right regions of 



    35 

the middle face to be darker then the center which contains the bridge of the nose.  It is 

not required that a developer calculates and inputs all of these features by hand.  

OpenCV comes bundled with software designed to analyze a set of test images that 

contain both positive and negative samples.  These test images, for a successful 

outcome, should number in the thousands.  If this many, unique, images cannot be 

acquired, functionality also exists to distort a smaller set of images to artificially create 

more positives.  Once this analysis is complete an XML file, known as a cascade file, is 

created that contains all of the necessary feature information.  This cascade file can 

then be applied to any project.  This entire procedure is detailed in Naotoshi Seo’s 

haartraining Guide [19].  Particularly in the case of face detection, this functionally takes 

place behind the scenes and a predefined cascade prepared for faces already exists 

within OpenCV.  This author has selected the cascade file 

haarcascade_frontalface_alt2.xml.  When using the OpenCV 

implementation for face detection, it is not necessary that a developer be familiar with 

these workings.  The function that this author has used is derived largely from the 

facedetect.cpp example provided with the OpenCV package.  The, modified, 

function, along with several required global variables, is shown in Figure 19. 

 

 

 

 

 

 



    36 

const char* cascade_name = "haarcascade_frontalface_alt2.xml"; 

static CvHaarClassifierCascade* cascade =  

(CvHaarClassifierCascade*)cvLoad( cascade_name, 0, 0, 0 ); 

static CvMemStorage* storage = cvCreateMemStorage(0); 

 

void haarFaceDetect(IplImage* img, CvTarget *tar) 

{ 

 //initialize variables 

 int radius; 

int i; 

     double scale = 1.3; 

IplImage* gray = cvCreateImage( cvSize(img->width,img- 

>height), 8, 1 ); 

     IplImage* small_img = cvCreateImage( cvSize( cvRound 

(img->width/scale), cvRound (img->height/scale)), 8, 1 ); 

      

 //convert image to a small grayscale version 

     cvCvtColor( img, gray, CV_BGR2GRAY ); 

cvResize( gray, small_img, CV_INTER_LINEAR ); 

cvEqualizeHist( small_img, small_img ); 

     cvClearMemStorage( storage ); 

 

 //if a cascade has been setup, find the faces 

     if( cascade ) 

     { 

         CvSeq* faces = cvHaarDetectObjects( small_img, cascade,  

storage, 1.1, 2, 0/*CV_HAAR_DO_CANNY_PRUNING*/,  

cvSize(30, 30) ); 

 

  tar->r = 0; //initialize the target radius to 0 

  //cycle through detected faces to find the largest 

         for( i = 0; i < (faces ? faces->total : 0); i++ ) 

         { 

             CvRect* r = (CvRect*)cvGetSeqElem( faces, i ); 

             radius = cvRound((r->width + r->height)*0.25*scale); 

    

   //if new r (face) > old r (face), save loc to tar 

   if (radius > tar->r) 

   { 

    tar->r = radius; 

    tar->x = cvRound((r->x + r->width*0.5)*scale); 

    tar->y = cvRound((r->y + r->height*0.5)*scale); 

   } 

         } 

     } 

  

 //release images 

    cvReleaseImage( &gray ); 

     cvReleaseImage( &small_img ); 

} 

Figure 19: haarFaceDetect code 

 

 



    37 

The global declarations, shown above the haarFaceDetect function point to a 

predefined Haar cascade file, initialize the cascade based on the cascade file, and 

setup memory storage for use in the function, respectively.  Within the 

haarFaceDetect function several variables including holders for a gray version of 

the input image and a small version of grayscale image are declared.  Then the image 

is converted to grayscale and scaled down.  Now is where the real Haar detection 

begins.  If a cascade has been initialized then a CvSeq (or sequence) is created to hold 

face matches.  The sequence is then iterated through and the largest face object is 

found and recorded into the tar variable which represents the size and location of the 

largest face in the image.  This variable also acts as the function’s output since it was 

passed in by reference.  Lastly the newly created images are release to avoid 

congestion in memory. 

 

III.1.3. Object Tracking 

Section III.1.1 described how a single object was located in a single frame.  This 

section attempts to describe how the detectObject function is used to keep track of 

the location of the object over a period of time.  A condensed version of the main loop in 

the program is show below in Figure 20. 

 

 

 

 



    38 

 

for(;;)  //loop forever 

{ 

 start = GetTime(); 

 

 //proceed if a frame is successfully retrieved 

     if(cameraL.GetImage(tempL) && cameraR.GetImage(tempR))   

 { 

         frameL=cvLoadImage(tempL); //load the left frame 

  frameR=cvLoadImage(tempR); //load the right frame   

 } 

 else 

 { 

  //error if we can't get a frame from the camera 

fprintf(stderr, "ERROR: Could not retrieve frames from  

Cameras\n"); 

  break; 

 } 

 

 //haar detect/draw face 

 haarFaceDetect(frameL, &lf); 

 haarFaceDetect(frameR, &rf); 

     

 //detect object 1 (light blue bean bag) 

detectObject(frameL, &l1, HUE_LIGHT_BLUE_BAG[0],  

HUE_LIGHT_BLUE_BAG[1]); //detect object 1 in our Left Image 

detectObject(frameR, &r1, HUE_LIGHT_BLUE_BAG[0],  

HUE_LIGHT_BLUE_BAG[1]); //detect object 1 in our Right Image  

  

  

 //detect object 2 (green lego lid) 

detectObject(frameL, &l2, HUE_BIG_GREEN_BALL[0],  

HUE_BIG_GREEN_BALL[1]); // detect object 2 in our Left Image 

detectObject(frameR, &r2, HUE_BIG_GREEN_BALL[0],  

HUE_BIG_GREEN_BALL[1]); //detect object 2 in our Right Image 

 

 //draw object 1 targets onto the original image 

 drawTarget(frameL, l1, 0); 

 drawTarget(frameR, r1, 0); 

 

 //draw object 2 targets onto the original image 

 drawTarget(frameL, l2, 7); 

 drawTarget(frameR, r2, 7); 

 

 //calculate relative XYZ depth 

 calculateXYZ(&obj1loc, l1, r1); 

 calculateXYZ(&obj2loc, l2, r2); 

 

 //print the coordinates to a text file 

fprintf(coordsfile,"%d,,%d,%d,%d,%d,%f,%f,%f,,%d,%d,%d,%d,%f,%f,% 

f\n",counter,l1.x,l1.y,r1.x,r1.y,obj1loc.x,obj1loc.y,obj1loc.z,l2 

.x,l2.y,r2.x,r2.y,obj2loc.x,obj2loc.y,obj2loc.z); 

  

 //display images to the user 

 cvShowImage("Tracker Left", frameL); //show the left frame 



    39 

 cvShowImage("Tracker Right", frameR); //show the right frame 

 

 //give the user a chance to break the loop by hitting any key 

if(cvWaitKey( 10 ) >= 0) break;  

 

 counter++;  //increment the time counter 

 

 //ensure loop is 400ms each time 

 stop = GetTime(); 

 total = stop - start; 

 if (total < 400) Sleep(400-total); 

  

} 

Figure 20: Main Vision Loop code (condensed) 

 

 

The loop begins by retrieving a frame from both the left and right cameras.  If the frames 

cannot be retrieved, then the program errors out.  Each frame must then be loaded into 

an IplImage structure so that it is in a form suitable for the OpenCV code to operate on.  

The haarFaceDetect function searches for human faces based on Haar-like 

identifiers.  This function is described in greater detail in section III.1.2.  The 

detectObject function, described in section III.1.1, is then run 4 times to cover 

objects 1 & 2 in both the left and right cameras.  As mentioned in section III.1.1, the 

location and radius of the object is returned in a cvTarget variable.  l1, l2, r1, r2, 

lf, & rf are all cvTarget variables designed to store the location and size of each 

object in both the left and right frames5.  The targets are then drawn onto the original 

frames via the drawTarget function described in section III.1.4.  Next, the 3D location 

                                            

5
 It is important to note that in the current implementation with the current code: object 1 refers to the teal 

bean bag and is intended to be held in the user’s left hand.  Object 2 refers to the green Lego lid and is 

intended to be held in the user’s right hand.   



    40 

object 1, object 2, and the face are calculated in the calculateXYZ function 

described in section III.1.4.  Then, both the 2D and 3D location information is saved into 

a comma delimited text file for processing later in the program.  Both frames, with the 

targets drawn on, are then displayed to the user via the cvShowImage function.  The 

user is then given an opportunity to break out of this loop by pressing a key when the 

gesture recording is complete.  Lastly, a time counter is updated so that the relative time 

at which a point has been recorded can be preserved. 

 

III.1.4. Calculating 3D Locations 

Using a method known as Depth from Disparity a 3D (xyz) location can be 

calculated from two 2D (xy) points so long as the two 2D points meet certain 

requirements.  For the method used here, the 2D points must come from cameras that 

are coplanar.  Certain information about the cameras focal points and their distance 

from one another must be known as well.  Depth from Disparity works using the 

principle of similar triangles.  Figure 21, below, illustrates this principle. 

 

 



    41 

 

Figure 21: Depth from Disparity [23] 

 

 

Using the principle of similar triangles one can construct several equations that relate 

the focal length of the cameras, the 2D coordinates of the object in the image,  and the z 

distance of the object in space.  Figure 22 shows these equations and how they can be 

manipulated to provide a concise equation for the depth of an object. 

 

 



    42 

 

Figure 22: Depth from Disparity equations [23] 

 

 

Equation 3 demonstrates that z in both the left and right frames are equal, as it should 

be and show how this can be calculated from the x location of the object in the left and 

right frames along with the focal length and baseline (distance between the cameras).  

The focal length, f , and baseline, b, will be in some real units such as millimeters.  The 

x values, by default will be in pixels.  In order for the equation to yield a z that is also in 

millimeters the x values must be converted from pixels into millimeters which can be 

done based on the parameters of the camera itself.  The camera will have a CCD of a 

certain size and will produce images of a certain resolution.  These two values can be 



    43 

used to calculate how many pixels per millimeter the camera produces.  Equations 5 & 

7 show how the real y and x coordinates can be calculated based on the z coordinate 

that was calculated along with the focal length and original y (or x) coordinate on the 

image plane. 

 The above equations were used to create the calculateXYZ function which is 

show below in Figure 23. 

 

 

void calculateXYZ(CvPoint3D32f *objloc, CvPoint left, CvPoint right) 

{ 

double f = 15262.5; //focal length: 305.25 millimeters (50  

//px/mm) = 15262.5 px 

 double b = 14000;  //base: millimeters (50 px/mm) = 14000 px 

 double sigma = 50; //pixels per mm 

 

 //get pixel coords 

 xri = (double)right.x; xli = (double)left.x; 

 yri = (double)right.y; yli = (double)left.y; 

 

 //find z in weird units 

 z=f*b/((double)xli-(double)xri); 

 

 //calculate real y and x values in weird units 

 yr=yri*z/f; yl=yli*z/f; 

 xr=xri*z/f; xl=xli*z/f; 

 

 //average x & y 

 x=(xr+xl)/2; y=(yl+yr)/2; 

 

 //write the values into the objloc to be returned 

 objloc->x=x; objloc->y=y; objloc->z=z; 

} 

Figure 23: calcuateXYZ code (condensed) 

 

 

The function starts by defining the focal length, f, and baseline, b, will which have been 

found via the CalTech Image Calibration Toolbox for Matlab.  This Toolbox is described 



    44 

in further detail in section II.3.  Next the pixel coordinates are extracted from the CvPoint 

objects and then used, along with f and b to find the z.  As mentioned before, the X & Y 

images coordinates must be translated into real units in order to get real units out.  

However, the relative motion of the objects, not their absolute positions, is the primary 

concern.  Some math was thereby avoided in doing this conversion.  The 3D points end 

up in “unknown” units.  This, however, is not a problem as any units would have to be 

rescaled to fit within ISAC’s workspace.  The next step is to calculate the associated X 

and Y locations in these unknown units.  Since an X and Y location are found for both 

the left and right images.  They are averaged to come up with a single X and a single Y 

value.  The values are then saved to the output variable objloc.  This procedure is 

done for every single set of 2D image coordinates that are gathered by ISAC’s vision 

system.  As described in the vision section, the 2D coordinates along with a timestamp 

and the newly calculated 3D coordinates are saved to a text file that can be filtered and 

processed. 

 

III.1.5. drawTargets Function 

The drawTargets function is very simple and allows a circle with a dot in the 

center to be drawn onto a frame taken, in this case, from ISAC’s cameras.  The, short, 

function is show below in. 

 

 

 

 



    45 

void drawTarget(IplImage *img, CvTarget obj, int clr) 

{ 

if (obj.x <= img->width && obj.y <= img->height && clr <  

NUM_COLORS) 

 { 

  //draw a circle on the screen 

cvCircle( img, obj, obj.r, COLORS[clr], 3, 8, 0 ); 

  cvCircle( img, obj, 1, COLORS[clr], 3, 8, 0 ); 

 } 

} 

Figure 24: drawTarget code (condensed) 

 

 

The if statement in the function checks to make sure that the center point defined by the 

cvTarget is in the image, and that clr, a numeric reference to a color defined by the 

array COLORS is within its range.  If both of these conditions are met, then 2 circles are 

drawn on the screen.  Both circles are at the location specified.  However only the first 

has the radius specified by the cvTarget.  The second has a radius of 1 and performs 

the function of drawing a dot in the center of the first. 

 

III.2. Processing Subsystem 

 

The next large subsystem is Processing.  It engages after the Vision System has 

completed.  That is to say, once a set of 2D points from both the left and right images 

has been collected, they must be processed to convert them to a single set of 3D 

locations (per object).  This set of 3D locations must then be further filtered and 

processed in order for it to be usable by ISAC’s control systems.  The processing is 

done in the same program as the Vision System operates and happens after the Vision 



    46 

System has collected the necessary data points.  As such, it is also contained on the 

Windows XP machine known as Sally.  Figure 25, below, displays the code for the main 

Processing routine. 

 

 

//PROCESSING SUBSYSTEM 

 

//calculate the average face location and rewrite to file 

avgFaceLoc(coords, facedcoords); 

 

//flip the Y coordinate about it's average value to account for  

//upsidedown calculation 

flipY(facedcoords,flippedcoords); 

 

//Difference and Recursivly filter the set of XYZ coordinates stored in  

//C:/Temp/facedcoords.txt 

//and save the results in C:/Temp/filteredcoords.txt 

filterCoords(flippedcoords, tempcoords, filteredcoords); 

 

//Filter for large changes in direction to compress the number of  

//points on the graph to as few as possible for simpler movement 

compressCoords(filteredcoords, compressedcoords1, compressedcoords2); 

 

//scale coords and rearrange axes for ISAC 

fitCoordsToISAC2(compressedcoords1, fittedcoords1, RIGHT_ARM); 

fitCoordsToISAC2(compressedcoords2, fittedcoords2, LEFT_ARM); 

 

//calculate Joint Angles from Coordinates using Inverse Kinematics 

calcJointAngles(fittedcoords1, angles1, RIGHT_ARM, END_EFF_NO,  

SIMPLE_INV_KIN); 

calcJointAngles(fittedcoords2, angles2, LEFT_ARM, END_EFF_NO,  

SIMPLE_INV_KIN); 

 

//interpolate angles between existing angles 

interpolateAngles(angles1, interpolated1); 

interpolateAngles(angles2, interpolated2); 

 

//Open the joint angles file and upload the points to the shared I //drive to 

be read by the Neural Network Controller (located on another //computer: 

Octavia) 

//angles2 goes to uploadL (left hand) 

//angles1 goes to uploadR (right hand) 

uploadToNNbatch(uploadL, uploadR, interpolated2, interpolated1); 

 

//Upload Start.Now file to indicate that the joint angles are ready and 

//that the controller should begin execution 

uploadGoFlag(goflag); 

Figure 25: Processing routine 



    47 

Processing begins by averaging the face’s location.  The assumption is made that the 

user will not move their body around as their gestures are being recorded.  This is a 

valid assumption since the user is asked to keep his, or her, head still during the 

recording.  Averaging of the face location allows for anomalies and frames in which no 

face was detected to be discarded without adversely affecting the system.  

avgFaceLoc is described in greater detail in section III.2.1.  The flipY function, 

described in section III.2.2, is then run to account for a disconnect between the 

program’s logic and ISAC’s world frame.  The coordinates are then filtered to eliminate 

artifacts in the signals using the filterCoords function described in section III.2.1.  

compressCoords is then run to reduce the number of points that describe the motion 

to as few as possible.  compressCoords is described in detail, in section III.2.4.  

Once the coordinates have been compressed they must be fit to ISAC’s workspace.  

This is done using the fitCoordsToISAC2 function described in section III.2.5.  The 

fitted coordinates represent locations that ISAC must reach to.  In order for these 

locations to be realized, the appropriate joint angles must be calculated.  

calcJointAngles is responsible for this conversion and is described in section 

III.2.6.  Once the angles have been calculated, interpolateAngles (section III.2.7) 

is run to fill in points between each change of position.  These points are calculated in 

such a way as to smooth the motion by creating intermediate angles.  Finally, after all of 

the angles have been prepared, the points are uploaded to the Controller so that it may 

execute the motions have ISAC’s response can be realized.  uploadToNNbatch is 

described in detail in section III.2.7. 

 



    48 

III.2.1. avgFaceLoc Function 

While the Haar face detect function (section III.1.2) is fairly reliable it can never 

be counted on to return a face location every frame and it cannot be depended on to be 

without error.  To overcome this problem the avgFaceLoc function has been 

developed.  This function, shown in Figure 26, simply analyzes all of the face locations 

and, ignoring any blank entries, calculates the average location.  It then rewrites that 

average location to each entry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



    49 

void avgFaceLoc(char coords[], char out[]) 

{ 

 coordsfile = fopen(coords); 

 

 for(;;) //loop forever 

 { 

  linearray = fgets(coordsfile) //get a line   

    

//update totals 

  XLtotal+=linearray[15]; //2D left X 

  YLtotal+=linearray[16]; //2D left Y 

  XRtotal+=linearray[17]; //2D right X 

  YRtotal+=linearray[18]; //2D right Y 

  count++;   //total read 

   

  if (linearray == NULL) break; //break at EOF 

 } 

 

 //calculate averages 

 left.x = XLtotal/count; 

 left.y = YLtotal/count; 

 right.x = XRtotal/count; 

 right.y = YRtotal/count; 

 

 //calculate XYZ location 

 calculateXYZ(&faceloc, left, right); 

 

  

 //rewrite the coords file 

 coordsfile = fopen(coords); 

 outputfile = fopen(out); 

 

 for(;;) //loop forever 

 { 

  linearray = fgets(coordsfile); //get a line 

 

  //print line to output with the adjusted face values   

fprintf(outputfile, linearray[0-14],left.x,left.y,right.x, 

right.y,faceloc.x,faceloc.y,faceloc.z); 

   

if (linearray == NULL) break; //break at EOF 

 } 

} 

Figure 26: avgFaceLoc pseudo-code 

 

 

The function first opens up the coordinates file.  It then iterates through the file adding 

the left frame’s and right frame’s X & Y coordinates to a running total as well as 



    50 

incrementing a count variable which keeps a total of all lines read6.  These values are 

then used to compute averages.  The 3D location of the average is then found.  The file 

is close and reopened and the lines are then written to the output file with the new 

average face location in place of the original face locations. 

 

III.2.2. flipY Function 

Due to a difference in the way ISAC’s world is perceived and the way the program was 

originally written to run there is a discrepancy in the representation of the Y axis.  

Rather then rewrite many parts of the program it was decided that a simpler solution 

would be to write an intermediate function designed to simply flip the Y motion about its 

average.  The function finds the average for Y1, Y2 , Y-face, and then rewrites these 

variables flipped across that average.  The code is displayed in Figure 27. 

 

 

 

 

 

 

 

 

                                            

6
 Note that, due to the way the coordinate values are stored, it is not necessary to formally search for or 

remove frames in which no face was found.  In these cases the face location is, essentially, stored at 0,0. 



    51 

void flipY(char coords[], char flippedYcoords[]) 

{ 

 //GET Y AVERAGES 

 

 coordsfile = fopen(coords); //open input 

 

while(1) //loop forever 

{ 

linearray = fgets(coordsfile); //get a line 

 

if (linearray == NULL) break; //break if EOF 

 

  Y1tot=Y1tot+linearray[6];  //Y1 total 

  Y2tot=Y2tot+linearray[13]; //Y2 total 

  Yftot=Yftot+linearray[20];    //Y-face total 

  count++; 

} 

  

 fclose(coordsfile); 

 

 //calculate average Y value 

 Y1avg=Y1tot/count; 

 Y2avg=Y2tot/count; 

 Yfavg=Yftot/count; 

 

  

//FLIP AND REWRITE THE Y’s 

 //start back at the beginning 

 coordsfile = fopen(coords); //open input 

 flippedfile = fopen(flippedYcoords); //open output 

  

 while(1) //loop forever 

 { 

  linearray = fgets(coordsfile);  //get line 

 

  if (linearray == NULL) break; //break if EOF 

 

  

//print to new file 

fprintf(flippedfile,linearray[0-12], 

2*Y2avg-linearray[13], 

linearray[14-19], 

2*Yfavg-linearray[20],linearray[21]); 

 } 

} 

Figure 27: flipY pseudo-code 

 

 



    52 

The flipY function, begins by calculating the average values of Y1, Y2, and Y-face.  

This gives a center point for the signal to be flipped over.  Once the average has been 

calculated the input file is reopened and rewritten 1 line at a time.  Everything is written 

exactly as it was read except Y1 & Y2.  These values are subtracted from 2 times the 

average value.  This has the effect of flipping the entire signal about the average value. 



    53 

III.2.3. Filtering the Coordinates 

Filtering of the location data is necessary for several reasons.  The biggest need 

of filtering comes from the fact that movement in the X direction causes artifacts to 

appear in both the Y and Z directions.  Movement in the Z direction causes artifacts to 

appear in both the X and Y directions.  This behavior is illustrated below in Figure 29.  

This author’s best estimate as what causes these anomalies relates to disparity error 

caused by the discrete nature of the pixels on the CCD.  Motion in the real world is 

analog and continuous.  The CCD has a finite resolution and, thus, each pixel 

associates with a square of visual data that gets larger and larger as the region of 

interest moves farther away from the camera.  (Figure 28)  This anomaly appears to 

come from only the X & Z directions because the X direction is used to calculate the Z 

value and the X direction is the one in which the natural, desired, disparity occurs.  The 

Y value in both the left and right are virtually identical and are not their disparity is not 

even analyzed. 

 

 



    54 

 

Figure 28: Pixel Area WRT to Distance 



    55 

 

Figure 29: Motion Artifact Illustration 



    56 

Each graph is titled either X, Y, or Z.  These graphs correspond to what recorded 

motion has taken place in the X, Y, and Z directions.  The motion that formed these 

graphs involved moving an object of interest 1 meter first in the Y, then the X, then the Z 

direction.  That is, first up and down, then left and right, then out and in.  The blue 

circles identify portions of the motion that correspond to actual movement.  The red 

circles identify apparent motion that did not actually happen.  These sections are 

caused by artifact motion from either the X or Z motion.   

To get rid of the artifacts a filter was developed which has been called the 

Difference Filter.  This filter was devised by this author after analysis of graphs, similar 

to those in Figure 29, in Microsoft Excel.  It was found that the anomalies corresponded 

to the motion in other directions exactly, from both a temporal and relative magnitude 

standpoint.  Experimentation was then done to develop the appropriate equations.  The 

filter simply subtracts a scaled version of the offending cardinal direction from the 

affected direction.  The Difference Filter works according to the equations shown in 

Figure 30.  The values of 0.008 and 0.025 were found experimentally.  An example of 

difference filtering on the Y axis of the same motion example can be seen below in 

Figure 31.  It is the opinion of this author that no better, and if so only marginally better, 

results could be achieved using a more complex and computationally intensive higher-

order filter. 

 

 



    57 

 

Figure 30: Difference Filter Equations 

 

[ ] [ ] [ ]*0.008X i X i Z i= −

[ ] [ ] [ ]*0.008Y i Y i Z i= −

[ ] [ ]*0.025 [ ]Z i Z i X i= −

Difference Filter Equations 

(8)

(9)

(10)



    58 

 

Figure 31: Difference Filter on Y 



    59 

The first graph is of the unfiltered Y signal.  The second graph shows the same signal 

after undergoing a difference filter where the Z signal (which is effected by X artifacts as 

well) scaled by 0.008 and then subtracted from the original Y signal.  Again, the red 

circle indicates where the artifact motion was.  The blue circle identifies the actual, 

desired, Y motion.  Its shape and relative magnitude are left unchanged. 

Most of the experimentation with the difference filter was done using Microsoft 

Excel.  In order for the difference filter to be included into the system it had to be 

implemented in C++ which turned out to be fairly involved.  Since the code is quite long 

Figure 32 shows pseudo-code to help you understand how it was implemented.  The full 

code can be found at the end of this document in the code listing under the 

filterCoords function. 

 

 

 

 

 

 

 

 

 

 

 

 



    60 

void filterCoords(char coords[], char tempcoords[], char filteredcoords[]) 

{ 

 //FILTER PASS 1 (DIFFERENCE OF X & Y) 

 coordsfile = fopen(coords, "r"); //open coordinates 

 tempfile = fopen(tempcoords, "w"); //open file to write too 

 

 fclose(coordsfile); 

 

 //start at the beginning of the file 

coordsfile = fopen(coords, "r"); //open coordinates 

while(fgets(coordsfile) != NULL) //loop through coordsfile 

{ 

 line = fgets(coordsfile); //get a line from coordsfile 

  

//difference filter X & Y 

dfiltered[X]=line[X]-line[Z]*.008; 

dfiltered[Y]=line[Y]-line[Z]*.008; 

 

//save line to tempcoords file 

fprintf(tempfile, dfiltered[X], dfilterd[Y], dfiltered[Z]); 

} 

 

//close files 

fclose(coordsfile) 

 

//FILTER PASS 2 (DIFFERENCE FILTER Z) 

coordsfile = fopen(tempcoords, "r"); //open temp coordinates 

filteredfile = fopen(filteredcoords, "w"); //open write file 

 

while(fgets(coordsfile) != NULL) //loop through coordsfile 

{ 

 //get next line 

 line=fgets(coordsfile); 

 

 //difference filter Z 

 dfiltered[Z]=line[Z]/40-line[X]; 

 

 //print line to file 

fprintf(filteredfile, dfiltered[X], dfilterd[Y],  

dfiltered[Z]); 

 

} 

} 

Figure 32: filterCoords pseudo-code 

 

 

As the comments in the pseudo-code suggest, the filtering is split into 2 passes.  This is 

because the filtered X signal must used for the difference filtering of the Z signal, 



    61 

otherwise the Z signal’s presence in the X signal would entirely cancel it out.  The code 

begins by opening up the appropriate text files.  A while loop then beings which cycles 

through every entry in the coordinates file.  Each entry is then Difference filtered.  The 

filtered point is then written to a new, temporary, file.  Once the first pass is completed, 

the second pass is begun which applies the Difference filter to the Z signal.  This pass 

has the same basic structure as the first pass.  This second pass uses the output of the 

first pass as its input and writes to the final filtered coordinates file. 

 

III.2.4. Compressing the Coordinates 

Once the filtering of the coordinates has been completed there are still many 

more data points than is necessary to describe the generalize motion of the target 

objects.  It is important to reiterate that, in the project, the goal has been to replicate the 

gestures of a human user.  Where possible the system has been modeled in such a 

way as to approximate human behavior both in method and result.  If a human were to 

replicate another human’s gestures an exact measure of their movements would not be 

taken.  Instead a general sense of the motion would be gathered by focusing on the 

major changes in velocity and direction.  Compression takes place here in a similar 

fashion with similar motivations and results. 

Generally speaking, the system looks for changes in direction of the motion on a 

specific axis.  When that change in direction is found the system checks to see if there 

is sufficient is a change magnitude when compared to the previous change in direction.  



    62 

This acts as a final filter to eliminate insignificant motion or noise in the system.  Figure 

33 displays the pseudo-code for the point compression.  

 

 

void compressCoords(char coords[], char compressedcoords[]) 

{ 

coordsfile = fopen(coords, "r"); //open uncompressed coords 

compressedfile = fopen(compressedcoords1 "w"); //open file to  

//hold compressed  

//coords 

 

//get 1st uncompressed XYZ point, print, & save as lastpoint 

lastpoint=fgets(coordsfile); 

fprintf(compressedfile, lastpoint); //print 1st line to output 

 

lastsavedpoint = lastpoint; //fill in last saved point buffer 

 

currpoint=fgets(coordsfile); //get 2nd uncompressed XYZ point  

//and save as currpoint 

 

//set the direction of each axis 

for(i=1;i<4;i++) 

{ 

 pointdiff[i] = currpoint[i] – lastpoint[i]; 

 if (pointdiff[i] > 0) direction[i]=1; 

 else if (pointdiff[i] < 0) direction[i]=-1; 

 else direction[i]=0; 

} 

 

while(1) //loop through the rest of the uncompressed points 

{ 

 lastpoint=currpoint; //update last point 

 

 currpoint=fgets(coordsfile); //get the next point 

 

//if we reach the end of the file, break out of the loop 

if(currpoint = NULL) break; 

 

 //get temporary directions 

 for(i=1;i<4;i++) 

{ 

 pointdiff[i] = currpoint[i] – lastpoint[i]; 

  if (pointdiff[i] > 0) temppdir[i]=1; 

  else if (pointdiff[i] < 0) temppdir[i]=-1; 

  else temppdir[i]=0; 

} 

 

//check for changes in direction, if a change is found 

//check that the magnitude of the change is large enough 

for(i=1;i<4;i++) 

{ 



    63 

 if (tempdir[i] != direction[i]) 

 { 

  if(abs(currpoint[i]-lastsavedpoint[i]) > 1000)  

changeflag = 1; 

 } 

} 

 

//if a change has occurred, print & save the point 

if (changeflag) 

{ 

 fprintf(compressedfile, lastpoint); 

 lastsavedpoint = lastpoint; 

} 

 

changeflag=0; //reset changeflag 

  

 //update directions 

 direction=tempdir; 

} 

} 

Figure 33: compressCoords pseudo-code 

 

 

The code begins by opening the uncompressed coordinates file and creating a file to 

hold the compressed results.  The first point is then read in and saved as the 

lastpoint and lastsavedpoint.  The lastpoint is the most recently opened 

by before the current point and is used to check for a change in direction.  The 

lastsavedpoint is that most recent point that has been identified as a suitable 

change of direction point and has been saved to the compressed output file.  Next the 

second point is retrieved and saved as the currpoint (current point).  The 

currpoint and lastpoint are used to calculate the initial direction, that is, does 

the signal in the X, Y, & Z directions have a positive or negative slope.  This is done by 

subtracting the last point from the current point.  If the number is positive, that means 

that the currentpoint has a greater magnitude then the last point and the slope is 



    64 

positive.  If it is negative then the slope is negative.  If the answer is 0 they have the 

same magnitude.  Now the main loop can begin and the rest of the points can be 

analyzed.  The loop first updates the lastpoint and then gets the next point in the 

file.  If that attempt returns NULL it means that the end of the file has been reached and 

it is necessary to break out of the loop.  Temporary directions are then found for the 

current point versus the last point in the same manner as the original directions were 

found.  The temporary directions (tempdir) are then checked against the previous 

directions (directions), if an inconsistency is found in either X, Y, or Z, that means 

that a change in direction has occurred.  The change is then checked for magnitude by 

subtraction of the current and last points.  If the change is less then 1000, it is ignored.  

If it is greater, it is considered significant enough to be recognized and the 

changeflag is set from 0 to 1 to indicate that a valid change in direction has 

occurred.  If a change has occurred then the point is saved to the compressed points 

output and the lastsavedpoint buffer is updated.  Regardless of the state of 

changeflag it is then reset to 0 and the directions are updated.  This process 

continues until the entire set of points has been analyzed.  Figure 34, below, shows a 

graphical representation of this technique in action. 

 

 



    65 

 

Figure 34: Compression on Y 



    66 

The compression algorithm is designed to save points that represent a major change in 

direction of the X, Y or Z signals.  The beginning of the graph from 28 to 35 shows an 

excellent example of where the Y signal was the driving factor for points being saved.  

The rest of the graph, from points 36 to 56, contains points that were saved due to 

changes in either the X or Z directions.  The last point at 57 is due to the removal the 

object of interest from ISAC’s field of view at the end of the test.  As the graph 

demonstrates, a significant amount of compression takes place while the general shape 

of the signal is still maintained.  In this particular case the number of points was reduced 

from 276 points to 29 points.  In this case, the signal is adequately represented by 90% 

fewer points.  The number of necessary points in this example would be significantly 

less if the only sizable motion in the test was in the Y direction because almost all of the 

points on the graph between 35 and 57 would be eliminated bringing the total point 

count down to about 10. 

 

III.2.5. Fitting the Coordinates to ISAC’s Workspace 

Once filtering and compression have been completed the coordinates are still in 

relative units.  These units are not compatible with ISAC’s workspace.  In addition, ISAC 

represents the world as a rotation of the original representation of the world.  Where 

originally, the Y is vertical, X horizontal, and Z away from ISAC, ISAC sees the world 

with Z being vertical, Y horizontal, and X away from himself.  To make the coordinates 

compatible a conversion was necessary.  This conversion, essentially, switches the 

axes appropriately and further alters the coordinate signals to fit within ISAC’s 



    67 

workspace.  This involves both a scaling and a shift.  ISAC’s workspace is an irregular 

manifold.  To simplify calculations, a cubic subset of ISAC’s workspace was used.  To 

calculate these scaling and shift factors a sample workspace for ISAC was analyzed a 

method for finding the appropriate factors automatically was devised.  The method 

works by first finding the minimum and maximum values of X, Y, & Z.  Then calculating 

their difference to find the range of a given direction.  The range is divided by ISAC’s 

range to come up with a scale factor in X, Y & Z.  Then a shift factor is computed by 

dividing a known point in the original space by the scale factor and subtracting the 

associated known point in ISAC’s space.  Figure 35, below, shows the pseudo-code 

that carries out this operation. 

 

 

 

 

 

 

 

 

 

 

 

 

 



    68 

void fitCoordsToISAC2(char coords[], char fittedcoords[], int rl) 

{ 

 coordsfile = fopen(coords); //open our coords for reading 

 fittedfile = fopen(fittedcoords); //open a new file for output 

 

 //initialize maxs and mins 

 for(i=1;i<4;i++) 

 { 

  maxs[i]=-999999999999; 

  mins[i]=999999999999; 

 } 

 

 //find the maxs and mins for X, Y, & Z 

 for(;;) 

{ 

 

//get the next point in the file 

currpoint=fgets(coordsfile); 

 

//if we have reached the end of the file, break the loop 

if (currpoint == NULL) break; 

 

//find current maxs/mins 

for(i=1;i<4;i++) 

{ 

 //maxs 

 if(currpoint[i]>maxs[i]) maxs[i] = currpoint[i]; 

 //mins 

 if(currpoint[[i]<mins[i]) mins[i] = currpoint[i]; 

} 

} 

fclose(coordsfile); 

 

//CALCULATE DIFFERENCES 

for(i=1;i<4;i++) 

{ 

diffs[i]=maxs[i]-mins[i]; //get the range of each axes 

} 

 

//FIND BIGGEST RANGE & DIVIDE DIFFERENCE BY ISAC'S RANGE 

if(diffs[1] > diffs[2]) 

{ 

 //ensure movement is greater then a minimum 

 if (diffs[1] > MIN_MOVEMENT) 

  div = diffs[1]/(ISAC_Y_MAX-ISAC_Y_MIN); 

else 

  no_move = 1; 

} 

else 

{ 

//ensure movement is greater then a minimum 

 if (diffs[2] > MIN_MOVEMENT) 

  div = diffs[2]/(ISAC_Z_MAX-ISAC_Z_MIN); 

 else 

  no_move = 1; 

} 

  



    69 

//CALCULATE SHIFT FACTOR based on Face Location 

shift[1]=(mins[1][1]/div-FACE_Y)*-1; 

shift[2]=(maxs[1][2]/div-FACE_Z)*-1; 

 

//IF RIGHT ARM :: GET LARGEST LEFT/RIGHT (X->Y) VALUE 

armshift = maxs[1][1]/div+shift[1]; 

 

coordsfile = fopen(coords); //open our coords for reading 

 

//REWRITE FILE LINE BY LINE APPLYING SCALE & SHIFT & REARRANGE 

for(;;) 

{ 

currpoint = fgets(coordsfile); //get the next point 

if(currpoint == NULL) break; //if we reach EOF, break loop 

 

modpoint[0]=currpoint[0] //new TIME = old TIME 

 

//scale & shift the point 

for(i=1;i<4;i++) 

modpoint[i]=currpoint[i]/div+shift[i]; 

 

if (rl == RIGHT_ARM) //shift if right arm 

    modpoint[1]=modpoint[1]-armshift; 

 

  //SAFTEY SHIFT 

//shift the points further from the center to ensure ISAC  

wont hit his own hands together 

  if (rl == RIGHT_ARM) 

   modpoint[1]=modpoint[1]-SAFETY_SHIFT; 

  else 

   modpoint[1]=modpoint[1]+SAFETY_SHIFT; 

 

  //write to the new file in ISAC's order 

if (no_move) 

 fprintf(fittedcoordsfile,"%f,%f,%f,%f\n",modpoint[0], 

FOREARM+HAND_L,CENTER_TO_ANGLE_0+SHOULDER_OFFSET,- 

UPPERARM); 

else 

 fprintf(fittedcoordsfile,"%f,%f,%f,%f\n",modpoint[0], 

CONST_X,modpoint[1],modpoint[2]); 

} 

//close our file handles 

fclose(coordsfile); 

fclose(fittedfile); 

} 

Figure 35: fitCoordsToISAC pseudo-code 

 

 



    70 

The function, like most, begins by opening the existing coordinates file for reading and a 

second, empty file, for writing the output to.  The maxs and mins are then initialized to 

very large and very small values, respectively.  The actual maxs and mins of each axis 

are then found by looping through the points, and recording the largest and smallest 

values replacing them when necessary.  Once the maxs and mins are found the 

computation of the scale and shift factors begins.  First the differences of each max and 

min set (X, Y, Z) are found.  These differences represent the range of each signal.  

Then the X & Y ranges are compared to find the larger of the two.  We then take 

whichever is larger and use that to compute our scaling factor.  If the larger of the two is 

still below a certain MIN_MOVEMENT threshold then the movement is ignored entirely 

and that arm is instructed to remain in the home position.  Assuming that there is 

suitable movement detected, the larger difference is divided by ISAC’s range in that 

direction and that value is used as our scaling factor.  This scaling factor allows for the 

recorded points to be put into ISAC’s range.  Next the shift factor is calculated according 

to the location of the gesture movements relative to the face.  A second shift factor that 

applies only to ISAC’s Y motion is then calculated to be applied to the right arm points 

only.  This is done because all of the left and right calculations are virtually identical, 

and much of the code can be reused if the concession is made to shift the right arm 

points over at the end.  The point is then scaled and shifted according to the previously 

calculated values.  A final “safety shift” is then applied to further move ISAC’s arms 

apart from one another.  Finally the scaled and shifted point is written to the 

fittedcoords output file.  The axes are written in a modified order to apply the 



    71 

rotation to ISAC’s workspace and the X value is written as a constant CONST_X.  This 

is done because ISAC’s range in the X direction is very limited and looks proper. 

 

III.2.6. Calculating Joint Angles 

The systems calls for approximate mimicking of arm sized gestures.  A discrete 

Inverse Kinematics routine exists.  However, for it interface smoothly with the rest of the 

Processing Subsystem a function must exist to call the Inverse Kinematics routine for 

each point.  This function is called calcJointAngles and its pseudo-code is shown 

below in Figure 36. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



    72 

void calcJointAngles(char coords[], char angles[], int rightleft, int EndEff, 

int simple) 

 

 if(!simple) 

  pdAngles = new double[6]; 

  

 coordsfile = fopen(coords); //open our input file 

 anglesfile = fopen(angles); //open out output file 

 

 for(;;) 

 { 

//get the next point in the file 

currpoint=fgets(coordsfile); 

 

//breakout of the loop if we reach EOF 

if (currpoint=NULL) break; 

 

  //convert points to appropriate container 

  if(simple) 

  { 

   point.x = currpoint[1]; 

   point.y = currpoint[2]; 

   point.z = currpoint[3]; 

  } 

  else 

  { 

   for(j=0;j<3;j++) 

    pdPos[j]=currpoint[j+1]; 

  } 

  //INVERSE KINEMATICS 

  if(simple) 

   pdAngles = simpleInverseKinematics(point, rightleft); 

  else 

inverseKinematics(pdPos, pdAngles, (short)rightleft,  

(short)EndEff); 

   

  //write time + joint angles to the new joint angles file 

fprintf(anglesfile,  

"%f,%f,%f,%f,%f,%f,%f\n",currpoint[0],pdAngles[0],pdA 

ngles[1],pdAngles[2],pdAngles[3],pdAngles[4], 

pdAngles[5]); 

 } 

} 

Figure 36: calcJointAngles pseudo-code 

 

 

This function is essentially a wrapper for the actual Inverse Kinematics.  This function 

allows the user to pass it an entire set of points to be converted and also gives a choice 



    73 

between a simple and a complex Inverse Kinematics model.  The primary difference 

being whether all joints should be considered or the roll joints (3 and 5) should be 

ignored.  The function begins by opening out the input and output files.  Then the input 

file is looped through and as points are read out of it, the input parameters are checked.  

If a simple model has been requested, then the point is formatted in a CvPoint3D32f 

and passed along to the simpleInverseKinematics.  If a complex model has 

been requested, then the point is formatted in the appropriate array and passed along to 

it.  The request for a right or left arm consideration is passed along as well.  The end 

effector variable is only used for the complex model and is supposed to ignore then end 

effector when set to 0.  In practical testing, however, it does not perform up to 

expectations.  Since the simple Inverse Kinematics model is the model of choice, the 

complex model will be left at that.  The simple model is described in greater detail now. 

It is not required that the gripper approach the desired point from a certain 

direction or with a specific orientation.  Therefore the Inverse Kinematics, which allow 

joint angles to be calculated from a desired 3D point, can be greatly simplified by 

ignoring the gripper and its complex axes of rotation.  When the gripper is not 

considered, the Inverse Kinematics becomes that of a 3 link manipulator.  Angles 0 

relates to the rotation of the shoulder about an axis parallel to ISAC’s Z axis.  Angles 1 

& 2 relate to the extension of ISAC’s arm at the shoulder and elbow.  This configuration 

allows the Inverse Kinematics to be split into two sub-problems.  Angle 0 can be 

calculated by considering the X & Y coordinates done in such a way as to cause the 

arm to “point” toward its intended target.  Then angles 1 & 2 can be calculated using 

only the X & Z coordinates to cause the arm to reach out the appropriate distance.  



    74 

Geometry was used to determine the appropriate angles of joints 0, 1 & 2.  Figure 37 

displays a graphical representation of the two different cases for angle 0 along with the 

associated equations.   

 

 

 

 

Figure 37: Angle 0 graphs and equations 

 

 

Figure 38 displays a graphical representation of the angles 1 & 2 and associated 

equations.  The equations used to calculate angles 1 & 2 were taken directly from the 

geometric discussion of a 2 link manipulator in Modelling and Control of Robot 

Manipulators pgs. 68-69 [28]. 

 

 

arccosa

b

c
θ

 
=  

 

arctan
b

x

a y
θ

 
=  

− 

( )sin
b

x
c

θ
=

0 a b
θ π θ θ= − −

arctan
a

x

y a
θ

 
=  

− 

sin
arccos a

b

b

x

θ
θ

 
=  

 

0 b a
θ θ θ= −

(11)

(12)

(13)

(14)

(15)

(16)

(17)



    75 

 

Figure 38: Angles 1 & 2 graph and equations 

 

 

Lastly, although it is not considered in the calculation of joint angles relative to 

the target 3D location angle 4 is calculated as well.  Instead of attempting to aim the tip 

of the gripper at the target point the gripper instead points directly up.  This is to help 

give the illusion that ISAC is waving and gesturing back in a realistic manner.  Angling 

the gripper upward exposes ISAC “palm” to the user.  FIGURE Z shows a graphical 

representation of this situation and the corresponding equation used to calculate angle 

4. 

 

 

 

2 2 2 2

2
2

p px y u f
c

uf

+ − −
=

( )2 2arccosv c=

arctan
p

p

y

x
α

 
=   

 
2 2 2 2

2 2
arccos

2

p p

p p

x y u f

u x y
β

 + + +
 =
 + 

1
θ α β= +2 2

2
v

π
θ = − − (22), (23)

(20)

(19)

(18)

(21)



    76 

 

Figure 39: Angle 4 graph & equation 

 

 

All of these equations were then, of course, translated into C++ code for which 

the pseudo-code can be seen below in Figure 40. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( )4 1 2
θ π θ θ= − + + (24)



    77 

double* simpleInverseKinematics(CvPoint3D32f point) 

{ 

 //set constant holders 

 a = CENTER_TO_ANGLE_0; 

 b = SHOULDER_OFFSET; 

 u = UPPERARM; 

 f = FOREARM; 

 h = HAND_L; 

 

 //adjust x, y, z for math 

 x = point.x; 

 y = point.y; 

 z = -point.z; 

 

 //Calculate Theta 0 (shoulder X Y) 

 if (y >= a) 

 { 

  Ta = atan(x/(y - a)); 

  Tb = acos(b*sin(Ta)/x); 

  T0 = Tb - Ta; 

 } 

 else 

 { 

  n  = a - y; 

  Tb = atan(x/n); 

  o  = x/sin(Tb); 

  Ta = acos(b/o); 

  T0 = -(PI - Ta - Tb); 

 } 

 

 //Calculate Theta 1 (elbow) & Theta 2 (shoulder X Z) 

 alpha = atan2(z,x); 

 beta = acos((x*x+z*z+u*u-(f+h)*(f+h))/(2*u*sqrt(x*x+z*z))); 

 c2 = (x*x + z*z - u*u - (f+h))/(2*u*(f+h)); 

 v1 = alpha + beta; 

 v2 = acos(c2); 

 

 //conversion to ISAC's frame 

 T1 = v1; 

 T2 = -v2 - PI/2; 

 

 //Calculate Theta 4 (wrist up/down) 

 T4 = -(PI + T1 + T2); 

 

 //populate return array in degrees 

 ret[0]=T0; ret[1]=T1; ret[2]=T2; ret[3]=0; ret[4]=T4; ret[5]=0; 

 

 return ret; 

} 

Figure 40: simpleInverseKinematics pseudo-code 

 

 



    78 

The function follows the equations laid out in FIGURES X & Y exactly.  The output of 

the function is a 6 element array that corresponds to ISAC’s 6 joints. As evident in the 

code, the return array is populated by the calculated theta values except angles 3 and 5 

which are purposefully set to 0 as they correspond to the roll of the forearm and wrist, 

respectively. 

 

III.2.7. interpolateAngles Function 

Having ISAC move from one point to another that is physically distant cause 

visually violent motion.  In addition to this being visually displeasing it also increases the 

likelihood that ISAC damages himself through the aggressive motion.  This damage 

could manifest itself as a simple misaligned chain or it could be more destructive such 

as a blow muscle.  To avoid this situation an interpolateAngles function was 

devise.  This function’s purpose is to create a set of intermediate points between two 

original points.  This does not conflict with the compressCoords function (section 

III.2.4) as they serve different purposes.  compressCoords eliminates the notion of 

variable acceleration in the movement.  The interpolateAngles function aims to 

maintain this constant acceleration while smoothing out ISAC’s movement.  Figure 41 

displays the interpolateAngles pseudo-code. 

 

 

 

 

 



    79 

void interpolateAngles(char anglesIn[], char anglesOut[]) 

{ 

 anglesInFile = fopen(anglesIn);  //open input 

 anglesOutFile = fopen(anglesOut);  //open output 

 

 //get 1st line from anglesIn 

 lastangle = fgets(anglesIn); 

 

 while(1) //loop forever 

 { 

  //get a line from anglesIn 

  currangles = fgets(anglesIn); 

 

  if (currangles == NULL) break; //if we reach EOF, break 

   

  //get the time between 2 sets of angles  

  span = currangles[0] - lastangles[0];  

    

  //calculate increments for interpolation 

  for(i=1;i<7;i++) 

  { 

   increments[i]=(currangles[i] - lastangles[i])/span; 

  } 

 

  //write original point + new interpolated points 

  for(i=0;i<span;i++) 

  { 

    fprintf(anglesOutFile,"%f,%f,%f,%f,%f,%f,%f\n", 

    lastangles[0]+i, 

    lastangles[1]+i*increments[1], 

    lastangles[2]+i*increments[2], 

    lastangles[3]+i*increments[3], 

    lastangles[4]+i*increments[4], 

    lastangles[5]+i*increments[5], 

    lastangles[6]+i*increments[6]); 

  } 

 

  //update lastpoint 

  for(i=0;i<7;i++) 

   lastangles[i]=currangles[i]; 

 } 

 

 //print out the last point 

 fprintf(anglesOutFile,"%f,%f,%f,%f,%f,%f,%f\n",lastangles[0], 

lastangles[1],lastangles[2],lastangles[3], 

  lastangles[4],lastangles[5],lastangles[6]); 

 

  

 //close files 

 fclose(anglesInFile); 

 fclose(anglesOutFile); 

} 

Figure 41: interpolateAngles pseudo-code 

 



    80 

The interpolateAngles function begins by recording the 1st set of angles in the 

lastangles variable.  Then the rest of the file is iterated through.  During each 

iteration the new point is read into currangles.  The span variable is calculated to 

be the range between the currangles time variable and the lastangles time 

variable.  This tells the function how many points to create in-between.  By using a 

variable number of interim points, the timing is kept consistent.  The function then 

calculates the increments necessary to go from the lastangles value to the 

currangles value in number of time steps represented by span.  The 

lastangles along with the new interpolated angles are then written to the output 

file.  This continues until the last point is reached at which time the loop breaks out and 

the last point is written 

 

III.2.8. Uploading The Coordinates To ISAC’s Control Systems 

The final step that is executed on the machine Sally is to upload the coordinates 

to a location that can be accessed by the Arm Control System which is located on a, 

physically, separate machine known as Octavia.  This is done by simply reading the 

final filtered, compressed, and fitted coordinates file and writing it onto a shared location 

at I:/Temp/uploadL.txt and I:/Temp/uploadR.txt corresponding to the 

points that the left and right arms should follow.  The, condensed, code is show below in 

Figure 42. 

 

 



    81 

void uploadCoordsToNNbatch(char uploadL[], char uploadR[], char coordsL[], 

char coordsR[]) 

{ 

 char line [512];  //holder for a single line of a coordsfile as  

 //it is parsed 

 FILE *uploadfileL; //file handle for temp upload file to send  

 //info to the NN L 

 FILE *uploadfileR; //file handle for temp upload file to send  

 //info to the NN R 

 FILE *coordsfileL; //file handle for coords to be uploaded L 

 FILE *coordsfileR; //file handle for coords to be uploaded R 

 

 //open coords files 

 coordsfileL = fopen(coordsL, "r"); //coordinates to be uploaded 

 coordsfileR = fopen(coordsR, "r"); //coordinates to be uploaded 

  

 uploadfileL = fopen(uploadL, "w"); 

 uploadfileR = fopen(uploadR, "w"); 

 

 //copy to a text file on the shared I drive for use by the Neural  

//Network Controller 

 for(;;) 

 { 

  if(fgets(line, 512, coordsfileL) != NULL) 

  { 

   fprintf(uploadfileL, line); 

  } 

  else break; //if we reach EOF, break out of the loop 

 } 

 

 for(;;) 

 { 

  if(fgets(line, 512, coordsfileR) != NULL) 

  { 

   fprintf(uploadfileR, line); 

  } 

  else break; //if we reach EOF, break out of the loop 

} 

 

 fclose(uploadfileL); 

 fclose(uploadfileR); 

 fclose(coordsfileL); 

 fclose(coordsfileR); 

} 

Figure 42: uploadCoordsToNNbatch (condensed) 

 

 

After the declaration of variables, the function starts by opening up 2 local coordinates 

files that correspond to the left and right arms’ paths.  Then 2 files are opened up for 



    82 

uploading purposes that are on a shared network drive.  The next step is repeated 

twice, once for each set.  A loop is setup and a line is simply read from the local drive 

and written to the network drive until the upload is completed. 

 

III.3. Control/Arm System 

While Vision and Processing are bundled together on the Windows XP machine 

Sally, the Control System is separate on located on a Windows 2000 Machine named 

Octavia.  The system is built on the locally written Neural Network / PID Controller by 

Erdemir and Ulatas.  Their contribution is discussed in more detail in section II.4.3.  The 

rest of this section will describe the controller as it relates to the project. 

 

III.3.1. The Controller 

The actual controller is a combination Neural Network / PID controller.  At its 

most basic level it works like this.  The controller takes in a set of joint angles, which is 

fed to a lookup table whose values have been populated using a Neural Network 

training method.  This lookup table associates joint angles to specific air pressures that 

should be in each muscle represented by voltages than need to be applied to the 

valves.  A certain amount of time is given for this portion of the controller to bring the 

arm as close to the objective point as possible.  Then the PID portion kicks in.  This 

portion reads in actual joint angles, computes the location that the arm is reaching to, 

and compares it to the objective point.  If the points do not match, then adjustments are 

made.  This is continued for set amount of time to give the arm a chance to reach its 



    83 

destination.  Either one of these sections can be disabled making the controller purely 

Neural Network or purely PID based. 

 

III.3.2. The Modifications 

The original design of the controller had the desired point hard coded in and 

allowed for only a single point to be reached to per run of the software.  The devised 

system requires that a set of points be achieved in series.  The bulk of the modifications 

to the controller revolved around making this happen.  The modifications started with 

the replacement of the hard coded goal point with code that opened up a text file and 

read the desired point in.  This text file corresponds to the file uploaded by the Vision 

and Processing System.  The entire main function was then wrapped in a loop that 

would allow for multiple points to be read in and moved to in succession.  Several minor 

modifications were necessary to make this all happen but they were mostly minutiae 

related to coding, not to the essence of the software. 

 

III.3.3. Integration with the Vision & Processing Systems 

The integration of the Control System with the Vision & Processing Systems is 

fairly straight forward.  Wrapping both systems in TCP/IP code and having the system 

communicate live over the network was considered.  Upon further scrutiny, however, it 

was decided that approach was unnecessary and added complexity but did not 

enhance the capabilities of the system itself.  Instead a simpler approach was taken.  

The Control System is started up first.  The Vision & Processing System is started up 



    84 

second.  The Vision & Processing Systems works through, as described in sections III.1 

and III.2, and finish their execution by first uploading the coordinates files to I:/Temp 

and then uploading an indicator file.  Meanwhile, the Control System is sitting in a loop 

searching for this indicator file.  When it finds it, it begins execution by downloading the 

coordinates files.  When the Control System has completed, it deletes the indicator file 

resetting for another run. 

 



    85 

CHAPTER IV 

 

EXPERIMENT 

IV. EXPERIMENT 

IV.1. Goals 

Due to the nature of the project, the results are necessarily subjective.  The goal 

of the project was to create a system by which ISAC could see and mimicking arm 

gestures.  Thus, the final output of the system is the movement of ISAC’s arms and the 

main standard by which the quality is measured lies with the observer.  This makes 

traditional experimentation difficult.  A truly in-depth experiment regarding the quality of 

the yield of this project would require something akin to a double blind study where by 

the individual observing the output would have no knowledge of the input and 

associates would be need to be made.  This type of experiment is outside the scope of 

this project and besides that, the logic fails in a minor way.  The system has been 

designed to allow ISAC to repeat a gesture back to a user.  Therefore, given the current 

design of the system and the original project goals, the individual observing the 

system’s output will always be either the user supplying the input or another individual 

within close proximity who has had the opportunity to see both the input and the output.  

Therefore, the specific goal of this experiment will be a subjective one whereby the user 

supplying the input will have to judge whether the output is sufficiently similar. 



    86 

IV.2. Procedure 

An experiment will be conducted by which a user will move their hand slowly and 

steadily in the specified directions.  ISAC’s response will be monitored and the 

observations will be distilled down into either a recognizable or unrecognizable gesture.  

The user will perform the following gestures.  If only 1 hand is listed as moving, the 

other should remain still. 

 

 

1. Left hand, Y axis, ½ meter, 3 repetitions 

2. Right hand, Y axis, ½ meter, 3 repetitions 

3. Left hand, X axis, ½ meter, 3 repetitions 

4. Right hand, X axis, ½ meter, 3 repetitions 

5. Both hands, Y axis, ½ meter, 3 repetitions 

6. Both hands, X axis, ½ meter, 3 repetitions 

7. Left hand, diagonal upper left to lower right, 3 repetitions 

8. Right hand, diagonal upper left to lower right, 3 repetitions 

Figure 43: Experiment Tests 

 

 

 

After a test is performed ISAC will, by design, repeat the gesture.  The output behavior 

will be noted, the gesture will be classified as recognizable or unrecognizable, and any 



    87 

abnormalities will be noted.  Additional an approximation of the range of ISAC’s 

repeated motion will be given. 

 

IV.3. Results 

 

Trial # Recognizable? 
≈Distance 

Moved 
Notes 

1 Yes 24” A bit of extra Z motion ≈12” 
2 Yes 24” A bit too low 
3 Yes 20” Forearm flops at apex 
4 Yes 20” - 
5 Yes 20” Movement is a bit out of sync 
6 Yes 20” Forearm flops at apex 
7 Yes 18” - 
8 Yes 18” - 

Figure 44: Experiment Results 

 

IV.4. Discussion 

 

Overall the results of the experiment were deemed acceptable.  There are areas 

where the motion could be improved.  Most of this work will go into the controller and 

devising ways of providing for smooth movement.  As was noted in Figure 44, in some 

cases there was extraneous movement.  This implies that, while the human operators 

movement was primarily in, say, the Y direction, there was some output movement in 

another direction.  While this occurred it was of a lesser magnitude then the intended 

movement and did not hinder the gesture as being recognizable. 



    88 

Trial 1 involved moving the left hand back and forth along the Y axis a distance if 

½ meter.  The results were good although there was a bit of movement in the Z axis 

that was not desired.  This is partially due to error inherent to the disparity calculations 

and partially due to error in the Neural Network.  The arm moved over approximately a 

24” range. 

Trial 2 was a copy of trial 1 using the right hand instead of the left hand.  Again 

the movement was good, there was a slight bit of extraneous Z axis motion and the 

entire motion occurred over a range of approximately 24”. 

Trials 3 and 4 were very good.  They had the user moving their left and right 

hands, independently, up and down a distance of ½ meter.  ISAC repeated these 

actions very well although the left forearm has a tendency to fall back onto the left 

upperarm when it passes vertical.  This is because, in the current architecture of ISAC, 

the rear upper-arm muscles have been disabled.  This provides no tension to avoid this 

problem displayed here.  The movement ranged over approximately 20” in both trials. 

Trials 5 performed well, very similar to trials 1 and 2 although a new, minor issue, 

was introduced.  There is a bit of a temporal shift in one arm compared to the other.  

What this means is that, although the user moved their arms in sync, ISAC moved his 

arms out of sync. 

Trial 6 was very good and very similar to trials 3 and 4.  The left arm suffered 

from the same problem as in trial 3.  This problem is not as apparent in ISAC’s right arm 

because ISAC’s right gripper is lighter then his left.  This puts less torque on the right 

elbow.  The motion in this trial was approximately 20” for both arms. 



    89 

Trials 7 and 8 were very good as well.  The motion was quite recognizable and 

the only issue to speak of was in smoothness of motion.  An upgrade to the controller 

would help to work out this problem.  It is necessary that the controller operate at a fast 

enough pace to keep the arms in motion.  Jerkiness appears when the arm is asked to 

start and stop at each via point along its path.  The motion in both trials 7 and 8 

occurred over a path of approximately 18”. 

As a basis for Imitation Learning the entire project is considered a success.  It is 

this author’s hope that future work goes into the project to improve it in every way 

possible.  Many areas for improvement are been discussed in section V.2.1.



    90 

CHAPTER VI 

 

WRAP-UP 

V. WRAP-UP 

V.1. Conclusion 

Throughout many months of work, this project has gone from experiments with a 

cheap webcam to a fully functional system that employs most all of ISAC’s available 

hardware to complete its goal.  The system successfully bestows the ability to track 

simple arm gestures, performed by a human user, and repeat said arm gestures back in 

a recognizable way.  Throughout the development many surprises were overcome.  

Additionally many subsystems were created that were not originally anticipated.  

Improvements to the Neural Network based controller and a complete, from scratch, 

creation of an Inverse Kinematics solution were not expected but proved beneficial to 

the system.  The entire concept of filtering the signals was not projected.  However, it 

was, like all other obstacles overcome.  The system effectively combines elements of 

computer vision, signal processing, kinematics, and control systems to achieve the 

goals set forth at the start of the project and is considered a success. 

 

V.2. Recommendations for Future Work 

While the system that has been developed is quite robust and flexible there is, of 

course, room for improvement.  In addition the creation of the system has led to the 



    91 

development of several ideas for tangent projects that could be beneficial.  This section 

will describe the possible improvements and potential projects that have arisen out of 

the months of work that have gone into the system. 

 

V.2.1. Improvements to the Current System 

V.2.1.1. Save/Load of frames as BMPs 

There are several instances where a shortcut was taken and those areas should 

be revisited.  The instances in question never hurt the functionality of the software but 

sometimes would result in lower performance.  The first instance is in the retrieving of 

frames from the cameras and loading of said frames into IplImage structures.  In the 

current version of the software, the retrieved frames are saved as a BMP file on the 

local hard drive of the machine and then reopened and loaded into an IplImage 

structure.  This, of course, is functional but it is the opinion of this author that higher 

performance could be achieved during the recording of the gestures if this step of 

saving as and open up a BMP file could be eliminated.  Ideally the frame, retrieved from 

the cameras would be loaded directly into an IplImage structure. 

 

V.2.1.2. Colored Gloves 

The current setup requires that the user wear brightly colored gloves or hold 

brightly colored objects to assist in the detection of the hands.  The initial exploration of 

the project found that Haar-detection of hands was not feasible given the types of 

sample image that were able to be generated in the lab.  In addition detecting hands 



    92 

using color segmentation proved difficult as most of the lab environment is of a hue 

similar to human skin.  The walls are beige, the doors and shelves are tan.  Both of 

these colors share the same basic hue as human skin.  It would be ideal if the colored 

gloves requirement could be lifted.  This could come about by revisiting Haar detection, 

exploring Kalman filters, or investigating some other technology.  Perhaps a 

combination of existing technologies would prove effective.  Regardless, the colored 

gloves requirement is the only requirement related to the user wearing equipment and it 

would be practical to eliminate it. 

 

V.2.1.3. Keyboard Start/Stop of Gesture Recording 

At the present time, the recording of a user’s gesture is started and stopped via a 

keystroke on the keyboard of the Sally PC.  This makes it difficult for a single user 

interact with ISAC using the system and it also acts as a deterrent for repeated gestures 

mimicking, although it does not prohibit it.  Modification to the start/stop mechanism to 

eliminate this reliance on the keyboard would be useful.  One possibility is to integrate 

voice recognition and allow the user to start and stop gesture recording with a voice 

command.  Perhaps a specific gesture, such as the shake of the both hands, could 

initiate gesture recording.  A discontinuation in hand movement could signal the 

completion of a gesture and stop gesture recording.  No matter what solution is chosen, 

removing this restriction would add usability and flexibility to the system. 

 



    93 

V.2.1.4. Objects Leaving ISAC’s Field of View 

Currently, when ISAC is recording a gesture, he simply looks for the location of 

the hand (colored object) in both images and calculates the 3D location using that 

information.  This, essentially, fails when the object leaves the FOV of one of ISAC’s 

eyes but not the other.  When this happens the points no longer correspond and a false 

value is recorded for the 3D location.  It would be advantageous for this problem to be 

addressed.  It could be as simple as pausing recording when an object leaves the FOV 

of one of ISAC’s cameras.  A more complex, but also more complete, solution might be 

to have ISAC track the object via his pan-tilt units.  Were such a subsystem created, it 

could integrate seamlessly with the rest of the Processing and Control code in the 

system. 

 

V.2.2. Tangent Projects Built on the Current System 

V.2.2.5. Improvement to the Communications Methods 

At present, the Vision & Processing Subsystems communicate with the Control 

System through the upload of files to a shared location along with the upload of a flag 

file that the Controller searches for to initiate mimicking.  A more robust solution would 

be to incorporate a TCP/IP based protocol.  At a higher level, this could be designed as 

a client/server architecture [43] or perhaps as a publish/subscribe [45] architecture.  A 

move to a system of this type would not only be more resilient against accidentally file 

deletion, it would also be more flexible allowing many systems to integrate with the 

current system via standardized protocol. 



    94 

V.2.2.6. Real-time Gesture Mimicking 

Currently the system is designed to go through a gesture recording phase and 

then move into a gesture replication phase.  A tangent project might be to modify the 

existing system to work in real time.  This is a very possible upgrade to the existing 

system and it may be advantageous to include some sort of software switch that would 

allow both real-time and record/playback behavior to coexist.  To modify the system in 

such a way as to have real-time mimicking the Vision Subsystem and Processing 

Subsystem would have to be closely intertwined.  Instead of the current scheme where 

the Processing Subsystem works on a set of points, it would have to be modified to 

work on each point in turn.  This project would benefit from the communications 

upgrades outlined in section V.2.2.5.  In addition to real-time behavior a switch could be 

put in to allow for mirrored mimicking or non-mirrored mimicking.  Presently, the 

mimicking is not mirrored.  When the user moves their left hand, ISAC responds by 

moving his left hand.  In a mirrored configuration, ISAC would move his right hand in 

response to the user moving his or her left. 

 

V.2.2.7. System Performance Improvements 

The frame rate of the current system is about 2.5 FPS (frames per second).  In 

some cases, such as for fast gestures, this may not be sufficient.  There are several 

simple steps that could, reasonably, be taken to improve the performance of the 

system.  The changes outlined in section V.2.1.1 may help.  In addition, OpenCV is 

designed to take advantage of IPP (Intel’s Performance Primitives) if they are found on 

the host machine.  IPP is designed to take advantage of machine code level routines 



    95 

that are specially designed for high performance execution of image and signal 

processing.  By purchasing and installing IPP a performance boost could be seen 

immediately.  Also, the system could be rewritten as a multithreaded application 

allowing several image processing functions to take place at once.  An obvious choice 

here would be to have both hands and the face detected in both faces simultaneously.  

The computer that this system is running on is a 3Ghz Pentium 4 with 1 GB of RAM.  

The multithreading could be further enhance if a newer, multicore CPU based computer 

were used as the host machine. 

 

V.2.2.8. Improved Neural Network Controller 

The current Artificial Neural Network based controller has a single input node, a 

single output node, and 10 hidden nodes.  This comes from the fact that only a single 

joint is considered during training.  This would be fine if the other joints had no bearing 

on the performance of a given joint, but this is not the case.  The position of other joints 

changes the center of gravity and the range of motion of a given joint.  Therefore, a 

more effective controller scheme might be to have a more complex Neural Network in 

which all 6 joints were represented as inputs and outputs instead of 1 at a time.  

Training the system on a Neural Network of this type would allow for interactions 

between the various joints to be taken into account.  Another possible controller scheme 

would involve Support Vector Machines [2].  An SVM could be used to find correlations 

and patterns within the high dimensionality data acquired from ISAC.  Either of these 

methods could provide more accurate control of ISAC’s arms while still maintaining the 

open-loop nature of the system. 



    96 

REFERENCES 

 

[1] Bridgestone Corporation. http://www.bridgestone.com/ 
 
[2] Cristianini, N. and J. Shawe-Taylor, An Introduction To Support Vector Machines 
(and other kernel-based learning methods), Cambridge University Press, 2000. 
http://www.support-vector.net/ 
 
[3] Computational Vision at CalTech, “Camera Calibration Toolbox for Matlab.” 
http://www.vision.caltech.edu/bouguetj/calib_doc/ 
 
[4] Computational Vision at CalTech, “Jean-Yves Bouguet’s WWW Homepage.” 
http://www.vision.caltech.edu/bouguetj/index.html 
 
[5] Dadone, P., “Design Optimization of Fuzzy Logic Systems”, PhD thesis, Virginia 
Polytechnic Institute and State University, 2001 
 
[6] Directed Perception, “Model PTU-46-17.5.” http://www.dperception.com/pdf/specs-
ptu-d46.pdf 
 
[7] Epson Seiko. http://www.epson.co.jp/e/ & http://en.wikipedia.org/wiki/Epson 
 
[8] Erdemir, E., “Design and Optimization of a Fuzzy-Neural Hybrid Controller Structure 
for a Rubbertuator Robot Using Genetic Algorithms” MS thesis, Boğaziçi University, 
2006 
 
[9] Gardner, R. J. (2002). "The Brunn-Minkowski inequality". Bulletin of the American 
Mathematical Society (N.S.) 39 (3): 355–405 (electronic) 
 
[10] Gonzalez, R. C. and R. E. Woods, Digital image processing, 2nd ed. Upper Saddle 
River, N.J.: Prentice Hall, 2002 
 
[11] Honda.  “ASIMO: The Honda Humanoid Robot ASIMO.” 
http://world.honda.com/ASIMO/ 
 
[12] Hong, K., J. Min, W. Lee, J. Kim, Real Time Face Detection and Recognition 
System Using Haar-Like Feature/HMM in Ubiquitous Network Environments, Springer 
Berlin / Heidelberg, 2005 
 
[13] Intel®, “Intel® Integrated Performance Primitives 5.3.” 
http://intel.com/software/products/ipp 
 
[14] Intel®, “Intel Software Products.” http://www.intel.com/software/products/perflib/ijl/ 
 



    97 

[15] Intel®, “Open Source Computer Vision Library.” 
http://www.intel.com/technology/computing/opencv/ 
 
[16] Kearns, M. J., The Computational Complexity of Machine Learning, The MIT Press, 
1990. 
 
[17] “Learning-Based Computer vision with Intel’s Open Source Computer Vision 
Library.” Compute-Intensive, Highly Parallel Applications and Uses 09-01 (May 19, 
2005) 
http://www.intel.com/technology/itj/2005/volume09issue02/art03_learning_vision/p04_fa
ce_detection.htm 
 
[18] Leutron Vision, “Leutron Vision: XC-999/999P.” 
http://www.leutron.com/english/cameras/xc999_f.htm 
 
[19] Naotoshi Seo., “Tutorial: OpenCV haartraining (Rapid Object Detection With A 
Cascade of Boosted Classifiers Based on Haar-like Features).” 
http://note.sonots.com/SciSoftware/haartraining.html 
 
[20] Northrup, S., “A PC-Based Controller for the Soft Arm Robot”, PhD diss., Vanderbilt 
University, 2001 
 
[21] Nosaka, K., K. Sakamoto, M. Newton, P. Sacco, “Influence of Pre-Exercise Muscle 
Temperature on Responses to Eccentric Exercise,” Journal of Athletic Training 39 (Apr. 
– June 2004): 132-137.  (electronic) 
http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=419505&blobtype=pdf 
 
[21] Oztop, E., M. Kawato, M. Arbib, Mirror neurons and imitation: a computationally 
guided review, Neural Networks, v.19 n.3, p.254-271, April 2006  
 
[22] Pérez-Uribe, Andrés, “Structure-Adaptable Digital Neural Network.” PhD thesis, 
Swiss Federal Institute of Technology-Lausanne, 1999  
 
[23] Peters II, R. A, EECE 254 Computer Vision Lecture Notes: Stereopsis (Coplanar), 
Department of Electrical Engineering and Computer Science, Vanderbilt University 
(PowerPoint Presentation) 
 
[24] Peters II, R.A., K. E. Hambuchen, K. Kawamura, and Wilkes, D. M., The Sensory 
EgoSphere as a Short-Term Memory Humanoids, Proceedings of the IEEE-RAS 
International Conference on Humanoid Robots, pp 451-459, Waseda University, Tokyo, 
Japan, 22-24 November 2001. 
 
[25] Rojas, J. L., “Sensory Integration with Articulated Motion on a Humanoid Robot”, 
MS thesis, Vanderbilt University, 2004  
 



    98 

[26] Schaal, S. (1999). Is imitation learning the route to humanoid robots?, Trends in 
Cognitive Sciences, 3, 6, pp.233-242. 
http://courses.media.mit.edu/2003spring/mas963/schaal-TICS1999.pdf 
 
[27] Schröder, J., “Position Control of a Humanoid Robot Arm actuated by Artificial 
Muscles”, MS thesis, University of Karlsruhe, 2003 
 
[28] Sciavicco, L., and B. Siciliano, Modelling and Control of Robot Manipulators, 2d ed. 
Springer, 2000, pp. 68-69.  
 
[29] Shadow Robotics Company. http://www.shadowrobot.com/ 
 
[30] SMC Pneumatics, “ITV2050-312CN4.” http://www.coastpneumatics.com/floaters/I3-
J/ITV2050-312CN4.html 
 
[31] SourceForge.net, “CxCore – OpenCV Library Wiki,” 
http://opencvlibrary.sourceforge.net/CxCore 
 
[32] SourceForge.net, “HighGUI – OpenCV Library Wiki.”  
http://opencvlibrary.sourceforge.net/HighGui 
 
[33] SourceForge.net, “SourceForge.net: Open Computer Vision Library.” 
http://sourceforge.net/projects/opencvlibrary/  
 
[34] SourceForge.net, “Welcome – OpenCV Library Wiki.” 
http://opencvlibrary.sourceforge.net/ 
 
[35] Srikaew, Atit, “A Biologically Inspired Active Vision Gaze Controller”, PhD diss., 
Vanderbilt University, 2000  
 
[36] Staff Writer, “Humanoid performing robot debuts,” Taipei Times, pg. 12, Oct. 10, 
2007. http://www.taipeitimes.com/News/biz/archives/2007/10/10/2003382566 
 
[37] SUMTAK. http://www.sumtak.co.jp/english/top.html 
 
[38] Ulutas, B.,  E. Erdemir, and K. Kawamura, A Hybrid Neural Network-Based and PID 
Controller with Non-contact Impedance and Grey Prediction, 2008 
 
[39] Viola, P. and M. Jones. Rapid object detection using a boosted cascade of simple 
features. In IEEE Conference on Computer Vision and Pattern Recognition, 2001 
 
[40] Vital Systems, “Motion Control PCI Card.” 
http://www.vitalsystem.com/web/motion/motionLite.php 
 
[41] Vital Systems, “Motion Control Breakout Boards.” 
http://www.vitalsystem.com/web/common/breakout.php 



    99 

 
[42] Wikipedia, “Artificial neural network.” 
http://en.wikipedia.org/wiki/Artificial_neural_network 
 
[43] Wikipedia, “Client-server.” http://en.wikipedia.org/wiki/Client-server 
 
[44] Wikipedia, “Pneumatic artificial muscles.” 
http://en.wikipedia.org/wiki/Pneumatic_artificial_muscles 
 
[45] Wikipedia, “Publish/subscribe.” http://en.wikipedia.org/wiki/Publish/subscribe 
 
[46] Williamson, M., Postural primitives: Interactive behavior for a humanoid robot arm. 
In Pattie Maes, Maja Matari'c, Jean-Arcady Meyer, Jordan Pollack, and Stewart Wilson, 
editors, Fourth International Conference on Simulation of Adaptive Behavior, pages 
124--131, Cape Cod, MA, 1996. MIT Press. 
http://citeseer.ist.psu.edu/williamson96postural.html 
 



    100 

APPENDIX 

 

A. Vision & Processing Code Listing 

A.1. TrackColor.cpp (main Vision & Processing Code) 

 

//Sean Begley 

//Imitation Learning 

//Hand Following 

//1/23/2008 

 

//INCLUDES 

#include "TrackColor.h" 

#include "Kinematics.h" 

 

int main( int argc, char** argv ) 

{ 

 //INITALIZE VARIABLES 

 

 //TEMPORARY STORAGE 

 char * tempL = (char*)"C:/Temp/tempL.bmp";     

  //left frame 

 char * tempR = (char*)"C:/Temp/tempR.bmp";     

  //right frame 

 char coords[] = "C:/Temp/coords.txt";      

  //initial coordinates 

 char filteredcoords[] = "C:/Temp/filteredcoords.txt";   

 //filtered coordinates 

 char tempcoords[] = "C:/Temp/tempcoords.txt";     

 //tempory storage during filtering 

 char compressedcoords1[] = "C:/Temp/compressedcoords1.txt";  

 //compressed coordinates for object 1 

 char compressedcoords2[] = "C:/Temp/compressedcoords2.txt";  

 //compressed coordinates for object 2 

 char fittedcoords1[] = "C:/Temp/fittedcoords1.txt";    

 //coordinates fitted to ISAC's workspace for object 1 

 char fittedcoords2[] = "C:/Temp/fittedcoords2.txt";    

 //coordinates fitted to ISAC's workspace for object 1 

 char uploadL[] = "I:/Temp/uploadL.txt";      

  //upload location to share with Neural Network (left arm) 

 char uploadR[] = "I:/Temp/uploadR.txt";      

  //upload location to share with Neural Network (right arm) 

 char angles1[] = "C:/Temp/angles1.txt";      

  //joint angles for object 1 

 char angles2[] = "C:/Temp/angles2.txt";      

  //joint angles for object 2 

 char goflag[] = "I:/Temp/Start.Now";      

  //flag file to tell the controller to start 



    101 

 char facedcoords[] = "C:/Temp/facedcoords.txt";     

 //coords file with the averaged face location 

 char flippedcoords[] = "C:/Temp/flippedcoords.txt";    

 //coords after all Y's have been flipped 

 char interpolated1[] = "C:/Temp/interpolated1.txt";    

 //angles1 with interpolation applied 

 char interpolated2[] = "C:/Temp/interpolated2.txt";    

 //angles2 with interpolation applied 

 int counter = 0;          

   //time counter used to keep track of relative time of saved 

points 

 LARGE_INTEGER ticksPerSecond, start_ticks, end_ticks, cputime, 

tick;//variables for timing vision loop 

  

  

 //TEST VARIABLES: set these to enable and disable different portions of 

the system 

  

 int usevision = 1;   //test variable to enable (1) and 

disable (0) Vision Subsystem usage 

        //if set to 0, the vision & 

gesture tracking will have no effect 

        //and filtering / processing 

will take place on whatever coords.txt 

        //exists in C:/Temp 

 int usearms = 1;   //test variable to enable (1) and disable 

(0) Controller Subsystem 

        //usage.  if set to 0, the 

UploadL, UploadR, & Start.Now files will NOT 

        //be written to the shared I 

drive and, thus, the Controller will NOT 

        //be signalled to start 

 

 //left & right frame buffers, camera objects, temporary image storage 

    IplImage *frameL, *frameR; 

 CPXCk_FG cameraL, cameraR; 

  

 //left & right camera coords/radius for object 1 (BLUE BEAN BAG) 

 CvTarget l1 (160, 120, 0); 

 CvTarget r1 (160, 120, 0); 

 

 //left & right camera coords/radius for object 2 (GREEN LEGO LID) 

 CvTarget l2 (160, 120, 0); 

 CvTarget r2 (160, 120, 0); 

 

 //left & right face location for Haar facedetect 

 CvTarget lf (160, 120, 0); 

 CvTarget rf (160, 120, 0); 

 

 //relative coords of tracked objects 

 CvPoint3D32f obj1loc; 

 CvPoint3D32f obj2loc; 

 CvPoint3D32f faceloc; 

 faceloc.x=0;faceloc.y=0;faceloc.z=0; 

  

 //coordinate storage 



    102 

 FILE * coordsfile;    //file handle to store 

unparsed coordinates 

  

  

  

  

 //BEGIN PROGRAM 

  

 //create output windows 

    cvNamedWindow("Tracker Left", 1); 

 cvNamedWindow("Tracker Right", 1); 

 //cvNamedWindow("Val Mask", 1); 

 //cvNamedWindow("Hue Mask", 1); 

 

  

 //haar initialization 

 cascade_name = 

"I:/Etc/OpenCV/data/haarcascades/haarcascade_frontalface_alt2.xml"; 

 cascade = (CvHaarClassifierCascade*)cvLoad( cascade_name, 0, 0, 0 ); 

 storage = cvCreateMemStorage(0); 

 

 //timer initializiation 

 if (!QueryPerformanceFrequency(&ticksPerSecond)) 

  if (!QueryPerformanceCounter(&tick)) 

   printf("visual system counter doesnt work\n"); 

 

 cameraR.put_FrameGrabberID(1);   //set the Right camera 

as ID 1 (Left is ID 0) 

 

 if(cameraL.Initialize(0) && cameraR.Initialize(0) && hd.Initialize())

 //proceed if everything successfully initialize 

 { 

  printf("****All Initializations Complete Successfully\n"); 

 } 

 else 

 { 

  //error if we can't initialize the Cameras 

  fprintf(stderr, "ERROR: Could not Initialize Cameras\n"); 

  cvDestroyWindow("Tracker Left"); 

  cvDestroyWindow("Tracker Right"); 

  return 0; 

   

 } 

 //continually get a frame and run the detection function 

 printf("\n TRY TO KEEP YOUR FACE STILL AS YOU MOVE YOUR ARMS DURING 

GESTURE RECORDING \n"); 

 printf("\n********************************************\n"); 

 printf("* PRESS ANY KEY TO BEGIN GESTURE RECORDING *\n"); 

 printf("********************************************\n"); 

 while(1) 

 { 

  if(cameraL.GetImage(tempL) && cameraR.GetImage(tempR)) 

 //proceed if a frame is successfully retrieved 

  { 

            frameL=cvLoadImage(tempL); //load the retrieved frame into an 

IplImage structure 



    103 

   frameR=cvLoadImage(tempR); //load the retrieved frame 

into an IplImage structure 

  } 

 

  //display images to the user 

  cvShowImage("Tracker Left", frameL); //show the left frame 

  cvShowImage("Tracker Right", frameR); //show the right frame 

   

  if(cvWaitKey( 10 ) >= 0) break; //do not start tracking until 

a user hits a key 

 } 

     

 hd.Home();  //ensure the pan/tilts are at the home position 

 

 if(usevision) 

 { 

  coordsfile = fopen(coords, "w"); 

  if (coordsfile == NULL) return 0;   //break out of 

the if statement and end the program if the coordsfile cannot be opened 

 

 fprintf(coordsfile,"TIME,PX1L,PY1L,PX1R,PY1R,X1,Y1,Z1,PX2L,PY2L,PX2R,PY

2R,X2,Y2,Z2,FACE_PXL,FACE_PYL,FACE_PXR,FACE_PYR,FACE_X,FACE_Y,FACE_Z\n"); 

 } 

 

 printf("\n********************************************\n"); 

 printf("* PRESS ANY KEY TO STOP GESTURE RECORDING  *\n"); 

 printf("********************************************\n"); 

 

 //VISION SUBSYSTEM LOOP 

    for(;;)  //loop forever 

    { 

  QueryPerformanceCounter(&start_ticks); //get start time 

 

        if(cameraL.GetImage(tempL) && cameraR.GetImage(tempR)) 

 //proceed if a frame is successfully retrieved 

  { 

            frameL=cvLoadImage(tempL); //load the retrieved frame into an 

IplImage structure 

   frameR=cvLoadImage(tempR); //load the retrieved frame 

into an IplImage structure 

  } 

  else 

  { 

   //error if we can't get a frame from the camera 

   fprintf(stderr, "ERROR: Could not retrieve frames from 

Cameras\n"); 

   break; 

  } 

 

  //haar detect/draw face(s) 

  haarFaceDetect(frameL, &lf); 

  haarFaceDetect(frameR, &rf); 

         

  //detect object 1 (light blue bean bag) 

  detectObject(frameL, &l1, HUE_LIGHT_BLUE_BAG[0], 

HUE_LIGHT_BLUE_BAG[1]);  //detect object 1 in our Left Image 



    104 

  detectObject(frameR, &r1, HUE_LIGHT_BLUE_BAG[0], 

HUE_LIGHT_BLUE_BAG[1]);  //detect object 1 in our Right Image  

  

   

  //detect object 2 (green lego lid) 

  detectObject(frameL, &l2, HUE_BIG_GREEN_BALL[0], 

HUE_BIG_GREEN_BALL[1]);  //detect object 2 in our Left Image 

  detectObject(frameR, &r2, HUE_BIG_GREEN_BALL[0], 

HUE_BIG_GREEN_BALL[1]);  //detect object 2 in our Right Image 

 

  //draw Haar face on original image 

  drawTarget(frameL, lf, 2); 

  drawTarget(frameR, rf, 2); 

 

  //draw object 1 targets onto the original image 

  drawTarget(frameL, l1, 0); 

  drawTarget(frameR, r1, 0); 

 

  //draw object 2 targets onto the original image 

  drawTarget(frameL, l2, 7); 

  drawTarget(frameR, r2, 7); 

 

  //calculate relative XYZ depth 

  calculateXYZ(&obj1loc, l1, r1); 

  calculateXYZ(&obj2loc, l2, r2); 

 

  //print the coordinates to a text file 

  if (usevision) 

fprintf(coordsfile,"%d,%d,%d,%d,%d,%f,%f,%f,%d,%d,%d,%d,%f,%f,%f,%d,%d,%d,%d,

%f,%f,%f\n",counter,l1.x,l1.y,r1.x,r1.y,obj1loc.x,obj1loc.y,obj1loc.z,l2.x,l2

.y,r2.x,r2.y,obj2loc.x,obj2loc.y,obj2loc.z,lf.x,lf.y,rf.x,rf.y,faceloc.x,face

loc.y,faceloc.z); 

   

 

  //display images to the user 

  cvShowImage("Tracker Left", frameL); //show the left frame 

  cvShowImage("Tracker Right", frameR); //show the right frame 

 

        if(cvWaitKey( 10 ) >= 0) break;  //give the user a chance to 

stop the tracking and continue with processing 

 

  counter++;        //increment 

the time counter 

  QueryPerformanceCounter(&end_ticks); //get stop time 

 

  //wait for a bit to ensure that each cycle takes a consistent 400 

ms 

  while(((float)(end_ticks.QuadPart-

start_ticks.QuadPart)/ticksPerSecond.QuadPart*1000) < (float) VISION_TIME) 

   QueryPerformanceCounter(&end_ticks); 

  cputime.QuadPart = end_ticks.QuadPart - start_ticks.QuadPart;

 //calculate the total time (should always be around VISION_TIME) 

  printf("detection time: %f\n", 

(float)cputime.QuadPart/(float)ticksPerSecond.QuadPart*1000); //print out 

how long it takes for detection cycle 

 

    } 



    105 

 

 //close the object coords file 

 if (usevision) fclose(coordsfile); 

  

  

 //PROCESSING SUBSYSTEM 

 

 //calculate the average face location and rewrite to file 

 avgFaceLoc(coords, facedcoords); 

 

 //flip the Y coordinate about it's average value to account for 

upsidedown calculation 

 flipY(facedcoords,flippedcoords); 

 

 //Difference and Recursivly filter the set of XYZ coordinates stored in 

C:/Temp/facedcoords.txt 

 //and save the results in C:/Temp/filteredcoords.txt 

  filterCoords(flippedcoords, tempcoords, filteredcoords); 

 

 //Filter for large changes in direction to compress the number of 

points on the graph to as few 

 //as possible for simpler movement 

 compressCoords(filteredcoords, compressedcoords1, compressedcoords2); 

 

 //scale coords and rearrange axes for ISAC 

 fitCoordsToISAC2(compressedcoords1, fittedcoords1, RIGHT_ARM); 

 fitCoordsToISAC2(compressedcoords2, fittedcoords2, LEFT_ARM); 

 

 //calculate Joint Angles from Coordinates using Inverse Kinematics 

 calcJointAngles(fittedcoords1, angles1, RIGHT_ARM, END_EFF_NO, 

SIMPLE_INV_KIN); 

 calcJointAngles(fittedcoords2, angles2, LEFT_ARM, END_EFF_NO, 

SIMPLE_INV_KIN); 

 

 //interpolate angles between existing angles 

 interpolateAngles(angles1, interpolated1); 

 interpolateAngles(angles2, interpolated2); 

 

 //Open the joint angles file and upload the points to the shared I 

drive 

 //to be read by the Neural Network Controller (located on another 

computer: Octavia) 

 //angles2 goes to uploadL (left hand) 

 //angles1 goes to uploadR (right hand) 

 if (usearms) uploadToNNbatch(uploadL, uploadR, interpolated2, 

interpolated1); 

 

 //Upload Start.Now file to indicate that the joint angles are ready and 

 //that the controller should begin execution 

 if (usearms) uploadGoFlag(goflag); 

 

 //create test points to be fed through the inverse kinematics based on 

an expected workspace 

 //testSetForInverseKinematics(testfile, 400, 475, 50, 150, -90, 200, 

5); 

  

 //create test set for forward kinematics to help find workspace 



    106 

 //testSetForForwardKinematics(testfile, 2*PI, 1); 

 

 //release our resources 

    //cvReleaseImage(&frameL); 

 //cvReleaseImage(&frameR);   

     

 //kill the results window 

    cvDestroyWindow("Tracker Left"); 

 cvDestroyWindow("Tracker Right"); 

 //cvDestroyWindow("Val Mask"); 

 //cvDestroyWindow("Hue Mask"); 

 

    return 0; 

} 

 

void detectObject(IplImage* img, CvTarget *tar, int low, int high) 

{ 

 //Temporary Images 

 IplImage* hsv = cvCreateImage(cvGetSize(img), 8, 3); 

 IplImage* hue = cvCreateImage(cvGetSize(img), 8, 1); 

 IplImage* sat = cvCreateImage(cvGetSize(img), 8, 1); 

 IplImage* val = cvCreateImage(cvGetSize(img), 8, 1); 

 IplImage* maskH = cvCreateImage(cvGetSize(img), 8, 1); 

 //IplImage* maskV = cvCreateImage(cvGetSize(img), 8, 1); 

 //IplImage* maskHV = cvCreateImage(cvGetSize(img), 8, 1); 

 //IplImage* blur = cvCreateImage(cvGetSize(img), 8, 3); 

 //IplImage* blur2 = cvCreateImage(cvGetSize(img), 8, 3); 

 

 IplConvKernel * selem = 

cvCreateStructuringElementEx(3,3,1,1,CV_SHAPE_RECT); //kernel for use with 

erode/dilate 

 

 

 //Send the image through a bilateral blur 3 times 

 //Bilateral tends to preserve edges 

 //cvSmooth(img, blur, CV_BILATERAL, 50, 3); 

 //cvSmooth(blur, blur2, CV_BILATERAL, 50, 3); 

 //cvSmooth(blur2, blur, CV_BILATERAL, 50, 3); 

 

 //Extract Hue/Sat/Val from BGR Image 

 cvCvtColor(img, hsv, CV_BGR2HSV);     

 //convert from BGR to HSV 

 cvSplit(hsv, hue, sat, val, 0);      

 //extract hue/sat/val channels 

  

 //Filter by Hue 

 cvInRangeS(hue, cvScalar(low), cvScalar(high), maskH); //filter by 

Hue 

 cvErode(maskH,maskH,selem,3);      

 //Erode/Dilate maskH to eliminate noise 

 cvDilate(maskH, maskH, selem, 3); 

 

 //Filter by Value 

 //cvInRangeS(val, cvScalar(0), cvScalar(255), maskV); //filter by Value 

 //cvErode(maskV,maskV,selem,3);      

 //Erode maskV to elimniate noise 

 



    107 

 //create a combined Hue/Val mask 

 //cvZero(maskHV); 

 //cvCopy(maskH, maskHV, maskV); 

 //cvShowImage("Hue Mask", maskH); 

 //cvShowImage("Val Mask", maskV); 

 

 //Find the largest positive object 

 getConnectedComps(maskH /*maskHV*/,Comps);   

 //retrieve a list of all connected components in filtered image 

 if (comptot != 0) 

 { 

  //find largest component 

  maxcomp = 0; 

  maxarea = Comps[0]->area; 

  for (int j = 0; j < comptot; j++) 

  { 

   if (Comps[j]->area > maxarea) 

   { 

    maxarea = Comps[j]->area; 

    maxcomp = j; 

   } 

  } 

   

  //get center 

  tar->x = Comps[maxcomp]->rect.x + Comps[maxcomp]->rect.width/2; 

  tar->y = Comps[maxcomp]->rect.y + Comps[maxcomp]->rect.height/2; 

 

  //get radius 

  if (Comps[maxcomp]->rect.width > Comps[maxcomp]->rect.height) 

tar->r = Comps[maxcomp]->rect.width/2; 

  else tar->r = Comps[maxcomp]->rect.height/2; 

   

   

 } 

 

 //Clean Up 

 cvReleaseStructuringElement(&selem); 

 cvReleaseImage(&hsv); 

 cvReleaseImage(&hue); 

 cvReleaseImage(&sat); 

 cvReleaseImage(&val); 

 cvReleaseImage(&maskH); 

 //cvReleaseImage(&maskV); 

 //cvReleaseImage(&maskHV); 

 //cvReleaseImage(&blur); 

 //cvReleaseImage(&blur2); 

} 

 

void drawTarget(IplImage *img, CvTarget obj, int clr) 

{ 

 if (obj.x <= img->width && obj.y <= img->height && clr < NUM_COLORS) 

 { 

  //draw a circle on the screen at the largest blobs center 

location 

  cvCircle( img, obj, obj.r, COLORS[clr], 3, 8, 0 ); 

  cvCircle( img, obj, 1,     COLORS[clr], 3, 8, 0 ); 

 } 



    108 

} 

 

//************************************************************************ 

//Authors: Jack Noble & Tom Billings 

//Description: getConnectedComponents is used to distinguish between 

foreground 

//  and background elements within the image.  It does so by 

rasterscanning the image 

//  for foreground pixels (pixel == 255) and numbers the areas 

accordingly. 

//  If adjacent areas have the same numbers and are both foreground 

or background pixels 

//  they are combined into one connected component.  Only foreground 

pixels are placed 

//  into Comps.  If more than 20 components are found, a new Comps is 

//  initialized including old values. 

// 

//Variables: 

//  image is a binary image that has foreground and backgroun 

elements 

//  Comps holds all of the data for the connected components found in 

image 

// 

//Modified: by Sean Begley 

//    - replaced hard #s for img width/hight with soft 

values retreived from 

//      passed in IplImage - 2/5/2008 

//************************************************************************ 

void getConnectedComps(IplImage *image, CvConnectedComp ** Comps) 

{ 

 CvScalar pixval; 

 comptot = 0; 

 int CurrentCompVal = 0; 

 // used if need  to reinitialize components array for more capacity 

 CvConnectedComp ** NewComp; 

 

 for (int j = 0; j < image->width*image->height; j++) 

 { 

  pixval = cvGet2D(image,j/image->width,j%image->width); 

  // if this pixel has the value of 255, this component has not yet 

been recorded 

  if (pixval.val[0] > CurrentCompVal) 

  { 

   if (CurrentCompVal >= compmax) 

    Comps[CurrentCompVal] = new CvConnectedComp; 

   // fill this component in with the next lowest value 

   cvFloodFill(image,cvPoint(j%image->width,j/image-

>width),cvScalar(CurrentCompVal + 

1),cvScalar(0),cvScalar(0),Comps[CurrentCompVal],4); 

   CurrentCompVal++; 

   // if at capacity reinitialize array to higher capacity 

   if (CurrentCompVal >= compcap) 

   { 

    NewComp = new CvConnectedComp*[compcap + 20]; 

    for (int i = 0; i < CurrentCompVal; i++) 

    { 

     // copy component values into new array 



    109 

     NewComp[i] = new CvConnectedComp; 

     NewComp[i]->area = Comps[i]->area; 

     NewComp[i]->value.val[0] = Comps[i]-

>value.val[0]; 

     NewComp[i]->rect = Comps[i]->rect; 

     // delete old values 

     delete Comps[i]; 

    } 

    // update pointers and capacity 

    compcap = compcap + 20; 

    Comps = NewComp; 

   } 

  } 

 } 

 // update total number of components being used 

 comptot = CurrentCompVal; 

 // ensure total number of components ever used is up to date (for 

deletion) 

 if (comptot > compmax) 

  compmax = comptot; 

 return; 

} 

 

//NOT USED 

//if the object is far from the center move it a lot, close a medium, really 

close, a small amount 

void centerCams(int *lX, int *lY, int *rX, int *rY) 

{ 

 double pantilt[4]; //placeholder... real pantilt should be 

global... but this function isnt used anymore 

 printf("%f\t%f\t%f\t%f\n",pantilt[0],pantilt[1],pantilt[2],pantilt[3]); 

  

 //left cam X (pan) 

 if (*lX < 80) 

 { pantilt[0] = pantilt[0] + DELTA_B;} 

 else if (*lX >= 80 && *lX < 150) 

 { pantilt[0] = pantilt[0] + DELTA_M;} 

 else if (*lX >= 150 && *lX < 158) 

 { pantilt[0] = pantilt[0] + DELTA_S;} 

 //else if (*lX = 160) no change; 

 else if (*lX > 162 && *lX <= 170) 

 { pantilt[0] = pantilt[0] - DELTA_S;} 

 else if (*lX > 170 && *lX < 240) 

 { pantilt[0] = pantilt[0] - DELTA_M;} 

 else  

 {pantilt[0] = pantilt[0] - DELTA_B;} 

 

 //left cam Y (tilt) 

 if (*lY < 60) 

 { pantilt[1] = pantilt[1] + DELTA_B;} 

 else if (*lY >= 60 && *lY < 110) 

 { pantilt[1] = pantilt[1] + DELTA_M;} 

 else if (*lY >= 110 && *lY < 118) 

 { pantilt[1] = pantilt[1] + DELTA_S;} 

 //else if (*lY = 120) no change; 

 else if (*lY >= 122 && *lY <= 130) 

 { pantilt[1] = pantilt[1] - DELTA_S;} 



    110 

 else if (*lY >= 130 && *lY < 180) 

 { pantilt[1] = pantilt[1] - DELTA_M;} 

 else  

 {pantilt[1] = pantilt[1] + DELTA_B;} 

 

 //right cam X (pan) 

 if (*rX < 80) 

 { pantilt[2] = pantilt[2] + DELTA_B;} 

 else if (*rX >= 80 && *rX < 150) 

 { pantilt[2] = pantilt[2] + DELTA_M;} 

 else if (*rX >= 150 && *rX < 158) 

 { pantilt[2] = pantilt[2] + DELTA_S;} 

 //else if (*rX = 160) no change; 

 else if (*rX > 162 && *rX <= 170) 

 { pantilt[2] = pantilt[2] - DELTA_S;} 

 else if (*rX > 170 && *rX < 240) 

 {pantilt[2] = pantilt[2] - DELTA_M;} 

 else  

 {pantilt[2] = pantilt[2] - DELTA_B;} 

 

 //right cam Y (tilt) 

 if (*rY < 60)  

  pantilt[3] = pantilt[3] + DELTA_B; 

 else if (*rY >= 60 && *rY < 110)  

  pantilt[3] = pantilt[3] + DELTA_M; 

 else if (*rY >= 110 && *rY < 118)  

  pantilt[3] = pantilt[3] + DELTA_S; 

 //else if (*rY = 120) no change; 

 else if (*rY >= 122 && *rY <= 130)  

  pantilt[3] = pantilt[3] - DELTA_S; 

 else if (*rY > 130 && *rY < 180)  

  pantilt[3] = pantilt[3] - DELTA_M; 

 else  

  pantilt[3] = pantilt[3] - DELTA_B; 

 

 //move cameras to center object on the screen 

 hd.MoveHead(pantilt); 

 

 //printf("%f\t%f\t%f\t%f\n\n",pantilt[0],pantilt[1],pantilt[2],pantilt[

3]); 

 

 

} 

 

 

//CAMERA TRANSFORM PARAMETERS 

//center to camera base = 140mm (baseline = 280mm) 

//camera base to rotation base = 91.948mm 

//rotation base to camera = 65.5mm 

//camera to focal point = 305.25mm 

//sigma = 50 pixels per mm 

//rotation about z is from dPan 

//rotation about y if from dTilt 

//effective picture elements: 768x494 

//CCD sensing area: 6.4 x 4.8 mm 

 

//currently gives the depth in some unknown unit... if at all... 



    111 

 

//units are unknown, but the bueauty is that I dont care about units... I 

just need relative motion. 

//the plan is to take the relative motion of the tracked object, and scale it 

to be as big as IASC 

//can reasonably accomplish in his limited workspace 

 

//may need to ensure that x,y,and z directions all have equal units (equal 

rate of change of X Y Z coords 

//relative to actual movement) 

 

//to keep with the rest of the programming style, this should probably 

void calculateXYZ(CvPoint3D32f *objloc, CvPoint left, CvPoint right) 

{ 

 double f = 15262.5; //focal length: 305.25 millimeters (50 px/mm) = 

15262.5 px 

 double b = 14000; //base: millimeters (50 px/mm) = 14000 px 

 double sigma = 50; //pixels per mm 

 

 double xri = 0; 

 double xli = 0; 

 double yli = 0; 

 double yri = 0; 

 

 double z = 0; 

 

 double xr = 0; 

 double xl = 0; 

 double yr = 0; 

 double yl = 0; 

 

 double y = 0; 

 double x = 0; 

 

 double zft = 0; 

 double xft = 0; 

 double yft = 0; 

 

 

 //get pixel coords 

 xri = (double)right.x; 

 xli = (double)left.x; 

 yri = (double)right.y; 

 yli = (double)left.y; 

 

 //find z in weird units 

 z=f*b/((double)xli-(double)xri); 

 

 //calculate real y and x values in weird units 

 yr=yri*z/f; 

 yl=yli*z/f; 

 xr=xri*z/f; 

 xl=xli*z/f; 

 

 //average y 

 y=(yl+yr)/2; 

  



    112 

 //average x 

 x=(xr+xl)/2; 

 

 //write the values into the objloc to be returned 

 objloc->x=x; 

 objloc->y=y; 

 objloc->z=z; 

 

 //printf("%f\t%f\t%f\n",x,y,z); 

} 

 

 

//function to convert char array to double 

//courtesy of a post by Narue at 

http://www.daniweb.com/forums/thread80754.html 

double to_double ( const char *p ) 

{ 

 if (p == "") return NULL; 

 

 //else 

 std::stringstream ss ( p ); 

 double result = 0; 

 

 ss>> result; 

 

 return result; 

} 

 

//Function that filters the XYZ coordinates in C:/Temp/coords.csv 

//The filtering is accomplished by subtracting Z from X & Y then recursivly 

filtering X & Y 

//then subtracting the resultant X from Z and recursivly filtering Z.  The 

difference filtering 

//(subtracting Z from X & Y and X from Z) is necessary to get rid of 

artifacts that motion in the Z 

//and X directions place in the other directions.  The recursive filter is to 

smooth the movement and 

//get rid of noise. 

void filterCoords(char coords[], char tempcoords[], char filteredcoords[]) 

{ 

 FILE * coordsfile;    //file handle to store 

unparsed coordinates 

 FILE * filteredcoordsfile;  //file handle to store 

parsed/filtered coordinates 

 char line [512];    //holder for a single line of 

coordsfile as it is parsed 

 char *token; 

 double* linearray = new double[22];    //array of 

doubles to hold unfiltered values 

 double* currententry = new double[7];   //array to hold 

values of the current entry (TIME,X1,Y1,Z1 X2,Y2,Z2) 

 double* historybuffer = new double[7];   //history buffer 

for X&Y filtering (TIME,X1,Y1,Z1 X2,Y2,Z2) 

 double futurebuffer[5][7];      //future 

buffer for Z filtering (TIME, X1, Y1, Z1, X2, Y2, Z2) 

 CvPoint3D32f faceloc;       //holder 

for location of the face 



    113 

  

 int counter=0;     //counter for time keeping 

 int i,j;      //random counters 

 

 

  

 //******************************************************************* 

 //******FILTER PASS 1 (DIFF FILTER & RECURSIVE FILTER of X & Y)****** 

 //******************************************************************* 

 

 //GET FIRST ENTRY (line 2) FOR FILTERING HISTORY 

 //linearray guide 

 //[0]=TIME, [1]=PX1L, [2]=PY1L, [3]=PX1R, [4]=PY1R, [5]=X1, [6]=Y1, 

[7]=Z1, 

 //[8]=PX2L, [9]=PY2L, [10]=PX2R, [11]=PY2R, [12]=X2, [13]=Y2, [14]=Z2, 

[15]=FACE_PXL, 

 //[16]=FACE_PYL, [17]=FACE_PXR, [18]=FACE_PYR, [19]=FACE_X, 

[20]=FACE_Y, [21]=FACE_Z 

 coordsfile = fopen(coords, "r"); //open coordsfile (to be filtered) 

 fgets(line, 512, coordsfile);     //get 1st line to 

ignore it b/c it is TITLES 

 if(fgets(line, 512, coordsfile) != NULL)  //get a line from 

coordsfile 

 { 

  //tokenize the line 

  i=0; 

  token=strtok(line, DELIM); 

  linearray[0] = to_double(token); 

  while((token=strtok(NULL, DELIM))!=NULL) 

  { 

   i++; 

   linearray[i]=to_double(token); 

  } 

 

  //copy important information into the history buffer 

  historybuffer[0] = linearray[0]; //TIME 

  historybuffer[1] = linearray[5]; //X1 

  historybuffer[2] = linearray[6]; //Y1 

  historybuffer[3] = linearray[7]; //Z1 

  historybuffer[4] = linearray[12]; //X2 

  historybuffer[5] = linearray[13]; //Y2 

  historybuffer[6] = linearray[14]; //Z2 

 

  //copy face X, Y, & Z 

  faceloc.x=linearray[19]; 

  faceloc.y=linearray[20]; 

  faceloc.z=linearray[21]; 

 

  //filter faceloc using the same difference filter equation as the 

other points 

  faceloc.x = faceloc.x - faceloc.z*XY_DIFF; //X=X-Z*0.008 

  faceloc.y = faceloc.y - faceloc.z*XY_DIFF; //Y=Y-Z*0.008 

  faceloc.z = faceloc.z/Z_SCALE - faceloc.x; //Z=Z/40-X 

 

 } 

 fclose(coordsfile); 

 



    114 

 //start back at the beginning 

 coordsfile = fopen(coords, "r");     

 //open coordsfile (to be filtered) 

 filteredcoordsfile = fopen(tempcoords, "w");  //open 

filteredcoordsfile (to hold filtered coords) 

 fprintf(filteredcoordsfile,"TIME,X1,Y1,Z1,X2,Y2,Z2\n");   

 //print titles for filteredcoordsfile 

 fgets(line, 512, coordsfile);        

  //ignore 1st line of coordsfile b/c it is TITLES 

 counter=0; 

 while(1) //loop forever 

 { 

  if(fgets(line, 512, coordsfile) != NULL) //get a line for 

coordsfile 

  { 

   //GET NEXT LINE 

   //tokenize the line 

   i=0; 

   token=strtok(line, DELIM); 

   linearray[0] = to_double(token); 

   while((token=strtok(NULL, DELIM))!=NULL) 

   { 

    i++; 

    linearray[i]=to_double(token); 

   } 

    

   //DIFFERENCE FILTER X & Y 

   //find Xdiff & Ydiff  (Xdiff[i]=X[i]-Z[i]*.008) and save to 

filteredcoords 

   //currententry guide 

   //[0]=TIME, [1]=Xdiff1, [2]=Ydiff1, [3]=Z1, [4]=Xdiff2, 

[5]=Ydiff2, [6]=Z2 

   currententry[0] = linearray[0];     

   //TIME = TIME 

   currententry[1] = linearray[5] - linearray[7]*XY_DIFF; 

 //Xdiff1=X1-Z1*0.008 

   currententry[2] = linearray[6] - linearray[7]*XY_DIFF; 

 //Ydiff1=Y1-Z1*0.008 

   currententry[3] = linearray[7];     

   //Z1 = Z1 

   currententry[4] = linearray[12] - linearray[14]*XY_DIFF;

 //Xdiff2=X2-Z2*0.008 

   currententry[5] = linearray[13] - linearray[14]*XY_DIFF;

 //Ydiff2=Y2-Z2*0.008; 

   currententry[6] = linearray[14];     

  //Z2 = Z2 

    

   //RECURSIVE FILTER X & Y 

   //calculate X_rec_diff & Y_rec_diff 

(X_rec_diff[i]=0.2*Xdiff[i]+0.8*X_rec_diff[i-1]) 

   //currententry guide 

   //[0]=TIME, [1]=X_rec_diff1, [2]=Y_rec_diff1, [3]=Z1, 

[4]=X_rec_diff2, [5]=Y_rec_diff2, [6]=Z2 

   /* 

   if (counter < 1) 

   { 



    115 

    currententry[1] = currententry[1]; 

 //recursivly filter X1 

    currententry[2] = currententry[2]; 

 //recursivly filter Y1 

    currententry[4] = currententry[4]; 

 //recursivly filter X2 

    currententry[5] = currententry[5]; 

 //recursivly filter Y2 

   } 

   else 

   { 

    currententry[1] = A0*currententry[1] + 

B0*historybuffer[1];  //recursivly filter X1 

    currententry[2] = A0*currententry[2] + 

B0*historybuffer[2];  //recursivly filter Y1 

    currententry[4] = A0*currententry[4] + 

B0*historybuffer[4];  //recursivly filter X2 

    currententry[5] = A0*currententry[5] + 

B0*historybuffer[5];  //recursivly filter Y2 

   } 

   */ 

 

   //UPDATE HISTORYBUFFER 

   for(j=0;j<7;j++) 

   { 

    historybuffer[j]=currententry[j]; 

   } 

 

   //PRINT LINE TO FILE 

   for(i=0;i<6;i++) 

   { 

    fprintf(filteredcoordsfile, "%f,", currententry[i]); 

   } 

   fprintf(filteredcoordsfile, "%f\n", currententry[6]); 

  } 

  else  //if we reach the end of the file break out of the 

while loop 

  { 

   //close files 

   fclose(coordsfile); 

   fclose(filteredcoordsfile); 

   break; 

  } 

  counter++; 

 } 

 

 printf ("****Filter PASS 1 Complete\n"); 

 

 //************************************************************** 

 //******FILTER PASS 2 (DIFFERENCE & RECURSIVE FILTER of Z)****** 

 //************************************************************** 

 

 //FILL FUTURE BUFFER (lines 2-6) FOR FILTERING 

 coordsfile = fopen(tempcoords, "r"); //open coordsfile (to be 

filtered) 

 fgets(line, 512, coordsfile);     //get 1st line to 

ignore it b/c it is TITLES 



    116 

 for(i=0;i<5;i++) 

 { 

  if(fgets(line, 512, coordsfile) != NULL)  //get a line from 

coordsfile 

  { 

   //tokenize the line 

   j=0; 

   token=strtok(line, DELIM); 

   currententry[0] = to_double(token); 

   while((token=strtok(NULL, DELIM))!=NULL) 

   { 

    j++; 

    currententry[j]=to_double(token); 

   } 

 

   //copy important information into the future buffer 

   futurebuffer[i][0] = currententry[0]; //TIME 

   futurebuffer[i][1] = currententry[1]; //X1 

   futurebuffer[i][2] = currententry[2]; //Y1 

   futurebuffer[i][3] = currententry[3]; //Z1 

   futurebuffer[i][4] = currententry[4]; //X2 

   futurebuffer[i][5] = currententry[5]; //Y2 

   futurebuffer[i][6] = currententry[6]; //Z2 

  } 

 } 

 

 //FILL HISTORY BUFFER & CURRENT ENTRY 

 for(i=0;i<7;i++) 

 { 

  historybuffer[i]=futurebuffer[0][i]; 

  currententry[i]=futurebuffer[0][i]; 

 } 

 

 filteredcoordsfile = fopen(filteredcoords, "w");  

 //open filteredcoordsfile2 (to hold filtered coords) 

 fprintf(filteredcoordsfile,"TIME,X1,Y1,Z1,X2,Y2,Z2,XF,YF,ZF\n");

 //print titles for filteredcoordsfile 

  

 counter=0; 

 while(1) //loop forever 

 { 

  if(fgets(line, 512, coordsfile) != NULL) //get a line for 

coordsfile 

  { 

   //UPDATE CURRENTENTRY 

   for(i=0;i<7;i++) 

   { 

    currententry[i]=futurebuffer[0][i]; 

   } 

 

   //UPDATE FUTUREBUFFER 

   for(i=0;i<4;i++) 

   { 

    for(j=0;j<7;j++) 

    { 

 

     futurebuffer[i][j]=futurebuffer[i+1][j]; 



    117 

    } 

   } 

    

   //GET NEXT LINE 

   //tokenize the line 

   j=0; 

   token=strtok(line, DELIM); 

   futurebuffer[4][0] = to_double(token); 

   while((token=strtok(NULL, DELIM))!=NULL) 

   { 

    j++; 

    futurebuffer[4][j]=to_double(token); 

   } 

    

   //DIFFERENCE FILTER Z: find Zdiff (Zdiff[i]=Z[i]/40-

X_rec_diff[i+5]) 

   //currententry guide 

   //[0]=TIME, [1]=Xdiff1, [2]=Ydiff1, [3]=Z1, [4]=Xdiff2, 

[5]=Ydiff2, [6]=Z2 

   currententry[0] = currententry[0];  //TIME = TIME 

   currententry[1] = currententry[1];  //X1 = X1 

   currententry[2] = currententry[2];  //Y1 = Y1 

   currententry[3] = currententry[3]/Z_SCALE - 

futurebuffer[0][1]; 

   currententry[4] = currententry[4];  //X2 = X2 

   currententry[5] = currententry[5];  //Y2 = Y2 

   currententry[6] = currententry[6]/Z_SCALE - 

futurebuffer[0][4]; 

    

   //RECURSIVE FILTER Z: calculate Z_rec_diff 

(Z_rec_diff[i]=0.2*Zdiff[i]+0.8*Z_rec_diff[i-1]) 

   //currententry guide 

   //[0]=TIME, [1]=X_rec_diff1, [2]=Y_rec_diff1, [3]=Z1, 

[4]=X_rec_diff2, [5]=Y_rec_diff2, [6]=Z2 

   if(counter < 1) //special case for 1st value b/c there is 

no history 

   { 

    currententry[3]=currententry[3];  //no filter 

    currententry[6]=currententry[6];  //no filter 

   } 

   else 

   { 

   

 currententry[3]=A0*currententry[3]+B0*historybuffer[3]; 

 //recursivly filter Z1 

   

 currententry[6]=A0*currententry[6]+B0*historybuffer[6]; 

 //recursivly filter Z2 

   } 

 

   //UPDATE HISTORYBUFFER 

   for(i=0;i<7;i++) 

   { 

    historybuffer[i]=currententry[i]; 

   } 

 

   //PRINT LINE TO FILE 



    118 

   for(i=0;i<7;i++) 

   { 

    fprintf(filteredcoordsfile, "%f,", currententry[i]); 

   } 

   fprintf(filteredcoordsfile, "%f,%f,%f\n", 

faceloc.x,faceloc.y,faceloc.z); 

  } 

  else  //if we reach the end of the file break out of the 

while loop 

  { 

   //FINISH FILTER ON LAST 5 ENTRIES (held in futurebuffer) 

   for(i=0;i<5;i++) 

   { 

    //difference filter 

    currententry[0] = futurebuffer[i][0];   

     //TIME = TIME 

    currententry[1] = futurebuffer[i][1];   

     //X1 = X1; 

    currententry[2] = futurebuffer[i][2];   

     //Y1 = Y1 

    currententry[3] = futurebuffer[i][3]/Z_SCALE - 

futurebuffer[i][1]; //diff filter Z1 

    currententry[4] = futurebuffer[i][4];   

     //X2 = X2 

    currententry[5] = futurebuffer[i][5];   

     //Y2 = Y2 

    currententry[6] = futurebuffer[i][6]/Z_SCALE - 

futurebuffer[i][4]; //diff filter Z1 

 

    //recursive filter 

   

 currententry[3]=A0*currententry[3]+B0*historybuffer[3]; 

 //recursivly filter Z1 

   

 currententry[6]=A0*currententry[6]+B0*historybuffer[6]; 

 //recursivly filter Z2 

 

    //update history buffer 

    for(j=0;j<7;j++) 

    { 

     historybuffer[j]=currententry[j]; 

    } 

 

    //print line to file 

    for(j=0;j<7;j++) 

    { 

     fprintf(filteredcoordsfile, "%f,", 

currententry[j]); 

    } 

    fprintf(filteredcoordsfile, "%f,%f,%f\n", 

faceloc.x,faceloc.y,faceloc.z); 

   } 

 

   //close files 

   fclose(coordsfile); 

   fclose(filteredcoordsfile); 

   break; 



    119 

  } 

  counter++; 

 } 

 

 printf ("****Filter PASS 2 Complete\n"); 

 printf ("****All Filtering Complete\n"); 

 

 //cleanup 

 delete[] linearray; 

 delete[] currententry; 

 delete[] historybuffer; 

} 

 

//function to reduce a set of points down to  as few pnts as possible while 

still maintaining the basic flow 

//ie: a sine wave of many points would become a triangle wave with points 

only at the positive and negative peaks 

//this function also splits the single coords file into 2 compressed coords 

files so that the fitting function 

//can fit the left and right arms maximally and individually.  This splitting 

should probably be done in a seperate 

//function 

void compressCoords(char coords[], char compressedcoords1[], char 

compressedcoords2[]) 

{ 

 FILE * coordsfile;    //file handle to store 

unparsed coordinates 

 FILE * compressedcoordsfile1; //file handle to store parsed/compressed 

1 coordinates (TIME, X1, Y1, Z1) 

 FILE * compressedcoordsfile2; //file handle to store parsed/compressed 

2 coordinates (TIME, X2, Y2, Z2) 

 char line [512];    //holder for a single line of 

coordsfile as it is parsed 

 char *token; 

 double* linearray = new double[10];    //array to hold 

input line 

 double* lastpoint = new double[7];    //array to hold 

values of the last saved point (TIME,X1,Y1,Z1 X2,Y2,Z2) 

 double* currpoint = new double[7];    //array to hold 

values of the current point (TIME,X1,Y1,Z1 X2,Y2,Z2) 

 double* lastsavedpoint1 = new double[4];  //array to hold values 

of the last saved point for obj 1 (TIME, X1, Y1, Z1) 

 double* lastsavedpoint2 = new double[4];  //array to hold values 

of the last saved point for obj 2 (TIME, X2, Y2, Z2); 

 double* lastinterimpoint1 = new double[4];  //array to hold 

values of the last interrmediate point for obj 1 (TIME, X1, Y1, Z1) 

 double* lastinterimpoint2 = new double[4];  //array to hold 

values of the last interrmediate point for obj 2 (TIME, X2, Y2, Z2); 

 double* pointdiff = new double[7];    //array to hold 

the difference of a point and its predecessor (N/A,X1,Y1,Z1 X2,Y2,Z2) 

 int* direction = new int[7];     //array to hold 

the direction of motion for each axis of each object (-1 = down, +1 = up, 0 = 

undefined/equal) (X1,Y1,Z1 X2,Y2,Z2) 

 int* tempdir = new int[7];      //array to 

hold the direction of motion for each axis of each object (-1 = down, +1 = 

up, 0 = undefined/equal) (X1,Y1,Z1 X2,Y2,Z2) 



    120 

 //NOTE: in pointdiff, direction, and tempdir, the 1st element is 

ignored and exists only to keep everything simple with regards to the 7 

element point arrays 

 int changeflag1 = 0;       //flag to 

indicate a change in direction in obj1 

 int changeflag2 = 0;       //flag to 

indicate a change in direction in obj2 

 int i;          

 //random counters 

   

 //FILTER FOR CHANGE IN DIRECTION 

 coordsfile = fopen(coords, "r");      

 //open coordsfile (to be compressed) 

 compressedcoordsfile1 = fopen(compressedcoords1, "w"); 

 //open compressedcoordsfile1 (to hold compressed obj1 coords) 

 compressedcoordsfile2 = fopen(compressedcoords2, "w"); 

 //open compressedcoordsfile2 (to hold compressed obj2 coords) 

 fprintf(compressedcoordsfile1,"TIME,X1,Y1,Z1,XF,YF,ZF\n"); //print 

titles for compressedcoordsfile1 

 fprintf(compressedcoordsfile2,"TIME,X2,Y2,Z2,XF,YF,ZF\n"); //print 

titles for compressedcoordsfile2 

 fgets(line, 512, coordsfile);       

 //ignore 1st line of coordsfile b/c it is TITLES 

 

 //get 1st point, add it to results, save it as last point & last saved 

points 

 if(fgets(line, 512, coordsfile) != NULL)  //get a line from 

coordsfile 

 { 

  //tokenize the line 

  i=0; 

  token=strtok(line, DELIM); 

  linearray[0] = to_double(token); 

  while((token=strtok(NULL, DELIM))!=NULL) 

  { 

   i++; 

   linearray[i]=to_double(token); 

  } 

   

  //save lastpoint 

  for(i=0;i<7;i++) 

  { 

   lastpoint[i]=linearray[i]; 

  } 

 

  //print to compressed coords files & save to lastsavedpoint & 

lastinterimpoint 

  fprintf(compressedcoordsfile1, "%f,", lastpoint[0]); 

  fprintf(compressedcoordsfile2, "%f,", lastpoint[0]); 

  lastsavedpoint1[0]=lastpoint[0]; 

  lastsavedpoint2[0]=lastpoint[0]; 

  lastinterimpoint1[0]=lastpoint[0]; 

  for(i=1;i<3;i++) 

  { 

   fprintf(compressedcoordsfile1, "%f,", lastpoint[i]); 

   fprintf(compressedcoordsfile2, "%f,", lastpoint[i+3]); 

   lastsavedpoint1[i]=lastpoint[i]; 



    121 

   lastinterimpoint1[i]=lastpoint[i]; 

   lastsavedpoint2[i]=lastpoint[i+3]; 

  } 

  fprintf(compressedcoordsfile1, "%f,%f,%f,%f\n", 

lastpoint[3],linearray[7],linearray[8],linearray[9]); 

  fprintf(compressedcoordsfile2, "%f,%f,%f,%f\n", 

lastpoint[6],linearray[7],linearray[8],linearray[9]); 

  lastsavedpoint1[3]=lastpoint[3]; 

  lastinterimpoint1[3]=lastpoint[3]; 

  lastsavedpoint2[3]=lastpoint[6]; 

   

 } 

 

 //get 2nd point, save it as currpoint, and establish directions 

 if(fgets(line, 512, coordsfile) != NULL)  //get a line from 

coordsfile 

 { 

  //tokenize the line 

  i=0; 

  token=strtok(line, DELIM); 

  linearray[0] = to_double(token); 

  while((token=strtok(NULL, DELIM))!=NULL) 

  { 

   i++; 

   linearray[i]=to_double(token); 

  } 

 

  //save currpoint 

  for(i=0;i<7;i++) 

  { 

   currpoint[i]=linearray[i]; 

  } 

 

  //set directions 

  for(i=1;i<7;i++) 

  { 

   pointdiff[i] = currpoint[i] - lastpoint[i]; 

   if (pointdiff[i] > 0){ direction[i] = 1; } 

   else if (pointdiff[i] < 0){ direction[i] = -1; } 

   else { direction[i] = 0; } 

  } 

   

 } 

 

 while(1) //loop forever 

 { 

  //update last point 

  for(i=0;i<7;i++) 

  { 

   lastpoint[i]=currpoint[i]; 

  } 

 

  //get new currpoint 

  if(fgets(line, 512, coordsfile) != NULL)  //get a line from 

coordsfile 

  { 

   //tokenize the line 



    122 

   i=0; 

   token=strtok(line, DELIM); 

   linearray[0] = to_double(token); 

   while((token=strtok(NULL, DELIM))!=NULL) 

   { 

    i++; 

    linearray[i]=to_double(token); 

   } 

 

   //save currpoint 

   for(i=0;i<7;i++) 

   { 

    currpoint[i]=linearray[i]; 

   } 

 

   //get tempdir 

   for(i=1;i<7;i++) 

   { 

    pointdiff[i] = currpoint[i] - lastpoint[i]; 

    if (pointdiff[i] > 0){ tempdir[i] = 1; } 

    else if (pointdiff[i] < 0){ tempdir[i] = -1; } 

    else { tempdir[i] = 0; } 

   } 

 

   //check for changes in direction for object 1 

   for(i=1;i<3;i++) //ignore Z (4) 

   { 

    if (tempdir[i] != direction[i]) 

    { 

     //ensure that the magnitude  

     if(abs(currpoint[i]-lastsavedpoint1[i]) > 1000) 

changeflag1 = 1; 

    } 

   } 

 

   //check for changes in direction for object 2 

   for(i=4;i<6;i++) //ignore Z (7) 

   { 

    if (tempdir[i] != direction[i]) 

    { 

     //ensure that the magnitude  

     if(abs(currpoint[i]-lastsavedpoint2[i-3]) > 

1000) changeflag2 = 1; 

    } 

   } 

 

   //if a change in direction in obj1 has occurred, print & 

save the point 

   if (changeflag1) 

   { 

    //print to compressed coords files & save the point 

    fprintf(compressedcoordsfile1, "%f,", lastpoint[0]); 

    lastsavedpoint1[0] = lastpoint[0]; 

    lastinterimpoint1[0] = lastpoint[0]; 

    for(i=1;i<3;i++) 

    { 



    123 

     fprintf(compressedcoordsfile1, "%f,", 

lastpoint[i]); 

     lastsavedpoint1[i] = lastpoint[i]; 

     lastinterimpoint1[i] = lastpoint[i]; 

    } 

    fprintf(compressedcoordsfile1, "%f,%f,%f,%f\n", 

lastpoint[3],linearray[7],linearray[8],linearray[9]); 

    lastsavedpoint1[3] = lastpoint[3]; 

    lastinterimpoint1[3] = lastpoint[3]; 

 

   } 

   //there is no change in direction BUT it has been more then 

4 points since our last save, save one 

   /* 

   else if(lastpoint[0] - lastinterimpoint1[0] > 4) 

   { 

    //print to compressed coords files & save the point 

    fprintf(compressedcoordsfile1, "%f,", lastpoint[0]); 

    lastinterimpoint1[0] = lastpoint[0]; 

    for(i=1;i<3;i++) 

    { 

     fprintf(compressedcoordsfile1, "%f,", 

lastpoint[i]); 

     lastinterimpoint1[i] = lastpoint[i]; 

    } 

    fprintf(compressedcoordsfile1, "%f,%f,%f,%f\n", 

lastpoint[3],linearray[7],linearray[8],linearray[9]); 

    lastinterimpoint1[3] = lastpoint[3]; 

 

   } 

   */ 

 

   //if a change in direction in obj2 has occurred, print & 

save the point 

   if (changeflag2) 

   { 

    //print to compressed coords files & save the point 

    fprintf(compressedcoordsfile2, "%f,", lastpoint[0]); 

    lastsavedpoint2[0] = lastpoint[0]; 

    for(i=4;i<6;i++) 

    { 

     fprintf(compressedcoordsfile2, "%f,", 

lastpoint[i]); 

     lastsavedpoint2[i-3] = lastpoint[i]; 

    } 

    fprintf(compressedcoordsfile2, "%f,%f,%f,%f\n", 

lastpoint[6],linearray[7],linearray[8],linearray[9]); 

    lastsavedpoint2[3] = lastpoint[6]; 

 

   } 

   //there is no change in direction BUT it has been more then 

4 points since our last save, save one 

   /* 

   else if(lastpoint[0] - lastinterimpoint1[0] > 4) 

   { 

    //print to compressed coords files & save the point 

    fprintf(compressedcoordsfile2, "%f,", lastpoint[0]); 



    124 

    lastinterimpoint2[0] = lastpoint[0]; 

    for(i=4;i<6;i++) 

    { 

     fprintf(compressedcoordsfile2, "%f,", 

lastpoint[i]); 

     lastinterimpoint2[i] = lastpoint[i]; 

    } 

    fprintf(compressedcoordsfile2, "%f,%f,%f,%f\n", 

lastpoint[6],linearray[7],linearray[8],linearray[9]); 

    lastinterimpoint2[3] = lastpoint[6]; 

 

   } 

   */ 

 

   //reset changeflags 

   changeflag1 = 0; 

   changeflag2 = 0; 

 

   //update directions 

   for(i=0;i<7;i++) 

   { 

    direction[i] = tempdir[i]; 

   }    

  } 

  else  //if we reach the end of the file break out of the 

while loop 

  { 

   //print the last point 

   fprintf(compressedcoordsfile1, "%f,", currpoint[0]); 

   fprintf(compressedcoordsfile2, "%f,", currpoint[0]); 

   for(i=1;i<3;i++) 

   { 

    fprintf(compressedcoordsfile1, "%f,", currpoint[i]); 

    fprintf(compressedcoordsfile2, "%f,", 

currpoint[i+3]); 

   } 

   fprintf(compressedcoordsfile1, "%f,%f,%f,%f\n", 

lastpoint[3],linearray[7],linearray[8],linearray[9]); 

   fprintf(compressedcoordsfile2, "%f,%f,%f,%f\n", 

lastpoint[6],linearray[7],linearray[8],linearray[9]); 

 

   //close files 

   fclose(coordsfile); 

   fclose(compressedcoordsfile1); 

   fclose(compressedcoordsfile2); 

   break; 

  } 

  

 } 

 

 printf ("****Compression Complete\n"); 

 

 //cleanup 

 delete[] lastpoint; 

 delete[] currpoint; 

 delete[] lastsavedpoint1; 

 delete[] lastsavedpoint2; 



    125 

 delete[] pointdiff; 

 delete[] direction; 

 delete[] tempdir; 

 delete[] linearray; 

} 

 

//courtesy of http://www.functionx.com/cpp/examples/abs.htm 

double abs(double Nbr) 

{ 

// return (Nbr >= 0) ? Nbr : -Nbr; 

 if( Nbr >= 0 ) 

  return Nbr; 

 else 

  return -Nbr; 

} 

 

//function that takes compressed coords, and uploads them to a shared drive 

location for use by 

//the neural network controller.  This is done one point at a time so that 

only 1 point is available 

//to the NN Controller at a time 

void uploadToNN1by1(char uploadL[], char uploadR[], char coordsL[], char 

coordsR[]) 

{ 

 int counter = 0;       //counter 

 char lineL [512];       //holder for a 

single line of coordsfileL as it is parsed 

 char lineR [512];       //holder for a 

single line of coordsfileR as it is parsed 

 char *token;        //holder 

for tokenizing line 

 char *Lout;         //flag to 

see if we've reached the end of the file 

 char *Rout;         //flag to 

see if we've reached the end of the file 

 int i;         

 //random counter variable 

 int updateL = 1;       //flag to see if 

the point has been uploaded yet 

 int updateR = 1;       //flag to see if 

the point has been uploaded yet 

 double* currpointL = new double[4];   //array to hold values 

of the current point (TIME,X1,Y1,Z1) 

 double* currpointR = new double[4];   //array to hold values 

of the current point (TIME,X2,Y2,Z2) 

 FILE *uploadfileL;       //file 

handle for temp upload file to send info to the NN L 

 FILE *uploadfileR;       //file 

handle for temp upload file to send info to the NN R 

 FILE *coordsfileL;       //file 

handle for coords to be uploaded L 

 FILE *coordsfileR;       //file 

handle for coords to be uploaded R 

 

 //open coords files 

 coordsfileL = fopen(coordsL, "r"); //coordinates to be uploaded 

 coordsfileR = fopen(coordsR, "r"); //coordinates to be uploaded 



    126 

  

 fgets(lineL, 512, coordsfileL); //ignore 1st line of TITLES 

 fgets(lineR, 512, coordsfileR); //ignore 1st line of TITLES 

 

 //cycle through a loop where each cycle represents 1 "timestep" from 

the input process 

 //new coordinates will only be uploaded at the appropriate timestep to 

maintain the spacing 

 for(;;) 

 { 

  //get lines from LEFT and RIGHT coordsfiles 

  if (updateL == 1) Lout = fgets(lineL, 512, coordsfileL); 

  if (updateR == 1) Rout = fgets(lineR, 512, coordsfileR); 

 

  updateL = 0; 

  updateR = 0; 

   

  if(Lout != NULL || Rout != NULL) 

  { 

   //tokenize the LEFT line 

   i=0; 

   token=strtok(lineL, DELIM); 

   currpointL[0] = to_double(token); 

   while((token=strtok(NULL, DELIM))!=NULL) 

   { 

    i++; 

    currpointL[i]=to_double(token); 

   } 

 

   //tokenize the RIGHT line 

   i=0; 

   token=strtok(lineR, DELIM); 

   currpointR[0] = to_double(token); 

   while((token=strtok(NULL, DELIM))!=NULL) 

   { 

    i++; 

    currpointR[i]=to_double(token); 

   } 

 

   //if TIME (from currpoint) is equal to or less then the 

current iteration of the loop, upload it 

   if (lineL != NULL && currpointL[0] <= counter) 

   { 

    //upload the current time (NN receiver will check to 

see if a new point has come in by comparing 

    //the timestamp with it's last saved timestamp)  

    uploadfileL = fopen(uploadL, "w"); 

    fprintf(uploadfileL, "%f,%f,%f,%f\n", currpointL[0], 

currpointL[1], currpointL[2], currpointL[3]); 

    fclose(uploadfileL); 

    updateL = 1; 

   } 

 

   if (lineR != NULL && currpointR[0] <= counter) 

   { 

    //upload the current time (NN receiver will check to 

see if a new point has come in by comparing 



    127 

    //the timestamp with it's last saved timestamp)  

    uploadfileR = fopen(uploadR, "w"); 

    fprintf(uploadfileR, "%f,%f,%f,%f\n", currpointR[0], 

currpointR[1], currpointR[2], currpointR[3]); 

    fclose(uploadfileR); 

    updateR = 1; 

   } 

  } 

  else break;  //if we've reached the end of both files, break 

out of the loop 

  Sleep(1000); //sleep for a time representative of the delay 

between 2 timesteps (Sleep takes milliseconds as an argument) 

  counter++;  //update counter 

 } 

 fclose(coordsfileL); 

 fclose(coordsfileR); 

 

 //cleanup 

 delete[] currpointL; 

 delete[] currpointR; 

} 

 

//function that takes compressed coords, and uploads them to a shared drive 

location for use by 

//the neural network controller.  It gives all the points the NN Controller 

and requires that the NN 

//cut them apart and use the points in order. 

void uploadToNNbatch(char uploadL[], char uploadR[], char coordsL[], char 

coordsR[]) 

{ 

 char line [512];       //holder for a 

single line of a coordsfile as it is parsed 

 FILE *uploadfileL;       //file 

handle for temp upload file to send info to the NN L 

 FILE *uploadfileR;       //file 

handle for temp upload file to send info to the NN R 

 FILE *coordsfileL;       //file 

handle for coords to be uploaded L 

 FILE *coordsfileR;       //file 

handle for coords to be uploaded R 

 

 //open coords files 

 coordsfileL = fopen(coordsL, "r"); //coordinates to be uploaded 

 coordsfileR = fopen(coordsR, "r"); //coordinates to be uploaded 

  

 //fgets(line, 512, coordsfileL); //ignore 1st line of TITLES 

 //fgets(line, 512, coordsfileR); //ignore 1st line of TITLES 

 

 uploadfileL = fopen(uploadL, "w"); 

 uploadfileR = fopen(uploadR, "w"); 

 

 //copy all but the 1st line to a text file on the shared I drive for 

use by the Neural Network Controller 

 for(;;) 

 { 

  if(fgets(line, 512, coordsfileL) != NULL) 

  { 



    128 

   fprintf(uploadfileL, line); 

  } 

  else break;  //if we've reached the end of the file, break 

out of the loop 

 } 

 

 for(;;) 

 { 

  if(fgets(line, 512, coordsfileR) != NULL) 

  { 

   fprintf(uploadfileR, line); 

  } 

  else break;  //if we've reached the end of the file, break 

out of the loop 

 } 

 

 printf ("****Upload to Controller Complete\n"); 

 

 fclose(uploadfileL); 

 fclose(uploadfileR); 

 fclose(coordsfileL); 

 fclose(coordsfileR); 

} 

 

//function to convert the points from their current magic scale to a scale 

suitable for ISAC's NN Controller 

//also switch axes: X->Y, Y->Z, Z->X 

//also, if necessary, mirror image X->Y axis for mirrored motion 

void fitCoordsToISAC(char coords[], char fittedcoords[]) 

{ 

 FILE *coordsfile;       //file handle for 

coords to be uploaded 

 FILE *fittedcoordsfile;      //file handle for 

the newley fittted coords 

 int i,j; 

 char line [512];       //holder for a 

single line of a coordsfile as it is parsed 

 double* linearray = new double[7];   //array to values hold 

a line of coordsfile 

 double* currpoint = new double[4];   //array to hold values 

of the current point (TIME,X1,Y1,Z1) 

 double* modpoint = new double[4];   //array to hold values 

of the current point modified (TIME,X1,Y1,Z1) 

 double maxs[2][4];  //2D array to hold max values [0][i]=N/A, 

X max TIME, Y max TIME, Z max TIME 

       //      

   [1][i]=N/A, X max, Y max, Z max 

 double mins[2][4];  //2D array to hold min values [0][i]=N/A, 

X min TIME, Y min TIME, Z min TIME 

       //      

   [1][i]=N/A, X min, Y min, Z min 

 double diffs[4];  //array to hold maxs[1][i] - mins[1][i] 

 double divs[4];   //array to hold diffs/(ISAC_MAX-

ISAC_MIN); 

 double shift[4];  //array to hold shift factors; 

 char *token; 

 



    129 

 //initialize maxs/mins 

 for(i=0;i<2;i++) 

 { 

  for(j=0;j<4;j++) 

  { 

   maxs[i][j]=-999999999999; 

   mins[i][j]=999999999999; 

  } 

 } 

 

 //GET MAX AND MIN FOR X, Y, Z 

 //open coords files 

 coordsfile = fopen(coords, "r"); //coordinates to be parsed 

 fgets(line, 512, coordsfile);  //ignore 1st line of TITLES 

 for(;;) 

 { 

  if(fgets(line, 512, coordsfile) != NULL)  //get a line from 

coordsfile 

  { 

   //tokenize the line 

   i=0; 

   token=strtok(line, DELIM); 

   linearray[0] = to_double(token); 

   while((token=strtok(NULL, DELIM))!=NULL) 

   { 

    i++; 

    linearray[i]=to_double(token); 

   } 

 

   //save to currpoint 

   for(i=0;i<4;i++) 

   { 

    currpoint[i]=linearray[i]; 

   } 

 

   //find max/mins 

   for(i=1;i<4;i++) 

   { 

    if(currpoint[i] >= maxs[1][i]) 

    { 

     maxs[0][i] = currpoint[0]; //set new max 

time 

     maxs[1][i] = currpoint[i]; //set new max 

value 

    } 

 

    if(currpoint[i] <= mins[1][i]) 

    { 

     mins[0][i] = currpoint[0]; //set new min 

time 

     mins[1][i] = currpoint[i]; //set new min 

value 

    } 

   } 

    

  } 

  else  



    130 

  { 

   fclose(coordsfile); 

   break;  //if we've reached the end of the file, 

break out of the loop 

  } 

 } 

 

 //CALCULATE DIFFERENCES 

 for(i=1;i<4;i++) 

 { 

  diffs[i]=maxs[1][i]-mins[1][i];  //get the range of each 

axes 

 } 

 

 //DIVIDE DIFFERENCE BY ISAC'S RANGE 

 divs[1]=diffs[1]/(ISAC_Y_MAX-ISAC_Y_MIN); //our X is ISACs Y 

 divs[2]=diffs[2]/(ISAC_Z_MAX-ISAC_Z_MIN); //our Y is ISACs Z 

 divs[3]=diffs[3]/(ISAC_X_MAX-ISAC_X_MIN); //our Z is ISACs X 

  

 //CALCULATE SHIFT FACTOR 

 shift[1]=(mins[1][1]/divs[1]-ISAC_Y_MIN)*-1; 

 shift[2]=(mins[1][2]/divs[2]-ISAC_Z_MIN)*-1; 

 shift[3]=(mins[1][3]/divs[3]-ISAC_X_MIN)*-1; 

  

 //REWRITE FILE LINE BY LINE APPLYING SCALE/SHIFT AND REARRANGING AXES 

 coordsfile = fopen(coords, "r");    //coordinates to 

be parsed 

 fittedcoordsfile = fopen(fittedcoords, "w"); //fitted coordinates 

file 

 fgets(line, 512, coordsfile);     //ignore 1st line 

of TITLES 

 for(;;) 

 { 

  if(fgets(line, 512, coordsfile) != NULL)  //get a line from 

coordsfile 

  { 

   //tokenize the line 

   i=0; 

   token=strtok(line, DELIM); 

   linearray[0] = to_double(token); 

   while((token=strtok(NULL, DELIM))!=NULL) 

   { 

    i++; 

    linearray[i]=to_double(token); 

   } 

 

   //save to currpoint 

   for(i=0;i<4;i++) 

   { 

    currpoint[i]=linearray[i]; 

   } 

 

    

   modpoint[0]=currpoint[0]; 

   for(i=1;i<4;i++) 

   { 



    131 

    modpoint[i]=currpoint[i]/divs[i]+shift[i];

 //scale & shift the point 

   } 

 

   //write to the new file in ISAC's order 

   fprintf(fittedcoordsfile, 

"%f,%f,%f,%f\n",modpoint[0],modpoint[3],modpoint[1],modpoint[2]); 

    

  } 

  else  

  { 

   fclose(coordsfile); 

   fclose(fittedcoordsfile); 

   break;  //if we've reached the end of the file, 

break out of the loop 

  } 

 } 

 

 printf ("****Fitting to ISAC Complete\n"); 

 

 //cleanup 

 delete[] linearray; 

 delete[] currpoint; 

 delete[] modpoint; 

} 

 

//file to create many many points in a 3d space to test against an inverse 

kinematics program to get a workspace 

//format: "count,x,y,z\n" 

void testSetForInverseKinematics(char test[], int Xmin, int Xmax, int Ymin, 

int Ymax, int Zmin, int Zmax, int stepSize) 

{ 

 FILE *testfile;   //file handle to hold the file to be 

written to 

 int x,y,z,c;   //counters 

  

 c=0; 

 

 testfile = fopen(test, "w"); 

  

 for(x=Xmin;x<=Xmax;x=x+stepSize) 

 { 

  for(y=Ymin;y<=Ymax;y=y+stepSize) 

  { 

   for(z=Zmin;z<=Zmax;z=z+stepSize) 

   { 

    fprintf(testfile, "%d,%d,%d,%d\n", c,x,y,z); 

    c++; 

   } 

  } 

 } 

 fclose(testfile); 

} 

 

//function to create a set of points to be fed through a forward kinematics 

program to test for workspace 

//format: "count,ang1,ang2,ang3,ang4,ang5,ang6\n" 



    132 

void testSetForForwardKinematics(char test[], double maxAngle, double 

stepSize) 

{ 

 FILE *testfile;    //file handle to hold the file to 

be written to 

 double a0,a1,a2,a3,a4,a5; //counters (mostly theta angles) 

 int c; 

 

 c=0; 

 testfile = fopen(test, "w"); 

 

 for(a0=0;a0<maxAngle;a0=a0+stepSize) 

 { 

  for(a1=0;a1<maxAngle;a1=a1+stepSize) 

  { 

   for(a2=0;a2<maxAngle;a2=a2+stepSize) 

   { 

    for(a2=0;a2<maxAngle;a2=a2+stepSize) 

    { 

     for(a3=0;a3<maxAngle;a3=a3+stepSize) 

     { 

      for(a4=0;a4<maxAngle;a4=a4+stepSize) 

      { 

      

 for(a5=0;a5<maxAngle;a5=a5+stepSize) 

       { 

        fprintf(testfile, 

"%d,%f,%f,%f,%f,%f,%f\n", c,a0,a1,a2,a3,a4,a5); 

        c++; 

       } 

      } 

     } 

    } 

   } 

  } 

 } 

 

 fclose(testfile); 

} 

 

//function to take a set of coordinates fitted for ISAC and convert them into 

Joint Angles 

void calcJointAngles(char coords[], char angles[], int rightleft, int EndEff, 

int simple) 

{ 

 FILE *coordsfile;     //file handle for fitted 

coordinates to be converted 

 FILE *anglesfile;     //file handle for joint angle 

outputs 

 char line [512];     //holder for a single line of 

a coordsfile as it is parsed 

 char *token; 

 double* currpoint = new double[4]; //array to hold values of the 

current point (TIME,X1,Y1,Z1) 

 CvPoint3D32f point;    //holder for point to be 

passed to simpleInverseKinematics 

 double *pdAngles; 



    133 

 double pdPos[6]={0.0};   //array to hold the coordinates to 

be passed to the Inverse Kinematics 

 int i,j; 

 

 if(!simple) 

 { 

  pdAngles = new double[6]; 

 } 

  

  

 

 coordsfile = fopen(coords, "r"); 

 anglesfile = fopen(angles, "w"); 

 

 if (coordsfile == NULL || anglesfile == NULL) 

 { 

  printf("WARNING: Could NOT convert fitted coordinates to joint 

angles!!!\n"); 

  return; 

 } 

 

 for(;;) 

 { 

  if(fgets(line, 512, coordsfile) != NULL)  //get a line from 

coordsfile 

  { 

   //tokenize the line 

   i=0; 

   token=strtok(line, DELIM); 

   currpoint[0] = to_double(token); 

   while((token=strtok(NULL, DELIM))!=NULL) 

   { 

    i++; 

    currpoint[i]=to_double(token); 

   } 

    

   if(simple) 

   { 

    point.x = currpoint[1]; 

    point.y = currpoint[2]; 

    point.z = currpoint[3]; 

   } 

   else 

   { 

    for(j=0;j<3;j++) //save the xyz point into our pdPos 

holder; 

    { 

     pdPos[j]=currpoint[j+1]; 

    } 

   } 

 

   //INVERSE KINEMATICS 

   if(simple) 

   { 

    pdAngles = simpleInverseKinematics(point, rightleft); 

   } 

   else 



    134 

   { 

    inverseKinematics(pdPos, pdAngles, (short)rightleft, 

(short)EndEff); 

    //set last 3 joints to 0 to keep the wrist locked 

    pdAngles[3]=0; 

    pdAngles[4]=0; 

    pdAngles[5]=0; 

   } 

    

    

 

   //write time + joint angles to the new joint angles file 

   fprintf(anglesfile, 

"%f,%f,%f,%f,%f,%f,%f\n",currpoint[0],pdAngles[0],pdAngles[1],pdAngles[2],pdA

ngles[3],pdAngles[4],pdAngles[5]); 

    

  } 

  else  

  { 

   fclose(coordsfile); 

   fclose(anglesfile); 

   break;  //if we've reached the end of the file, 

break out of the loop 

  } 

 } 

 

 printf ("****Conversion to Joint Angles Complete\n"); 

 

 //cleanup 

 delete[] currpoint; 

 delete[] pdAngles; 

} 

 

//function to interface with Kinematics.cpp for Inverse Kinematics 

//calculates joint angles from a set of XYZ coords 

//written by Juan Rojas 

void inverseKinematics(double * pdPos, double * pdAngles, short m_sLeftArm, 

short m_sEndEffector) 

{ 

 int i; 

 double  M[16]; 

 Kinematics *m_pKMArm; 

 

 //for (i=0;i<16;i++) 

 // M[i]=0.0; 

 

 // Create Arm Class 

 m_pKMArm = new Kinematics(m_sLeftArm, m_sEndEffector);   

     

 //m_pKMArm->m_sRightHand = m_sLeftArm;      

 // Tells which side end-effector information we will use 

 

 // Tranform: Subtract the base-tranform from the center of the eyes to 

get the coords at the base of the shoulder 

 pdPos[0]-=m_pKMArm->m_pdBaseXform[0]; 

 pdPos[1]-=m_pKMArm->m_pdBaseXform[1]; 

 pdPos[2]-=m_pKMArm->m_pdBaseXform[2]; 



    135 

  

 // Initialization calls necessary to get parameters right 

 m_pKMArm->SetRPYMatrix(m_pKMArm->m_pdEndEffXform,M);   // 

Build W2E Transformation 

 m_pKMArm->SetW2ETransform(M); 

 

 // Call that actually computes the inverse kinematics and returns the 

angles 

 // Give it the XYZ to compute the new position 

 m_pKMArm->SetXYZRPY(pdPos);   

 // Get the angles of the new position 

 m_pKMArm->GetAngles(pdAngles);  

 

 for (i=0;i<6;i++) 

  if(fabs(pdAngles[i]) < 0.0001) 

   pdAngles[i] = 0.0000; 

} 

 

//function to create an empty file called Start.Now that tells the controller 

to go.  The controller sits in 

//a loop searching for this file which indicates that new joint angles have 

been uploaded.  When it finds the 

//file the loop exits and the controller begins moving the arm to points 

specified by uploadL.txt and uploadR.txt 

void uploadGoFlag(char loc[]) 

{ 

 FILE *flagfile;      //file handle for our 

upload flag 

 

 //open flag file for writing 

 flagfile = fopen(loc, "w"); 

 

 //close flag file 

 fclose(flagfile); 

 

 printf ("****Upload of \"Go Flag\" Complete\n"); 

} 

 

 

//function to detect the person's face based on the c facedetect demo that 

comes with OpenCV 

void haarFaceDetect(IplImage* img, CvTarget *tar) 

{ 

 int radius; 

    double scale = 1.3; 

 

    IplImage* gray = cvCreateImage( cvSize(img->width,img->height), 8, 1 ); 

    IplImage* small_img = cvCreateImage( cvSize( cvRound (img->width/scale), 

                         cvRound (img->height/scale)), 

                     8, 1 ); 

    int i; 

 

    cvCvtColor( img, gray, CV_BGR2GRAY ); 

    cvResize( gray, small_img, CV_INTER_LINEAR ); 

    cvEqualizeHist( small_img, small_img ); 

    cvClearMemStorage( storage ); 

 



    136 

    if( cascade ) 

    { 

        CvSeq* faces = cvHaarDetectObjects( small_img, cascade, storage, 

                                            1.1, 2, 

0/*CV_HAAR_DO_CANNY_PRUNING*/, 

                                            cvSize(30, 30) ); 

 

  tar->r = 0; //initialize the target radius to 0 

  //cycle through detected faces to find the largest 

        for( i = 0; i < (faces ? faces->total : 0); i++ ) 

        { 

            CvRect* r = (CvRect*)cvGetSeqElem( faces, i ); 

            radius = cvRound((r->width + r->height)*0.25*scale); 

    

   //if the radius of the detected face is larger then prev 

saved radius, save the loc 

   if (radius > tar->r) 

   { 

    tar->r = radius; 

    tar->x = cvRound((r->x + r->width*0.5)*scale); 

    tar->y = cvRound((r->y + r->height*0.5)*scale); 

   } 

   

        } 

    } 

 

    cvReleaseImage( &gray ); 

    cvReleaseImage( &small_img ); 

} 

 

//function to get an average of the location of the face in the images, 

calculate the 3D location of it 

//and then write it to the coords file 

void avgFaceLoc(char coords[], char out[]) 

{ 

 FILE *coordsfile;     //file handle for coords file 

w/ face locations 

 FILE *outputfile;     //file handle for modified 

output file 

 char line [512];     //holder for a single line of 

a coordsfile as it is parsed 

 char *token; 

 double* linearray = new double[22]; //array to hold values of the 

current line 

  

 double XLtotal=0,YLtotal=0,XRtotal=0,YRtotal=0; //holders for total 

values in each direction 

 

 CvPoint left;      //CvPoint to hold the 

left averages 

 CvPoint right;      //CvPoint to hold the 

right averages 

 CvPoint3D32f faceloc;    //3D CvPoint to hold the 

average adjusted 3D location 

 

 int count=0;      //holder for total # of 

entries analyzed 



    137 

 

 int i; 

 

 //linearray guide 

 //[0]=TIME, [1]=PX1L, [2]=PY1L, [3]=PX1R, [4]=PY1R, [5]=X1, [6]=Y1, 

[7]=Z1, 

 //[8]=PX2L, [9]=PY2L, [10]=PX2R, [11]=PY2R, [12]=X2, [13]=Y2, [14]=Z2, 

[15]=FACE_PXL, 

 //[16]=FACE_PYL, [17]=FACE_PXR, [18]=FACE_PYR, [19]=FACE_X, 

[20]=FACE_Y, [21]=FACE_Z 

 

 //currpoint guide 

 //[0]=FACE_PXL, [1]=FACE_PYL, [2]=FACE_PXR, [3]=FACE_PYR 

 

 coordsfile = fopen(coords, "r"); 

 

 if (coordsfile == NULL) 

 { 

  printf("WARNING: Could NOT average and rewrite face 

locations!!!\n"); 

  return; 

 } 

 

 fgets(line, 512, coordsfile);  //IGNORE 1st line b/c it is TITLES 

 for(;;) //loop forever 

 { 

  if(fgets(line, 512, coordsfile) != NULL)  //get a line from 

coordsfile 

  { 

   //tokenize the line 

   i=0; 

   token=strtok(line, DELIM); 

   linearray[0] = to_double(token); 

   while((token=strtok(NULL, DELIM))!=NULL) 

   { 

    i++; 

    linearray[i]=to_double(token); 

   } 

    

   //update totals 

   XLtotal+=linearray[15]; 

   YLtotal+=linearray[16]; 

   XRtotal+=linearray[17]; 

   YRtotal+=linearray[18]; 

   count++; 

    

  } 

  else  

  { 

   fclose(coordsfile); 

   break;  //if we've reached the end of the file, 

break out of the loop 

  } 

 } 

 

 //calculate averages 

 left.x = XLtotal/count; 



    138 

 left.y = YLtotal/count; 

 right.x = XRtotal/count; 

 right.y = YRtotal/count; 

 

 //calculate XYZ location; 

 calculateXYZ(&faceloc, left, right); 

 

  

 //rewrite the coords file 

 coordsfile = fopen(coords, "r"); 

 outputfile = fopen(out, "w"); 

 

 //write titles line to outputfile 

 fprintf(outputfile,"TIME,PX1L,PY1L,PX1R,PY1R,X1,Y1,Z1,PX2L,PY2L,PX2R,PY

2R,X2,Y2,Z2,FACE_PXL,FACE_PYL,FACE_PXR,FACE_PYR,FACE_X,FACE_Y,FACE_Z\n"); 

 

 if (coordsfile == NULL || outputfile == NULL) 

 { 

  printf("WARNING: Could NOT average and rewrite face 

locations!!!\n"); 

  return; 

 } 

 

 fgets(line, 512, coordsfile);  //IGNORE 1st line b/c it is TITLES 

 for(;;) //loop forever 

 { 

  if(fgets(line, 512, coordsfile) != NULL)  //get a line from 

coordsfile 

  { 

   //tokenize the line 

   i=0; 

   token=strtok(line, DELIM); 

   linearray[0] = to_double(token); 

   while((token=strtok(NULL, DELIM))!=NULL) 

   { 

    i++; 

    linearray[i]=to_double(token); 

   } 

 

   //print the line to our output file with the adjusted face 

values 

   fprintf(outputfile, 

"%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%d,%d,%d,%d,%f,%f,%f\n", 

   

 linearray[0],linearray[1],linearray[2],linearray[3],linearray[4],linear

ray[5],linearray[6], 

   

 linearray[7],linearray[8],linearray[9],linearray[10],linearray[11],line

array[12],linearray[13], 

   

 linearray[14],left.x,left.y,right.x,right.y,faceloc.x,faceloc.y,faceloc

.z); 

  } 

  else  

  { 

   fclose(coordsfile); 

   fclose(outputfile); 



    139 

   break;  //if we've reached the end of the file, 

break out of the loop 

  } 

 } 

 

 printf ("****Averaging of Face Location and Rewrite Complete\n"); 

 

 //cleanup 

 delete[] linearray; 

} 

 

//function to do simple inverse kinematics.  in this case ISAC's arm is 

represented as a 3 angle 2 link 

//manipulator.  we will only use angles 0, 1 and 2, and will lock the wrist 

in place. 

//this function takes in a 3D point as input and returns joint angles for 

ISAC to reach to it. 

//calculations of Theta 1 & 2 taken from page 69 of Modelling and Control of 

Robotic Manipulators by 

//L. Sciavicco & B. Siciliano 

double* simpleInverseKinematics(CvPoint3D32f point, int rightleft) 

{ 

 //T = Theta = Angle 

 //X, Y, & Z are relative to ISAC's workspace thus: X= front to back, 

Y=right to left, X=top to bottom 

 double T0, T1, T2, T4;    //Theta 0, 1, 2, & 4 refer to 

angles 0, 1, 2, & 4 

 double a, b, u, f, h;    //holders for constant values 

 double Ta, Tb, v1, v2;    //intermediate angle 

calculations 

 double n,o;       //intermediate values 

for calculation of T0 

 double c2;       //intermediate values 

for calculation of T1 & T2 

 double x,y,z;      //holder for absoulte 

values of incoming point 

 double* ret = new double[6];  //return array for angles {T0, T1, 

T2, 0, 0, 0} 

 double alpha, beta; 

 

 //set constant holders 

 a = CENTER_TO_ANGLE_0; 

 b = SHOULDER_OFFSET; 

 u = UPPERARM; 

 f = FOREARM; 

 h = HAND_L; 

 

 //adjust x, y, z for math 

 x = point.x; 

 if (rightleft == RIGHT_ARM) 

 { 

  y = -point.y; 

 } 

 else 

 { 

  y = point.y; 

 } 



    140 

 z = -point.z; 

 

 //Calculate Theta 0 (shoulder X Y) 

 if (y >= a) 

 { 

  Ta = atan(x/(y - a)); 

  Tb = acos(b*sin(Ta)/x); 

 

  T0 = Tb - Ta; 

 } 

 else 

 { 

  n  = a - y; 

  Tb = atan(x/n); 

  o  = x/sin(Tb); 

  Ta = acos(b/o); 

  T0 = -(PI - Ta - Tb); 

 } 

 

 if (rightleft == RIGHT_ARM) 

 { 

  T0 = -T0; 

 } 

 

 //Calculate Theta 1 (elbow) & Theta 2 (shoulder X Z) 

 //**** current assumption that 0 on the Z axis is at shoulder level 

 //geometric solution 

 alpha = atan2(z,x); 

 beta = acos((x*x+z*z+u*u-(f+h)*(f+h))/(2*u*sqrt(x*x+z*z))); 

 

 c2 = (x*x + z*z - u*u - (f+h))/(2*u*(f+h)); 

 

 //angles according to the book 

 v1 = alpha + beta; 

 v2 = acos(c2); 

 

 //conversion to ISAC's frame 

 T1 = v1; 

 T2 = -v2 - PI/2; 

 

 //Calculate Theta 4 (wrist up/down) 

 T4 = -(PI + T1 + T2);  

 

 //Convert to Degrees 

 T0=T0*R2D; 

 T1=T1*R2D; 

 T2=T2*R2D; 

 T4=T4*R2D; 

 

 //Ensure that final Theta values do not exceed ISAC's Range of Motion 

 if (rightleft == RIGHT_ARM) 

 { 

  if(T0 > ANG_R_0_MAX) T0 = ANG_R_0_MAX; 

  if(T0 < ANG_R_0_MIN) T0 = ANG_R_0_MIN; 

  if(T1 > ANG_R_1_MAX) T1 = ANG_R_1_MAX; 

  if(T1 < ANG_R_1_MIN) T1 = ANG_R_1_MIN; 

  if(T2 > ANG_R_2_MAX) T2 = ANG_R_2_MAX; 



    141 

  if(T2 < ANG_R_2_MIN) T2 = ANG_R_2_MIN; 

  if(T4 > ANG_R_4_MAX) T4 = ANG_R_4_MAX; 

  if(T4 < ANG_R_4_MIN) T4 = ANG_R_4_MIN; 

 } 

 else 

 { 

  if(T0 > ANG_L_0_MAX) T0 = ANG_L_0_MAX; 

  if(T0 < ANG_L_0_MIN) T0 = ANG_L_0_MIN; 

  if(T1 > ANG_L_1_MAX) T1 = ANG_L_1_MAX; 

  if(T1 < ANG_L_1_MIN) T1 = ANG_L_1_MIN; 

  if(T2 > ANG_L_2_MAX) T2 = ANG_L_2_MAX; 

  if(T2 < ANG_L_2_MIN) T2 = ANG_L_2_MIN; 

  if(T4 > ANG_L_4_MAX) T4 = ANG_L_4_MAX; 

  if(T4 < ANG_L_4_MIN) T4 = ANG_L_4_MIN; 

 } 

 

 //populate return array in degrees 

 ret[0]=T0; 

 ret[1]=T1; 

 ret[2]=T2; 

 ret[3]=0; 

 ret[4]=T4; 

 ret[5]=0; 

 

 return ret; 

} 

 

//function to convert the points from their current magic scale to a scale 

suitable for ISAC's NN Controller 

//also switch axes: X->Y, Y->Z, Z->X 

//different approach then fitCoordstoISAC 

void fitCoordsToISAC2(char coords[], char fittedcoords[], int rightleft) 

{ 

 FILE *coordsfile;       //file handle for 

coords to be uploaded 

 FILE *fittedcoordsfile;      //file handle for 

the newley fittted coords 

 int i,j; 

 char line [512];       //holder for a 

single line of a coordsfile as it is parsed 

 double* linearray = new double[7];   //array to values hold 

a line of coordsfile 

 double* currpoint = new double[4];   //array to hold values 

of the current point (TIME,X1,Y1,Z1) 

 double* modpoint = new double[4];   //array to hold values 

of the current point modified (TIME,X1,Y1,Z1) 

 double maxs[2][4];  //2D array to hold max values [0][i]=N/A, 

X max TIME, Y max TIME, Z max TIME 

       //      

   [1][i]=N/A, X max, Y max, Z max 

 double mins[2][4];  //2D array to hold min values [0][i]=N/A, 

X min TIME, Y min TIME, Z min TIME 

       //      

   [1][i]=N/A, X min, Y min, Z min 

 double diffs[4];  //array to hold maxs[1][i] - mins[1][i] 

 double div;    //holder for the scale factor 

 double shift[4];  //array to hold shift factors 



    142 

 double armshift;  //holder for the amount to shift the series1 

(right arm) points by 

 int no_move=0;   //flag to signify that no important 

movement has been see 

 char *token; 

 

 //initialize maxs/mins 

 for(i=0;i<2;i++) 

 { 

  for(j=0;j<4;j++) 

  { 

   maxs[i][j]=-999999999999; 

   mins[i][j]=999999999999; 

  } 

 } 

 

 //GET MAX AND MIN FOR X, Y, Z (dont use Z but get it anyways) 

 //open coords files 

 coordsfile = fopen(coords, "r"); //coordinates to be parsed 

 fgets(line, 512, coordsfile);  //ignore 1st line of TITLES 

 for(;;) 

 { 

  if(fgets(line, 512, coordsfile) != NULL)  //get a line from 

coordsfile 

  { 

   //tokenize the line 

   i=0; 

   token=strtok(line, DELIM); 

   linearray[0] = to_double(token); 

   while((token=strtok(NULL, DELIM))!=NULL) 

   { 

    i++; 

    linearray[i]=to_double(token); 

   } 

 

   //save to currpoint 

   for(i=0;i<4;i++) 

   { 

    currpoint[i]=linearray[i]; 

   } 

 

   //find max/mins 

   for(i=1;i<4;i++) 

   { 

    if(currpoint[i] >= maxs[1][i]) 

    { 

     maxs[0][i] = currpoint[0]; //set new max 

time 

     maxs[1][i] = currpoint[i]; //set new max 

value 

    } 

 

    if(currpoint[i] <= mins[1][i]) 

    { 

     mins[0][i] = currpoint[0]; //set new min 

time 



    143 

     mins[1][i] = currpoint[i]; //set new min 

value 

    } 

   } 

    

  } 

  else  

  { 

   fclose(coordsfile); 

   break;  //if we've reached the end of the file, 

break out of the loop 

  } 

 } 

 

 //CALCULATE DIFFERENCES 

 for(i=1;i<4;i++) 

 { 

  diffs[i]=maxs[1][i]-mins[1][i];  //get the range of each 

axes 

 } 

 

 //FIND BIGGEST RANGE & DIVIDE DIFFERENCE BY ISAC'S RANGE 

 if(diffs[1] > diffs[2]) 

 { 

  if (diffs[1] > MIN_MOVEMENT) 

   div = diffs[1]/(ISAC_Y_MAX-ISAC_Y_MIN); //our X is ISAC's Y 

  else 

   no_move = 1; 

 } 

 else 

 { 

  if (diffs[2] > MIN_MOVEMENT) 

   div = diffs[2]/(ISAC_Z_MAX-ISAC_Z_MIN); //our Y is ISAC's Z 

  else 

   no_move = 1; 

 } 

 

 //CALCULATE SHIFT FACTOR based on Face Location 

 shift[1]=(mins[1][1]/div-FACE_Y)*-1; 

 shift[2]=(maxs[1][2]/div-FACE_Z)*-1; 

 

 //IF RIGHT ARM :: GET LARGEST LEFT/RIGHT (X->Y) VALUE 

 armshift = maxs[1][1]/div+shift[1]; 

 

  

 //REWRITE FILE LINE BY LINE APPLYING SCALE/SHIFT AND REARRANGING AXES 

AND SET ISAC_X = 400 

 coordsfile = fopen(coords, "r");    //coordinates to 

be parsed 

 fittedcoordsfile = fopen(fittedcoords, "w"); //fitted coordinates 

file 

 fgets(line, 512, coordsfile);     //ignore 1st line 

of TITLES 

 for(;;) 

 { 

  if(fgets(line, 512, coordsfile) != NULL)  //get a line from 

coordsfile 



    144 

  { 

   //tokenize the line 

   i=0; 

   token=strtok(line, DELIM); 

   linearray[0] = to_double(token); 

   while((token=strtok(NULL, DELIM))!=NULL) 

   { 

    i++; 

    linearray[i]=to_double(token); 

   } 

 

   //save to currpoint 

   for(i=0;i<4;i++) 

   { 

    currpoint[i]=linearray[i]; 

   } 

 

    

   modpoint[0]=currpoint[0]; 

   for(i=1;i<4;i++) 

   { 

    modpoint[i]=currpoint[i]/div+shift[i]; //scale & 

shift the point 

   } 

 

   if (rightleft == RIGHT_ARM) 

   { 

    modpoint[1]=modpoint[1]-armshift; 

   } 

 

   //SAFTEY SHIFT 

   //shift the points further from the center to ensure ISAC 

wont hit his own hands together 

   if (rightleft == RIGHT_ARM) 

   { 

    modpoint[1]=modpoint[1]-SAFTEY_SHIFT; 

   } 

   else 

   { 

    modpoint[1]=modpoint[1]+SAFTEY_SHIFT; 

   } 

 

   //write to the new file in ISAC's order 

   if (no_move) 

    fprintf(fittedcoordsfile, 

"%f,%f,%f,%f\n",modpoint[0],FOREARM+HAND_L,CENTER_TO_ANGLE_0+SHOULDER_OFFSET,

-UPPERARM); 

   else 

    fprintf(fittedcoordsfile, 

"%f,%f,%f,%f\n",modpoint[0],CONST_X,modpoint[1],modpoint[2]); 

    

  } 

  else  

  { 

   fclose(coordsfile); 

   fclose(fittedcoordsfile); 



    145 

   break;  //if we've reached the end of the file, 

break out of the loop 

  } 

 } 

 

 printf ("****Fitting to ISAC Complete\n"); 

 

 //cleanup 

 delete[] linearray; 

 delete[] currpoint; 

 delete[] modpoint; 

} 

 

void flipY(char coords[], char flippedYcoords[]) 

{ 

 FILE * coordsfile;    //file handle to store 

unparsed coordinates 

 FILE * flippedfile;    //file handle to store 

flipped Y coords 

 char line [512];    //holder for a single line of 

coordsfile as it is parsed 

 char *token; 

 double* linearray = new double[22];    //array of 

doubles to hold unfiltered values 

 double Y1tot=0,Y2tot=0,Yftot=0; 

 double Y1avg,Y2avg,Yfavg; 

 double count=0; 

 int i; 

 

  

 //********************************** 

 //****** Get Y1 & Y2 AVERAGES ****** 

 //********************************** 

 

 //GET FIRST ENTRY (line 2) FOR FILTERING HISTORY 

 //linearray guide 

 //[0]=TIME, [1]=PX1L, [2]=PY1L, [3]=PX1R, [4]=PY1R, [5]=X1, [6]=Y1, 

[7]=Z1, 

 //[8]=PX2L, [9]=PY2L, [10]=PX2R, [11]=PY2R, [12]=X2, [13]=Y2, [14]=Z2, 

[15]=FACE_PXL, 

 //[16]=FACE_PYL, [17]=FACE_PXR, [18]=FACE_PYR, [19]=FACE_X, 

[20]=FACE_Y, [21]=FACE_Z 

 coordsfile = fopen(coords, "r"); //open coordsfile (to be filtered) 

 fgets(line, 512, coordsfile);     //get 1st line to 

ignore it b/c it is TITLES 

 if(fgets(line, 512, coordsfile) != NULL)  //get a line from 

coordsfile 

 { 

  //tokenize the line 

  i=0; 

  token=strtok(line, DELIM); 

  linearray[0] = to_double(token); 

  while((token=strtok(NULL, DELIM))!=NULL) 

  { 

   i++; 

   linearray[i]=to_double(token); 

  } 



    146 

  Y1tot=Y1tot+linearray[6]; 

  Y2tot=Y2tot+linearray[13]; 

  Yftot=Yftot+linearray[20]; 

  count++; 

 } 

 fclose(coordsfile); 

 

 //calculate average Y value 

 Y1avg=Y1tot/count; 

 Y2avg=Y2tot/count; 

 Yfavg=Yftot/count; 

 

 //*************************************** 

 //****** REWRITE Y1 & Y2 (FLIPPED) ****** 

 //*************************************** 

 

 //start back at the beginning 

 coordsfile = fopen(coords, "r");    //open coordsfile 

(to be flipped) 

 flippedfile = fopen(flippedYcoords, "w");  //open flippedycoords 

(to hold flipped Y coords) 

 fprintf(flippedfile,"TIME,PX1L,PY1L,PX1R,PY1R,X1,Y1,Z1,PX2L,PY2L,PX2R,P

Y2R,X2,Y2,Z2,FACE_PXL,FACE_PYL,FACE_PXR,FACE_PYR,FACE_X,FACE_Y,FACE_Z\n"); 

 fgets(line, 512, coordsfile);        

  //ignore 1st line of coordsfile b/c it is TITLES 

 while(1) //loop forever 

 { 

  if(fgets(line, 512, coordsfile) != NULL) //get a line for 

coordsfile 

  { 

   //GET NEXT LINE 

   //tokenize the line 

   i=0; 

   token=strtok(line, DELIM); 

   linearray[0] = to_double(token); 

   while((token=strtok(NULL, DELIM))!=NULL) 

   { 

    i++; 

    linearray[i]=to_double(token); 

   } 

    

   //print to new file 

  

 fprintf(flippedfile,"%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f

,%f,%f,%f,%f,%f\n", 

   

 linearray[0],linearray[1],linearray[2],linearray[3],linearray[4],linear

ray[5], 

    2*Y1avg-

linearray[6],linearray[7],linearray[8],linearray[9],linearray[10],linearray[1

1], 

    linearray[12],2*Y2avg-

linearray[13],linearray[14],linearray[15],linearray[16],linearray[17], 

    linearray[18],linearray[19],2*Yfavg-

linearray[20],linearray[21]); 

  } 



    147 

  else  //if we reach the end of the file break out of the 

while loop 

  { 

   //close files 

   fclose(coordsfile); 

   fclose(flippedfile); 

   break; 

  } 

 } 

 

 printf ("****Y Flipping Complete\n"); 

 

 //cleanup 

 delete[] linearray; 

} 

 

void interpolateAngles(char anglesIn[], char anglesOut[]) 

{ 

 

 FILE *anglesInFile; 

 FILE *anglesOutFile; 

 

 char line [512];     //holder for a single line of 

anglesIn as it is parsed 

 char *token; 

 double* currangles = new double[7]; //array of doubles to hold current 

angles 

 double* lastangles = new double[7]; //array to hold the last angles 

 double span; 

 double* increments = new double[7]; //array to hold the increments for 

the interpolation ([0] unused) 

 int i; 

 

 //linearray guide 

 //[0]=TIME, [1]=Ang0, [2]=Ang1, [3]=Ang2, [4]=Ang3, [5]=Ang4, [6]=Ang5 

 

 anglesInFile = fopen(anglesIn, "r");  //open file with angles 

to be interpolated 

 anglesOutFile = fopen(anglesOut, "w");  //open file to write 

interpolated angles to 

 

 //get 1st line from anglesIn 

 if(fgets(line, 512, anglesInFile) != NULL) 

 { 

  //tokenize the line 

  i=0; 

  token=strtok(line, DELIM); 

  lastangles[0] = to_double(token); 

  while((token=strtok(NULL, DELIM))!=NULL) 

  { 

   i++; 

   lastangles[i]=to_double(token); 

  } 

 } 

 

 while(1) 

 { 



    148 

  //get a line from anglesIn 

  if(fgets(line, 512, anglesInFile) != NULL) 

  { 

   //tokenize the line 

   i=0; 

   token=strtok(line, DELIM); 

   currangles[0] = to_double(token); 

   while((token=strtok(NULL, DELIM))!=NULL) 

   { 

    i++; 

    currangles[i]=to_double(token); 

   } 

    

   span = currangles[0] - lastangles[0]; //get the time 

between 2 sets of angles 

    

   //calculate increments for interpolation 

   for(i=1;i<7;i++) 

   { 

    increments[i]=(currangles[i] - lastangles[i])/span; 

   } 

 

   //write original point + new interpolated points 

   for(i=0;i<span;i++) 

   { 

     fprintf(anglesOutFile,"%f,%f,%f,%f,%f,%f,%f\n", 

     lastangles[0]+i, 

     lastangles[1]+i*increments[1], 

     lastangles[2]+i*increments[2], 

     lastangles[3]+i*increments[3], 

     lastangles[4]+i*increments[4], 

     lastangles[5]+i*increments[5], 

     lastangles[6]+i*increments[6]); 

   } 

  } 

  else //break out of the loop if we have reached the end of the 

file 

  { 

   break; 

  } 

 

  //update lastpoint 

  for(i=0;i<7;i++) 

  { 

   lastangles[i]=currangles[i]; 

  } 

 } 

 

 //print out the last point 

 fprintf(anglesOutFile,"%f,%f,%f,%f,%f,%f,%f\n",lastangles[0],lastangles

[1],lastangles[2],lastangles[3], 

  lastangles[4],lastangles[5],lastangles[6]); 

 

  

 //close files 

 fclose(anglesInFile); 

 fclose(anglesOutFile); 



    149 

 

 

 //cleanup 

 delete[] currangles; 

 delete[] lastangles; 

 delete[] increments; 

} 

A.2. TrackColor.h (Vision & Processing Header) 

 

//Sean Begley 

//Imitation Learning 

//Hand Following 

//1/23/2008 

 

 

/*************************/ 

/*******     *******/ 

/*******   NOTES   *******/ 

/*******     *******/ 

/*************************/ 

 

//HUE RANGE 

//135-155 : purple bean bag     *works ok 

//80-100 : light blue bean bag    *works well 

//40-80 : big green ball / green lego lid *works very well 

 

//CAMERA TRANSFORM PARAMETERS 

//center to camera base = 140mm 

//camera base to rotation base = 91.948mm 

//rotation base to camera = 65.5mm 

//camera to focal point = 39mm 

//rotation about z is from dPan 

//rotation about y if from dTilt 

//effective picture elements: 768x494 

//CCD sensing area: 6.4 x 4.8 mm 

 

//OBJECT 1 is the TEAL BEAN BAG and goes in the human's RIGHT HAND 

//This motion is then translated to ISAC's RIGHT ARM 

//OBJECT 2 is the GREEN LID and goes in the human's LEFT HAND 

//This motion is then translated to ISAC's LEFT ARM 

 

 

 

 

 

/*************************/ 

/*******     *******/ 

/******* INCLUDES  *******/ 

/*******     *******/ 

/*************************/ 

 

//openCV 

#include "cv.h" 

#include "highgui.h" 



    150 

 

//standard headers 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

#include <math.h> 

#include <float.h> 

#include <time.h> 

#include <sstream> 

#include <iostream> 

 

//ISAC specific 

#include "PXck_FG.h"  //framegrabbers (cameras) 

#include "CameraHead.h"  //head object (pan/tilt bases) 

 

 

 

/*************************/ 

/*******     *******/ 

/******* CONSTANTS *******/ 

/*******     *******/ 

/*************************/ 

 

//big/medium/small changes for camera angles 

const double DELTA_B = 2;  //large movement coefficient 

const double DELTA_M = .5;  //medium movement coefficient 

const double DELTA_S = .01;  //small movement coefficient 

 

//hue ranges for detection 

const int HUE_LIGHT_BLUE_BAG[2] ={80,100};  //light blue bean bag 

const int HUE_PURPLE_BAG[2]  ={135,155};  //purple bean bag 

const int HUE_BIG_GREEN_BALL[2] ={40,80};  //big green ball / lego 

lid 

 

//color array 

const int NUM_COLORS = 8;  //number of colors in the COLORS array 

const static CvScalar COLORS[] =  

  { 

   {{0,0,255}},  //red 

   {{0,128,255}},  //orange 

   {{0,255,255}},  //yellow 

   {{0,255,0}},  //green 

   {{255,128,0}},  //royal blue 

   {{255,255,0}},  //aquamarine 

   {{255,0,0}},  //dark blue 

   {{255,0,255}}  //purple 

  }; 

 

//constants for filtering operations 

const double XY_DIFF = 0.008; //used by difference filter to scale Z 

const double A0 = 0.2;   //used by recursive filter 

const double B0 = 0.8;   //used by recursive filter 

const double Z_SCALE = 40;  //used by difference filter to futher 

scale Z 

const int X_SHIFT = 5;   //used by difference filter to shift X 

const char DELIM[] = ",\t";  //used by most all file parsing to 

tokenize lines 



    151 

 

//constants related to ISAC's 

const double ISAC_X_MIN = 400; //ISAC's left arm workspace 

const double ISAC_X_MAX = 400; 

const double ISAC_Y_MIN = 100; 

const double ISAC_Y_MAX = 500; 

const double ISAC_Z_MIN = -400; 

const double ISAC_Z_MAX = 300; 

 

const double FACE_X = 0; //FACE_X is not used  

const double FACE_Y = 0; 

const double FACE_Z = 300; 

 

const double ANG_L_0_MIN = -30;//-58.372; //the min/max angles for the left 

arm joints 

const double ANG_L_0_MAX = 14.995; 

const double ANG_L_1_MIN = 35.760; 

const double ANG_L_1_MAX = 120.25; 

const double ANG_L_2_MIN = -210.378; 

const double ANG_L_2_MAX = -144.212; 

const double ANG_L_4_MIN = -40; 

const double ANG_L_4_MAX = 40; 

 

const double ANG_R_0_MIN = -14.995;  //the min/max angles for the right 

arm joints 

const double ANG_R_0_MAX = 30;//58.372; 

const double ANG_R_1_MIN = 35.760; 

const double ANG_R_1_MAX = 120.25; 

const double ANG_R_2_MIN = -210.378; 

const double ANG_R_2_MAX = -144.212; 

const double ANG_R_4_MIN = -40; 

const double ANG_R_4_MAX = 40; 

 

const double CONST_X = 300;   //constant depth for ignoring depth 

 

const double CENTER_TO_ANGLE_0 = 246; //various lengths on ISAC 

const double SHOULDER_OFFSET = 200; 

const double UPPERARM = 325; 

const double FOREARM = 290; 

const double HAND_L = 250; 

 

 

//constants for Program Usages 

const int LEFT_ARM = 1; 

const int RIGHT_ARM = 0; 

const int END_EFF_YES = 1; 

const int END_EFF_NO = 0; 

const int SIMPLE_INV_KIN = 1; 

const int COMPLEX_INV_KIN = 0; 

const int VISION_TIME = 400;  //max time it takes to complete a 

detection cycle 

const int MIN_MOVEMENT = 5000;  //minium amount of movement in the 

X & Y directions that will be counted 

const int SAFTEY_SHIFT = 100;  //amount to move ISAC's hands away from 

the center (0) to ensure they dont hit 

 

//general constants 



    152 

const double PI = 3.14159265359; 

const double R2D = (180.0 / PI); 

const double D2R = (PI / 180.0); 

 

 

 

 

 

/*************************/ 

/*******     *******/ 

/*******  GLOBAL   *******/ 

/******* VARIABLES *******/ 

/*******     *******/ 

/*************************/ 

 

//variables for getConnectedComps 

int compmax=0; 

int compcap=40;  //should be the same size as the length of Comps 

below 

int maxcomp=0; 

int comptot=0; 

double maxarea=0; 

static CvConnectedComp ** Comps = new CvConnectedComp*[40];  //holder 

for Connected Components 

 

//variables for pan/tilt units 

CameraHead hd;   //head object (pan/tilts) 

 

//Haar face detection 

static CvMemStorage* storage = 0; 

static CvHaarClassifierCascade* cascade = 0; 

 

void detect_and_draw( IplImage* image ); 

 

const char* cascade_name = 

    "haarcascade_frontalface_alt.xml"; 

/*    "haarcascade_profileface.xml";*/ 

 

 

 

 

 

 

/*************************/ 

/*******     *******/ 

/*******  CLASSES  *******/ 

/*******     *******/ 

/*************************/ 

 

//CvTarget: an extension of the CvPoint class... basically just a point (int 

x, int y) with a radius (int r) 

class CvTarget : public CvPoint 

{ 

 public: 

 CvTarget(); 

 CvTarget(int xi, int yi, int ri); 

 int r; 



    153 

}; 

 

CvTarget::CvTarget () {  //default constructor 

 x=0; 

 y=0; 

 r=0; 

} 

 

CvTarget::CvTarget (int xi, int yi, int ri) { //constructor with user input 

  x = xi; 

  y = yi; 

  r = ri; 

} 

 

 

 

 

 

/**************************/ 

/*******      *******/ 

/*******  FUNCTION  *******/ 

/******* PROTOTYPES *******/ 

/*******      *******/ 

/**************************/ 

 

void detectObject(IplImage* img, CvTarget *tar, int low, int high); 

void drawTarget(IplImage* img, CvTarget obj, int clr); 

void getConnectedComps(IplImage *image, CvConnectedComp ** Comps); 

void centerCams(int *lX, int *lY, int *rX, int *rY); 

void calculateXYZ(CvPoint3D32f *objloc, CvPoint left, CvPoint right); 

double to_double ( const char *p ); 

void filterCoords(char coords[], char tempcoords[], char filteredcoords[]); 

void compressCoords(char coords[], char compressedcoords1[], char 

compressedcoords2[]); 

double abs(double Nbr); 

void uploadToNN1by1(char uploadL[], char uploadR[], char coordsL[], char 

coordsR[]); 

void uploadToNNbatch(char uploadL[], char uploadR[], char coordsL[], char 

coordsR[]); 

void fitCoordsToISAC(char coords[], char fittedcoords[]); 

void testSetForInverseKinematics(char test[], int Xmin, int Xmax, int Ymin, 

int Ymax, int Zmin, int Zmax, int stepSize); 

void testSetForForwardKinematics(char test[], double maxAngle, double 

stepSize); 

void calcJointAngles(char coords[], char angles[], int rightleft, int EndEff, 

int simple); 

void inverseKinematics(double * pdPos, double * pdAngles, short m_sLeftArm, 

short m_sEndEffector); 

void uploadGoFlag(char loc[]); 

void haarFaceDetect(IplImage* img, CvTarget *tar); 

void avgFaceLoc(char coords[], char out[]); 

double* simpleInverseKinematics(CvPoint3D32f point, int rightleft); 

void fitCoordsToISAC2(char coords[], char fittedcoords[], int rightleft); 

void flipY(char coords[], char flippedYcoords[]); 

void interpolateAngles(char anglesIn[], char anglesOut[]); 



    154 

B. Control Code Listing 

B.3. main.cpp (main Control loop code) 

#include "Headers\stdafx.h" 

#include <windows.h> 

#include <windef.h> 

#include <string.h> 

#include <stdlib.h> 

#include <stdio.h> 

#include <conio.h> 

#include <stdarg.h> 

#include <math.h> 

#include <IOSTREAM> 

#include <sstream> 

#include "Headers\winmotenc.h" 

#include "Headers\Control.h" 

#include "Headers\NNMuscleClass.h" 

#include "Headers\MahirKinematics.h" 

#include "Headers\PID.h" 

#include "Headers\commport.h" 

#include "Headers\GripControl.h" 

 

#ifdef _ATL_STATIC_REGISTRY 

#include <statreg.h> 

#include <statreg.cpp> 

#endif 

 

#include <atlimpl.cpp> 

 

using namespace std; 

 

double leftValvesOutputs[12]={0}; 

double leftValvesInputs[12]={0}; 

double InitialleftValvesOutputs[12]; 

long leftEncoders[6]={0}; 

double leftAngles[6]={0}; 

 

double rightValvesOutputs[12]={0}; 

double rightValvesInputs[12]={0}; 

double InitialrightValvesOutputs[12]; 

long rightEncoders[6]={0}; 

double rightAngles[6]={0}; 

 

double 

LPID0_output=0.0,LPID1_output=0.0,LPID2_output=0.0,LPID3_output=0.0,LPID4_out

put=0.0,LPID5_output=0.0; 

 

//Kinematic variables 

#define PI 3.14159265 

 

/*double lengthOfEndEff; 

double *alpha,*a,*d,*theta; 



    155 

double **rotation; 

double **limitsOfThetas; 

 

double **T01; 

double **T12; 

double **T23; 

double **T34; 

double **T45; 

double **T56; 

 

double **T02; 

double **T03; 

double **T04; 

double **T05; 

double **T06; 

 

double *j1Pos; 

double *j2Pos; 

double *j3Pos; 

double *j4Pos; 

double *j5Pos; 

double *j6Pos; 

double *endEffPos; 

*/ 

double* optimumRotations( double *desPos, double *prevThetas, double alpha, 

double beta, double gamma); 

double to_double( const char *p); 

 

const char DELIM[]=",\t"; 

 

void main() 

{ 

 int count=0,numb=0; 

 float desiredangleL0 =0.0, desiredangleL1 =0.0, desiredangleL2 =0.0, 

desiredangleL3 =0.0, desiredangleL4 =0.0, desiredangleL5 =0.0;  

 float desiredangleR0 =0.0, desiredangleR1 =0.0, desiredangleR2 =0.0, 

desiredangleR3 =0.0, desiredangleR4 =0.0, desiredangleR5 =0.0;  

 float incrementalVoltage0 = 0.0, incrementalVoltage1 = 

0.0,incrementalVoltage2 = 0.0,incrementalVoltage3 = 0.0,incrementalVoltage4 = 

0.0, incrementalVoltage5 = 0.0; 

 double gamma = 0, beta = 0.0, alpha = 0.0; 

 double *desPos = (double*)malloc(3*sizeof(double)); 

 double *prevThetasL = (double*)malloc(6*sizeof(double)); 

 double *prevThetasR = (double*)malloc(6*sizeof(double)); 

 double *thetas = (double*)malloc(6*sizeof(double)); 

 int solutionexist = 0; 

 double timevalL; 

 double timevalR; 

 char lineL[512]; 

 char lineR[512]; 

 int i; 

 char *token; 

 double *currangsL = new double[6]; 

 double *currangsR = new double[6]; 

 int totalstep = 50; 

 FILE *anglesfileL; 

 FILE *anglesfileR; 



    156 

 int waitL = 0; 

 int waitR = 0; 

 double *anglesL = new double[6]; 

 double *anglesR = new double[6]; 

 int Ldone=0; 

 int Rdone=0; 

 FILE *StartNowFile; 

 

 //TEST VARIABLES: Set these to 1 for use, 0 for no use 

 int usecontrol=1, useleft=1, useright=1, useStartNow=0; 

 

 //GripControl gripper; 

 // Left Arm Objects 

 CNNMuscles 

LeftNNMusclesAngle0F(1,0,1);LeftNNMusclesAngle0F.Allocator();CNNMuscles 

LeftNNMusclesAngle0B(1,0,-1);LeftNNMusclesAngle0B.Allocator(); 

 CNNMuscles 

LeftNNMusclesAngle1F(1,1,1);LeftNNMusclesAngle1F.Allocator();CNNMuscles 

LeftNNMusclesAngle1B(1,1,-1);LeftNNMusclesAngle1B.Allocator(); 

 CNNMuscles 

LeftNNMusclesAngle2F(1,2,1);LeftNNMusclesAngle2F.Allocator();CNNMuscles 

LeftNNMusclesAngle2B(1,2,-1);LeftNNMusclesAngle2B.Allocator(); 

 //CNNMuscles 

LeftNNMusclesAngle3F(1,3,1);LeftNNMusclesAngle3F.Allocator();CNNMuscles 

LeftNNMusclesAngle3B(1,3,-1);LeftNNMusclesAngle3B.Allocator(); 

 CNNMuscles 

LeftNNMusclesAngle4F(1,4,1);LeftNNMusclesAngle4F.Allocator();CNNMuscles 

LeftNNMusclesAngle4B(1,4,-1);LeftNNMusclesAngle4B.Allocator(); 

 //CNNMuscles 

LeftNNMusclesAngle5F(1,5,1);LeftNNMusclesAngle5F.Allocator();CNNMuscles 

LeftNNMusclesAngle5B(1,5,-1);LeftNNMusclesAngle5B.Allocator(); 

 

 // Right Arm Objects 

 CNNMuscles 

RightNNMusclesAngle0F(0,0,1);RightNNMusclesAngle0F.Allocator();CNNMuscles 

RightNNMusclesAngle0B(0,0,-1);RightNNMusclesAngle0B.Allocator(); 

 CNNMuscles 

RightNNMusclesAngle1F(0,1,1);RightNNMusclesAngle1F.Allocator();CNNMuscles 

RightNNMusclesAngle1B(0,1,-1);RightNNMusclesAngle1B.Allocator(); 

 CNNMuscles 

RightNNMusclesAngle2F(0,2,1);RightNNMusclesAngle2F.Allocator();CNNMuscles 

RightNNMusclesAngle2B(0,2,-1);RightNNMusclesAngle2B.Allocator(); 

 //CNNMuscles 

LeftNNMusclesAngle3F(1,3,1);LeftNNMusclesAngle3F.Allocator();CNNMuscles 

LeftNNMusclesAngle3B(1,3,-1);LeftNNMusclesAngle3B.Allocator(); 

 //CNNMuscles 

LeftNNMusclesAngle4F(1,4,1);LeftNNMusclesAngle4F.Allocator();CNNMuscles 

LeftNNMusclesAngle4B(1,4,-1);LeftNNMusclesAngle4B.Allocator(); 

 //CNNMuscles 

LeftNNMusclesAngle5F(1,5,1);LeftNNMusclesAngle5F.Allocator();CNNMuscles 

LeftNNMusclesAngle5B(1,5,-1);LeftNNMusclesAngle5B.Allocator(); 

 

 if (usecontrol) InitializeCards(); 

 if (usecontrol && useleft) 

{InitializeLeftValves();/*gripper.SimpleOpen()*/;Sleep(1500);} 

 if (usecontrol && useright) 

{InitializeRightValves();/*gripper.SimpleOpen()*/;Sleep(1500);} 



    157 

  

 Sleep(3000); 

 // Precise Sampling Time Initialization   

 LARGE_INTEGER ticksPerSecond,start_ticks, end_ticks, cputime,tick; 

 if (!QueryPerformanceFrequency(&ticksPerSecond)) 

  if (!QueryPerformanceCounter(&tick) )  

   printf("no go counter not installed"); 

  

 // Data File Initialization 

 FILE *outputdata; 

 if((outputdata = fopen(".\\MatlabWork\\MatlabWork.txt","w")) == NULL) 

  printf("Can't Open File MatlabWork.txt\n"); 

 

 // Homing & Reset Encoders Left 

 if (usecontrol){Sleep(100);/*gripper.SimpleOpen()*/;Sleep(500);} 

 if (usecontrol && useleft) { ResetLeftEncoders();vitalSelectBoard(0);} 

 if (usecontrol && useright) { 

ResetRightEncoders();vitalSelectBoard(1);} 

  

 //set angles in radians 

 alpha = 0*PI/180; //Hold z of base frame (deg*PI/180) 

 beta =  -90*PI/180; //Hold y of rotated base frame (deg*PI/180) 

 gamma = 0*PI/180;  //Hold x of rotated base frame (deg*PI/180) 

 

 thetas[0] = 10.0; 

  

 while(1) 

 { 

  //check to see if the Start.Now files exists to see if it is time 

go 

  while(1) 

  { 

   if (useStartNow==0) break; //if we are ignoring the 

start file, break out 

   else StartNowFile = fopen("I:/Temp/Start.Now","r"); 

   if (StartNowFile != NULL) break; //if we find a start 

file break out 

   if (kbhit()) break;  //if someone hits a key, 

break out 

   Sleep(10); 

  } 

 

  if (kbhit()) break;  //if someone hits a key, break out 

 

  //setup variables for another run 

  waitL=0; 

  waitR=0; 

  Ldone=0; 

  Rdone=0; 

  count=0; 

  //set prevThetas to home position 

  prevThetasL[0] = 0.0; 

  prevThetasL[1] = 90;//PI/2.0; 

  prevThetasL[2] = -180;//-PI; 

  prevThetasL[3] = 0.0; 

  prevThetasL[4] = 0;//PI/50.0; //For left arm 

  prevThetasL[5] = 0.0; 



    158 

  prevThetasR[0] = 0.0; 

  prevThetasR[1] = 90;//PI/2.0; 

  prevThetasR[2] = -180;//-PI; 

  prevThetasR[3] = 0.0; 

  prevThetasR[4] = 0; 

  prevThetasR[5] = 0.0; 

  //open files with joint angles to goto 

  anglesfileL = fopen("I:/Temp/uploadL.txt", "r"); 

  anglesfileR = fopen("I:/Temp/uploadR.txt", "r"); 

 

  //loop through all points in the uploadL & uploadR files 

  printf("Control Loop Starts!!\n"); 

  for(;;) 

  {  

 

   QueryPerformanceCounter(&start_ticks); 

    

   //LEFT 

   //get angles from file 

   if (waitL == 0) 

   { 

    if(fgets(lineL, 512, anglesfileL) != NULL) 

    { 

     i=0; 

     token=strtok(lineL, DELIM); 

     timevalL = to_double(token); 

     while((token=strtok(NULL, DELIM))!=NULL) 

     { 

      currangsL[i]=to_double(token); 

      i++; 

     } 

    } 

    else  

    { 

     Ldone=1; //if we reach the end of the file 

set the Left done flag 

    } 

   } 

 

   //if the timeval (in our file) is <= the current count then 

goto the point 

   //otherwise wait until timevalL is equal to count 

   if(timevalL <= count) 

   { 

    waitL = 0; 

    for(i=0;i<6;i++) 

     anglesL[i]=currangsL[i]; 

   } 

   else 

   { 

    waitL=1;  

   } 

   

   //RIGHT 

   //get angles from file 

   if (waitR == 0) 

   { 



    159 

    if(fgets(lineR, 512, anglesfileR) != NULL) 

    { 

     i=0; 

     token=strtok(lineR, DELIM); 

     timevalR = to_double(token); 

     while((token=strtok(NULL, DELIM))!=NULL) 

     { 

      currangsR[i]=to_double(token); 

      i++; 

     } 

    } 

    else 

    { 

     Rdone=1; //if we reach the end of the file 

set the Right done flag 

    } 

   } 

 

   //if the timeval (in our file) is <= the current count then 

goto the point 

   //otherwise wait until timevalL is equal to count 

   if(timevalR <= count) 

   { 

    waitR = 0; 

    for(i=0;i<6;i++) 

     anglesR[i]=currangsR[i]; 

   } 

   else 

   { 

    waitR=1; 

   } 

    

   //printf("**THETAS: %f, %f, %f, %f, %f, %f\n", 

thetas[0],thetas[1],thetas[2],thetas[3],thetas[4],thetas[5]); 

    

   if(anglesL && anglesR == NULL) 

   //if (!solutionexist) 

   { 

    printf("No Solution Exists!\n"); 

    // Closing the Controls 

    if (usecontrol)

 {/*gripper.GrabSomething()*/;CloseValves();Sleep(500);vitalQuit();Sleep

(500);} 

    fclose(outputdata); 

    return; 

   } 

 

   //Control loop 

 

   //printf("%d :: ",(int)timevalL); 

 

   //if we're done then get us back to the home position 

   if (Ldone == 1 && Rdone == 1) 

   { 

    Sleep(4000); 

    desiredangleL0 = 0; 

    desiredangleL1 = 90; 



    160 

    desiredangleL2 = -180; 

    desiredangleL3 = 0; 

    desiredangleL4 = 0; 

    desiredangleL5 = 0; 

 

    desiredangleR0 = 0; 

    desiredangleR1 = 90; 

    desiredangleR2 = -180; 

    desiredangleR3 = 0; 

    desiredangleR4 = 0; 

    desiredangleR5 = 0; 

   } 

   //otherwise set the desired angles to the retrieved angles 

   else 

   { 

    desiredangleL0 = anglesL[0]; 

    desiredangleL1 = anglesL[1]; 

    desiredangleL2 = anglesL[2]; 

    desiredangleL3 = anglesL[3]; 

    desiredangleL4 = anglesL[4]; 

    desiredangleL5 = anglesL[5]; 

 

    desiredangleR0 = anglesR[0]; 

    desiredangleR1 = anglesR[1]; 

    desiredangleR2 = anglesR[2]; 

    desiredangleR3 = anglesR[3]; 

    desiredangleR4 = 0;//anglesR[4]; 

    desiredangleR5 = anglesR[5]; 

   } 

 

   if(kbhit()) break; 

    

   // Left Arm 

   //ANGLE 0 

   if( prevThetasL[0] > desiredangleL0 ) 

   

 LeftNNMusclesAngle0B.Process(&desiredangleL0,&incrementalVoltage0); 

   else if( prevThetasL[0] < desiredangleL0 ) 

   

 LeftNNMusclesAngle0F.Process(&desiredangleL0,&incrementalVoltage0); 

   leftValvesOutputs[0] = InitialleftValvesOutputs[0] - 

incrementalVoltage0; 

   leftValvesOutputs[1] = InitialleftValvesOutputs[1] + 

incrementalVoltage0; 

    

   //ANGLE 1 

   if( prevThetasL[1] < desiredangleL1 ) 

   

 LeftNNMusclesAngle1F.Process(&desiredangleL1,&incrementalVoltage1); 

   else if( prevThetasL[1] > desiredangleL1 ) 

   

 LeftNNMusclesAngle1B.Process(&desiredangleL1,&incrementalVoltage1); 

   leftValvesOutputs[2] = 

InitialleftValvesOutputs[2]+incrementalVoltage1; 

   leftValvesOutputs[3] = InitialleftValvesOutputs[3]-

incrementalVoltage1; 

 



    161 

   //ANGLE 2 

   if( prevThetasL[2] > desiredangleL2 ) 

    

 LeftNNMusclesAngle2B.Process(&desiredangleL2,&incrementalVoltage2); 

   else if( prevThetasL[2] < desiredangleL2 ) 

    

 LeftNNMusclesAngle2F.Process(&desiredangleL2,&incrementalVoltage2); 

   leftValvesOutputs[4] = InitialleftValvesOutputs[4] + 

incrementalVoltage2 - incrementalVoltage3; 

   leftValvesOutputs[5] = InitialleftValvesOutputs[5] - 

incrementalVoltage2 - incrementalVoltage3;    

   leftValvesOutputs[6] = InitialleftValvesOutputs[6] - 

incrementalVoltage2 + incrementalVoltage3; 

   leftValvesOutputs[7] = InitialleftValvesOutputs[7] + 

incrementalVoltage2 + incrementalVoltage3; 

 

   //ANGLE 4 

   if( prevThetasL[4] > desiredangleL4 ) 

   

 LeftNNMusclesAngle4B.Process(&desiredangleL4,&incrementalVoltage4); 

   else if( prevThetasL[4] < desiredangleL4 ) 

   

 LeftNNMusclesAngle4F.Process(&desiredangleL4,&incrementalVoltage4); 

   leftValvesOutputs[8] = InitialleftValvesOutputs[8] - 

incrementalVoltage4 - incrementalVoltage5 ; 

   leftValvesOutputs[9] = InitialleftValvesOutputs[9] + 

incrementalVoltage4 + incrementalVoltage5; 

   leftValvesOutputs[10]= InitialleftValvesOutputs[10] - 

incrementalVoltage4 + incrementalVoltage5; 

   leftValvesOutputs[11]= InitialleftValvesOutputs[11] + 

incrementalVoltage4 - incrementalVoltage5; 

 

   // Right Arm  

   //ANGLE 0 

   if( prevThetasR[0] > desiredangleR0 ) 

   { 

   

 RightNNMusclesAngle0B.Process(&desiredangleR0,&incrementalVoltage0); 

   } 

   else if( prevThetasR[0] < desiredangleR0 ) 

   { 

   

 RightNNMusclesAngle0F.Process(&desiredangleR0,&incrementalVoltage0); 

   } 

   rightValvesOutputs[0] = InitialrightValvesOutputs[0] - 

incrementalVoltage0; 

   rightValvesOutputs[1] = InitialrightValvesOutputs[1] + 

incrementalVoltage0; 

 

   //ANGLE 1 

   if( prevThetasR[1] < desiredangleR1 ) 

   { 

   

 RightNNMusclesAngle1F.Process(&desiredangleR1,&incrementalVoltage1); 

   } 

   else if( prevThetasR[1] > desiredangleR1 ) 

   { 



    162 

   

 RightNNMusclesAngle1B.Process(&desiredangleR1,&incrementalVoltage1); 

   } 

   rightValvesOutputs[2] = 

InitialrightValvesOutputs[2]+incrementalVoltage1; 

   rightValvesOutputs[3] = InitialrightValvesOutputs[3]-

incrementalVoltage1; 

 

   //ANGLE 2 

   if( prevThetasR[2] > desiredangleR2 ) 

   { 

    

 RightNNMusclesAngle2B.Process(&desiredangleR2,&incrementalVoltage2); 

   } 

   else if( prevThetasR[2] < desiredangleR2 ) 

   { 

    

 RightNNMusclesAngle2F.Process(&desiredangleR2,&incrementalVoltage2); 

   } 

   rightValvesOutputs[4] = InitialrightValvesOutputs[4] + 

incrementalVoltage2 - incrementalVoltage3; 

   rightValvesOutputs[5] = InitialrightValvesOutputs[5] - 

incrementalVoltage2 - incrementalVoltage3;    

   rightValvesOutputs[6] = InitialrightValvesOutputs[6] - 

incrementalVoltage2 + incrementalVoltage3; 

   rightValvesOutputs[7] = InitialrightValvesOutputs[7] + 

incrementalVoltage2 + incrementalVoltage3; 

 

   if (usecontrol && useleft && !waitL) SetLeftArmPressures(); 

   if (usecontrol && useright && !waitR) 

SetRightArmPressures(); 

   

   QueryPerformanceCounter(&end_ticks); //printf("time 

pass:%f\n",(float)(end_ticks.QuadPart-

start_ticks.QuadPart)/ticksPerSecond.QuadPart*1000);   

   while(((float)(end_ticks.QuadPart-

start_ticks.QuadPart)/ticksPerSecond.QuadPart*1000) < (float) 50) 

   QueryPerformanceCounter(&end_ticks); cputime.QuadPart = 

end_ticks.QuadPart- start_ticks.QuadPart;  

    

   // Reading the Angles 

   printf("LEFT: %d ",(int)timevalL); 

   if (usecontrol && 

useleft){ReadLeftEncoders();RealLeftAngles();} 

   printf("RIGHT: %d ",(int)timevalR); 

   if (usecontrol && 

useright){ReadRightEncoders();RealRightAngles();} 

    

   // Update the voltage output references 

   fprintf(outputdata,"%d %.2f %.2f %.2f\n",count, 

desiredangleL0, leftAngles[0], incrementalVoltage0); 

 

   //update prevThetas 

   for(i=0;i<6;i++) 

   { 

    prevThetasL[i]=leftAngles[i]; //leftAngles global and 

updated by RealLeftAngles 



    163 

    prevThetasR[i]=rightAngles[i]; //rightAngles 

global and updated by RealRightAngles 

   } 

   Sleep(400); 

   count++; 

    

   //if we have gotten through all the files and gone back to 

the home position, then break out 

   if (Ldone == 1 && Rdone == 1) 

   { 

    if(useStartNow) fclose(StartNowFile); 

    fclose(anglesfileL); 

    fclose(anglesfileR); 

    remove("I:/Temp/Start.Now"); 

    StartNowFile = NULL; 

    break; 

   } 

  } 

  if (useStartNow == 0) break; 

 } 

 // Closing the Controls 

 Sleep(1000); 

 if (usecontrol)

 {/*gripper.GrabSomething()*/;CloseValves();Sleep(500);vitalQuit();Sleep

(500);} 

 fclose(outputdata); 

} 

 

double* optimumRotations( double *desPos, double *prevThetas, double alpha, 

double beta, double gamma) 

{ 

 double *thetas; 

 int different = 0; 

 double rangeAlpha = 30; 

 double rangeBeta  = 20; 

 int solutionexist = 0; 

 

 for( int i = 0; i < 20; i++ ) 

 { 

  //printf("***************************** %d\n",i); 

  thetas = inverseKinematics(desPos, alpha+i, beta+i, gamma, 

prevThetas, &solutionexist); if (solutionexist) break; 

  thetas = inverseKinematics(desPos, alpha-i, beta-i, gamma, 

prevThetas, &solutionexist); if (solutionexist) break; 

  thetas = inverseKinematics(desPos, alpha-i, beta+i, gamma, 

prevThetas, &solutionexist); if (solutionexist) break; 

  thetas = inverseKinematics(desPos, alpha+i, beta-i, gamma, 

prevThetas, &solutionexist); if (solutionexist) break; 

   

 } 

 if (!solutionexist) return NULL; 

 return thetas; 

} 

 

//courtesy of a post by Narue at 

http://www.deniweb.com/forums/thread80754.html 

double to_double( const char *p) 



    164 

{ 

 if (p == "") return NULL; 

 

 //else 

 std::stringstream ss ( p ); 

 double result = 0; 

  

 ss>> result; 

 return result; 

} 

 

 

B.4. NNMuscleClass.cpp (individual muscle class) 

// Train.cpp: implementation of the CTrain class. 

// 

////////////////////////////////////////////////////////////////////// 

 

#include "Headers\NNMuscleClass.h" 

#include <iostream> 

#include <stdlib.h> 

#include <stdio.h> 

#include <math.h> 

#include <conio.h> 

#include <malloc.h> 

#include <time.h> 

 

#define PI 3.141592653589 

#define Rate 8 

 

////////////////////////////////////////////////////////////////////// 

// Construction/Destruction 

////////////////////////////////////////////////////////////////////// 

 

CNNMuscles::CNNMuscles(int leftrightarmvalue, int anglenumbervalue, int 

forwardbackwardvalue) 

{ 

 leftrightarm=  leftrightarmvalue; // if leftrightarmvalue = 1 --> left 

arm 

 anglenumber = anglenumbervalue; // if anglevalue = 0 --> angle0 & =1 --

> Angle1 ...6 

 forwardbackward = forwardbackwardvalue; // if forwardbackwardvalue = 1 

-->forward 

} 

 

CNNMuscles::~CNNMuscles() 

{ 

  

 delete vfuture_th; 

 delete vpast_th; 

 delete vpresent_th; 

 delete z; 

 delete z_in; 

 

 for(j=0;j<nNeuron;j++) 



    165 

 { 

  free(*(wpresent+j)); 

  free(*(wpast+j)); 

  free(*(wfuture+j)); 

  free(*(deltaw+j)); 

 } 

 free(wpresent); 

 free(wpast); 

 free(wfuture); 

 free(deltaw); 

 

 for(i=0;i<nInput;i++) 

 { 

  free(*(vpresent+i)); 

  free(*(vpast+i)); 

  free(*(vfuture+i)); 

  free(*(deltav+i)); 

 } 

 free(vpresent); 

 free(vpast); 

 free(vfuture); 

 free(deltav); 

 

 for(t=0;t<m;t++) 

 free(*(inputx+t)); 

 free(inputx); 

} 

 

void CNNMuscles::Allocator(void) 

{ 

 

 using namespace std; 

 nInput = 1;nNeuron=50; 

 int sillybuffer1; 

 float sillybuffer2; 

 

 FILE *weights; 

  

 // Left Arm Files 

 if (leftrightarm ==1 && anglenumber == 0 && forwardbackward == 1) 

  if((weights = 

fopen(".\\NNWeights\\LeftNNmuscle01FWeights.txt","r")) == NULL) 

   printf("Can't Open File LeftNNmuscle01FWeights.txt\n"); 

 if (leftrightarm ==1 && anglenumber == 0 && forwardbackward == -1) 

  if((weights = 

fopen(".\\NNWeights\\LeftNNmuscle01BWeights.txt","r")) == NULL) 

   printf("Can't Open File LeftNNmuscle01FWeights.txt\n"); 

  

 if (leftrightarm ==1 && anglenumber == 1 && forwardbackward == 1) 

  if((weights = 

fopen(".\\NNWeights\\LeftNNmuscle23FWeights.txt","r")) == NULL) 

   printf("Can't Open File LeftNNmuscle23FWeights.txt\n"); 

 if (leftrightarm ==1 && anglenumber == 1 && forwardbackward == -1) 

  if((weights = 

fopen(".\\NNWeights\\LeftNNmuscle23BWeights.txt","r")) == NULL) 

   printf("Can't Open File LeftNNmuscle23BWeights.txt\n"); 

 



    166 

 if (leftrightarm ==1 && anglenumber == 2 && forwardbackward == 1) 

  if((weights = 

fopen(".\\NNWeights\\LeftNNmuscle4567Angle2FWeights.txt","r")) == NULL) 

   printf("Can't Open File 

LeftNNmuscle4567Angle2FWeights.txt\n"); 

 if (leftrightarm ==1 && anglenumber == 2 && forwardbackward == -1) 

  if((weights = 

fopen(".\\NNWeights\\LeftNNmuscle4567Angle2BWeights.txt","r")) == NULL) 

   printf("Can't Open File 

LeftNNmuscle4567Angle2BWeights.txt\n"); 

 

 if (leftrightarm ==1 && anglenumber == 3 && forwardbackward == 1) 

  if((weights = 

fopen(".\\NNWeights\\LeftNNmuscle4567Angle3FWeights.txt","r")) == NULL) 

   printf("Can't Open File 

LeftNNmuscle4567Angle3FWeights.txt\n"); 

 if (leftrightarm ==1 && anglenumber == 3 && forwardbackward == -1) 

  if((weights = 

fopen(".\\NNWeights\\LeftNNmuscle4567Angle3BWeights.txt","r")) == NULL) 

   printf("Can't Open File 

LeftNNmuscle4567Angle3BWeights.txt\n"); 

 

 if (leftrightarm ==1 && anglenumber == 4 && forwardbackward == 1) 

  if((weights = 

fopen(".\\NNWeights\\LeftNNmuscle891011Angle4FWeights.txt","r")) == NULL) 

   printf("Can't Open File 

LeftNNmuscle891011Angle4FWeights.txt\n"); 

 if (leftrightarm ==1 && anglenumber == 4 && forwardbackward == -1) 

  if((weights = 

fopen(".\\NNWeights\\LeftNNmuscle891011Angle4BWeights.txt","r")) == NULL) 

   printf("Can't Open File 

LeftNNmuscle891011Angle4BWeights.txt\n"); 

 

 if (leftrightarm ==1 && anglenumber == 5 && forwardbackward == 1) 

  if((weights = 

fopen(".\\NNWeights\\LeftNNmuscle891011Angle5FWeights.txt","r")) == NULL) 

   printf("Can't Open File 

LeftNNmuscle891011Angle4FWeights.txt\n"); 

 if (leftrightarm ==1 && anglenumber == 5 && forwardbackward == -1) 

  if((weights = 

fopen(".\\NNWeights\\LeftNNmuscle891011Angle5BWeights.txt","r")) == NULL) 

   printf("Can't Open File 

LeftNNmuscle891011Angle5BWeights.txt\n"); 

  

 // Right Arm Files 

 if (leftrightarm ==0 && anglenumber == 0 && forwardbackward == 1) 

  if((weights = 

fopen(".\\NNWeights\\RightNNmuscle01FWeights.txt","r")) == NULL) 

   printf("Can't Open File RightNNmuscle01FWeights.txt\n"); 

 if (leftrightarm ==0 && anglenumber == 0 && forwardbackward == -1) 

  if((weights = 

fopen(".\\NNWeights\\RightNNmuscle01BWeights.txt","r")) == NULL) 

   printf("Can't Open File RightNNmuscle01FWeights.txt\n"); 

  

 if (leftrightarm ==0 && anglenumber == 1 && forwardbackward == 1) 

  if((weights = 

fopen(".\\NNWeights\\RightNNmuscle23FWeights.txt","r")) == NULL) 



    167 

   printf("Can't Open File RightNNmuscle23FWeights.txt\n"); 

 if (leftrightarm ==0 && anglenumber == 1 && forwardbackward == -1) 

  if((weights = 

fopen(".\\NNWeights\\RightNNmuscle23BWeights.txt","r")) == NULL) 

   printf("Can't Open File RightNNmuscle23BWeights.txt\n"); 

 

 if (leftrightarm ==0 && anglenumber == 2 && forwardbackward == 1) 

  if((weights = 

fopen(".\\NNWeights\\RightNNmuscle4567Angle2FWeights.txt","r")) == NULL) 

   printf("Can't Open File 

RightNNmuscle4567Angle2FWeights.txt\n"); 

 if (leftrightarm ==0 && anglenumber == 2 && forwardbackward == -1) 

  if((weights = 

fopen(".\\NNWeights\\RightNNmuscle4567Angle2BWeights.txt","r")) == NULL) 

   printf("Can't Open File 

RightNNmuscle4567Angle2BWeights.txt\n"); 

 

 if (leftrightarm ==0 && anglenumber == 3 && forwardbackward == 1) 

  if((weights = 

fopen(".\\NNWeights\\RightNNmuscle4567Angle3FWeights.txt","r")) == NULL) 

   printf("Can't Open File 

RightNNmuscle4567Angle3FWeights.txt\n"); 

 if (leftrightarm ==0 && anglenumber == 3 && forwardbackward == -1) 

  if((weights = 

fopen(".\\NNWeights\\RightNNmuscle4567Angle3BWeights.txt","r")) == NULL) 

   printf("Can't Open File 

RightNNmuscle4567Angle3BWeights.txt\n"); 

 

 if (leftrightarm ==0 && anglenumber == 4 && forwardbackward == 1) 

  if((weights = 

fopen(".\\NNWeights\\RightNNmuscle891011Angle4FWeights.txt","r")) == NULL) 

   printf("Can't Open File 

RightNNmuscle891011Angle4FWeights.txt\n"); 

 if (leftrightarm ==0 && anglenumber == 4 && forwardbackward == -1) 

  if((weights = 

fopen(".\\NNWeights\\RightNNmuscle891011Angle4BWeights.txt","r")) == NULL) 

   printf("Can't Open File 

RightNNmuscle891011Angle4BWeights.txt\n"); 

 

 if (leftrightarm ==0 && anglenumber == 5 && forwardbackward == 1) 

  if((weights = 

fopen(".\\NNWeights\\RightNNmuscle891011Angle5FWeights.txt","r")) == NULL) 

   printf("Can't Open File 

RightNNmuscle891011Angle4FWeights.txt\n"); 

 if (leftrightarm ==0 && anglenumber == 5 && forwardbackward == -1) 

  if((weights = 

fopen(".\\NNWeights\\RightNNmuscle891011Angle5BWeights.txt","r")) == NULL) 

   printf("Can't Open File 

RightNNmuscle891011Angle5BWeights.txt\n"); 

 

 fscanf(weights,"%d\n",&nNeuron);  

 fscanf(weights,"%f\n",&sillybuffer2); 

 fscanf(weights,"%f\n",&sillybuffer2); 

 fscanf(weights,"%d\n",&sillybuffer1); 

 fscanf(weights,"%d\n",&sillybuffer1); 

 fscanf(weights,"%d\n",&nInput); 

 



    168 

 srand( (unsigned)time( NULL ) ); 

 

 //1*10 

 z_in = (float*)malloc(nNeuron*sizeof(float)); 

 

 //1*10 

 z = (float*)malloc(nNeuron*sizeof(float)); 

 

 //1*10 

 delta_in = (float*)malloc(nNeuron*sizeof(float)); 

 

 //1*10 

 delta_hidden = (float*)malloc(nNeuron*sizeof(float)); 

 

 //1*10 

 deltav_th = (float*)malloc(nNeuron*sizeof(float)); 

 

 // 14*10 

 deltav = (float**)malloc(nInput*sizeof(float*)); 

 for(i=0;i<nInput;i++) 

  *(deltav+i) = (float*)malloc(nNeuron*sizeof(float)); 

 

 //10*2 

 deltaw = (float**)malloc(nNeuron*sizeof(float*)); 

 for(i=0;i<nNeuron;i++) 

  *(deltaw+i) = (float*)malloc(2*sizeof(float)); 

 

 //random 10*2 

 wpresent = (float**)malloc(nNeuron*sizeof(float*)); 

 for(i=0;i<nNeuron;i++) 

  *(wpresent+i) = (float*)malloc(2*sizeof(float)); 

 

 //random 10*2 

 wpast = (float**)malloc(nNeuron*sizeof(float*)); 

 for(i=0;i<nNeuron;i++) 

  *(wpast+i) = (float*)malloc(2*sizeof(float)); 

 

 //random 10*2 

 wfuture = (float**)malloc(nNeuron*sizeof(float*)); 

 for(i=0;i<nNeuron;i++) 

  *(wfuture+i) = (float*)malloc(2*sizeof(float)); 

 

 //random 1*10 

 vpresent_th = (float*)malloc(nNeuron*sizeof(float)); 

 

 //random 1*10 

 vpast_th = (float*)malloc(nNeuron*sizeof(float)); 

 

 //random 1*10 

 vfuture_th = (float*)malloc(nNeuron*sizeof(float)); 

 

 //random 14*10 

 vpresent = (float**)malloc(nInput*sizeof(float*)); 

 for(i=0;i<nInput;i++) 

  *(vpresent+i) = (float*)malloc(nNeuron*sizeof(float)); 

 

 //random 14*10 



    169 

 vpast = (float**)malloc(nInput*sizeof(float*)); 

 for(i=0;i<nInput;i++) 

  *(vpast+i) = (float*)malloc(nNeuron*sizeof(float)); 

 

 //random 14*10 

 vfuture = (float**)malloc(nInput*sizeof(float*)); 

 for(i=0;i<nInput;i++) 

  *(vfuture+i) = (float*)malloc(nNeuron*sizeof(float)); 

 

 m=1; 

 //***********************READING WEIGHTS NINPUTS AND 

NEURONS*************************** 

 

 for (k=0;k<1;k++) 

 { 

  for (j=0;j<nNeuron;j++) 

   fscanf(weights,"%f\n",&wfuture[j][k]); 

  fscanf(weights,"%f\n",&wfuture_th[k]);  

 } 

 

 for(j=0;j<nNeuron;j++) 

 { 

  for(i=0;i<nInput;i++) 

   fscanf(weights,"%f\n",&vfuture[i][j]); 

 } 

 

 for(j=0;j<nNeuron;j++) 

  fscanf(weights,"%f\n",&vfuture_th[j]); 

 

 //***************END OF 

READING******************************************** 

 

 inputx = (float**)malloc(m*sizeof(float*)); 

 for(i=0;i<m;i++) 

  *(inputx+i) = (float*)malloc(nInput*sizeof(float)); 

 

 fclose(weights); 

} 

 

void CNNMuscles::Process(float *input,float *output) 

{ 

 inputx[0][0] = *input; 

 

 if (leftrightarm ==1 && anglenumber == 0) 

  // Here Normalizing the Angles. Forward changes between -65 & +25 

to 0-1 

  inputx[0][0] = (inputx[0][0] + 65) / 90; 

 if (leftrightarm ==0 && anglenumber == 0) 

  // Here Normalizing the Angles. Forward changes between -25 & +55 

to 0-1 

  inputx[0][0] = (inputx[0][0] + 25) / 80; 

 

 if (anglenumber == 1 ) 

  // Normalizing the input 40-125 to 0-1 

  inputx[0][0] = (inputx[0][0] - 40) / 85; 

 if (anglenumber == 2) 

  // Normalizing the input -215 & -130 to 0-1 



    170 

  inputx[0][0] = (inputx[0][0] + 215) / 75; 

 if (anglenumber == 3) 

  // Normalizing the input -40 & 30 to 0-1 

  inputx[0][0] = (inputx[0][0] + 40) / 70; 

 if (anglenumber == 4) 

  // Normalizing the input -40 && 40 to 0-1 

  inputx[0][0] = (inputx[0][0] +40) / 80; 

 if (anglenumber == 5) 

  // Normalizing the input -70 & 70 to 0-1 

  inputx[0][0] = (inputx[0][0] +70)/ 140; 

  

 for(t=0;t<1;t++) // m =1 m is the data number 

 { 

  y_in[0] = wfuture_th[0]; 

  for(j=0;j<nNeuron;j++) 

  { 

   z_in[j] = vfuture_th[j]; 

   for(i=0;i<1;i++) // nInput yerine 1 yazýyoruz , nInput 

data sayýsý 

    z_in[j] += inputx[t][i] * vfuture[i][j]; 

    z[j]= 2/(1+exp(-2*z_in[j]))-1;// activation function: 

tansig   n = 2/(1+exp(-2*n))-1 

    y_in[0] += z[j] * wfuture[j][0]; 

  } 

   *output = y_in[0]; 

 }      

} 

B.5. Control.h (code for controlling valves/encoders) 

#ifndef _Control_h 

#define _Control_h 

 

#include "stdafx.h" 

#include <windows.h> 

#include <windef.h> 

#include <string.h> 

#include <stdlib.h> 

#include <stdio.h> 

#include <stdarg.h> 

#include <math.h> 

#include <IOSTREAM> 

#include "winmotenc.h" 

 

extern double leftValvesOutputs[12]; 

extern double InitialleftValvesOutputs[12]; 

extern double leftValvesInputs[12]; 

extern long leftEncoders[6]; 

extern double leftAngles[6]; 

 

extern double rightValvesOutputs[12]; 

extern double InitialrightValvesOutputs[12]; 

extern double rightValvesInputs[12]; 

extern long rightEncoders[6]; 

extern double rightAngles[6]; 

 



    171 

void InitializeLeftValves() 

{ 

 printf("Initializing Left Arm!!\n"); 

 double bufferVoltage=0.1; 

 int i=0,j=0,k=0; 

 

 leftValvesOutputs[0]=2.3; 

 leftValvesOutputs[1]=1.7; 

 leftValvesOutputs[2]=2.0; 

 leftValvesOutputs[3]=2.0; 

 leftValvesOutputs[4] =0.0; 

 leftValvesOutputs[5] =2.2; 

 leftValvesOutputs[6] =2.4; 

 leftValvesOutputs[7] =0.0; 

 leftValvesOutputs[8]  =2.3; 

 leftValvesOutputs[9]  =1.7; 

 leftValvesOutputs[10] =1.7; 

 leftValvesOutputs[11] =2.3; 

 

 for(i=0;i<25;i++) // 25x100 ms = 2.5 sec makes the muscles blow up 

 {  

  vitalSelectBoard(0); 

  for(j=0;j<8;j++) // giving reference to each channel of board 0 

  {  

   if(j==0) 

    if(bufferVoltage <= leftValvesOutputs[j] + 0.05){ 

     vitalDacWrite(j, bufferVoltage);} 

   if (j==1) 

    if(bufferVoltage <= leftValvesOutputs[j] + 0.05){ 

     vitalDacWrite(j, bufferVoltage);} 

   if (j==2) 

    if(bufferVoltage <= leftValvesOutputs[j] + 0.05){ 

     vitalDacWrite(j, bufferVoltage);} 

   if (j==3) 

    if(bufferVoltage <= leftValvesOutputs[j] + 0.05){ 

     vitalDacWrite(j, bufferVoltage);} 

   if (j==4) 

    if(bufferVoltage <= leftValvesOutputs[j] + 0.05){ 

     vitalDacWrite(j, bufferVoltage);} 

   if (j==5) 

    if(bufferVoltage <= leftValvesOutputs[j] + 0.05){ 

     vitalDacWrite(j, bufferVoltage);} 

   if (j==6) 

    if(bufferVoltage <= leftValvesOutputs[j] + 0.05){ 

     vitalDacWrite(j, bufferVoltage);} 

   if (j==7) 

    if(bufferVoltage <= leftValvesOutputs[j] + 0.05){ 

     vitalDacWrite(j, bufferVoltage);} 

  } 

  vitalSelectBoard(1); 

  for(j=8;j<12;j++) // giving reference to each channel of board 0 

  {  

   if (j==8) 

    if(bufferVoltage <= leftValvesOutputs[j] + 0.05){ 

     vitalDacWrite(j-8, bufferVoltage);} 

   if (j==9) 

    if(bufferVoltage <= leftValvesOutputs[j] + 0.05){ 



    172 

     vitalDacWrite(j-8, bufferVoltage);} 

   if (j==10) 

    if(bufferVoltage <= leftValvesOutputs[j] + 0.05){ 

     vitalDacWrite(j-8, bufferVoltage);} 

   if (j==11) 

    if(bufferVoltage <= leftValvesOutputs[j] + 0.05){ 

     vitalDacWrite(j-8, bufferVoltage);} 

  } 

  bufferVoltage +=0.1; // Increasing the ref voltage slowly not to 

harm  

  Sleep(100); // Wait 100 ms at each step   

 } 

 for(int s=0;s<12;s++) 

  InitialleftValvesOutputs[s] = leftValvesOutputs[s]; 

 

 vitalSelectBoard(0); 

} 

 

void InitializeRightValves() 

{ 

 printf("Initializing Right Arm!!\n"); 

 double bufferVoltage=0.1; 

 int i=0,j=0,k=0; 

 

 rightValvesOutputs[0]=2.2; 

 rightValvesOutputs[1]=1.8; 

 rightValvesOutputs[2]=2.2; 

 rightValvesOutputs[3]=1.8; 

 rightValvesOutputs[4] =0.0; 

 rightValvesOutputs[5] =2.1; 

 rightValvesOutputs[6] =1.9; 

 rightValvesOutputs[7] =0.0; 

 rightValvesOutputs[8]  =2.0; 

 rightValvesOutputs[9]  =2.0; 

 rightValvesOutputs[10] =2.0; 

 rightValvesOutputs[11] =2.0; 

 

 for(i=0;i<25;i++) // 25x100 ms = 2.5 sec makes the muscles blow up 

 {  

  vitalSelectBoard(1); 

  for(j=0;j<4;j++) // giving reference to each channel of board 0 

  {  

   if (j==0) 

    if(bufferVoltage <= rightValvesOutputs[j] + 0.05){ 

     vitalDacWrite(j+4, bufferVoltage);} 

   if (j==1) 

    if(bufferVoltage <= rightValvesOutputs[j] + 0.05){ 

     vitalDacWrite(j+4, bufferVoltage);} 

   if (j==2) 

    if(bufferVoltage <= rightValvesOutputs[j] + 0.05){ 

     vitalDacWrite(j+4, bufferVoltage);} 

   if (j==3) 

    if(bufferVoltage <= rightValvesOutputs[j] + 0.05){ 

     vitalDacWrite(j+4, bufferVoltage);} 

  } 

  vitalSelectBoard(2); 

  for(j=4;j<12;j++) // giving reference to each channel of board 0 



    173 

  {  

   if(j==4) 

    if(bufferVoltage <= rightValvesOutputs[j] + 0.05){ 

     vitalDacWrite(j-4, bufferVoltage);} 

   if (j==5) 

    if(bufferVoltage <= rightValvesOutputs[j] + 0.05){ 

     vitalDacWrite(j-4, bufferVoltage);} 

   if (j==6) 

    if(bufferVoltage <= rightValvesOutputs[j] + 0.05){ 

     vitalDacWrite(j-4, bufferVoltage);} 

   if (j==7) 

    if(bufferVoltage <= rightValvesOutputs[j] + 0.05){ 

     vitalDacWrite(j-4, bufferVoltage);} 

   if (j==8) 

    if(bufferVoltage <= rightValvesOutputs[j] + 0.05){ 

     vitalDacWrite(j-4, bufferVoltage);} 

   if (j==9) 

    if(bufferVoltage <= rightValvesOutputs[j] + 0.05){ 

     vitalDacWrite(j-4, bufferVoltage);} 

   if (j==10) 

    if(bufferVoltage <= rightValvesOutputs[j] + 0.05){ 

     vitalDacWrite(j-4, bufferVoltage);} 

   if (j==11) 

    if(bufferVoltage <= rightValvesOutputs[j] + 0.05){ 

     vitalDacWrite(j-4, bufferVoltage);} 

  } 

 

  bufferVoltage +=0.1; // Increasing the ref voltage slowly not to 

harm  

  Sleep(100); // Wait 100 ms at each step   

 } 

 for(int s=0;s<12;s++) 

  InitialrightValvesOutputs[s] = rightValvesOutputs[s]; 

 

 vitalSelectBoard(1); 

} 

 

void SetLeftArmPressures() 

{ 

 int channel=0; 

 

 vitalSelectBoard(0); 

 for(channel=0;channel<8;channel++) // giving reference to each channel 

of board 0 

 { 

  if (leftValvesOutputs[channel] < 0.0 ){ 

   printf("negative pressure!\n"); 

   leftValvesOutputs[channel] = 0.0; 

  } 

  if (leftValvesOutputs[channel] > 3.6 ) 

  { 

   leftValvesOutputs[channel] = 3.6; 

   printf("Too Maiac Pressure!!\n"); 

  } 

  vitalDacWrite( channel, leftValvesOutputs[channel] ); 

 } 

 vitalSelectBoard(1); 



    174 

 for(channel=0;channel<4;channel++) // giving reference to first 4 

channel of board 1 

 { 

  if (leftValvesOutputs[channel+8] < 0.0 ){ 

   printf("negative pressure!\n"); 

   leftValvesOutputs[channel+8] = 0.0; 

  } 

  if (leftValvesOutputs[channel+8] > 3.6 ) 

  { 

   leftValvesOutputs[channel+8] = 3.6; 

   printf("Too Maiac Pressure!!\n"); 

  } 

 

  vitalDacWrite( channel, leftValvesOutputs[channel+8] ); 

 } 

} 

 

void SetRightArmPressures() 

{ 

 int channel=0; 

 

 vitalSelectBoard(1); 

 for(channel=4;channel<8;channel++) // giving reference to each channel 

of board 0 

 { 

  if (rightValvesOutputs[channel-4] < 0.0 ){ 

   printf("negative pressure!\n"); 

   rightValvesOutputs[channel-4] = 0.0; 

  } 

  if (rightValvesOutputs[channel-4] > 3.6 ) 

  { 

   rightValvesOutputs[channel-4] = 3.6; 

   printf("Too Maiac Pressure!!\n"); 

  } 

  vitalDacWrite( channel, rightValvesOutputs[channel-4] ); 

 } 

 vitalSelectBoard(2); 

 for(channel=0;channel<8;channel++) // giving reference to first 4 

channel of board 1 

 { 

  if (rightValvesOutputs[channel+4] < 0.0 ){ 

   printf("negative pressure!\n"); 

   rightValvesOutputs[channel+4] = 0.0; 

  } 

  if (rightValvesOutputs[channel+4] > 3.6 ) 

  { 

   rightValvesOutputs[channel+4] = 3.6; 

   printf("Too Maiac Pressure!!\n"); 

  } 

  vitalDacWrite( channel, rightValvesOutputs[channel+4] ); 

 } 

} 

 

void CloseValves() 

{ 

 double bufferVoltage=0.1; 

 int i=0,j=0,k=0; 



    175 

 

 printf("Closing Valves!!\n"); 

 

 for(i=0;i<36;i++) // 36x100 ms = 3.6 sec makes the muscles blow up 

 {   

  // For the Left Arm 

  vitalSelectBoard(0); 

  for(j=0;j<8;j++) // giving reference to each channel of board 0 

  { 

   if( leftValvesOutputs[j]-bufferVoltage >0 ) 

    vitalDacWrite( j, leftValvesOutputs[j]-

bufferVoltage); 

  } 

  vitalSelectBoard(1); 

  for(j=0;j<4;j++) // giving reference to first 4 channel of board 

1 

  { 

   if( leftValvesOutputs[j+8]-bufferVoltage >0 ) 

    vitalDacWrite( j, leftValvesOutputs[j+8]-

bufferVoltage);  

  } 

  // For the Right Arm 

  for(j=4;j<8;j++) // giving reference to first 4 channel of board 

1 

  { 

   if( rightValvesOutputs[j-4]-bufferVoltage >0 ) 

    vitalDacWrite( j, rightValvesOutputs[j-4]-

bufferVoltage ); 

  } 

  vitalSelectBoard(2); 

  for(j=0;j<8;j++) // giving reference to first 4 channel of board 

1 

  { 

   if( rightValvesOutputs[j+4]-bufferVoltage >0 ) 

    vitalDacWrite( j, rightValvesOutputs[j+4]-

bufferVoltage ); 

  } 

  Sleep(200); // Wait 100 ms at each step 

  bufferVoltage += 0.1; 

 } 

} 

 

void ReadLeftEncoders() 

{ 

 //Read Encoder Values 

 vitalSelectBoard(0); 

 for(int channel=0;channel<4;channel++) 

  vitalEncoderRead(channel, &leftEncoders[channel]); 

 vitalSelectBoard(1); 

 for(channel=0;channel<2;channel++) 

  vitalEncoderRead(channel, &leftEncoders[channel+4]); 

 

 leftEncoders[2]*=-1; 

 leftEncoders[5]*=-1; 

 



    176 

 //printf("Enc1: %d Enc2: %d Enc3: %d Enc4: %d Enc5: %d Enc6: 

%d\n",leftEncoders[0],leftEncoders[1],leftEncoders[2],leftEncoders[3],leftEnc

oders[4],leftEncoders[5]); 

} 

 

void ReadRightEncoders() 

{ 

 //Read Encoder Values 

 vitalSelectBoard(1); 

 //!!!First two encoders are flipped!!! (The readings show that) 

 vitalEncoderRead(2, &rightEncoders[1]); 

 vitalEncoderRead(3, &rightEncoders[0]); 

 

 vitalSelectBoard(2); 

 // This part is changed in Sean master 

 //for(int channel=0;channel<4;channel++) 

 // vitalEncoderRead(channel, &rightEncoders[channel+2]); 

 vitalEncoderRead(0, &rightEncoders[2]); 

 vitalEncoderRead(1, &rightEncoders[3]); 

 vitalEncoderRead(2, &rightEncoders[4]); 

 vitalEncoderRead(3, &rightEncoders[5]); 

 

 rightEncoders[1]*=-1; 

 rightEncoders[2]*=-1; 

 

 //printf("Enc1: %d Enc2: %d Enc3: %d Enc4: %d Enc5: %d Enc6: 

%d\n",rightEncoders[0],rightEncoders[1],rightEncoders[2],rightEncoders[3],rig

htEncoders[4],rightEncoders[5]); 

} 

 

void ResetLeftEncoders() 

{ 

 vitalSelectBoard(0); 

 for(int channel=0;channel<4;channel++) 

  vitalResetCounter(channel); 

 vitalSelectBoard(1); 

 for(channel=0;channel<2;channel++) 

  vitalResetCounter(channel); 

} 

 

void ResetRightEncoders() 

{ 

 vitalSelectBoard(1); 

 for(int channel=2;channel<4;channel++) 

  vitalResetCounter(channel); 

 vitalSelectBoard(2); 

 for(channel=0;channel<4;channel++) 

  vitalResetCounter(channel); 

} 

 

void RealLeftAngles() 

{ 

 //Encoder Parameters =  -5092 5092 -4244 4244 636.6 -636.6 

 leftAngles[0] =  (double) leftEncoders[0] / -5092.0 /6.28 * 360; 

 leftAngles[1] =  (double) -1*leftEncoders[1] / 5092.0 /6.28 * 360 + 90; 

 leftAngles[2] =  ((double) leftEncoders[3] / -4244.0 /2 /6.28 * 360 - 

(double) leftEncoders[2] / 4244 /2 /6.28 * 360) -180 ; 



    177 

 leftAngles[3] =  ((double) -leftEncoders[3] / - 4244.0 /6.28 * 360 - 

(double) leftEncoders[2] /  4244 /6.28 * 360 ) ; 

 leftAngles[4] =  ((double) -leftEncoders[4] / 636.6 /2 /6.28 * 360 - 

(double) leftEncoders[5] / 636.6 /2 /6.28 * 360); 

 leftAngles[5] =  ((double) leftEncoders[4] / - 636.6 /6.28 * 360 + 

(double) leftEncoders[5] / 636.6 /6.28 * 360); 

 

 printf("a0: %.2f a1: %.2f a2: %.2f a3: %.2f a4: %.2f a5: 

%.2f\n",leftAngles[0],leftAngles[1],leftAngles[2],leftAngles[3],leftAngles[4]

,leftAngles[5]); 

} 

 

void RealRightAngles() 

{ 

 //Encoder Parameters =  -5092 5092 -4244 4244 636.6 -636.6 

 rightAngles[0] =  (double) rightEncoders[0] / -5092.0 /6.28 * 360; 

 rightAngles[1] =  (double) -1*rightEncoders[1] / 5092.0 /6.28 * 360 + 

90; 

 rightAngles[2] =  ((double) -rightEncoders[3] / -4244.0 /2 /6.28 * 360 

+ (double) rightEncoders[2] / 4244 /2 /6.28 * 360) -180 ; 

 rightAngles[3] =  ((double) -rightEncoders[3] / - 4244.0 /6.28 * 360 - 

(double) rightEncoders[2] /  4244 /6.28 * 360 ) ; 

 rightAngles[4] =  ((double) -rightEncoders[4] / 636.6 /2 /6.28 * 360 - 

(double) rightEncoders[5] / 636.6 /2 /6.28 * 360); 

 rightAngles[5] =  ((double) rightEncoders[4] / - 636.6 /6.28 * 360 + 

(double) rightEncoders[5] / 636.6 /6.28 * 360); 

 

 printf("a0: %.2f a1: %.2f a2: %.2f a3: %.2f a4: %.2f a5: 

%.2f\n",rightAngles[0],rightAngles[1],rightAngles[2],rightAngles[3],rightAngl

es[4],rightAngles[5]); 

} 

 

void ReadLeftPressure() 

{ 

 double leftPressures[4]={0}; 

 

 //Filtering 

 for(int i=0;i<5;i++) 

 { 

  if( i == 0 ){ 

   vitalSelectBoard(0); 

   vitalReadAnalogInputs( 0, leftPressures); 

   for(int channel=0; channel<4;channel++) 

    leftValvesInputs[channel]= leftPressures[channel]; 

 

   vitalReadAnalogInputs( 1, leftPressures); 

   for(channel=4;channel<8;channel++) 

    leftValvesInputs[channel]= leftPressures[channel-4]; 

 

   vitalSelectBoard(1); 

   vitalReadAnalogInputs( 0, leftPressures); 

   for(channel=8;channel<12;channel++) 

    leftValvesInputs[channel]= leftPressures[channel-8]; 

 

   Sleep(1); 

  }else{ 

   vitalSelectBoard(0); 



    178 

   vitalReadAnalogInputs( 0, leftPressures); 

   for(int channel=0; channel<4;channel++) 

    leftValvesInputs[channel]+= leftPressures[channel]; 

 

   vitalReadAnalogInputs( 1, leftPressures); 

   for(channel=4;channel<8;channel++) 

    leftValvesInputs[channel]+= leftPressures[channel-4]; 

 

   vitalSelectBoard(1); 

   vitalReadAnalogInputs( 0, leftPressures); 

   for(channel=8;channel<12;channel++) 

    leftValvesInputs[channel]+= leftPressures[channel-8]; 

 

   Sleep(1); 

  } 

 } 

 

 for(i=0;i<12;i++) 

  leftValvesInputs[i]/=5; 

 

 // there is a problem with the 10th muscle 

 leftValvesInputs[9]-=100; 

 

 vitalSelectBoard(0); 

 

} 

 

void InitializeCards() 

{ 

 printf("Initializing Cards!!\n"); 

 int numb =0; 

 //Initializing the Cards 

 if( numb=vitalInit() ) 

  printf("%d board(s) detected\n",numb); 

 else 

  printf( "Error initializing WinMotenc library\n" ); 

} 

 

#endif 

 


