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CHAPTER I 

 

 

INTRODUCTION 

 

 

Overview 

Prostate cancer (PrCa) is the most commonly diagnosed non-skin malignancy in 

males, with an estimated 1 in 6 men diagnosed during their lifetime1. It is estimated that 

218,890 men will be diagnosed and 27,050 men will die from PrCa in 20071. PrCa is the 

second leading cause of death by cancer in United States males after lung cancer. The 

only well-established risk factors for PrCa include age, family history and race. African 

Americans have a 60% higher incidence rate and a 200% higher mortality rate than that 

of Caucasians. All other racial/ethnic groups in North America have lower rates than 

African Americans, with the lowest incidence rates found in Native Americans2. PrCa is 

usually found in men over 50 years of age with about two-thirds of cases occurring after 

age 65. Environmental exposure risks remain unclear, but diet, occupational chemical 

exposures, sexually transmitted diseases and chronic prostatitis have all been implicated3. 

  

There is a significant genetic component to PrCa predisposition. Increased 

familial relative risk (RR) is observed across multiple populations (European Caucasian, 

Asian-American, African-American and Caucasian American)4. Males have a two- to 

three-fold increased risk of developing PrCa if they have a first or second degree relative 



 

 2

with PrCa5. Furthermore, twin concordance studies reveal a higher heritable risk for PrCa 

than for any other common cancer, with one study estimating heritable risk accounting 

for approximately 57% of variability in liability to PrCa in twins6;7.  

 

Genetics of Common Cancer 

 The first observation of inherited predisposition to common cancer dates to 100 

A.D. when an unnamed Roman physician documented increased occurrence of breast 

cancer within a family8. Unfortunately, little scientific progress was made to further this 

observation for 1,700 years. In the late 19th century French neurologist Pierre Paul Broca 

documented the breast cancer occurrence in his wife’s family; the cause of death for 10 

of 24 women in the family over four generations (Figure 1)8;9. Broca also noted a high 

frequency of other cancers in his wife’s family and surmised this observation was due to 

an inherited risk factor. Other reports describing families with apparent inherited 

predisposition to common cancers followed around this time10;11. Organized scientific 

investigation of familial aggregation of cancers did not begin until the 1960’s with 

seminal studies by Lynch et al, Li and Fraumeni and Knudson12-14. 

 

Prostate Cancer Genetic Epidemiology 

 Familial Aggregation Studies 

Systematic epidemiologic studies of the familial aggregation of common cancers 

began in the 1960’s and focused heavily on cancers of the breast and colon. 

Unfortunately, PrCa was not the subject of intense investigation in these early studies. In  
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Figure 1. Pedigree of breast cancer family described by 
Broca in 1866 as reconstructed by Henry T. Lynch, et al. 
Figure taken from (8) 
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fact, an early review of PrCa epidemiology published in 1963 specifically noted the 

dearth of systematic epidemiologic investigation about PrCa despite its status as one of 

the most common male cancers15. Early studies identified the risk factors of age, race and 

heritability, all of which are now widely accepted. Researchers saw a substantial increase 

in prevalence of PrCa from age 45 onwards. They noted higher incidence in African 

Americans compared to Caucasians and a low incidence in Asians. Furthermore, 

although only two proper “case-control” epidemiology studies of familial aggregation 

had been reported, both concluded a genetic component to PrCa risk. The first, a report of 

familial aggregation of PrCa by Morganti et al in 1956, observed that patients with PrCa 

reported a higher frequency of relatives with PrCa than hospitalized controls16. Another, 

an analysis of Mormon pedigrees in Utah by Charles Woolf, found 228 men who died of 

PrCa were three times more likely than men who died of other causes to have a family 

history of PrCa17. Furthermore, Woolf observed a higher death rate from PrCa among 

brothers of PrCa cases (RR = 2.81; P=0.002) than fathers of PrCa cases (RR = 1.25; P > 

0.05), evidence of possible X-linked or autosomal recessive (AR) transmission of a 

susceptibility allele. 

 

 Subsequent studies focusing on family history of PrCa in first-degree relatives 

have generally found overall levels of risk due to hereditary risk factors similar to those 

reported in Woolf’s Utah study18. Steinberg et al looked at pedigrees of 691 men with 

PrCa and 640 spousal controls in a study population from Johns Hopkins Hospital, 

finding 15% of the cases but only 8% of the controls had at least one first-degree relative 

affected with PrCa19. Furthermore, they found the odds ratio (OR) increased when more 
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first degree relatives were affected within the family. In a Los Angeles and Hawaiian 

multi-ethnic population based study, Monroe et al showed evidence of familial 

aggregation with results similar to Woolf regarding possible X-linked or AR 

inheritance20. In their study, the RR for PrCa in subjects with affected siblings was 2.07 

times that of subjects with an affected parent. This RR was relatively consistent 

throughout all ethnicities in the study (RR range 1.85-2.47). Narod et al reported similar 

results in a Québécois population21. 

 

Table 1, from a review by Ola Bratt, looks at the relationship between family 

history and age of onset with PrCa risk22. Although the figures presented in Table 1 are 

derived from Swedish studies, risk values are approximately the same for other high risk 

populations such as North America, Northern Europe and Australia22. Bratt’s review 

counts 27 epidemiological studies conducted of family history as a risk factor for PrCa 

between 1956 and 1999. All but two studies showed significantly increased risk of PrCa 

for first degree relatives of family members with PrCa23. 

Table 1. Effect of family history of prostate cancer on lifetime risk of clinical 
prostate cancer. Adapted from (23) 

Family History 
Relative 

Risk 
% Absolute 

Risk 
Negative 1 8 
Father affected at 60 years or older 1.5 12 
1 Brother affected affected at age 60 years. or 
older 2 15 
Father affected before age 60 years 2.5 20 
1 Brother affected before age 60 years 3 25 
2 Affected male relatives* 4 30 
3 or more affected male relatives 5 35-45 
* Father and brother, or 2 brothers, or a brother and a maternal grandfather or 
uncle, or a father and a paternal grandfather or uncle 
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Twin Studies 

Twin studies have revealed that roughly half of the risk for PrCa is heritable and 

much greater than that of other common cancers24. These studies are of interest as twins 

are either genetically identical (monozygotic) or share one half of their genes (dizygotic). 

If concordance of the outcome of interest is greater in monozygotic twins than in 

dizygotic twins, heritable risk factors should be of importance in the etiology of the 

disease. The first twin study for PrCa heritable risk factors looked at 4,840 pairs of male 

twins from the Swedish twin registry identifying 458 PrCa cases25. Researchers reported 

19.2% of monozygotic twins concordant for PrCa, but only 4.3% of dizygotic twins. 

Another study also mined the Swedish twin registry to identify same-sex mono- and 

dizygotic twin pairs diagnosed with cancer between 1959 and 19927. Here, investigators 

compared rates of stomach, colon and rectum, lung, breast, cervical, and prostate cancers. 

It was clear that PrCa had a strong genetic component accounting for all of the variance 

explained between the occurrence of PrCa in mono- and dizygotic twins, with an 

increased risk observed for monozygotic twins compared to dizygotic twins (RR = 6.3, 

95% CI 2.5-16.0). Further evidence of heritable risk was seen in a twin study of United 

States World War II veterans. Concordance was significantly higher in monozygotic 

twins (27.1%) than in dizygotic twins (7.1%) and investigators estimated that the genetic 

component of PrCa susceptibility was higher than the environmental component (57% to 

43% respectively)6. In the largest twin study to date, researchers expanded upon the 

Swedish study of Ahlbom et al to include twins identified in Danish and Finnish 

registries, obtaining information on cancer occurrence in 44,788 pairs of twins. They 

found 21% of monozygotic twins and 6% of dizygotic twins concordant for PrCa. Risk 
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due to heritability was calculated to be 42% of total PrCa risk, the highest of the 11 

common cancers investigated26. 

 

Segregation Analyses 

Segregation analyses support a heritable component to PrCa risk. These types of 

analyses aim to identify the frequency and penetrance of risk alleles as well as their mode 

of inheritance. While the first report of familial aggregation of PrCa was in 1956, it was 

not until 1992 that the first segregation analysis was completed and the concept of 

hereditary PrCa (HPC) was established by Carter et al27. A generally accepted definition 

of HPC came in a later paper from Carter et al; the occurrence of PrCa in each of three 

generations of paternal or maternal lineage, or two relatives diagnosed with PrCa before 

the age of 55 years, or three affected first or second degree relatives5. Carter et al 

suggested 9% of PrCa occurrence was caused by a rare, highly penetrant risk allele. An 

autosomal dominant (AD) inheritance model suggested this allele accounted for 43% of 

all cases occurring by age 55. The authors proposed results from the study be used as a 

framework for investigation by genetic linkage studies.  

 

Subsequently, other studies of complex segregation analysis of PrCa susceptibility 

have been published also describing a rare, highly penetrant allele with AD inheritance28-

33. However, a closer look at these studies indicates the possibility of genetic 

heterogeneity because inheritance could not be fully explained simply by an AD model. 

First, it should be mentioned that three of these studies, Valeri et al, Schaid et al, and the 

aforementioned Carter et al study are considered somewhat similar due to comparable 
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choice of probands eligible for prostatectomy having localized disease. Second, the 

studies from Valeri et al and Schaid et al found the AD inheritance model alone could not 

completely explain PrCa inheritance, suggesting other unidentified genetic or 

environmental components to PrCa risk. Furthermore, Schaid et al showed the age-

adjusted RR for brothers to be greater than that of fathers. This is more consistent with an 

X-linked or AR mode of inheritance than AD and similar to the results found in familial 

aggregation studies of Woolf, Narod et al, and Monroe et al17;20;21.  

 

Others have found that the genetic component of PrCa risk could not be fully 

explained by an AD inheritance model, again suggestive of genetic heterogeneity. In a 

2001 segregation analysis of 1,476 Australian men with PrCa and their first and second 

degree male relatives, researchers found two models of best fit: AD inherited risk for 

cases of younger ages, and X-linked or AR inheritance for cases of older ages. Lifetime 

penetrance of the AR or X-linked effect was 100% and the disease allele frequency was 

estimated at 0.084 (95% CI 0.067 – 0.105)31. Two other studies suggested a multifactorial 

model best identified the PrCa mode of inheritance. In the first, an analysis of 3,796 PrCa 

patients from 263 families from the Prostate Cancer Genetic Research Study 

(PROGRESS) for quantitative trait loci explaining variance in age of onset of HPC cases, 

the authors found evidence of 2 or 3 separate contributory loci34. Second, segregation 

analysis of a population-based sample of Canadians, and United States Caucasians, Asian 

Americans and African Americans showed that a multifactorial model allowing for 

multiple susceptibility loci each of low penetrance fit as well as the AD model. In this 
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study, authors argued for the multifactorial model because it contained fewer parameters 

than the AD model32.  

 

In all, familial aggregation studies, twin studies and segregation analyses each 

describe a significant genetic component to PrCa risk. Furthermore, many of these studies 

suggest that heritable risk factors of PrCa are genetically heterogeneous. 

 

Prostate Cancer Linkage Studies 

Genetic linkage analyses* have identified many genetic loci candidates across 

multiple chromosomes, demonstrating the genetically heterogeneous nature of heritable 

PrCa. Results from several linkage studies are summarized in Figure 235-48. As in a 

similar summary in a review by Daniel Schaid, a baseline lod of 1 was used to evaluate 

consistency of results49. In all, studies have identified no fewer than 78 locations in the 

genome, with at least one candidate locus on 21 of 22 autosomes, as well as on 

chromosome X. Some loci that have been the subjects of multiple replication attempts 

include: 1q24-25 (HPC1)50, 1q42.2-43 (PCAP)51, 1p36 (CAPB)52, Xq27-28 (HPCX)53, 

8p22-2354, 17p (HPC2)55 and 20q13 (HPC20)56. Candidate genes have been proposed for 

several of these loci, although each is of uncertain significance. Linkage studies stratified 

for factors such as disease aggressiveness have yielded other loci of interest, such as 

19q12-1357.  

 

                                                 
* Genetic linkage studies employ a framework of markers spaced across the genome to determine a region 
of the genome associated with a phenotype within a pedigree more often than expected by chance alone. A 
more detailed discussion of the advantages, disadvantages and intricacies of these studies is presented in 
the section entitled “The Paradigm Shift from Linkage to Association”. 
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Figure 2. Summary of lod scores ≥1 from 14 PrCa genetic linkage 
studies conducted from 2001-2007, based on a table from Schaid, 
2004. Smith et al (1996) and Gibbs et al (2000) are not included 
because they have been superseded by later studies included in the 
figure. Studies are listed in the order presented in the references 
section by corresponding author. Reference number is listed to the 
right of the corresponding author’s name. Lod scores are either 
multipoint heterogeneity lod scores (HLODs) or multipoint model-
free non-parametric linkage lod scores (NPL-LODs). If exact lod 
scores were unavailable, information was estimated from figures 
provided in their respective manuscripts. 
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My predoctoral training involves a candidate gene study at 19q12-13 and a 

thorough investigation of a candidate locus at HPCX, results of which are presented in 

Chapters IV and V. It is relevant to discuss these and other heavily investigated loci. 

These are reviewed below in the order of their appearance by year in the literature. 

 

1q25-25/HPC1/RNASEL 

Hereditary Prostate Cancer 1 (HPC1) at chromosome 1q24-25 was originally 

identified in 1996 in a genome-wide linkage scan50. The study population consisted of 79 

North American and 12 Swedish families with at least three first or second degree 

relatives affected with PrCa. Families had an average of 4.9 affected males per pedigree 

and no pedigree showed evidence of bilineal inheritance. Average age of diagnosis was 

65. Thirty-four males were diagnosed before age 55. Researchers typed 341 dinucleotide 

repeat markers in a subset of 66 North American families. The maximum lod score 

observed was 2.75 under a dominant inheritance model at marker D1S218, mapped to 

1q24-25. Researchers then genotyped additional markers in this region, and added the 

remaining 13 North American families and 12 Swedish families. This provided additional 

evidence for linkage at marker D1S2883 (5.5 cM centromeric from D1S218) with a 

maximum two-point lod of 3.65 at recombination fraction θ = 0.18. Non-parametric 

analysis was significant for multiple markers, providing additional evidence of linkage to 

the region. An estimated 34% of families studied linked to the region. Furthermore, 

authors reported two African-American families showing evidence of linkage to the 

region (lod = 1.4), suggesting increased risk for PrCa due to this locus over multiple 

populations. Subsequently, it was shown that the lod score increased to 5.10 for families 
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with an average age of diagnosis < 65 years and with ≥5 affected individuals in the 

pedigree58. Risk of PrCa susceptibility due to HPC1 has been confirmed or supported by 

several independent studies and populations40;59-65. However, replication has not been 

unanimous, and several studies have reported no evidence of linkage at HPC166-70. 

 

RNASEL has been proposed as a candidate HPC1 tumor suppressor gene based on 

its location at the linkage peak at HPC1 and the presence of sequence variation in several 

of the PrCa families studied71. RNASEL encodes 2’ – 5’oligoadenylate-dependent 

ribonuclease L (Rnase L) which regulates antiviral activities and apoptosis. Ubiquitously 

expressed and natively latent, Rnase L is activated through binding of double stranded 

RNA molecules that are present during viral replication. Activation results in large-scale 

RNA degradation with subsequent cellular apoptosis72.  

 

Carpten et al reported two variants in RNASEL tracking with two HPC1 linked 

families71. One variant, E265X, found in 0.5% of the general population and non-HPC 

PrCa cases, truncates Rnase L, producing a protein lacking the 2’-5’ oligoadenylate 

binding domain. The other variant, M1I, abolishes the initiator methionine, but appears to 

be present only in the African American family in which it was identified, as it was not 

seen in a sample of 698 controls. Through functional assays, the authors showed both 

mutations lead to loss of function of Rnase L. A subsequent genetic association study by 

Rökman et al in a Finnish population confirmed the E265X variant (OR = 4.56, 95% CI 

1.1-19.4; P = 0.04) as a risk allele as well as identified minor allele homozygotes of 

variant R462Q as possibly associated with risk of PrCa (OR=1.96, 95% CI 0.9–4.0; 
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P=0.07)73. Additional independent replication attempts have produced variable results. 

R462Q has been shown to significantly impact PrCa in multiple genetic association 

studies, but two of these studies identify minor allele homozygotes as protective against 

risk of PrCa, conflicting with the Rökman et al Finnish study74-77. Other studies, as well 

as unpublished results in 469 North American Caucasian PrCa cases with a family history 

of disease and 469 age- and race-matched controls from our own laboratory, have failed 

to find any association with RNASEL variants and PrCa risk78-82. 

 

1q42.2-43/PCAP 

PCAP (Predisposing for Cancer of the Prostate) at chromosome 1q42.2-43 was 

originally detected in 1998 French study with a lod score of 3.30 in early-onset families 

(< 65 years) 67. An estimated 40-50% of French and German families studied linked to 

the locus. Despite its auspicious introduction, PCAP replication attempts have seen 

variable results. Suggestive, but not necessarily statistically significant, evidence for 

linkage to the locus has been seen in several other studies in both Caucasians and African 

Americans, some of which describe enhanced signal from early-onset families40;64;69;83;84. 

Other studies have reported no evidence of linkage41;45;85. Overall, evidence at this locus 

from replication attempts seem merely suggestive as reviews of PrCa susceptibility loci 

cannot agree on whether or not most of these studies find evidence of linkage49;86. 

 

Xq27-28/HPCX 

As previously discussed, there exists a wealth of epidemiological evidence 

supporting X-linked inheritance of a PrCa susceptibility allele. Therefore, reported 



 

 14

evidence of a PrCa locus on the X chromosome is of interest. In the genome-wide search 

which resulted in HPC1, a 40 cM interval from markers DXS1001 to DXS1108 was also 

implicated, with a maximum two-point lod = 1.08 at marker DXS1193 at chromosome 

Xq27-2850. Investigators performed a more detailed search at Xq27-28, increasing the 

number of pedigrees to 360. Pedigrees were collected from North America (from Johns 

Hopkins University and the Mayo Clinic), Finland and Sweden, and included the 79 

North American families described in the HPC1 publication53. Researchers used a total of 

33 markers at intervals of 1.2 cM in the Johns Hopkins families. A subset of 26 markers 

were genotyped over a 19 cM interval in the Mayo Clinic and Finland families, and a less 

dense 4 cM map of eight markers for the Swedish families. Twelve of these markers had 

lod scores > 1.0 in the combined dataset with a maximum two-point lod of 4.6 at Xq28 

(marker DXS1113, θ = 0.26). Interestingly, the Finnish families in this study have a peak 

two-point parametric lod of 2.05 at Xq27.1-2 (marker DXS1205, θ = 0.14) and minimal 

evidence for linkage at Xq28; an indication of possible genetic heterogeneity within 

HPCX itself. It was estimated that 16% of North American families were linked to 

HPCX. This estimate increased to 40% in the Finnish families. It was also noted that the 

observation in the Finnish families was from a distinct subgroup of families with no 

evidence of male to male transmission and a late age of diagnosis87. 

 

There have been several replication attempts at HPCX. The first successful 

replication attempt was in a 1999 study from Lange et al of 153 PrCa pedigrees from the 

University of Michigan88. As in the original study, authors identified marker DXS1113 as 

suggestive of linkage (NPL Z-score = 1.20, P=0.12). Signal at this marker was strongest 
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in the subset of families with both no evidence of male to male transmission and early 

onset disease. Lange et al also reported a second non-overlapping peak at marker 

DXS294, 4.8 cM centromeric to marker DXS1205 (the peak marker for the Finnish 

families in the original HPCX manuscript). However, this peak signal was strongest in 

families with evidence of male to male transmission, counterintuitive to the idea of an X-

linked locus. Further confirmation of HPCX came from analysis of a 104 family German 

population. Pedigrees had at least two living relatives with histologically confirmed PrCa. 

A peak NPL Z-score = 2.32, P=0.009 was seen at marker DXS984, 2.3 cM centromeric 

to marker DXS120589. Other studies have also shown evidence of suggestive linkage to 

HPCX37;84. The first statistically significant replication of linkage to HPCX was seen in a 

study of 143 pedigrees from Utah90. Pedigrees used in this study were very large; three to 

eight generations with three to 62 PrCa cases in each pedigree. The authors employed a 

robust multipoint linkage statistic analogous to a two-point lod score but utilizing full 

multipoint haplotype† information (TLOD). A maximum TLOD of 2.72 was seen at 

marker DXS8069 at chromosome Xq28 which remained statistically significant after 

correction for multiple testing bias (P=0.0002). There are also independent studies 

showing no substantial evidence of linkage, however in each of these studies a small 

number of families were linked to the region45;91. 

  

To date, no gene has been described as an X-linked candidate, either at HPCX, or 

on the entirety of the X chromosome. An obvious choice for an X-linked candidate gene 

is the androgen receptor (AR), located at Xq11.2-12. AR has been investigated, but never 

                                                 
† A haplotype is defined as a sequential set of genetic markers that are present on the same chromosome.  
 



 

 16

identified through linkage studies. As it is separated from HPCX by over 50 cM, it is 

unlikely to contain the causal variant responsible for this predisposition locus.  

 

Recent reports of HPCX have narrowed the locus in the Finnish families to a 150 

kb region flanked by markers D3S2390 and bG82i1.9 by LD and shared-haplotype 

analysis92. In Chapter V of my thesis, representing the majority of my predoctoral work 

and entitled “A Haplotype at Chromosome Xq27.2 Confers Susceptibility to Prostate 

Cancer”, I report a thorough investigation of this candidate locus in a United States 

Caucasian study population. 

 

1p36/CAPB 

CAPB (Cancer Prostate Brain) was first reported in 1999 by Gibbs et al using the 

PROGRESS pedigree resource with a peak, although not statistically significant, lod 

score at marker D1S1597 located at chromosome 1p3693. The authors note that locus 

1p36 is associated with loss of heterozygosity (LOH) in several types of central nervous 

system tumors and that prior epidemiological studies have shown a link between PrCa 

and brain cancer. The authors tested the hypothesis that a shared allele predisposed to 

both PrCa and brain cancer. When looking at a subset of 12 families in their study with 

evidence of a primary brain tumor, the lod score associated with marker D1S507 (~4 cM 

telomeric of D1S1597) increased to a statistically significant 3.22 at θ = 0.06. Gibbs et al 

proposed the name CAPB to designate the link between the locus and pedigrees 

containing both PrCa and brain cancer cases. Authors proposed a tumor suppressor 

termed p73 as a candidate gene which maps to the locus and has high homology to tumor 
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suppressor p53. However, after extensive de novo single nucleotide polymorphism (SNP) 

discovery efforts, authors reported no variants within coding regions or intron-exon 

boundaries of the p73 gene associated with risk of PrCa94. Several independent 

replication attempts have shown no evidence for linkage over multiple populations. A 

first replication attempt in a subset of 13 HPC families with at least one instance of brain 

cancer from a study population from the Mayo Clinic found no evidence for linkage69. 

Nor was replication successful in a population derived from 64 southern and western 

European families. Six of these pedigrees had an instance of brain cancer, and authors 

reassessed linkage in this subset finding no evidence thereof83. Furthermore, evidence for 

linkage was not seen in a study of 33 African American families; however, none of these 

families had a reported case of brain cancer in first or second degree relatives84. In 

another study, four of six HPC families with at least one case of brain cancer had positive 

linkage results at CAPB64. The study population consisted of 159 HPC families including 

79 from the HPC1 study by Smith et al. 

 

20q13/HPC20 

In 2000, evidence at 20q13 was first reported in a genome-wide scan of 162 HPC 

families with a maximum multipoint non-parametric linkage score of 3.02 at marker 

D20S88795. Linkage was strongest in families with a late average age of diagnosis (≥66 

years) and the authors suggested the designation of this locus as HPC20. Soon afterward, 

a replication study using the Johns Hopkins pedigree resource confirmed linkage to 

20q13, also in families with a late age of diagnosis96. As with all other loci, subsequent 

evidence has been variable. A second independent replication in 172 North American 
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families was only suggestive for evidence of linkage, strongest in a subset of 16 African 

American families97. Further supportive evidence has been seen in subsequent 

studies37;84. Other studies have shown no evidence of linkage, including a study from the 

International Consortium for Prostate Cancer Genetics (ICPCG), a collection of 1,234 

pedigrees with multiple cases of PrCa98;99. 

 

19q12-13 

Chromosome 19q12-13 was first identified in a genome-wide linkage analysis 

using Gleason score‡ as a quantitative trait of PrCa aggressiveness with a peak P = 

0.0004 at marker D19S43357. Gleason score is indicative of tumor histology and the most 

frequently used grading system for PrCa100;101. The use of Gleason score as a quantitative 

trait may reduce phenotypic heterogeneity and thus simplify underlying genetic 

heterogeneity in this complex disease. Subsequently, the finding was confirmed in an 

independent study of HPC families from the Mayo Clinic102. A third independent study of 

affected sibling pairs from HPC families from the Fred Hutchinson Cancer Research 

Center has also recently confirmed linkage to the region103. Intriguingly, the locus is not 

highlighted by other linkage studies of HPC upon limiting affected status to only those 

men with clinically significant disease104;105. These seemingly conflicting results are 

addressed in Chapter IV of my thesis, entitled “Familial Prostate Cancer Risk, 

Aggressiveness, and the Transforming Growth Factor β1 T29C Polymorphism”. This 

                                                 
‡ In 1974 Gleason and Mellinger proposed a grading system to represent the differentiation patterns of 
tumors within the prostate. The predominant and second most prevalent patterns are identified and graded 
on a scale from 1 (most differentiated) to 5 (least differentiated). These two scores are added and a resultant 
score from 2 (uniformly differentiated) to 10 (uniformly undifferentiated) obtained. A major shift in terms 
of prognosis occurs between Gleason scores 6 and 7, with scores ≥ 7 almost always requiring active 
treatment, as opposed to the ‘wait-and-see’ prognosis often employed for individuals with a score < 7. 
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chapter describes an association between indolent PrCa and the functional T29C 

polymorphism of TGFB1 within this locus. 

 

17p11/HPC2/ELAC2 

A study of 33 large, high-risk pedigrees from Utah showed linkage to 

chromosome 17p at marker D17S1289 with a maximum two-point lod score of 4.53 at θ 

= 0.07106. Using positional cloning and mutation screening, the authors subsequently 

narrowed the locus down to candidate HPC susceptibility gene ELAC2, located at 

chromosome 17p11. ELAC2 contains homology to two protein families; PSO2/SNM1 

DNA interstrand cross-link repair proteins and the 73-kD subunit of mRNA 3-prime end 

cleavage and polyadenylation specificity factor. It is thought to encode a metal-dependent 

hydrolase domain conserved among eukaryotes, archaebacteria and eubacteria. 

Researchers found a frameshift mutation in one large pedigree (1641insG). A second 

pedigree contained three variants, two of which were common in the population (S217L 

and A541T). This finding was corroborated by a non-family matched case-control study 

in which men with both 217L and 541T had an increased risk of PrCa with an odds ratio 

of 2.37 (95% CI 1.06-5.29). The 541T variant was only observed in men with the 217L 

variant, and the combination of the two was estimated to account for 5% of HPC in the 

study population107. However, this finding has been difficult to replicate, with studies 

showing no linkage to chromosome 17p or no association of the 217L and 541T variants 

with HPC108;109. 
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8p22-23/MSR1 

Linkage at 8p22-23 was reported in a study of 159 United States HPC pedigrees 

with a peak HLOD of 1.84 (P= 0.004) and an estimated 14% families linked54. As 

deletions on chromosome 8p22-23 have been seen in both PrCa cell lines and in studies 

of high-grade PrCa tumors, linkage to this region is very intriguing. While the study 

described linkage to the locus, the candidate gene proposed by the authors, PG1, 

displayed no statistical difference in allele, genotype or haplotype frequencies between 

case and control subjects for any SNPs or other sequence variants.  

 

A later study of the region looked at the candidate gene macrophage scavenger 

receptor 1 (MSR1), known to be involved in prostate carcinogenesis. MSR1 is a multi-

domain scavenger receptor expressed almost exclusively in macrophages, and is capable 

of binding a wide array of ligands including oxidized high density and low density 

lipoproteins, apoptotic cells, and both gram negative and gram positive bacteria110. 

Several missense mutations and one nonsense mutation were shown to be associated with 

PrCa risk in a United States study population consisting of Caucasians and African 

Americans111. An immediate independent confirmation of a marker 1 cM centromeric to 

MSR1 followed112. Subsequent case-control studies in the region have focused on the 

nonsense mutation, R293X, which deletes most of the extracellular ligand binding 

domain and is of obvious functional significance. As with studies of RNASEL, published 

reports conflict. Some of these studies showed higher frequency of the nonsense mutation 

in cases versus controls over multiple populations; however, no association was 

considered statistically significant113-115. Other populations showed an excess of the 
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nonsense mutation in controls relative to cases80;114;116. Meta-analysis of studies through 

September 2005 collectively showed that R293X as well as other variants at MSR1 do not 

play a major role in heritable PrCa susceptibility, but may confer moderate risk to 

PrCa117. 

 

Genetic Association Study Design 

The Paradigm Shift from Linkage to Association 

 The diverse array of PrCa susceptibility loci and their lack of reproducibility led 

geneticists to question the utility of the linkage design framework when looking for 

causal variants of PrCa118. Titles of review articles summarizing PrCa linkage studies 

from major contributors to the field entitled “Genetics of Prostate Cancer: Too Many 

Loci, Too Few Genes” and “The Complex Genetic Epidemiology of Prostate Cancer” 

highlight the confusion surrounding linkage study results49;119. These troubles were not 

specific to PrCa research, but pervasive among study of complex, common disease in 

general120. 

 

Quite simply, the success seen from linkage analysis at uncovering the genetic 

basis of monogenic disorders had not been seen in the study of PrCa. It is useful to 

discuss the strengths and weaknesses inherent in the linkage study design. Linkage 

studies are strongest when the causal variant is of high penetrance. The phenotype of a 

highly penetrant variant will always or almost always be seen in the individual with the 

variant. It is likely that a successful linkage study results from the high correlation 

between phenotype and a highly penetrant variant. A variant of low penetrance is difficult 
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to find using linkage analysis. Indeed, it has been shown that linkage analysis has 

difficulty in identifying such variants with a risk ratio of < 3118;121. Furthermore, disorders 

identified through linkage analysis are typically of Mendelian inheritance. Mendelian 

disorders have well characterized models of inheritance, such as AD, AR, and X-linked. 

In contrast, many common diseases do not behave in this manner, often skipping 

generations and not adhering to one particular inheritance model. Finally, while linkage 

studies are largely unaffected by conditions of allelic heterogeneity, they are hindered 

under conditions of locus heterogeneity (also called genetic heterogeneity). Allelic 

heterogeneity occurs when multiple variants which result in the same phenotype are seen 

at the same gene. Locus heterogeneity arises from multiple variants at different genes 

resulting in the same phenotype. Given the nature of linkage studies, in which a 

connection is made between a locus in the genome and a phenotype, locus heterogeneity 

is problematic. In summary, locus heterogeneity and low effect size are problematic when 

identifying risk loci and these problems are inherent within the linkage study design.  

 

It has been hypothesized that multiple variants of modest effect size collectively 

conspire to predispose to common disease. This is the central theme of the “common 

disease-common variant” hypothesis (CDCV) which suggests the genetic risk of common 

disease is due to disease loci where there are common variants122. The array of loci across 

multiple chromosomes with relatively small lod scores seen in PrCa linkage studies is 

supportive of this hypothesis.  
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In 1996, the case-control association study design was suggested as the method of 

choice for investigating genetic determinants of complex disease123. In contrast to linkage 

studies, which are focused on finding a locus in the genome associated with risk of 

disease, association studies identify an allele associated with risk of disease. Association 

studies test for significant differences in allele frequencies between a case population and 

a control population. However, in 1996, it was not feasible to replace the linkage study 

framework with high density, large-scale association studies. Linkage studies benefit 

from a pre-defined set of informative markers enabling comprehensive scan of the entire 

genome. A similar set was not defined for association studies. In fact, markers at the 

density required by a large-scale association study had not yet even been identified or 

catalogued. A physical map of the genome would not be available until the publication of 

the draft of the Human Genome Sequence in 2003, hindering assay design. Furthermore, 

the cost of such an undertaking was prohibitive124. Consequently, association studies of 

the time were typically of small scale and performed on a candidate gene within a locus 

identified through linkage analysis.  

 

Genomic Structure and its Impact on Genetic Association Studies 

While the utility of the association study to identify genetic variants predisposing 

to common disease was clearly evident, its practicality was hindered by factors linked to 

the high density of markers needed to efficiently capture genetic diversity. If the number 

of markers required could be reduced, large-scale association studies would potentially be 

a feasible alternative to genetic linkage studies in large-scale investigations. Fortunately, 

high-density SNP studies have demonstrated that the genome consists of discrete areas 



 

 24

absent of recombination which are separated by recombination hotspots and which 

exhibit a striking lack of diversity125. As such, neighboring markers in a chromosome 

occur together more often than expected. This is called linkage disequilibrium (LD) and 

substantially decreases the number of markers required to achieve comprehensive 

coverage. As certain alleles are inherited together, an associated variant might either be 

the actual causal variant or highly correlated with the causal variant. Therefore, a large-

scale association study would not need to directly detect the causal variant but identify 

any of the variants inherited with it. Subsequent directed analysis would then identify the 

causal variant.  

 

Binary and amenable to high-throughput assay, the SNP is the variant of choice 

for large-scale association studies. As a result of LD, most of the approximately 11 

million SNPs in the genome have neighboring groups of SNPs which are correlated with 

each other126. One SNP can therefore be used as a proxy for the other correlated SNPs. 

Therefore, a researcher may select fewer tagging SNPs so that they capture most of the 

common variation within the region. This may be done on both a haplotype or single SNP 

basis and established methods exist for each127;128. An early estimate puts the number of 

SNPs required for comprehensive coverage on a genome-wide scale at 500,000129. As a 

practical example, our investigation of a 352 kb susceptibility locus at HPCX uses 128 

tagging SNPs selected from a larger set of 246 SNPs to capture common variation in the 

region (Chapter V of this thesis). 
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Together, LD and linkage equilibrium parse the genome into a block-like 

structure. Over the course of many generations, ancestral chromosomes are broken up by 

meiotic recombination creating smaller segments of DNA. These segments are areas of 

high LD and are appropriately referred to as haplotype-blocks. Haplotype-blocks are 

passed largely intact from generation to generation, but eventually broken by 

recombination events over time such that block length is determined by both the age of 

the population and the location of recombination hotspots throughout the genome. Older 

populations (e.g. Africans) have more frequent recombination hotspots and therefore 

greater genetic diversity than newer populations (e.g. European Caucasians). Haplotype-

block length is greatest and diversity lowest in founder populations derived from a 

limited pool of individuals (e.g. Finns, Icelanders). Longer blocks and lack of diversity 

facilitates detection of a disease associated haplotype in an association study, but hinders 

subsequent identification of a variant of interest. However, researchers could then turn to 

populations with shorter blocks to identify the causal variant on the associated haplotype.  

 

Potential Problems for Association Studies 

Population Stratification 

One of the most widely discussed potential problems of association studies is 

population stratification and subsequent reporting of spurious associations due to this 

factor. Population stratification results from multiple subgroups within a population that 

differ in disease prevalence. This can result in a biased selection of cases from one 

subgroup of a population over another. If allele frequencies differ in these subgroups, 

spurious associations can occur. Methods have been proposed to detect and correct for 
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population stratification130-133. The effect that population stratification has upon 

association studies is controversial. Researchers have shown that population stratification 

in ‘well-matched’ (using self-reported ethnicity) case-control studies of admixed 

societies, such as those found in United States cosmopolitan areas, is unlikely to result in 

spurious associations132;134;135. Others report that minimal amounts of population 

stratification could result in spurious associations in studies designed to detect risk factors 

of modest effect size136. 

 

Controlling for Multiple Testing Bias 

The sheer number of markers that require genotyping in association studies also 

may lead to the reporting of spurious associations. At a P = 0.05 threshold of statistical 

significance, 5% of markers may be falsely associated by chance alone. Very few of these 

markers, if any, may be the actual causal variant or its tagging SNP surrogate. It is then 

necessary to systematically discount the false positive associations. To circumvent, the 

significance threshold can be increased and it has been proposed that the Bonferroni 

correction be employed in this situation123. In Chapter III of my thesis, entitled 

“Haplotype Analysis of CYP11A1 Identifies Promoter Variants Associated with Breast 

Cancer Risk” we use the Bonferroni correction to control for multiple testing bias. In 

general, however, Bonferroni correction is considered punitively conservative in 

association studies. High marker density, LD between markers, non-random SNP 

selection and redundancy between single-allele and haplotype tests strongly violate 

Bonferroni assumptions of independence, and other methods have been suggested126;137. 

One of these methods consists of a multi-stage approach, and it is this method we use in 
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our HPCX study (Chapter V). By dividing the study population into independent training 

and test sets, it is possible to employ the training set for the myriad of tests involved in 

the initial screen. Statistically significant associations would then undergo a replication 

attempt in the independent test set. Presumably, this would result in far fewer tests 

requiring correction for multiple testing bias.  

 

Sample Size 

The power of association studies to detect variants predisposing to common 

disease is related to both the effect size and the frequency of the variant in the population, 

such that a rare variant of small effect size will be most difficult to detect. Power 

calculations are visualized in Figure 3 using the PS program from Dupont and 

Plummer138. As the sample population increases, we are able to detect variants of smaller 

effect size for a variant of constant frequency (Figure 3A). For example, using a 1:1 

matched case-control population with 500 cases we are able to detect a variant with 

frequency 5% and an odds ratio of 2.0 at 80% statistical power (α = 0.05). Increasing the 

population to 2000 cases, we are able to detect a variant at an odds ratio of 1.45 (α = 

0.05). Similarly, as the allele frequency increases in a study population of constant size, 

we are able to detect variants of smaller effect size (Figure 3B).  
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Figure 3. Panel A. Sample sizes needed to detect an allele 
of frequency = 5%, using a 1:1 matched case-control study 
design, with φ=0.0, α = 0.05, for effect sizes 0.0 – 3.0.  
Panel B. Detectable odds ratios for a population of 500 
cases given allele frequencies from 5% - 50%, using a 1:1 
matched case-control study design with φ=0.0, α = 0.05, 
for effect sizes 0.0 – 3.0. As an example, a population size 
of 500 cases is able to detect a variant of 5% frequency in 
the population with an odds ratio of 2.0 at 80% statistical 
power. Allele frequency of 5% and population sample size 
of 500 were chosen to approximate values of these 
variables in the HPCX study presented in Chapter V of this 
thesis. 
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Susceptibility Locus 8q24 

 In 2006, the first results from HapMap§ based genome wide association studies 

(GWAS) for PrCa susceptibility loci appeared. The most intriguing results to come of 

these studies involve the identification of PrCa susceptibility loci on chromosome 8q24. 

First identified in two independent studies in 2006 from Amundadottir et al and 

Freedman et al, 8q24 has been replicated in several independent studies involving 

multiple populations139-147. This type of overwhelming replication had not yet been seen 

in the field of PrCa genetics. Studies describe three separate but contiguous loci at 8q24 

responsible for PrCa risk. SNPs rs6983267 and rs1447295 result in the strongest 

association in most studies. Exactly how gene-poor 8q24 contributes to PrCa risk remains 

undefined, however it is a common location for somatic gains in PrCa148. 

 

Concluding Remarks 

In summary, at the outset of my graduate studies researchers were beginning a 

shift from the linkage study design to case-control association when searching for 

common disease susceptibility variants in large-scale investigations. While heritability is 

widely accepted as the largest single factor predisposing to PrCa risk, linkage studies had 

failed to uncover susceptibility loci independently reproducible across study populations. 

We hypothesized that the reason for this failure was that heritability of PrCa was due to 

common variants in the population each conferring relatively lower risk than encountered 

                                                 
§ The International HapMap Project seeks to identify common variation in humans. Currently in its 
second iteration, the HapMap includes information on over 3.1 million SNPs genotyped in 270 individuals 
from four populations (Yoruban, Japanese, Han Chinese and Caucasian Americans of western and northern 
European ancestry). HapMap data is publicly available (http://www.hapmap.org), allowing investigators to 
obtain information on relevant tagging SNPs prior to embarking on an association study.     
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in typical Mendelian disorders. Haplotype-based case-control association studies are 

better equipped to investigate this hypothesis than traditional linkage studies.  

  



 

 31

CHAPTER II 

 

 

HYPOTHESIS AND SPECIFIC AIMS 

 

 

Prior to embarking on a large-scale, comprehensive investigation at HPCX, we 

sought to test the study design and fine tune techniques and methods to be used. At the 

outset of my graduate studies, our PrCa study population was not yet of sufficient power 

and required further accrual. Therefore, we employed a heavily published study 

population to investigate a candidate gene of known significance with an undefined 

causal variant; the study population was the Shanghai Breast Cancer Study (SBCS) and 

the breast cancer associated gene was the rate-limiting enzyme of steroid biosynthesis, 

CYP11A1. Previously, we associated a specific allele of a simple tandem repeat (STR) 

upstream of CYP11A1 with risk of breast cancer within the SBCS population149. We 

sought to use this known association as a positive control to test the ability of a 

haplotype-based study design to detect common risk variants and hypothesized this allele 

marks an uncharacterized haplotype harboring candidate functional variants and 

conferring breast cancer risk. Although this work was done in a breast cancer study 

population, the methods and techniques developed to identify an associated haplotype at 

CYP11A1 were subsequently directly applicable to my PrCa thesis work. This study is 

discussed in detail in Chapter III. 
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Next, we perform a candidate gene association study as the first use of our PrCa 

study population. This study is described in Chapter IV. Several linkage studies have 

been published identifying chromosome 19q12-13 as a PrCa aggressiveness locus. 

Residing at chromosome 19q13.2, transforming growth factor β1 (TGFB1) plays a 

remarkable dual role in the genesis and progression of multiple cancers and is an ideal 

candidate gene at this locus. The TGFB1 gene contains a well-studied functional T to C 

transition at nucleotide position 29. We focused on this common functional 

polymorphism and assessed the significance of TGFB1 as a PrCa susceptibility gene. In 

this study, we also assessed the ability of the new study population to detect the 

established association at 8q24. 

 

Our PrCa study population has grown over the course of this work and is uniquely 

designed to dissect the genetic component of PrCa using LD mapping. We focused on 

one candidate interval at HPCX derived by shared haplotype association evidence in the 

founder populations of Finland and Ashkenazim. We hypothesized that a gene or genes in 

this candidate interval at HPCX harbor common variants of modest effect size 

predisposing to risk of PrCa. We performed exploratory haplotype analyses in a training 

study population, and sought to confirm or refute statistically significant haplotypes in an 

independent test population. In this way we identify a haplotype within HPCX 

significantly associated with PrCa risk. This work is detailed in Chapter V. 
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 Towards identifying the contribution of gene TGFB1 and locus HPCX by 

identification of variants within them predisposing to PrCa susceptibility, I list the 

following projects and aims for my dissertation: 

 
Project 1: Validation of Experimental Procedure Using CYP11A1 
 
Specific Aims and Experimental Summary:  
 

1) Characterization of genetic architecture at CYP11A1 
a. Identify all common polymorphism in the Han Chinese study population 

via both de novo SNP/STR discovery and public SNPs from dbSNP150 
b. Determine a set of tagging SNPs/STRs in a subset of the study population 
c. Genotype the set of tagging SNPs/STRs in the remainder of the study 

population 
 

2) Determine the haplotype(s) at CYP11A1 associated with risk of breast cancer 
a. Use haplotype and single-allele sliding window χ2 tests of association 
b. Use age-adjusted logistic regression analysis 

 
3) Comprehensive search for polymorphism on the associated haplotype to 

identify functional candidate variants 
a. Completely re-sequence associated haplotype 1.9 kb 5’ to 98 bp 3’ of the 

gene 
b. Re-sequence exons and exon-intron junctions in five most common 

haplotypes 
 

4) CYP11A1 expression analysis 
a. Test CYP11A1 expression levels in lymphoblastoid cell lines harboring 

associated haplotype, relative to those harboring unassociated haplotypes 
 
Project 2: The Transforming Growth Factor β1 T29C Polymorphism and its Association 
with Prostate Cancer Aggressiveness 
 
Specific Aims and Experimental Summary: 
 

1) Genotype SNP rs1447295 at 8q24 to assess the ability of the PrCa study 
population to detect an established association 
a. SNP rs1447295 has been identified and widely confirmed as associated 

with risk of PrCa 
 

2) Genotype the T29C polymorphism of TGFB1 in the study population 
a. Use dual methods to obtain accurate genotypes, with discrepancies 

resolved via direct-sequencing 
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i. Fluorogenic 5’-nuclease assay (Taqman) 
ii. Single nucleotide primer extension assay with detection by 

florescence polarization 
 
3) Test for association of the T29C polymorphism with PrCa 

a. Inheritance model determination 
b. Stratification by indices of aggressiveness 

 
Project 3: Identification and characterization of an X-Linked familial PrCa gene 
 
Specific Aims and Experimental Summary: 
 

1) To identify and genotype all common polymorphism in an initial training 
PrCa population at the candidate interval 
a. Perform de novo SNP discovery at predicted or known genes and derive a 

set of survey SNPs from dbSNP spanning the broader candidate interval  
b. Genotype subset of the training population for polymorphism to determine 

set of tagging SNPs and type these SNPs in the remainder of the training 
population 
 

2) To test haplotypes for association with PrCa risk and to determine the 
variant(s) within the associated haplotype(s) responsible for the significant 
association in the training population 
a. Perform haplotype and single-allele sliding window χ2 tests of association 
b. Determine all haplotype windows nominally associated with risk of PrCa 

(P ≤ 0.05) 
 

3) Confirm or refute nominal statistically significant associations in an 
independent test study population 
a. Determine haplotype tagging SNPs (htSNPs) for associated windows 
b. Genotype htSNPs in the independent test population 
c. Confirm or refute significance using χ2 tests of association 
d. Determine effect size in confirmed window(s) using age-adjusted 

conditional logistic regression 
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CHAPTER III 

 

 

HAPLOTYPE ANALYSIS OF CYP11A1 IDENTIFIES PROMOTER VARIANTS 
ASSOCIATED WITH BREAST CANCER RISK*** 

 

 

Introduction 

Evidence for CYP11A1 Involvement in Breast Cancer 

Endogenous estrogen exposure in women is strongly associated with risk of breast 

cancer 151;152. Genetic variation within genes encoding enzymes of the biosynthetic 

pathway could greatly influence estrogen exposure, and therefore associated breast 

cancer risk 153. The conversion of cholesterol to pregnenolone is the common initial step 

in the biosynthesis of sex hormones, including estrogen, progesterone, and androgens. 

This rate-limiting conversion is catalyzed in steroidogenic tissues on the inner 

mitochondrial membrane by the cholesterol side-chain cleavage enzyme, the Cyp11A 

cytochrome P450 154. We previously demonstrated significant allelic association of a 

simple tandem repeat (STR) polymorphism upstream of the CYP11A1 gene with breast 

cancer risk within a Chinese study population 149. Linkage and allelic association at the 

marker has also been observed in the androgen-related polycystic ovary syndrome 155. 

This STR is a pentanucleotide repeat (D15S520 at 15q24.1, [TAAAA]n) located 487 bp 

upstream of the first exon of CYP11A1, a region not conserved between human and 

mouse. Three major alleles of 4-, 6- or 8-repeats account for nearly all variation at the 

                                                 
*** Adapted from Cancer Res. 2007 Jun 16;67(12):5673-82 
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marker among Chinese. The 8-repeat allele is associated with a dose-dependent elevated 

risk of breast cancer (heterozygote OR = 1.5, 95% CI = 1.2 – 1.9, homozygote OR = 2.9, 

95% CI = 1.3-6.7, trend test P <0.0001) 149.  

 

Study Design 

In this study we sought to comprehensively characterize common genetic 

variation at CYP11A1, to assess patterns of linkage disequilibrium (LD), and to refine our 

understanding of the contribution of CYP11A1 genetic variation to breast cancer risk. The 

initial discovery of the single allele association at one STR of the CYP11A1 gene led us 

to hypothesize that it marked an uncharacterized haplotype harboring candidate 

functional variants and conferring breast cancer risk.  

 

Among alleles of variant sites identifying a cancer-associated haplotype, a subset 

that directly marks it are candidates that may be functional in the disease. Those altering 

transcript expression or processing, or the encoded enzyme itself remain of great interest 

in further delineating the role of this gene in common breast cancer. We tested this 

hypothesis within the Shanghai Breast Cancer Study using haplotype-based analyses to 

comprehensively examine the genetic architecture of CYP11A1. Here we demonstrate 

that the disease-associated haplotype is designated by multiple variants upstream of the 

coding region. We further observe that CYP11A1 expression in a lymphoblastoid cell line 

homozygous for the disease-associated haplotype is two-fold greater than expression in 

lymphoblastoid cell lines harboring alternative haplotypes. We conclude that common 
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cis-acting variants upstream of the coding region may impact transcriptional regulation to 

influence breast cancer risk. 

 

Materials and Methods 

Study Population 

The Shanghai Breast Cancer study has been previously described 149;156. Briefly, 

study subjects were recruited between August 1996 and March 1998. All subjects were 

permanent residents of urban Shanghai without a prior history of any cancer and were 

alive at the time of interview. The study included 1,459 incident breast cancer cases 

diagnosed at an age between 25 and 64 years during the study period (91.1% of eligible 

cases). Cancer diagnoses for all patients were reviewed and confirmed by a panel of 

clinicians including two senior pathologists. Unaffected controls were randomly selected 

from the general population using the Shanghai Resident Registry, a population registry 

containing demographic information for all residents of urban Shanghai. Inclusion 

criteria for controls were identical to those for cases, with the exception of a breast cancer 

diagnosis. Controls were frequency matched on age (5 year intervals) to the expected age 

distribution of the case subjects in a 1:1 ratio. The study included 1,556 control subjects 

(90.3% of matched eligible controls). Blood samples for DNA extraction were collected 

from 1193 (82%) cases and 1310 (84%) controls. All study participants provided written 

informed consent under an approved institutional review board protocol. 

 

To preserve the limited DNA from study subjects recruited in the Shanghai Breast 

Cancer Study, allele discovery employed DNAs obtained from Chinese cell lines of the 
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Coriell Institute for Medical Research (Camden, NJ). These included: NA18524, 

NA18526, NA18529, NA18532, NA18537, NA18540, NA18542, NA18545, NA18547, 

NA18550, NA18552, NA18555, NA18558, NA18561, NA18562, NA18563, NA18564, 

NA18566, NA18570, NA18571, NA18572, NA18573, NA18576, NA18577, NA18579, 

NA18582, NA18592, NA18593, NA18594, NA18603, NA18605, NA18608, NA18609, 

NA18611, NA18612, NA18620, NA18621, NA18622, NA18623, NA18624, NA18632, 

NA18633, NA18636, NA18637, NA00576, NA03433, NA13411, NA14821, NA16654, 

NA16688, NA16689, NA17013, NA17014, NA17015, NA17016, NA17017, NA17018, 

NA17019, and NA17020. 

 

Variant Discovery and Confirmation 

To capture genetic diversity of CYP11A1, database single nucleotide 

polymorphisms (SNPs) annotated in dbSNP were screened for common polymorphism in 

the study population. Fifty-three annotated SNPs spanning CYP11A1 from 7.8 kb 5’ of 

the 29.9 kb gene to 10 kb 3’ were genotyped to assess polymorphism. This was done in 

quadruplicate among 15 Chinese cell line DNAs. The screening set was estimated to 

provide 95% power to detect a polymorphism with a minor variant frequency of 0.10, and 

78% power with a frequency of 0.05. 

 

The 15 Chinese cell lines were also employed for de novo SNP discovery by dual 

single-stranded conformation polymorphism methods (SSCP) and re-sequencing. Where 

either SSCP method identified a variant, conformers were re-sequenced for allele 

discovery. Overlapping amplimers across CYP11A1 were employed for polymorphism 
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screening. This included 142 amplimers spanning from 1.9 kb 5’ to 98 bp 3’ of the gene. 

Intron 1 of the CYP11A1 gene contains a 13.8 kb nearly contiguous interval of RepBase 

repeats. Select non-unique regions embedded within that interval were omitted from the 

survey, as outlined in Figure 4. 

 

Characterization of haplotypes and linkage disequilibrium was conducted among 

a pilot subset of subjects of the Shanghai Breast Cancer Study that included 178 cases 

and 178 controls. Subsequent genotyping of tagging SNPs and STRs for tests of 

association with breast cancer was conducted among 1159 cases and 1236 controls. A 

total of 200 ng of DNA from the each of the pilot subjects, and 100 ng of DNA from each 

of the remaining study subjects was used for study. 

 

To identify additional genetic variation on the disease-associated haplotype, 

Chinese cell line GM16654 that is homozygous for the disease haplotype, and 

comparative cell line GM10859 (CEPH 1347-02) were re-sequenced from 1.9 kb 5’ to 98 

bp 3’ of the gene (again omitting non-unique regions within the 13.8 kb interval of intron 

1), as outlined in Figure 4. All exons and exon-intron junctions were additionally re-

sequenced in 5 subjects of the Shanghai Breast Cancer Study harboring five common 

haplotypes, including a subject homozygous for the disease-associated haplotype. 

Sequencing employed BigDye® terminator chemistry on a 3100 Genetic Analyzer 

(Applied Biosystems, Foster City, CA). These re-sequencing efforts identified five SNPs 

that had not previously been detected by SSCP or described in databases, two of which 

were not polymorphic in additional Chinese cell lines tested. 
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Fifteen novel SNPs discovered in the study have been submitted to dbSNP 

(ss68316999 - ss68317010, and ss68362647 - ss68362649). Two novel polymorphic 

STRs have been submitted to dbSNP and to GDB (D15S1547 and D15S1546). 

 

SNP Genotyping 

We genotyped SNPs by single nucleotide primer extension and fluorescence 

polarization in 384-well format 157. Reaction processing entailed three steps: a 4.4 µl PCR 

reaction, addition of 4 µl of an exonuclease I (New England Biolabs, Beverly, MA) and 

calf intestinal alkaline phosphatase (Promega, Madison, WI) reagent mix to degrade 

unincorporated primer and dephosphorylate dNTPs, and a final addition of 4 µl of an 

Acyclopol and Acycloterminator reagent mix for the primer extension reaction 

(AcycloPrimeTM FP SNP Detection System, Perkin-Elmer, Boston, MA). Each PCR 

mixture included 0.1 unit AmpliTaq Gold DNA polymerase, 1x Buffer II (Applied 

Biosystems, Foster City, CA), 2.5 mM MgCl2, 0.25 mM dNTPs, 335 nM of each primer, 

and 2 ng DNA template. We detected incorporation of R110- and TAMRA-labeled 

terminators by fluorescence polarization on a Molecular Devices / LJL Analyst HT. Both 

forward and reverse strand extension primers were tested to select the most robust assay. 

Amplimer and extension primer sequences for genotyped SNPs of Figure 5 are provided 

in Table 2.
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Table 2. CYP11A1 Project Assay design 

Marker Forward Primer Reverse Primer Allele/Dye Strand Extension Primer 
rs3825944 CTCCACGGATGGTGAGAAC GGAGAAACTAGTTGTTTGAC G/A R TCCACTAGAGGGCAGCA 
rs12438594 GACCTTGGAGAGAGGTTTC CAGACCAAGCTCCAGGGT G/A R AGACCAGGTAGGTATCCAG 
rs4077585 CAATCCGAGAACCCCAGCAAC CGCACGAGAAGAAGGTGC G/C R CTTGGCTCCGGAGCCTA 
rs4077582 GCTCACTGGTCTTGAATC GCACCCTTTTACACAGGC G/A F TGACATGGCATGGCATG 
rs4077581 CTGGAACTGGACTCTGTC GCTGTGAAATATTCACATGG G/A F CCTTATGTGCCTGTGTAAA 
rs8039957 CCTGGGCAATGTATAGAG CATTGCAGCCCTCCTATGAG G/A R TCTCCCTGCTCCTCTAA 
ss68317009 GTGAGATTCTGTCTCAAAC GTTTCACCATGTTGGCCG G/A R TTCACCATGTTGGCCGG 
ss68317008 GCCCTACTAAATGCCTCC GACAGACTCAGAGCCTCAG G/A F CCGCACACCTTGCAAGC 
rs7174179 CAACAGAGAGAGACTTGAC GGCTACAGACTCTAAATTC G/A R TTCAGTGGTAGGAGACTGAC 
rs12916765 GTTTTACGTGGGTTAGTAG CATGGGATTGACAAAATG G/C F GGTAACATATACTTAGACATTAGAATTT 
rs1843090 GTAAGGTTTAAGCCCCCAG GTGTTAGGAAAAAAACCCAC C/T F TCCATTGGTTAATTCCATA 
ss68317006 GTGAACATACAACCTACTCTTG CAGTGTTTTTCCAGCTAC G/A F GTTAGGGGTATGGAGCT 
rs17515476 GGCCTACCTTGCAAGCTATAG GATCACTGTTGCTGCTGTC G/C F CTGTGGACAGGTGAGAAG 
rs6495096 CTTGCTGGTCCATGGAAG CTGAGTCGAGGCCCTTAAC G/C F GCAACAGTGATCATAAAGCT 
rs1484215 GAACGATTCCTCATCCCG CTGGCAGAGCAATTCATC G/A F CCTCTAGGTGAATCCCC 
rs11632698 CTGGTCAATTTTGTTTGTGC GAGTGAAGGGGAACAAAAC G/A R CCAGGAACTGATATTCTTAGA 
rs11638442 GAGGCTTGCTCTATCAG GTACTGAGGTCTGGAAAG G/C R GCCCACAGCAAATGCCT 
ss68317002 CTGTATTTCATCTGGAGG GGCAACAATGACAAGCTG C/T F GCTGTGTGTTGTTTCAGTT 
rs7173655 GTCATTCTGGAGTGCAATC CATTCCATTGTCTAAAAGGC G/A F CTCTACTCACTGTGGACATG 
rs2279357 CTGAGGTTTGTAGACAAG CAGCATCTGAGAAAGGCAG G/A F GTCTAGGCCTAAATCAAGG 
rs6495095 GGATGGAAAAGGGCTCTC CCTGGAATCAGCTCTCAG C/T F GTCCAGGTGGAGGCCAG 
rs6495094 GGATGGAAAAGGGCTCTC CCTGGAATCAGCTCTCAG G/C R TGACCCCTTTTTCACCT 
rs2277606 CACCTGCCTTCTCTTGGTG GTGGAGGATTCAGCAGAGG G/A F GTGAGATGGGGGAGGAG 
rs1564782 GACTGTGTGAGTGTCTGTG GGAGAGAACCGCATACTG G/A R GGGGCAGGGCAAAGCCA 
rs2277602 GTTCATCTCCTGTGGATC GAACATTAGTGTGGCTGCC G/T F CCACATCCACATCTACACT 
rs2930306 GTGTCCTCGGACAGCATTG CCAAATTATACCTGCCTGGG C/T R GCAACACCAGGCATCTC 
rs2930305 CTCAGTCTCTGCACCACAG CAGGACTCACTCCATGAG G/A F ATAACCGGGTTGTGAGC 
D15S1547 Ned-AGGTAGTGGTCACTCCAG gtgtcCAATAGAGCTGTTACCAAAC Ned    
D15S520 gtgtCTCTGAGTCAGCTGTACTG Hex-GAGCTATCTTGCCAGCTTG Hex    
D15S1546 Fam-GAGACTGGTGAGGCTAAG gtgtCCGAGTAGCTGGGATTATAG Fam    
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Simple Tandem Repeat Genotyping 

5’-dye-labeled fluorescent amplimers were detected on an ABI PRISM® 3700 

(Applied Biosystems, Foster City, CA). Primers were designed using a tailing strategy to 

promote full non-templated nucleotide addition by AmpliTaq Gold DNA polymerase 

(Applied Biosystems, Foster City, CA), providing unambiguous detection of alleles 

separated by one base pair 158. PCR conditions were as described above. Primer 

sequences for polymorphic STRs are provided in Table 2. Allele fragment size estimation 

was accomplished using the internal size standard Genescan 400HD ROX and the local 

Southern algorithm of GENESCAN software. Editing of alleles was performed in 

GENOTYPER (Applied Biosystems, Foster City, CA). 

 

Single Stranded Conformation Polymorphism Detection 

Amplimers were electrophoresed on 0.5X MDE gels (Cambrex Biosciences, East 

Rutherford, NJ) at room temperature at 2W for 14 hours, and at 4°C at 4W for 14 hours. 

PCR conditions were as described above. Amplimers were visualized by silver staining 

159. Representative conformers were sequenced using BigDye® terminator chemistry on a 

3100 Genetic Analyzer (Applied Biosystems, Foster City, CA) to identify the 

polymorphic sites. 

 

Statistical Analyses 

Hardy-Weinberg equilibrium (HWE) for markers was calculated using the Stata 

package genassoc of David Clayton 160. Pairwise LD between SNPs was calculated and 

visualized using Haploview version 3.2 127. Pairwise LD for SNPs and multiallelic STRs 
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was calculated and visualized using MIDAS version 1 161. Tagging SNPs were selected 

using LDSelect with a minor allele frequency (MAF) threshold of 5% and an r2 threshold 

of 0.7 128. When multiple SNPs were assigned as tagging SNPs for a particular bin, the 

SNP with most robust assay performance was selected for that bin. 

 

Population haplotype frequencies were estimated by the Bayesian method 

implemented in PHASE version 2.1 162-165, and by an expectation-maximization 166 (EM) 

algorithm implemented in custom software that we based upon a parent program written 

by Daniele Fallin and Nicholas Schork 167;168. The custom EM program enabled use of 

multi-allelic markers, placed no hard-coded limit on the number of subjects or markers, 

and allowed parallel processing. Diplotypes were predicted using PHASE, and those 

predicted with a probability greater than 95% were used for tests of association.  

 

The χ2 test statistic was used to evaluate differences in allele or haplotype 

frequency of case and control groups. Alleles or haplotypes with an overall frequency 

<0.05 were grouped for analysis. A sliding window approach tested a haplotype window 

of N markers, sliding the window along the map in single marker increments 167;169. For a 

given window of N adjacent markers, the profile of multiple common haplotypes and rare 

haplotypes as a group were evaluated in cases and controls by the χ2 test statistic. Each 

N-marker haplotype and remaining haplotypes of the window as a group was also 

evaluated by the χ2 test statistic. Permutation testing was used to assess significance. 

Subsequent estimation of effect size employed logistic regression models adjusted for age 

(Intercooled Stata 9, Stata Corporation, College Station, TX). 
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Cladistic modeling of haplotypes resolved by PHASE with ≥ 99% probability was 

accomplished using DNAPARS and DRAWTREE of the software package Phylip 3.6. 

The observed haplotype with the least number of state changes to all other observed 

haplotypes was designated as the outgroup for unrooted parsimony. Each multiallelic 

marker of N alleles was encoded as a series of N-1 binary allelic sites to allow inclusion 

in the model. 

 

Expression Analyses in Lymphoblastoid Cell Lines 

Expression analyses employed RNA prepared from the lymphoblastoid cell lines 

GM16654, GM17020, and GM17014, carrying select CYP11A1 diplotypes (Coriell 

Institute for Medical Research, Camden, NJ). Cells were cultured at 37 °C under 5% CO2 

in medium containing RPMI 1640 with 2 mM L-glutamine and 15% fetal bovine serum. 

Total RNA from each cell line was prepared from cells in the log phase of growth using 

the RNeasy midi kit with on-column DNAse treatment (Qiagen, Valencia, CA). RNA 

quality was assessed by reverse transcriptase PCR using two different sets of intron-

spanning primers, one for PGK and one for p53, with a no reverse transcriptase control to 

rule out DNA contamination. Nine 1 µg aliquots of total RNA of each cell line were 

reverse transcribed into single-stranded cDNA using High-Capacity cDNA Archive Kit 

(Applied Biosystems, Foster City, CA). After cDNA synthesis, RNA was degraded by 

alkaline hydrolysis, pH was neutralized, cDNA was purified by adsorption to silica gel 

(QIAquick PCR Purification Kit, Qiagen, Valencia, CA) and eluted in 60ul of 10 mM 

Tris Cl, pH 8.5. cDNA quantities were measured spectrophotometrically (NanoDrop ND-

1000, NanoDrop Technologies, Wilmington, DE). 
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A fluorescently labeled TaqMan MGB probe was used to quantify CYP11A1 

expression in each of the nine reverse transcribed aliquots by real time quantitative PCR. 

Each assay was performed in quadruplicate. The probe spanned the exon 1 – exon 2 

boundary within the coding region (Chr 15: 72424438 – 72427449, assay # 

Hs00167984_m1, Applied Biosystems, Foster City, CA). Five nanograms of cDNA was 

amplified in a 5 µL reaction using the TaqMan system (Assays-On-Demand Gene 

Expression Products, TaqMan Universal PCR Master Mix, 7900HT Real-Time PCR 

System; Applied Biosystems, Foster City, CA). For each CYP11A1 expression assay, 

results were normalized to the expression of the 18S rRNA housekeeping gene in the 

same sample (assay # Hs99999901_s1, Applied Biosystems, Foster City, CA). Statistical 

comparisons were made using a one-way analysis of variance, and two-tailed Student’s t-

test. 

 

Results 

We sought common polymorphisms at the CYP11A1 gene by screening 

previously annotated variation and by de novo variant discovery within 30 chromosomes 

of Chinese cell lines. We tested SNPs annotated in dbSNP across an interval from 7.8 kb 

upstream to 10 kb downstream of the 30 kb CYP11A1 gene for polymorphism. We also 

sought previously un-described common polymorphism through survey of the gene and 

~2 kb 5’-flanking sequence by SSCP and re-sequencing. Repetitive sequence was an 

obstacle for unique assay. A 5.6 kb window of non-unique sequence of intron 1, and 

several additional small repetitive intronic regions totaling under 2 kb were omitted from 

SNP discovery efforts (Figure 4). Collectively we identified 59 variant sites in the 
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CYP11A1 genomic region, positioned on the map of Figure 4. Of these, 80% were 

annotated in dbSNP. We developed assays for 3 STRs (including D15S1547, D15S520, 

and D15S1546, but omitting poly A tract indels rs3831490 and rs12899703) and 46 SNPs 

using Chinese cell lines. Among these markers, 3 STRs and 42 SNP assays were further 

genotyped in a subset of the Shanghai Breast Cancer Study population for assessment of 

minor allele frequency, HWE, haplotype diversity, and for selection of tagging markers. 

This study population subset included 178 cases and 178 controls. This yielded 3 

polymorphic STRs and 27 SNPs (Figure 5) with minor allele frequencies ≥ 0.05 and in 

HWE (P ≥ 0.05) for inclusion in analyses. These SNPs had MAFs that ranged from 0.49 

to 0.06 among controls. STR heterozygosities were 0.79 (D15S1547), 0.52 (D15S520), 

and 0.70 (D15S1546).  

 

Pairwise LD across the CYP11A1 gene was relatively strong in the study 

population and without clear LD block subdivision. A Haploview plot of SNP allele 

pairwise D’ values is presented in Figure 4. If an STR was highly mutable, one would 

anticipate low LD with neighboring SNPs. Instead, specific alleles of the STRs were in 

strong LD with select SNP alleles and efficiently tagged SNP haplotypes with few assays 

(Figure 5). For example, the T allele of SNP rs8039957 (associated with breast cancer 

risk as shown further below) had pairwise D’ values of 0.93 with the 12-repeat allele of 

D15S1547, 0.86 with the 8-repeat allele of D15S520, and 0.58 with the 7-repeat allele of 
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Figure 4. CYP11A1 genetic architecture. A 50 kb interval from human chromosome 
15q24.1 is depicted that encompasses the CYP11A1 gene and 10 kb to each flank 
(NCBI build 36.1 from 72457199 to 72407199 bp). The gene’s exons are numbered at 
the top with intervening introns. A 13.8 kb span of the first intron is dominated by 
repetitive elements. Variant sites observed among Chinese study subjects are positioned 
on the map. The 64 variants were identified by validation of sites annotated within 
dbSNP, by de novo discovery through SSCP / sequencing, and by re-sequencing of 
select population haplotypes. At bottom is a pairwise D’ matrix for 356 Chinese study 
subjects across a subset of 27 SNPs with minor allele frequency ≥ 0.05. The matrix 
graph indicates relatively strong linkage disequilibrium across the locus. On the matrix, 
red indicates D’ = 1 (LOD ≥ 2), blue indicates D’ = 1 (LOD < 2), shades of pink 
indicate D’ < 1 (LOD ≥ 2), and white indicates D’ < 1 (LOD < 2). 
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D15S1546. Throughout the manuscript we refer to each SNP allele as that on the coding 

strand of the chromosome. 

 

We sought an efficient set of tagging markers among the three STRs and 27 SNPs 

to capture CYP11A1 gene diversity for tests of association with breast cancer. Eight SNPs 

and 3 STRs were selected as robust tagging markers, each with an allele in pairwise LD 

with an allele of remaining markers with an r2 ≥ 0.70 for the control group. This set of 

markers included: rs8039957, D15S1547, D15S520, D15S1546, ss68317008, 

ss68317006, rs1484215, rs11638442, rs7173655, rs2279357, rs2277606. Four SNPs at  

map ends (rs3825944, rs12438594, rs4077585, and rs2930306) were less efficiently 

tagged by the set, with maximal r2 values ranging from 0.57 to 0.66. 

 

Diplotypes of the 356 Shanghai Breast Cancer Study subjects were inferred for 

frequency estimation. Figure 5 illustrates haplotypes inferred by PHASE with a 

probability of ≥ 0.99; these are presented in an order predicted by cladistic modeling. 

Each haplotype has an identifying number from 1 to 57 (assigned by order of decreasing 

haplotype frequency). These haplotypes account for 88% of all CYP11A1 haplotypes in 

this population. Only 5 haplotypes were present with greater than a frequency of 0.05. 

 

The STR alleles marked predominant SNP haplotypes well, in concordance with 

the high measured pairwise LD values. Among more closely related SNP haplotypes 

(proximal in Figure 5), STR alleles do deviate from the principal one, and tend to do so 

by one or two repeat increments. This may reflect a stepwise rather than stochastic 
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Figure 5. CYP11A1 haplotypes among 356 Chinese study subjects, organized by cladistic similarity.
57 haplotypes are predicted among subjects with a probability ≥ 99%. Haplotypes are numbered in
order of decreasing frequency. Each haplotype is designated by SNP allele and STR repeat count.
Where an STR allele length was other than a multiple of the repeat unit, an asterisk is given. Among
the 27 SNPs (designated by rs# or ss#) those selected as tagging SNPs are indicated in bold font. STRs
(designated by D15S#) are also in bold font. Alleles are color-coded to indicate membership in LD
bins where pairwise r2 values are ≥ 0.7.
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mutational mechanism 170;171. Typical STR polymorphisms have alleles varying in 

increments of the repeat unit. D15S1547 is a dimer, D15S520 is a pentamer, and 

D15S1546 is a tetramer. However, D15S520 is distinct because it is comprised of a 

pentamer repeat unit while predominant population alleles are in increments of 10 bp. We 

subcloned and re-sequenced each of the major alleles to confirm this. 

 

We next genotyped the set of 11 tagging markers in 1159 breast cancer cases and 

1236 controls of Shanghai Breast Cancer Study population in order to explore CYP11A1 

contribution to breast cancer risk. Data was obtained on 94% of genotypes sought (per 

marker range 86% - 98%). Each of the tagging SNPs and STRs were in HWE (P ≥ 0.05). 

Table 3 presents single allele association results comparing the case and control groups 

for these markers. The most significant evidence of association is observed at the three 

most 5’ markers, each just upstream of the CYP11A1 coding region. Significance 

estimates by permutation testing range from P = 2.0 x 10-5 to 4.1 x 10-4 for one allele at 

each of these markers. Each of the risk alleles observed in single allele association tests 

(the T allele of rs8039957, 8-repeat allele of D15S520, 12-repeat allele of D15S1547, and 

7-repeat allele of D15S1546) mark closely related haplotypes in the 5’ end of the 

CYP11A1 gene, predominated in prevalence by haplotype #4 of Figure 5 (frequency 

0.086). 

 

We explored haplotype association employing a sliding window approach across 

the tagging marker CYP11A1 map. This implicates a haplotype over the 5’ region of the 

CYP11A1 gene in breast cancer risk. Figure 6 presents haplotype association results for a 
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Table 3. CYP11A1 alleles and breast cancer risk

Marker Allele  Cases Controls P-value   
 n (%) n (%)   

            

rs8039957 C  1776 (86.1) 2014 (90.0) 5.9x10-5   
T  288 (14.0) 224 (10.0)    

            

D15S1547 

12  292 (13.8) 226 (10.3) 4.1x10-4   
13  356 (16.8) 415 (19.0) 0.063   
14  501 (23.7) 530 (24.2) 0.642   
15  267 (12.6) 281 (12.8) 0.783   
16  644 (30.4) 676 (30.9) 0.716   
others  58 (2.7) 60 (2.7)    
Overall χ2 = 13.8 (P-value = 0.017)   

            

D15S520 

4  528 (23.4) 550 (23.1) 0.807   
6  1410 (62.4) 1579 (66.3) 0.005   
8  292 (12.9) 219 (9.2) 2.0x10-5   
others  28 (1.2) 32 (1.4)    
Overall χ2 = 17.5 (P-value = 6.1x10-4)   

            

D15S1546 

6  925 (42.5) 1012 (44.5) 0.164   
7  329 (15.1) 284 (12.5) 0.011   
8  281 (12.9) 276 (12.1) 0.414   
10  562 (25.8) 618 (27.2) 0.292   
others  81 (3.6) 84 (3.7)    
Overall χ2 = 7.9 (P-value = 0.095)   
          

ss68317008 A  285 (12.8) 283 (11.9) 0.370   
G  1943 (87.2) 2087 (88.1)    

            

ss68317006 A  2117 (94.3) 2249 (95.6) 0.042   
G  127 (5.7) 103 (4.4)    

            

rs1484215 A  380 (17.2) 455 (19.5) 0.042   
G  1836 (82.9) 1883 (80.5)    

            

rs11638442 C  569 (26.0) 573 (24.8) 0.355   
G  1623 (74.0) 1741 (75.2)    

            

rs7173655 A  797 (35.9) 878 (37.9) 0.166   
G  1421 (64.1) 1438 (62.1)    

            

rs2279357 A  947 (42.7) 963 (41.6) 0.416   
G  1269 (57.3) 1353 (58.4)    

            

rs2277606 A  1347 (62.3) 1342 (59.2) 0.031   
G  815 (37.7) 926 (40.8)    
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Figure 6. CYP11A1 haplotypes and breast cancer risk.  Panel A depicts the significance of
the CYP11A1 haplotype profile association with breast cancer for a window of 3 adjacent
tagging markers, sliding across the map in single marker increments. The red line
illustrates case and control group frequency comparisons with haplotype phase estimation
by the EM algorithm. The blue line illustrates the case and control group comparison
where individual study subject diplotypes were estimated by PHASE. Each graphed data
point represents the average of the log[-log (P-value)] transformed significance levels
from overall χ2 tests that included the marker. For reference, the transformed significance
levels of P = 0.05, 0.01, and 0.001 are provided. Panel B details evidence of association of
each individual 3-marker haplotype of the CYP11A1 promoter region with breast cancer.
Each haplotype is designated by tagging SNP allele and STR repeat count. 
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window of 3 adjacent markers moved across the gene map in single marker increments. 

The overall analysis was of windows ranging in size from 2 to 11 markers. Within each 

window we inferred case and control haplotype frequencies by two independent methods: 

1) by estimation of group frequencies using the EM algorithm, and 2) by assignment of 

individual study subject diplotype using PHASE. The two approaches yielded fully 

concordant results. Tests included those assessing overall haplotype profile differences 

between cases and controls (e.g. Figure 6, panel A), as well as those assessing excess of a 

given haplotype among cases relative to controls (e.g. Figure 6, panel B). A significant 

overall haplotype frequency profile difference between case and control groups was 

observed for all windows of width 2 - 6 markers that included any of the three most 5’ 

markers. Significant overall haplotype profile differences were observed for 70% of 

windows of any width that included at least one of these markers (peak P = 4.2 x 10-4). A 

total of 55 windows were evaluated. These multiple comparisons were not independent, 

thus the Bonferroni corrected P = 0.023 is conservative. Within each significant window 

individual haplotype comparisons were uniformly consistent with an excess of haplotype 

#4 (Figure 5) in cases relative to controls (peak P = 1.6 x 10-5, conservatively corrected 

by the factor of 585 haplotypes tested at the 55 windows to P = 0.009). These analyses 

identify the promoter region of the CYP11A1 gene as a source of breast cancer risk in the 

study population. 

 

We employed logistic regression adjusted for age to assess the effect size of 

haplotype #4 relative to other haplotypes as a group. We evaluated the upstream promoter 

region of haplotype #4, delineated by markers rs8039957, D15S1547, D15S520 and 
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D15S1546. The resulting estimates for the risk haplotype [T_12-repeat_8-repeat_7-

repeat] are presented in Table 4. Inheritance of a single copy of the haplotype confers a 

1.51-fold (95% CI 1.19-1.91) significantly increased risk for breast cancer, and 

inheritance of two copies doubles this risk to 2.94 fold (95% CI 1.22-7.12). Evaluation of 

sub-haplotypes of 2 or 3 markers within this region yields similar results. 

 

Table 4. CYP11A1 promoter haplotype effect size upon breast cancer risk 
Presence of               
haplotype   Cases Controls     
T-12-8*   n (%) n (%) OR (95% CI)** P-Value 
None   710 (88.5) 811 (91.6) 1.0 (reference)  
One copy   200 (10.5) 151 (8.0) 1.51 (1.19 - 1.91) 0.001 
Two copies   18 (1.0) 7 (0.4) 2.94 (1.22 - 7.12) 0.017 

Trend Test           5.0 x 10-5 
* Haplotype alleles of markers rs8039957, D15S1547, D15S520   
**Odds ratios are adjusted for age       

 

We reasoned that the list of potential functional candidate variants conferring 

disease risk would include: 1) the alleles of the four markers above, and 2) alleles of 

other markers in strong LD with them, whether known or unknown. Among the 356 

study subject subset, the maximum pairwise r2 of alleles of any other known marker with 

the four alleles of interest was 0.23. In contrast, the allele T of rs8039957, 12-repeat of 

D15S1547, and 8-repeat of D15S520 had pairwise r2 values ranging from 0.86 to 0.93, 

and each had weaker LD (r2 range 0.58 to 0.66) with the 7-repeat allele of D15S1546. 

Based upon direct sequencing data of the promoter region, one of the database-screened 

SNPs (rs4887139) that had failed assay development for the 356 subjects also potentially 

marked the disease-associated haplotype with a C allele. Additional unknown markers 

that might demonstrate strong LD with alleles of the disease-associated haplotype were of 

concern because the SSCP methods that we employed for variant discovery at the 
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CYP11A1 gene lack complete sensitivity. Thus, we further searched for undiscovered 

variants that might also be functional candidates by re-sequencing the CYP11A1 genomic 

region of a Chinese cell line and a Shanghai Breast Cancer study case that we had 

characterized as homozygous for haplotype #4. Two cell lines and four case subjects 

harboring common alternative haplotypes were also sequenced for comparison. 

Discovered variants were then genotyped in the 59 Chinese cell line DNAs in order to 

assign alleles to known haplotypes. This effort led to the discovery of an additional SNP 

(now designated rs12442401) in the first intron whose minor allele appeared to directly 

mark the disease-associated haplotype. Data to support assignment of the new SNP’s 

minor allele to the disease haplotype was limited to that derived from sequencing, as we 

failed to develop a reliable genotyping assay for the marker. To summarize, the original 

four disease-haplotype marking variants, and the additional rs4887139 and rs12442401 

each are candidates that may be functional in the phenotype. The disease-associated 

haplotype as defined by the full complement of observed variant sites is provided in 

Table 5. 

 

The evidence that these experiments uncovered supports a role for common 

CYP11A1 promoter variation in breast cancer risk. Although CYP11A1 expression is 

greatest in steroidogenic tissues, it is also expressed in lymphocytes 172. Because we had 

identified the CYP11A1 diplotype for each of 59 Chinese lymphoblastoid transformed 

cell lines, we subsequently evaluated expression of a cell line homozygous for the 

disease-associated haplotype (#4 of Figure 5) and compared to expression of two cell 

lines homozygous for alternative common haplotypes (#’s 1 and 3). CYP11A1 expression 
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  Table 5. Alleles at observed variant sites of CYP11A1 haplotype 4   
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was measured in total RNA prepared from the cell lines using a 5’ fluorogenic nuclease 

quantitative real-time PCR assay, normalizing to expression of 18s rRNA. Within these 

cell lines the expression of the disease-associated haplotype was roughly twofold greater 

than that of either alternative haplotype tested (Figure 7). Increased relative expression is 

consistent with increased risk for breast cancer conferred by the promoter haplotype. 

 

Discussion 

We have conducted a detailed linkage disequilibrium study of the CYP11A1 gene 

and demonstrated that a common promoter haplotype is associated with both increased 

expression and increased risk of breast cancer. Select alleles of three markers upstream of 

the coding region (rs8039957, D15S1547, D15S520) define the haplotype. Alleles of two 

additional nearby markers, rs4887139 and rs12442401, also potentially mark the 

haplotype of interest. An allele of D15S1546 of the first intron demonstrated less LD 

with alleles of the associated haplotype, and weaker association with breast cancer risk. 

As currently delineated, the etiologic haplotype resides in a small 4-5 kb region spanning 

the CYP11A1 promoter and would have been detected in a HapMap-based study design 

by virtue of selection of tagging SNP rs8039957. In HapMap data of Chinese from 

Beijing, this SNP is in full LD with rs4887139 and with rs4278698 (a SNP that failed our 

assay design process). 

 

Our observations are consistent with the important role of the cholesterol side 

chain cleavage enzyme in steroid sex hormone biosynthesis, and with epidemiological 

studies implicating estrogen biosynthesis and metabolism in breast cancer etiology 153. 
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Figure 7. CYP11A1 expression in lymphoblastoid cell lines. Expression within
cell line GM16654 (homozygous for the breast cancer associated haplotype 4) is
shown relative to that of cell lines GM17020 and GM17014 (homozygous for
common haplotypes 1 and 3). CYP11A1 expression is normalized to 18s rRNA
levels. Each box plot presents nine independent measurements of expression
within a given cell line (median, box range 25th - 75th percentile, whiskers of data
within 1.5 fold the interquartile range). Significance is presented rejecting the
hypothesis that all three expression levels are the same. Pairwise comparisons of
cell line expression are also made, rejecting the hypothesis that expression of the
4/4 diplotype cell line is the same as that of each other cell line. 
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We estimate that population-attributable risk of the 5’ regulatory region haplotype 

of CYP11A1 is 6.9%. This reflects an important contribution to breast cancer in the 

Chinese population. HapMap data for the CEU study population suggests a higher 

frequency of this haplotype (defined by rs8039957 allele T, rs4887139 allele C, and 

rs4278698 allele A) among Caucasians than among Chinese 173. 

 

Because tissue-specific regulatory elements of CYP11A1 are known to function in 

ovary and adrenal, it is conceivable that promoter haplotypes may be correlated 

selectively with pre- or post-menopausal breast cancer, reflecting the relative tissue origin 

of steroidogenesis. Cases of the Shanghai Breast Cancer Study are predominantly (71%) 

pre-menopausal and evidence of association is strongest in this group 149. Intriguingly, 

Setiawan et al. also found evidence of association between a haplotype over the 5’ region 

of the CYP11A1 gene and breast cancer risk in the Multiethnic Cohort Study 174. 

However, the risk haplotype that they identified (similar to haplotype #3 of Figure 5) is 

distinct from the risk haplotype (#4) identified in our study. Cases of the Multiethnic 

Cohort Study are predominantly (69%) post-menopausal. The risk haplotype of the 

Setiawan et al. study is tagged by rs3803463 at -7542 bp upstream of the gene, a marker 

also in LD with rs1484215 between exons 2 and 3 (r2 range 0.75 to 0.87 in HapMap 

populations). In light of these collective findings, further epidemiological evaluation of 

CYP11A1 haplotypes in pre- and post-menopausal breast cancer, and investigation of 

their impact on tissue-specific expression is warranted. 
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The structure of the CYP11A1 gene promoter has been extensively investigated in 

prior studies 175-187. The proximal promoter is comprised of a TATA box, a highly 

conserved SF1/LRH-1 site, and two SP1 sites. Promoter deletion mapping has also 

identified a negative regulatory element residing between -300 and -660 bp 175;181;185. This 

region harbors non-conserved repetitive elements flanking D15S520 at -487 bp. The non-

conserved CA simple sequence repeat D15S1547 at -1361 bp is also adjacent to a 

repetitive element. The upstream cAMP-response sequence at -1540 to -1640 bp harbors 

two AP1/CREB binding sites flanking an SF1 site. Further upstream are two adrenal-

specific enhancers between -1840 and -1900. SNPs marking the disease-associated 

haplotype, rs4887139 at -2228, rs8039957 at -4884 bp, and potentially rs4278698 at -

4984, do not reside within conserved regions. Both the [AAAT] simple sequence repeat 

of D15S1546 and SNP rs12442401 reside within non-conserved regions of the first 

intron. All identified variants of the disease-associated haplotype thus fall outside of 

conserved elements defined by vertebrate Multiz alignment in the CYP11A1 region, but 

the D15S520 repeat [TAAAA]n potentially resides within a described functional 

promoter element. 

 

A [TAAAA] polymorphic repeat has been demonstrated to be a negative 

regulatory element within the promoter of the plasma sex hormone-binding globulin gene 

(SHBG) 188; 6- to 11-repeats reside at -726 bp of that promoter. Reporter constructs 

carrying 6-repeats showed significantly less transcriptional activity than constructs 

carrying other repeat lengths. The 6-repeat version of the SHBG promoter is also 

associated with lower SHBG levels 189. The 6-repeat allele of D15S520 was the most 
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commonly observed in our study, and two cell lines homozygous for the 6-repeat allele 

each had significantly lower CYP11A1 expression than a cell line homozygous for the 

disease-associated 8-repeat allele. The two promoter repeats may not be fully analogous 

however, since increased risk of breast cancer in our study was associated only with the 

8-repeat allele at CYP11A1, not with other non-6 repeat alleles. An even and odd number 

of repeats could alternatively orient closely flanking transcription factors on the same or 

opposite DNA helical faces to influence interactions; odd repeat alleles of D15S520 were 

relatively rare in both the Shanghai Breast Cancer Study and in the Multiethnic Cohort 

Study 174. 

 

Heritable variation of both cis and trans regulatory elements controlling 

expression of steroid hormone biosynthesis and metabolism genes could greatly 

contribute to population breast cancer risk 190;191. Broader investigation of this large 

network of genes should reasonably include genetic variation of potential regulatory 

elements. A genome-wide or a candidate gene association study based upon tagging SNP 

selection from current HapMap data could have detected association of CYP11A1 with 

breast cancer risk in our study population. A direct investigation of SHBG promoter 

variation in breast cancer risk has not yet been conducted, though higher plasma levels of 

SHBG (with corresponding lower levels of circulating estrogen) have been associated 

with reduced risk for breast cancer 192. Among other genes of the steroid hormone 

regulatory network, a SNP within the human progesterone receptor gene promoter, 

located between its two alternative isoform transcript start sites, has been shown to have a 

direct effect on expression 193. That promoter variant was further associated with breast 
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cancer risk in the Nurses’ Health Study 193. Systematic investigation of steroid hormone 

biosynthesis and metabolism gene variation may provide a more comprehensive picture 

of the role of these pathways in breast cancer risk. 

 

Concluding Remarks 

In this study, we have successfully used the association of the 8-repeat allele of 

D15S520 with breast cancer as a positive control to test the ability of a haplotype-based 

analysis to detect variants predisposing to common disease. As a result, methods and 

techniques developed in this study will be utilized my future thesis work identifying an 

unknown variant predisposing to PrCa within a candidate interval at HPCX. First we 

assessed methods relating to SNP selection and the utility of labor-intensive de novo SNP 

discovery. To select SNPs used in the study, we complemented a search of dbSNP with 

allele discovery. In this way, we were able to assess the comprehensiveness of dbSNP. 

One-fifth of variant sites within our genomic interval were previously undescribed, 

indicating that more thorough coverage of our candidate interval could be achieved 

through complementing SNP selection through dbSNP with allele discovery. We next 

examined the ability of tagging SNPs to identify a haplotype associated with risk of 

disease. We genotyped the full cohort of variants within a subset of our study population 

and determined a set of tagging SNPs and STRs across the interval. Using this set of 

tagging SNPs, we were able to identify a specific haplotype containing the original 

associated 8-repeat allele; the use of tagging SNPs allowed a reduction of workload while 

still enabling successful detection of a common risk allele. Finally, we successfully used 

sliding window haplotype analysis to implicate a haplotype over the 5’ region of the gene 
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in breast cancer risk. This haplotype again contained the original 8-repeat allele from our 

previous study, indicating that a candidate risk interval could be identified by sliding 

window haplotype analysis.   
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CHAPTER IV 

 

 

FAMILIAL PROSTATE CANCER RISK, AGGRESSIVENESS, AND THE 
TRANSFORMING GROWTH FACTOR β1 T29C POLYMORPHISM 

 

 

Introduction 

Family history remains the best established risk factor for PrCa. Twin studies 

have revealed that roughly half of the risk for PrCa is heritable – nearly twice that of 

other common cancers 6;24-26. There has been intense interest in the identification of 

genetic risk factors that predispose to PrCa and that modify its course. Several recent 

pedigree-based linkage studies used Gleason score as an index of aggressiveness and 

concordantly identified a locus on chromosome 19q12-13 that predisposes to PrCa 

57;102;103;194. The transforming growth factor β1 gene (TGFB1) resides at 19q13.2 and is 

known to play a role in the genesis of multiple cancers 195. Relatively little is known of its 

specific role in PrCa. Transforming growth factor β regulates normal prostate growth by 

inducing apoptosis and by inhibiting proliferation 196. It acts as a tumor suppressor in cell 

culture and in mouse models of several cancers 195;197. However, increased transforming 

growth factor β activity in the setting of cancer is also correlated with tumor 

aggressiveness 198-204. Thus the TGFB1 gene is a candidate tumor suppressor gene as well 

as a candidate oncogene that may play a role in familial PrCa. 
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The Contribution of the T29C Polymorphism to Common Cancers 

The TGFB1 gene harbors a well-studied T to C transition polymorphism at 

nucleotide position 29 that substitutes a proline residue for a leucine residue in the 

hydrophobic core of the signal peptide (T29C or L10P, rs1982073). This substitution 

alters extracellular levels of transforming growth factor β. In cell transfection studies, the 

proline allele functionally results in an increase in secretion relative to the leucine allele 

205. Thus, the C allele encodes the more active isoform of transforming growth factor β. 

Several studies have examined the TGFB1 T29C polymorphism in breast cancer 206;207. 

Meta-analyses identify T allele homozygotes as having significantly increased risk of 

breast cancer 208. Dunning et al. estimated that 3% of all breast cancer cases may be 

attributable to homozygosity of the T allele 205. Other studies have examined the role of 

the TGFB1 T29C polymorphism in breast cancer aggressiveness. These studies observe 

increased disease aggressiveness in presence of the C allele 209-211. Collectively, studies of 

the role of TGFB1 T29C in breast cancer are supportive of in vivo and in vitro findings 

that transforming growth factor β modifies risk of cancer development and the 

aggressiveness of its course.  

 

Evidence for TGFB1 as a Prostate Cancer Aggressiveness Gene 

The TGFB1 gene is flanked by genetic markers associated with PrCa in multiple 

independent studies that employed Gleason score as a quantitative trait: D19S870, 

D19S875, D19S433, D19S414, D19S75, and D19S245 on the centromeric flank; and 

D19S178, D19S902, and D19S246 on the telomeric flank 57;102;103;194;212. The use of 

Gleason score as a quantitative trait may reduce phenotypic heterogeneity and thus 
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simplify underlying genetic heterogeneity in this complex disease. PrCa aggressiveness 

was first linked to this region of 19q in a study of affected sibling pairs from Washington 

University, St. Louis and from Cleveland Clinic 57. Subsequently, the finding was 

confirmed in an independent study of hereditary PrCa families from the Mayo Clinic 102. 

A third independent study of affected sibling pairs from hereditary PrCa families from 

the Fred Hutchinson Cancer Research Center has also recently confirmed linkage to the 

region 103. The TGFB1 gene is a plausible candidate in this region of the genome. 

 

Study Design 

Given the weight of evidence for the role of transforming growth factor β in other 

cancers and the PrCa linkage evidence encompassing the TGFB1 locus, we hypothesized 

that the functional T29C polymorphism of TGFB1 modifies PrCa risk and 

aggressiveness. We tested the hypothesis in a study population of PrCa cases and age-

matched controls consisting of Americans of Northern European descent. Each of the 

independent case probands came from a pedigree with at least one affected first or second 

degree relative. A man with a family history of PrCa has a greater potential genetic load 

for the disease than a man with no family history of PrCa 22. Controls had no personal or 

family history of PrCa among first or second degree relatives. Our study population was 

divided into high and low Gleason score categories to address our hypothesis. As an 

assessment of study power within these two population subsets, we verified that each 

could detect the broadly confirmed association between PrCa and SNP rs1447295 at 

8q24.  This anonymous SNP dominantly confers risk of PrCa with an estimated odds 

ratio of ~1.7 across multiple independent Caucasian study populations 139;141;143-146;213. 
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We then tested for an association between the TGFB1 variant and the PrCa Gleason score 

groups. Among cases with a Gleason sum ≤ 6, the more active C (proline) allele is 

dominantly protective (OR = 0.64) while the less active T (leucine) allele recessively 

confers risk (OR = 1.56). Elevated risk associated with the allele is not observed among 

cases with a Gleason sum ≥ 7. These observations are consistent with recent linkage 

analyses of hereditary PrCa employing Gleason score as a quantitative trait that have 

highlighted this genomic locus. 

 

Materials and Methods 

Study Population 

Patients included in this study were ascertained with informed consent from 

Vanderbilt University Medical Center and from the VA Tennessee Valley Healthcare 

System with institutional review board oversight. Subjects were residents of Tennessee 

(75%), Kentucky (15%), Georgia (2%), Alabama (1%), Mississippi (1%), Virginia (1%), 

and other states (4%). Cases were ascertained at the time of treatment for the principal 

diagnosis of PrCa in urology clinics, and controls were ascertained at the time of routine 

preventative screening for PrCa in general medicine clinics. PrCa diagnoses were 

confirmed by review of medical records. Cases included 415 unrelated, independent 

Caucasian PrCa probands: 255 cases from pedigrees with two affected, 101 cases from 

pedigrees with three affected, and 59 from pedigrees with 4 or more affected. Each 

control was matched to a case on age (+ 2.5 years) in a 1:1 ratio (age at screen for 

controls, age at diagnosis for cases). Controls included 415 unrelated, unaffected 

Caucasian men with no personal or family history of PrCa. Controls had a screening 
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prostate specific antigen (PSA) test < 4 ng/ml at the time of ascertainment, and had no 

record of a PSA test ≥ 4 ng/ml or abnormal digital rectal examination.  

 

Data of personal and family history of cancer was obtained by a structured 

questionnaire completed by the proband, by review of their medical record, and by report 

from family members accompanying them at ascertainment interview. Data abstracted 

from the medical record included: date and results of PSA test(s), initial Gleason score 

grade from prostate biopsy, and subsequent prostatectomy Gleason score grade (available 

for 85% of cases). Analyses preferentially employed surgical specimen over biopsy data.  

 

Genotyping 

DNA was extracted from whole blood using the Puregene DNA Purification 

System Standard Protocol (Qiagen, Valencia, CA). DNA was quantified using the 

PicoGreen dsDNA Quantitation Kit (Invitrogen, Carlsbad, CA), imaged with a Molecular 

Devices / LJL Analyst HT (Molecular Devices, Union City, CA). 

 

Reference SNP rs1447295 was genotyped by single nucleotide primer extension 

assay with detection by florescence polarization. TGFB1 T29C (rs1982073) was 

genotyped by two methods: a fluorogenic 5’-nuclease assay, and a single nucleotide 

primer extension assay with detection by florescence polarization 157;214. Discordant 

TGFB1 T29C genotypes resulted for 17 subjects, requiring resolution by re-sequencing 

using an ABI 3100 automated sequencer with BigDye® terminator chemistry (Applied 

Biosystems, Foster City, CA).  
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Single nucleotide primer extension reaction processing entailed three steps: a 4.4 

µl PCR reaction, addition of 4 µl of an exonuclease I (New England Biolabs, Beverly, 

MA) and calf intestinal alkaline phosphatase (Promega, Madison, WI) reagent mix to 

degrade unincorporated primer and dephosphorylate dNTPs, and a final addition of 4 µl 

of an Acyclopol and Acycloterminator reagent mix for the primer extension reaction 

(AcycloPrimeTM FP SNP Detection System, Perkin-Elmer, Boston, MA). Each PCR 

mixture included 0.1 unit AmpliTaq Gold DNA polymerase, 1x Buffer II (Applied 

Biosystems, Foster City, CA), 2.5 mM MgCl2, 0.25 mM dNTPs, 335 nM of each primer, 

and 2 ng DNA template. We detected incorporation of R110- and TAMRA-labeled 

terminators by fluorescence polarization on a Molecular Devices / LJL Analyst HT. 

Primer sequences were: TGFB1 T29C (rs1982073) forward primer 5’-

ACACCAGCCCTGTTCGC-3’; reverse primer 5’-CGTCAGCACCAGTAGCC-3’; 

extension primer 5’-GCAGCGGTAGCAGCAGC-3’. SNP rs1447295 forward primer 5’- 

GGTAATGAACAGTTCTGTCTC-3’; reverse primer 5’- 

CATGAGGAAAAGTCAACAC-3’; extension primer 5’- 

ATTGGGGAGGTATGTAAAA-3’. 

 

TGFB1 T29C fluorogenic 5’-nuclease assay primers included a forward primer 

(5’-CGCGCTCTCGGCAGT-3’), a reverse primer (5’-AGGCGTCAGCACCAGTAG-

3’), a VIC probe (5’-CAGCAGCGGCAGCA-3’), and a FAM probe (5’-

CAGCAGCAGCAGCA-3’). Each 5 µl reaction included 5 ng genomic DNA, 2.5 µL 

TaqMan 2x Universal PCR Master Mix No AmpErase UNG (Applied Biosystems, Foster 

City, CA), 900 nM each primer, 200 nM each probe, and 1M betaine. 
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Statistical Analysis 

Conditional logistic regression analyses were used to estimate odds ratios and 

95% confidence intervals (Intercooled Stata 9, Stata Corporation, College Station, TX). 

The matching variable, age at diagnosis or screening, was included as a raw covariate in 

the model. Gleason score was compared for the left and right sum, and the largest sum 

was dichotomized as ≤ 6 (moderately or well differentiated) or ≥ 7 (poorly 

differentiated). χ2 contingency test was used to compare the frequency of Gleason subsets 

of cases dichotomized by family history (2 affected only, or ≥ 3 affected). A P value ≤ 

0.05 was considered statistically significant. 

   

Results 

We ascertained independent cases with a family history of PrCa, and we 

ascertained age-matched controls that were free of a personal or family history of PrCa. 

The distribution of case family history by number of affected first or second degree 

relatives was: 14% with ≥ 4 affected, 24% with 3 affected, and 61% with 2 affected. 

Characteristics of the study population are presented in Table 6.  
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Table 6. Study Demographics  
    Controls Cases 
No. 415 415 
Mean Age*, y 61.1 61 
Median PSA* 0.95 5.6 
Median Gleason Sum - 6 
Gleason Sum ≤ 6, No. - 220 
Gleason Sum ≥ 7, No. - 188 
    

Pedigree 
Structure    (# 
Affected)† 

0 415 - 
2 - 255 
3 - 101 
≥4 - 59 

        
*At diagnosis for cases, at entry screen for 
controls. 
†Inclusive of proband and first and second degree 
relatives. 

 

We obtained TGFB1 T29C genotypes for all study participants, and rs1447295 

genotypes for 96% of study participants. The distribution of TGFB1 T29C and rs1447295 

genotypes is presented in Table 7. The variants were in Hardy-Weinberg equilibrium 

among control subjects (TGFB1 T29C P = 0.916; rs1447295 P = 0.471). The observed 

SNP minor allele frequencies were similar to those previously reported in samples of 

Caucasian populations. 
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Table 7. Genotype Distribution – TGFB1 T29C 
and 8q24 
              
  TGFB1 T29C (rs1982073) 
              
  T/T T/C C/C 

Controls* 148 (35.7) 204 (49.2) 63 (15.2) 

Cases 174 (41.9) 188 (45.3) 53 (12.8) 
              
  8q24 (rs1447295) 
              
  C/C C/A A/A 

Controls 334 (83.3) 65 (16.2) 2 (0.5) 

Cases 296 (74.4) 95 (23.9) 7 (1.8) 

* n (%) 
 

The established effect of the 8q24 rs1447295 variant as a determinant of PrCa risk 

suggested that we would have a power of 0.91 to detect the association within our study 

population 139;141;143-146;213. We assessed its role in the study population using conditional 

logistic regression incorporating the matched study design (1:1 matching of each case to 

a control by age) (Table 8). In a dominant inheritance model there was a significant 

association of the minor allele with risk of PrCa (OR = 1.86, 95% CI 1.30-2.67, P = 

0.001). In a recessive inheritance model the major allele significantly conferred 

protection (OR = 0.54, 95% CI 0.37-0.77, P = 0.001). With this reassurance of the ability 

to detect the known PrCa risk variant in the study population, we further addressed the 

study hypothesis at the variant of TGFB1. 
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Table 8. TGFB1 T29C and 8q24 in Prostate Cancer  
           

Case Strata n 

Minor Allele 
Dominant 
Model* 

Major Allele 
Recessive 
Model† P  

           
  TGFB1 T29C (rs1982073)  
All 830 0.79 (0.60 - 1.04) 1.27 (0.97 - 1.68) 0.088  
Gleason Sum ≤ 6 440 0.64 (0.43 - 0.93) 1.56 (1.08 - 2.33) 0.020  
Gleason Sum ≥ 7 376 1.05 (0.69 - 1.58) 0.95 (0.63 - 1.45) 0.831  
           
  8q24 (rs1447295)  
All 770 1.86 (1.30 - 2.67) 0.54 (0.37 - 0.77)  0.001  
Gleason Sum ≤ 6 406 1.93 (1.12 - 3.33) 0.52 (0.30 - 0.89) 0.017  
Gleason Sum ≥ 7 352 2.01 (1.22 - 3.34) 0.50 (0.30 - 0.82) 0.007  
*AA = Reference Group (Odds Ratio = 1.00)  
†AB & BB = Reference Group (Odds Ratio = 1.00) 

 

We investigated inheritance models of the TGFB1 T29C variant in the PrCa study 

population using conditional logistic regression incorporating the matched study design. 

Results did not meet statistical significance for the study population prior to stratification 

for disease aggressiveness. In the overall study population the C allele did trend toward 

protection against PrCa when analyzed in a dominant inheritance model (OR = 0.79, 95% 

CI 0.60–1.04, P = 0.088). Conversely, the T allele trended toward risk for PrCa when 

analyzed in a recessive model (OR = 1.27, 95% CI 0.97-1.68. P = 0.088). These 

observations are consistent with relatively greater biological activity of the tumor 

suppressor previously established for the version encoded by the C allele, relative to that 

encoded by the T allele. 

 

We then evaluated the role of TGFB1 T29C in modifying risk for PrCa by 

comparing more indolent or aggressive cases to their age-matched controls. We 



 

74 
 

employed Gleason score as the index of relative aggressiveness. Gleason score was 

dichotomized as either poorly differentiated (≥ 7), or well to moderately differentiated (≤ 

6) histopathology. This stratification of the study population retained sufficient power to 

detect an association between the reference SNP rs1447295 and PrCa within each 

respective Gleason score subgroup (Table 8). PrCa risk was significantly associated with 

TGFB1 genotype among cases where Gleason score was ≤ 6 (C allele dominant OR = 

0.64 (95% CI 0.43-0.93); T allele recessive OR = 1.56 (95% CI 1.08-2.33); P = 0.020). 

No evidence of association was observed among cases with a Gleason score ≥ 7. Our 

results suggest a significant role for TGFB1 in modifying risk specifically for a more 

indolent PrCa.  

 

Low Gleason score cases comprise 58% of the study population among those 

from pedigrees with ≥ 3 affected, relative to 49% among those from pedigrees with only 

2 affected, a significantly different distribution (P = 0.033). Thus, low Gleason score and 

greater family history also appeared to be associated within our study population. 

However, among cases with a family history of only 2 affected (proband and an 

additional first or second degree relative), PrCa risk remained significantly associated 

with TGFB1 genotype in the low but not the high Gleason score subset (C allele 

dominant OR = 0.56 (95% CI 0.33-0.94); T allele recessive OR = 1.79 (95% CI 1.06-

3.03); P = 0.028). 
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Discussion 

Three independent studies have employed Gleason score as a quantitative trait to 

concordantly identify a locus at 19q12-13 that is likely to carry a genetic determinant of 

PrCa 57;102;103. However, the locus is not highlighted by other linkage studies of hereditary 

PrCa upon limiting affected status to only those men with clinically significant disease 

104;105. Our study investigated the candidate functional polymorphism T29C (L10P) of the 

TGFB1 gene at 19q13.2 for its role in predisposing to PrCa and for its potential influence 

on disease aggressiveness. The more active proline variant of the transforming growth 

factor β signal peptide is encoded by the C allele in the 10th codon and is known to 

suppress tumor initiation, where the less active leucine variant (T allele) is associated 

with risk for several common cancers. We observed that the TGFB1 variant is associated 

specifically with more indolent PrCa. The more prevalent T allele recessively confers 

risk, and conversely the less prevalent C allele dominantly confers protection. 

 

The PrCa cases evaluated in this study were limited to those with a family history 

of PrCa. In a multifactorial model, the genetic load for PrCa of a given individual may 

increase with an increasing family history of the disease. Comparison of cases with a 

strong family history of PrCa to controls with none may prove more powerful in 

detecting these effects than an alternative case-control study design without regard to 

family history. Nonetheless, a recent study of the separate variant C-509T (rs1800469) 

upstream of the TGFB1 gene was also recently shown to be associated with a decreased 

risk of aggressive (Gleason ≥ 7) PrCa in a study unselected for family history215. The 

authors did not evaluate its effect on indolent PrCa. Variants T29C and C-509T are in 
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partial linkage disequilibrium in genotype data submitted to dbSNP (ss15356536 and 

ss15356531, r2 = 0.71), raising the possibility that observed clinical effects too are 

correlated. Additional studies are warranted to shed further light on the role of this gene 

in determining aggressiveness of PrCa. 

 

In this study we evaluated SNP rs1447295 at 8q24, validated for its contribution 

to PrCa risk in multiple independent study populations, as a means of confirming the 

ability of this study population and its two Gleason subsets to detect a known risk variant. 

Actual power to detect an effect at TGFB1 is a function of the known allele frequency, 

and the a priori unknown effect size. The risk allele of TGFB1 is more frequent than the 

risk allele of rs1447295. TGFB1 recessive risk allele (T/T) homozygotes comprised 36% 

of control and 42% of case subjects. By comparison, carriers of the dominant risk allele 

of rs1447295 comprised 17% of control and 25% of case subjects. Our results indicate a 

lesser effect size for the TGFB1 variant than for the 8q24 variant among low Gleason 

score cases (OR of 1.56, versus 1.93). The risk effect of TGFB1 is observed only within 

the low Gleason subset, while that of the reference SNP is observed in both low and high 

Gleason subsets. 

 

Our findings at TGFB1 T29C are consistent with prior linkage studies that have 

focused on PrCa aggressiveness, although other additional compelling candidate genes in 

the region remain to be investigated. The identification of a linkage peak at this genomic 

locus for Gleason score as a quantitative trait does not in itself describe the direction of 

the association (a high versus a low score). Given our observed association with less 
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aggressive PrCa, restriction of the definition of a case within a hereditary PrCa pedigree 

to only those men with the most clinically significant disease could reduce rather than 

augment a linkage signal at 19q. Such an effect is apparent in the data of Chang et al 104. 

This raises an intriguing issue regarding the severity of PrCa in the context of hereditary 

PrCa. Although intuitively one might anticipate more aggressive disease in hereditary 

PrCa, in our study population the proportion of cases with more indolent disease 

increases with increasing family history of PrCa. This could be due to a bias of earlier 

screening among those with a more extensive family history of PrCa. Nonetheless, results 

suggest that genetic variants may exist that specifically predispose to less aggressive 

PrCa, and warrant future studies within independent study populations. Distinction of 

patients likely to suffer an aggressive course from those who will not is particularly 

salient in this disease.  

 

Acknowledgements 

We extend particular thanks to the study participants and to Drs Joseph Smith, 

Michael Cookson, Sam Chang, Richard Hock, William Maynard, Jason Pereira, and 

William Dupont. This work was supported by an award from the V Foundation, by a 

MERIT grant from the US Department of Veterans Affairs, by grant W81XWH-06-1-

0057 from the Department of the Army, and by General Clinical Research Center grant 

M01 RR-00095 from the National Center for Research Resources, National Institutes of 

Health. 



 

78 
 

CHAPTER V 

 

 

A HAPLOTYPE AT CHROMOSOME Xq27.2 CONFERS SUSCEPTIBILITY TO 
PROSTATE CANCER 

 

 

Introduction 

Linkage and genetic epidemiological data support the existence of genetic 

variants on the X chromosome that predispose to PrCa17. PrCa loci on both arms of the X 

chromosome have been identified, including the HPCX locus at Xq27-2837;53;84;87-

90;104;216. The ~14 Mb linkage interval of HPCX was originally delineated within US, 

Swedish, and Finnish hereditary PrCa pedigrees53. Further shared haplotype analysis 

among Finnish probands refined the locus to a candidate interval flanked on either side 

by a notable 113 kb inverted repeat92;217. The 352 kb area between these inverted repeats 

was the candidate interval for the present study, which sought evidence of association 

with PrCa among Americans of Northern European descent. Our study population was 

uniquely comprised of independent familial PrCa probands, matched to controls with no 

personal or family history of PrCa. These two groups represent extremes of potential 

genetic load for PrCa.  Our study included a training set of 292 case-control pairs to 

identify nominal associations, and a test set of 215 case-control pairs to confirm or to 

refute observations within the training set. We conducted extensive allele discovery and 

validation within the study population, characterized study population linkage 

disequilibrium (LD) patterns, and selected tagging SNPs for tests of association by 
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haplotype-based methods. Our investigation comprehensively tested association of the 

candidate interval with PrCa, and included non-unique genomic regions that are not 

amenable to current high-throughput techniques. 

 

Materials and Methods 

Study Population 

Study subjects were Americans of Northern European descent, ascertained with 

informed consent between 2002 and 2007 from Vanderbilt University Medical Center 

and from the VA Tennessee Valley Healthcare System with institutional review board 

oversight. Subjects were residents of Tennessee (75%), Kentucky (15%), Georgia (2%), 

Alabama (1%), Mississippi (1%), Virginia (1%), and other states (4%). Familial PrCa 

cases were ascertained at the time of treatment for the principal diagnosis of PrCa, and 

controls were ascertained at the time of routine preventative screening for PrCa. All PrCa 

probands included in the study are from pedigrees with a family history of PrCa, and all 

control probands are from pedigrees without a family history of PrCa. Family history 

included first and second degree relatives. Controls had a screening prostate specific 

antigen (PSA) test < 4 ng/ml at the time of ascertainment, and had no record of a PSA 

test ≥ 4 ng/ml or abnormal digital rectal examination. Each control was matched to a case 

on age (+ 2.5 years; age at screen for controls, age at diagnosis for cases). Case and 

control pedigrees were of comparable size. The mean number of at-risk male siblings was 

1.8 for controls, and 1.7 for cases. Initial accruals included 292 unrelated, independent 

familial PrCa probands and 292 age-matched controls, comprising a training study group. 

Subsequent accruals included 215 additional unrelated, independent PrCa probands and 
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215 additional age-matched controls, comprising a separate test study group. Analyses 

preferentially employed prostatectomy specimen over biopsy Gleason score (available for 

87% of cases). Table 9 provides characteristics of the study population. 

 

Table 9. Study Population 
    Training Test Combined 
    Controls Cases Controls Cases Controls Cases

No.   292 292 215 215 507 507 
Mean Age*, y   63.4 61.3 60.7 60.6 62.3 61.0 
Median PSA*   0.95 5.7 0.92 5.6 0.92 5.7 

Median Gleason 
Sum   - 6 - 6 - 6 

Gleason Sum ≤ 
6, No.   - 145 - 114 - 259 

Gleason Sum ≥ 
7, No.   - 130 - 96 - 226 

Pedigree # 
Affected† 0 292 - 215 - 507 - 
  2 - 184 - 142 - 326 
  ≥3 - 108 - 73 - 181 

*At diagnosis for cases, at entry screen for controls. 
†Proband plus 1st and 2nd degree affected relatives 

 

 

SNP Genotyping 

DNA was extracted from whole blood using the Puregene DNA Purification 

System Standard Protocol (Qiagen, Valencia, CA). DNA was quantified using the 

PicoGreen dsDNA Quantitation Kit (Invitrogen, Carlsbad, CA), imaged with a Molecular 

Devices / LJL Analyst HT (Molecular Devices, Union City, CA). We genotyped SNPs by 

single nucleotide primer extension and fluorescence polarization, as previously 

described218. Both forward and reverse strand extension primers were tested to select the 
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most robust assay. Amplimer and extension primer sequences for tagging SNPs are 

provided in Table 10.  

 

SNP Selection 

To capture genetic diversity across the candidate interval, database SNPs 

annotated in dbSNP were screened for common polymorphism in the study population. 

This included 415 annotated SNPs on chromosome X between positions 140,036,557 and 

140,388,361 (NCBI Build 36.1).  These were genotyped to assess polymorphism in a 

screening set of 40 familial PrCa probands. The screening set was estimated to provide 

98% power to detect a polymorphism with a minor variant frequency of 0.10, and 87% 

power with a frequency of 0.05. These 40 PrCa cases were also used for de novo SNP 

discovery at known and predicted genes within the candidate interval: 4.6 kb 5’ to 0.2 kb 

3’ of LDOC1; 1.6 kb 5’ to 4.4 kb 3’ of SPANXC; 3.0 kb 5’ to 1.4 kb 3’ of a predicted 

coding region containing homology to ribosomal protein L44 (“hRPL44”); and 2.3 kb 5’ 

to 0.8 kb 3’ of a predicted pseudogene containing homology to RBMX2 (“RBMX2P1”). 

The latter two annotations were identified with custom software. We employed two 

single-stranded conformation polymorphism methods (redundant) and re-sequencing for 

SNP discovery, as previously described218. Exons of the four genes were also re-

sequenced for all 40 PrCa cases in the screening set.  

 

Nested Amplification of Non-unique Regions 

Non-unique regions of SPANXC, hRPL44 and RBMX2P1 were assayed using a 

nested reaction strategy. Using custom software, unique priming sites were identified  
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Table 10. Tagging SNP Assays 
Marker Forward Primer Reverse Primer Allele Strand Extension Primer 

rs11095852 AATGGTCACTTGGCCAC AGGGTGCTCTATGGTGTG C/A F TGGTTTTCTCTCCTAAACAC 

rs5907823 CAAAACAATTCACTGCC TCTCTTAATGTTGCTGTTGC C/A F ACTCCGTCTCAAAAAAAA 

rs7880499 GGTTCCAACTCATACTCTG CTTGCTTAGAGAGCATACAA G/A F CTGCCAAAAGAAGATTTT 

rs1016824 CCTAGGGTTATTATGTAGC CATAGGGAAAGAGGTATATAGAAAG C/T F TAGGGTTATTATGTAGCAGGTAC 

rs12156848 GGACCATATGAGAAGAAGCTC TAGCCAGTAGCTGTGTAGTGG G/A F TTGGGAAATGCAAATTATA 

rs7885649 CATGTTACTGAGTAAAAG CACCTGGCCCATAATTTC G/A F ATAGCTAGAATTGTACTGGTTCTAC 

rs5953563 CTGTAAATGCAGGAGTGTC TAGCACATATCACAGTGTG A/T F GCATTAACCATATGCTGTATTT 

rs5954218 CAACTGAGCTCAGTGTGAC GGCAATTTGTGAAACACC A/T F AACAGACTATAAGAGTCAGCATT 

rs5954222 TTATGAGAAAGACCCACTAG CTTTTCACCAACCAGTTTC C/T F AAGAAGAAAATTATAGGAGGG 

rs5907828 CCCGGGAGTTTGAGGCTA GTGGTTTTAATAGAACTAC C/T F CCCTGCCTGTAAATAAATAAA 

rs7051363 CCCTCAAGTCTTCTGAAA CTGCTGGTCTTGTTCAAA G/A F GAAAGGGAAAGATAGAGTCTC 

rs769077 CTTAATACAAGCTCCAACG GACTTCCACATTCTCTTTC C/T F AAAAGAGGTGGGGAAAA 

rs12862529 GAACTACTACCTCATACTG GATTGTGCTTTTCATGTC C/T F GTGTTAATTGTTGTGACCC 

rs7883897 GCTATGTTAAAACAAATGG GCCTTTAAATAGTCCAGACA G/A F TAATGATGTCACTTATAAAGTTGATA 

rs710106 GTGCTTGGAAGTGTCATC CTCGAAAGGTGGTAGTCTG G/A F AACTGCGCAGACCACCC 

rs4824993 GTGAAAGGATAAGCAGTG GGCCAGAGACCTACTTT C/T F TTACTAGCTGCTCCGTAAA 

rs6636233 GGCCTAGAGCACACTTTC GCATGAAGGTATAGCACC C/T F GGCTGTCACAATGACTCA 

rs3761561 CGCTTCAGTTTCTTAGATGA ATCTAGTGCAGCACACTG G/A F ACTGGAAAATCAGCTTTCT 

rs5954233 GTTCTCTCCTCCAGCAGA AGGGCTGTAGAAGCTCAG C/T F GTCGCTGACGGTTTCTA 

rs12392927 CATGTGGTGTTAAGGCTG TGTGAGTGCTCCAATCC G/A F AAGTCTGCTGCAGGGGT 

rs11095854 CATGTGGTGTTAAGGCTG TAGGAGAATTGCTTGATG C/T F AGAATGATATAGTTTGAATTTGTG 

rs1012777 GCCATCTACAAGCTAAGG GCTGCTATAACAAAGAAGC C/T F TTAAGCCACCCAGTCTG 

rs845173 CCTAGGTTTGCAGAGAAAATAG CATAAAGGTCCTTTTGC C/T F TGGATACTTAAAGGTAAAATTAAAG 

rs845171 TTTTCTGCTGCTTTACTCCTC CCTTGAATTGCAGGTGATAT C/T F GCTCCAAAGTGAAATGG 

rs1099501 CTAATTGCTACGTGTGAG GACCTTGAGACGTTTAAG G/A F TCTTTATATATATTACTGATTGATTCATT 

rs845169 CTAATTGCTACGTGTGAG GACCTTGAGACGTTTAAG C/T F TTCTGTTTTGCTTAATATTGATAT 
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Table 10 (continued). Tagging SNP Assays 
Marker Forward Primer Reverse Primer Allele Strand Extension Primer 

rs1884417 CATCTCTAGGTTTCTGGAGAC GCTATGGAATAGTAGCTGG G/A F ACATTTGTACACACATACCCT 

rs5954252 ATAGGTAGCTTTTCAACCCTC CGGAATACTATGCAGCC G/A R TTTATAAGCAAGAGCTAAACATC 

rs5953618 CTTTGCAGGTATTTCAACC CTGAGTCCTCGACCATAC G/C F TCGGGCGTGGTCATTCA 

rs2933670 CTTTGCAGGTATTTCAACC CTGAGTCCTCGACCATAC A/C F TCTGGAGATGTTCTTTTCA 

ss78456785 GCGTGGTCATTCAGCAGTTCCTC CTTCTCTGGATCAAACC G/T R GACCCGCAACCTGCTCC 

ss78456788 GCGTGGTCATTCAGCAGTTCCTC CTTCTCTGGATCAAACC G/C F GCGGGTCTGAGTCCCCA 

rs5953547 CAGGATAGAGACTGGATAGC ACTTTGACCAAGGTCTG C/T R AAACCCCTTCCTCAACC 

rs2057217 ATCCTGCCTAACCACCTG TGGGGTGCTTGTAGGTAG G/A F ATATTCCACCAGAAAAAGG 

ss78456791 CACAATGGTCTGCAATATTC GCAGACATTGAAGAACC G/A F CTTCACTTCAGAACCTAACA 

ss78456793 CACAATGGTCTGCAATATTC GCAGACATTGAAGAACC G/A R AATCCAACGAGGTGAAT 

ss78456795 TTGGATTCACAGGGGAC TGGGACACTGCCTGTATG A/T F TGTATATATTGGTTCTTCAATGTC 

rs2144605 GCAAATTTCAACCCATG GGGCAACAACAGTGAAAC G/A R GCCATTATTTCAGATTGGA 

rs3976442 TTTGGTTACTTCTGTAGC CCAAAAGAGACATATTGGTC G/A F CATACAACAATTTAACATAAAGTTTAT 

ss78456800 TTTGGTTACTTCTGTAGC CCAAAAGAGACATATTGGTC G/C F TTAACATAAAGTTTATAATTAATAACATACA 

rs5953578 TTTGGTTACTTCTGTAGC CCAAAAGAGACATATTGGTC G/T F AATAACATACAGAAGTTATTTCAGAA 

rs2208264 TTTGGTTACTTCTGTAGC CCAAAAGAGACATATTGGTC G/C F CCCAAAGAAAGTCAAACA 

rs845144 CCTATGAGGCCAAGTTTG GAATTAAATGGGCAGTGTC C/T R TCCCGGGTTCAAGCAAT 

rs714075 CCTATGAGGCCAAGTTTG CCCATTGCTACAAACTCG G/A F GAAGAGATTTATGGGACCA 

rs714076 CCAGTGATGACATTTCAG CCAAGTTTGTAAACAGGG G/A F CCATCCAGAAATGCTCT 

rs845150 CCAGTGATGACATTTCAG CGTGATAGAACTGCCAGC G/A F TTGTTACCATCTTCAAATGAC 

rs5907844 GTTGGAGGATAACTCATAC CTCTTCACACACACCATG G/A F AAGTCGTCGTGGACATAC 

rs881223 TTAGGGATGACATCACTG GGTTATCCAACATAACC G/T R GGATGACATCACTGTGTGTA 

rs881221 TTAGGGATGACATCACTG CTAATGGCCATCTGCCCA G/A R GCTTACGCAATTGTCTTTT 

rs881222 GTCAAAGTCCCATTAGGTG GCGGCATTTCTGTTTGG G/A R TTTAACATAAAATCAAATGGC 

rs881219 GGGCTGTGCTTTTAATCC CATCTTCAACTGGGGTC G/A F CTGCAGTTTCAACAGCTAG 

rs2864937 GCTGAACAGTCTTCAGTG CCAGGATATCTAGCTGTTG C/T R TGCATTAAAAAAAATAATTATTTC 
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Table 10 (continued). Tagging SNP Assays 
Marker Forward Primer Reverse Primer Allele Strand Extension Primer 

rs5907848 TCAAGCCAACATTGACTTAG GCACGTTCTGCACATGTA G/A F GCTCCTACGTCTTTTAAAAAA 

rs2201245 GACTGCATAGTGTTCAGG CTCTGTTCTGTTCCATTG G/A F TGGTACCAAAACAGATATGTAG 

rs5907851 CAGGTTCAAGCGATTCTC GAATCGCTTGAACCTGGG G/A F CTCGCTGTGTTGCCCAG 

rs5907853 ATTAGCTATCAGGGTGAG CTCCCAAAGTGCTGGGAT G/C R CCTGTAATCCCAGCTACT 

ss78456818 ATTAGCTATCAGGGTGAG GTTGCAGTGAGCCAAGAT C/T F TTTGTTTGTTTGTTTGAGTCT 

rs5907858 CTGAGCCAAGATAATTGAC TGTCTACCCTTAATGCTC A/T F CATCCAAATAATGCTATGAG 

rs5907859 CTGAGCCAAGATAATTGAC TGTCTACCCTTAATGCTC C/T F CATCCAAATAATGCTATGAGA 

rs1389194 CAATGTCACTTGTACAAA TGAATGGTGCCTGACAC C/T F CAGTCACCCAGGTATCTGT 

rs861508 GAACATAGGACACACAACAG TGGCTCCTAATAGTAGGC C/T F ATTCCCTAGCCTAGACCTT 

rs845163 ACATGGGTGCATTCACC CCAGTTCATTTATCTCAGCA G/A F ACCTCTGGTGGCTCCAC 

rs845164 GAGGAGGCATGTCTTCAT ACGTGACTCTCCTAATTC C/T F CATGCTACTTCTCTTTTTAGGA 

rs845165 CCTGATGGTAGTAAGGAGG GTACTACCTTAGAAGCACTG G/A F GCTGCATGACCTTGGAT 

rs845190 CACAACAGCTCCAAATAAGT GGCACGTTGTAGTAGTTA G/T F AGTCTCAGATCCTTTAAGTAACTC 

rs845188 AGAAGTTCCCACAGCTG AGGTTAATCCATAACAGC C/T F TCAAAGGCTTCCGTATTA 

rs845187 CAGTGCTCTCTCATTTGG AAATTATTAGCGAGCCG G/C F ATGAAGAAACTGAAAATTAAATG 

rs845186 AATCCTCTCTGGTAAGGG GTGTTTGAGAGAGCTTTC C/T F GTAAGGGAAACCAAATAACT 

rs5907874 TTTCTTGGCTTTGGTAC GCAAGAAAGCTGTTCAGT C/A F CAATTTATTACAACAACAAGC 

rs845182 GTACAGTTCCTTGTATTGTG CAGTCTTCAGTAGTTCTGAG G/C F ACAGCCCTAGAACCTACTTT 

rs1493189 TCTACATGGGTCCTGATG TGTTCAGATTTGGCAAG G/A F GGATTCTGATGACATTTCTCT 

rs710104 TTGTCATAGCCCATTTG CAGAAATGTGCTTAACC G/A F AAAATGCCATGTGCACA 

rs5954267 GCCATAGACATGATGTTC TCAACCATGTGATCAAG C/T R TTGCAGCCTTTGCCGAA 

rs5953588 CTGAGTATCCATCACCTGA CTATTGTTGAAGGCACAG G/C F CACTCAGTTCCTAGGTTAATAAG 

rs911483 TGCAGAGCATGACTGTAC GTGATGATGGCATAGTAA A/T R TGATGGAAGAAAGAAAGAAG 

rs5907876 GATGGGGTATTCAACTCTCA CTGCCTCAAGATGTTAAAAC G/A F ATTCATTCAGTGTCTTGTGAT 

rs5954270 GAAGACCACCTTCCCAT AATCAGCTCAATTGGGTG G/C F ATACAGAAAGCCCTCTGTC 

rs5907131 GCCTCTAGTTTCTCATTAGAGA CCCAGTACACCATGCTT C/T F GCTGACTAAGCCTGAGAAA 
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Table 10 (continued). Tagging SNP Assays 
Marker Forward Primer Reverse Primer Allele Strand Extension Primer 

rs7060108 TGTTGGAAAGGTAACCTG GTGGTAACCTTCAACCTG G/A F AATTTTATTCGGGATAGTGTC 

rs5907135 ATGTGAACAACCAAGGC ACATTCAGTACATACCTG G/A F TTTAAGAAATGCAATTCAAAT 

rs6636266 CTGAAGCATCAGGTTCC GAAGCTTCTGGGGTTTT G/A F AACAAGAATGTTTAGTAGTAATGCT 

rs5907890 CAATAGGCAATATTGGAGTC AAACATACACTGATACTG A/T R AAATGTAATTCCATCTTTTGTC 

rs4825002 CTTAAACGCATATGCAC CTGGTTGATAGCATTGTTCT G/T F GAGGAAACAATTGCTAGAATT 

rs5907891 CAGGAGATCAATGAAACCAA GTGTTTGAATTTTGTCAA C/T F GGAATGCACAACCAGATA 

rs4824867 CATATGAGGTGCCATTCAC GATCTCCTGACCTCATGAC A/C R TTTGTGGTGGGCCAAAA 

rs844971 GTGCTTTCACACATTATAGC GTCTCTTGGGGAAGCAGA G/A R ACCACTTATTGGATGTGTTT 

rs5954277 CCCTTCTCAAGTGAAAAG GAGAGAAGTGCAGTTGTTG A/C R AAGTGCAGTTGTTGGTACTA 

rs844964 GTAAGTTGATGGGCATGTT CAGTGACCTGAGTTGCAC C/G F GAAAGCAAAGTACAATTTACAAC 

rs844963 GCCCAACATTAATTACTCTGTG CACTCGTCTGGTGTCTAAG A/G F TGGCAAGCCCAGTGGAT 

rs844961 AAAAGGTATTCTCTACGCAC CAAGTGGTAAACACGGC A/G F AAAAAAGATTTTAATGATGTGTAG 

rs844957 CTTAAAGGGACTGGGCATTA CAGAACAAATCATGTGCAG G/A F TCCCCACCAGAAAGTGG 

rs844956 AATACATCCATGACCAGC CATGTTGGTTACGTTGGTG A/G F AGAGATGCTCCTTGCAA 

rs844953 GGACATACAATGGAATGAAG GGAAGTGGCTGATAGAG A/T F GCCATATTGTGATTCATTTTA 

rs6636273 GGACATACAATGGAATGAAG GGAAGTGGCTGATAGAG T/A R CAGAGGTAAAACCTATTTATCAT 

rs844952 GAGGTATTAAAGAAAGCTGGTGTAG GCCATTACACTGTCGTTC A/G F CTCTCTGACGTTCTAAAATTAGA 

rs844946 GTTGAGACTTGTGCCCAA CCATAGTCACTGCTGAGG G/C F CACCAGTAGCACCACATA 

rs1493192 GGAGCCACATTTGATTTG CACTTCAAGAGGCAAGTT T/C F TATTTGCTGTCTGGTGTATATAC 

rs926809 CTTTTGTACTGCAGCTG CCTTGGGCTACATCATATTA C/T R TGTCATCTACTTTTATCATTATTAAAC 

rs5953592 CTGCAAGCAAGAACAAAC ATGTTACCCCACATTGTG G/C R TAAGGTTTGCAGATACCAA 

rs5954285 GCAGACTCTCTCAAGCAG TCTGCTCTGATCTTTATCTC C/T F AAAGTATCCAGTCAAAGGAA 

rs6636281 CAACCTACCAAGACTGAATT GGTAATGCTGACCTTGAC A/G F AAGTAAAGGTATTAAATCAGTAATAAGA 

rs2864951 GGAAGAAGTGAAATTGTC GGATAGTTTATTGTTAAGC A/G F AAATACAATAATCCTGCAGAAT 

rs5907905 CTGCCCAAATTTGTTCA CTGTAAGGTTCTTGGAAAG A/G F CACCCCTCTAACACCTAG 

rs5954291 CCCATAAACATAGTTGCAG TGTATCACACCCTTGATG A/G F AAAATCAATTAATGCAATCC 
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Table 10 (continued). Tagging SNP Assays 
Marker Forward Primer Reverse Primer Allele Strand Extension Primer 

rs5954292 AGACTGAGAGGTGTGAGTTC CTAGACTATCGTGGGAATTA G/C R GACTCTGGAATCCTATGTAATTA 

rs4824870 AATATGTTGAAAGGGGC CCTCACAGTTATAGAGATTG T/C R TGTCCTCACATGGTGGA 

rs5953596 GTCACCAAAATGCTATG CATGATTTAAAAGGCAAC G/A R GGAGTTTTATAGTCTCTAAGAGAGC 

rs5907914 GTGTATGCCTATATTACGAC CACTGAACATTGAATACCTG A/C F TGTCACATAAGTGAGTGGAA 

rs6528850 TTATGAAGTGGCAATGC CTTCCCTTTCCCTGAACA A/G F TGACTGTTCATGAAGGTCA 

rs5907150 GCTGTAAACTACAACATGGT CTTGGTTCTGATTTGATC A/G F ATGGTATACAAATAGGAATAATTG 

rs5907916 CTACCTGTATCTTTGCACACT CAAATATGACTGTGTGGTG A/G F ATAAGAAAACTGAGGATCAGAG 

rs5907918 GTTTGTGAAGTTCAACAGTC GGCTGTGAAAACATGTAAAC T/A R AAACAAAGATCTCAAGTTGATTA 

rs6528854 CACTTCAAAGTAGCCATT GTACTGTTGAATCCCTCTA A/G F AAAAGAAGCTATGAGAAAAAAA 

rs5953599 AGTCAAACTCATGGAAGC CTGTCTTCTTCACAAATT A/C F GGCTGGGGAGAGAGGTA 

rs5954305 GGAACATCATTCAGCTA CCCATTAAGAAGTTAGTCTC T/C R CTTTCTGTGTCTTTGGACTTA 

rs5907921 CAAGTTCAAATCTCATCTCC CTGTCCTTACAGACACG T/C R TACAAGAAGATTGTATCATGAAA 

rs5953606 AACAGAATACACAAGCACAC GTTAAAACACTGCCTATGC G/A R ATAACATCAGTGCCCTTAAG 

rs6636314 ATTTAAAGGGCCAGTCC CTTGGGAAAAGTTGGTAC A/G F GAAAGGGAATCTAGAAAATACA 

rs6636316 TTTACAAGACACTTCTGCAC AGGGACTAACTCCTTACTC A/G F CGATGATTGATGATTAATTG 

rs5953608 ACAGGATCCAAAGAAAG CCATAAAGTTTTGTAGTTC A/C F AGAAGAAAATGCAATGAAA 

rs5907944 GTTGCGCAATATTGTGA GGTCTTGGACAGTGAGAC G/A R TTTTAACCAACTTAAAATGTGA 

rs5954322 GATCATTCCATGTGAGGC TTGGATAGGGAATTACG T/A R GAAGCCTTCAGATTTTTTT 

rs5907945 GAAGAGATGGGAATACACAC GCAGTCAACTCACTTTCTAGTGATA A/G F GCTTCCTGCTAAAAATGTT 

rs6636335 GCAACAAATGACAGTGGT TCCACTAACTCCTACACAATAC A/G F TTCTTTATGAAATAAAAGAATTTGT 

rs6528868 GAGCAGAAGCCAGATTTA GAAATACTGTAGTTCCCGC C/A R TTCCTCAGTCAAGATTCTAGTT 

rs6528869 GGCTGCTATAACAAAAGC GGGATTAGCAGCCTTATA G/A R GACTTCCCAGTCTCCAG 

rs11095879 CTAGGTTGGTGAAGTTG GCCAGGCATACCATTTT A/T F ACTCTTTTCTTATCTTTGATTTTC 

rs4825014 CTGACTTGTCAAGTATGACTG TGCCAATCAGCTCTATC T/C R GGGAAATTTCTTTAGTGTCTAA 
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flanking non-unique regions and amplified using the Expand Long Template PCR 

System (Roche Diagnostics, Indianapolis, IN). Long-range PCR product was then diluted 

1:5,000,000 to dilute carry-over genomic template to non-amplifiable levels while 

retaining the ability to amplify from the long-range PCR product. This was verified by 

successful test of amplimers nested within the template long-range PCR product, but 

failure of amplimers elsewhere in the genome. High pairwise LD between SNPs within a 

given non-unique region and flanking unique SNPs supported correct non-unique copy 

assay (visible in Figure 8). All nested assays within long-range amplimers yielded one 

allele per subject, concordant with a unique X-chromosomal region for a male. Amplimer 

primers for long range PCR are seen in Table 11. 

 

Table 11. Long Range Amplimers 
Region Forward Primer Reverse Primer 

hRPL44 AAGCACAACATGGATAGG CAAGTTGAGGATCATCATG 
SPANXC CACTCTCTAGGGTCTAC GGAGCATTAACTCACTCCTTA
RBMX2P1 GCTGAGAATTAGCATTGTC GGGTATATCCACAGCCTAAG 

 

Tag SNP Determination 

Tagging SNP determination was conducted in a subset of 141 training set control 

subjects that were genotyped at 246 SNPs (including 194 validated from dbSNP and 52 

identified by de novo discovery efforts). Pairwise LD was visualized using Haploview 

v4127. LDSelect was used for tagging SNP selection, specifying a MAF threshold of 0.05 

and an r2 threshold of 0.9128. A total of 128 tagging SNPs were selected for assay in the 

remaining subjects of the training set (totaling 292 independent familial case probands 

and their 292 age-matched controls). Data was obtained for 96.2% of the 74,752 tagging 
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genotypes sought in the training subjects, with a per marker range from 88.4% to 100%. 

SNPs in this tagging set and their assay primers are listed in Table 10. 

 

Statistical Analyses 

 A sliding window approach tested a haplotype window of N markers, sliding the 

window along the map in single marker increments167;169;218. Each N-marker haplotype 

was compared to the remaining haplotypes as a group among the training group of 292 

cases and 292 matched controls.  The resulting 2 x 2 contingency table was evaluated by 

the χ2 test statistic. Haplotype windows of 1-10 markers were evaluated in the 

exploratory analyses of training subjects. In a given map region that was nominally 

associated with PrCa within the training subjects (P ≤ 0.05), haplotype tagging SNPs 

(htSNPs) were selected that most efficiently distinguished the risk haplotype from others 

in the region. Nominally significant tagged haplotypes (two observed) were genotyped in 

a subsequently ascertained independent test group of 215 cases and their 215 matched 

controls to address multiple comparisons. Significance for a given tagged haplotype 

candidate was adjusted for the two comparisons among test subjects through permutation 

testing.  We generated 5,000 copies of the data set in which case status was permuted. A 

χ2 value for each tagged haplotype was calculated for each simulated data set, as it was 

for the real data. Since the null hypothesis is true for each randomized subject set, the 

proportion of simulated χ2 values greater than the real χ2 value was used as a P value for 

the association, adjusted for multiple comparisons. Unless specifically noted, P values are 

unadjusted for multiple comparisons.  
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 A risk haplotype that was significant after adjustment for multiple comparisons 

among test subjects was subsequently modeled by conditional logistic regression to 

obtain an estimate of effect size (Intercooled Stata 9, Stata Corporation, College Station, 

TX). The matching variable, age at diagnosis or screening, was included as a raw 

covariate in the model. Permutation testing was employed to assign significance. 

 

Results 

Our allele discovery and characterization was done within a screening set of 40 

familial PrCa probands. We evaluated 415 SNPs annotated in dbSNP, 194 of which were 

polymorphic in these subjects. We also undertook de novo SNP discovery efforts across 

LDOC1 and SPANXC, as well as across an RPL44 homolog and RBMX2P1 pseudogene. 

Among these, only LDOC1 resides within a region of unique genomic sequence. We 

devised a nested amplification system to allow assay of non-unique genomic sequence 

flanked by unique sequence. Collectively, we discovered 52 common SNPs amenable to 

assay. The 246 polymorphic SNPs (194 from dbSNP, 52 newly discovered) of the 

screening subjects were genotyped in a subset of the training study population (141 cases 

and 141 controls) for assessment of allele frequency and for tagging SNP selection based 

upon LD patterns. Within this data, 220 SNPs had a minor allele frequency ≥ 0.05 for 

inclusion in subsequent analyses. Pairwise LD across the candidate interval for these 

SNPs highlights four LD blocks (denoted A, B, C, and D in Figure 8). Block A contains 

all four candidate gene regions. 
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Among the 220 informative SNPs, we selected 128 tagging SNPs for genotyping 

in the full group of training subjects (292 familial case probands and 292 age-matched 

controls). We explored evidence of association with PrCa using a haplotype-based sliding 

window approach. This entailed evaluation of 1,235 haplotype windows across the 

candidate interval. All haplotype windows of statistical significance were from four 

distinct regions.  At each of the four regions, multiple overlapping windows were 

consistent with the redundant identification of one haplotype associated with PrCa risk. 

These four candidate risk haplotypes are numbered 1 to 4 in Table 12. 

 

Only a subset of SNPs in each of the four regions was required to distinguish the 

candidate risk haplotype from remaining haplotypes. We identified haplotype-tagging 

SNPs (htSNPs) efficiently capturing the four candidate risk haplotypes (full span of 

windows P ≤ 0.05) of Table 12. As our analysis required complete data for each subject 

across the multiple SNPs of the haplotype, the restricted set of htSNPs provided a better 

estimate of haplotype frequency. Only two of the four haplotypes were nominally 

significant when assessed by htSNPs among training subjects (Table 13, haplotype 1 (χ2 

= 5.24, P = 0.023) and haplotype 3 (χ2 = 5.08, P = 0.020)). We evaluated evidence of 

association between these two htSNP haplotypes and PrCa in a second, independent 

study group of 215 familial PrCa probands and 215 age-matched controls. These subjects 

were accrued after the training subjects over the course of the ongoing study. Numerous 

exploratory tests were conducted among training subjects, but only two tests were 

conducted among test subjects, a greatly restricted number of comparisons. Only 

haplotype 3 was significant among test subjects (Table 13, χ2 = 3.73, P = 0.040).  
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Location Allele P †

rs11095852 A
rs5907823 C
rs7880499 G
rs1016824 T
rs12156848 G
rs7885649 A
rs5953563 A
rs714076 G
rs845150 A
rs5907844 G
rs881223 A
rs881221 T
rs881222 C
rs881219 A
rs2864937 A
rs5907848 A
rs2201245 G
rs5907851 A
rs5907859 T
rs1389194 T
rs861508 C
rs845163 A
rs845164 C
rs845165 A
rs845190 T
rs845188 C
rs845187 C
rs845186 A
rs5907874 C
rs845182 C
rs1493189 A
rs844971 T
rs5954277 T
rs844964 G
rs844963 A
rs844961 G
rs844957 A
rs844956 C
rs844953 T
rs6636273 A
rs844952 G
rs844946 C
rs1493192 A
rs926809 C

† P  for haplotype designated in black, with corresponding numbers of cases and controls, and haplotype 
frequencies (%).

* Sliding haplotype windows of P  ≤ 0.05, graphically ordered as most (black) to least significant (left to right).

Haplotype 4  
(ChrX: 

140266943-
140295222)

21 (3.8) 0.024

(27.3) 0.003

(2.9) 0.021

Table 12. Sliding Window Risk Haplotypes at Xq27 - Training Subjects
Significant Haplotype Windows* Cases Controls  

Haplotype 2 
(RBMX2P1 )

15 (8.6) 5

(39.8) 63Haplotype 1 
(hRPL44 )

92

(1.4) 0.003

(8.9) 9

Haplotype 3     
(ChrX: 

140190766-
140213636)

15 (6.9) 3
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Table 13. Tagged Risk Haplotypes at Xq27 -Training and Test Subjects  

Location htSNP Allele 
Training Test 

Case       Control     P Case       Control    P 

Haplotype 1 
(hRPL44) 

rs5907823 C 

95 (38.6) 71 (28.9) 0.023 73 (39.3) 79 (2.5) 0.536 
rs7880499 G 
rs1016824 T 
rs12156848 G 
rs7885649 A 

Haplotype 2  
(RBMX2P1) rs845150 A 19 (6.6) 9 (3.1) 0.062 

          

          

Haplotype 3 
(ChrX: 

140190766-
140213636) 

rs861508 C 

18 (6.8) 7 (2.6) 0.020 13 (6.6) 5 (2.5) 0.040 

rs845165 A 
rs845190 T 
rs845187 C 
rs845186 A 
rs1493189 A 

Haplotype 4 
(ChrX: 

140266943-
140295222) 

rs844963 A 
22 (7.7) 14 (4.9) 0.168           

rs844956 C 

Shown are the corresponding numbers of cases and controls, and tagged haplotype frequencies (%). 
 



 

94 
 

Permutation testing was used to correct this value for the two comparisons conducted in 

test subjects, yielding P = 0.048. Our study identifies haplotype 3 as the most likely 

genetic variant of the interval to be associated with familial PrCa, with a nominal 

significance of P = 0.003 in the combined training and test subjects. 

 

Under logistic regression modeling to assess effect size, haplotype 3 was 

associated with PrCa with an odds ratio of 3.41 (95% CI 1.04-11.17, P = 0.034) among 

test subjects, and an odds ratio of 2.52 (95% CI 1.25 – 5.10, P = 0.006) among combined 

training and test subjects. The effect size was more marked among the subset of 284 

cases with aggressive PrCa (Gleason score ≥ 7), with an odds ratio of 4.06 (95% CI 1.15 

– 14.31, P = 0.021). Gleason score is among the most important criteria in defining 

clinically significant disease. Our results are consistent with linkage data at the locus 

under stratification for clinically significant disease104.  

 

Discussion 

The location of this haplotype coincides with that described through prior high-

density simple tandem repeat (STR) mapping within a Finnish study population92;217. 

Among the STRs, bG82i1.1 was most significantly associated with PrCa in the prior 

study. The peak associated haplotype in the Finnish study was comprised of alleles at 

bG82i1.1 (centromeric) and bG82i1.0 (telomeric), P = 0.0014.  Haplotype 3 of our study 

directly overlays the recombination hotspot between LD blocks A and B of Figure 8.  The 

most centromeric SNP of the associated haplotype (rs5907859) is 4.0 kb from bG82i1.1. 

The most telomeric SNP of the associated haplotype (rs1493189) is 1.9 kb from 



 

95 
 

bG82i1.0.  The same genomic region is highlighted by our present study of Americans of 

Northern European descent and the prior study of Finns. We further note that among 

SNPs evaluated in the genome wide association study of PrCa recently published by 

Thomas et al., rs845189 has a Whole Genome Rank of 1135 out of 527,869 SNPs 

accessed with a significance of P = 0.002219. This SNP resides at the LD break centered 

within the disease-associated haplotype of our study. 

 

The associated haplotype region does not harbor known genes. All missense 

variants of potential interest in the entire candidate interval of 352 kb were within 

SPANXC, 30 kb from the associated haplotype. These missense variants clustered into 

two groups.  The first group (all in exon 1) included D17E, A21V, and M24T. The 

second group (all in exon 2) included P29S, T30S, D32Y, and M42L. Within a group, a 

male subject had either each first or each second allele as listed. Additional SPANXC 

missense variants, E23K, V59F and L68V, did not appear to be in these two LD groups. 

This allele structure in SPANXC is also evident in data of an independent study220. That 

study also found no evidence to support an association between SPANXC alleles and risk 

of PrCa. The coding regions of hRPL44 and LDOC1 were without missense variants. We 

denote RBMX2P1 as a pseudogene, having a mutated initiator methionine, multiple 

frameshift mutations, and an internal Alu insertion. Thus, the missense variants at 

SPANXC were among the best potential candidates for association with PrCa at Xq27. 

 

The haplotype significantly associated with PrCa in this study straddles an LD 

break, potentially detecting a pair of contributing components located within each of the 
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two bounding LD blocks (e.g. a gene and a long-range regulatory element). In a sliding 

window haplotype analysis, a haplotype overlapping the two blocks would be particularly 

suited to detect such a combination. A single allele analytic approach failed to detect it. 

We considered the possibility that causal variants are a pair of non-contiguous SNPs 

within each LD block. We divided haplotype 3 so that those SNPs in LD block A 

comprised sub-haplotype 3A, and those in block B comprised sub-haplotype 3B. 

Eighteen of the SNPs within block A and only one SNP within block B (rs5907874) had 

an r2 ≥ 0.8 with the respective sub-haplotypes (Table 14). A matrix depiction of pairwise 

r2 values between these is illustrated in Figure 9. The T30S (ss78456788) variant of 

SPANXC exon 2 also demonstrated modest LD with sub-haplotype 3A (r2 = 0.73). 

Another variant altering an open reading frame within RBMX2P1 (rs1968987) directly 

marked sub-haplotype 3A (r2 = 1).  

 

Only a subset of the SNPs demonstrating LD with the two sub-haplotypes had 

been genotyped as tagging SNPs in the training study population to enable an assessment 

of disease association.  These included rs1012777, ss78456788 (T30S), rs12394263, 

ss78456800, rs5953578, rs845144, rs714076, rs881223, and ss78456818 in LD block A, 

and rs5907874 in LD block B. χ2 tests of association for these block A SNP--block B 

SNP pair haplotypes were each associated with PrCa in our training group (P range 

0.0008 to 0.030), with one exception (rs12394263 - rs5907874, P = 0.065). Results for 

each comparison are presented in Table 14. Therefore, these SNP pairs and the original 

sliding window haplotype spanning the LD break each detect the association with PrCa 

with varying efficiencies.  
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Table 14. SNPs with r2 > 0.8 With Sub-Haplotype 3A 

SNP* 

r2 with 
Sub-

Haploty
pe 3A 

P-value (Virtual 
haplotype with 

rs5907874#) 

rs1012777         0.95 0.003 
ss78456783¶         0.81 0.030 
rs34173722         0.85 ‡ 
rs12394263         0.90 0.065 
ss78456800         0.90 0.007 
rs5953578         0.82 0.009 
rs845144         0.90 0.006 
rs714076 rs714074 rs714073     0.82 0.007 
rs881223 rs982033 rs1389194 rs1968987 rs2864928† 0.90 0.0008 

ss78456806         1.00 § 
ss78456818 rs5907849       0.84 0.002 

SNPs in bold used to calculate P-value within the training dataset 
* r2 = 1.0 among multiple SNPs listed in a row 
# rs5907874 has an r2 = 0.800 with Haplotype 3B 
¶ was not typed as a tagging SNP in our study, but was captured with an r2 = 0.974 with 
ss78456785 
† rs2864928 has an r2 = 1.0 in HapMap CEU data, and was not included in our study 
‡ was not typed as a tagging SNP in our study, but was captured with an r2 = 0.945 with 
rs12394263 
§ was not typed as a tagging SNP in our study, but was captured with an r2 = 0.946 with rs845144 
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Figure 9. SNPs marking PrCa associated haplotype 3, sub-haplotypes A and
B (portions in LD blocks A and B, respectively). A matrix is depicted of
SNPs ordered centromeric to telomeric for those with an r2 > 0.8 with the
sub-haplotypes in 141 training set controls. A haplotype was dichotomized
(present or absent) for pairwise r2 calculation. Haplotype 3A contains htSNPs
rs861508 and rs845165. Haplotype 3B contains htSNPs rs845190, rs845187,
rs845186 and rs1493189. 
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Our study sought to identify the genetic variant predisposing to familial PrCa at 

Xq27, a locus initially identified by linkage study of American, Swedish, and Finnish 

hereditary PrCa pedigrees, and subsequently refined by linkage disequilibrium analysis of 

the Finnish familial PrCa cases.  After a comprehensive effort in the present study, we 

identified a single candidate haplotype that was associated with familial PrCa within 

independent training and test study subjects. Although the replication was encouraging, 

the sample size of our test group was sufficiently small that an independent assessment of 

significance is warranted. Population structure is unlikely to represent a confounding 

factor within our study, as self-described ethnicity has recently been shown to accurately 

represent genetic ancestry among Americans of Northern European descent132;133. We 

believe that this haplotype represents the best candidate within the region for further 

investigation within additional study populations. If confirmed, these findings should 

begin to clarify the X-linked heritable component of PrCa risk. 
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CHAPTER VI 

 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

 

We began with a systematic analysis of the CYP11A1 gene and its association 

with risk of breast cancer. The goals of the study were to comprehensively characterize 

common genetic variation at CYP11A1, to assess patterns of linkage disequilibrium (LD) 

and to refine our understanding of the contribution of CYP11A1 genetic variation to 

breast cancer risk. In relation to the body of work as presented in this thesis, the goals of 

the study were to design and test the techniques and methods to be used in our 

comprehensive evaluation of an HPCX candidate interval. This preliminary project 

identified a haplotype containing promoter variants significantly linked to breast cancer 

risk. Building off previous work identifying a specific STR allele conferring risk of breast 

cancer, we described a specific haplotype which results in an increase in CYP11A1 

expression in lymphocytes. Future studies may be able to show if this expression increase 

extends into steroidogenic tissues where the rate-limiting step of steroid biosynthesis 

catalyzed by CYP11A1 occurs. Using the odds ratio as an estimate for the relative risk, 

and the frequency of the haplotype in controls as an estimate of that of the general 

population, it is estimated that the population attributable risk associated with this 

haplotype is 6.9%. Our laboratory is currently investigating the entire steroid biosynthesis 

pathway and its role in breast cancer to continue this work. 
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We deemed the CYP11A1 study a successful test of the methods to be used in the 

PrCa project. Over the time of the CYP11A1 project, we ascertained a unique study 

population powered to identify common variants of PrCa susceptibility. We employed 

this study population in a focused search for causal variants at two well published linkage 

peaks; aggressiveness locus 19q12-13 and HPCX. First we used the candidate gene 

approach to uncover an association between the functional T29C polymorphism of 

TGFB1 located within the peak at 19q12-13. We observed that this association was 

between the genotype and occurrence of indolent disease. This association specific to 

cases with low Gleason scores (≤ 6) could explain the confusion surrounding reporting of 

19q12-13 as a susceptibility locus. Studies using Gleason score as a quantitative trait see 

19q12-13 as significantly associated with risk of PrCa and have described it as a PrCa 

aggressiveness locus. However, linkage studies looking at only aggressive cases do not 

see significance at this locus. While it could be assumed that the aggressive cases were 

driving the association, including Gleason score as a quantitative trait does not indicate 

the direction of the association. Although the effect size observed in our study population 

was not exceptionally large, to my knowledge it is the first report of an association 

specific to indolent PrCa. Treatment for PrCa cases of indolent or aggressive nature are 

radically different, ranging from a ‘wait-and-see’ approach to prostatectomy. As such, 

knowledge of patient genotypes such as that of TGFB1 T29C would be particularly 

salient when choosing a treatment path. To continue this work, our laboratory is currently 

investigating the role of a polymorphism of similar functional significance in TGF-β 

receptor TGFBR1. TGFBR1 contains a repeat which encodes for a 9-alanine repeat 

(TGFBR1*9A). A common variant which encodes a version of the protein containing a 6-
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alanine repeat (TGFBR1*6A) has reduced signaling functionality when compared to 

TGFBR1*9A221-223. Furthermore, it has been shown that the interaction of the two 

significantly impacts risk of breast cancer207. We will investigate the role of this 

polymorphism and that of a potential interaction with TGFB1 T29C in PrCa.  

 

Finally, we report a comprehensive investigation of a 352 kb candidate locus 

within HPCX. Previous studies of HPCX have identified two separate, non-overlapping 

peaks of interest; at Xq27.1-2 and Xq28. We comprehensively evaluated an interval at 

Xq27.2 for association with risk of PrCa, and internally confirmed our results using 

discrete training and test study populations. Our potential risk haplotype maps to the 

same location as identified in our prior study of a Finnish population. This independent 

study employed a low-density STR marker strategy rather than the high-density SNP 

analysis presented in this thesis. Since different markers were used in the two studies, it is 

yet unknown if both identify the same haplotype. In our population, this haplotype spans 

two LD blocks and is seen in 6.7% of cases and 2.6% of controls. Due to the existence of 

a second, non-overlapping peak at Xq28 it is possible that there are multiple genomic 

variations at HPCX that confer PrCa risk. Therefore, we are currently extending our 

HPCX investigation to encompass the entire 14 Mb region from Xq27.1-Xq28. 

 

Following up on linkage analysis data, we have identified potential predisposing 

variants at 19q13 and HPCX. It is somewhat likely that other linkage peaks harbor 

associated variants similar to the ones described in this body of work; however, the 

confusion surrounding most linkage results makes choosing one peak over another for 
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directed analysis problematic. As a result, it appears that most current PrCa genetic 

research is abandoning pursuance of linkage results in favor of genome-wide association. 

As with linkage studies, multiple loci have been identified via genome-wide association; 

however unlike linkage results, these associations have been replicated across multiple 

study populations.  

 

An overall conclusion I derive from my thesis work is that the genetic component 

of PrCa risk is genetically heterogeneous, comprised of multiple common variants with a 

moderate effect size and supportive of the CDCV hypothesis. Furthermore, specific 

variants may drive phenotypic differences within PrCa cases. Genetic heterogeneity is 

clearly evident from the results presented in this body of work in combination with recent 

published results describing three unlinked PrCa risk loci at 8q24, as well as loci at 17q12 

and 17q24.3139;140;224. Our laboratory and others have also seen statistically significant 

associations for overall risk at Xp11.22 and 2p15225. The role of these variants in the 

etiology of PrCa to date is unknown. The risk of any one of the variants described is 

moderate, with no reported odds ratio > 2. However, a recent study has shown that when 

more than one of the five published risk variants at 8q24 and 17q are present, risk of PrCa 

increases in a manner proportional to the number of high risk loci (up to an OR = 9.46 for 

individuals with all five risk loci and a family history of disease)226. There was no 

difference in risk for indolent or aggressive cases for the cumulative effect of these loci, 

and as such the authors surmise these loci may play an important role in the early 

etiology of PrCa. While it appears that these five variants together do not discriminate 

between indolent and aggressive disease, it is apparent from other studies that phenotypic 
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differences in PrCa cases may result from genetic variation. Evidence of this is seen not 

only in the TGFB1 T29C work in this thesis, but other genome-wide association studies 

focusing on aggressive cases227. It is these associations specific to indolent or aggressive 

disease that will be of greatest utility to clinicians determining how to correctly treat an 

individual with PrCa. 

 

In our PrCa study population, we restricted cases to those with a family history of 

disease, and through screening, selected controls without a family history of disease. We 

reasoned that we could reduce confounding due to genetic heterogeneity by the 

comparison of PrCa cases with a high likelihood of genetic risk factors to controls with 

no known genetic risk factors. This is unique to other published PrCa study populations. 

While unused in our matched study population, we have ascertained 156 Caucasian 

individuals with sporadic PrCa; a PrCa case with no family history of disease. To 

examine a potential difference between sporadic PrCa cases and those with a family 

history of disease at a locus of known significance, we again turn to 8q24 SNP 

rs1447295. We can compare genotype frequencies among cases with a family history of 

disease, sporadic cases and controls; the latter two groups both having no family history 

of disease (Table 15). It is notable that genotype frequencies of the sporadic cases at 

rs1447295 are nearly identical to those of the control population. Furthermore, the 

difference of allele frequencies between sporadic cases and cases with a family history of 

disease is statistically significant (P = 0.01). Previously published results also see no 

statistical difference with regards to rs1447295 allele frequency between sporadic cases 

and controls but a significant statistical difference comparing cases with a family history 
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of disease and controls146. Similar comparisons for both TGFB1 T29C and HPCX 

haplotype 3 do not provide similarly striking results; at both loci the allele frequencies of 

the sporadic cases fall between those of the cases with a family history of disease and the 

controls. Loci on 1q25 (located within linkage peak HPC1) and 7p21 have been identified 

as risk variants in a large population consisting entirely of sporadic cases65. It is unknown 

if these two loci replicate in populations without sporadic cases, but authors point to 

HPC1 as evidence that 1q25 is associated with inherited forms of PrCa as well. Although 

including sporadic PrCa cases in a study population would increase sample size, based on 

our data at rs1447295, including such cases in the study population could potentially 

confound results by diluting the risk signal from familial and hereditary cases. If this 

trend is pervasive to other loci confirmed over multiple study populations, it could 

indicate that greater power to find associated variants is seen through analysis of familial 

and hereditary cases.  

 

Table 15. 8q24 Genotype Distribution 
  8q24 (rs1447295) 
              
  C/C C/A A/A 
Controls* 334 (83.3) 65 (16.2) 2 (0.5) 
Sporadic Cases 130 (83.0) 25 (16.0) 1 (1.0) 
Cases with Family History 296 (74.4) 95 (23.9) 7 (1.8) 

* n (%) 
 

Technological advances within the past several years have dramatically changed 

the way genetic association studies are designed and conducted. Truly, the execution and 

scope of my thesis work would be vastly different if it were proposed in 2008 rather than 

2003. As a practical example of what is now possible due to technological advances, over 
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a period of almost six years using our florescence polarization based SNP assay system 

our lab generated close to 600,000 unique genotypes for various projects including the 

CYP11A1, TGFB1 T29C and HPCX projects outlined in this body of work. In contrast, 

our high throughput Illumina GoldenGate® system, produced 976,303 unique genotypes 

in one month. While it is noted that the florescence polarization system was not running 

constantly through those six years, this is still representative of the huge amount of data 

that can be produced in a short time with these new genotyping technologies. This level 

of throughput is not without sacrifice; analysis of non-unique regions, such as those at 

HPCX, requires extensive assay customization not available to a proprietary system. 

However, as costs decrease, sample sizes and overall genomic coverage will increase 

allowing ever more reliable high-throughput identification of variants of all effect sizes. 

 

The design and execution of genetic association studies have also been changed 

by recent scientific advances. During the time of my graduate studies the International 

HapMap was proposed, and Phases I and II completed. The HapMap was announced in 

2003 with the goal of “determining the common patterns of DNA sequence variation in 

the human genome and to make this information freely available in the public 

domain”228. Phase I of the HapMap was released in 2005 with genotypes of 269 samples 

over four populations covering at least one common SNP (MAF ≥ 5%) every five kb 

(over 1 million total SNPs) across the genome173. Phase II was released in 2007 and 

contains a total of 3.1 million SNPs229. Researchers can now turn to this resource when 

selecting tagging SNPs for an initial screen in an association study, no longer having to 

identify a set of tagging SNPs in their individual population. The effect of the HapMap 
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has been so profound it has been suggested that it become the collection of markers used 

by most researchers as a reference and that its population data provide a framework for 

the genetic structure of a sample population230. 

  

The research presented in this body of work has been directed at identification of 

genetic variants predisposing to PrCa. We undertook a focused analysis of loci identified 

and independently replicated by PrCa linkage studies. Resultantly, we have identified two 

specific variants as candidates for risk of PrCa. As with all genetic association studies, 

the ultimate validity of these associations will no doubt be judged by the ability of other 

investigators with independent study populations to replicate our results. Nevertheless, 

this study represents part of a worldwide effort to uncover elusive variants predisposing 

to PrCa risk.
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