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CHAPTER I 

 

INTRODUCTION 

 

According to the American Cancer Society, there will be approximately 559,650 

cancer death in the United States in 2007, making it the second leading cause of 

premature death. Additionally, nearly 1.4 million people will develop some form of 

cancer next year.  Beyond the devastating personal losses inflicted by cancer, the 

National Institutes of Health estimates that the overall costs for cancer in 2006 were 

$206.3 billion.  Cancer is thus a major national (and international) health problem. As 

early detection greatly improves cancer outcome, in 1996 the National Cancer Institute 

(NCI) established the Diagnostic Imaging Program to encourage research into improving 

ways to detect and diagnose cancer noninvasively. The name of the program has changed 

twice during this time, from the Diagnostic Imaging Program to the Biomedical Imaging 

Program in 2001 and finally to the Cancer Imaging Program in 2003. As the Institute’s 

website states: the mission of the Cancer Imaging Program is to promote and support 

cancer-related basic, translational and clinical research in imaging sciences and 

technology, and integration and application of these imaging discoveries and 

developments to the understanding of cancer biology and to the clinical management of 

cancer and cancer risk.   

In order to support cancer-related research, various anatomical and functional 

imaging modalities have been developed. While current clinically employed imaging 

methods are most frequently used to report qualitative information (e.g., tumor location, 
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size, extent, etc.), imaging science has the potential to revolutionize medicine as it will 

ultimately provide quantitative, accurate, and noninvasive metrics on the underlying 

pathophysiology of tumor growth and treatment response. The major imaging modalities 

currently under investigation include ultrasound (US), magnetic resonance imaging 

(MRI), X-ray computed tomography (CT), positron emission tomography (PET), and 

single photon emission computed tomography (SPECT). Each of these methods has its 

own strengths: US is relatively fast, inexpensive, and can provide very high spatial 

resolution (~35 microns in small animals) of blood flow in 3D; MRI is extremely flexible 

offering high resolution (~100 microns) as well functional metrics on a variety of 

variables including blood flow, vessel permeability, tissue volume fractions, cell density, 

pH, and pO2; CT offers very high spatial resolution (35 microns) and can be used for 

angiography with an intravascular contrast agent; PET and SPECT have less spatial 

resolution (~1.5 mm) but are extremely sensitive and can report on, e.g., glucose 

metabolism and cell proliferation. 

Since no one modality answers all the relevant questions concerning tumor status, 

methods which seek to combine the strengths of each modality are of great importance.  

For example, it could be very insightful to show how the US measure of blood flow 

correlates to the MRI measure of cell density and how these relate to the PET measure of 

glucose metabolism. To truly perform quantitative multi-modality cancer imaging studies, 

one would wish to consider all metrics obtained from all modalities simultaneously. To 

accomplish this goal, several registration issues must be considered.  

First, inter-modality registration techniques need to be developed, tested, and 

automated.  This is a non-trivial problem since, for example, the spatial resolution of the 
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above modalities spans almost two orders of magnitude.  Moreover, different modalities 

show different image features. For example, CT images have low contrast between soft 

tissues and US images are affected by noise and artifacts. These issues make the 

registration task challenging. Second, if we consider the classic experimental design 

consisting of a control and treatment group, it is also of importance to see how these 

various metrics are changing between groups and therefore inter-subject registration 

methods need to be developed, tested, and automated. Inter-subject registration is more 

difficult than intra-subject registration, because of the large variations among subjects. 

The beauty of obtaining these metrics via noninvasive imaging is that this type of 

procedure can be done serially — especially in small animal models of cancer. Thus, 

longitudinal registration methods also need to be developed, tested, and automated. Since 

imaging methods are by their very nature indirect metrics of tumor status, they need to be 

validated by comparison to the gold-standard of histology. Thus, the final registration 

issue that needs to be addressed is the registration of stained histological sections with in 

vivo images. This issue is of significance because if the imaging metrics are shown to 

correspond to histology, they can be used as surrogate biomarkers of tumor status and 

therefore be employed in clinical trials with confidence. 

 

1. Background on image registration 

The work presented herein involves the following three registration tasks: 

registration of intra- and inter-subject tomographic head images, registration of tomographic 

images with histological images, and intra- and inter-subject registration of whole body 

tomographic images. A complete coverage of registration methods developed over the last 
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decade would be outside the scope of this document. The interested reader is referred to the 

chapter by Fitzpatrick et al. in the Handbook of Medical Imaging [1] or to the book by 

Hajnal [2]. However, to put our work within the appropriate context, we present a brief 

review of published methods for the major tasks that we will address. 

 

1.1 Methods developed to register tomographic head images 

As early as 1989, Pelizzari et al. [3] used a surface matching technique to register 

CT, MR, and PET head images. Henri et al. [5] proposed a method to integrate a projection 

angiogram and a translucent volume rendered CT or MR images, which created a composite 

of 3D anatomic and vascular images. Woods et al. [6] in 1993 proposed an automated 

algorithm to align MR and PET human brain images. This method aligned the images 

through minimizing the standard deviation of the PET pixel intensities that corresponded to 

MRI pixel intensities. In the same year, Mangin et al. [26] proposed an extension of the 

chamfer matching technique to align 3D PET and MRI data for human brain data. They 

used a shape-independent surface matching technique to compute the rigid body 

transformation. Elsen et al. [7] registered CT and MR brain images, through generating  CT 

and MR feature images depicting ‘ridgeness’. These feature images can be matched using an 

automatic hierarchical correlation scheme. Yan et al. [8] proposed a surface based 

registration algorithm which combined the minimization of average point-to-surface 

distance and iterative principal axes fitting, for MR and PET brain images, in 1994. Hui et al. 

[9] proposed a 3D MRI-PET brain image registration algorithm, in 1994, which was based 

on the matching of feature curves defined by the intersections of the interhemispherical 

fissure plane and the skull surface. Ardekani et al. [10] presented an automatic algorithm for 
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multimodality image registration that relied on minimizing the K-means variance criterion 

in 1995. Phohjonen et al. [15] developed a method to register 99mTc-

hexamethylpropyleneamine oxime SPECT and 1.0 T MRI of the brain in 1996. This 

registration algorithm followed a noniterative least-squares method using singular value 

decomposition of a 3 × 3 covariance matrix. Both Wells et al. [12][13] and Maes et al. [14] 

used Mutual Information (MI) as a similarity measure between images to be registered. 

Following the registration validation project headed by Fitzpatrick at Vanderbilt [99], MI 

has become the most popular similarity measure for rigid body registration problems. 

Studholme et al. [17] also evaluated five similarity measures in 1997: cross correlation, 

minimization of corresponding PET intensity variation, moments of the distribution of 

values in the intensity feature space, entropy of the intensity feature space and mutual 

information, and showed that MI was the most robust measure among those for multimodal 

registration. Meyer et al. [18] evaluated the MI algorithms for a broad spectrum of 

multimodal volume data sets. In 1998, Thirion et al. [87] proposed a nonrigid registration 

algorithm, called the demons algorithm, to register the inter-patient MR brain images. Pluim 

et al. [22] proposed an algorithm in 2000, which combines MI and gradient information. In 

this study, the registration algorithm was evaluated for MR-T1 and T2, MR-T1 and CT, MR-

T1 and PET registration tasks. The following year, Rohr et al. [21] presented an 

approximating thin-plate spline algorithm based on a set of corresponding anatomical point 

landmarks. This algorithm took into account landmark localization errors and could cope 

with isotropic and anisotropic landmark errors. This algorithm was used in MR-CT human 

brain image registration. Guimond et al. [88] also used the demons algorithm, combined 

with the correction of differences between images. They showed results obtained on several 
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imaging modalities, i.e., T1 and T2 MR images, proton density (PD) MR, and CT images. 

Both [87] and [88] used a stationary Gaussian filter to smooth the deformation field after 

each iteration of the demons registration algorithm. Christensen et al. [89] presented a 

consistent image registration algorithm. Just as its name implies, this algorithm estimated 

the forward and reverse transformations jointly, and produced a consistent transformation 

that have low pairwise registration errors. Hellier et al. [90] presented a nonrigid registration 

method, based on a 3D estimation of the optical flow. This algorithm modified the cost 

function to include a brightness constancy constraint term and a smoothness term. This 

method was used for inter-subject registration of T1-weighted MR images. Rueckert et al. 

[48] proposed a nonrigid registration algorithm, which was based on Free-Form 

Deformations (FFD), to maximize the normalized mutual information between breast MR 

images. In this algorithm, the second derivative of the deformation field was added to the 

cost function to constrain the transformation to be smooth. They also applied the algorithm 

to MR brain images [91]. Rohde et al. [59] proposed the Adaptive Basis Algorithm (ABA), 

in which the combination of basis functions was used to estimate the deformation field 

through maximizing the normalized mutual information. The regularization of deformation 

field was kept through constraining the difference between the coefficients of adjacent 

basis function. Others have used elastic [92][93][94] or fluid [95][96] transformations to 

register brain images. Both of these models were nonparametric and derived from the theory 

of elasticity and deformation. In those models, the image is an elastic grid, and an external 

force and an internal force were both applied to the image grid. Related work also includes 

the one proposed by Periaswamy et al. [25]. These authors modeled the transformation 

between images as locally affine but globally smooth, using a general-purpose elastic 
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registration algorithm. This algorithm incorporated both a geometric and intensity 

transformation, and was used for MRI T1/T2, MRI-T1/MRI-Proton Density, 

photograph/MRI-T2, and CT/photograph.  

The aforementioned methods have been mostly applied to human data but they also 

start to be applied to small animal images. For instance, Vaquero et al. [23] evaluated the 

automated image registration (AIR) of Woods at al. [53] with a mutual information (MI) 

similarity measure to register PET images of the rat skull and brain to CT or MR images 

of the same animal. Hayakawa et al. [20] modified the algorithm proposed by Ardekani et 

al. [10] to register PET and MR images of rat brains.  

As this brief review suggests, a large body of work exists that aims at automating the 

registration of head images. In our opinion, rigid body registration of head images is a 

relatively mature area and the most successful methods rely on some variation of voxel 

intensity similarity measure and more specifically on mutual information. The non-rigid 

registration problem remains more open and an active area of research. 

 

1.2 Methods developed to register histological images with tomographic images 

Despite great advances in in vivo imaging technology, the spatial resolution of 

histological images remains unmatched. There is thus great interest in combining 

information gathered from histology with in vivo information provided by MR, CT, or 

PET imagers. Several methods have been proposed. Some of these relied on a manual, 

interactive alignment [27][28][29] of these images, which is not practical. Others used 

features extracted from the images, such as the contour of the histological slices 

[31][32][33]. But a large amount of information included inside the images was ignored 
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in this type of approaches. Goldszal et al. [30] created a marker that can be used for 

registration by sticking needles in the structure before cutting. Then they used a fiducial-

based registration algorithm to align the objects. Ali et al. [34] used a set of local absolute 

affine invariants to register histological coronal 2D rat brain images with a 3D rat brain 

atlas. These invariants were derived from a set of ordered inflection points on the external 

contour. Ourselin et al. [35][36] proposed a strategy, called a blockmatching algorithm, to 

compute the local transformation for several small windows in the histological images, to 

estimate the global rigid transformation. Mega et al. [38] co-registered a stained whole-

brain sections to premortem fluorodeoxyglucose positron emission tomography (FDG-

PET) using an elastic warping algorithm proposed by Thompson et al. [39]. Ourselin et al. 

[40] also used the blockmatching algorithm to fuse the histological sections with MR 

images. They used the same algorithm for the reconstruction of histological volumes and 

the registration of histological images with MRI. Bardinet et al. [41] presented a method 

for the registration of reconstructed post mortem optical data with MR scans. A rigid 

Iterative Closest Point (ICP) was first performed between the brain surface extracted 

from both the MR and an optical volume. Then 3D affine registration was used, using a 

variant of the correlation ratio as the similarity measure. Bardinet et al. [42] also 

presented a study for the registration of histological, optical and MR data of the human 

brain. In this study, the blockmatching algorithm and the feature-based registration 

algorithm were used. Gefen et al. [43] proposed a 3D wavelet-based algorithm for 

nonlinear registration. In this work, an elastic body model was used for the rat brain and a 

multi-resolution wavelet expansion is used to represent the deformation field. A cost 

function that includes the sum of squared surface distances and the elastic energy was 
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minimized to calculate the deformation field. Malandain et al. [54] followed the scheme 

presented by Ourselin et al. [35] to realign 2D autoradiographic sections. The authors also 

provided an intensity correction method for the reconstructed autoradiographic volumes. 

Chakravarty et al. [44] used the Automatic Nonlinear Image Matching and Anatomical 

Labeling (ANIMAL) registration scheme to reconstruct the histological volume. Auer et 

al. [45] presented an automatic nonrigid registration method for stained histological 

sections. The mutual information was used as the similarity measure for the rigid body 

registration algorithm and the nonrigid transformation was based on the elastic thin-plate 

spline (TPS) interpolations. Nevertheless, the TPS algorithm was sensitive to the control 

points and the mis-conrrespondence of the points would have a very negative influence 

on the registration result. Moreover, the work did not show any reconstruction result for 

the multiple stained slices. Arsigny et al. [46] recently proposed a novel geometrical 

transformation, called polyrigid and polyaffine, for the registration of histological slices. 

Using this transformation, large rigid or affine movements can be described. A 

differential equation averaged the influence of rigid or affine components. Hence, the 

displacement can be defined by a continuous trajectory. Yushkevich et al. [61] applied 

the approach in which the histological volume was reconstructed through fine-scale 

alignment, and the MRI and the histological volume were registered through coarse-scale 

alignment. The coarse and fine approaches were then combined to produce a coarse-to-

fine reconstruction. However, several parameters in this algorithm must be determined 

empirically and finding the optimal values for these parameters was a hard task. In 

general, the most promising approaches follow a procedure similar to the one proposed by 

Ourselin et al. [35][36]. Chapter II describes this approach in more detail. 
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In addition to the reconstruction of the histological volumes, the creation of an 

atlas is of great importance. Atlases can be constructed so that anatomical data obtained 

from multiple specimens can be quantitatively compared to understand both normal (i.e., 

inter-specimen) variability as well as pathological states within an organ of interest. 

Atlases can provide a framework to synthesize structure and function at multiple scales 

and characterize inter- and intra-animal variation, thereby providing new insights into 

biology. In particular, brain atlases have added much to our knowledge of brain 

development, connectivity, and function, especially in determining the relationships 

between genotype and phenotype. Thus, there is great and continued interest in 

developing methods for improving methods to construct and analyze brain atlases.  

So far, only a limited amount of literature can be found on the generation of mice 

brain histological atlas and small animal atlas-based segmentation approaches. 

MacKenzie-Graham et al. [69] developed a digital atlas of the adult C57BL/6J mouse 

brain as a comprehensive framework for the mouse brain. Several different imaging 

techniques, i.e., magnetic resonance microscopy, blockface imaging, classical histology 

and immunohistochemistry, were used to construct the mouse brain atlas. Regarding the 

image processing, they applied the blockmatching algorithm proposed by Ourselin et al. 

[35][36] to register two image volumes. Bock et al. [86] created a MRI mouse brain atlas 

to segment different tissues in the brains. Two different types of mice were compared 

through analyzing their tissues. Chakravarty et al. [44] created a brain atlas using serial 

histological data. Chan et al. [67] built a surgical atlas of the murine head through aligning a 

mouse brain MR and the corresponding CT images. However, none of these efforts creates 

an atlas of histology using the multiple individual histological volumes. Their “atlas” 
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came from only one single subject and can not reflect the characteristic of one certain 

population. Ma et al. [68] developed a 3D digital atlas for the C57BL/6J mouse brains, 

based on averaging multiple MR mouse brain images. Although the excellent results 

were presented in the work introduced above, the creation of histological atlas remains 

lacking. 

In summary, a review of the current literature shows that registering tomographic 

images with histological images has been done but also that the process is not as 

straightforward as registering tomographic images alone. The reconstructed histological 

volumes, which are part of this process, often suffer from a number of artifacts generated 

during the staining procedure. Moreover, the creation of a histological atlas for the histology 

is still an active area of research. Chapter II of this thesis proposes solutions for these 

difficulties. 

 

1.3 Methods developed to register whole body tomographic images 

The main difference between head and whole body images is that the former 

typically contain a few structures (the brain and skull) while the latter contain a combination 

of articulated structures (the bones) and soft tissue, which complicates the problem.  Non-

rigid registration methods have been proposed for specific applications outside the head 

such as the registration of breast, abdomen, lung, or prostate images. Kramer et al. [4] used 

external and internal markers for CT and SPECT using radio-labeled, anti-

carcinoembryonic antigen monoclonal antibody (MoAb) to fuse these types of images, 

which were obtained from eight subjects with suspected colorectal adenocarcinoma. Yu 

et al. [11] conducted a study to develop an accurate, retrospectively applicable procedure 
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for registering thoracic studies from different modalities in a short amount of time and 

with minimal operator intervention. In this paper, a sum of least squares fitting approach 

for the pleural surfaces was used for the registration of CT and PET images. Pereault et al. 

[16] adapted a superimposition method to the nonrigid thoraco-abdominal region from 

SPECT and CT slices, in order to detect tumor sites. Chow et al. [19] proposed an 

improved Genetic algorithm for finding the transformation between two free-form 

partially overlapping surfaces. This method was validated in the human heart model, 

human vertebrae model and fetus model. Mattes et al. [24] combined a rigid body 

deformation with localized cubic B-splines to capture the significant nonrigid motion in 

the chest between PET and CT images, using the mutual information as a similarity 

criterion. Rueckert et al. [48] used a non-rigid registration algorithm for breast MR images. 

They model the global motion with an affine transformation and describe the local breast 

motion with a free-form deformation (FFD) based on B-splines. Camara et al. [47] used 

free-form deformation guided by a gradient vector flow combined with a grey-level MI non-

linear registration algorithm for thoracic and abdominal applications.  

However, the registration of whole body images, and especially of small animal 

whole body images, remains a challenge. This is so because non-rigid registration methods 

typically need to be initialized with a rigid body transformation. Because whole body 

images contain many articulated joints and because it is extremely difficult to reposition 

small animals from acquisition to acquisition, a single rigid body transformation is typically 

insufficient for this initialization step. Despite these difficulties, several approaches have 

been proposed to partially address the problem ([49][50][51][52][72][73][78]). Chapter III 

of this thesis proposes a method to automatically register whole body images and a detailed 
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discussion of these papers will be presented in this chapter. In summary, registration of 

whole body images, including head images, can range from easy to very difficult, depending 

on the image acquisition procedure. For the whole body images, if the animal is positioned 

in a holder and the various imaging modalities can be acquired within the same holder, a 

simple rigid body registration method may be sufficient. Fig. 1 shows results we have 

obtained when registering CT and PET images of a mouse kept in the same holder in both 

scanners. However, if the animal can not be kept in the same holder, or if images are 

acquired longitudinally, the problem is more difficult. The goal of this work is to provide 

solutions to these problems. In the next sections we will summarize our main goals and 

contributions. 

   

 

Fig. 1: PET and CT mouse whole body registration. 
 

2. Goals and Contributions 

As discussed above, a large body of work exists that deals with various aspects of 

medical image registration, but the vast majority of this work focuses on images from 

humans and, more specifically, on head images. While registering tomographic head 

images is of great importance for neuroimaging studies, it is also one of the easiest 

registration problems. This is so because the head is enclosed in the skull, which greatly 
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minimizes the amount of deformation observable between subjects. Also, when dealing 

with intra-subject registration problems, a rigid-body registration transformation is often 

sufficient. This further simplifies the problem. However, whole body registration 

problem remains a challenge because one single rigid body registration is insufficient for 

the registration of articulated structures. Hence, the overarching goal of the work 

presented herein is to adapt, modify, extend, and evaluate current registration methods to 

develop techniques applicable to the rigid and non-rigid registration of whole body small 

animal images.  

The main contributions of this research are as follows.  

We propose a solution to enhance the histological volumes reconstructed from 2D 

histological slices through averaging individual histological volumes. Histological images 

are usually considered as the gold standard, which is used to complement and/or validate 

the in vivo data. Automatic registration of the histology and other imaging modalities is a 

critical component of the overall analysis process. Due to the acquisition procedure of 

histological images, reconstruction of 3D volumes from a series of 2D images is required.  

A number of methods have been proposed recently in the literature to address this issue, 

but deformation or tearing during the slicing process often produces reconstructed 

volumes with visible artifacts and imperfections. In this work, we present a solution to 

this problem, through working with several histological volumes, reconstructing each of 

these separately, and then computing an average. We also propose an original and robust 

approach to normalize intensity values across slices, a required pre-processing step when 

reconstructing histological volumes. Finally, we use the histological volumes we have 

created to validate segmentation results obtained with an atlas-based method that uses 
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only MR volumes. The accuracy of the segmentation results we obtain demonstrates that 

automatic segmentation of brain structures and substructures in brain MR images of small 

animal is achievable. 

Next, we present a fully automatic registration algorithm for whole body 

computed tomography volumes. Whole body images typically contain a large number of 

articulated structures, which makes registration more difficult. This study proposes a new 

method for the automatic registration of whole body CT images, which consists of two 

main steps. Skeletons are first brought into approximate correspondence with a robust 

point-based method. Transformations so obtained are refined with an intensity-based 

nonrigid registration algorithm that includes spatial adaptation of the transformation’s 

stiffness. The approach has been applied to whole body CT images of mice, to CT images 

of the human upper torso, and to human head and neck CT images. To validate our 

method on soft tissue structures, which are difficult to see in CT images, we use co-

registered MR images. We demonstrate that the approach we propose can successfully 

register image volumes even when these volumes are very different in size and shape or 

they have been acquired with the subjects in different positions. 

 Although the aforementioned algorithm provides acceptable results, it also suffers 

from one weakness: bones can be deformed inaccurately under the influence of surrounding 

soft tissues. Our final contribution is to propose a solution to this problem. 

 

3. Overview 

 This chapter introduced the significance and the background and related work of 

our research. The main goals and contributions are also summarized. The reminder of the 
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thesis is organized as follows. Chapter II presents the methods we propose to reconstruct 

3D histological volumes, to eliminate or reduce artifacts in each of the reconstructed 

volumes, and to build a virtual histological volume that is better than any of the volumes 

used to build it. Chapter III details our new algorithm for whole body image registration. 

Qualitative and quantitative validations are also provided. Chapter IV presents a modified 

algorithm for the whole body image registration, which solves the bone deformation 

problem. Chapter V concludes the work presented in this thesis and provides possible 

directions for future work. 
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CHAPTER II 

 

 ENHANCEMENT OF HISTOLOGICAL VOLUMES THROUGH AVERAGING 
AND THEIR USE FOR THE VALIDATION OF ATLAS-BASED 

SEGMENTATION METHODS 

 

1. Introduction 

Intra- and inter-subject registrations of medical images are important for a number 

of applications including assessment of therapy response, population comparison, or 

atlas-based segmentation. Moreover, the development of various imaging modalities such 

as ultrasound, magnetic resonance imaging, X-ray computed tomography, positron 

emission tomography, single photon emission computed tomography, or histology, each 

with its own strengths, demands the development of methods by which the information 

they provide can be combined.  

A number of methods have been proposed to register tomographic images, 

especially human head images (see, for instance, [9][17][21][23][53]), which can be 

adapted to small animal images. Registering the histological images, which display a level 

of anatomical details far superior to the other imaging modalities, does, however, require 

first creating a 3D volume from a series of 2D images. Several authors have proposed semi-

automatic methods to reconstruct these histological volumes (see, for instance, 

[27][29][31][32][33]). In general, the most promising approaches follow a procedure similar 

to the one proposed by Ourselin et al. [35] or Malandain et al. [54]. Sequential 2D images 

are first registered to each other using a 2D registration algorithm, intensities are 

normalized, and the 3D histological volume is registered to the corresponding tomographic 

volume, which is generally an MR volume. Because registering sequential 2D histological 
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volumes to each other may result in a brain whose shape is different from the true shape, a 

series of 2D and 3D registration steps are used to register the histological volume to the 

tomographic volume. First, a 3D transformation is computed and the two volumes are 

registered to each other. Then, the tomographic volume is resampled to correspond to the 

histological slices. Next, each histological slice is registered in 2D to its corresponding MR 

image in the resampled volume. A new histological volume is subsequently created and the 

process is repeated until convergence. In this paper, we use a similar strategy for the 

reconstruction of individual histological volumes with some variations that will be described 

in the methods section. 

Intensity normalization is required because individual slices can absorb more or 

less of a particular histological stain during the slice preparation. Because of this, the 

overall intensity and contrast of these slices can vary. A number of algorithms of varying 

complexity have been proposed to address this problem. For instance, Dauguet et al. [63] 

rely on a segmentation of the images into several classes and the mapping of intensities 

for each class between slices. Segmentation is performed based on peaks detected in the 

intensity histograms of each slice following scale-space analysis. It requires a number of 

heuristics developed for their application (baboon brain images). In [44], Chakravarty et 

al. use a two-step process in which images are first normalized globally using third order 

polynomials to fit histograms of adjacent slices. The second step involves the computation 

of local scaling factors. These are computed for a preselected number of neighborhoods and 

subsequently interpolated over the entire image. Malandain et al. use an approach in which 

histograms in consecutive slices are matched using low order polynomials [54], which 

requires an iterative optimization step. They comment on the fact that a standard 
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histogram specification approach was inadequate for their data set (brain images). In this 

paper, we propose a modification to this method.  Results will show that the method we 

have developed is less complex than some of the techniques proposed in the literature, 

and is fast, non-iterative, parameter free, and robust for the mouse brain histological 

images we have dealt with in this study. 

Results will also show that although individual 3D histological volumes can be 

reconstructed, they suffer from undesirable defects caused during the slicing process which 

are difficult to correct. We propose a solution to this problem, which relies on the creation of 

a virtual 3D histological volume obtained with several 3D real histological volumes through 

non-rigid registration. The results we have obtained show that the virtual volume possesses 

clearer internal structures than any of the individual experimentally measured volumes, with 

fewer defects and superior spatial resolution.  

Finally, we use the created histological volumes to validate atlas-based segmentation 

results we have obtained. In this study, we use MR atlases to segment brain structures. We 

then use our histological atlases to verify the accuracy of our segmentation results on 

structures that are difficult to visualize in the MR images.  

The remainder of this chapter is organized as follows. First, the method to acquire 

the histological and MR images is described. We then describe the method used to create the 

individual 3D histological volumes and register those to their corresponding MR volume. In 

particular, our new intensity normalization scheme is discussed. Next, the method used to 

create our virtual histological volume is introduced and we show that the obtained volume is 

superior to any of the individual volumes used to construct it. Finally, we report our findings 

on our atlas-based segmentation validation study. 
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2. Methods 

 

2.1 Image acquisition 

The MR image acquisition protocol we have used is as follows. Four male 

C57/BL mouse (22 g) were fed a standard diet in a controlled environment with a 12/12 h 

light/dark cycle. Just prior to imaging, anesthesia was induced via a 5%/95% 

isofluorane/oxygen mixture and maintained via a 2%/98% isofluorane/oxygen mixture. 

The temperature of the animal was maintained at 37o C via a flow of warm air through 

the magnet bore. The respiratory rate was monitored throughout the experiments and 

remained between 35 and 45 breaths per minute for all animals. The mice were imaged in 

a Varian 7.0 T scanner equipped with a 38 mm quadrature birdcage coil. Two data sets 

were acquired for each mouse. 200 µm × 200 µm × 500 µm images were acquired for 30 

contiguous (i.e., no gap) slices with a standard spin echo sequence with TR = 2000 ms, 

TE = 35 ms, NEX = 8, and a 1282 matrix acquired over a 25.6 mm2 field of view. All 

procedures adhered to our institution’s Animal Care and Use Committee’s guidelines. 

The method used to create the histological images is detailed elsewhere [55]. 

Here, we only provide a brief summary of the technique. Generating these images 

involves five main steps. First, the brains are dehydrated in ethanol; second, the 

dehydrated brains are then embedded in 12% celloidin; third, the brains are removed 

from the embedding mold and mounted on embedding blocks; fourth, after being 

immersed for 24 hours in 80% ethanol, the blocks are cut coronally on a sliding 

microtome at 30 µm; fifth, sections are stained with cresyl violet and are mounted on 
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slides. This procedure leads to about eight slides per mouse brain, with each slide holding 

approximately 40 contiguous cross-sections.   

To create the histological images, which can be processed, we scanned these glass 

slides using a HP ScanJet 5470c scanner with a resolution of 2400 × 2400 dpi and a color 

depth of 24 bits. This resulted in 800 × 800 pixels images with a pixel resolution of 10 

µm × 10 µm.  Fig. 2 shows one of the glass slides with one high resolution histological 

image. 

 

 
Fig. 2: An example of a histological glass slide. 

 
 

2.2 3D Histological volume reconstruction 

 To reconstruct the 3D volume from the histological cross-sections, four steps are 

applied to the digitized images: image segmentation, center alignment, rigid body 

alignment, and color normalization. The following sections explain those steps in detail. 

Image segmentation 

The first step in the process is to extract sub-images, which contain a single cross 

section from the digitized slides. The connected components on the slides are detected 

and labeled first, with one individual component containing a single cross-section. Next, 

sub-images are extracted and ordered, using their position on the slide. Finally, the brain 
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is extracted from each of the sub-images. To achieve this, we have used a level-set 

method with a dynamic speed function that we have proposed for the segmentations of 

images with weak edges [56]. Initial contours are placed outside the brain area and 

evolve toward the brain edges. The left panel of Fig. 3 illustrates a typical histological 

image with the initial contours (the blue circles). The middle panel shows the mask 

extracted with our segmentation algorithm. The right panel shows the brain extracted 

from the image.  

 

 

Fig. 3: A histological image with the initial contours (left), the mask extracted with the 
level-set method (middle), and the extracted image (right). 

 
 

 

Center alignment 

 In this step, the segmented histological slices are registered to each other 

sequentially, starting from the first image to the last one, by realigning the center of the 

slices. This step generates a coarse result and provides a good initialization for the next 

step. The left panel of Fig. 4 shows the result after this step. 
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Fig. 4: The reconstructed histological volume before registration (left) and after rigid 
body registration (right). 

 

Rigid body alignment 

Next, the slices are registered rigidly using a Mutual Information-based algorithm. 

A rigid body transformation only includes three parameters: one rotation angle R and a 

translation vector t = [tx, ty]. The algorithm calculates the optimal parameters R and t 

through maximizing the Normalized Mutual Information (NMI) using Powell’s algorithm 

[57]: 

( ) ( )
( )

'

'cos ,

H A H B
F t H A B

+
= − ,                                            (1) 

where A and B’ are the target image and the transformed image, respectively, and ( )H ⋅  is 

the Shannon entropy of the image, which measures the amount of information in this 

image via Eq. (2), 

( ) ( ) ( )logi i
i A

H I p i p i
∈
∑= − ,                                         (2) 

where ( )ip i  is the probability of an intensity value i  in the image A. 



 24

Although most of the slices can be registered successfully using this method, 

failures happen because the algorithm converges to a local minimum. For our data sets, 

we have observed a 10% error rate. We have also observed that the most critical 

parameter in our registration algorithm is the number of bins used to compute the joint 

histograms from which MI is evaluated. Based on this observation, we have developed an 

algorithm that modifies the number of bins if it is determined that the registration is stuck 

in a local minimum. Whether or not this happens is determined from the value of the MI 

between slices. Based on successful registrations, we have determined a normal range for 

the MI between two histological slices. We have then fixed a minimum MI value that 

needs to be attained for a registration to be successful. If the registration algorithm 

terminates and returns a final MI value that does not reach this threshold, the registration 

is automatically repeated with histograms computed with 8, 16, 32, 64, and 128 bins. The 

registration that leads to the largest MI value is then selected as the correct one. In the 

current study this approach reduced the error rate to 1.5%. The remaining mis-registered 

cases were identified visually and realigned manually. The right panel of Fig. 4 shows the 

reconstructed volume after this step. 

Color normalization  

As discussed earlier, not only spatial normalization, but also color normalization 

is necessary to reconstruct the histological volumes. This is so because individual slices 

can absorb more or less cresyl violet stain during the histological slice preparation. This, 

in turn, affects the overall intensity of a slice as well as the contrast between structures.  

In this work, we use a weighted histogram specification method on each of the R 

(red), G (green) and B (blue) channels of the histological images. The standard histogram 
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specification algorithm consists in computing an intensity transformation T that 

minimizes the difference between the cumulative histogram of a source image to be 

corrected and a target histogram: 

( )( ) ( )( )arg min s tT
T C T I C I= − ,                                        (3) 

where C is the cumulative histogram function, and Is and It are the reference and target 

images, respectively.  

But, a global optimal intensity histogram (the target histogram) is difficult to find. 

This is so because different structures are visible in different slices. These slices thus 

have different intensity distributions and one single target histogram is insufficient to 

capture the characteristics of all the slices. One solution is to choose a number of target 

slices spread over the volume and to normalize the intensities block by block. As will be 

seen, this leads to results that are satisfactory locally but it also produces banding artifacts 

(i.e., variation in image appearance from one block to the other). Here we propose a 

method that solves this problem. We start by selecting a number of target slices across the 

volume. Typically, we choose one target slice every 30 slices (this number was chosen 

experimentally for our data set) and we normalize slices between these target slices using 

the intensity histograms of both target slices as follows. Let St be the target slice. For 

every slice { }1,i t tS S S +∈ , we compute the intensity transformations between iS  and tS , 

and between iS  and 1tS + : 

                              ( )( ) ( )( )1 arg  min i tT
T C T S C S= −    

( )( ) ( )( )2 1arg  min i tT
T C T S C S += − .                                       (4) 
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 The final transformation T for iS  is then computed as: 

1 1 2 2T T Tω ω= +                                                      (5) 

where ( )1
1

,i tD S S
v

ω += , and ( )
2

,i tD S S
v

ω = , with D the distance between the current 

slice and one target slice, and v  is the distance between two adjacent target slices, which 

is selected as 30. This technique is simple, non-iterative, fully automatic, and we found it 

to be robust.  

Fig. 5 illustrates results obtained with the various intensity normalization schemes 

we have discussed. Panel (a) shows the stacked slices prior to segmentation and 

registration in the horizontal orientation. Hence, every column in this panel represents 

one coronal histological slice. Panel (b) shows the histological volume after registration 

but before intensity normalization. Panel (c) shows the intensity normalization results 

obtained when only one reference histogram is used. Here, the middle slice has been 

selected as target and all the other intensity values have been normalized sequentially 

moving to the left and to the right of the central slice. Clearly, this leads to suboptimal 

contrast for some of the slices (see for example the reduction in contrast in the 

cerebellum’s region). Panel (d) shows the results when several target histograms are 

selected and the images normalized block by block. This leads to good results within a 

block but also to noticeable differences across blocks. Panel (e) shows results obtained 

with our method. These results show that we have been able to remove intensity and 

contrast differences between nearby slices while preserving good contrast across the 

entire volume. To show the robustness of our approach, Fig. 6 illustrates the four 
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histological volumes we have used in this study before (left column) and after (right 

column) color normalization with our algorithm.   

 

 

Fig. 5: One slice in the 3D reconstructed histological volume a) after stacking the original 
histological images, b) after segmentation and registration, c) after color normalization 

using one single target histogram for the whole volume, d) one target histogram per 
interval, and e) the method we propose. 
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Fig. 6: Four reconstructed histological volumes before (left column) and after (right 

column) color normalization. 
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Theoretically, the continuous or discrete transformation of histogram specification 

is single-valued and monotonic in an interval. However, in practice, after the discrete 

transformation, the transformed intensities in one image need to be quantized into 

integers in the range of [0, 255] to generate a new image. It will result that multiple 

intensities in the source image are mapped into a single intensity in the target image. 

Moreover, when we calculate the mutual information between two images, usually the 

number of bins is selected as 32 or 64. It may happen that histogram specification 

changes the probability of intensities in each bin. Consequently, the mutual information 

between these two images will be changed indirectly. We investigated whether or not this 

procedure can influence the mutual information based rigid body registration algorithm. 

Hence, color normalization was applied to images before and after the step of rigid body 

alignment, respectively. The results we obtained show that normalizing the images prior 

to registration did not change the number of times the registration algorithm converged to 

local minima. This also indicates that MI is largely immune to intensity differences 

between the slices. 

 

2.3 Registration of histological volumes to their corresponding MR volume 

The next step in the process involves registering histological volumes to their 

corresponding MR volumes. First, brains are extracted from the MR images using the 

same level-set algorithm we have used to separate background and brain regions in the 

histological images. Next, the two brain volumes are registered. This requires several 

steps because of the difficulty mentioned in the Introduction section. Namely, when we 

reconstruct the histological volumes, we stack images consecutively, while maximizing 
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the MI between these slices. This leads to histological volumes (the middle panel of Fig. 

7) whose overall shape does not match exactly the shape of the MR volume (the left 

panel of Fig. 7). To address this issue, we first register the MR volume to its histological 

volume using a rigid body registration technique. When this is done, we translate each 

slice in the histological image such that its center of mass coincides with the center of 

mass of the corresponding MR slice. This is similar to what has been done by 

Yushkevich et al. [61] and Malandain et al. [54]. We note that these authors added one 

component to insure a smooth transition between successive transformations. They also 

used transformations with more degrees of freedom. We did not find this necessary with 

our data set. This is probably due to the fact that we are dealing with mouse MR images 

that have a much lower spatial resolution than the monkey and human brain MR images 

they are using in their studies. The result of this operation is shown on the right panel of 

Fig. 7. Finally, when the individual slices have been registered to the MR volumes, the 

new histological volume is registered in 3D to the MR volumes using a non-rigid 

registration algorithm [59], which is described in Section 2.4.  

 

 
 

Fig. 7: One sagital slice in one MR volume (left), histological volume after rigid body 
registration (middle), and histological volume after rigid body registration and 
realignment of each slice to the corresponding one in the MR volume (right). 
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Unfortunately, the individual histological volumes we obtain with the 

aforementioned techniques suffer from a series of defects such as tearing or missing 

segments. One approach is to try to develop more sophisticated reconstruction techniques 

that can deal with these issues but these are challenging problems. Automatic, robust, and 

practical solutions will thus be difficult to develop. A practical alternative is to try to 

combine several individual volumes and generate one synthetic volume that suffers from 

fewer defects, which is the approach we have investigated.  

 

2.4 Creation of the average histological volume  

The method we have used is a technique that has been proposed for the creation 

of population averages [58]. In this context, one computes one image volume (e.g., a 

human brain volume), which is representative of a population as a whole. These averages 

can then be used to compare populations. Even though our immediate objective is not to 

compare populations, averaging image volumes can help alleviate defects in individual 

histological volumes, as these defects are random and occur at different locations in each 

volume.  

The averaging method we have used is illustrated in Fig. 8.  First, one histological 

volume is selected as a reference (the work presented in [58] shows the selection of the 

reference does not affect the average result) and all the other volumes are registered to 

this reference image, using a non-rigid registration algorithm. Two deformations fields, 

which are inverses of each other, are produced by the registration algorithm. The first, 

which we call the forward field, permits the registration of a volume to the reference 

volume. The second, which we call the reverse field, permits the registration of the 
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reference volume to one of the other volumes. Once the deformation fields have been 

computed, an intensity average is computed. This is done by applying the forward fields 

to each of the volumes and averaging the resulting volumes. Next, an average shape 

volume is computed. This is done by first averaging the reverse deformation field. The 

average reverse deformation field is then applied to the intensity average to produce a 

new reference. Note that this new reference volume is a “virtual volume”; i.e., it is 

different from all the original histological volumes. All the volumes are again registered 

to this new reference volume and the process is repeated until convergence. The 

experiments we conducted show that after 3 or 4 iterations, both the intensity and the 

deformation field of the average model remain constant, and the process converges.  

 
 

Fig. 8: Flow chart of the algorithm used to generate the average volume. 
 

As is the case for inter-slice intensity normalization, we use a histogram 

specification method to normalize intensities across volumes. Here, a single target 

histogram is computed from the target volume; the intensities in the other reconstructed 

volumes are normalized to match the target one. 
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The algorithm we have used to compute the non-rigid registration is an MI-based 

algorithm we have proposed, which we call ABA for adaptive bases algorithm [59]. This 

algorithm models the deformation field that registers the two images as a linear 

combination of radial basis functions (RBFs) with finite support: 

( ) ( )
1

v x c x x
N

i ii
= Φ −∑
=

                                                 (6) 

where x is a coordinate vector in dℜ , with d being the dimensionality of the images. Φ  is 

one of Wu’s compactly supported positive radial basis functions: 
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Φ =                                                                (7) 
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= − + + ++                                       (8) 

where ( ) ( )1 max 1 ,0r r− = −+ . s is the support size of the basis function, and ||•||2 is the 

Euclidean norm. The 'c si   are the coefficients of these basis functions. The coefficients 

of the basis functions are computed through maximizing the Normalized Mutual 

Information.  

The algorithm is applied using multiscale and multi resolution approach. The 

resolution is related to the spatial resolution of the images. The scale is related to the 

region of support and the number of basis functions. Typically, the algorithm is started on 

a low-resolution image with few basis functions with large support. The image resolution 

is then increased and the support of the basis function decreased. Following this approach, 

the transformations become more and more local as the algorithm progresses. The 
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algorithm progresses until the highest image resolution and highest scale are reached. 

Hence, the final deformation field is computed as: 

                                        1( ) ( ) ( )v x v x v xM= + +L                                          (9) 

with M the total number of levels. 

With this algorithm, it is possible to spatially adapt the stiffness characteristics of 

the transformation. In previous work [60], we have shown this to be of value for 

registering brain volumes with large space-occupying lesions or with extremely large 

ventricles. We found it to be useful for this application as well. Looking at Fig. 9, one 

observes that the images are made of two distinct regions. The first one is the cerebellum 

in which layers of white and gray matter are clearly visible; these create distinct features 

that can guide a non-rigid, intensity-based, registration algorithm. The second region 

encompasses the rest of the brain. In this region, contrast is weaker and internal structures 

and substructures do not show clearly defined edges. It is well known that intensity-based 

algorithms as the one we use need to be regularized more over uniform regions than they 

need to be on regions with a lot of edge information. In our algorithm, regional stiffness 

properties can be defined using what we call a stiffness map (i.e., a file that has the same 

dimensions as the images and that specifies stiffness values at every pixel). In this study, 

we have used a simple binary map. Stiffness is smaller over the cerebellum region than it 

is over the rest of the brain region. In other words, the deformation field is regularized 

more over regions in which edge information is not very reliable (the brain) and less over 

regions in which edge information is more reliable (the cerebellum).  
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Fig. 9: One slice in a histological volume showing the cerebellum. 

 

The effect of using two stiffness values is shown in Fig. 10. The left panel in this 

figure shows one slice in the reference volume. To create the middle panel, another 

volume was first registered to the reference volume using one single stiffness value, 

which produces good results over the brain region. The reference volume and the 

registered volume were then averaged. The middle panel shows one slice in this average 

volume. The right panel shows the same but when two stiffness values are used (the 

transformation is more elastic over the region of cerebellum). This figure shows that the 

average volume is aligned more accurately over the region of cerebellum when two 

stiffness values are used, thus suggesting a better registration.  

 

Fig. 10: One slice in  the reference volume (left), in the average of two volumes 
registered with one single stiffness value (middle), and in the average of two volumes 

registered with two stiffness values (right). 
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2.5 Creation of the average MR volume 

A single MR volume can be created from the four MR volumes acquired in this 

study in two ways. The first one involves repeating the procedure described above for the 

creation of the average histological volume. The second one involves creating this 

average indirectly, through the histological average. In this approach, the transformation 

that register the MR volume to its histological volume and the transformation that 

registers the histological volume to the average are combined.  The two methods will be 

compared in the next section. 

 

3. Results  

 

3.1 Results of the averaged volumes 

Fig. 11 shows the improvement one can expect when using several histological 

volumes. The left panel shows an average obtained with two histological volumes, the 

middle panel is the average obtained with three histological volumes, and the right panel 

is the average obtained with all four volumes. Green marks show some defects appeared 

in the first two averages, but disappeared in the third average. The red mark shows one 

artifact existing in the third average. Although new defects may be brought into the 

average, clearly, increasing the number of volumes used to compute the average 

generally reduces the defects visible in the average and increases its overall signal-to-

noise ratio (SNR).  

Fig. 12 and Fig. 13 illustrate the results we have obtained with our averaging 

method. In these figures, the top panel shows one slice in the average. The other panels 
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show the same slice in the four individual volumes used in this study. These figures show 

two important things. First, defects that are apparent in the individual volumes have 

virtually disappeared from the average volume. Second, small structures, such as the 

medial terminal nucleus of the accessory optic tract, the nigrostriatal fibers, or the lateral 

geniculate body, are clearly visible in the average volume despite being barely visible in 

the individual image volumes. 

Fig. 14 compares average MR volumes obtained with the two approaches 

described in Section 2.5. The left panel in the image shows one slice in one of the 

original volumes. The middle panel shows one slice in the average MR volume obtained 

when the histological images are used and the right panel a slice in the average MR 

volume obtained when MR images alone are used. The right panel is blurrier than the 

middle one, suggesting that using the histological image volumes improves the 

registration process. This finding is not very surprising. Indeed, contrast and visibility of 

internal brain structures are substantially lower in MR images than they are in the 

histological images. Accurate inter-subject non-rigid registration is thus more difficult for 

MR images than it is for histological images. When the histological images are used for 

atlas creation, the only non-rigid registration applied to the MR images is the last step in 

the intra-subject MR-histological registration process. Typically, this only requires small 

displacements that improve the results obtained with the rigid-body step. This is a much 

simpler non-rigid registration problem than the inter-subject registration step required to 

register MR volumes to each other directly. 
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Fig. 11: Slices in the average volumes generated using two (left), three (middle) and four 
(right) individual volumes. 
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Fig. 12: One axial slice from the averaged histological volume (1st row) with labeled 
structures, and individual volumes (2nd − 3rd rows). Green circles mark some defects in 

the individual volumes. 
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Fig. 13: One coronal slice in the averaged histological volume (1st row) with labeled 
structures, and individual volumes (2nd − 3rd rows). Green circles mark some defects in 

the individual volumes. 
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Fig. 14: One slice in the original MR volume (left), in the average MR volume obtained 
using the histological volumes (middle), and the average MR volume obtained by 

registering MR volumes directly (right). 
 

3.2 Validation of atlas-based segmentation  

Atlas-based segmentation refers to a segmentation method in which structures of 

interest are segmented through registration. The structures are first delineated in one 

image volume, usually referred to as the atlas. The atlas is then registered to the volume 

to segment, and labels assigned to voxels in the atlas are projected from the atlas to the 

other volume with the deformation field. As is the case with any segmentation algorithm, 

validation of the results is difficult. It is even more so with mice MR images in which 

structures and substructures are difficult to visualize. Here we have taken advantage of 

our histological volumes to validate segmentation results on structures that are not very 

well resolved in MR images. We have complemented this study with another one in 

which we have validated the segmentation results on structures visible in the MR images. 

Results obtained with both these studies are presented in the next subsections. 
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Validation using the existing histological volumes 

To evaluate our segmentation approach, we have used a “leave-one-out” method. 

We have created four MR atlases as described in section 2.5. Each of these atlases was 

created using only three of the four MR-histological volume pairs and tested on the fourth 

one as follows. First, the hippocampus was delineated manually in each of the 

histological atlases. Next, the MR atlases (created with three volumes) were registered to 

the fourth MR volume, which is registered to its own histological volume. The 

deformation field computed using this method was then used to project the hippocampus 

contours from the histological atlas onto the fourth histological volume. This approach 

permits evaluating the accuracy of our atlas-based segmentation method in four volumes. 

Fig. 15 shows hippocampus contours we have obtained automatically and manually 

superimposed on the MR volume not used to create the atlas (left column) and on the 

corresponding histological volume (right column). The histological images including 

abundant anatomical details make it straightforward to judge the segmentation results and 

this figure demonstrates visually that our atlas-based segmentation approach is accurate. 

To validate the results quantitatively, manual and automatic contours were compared 

using the Dice similarity index [62] defined as follows: 

Dice Similarity = { }
{ } { }

2
M

n A M
n A n

∩
×

+
                                              (10) 

where n{.} indicates the number of voxels within a region and A and M are the automatic 

and manual contours. Fig. 16 shows this Dice similarity result. Dice values above 0.7 are 

customarily considered indicative of a good agreement between contours [80]. Hence, 

Fig. 16 demonstrates an excellent atlas-based segmentation result. 

 



 43

 
Fig. 15: Hippocampus contours superimposed on the MR volume (left column) and on 

the corresponding histological volume (right column). 
 
 
 

 
Fig. 16: The Dice similarity index for hippocampus structures (N: the number of slices). 
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Validation using new mouse brains 

To evaluate further the potential of atlas-based techniques for the analysis of mice 

brain images, we have acquired another ten image volumes (i.e., these volumes were not 

used to create our average). The same protocol used to acquire the atlas images has been 

followed to acquire these images (a standard spin echo sequence with TR = 2000 ms, TE 

= 35 ms, NEX = 8), with voxels dimension of 200 µm × 200 µm × 500 µm. Three 

structures were segmented manually in the atlas created with the method described in 

section 2.5: the left lobe, the right lobe, and the cerebellum. These three structures were 

also segmented manually in the 10 new volumes. We limited our study to these structures 

because these could be easily visualized in the MR volumes. The atlas was registered to 

all the other volumes and 3D structures delineated in the atlas were deformed with the 

computed deformation field. Contours obtained automatically were compared to the 

manual contours using the Dice similarity. Table I shows the Dice values for all ten mice. 

The mean values for all three structures are above 0.9, which indicates an excellent 

agreement between the automatic contours and the manually segmented contours. Those 

mean values are larger than the Dice values of hippocampus contours in the previous 

validation experiment. The reason is that, compared with the regions of hippocampus, 

these three structures have clear edges in the MR images, which leads to the more 

accurate registration results. 
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Table I: Dice coefficients of three structures of mouse brains. 

Left lobe Right lobe Cerebellum # of slices 
(left/right) 

# of slices 
 (cerebellum) 

# 01 0.9589 0.9578 0.9377 15 3 
# 02 0.9695 0.9643 0.9351 16 3 
# 03 0.9729 0.9707 0.9310 17 3 
# 04 0.9687 0.9621 0.9135 16 3 
# 05 0.9600 0.9587 0.9004 15 3 
# 06 0.9653 0.9560 0.9144 14 3 
# 07 0.9603 0.9597 0.9291 16 3 
# 08 0.9705 0.9663 0.9192 14 3 
# 09 0.9724 0.9658 0.9109 15 4 
# 10 0.9722 0.9700 0.8750 16 3 

Mean 0.9671 0.9632 0.9166 15.4 3.1 
 

 

4. Conclusion 

Defects in individual histological slices are unavoidable and difficult to correct 

because they involve tearing, missing parts, or folding. The study we have conducted has 

shown that a very practical solution to reconstruct 3D histological volumes of high 

quality is to use more than one reconstructed histological volume and to create one single 

volume from these through non-rigid registration. The accuracy of our non-rigid 

registration is such that the average it produces has a higher signal-to-noise ratio than any 

of the individual volumes used for its creation. This permits the clear visualization of 

structures that are not easily discernable in the individual volumes. Also, defects in 

individual volumes become less apparent in the average one because of the intensity 

averaging we perform. Although one could expect even better results with more than four 

volumes, our study has shown that four is sufficient to produce visually satisfying results. 

As noted in the introduction, intensity normalization is an important component for the 

reconstruction of histological volumes. Others have proposed methods that are somewhat 
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complex, often requiring iterative optimization steps and parameter adjustments. The new 

method we propose is based on a standard histogram specification technique. With the 

modification we have developed it leads to satisfactory results while being simple, fast, 

and parameter free (except for the selection of the number of target histograms, which is 

not critical). Using our histological atlases, we have shown that atlas-based segmentation 

methods lead to accurate results for mice MR images both on structures that are visible in 

these images and on structures that are difficult to discern. This suggests the use of these 

methods for the automatic analysis of small animal images. An immediate and promising 

application of this technique involves the segmentation of brain structures in mouse 

populations that have been, for example, genetically manipulated—an area of active 

investigation to understand the adult and developing mammalian central nervous system 

(see for instance [64][65][66]). Others have developed digital MR atlases (for instance 

[67][68][69]). These are built directly from 3D tomographic volumes that are acquired 

with very long acquisition sequences. While results obtained with these approaches are 

excellent, there remains a place for histological atlases. Indeed, histology can still provide 

a spatial resolution that is far superior to what is achievable with MR and numerous 

histology strains can be used to visualize nuclei or cell surface receptors that can not be 

seen in MR images. It is thus likely that histology will remain the standard for many 

years to come. But, the creation of good quality histological cross-sections is a difficult 

task that requires experience and skills. The method proposed herein permits the 

reconstruction of high quality volumes even if the raw data is less than perfect.  
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CHAPTER III 

 

FULLY AUTOMATIC INTRA- AND INTER-SUBJECT REGISTRATION OF 
WHOLE BODY CT IMAGES 

 

1. Introduction 

Image registration is essential to quantitatively follow disease progression, to 

assess response to therapy, to compare populations, or to develop atlas-based 

segmentation methods. The first two applications typically involve several image 

volumes acquired serially from the same subject and require intra-subject registration 

methods. The last two, which involve images acquired from different subjects, require 

inter-subject registration techniques. In both cases, non-rigid registration methods are 

required as soon as the structures of interest are more complex than a single rigid body 

object. A number of methods and techniques have been developed to achieve this; chief 

among them are intensity-based techniques and, in particular, methods that rely on 

Mutual Information (MI) [22][12]. However, most automatic methods that have been 

proposed have been applied to head images only. This is no doubt due to the fact that 

whole body image data sets present a set of difficulties not found in head data sets.  Head 

images contain one single major identifiable structure (the brain) as opposed to whole 

body images that contain many articulated structures (the skeleton and organs). Despite 

the fact that a number of methods have been proposed for extra-cranial applications such 

as breast, lung, or prostate images [47][48][70], very few have been proposed to attack 

issues associated with images that contain many articulated structures, the relative 

position of which changes between acquisitions.  



 48

 This type of image remains challenging because, in practice, non-rigid 

registration algorithms need to be initialized with a rigid or affine transformation. If the 

image volumes do not contain articulated structures, as is the case, for example, for head 

images, one global rigid or affine transformation is sufficient to initialize the non-rigid 

registration algorithms. If, on the other hand, these image volumes contain a number of 

skeletal structures, which are rigid but whose relative position changes from acquisition 

to acquisition, one global rigid or affine transformation is insufficient and more local 

approaches have to be used. We now briefly review the methods designed to address this 

problem.  

A typical approach that is used is to rely on a number of local transformations, 

each one computed for one element in the articulated structure. These transformations are 

then combined. This is the approach followed by Little et al. [49]. These authors present a 

technique designed for the intra-subject registration of head and neck images. Vertebrae 

are registered to each other using rigid body transformations (one for each pair of 

vertebrae). Transformations obtained for the vertebrae are then interpolated to produce a 

transformation for the entire volume. One limitation of this approach is that it requires 

segmenting and identifying corresponding vertebrae in the image volumes. Because 

corresponding vertebrae are registered with rigid-body transformations, the approach is 

also applicable only to intra-subject registration problems.   

Martin-Fernandez et al. [50] proposed a method, which they term “articulated 

registration”. This approach requires the labeling of landmarks to define wire models that 

represent the bones. A series of affine transformations are computed to register the rods, 

which are the elements of the wires. The final transformation for any pixel in the image is 
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obtained as a linear combination of these elementary transformations with a weighting 

scheme that is inversely proportional to the distance to a specific rod.  

Arsigny et al. [51] also present an approach in which local rigid or affine 

transformations are combined. They note that simple averaging of these transformations 

leads to lack of invertibility, and they propose a scheme that permits the combination of 

these local transformations, while producing an overall invertible one. Their method, 

which is applied to the registration of histological images, has not been tested on whole 

body images.  

Recently, Papademetris et al. [52] put forth an articulated rigid registration 

method that is applied to the serial registration of lower-limb mouse images. In this 

approach, each individual joint is labeled and the plane in which the axis of rotation for 

each joint lies is identified. A transformation that blends piecewise rotations is then 

computed. Their approach produces a transformation that is continuous at these interfaces 

but requires manual identification of joint segments. The authors have applied their 

method to the registration of lower limbs in serial mouse images. The same authors have 

also presented an integrated intensity and point-feature non-rigid registration method that 

has been used for the registration of sulcal patterns and for the creation of mice 

population averages [71]. While similar to our own approach, it has not been used for the 

registration of skeletons.  

A. du Bois d’Aische et al. [72] deal with the articulated rigid body registration 

problem using a three-step strategy: (1) articulated registration which combines a set of 

rigid body matrices, (2) mesh generation for the image, and (3) propagating the 
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displacement to the whole volume. This work has only been applied to intra-subject 

registration problems.  

Johnson et al. [73] presented two algorithms called Consistent Landmark Thin-

Plate Spline Registration (CL-TPS) and Consistent Intensity-based Thin-Plate Spline 

Registration (CI-TPS). Then they extend these to the Consistent Landmark and Intensity 

Registration Algorithm (CLI-TPS), in order to match both landmarks and the areas away 

from the landmarks. In this algorithm, the landmarks need to be selected and their 

correspondences need to be identified manually.  

Baiker et al. [78] introduced a hierarchical anatomical model of the mouse 

skeleton system for the articulated registration of 3D whole body data of mice. But their 

model does not include the ribs, which we have found important to guarantee the accurate 

registration of structures such as the heart or the lungs.  

In summary, a survey of the literature shows that only a few methods have been 

proposed to register images including articulated structures. Most approaches compute 

piecewise rigid or affine transformations and somehow blend and combine these 

transformations. Unfortunately, these approaches are often not practical because they 

require identifying various structures in the images such as joints or individual bones and 

are therefore not automatic. In this paper we propose a fully automatic method that does 

not require structure labeling. We demonstrate its performance on small animal and 

human images. The data used in this study is described in Section 2 of this chapter. In the 

method section, we introduce the whole body image registration method we propose which 

includes three main steps. The experiments we have performed and results we have obtained 

are presented in Section 4. Both our algorithm and results are discussed in Section 5.  
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2. Data 

Two types of images have been used in the study presented herein: images 

acquired from small animals and images acquired from humans. The small animal data 

sets include CT and MR images while the human data sets only include CT images. MR 

images have been acquired for the small animals to permit validation of the method we 

propose, which is primarily designed for CT images, on soft tissue structures. Soft tissue 

contrast in CT images is poor but the additional MR image volumes we have acquired 

permits us to indirectly validate our method, as will be described in more detail in the 

Experiment section.  

To permit long MR acquisition times with high signal to noise and without 

motion artifacts, mice were first sacrificed, and then imaged in a Varian 7.0T MR scanner 

equipped with a 38mm quadrature birdcage coil. A T1-weighted spoiled gradient recalled 

echo sequence with a TR/TE of 20 ms/5ms and a flip angle of 5o was employed. The 

acquisition matrix was 500×128×128 over a 90×32×32 field of view yielding a spatial 

resolution of approximately 0.176×0.25×0.25mm3. Next the mice were imaged within the 

same holder using an Imtek MicroCAT II small animal scanner to generate the CT 

images. CT imaging was at a voltage of 80kvp with an anode current of 500µA. 

Acquisition parameters of 360 projections in 1o
 steps, exposure time 600ms, and 

acquisition matrix 512×512×512 were employed. Total scan time is just over eight 

minutes, and images have 0.2×0.2×0.2 mm3 isotropic voxels. The mice posture was then 

changed arbitrarily and a second set of MR and CT scans were acquired. This process 

was repeated in four mice. The CT and corresponding MRI scans for each mouse can 



 52

easily be co-registered with a rigid body transformation, because the mouse was in the 

same holder during CT and MR acquisitions.  

Although our main domain of application is small animal images, we have also 

used human data sets to show the generality of our algorithm. Two pairs of inter-subject 

human upper torso images were acquired. One pair of images consists in a 512×512×170 

and a 512×512×198 CT volumes with a voxel resolution of 0.9375×0.9375×3mm3. The 

other pair of images consists in a 512×512×184 and a 512×512×127 CT volumes with a 

resolution of 0.9375×0.9375×3mm3 as well. 

 

3. Methods 

The methods we propose involve one pre-processing step and three main 

registration steps (shown in Fig. 17): intensity-based rigid body registration, point-based 

nonrigid registration, and intensity-based nonrigid registration. The three registration 

steps are discussed in detail in the following sections. 

 

3.1. Step one: intensity-based rigid body registration 

First, a standard Mutual-Information (MI) based rigid body registration algorithm 

[22] is applied to the source and target CT volumes. A rotation matrix R and a translation 

vector t, which maximize the normalized mutual information [79] (NMI) between the 

images are computed using Powell’s conjugate direction method [57].  The normalized 

mutual information is defined as:  

( ) ( )
( ),

H A H B
NMI

H A B
+

= ,                                                                   (11) 
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where A and B are two images, and ( )H ⋅  is the Shannon entropy of the image which 

measures the amount of information in this image: 

( ) ( ) ( )logi i
i A

H A p i p i
∈
∑= − ,                                                   (12) 

with ( )ip i  is the probability of an intensity value i  in the image A.  

 

 
 

Fig. 17: The flowchart of the algorithm, which includes three main steps: intensity-based 
rigid body registration, point-based nonrigid registration and intensity-based nonrigid 

registration. 

 

3.2. Step two: nonrigid point-based registration 

 Next, a set of points is extracted from the skeletons in the images to be registered. 

In CT images, the bones have a higher intensity than soft tissues. The bony structures can 

thus be segmented easily in CT images with one single threshold. Here, a simple manual 
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method has been used to select this threshold. Iso-intensity surfaces were generated with 

various thresholds and the intensity value that produced the best surface was chosen. 

Points are then selected automatically in the thresholded image as follows. For each axial 

slice in the skeleton volume, the connected areas are detected and the center of each of 

these areas is located. The set of points used for registration is the set of central points, 

which approximately corresponds to the centerline of the skeletons.  

The sets of points extracted from the source and the target images are then 

registered using the Robust Point Matching (RPM) algorithm proposed by Chui et al. [74]. 

This algorithm takes two sets of points as input and iteratively computes a 

correspondence between these points and the transformation that registers them. 

First, a correspondence matrix is calculated. Instead of assigning a binary value 

for every pair of points, a continuous value in the interval [0, 1] is calculated, according 

to the softassign algorithm proposed by Gold et al.[75]: 

                            
( ( )) ( ( ))1 exp 2

Tx f x fa ai imai T T
υ υ⎛ ⎞

⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

− −
= − ,                              (13) 

where V: { aυ , a  = 1, 2, …, K} and X: { xi , i  = 1, 2, …, N} are two sets of points from 

the source and target images. f  is the transformation or mapping function, which is used 

to register the images (more details on this mapping function are provided below). T is 

called the temperature parameter, which is introduced to simulate physical annealing. In 

the original paper, the suggested initial value for T is 0.5. The annealing schedule for T is 

T T r= � , with r the annealing rate. A recommended value for r is 0.93.  In this work, we 

have used the recommended values for every volume. The fuzzy correspondence matrix 

is normalized at each iteration, so that the sum of each row and each column is kept as 
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one. Thus, equation (13) establishes a fuzzy correspondence between points in the set V 

and points in the set X; the fuzziness of the assignment decreases as the algorithm 

progresses. Major advantages of this fuzzy assignment are that the cardinality of the sets 

X and V does not need to be equal and that a virtual correspondence between points in 

these sets can be established using this fuzzy matrix, as explained next. 

At each iteration, after the correspondence is determined, a thin plate spline-based 

non-rigid transformation f  is computed, which solves the following least-squares 

problem: 

2 2min ( ) min ( )
1

K
E f y f T Lfa af f a

υ λ= − +∑
=

,                               (14) 

where 
1

N
y m xa ai ii

= ∑
=

and ya  can be considered as a virtual correspondence for aυ . This 

correspondence is computed by weighting all the points in X. L  is an operator which 

measures the smoothness of the thin plate spline transformation. Here the integral of the 

mapping function f is used. λ  is a regularization parameter that balances the terms. The 

value of λ also changes from iteration to iteration. Initially a high value is chosen for λ, 

leading to a smooth transformation. As the algorithm progresses, the correspondence 

between points becomes crisper and the smoothness constraint is relaxed to increase 

accuracy. As is the case for the other parameters, the value of λ is modified according to 

an annealing schedule:  

initλ λ= •T,                                                                                    (15) 

 A recommended value for initλ  is 1, which has also been used here. The 

correspondence and transformation steps are computed iteratively using equations (13) 

and (14), with the temperature T decreasing. Finally, the transformation computed based 
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on the points is applied to the entire image volume. This deformed volume is then used as 

the input to the next step. 

 

3.3. Step three: intensity-based nonrigid registration  

The last step in our approach relies on an intensity-based registration algorithm 

we have proposed, which we call ABA for adaptive bases algorithm [59]. This algorithm 

uses mutual information as the similarity measure and models the deformation field that 

registers the two images as a linear combination of radial basis functions (RBFs) with 

finite support: 

( ) ( )
1

v x c x x
N

i ii
= Φ −∑
=

,                                                 (16) 

where x is a coordinate vector in dℜ , with d being the dimensionality of the images,Φ  is 

one of Wu’s compactly supported positive radial basis functions [76], and the  'c si   are  

the coefficients of  these basis functions. The goal is to find the 'c si  that maximize the 

mutual information between the images. The optimization process for the coefficients 

includes a steepest gradient descent algorithm combined with a line minimization 

algorithm. The steepest gradient descent algorithm determines the direction of the 

optimization. The line minimization calculates the optimal step in this direction. 

In our implementation, the algorithm is applied using a multilevel approach. Here, 

multilevel includes multiscale and multiresolution. The resolution is related to the spatial 

resolution of the images. The scale is related to the region of support and the number of 

basis functions. When an image pyramid is created, the images are down-sampled at 

several resolution levels, and the registration algorithm is applied at each level. The 
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algorithm is started on a low-resolution image with few basis functions. The basis 

functions are located regularly on the image and the support of basis functions is kept 

constant at this level. The regions of mismatch are then identified and the optimization 

process is performed on those regions independently. This strategy is described in detail 

later. Typically, as the image resolution increases, the region of support is decreased and 

the number of basis function is increased. As a consequence, the transformations become 

more and more local as the algorithm progresses.  

In our experiments, all small animal CT images are down-sampled into three 

resolution levels: 64×64×64, 128×128×128, and 256×256×256 voxels. At the lowest level 

we use a matrix of 6×6×6 basis functions. At the intermediate level, we use a matrix of 

10×10×10 basis functions. At the highest resolution level we start with a matrix of 

14×14×14 basis functions and then use a matrix of 18×18×18 basis functions.  For the 

two human data sets, three resolution levels are also used: 64×64×50, 128×128×99, and 

256×256×198 voxels for the first data set, and 64×64×25, 128×128×51, and 

256×256×102 voxels for the second data set (the dimension depend on the dimensions of 

the original data sets). At the lowest level, 4×4×4, and then 8×8×8 matrices of basis 

function were used. At the intermediate level, we used first a matrix of 12×12×10 and 

then a matrix of 16×16×12 basis functions. At the highest resolution, we used 20×20×14, 

26×26×16, and 32×32×20 matrices of basis functions. All those parameters were selected 

experimentally. Practically, parameters are determined once for one type of image and 

then used without modification to register similar images. 

One feature that distinguishes our algorithm from others (see for instance 

Rueckert et al. [48]) is the fact that we do not work on a regular grid. Rather, areas of 
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mismatch are identified and the deformation field is adjusted only on these identified 

regions. This is done as follows. When the algorithm moves from one level to the other, a 

regular grid of basis function is placed first on the images. The gradient of the similarity 

measure with respect to the coefficients of the basis functions is then computed. The 

location of the basis functions for which this gradient is above a pre-determined threshold 

is used to determine areas of mismatch. The rationale for this choice is that if the gradient 

is low, either the images are matched well because we have reached a maximum or the 

information content in this region is low. In either case, trying to modify the 

transformation in these regions is not productive. Optimization is then performed locally 

on the identified regions (more details on this approach can be found in Rohde et al. [59]). 

The algorithm progresses until the highest image resolution and highest scale are 

reached. Hence, the final deformation field v is computed as: 

                                        1( ) ( ) ( )v x v x v xM= + +L ,                                            (17) 

where M is the total number of levels. Furthermore, we compute both the forward and the 

backward transformations simultaneously, and we constrain these transformations to be 

inverses of each other using the method proposed by Burr [77]. Although this cannot be 

proven analytically, experience has shown that the inverse consistency error we achieve 

with this approach is well below the voxels’ dimension. In our experience, enforcing 

inverse consistency improves the smoothness and regularity of the transformations.  

One important objective of a non-rigid registration algorithm is to produce 

transformations that are topologically correct (i.e., transformations that do not include 

tearing or folding). This is difficult to guarantee and it is often implemented by 

constraining the transformation (e.g., adding a penalty term that is proportional to the 
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second derivative of the deformations field [48]). Here, we follow the same approach, but 

the field is regularized by constraining the difference between the coefficients of adjacent 

basis functions (the 'c si ) using a thresholdε . The concept is simple: if the coefficients of 

adjacent basis functions vary widely, the resulting deformation field changes rapidly. 

This can be useful as it permits computing transformations that require large local 

displacements but it may also produce transformations that are ill-behaved. Thus, the 

threshold ε  can be used to control the regularity and the stiffness properties of the 

transformation. Small values produce smooth transformations that are relatively stiff. 

Large values lead to transformations that are more elastic but less regular.  

This threshold can also be used to vary spatially the properties of the 

transformations, which is of importance for the application described in this paper (in the 

past we have used the same technique to register images with large space-occupying 

lesions [60]). Indeed, there are two broad categories of structures in the images we need 

to register: bones and soft tissues. The amount of deformation typically observed for 

bony and soft tissue structures is very different and the transformations should reflect this 

fact; they should be stiffer for bony structures than for soft tissue structures. To create 

spatially varying stiffness properties, a stiffness map is generated. This stiffness map has 

the same dimensions as the original images and associates a value for ε  with each pixel. 

In this work, we identify bony regions by thresholding the images as described earlier. 

We then associate a small ε value to bony regions and a large ε value to the other areas in 

the stiffness map. Experimentally, we have selected 0.01 for the bony region and 0.3 for 

the other regions, and we use these values for all the volumes presented here.  
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As described before, we have tested our method on two very different sets of data: 

small animal images and human images. When processing the small animal images, we 

need to add an additional step to our processing sequence. Indeed, mice are typically 

scanned in some type of holder and this holder needs to be eliminated prior to registration 

(see Fig. 18). Manual segmentation is time-consuming and impractical, considering the 

fact that one CT volume usually includes 512 slices. But automatic segmentation using 

common techniques such as thresholding is difficult. This is so because the intensity 

values of the mouse and of the holder are very similar and because the body of the mouse 

is connected tightly to the holder. Here, we solve the problem by segmenting the holder 

via registration. An empty holder is scanned and registered to the holder that contains a 

mouse using a normalized mutual information based rigid body registration algorithm. 

After registration, the image with the empty holder is subtracted from the image with the 

mouse and the holder. This results in an image, which only contains the mouse. Fig. 18 

shows representative results in the sagittal, axial, and coronal orientations for a typical 

mouse CT image volume. The green region is the result of our holder segmentation 

method. This method is fully automatic and robust. It can be used with any type of holder 

provided that one image volume with an empty holder is available.  

 
Fig. 18: The CT images with segmented holder. The holder is segmented automatically 

via a registration procedure. 



 61

 
4. Experiments and results 

 

4.1 Qualitative results 

Our approach has been qualitatively evaluated on three types of problems: intra-

subject registration of whole body mouse images, inter-subject registration of whole body 

mouse images, and inter-subject registration of upper body human images. Examples of 

results obtained for each of these tasks are shown in this section.  

Fig. 19a shows the skeletons extracted from two CT volumes. In the following 

text the volume deformed using our registration method is called the source volume while 

the other is called the target volume. Fig. 19b shows the results we obtain when we use 

only the ABA algorithm after the initial rigid body transformation. In this case, the 

algorithm is applied to the entire image volume, and the bones are extracted after 

registration. This figure shows that for this data set, an intensity-based nonrigid 

registration algorithm alone is insufficient to register the two volumes. Fig. 19c shows the 

results obtained after registering the skeleton with the point-based method alone. Fig. 19d 

shows the final results when the ABA algorithm is initialized with the results obtained in 

Fig. 19c. Results presented in this figure indicate that the point-based method leads to 

qualitatively good results, but that these results can be improved further with an intensity-

based technique.  

Fig. 20 presents similar results but on the entire volume; Fig. 20a shows one slice 

in the source volume and Fig. 20b shows the slice with the same index in the target 

volume. If the source and target volumes were perfectly registered, these images would 

be identical. To facilitate the comparison, yellow contours have been drawn on the target 
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image and copied on all the other ones. Fig. 20c shows the results when only ABA is 

used, Fig. 20d when only the point-based method is used, and Fig. 20e when both 

methods are combined. Comparing Fig. 20d and Fig. 20e it is clear that even if the bones 

are registered correctly with the point-based technique, the rest of the body is not. For 

instance, the contour of the lower portion of the mouse body shown in Fig. 20d is not 

aligned to the target accurately. Again, combining the two methods leads to results that 

are better than those obtained with a single method. 

Fig. 21 and Fig. 22 show typical inter-subject registration results. In both these 

figures three pairs of images pertaining to different mice have been registered. Fig. 21 

shows the registration of the skeletons. In this figure, the left column shows the skeletons 

in their original position. The middle and right columns show the same but after rigid 

body registration and after registration with the proposed method, respectively. Fig. 22 

shows the results we obtain on the entire CT volume. The left column shows one slice in 

the source volume and the right column shows the same slice in the target volume. The 

middle column shows this slice in the source volume once it has been registered and 

reformatted to correspond to the target volume. Contours have been drawn on the target 

volume and superimposed on the reformatted source volume to show the quality of the 

registration. 

Fig. 23 and Fig. 24 show results we have obtained when performing inter-subject 

registration of human upper torso CT images, and they illustrate the advantage of using 

two stiffness values. In both figures, panels a) and b) are the source images and the target 

images, respectively.  Panels c), d) and e) show the source volume registered to the target 

volume using a stiff transformation, a very elastic transformation, and a transformation 
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with two stiffness values, respectively. In Fig. 23, only the bones are shown. In Fig. 24, 

the complete volumes are shown. When a stiff transformation is used, bones are 

deformed in physically-plausible ways. But the accuracy achieved for soft tissues is 

suboptimal (arrows on Fig. 24c). When a more elastic transformation is used, bones are 

deformed incorrectly (shown in Fig. 23d). Using two stiffness values permits 

transformations to be computed that lead to more satisfactory results for both the bony 

and soft tissue regions.  

Fig. 25 illustrates results we have obtained with a set of head and neck images.  

Fig. 25a and b show one sagittal CT image in one of the volumes (the source) and the 

slice with the same index in the second volume (the target) prior to registration. The red 

contour has been drawn on the target image in order to facilitate comparison. Fig. 25c ~ e 

show results obtained with our intensity-based algorithm alone, results obtained with 

point-based registration alone, and results obtained when both approaches are combined, 

respectively. Fig. 25c shows typical results obtained when non-rigid registration 

algorithms can not be initialized correctly. The overall shape of the registered volume 

appears correct but bones have been deformed incorrectly. The result obtained with the 

point-based registration algorithm is relatively inaccurate, as shown in Fig. 25d. As can 

be seen in this panel, the shape of the head and its size are not the same as those shown in 

Fig. 25b. Similarly, the size of the vertebrae is incorrect. Fig. 25e shows that the best 

results are obtained when both approaches are combined. 
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Fig. 19: Bony structures in two micro CT volumes a) before registration, b) after ABA 
registration only, c) using only the robust point-based registration algorithm, and d) using 

both the point-based registration and the ABA algorithms. 
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Fig. 20: a) One coronal slice in the source volume, b) the corresponding coronal slice in 
the target volume, c) the transformed source image after ABA only, d) the transformed 

image after robust point-based registration algorithm only, and e) the transformed image 
after the combination of the point-based registration and the ABA algorithms. 
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Fig. 21: Three pairs of inter-subject mice skeletons before registration (the 1st column), 

after the rigid body registration (the 2nd column) and the proposed method (the 3rd 
column). 
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Fig. 22: The different slices from the three different reference mice (the 1st column), the 
deformed slices after the proposed method (the 2nd column) and the corresponding target 

mice (the 3rd column). The green lines are the contours of the target images. 
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Fig. 23: a) Skeleton of the source image, b) skeleton of the target image. c), d), and e) 
source skeleton registered to target skeleton using a stiff transformation, a very elastic 

transformation, and two stiffness values, respectively. 
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Fig. 24: a) One coronal slice in the source volume, b) corresponding slice in the target 
volume, c), d), and e) source image registered to target image using a stiff transformation, 

a very elastic transformation, and two stiffness values, respectively. 
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Fig. 25: a) One sagittal slice in the source volume, b) the corresponding slice in the target 
volume, c), d), and e) registration results obtained with intensities alone, points alone, and 

with the proposed algorithm, respectively. 
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Visual and qualitative validation of our approach indicates that it can be used to 

register whole body images. To validate this approach quantitatively, we have devised 

two experiments, one to test the algorithm on the skeletons and the other on soft tissue 

regions. 

 

4.2 Quantitative Validation 

The acquired data sets, described in Section 2, can be used to validate our method 

both on the skeletons and on soft tissue structures of the same mouse acquired twice in a 

different posture (longitudinal study) or of two different mice (inter-subject registration). 

We have 4 pairs of images to test our algorithm on intra-subject longitudinal tasks; e.g., 

mouse 1 acquired at time 1 is paired with mouse 1 acquired at time 2, etc. With the data 

set we have acquired, 24 pairs of images can be created to validate our algorithm on 

inter-subject tasks; i.e., mouse 1 at time 1 can be paired with mouse 2 at time 1, with 

mouse 2 at time 2, etc. Among these 24 pairs, 7 had to be eliminated because one of the 

data set covered the entire body while the other was missing the lower legs. This leaves 

us with 17 pairs of images to perform our inter-subject evaluation.  

Because of acquisition artifacts, the boundary between the heart and the lungs 

could not be seen at all in one of the mice (mouse #3) CT volumes. In turn, this led to an 

inaccurate registration in this region when CT images alone were used. For this reason, 

mouse #3 was omitted for the quantitative evaluation of the heart. Validation results on 

both skeletons and soft tissues are reported in the following sections. 
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Validation on skeletons 

To validate the algorithm on skeletons, the distance between each point on the 

deformed source surface and the closest point on the target surface is computed. Table II 

shows these distances at each step of the algorithm for both the longitudinal and the inter-

subject registrations tasks. Hence, the distances are calculated before and after the rigid 

body registration, after the point matching algorithm, and after the intensity-based 

nonrigid registration. After the proposed algorithm, the mean distance for the intra-

subject registration task is 0.24 mm. It is 0.3 mm for the inter-subject registration task. 

Because the inter-registration task involves accounting for morphological differences in 

addition to pose differences, observing a slightly larger error for the second task is to be 

expected. 
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Table II: Distances in mm between the source and target bone surfaces before rigid 
registration, after rigid registration, after registration using points only, and with the 

method we propose for both the intra- and inter-subject registration tasks. 

 

  Before 
Rigid 

After    
Rigid    

After Point 
Matching  

Proposed 
Method 

#01 1.7667 0.8175 0.4854 0.3008 
#02 0.6254 0.4151 0.3853 0.3290 
#03 0.8205 0.6778 0.2542 0.1422 
#04 0.7757 0.7164 0.4128 0.2080 

 
In

tra
-s

ub
je

ct
 

Mean  0.9971 0.6567 0.3844 0.245 

#01 2.4047 1.0170 0.7313 0.4368 
#02 2.2495 0.4799 0.4964 0.1769 
#03 1.5536 0.9060 0.5390 0.2530 
#04 1.0805 0.5425 0.5289 0.2054 
#05 2.6875 0.5525 0.464 0.2433 
#06 2.5321 0.5983 0.5878 0.3550 
#07 2.1083 0.6605 0.7416 0.3255 
#08 1.2474 0.6147 0.5736 0.2330 
#09 0.7904 0.5203 0.6069 0.2496 
#10 1.3014 1.2376 0.4989 0.3300 
#11 1.1262 1.0090 0.4056 0.2666 
#12 3.1736 1.0154 0.5111 0.3314 
#13 2.8424 1.0267 0.5936 0.3795 
#14 1.9231 0.8696 0.5501 0.3168 
#15 2.1204 0.9429 0.5337 0.2999 
#16 2.4757 0.9207 0.6521 0.3734 
#17 2.2350 0.7434 0.5715 0.3370 

In
te

r-
su

bj
ec

t 

Mean 1.9913 0.8034 0.5639 0.3008 
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Validation on soft tissue structures  

The approach we have used to test our registration method on soft tissues both for 

the intra-subject and the inter-subject registration tasks is as follows.  

Step (1): each MRI scan was registered to its corresponding CT scan with a rigid 

transformation;  

Step (2):  CT scans were then registered using the method we propose; 

Step (3): the transformation computed in Step (2) was applied to the MRI scans. 

This permits evaluating the quality of the CT-based registration on structures that are not 

clearly visible in the CT images.  

The heart, kidneys, and bladder were segmented manually in all the MR image 

volumes. The transformations that register the source to the targets were then applied to 

the structures segmented in the source image. This produced deformed structures that 

were compared to the segmented structures in each of the target images using the Dice 

similarity index [62] defined as:  

Dice Similarity = 
{ }

{ } { }
1 22

1 2

n A A

n A n A

∩
×

+
,                                            (18) 

where A1 and A2 are two regions and n{} is the number of voxels in a region. Fig. 26 

shows a few examples with manual and automatic contours superimposed. It also shows 

the value of the Dice index computed for these various cases to provide a sense of the 

correlation between the Dice value and the visual quality of the segmentation. As 

mentioned in the previous chapter, a value of 0.7 for the Dice value is generally accepted 

as a value for which two contours are in very good correspondence [80]. 
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Two observers have segmented soft tissue structures in the images. Hence, three 

Dice values are computed and compared: the Dice value between the automatic contours 

and the manual contours drawn by the first observer, which we call AM1; the Dice values 

between the automatic contours and the manual contours drawn by the second observer, 

which we call AM2; and the Dice values between the contours drawn by the two 

observers, which we call M1M2. The value of the Dice similarity measure between two 

observers quantifies the inter-rater variability that can be expected for the various 

segmentation tasks. Although, as discussed above, our main objective is to develop a 

method for the registration of CT images, we also investigated whether or not using the 

MR images in the registration process would improve the results. To do so, we added one 

registration step. After the MR images have been registered to each other using the 

transformation generated to register the CT images, we registered them once more with 

the ABA algorithm.  

Table III lists the Dice values for the longitudinal registration task with and 

without the last MR registration step. Our results show that Dice values are above 0.7 for 

the longitudinal registration task. Moreover, the Dice values between the automatic and 

manual contours are comparable to the Dice values between the two observers, which 

indicates that the variability between manual and automatic contours is similar to the 

variability observed between human raters. Fig. 27 and Fig. 28 show the results for the 

inter-subject registration tasks. For both the intra- and inter-subject registration tasks, the 

Dice values improve when the MR images are used. We also note that the bladder is the 

most difficult structure to register because of large inter-subject differences. This is most 

likely due to the volume of urine that is present in the bladder at the time of imaging. 



 76

 

 

 

 

 

 
Fig. 26: The target images overlaid with contours of automatically segmented tissues in 
the deformed images (green) and contours of manually segmented tissues in the target 

images (red). 
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Table III: Dice similarity values between the two manual segmentations (M1M2), 
between the first manual segmentation and the automatic segmentation (AM1), and 

between the second manual segmentation and the automatic one (AM2) for the intra-
subject registration task. 

 
 Heart Left 

Kidney 
Right 

Kidney 
Bladder 

#1 AM1 
AM2 

M1M2 

0.9040 
0.7997 
0.8758 

0.9150 
0.8374 
0.9033 

0.8730 
0.7699 
0.8958 

0.8120 
0.7213 
0.8907 

#2 AM1 
AM2 

M1M2 

0.8530 
0.8518 
0.8624 

0.8930 
0.8926 
0.8810 

0.8840 
0.8649 
0.8721 

0.8860 
0.8529 
0.8707 

#3 AM1 
AM2 

M1M2 
 

0.8820 
0.8710 
0.8966 

0.8520 
0.9103 
0.8706 

0.7100 
0.7708 
0.8364 

#4 AM1 
AM2 

M1M2 

0.8930 
0.8684 
0.8458 

0.8900 
0.9080 
0.9152 

0.8860 
0.8646 
0.8878 

0.8040 
0.7752 
0.8869 Th

e 
pr

op
os

ed
 m

et
ho

d 

 
Mean 

AM1 
AM2 

M1M2 

0.8833 
0.8400 
0.8613 

0.8950 
0.8772 
0.8990 

0.8738 
0.8524 
0.8816 

0.8030 
0.7801 
0.8712 

#1 AM1 
AM2 

M1M2 

0.9220 
0.7714 
0.8758 

0.9090 
0.8055 
0.9033 

0.9180 
0.7582 
0.8958 

0.7730 
0.7393 
0.8907 

#2 AM1 
AM2 

M1M2 

0.9200 
0.8987 
0.8624 

0.9230 
0.9114 
0.8810 

0.9330 
0.9002 
0.8721 

0.9510 
0.8802 
0.8707 

#3 AM1 
AM2 

M1M2 
 

0.9040 
0.8965 
0.8966 

0.8890 
0.9111 
0.8706 

0.7650 
0.8020 
0.8364 

#4 AM1 
AM2 

M1M2 

0.9160 
0.8765 
0.8458 

0.9120 
0.9212 
0.9152 

0.9230 
0.8984 
0.8878 

0.8980 
0.8553 
0.8869 

Th
e 

ex
tra

 st
ep

 

 
Mean 

AM1 
AM2 

M1M2 

0.9193 
0.8489 
0.8613 

0.9120 
0.8837 
0.8990 

0.9158 
0.8670 
0.8816 

0.8468 
0.8192 
0.8712 
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Fig. 27: Dice values for the inter-subject registration task without the last MR registration 

step. 
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Fig. 28: Dice values for the inter-subject registration task with the last MR registration 

step. 
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5. Discussion and Conclusions 

In this paper, we presented a novel and fully automatic approach for the 

registration of articulated structures applicable to intra- and inter-subject registration 

problems. While it may appear, at first, that registering articulated structures would 

require computing individual transformations for each element in the structure and 

combining these transformations, our experiments show that it is not the case. This is 

what differentiates our work from previously published work and it may have a 

significant impact because it greatly simplifies the solution to the problem. In particular, 

segmentation and identification of individual structure components is no longer necessary.   

Results have shown that, while accurate registration of bony structures is possible 

with a robust point-matching method, registration of the entire volumes requires a second 

step. If, as is done in this work, the second step is based on an image intensity algorithm, 

special care needs to be taken to constrain the transformation locally to avoid deforming 

the bony structures inappropriately while registering the rest of the image volumes. Here 

we have addressed the issue with what we call stiffness maps that constrains the relative 

value of the coefficients of adjacent basis functions. We have found this scheme to be 

particularly useful for human images but less so for small animal images. This is so 

because basis functions have a pre-determined support and may cover a region that 

contains both bones and soft tissue; this is especially true for small animal images in 

which bones are small compared to the voxel dimensions. In the current version of our 

non-rigid registration algorithm, we use the position of the center of the basis function to 

determine its constraint which may produce inaccuracies; i.e., soft tissue close to the 

bones may not be deformed enough if the basis functions are centered on a bony structure 
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or bones may be deformed too much if the basis function is centered on soft tissue. We 

are currently addressing this issue by adding an additional constraint in our algorithm that 

will prevent this from happening. This strategy is introduced in Chapter IV in detail.   

The results we have obtained on the skeletons show a submillimetric error for 

both the serial and the inter-subject registration task. The Dice values we have obtained 

with our approach using only CT images for the intra-subject registration task indicate an 

excellent agreement between manual and automatic contours. These results indicate that 

the method we propose could be used for longitudinal measurements using only CT 

images. A possible issue, which will need to be investigated further, is the effect a 

growing tumor will have on the intensity-based component of our approach. The possible 

solution will be discussed in the next chapter. The inter-subject registration results we 

have obtained imply that CT images alone, with their relatively poor soft tissue contrast, 

may not be sufficient to produce registrations that are accurate enough to measure small 

differences. Using MR images in addition to the CT images does, however, address the 

issue. One also notes that using MR images alone is unlikely to produce accurate results. 

Indeed, the skeletons that are easily identifiable in the CT images need to be used to 

produce transformations that are accurate enough to initialize MR-based registration 

algorithms. 

Although we have focused our work on CT images of small animals, the results 

we present also show that the approach we propose is widely applicable. For instance, we 

have shown, albeit on a few cases, that it can be used for the registration of chest and 

head and neck images. Further evaluation on a larger data set will need to be performed 

to establish the robustness of our approach to this type of problem.  
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For the small animal studies, the average runtime of the robust point matching 

algorithm is 171 minutes. The average runtime of the adaptive basis algorithm is 89 

minutes. All algorithms are run on a 2GHz Pentium PC with 1G memory. 
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CHAPTER IV 

 

CONSTRAINED NON-RIGID REGISTRATION FOR WHOLE BODY IMAGE 
REGISTRATION: METHOD AND VALIDATION 

 

1. Introduction 

Medical image registration is an important tool in clinical research. Currently, the 

large majority of automatic methods that have been proposed have been applied to head 

images, because head images only contain one single major structure (the cranium). Non-

rigid registration techniques for extra-cranial applications have been proposed for specific 

tasks, such as the registration of breast, abdomen, lung, or prostate images (see for 

instance [47][48][70]). But, as discussed earlier, very few methods have focused 

specifically on registering images that contain a large number of articulated structures, 

the relative position of which changes between images. These images pose a special 

challenge, because a single affine transformation is typically insufficient to initialize non-

rigid registration algorithms. 

In Chapter III we have reviewed methods that have been proposed to solve this 

problem and we have seen that they fall in one of the following categories: (1) applying  

a rigid body transformation to the rigid objects, followed by the interpolation of the 

deformation field to the entire image [49], (2) labeling landmarks manually in the images, 

aligning those landmarks in a piecewise fashion, and combining the elementary 

transformations [50], (3) identifying each single joint manually and then computing  a 

continuous transformation at the interfaces of the piecewise transformations [52], (4) 

using a finite element method to propagate displacements, after articulating a set of rigid 
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body matrices [72], (5) matching both manually identified landmarks and the areas away 

from the landmarks through the Consistent Landmark and Intensity Registration 

Algorithm (CLI-TPS) [73], and (6) utilizing a hierarchical anatomical model of the 

mouse skeleton system for the articulated registration of 3D whole body data of mice 

[78].  

Chapter III has discussed these solutions and their disadvantages. In a word, most 

existing methods require identifying various structures in the images such as joints or 

individual bones. Unfortunately this approach is often not practical. In Chapter III we 

also proposed a novel and automatic registration algorithm for whole-body images, which 

combines point-based and intensity-based registration algorithms [81][82] for CT images. 

In this fully automatic algorithm the skeletons are first aligned non-rigidly using a point-

based registration algorithm, which provides a good initial position for the intensity-

based registration step used next. Despite the very good results we have obtained with 

this approach, one weakness was identified: during the intensity-based registration step, 

bones can be deformed inaccurately because of surrounding structures. In this chapter, we 

present a modification of the previously proposed algorithm to constrain the displacement 

of bony structures. Results show that this improves the performance of our approach.  

The remainder of this chapter is organized as follows. The constrained algorithm 

we propose is introduced and discussed in detail in the method section. The qualitative 

and quantitative results generated by both the new and the previous methods are reported 

and compared in the validation section. The algorithm and the results we have obtained 

are discussed in the last section. 
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2. Methods 

The algorithm discussed in Chapter III contains three main parts: intensity-based 

rigid body registration, point-based nonrigid registration, and intensity-based nonrigid 

registration. An additional pre-processing step is used to eliminate the holders in small 

animal images. For the sake of completeness, this algorithm is covered rapidly in this 

section before we provide more details on the additional constrain scheme we propose.   

In the pre-processing step the mouse body is segmented from the holder in which 

it is scanned. This segmentation task is difficult because the intensity values of the mouse 

and of the holder are very similar, and usually the mouse body is tightly connected to the 

holder. Manual segmentation is time-consuming, and thresholding or region-growing 

methods do not work well for this application. We solve the problem by segmenting the 

holder via registration. An empty holder is scanned and registered to the holder that 

contains a mouse using a mutual information based rigid body registration algorithm. The 

holder is then segmented by subtracting it from the image set that contains both the 

holder and the mouse.  

In the previous algorithm, the first step consists in applying an MI-based rigid 

body registration algorithm to the source and target CT images. Hence, the rotation and 

translation parameters are calculated by maximizing the normalized mutual information 

between the two images. 

Next, the skeleton is segmented using an intensity threshold. For each axial slice 

in the skeleton volume, the connected areas are detected and the center of each area is 

located. The set of central points approximately corresponds to the centerline of the 

skeleton, and they are used as input for the next step. 
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  The sets of points extracted from the source and the target images are then 

registered using the RPM algorithm proposed by Chui et al. [74]. This algorithm takes as 

input two sets of points and iteratively computes a correspondence between these points 

and the transformation that registers them. Furthermore, a parameter, called the 

temperature T, is introduced to simulate physical annealing. T is set at a high value at the 

beginning, in order to generate a fuzzy correspondence between the two sets of points. 

The fuzziness of the correspondence is progressively reduced by decreasing T, and the 

transformation is computed iteratively. Finally, the transformation computed based on the 

points is applied to the entire image volume. This deformed volume is then used as input 

to the next step. 

The last step in the previous method relies on an intensity-based registration 

algorithm we have proposed before, which we call ABA for adaptive bases algorithm 

[59], to refine the results. This algorithm models the deformation field v(x) that registers 

the two images as a linear combination of radial basis functions (RBFs) with finite 

support: 

( ) ( )
1

v x c x x
N

i ii
= Φ −∑
=

                                                 (19) 

where Φ  is one of Wu’s compactly supported radial basis functions. The 'c si  are 

coefficients for these basis functions. The coefficients of the radial basis functions are 

computed through maximizing the Normalized Mutual Information.  

There are two broad categories of structures in the images we need to register: 

bones and soft tissues. The amount of deformation typically observed for bony and soft 

tissue structures is very different, which suggests using transformations whose physical 
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properties vary spatially. These transformations should be relatively stiffer for bony 

structures than they are for soft tissue structures. In the previous method, one mechanism 

in the ABA algorithm is used to adjust the stiffness of the transformation, i.e., we impose 

a threshold on the difference between the coefficients 'c si  associated with adjacent 

radial basis functions. The smaller the threshold, the stiffer the transformation is. To 

create spatially varying stiffness properties, stiffness maps are generated, which specify 

threshold values for various regions. An example of such a map is shown in Fig. 29. The 

bright area, which corresponds to bony structures, is associated with a small threshold; 

the dark area, which corresponds to soft tissue, is associated with a large threshold. While 

we have shown in Chapter III that this mechanism could indeed control the spatial 

properties of the transformation and improve registration results, this mechanism is 

imperfect. The right panel of Fig. 29 illustrates problems we have encountered. The value 

of the threshold is associated with the spatial location of the basis function. If, as is the 

case for the skeleton of small animals, regions associated with high stiffness values are 

narrow, very few basis functions will fall in high stiffness regions. As a result, the 

transformation will not be constrained as intended and bony structures will be deformed. 

 
Fig. 29: The bony structures and the control points (green) on the image. 
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We note that others have proposed solutions to the same problem. Staring et al. 

[83] add a regularization term into the cost function. This term contains three conditions 

to keep a deformation rigid: linearity, orthonormality and properness. B-spline basis 

functions are used to parameterize the deformation. They apply this algorithm to CT and 

Digital Subtraction Angiography (DSA) images. However, if the rigid object is narrow, 

they need to dilate the object to make sure the control points of the B-splines are laying in 

the constrained regions. Ruan et al. [84] propose a cost function that includes a similarity 

term and a regularization term. In their regularization term, the local Jacobian of the 

deformation is constrained to be a nearly orthogonal matrix in rigid regions. But the 

quantitative evaluation of this approach on small animal images is lacking. 

The approach we propose is as follows. Following the RPM algorithm, we first 

apply the ABA algorithm to the whole bony structures alone; this refines the results 

obtained with the RPM algorithm. The transformation computed based on the bony 

registration is then applied to the entire image volume. A constrained ABA algorithm 

with a new cost function is then applied to the entire volume. Instead of using only the 

negative of the NMI, the new cost function consists of two terms: a negative NMI term 

and a constraint term which is computed as the mean displacement of all bony pixels: 

( ) ( ') 1 2 2 2( ) ( ) ( )cos ( , ') i

H A H BF dx p dy p dz pt i i iH A B N
λ+

= − + + +∑                   (20) 

where ( )H ⋅  is still the entropy of the image, and ( )dx pi , ( )dy pi , and ( )dz pi  are the 

displacement of the voxels pi  on the skeleton, in the x, y, and z directions, respectively. 

λ  is the parameter we use to weigh the second term. To minimize this cost function, the 
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algorithm thus needs to limit the deformation of the bony structures while maximizing 

the similarity between images in the soft tissue region.  

 

3. Validation 

In the following sections we present resutls we have obtained with our algorithm. 

First, we focus on the qualitative validation of the method. To do this, we use one data set 

that illustrates the advantage of our method for the analysis of image volumes in which 

changes occur over time. A male C57BL6 mouse was scanned with an Imtek MicroCAT 

II small animal scanner to generate one CT volume. CT imaging was at a voltage of 

80kvp with an anode current of 500µA. Acquisition parameters of total 360 o projections 

in 0.632o
 steps, exposure time 1400ms, and acquisition matrix 512×512×512 were 

employed. Total scan time is 22 minutes, and images have 0.125×0.125×0.125 mm3 

isotropic voxels. The scans covered a region extending from the lower neck to about half 

of the back limbs. Next, approximately, 106 Lewis Lung Carcinoma (LLC) cells were 

injected through the tail vein of the mouse. This mouse with LLC tumor was imaged one 

more time eight days later on the microCT scanner, under the same imaging protocol 

described above.  

The quantitative validation has been performed on the same data set that was used 

in the previous chapter. Four sacrificed mice were scanned twice. Each time we have 

obtained co-registered MR and CT scans and the position of the mice in the holder was 

modified between acquisitions. We report results we have obtained both for longitudinal 

and inter-subject registration tasks.  
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3.1 Qualitative Validation 

Fig. 30 shows the skeletons before and after registration for the mouse with a lung 

tumor. The left panel of Fig. 30 shows the skeletons extracted from the first (bright) and 

the second (dark) CT volumes before registration. The right panel of Fig. 30 shows the 

registration result we obtain after we use the constrained algorithm we propose.  

To examine the effectiveness of the constrained algorithm in detail, six different 

registration methods are applied to the mouse CT images and compared: (1) the ABA 

algorithm only, (2) the RPM algorithm only, (3) the ABA algorithm after the RPM 

algorithm, (4) the ABA algorithm with the stiffness map after the RPM algorithm, (5) the 

ABA algorithm with the stiffness map after the RPM and ABA applied to the bones, and 

(6) the new constrained ABA algorithm after the RPM and ABA applied to the bones. In 

these six methods, exactly the same parameters except for the constraint definitions have 

been used. Chapter III has described methods 1 – 4 and methods 5 – 6 are new strategies 

proposed in this chapter.  

Fig. 31 shows the flowchart for the six methods. After the source data is pre-

processed and transformed to the target volume using the rigid body registration 

algorithm, the six different methods are applied to it. In this figure, ABA means the ABA 

algorithm without stiffness map. ABA_msk means the ABA algorithm with the stiffness 

map as used in the previous chapter. ABA_b is the ABA algorithm applied only to the 

bones. The transformation computed after this step is applied to the entire volume. 

ABA_con is the ABA algorithm with the new constraint. Results obtained with these six 

methods are shown in Fig. 32 and Fig. 33. 
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The first two panels in Fig. 32 are the source and target images, respectively. 

Because of the tumor in the target image (marked by the circle in Fig. 32(b)), the ribs in 

the reference image are deformed and incorrectly attracted to the tumor, when method 1, 

3, 4 and 5 are used (Fig. 32 (c), (e) ~ (g)). Because we apply method 2 (panel (d)) only to 

the bony structure, the ribs are not affected by the tumor. However, both the soft tissues 

and the bones are not registered accurately. The modified ABA algorithm keeps the ribs 

in place while registering the soft tissue areas (Fig. 32 (h)).  

Fig. 33 shows the skeletons that correspond to the images shown in Fig. 32. This 

figure also shows that method 1, 3, 4 and 5 distort the mouse ribs incorrectly (shown in 

Fig. 33 (c), (e) ~ (g)), even if a very small stiffness parameter is used in the mask. 

Method 2 aligns the skeletons roughly (Fig. 33(d)). The modified ABA algorithm is the 

only one that preserves the shape of the ribs (Fig. 33 (h)). 
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Fig. 30: Bony structures in two micro CT volumes before registration (left) and after 
registration (right). 

 

 

 
Fig. 31: Various combinations of algorithms that have been used in our validation study. 
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Fig. 32: One axial slice a) from the reference volume, b) the target volume, c) using ABA 
only, d) using RPM only, e) using RPM and ABA, f) using RPM and ABA with the mask, 
g) using RPM, ABA applied to bones, and ABA with the mask, and h) using RPM, ABA 

applied to bones, and the modified ABA. 
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Fig. 33: The deformed skeleton from a) the reference and b) target volumes, c) using 
ABA only, d) using RPM only, e) using RPM and ABA, f) using RPM and ABA with the 
mask, g) using RPM, ABA applied to bones, and ABA with the mask, and h) using RPM, 

ABA applied to bones, and the modified ABA. 
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3.2 Quantitative Validation 

The visual and qualitative validation of our approach presented in the last section 

indicate its potential for preventing the distortion of the skeletons when the entire image 

volumes are registered using an intensity-based method. To validate our algorithm 

quantitatively on both the skeletons and soft tissue structures, we use the same strategy 

we have used in the previous chapter.   

 

Validation on bony structure 

To examine the effect of the constrained algorithm on the registration of bony 

structures, the distance between each point on the transformed source skeleton surface 

and its closest point on the target skeleton surface is computed. This is done for Method 4 

− 6 and results are compared. We have limited our comparison to these three methods 

because they all attempt to constrain the deformation of bony structures.  

Table IV lists the mean distances obtained with the three methods for both intra- 

and inter-subjects (about 50,000 points/case are used to compute these averages). The 

results in Table IV show that all of these three methods lead to small errors (within 

0.3mm). Surprisingly, the data in this table also show that the second method, which uses 

the ABA algorithm with the stiffness map after applying the RPM algorithm and the 

ABA algorithm to the bones, yields better results, than those obtained with the new 

method we propose. But, a closer look at the results shows that Method 5, while 

producing the smallest distance errors, also distorts the skeletons. This is shown in Fig. 

34. This figure shows final skeletons obtained with method 5 (left column) and method 6 

(right column). The top row shows a lower right leg. The bottom row shows a close up on 
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ribs. This figure shows that the mask approach we use in method 5 can not constrain the 

deformation of the bones and produces inaccurate transformations. The skeletons 

obtained with method 6 appear correct.  

 

Table IV: The surface distances (mm) are computed for both the intra- and inter-subject 
registration tasks. For each data set, the distances between the transformed skeleton 

source surface and the closest point on the target surface are computed and averaged. 

  ABA_msk  ABA_bone 
+ABA_msk 

ABA_bone 
+ABA_con 

#01 0.3008 0.2794 0.292 
#02 0.329 0.3196 0.3188 
#03 0.1422 0.1254 0.1295 
#04 0.208 0.1786 0.2371 

 
 

Intra-
subject 

Mean 0.245 0.2257 0.2443 

#01 0.4368 0.3859 0.4151 
#02 0.1769 0.16 0.1777 
#03 0.253 0.2205 0.2227 
#04 0.2054 0.1966 0.2323 
#05 0.2433 0.2072 0.2668 
#06 0.355 0.3137 0.3192 
#07 0.3255 0.2999 0.3721 
#08 0.233 0.202 0.2763 
#09 0.2496 0.2259 0.2898 
#10 0.33 0.2763 0.2829 
#11 0.2666 0.2431 0.2374 
#12 0.3314 0.3016 0.3237 
#13 0.3795 0.3504 0.3659 
#14 0.3168 0.2356 0.2177 
#15 0.2999 0.2807 0.3111 
#16 0.3734 0.3169 0.3723 
#17 0.337 0.3103 0.3655 

 
 

Inter-
subject 

Mean 0.3008 0.2663 0.297 
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Fig. 34: Two examples of the deformed skeletons using Method 5 and 6 (left to right). 

 

 

The purpose of methods 5 and 6 is the same: constrain the deformation of the 

bones to produce transformations that are physically correct. As shown in Fig. 34, 

method 6 appears to produce results that are better according to this criterion. To 

compare these two methods qualitatively, we measure the amount of bone distortion each 

of them produces. To do this, we evaluate for every bone voxel the value of the Jacobian 

determinant of the last transformation computed with methods 5 and 6. In the case of 

method 5, this is the transformation computed on the entire image with the ABA 

algorithm constrained with the skeleton mask. In the case of method 6, it is the 

transformation computed with the ABA algorithm and the new constraint we propose. In 

both cases, the bones should be deformed minimally and the Jacobian determinant should 

be close to one because the bones are rigid body structures. Fig. 35 shows the mean 
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values and the standard deviations of the Jacobian determinant obtained with these two 

methods. For the intra-subject data sets, the mean and standard deviation of the Jacobian 

determinant using methods 5 and 6 are 1.0216±0.1323 and 1.0003±0.0239, respectively. 

For the inter-subject, they are 1.0475±0.2296 and 1.0002±0.0214. These results confirm 

what has been observed visually, i.e., the proposed method is effective at constraining the 

deformation of the bones. While the mean values are close to each other, the standard 

deviations of the Jacobian determinant obtained with method 5 are substantially larger 

than those obtained with method 6, indicating that certain regions of the skeleton are 

deformed inappropriately when the former method is used.   
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Fig. 35: The means and standard deviations of the Jacobian determinant for skeleton 

voxels obtained with different constraint schemes for both intra- and inter-subjects tasks. 
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Validation on soft tissues 

 Here, we have used the same approach as in the previous chapter to validate our 

method on soft tissues, except that we compare our automatic method to only one manual 

rater (rater 1). Following this approach, the heart, bladder and kidneys are segmented 

manually in the source and target images, respectively. The Dice similarity index is then 

computed for each structure to compare manual and automatic contours.  

Table V lists the Dice values we have obtained for the longitudinal registration 

tasks, using the method described in Chapter III and the algorithm constrained with the 

scheme we propose in this chapter. The general trend these results show is that automatic 

and manual contours are in very good agreement with both methods but that the new 

constraint reduces the value of the Dice coefficient somewhat. As was the case in Chapter 

III, adding the extra step (i.e., using the MR image volume) improves the results.  

Fig. 36 shows the Dice values obtained with the constrained algorithm for the 17 

pairs of inter-subject mice data sets. Table VI shows the mean Dice values for all 17 

inter-subject data sets for all four types of soft tissues, obtained with the two methods: the 

method in the previous chapter and the proposed constrained method. Again, we observe 

that the new constraint leads to slightly smaller Dice values for the soft tissue structures 

than the original algorithm presented in Chapter III.  
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Table V: Dice similarity values between manual and automatic contours obtained with 
the method described in Chapter III and with the new constraint scheme.  

Intra-subject  

#1 #2 #3 #4 MEAN

Previous method 
without and with MR 

0.9040 
0.9220 

0.8530 
0.9200 

 0.8930 
0.9160 

0.8833 
0.9193 

H
ea

rt 

Constrained method 
without and with MR 

0.8227 
0.9031 

0.8397 
0.9147 

 0.8455 
0.919 

0.8360 
0.9022 

Previous method 
without and with MR 

0.9150 
0.9090 

0.8930 
0.9230 

0.8820 
0.9040 

0.8900 
0.9120 

0.8950 
0.9120 

Le
ft 

K
id

ne
y 

Constrained method 
without and with MR 

0.8941 
0.9078 

0.8885 
0.9239 

0.8982 
0.9143 

0.8667 
0.9139 

0.8869 
0.9150 

Previous method 
without and with MR 

0.8730 
0.9180 

0.8840 
0.9330 

0.8520 
0.8890 

0.8860 
0.9230 

0.8738 
0.9158 

R
ig

ht
 

K
id

ne
y 

Constrained method 
without and with MR 

0.8657 
0.9307 

0.8899 
0.9327 

0.8158 
0.8753 

0.8401 
0.9149 

0.8529 
0.9134 

Previous method 
without and with MR 

0.8120 
0.7730 

0.8860 
0.9510 

0.7100 
0.7650 

0.8040 
0.8980 

0.8030 
0.8468 

B
la

dd
er

 

Constrained method 
without and with MR 

0.8492 
0.7657 

0.8717 
0.9519 

0.7327 
0.7832 

0.8092 
0.8815 

0.8157 
0.8456 
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Fig. 36: Dice values for the inter-subject registration task after the proposed method and 

the extra step. 
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Table VI: Mean Dice coefficients for soft tissue structures for 17 data sets of inter-subject 
data sets. These results compare the method described in Chapter III and the constrained 

method proposed in this chapter. 

 

Inter-subject  

Previous method Contrained method 

Proposed 0.64906 0.57388 Heart Extra 0.79989 0.77695 
Proposed 0.79958 0.77333 Left 

Kidney Extra 0.83538 0.82813 
Proposed 0.78042 0.75319 Right 

Kidney Extra 0.84662 0.83793 
Proposed 0.32232 0.30310 Bladder Extra 0.39444 0.41392 

 

 

4. Conclusion 

In this chapter, we present a constrained automatic approach for the registration of 

articulated structures applicable to intra- and inter-subject registration problems. One 

rigid body registration and one non-rigid point matching algorithm are used to initialize 

an intensity based registration algorithm. The previously used intensity based algorithm 

(ABA) put control points on a regular grid. There is thus no guarantee that the control 

point will fall on bone voxels. Because of this, bony structures can be deformed in the 

same way as the soft tissue, which leads to unsatisfactory results. To overcome this 

weakness, we propose a modified ABA algorithm, in which a special constraint is 

introduced to prevent the transformation from deforming the bony structure 

inappropriately while registering the rest of the image volume as well as possible. 

The results we have obtained illustrate typical compromises that have to be made 

when performing non-rigid registration tasks. The new constraint scheme we propose 
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essentially forces the bone to stay in place. By doing this, we limit the amount of soft 

tissue deformation the transformation can capture. Depending on the application, the 

value of the parameter λ , which was set to 1 in our experiments, could be adjusted to 

relax or emphasize the bone constraints. Another possibility, which has not yet been 

explored, is to increase the value of the threshold used to constrain the 'c si  (i.e., the 

coefficient of adjacent basis functions in the ABA algorithm). Doing so would produce 

transformations that are more elastic over the soft tissue regions while being constrained 

over the skeleton voxels. But, increasing the value of this threshold has one drawback. It 

reduces the regularity and overall smoothness of the transformation. The characteristics 

of a particular application will guide the choice of parameters. If, as is the case in the 

example shown earlier in this chapter, the purpose is to register images to measure tumor 

growth when the tumor is localized close to bony structures, the new constraint is 

important. If there is good contrast in the images to guide the registration process, the 

threshold used to constrain the value of the coefficients of adjacent basis functions can be 

raised. If, on the other hand, contrast is poor, the transformations will need to be 

regularized more and the value of this threshold will need to be reduced. Unfortunately, 

at this point there are no absolute rules to determine the optimal parameter values and a 

certain amount of experience is necessary to adjust these for specific applications. In our 

experience, however, once parameter values are determined for a specific problem and a 

specific type of images, these can be reused without adjustment.  The new constraint we 

introduce also extends the range of applications for which intensity-based registration 

algorithms are useful. 
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CHAPTER V 

 

SUMMARY AND FUTURE WORK 

 

1. Summary 

 This dissertation presents several innovations in the area of small animal 

registration. We start with the problem of reconstructing 3D histological volumes from 

2D histological slices. This is a complex process that involves a sequence of steps, each 

with its own challenges and difficulties. Our contributions start when the cross sections 

have been stained and have been placed on a glass plate. We have shown that the 

preparation process is such that contrast in the images changes from slice to slice. After a 

review of the literature, we have proposed a new method to normalize intensity across 

slices. We have shown on several volumes that this method is robust, automatic, and 

produces excellent results. But, 3D volumes reconstructed from 2D histological slices 

suffer from a number of defects that are caused by the slicing process. This is a well-

documented problem and automatic solutions are not easy to develop for each individual 

case. Using our expertise in the area of non-rigid registration, we have proposed a 

solution that addresses the problem. Rather than attempting to improve each individual 

volume, we create a virtual volume using all the data sets we have. Because defects do 

not appear at the same location in each and every volume and because our non-rigid 

registration algorithm is capable of normalizing volumes accurately, we can produce a 

virtual volume in which the effect of these defects is attenuated. Our results have shown 

that with as few as four histological volumes we can produce one virtual volume that is 

substantially better than any of the volumes used to create it. The process we have 
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developed could easily be extended to study differences in populations. To accomplish 

this goal, one would need to create averages for each population, as we have done, and 

then register the population averages to each other. Information captured in the 

deformation fields could then reveal local differences between the populations due to, for 

instance, genetic alterations.   

 But, brain studies are only a small part of the studies being conducted with small 

animals.  Studies that involve the entire body or parts of the body are common to monitor 

parameters such as response to therapy or growth. Registering these images brings a new 

set of challenges, and very little has been done in the area so far. As we have seen, 

registering small animal volumes requires registering volumes with articulated structures, 

i.e., rigid body structures the relative position of which can change over time. When 

dealing with inter-subject registration problems, one needs to develop methods, which 

not only change the shape of individual bones but also permit the registration of a series 

of bones that are in difference position, relative to each other. This is a complex problem 

and very little has been done in the area. To the best of our knowledge, our method is the 

first automatic method that permits the registration of skeletons fully automatically. But, 

skeletons are only a very small part of the entire volume and, ultimately, registering soft 

tissue structures is what is of interest. We have shown that using a sequence of steps in 

which we first register the skeletons to initialize an intensity-based registration algorithm 

leads to good results. But we have also shown that, because bones are small and do not 

weigh much in the similarity measure we use, our algorithms tend to produce results in 

which the skeletons are deformed inaccurately. In Chapter III, we use a constraint 

mechanism that allows us to adapt the mechanical properties of the transformation 
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spatially. This mechanism works very well for human data sets in which bones are large 

compared to the image resolution but less so for small animal images in which bones can 

be as small as a few pixels. In Chapter IV, we modify our similarity measure to produce 

transformations that constrain the displacement of the bones. Our results show that this 

constraint is effective and that the final skeletons we obtain are registered correctly. A 

direct application of this method is the measurement of tumor growth, when the tumor is 

located close to bony structures. Results shown in Chapter IV have demonstrated the 

difficulty non-rigid registration algorithms have with this problem. Because the tumor is 

not present in one of the volumes, the algorithm deforms normal tissue into a tumor to 

maximize the similarity between the images. We have shown that the constraint we 

propose in Chapter IV permits the registration of these images without erroneous 

displacement of the skeletons, thus facilitating the measurement of differences in 

longitudinal studies.  

 The results we have obtained in both Chapter III and IV show that the set of 

methods we have developed holds good promise for the automatic registration of small 

animal images both for longitudinal and inter-subject registration tasks. These results also 

show that accurate registration of soft tissues will, for the foreseeable future, require both 

CT and MR images. CT images do not have enough contrast and MR images alone are 

not sufficient because there is too much variation between the volumes. Non-rigid 

intensity-based algorithms need to be initialized to produce acceptable results. For head 

images, this is usually done with an affine transformation. For whole body images, affine 

transformations are insufficient. One solution is to compute an initial transformation 

manually. For instance, some points can be selected in both volumes and used to compute 
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a rough registration. The approach we propose requires acquiring an additional CT image 

but it has the distinct advantage of being automatic.  

   

2. Future work 

 There is still plenty of room for further improvement. The two main algorithms 

used in this dissertation, the robust point matching algorithm and the adaptive bases 

algorithm, can be further developed to fit the characteristics and requirements of different 

modalities and applications.  

 Robust point matching is able to estimate both the correspondence and the 

nonlinear transformation between two sets of points. However, the algorithm only uses 

the spatial distance between two sets of points. More attributes could be added to 

compute the correspondence matrix, such as intensity, texture and other characteristic 

values. Hence, the correspondence matrix could become:                            

) )( ( )) ( ( )) ( ( ( ( ))) ( ( ( ( )))1 exp 2

T Tx f x f A x A f A x A fa a a ai i i imai T T
υ υ λ υ υ⎛ ⎞

⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

− − + − −
= −   (21) 

where A() denotes the attributes and λ  balances two terms. The attributes can also be 

tailored to specific applications. For example, in the application of human breast cancer 

imaging, one attribute could be a biomechanical value, such as a stiffness property of 

breast tumors. One possible strategy to implement this scheme is to associate different 

values with different types of points. For example, assuming a breast tumor is harder than 

other soft tissues, such as adipose tissue in a breast, a larger value can be assigned to 

points on tumors, and a small value can be assigned to other points.  
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 Similarly, the adaptive bases algorithm can be improved by adding more 

constraints. Currently, the constraint we are using is the mean displacement of the region 

of interest in the cost function. Future work includes designing more constraints for 

different requirements. One potential constraint is to preserve the tumor volume, because 

it is easy for the post-contrast MR breast images to shrink after it is registered to pre-

contrast MR images. To maintain tumor volume constant is important for accurate 

registration. Similar work can be found in [97] and [98]. 

 In addition to the improvement with respect to the algorithms, future work needs 

also to be done to apply, verify, and evaluate them on a larger number of images and 

evaluate its potential for a range of images acquired both for clinical and research 

purposes. One immediate and promising area of application that has been touched on but 

not explored fully is the registration and segmentation of head and neck images for the 

automatic segmentation of radio-sensitive structures. This is a lengthy procedure required 

for radiation therapy planning. The results we have shown in Chapter III suggest that our 

combination of point-based and intensity-based registration algorithms offer a viable 

solution. 
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