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CHAPTER I 

 

INTRODUCTION 

 

Splicing is the regulated removal of introns and the concurrent ligation of 

exons to produce mature mRNA transcripts.  Variability in this tightly regulated 

process is responsible for an extraordinarily diverse proteome from a relatively 

small mammalian genome. Alternative splicing can lead to differential exon 

inclusion or exclusion, as can aberrant splicing, and such transcripts therefore 

differ from constitutively spliced transcripts.  Where mistakes in splicing cause 

disease, the resulting mutant transcripts appear to be ideal targets for RNA 

interference (RNAi).  In the case of inappropriate exon inclusion, small interfering 

RNAs (siRNAs) can be targeted to specific exons.  When exon skipping prevails, 

siRNAs can be designed complementary to the specific exon-exon junctions that 

are not present in normal transcripts.  The human growth hormone gene, GH-1, 

nicely illustrates these points.  Constitutive splicing of all 5 exons produces the 

normal hormone but aberrant skipping of exon 3 can lead to the production of a 

dominant negative isoform and associated Isolated Growth Hormone Deficiency 

type II (IGHD II).  This thesis describes research into understanding the causes 

of exon 3 skipping and shows that siRNAs targeting the unique exon 2-exon 4 

sequence in mutant transcripts can prevent onset of IGHD II in a mouse model.   
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Splicing 

 

Splice Site Selection 

The efficient excision of introns and accurate splicing of exons is required 

for mature transcripts to correctly encode protein.  The importance of correct 

splicing cannot be understated: mistakes that make a wrong protein can rob the 

cell of the function of that protein by altering its structure/function or prevent the 

mRNA from even being translated.  Any one of these outcomes could have 

severe negative consequences.  A conserved series of sequence elements are 

recognized by the spliceosome, a macromolecular complex that catalyzes the 

splicing reaction.  These cis-acting signals include the 5’ splice site, 3’ splice site, 

branch point sequence, and polypyrimidine tract (Figure 1).  The consensus 

sequences for these elements are summarized in Table 1.  Importantly, these 

elements are highly conserved in lower eukaryotes, such as the yeast 

Saccharomyces cerevisiae, but not in higher eukaryotes.  It is thought that this 

level of sequence conservation in S. cerevisiae may explain the relative simplicity 

and lack of alternative splicing in yeast and it most likely reflects the small 

number of intron-containing genes (Hodges et al., 1997).  As such, alternative 

splicing is more abundant in higher organisms.  Another difference between 

higher and lower eukaryotes involves the relative size of exons.  In yeast, the 

average length of exons is long, generally greater than 1 kb, though in 

vertebrates they are much shorter (~140 nucleotides, accounting for 1.1% of the 

genome).  Conversely, vertebrate introns are typically large, averaging greater  
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Figure 1. Splicing reaction.  Conserved splicing elements include the 5’ and 3’ 
splice sites and a branch point sequence followed by the polypyrimidine tract.  
Splicing occurs in two sequential trans-esterification reactions, culminating in 
ligation of two exons and removal of an intron lariat, which is debranched and 
degraded. 
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Table 1. Splice site consensus sequences. Consensus splice sites in 
vertebrates and the yeast, S. cerevisiae.  The intron-exon boundary is denoted 
by  and the branch point adenosine is shown in bold. R, purine; Y, pyrimidine; 
N, purine or pyrimidine. 
 

 

 Vertebrates Yeast 

5’ splice site AGGURAGU GUAUGU 

Branch point sequence YNYURAY UACUAAC 

3’ splice site YAGG YAG 
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than 3 kb in length and representing 25% of the genome whereas their yeast 

counterparts are on average only 250 nucleotides in length (Consortium, 2001; 

Hawkins, 1988; Venter et al., 2001).  This discrepancy in size poses yet another 

conundrum for the splicing machinery in higher eukaryotes: how to define an 

exon within the “sea” of introns (Black, 1995)? 

 

Spliceosome Assembly 

Canonical splices sites are recognized by multiple trans-acting factors, 

most notably five small nuclear ribonucleoprotein (snRNP) complexes.  The core 

components of these complexes are short RNA molecules, snRNAs, which 

associate with common and specific proteins to form snRNPs (Lührmann, 1988; 

Will and Luhrmann, 1997; Will and Lührmann, 2001).  Spliceosome assembly 

results from the sequential and dynamic organization of the snRNPs that 

recognize the cis-acting splicing signals and assemble in a step-wise manner, 

forming discrete complexes culminating in spliceosome formation and catalysis 

of splicing (Figure 2). 

 The first, or early complex, E, is initiated by U1 snRNP recognizing the 5’ 

splice site via base-pairing between the 5’ end of the U1 snRNA and the 5’ splice 

site sequence (Mount et al., 1983; Reed and Palandjian, 1997; Ruby and 

Abelson, 1988; Seraphin and Rosbash, 1989).  Simultaneously, U2 auxiliary 

factor (U2AF) interacts with the polypyrimidine tract and the 3’ splice site through 

its 65-kDa and 35-kDa subunits and splicing factor 1 (SF1) binds to the branch 

point sequence (Krämer and Utans, 1991; Zamore and Green, 1989; Zamore  
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Figure 2. Spliceosome assembly. Spliceosome assembly occurs in a step-wise 
manner with the formation of four discrete complexes, E, A, B and C.  It is in the 
C complex where the two sequential trans-esterification reactions occur.   
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 and Green, 1991).  The second, or A complex is ATP dependent.  Here, U2AF 

recruits U2 snRNP to base-pair with the branch point sequence (Chabot and 

Steitz, 1987; Das et al., 2000; Query et al., 1994; Ruskin et al., 1988; Valcárcel et 

al., 1996).  U2 snRNA replaces SF1, displacing a protein-RNA interaction in favor 

of an RNA-RNA interaction (Liu et al., 2001).  The next complex, B, forms when 

the U4/U6-U5 tri snRNP is recruited, where U5 snRNA interacts with sequences 

at both the 5’ and 3’ splice sites (Behrens and Lührmann, 1991; Newman et al., 

1995).  It is thought that the interaction of U5 maintains the proximity of these 

sites within the catalytic core of the spliceosome (Sontheimer and Steitz, 1993; 

Wyatt et al., 1992).  The final, catalytic complex, C, involves a series of 

rearrangements of assembled proteins, RNA-protein interactions, and RNA-RNA 

interactions.  These include destabilization of U4/U6 base-pairing, allowing U6 to 

base-pair with the 5’ splice site by displacing U1 and also to interact with U2 

snRNA, forming a U2/U6 helix (Staley and Guthrie, 1999; Wassarman and Steitz, 

1993; Wassarman and Steitz, 1992).  Following these rearrangements, U1 and 

U4 are displaced and the two steps of splicing occur.  

 

Splicing Reaction 

Splicing occurs in two sequential trans-esterification reactions (Figure 1) 

within the catalytic core of the spliceosome (Reed and Palandjian, 1997; Staley 

and Guthrie, 1998).  In the first step, there is a nucleophilic attack on the 

phosphodiester bond at the 5’ splice site by the 2’-hydroxl of the conserved 

branch point adenosine residue to generate a lariat intermediate.  The free 3’-
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hydroxyl of the first exon then attacks the phosphodiester bond at the 3’ splice 

site to link the two exons.  The intron lariat, with a 2’-5’ phosphodiester linkage, is 

released and is subsequently debranched, degraded, and recycled.  The mature 

mRNA is then exported to the cytoplasm and spliceosomal components are 

recycled for new rounds of splicing.   

 

Alternative Splicing 

A surprising result from the human genome sequencing project was that 

the number of estimated genes (30-35,000) turned out to be far fewer than 

originally predicted based on expressed sequence tags (ESTs; 100,000-150,000 

genes) (Consortium, 2001; Venter et al., 2001).  Recent analysis puts the 

number of protein-coding genes at approximately ~20,500 (Clamp et al., 2007).  

Alternative splicing, the regulated process of differential inclusion or exclusion of 

regions of the mRNA, accounts in large part for this discrepancy.  This molecular 

phenomenon is arguably the most important source of proteomic diversity in 

higher eukaryotes with the ability to generate many different protein isoforms 

from a single RNA transcript.   The majority (60-75%) of human and mouse 

genes are subject to alternative splicing (Consortium, 2001; Johnson et al., 2003; 

Kan et al., 2001; Modrek et al., 2001; Zavolan et al., 2003).  Alternative splicing 

analysis of human chromosome 22 has led to estimates that 60% of genes 

produce at least two transcripts (Hide et al., 2001; Modrek and Lee, 2002).  

These estimates are likely conservative; with increased molecular capabilities to 

isolate and sequence cDNAs, it is expected that alternative splicing events will be 
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detected at an even higher frequency.  Interestingly, approximately one-third of 

alternative splicing events introduce premature termination codons (PTCs), which 

cause targeted degradation of transcripts by nonsense-mediated mRNA decay 

(NMD) (Lewis et al., 2003).  In effect, this is an on-off splicing switch, regulated 

by NMD. 

Alternative splicing represents an efficient expansion of the genome by 

producing several functional proteins from a single transcript.  This is 

accomplished via several mechanisms including the use of alternative 5’ or 3’ 

splice sites (also called cryptic splice sites), intron retention, exon skipping or 

inclusion, and selection between mutually exclusive exons (Figure 3).  These 

mechanisms have a variety of consequences, including disease (Figure 3).  

Additionally, alternative splicing events can also occur in a development and/or 

tissue-specific manner (Black, 2003; Lopez, 1998). 

The spliceosome faces a tremendous task in efficiently and accurately 

identifying splice sites.  This challenge is exacerbated in higher eukaryotes as 

exons are much smaller than introns and the splice site signals that define exon-

intron interfaces are poorly conserved (Cartegni et al., 2002).  Additionally, in a 

given transcript, there can be several sequences that represent potential splice 

sites that match consensus sequences better than the bona fide sites.  Such 

sequences are common in introns and define “pseudo-exons,” which are not 

normally included in the mature mRNA (Sun and Chasin, 2000).  The 

spliceosome has to differentiate between these and the correct splicing signals to 

maintain splicing fidelity.  Such degeneracy is a double-edged sword in that 
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Figure 3. Types of alternative splicing with disease-related examples.  (A)  
IGHD II is caused by exon 3 skipping in the GH-1 gene.  There is also a cryptic 
splice site in exon 3 that produces mRNAs lacking the first 45 nucleotides of 
exon 3.  Mutations at the 5’ end of exon 3 can result in loss of this portion of exon 
3 to produe a 20-kDa GH isoform.  (B) Exon 9 of the Wilms’ tumor suppressor 
(WT1) gene has two alternative 5’ splice sites.  These two sites are nine 
nucleotides apart and code for the amino acid sequence KTS.  Normally, the 
proximal 5′ splice site is favored resulting in production of the +KTS isoform.  In 
Fraiser syndrome, mutations inactivate the proximal 5’ splice site and result in –
KTS isoform production (Klamt et al., 1998).  (C) Intron 8 of the cystic fibrosis 
transmembrane conductance regulator (CFTR) gene contains variable length 
poly U,G and poly U tracts downstream of the branch point.  The lengths of these 
tracts affect exon 9 inclusion.  Exclusion causes atypical cystic fibrosis (Noone 
and Knowles, 2001).  (D) The fibroblast growth factor receptor 2 (FGFR2) gene 
has mutually exclusive exons (IIIb and IIIc) which are included in epithelia and 
mesenchyme, respectively.  In prostate cancer, loss of the exon IIIb containing 
isoform in epithelia promotes an epithelial to mesenchymal transition, which 
corresponds to a transition from a well-differentiated tumor to an aggressive 
tumor (Carstens et al., 1997).  (E) Fish-eye disease is caused by a mutation two 
base pairs upstream of the branch point in intron 4 of the lecithin:cholesterol 
acetyltransferase (LCAT) gene, which results in intron 4 retention (Kuivenhoven 
et al., 1996).  For all examples, the wild-type splicing pattern is shown above and 
the aberrant splicing pattern is shown below. 
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these ‘weaker’ splice sites (those conforming less to the consensus sequence) 

allow alternative splicing to occur.  However, as a result, they are harder to 

recognize by the splicing machinery.  The canonical splice site sequences are 

not sufficient for exon definition in a majority of higher organisms (Lim and Burge, 

2001).  To maintain splicing fidelity, additional cis-acting elements are required.  

These include splicing enhancers and silencers that influence splice site choice 

by recruitment of trans-acting factors to the pre-mRNA.  Enhancers promote 

splicing by recruiting a one or more members of a family of serine-arginine-rich 

proteins (SR proteins) whereas silencers typically inhibit splicing via interactions 

with heterogeneous nuclear ribonucleoproteins (hnRNPs) (Burd and Dreyfuss, 

1994; Cartegni et al., 2002; Liu et al., 1998; Smith and Valcarcel, 2000).  The two 

pathways often compete as binding of hnRNPs to silencers can inhibit splicing by 

antagonizing SR proteins and/or snRNPs (Eperon et al., 2000; Mayeda and 

Krainer, 1992; Wang et al., 2006). 

 

Splicing Enhancers 

 Splicing enhancers are short RNA sequences that are most commonly 

recognized by SR proteins to promote spliceosome assembly (Blencowe, 2000; 

Graveley, 2000; Liu et al., 1998).  They promote both constitutive and regulated 

splicing and can reside within exons or introns (exonic splicing enhancers (ESEs) 

or intronic splicing enhancers (ISEs)).  The majority of enhancers comprise short, 

6-10 nucleotide, purine-rich motifs though other types of enhancers have been 

identified (A/C-rich enhancers)  (Blencowe, 2000; Cartegni et al., 2002; Cooper 
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and Mattox, 1997; Coulter et al., 1997; Schaal and Maniatis, 1999).  Enhancers 

have been identified through mutations that block splicing, via computational 

analyses, and through identification of SR protein binding sequences.  Although 

often purine-rich, short, and degenerate, it appears that the specific sequence is 

more important than overall purine content (Tanaka et al., 1994).   

SR proteins play a crucial role for both constitutive and alternative splicing.  

There are ten core SR proteins and each contains one or two N-terminal RNA 

recognition motifs (RRMs) plus a C-terminal RS domain (Birney et al., 1993; Fu, 

1995).  Binding to certain RNA sequences via RRMs determines substrate 

specificity.  The RS domain consists of several arginine-serine dipeptides that 

facilitate protein-protein interactions with core spliceosome components or other 

trans-acting factors (Tacke and Manley, 1999).  Exonic enhancers direct U2AF 

and U2 binding to the 3’ splice site and U1 binding to the 5’ splice site via 

interactions with SR proteins, forming a ‘bridge’ of splicing factors across the 

exon.  This model of exon definition predominates in higher eukaryotes due to 

moderate exon size (50-250 nucleotides) and large intron size (Berget, 1995).  

An intron-definition model exists in organisms with large exons and small introns 

(Kennedy et al., 1998; Sterner et al., 1996).  SR proteins can also stimulate exon 

definition by antagonizing nearby silencers (Kan and Green, 1999).  
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Splicing in Disease 

Mistakes in splicing can cause disease directly, modify the severity of the 

disease phenotype, or be linked to disease susceptibility (Wang and Cooper, 

2007).  It is also becoming apparent that genetic variation affecting splicing 

efficiency contributes significantly to disease.  It is thought that 50-60% of 

mutations that cause disease do so by affecting splicing (Cartegni et al., 2002; 

López-Bigas et al., 2005; Maquat, 2001; Pagenstecher et al., 2006).  Exonic 

mutations are generally thought to be pathogenic due to introduction of missense 

or nonsense mutations or by altering the reading frame and hence the final 

protein product.  However, it is likely that a fraction of these mutations affect 

splicing (Pagani et al., 2005).  Likewise, intronic mutations can also affect 

splicing efficiency though these are rarely analyzed for disease susceptibility 

since introns are non-coding. 

 In addition to mutations within splicing motifs, mutations within essential 

splicing factors can also cause disease.  Two examples are spinal muscular 

dystrophy (SMA) and retinitis pigmentosum (Briese et al., 2005; Mordes et al., 

2006).  Both diseases are caused by mutations in proteins required for snRNP 

assembly and function.  The former results from loss of the SMN-1 protein 

(survival of motor neuron) that is involved in cytoplasmic snRNP assembly.  As a 

result, loss of SMN-1 impairs snRNP production (Winkler et al., 2005).  Complete 

loss of SMN-1 causes SMA.  Retinitis pigmentosum is a common form of 

blindness caused by mutations in one of more than 30 genes including three 
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dominant genes required for U4/U6-U5 tri-snRNP assembly and function 

(Chakarova et al., 2002; McKie et al., 2001; Vithana et al., 2001). 

 Phenotypic variability due to splicing mutations can also influence disease 

severity.  In the CFTR gene, a single nucleotide polymorphism (SNP) in intron 19 

creates a variably spliced exon whose inclusion increases cystic fibrosis severity 

(Chiba-Falek et al., 1998).  In the OAS1 (2’,5’ oligoadenylate synthetase) gene, a 

G→A mutation in intron 6 shifts the 3’ splice site, exacerbating a Type I Diabetes 

phenotype (Field et al., 2005).  Two polymorphisms in the 3’UTR of CTLA-4 

(cytotoxic T lymphocyte antigen 4) cause skipping of exon 3 to produce a soluble 

protein that lacks a critical ligand-binding domain.  Both mutations have been 

implicated in a host of autoimmune diseases such as Graves’ Disease and 

autoimmune hypothyroidism (Ueda et al., 2003).  These examples highlight the 

importance of splicing fidelity to prevent disease and underscore the importance 

of efficient and precise splicing. 

 

RNA Interference 

The molecular phenomenon of RNA interference (RNAi) was first 

characterized a decade ago in Caenorhabditis elegans (Fire et al., 1998) and 

subsequently in mammalian cells (Elbashir et al., 2001).  RNAi uses small RNAs 

to trigger RNA silencing via sequence specific base-pairing with an mRNA to 

induce mRNA degradation or translational repression (Figure 4).  Broadly, there 

are two classes of small RNAs involved in RNAi and they differ based on their 
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Figure 4. RNAi pathway and expression of exogenous RNAi effector 
molecules. Short hairpin RNAs (shRNAs) expressed from a vector are 
transcribed in the nucleus to produce 60-70 nt hairpin precursors, akin to miRNA 
precursors.  These are exported to the cytoplasm where they are cleaved by 
Dicer and are loaded into the RNA-induced silencing complex (RISC) and can 
locate and silence their target mRNA.  Alternatively, ~21 nt siRNAs can be 
introduced directly into the cytoplasm where they can be incorporated into RISC. 
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origin: microRNAs (miRNAs) and siRNAs.  The former are excised from 

endogenous genomic transcripts and the latter are generated from exogenous 

double-stranded RNAs (dsRNAs).  Since its discovery, RNAi has proven to be a 

potent molecular tool for both reverse genetics and for use as a potential 

therapeutic strategy to treat disease. 

 

Small Interfering RNAs 

It is thought that the RNAi machinery evolved as an innate immune 

response to viral attack.  Long viral dsRNAs are cleaved by an RNase III 

enzyme, Dicer, into small 21-25 nt duplexes called siRNAs (Bernstein et al., 

2001; Zamore et al., 2000).  Cleavage by Dicer leaves a characteristic 2 nt 3’ 

overhang on each strand.  In addition, each strand has a 5’ phosphate and a 3’ 

hydroxyl.  One strand of the siRNA duplex, the one exhibiting the lower free 

energy at its 5’ end, is loaded into an RNA-induced silencing complex (RISC) 

(Khvorova et al., 2003; Schwarz et al., 2003).  This guide strand directs silencing 

of complementary mRNAs in a sequence-specific manner by cleavage of the 

mRNA.  Cleavage of the mRNA occurs between bases 10 and 11 relative to the 

5’ end of the siRNA, allowing subsequent degradation of the cleaved mRNA 

(Elbashir et al., 2001; Orban and Izaurralde, 2005).  

 

microRNAs 

miRNAs are an endogenous class of eukaryotic genes whose mature 

product resembles siRNAs.  They function to fine-tune gene expression during 
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development and differentiation (Bartel and Chen, 2004). Primary miRNAs (pri-

miRNAs) are generally transcribed as long RNA polymerase II transcripts (Lee et 

al., 2004) that are cleaved in the nucleus by a microprocessor that includes an 

RNase III enzyme, Drosha, and a dsRNA-binding protein, DCGR8 (Gregory et 

al., 2004; Lee et al., 2003).  The resulting ~70 nt stem-loop product, the 

precursor miRNA (pre-miRNA), is exported to the cytoplasm via the nuclear 

karyopherin, Exportin-5 (Lund et al., 2004; Yi et al., 2003).  The pre-miRNA is 

then cleaved by Dicer, akin to long dsRNAs, to produce small ~22 nt dsRNA 

duplexes (Bernstein et al., 2001).  Importantly, cleavage by both Drosha and 

Dicer at either end of the duplex defines the termini of the mature miRNA and 

leaves 2 nt 3’ overhangs.  In concert with Dicer, TRBP (HIV-1 TAR RNA-binding 

protein) and PACT (protein activator of PKR), the mature miRNA is loaded into 

RISC (Chendrimada et al., 2005; Lee et al., 2006).  RISC is the effector complex 

for RNAi, the catalytic components of which are the Argonaute (AGO) family of 

proteins.  AGO2 is the endonucleolytic component of human RISC and is the 

only catalytically active member of the Argonaute family in mammals (Liu et al., 

2004).  In the case of siRNAs, AGO2 is also responsible for cleaving the 

passenger strand of the siRNA duplex prior to the guide strand loading into RISC 

(Matranga et al., 2005; Rand et al., 2005).  For miRNAs, the passenger strand is 

released. 

 MicroRNAs generally target the 3’ UTRs of mRNAs.  Typically, and unlike 

siRNAs, miRNAs do not exhibit perfect base-pairing with their target mRNA and 

as such it seems that miRNAs function by repressing translation rather than by 
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mRNA cleavage.  These mRNAs accumulate in specific cytoplasmic entities 

known as processing bodies (P-bodies) (Liu et al., 2005).  Transcripts that are 

associated with P-bodies can either be degraded or can return to translation 

(Parker and Sheth, 2007).  On occasion where there is perfect complementarity 

between the miRNA and its target, cleavage of the mRNA ensues (Yekta et al., 

2004).  Nucleotides 2-8 at the 5’ end of the miRNA are referred to as the seed 

region and usually show perfect complementarity with the target mRNA.  It is this 

region of the mature miRNA that appears to be most important for the interaction 

between the two RNA species (Lewis et al., 2005).  Computer algorithms usually 

emphasize seed pairing in identifying potential targets. 

 

Therapeutic RNAi 

 The beauty of the sequence specificity of RNAi is that it lends itself well to 

therapeutic applications since many disorders are caused by inappropriate gene 

expression.  Much research has progressed in this direction as RNAi has the 

potential to treat a multitude of genetic disorders. 

 

Therapeutic RNAi effector molecules 

Exogenous siRNAs can be introduced into cells via two mechanisms, 

each exploiting the endogenous RNAi pathway.  First, siRNAs can be directly 

administered as synthetic 21 nt dsRNA duplexes with 2 nt 3’ overhangs that 

mimic Dicer substrates and are directly incorporated into RISC (Figure 5a).  

Second, vectors expressing short hairpin RNAs (shRNAs) can be delivered to  
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Figure 5. RNAi effector molecules.  (A) siRNAs can be delivered exogenously 
as 21-nt duplexes. (B) shRNAs can be expressed from a Pol III promoter such 
that the 3’ 2-nt overhang is produced by a transcription termination sequence.  
(C) shRNAs can be expressed as long Pol II transcripts expressing one or more 
hairpins.  These hairpins are processed as miRNAs with initial cleavage by 
Drosha.   
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cells (Brummelkamp et al., 2002).  shRNA precursors imitate miRNA precursors 

by forming stem-loop structures recognized by Dicer.  shRNAs can be expressed 

from either Pol II or Pol III promoters (Figure 5b,c).  The former allows tissue 

specific expression.  Additionally, several shRNAs can be expressed from a 

single polycistronic transcript, thus potentially increasing potency by enabling 

knock-down of a single mRNA by different shRNAs (Sarnow et al., 2006).  

Expression from a constitutive Pol III promoter such as H1 or U6 yields a 

transcript that mimics a pre-miRNA and can be directly exported to the cytoplasm 

via Exportin 5 (Kim and Rossi, 2007).  RNAi induced by siRNAs tends to be 

transient, effective only as long as the siRNA is present.  Conversely, RNAi 

triggered by shRNAs is effective for as long as the shRNA continues to be 

transcribed (Brummelkamp et al., 2002; Paddison et al., 2002). 

 

siRNA Design 

The first step in designing therapeutic siRNAs is to identify potential 

sequences that allow knock-down of specific target mRNAs, usually via a 

bioinformatic approach.  This is followed by in vitro testing to determine silencing 

efficacy at the lowest concentration and to eliminate potential off-target effects 

(OTEs; discussed below).   The siRNA strand with lower free energy at its 5’ end 

is incorporated into RISC to activate the complex.  In siRNA drug design, strand 

selection can be manipulated by making a single nucleotide substitution at the 

end of the duplex to favor incorporation into RISC (Schwarz et al., 2003).  More 

potent siRNAs generally have a moderate-to-low GC content (30-52%); if the GC 
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content is too high, there may be difficulty in unwinding and if it is too low it may 

not interact well with its target mRNA (Boese et al., 2005; Reynolds et al., 2004). 

A lack of secondary structure and low internal stability are also characteristics of 

optimal siRNAs (Boese et al., 2005; Reynolds et al., 2004).  It is also desirable to 

design siRNAs against conservesd mRNA sequences (de Fougerolles et al., 

2007).  As an example, the Human Immunodeficiency Virus (HIV) can mutate 

rapidly to evade host immune responses and also RNAi (Scherer et al. 2007).  

Therefore, an siRNA that targets a conserved region of the mRNA can reduce 

this (Naito et al. 2007).  For all siRNAs, regardless of design, innate immune 

responses must be evaded as well as avoiding potential OTEs and saturation of 

endogenous host RNAi components (discussed in depth below).   

In higher vertebrates, the introduction of long dsRNAs (>30 bp) activates 

Protein Kinase R (PKR) and induces an interferon (IFN) response, directing 

cessation of global gene expression (Manche et al., 1992).  There are a limited 

number of reports that small siRNA duplexes can also trigger this innate immune 

response, as Toll-like receptors (TLRs) expressed in endosomes can recognize 

both single- and double-stranded RNAs to elicit an IFN response (Seth et al., 

2006).  In particular TLR3, TLR7 and TLR8 have been shown to activate such a 

response to exogenous siRNAs in vivo in mice and in vitro in human blood 

(Hornung et al., 2005; Kim and Rossi, 2007; Marques and Williams, 2005).  GU-

rich immunostimulatory sequence motifs recognized by TLRs should be avoided 

in siRNA design – 5’-GUCCUUCAA-3’ and 5’-UGUGU-3’ (Hornung et al., 2005; 

Judge et al., 2005).  Immune stimulation by synthetic siRNAs can be completely 
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abrogated by incorporation of 2'-O-methyl uridine or guanosine nucleotides into 

one strand of the siRNA duplex (Judge et al., 2006).   

Avoiding complementarity between the siRNA and untargeted mRNAs is 

the key to avoiding off-target silencing.  miRNA seed sequences usually have 

increased complementarity with the 3’UTR of target mRNAs, copmpared to the 3’ 

end of the miRNA.  As such, particular attention should be addressed in avoiding 

base-pairing between the 5’ region of an siRNA and any off-target mRNAs 

(Birmingham et al., 2006; Jackson et al., 2003; Jackson et al., 2006b).  A recent 

report showed that a simple 2’O-methyl ribosyl substitution at position 2 of the 

guide strand reduced silencing of all partially complementary mRNAs but did not 

affect silencing of the perfectly matched target transcript (Jackson et al., 2006a).  

Grimm and colleagues recently showed that abundant shRNA expression 

using adeno-associated virus (AAV) vectors caused toxicity in mice due to 

saturation of Exportin-5, which prevented nuclear export of endogenous liver 

miRNAs (Grimm et al., 2006).  Lower hepatic expression of shRNAs via AAV-

vectors does not appear to be toxic (Narvaiza et al., 2006).  Expression of 

shRNAs from lentiviral vectors in primary lymphocytes with different Pol III 

promoters demonstrated that expression via U6 caused gradual cytotoxicity 

whereas that by H1 showed reduced expression but no cell death and was still 

able to silence the CCR5 (chemokine receptor-5) target mRNA (An et al., 2006).  

Considering this, siRNAs appear more desirable than shRNAs as they are 

introduced into the RNAi pathway at a later point and therefore are not as likely 
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to be detrimental by causing toxicity due to saturation of endogenous RNAi 

components. 

 

Stability of siRNAs 

Although double stranded, siRNAs are still rapidly degraded by serum 

RNAses with a half-life of minutes in human plasma (Choung et al., 2006; Layzer 

et al., 2004).  Additionally the molecular mass of siRNAs is smaller than the 

threshold for glomerular filtration leading to premature removal by renal 

clearance (Dykxhoorn and Lieberman, 2006).  For use as a viable therapeutic, 

various chemical modifications have recently been developed to increase stability 

and improve efficacy without adversely affecting biological activity.  Importantly, 

Chiu and Rana showed that the 2’-hydroxyl (2’-OH) that differentiates RNA from 

DNA is not required for RNAi (Chiu and Rana, 2003).  Modifications of the 2’-OH 

group have successfully increased persistence of siRNAs compared to non-

modified counterparts.  These include addition of 2’-O-methyl-(2’-O-me)-purines, 

2’-fluoro-(2’-F)-pyrimidines or locked nucleic acid (LNA) nucleotides (Allerson et 

al., 2005; Braasch et al., 2003; Chiu and Rana, 2003; Choung et al., 2006; 

Czauderna et al., 2003; ElmÈn et al., 2005) (Figure 6a,b).  Phosphorothioate 

linkages on the siRNA also increase stability by preventing nuclease activity 

while retaining wild-type activity (Amarzguioui et al., 2003; Choung et al., 2006).  

Extensive modifications of siRNAs against Hepatitis B virus (2’-F on all 

pyrimidines and 2’-O-me on all purines plus a 3’ terminal phosphorothioate 

linkage) increased the half-life from 5 minutes (unmodified) to 3 days in 90% 
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human serum yet still inhibited viral replication (Morrissey et al., 2005a).  Other 

additions include terminal peptide sequences on the siRNAs, which can increase 

both stability and uptake (Chiu et al., 2004).  In most cases, modifications that 

confer exonuclease resistance appear generally well tolerated and silencing 

activity is retained.  Additional stability against nucleases can also occur 

depending on the mode of siRNA delivery and packaging, such as liposomes or 

nanoparticles. 

 

RNAi Delivery 

Efficient and effective delivery of RNAi effector molecules is the most 

challenging obstacle in the development of therapeutic RNAi.  Various methods 

have been developed to deliver both shRNAs and siRNAs. 

 

Viral Delivery of shRNAs 

shRNAs can be produced from viral expression vectors and although this 

gene therapy approach has its limitations, especially regarding safety issues 

(ESGT, 2006; Cavazzana-Calvo and Fischer, 2007), it may be the best option for 

long-term delivery and treatment of chronic diseases (Kim and Rossi, 2007).  

There are three types of viral vectors, each with advantages and disadvantages: 

lentivirus vectors, adenovirus, and adeno-associated virus (AAV).  Lentiviral 

vectors transduce both dividing and non-dividing cells and exert stable shRNA 

expression with broad host tropism (Sumimoto and Kawakami, 2007).  However, 

they require integration of the shRNA transgene into the genome, with potential 
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insertional mutagenic consequences.  shRNA delivery via adenovirus vectors is 

advantageous due to robust shRNA expression and also the potential ability to 

treat cancers by generating tumor-specific variants that conditionally replicate in 

and lyse transformed cells (Yoo et al.).  However, these vectors can be strongly 

immunogenic (Grimm and Kay, 2007).  Adenoviral and AAV vectors express 

transgenes episomally with no or very low (AAV) levels of genomic integration 

(Grimm and Kay, 2007).  AAV vectors efficiently infect a wide variety of dividing 

or quiescent cells and have already been clinically studied in multiple tissues 

(Manno et al., 2006).  The ability to pseudotype shRNA genomes with a huge 

array of AAV capsids (both natural and synthetic) can confer tissue specificity 

(Grimm and Kay, 2003).  Disadvantages to use of adenoviral and AAV vectors 

include somewhat moderate shRNA expression and the necessity for repeat 

administrations that can be strongly immunogenic (Kim and Rossi, 2007). 

 

Non-Selective delivery of siRNAs 

Early RNAi therapeutic studies delivered synthetic siRNAs (or vectors 

encoding shRNAs), using high-pressure, large volume, tail vein injections in mice 

to target these RNAs to the liver, kidney, spleen, pancreas and lung (Lewis et al., 

2002; Lewis and Wolff, 2005; McCaffrey et al., 2002).  The elevated venous 

pressures from this method transiently disrupt the plasma membranes of highly 

vascularized tissues, allowing siRNA uptake (Dykxhoorn and Lieberman, 2006).  

This hydrodynamic approach is not applicable for humans as it has been shown 

to cause right-sided heart failure (Dykxhoorn et al., 2006; McCaffrey et al., 2002). 
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Like all nucleic acids, siRNA duplexes are negatively charged polymers 

and cannot easily penetrate hydrophobic cell membranes (Kim and Rossi, 2007; 

Li et al., 2006).  Systemic delivery of modified siRNAs or siRNAs conjugated to 

cholesterol or packaged within a liposomal particle has been achieved by 

intravenous injection, though this is only clinically relevant if targeting the liver or 

jejunum (Figure 6c,d).  Cholesterol is transported in the circulation via lipoprotein 

particles, high-density lipoprotein (HDL) and low-density lipoprotein (LDL) (Brown 

and Goldstein, 1985).  Conjugation of cholesterol to the 5’ end of the passenger 

strand increased stability of siRNAs targeted to apoplipoprotein B (ApoB) mRNA 

after intravenous injection in mice and led to mRNA reduction in both the liver 

and jejunum (55% and 70%, respectively) (Soutschek et al., 2004).  Recent work 

has shown that mice injected with HDL-cholesterol-siRNA conjugates had an 8-

15 fold greater reduction in ApoB protein in the liver, gut and blood than with just 

cholesterol-siRNA conjugates (Wolfrum et al., 2007).  HDL receptors facilitate 

uptake by the liver, gut, kidney, adrenal glands and ovaries, whereas LDL 

primarily targets the liver.  Null mice lacking the HDL scavenger receptor class B 

type I (SR-BI) exhibit a substantial reduction in cholesterol-siRNA uptake 

(Wolfrum et al., 2007).  HDL-cholesterol-siRNA complexes are large enough to 

avoid renal clearance, increasing the overall stability and efficacy.   

Liposomes are vesicles with an internal aqueous lumen enclosed by a 

phospholipid bilayer.  When liposomes complex with siRNAs or other nucleic 

acids, they are referred to as lipoplexes, which in turn can be further adapted to 

include multiple lipids (de Fougerolles et al., 2007).  An important advance in  
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RNAi therapeutics was the first example of siRNA delivery in non-human 

primates.  siRNAs were encapsulated in stable nucleic acid-lipid particles 

(SNALPs) containing fusogenic and cationic lipids and polyethylene glycol (PEG; 

Figure 6d), which, upon injection reduced ApoB mRNA levels in the liver for 11 

days after a single dose (Zimmermann et al., 2006).  Importantly, silencing was 

achieved using a dose 20x less than that mentioned above with cholesterol-

siRNA conjugates (2.5 mgkg-1 in cynomologous monkeys versus 50 mgkg-1 in 

mice) (Soutschek et al., 2004; Zimmermann et al., 2006).  That SNALPs can be 

used to target siRNAs to organs other than the liver has not yet been published.  

Local injection of lipoplexes has been successfully used to deliver siRNAs 

to several organs including the eye, CNS, vagina, lung, intestine and also to 

tumor tissue (Bitko et al., 2005; Bumcrot et al., 2006; Kumar et al., 2006; Luo et 

al., 2005; Masiero et al., 2007; Palliser et al., 2006; Reich SJ, 2003; Tompkins et 

al., 2004; Zhang et al., 2006).  Most of these deliveries involve direct local 

injection of the siRNA with the exception of the lung and vagina.  Delivery to the 

lung to treat respiratory syncytial virus (RSV) or influenza was achieved by 

intranasal instillation (Bitko et al., 2005; Tompkins et al., 2004).  For vaginal 

epithelium delivery, siRNAs were delivered by tissue transfection, mixing the 

siRNAs with a lipid transfection reagent (Palliser et al., 2006). 

Polyethylenimine (PEI) polymers can also be used to deliver siRNAs.  

These polymers are highly cationic and when endocytosed into cells they disrupt 

the endosomal pH, leading to osmotic release of the siRNA-polyplex into the 

cytoplasm (Boussif et al., 1995; de Fougerolles et al., 2007).  PEI-siRNA 
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complexes have been used successfully to treat influenza in mice (Ge et al., 

2004) and Ebola in guinea pigs (Geisbert et al., 2006).  However, at higher 

doses, PEI appears to be extremely toxic (de Fougerolles et al., 2007). 

 

Selective delivery of siRNAs 

Selective siRNA administration is desirable as it could enable a lower drug 

dose, thus reducing potential OTEs in non-target tissues (Kim and Rossi, 2007).  

This has been achieved by packaging siRNAs within nanoparticles coated with 

receptor-targeting ligands or by coupling siRNAs to antibody fragments and 

aptamers (Chu et al., 2006; McNamara et al., 2006; Peer et al., 2007; Song et 

al., 2005; Zhang et al., 2004).  siRNAs are delivered in a cell-specific fashion 

mediated by endocytosis.  

RNA aptamers are RNA ligands that bind to cell surface receptors and can 

be linked to siRNAs either covalently forming an ‘all-RNA’ molecule (McNamara 

et al., 2006) or via modular streptavidin bridges that conjugate biotinylated 

siRNAs (Chu et al., 2006).  The advantage of the former is that the ability of 

specific cell targeting and RNAi are both available from a single RNA molecule 

(Figure 6e).  Although using RNA aptamers may be more simple and flexible, the 

small size of the aptamers (25-35 bases) means it is a viable approach for local 

delivery in vivo but would not be stable unless further conjugated due to renal 

clearance and short half-life (de Fougerolles et al., 2007). 

Another powerful mode of selective systemic delivery involves the use of 

nanoparticles.  Here, siRNAs are complexed with cationic peptides and polymers 
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via interactions with the negative phosphate backbone of the RNA (Juliano, 

2005).  Cell-specific targeting is achieved by coating the nanoparticle with cell-

type-specific ligands.  In one example, transferrin was covalently linked to short 

polycations containing cyclodextrin polymers that provide low toxicity and the 

complex was delivered via low-pressure, low-volume tail vein injections to a 

mouse model of metastatic Ewing’s sarcoma (Hu-Lieskovan et al., 2005).  This 

approach dramatically inhibited tumor growth as compared to control siRNAs in 

transferrin receptor-expressing tumor cells and, importantly, relapse rates were 

low compared to chemotherapy (Hu-Lieskovan et al., 2005).   

In two other cell-specific delivery approaches, either a plasmid encoding 

an shRNA within a PEG-PEI nanoparticle was linked to folate, or siRNAs 

packaged within nanoparticles comprising bacteriophage phi29 pRNA conjugated 

to folate, were used to target nasopharyngeal carcinoma cells which overexpress 

the folate receptor (Guo et al., 2006; Hwa Kim et al., 2005).  In the latter, phi29 

utilizes the 120-bp pRNA to accomplish dsDNA packaging into a preformed 

procapsid (Garver and Guo, 1997).  PEG-PEI nanoparticles containing siRNAs 

have also been conjugated to Arg-Gly-Asp (RGD) peptide ligands to form 

‘nanoplexes’ that target siRNAs to integrin-expressing tumor cells both in 

cultured cells and in vivo (Schiffelers et al., 2004).  

Immunoliposomes, where antibodies are conjugated to liposomes, have 

also been used to confer specificity.  Liposomal complexes encapsulating shRNA 

expression vectors were conjugated to two receptor-specific monoclonal 

antibodies that recognize the human insulin receptor and the mouse transferrin 
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receptor (Zhang et al., 2004).  The target was human epidermal growth factor, 

expressed in human gliomas that were implanted within the brain of mice.  

Receptor-mediated trancytosis across the blood-brain barrier was achieved via 

binding of the mouse transferrin antibody to its receptor and receptor-mediated 

endocytosis via binding of the human insulin antibody and its cognate receptor.  

Weekly injections of these immunoliposomes resulted in a significant increase in 

mouse survival time (Zhang et al., 2004). 

Protamine is a positively charged, arginine-rich protein that binds nucleic 

acids with high affinity and is involved in DNA nucleation in sperm.  In an elegant 

study, heavy chain antibody fragments specific for the HIV gp120 protein were 

conjugated to a protamine fragment bound to siRNAs to selectively deliver 

siRNAs to HIV-infected cells in vivo (Song et al., 2005) (Figure 6f).  In a similar 

approach, an antibody fragment specific to the open conformation of the integrin 

lymphocyte function-associated antigen-1 (LFA-1) was used to deliver siRNAs.  

LFA-1 alters its conformation to an open state only in activated cells and this 

approach specifically targeted activated rather than unstimulated leukocytes 

(Peer et al., 2007). 

 

Clinical Trials 

Currently there are three different RNAi-based therapies that are 

undergoing clinical trials (de Fougerolles et al., 2007).  Two of these, Sirna-027 

(Sirna Pharmaceuticals; Merck) and Cand5 (also known as bevasiranib sodium; 

Opko Health), target vascular endothelial growth factor (VEGF) via intravitrial 
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injection (de Fougerolles et al., 2007).  VEGF plays a pivotal role in ocular 

angiogenesis, causing age-related macular degeneration (AMD) (Bressler, 2004; 

Ferrara, 2002).  Ocular injection is attractive for ease of delivery with the 

additional benefits of fewer nucleases and less protection from the immune 

system.  Cand5 began a phase III trial in July 2007 and siRNA-027 is in phase II 

trials (Perkel, 2007).  The third siRNA trial is ALN-RSV01 (Alnylam), an antiviral 

siRNA that targets RSV, a respiratory viral infection that affects both children and 

adults.  The siRNA targets a viral nucleocapsid gene via intranasal delivery.  

ALN-RSV01 is currently in phase II trials (Perkel, 2007).  Another promising 

RNAi-based strategy is AKIi-5 (Quark and Silence Therapeutics), a modified 

siRNA that prevents acute kidney injury (AKI; also known as acute renal failure).  

AKI develops rapidly (within hours to days) post-surgery with a mortality rate of 

65%.  AKIi-5 targets p53, a transcription factor associated with DNA repair and 

apoptosis.  Temporary inhibition of p53 during AKI delays apoptosis, allowing 

natural repair mechanisms to restore normal DNA and cellular intergrity.  AKli-5 

is expected to enter phase I clinical trials later this year and will be the first 

systemic siRNA tested in humans (Quark Pharmaceuticals, Inc. Press Release - 

http://www.medicalnewstoday.com/articles/89268.php). 

  

In the incredibly short time since the discovery of RNAi, much has been 

accomplished in characterizing and utilizing this powerful mechanism.  That there 

are current clinical trials employing siRNAs only six years after RNAi was first 

observed in mammalian cells is truly astounding and it is possible that RNAi as a 
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treatment for disease may usher in an era similar to the introduction of antibiotics 

in the 20th century. 

 

Growth Hormone 

Growth hormone (GH) is produced in the anterior pituitary gland and 

promotes postnatal growth of bone and muscle.  It is the main determinant of 

longitudinal growth and overall body size (Isaksson et al., 1982). GH, also known 

as somatotropin, is composed of 191 amino acids and is synthesized, stored and 

secreted from somatotrophs, which constitute the major cell type in the anterior 

pituitary.  Regulated expression of GH is essential for normal stature and also for 

homeostasis of carbohydrate, protein and fat metabolism (Gibney et al., 2003; 

Jorgensen et al., 2004; Norrelund et al., 2002; Ohlsson et al., 1998). 

 

Anterior Pituitary Hormones 

The pituitary gland is composed of two distinct units, the anterior pituitary 

(adenohypophysis) and the posterior pituitary (neurohypophysis) that differ in 

morphology and function and also embryologically.  The anterior pituitary is 

derived from an epithelial invagination of the oral mucosa known as Rathke’s 

pouch.  This gland is connected to the hypothalamus by the pituitary stalk, 

allowing communication between the two organs.  Five distinct cell types 

comprise the anterior pituitary and each secretes a specific hormone(s).  These 

are somatotrophs (secrete GH), lactotrophs (prolactin; PRL), corticotrophs 

(adrenocorticotropin; ACTH), thyrotrophs (thyroid-stimulating hormone; TSH) and 



 35 

gonadotrophs (follicle-stimulating hormone; FSH and luteinizing hormone; LH).  

Secretion of these hormones is controlled directly by the hypothalamus and is 

mediated via hypothalamic releasing hormones, which can promote or inhibit 

specific hormone secretion.   

 

Growth Hormone Genetics 

The human GH gene, GH-1, resides within a cluster of highly homologous 

(92-98% nucleotide identity) genes on chromosome 17 (17q23) (Chen et al., 

1989; Procter et al., 1998).  This 66.5 kb cluster is thought to have arisen from a 

series of gene duplications and consists of five genes: GH-1, chorionic 

somatomammotropin genes 1 and 2 (CSH-1 and CSH-2), a chorionic 

somatomammotropin pseuodgene (CSHP-1) and a second GH gene (GH-2) 

(Barsh et al., 1983; Chen et al., 1989; Hirt et al., 1987; Miller and Eberhardt, 

1983).  These genes lie in the same transcriptional orientation and share a 

similar structure of five exons separated by four small introns (Fiddes et al., 

1979; Jacquemin et al., 1990) (Figure 7).  CSH-1, CSH-2 and GH-2 are all 

expressed in the placenta and contribute to fetal growth (Cooke and Liebhaber, 

1995).  GH-2 encodes GH-V (GH-variant) that differs from the protein encoded 

by GH-1 by 13 amino acids.  GH-V replaces pituitary GH in the maternal 

circulation during the second half of pregnancy (Frankenne et al., 1988).  With 

the exception of CSHP, all genes in the cluster encode a 217 amino acid pre-

hormone that is cleaved to yield a mature hormone with 191 amino acids and a 

molecular weight of 22-kDa (Mullis, 2005). 



 36 

 Somatotrophs constitute 40-50% of cells in the anterior pituitary and 3% of 

pituitary transcripts encode GH (Chen et al., 1989).  There are two main 

elements that regulate GH-1 transcription, a highly polymorphic proximal 

promoter (containing at least 16 single nucleotide polymorphisms; SNPs) and a 

locus control region (LCR) (Cooke and Liebhaber, 1995; Giordano et al., 1997; 

Horan et al., 2003; Jones et al., 1995; Wagner et al., 1997).  Several cis-acting 

factors have been implicated in regulation of GH-1 expression, including 

regulatory sequences within the proximal GH-1 promoter.  The most important of 

these are binding sites for the pituitary-specific transcription factor, Pit-1, which 

stimulates GH-1 expression (Mangalam et al., 1989).  Pit-1 regulates important 

differentiating steps during embryological development of the anterior pituitary 

(Theill and Karin, 1993). Pit-1 also regulates the expression of PRL and TSH as 

well as GH.  Differences in the proximal promoter between GH-1 and other 

related genes in the GH cluster are thought to account for the difference in 

expression of these genes (Procter et al., 1998).  The LCR is located between 

7.5–40-kb upstream of GH-1 and is required for expression of all five genes in 

the GH cluster (Ho et al., 2002; Jones et al., 1995; Su et al., 2000).  This region 

also contains binding sites for Pit-1, which are responsible for the high level, 

somatotroph-specific expression of GH-1 (Shewchuk et al., 1999; Shewchuk et 

al., 2002).  
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Growth Hormone Secretion 

Human GH is active as a monomeric globular protein with a molecular 

mass of 22-kDa.  The nascent GH precursor polypeptide is 217 amino acids in 

length and includes an N-terminal signal peptide for translocation into the 

endoplasmic reticulum (ER).  After cleavage of the leader, the remaining 191 

amino acids exist as a single polypeptide with two intramolecular disulfide 

bridges, which fold into a structure containing four anti-parallel α-helices.  The 

first two helices are parallel to each other and anti-parallel to the last pair (Abdel-

Meguid et al., 1987; De Vos et al., 1992).  From the ER, GH is transported to the 

Golgi.  There are two current models for transport through the Golgi body; the 

vesicular model and the cisternal maturation model.  In the former, secretory 

proteins traverse the Golgi via distinct vesicles between cisternae before 

emerging from the trans-Golgi (Dannies, 1999; Dannies, 2001).  In the 

maturation model, newly secreted proteins from the ER align with pre-Golgi 

intermediates and these structures mature into cis-cisternae.  These cisternae 

then ‘mature’ into the medial- and then trans-Golgi cisternae.  The trans-Golgi 

network disintegrates, forming secretory vesicles (Dannies, 1999; Dannies, 2001; 

Rambourg et al., 1992).  

An important aspect of GH secretion, and indeed the secretion of other 

neuroendocrine hormones, is the ability to rapidly secrete hormone in response 

to stimuli.  This is achieved by packaging of concentrated hormone aggregates 

within dense-core secretory vesicles (DCSVs), so called due to their dense 

appearance in electron microscopy (Dannies, 2002).  Aggregation begins in the 
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Golgi and may serve two functions; first to concentrate the GH and also to sort 

secretory granule proteins (Dannies, 2002).  A model for GH aggregation 

suggests it is induced by acidity; the pH from the ER to the trans-Golgi to the 

secretory granule is 7.2, 6 and 5.5, respectively (Anderson and Pathak, 1985; 

Wu et al., 2001).  All cells have an acidic trans-Golgi lumen but hGH and human 

PRL do not form aggregates in cell lines that do not store proteins within 

secretory granules (Lee et al., 2001; Sankoorikal et al., 2002).  The presence of 

both Zn2+ and Cu2+ ions appears relatively specific to the neuroendocrine 

secretory pathway and may be required in addition to low pH (Dannies, 2002; 

Mullis et al., 2002).  hGH contains well-defined Zn2+ binding sites that induce 

dimerization (Cunningham et al., 1991).  Current hypotheses suggest that while 

these aggregates form in the trans-Golgi, soluble proteins that also occupy the 

lumen are removed in vesicles leaving condensed aggregates behind (Dannies, 

2002). 

When GH releasing hormone (GHRH) interacts with its receptor on the 

somatotroph cell surface, it triggers a series of cascades that culminate in an 

influx of intracellular Ca2+, stimulating swelling of DCSV and release of GH 

(Jena et al., 1997; Lin-Su and Wajnrajch, 2002).  After stimulation, DCSVs swell 

and fuse with the porosome, or fusion pore, a basket-like structure within the 

plasma membrane that contains pores open to the external environment 

(Anderson et al., 2004; Jena et al., 2002; Jena et al., 1997; Jeremic et al., 2003). 

At the porosome base t-SNAREs and calcium channels in the membrane 

facilitate the docking and fusion of secretory vesicles (Wheatley 2007).  An 
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increase in pressure causes release of GH, propelling it into the circulatory 

system (Cho et al., 2002a; Jena et al., 2002).  Studies in pigs show that 

stimulated GH cells contain twice the number of both empty and partially filled 

vesicles than resting cells and that the total number of secretory vesicles does 

not alter after release (Lee et al., 2004).  This supports the notion that during 

secretion, DCSVs transiently dock at the fusion pore to release vesicular content, 

refuting the classical theory of total fusion of the secretory granule with the 

plasma membrane (Breckenridge and Almers, 1987; Cho et al., 2002a; Cho et 

al., 2002b; Lee et al., 2004; Valentijn et al., 1999).  

 

Regulation of Growth Hormone Secretion 

GH is secreted from the anterior pituitary in pulsatile bursts that peak at 

night.  Secretion is under the concerted control of three hypothalamic hormones: 

GH releasing hormone (GHRH), somatostatin and grehlin.  GHRH and grehlin 

are positive regulators, stimulating GH release, while somatostatin is a negative 

regulator (Anderson et al., 2004).  GHRH is mainly expressed in the arcuate 

nucleus of the hypothalamus and is released from neurosecretory terminals in 

the median eminence (Frohman and Kineman, 1999).  Ghrelin is a natural ligand 

for the GH-secretagogue receptor, a G protein-coupled receptor, and stimulates 

GH release directly and also by upregulating GHRH (Caminos et al., 2005; 

Kojima et al., 1999).  It is produced by the stomach, small intestine, and central 

nervous system (Lee et al., 2002).  Unlike GHRH, ghrelin does not stimulate 

transcription of GH-1 (Barinaga et al., 1983).  Somatostatin is a cyclic 14- or 28-
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amino acid residue containing peptide that suppresses GH release, but does not 

seem to affect GH synthesis in the somatotroph (Muller et al., 1999).  

Somatostatin itself is regulated by GH and GHRH, forming a feedback loop that 

regulates GH secretion.  

 

Growth Hormone Signaling Pathway 

Once secreted into the circulatory system, GH acts on various target cells 

expressing the GH receptor (GHR), and GH responsiveness is largely dependent 

on GHR expression (Leung et al., 1987).  GHRs are most highly expressed in 

hepatocytes and to a lesser extent in muscle, bone, kidney, mammary gland, 

adipose and embryonic stem cells, among other cell types (Kelly et al., 1991).  

GHRs belongs to the family of hematopoietic cytokine receptors with single-

transmembrane domains with a heavily glycosylated extracellular domain (Cooke 

and Liebhaber, 1995; Cosman, 1993).  The receptor is present as a dimer on the 

cell surface and binds one GH molecule at two distinct sites, surprising since GH 

itself has no apparent symmetry (Brown et al., 2005; De Vos et al., 1992; Harding 

et al., 1996; Ross et al., 2001). GH binding induces a conformational change in 

the GHR, which activates two Janus Kinase 2 (JAK2) molecules.  These in turn 

autophosphorylate multiple tyrosine residues and subsequently phosphorylate 

GHR, thereby initiating several signaling proteins and pathways (Lanning and 

Carter-Su, 2006).  Activation of JAK2 is thought to be a key step in GH signaling 

(Argetsinger et al., 1993).  The activated GHR-JAK2 complex provides a platform 

for the Signal Transducers and Activators of Transcription (Stats) family of 



 41 

proteins.  After binding to this complex, Stats 1, 3, 5a and 5b are phosphorylated 

by JAK2 and subsequently dimerize, translocate to the nucleus, and act as 

transcription factors for a host of GH-related genes (Herrington et al., 2000; 

Kurzer, 2003).  Binding of JAK2 to GHR also activates signal transduction via the 

Mitogen Activated Protein Kinase (MAPK) and phosphatidylinositol 3′-kinase 

(PI3K) pathways (Smit et al., 1999; Zhu et al., 2001).  GH-induced signal 

transduction can also occur independently of the GHR-JAK2 interaction (Zhu et 

al., 2002). 

 Prolonged activation of JAK2 can lead to unwanted cell transformation 

and cancer so it is vital that GH-signaling is precisely regulated.  The Suppressor 

of Cytokines (SOCS) protein family are negative regulators of GH-signaling 

(Lanning and Carter-Su, 2006).  SOCS 1, 2 and 3 achieve this by binding to 

JAK2, inhibiting its activity and targeting ubiquitination of the GHR-JAK2 complex 

(Flores-Morales et al., 2006; Hansen et al., 1999; Ram and Waxman, 1999).  The 

GH signaling pathway is also negatively regulated by many protein tyrosine 

phosphatases (Flores-Morales et al., 2006).  

 

Physiological Effects of Growth Hormone 

A major role of growth hormone in stimulating body growth is to stimulate 

the liver and other tissues to secrete Insulin-like Growth Factor 1 (IGF-1) 

(D'Ercole and Calikoglu, 2001).  IGF-1 is secreted by the liver in response to GH 

stimulation and low serum IGF-1 levels indicate GH deficiency (GHD) 

(Clemmons, 2007).  GH affects a variety of different tissues.  For bone growth, it 
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promotes chondrocyte proliferation (indirectly, via IGF-1) and differentiation 

(directly) (Olney, 2003).  GH is also involved in the regulation of protein, lipid and 

carbohydrate metabolism both directly and via IGF-1 (Moller et al., 2007; 

Norrelund, 2005).  IGF-1 is implicated in muscle growth, stimulating both 

differentiation and proliferation of myoblasts, as well as enhancing amino acid 

uptake and protein synthesis in muscle (Agnusdei and Gentilella, 2005). 

 

Growth Hormone Deficiency 

GHD is thought to occur at a frequency of 1:4,000 to 1:10,000 (Lacey and 

Parkin, 1974; Lindsay et al., 1993; Rona and Tanner, 1977; Vimpani et al., 1977).  

Most cases appear to be sporadic, a result of pituitary insult or developmental 

abnormalities.  5-30% of cases have an affected first-degree relative and are 

genetic (Cogan et al., 1993; Phillips III, 1995).  In addition to GH-1 mutations, 

other mutations that cause GHD have been characterized in a series of genes 

involved in pituitary development and GH-1 expression.  These genes include the 

transcription factors, Pit-1, Prop-1 (Prophet of Pit-1), Hesx-1, Sox-2, Sox-3, Lhx-3 

and Lhx-4 and in the GHR and GHRH-receptor genes (Mullis, 2005; Mullis, 

2007). 

A GHD phenotype can be either isolated (IGHD) or associated with 

combined pituitary hormone deficiency, CPHD (Dattani and Robinson, 2000).  

There are four, well-characterized, distinct familial types of IGHD; IGHD type IA 

and IB, IGHD II and IGHD III, where clinical phenotypes are restricted to the GH 

axis (Mullis, 2005; Phillips III, 1995).  In addition to short stature, IGHD patients 
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exhibit other symptoms including delayed skeletal development (though still in 

proportion to their height), delayed puberty (but normal fertility), truncal obesity, 

delayed secondary dentition, young facial appearance, and occasional fasting 

hypoglycemia (Moseley and Phillips III, 2000).  IGHD IA and IB are inherited in 

an autosomal recessive manner.  IGHD IA is the most severe form of IGHD I with 

gross GH-1 deletions and development of anti-GH antibodies in response to GH 

treatment (Illig, 1970; Phillips III, 1995; Phillips III et al., 1981).  IGHD IB is 

characterized by low but detectable serum GH levels (<2.5ng/ml) and patients 

respond well with immunological tolerance to exogenous GH (Mullis, 2005).  

Mutations causing IGHD IB include missense and splice site mutations in GH-1 

(in intron 4) plus mutations in the GHRH-receptor gene (Moseley and Phillips, 

2000; Mullis, 2005).  IGHD II is an autosomal dominant form of IGHD, which is 

characterized by mutations that disrupt GH-1 splicing and cause skipping of exon 

3.  Three substitution mutations, R183H, P89L and V110F, are also responsible 

for an IGHD II phenotype but do not affect GH-1 splicing (Binder et al., 2001; 

Deladoey et al., 2001; Duquesnoy, 1998).  Rare mutations have also been 

identified in the Hesx-1 (homeobox gene expressed in embryonic stem cells) 

gene that cause IGHD II (Fintini et al., 2006).  Five cases of IGHD II have been 

identified where no mutations have been observed in either GH-1 or Hesx-1, 

suggesting mutations in other genes could also cause IGHD II (Fintini et al., 

2006).  IGHD III is a X-linked, recessive disorder that may involve 

mutations/deletions within the long arm of chromosome X and these might be 

caused by mutations in the Btk (Bruton’s tyrosine kinase) gene (Conley et al., 
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1991; Duriez et al., 1994).  Btk mutatons have been associated with IGHD, 

suggesting that genes critical for GH production exist on the X-chromosome 

(Stewart et al., 1995). 

 

Growth Hormone Splicing 

GH-1 is composed of five exons and four short introns, which can be 

spliced to produce at least five distinct isoforms (Figure 7) (DeNoto et al., 1981).  

Constitutive splicing of GH-1 includes all five exons and these wild-type 

transcripts encode a 22-kDa protein, which is the major, biologically active form 

of GH.  Of the other isoforms, the 20-kDa is the most abundant (5-10% of normal 

GH-1 transcripts) caused by activation of an in-frame cryptic 3’ splice site in exon 

3 (cryptic transcripts) that results in elimination of the first 45 nt of this exon 

(amino acids 32-46) (Cooke et al., 1988; Masuda et al., 1988; Procter et al., 

1998; Stewart et al., 1992; Tsushima et al., 1999).  This isoform is thought to 

retain much of the biological activity of the wild type, 20-kDa protein (Asada et 

al., 2000; Ishikawa et al., 2000; Ishikawa et al., 1999; Masuda et al., 1988).  

Complete skipping of exon 3 (∆3 transcripts) produces a 17.5-kDa protein, 

accounting for 1-5% of pituitary GH-1 transcripts (Lecomte et al., 1987; Procter et 

al., 1998).  This hGH isoform acts in a dominant negative fashion by preventing 

secretion of the wild type, 22-kDa protein.  Transcripts skipping exons 3-4 or 

exons 2-4, encoding 11.3-kDa or 7.4-kDa proteins, respectively, have also been 

identified (Palmetshofer et al., 1995). 
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Figure 7. GH-1 alternative splicing pattern. GH-1 comprises 5 exons and 4 
introns that are constitutively spliced to produce a wild type 22 kDa GH protein.  
Alternative splicing events give rise to other isoforms, the four most common are 
depicted.  The cryptic splice site is denoted by dashed lines. 
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 The 17.5-kDa GH isoform results from aberrant splicing of the GH-1 

transcript and acts in a dominant negative fashion highlighting the absolute 

importance of maintaining splicing fidelity.  The splice sites within introns 2 and 3 

are particularly weak and the cryptic splice site within exon 3 is a stronger splice 

site than the actual 3’ splice site of intron 2.  Accurate splicing of GH-1 transcripts 

requires the concerted effort of three splicing enhancers (ESE 1, ESE 2 and ISE) 

to maintain inclusion of the exon (Figure 8).  Both ESEs are in exon 3; ESE 1 

comprises the first seven nucleotides of the exon and ESE 2 is a 15 nucleotide 

sequence upstream of the cryptic splice site (E3+19-33) (Moseley et al., 2002; 

Ryther et al., 2004; Ryther et al., 2003).  ESE 1 was first identified as a six 

nucleotide motif in a family with IGHD II that had an A→G transition at the fifth 

nucleotide of exon 3 (Moseley et al., 2002).  Subsequent deletion analysis 

extended ESE 1 to include the first seven nucleotides of exon 3, 5’-GAAGAAG-3’ 

(Ryther et al., 2004).   ESE 1 promotes definition of exon 3 by activating the 3’ 

splice site of intron 2 and preventing use of the cryptic splice site (Ryther et al., 

2004; Ryther et al., 2003).  A series of deletions within exon 3 and subsequent 

splicing analyses identified a second enhancer, ESE 2, that also activates exon 3 

inclusion (Ryther et al., 2004).  ISE is a nine nucleotide purine-rich sequence 

within intron 3 (IVS3+26-34), first identified by the presence of two patient 

mutations, IVS3+28 G→A and IVS3∆28-45. (Cogan et al., 1997; Cogan et al., 

1995; McCarthy and Phillips, 1998).  ISE promotes exon 3 definition (Ryther et 

al., 2003). 
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 Patients with mutations that disrupt either the splice sites flanking exon 3 

or any of the enhancer elements exhibit increased skipping of exon 3 and 

therefore suffer from IGHD II due to increased production of the 17.5-kDa isoform  

(Binder and Ranke, 1995; Cogan et al., 1997; Cogan et al., 1995; Fofanova et 

al., 2003; Hayashi et al., 1999a; Kamijo et al., 1999; McCarthy and Phillips III, 

1998; Millar et al., 2003; Missarelli et al., 1997; Moseley et al., 2002; Phillips III 

and Cogan, 1994; Ryther et al., 2003; Takahashi et al., 2002) reviewed in (Mullis, 

2007); Figure 9).  These mutations have different effects upon the extent of exon 

3 skipping.  Those in the splices sites, particularly the 5’ splice site of intron 3, 

usually cause more skipping than mutations that affect enhancers, leading to 

greater production of the 17.5-kDa protein.  Since an increase in the 17.5-kDa 

isoform correlates with an increase in severity of IGHD II symptoms (see below), 

it appears that splice site mutations, rather than enhancer, mutations, trigger 

more severe forms of IGHD II.  Patients with splice site mutations have an earlier 

age of onset and exhibit greater clinical severity.  There is also variation in exon 

3 skipping and disease severity among mutations at the 5’ splice site.  Mutations 

affecting the first two nucleotides (IVS3 +1/+2) always cause exon 3 skipping 

whereas transcripts with mutations at positions +5/+6 (IVS3 +5/+6) allow minor 

levels of normal splicing.  This observation is explained by the conserved GU 

dinucleotide at the 5’ end of the intron, which pairs with U1 snRNA.  Disruption of 

base-pairing between the mRNA and the snRNA inhibits spliceosome assembly.  

For mutations at positions at +5/+6, skipping is not as extreme since these 

nucleotides are not as highly conserved.   
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Mouse Model of Isolated Growth Hormone Deficiency type II 

 How the 17.5 kDa isoform acts in a dominant negative fashion is only 

partially understood.  A transgenic mouse model of IGHD II has been created 

that expresses a human mutant GH-1 transcript expressed from a cosmid 

containing the entire GH-1 LCR, including upstream DNA elements required for 

somatotroph-specific expression (McGuinness et al., 2003; Ryther et al., 2003).  

The transgene contains a G to A transition at the 5’ splice site of intron 3 (IVS3+1 

G→A) that leads to exclusive production of the 17.5-kDa isoform (McGuinness et 

al., 2003) and exerts a dominant negative effect on wild type mouse GH (mGH).  

This inhibition is dose-dependent; high copy transgenic mice exhibit far more 

extreme phenotypes than those with low copy numbers (McGuinness et al., 

2003).  This correlates with the severity of symptoms observed in IGHD II 

patients with regard to the amount of exon 3 skipping (Mullis et al., 2005).  Even 

in the presence of two wild type mGH alleles, high copy transgenic mice exhibit 

severe IGHD II with concomitant reduced weight, severely reduced pituitary GH 

content, and progressive anterior pituitary hypoplasia (McGuinness et al., 2003; 

Ryther et al., 2003; Shariat et al., 2007).  Overproduction of the 17.5-kDa isoform 

triggers not only somatotroph death but also destruction of neighboring cells by 

macrophage invasion, leading to severe hypoplasia and additional anterior 

pituitary hormone deficiencies (McGuinness et al., 2003).  This is evident in 

electron micrographs where pituitaries from IGHD II mice show a lack of DCSVs 

and extreme vacuolation (McGuinness et al., 2003; Shariat et al., 2007).  
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Patients with severe IGHD II often develop additional pituitary hormone 

deficiencies, particularly ACTH and TSH, which require additional treatment 

(Mullis et al., 2005).  The IGHD II mouse model showed deficiencies in PRL and 

TSH at weaning, worsening by 8-10 weeks of age compared to non-transgenic 

littermates.  At the later time point, a loss of LH was also evident (McGuinness et 

al., 2003).  Variability in the age of onset and severity of IGHD II among patients 

is thought to be due to the amount of the 17.5-kDa isoform relative to the wild 

type, 22-kDa protein and occurs from splicing mutations that generate differential 

exon 3 skipping (Mullis, 2007; Mullis et al., 2005).  This result suggests a 

threshold and dose-dependence of the amount of the 17.5-kDa isoform above 

which somototroph death and pituitary defects are triggered (McGuinness et al., 

2003).   

 Exclusion of exon 3 results in loss of amino acids 32-71 in the 17.5-kDa 

isoform.  This deletion corresponds to the entire loop region between helices 1 

and 2 (Ultsch et al., 1994).  The deletion also disrupts an internal disulfide bridge 

by elimination of Cys53, leaving an unpaired Cys165.  It has been assumed that 

the 17.5-kDa is strongly misfolded, though mechanisms of how it functions in a 

dominant negative manner are only just being elucidated.  It is not likely that 

disruption of intra- or intermolecular disulphide bridges is responsible since a 

compensatory mutation of the unpaired Cys165 still results in a mutant GH with a 

dominant negative effect (Lee et al., 2000) and another mutation, R77C, which 

disrupts a disulfide bridge does not have a dominant negative effect on wild-type 

GH (Takahashi et al., 1996).  The dominant negative effect upon the wild-type 
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GH is also seen with missense mutations that do not affect GH-1 splicing (Binder 

et al., 2001; Deladoey et al., 2001; Duquesnoy, 1998).  One current model 

proposes that as the 17.5-kDa and wild type GH isoforms progress through the 

secretory pathway, they form heterodimers that do not efficiently condense in the 

trans-Golgi, preventing formation of DCSVs (McGuinness et al., 2003) (Figure 

9b).  It is postulated that these heterodimers accumulate in the Golgi and then 

back up into the ER, triggering an unfolded protein response (Graves et al., 

2001).  When proteins misfold, they are often retained in the endoplasmic 

reticulum (ER) and targeted for degradation (Ellgaard et al., 1999).  Cells exhibit 

a variety of responses to the accumulation of misfolded protein in the ER.  This 

includes the unfolded protein response, which involves transcriptional activation 

of genes encoding a wide range of proteins necessary for protein folding and 

secretion (Bernales et al., 2006; Chapman et al., 1998).  The model above 

supports findings in which the 17.5-kDa isoform has been expressed in various 

cell lines.  In transient transfections in neuorendocrine cell lines, the 17.5-kDa 

isoform decreased intracellular and secreted wild-type forms of GH (Graves et 

al., 2001; Hayashi et al., 1999b; Lee et al., 2000; McGuinness et al., 2003). The 

mutant GH isoform had no specific dominant negative effect upon wild-type GH 

secretion in non-neuroendocrine cell lines, though in COS7 cells, the 17.5-kDa 

isoform disrupted trafficking of both plasma membrane and secretory proteins 

(Graves et al., 2001; Lee et al., 2000).  Confocal studies showed co-localization 

of the 17.5-kDa isoform with components of the ER, Golgi and also, albeit 

minimally compared to wild-type, with secretory granules (Salemi et al., 2006).  
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Recent data in stable somatotroph cell lines expressing both wild type and 

∆3 transcripts shows that the 17.5-kDa isoform is irregularly folded and degraded 

in a proteosome-dependent manner (Kannenberg et al., 2007).  Once the 

degradative capacity of the proteosome is exceeded, toxic GH aggregates form 

in the cytosol, ER and Golgi (McGuinness et al., 2003).  In the mouse model of 

IGHD II, an increase in GHRH and a decrease in somatostatin were observed, 

causing increased mutant GH-1 expression and further accelerating the toxic 

effects of the 17.5-kDa protein (McGuinness et al., 2003).  However, this does 

not seem to be a problem in patients with IGHD II (Mullis, 2005).  

 

RNA Interference as a Therapy for IGHD II 

Transcripts lacking exon 3 possess a unique sequence at the boundary of 

exon 2 and exon 4 that is not present in any other spliced GH-1 products.  As a 

result, the ∆3 transcript is an ideal target for knock down by RNAi using siRNAs 

complementary to this unique sequence (Ryther et al., 2004).  As discussed 

above, while treatment with recombinant GH (rGH) rescues short stature, IGHD II 

patients often develop additional hormonal deficiencies.  Specifically targeting 

transcripts that encode the 17.5-kDa isoform, a direct cause of IGHD II, is 

extremely advantageous and highlights a potentially ideal way to treat patients 

diagnosed with IGHD II caused by mutations that disrupt GH-1 splicing. 

The following work illustrates that RNAi can be used to effectively treat 

IGHD II in a mouse model of IGHD II.  We developed transgenic mice expressing 

an shRNA complimentary to the ∆3 transcript (shRNA-17.5).  These mice were 
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bred with IGHD II mice, and the resulting progeny were ‘rescued,’ meaning they 

did not exhibit disease symptoms. 

We also identify and characterize a new mutation in GH-1 in a family 

suffering with IGHD II.  The mutation occurs at the first base of exon 3, 

corresponding to the 3’ splice site and to ESE 1.  Disruption of these splicing 

elements promotes skipping of exon 3 and an increase in the 17.5-kDa isoform.   
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Summary 

Context: Genetic mutations that lead to amino acid changes are most commonly 

believed to be due to altered protein function but such changes can also exert 

their effects at earlier stages by affecting splicing.     

Objective: Exon 3 of the human growth hormone gene (GH-1) contains two 

splicing enhancers that prevent exon skipping.  We made use of a novel patient 

mutation that causes Isolated GH Deficiency type II to determine whether the 

overall defect was due to a missense mutation, a splice site mutation, or a 

splicing enhancer mutation. 

Design, Setting and Patients:  A heterozygous guanine to adenine transition at 

the first nucleotide of exon 3 (E3 +1 G→A) in GH-1 was identified in a family 

presenting with IGHD II.  Although this mutation encodes an amino acid 

substitution, GH-E32K, it also resides within a splicing enhancer and is part of 

the 3’ splice site of exon 3. 

Interventions and Results:  Interestingly, the E3 +1 G→A causes an increase 

in skipping of exon 3 transcripts by disrupting an exon splicing enhancer and 

weakening the 3’ splice site. Thus, exon skipping due to production of a dominant 

negative 17.5-kDa isoform forms the basis of disease for this mutation.  

Transcripts encoding the 17.5-kDa isoform can be targeted for specific 

degradation using RNA interference in patient derived lymphoblastoid cell lines.   

Conclusion:  The predicted GH-E32K amino acid substitution is not responsible 

for GHD.  Instead, the mutation causes aberrant splicing due to disruption of a 

splicing enhancer within exon 3 coupled to a weakening of the 3’ splice site.  The 



 57 

resulting increase in the 17.5-kDa isoform causes IGHD II.  This study illustrates 

that RNA serves as more than just a code for protein production and that it is 

important to look beyond the protein sequence when assaying genetic mutations. 

 

Introduction 

The human GH gene, GH-1, comprises five exons that are constitutively 

spliced to produce the full-length, 22-kDa protein.  The majority of circulating GH 

is translated from mRNAs containing all 5 exons but aberrant splicing of wild type 

transcripts gives rise to at least 5 other smaller isoforms, the most abundant of 

which are a 20-kDa isoform and a 17.5-kDa isoform (Procter et al., 1998) (Figure 

7).  The 20-kDa protein lacks amino acids 32-46 due to activation of an in-frame 

cryptic splice site within exon 3 but apparently retains full functionality (Stewart et 

al., 1992).  Complete skipping of exon 3 generates the 17.5-kDa isoform that acts 

in a dominant negative manner (Figure 9).  Even in normal individuals, RNAs 

encoding the 20-kDa and 17.5-kDa isoforms account for approximately 5-10% 

and 1-5% of GH-1 transcripts, respectively (Procter et al., 1998).   

The 17.5-kDa isoform exerts a dominant negative effect by preventing 

secretion of wild type GH in both tissue culture cells and in transgenic mice 

(Hayashi et al., 1999b; Lee et al., 2000; McGuinness et al., 2003; Shariat et al., 

2007).  Patients with inherited mutations that increase the levels of the 17.5-kDa  

isoform exhibit Isolated GH Deficiency type II (IGHD II), an autosomal dominant 

form of GHD.  Common characteristics of IGHD II include short stature due to 

impaired bone elongation, delayed puberty, and, in severe cases, anterior 
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pituitary hypoplasia with concomitant disruption of the anterior pituitary hormone 

axis. 

Splicing is catalyzed by a macromolecular complex termed the 

spliceosome whose RNA and protein moieties recognized conserved sequences 

in the mRNA, namely the 5’ splice site, the branch point/polypyrimidine tract, and 

the 3’ splice site (Moore et al., 1993) (Figure 1).  In higher eukaryotes these 

splice sites are poorly conserved and this lack of sequence conservation has at 

least two consequences.  First, exons and introns must be properly recognized to 

maintain splicing fidelity even when the flanking sites are weak, a daunting task 

given that exons are typically small and sequences resembling bona fide splice 

sites can often be found within the sea of RNA that constitutes introns (Black, 

1995; Smith and Valcarcel, 2000).  Second, regulated splicing is common, 

involving differential recognition of splice sites, alternative splicing, and the 

production of an incredibly diverse proteome from a relatively small genome 

(Modrek and Lee, 2002; Smith and Valcarcel, 2000).  For both splicing fidelity 

and alternative splicing, additional cis-acting regulatory elements have been 

identified that aid identification of the correct splice sites.  The two best 

characterized elements are referred to as splicing enhancers and silencers 

(Blencowe, 2000; Solis et al., 2008; Weighardt et al., 1996).  Splicing enhancers 

are typically purine-rich and aid exon and intron definition (Blencowe, 2000; 

Tacke and Manley, 1999).   

  The splice sites surrounding exon 3 in GH-1 are relatively weak and 

require the concerted effort of three splicing enhancers to ensure inclusion 
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(Ryther et al., 2004).  Two of these enhancers reside within exon 3 (Exonic 

Splicing Enhancers (ESEs) 1 and 2; whereas the third is found in the 

downstream intron (ISE) (Figure 8).  ESE 1 comprises the first seven bases of 

exon 3 and is required for both proper recognition of the upstream 3’ splice site 

and suppression of the downstream cryptic splice site (Ryther et al., 2003).  

Suppression of the cryptic splice site is necessary because it is a stronger 3’ 

splice site sequence than the wild type 3’ splice site (scores of 91 and 85 

respectively, calculated according to Shapiro and Senepathy, 1987; 

http://genet.sickkids.on.ca/~ali/splicesitescore.html).  Molecular analyses of ESE 

2 and ISE have shown that both function to ensure proper exon 3 definition to 

avoid skipping.  From an evolutionary perspective, it is interesting that the GH-1 

gene requires the action of multiple enhancer elements to ensure splicing fidelity.  

Disruption of any of these elements leads to the production of aberrant GH, 

mostly involving skipping of all or portions of exon 3.   

Here, we examine the sequence requirements to maintain accurate 

splicing of GH-1 transcripts by characterizing a heterozygous mutation 

discovered in a family presenting with IGHD II.  This mutation is a guanine to 

adenine transition at the first base of exon 3 (E3+1 GA) (Figure 10).  Our 

analysis shows that this transition mediates its effects in two ways; by disrupting 

ESE 1 and by weakening the 3’ splice site consensus sequence.  While GH is 

primarily expressed in somatotroph cells in the anterior pituitary, we also detect 

aberrantly spliced transcripts in patient-derived lymphoblastoid cell lines (LCLs) 

providing a unique tool to molecularly characterize the effects of specific 
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mutations in heterozygous settings.  Small interfering RNAs (siRNAs) can be 

introduced into these LCLs to specifically degrade transcripts encoding the 17.5-

kDa isoform. 

 

Subjects and Methods 

 

Subjects 

We studied DNA from members of a Caucasian family presenting with 

IGHD II, inherited in an autosomal dominant manner whose pedigree is shown in 

Figure 10a.  Clinical tests and pedigree analysis confirmed autosomal IGHD II.  

Sequencing of DNA from family members identified a heterozygous E3+1 G→A 

transition in the GH-1 gene in affected IGHD II individuals that is predicted to 

encode an E32K substitution (Figure 10b).  Patient I-I was examined and 

diagnosed at age 2 years 5 months with IGHD II based on short stature, low GH 

levels, both resting and following stimulation.  The clinical data are shown in 

Table 2.  A cranial MRI done prior to treatment showed a hypoplastic anterior 

pituitary.  He was started on subcutaneous GH replacement therapy (Humatrope) 

at two years and six months and showed a good response to treatment within the 

first four months.  Following therapy, slight scoliosis of the spine and increased 

truncal adiposity exhibited before treatment have been reduced.  Currently, at 

age five years and three months, the patient is at the 25th percentile for height. 

 

Cell Culture and In Vivo Splicing Analyses 
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 Blood samples were obtained from the subject and affected members of  

his family after obtaining consent.  Genomic DNA was isolated from total blood 

and the GH-1 gene sequenced (Cogan et al., 2006).  The primers used for 

amplification and subsequent sequencing of GH-1 were: 5’-

CCAGCAATGCTCAGGGAAAG-3’, 5’-

TGTCCCACCGGTTGGGCATGGCAGGTAGCC-3’ and 5’-

CTGGGAAATAAGAGGAGGAGAC-3’.  LCLs were isolated and transformed as 

previously described (Oh et al., 2003) and were maintained in RPMI 

supplemented with 20% FBS.  Total RNA was isolated from 2x106 cells using 

RNeasy (Qiagen) and 3µg was used for cDNA synthesis using SuperScript III 

(Invitrogen) with oligo d(T) primers.  cDNA products were amplified using 32P-

labeled GH-1-specific primers (Ryther et al., 2003) followed by separation on 6% 

polyacrylamide gels and exposure to phosphorimager analysis.  Amplifying 

spliced products with the same primers allowed accurate quantitation within the 

same lane, obviating the need for a loading control.  Results are thus shown as a 

ratio of the three products derived from a single lane. 

Mutant constructs were generated from wild type GH-1 in pXGH5 by 

reverse PCR (Coolidge and Patton, 1995) using mismatch primers followed by 

sequence verification.  Rat somatotroph GH3 cells were grown in DMEM with 

10% FBS and transfected with 1µg of wild type or mutant constructs using Mirus 

LT1 reagent (Mirus Bio).  Total RNA was isolated after 48 hours using TRI 

reagent (MRC) and cDNA was synthesized using a GH-1-specific RT primer with  

 



 62 

 

 

 

 

 

 

 

 

 

Figure 10. Identification of a heterozygous mutation in GH-1 that causes 
IGHD II. (A) Genetic pedigree showing inheritance of a mutation at the first 
position of exon 3 (E3 +1) in the human growth hormone gene (GH-1).  The 
genotype for the two alleles at this position is indicated as either homozygous 
(G/G) or heterozygous (G/A).  Lymphoblastoid cell lines were generated from 
patients I-I and I-II. , affected males; , affected females;  unaffected males; 
 unaffected females. (B) GH-1 sequencing data from an individual containing a 
heterozygous G→A transition at the first base of exon 3.  Blue asterisk denotes 
the IVS3+1 G→A mutation used in Figure 11. 
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M-MLV reverse transcriptase (Promega) as previously described (Ryther et al., 

2004).  Splicing patterns were determined by RT-PCR as above. 

 

In Vitro Splicing Analysis 

Wild-type or mutant ESE1 sequences were cloned into exon 2 of an 

enhancer dependent splicing construct derived from the Drosophila 

melanogaster doublesex gene (DSX; a kind gift from Dr. B. Graveley) by reverse 

PCR (Coolidge and Patton, 1995).  Primers with either adenine, thymine or 

cytosine in place of the first base of ESE1 were used to generate the mutant 

ESE1 DSX constructs.  The DSX constructs were linearized with MluI and in vitro 

transcribed in the presence of α-32P-ATP and a cap analogue with T7 RNA 

Polymerase (NEB).  Labeled transcripts were incubated for 2 hours at 30°C in 

60% HeLa nuclear extract.  Splicing products were separated on 8% denaturing 

polyacrylamide gels and exposed to phosphorimager analysis. 

 

Electroporation of siRNAs 

150,000 LCLs were centrifuged at 2,000xg for five minutes, resuspended 

in 75µl siPORT electroporation buffer (Ambion) and electroporated with 5µg of 

siRNA-17.5 or siRNA-GFP (Dharmacon) in a 1mm cuvette under the following 

conditions: single square wave pulse, 325V, 13ms.  After electroporation, cells 

were incubated for 10 minutes at 37°C before being plated in pre-warmed media.  

After 48 hours, all cells were re-electroporated under the same conditions.  For  
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Table 2. Clinical characteristics of subject I-II aBefore therapy; bAfter therapy; 
cHighest GH peak after stimulation; IGF BP-III, IGF-1 binding protein; TSH, 
thyroid stimulating hormone. 
 

 

 

 I-I 

Sex M 

Age (yrs) 2 5/12a 4 9/12b 

Height (cm) 75.7a 104b 

SD score -4.62a  -0.95b 

Weight (kg) 9.5kga 16.6b 

BMI (kg/m2) 15.7a 15.32b 

GH ng/ml 0.91 

(0.43-2.4) 

Provocation tests 

(GH ng/ml) 

Chlonidine: 1.12c 

Arginine: 1.14c 

IGF-1 ng/ml 28.8 

(51-303) 

IGF BP-III (ug/ml) 1.2 

(0.8-3.9) 

TSH (ulU/ml) 1.18 

(0.36-7.6) 
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mock electroporations, LCLs were electroporated in the absence of siRNAs.  

Total RNA was harvested after a further 48 hours. 

 

Results 

GH-1 sequences from affected individuals showed a heterozygous single 

guanine to adenine transition in the first nucleotide of exon 3 (E3+1 GA) (Figure 

10b).  This change results in a glutamic acid to lysine (E32K) change in the 

amino acid sequence of GH for all mutant transcripts that include exon 3.  

Despite the missense mutation, we hypothesized that the E3+1 GA mutation 

causes disease through a different mechanism for two reasons.  First, affected 

individuals are heterozygous for the mutation and haploinsufficiency does not 

typically cause IGHD II.  Second, the majority of mutations that cause IGHD II do 

so by inducing skipping of exon 3 to produce the dominant negative 17.5-kDa 

isoform.  There are at least two possible ways splicing could be affected.  First, 

the mutation weakens the 3’ splice site of exon 3 to AG|A (Figure 10b).  The 

consensus sequence for 3’ splice sites is AG|G where the last guanine is the 

preferred nucleotide as the first base of exons.  For the major class of introns, the 

AG dinucleotide at the end of introns is absolutely conserved whereas the G at 

the first position of exons is found in only ~52.5% of cases (A is 22.5%; C and U 

both 12.5%) (Burge et al., 1999).  A second, but not mutually exclusive 

possibility, is that the E3+1 GA mutation disrupts ESE 1 (Figure 10b).   
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A Weak 3’ Splice Site Increases Exon Skipping 

To determine if the E3+1 GA mutation actually alters splicing, we 

transfected rat somatotroph (GH3) cells with a vector expressing wild type GH or 

a construct containing the E3+1 GA mutation.  To analyze the effects of base 

changes in the first nucleotide of exon 3, we also created constructs containing 

E3+1 GT and E3+1 GC.  The E3+1 GT mutation has previously been 

reported to cause IGHD II (Takahashi et al., 2002).  Cells were transfected with 

these constructs, RNA was isolated 48 hours later, and splicing patterns were 

analyzed by RT-PCR.  As expected, the wild-type sequence resulted in 

predominant production of transcripts encoding the 22-kDa isoform with only 

~6% exon 3 skipping (Figure 11a).  All three base changes resulted in an 

increase in exon 3 skipping (∆3 transcripts) with the E3+1 GA mutation causing 

less skipping (39%) than either of the other mutants, GT or GC, 78% and 

65%, respectively (Figure 11a).  The E3+1 GT mutant introduces an in-frame 

premature termination codon (GAA→UAA; PTC) and, consistent with nonsense-

mediated mRNA decay (NMD), no wild-type transcripts were detectable when 

this construct was expressed (Figure 11a, lane 2).  The E3+1 GC causes a 

glutamic acid to glutamine amino acid change upon inclusion of exon 3 which 

should not cause NMD.  Nevertheless, this mutation led to only minimal 

production of correctly spliced transcripts and significantly increased levels of 

transcripts encoding the 17.5-kDa isoform.  Comparing the wild type, A, and C 

constructs, it is apparent that there is a preference for a G at position 1 of exon 3 

followed by A and then C.  The effect of a T cannot be determined under these  
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Figure 11.  E3+1 G→A causes an increase in skipping of exon 3. (A) Rat 
GH3 cells were transfected with human GH-1 E3+1 constructs in which the 
nucleotide at the first position of exon 3 is as indicated above.  The wild type 
sequence contains a G.  RNA was isolated and RT/PCR was performed using 
GH-1-specific primers in exon 2 and exon 5.  Bands corresponding to the 
different spliced products are indicated to the left and the percentages of these 
products are listed below based on ratios within each lane from three 
independent experiments.  (B) Patient derived lymphoblastoid cell lines were 
generated from patients as described in Fig. 1.  GH-1 splicing patterns were 
determined by isolation of RNA from individual cell lines and RT/PCR as above.  
IVS3+1 G→A was derived from a patient heterozygous for a mutation in the first 
base of intron 3.  
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conditions due to NMD.  Despite that, the results are consistent with the percent 

that each of these bases is found in consensus 3’ splice sites. 

 

Splicing Analysis in Patient-Derived Lymphoblastoid Cell Lines 

The experiments shown in Figure 11a were performed in cultured GH3 

cells, which mimic a homozygous mutant background.  To confirm that the 

splicing patterns observed under these conditions accurately reflect splicing 

patterns that occur in heterozygous, patient derived cell lines, we created LCLs 

from both affected and unaffected individuals.  Although GH is normally 

expressed in anterior pituitary somatotrophs, we sought to determine whether we 

could detect limited amounts of GH-1 transcripts in LCLs derived from IGHD II 

patients rather than after transfection into heterologous GH3 cells.  RNA was 

isolated from these cell lines and endogenous GH-1 splicing patterns were 

examined by RT-PCR using specific primers.  Interestingly, as shown in Figure 

11b, we could readily detect GH-1 transcripts in LCLs derived from both normal 

and GH-deficient patients.  The overall pattern of RT-PCR products is slightly 

different from that observed in transfected GH3 cells due to some additional 

unknown faint bands migrating close to the band corresponding to transcripts 

encoding the 20-kDa isoform.  While this may slightly alter the percentage of 

each transcript, it is clear that there is a dramatic increase in transcripts encoding 

the 17.5-kDa isoform in GH-deficient LCLs.  When we compared the levels of ∆3 

transcripts in three individuals with GH deficiency, the levels of the dominant 

negative 17.5-kDa isoform correlated with disease severity.  For the two 
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individuals with heterozygous E3+1 GA mutations, the levels of ∆3 transcripts 

were lower (Figure 11b, lanes 3 and 4) compared to an individual containing a 

mutation at the 5’ splice site of intron 3 (IVS3+1 G→A), in agreement with clinical 

observations for both types of mutations (Binder et al., 2001; Millar et al., 2003; 

Moseley et al., 2002; Mullis et al., 2005).    

 

Disruption of ESE 1 and Exon 3 Skipping 

While the 3’ splice site consensus sequence is altered in patients 

containing the E3+1 GA mutation, there are many functional 3’ splice sites that 

contain an adenine as the first base of the exon.  Thus, as far as IGHD II is 

concerned, this mutation may be deleterious because it not only makes the 3’ 

splice site weaker, but it also alters ESE 1.  To determine whether the E3+1 GA 

mutation causes skipping of exon 3 due to disruption of ESE1, we created a 

series of constructs designed to test enhancer activity.  Single copies of wild type 

and mutant ESE1 were cloned into a construct derived from the D. melanogaster 

doublesex (DSX) gene where splicing is enhancer dependent (Figure 12a) 

(Caputi et al., 2002; Graveley et al., 1998; Tian and Maniatis, 1992; Tian and 

Maniatis, 1994).  RNA transcripts from these constructs were produced by in vitro 

transcription and then spliced in HeLa cell nuclear extracts.   Previous work has 

shown that multimers of small, purine-rich sequences can act as enhancer 

elements in this setting (Graveley et al., 1998).  Therefore a single GA mutation 

at the start of ESE 1 might not alter enhancer activity if inserted as a single 

change amidst a multimer of ESE1 elements.  As a result, we chose to insert  
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Figure 12.  E3+1 G→A disrupts enhancer function. (A) Schematic of the 
doublesex (DSX) minigene construct showing two exons (boxes) and an intron 
(line).  Wild type and mutant ESE1 sequences were cloned into exon 2 (striped 
box).  The first base of ESE1 (red, bold) was mutated to A, T or C.  (B) RNAs 
derived from the constructs above were prepared by in vitro transcription 
followed by splicing in HeLa nuclear extracts.  Splicing reactions were subjected 
to denaturing polyacrylamide electrophoresis with the precursor and products as 
depicted.  *Activation of splicing by wild-type ESE1 is significantly greater than 
the other four constructs (p-value < 0.0001; n = six independent experiments). 
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only a single enhancer element even though splicing activation was expected to 

be less than robust.  Nevertheless, we were able to detect splicing activity and 

therefore enhancer activity upon insertion of a single wild type ESE 1 (Figure 

12b).  In contrast, all three mutant ESE 1 constructs (DSX-ESE1-A, DSX-ESE1-T 

and DSX-ESE1-C) were unable to rescue splicing.  This suggests that altering 

the first base of ESE 1 destroys its ability to function as an enhancer.  Thus, the 

E3+1 GA mutation causes aberrant skipping of exon 3 by both altering the 3’ 

splice site and by disrupting ESE1.  

 

RNAi in Lymphoblastoid Cell Lines 

Transcripts lacking exon 3 possess a unique sequence at the boundary of 

exon 2 and exon 4 that is not present in any other spliced GH-1 products.  As a 

result, the dominant negative ∆3 transcripts present an ideal target for knock 

down by RNAi using siRNAs complementary to this unique sequence (Figure 

13a).  In chapter III we show that RNAi can be used successfully in vivo to 

rescue IGHD II phenotypes in a mouse model (Shariat et al., 2007).  To see if we 

could reduce levels of the ∆3 transcript in heterozygous patient-derived cells, we 

electroporated LCLs with siRNAs directed against the unique exon 2-4 junction 

found only in transcripts encoding the 17.5-kDa isoform (siRNA-17.5).  RT-PCR 

analysis showed specific knock down of mutant transcripts in three patient lines 

whereas an siRNA control (siRNA-GFP) had no effect (Figure 13b).  We 

observed no apparent defects in the rates of cell growth or other obvious 
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phenotypes in the siRNA treated cell lines suggesting that off target effects are 

minimal (Jackson et al., 2006b). This is consistent with similar findings using 

RNAi to rescue a murine model of IGHD II supporting the idea that RNAi could 

be useful to treat IGHD II in humans (Shariat et al., 2007).  

 

Discussion 

 The GH-1 gene contains multiple weak splice sites and even in normal 

individuals, exhibits low levels of aberrant splicing resulting in the skipping of 

different exons (Procter et al., 1998).  To maintain fidelity, multiple cis-acting 

regulatory enhancers have been identified (Ryther et al., 2004).  The great 

majority of mutations in GH-1 that cause IGHD II occur in and around exon 3 and 

cause skipping of this exon (Mullis, 2007).  These mutations include splice site 

mutations as well as disruption of splicing enhancer elements that are necessary 

to promote constitutive splicing.  In this study, we have identified and 

characterized a new mutation, E3+1 GA, which causes IGHD II due to 

increased exon 3 skipping.  Another GH-1 missense mutation, E32A, was 

recently characterized and also shown to increase exon 3 skipping due to 

disruption of ESE 1 due to an A→C transversion (Petkovic et al., 2007).  Since 

this mutation occurs at the second nucleotide of exon 3, it would not be expected 

to affect the 3’ splice site. 
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Figure 13.  Specific targeting of ∆3 transcripts in patient lymphoblast cell 
lines by RNAi.  (A) siRNA-17.5 is complimentary to the unique exon 2-exon 4 
junction in ∆3 transcripts that enode the 17.5-kDa isoform.  (B) Lymphoblastoid 
cell lines from affected and unaffected individuals as in Figures 10 and 11 were 
electroporated with siRNA-17.5, siRNA-GFP or mock electroporated.  Total RNA 
was isolated and spliced products amplified using GH-1-specific primers.  The 
percentages of ∆3 transcripts are shown below and represent three independent 
experiments. 
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Exon 3 Skipping and Disease Severity 

The 17.5-kDa isoform represents 1–5% of wild type GH-1 transcripts even 

in normal human pituitaries (Procter et al., 1998).  Variability in the age of onset 

and severity of IGHD II among patients is thought to be due to increasing 

amounts of the 17.5-kDa isoform relative to the full length, 22-kDa protein 

(Hayashi et al., 1999b; McGuinness et al., 2003; Millar et al., 2003).  Patients 

with IGHD II caused by mutations in either of the first two bases of intron 3 (IVS3 

+1/+2) have a more severe phenotype with earlier onset than those with 

mutations within ESE1 due to increased production of the 17.5-kDa isoform.  We 

show here that this difference in expression is observed in RNA obtained from 

patient derived LCLs (Figure 11b).  IVS3 +1/+2 corresponds to the conserved GU 

dinucleotide at the 5’ splice site that pairs with U1 snRNP binding in the initial 

stages of spliceosome assembly and exon definition.  In this study, we show that 

patients with the E3+1 GA mutation do not exhibit as extreme a phenotype as 

patients with mutations at IVS3 +1/+2, most likely due to reduced exon 3 skipping 

and therefore less production of the dominant negative 17.5-kDa isoform.  These 

phenotypic differences may reflect a threshold and dose dependency of the 

amount of 17.5-kDa isoform above which pituitary defects are triggered (Mullis et 

al., 2005).  In transgenic mouse models of IGHD II, lines expressing high copy 

numbers of human GH-1 alleles containing mutations that result in exclusive 

exon 3 skipping have a more severe phenotype with much reduced growth and 

severe anterior pituitary hypoplasia than mice with lower copy numbers 

(McGuinness et al., 2003; Shariat et al., 2007). 
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ESE1 ensures proper exon 3 definition by activating the 3’ splice site in 

intron 2 while concurrently preventing activation of the cryptic splice site in exon 

3 (Ryther et al., 2003).  For ESE1 mutations, the effects of the GA and GT 

mutations correlate with the severity of IGHD II.  Both mutations cause an 

increase in ∆3 transcripts encoding the dominant negative 17.5-kDa isoform.  

The E3+1 GT mutation produces a PTC that invokes NMD such that any 

transcripts containing the PTC are destroyed so the ratio of spliced products is 

biased toward ∆3 transcripts that lack PTCs.  In contrast, readily detectable 

levels of completely spliced products are detectable with the E3+1 GA 

mutation.  Nevertheless, for both mutations and indeed for the future discovery of 

the E3+1 GC mutation, disease severity will correlate with the levels of exon 

skipping.   

 

Code Within a Code Within a Code  

The experiments shown here provide an excellent illustration of the 

information contained within RNA.  Prior to the realization of the multiple effects 

that mutations can have on RNA processing, it is likely that the effect of the E3+1 

GA mutation would be assumed solely due to the E32K missense mutation that 

is expected to accompany this change.  However, since the mutation alters the 

first base of exon 3 and the first base of ESE 1, its effects, especially related to 

IGHD II, are due to aberrant splicing rather than production of a missense form of 

hGH.  The position of the E3+1 GA creates a change in the 3’ splice site from 

the favored guanine residue.  The initial stages of spliceosome assembly involve 
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the binding of the small subunit of U2 Auxiliary Factor (U2AF35) to the 3’ splice 

site with a preference for G at the first base of the exon (Merendino et al., 1999; 

Wu et al., 1999; Zorio and Blumenthal, 1999).  Even though all four bases can 

function as the first base of exons, the preference for guanine by U2AF35 

weakens sites that contain other nucleotides.  For GH-1, any such weakening is 

further compounded by the fact that ESE 1 begins with the first base of exon 3 so 

that the E3+1 GA mutation creates double indemnity.  For IGHD II, production 

of the dominant negative 17.5-kDa isoform is the key so whether the E32K 

missense mutation actually affects GH function is not known nor particularly 

relevant.  However, for other mutations, should the change affect protein 

production, triple indemnity could ensue for a given mutation.  A pertinent 

example is that of germline mutations in the human breast cancer susceptibility 

gene, Brca-1, which are responsible for approximately half of all familial 

hereditary breast cancer cases and have been shown to confer increased risk of 

ovarian, colon or prostate cancer (Nathanson et al., 2001).  Some mutations in 

Brca-1 that were initially annotated as missense mutations were later shown to 

cause aberrant splicing instead (Yang et al., 2003). 

 

Potential Therapeutic Role of RNAi in IGHD II  

 Current treatment for IGHD II involves subcutaneous injections of 

recombinant GH (rGH) (Drake et al., 2001).  While this enables patients to attain 

near normal stature, it does not replicate the normal, pulsatile pattern of GH 

secretion nor does it prevent anterior pituitary hypoplasia, which can lead to pan-
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pituitary defects (McGuinness et al., 2003; Mullis et al., 2005; Romijn et al., 

2003).  In addition, there are side affects associated with rGH therapy (Monson, 

2003).  RNAi provides a potential, attractive therapeutic strategy to specifically 

target transcripts encoding the 17.5-kDa isoform for degradation (Ryther et al., 

2004; Shariat et al., 2007).  While we have shown that genetic delivery of 

shRNAs can rescue a mouse model of IGHD II, we have not attempted to use 

RNAi to target GH-1 transcripts in human cells.  Here, we have delivered siRNAs 

directly to patient-derived LCLs and shown specific decreases in ∆3 transcript 

levels.  Fortunately, no observable phenotypic effects attributable to potential off 

target effects were observed suggesting that RNAi might be a viable therapeutic 

strategy for IGHD II.  
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Abstract 

Splicing mutations in the human growth hormone (hGH) gene (GH-1) that 

cause skipping of exon 3 result in a form of GH deficiency termed Isolated 

Growth Hormone Deficiency type II (IGHD II) (Figure 9).  The GH-1 gene 

contains 5 exons; constitutive splicing produces the wild type 22-kDa hormone 

while skipping of exon 3 results in transcripts encoding a 17.5-kDa isoform that 

acts as a dominant negative to block secretion of the wild type hormone.  

Common characteristics of IGHD II include short stature due to impaired bone 

elongation growth and, in severe cases, anterior pituitary hypoplasia.  Typically, 

IGHD II is treated by subcutaneous delivery of hGH which can rescue stature 

but, unfortunately, does not inhibit pituitary hypoplasia.  Direct destruction of 

transcripts encoding the dominant negative 17.5-kDa isoform should both rescue 

stature and prevent hypoplasia.  Here, we have used delivery of short hairpin 

RNAs (shRNAs) to rescue a murine model of IGHD II by specifically targeting 

transcripts encoding the 17.5-kDa isoform using RNA interference.  To our 

knowledge, this is the first example where an shRNA has been expressed to 

specifically degrade an incorrectly spliced transcript and rescue a dominant 

negative disease phenotype in vivo. 

 

Introduction 

 The great majority of mutations that lead to IGHD II occur in and around 

exon 3 and lead to aberrant splicing (Mullis, 2007).  These mutations include 

splice site mutations as well as disruption of splicing enhancer elements that are 
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necessary to promote constitutive splicing (Figure 8) (Ryther et al., 2004).  GH-1 

comprises five exons that are constitutively spliced to encode the wild type 22-

kDa isoform.  Transcripts lacking exon 3 encode a 17.5-kDa dominant negative 

isoform that prevents secretion of wild type protein from somatotrophs (Hayashi 

et al., 1999b; Lee et al., 2000a).  Previously, we reported the creation of mouse 

lines expressing a human GH-1 transgene containing a G to A transition at the 5’ 

splice site of intron 3 (IVS3+1) that leads to exclusive production of the 17.5-kDa 

isoform (McGuinness et al., 2003).  This transgene is expressed from a cosmid 

containing the entire GH-1 locus control region including upstream DNA 

elements required for somatotroph-specific expression.  The IVS3+1 mutant 

exerts a dominant negative effect on wild type mouse GH and generates a 

transgene dose-dependent IGHD II phenocopy.  Even in the presence of two wild 

type mGH alleles, high copy transgenic mice exhibit IGHD II with concomitant 

reduced weight, severely reduced pituitary GH content, and progressive anterior 

pituitary hypoplasia (McGuinness et al., 2003; Ryther et al., 2003).  

Overproduction of the 17.5-kDa isoform triggers not only somatotroph death but 

also destruction of neighboring cells by macrophage invasion, leading to severe 

hypoplasia and additional anterior pituitary hormone deficiencies (McGuinness et 

al., 2003).  The 17.5-kDa isoform arises because the normal exon 3 splice sites 

are relatively weak with accurate splicing requiring the presence of at least 3 

splicing enhancer elements (Ryther et al., 2004).  Even in the normal pituitary, a 

small number of GH-1 transcripts (<1–3%) are incorrectly spliced and encode the 

17.5-kDa isoform (Procter et al., 1998).  Variability in the age of onset and 
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severity of IGHD II among patients is thought to be due to the amount of the 

17.5-kDa isoform relative to the full length, 22-kDa protein (Hayashi et al., 1999b; 

McGuinness et al., 2003; Millar et al., 2003).  These phenotypic differences may 

reflect a threshold and dose dependency of the amount of the 17.5-kDa isoform 

produced from mutated alleles, sufficient to cause somatotroph death and trigger 

pituitary defects (McGuinness et al., 2003).  Currently, recombinant hGH is used 

in replacement therapy for IGHD II to overcome short stature but is relatively 

expensive, can lead to unwanted side effects (Monson, 2003) and, importantly, 

does not prevent anterior pituitary hypoplasia and other ensuing anterior pituitary 

deficits (Mullis et al., 2005).  Since IGHD II arises as a direct consequence of 

excessive production of a specific dominant negative isoform, strategies 

designed to decrease levels of the 17.5-kDa isoform without affecting the normal 

22-kDa product could be an effective form of therapy.  Here we have used RNAi 

to specifically target the mutant GH-1 transcript encoding the 17.5-kDa isoform in 

vivo and we show rescue of IGHD II in a mouse model. 

 

Materials and Methods 

 

Cell Culture  

Wild type and Δ3 human GH cDNAs were cloned into pcDNA 3.1(+) 

(Invitrogen) as described (Deladoey et al., 2001) using identical primers.  

pSuper-sh17.5 was cloned as described (Ryther et al., 2003).  Mouse 

AtT20/D16v-F2 cells (EACC, UK) were grown in DMEM with 10% FBS and 1% 
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penicillin/streptomycin with 4.5g/L glucose.  Cells were transfected with hGH 

constructs and/or pSuper-sh17.5 using LT-1 (Mirus) according to the 

manufacturer’s protocol. 

 

RT-PCR 

RNA was isolated 48 hours post transfection using TRI-reagent (Molecular 

Research Center).  For analysis of human GH-1 splicing patterns in AtT20 cells, 

RT-PCR was performed as described (Ryther et al., 2003) with the exception that 

M-MLV reverse transcriptase (Promega) was used.  For analysis of pituitary 

RNA, 500ng total RNA was used for first strand cDNA synthesis with the 

following primer that recognizes both mouse and human GH sequences 5’-

CGGGGGCTGCCATCTTCCAGC-3’.  The same primer was used for PCR 

amplification with a 32P-labeled forward primer, 5’-

GCCTGCTCTGCCTGCYCTGGC-3’.  PCR products were separated on 6% 

denaturing polyacrylamide gels and visualized on a phosphorimager.  Amplifying 

both products with the same primers allows accurate quantitation within the same 

lane obviating the need for a loading control.  Results are thus shown as a ratio 

of the two products derived from a single lane.  

To assay possible interferon responses, first strand cDNA was 

synthesized using oligo d(T) with 2µg of total pituitary RNA.  Subsequent RT-

PCR amplification was done using: OAS-1-forward 5’-

CAGCCGTCAATGTCGTGTGTGATT-3’ and OAS-1-reverse 5’- 

TGTTAAGGAACACCACCAGGTCAG-3’.  
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Western Blots  

At-T20/D16v-F2 cells were lysed in 1x Laemmli loading buffer (LLB) 48 

hours post transfection.  Whole pituitaries were briefly sonicated in RIPA buffer 

(50mM Tris-HCl (pH 7.5), 150mM NaCl, 1mM EDTA, 1% NP-40, 0.5% 

deoxycholate, 0.1% SDS) and mixed with an equal amount of 2x LLB.  All 

samples were denatured for five minutes at 95°C before loading onto 10% SDS 

gels.  After transfer, PVDF membranes were blocked with 5% milk and incubated 

with primary antibodies against hGH or α-tubulin (Abcam).  After incubation with 

HRP-conjugated secondary antibodies (GE Healthcare), proteins were visualized 

by ECL (Perkin Elmer Life Sciences). 

 

Transgenic Mice 

A Not1-Xho1 restriction fragment of pSuper-17.5 (Figure 15) was purified 

and used for pronuclear injection of C57BL/6 embryos.  Injections and oviduct 

transfers were performed by the Vanderbilt Transgenic Core Facility using 

standard techniques in accordance with protocols approved by the Vanderbilt 

University Institutional Animal Care and Use Committee (VU-IACUC).  

Transgenic mice were verified by PCR from tail DNA using primers: 5’-

GCTCTAGAACTAGTGGATCC-3’ (forward) and 5’-

CTAGAGTCTCTTGAACTCTAGG-3’ (reverse).  The sh-20 and sh-25 lines 

contain 3 and 7 copies of the transgene, respectively (data not shown).  

Transgenic mice were bred with wild type C57BL/6 mice. IGHD II mice were also 

bred with wild type C57BL/6 mice and transgenic animals were identified by 
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PCR, as described (McGuinness et al., 2003).  Progeny resulting from crosses of 

shRNA-17.5 mice and IGHD II mice were identified by PCR, using the same 

primers as above. Mice were weighed once a week from week 4 – 16 after 

weaning.  All mouse work was performed according to VU-IACUC guidelines and 

in accordance with VU IACUC protocol number M/05/075 

 

Pituitary Dissections 

Pituitaries were dissected from eight week-old mice, fixed in 4% 

paraformaldehyde in phosphate buffered saline.  Pituitaries were visualized with 

a Leica MZ16F scope and QImaging Retiga EXi camera.  

 

Immunohistochemistry and Imaging 

20µm cryostat sections from pituitaries of 10 week-old mice were 

subjected to fluorescent immunohistochemical staining using goat anti-mouse 

GH antibodies and Cy-3 conjugated anti-goat antibodies (Santa Cruz 

Biotechnology).   Pituitary sections were mounted in 50% glycerol and imaged 

with a Zeiss LSM510 Meta Laser Scanning microscope.  Stacks were acquired 

with LSM510 software, and Z-projections and contrast adjustments were made 

with NIH ImageJ.  See supplementary information for additional information 

concerning image acquisition. 
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Electron Microscopy 

Pituitaries from 10 week-old mice were fixed overnight in 2% 

glutaraldehyde.  Following washes in 1xPBS, pituitaries were transferred to 1% 

OsO4 for 1 hour before washing with dH2O.  Preparations were then stained en 

bloc in 1% aqueous uranyl acetate and dehydrated in an ethanol series, passed 

through propylene oxide, transferred to a 1:1 Spurr:propylene oxide mixture, and 

removed and embedded in Spurr’s embedding reagent. Ultra-thin serial sections 

(50-60nm) were obtained on a Leica UCT Ultracut microtome, transferred to 

formvar-coated grids, and examined on a CM10 Transmission Electron 

Microscope (FEI), operating at 80k and viewed on a Phillips CM10 TEM 

equipped with an AMT 2 mega pixel camera (AMT). 

 

IGF-1 Serum Analysis 

Serum was obtained by tail vein bleeding at weeks 8 and 16 post 

weaning.  Mouse IGF-1 levels were determined using a mouse IGF-1 ELISA 

(Immunodiagnostic Systems Inc.). 

 

Statistical Analysis 

Statistical significance between mice was determined for data points from 

week 16 for all growth curves and for IGF-1 serum data using a one-way ANOVA 

followed by a Tukey-Kramer HSD analysis (JMP, version 5.01).  Normal 

distribution for all data was determined by a Shapiro-Wilk’s test.  A summary of 

values used to determine statistical significance is listed in Tables 4-6. 
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Figure 14. Allele Specific RNAi in AtT-20 cells. (A) An shRNA (shRNA-17.5) 
was designed complementary to the unique exon 2-exon 4 junction (red bar) and 
expressed from a pSuper vector.  (B) AtT-20 cells were transfected with hGH 
cDNA constructs and pSuper-sh17.5, as indicated.  RNA was isolated and the 
different isoforms amplified by RT-PCR using primers in exon 2 and exon 5.  
Bands corresponding to the wild type product (22 kDa isoform) and the exon 3 
skipped product (∆3; 17.5 kDa isoform) are as indicated.  The percentage ± 
standard error of the ∆3 transcripts relative to wild type is shown below based on 
at least three independent experiments.  Quantitation is based on the ratio of 
products within a single lane and was calculated by phosphorimager 
densitometry.  (C) Western blots of cell lysates from the same transfections as in 
(B) were performed using antibodies against hGH or α-tubulin as a loading 
control. 



 87 

Results 

 

Allele Specific Targeting of Mutant GH-1 Transcripts by RNAi 

Skipping of exon 3 produces hGH transcripts containing a unique 

sequence at the junction of exon 2 and exon 4.  We previously showed that 

shRNAs complementary to this unique sequence specifically target transcripts 

encoding the 17.5 kDa isoform (Δ3 transcripts) but do not alter wild type 

transcript levels (Ryther et al., 2004).  However, we did not examine the effects 

of the shRNAs on protein levels.  Therefore, we transfected At-T20 cells, a 

murine neuroendocrine cell line that does not produce endogenous growth 

hormone, with the vector encoding shRNA-17.5 (Figure 14) along with vectors 

expressing either wild type hGH or the IVS3+1 mutant that expresses only the 

17.5 kDa isoform.  Cells were harvested after 48 hours and analyzed for hGH 

protein and mRNA levels.  As shown, the shRNAs effectively decreased the 

levels of ∆3 transcripts without affecting full-length transcripts (Figure 14b).  

Interestingly, despite the fact that the experiment shown in Figure 14 did not lead 

to complete loss of ∆3 transcripts, there was a total absence of the 17.5-kDa 

isoform (Figure 14c).  In other experiments we do not always observe complete 

loss of the 17.5-kDa isoform.  Despite slight experimental variability, we conclude 

that expression of shRNA-17.5 results in significant allele specific silencing of ∆3 

transcripts and abrogation of the 17.5-kDa isoform.   
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Generation of shRNA-17.5 Transgenic Mice 

To test if shRNA-17.5 targets the mutant GH-1 allele in vivo, we generated 

mice expressing the shRNA by pronuclear microinjection of a 347 bp DNA 

restriction fragment of pSUPER-sh17.5 (Figure 15a,b).  Ten independent lines of 

shRNA-positive mice were generated (Table 3).  These mice show no differences 

in weight or lifespan as compared to wild type littermates, display no obvious 

phenotypes, and nine of the ten lines are fertile (Figure 15b).  While 

overexpression of shRNAs can lead to toxicity and lethality due to oversaturation 

of the endogenous microRNA (miRNA) pathway or due to possible off target 

effects (Grimm et al., 2006; Jackson et al., 2006b), the presence of the shRNA-

17.5 transgene did not induce any discernable effects in at least nine of the ten 

lines.  Also, we did not observe any induction of interferon responses, at least as 

measured by levels of 2’,5’-oligoadenylate synthetase (OAS1; Figure 15c), a key 

interferon responsive gene (Sledz et al., 2003).  

 

Rescue of IGHD II In Vivo by RNAi 

Mice expressing shRNA-17.5 were bred with the IGHD II mice to 

determine whether the IGHD II phenotype could be rescued in vivo (Figure 16a).  

Mice expressing both hGH-17.5-kDa and shRNA-17.5 showed rescue of the 

growth deficit compared to IGHD II littermates (Figure 16b, 17a).  Of the ten 

founder shRNA-17.5 transgenic lines, five have thus far been crossed and all 

rescue growth (Table 3).  Below, we more completely characterize two rescue 

lines.  The shRNA line 20 (sh-20) completely rescued the growth deficit with no 
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Figure 15. Generation of transgenic shRNA-17.5 mice.  (A) A Not I–Xho I 
fragment of pSuper-sh17.5 containing an H1 promoter driving expression of 
shRNA-17.5 was used for pronuclear injections to generate transgenic mice.  
The guide strand is highlighted.  (B) Transgenic shRNA-17.5 mice were identified 
by PCR.  (C),(D) Growth curves of transgenic sh-20 (C) and sh-25 (D) mice. 
Weights of transgenic mice (sh-20 line (n=4), yellow; sh-25 line (n=6), green) and 
wild type littermates (n=5 for each graph) (blue) were determined between 4-16 
weeks of age.  Error bars are ±s.e.m.  From ANOVA, p>0.7 for both data sets.  
Full statistical analyses are in Table 4. (E) Expression of shRNA17.5 does not 
elicit an interferon response.  RNA was isolated from pituitaries of the indicated 
genotypes and RT-PCR was performed using primers against the interferon 
induced gene, 2’, 5’-oligoadenylate synthetase (OAS 1) (left) and β-actin as a 
control (right).  sh-20 mice are shown in the top panel and sh-25 in the lower 
panel. 
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Table 3. Generation of transgenic shRNA-17.5 mice. Two sets (a, b) of 
pronuclear injections were performed to generate shRNA-17.5 transgenic 
founders.  Mice in bold have been shown to rescue a mouse model of IGHD II.   
shRNA mice 25a and 20b were selected for further analysis and were 
subsequently referred to as sh-25 and sh-20 respectively. 
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Figure 16.  Mating Strategy.  (A) Expected offspring from matings between 
IGHD II and shRNA-17.5 mice.  (B) Five week-old IGHD II, rescue (20R), and 
wild type littermates.  (C) Genetic assortment of progeny from matings of sh-20 
(yellow) or sh-25 (green) with IGHD II mice. 
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difference in weight compared to wild type littermates.  The shRNA line 25 (sh-

25) significantly improved weight-gain compared to IGHD II mice but did not fully 

attain normal levels (Figure 17a).  Both lines had lower weights at weaning but 

with time these increased as to be significantly greater than the IGHD II mice.  

For both lines, weight rescue was observed in both male and female progeny 

and was obvious at weaning (particularly in the sh-20 rescue line), as would be 

expected since this is when growth deficits become manifest in rodents.  The 

genotypes assorted close to the predicted Mendelian ratios among the progeny 

for both lines (Figure 16a,c).  

We next analyzed pituitary morphology and function for the sh-20 and sh-

25 rescue lines (20R; 25R).  Pituitary dissections revealed that the severe 

anterior pituitary hypoplasia observed in the IGHD II mice was not detected in 

either the 20R or 25R lines (Figure 17b).  Pituitaries shown in Figure 17 are from 

8 week old mice but the increase in pituitary size was observable at weaning (3 

weeks; data not shown).  Interestingly, considering the degree of weight rescue 

by the different lines, the anterior pituitaries from the 20R mice were smaller than 

the 25R pituitaries and remained so past 6 months in age.  No significant 

differences in anterior pituitary size were observed between wild type mice and 

the sh-20 and sh-25 transgenic lines.  As expected, the posterior pituitary was 

similar in size for all mice.  Since the IGHD II model mice exhibit pronounced 

somatotroph loss, we next sectioned pituitaries and performed fluorescent 

immunohistochemistry using an antibody that specifically recognizes mouse GH 

(mGH).  As shown in Figure 17c, the IGHD II mice had a severe decrease in 
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Figure 17.  Rescue of IGHD II mice. (A) Growth curves of wild type (blue, 
n=10), IGHD II (red, n=8), 20R (yellow, n=6), and 25R (green, n=4) mice.  (B) 
Pituitary dissections from eight week-old mice.  The posterior pituitary is 
indicated within the dashed line.  Scale bar at the upper left indicates 1mm.  (C) 
Fluorescent immunohistochemistry staining with anti-mGH on 20µm pituitary 
sections taken from 10 week old mice.  The posterior pituitary is indicated below 
the dashed line.  (D) Serum IGF-1 levels were measured by ELISA from 8 and 16 
week-old mice (n=3 for each genotype).  Wild type, blue; IGHD II, red; 20R, 
yellow; 25R, green.  Error bars are ±s.e.m. From ANOVA for A. and D. p<0.0001.  
For complete statistical analyses, see Tables 5 and 6. 
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Tables 4-6. Statistical analysis.  Summary of 95% confidence intervals, 
comparison of both pairs by Tukey-Kramer HSD and Shapiro-Wilk’s goodness of 
fit test for normal distribution of the values a week 16 in Figure 15c,d (Table 4),for 
values at week 16 in Figure 17a (Table 5) and for weeks 8 (top panel) and 16 
(lower panel) for data shown in Figure 17d (Table 6).  For all tables, groups with 
different letters are significantly different.  (α = 0.001) 
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mGH production, consistent with dominant negative effects exerted by the 

IVS3+1 mutant.  In contrast, the sh-20, sh-25, 20R and 25R lines all expressed 

mGH at levels indistinguishable from wild type.  Quantitative measurement of 

serum GH in single samples is uninformative due to the pulsatile nature of GH 

secretion.  However, long-term restoration of GH output should correct the low 

insulin-like growth factor 1 (IGF-1) levels observed in IGHD II.  IGF-1 is secreted 

in the liver in response to GH stimulation and low serum IGF-1 levels indicate GH 

deficiency (Clemmons, 2007).  Accordingly, serum IGF-1 levels were measured 

in groups of mice at 8 and 16 weeks of age.  As shown in Figure 17d, both 

rescue lines showed IGF-1 levels that were similar to wild type levels and 

significantly higher than the IGHD II mice.  At week 8, the IGF-1 serum levels in 

the 25R mice were slightly lower than the 20R and wild type mice but by week 16 

there were no significant differences in IGF-1 levels between the three 

genotypes.  These results are concordant with the weight trends where the 25R 

line rescues the IGHD II phenotype slightly less than the 20R line.  Interestingly, 

although the 20R mice have slightly greater weights and initially higher serum 

IGF-1 levels than the 25R mice, the 20R pituitaries are consistently smaller than 

the 25R pituitaries. 

 

Morphological Rescue of IGHD II 

Growth hormone is packaged into granules, forming dense-core secretory 

vesicles (DCSVs).  The specific mechanism responsible for the dominant 

negative nature of the 17.5-kDa isoform is not certain but may be due to 
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formation of 17.5:22-kDa dimers and oligomers which disrupt granule packaging 

thus preventing the secretion of either isoform from somatotrophs, ultimately 

triggering an unfolded protein response (McGuinness et al., 2003).  These 

complexes apparently overwhelm the degradative capacity of the proteosome, 

leading to the accumulation of toxic aggregates in the cytosol, ER and Golgi 

apparatus.  Consistent with this model, electron micrographs of anterior pituitary 

sections from IGHD II mice show Golgi and ER defects, loss of DCSVs and 

dramatically increased levels of intracellular lipid and vacuolation (McGuinness et 

al., 2003) (Figure 18a,b).  Wild type cells show a large accumulation of mature 

DCSVs that are stored and released upon appropriate hypothalamic stimulation.  

As is evident from the electron micrographs, secretory cells from the rescue mice 

have abundant DCSVs, comparable to wild type, with normal morphology (Figure 

18a,b).  Thus, our data from gross morphology to electron micrographs indicate 

that genetic delivery of shRNAs against transcripts encoding the dominant 

negative 17.5-kDa isoform is able to rescue growth and somatotroph function in 

IGHD II mice.  

 

Silencing of the 17.5 kDa Isoform 

Interestingly, despite the fact that we observed rescue of IGHD II with 

several transgenic shRNA-17.5 lines (Table 3), we have not been able to directly 

detect expression of the shRNAs.  We assume this is due to expression at levels 

below our current limit of detection and/or instability of the shRNAs.  Indeed, 

such low levels may preclude lethality and/or toxicity as reported by Grimm et al. 
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Figure 18. Morphological rescue of IGHD II. Electron micrographs of the 
anterior pituitaries from 10 week-old mice of the indicated genotypes.  Scale bar 
is 2µm;  magnification is (A) 10,500x and (B) 3,400x.  
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(Grimm et al., 2006).  Nevertheless, we were able to show that the shRNAs are 

directly altering the levels of the 17.5-kDa isoform by examining pituitary GH 

RNA and protein levels in the rescue mice.  First, using primers that are 

complementary to both human and mouse GH transcripts, we performed RT-

PCR analysis to determine the relative levels of wild type, full length mGH mRNA 

compared to the levels of the ∆3 transcripts encoding the hGH 17.5-kDa isoform.  

As shown in Figure 19a, there was a dramatic change in the ratio of the two 

transcripts between the IGHD II mice and the rescue mice, consistent with the 

notion that rescue involves reducing levels of the ∆3 transcripts.  Bearing in mind 

that IGHD II mice have severely hypoplastic anterior pituitaries, western blots 

using antibodies that recognize both mouse and human GH showed that what 

little GH was produced was mainly the 17.5-kDa isoform (Figure 19b).  For the 

rescue mice, even though significant levels of the 17.5-kDa isoform were 

detected, the dramatic increase in full length, wild type mGH was apparently able 

to overcome any dominant negative effects exerted by the mutant, thereby 

rescuing growth and pituitary function (Figure 19b,c).  Thus, our biochemical and 

genetic results are completely consistent with functional reduction of the 17.5-

kDa hGH isoform to rescue the dominant negative phenotype. 

 

Discussion 

RNA interference has many potential advantages over traditional 

therapies, including increased specificity and versatility (Dykxhoorn et al., 2006; 

Kim and Rossi, 2007).  Many recent advances in RNAi therapeutics have been 
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Figure 19.  Silencing of the 17.5-kDa isoform.  (A) Total RNA was isolated 
from pituitaries of the indicated genotypes and RT-PCR was performed with 
identical primers that distinguish between mouse and human GH.  Bands 
corresponding to the full length spliced product from the mouse alleles (mGH) 
and the 17.5 kDa human transgene (hGH-17.5) are as indicated.  Quantitation of 
the two transcripts is based on the ratio of products within a single lane and was 
calculated by phosphorimager densitometry. (B) Western blots of pituitary lysates 
from the same genotypes as in (A) were performed with an antibody that 
recognizes both human and mouse GH.  The two upper panels were deliberately 
overexposed to allow visualization of the GH isoforms in IGHD II. (C) A shorter 
exposure (2 seconds) of the same gel shown in (B) (15 seconds). 
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used to successfully knock down viral genes or disease alleles though, to our 

knowledge, none have been used to knock out a dominant negative disease 

allele in an animal model.  These approaches have used either small interfering 

RNAs (siRNAs) or shRNAs to target relatively accessible tissues such as sub-

retinal injection into the eye (Reich et al., 2003), intranasal delivery to the lung 

(Bitko et al., 2005; Zhang et al., 2005), transfection via lipofectamine complexes 

to the vaginal epithelium (Palliser et al., 2006), tail vein injection to the liver 

(Morrissey et al., 2005b; Soutschek et al., 2004), viral delivery to the liver (Grimm 

and Kay, 2006) and viral delivery via intraspinal or intracranial injections (Ralph 

et al., 2005; Raoul et al., 2005; Xia et al., 2004).  Zimmermann et al. used 

systemic delivery of siRNAs in primates targeting ApoB in the liver by saphenous 

vein injection (Zimmermann et al., 2006).  By comparison, although it is not 

protected by the blood-brain barrier, the pituitary is relatively inaccessible to 

direct targeting due to its location.  We therefore decided to deliver shRNA-17.5 

via genetic means by making transgenic mice expressing the shRNAs.  Using 

this approach, we were able to specifically reduce expression of the dominant 

negative 17.5-kDa hGH isoform allowing recovery of wild type GH levels to 

rescue an autosomal dominant mouse model of human IGHD II.   

 A potential caveat to our results concerns the inability to directly detect 

expression of shRNA-17.5 precursors or mature siRNAs.  This could be used to 

argue that the effects we observe are indirect.  However, several lines of 

evidence argue against such a conclusion.  First, we have shown genetically that 

when IGHD II mice are crossed with shRNA mice, only the progeny that contain 



 101 

both the shRNA transgene and the ∆3 transgene exhibit the rescue phenotype.  

From mating and genotyping over 400 mice, we only observed rescue in the 

double transgenics.  Also, the extent of the rescue varied between the different 

shRNA lines; the 25R lines exhibit slightly lower growth rates and initial IGF-1 

serum levels compared to the 20R lines (Figure 17 a,d and Table 3).  Second, 

the transgenic shRNA lines show no overt phenotype that could be responsible 

for or contribute to the rescue phenotype observed in the IGHD II background.  

Third, the genotypes assort in the expected Mendelian ratios (Figure 16c).  Thus, 

the genetics argue strongly against any indirect effect.  Biochemically, we also 

showed that in the IGHD II mice the predominant isoform is the dominant 

negative hGH 17.5-kDa protein whereas in the rescue mice there is a switch and 

the major protein detected is the wild type mGH (Figure 19b).  Together, these 

data support our conclusion that the rescue of IGHD II is a direct effect of 

shRNA-17.5.  

Future work will be directed toward a viable therapeutic strategy using 

exogenous delivery of siRNAs but the results from this report show that 

employing RNAi provides a promising approach to treat IGHD II in humans.  

While GH treatment can counteract GH deficits in children and adults with 

Growth Hormone Deficiency (GHD), the underlying somatotroph destruction 

continues with additional bystander effects that can evolve to damage other 

pituitary hormone axes in some individuals (Salemi et al., 2005).  A particularly 

encouraging feature of our results is the restoration of macroscopically and 

microscopically normal somatotroph populations in the rescue mice without any 
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overt phenotype in other cells.  Since normalization of somatotroph function 

offers a selective advantage in survival and replacement during somatotroph 

turnover, this promotes complete functional recovery without necessarily 

achieving complete suppression of the aberrant allele in every cell.  More 

generally, many human diseases result from aberrant splicing and/or dominant 

negative isoforms and our results show that RNAi offers a promising way to 

specifically degrade mutant alleles while sparing wild type, functional alleles. 
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CHAPTER IV 

 

SUMMARY AND CONCLUSIONS 

 

Significance 

The research presented in this thesis demonstrates that RNAi can be 

used to effectively treat IGHD II. Importantly, RNAi treatment targets the 

underlying cause of the disease, overexpression of the 17.5-kDa hGH isoform.  

As such, this is an attractive alternative to the current treatment of subcutaneous 

recombinant GH injections, which does not prevent future hormonal deficiencies 

that can occur as a result of severe anterior pitiuitary hypoplasia.  Prior to this 

thesis, it was demonstrated that shRNA-17.5 could be used to degrade ∆3 

transcripts in tissue culture (Ryther et al., 2004).  Here, as a primary step in 

developing shRNA-17.5 as a viable therapeutic for patients with IGHD II, we 

examined its ability to rescue IGHD II symptoms in a model system.  To 

accomplish this, we used a transgenic mouse model of IGHD II where a human 

GH-1 mutant allele that exclusively produces the 17.5-kDa isoform is expressed.  

Though expressed in concert with two copies of wild type mGH, high copy 

numbers of the 17.5-kDa mutant cause severe IGHD II symptoms (McGuinness 

et al., 2003).  We made many lines of transgenic mice expressing shRNA-17.5 

and bred these mice with IGHD II mice.  Progeny with shRNA-17.5 in an IGHD II 

background exhibited rescued phenotypes that were similar to wild type 

phenotypes.  These phenotypes include growth rates, GH expression in the 



 104 

anterior pituitary and levels of serum IGF-1 (Figure 17).  Rescue mice also 

showed normal gross and cellular morphology as determined by pituitary 

dissections and EMs of pituitary sections, respectively (Figure 17b, 18). 

 Many experimental questions abound in relation to delivery of siRNA-17.5 

to the pituitary.  These include time of delivery, quantity of siRNAs to administer 

and the number of repeated deliveries that will be required, in addition to 

addressing the issue of specific delivery to the pituitary.  Now that we have 

successfully shown functional rescue of IGHD II using RNAi, we are poised to 

address these points and develop siRNA-17.5 as a therapeutic. 

 IGHD II is caused by several different GH-1 mutations, mostly in and 

around exon 3 that cause exon skipping.  One consequence of using siRNA-17.5 

to degrade ∆3 transcripts is that it targets an aberrantly spliced isoform which can 

occur as a result of several different mutations, including the new mutation 

described in this thesis.  Since the abnormally spliced product caused by the 

mutation is being targeted, rather than the mutation itself, siRNA-17.5 could be 

used to treat all cases of IGHD II caused by exon 3 skipping and over production 

of the dominant negative 17.5-kDa isoform, providing a wider platform for 

therapeutic uses. 

As mentioned above, many mutations in and around exon 3 cause exon 

skipping.  In addition to showing rescue of IGHD II using RNAi, we have also 

identified and characterized a new mutation in the GH-1 gene in a family with 

autosomal dominant GHD.  Sequencing of patient DNA identified a G→A 

transition at the first base of exon 3 (Figure 10).  The first base of exon 3 
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corresponds to the 3’ splice site, AGG as well as the first base of ESE 1 and our 

analysis shows that this transition mediates its effects by affecting both of these 

elements.  By disrupting ESE 1 and by weakening the 3’ splice site consensus 

sequence, this mutation causes exon 3 skipping, resulting in an IGHD II 

phenotype.  In elucidating the mechanisms by which this mutation functions we 

have further emphasized the importance of splicing fidelity and the importance of 

multiple splicing signals in this process. 

  

Impact and Future Directions 

 

Phenotypic Characterization of Rescue Mice 

 

Pituitary Hormone Content 

 There is a profound loss of pituitary GH content in the mouse model of 

IGHD II containing high copy numbers of the ∆3-hGH transgene.  Dramatic 

reductions in levels of PRL and TSH are also observed in these mice and 

transgenic males also show a loss of LH though females do not (McGuinness et 

al., 2003).  In all cases, the loss of individual hormones is exacerbated with age.  

From an endocrine perspective, it will be interesting in the future to fully 

characterize the rescue mice.  Preliminary results from five-month old mice show 

a significant increase in pituitary GH content in both the 20R and 25R mice 

compared to the IGHD II mice (Figure 20).  Interestingly, the amount of GH in the 

rescue mice is approximately a sixth of that in wild type mice or in either of the  
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Figure 20. Analysis of pituitary hormone contents.  Adult mouse pituitaries 
were sonicated in cold PBS and hormone contents were assayed by RIA.  GH, 
left; PRL, right.  n=3 for each genotype 
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two transgenic shRNA (sh-20 and sh-25) lines.  This is most likely because the  

rescue mice are producing just enough GH to maintain normal growth such that 

as soon as GH is produced, it is secreted, hence the lower pituitary GH content.  

The ∆3 transgene contains multiple Pit-1 promoter sites and any physiological 

drive to increase mGH expression should also increase expression of the 

transgene, though it will be subsequently degraded by shRNA-17.5 in the rescue 

mice.  Conversely, the sh-20, sh-25 and wild type mice are able to produce and 

store ample amounts of GH.  The amount of pituitary PRL is extremely reduced 

in the IGHD II mice compared to wild type mice (Figure 20).  Our preliminary data 

do not suggest any significant difference in the levels of PRL in the rescue mice 

compared to control mice.  Apparently, although the rescue mice are not 

producing enough normal mGH (due to the expression of the 17.5-kDa isoform) 

to store abundant quantities like their wild-type counterparts, they are producing 

enough to prevent additional anterior pituitary hormone losses, specifically PRL.  

In addition to repeating this experiment, it will also be interesting to investigate 

the pituitary levels of TSH and LH, which have been shown to be deficient in the 

IGHD II model. 

 GH is released in pulsatile bursts and as such it is impossible to 

accurately quantify GH serum levels unless a stimulus is administered.  This 

procedure is routinely done in patients with suspected GHD and agonists include 

chlonidine and arginine (Table 2).  Subsequent serum analysis should show a 

peak GH level in response to the agonist.  Future work to analyze GH levels in 

the rescue mice should use similar provocation tests in mice, taking serum 
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samples before and after a large dose of GHRH which causes GH release into 

the blood, the peak height of which is roughly proportional to the pituitary reserve 

(Le Tissier et al., 2005).  The advantage is that this can be done in anaesthetized 

mice and would be a reliable serum GH assay to complement the serum IGF-1 

data shown in figure 17d. 

 

Effects on Bone Length and Mass 

GH and IGF-1 have well recognized effects on bone elongation during 

development and the large increase in bone mass that occurs during childhood 

and puberty via endochondrial bone formation is stimulated by these factors 

(Ohlsson et al., 1998).  Patients with GHD often exhibit decreased bone mineral 

density though the effects are significantly different depending on whether or not 

patients had childhood GHD or adult-onset GHD (Kaufman et al., 1992; 

Maheshwari et al., 2003).  Mean BMD increases during long-term GH 

replacement therapy and eventually reaches normal levels (Saggese et al., 

1996).  Since GH has such effects on longitudinal growth and bone mass, it will 

be interesting to assay any such effects in the IGHD II mice and determine if 

these effects are reduced or absent in the rescue mice.   

 

Developing siRNA-17.5 as a Therapeutic 

There are at least two main considerations in developing a viable siRNA-

based therapeutic to specifically target ∆3 transcripts.  The first involves 

determining the appropriate time to deliver siRNAs in relation to the onset of 
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IGHD II such that pituitary damage has not progressed so far as to prevent 

recovery.  The second consideration is to optimize specific delivery to the 

pituitary, which will likely prove a major obstacle in developing siRNA-17.5 

therapy, indeed all RNAi based strategies. 

 

Time of Delivery 

 To understand the developmental timing of pituitary damage in IGHD II 

mice, we sectioned pituitary tissue from newborn pups.   Electron micrographs 

showed morphological differences in IGHD II mice as young as one day 

compared to wild type mice (Figure 21).  Between the two, a distinct difference in 

the appearance of the ER was detected.  Somatotrophs from the mutant mice 

showed a distinct lack of ribosomes in the cytosol and an abundance of protein 

within the ER lumen (Figure 21a,b).  In contrast, the ER lumens from wild-type 

pituitaries were clear with readily detectable ribosomes in the cytosol.  An 

additional difference was the location of the DCSVs.  In somatotrophs from wild-

type mice, they appeared dense and were located throughout the cytosol 

whereas DCSVs in somatotrophs from IGHD II mice seemed to congregate 

toward the periphery of the cell, adjacent to the plasma membrane, were less 

dense, and had an ovoid appearance (Figure 21c).  Autophagic vesicles are also 

present in the mutant pituitaries and absent in wild-type samples.  Although there 

are phenotypic differences in wild-type and IGHD II mouse anterior pituitaries 

even at a young age (1 day), it is promising that the extreme vacuolation and 

gross abnormalities caused by somatotroph loss that are visible in eight-week old  
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Figure 21. IGHD II mice exhibit ER defects at a young age.  (A) Electron 
micrographs of pituitary sections from one-day old mice and (B) 21-day old mice.  
(C) Lower magnification of the same tissue shown in B. ER lumen, L; DCSV, DC; 
mitochondria, M.  Scale bar in (A) and (B) is 500nm and in (C) is 10µm. 
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mice do not appear to manifest themselves by three weeks, the time at which 

mice are usually weaned.  These observations suggest that it could be possible 

to treat IGHD II model mice with siRNAs at weaning.  Mice that are handled at 

younger ages can often be rejected by the mother so it would be beneficial to 

start siRNA delivery at weaning. 

In the IGHD II mouse model, there is a marked increase in GHRH 

expression and concurrent decrease in somatostatin expression, due to the 

feedback loop that regulates GH secretion (McGuinness et al., 2003).  It is 

postulated that early treatment of IGHD II with exogenous GH replacement 

therapy may be important in rescuing a degree of pituitary function by providing a 

feedback signal to reduce the GHRH drive, thus reducing somatotroph 

proliferation and rate of self-destruction (McGuinness et al., 2003).  In severe 

cases of IGHD II, such as our mouse model, the somatotroph damage leads to 

loss of other endocrine cells in the pituitary and their hormone production.  

Bearing these two aspects in mind, it would be advantageous to treat IGHD II 

mice with siRNA-17.5 as early as possible. 

  

Delivery of siRNAs to the Pituitary 

The pituitary is situated at the base of the brain, in the pituitary fossa, but 

is not protected by the blood brain barrier (BBB), which is only permeable to 

lipophilic molecules of less than 400 Da (Pardridge, 2002). This is therefore an 

advantage from the perspective of delivery of therapeutic molecules.  However, 

some of the methods developed to transport nucleic acids across the BBB could 
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be incorporated into designing siRNAs that target the pituitary.  One approach 

involves the use of molecular ‘Trojan horses,’ liposome complexes comprised of 

polyethylene glycol (PEG) where the nucleic acid is encapsulated within the 

liposome interior and thus insulated from nuclease degradation (Boado, 2007).  

In an elegant study targeting siRNAs to the central nervous system, ~1-2% of the 

PEG molecules of the nanoparticle were engineered with two different types of 

monoclonal antibodies.  These antibodies trigger receptor-mediated endocytosis 

across the BBB and also target a specific cell type (Zhang et al., 2004).  We 

could adapt this method by designing liposome complexes that contain a protein 

or peptide fragment that recognizes a somototroph-specific cell marker.  An ideal 

candidate for this could involve exploiting the interaction between GHRH and its 

receptor. This receptor is expressed on the surface of somatotrophs and would 

be an attractive target in designing a selective delivery system for siRNA-17.5.  

We recently isolated and cultured primary mouse somatotrophs and though they 

were only viable for approximately five days in culture, they could be a valuable 

tool in designing and determining the efficacy of GHRH-conjugated siRNA-17.5 

nanoparticles.  For example, by supplying exogenous GHRH to the culture 

media, we would expect to see an up-regulation of GH, which could be quantified 

by assaying GH-1 transcripts or levels of GH secreted into the media.  This could 

be used to identify an optimum peptide fragment of GHRH that would engage 

with the receptor.  Of note, although the GHRH receptor is mostly expressed on 

somatotrophs, it is also minimally expressed in tissues that exhibit autocrine GH 

secretion, for example breast tissue (Mukhina et al., 2004).  An obvious benefit of 
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providing cell-specific targeting, aside from the fact that it should drastically 

decrease the amount of siRNA required, is that it could potentially prevent 

unwanted and unforeseen off target effects that may occur in other cell types. 

 Initial testing of delivery methods could use fluorescently labeled siRNAs 

such that delivery and stability can be assayed.  Another alternative is to use a 

transgenic GFP mouse and deliver siRNAs that are complementary to GFP.  This 

would be a relatively simple approach to assay siRNA delivery and activity by 

visualizing GFP silencing in multiple tissues including the pituitary.  This would 

help address the issue of how often to administer siRNAs depending on the 

stability and packaging of the individual siRNA. 

 In the work presented above, shRNA-17.5 was expressed from birth and 

as such the rescue phenotype was both obvious and immediately evident.  If we 

are delivering the siRNA to postnatal IGHD II mice, they will already have 

developed some, albeit mild, adverse phenotypes.  How long will it take to 

observe a rescue phenotype upon systemic delivery?  As growth is a somewhat 

slow indicator, perhaps serum IGF-1 levels would provide a better initial indicator 

of rescue.  In mammals there is a burst of GH secretion at birth though the 

significance of this is not known (de Zegher et al., 1993; Giustina and Veldhuis, 

1998).  Following this spurt, GH secretion is decreased until later in development.  

Obviously, development in mice is much more rapid than in humans but this time 

lapse in GH secretion should allow us to treat mice with siRNAs at, or just prior to 

weaning.  Additionally, the pituitary is able to proliferate and regenerate cells and 

in GHD subjects, there is an increase in expression of GH-releasing factor 
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(GRF), producing a postnatal drive to proliferate.  In fact, even in mice that are 8 

weeks old, the pituitary still regenerates at a rate of ~2% per day.  In the IGHD II 

mice, as the newly proliferated somatotrophs also express the dominant negative 

17.5-kDa isoform, the effect is exacerbated as there is a continual drive to 

produce more of the toxic protein.  By supplying siRNA-17.5, it is hoped that the 

cells that are recovering will survive and persist, and eventually rescue GHD. 

 

Mechanism of the Dominant Negative Function of the 17.5-kDa Isoform 

The 17.5-kDa isoform acts as a dominant negative but it is not clear why 

this is so.  Several hypotheses, most notably those of Iain Robinson and 

colleagues (Lee et al., 2000; McGuinness et al., 2003), suggest that the 17.5-kDa 

isoform forms heterodimers with wild type GH and these are inefficiently 

condensed when forming DCSVs, causing an accumulation of protein in the 

Golgi and ER.  This triggers an unfolded protein response and production of the 

dimers ultimately exceeds the degradative capacity of the proteasome, becoming 

toxic to the cell (McGuinness et al., 2003).  Recent work in the cultured rat 

somatotroph line, GH4C1, has shown that the 17.5-kDa isoform is indeed 

degraded by the proteosome and that proteosome inhibition leads to prominent 

accumulation of the mutant GH protein (Kannenberg et al., 2007). 

It would be attractive to develop a system in which to study effects of the 

17.5-kDa isoform that is both effective and relatively simple.  One possibility is to 

use AtT-20 (AtT-20/D16v-F2) cells, a murine neuroendocrine cell line derived 

from a pituitary tumor that does not express endogenous GH but secretes ACTH 
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in the same fashion as GH is secreted from somatotrophs.  These cells have 

been successfully used to visualize localization of the 17.5-kDa isoform both 

alone and when co-expressed with wild type GH in relation to secretory 

components (Salemi et al., 2006).  AtT-20 cells can be stimulated with forskolin 

which increases cAMP levels and promotes ACTH secretion.  Forskolin has also 

been used to stimulate GH secretion in AtT-20 cells transfected with GH 

constructs (Salemi et al., 2006).  A disadvantage to making stable cell lines that 

constitutively express the 17.5-kDa isoform is that in the selection process, the 

cells expressing high copy numbers of the mutant will die since it is toxic and, in 

effect, we would be selecting for low levels of mutant expression.  We are 

therefore developing inducible stable cell lines that express either mutant, wild 

type or both GH constructs under the control of the Tet-responsive element 

(CloneTech), allowing transcription of these transgenes to be switched on in the 

presence of tetracycline.  These stable cell lines could be used to visualize 

secretory pathway defects in the ER and Golgi.  These cells could also provide 

an ideal system to study the unfolded protein response if indeed this is 

responsible for cell death.  

 

RNAi in the Pituitary 

 Though regulated by the hypothalamus, the pituitary itself controls 

secretion of the body’s hormones and is often referred to as the ‘master gland.’  

Many disease states have been characterized by decreased or absent hormone 

production, leading to hypopituitarism.  Conversely, pituitary tumors, or pituitary 



 116 

adenomas, can result in hormonal overproduction that can also have detrimental 

consequences.  Excess of GH production can lead to acromegaly and excess 

PRL secretion can lead to infertility.  Imbalance in hormone production from the 

pituitary can lead to a number of endocrine disorders.  As discussed previously, 

there are other genetic disorders (other than mutations in GH-1) that can disrupt 

the GH-1 axis and any of these that function in a dominant manner are potential 

targets for treatment using RNAi.  As an example, Pit-1 is expressed in the 

pituitary and is epistatic to GH-1.  Two dominant mutations in Pit-1 have been 

characterized, P24L and R271W, that cause GHD (Ohta et al., 1992; Radovick et 

al., 1992), and these could be potential targets for RNAi-based therapies.  When 

the latter mutant, R271W, was co-transfected with wild type Pit-1, it prevented 

transcriptional activation by the wild type protein and acted as a dominant 

negative (Dattani and Robinson, 2000).  In IGHD II, anterior pituitary hypoplasia 

develops due to the dominant negative nature of the 17.5-kDa hGH isoform and 

its resulting toxic effects.  With the exception of our study, there have not been 

any published reports that use RNAi to target pituitary specific mRNAs.  With 

development of a sound and robust delivery system of siRNAs to target ∆3 

transcripts in the pituitary, we could open up a new avenue in RNAi therapeutics. 

 

Summary 

In closing, the data presented in this thesis highlight the importance of 

maintaining splicing fidelity to prevent exon skipping and the production of 

deleterious protein isoforms.  Where mistakes in GH-1 splicing occur and cause 
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skipping of exon 3, we have shown that expression of shRNAs that specifically 

target aberrant transcripts can rescue a disease phenotype in a mouse model of 

IGHD II.  Our approach involved genetic delivery of shRNAs but as work 

proceeds to develop systemic delivery methods, it seems clear that the ability to 

rescue disease using RNAi could usher in a new era in gene therapy. 
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