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ABSTRACT 

 

 In order to provide preventative security to a homogeneous device network, 

techniques in addition to static encryption must be implemented to assure network 

integrity by identifying possible deviant nodes within the collective. This thesis proposes 

a set of algorithms and techniques for an intrusion detection system, which when 

combined, provide a two-stage approach that seeks to reduce or eliminate training period 

requirements, while providing multiple anomaly detection and a degree of self tuning. By 

utilizing a high level of behavioral abstraction, these intrusion detection techniques can 

be applied to a broad range of devices, network implementations, and scenarios. Each 

device node is supplied with an embedded intrusion detection system which allows it to 

monitor inter-device requests, enabling machine learning techniques for purposes of 

deviant node analysis. The two principal methods, a maxima detection scheme, and a 

cross-correlative detection scheme, are combined to create a two-phase detection scheme 

that can successfully determine deviant node pervasion percentages of up to 22% within 

the homogeneous device network.  
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CHAPTER I 

 

INTRODUCTION 

 

 When analyzing the broad range and applications utilizing concepts and designs 

for embedded systems, the importance of inter-device communications becomes 

extremely clear: communication and collaboration among devices serve as the backbone 

for system productivity in a highly networked environment. For this reason, there are 

implications in the methods, protocols and design considerations whereby 

communication is established, and arguably just as important, protected. Thus, 

information security, in its many forms, provides a needed level of protection to 

communications protocols present within the scope of interconnected devices. For the 

most part, information security relies on preventive methods to protect content, using 

static techniques such as obfuscation of source, encryption of data (satisfying the need for 

confidentiality), and source integrity by means such as digital signatures. As a first line of 

defense, static security methods are steadfast and proven methods of protecting data; The 

RSA[1-4] encryption standard, 3DES[4, 5], and AES[6, 7] all remain, at the time of this 

writing, effective and secure.  

 Perhaps the biggest obstacle to providing accurate information security using 

static methods is that a point of trust is always required; at some point, there must exist a 

trusted resource relationship, whether it is in the transmission of a public key
1
, or a 

                                                 
1
 RSA encryption relies on the difficulty of factoring near-prime numbers; because a common public key 

combined with a strong private key yields a nearly un-factorable challenge, RSA is considered safe. 
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shared secret. Because of this trusted relationship, there always exists the possibility that 

despite the integrity and strength of the algorithm being used, the static method can be 

defeated, however unlikely the scenario may be. For instance, WEP
2
 [8, 9] encryption 

commonly used to secure wireless networks relies on a solid, trustworthy encryption 

method that is traditionally known to be safe. However, the particular implementation of 

the algorithm within the scope of the wireless network protocol is flawed [10], allowing 

the security protocol to be cracked within minutes, given enough data, time and 

resources. 

 Because of this point-of-trust issue, the most disturbing problem with static 

protection methods is that once broken, they are no longer able to ensure the 

trustworthiness of the system to which they are applied. Even more problematic is 

providing any sort of detection that the security implementation has been broken in the 

first place. Although temporal breach protection solutions exist, such as 

encryption/decryption key rotations and replacement algorithms, it would not be 

unforeseen that broken once, the security scheme can be broken again. To ameliorate the 

damage from such breaches, measures containing dynamic approaches to security must 

be considered. In particular, intrusion detection provides means by which anomalies in 

general system behaviors can be analyzed and graded on the threat they pose.  

 Such a dynamic system would have the capabilities of securing a wide variety of 

applications, from general networked computing to specialized, applied embedded 

                                                                                                                                                 
Recently, a commonly-held public key used for 1024-bit RSA encryption was defeated (indicating that the 

private key could be factored without prior knowledge). 
2
 Wired Equivalency Protection 
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devices sharing a network connection. An Intrusion Detection System
3
 may operate in a 

variety of methods, such as performing individual packet-level analysis of incoming and 

outgoing network traffic. Indeed, IDSs typically use packet monitoring [1, 7, 11-23] with 

the aid of a probabilistic model to determine whether or not a network is the subject of an 

intrusion. Primarily effective in determining intrusions in protocol-specific environments 

where the range of input data is unbounded
4
, traffic-based IDSs are not as applicable to 

the embedded systems paradigm. In this case, an applied computational scenario has been 

established and localized to a set of known behaviors and parameters.  

 This work describes an embeddable IDS that utilizes the known aspects of an 

applied system’s communications network, whether present in an autonomous vehicle 

collective or mobile sensor device network, to form the basis for accurate intrusion 

detection in a low-power, high-level context. Two principal methods of intrusion 

detection are proposed and analyzed, and ultimately hybridized to create a resultant IDS 

that delivers the capability of detecting multiple intrusions along with low-resource 

utilization and a desirable level of system accuracy.  

 In order to provide a desirable level of intrusion detection, and of equal 

importance, resistance to attempts to defeat the IDSs functionality and accuracy, the IDS 

mechanisms presented in this work seek to thwart intrusion by making an attack much 

more difficult to plan and execute. Of course, no IDS is perfect unless the operational 

context is static and exactly prescribed before runtime, a case scenario that is not 

considered as it is impractical to consider for real-world applications. Therefore, the IDS 

                                                 
3
 This document shall refer to an Intrusion Detection System with the acronym IDS 

4
 Considered unbounded as the data contained in packets is not analyzed; the content is not considered 
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mechanisms presented here, and summarized by a hybridized approach, offer resistance 

in various forms: 

1. Requiring the attacker to have intimate knowledge of the system it is 

attacking: In order to escape detection by an IDS, an attacker would need to 

know all operational details with a high level of precision and determinism. This 

is often information that is not accessible or available, and thus lack of intimate 

knowledge makes planning difficult for an attacker.  

2. Extending the attack time window to impractical lengths: Because the IDSs 

use machine learning and statistical analysis methods over time, the attacker 

would need to expand its mission timeframe so severely that the attack may not be 

successful.  

3. Requiring timed injections: An attacker must be able to time its injections and 

pad its behavior with “normal” system behaviors so that its behavior does not trip 

thresholds and monitoring techniques that rely on statistical inference and 

temporal study. To do this, the attacker would need to master the “intimate 

knowledge” point in this list, further complicating an attack. 

  The points listed above present reasons by which a successful IDS can 

thwart an attacker – by making the possible attack very difficult to plan, time, and 

implement. The methods seen in the next chapters help to mitigate attack potential by: (1) 

complicating a potential attack, (2) making it unfeasible, and (3) reducing the possibility 

of network compromise. 
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Organization 

 

 This thesis work will be organized as follows: 

• Chapter Two: Necessary concepts for understanding IDS methodology, 

constructs, and an example scenario 

• Chapter Three: Description of the first IDS method, called Maxima Detection 

• Chapter Four: Description of the second IDS method, called the Cross-Correlative 

Intrusion Detection System 

• Chapter Five: A description of a hybridized IDS, called HybrIDS 

• Chapter Six: A conclusion detailing the overall implications of the methodologies 

  



6 

 

CHAPTER II 

 

CONCEPT PRIMITIVES AND SCENARIO 

 

 To better illustrate the functional aspects of the IDSs that will be described in the 

next few chapters, it is worthwhile to introduce an operational scenario to examine the 

application and contextual aspects of the IDS. In particular, this document will focus on 

the benefits provided to an ad-hoc network comprised of homogeneous networked nodes. 

Such a collective may be defined as a group of autonomous aircraft, ground vehicles, 

networked media players capable of sharing and transmitting data, joint attack smart 

munitions (such as the U.S. Military’s JDAM – Joint Directed Attack Munitions [24]), or 

any other configuration of networked nodes that comply with the ad-hoc, homogeneous 

requirement.  

 

Scenario: ADS-B 

 

 The case scenario presented here involves a modified version of the Automatic 

Dependent Surveillance – Broadcast (ADS-B) system used to provide flight status 

information and collision avoidance to a network of interconnected aircraft and ground-

based receiver stations. For this thesis, the focus will only be on inter-aircraft 

communications. 
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 To gain an understanding of how an IDS might be integrated into such a broadcast 

mechanism, it is useful to characterize the existing system. ADS-B broadcast messages 

contain five unique, aircraft-centric data points and/or vectors, specifying: 

• GPS Position information  

• Altitude of the aircraft 

• Rate of climb 

• Velocity vector 

• Aircraft ID tag 

 These data points are broadcast typically at intervals of 2 Hz [25-28], and are 

received by any nearby aircraft. Software implemented on various other modules aboard 

the aircraft is then responsible for decoding the broadcast stream and performing 

decisions according to the information presented. 

 

Changes to the ADS-B Model 

 

 Because IDSs are typically implemented in scenarios where bidirectional 

communications is required, the current ADS-B specification is therefore not a proper 

application of IDS technology. Because of this, the ADS-B specification has been 

adapted to include the need for inter-aircraft requests, and two specific directives for 

theoretical use in autonomous aircraft missions were added. The modifications are as 

follows: 

• GPS Position information request 
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• Altitude of the aircraft request 

• Rate of climb request 

• Velocity vector request 

• Mission update request 

• Redirection request 

• Mission start request 

• Mission end request 

• Emergency/evasive action request 

• Priority/dominance leader/follower change request 

 The reader will notice that the “ID Tag” item has been removed from the previous 

specification. It is assumed therefore that in performing bidirectional communications 

with other aircraft nodes, the notion of the need for a specific aircraft identifier is handled 

by the communications protocol itself, and thus abstracted away from the purposes of this 

research. 

 Six additional functions have been added to the ADS-B system specification, 

along with the requirement that instead of a non-directed broadcast, each connected 

aircraft node makes specific requests of other devices according to the newly-proposed 

items listed above. The first new addition, that of a mission update request, simply is a 

query to other connected aircraft to supply the requester with an updated profile of its 

mission information. This allows for dissemination of group policy and provides an 

updated group dynamics model to each node as time progresses. For instance, should one 
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aircraft identify a hazardous condition that is not immediately apparent to the rest of the 

collective, subsequent update requests may provide a warning to the rest of the group as 

the update request is propagated from device to device. The second action is a simple 

direction change request. This may have several purposes, including collision avoidance 

should sensor data to each of the nodes become unavailable, compromised, or obscured. 

Other actions include emergency evasive actions, mission start/end changes, and the last 

request, to change ordering or dominance in a series of aircraft, allowing for a change in 

designated roles from one aircraft to another. 

 This updated system model now represents a small-scale control protocol for a 

network of autonomous aircraft. The aim of this thesis is not to explore this example 

system; for reference purposes, it is simply stating a scenario to which the IDS may be 

applied. 

 

System Integration 

 

 As stated in the introductory 

material, an IDS employing traffic 

analysis at a single point in a device 

network is neither scalable (i.e., resists 

performance degradation as the number of 

devices increases) nor applicable to an ad-

hoc network setup, especially one 

consisting of power-restricted devices Figure 1 - Example of one IDS per node 
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where strenuous computational power requirements yield a major disadvantage in 

implementation. To combat this issue, all of the IDS systems and strategies discussed in 

this document will circumvent a single point of analysis by allowing each connected 

device node to run a specific hardware/software implementation of the IDS mechanism, 

as seen in Figure 1. By using a parallel approach, we can enable multiple-agent feedback, 

if required (though not discussed as a solution in this document) to provide data to a 

variety of intrusion control methods (separate from detection in that it is a solution to a 

detection) such as a reputation system
5
.  

 Parallelism increases system scalability by removing the burden of analysis from 

one machine monitoring the entire collective, to multiple devices monitoring only their 

relevant intercommunications. For instance, in a traffic-based IDS, a collective of eight 

nodes requires that the IDS monitors all eight nodes. In contrast, in a parallel IDS 

strategy, let us assume that of those eight nodes, nodes A, B and C communicate. In this 

case, the implemented IDS models, with reference to the IDS onboard node A, will only 

need to monitor communications with nodes B and C, assuming that no other 

communications occur. This brings up the important point that none of the methods 

outlined in the next few sections self-monitor behavior – this would be more or less 

redundant when considering a significantly large set of communicating nodes. Self-

referenced IDS mechanisms therefore will not be addressed in this document. 

 

  

                                                 
5
 Reputation Systems will be discussed shortly 
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Reputation Systems 

 

 Buchegger and Le Boudec [29] introduce and detail different methods used to 

form the basis for reputation systems, applicable to the ad-hoc network scenario. Their 

work focuses primarily on developing a system of node-based reputations for 

determining optimal and safe strategies for routing data among the nodes. In their work, 

they show a variety of different trust-based reputation-building mechanisms by which 

nodes that previously have not interacted with each other can determine whether or not 

the nodes are trustworthy based on prior accumulated information about each respective 

node.  

 Central to their work is the propagation of reputation information among nodes 

which forms the basis for the group-wide consensus about the trustworthiness of the 

interconnected nodes. The IDS mechanisms detailed in this thesis focus not on trust 

propagation and group decision making. Rather, the focus is on detection of an intrusion 

based on the observations of a single node with reference to the collective in such a way 

that for N nodes in the network there exist N different system state observations. For this 

reason, the work presented here is not adherent to the concepts of a reputation system. 

 

Operational Cycle Division and Scalability 

 

 When considering performance issues related to embedded device networks, 

scalability becomes of paramount importance in the determinacy of response time. To 

this end, the methods proposed in this document utilize mechanisms to minimize 
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computational overhead and allow for expanded scalability through the implementation 

of a division between data acquisition cycles of the various IDSs, and data processing and 

analysis cycles. A cycle
6
 is defined as a “run” of the IDS during which either data is 

collected or analysis is performed.  

 Data Collection Cycles
7
 are dedicated to handling input requests from connected 

agent nodes. These cycles are of low computational intensity, as they simply map 

received requests to a predefined structure maintaining a history of external requests. In 

the case of the IDSs mentioned here, this structure will be referred to as the Agent 

History Table, which contains all requests received during the IDS runtime. A data 

collection cycle is run for every input data  point, since the update process is lightweight, 

using only an increment operation and a node information update request. The vast 

majority of all cycles performed by the IDS fall under the DCC category. This allows for 

stabilization of input data patterns for purposes of statistical analysis. 

 In contrast to a DCC, a Data Processing Cycle
8
 is a CPU-intensive IDS run that 

performs the analysis required to identify deviant agents from the node collective. 

Performing a meaningful analysis is dependent on the data collected. This has two 

ramifications; First, it means that power and computational resources can be saved by not 

performing analysis cycles before sufficient data input has been received. Second, 

modifying the execution point of a DPC enables system flexibility by allowing a 

statistically significant change in observed behavior to occur before performing a new 

analysis on the received request inputs. Utilizing the same data structure updated by the 

                                                 
6
 Cycle and Iteration will be used interchangeably 

7
 Abbreviated as DCC, or DC if using the word “cycle” verbosely 

8
 Abbreviated DPC or DP if using the word “cycle” verbosely  
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DCC, the DPC portion of the IDSs determines deviant nodes based on the IDS methods 

described in the following chapters. Typically, the DPC is run based on the number of 

inputs received and the number of nodes in the collective. For all three IDS scenarios, 

excluding the initial exploratory maxima detection system implementation, the DPC is 

run when a counter measuring the number of DCCs exceeds a value computed by the 

product of the number of known, locally connected nodes and the number of possible 

discrete system behaviors. 

 The performance aspects, accuracy, and power/overhead concerns are directly 

affected by the DCC/DPC execution ratios as the IDS runtime progresses. More DPC 

executions cause more computational overhead, but are necessary for any data analysis to 

occur. When properly spaced with enough DCC executions, the IDS’s performance can 

be shaped to scale linearly, or even negligibly as the size of the networked node 

cluster is linearly increased.  
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CHAPTER III 

 

MAXIMA DETECTION 

 

 This section of the document will explain in detail the single-anomaly-detection 

mechanism mentioned in the introduction, and hereby referred to as a Maxima Detection 

System
9
 [30]. The purpose of this detection algorithm is to provide an accurate 

mechanism for detecting single anomalies within the context of the embedded systems 

platform, while maintaining a simple and lightweight execution profile. Within the scope 

of the Hybrid IDS (as seen in Chapter Five), the MDS allows for identification of either 

one or zero suspicious nodes for calibrating the sensitivity of the Cross-Correlative 

Intrusion Detection System.
10

 Therefore, the MDS is designed primarily as a first-defense 

and calibration stage for CCIDS to remove the large number of false positives inherent to 

that approach.  

 MDS relies on the creation and updating of probability density functions that 

approximate the observed behavior between nodes interacting with a specific host node. 

To simplify a behavior-based model for purposes of creating an experimental version of 

the MDS, behaviors were categorized statistically and represented by integral data values, 

one per integer, creating an enumerated list of actions and methods. For instance, in the 

scenario of a series of networked autonomous aircraft, a request for position data might 

be assigned logically to integer value ‘1’, a request for attitude data might map to a value 

of ‘2’, and so on. Each of the behaviors is generated according to a probability density 

                                                 
9
 Abbreviated as MDS 

10
 Abbreviated as CCIDS 
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function (PDF) attributed to the frequency of that behavior’s occurrence in an actual 

embedded, real-time system. All probabilities add to 1 to completely represent the 

possible behavior space of the system. Figure 2 demonstrates this concept within the 

scope of a system containing nine separate behaviors. This capability allows the IDS to 

move beyond the scope of a system-specific implementation, abstracting operations at 

one of the highest possible levels, (level 1 is used in this paper) as seen in Figure 3. 

 The classification of an agent as 

deviant is a two-fold process. The first step 

involves the individual, or local-scope 

determination of deviant behavior by each 

agent. This is computed by calculating the 

mean probability of a behavior for the entire set of agents. Let γ be the number of agents 

in the system and let β represent the number of behaviors present in the system. Let η� × � 

represent a matrix of dimensions γ × β containing the historically and temporally-updated 

probabilities of a certain behavior ξ. The local-scope mean probability vector, φ is 

computed for each node � in (1). 

�� =  ∑ η� × �


��      (1) 

Figure 2 – Example behavioral PDF 
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 The 

vector φ is 

then 

analyzed for 

global and 

local 

maxima. 

Since 

most of 

the behaviors will likely be statistically represented by a larger maximum peak, deviation 

in the system behavior will likely manifest itself eventually over time as a smaller, local 

maximum, as seen in Figure 4. This smaller local maximum can be correlated to a 

particular behavior, ξ, as the maxima-finding algorithm is set to return a discrete location 

of the occurrence of the maxima.  

 The agent corresponding to the maximally-defined deviant behavior ξd is then 

found by analyzing the column of data in the probability matrix η� × � corresponding to ξd 

and then finding the row within that column containing the maximum value for the given 

ξd with in a certain tolerance value τ, representing a probability value. 

Figure 3 – Behavioral Abstraction Level (#1 used) 
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 The detection strategy 

implemented by MDS therefore 

allows for the detection of a 

single anomaly within a minimal 

requirement for time – a threshold 

is used to detect whether the local 

maximum should be flagged as 

suspicious or not.  

 

Ordering of Data 

 

 MDS, because of its maxima detection mechanism, has an inherent requirement 

for normalization of input data. This means that all the theory and methodology presented 

here assumes Gaussian or other normalization of the data set. Figure 4 shows common 

data represented by a Chi-Squared distribution, which allows detected maxima to be 

much more easily distinguished, as far as the eye can see. To an extent, a Chi-Squared 

distribution will yield optimal results, as “normal” behaviors are skewed to the left (or 

right) while deviant behaviors, in an ideal circumstance, will be represented on the 

opposite side of the mean behavioral vector PDF.  

 Of course, theory differs from actual implementation and operation, and thus 

deviant behaviors will not always be skewed properly. However, a generalized attempt at 

ordering is essential to the proper functionality of MDS. The specific ordering 

methodology is not discussed here, as the result data is generated using a pre-ordered set 

Figure 4 - Detected Local Maximum - possible indicator of deviant 

behavior 
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(the interactive requests are generated 

such that the input results will have 

some form of normalized ordering.) 

However, it would not be difficult to 

implement an ordering technique 

based on simply tracking action/label 

frequencies and then re-ordering the 

behavioral frequency column labels 

appropriately.  

 

DPC Configuration 

 

 Because maxima detection is based on accumulating a statistically significant 

number of requests over time, having a greater number of nodes in the device network 

will decrease the time required to stabilize the detected maximum. This is because a 

greater collection of nodes yields more request data points and subsequently more 

uniform average representation. Therefore, the smaller the node collective, the more 

DCCs are required per DPC for stabilization purposes. Furthermore, more DPCs will 

need to be run to converge accurately. This behavior is analyzed in the hybridized IDS 

chapter. 

 

  

Figure 5 - MATLAB-based implementation system diagram 
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Implementation 

 

 The MDS was originally implemented in an exploratory phase using MATLAB 7 

to determine its viability and performance. The detection system was comprised of nine 

core modules, consisting of an agent controller execution program, followed by data 

handling units, machine learning aspects, the maxima detection system itself, and the 

simulated data generation portion. These components can be seen in Figure 5. Two 

objects maintained the status of the system, and are identified by the shaded, three-

dimensional boxes. The first of which is referred to as a “behavior” unit, containing the 

basic abstraction data including requesting node and the actual request made. The 

behavior units themselves, corresponding over time to the average system state, were 

managed though a behavior stack, containing a set of pushed behaviors received from the 

interconnected nodes. The purpose of the stack was to delay an overall update to the state 

of the system, allowing for a more stable, characteristic update containing more data 

points, thereby eliminating the impact of a single data point on the stability of the system. 

Once a preset number of behaviors was collected in the stack, the stack contents were 

popped and averaged into the overall system profile. As an intermediary between the 

average system representation and the behavioral stacks, a matrix representing individual 

nodes and their behavioral labels is used to maintain the total number of interactions 

present within the system. Useful for debugging purposes, this history matrix eventually 

became one of the most important foundations in hybridizing MDS, and the cross-

correlating IDS, as will be seen in the section referring to the two-system hybridization. 
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 Because of promising results and a general degree of operability within the 

simulation environment, MDS was ported to the Java 5 runtime standard, allowing for 

ubiquitous device integration provided a Java Runtime Environment
11

 that could be run 

on the platform in question. The Java implementation was added only within the context 

of the hybridized IDS, so a free-form Java implementation of the MDS is not available 

for evaluation as it relies heavily on an implementation framework comprising the two 

systems, and derived from the cross-correlative IDS to be discussed in the next section. 

 

Performance 

 

 This section will discuss the performance of MDS with respect to deviant agent 

pervasion – the density of malicious nodes expressed as a percentage of the homogeneous 

device network. In order to maintain similar metrics through the course of this document, 

the original MATLAB implementation will not be used as the benchmark case 

application; rather, the efficacy of MDS will be analyzed as a performance component of 

the hybridized IDS discussed in Chapter 5.  

 Because MDS can only detect at most one malicious agent, it does not make sense 

to discuss MDS performance in the case of more than one anomalous agent per device 

network. This constraint leads to a very small measurable amount of description and 

performance evaluation, so the metrics utilized for MDS performance will relate the 

number of fluctuations MDS undergoes during its detection algorithm as the pervasion 

density increases. To clarify this a bit, consider a case in which 30 device nodes exist on 

                                                 
11

 JRE 
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the homogeneous device network. If on this network, there exists a malicious node 

pervasion of 20%, (i.e., six deviant agents exist), MDS will detect at least one of the six 

nodes within its first iteration. However, during subsequent cycles, the exact detected 

node may shift between any of the six potentially deviant nodes. This is expected 

behavior, since the local maximum will shift among the various deviant nodes as time 

progresses and more data is gathered. 

 Because the most viable MDS implementation exists within the hybrid IDS 

context discussed in Chapter 5, the discussion and data generated for and collected from 

MDS mechanisms will be sourced from the hybrid IDS scenario. Despite this, the 

performance and specifications are unique, in component context, to MDS behaviors and 

system performance. For more information regarding actual data obtained from the MDS 

component of the hybridized system, the reader is directed to Appendix A for raw data 

and performance statistics. 
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 Figure 6 - Variation of the single detected node number over time (as DPCs increase) 

 

 Figure 6 demonstrates that MDS is relatively stable in selecting a node to identify 

with a fixed node cluster size of 20 agents, with a varying percentage of deviant nodes  

from five to 27%. The number of nodes representing the deviant nodes always included 

node number 20, and included more nodes progressively, adding 19, 18, 17, 16 and 

eventually 15 as the pervasion percentage increased. Ironically, the greatest instability 

occurs in one of the simplest test cases, yielding an incorrect initial identification of node 

number 2. This initial identification anomaly shows that it is important to alter the 

number of MDS cycles based on the context of the application. All other trials identified 

correct nodes at all times, typically selecting node number n or (n-1) for a scenario 
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consisting of n nodes. This is primarily due to the statistical distribution of the PDF, and 

is not a characteristic of MDS.  

 Let it be noted that Figure 6 does not identify the number of detected nodes, but 

rather identifies a single detected node number as the MDS progresses through DPCs. It 

should be mentioned that the deviant node number index value is predetermined by the 

dataset, and is not influenced by position; node number 20 was always detected in this 

dataset because input conditions always specified the deviant behavior as occurring under 

node 20, among others, for instance. MDS would just as easily identify a deviant node 

placed at any other index (e.g., the deviant nodes being represented by node numbers 4, 5 

and 6 in the collective of 20. Node 4, 5 or 6 would then be conclusively detected by the 

MDS.) 
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CHAPTER IV 

 

CROSS-CORRELATIVE IDS 

 

 This section of the document will detail the system and methods of the cross-

correlative IDS portion, hereby referred to as a CCIDS
12

. Based on using the properties of 

vector/matrix cross correlation[22], the CCIDS provides features not present in MDS 

such as a greater response flexibility, and more importantly, the ability to detect multiple 

anomalies within a collective of nodes. This is accomplished through the implementation 

of a mathematical cross-correlation operation that assigns scores to individual node 

behavior averages with respect to the overall system behavior. Like MDS, the CCIDS 

utilizes the same level of abstraction to represent behaviors in the system. This allows 

CCIDS to later be integrated and hybridized with MDS and allowing them to share 

similar historical information that accurately and homogeneously represents the system 

state. Also like MDS, the CCIDS utilizes a similar data structure, the agent history table, 

to record and organize input system behaviors for eventual analysis. To see how CCIDS 

uses this datastructure, let Λ represent a matrix of dimensions m x n containing the 

binned, recorded request histories for m nodes and n classification labels. Let η represent 

the row-summed and averaged vector derived from Λ containing an overall probability 

distribution representing the overall state of the system according to the classification 

labels. Lastly, let �� represent a transposed vector containing the individual averaged 

probability distribution of a behavior for a particular node number � ∈ �. The scores �� 

from the resulting cross-correlation are obtained by �� = � ∙ �� ∀ � ∈ �. (2) 
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 The resulting vector containing the cross-correlation scores for each node is 

analyzed according to a threshold specified in the IDS runtime environment. Although 

the vector product operations are not significantly process-intensive for smaller number 

of agents because the cross-correlation is performed on linear vectors, the nature of the 

embedded platform requires the minimization of unnecessary computations to save on 

power and resource requirements. To meet this goal, and to allow for the system to 

experience change on a global basis without severely affecting the model’s integrity and 

anomaly detection resolution, the cross-correlations are performed based on the number 

of input requests received, regardless of their origins. This allows for the accumulation of 

a statistically relevant number of request classifications to be added to each correlation 

run, and minimizes the impact of a smaller-scale anomaly within a node that may not be 

malicious but rather the result of an unforeseen consequence of the task being processed 

at the time. 

 With this control mechanism in place, the scores are analyzed by comparing each 

score in (2) to an average composite score generated from all the score entries. Should 

one or more nodes deviate from the average score according to a specified tolerance 

value, the node is flagged as suspicious and added to a list containing suspected nodes, 

maintained separately by each device. 

 

Thresholding 

 

 Central to permitting CCIDS deviant node identification, threshold-based 

detection sets a point at which an individual node score must deviate from the 
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average/composite score to be flagged as suspicious. The selected threshold must be 

particular to the application context in which the CCIDS is deployed, and thus must be 

selected manually (or via a hybridized approach as detailed later in Chapter 5). The 

results of selected thresholding are seen later on in this chapter, in Figure 9. 

 The initial threshold values, ��, selected for CCIDS (and primarily the hybrid 

approach in Chapter 5) stem from a 100% deviation in the average node score. For this 

entire document, the dataset in use created an average score, ����, of approximately 0.2. 

The determination of a deviant node is made if � ≥ ����� − ��� where ψ represents the 

selected threshold, is true. Therefore, to create the initial threshold ��, the value was 

originally set to 0.2 to represent the 100% deviation. This implies that only scores 

exceeding the average by plus or minus 100% would register as suspicious. Of course, 

such a case would be rare, and thus Figures 8 and 9 demonstrate initial thresholds 

required for detection to converge via CCIDS, implying that 100% deviation is too 

extreme a condition for most general purposes. 

 

Implementation 

 

 The CCIDS portion was originally implemented in the Java 1.5 framework, with 

the intention of execution on a lightweight ARM9 development platform. The 

implementation structure itself is designed to maximize modularity and implementation 

flexibility. This also permitted integration of MDS to form the hybridized IDS discussed 

in the next chapter with minimal modifications due to the object-oriented nature of the 

IDS implementation.  
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 The IDS itself is composed of seven core class modules and a number of 3
rd

-party 

helper objects. The modules are broken down as follows: 

1. Manager application – responsible for instantiating the IDS environment and 

managing its operation 

2. NodeManager class – responsible for instantiating objects relating to each node’s 

interaction histories. Spawns associated AgentHistoryTable instances, as well as 

HistoryObjects. 

3. HistoryObject – contains a vector mapping request instances for each node for 

which the IDS is logging activity. For example, if the IDS is running on aircraft 

A, HistoryObject instances are created for nodes B, C, and so on. 

4. AgentHistoryTable – each IDS maintains one such object containing the overall 

binned histories for all nodes versus all requests. Represented by Λ. 

5. IDSEngine – This object is instantiated by the Manager to perform single or 

multiple-anomaly detection based on data contained in the AgentHistoryTable 

object instance. This unit is the 

most critical component and 

analytical tool of the IDS 

system. 

6. ScoreUnit – A helper 

class used by IDSEngine 

7. IOManager – used for 

file-based or network-based 

retrieval of requests made to the 
Figure 7 - CCIDS Java component diagram 
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IDS’s host system. 

Figure 7 shows the derivative arrangement of the CCIDS, with the Manager application 

controlling overall execution and instantiating calls to the data collection, data 

management, and score analysis modules.  

 

Performance 

 

 Unlike MDS, the CCIDS portion does not require a logical ordering of labeled 

data into a Gaussian or other normalized distribution. This reduces dependence on input 

data ordering and organization, but results in an extreme dependence on tuning/tolerance 

factors. While MDS remains sturdier as far as tuning requirements are concerned, 

CCIDS’s efficacy varies greatly based on the selected tolerance values.  

 To measure IDS performance based on CCIDS performance alone, this section 

will focus on tuning thresholds required to achieve convergence from the CCIDS. A 

properly tuned CCIDS mechanism 

will properly identify the deviant 

agents within its first performance 

iteration (DPC). In addition to the 

tuning thresholds, convergence versus 

deviant node pervasion (the 

percentage proportion of deviant 

Figure 8 - Average required threshold for CCIDS convergence 
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nodes vs. all the nodes in the homogeneous device network) becomes a factor in 

assessing system performance. The reader will note that the data used in these results was 

generated from the hybrid IDS approach detailed in the next chapter. While the hybrid 

IDS will alter the tunings for CCIDS dynamically, the data from the upcoming section 

still represents accurate runtime information, in its component breakdown, for a CCIDS-

only implementation provided that only CCIDS data is analyzed in context with the 

optimized tuning parameters.  

 Figure 8 represents the average threshold required for convergence of the CCIDS 

based on a varying pervasion of deviant nodes within the node network. The surface plot, 

shown in Figure 9, illustrates the varying required threshold for convergence based on not 

only pervasion, but also the number of nodes in the collective as a whole. The behavior 

can generally be regarded as linearly dependent on pervasion, not the number of nodes. 
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Figure 9 - Required threshold for CCIDS convergence with varied deviant node pervasion and network size 

 

 It is noted that in some circumstances (when the threshold exceeded 22%, for 

instance), despite having selected a threshold, CCIDS never converged upon a solution, 

or did so poorly. For information regarding these cases, the reader is invited to examine 

trial data presented in Appendix A. 
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False Positives 

 

 Because of the multiple anomaly detection capability, CCIDS consequently 

suffers from its tendency to detect false positives more frequently than MDS. Because the 

criterion for selecting and identifying a malicious node is completely based upon the 

selection of a proper threshold, this consequently requires careful tuning of this threshold 

within the execution context of the functioning system. This raises the question of how 

such a threshold should be applied if false positives are detected within the first execution 

iteration of the CCIDS. The answer to this lies in the provision of training data and 

intelligent tuning of the threshold such that only true positives (actual deviant nodes) are 

found within the behavioral dataset.  

 Training data is defined quantitatively and proportionally dependent on the 

number of connected nodes in the collective, and the number of overall 

behaviors/interactions possible within the system context. For a large number of 

connected nodes, the behavior, theoretically, becomes established more rapidly, since 

more devices will be exhibiting similar behaviors. Similarly, a smaller number of 

behaviors requires less time for the system to stabilize, since the statistical representation 

of a larger number of behavior classes will take longer to receive data points as the 

number of behaviors increases towards infinity. This leads to a conclusion that the 

threshold must be tuned according to several factors present within the system context at 

initialization time of the homogeneous device network. The complexity arising from the 

requirement for training data is resolved in the next chapter. 
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CHAPTER V 

 

HYBRID IDS 

 

 The individual approaches to homogeneous device network security, as presented 

by the intrusion detection tactics of MDS and CCIDS, provide a partial solution to the 

overall issue of identifying deviant nodes in a homogeneous device network. Each system 

is tailored to provide a particular benefit, such as not needing training data in the MDS 

case, or providing multiple anomaly detection, in the CCIDS case. However, neither 

solution can offer the full protection of a combined approach, drawing from the strengths 

of both systems to surmount their respective weaknesses in a symbiotic manner. This IDS 

approach will be referred to as a Hybrid IDS or HybrIDS for the purposes of this 

document. 

 The primary principle governing the operation of HybrIDS consists of the 

sequential operation of MDS and CCIDS. More specifically, the lack of temporal 

requirements for single-anomaly detection specified in MDS can be used to tune the 

detection threshold for the CCIDS portion of the system. This produces accurate results 

that are found almost immediately, which can be used to actively remove instances of 

false positives present in the multiple results from CCIDS. To do so, HybrIDS 

implements a switching algorithm that determines whether conditions have been met to 

transition from the primary to secondary stage of the IDS (MDS to CCIDS). This 

algorithm will be referred to as the Hybrid State. The end product of the Hybrid State is a 
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timing value, Tau, which determines how many DCCs are required before transition from 

first to second stage.  

 The Hybrid State is an elementary data structure that computes the value of Tau in 

DCCs by taking into account three critical system components that are the most 

influential in determining transition requirements for the homogeneous device network. 

The first is the number of connected nodes. As the number of nodes � increases, there is 

a higher likelihood that an increased device presence will stabilize the overall system 

behavior. The second component involves the number of overall system behaviors 

present in the system. As the number of behaviors increases, so does the time (in cycles) 

for all the behaviors to experience a representative number of data points. If β represents 

the number of behaviors present in the system (represented by a set of behavior-separated 

bins into which collected data points can fall into), and  ! represents the number of 

DCCs required for an average stabilization, then the function �� = "#$%| $ → ∞ is a 

constantly increasing function. The third component is a variable function, )#�% that 

returns a constant multiplicand that modifies the effect of the two prior systems to 

determine Tau in terms of  !. 

The resulting Tau in number of 

DCCs �� can be expressed as: 

* = +� × $ × ,#-% 

where +� is a pre-determined 

software-related constant issued 

before run-time and where the 
Figure 10 - Represents the returned gamma function value to yield 

IDS transition 
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function )#�% can be expressed by a non-linear function based on the number of input 

node agents. Seen in Figure 10, the function was derived experimentally and 

approximates a logarithmic increase, such that agent groups with larger numbers of nodes 

do not immediately transition IDS stages. 

 The returned value of )#�% allows the overall function *#+�, $, -% to exhibit a 

surface of values for the Hybrid State in terms of  ! as shown 

 

Figure 11 - Surface of possible Tau values (for IDS transition) versus number of nodes (Gamma) and number of 

behaviors (Beta) 

 

in Figure 11 when the value of +� = 4 (selected to reduce runtime and increase 

accuracy.) Because of an algorithm implemented in CCIDS, the number of DPC 
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executions performed is proportional to the system behaviors and nodes as well, so while 

there is a significant overall increase in the number of DC cycles as nodes increase, the 

number of DCCs per DPC decreases. This can be seen in Figure 12. 

 

Hybrid State Control Flow and MDS/CCIDS Transition 

  

 HybrIDS relies on the Boolean state of the Hybrid State object. Should the correct 

number of DCCs have passed according to the Tau function detailed in the previous 

section, the MDS state will be false and the CCIDS state will resolve to true. Following 

Figure 12 - Normalized surface representing IDS transitions based on selected Tau (dependent on environmental 

configuration) 
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this state change, the IDS will begin a transitory phase in which the long-term results of 

MDS are used to calibrate the evaluative results of the initial set of CCIDS iterations.  

 This transitory phase involves an output 

suspected agent vector, λ, which contains the 

findings of the MDS phase. It is noted that 

max#dim #5%% = 1, since MDS can at most yield 

one suspected agent vector. Else, λ may be null. 

Also critical to the transitory phase is the suspected 

agent vector ξ, which contains the evaluative 

findings of the CCIDS phase. Given the set of all n 

possible agent nodes, 78, the relationship between 

ξ and α is such that 9 ⊆ ;<=. This implies that the 

maximal set of possible deviant nodes can be some 

or all of the connected nodes except for one, which must exist for the cross correlation to 

have any meaning. Given sets λ and ξ, the transition phase involves the constant changing 

of the tuning threshold until the condition 5 ⊆ 9 is satisfied. The threshold value begins 

at a default state and is tuned either positively or negatively until the desired subset 

condition is reached. The logical flow of the transitioning mechanism can be seen in 

Figure 13. 

 

  

Figure 13 - IDS transition logic flowchart 
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Implementation and Architecture 

 

 HybrIDS is implemented according to the Java 2 version 1.5 Standard Edition 

API, according to the design and previous implementation of CCIDS. In fact, the 

hybridization component and MDS engine were added onto the existing CCIDS 

framework, though their integration effects a critical and fundamental change in the 

nature and properties of the system. Many concepts and execution primitives from 

CCIDS were maintained, and added to the Java port of the MDS portion of the HybrIDS. 

The resulting framework yielded a number of important properties: modularity, 

homogeneity, and a shared data infrastructure. 

 The most significant changes to the architecture is the addition of the MDS 

engine, and the conversion of the primary IDS Engine to the CCIDS subcomponent, as 

shown in Figure 14. Other minor changes include changes to the IDS management 

system and the application management system, both of which were altered to allow for 

IDS phase transitioning and sequential execution. Sequential execution is still governed 

by the same DCC/DPC cycle management scheme originally developed for the stand-

alone CCIDS. 
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Figure 14 - HybrIDS Java component diagram 
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 One of the largest benefits of the Java-based implementation and concurrency 

with previous development practices is the resulting data sharing occurring between the 

two IDS systems – the sharing of the Agent History Table. This data structure, 

originating from the CCIDS Java implementation, but also present in the original 

MATLAB 7 implementation of the MDS, contains the machine-learning elements critical 

to temporal and statistical system behavior determination. A single instance of this object 

is created and passed by reference to the various subcomponents and engines of the IDS, 

minimizing the required memory footprint. Let θ represent the resident memory size of 

the Agent History Table in bytes, and ε represent the memory footprint of a 64-bit double 

datatype. The total resident memory size is then  

> =  $ × ;< ×
?
8

 

 For a typical agent history table consisting of 35 agents and 10 behaviors, the 

memory footprint of the associated IDS’s Agent History Table would be a maximum of 

2.73 kilobytes. Because the Agent History Table is the most memory-intensive portion of 

the entire IDS, maintaining the historical and machine learning components required to 

track system behaviors, it is easy to see why this HybrIDS model is extremely adaptable 

to real-time and embedded system architectures, where memory and computational 

resources are at a minimum. Further design considerations include compact compiled 

application size (compiled as a Java JAR file), not exceeding 46 kilobytes of required 

storage space.  
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Performance 

 

 The as-tested performance of the HybrIDS showed significant improvements in 

the detection accuracy over the single IDS case of either MDS or CCIDS. The 

improvements were so vast that each and every system trial resulted in a 100% accurate 

detection at the transition intervals selected within a certain range of deviant node 

pervasion. The number of transitioning iterations and number of iterations before 

accurate detection for either MDS or CCIDS were utilized as performance metrics to 

evaluate the efficiency of the HybrIDS. The test scenarios varied in the percentage of 

malicious node pervasion, as well as the number of nodes used in the test. An overall 

figure representing the total number of DPCs for all portions (MDS, CCIDS and 

transition) was also included during evaluation. Approximately 383MB of trial scenario 

data was generated to be used as the basis for inter-node device requests seen from the 

perspective of a single node.  

 Two sets of graphs will be presented in this section: The first set contains three 

Figure 15 - Average transition cycles vs. percentage of deviant 

nodes 
Figure 16 - Enumerated transition cycles vs. percentage of 

deviant nodes 
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graphs with data about the number of tuning cycles required between the MDS and 

CCIDS phases such that CCIDS may be properly tuned to avoid false positives while 

accurately detecting the multiple anomalous nodes. The graphs will display this 

information as 1.) an average, 2.) as an interpolated multi-trace plot, and 3.) as an 

interpolated three-dimensional surface plot. The second set of graphs will represent in 

various ways the total number of DPCs consumed by the entire IDS process, including 

the MDS, CCIDS and transition portions. The same graph methodology from the first set 

will also be observed.  

 

Figure 17 - Surface of required transition cycles vs. percentage of deviant nodes and size of network 
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Figure 20 - Surface of total IDS DPCs vs. percentage of deviant nodes vs. total network size; High peaks 

occurring above 22% pervasion indicate significant instability/low rate of convergence. Some non-converged 

values were averaged. 

Figure 18 - Average number of DPCs (total) vs. deviant node 

pervasion 

Figure 19 - Enumerated number of DPCs (total) vs. 

deviant node pervasion 
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 Figure 17 demonstrates that the number of tuning cycles necessitated by a 

particular concentration of deviant nodes within the device network is based almost 

exclusively and linearly by the percentage of deviant nodes. The number of transition 

cycles is also linearly dependent on the starting value for the CCIDS threshold, which is 

not seen in any of the figures. It is feasible to reduce the number of overall iterations by 

starting with a lower threshold, but this may be ill advised given that some CCIDS 

threshold are very close to the starting threshold value of 0.20. Figure 15 demonstrates, 

when taken into account with Figure 16, that the number of DPCs dedicated to tuning 

CCIDS is relatively independent of the total number of agents on the device network. In 

this case, the single-most deciding factor is the percentage of pervasion. It is notable that 

there are some differences between the behavioral curves when considering the number 

of tuning cycles, which can be attributed to non-convergence in a few particular cases, 

necessitating an interpolation so that the graphs may be comparable in nature. 

 During the data generation phase, trials were generated with differing numbers of 

deviant agents, to create the different pervasion scenarios depicted in the figures. Because 

the number of agents must correspond to an integral number, it is noted that not all of the 

percentages are exact. To illustrate this, given a collective of 30 nodes with a 15% 

pervasion, the returned requirement of the test data indicates a need for 4.5 deviant nodes. 

Since a fractional node is an impossible scenario, in this case, the actual selected dataset 

corresponded to 5 deviant nodes out of a total of 30 nodes. This is relatively close to 

16.7%, which means that the computation of 30 nodes for the 17% pervasion case also 

computed 5/30 deviant nodes. This explains some of the discrepancies in Figure 18, 
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especially where the stair-step-like behavior of some of the cluster sizes is observed. The 

stair-step nature is due mostly to some replication of scenario data between pervasion 

percentages. A uniform rounding and computation algorithm was applied to indicate 

which trial datasets should be used, such that the overall test scenario would tend to 

behave more or less the same way, despite replications among datasets.  

 Figure 20 shows a three-dimensional surface representation, interpolated, of the 

number of transition cycles required to set MDS properly. This surface yields a more 

palpable view of the pervasion density impact on the number transition cycles required to 

tune the HybrIDS. 

 Figures 18 and 19 paint a very different picture from the transition cycle graphs. 

Here we see the real-world effects of the higher pervasion percentages. Because the 

tuning-based graphs will always display a somewhat linear response, due to a threshold 

limit of how low or high the IDS can be tuned, non-convergent systems will still display 

an upper bound in terms of tuning cycles. This is not the case with the overall system 

behavior. As seen in Figure 19, where it is labeled “Start of CCIDS convergence 

anomalies”, the number of total cycles begins to deteriorate with respect to previous 

system performance. This is in a large part due to CCIDS tuning factors not being able to 

go lower – in essence, the CCIDS is “on its own” despite MDS’s best efforts to calibrate 

it. In some cases, despite the most flexible tuning, CCIDS can converge, but only after an 

unusually long and generally impractical period of time. The symptoms of this begin 

right around 22% pervasion, and fluctuate significantly as the system approaches 27% 

pervasion. In other cases, the CCIDS portion simply did not converge at all. Because of 

plotting software, discontinuities are unsupported, and therefore average total cycle 
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response times were interpolated into cases which did not converge. Please see Appendix 

A for a complete table detailing cases in which convergence was not possible. 

 In several cases, the convergence period became unreliably large – sometimes 

exceeding 100 DPCs (a number indicating that ten or a hundred thousand data points 

have been accumulated before convergence has resulted.) Because data processing cycles 

are dependent on the influx of a relatively large number of input data, a detection 

convergence requirement of this many DPCs is generally deemed unacceptable. This 

arises from the fact that it is difficult to tell whether or not a dataset would converge or 

not after so many cycles, representing a generally long period of time during a 

homogeneous device network’s “mission span.”  

 

Hybridized Outlook and Discussion 

 

 As described earlier in the CCIDS chapter of this document, one of the goals in 

terms of system-wide efficiency is the independence of the system from the number of 

devices present in the system. This goal is met by MDS, and further continued by the 

HybrIDS version, as seen in Figure 20. It is apparent that as the number of nodes 

increases, there is generally no increase, but rather even a slight decrease, in the number 

of DPCs required for convergence. Other expected findings, such as the increase in 

transition cycles corresponding to changes in pervasion, are to be expected. When 

viewing this from a broader perspective, the tuning threshold has a maximum possible 

impact on the system’s overall convergence time requirement. Therefore, in the long run, 
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the transition performance is not as detrimental with respect to a worst-case scenario as 

the individual performance of CCIDS. 

 For the scenario setup described in the concepts and CCIDS sections, it can be 

concluded that the HybrIDS mechanism is effective, therefore, with pervasion 

percentages reaching approximately 22% before system-wide behavior and response 

becomes non-deterministic, or at least non-representative of a reasonable performance 

envelope. There is some room for improvement, as tuning specific methods and 

mechanisms in both MDS and CCIDS phases can yield a higher degree of sensitivity, 

situational forgiveness, and accuracy. One such proposed method would be to add a 

method of tracking the positives that are detected. It is very worthwhile to note that 

during the CCIDS portion, all of the malicious nodes were properly identified at all times. 

It is the inclusion of false positives for excessive periods of time that defined whether, for 

testing purposes, the system converged or not. Therefore, by keeping track of the 

dynamic nature of the positives identifications generated, false-positives included, it is 

theoretically possible to eliminate contenders representing the false positive occurrence 

from the suspected node list based on its temporal manifestations on said list.  

 Given its observed behavior using the generated datasets, HybrIDS demonstrates 

its adaptability to the embedded device platform. By representing interactions with a 

scheme employing a high level of abstraction, it minimizes computational intensity 

through mediation via DPC data management and transitional IDS process mediation. It 

is capable of accurately identifying anomalous networked nodes with a pervasion density 

of up to 22%, and is scalable to a large number of networked nodes with minimal impact 

on response time and performance. Finally, a compact implementation form factor (46 
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kilobytes when compiled as a JAR file) coupled with a small memory footprint (the 

largest data structure occupies 2.73 kilobytes) and a ubiquitous port and runtime 

environment as supplied by the Java 1.5 standard, ensures seamless integration and a 

large degree of applicability to various device classes and categories. 
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CHAPTER VI 

 

CONCLUSION 

 

 The increasing presence of specialized, embedded devices within the context of a 

networked scenario, such as in the case of a collective of specialized autonomous 

vehicles, including tactical and civilian aircraft, automobiles and aquatic vehicles, 

requires an updated perspective on security and network integrity protection. To this end, 

equipping traditional methods of data confidentiality, source authentication and data 

integrity with methods of intrusion detection can bolster the security of networked agents, 

especially in the case scenario of a network of homogeneous device nodes.  

 Important to integrating an IDS to an embedded device architecture is creating a 

system methodology in which a high level of operational abstraction provides a 

contextual detachment and an isometric system of analysis between all nodes of the 

device network. Likewise, a small system footprint (both in memory and executable 

storage space) along with a reduction in the number of overall computations is required to 

satisfy power requirements and computational resource limitation. The single and hybrid 

IDS systems outlined in this thesis represent a combinational approach to meeting the 

requirements stated above. By utilizing a small memory footprint, and discretizing 

processor-intensive tasks to deterministic time points, the IDSs provide an optimized 

approach to lightweight intrusion detection. 

 MDS and CCIDS represent cases where two different approaches have respective 

strengths in resource utilization, a requirement or lack thereof of training data, and the 
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ability or lack thereof of multiple agent detection. MDS has demonstrated its speed in 

detecting the presence of an intrusion, without the need for training data, and in a manner 

that almost always detects the intrusion accurately. When tuned properly, MDS proves to 

be the most effective in finding the occurrence of an intrusion, when presented with a 

homogeneous device network and a pre-existing set of behaviors and network size. MDS 

takes its inherent speed from a thresholded analysis of an averaged PDF representing the 

overall state of the system. Because the detected local maximum, excluding the global 

maximum, are only representative of one node, MDS cannot be used to detect the 

presence of more than one deviant node in the network. This does not exclude the fact 

that vacillations in the detected suspect node can be used to appropriately identify 

potential offenders. However, because of the nature of the PDF distribution, a reasonable 

number of MDS cycles is required to yield the desired suspected agent resolution. 

HybrIDS recognizes this requirement and bases the number of MDS iterations on the 

speed of accumulated data as the system receives request inputs.  

 In contrast to MDS, CCIDS resolves the single-detection deficiency by providing 

multiple suspected agent resolution. This comes at the cost of requiring precise tuning of 

internal thresholding levels to achieve accurate detection. CCIDS is flexible to responses 

in system changes as a mission might update. However, because of the tuning 

requirement, CCIDS must be provided with an array of sample training data that may not 

be available in a dynamic system-wide execution context. The lack of this training data 

yields an unstable and non-deterministic IDS strategy that on its own is incapable of 

providing significant results to IDS functionality. 
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 With these various strengths and weaknesses, it is therefore logical to consider a 

hybridized approach, in an attempt to reduce the deficiencies of either system by using 

combined identification capabilities to provide an overall solution to intrusion detection. 

HybrIDS provides this solution by integrating the single intrusion detection, high-speed 

case as a reference point to tune the secondary IDS stage, making use of the multiple 

anomaly detection capabilities that work well when tuned properly by the first stage. A 

transitioning system allows for the system to perform in a deterministic, expected 

manner. As the data demonstrates, an increase in the number of connected nodes does not 

contribute to an increase in overall execution and convergence time. This yields an 

important advantage for scalability reasons. The only performance penalty comes in the 

form of advanced pervasion, affecting only the number of DPCs required for tuning the 

CCIDS stage. The overall convergence and runtime is largely unaffected. 

 Coupled with a small executable file size, in a platform-independent 

implementation utilizing minimal memory resources for optimal resource management, 

the HybrIDS approach yields a practical IDS methodology applicable to a range of 

embedded devices within the networked context. Together with existing intrusion 

prevention mechanisms such as encryption, authentication and signature methods, the 

proposed HybrIDS can provide an extra, necessary level of dynamic protection to both 

established and yet undeveloped embedded device network architectures.  
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APPENDIX A 

 

TRIAL RUN DATA 

 

0% Deviant Agents Category       

#Nodes MDS DPCs CCIDS DPCS HybrIDS DPCs Transition Cycles 

10 10 1 11 0 

20 7 1 8 0 

30 6 1 7 0 

40 5 1 6 0 

50 4 1 5 0 

60 3 1 4 0 

70 3 1 4 0 

80 3 1 4 0 

90 3 1 4 0 

 

5% 

Deviant       

7% 

Deviant       

MDS CCIDS HybrIDS T-Cycles MDS CCIDS HybrIDS T-Cycles 

10 1 18 7 10 1 18 7 

7 1 13 5 7 1 16 8 

6 1 12 5 6 1 14 7 

5 1 10 4 5 1 12 6 

4 1 9 4 4 1 11 6 

3 1 8 4 3 1 10 6 

3 1 9 5 3 1 10 6 

3 1 7 3 3 1 9 5 

3 1 8 4 3 1 9 5 
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12% 

Deviant       

15% 

Deviant       

MDS CCIDS HybrIDS T-Cycles MDS CCIDS HybrIDS T-Cycles 

10 1 24 13 10 1 24 13 

7 1 19 11 7 1 19 11 

6 1 17 10 6 1 19 12 

5 1 16 10 5 1 17 11 

4 1 13 8 4 1 16 11 

3 1 14 10 3 1 15 11 

3 1 13 9 3 1 15 11 

3 1 13 9 3 1 15 11 

3 1 13 9 3 1 16 12 

 

17% 

Deviant       

20% 

Deviant       

MDS CCIDS HybrIDS T-Cycles MDS CCIDS HybrIDS T-Cycles 

10 1 24 13 10 1 24 13 

7 1 22 14 7 1 22 14 

6 1 21 14 6 1 21 14 

5 1 19 13 5 1 20 14 

4 1 18 13 4 1 19 14 

3 1 17 13 3 1 18 14 

3 1 16 12 3 1 19 15 

3 1 16 12 3 1 18 14 

3 1 17 13 3 1 19 15 

 

22% 

Deviant       
25% 

Deviant       

MDS CCIDS HybrIDS T-Cycles MDS CCIDS HybrIDS T-Cycles 

10 N/C   19 10 N/C   19 

7 1 24 16 7 1 24 16 

6 3 25 16 6 37 61 18 

5 1 21 15 5 3 24 16 

4 1 20 15 4 2 23 17 

3 2 21 16 3 5 24 16 

3 1 20 16 3 54 75 18 

3 2 21 16 3 4 24 17 

3 2 21 16 3 84 105 18 
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27% 

Deviant       

MDS CCIDS HybrIDS T-Cycles 

10 N/C   19 

7 1 27 19 

6 N/C   N/A 

5 9 32 18 

4 16 38 18 

3 19 40 18 

3 N/C   19 

3 N/C   19 

3 N/C   19 
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