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CHAPTER I 
 

 
 

INTRODUCTION 
 
 
 

There are many industrial applications in which periodic inspections need to be 

performed on large populations of components or devices.  However, because of time and 

economic constraints, frequent inspection of the entire population is not economically 

feasible.  Therefore, in order to ensure overall safety and performance, it is desirable to 

identify the critical samples that pose the largest risk of failing, and select them for more 

detailed (expensive) and frequent inspection than other, less critical samples.  It is then 

possible to optimally schedule the detailed inspection of critical samples by balancing 

reliability targets and cost constraints.  

One such industry in which this work is applicable is the railroad industry.  In the 

railroad industry, higher train speeds and increased loads have led to larger wheel/rail 

contact forces.  This evolution has changed the major wheel rim damage from wear to 

fatigue.  Unlike the slow deterioration process of wear, fatigue causes abrupt fractures in 

wheels or material loss in the tread surface.  These failures can cause damage to rails, 

damage to the train suspensions and, in a few cases, serious derailments of the train.  

These failures may be very expensive in terms of human and economic loss.  Since there 

are millions of railroad wheels that need to be inspected, but limited inspection resources, 

it becomes necessary to identify the critical wheels on which inspections should be 

focused.  However, it is economically infeasible to inspect the critical wheels frequently 

using a detailed inspection method, therefore it is also important to determine an 
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inspection schedule for the critical wheels in order to minimize costs while at the same 

time maintaining or exceeding the minimum target reliability level.   

For large populations, as in the railroad wheel application, a methodology for 

identifying critical samples using an unsupervised clustering technique is pursued in this 

study.  The railroad wheel data includes both numeric and nominal features; therefore a 

clustering methodology that is appropriate for mixed numeric and nominal data is 

pursued.   

Completion of the methodology for optimizing the inspection schedule for large 

populations required two more steps: (1) calculation of reliability, and (2) optimization of 

the inspection schedule of the critical samples.  This study develops methods for both 

steps, and proposes a complete methodology for optimizing inspection schedules of large 

populations by focusing specifically on combining clustering, reliability, and reliability-

based inspection optimization techniques into an overall methodology (see Figure 1).  A 

detailed illustrative example applying this methodology toward railroad wheel 

inspections is presented to demonstrate the method’s effectiveness toward practical 

applications. 

The reliability and quality of the railroad wheels in service is generally a major 

concern of engineers.  Large variations and uncertainties in the loading, material 

properties, and environmental conditions cause much variation in the wheel reliability 

and quality.  Accurate and efficient reliability calculation is a key factor in developing a 

reliability-based inspection planning methodology.   
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Figure 1. Methodology flow chart for optimizing inspection intervals of large populations 

 

Research Objectives 

The research in this dissertation consists of four objectives in order to ultimately 

develop an inspection planning methodology for railroad wheels: 

1. Analyze existing manufacturing, testing, inspection, and failure data to 

collect appropriate statistics for reliability estimation and inspection 

planning. 

2. Cluster the wheels into categories based on their similarities, for 

inspection planning. 

3. Investigate the effect different wheel feature values have on the life 

prediction of the wheels using mechanical stress analysis and fatigue 

life prediction.   

4. Develop an inspection planning methodology based on a reliability-

based inspection optimization approach. 

Cluster Analysis 
(identifies critical samples) 

Reliability Analysis 
(estimates reliability of the 

critical samples) 

Reliability-based 
Inspection 

Optimization 
(optimizes the inspection 

intervals of the critical 
samples) 
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Scope and Organization  

An examination of the manufacturing, testing, inspection, and failure data 

provides the statistics of significant features that influence wheel failures.  Using 

collected railroad wheel data, the entire population of railroad wheels was divided into 

clusters based on similarities represented through feature values.  Similarity-Based 

Agglomerative Clustering (SBAC) was used for this analysis.  A detailed discussion of 

the cluster analysis is given in Chapter III.     

In Chapter IV, a simulation-based method is used to estimate the reliability of 

railroad wheels under rolling contact fatigue loading.  Numerical simulation results from 

a finite element analysis are used to construct the response surface of the fatigue damage 

index with respect to the geometry, loading, material properties and other random 

variables.  The response surface is then used in a Monte Carlo analysis in order to 

ultimately develop a total lifetime estimate for the crack fatigue life within the railroad 

wheels.  An analysis of the existing field and testing data is used to validate the lifetime 

estimates calculated from the Monte Carlo simulations and fatigue model.   

Previously, the effects the wheel diameter, applied loading, crack length, and the 

crack depth below the tread surface had on the fatigue life of railroad wheels had been 

studied (Liu, 2006).  The proposed methodology includes analyses of the rim thickness 

and plate design to determine their effect on the railroad wheels’ fatigue life.   

Traditional inspection techniques, such as drive-by inspections where all of the 

wheels on the train are glanced at while an inspection vehicle drives by, are not as 

accurate and reliable as more rigorous and quantitative identification methods.  This 

study is concerned with adding periodic ultrasonic inspections (UT testing) to the railroad 
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wheel inspection practice.  A reliability-based inspection optimization (RBIO) 

methodology that will optimize the inspection intervals of the ultrasonic inspections is 

proposed in Chapter V.  The RBIO methodology optimizes the inspection intervals for 

the critical wheels that were identified in Chapter III by including the reliability of those 

wheels (calculated in Chapter IV) in the optimization algorithm. 

The overall proposed methodology for optimizing inspection schedules of large 

populations is applied to the full population of railroad wheels, in Chapter VI, in order to 

demonstrate the method’s effectiveness in an actual industry application.   
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CHAPTER II 
 
 
 

WHEEL FAILURE MODES 
 
 
 

Introduction 
 

Although the overall research objective is to focus on the development of a 

methodology for optimizing the inspections of large populations, with specific 

application to railroad wheels, it is important to understand the different railroad wheel 

failure modes and how they occur since their occurrence is what is trying to be prevented.  

Therefore, this chapter provides a literature review focusing on the research on different 

wheel failure modes as well as explanations as to why and how these failures occur.  

After the literature review of railroad wheel failure modes in this chapter, the 

methodology for preventing those failures, specifically preventing shattered rim failures, 

is discussed in the succeeding chapters.  

Fewer locomotives dispatched hauling more cars and/or hauling more tons means 

fewer wheels doing more work.  Figure 2 illustrates this trend line (Glamorize and 

Gilmore, 2001).  It is seen that the failure of train wheels is becoming more and more 

prevalent.   

Three main types of failure modes are observed in the United States:  
 
1. Shattered Rim Failure (65%) 
2. Vertical Split Rim Failure (VSR) (30%) 
3. Thermal Cracks (5%) 
 
The percentage estimates of the above failures are approximate and informal by 

railroad industry personnel. 
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Figure 2. Average tons per train, as reported by AAR data 
 
 
 

The following literature review focuses on the three main failure modes listed 

above, as well as explanations as to why and how these failures occur.  Because each of 

the failure modes listed above start from cracks that eventually propagate, the first section 

of this review will focus on crack initiation. 

Ekberg and Bjarnehed (1995) have summarized the research on crack initiation 

during rolling contact fatigue.  It appears that fatigue cracks can be initiated both at the 

surface and below the surface (Galliera, 1995).  It also appears that the mechanics behind 

these different phenomena are quite different. 

 

Initiation of Surface Cracks 

The initiation of surface cracks seems to be highly influenced by the presence of 

thermal loads due to block braking (Ekberg and Bjarnehed, 1995).  Moyar and Stone 

(1991) use a multiaxial fatigue criterion developed by Fatemi and Socie (1988) to 
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quantify fatigue damage induced at the running surface.  According to Moyar and Stone 

(1991), no fatigue damage is induced at the surface during free running of a cold wheel.  

When the brakes are applied and the temperature rises, the fatigue strength of the material 

drops.  Also, the induced shear stress range and maximum normal stress are increased.  

This will increase the fatigue damage (Ekberg and Bjarnehed, 1995). 

The hypothesis of a strong thermal influence on surface crack initiation is 

strengthened by the observation reported by Bartley (1988) of martensite formation near 

fatigue cracks.  This indicates a previous history of high temperatures and fast cooling 

(Ekberg and Bjarnehed, 1995). 

According to experimental work by Marais and Pistorius (1994), the thermal 

fatigue is due to the development of a tensile cyclic stress near the running surface of the 

wheel. 

 

Propagation of Surface Cracks 

Giménez and Sobejano (1995) analyze the propagation of surface cracks by the 

use of a fracture mechanics approach.  According to them, the thermal cycles play a 

fundamental role in crack nucleation and in the growth of the crack until the threshold 

value of the equivalent stress intensity factor is reached.  It has also been documented that 

thermal cycles play an important role in the generation of residual stress fields (Ekberg 

and Bjarnehed, 1995).  Also, residual stresses have a very strong influence on the 

propagation of surface cracks as shown by Giménez and Sobejano (1995) and Lundén 

(1992). 
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Once the threshold value of the equivalent stress intensity factor is exceeded, the 

main cause of continued crack growth is the influence of mechanical loads (Giménez and 

Sobejano, 1995).  This propagation due to mechanical loads is very fast (Hirakawa et al 

1985).  The fracture toughness seems to have only a slight influence on the total fatigue 

life (Giménez and Sobejano, 1995). 

According to Ekberg et al (2002), once a crack initiates in the surface layer, it will 

propagate at a shallow angle to the surface, deviating first into an almost radial and later 

into a circumferential direction of growth.  The final direction is reached at a depth of 

some few millimeters.  In rails, the propagation of surface cracks is promoted by 

lubrication (grease, water, etc.) and there are indications that this is also the case for 

wheels.  Fracture will finally occur as a branching of the crack toward the surface breaks 

off a piece of the wheel tread.   

 

Initiation of Subsurface Cracks 

The depth of crack initiation observed in shelling is reported to be at about 4 mm 

(Mutton et al, 1991) below the tread surface; Figure 3 shows a schematic of a railroad 

wheel and its tread surface.  Lundén (1992) defines a critical region from the surface to a 

depth of approximately 6 mm.  The initiation of subsurface cracks seems to presume very 

high load levels according to Ekberg et al (1995) stemming, for instance, from impact 

loads due to rail irregularities or joints (Ekberg and Bjarnehed, 1995). 

Ekberg et al (2002) contend that subsurface cracks initiate at depths of more than 

3 mm below wheel tread surface.  They continue to state that at about 10 mm below the 
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tread surface fatigue resistance is totally governed by the presence of macroscopic 

inclusions.   

 

 

 
 
 
 
 
 
 
 
  tread surface 

Figure 3.  Cross-section of a train wheel which shows the tread surface 
 
 
 

As in the case of surface initiated cracks, the majority of the life of subsurface 

cracks is spent in initiating the crack.  The presence of defects or inclusions in the steel 

will decrease this time of initiation.  According to Lundén (1992), the admissible size of a 

defect is strongly dependent on the crack friction coefficient (the friction coefficient 

between the two surfaces of the crack).  If a rather high crack friction coefficient is used, 

a defect length of 1-2 mm would be “safe” (i.e. the influence of the defect is negligible) 

(Ekberg and Bjarnehed, 1995).  However, if a low crack friction coefficient is used then a 

defect length of 1-2 mm is not necessarily considered negligible. 

 

 Axis of rotation 
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Ekberg et al (2002) concluded that the phenomenon of ‘subsurface-initiated 

fatigue’ is a result of high-cycle fatigue (HCF), following elastic shakedown, caused by a 

combination of high vertical loading, ‘bad’ contact geometry (giving a small contact 

patch) and locally low fatigue resistance of the material.  Typical features of ‘subsurface-

initiated fatigue’ are (Ekberg and Marais, 1999): 

1. No signs of macroscopic inclusions or voids at the point of initiation; 

2. Crack initiation at a depth of 3-10 mm below the wheel tread; 

3. Crack propagation in an angle downward to a depth of some 20mm; 

4. Final fracture toward the surface; 

5. Circumferential crack length of 15-100 mm at fracture (in extreme cases 

up to 250-300 mm).  

 

Propagation of Subsurface Cracks 

According to Lundén (1992) and Mutton et al (1991), subsurface cracks propagate 

toward the tread surface and therefore the probability of wheel failure is small.  However, 

Galliera (1995) shows cracks propagating in a radial direction, which can lead to 

catastrophic failures.  According to Giménez and Sobejano (1995) cracks grow in a radial 

direction under the influence of thermal loads, whereas the mechanical loads make the 

crack grow in an axial direction.  Also, a crack nucleated outside the running tread tends 

to grow in a direction that will position itself under the running tread (Ekberg and 

Bjarnehed, 1995). 
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Initiation and Propagation of Deep Surface Cracks 

The partition between “subsurface-initiated fatigue” and “fatigue initiated at deep 

defects” is somewhat unclear (Ekberg et al, 2002).  Typical features of fatigue initiated at 

deep defects are (Ekberg and Marais, 1999): 

1. Fatigue crack initiation at a depth around 10-25 mm below the wheel 

tread; 

2. Cracks initiated at defects or voids with major dimension of about 1 mm; 

3. Crack propagation at an almost constant depth below the wheel tread 

surface (corresponding to depth of initiation) until fracture occurs; 

4. Final failure as a result of branching of the circumferentially growing 

crack; 

5. Circumferential crack length of 25-135 mm at failure. 
  

 
 

Now that crack initial and propagation has been discussed for cracks located at 

different depths below the tread surface, the literature review continues by discussing 

how these cracks result in the three main failure modes of railroad wheels.  The first 

failure mode discussed is shattered rim failures, which is reported to be the most 

dominant and detrimental failure mode.  Secondly the vertical split rim failure mode is 

discussed, followed lastly by wheel shelling. 

 

Shattered Rim Failures 

Stone et al (2002) identify that shattered rim failures are the result of large fatigue 

cracks that propagate roughly parallel to the wheel tread surface.  According to Stone et 
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al (2002), shattered rim failures form and grow 12-20 mm below the tread surface.  Once 

a shattered rim crack is formed, it grows under normal rolling loads.  Therefore, the 

prevention of shattered rims is best accomplished by preventing crack initiation.  More 

importantly, the “new” wheels have a better resistance to shattered rim failures with the 

recent changes that have been made to ultrasonic test requirements in AAR Specification 

M-l07/208 (“Wheels, Carbon Steel”) which reduces the acceptable size of discontinuities.  

This will help reduce the occurrence of some shattered rims, but will not prevent the 

formation of all of them (Stone et al, 2002), especially in the millions of “old” wheels 

that are still in use.  Figure 4 schematically represents the failure mode of a shattered rim.  

Consistent with Stone et al (2002), Lonsdale et al (2004) state that shattered rims 

are fatigue cracks that initiate and grow roughly parallel to the wheel tread surface and 

typically form at depths of 12 to 20 mm below the tread surface.  They conclude that at 

this depth only stress components σz, τoct and τmax are significant and thus logically must 

be responsible for shattered rims (Lonsdale et al, 2004). 

Stone et al (2001) agree with the initiation depth mentioned above for shattered 

rims (12 to 20 mm).  They also state that shattered rim fatigue cracks historically have 

initiated at voids and porosity in cast wheels and at aluminum oxide inclusions in forged 

wheels. 

Giammarise and Gilmore (2001) disagree with the crack initial depth mentioned 

above (12 to 20 mm).  However, they do agree with the fact that shattered rims are the 

result of large fatigue cracks which propagate parallel to the wheel tread surface.  They 

believe that in locomotive applications, these cracks originate at depths from 22 to 32 

mm below the active tread surface.  From their experience, the range of mileage observed 
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on shattered rim failures has been on wheels with between 75,000 and 225,000 miles 

(120,000 to 362,000 kilometers).  They also believe that when the failure mode is a 

shattered rim, fracture initiation on forged wheels is always associated with nonmetallic 

inclusions.  Their experience with shattered rims has been that the failures are not 

random, but clustered about steelmaking deficiencies that escape vendor surveillance 

(Giammarise and Gilmore, 2001). 

 

 
 
 

shattered rim

Figure 4. Typical shattered rim failure; the region with the angled lines represents the 
failed (missing) portion of the tread surface 

 
 
 

Berge (2000) suggests that higher wheel loads, likely from wheel/rail impacts, are 

responsible for shattered rim initiation.  Stone et al (2001) concur that in order to initiate 

cracking, a large load such as an impact may be required.  They also add that once 

shattered rims initiate in the wheel rim, propagation occurs rapidly under normal wheel 

loading.  Stone (2000) has also suggested that a large stress, perhaps wheel/rail impacts, 

is responsible for the initiation of shattered rims.  He applied the Murakami criterion to 

the shattered rim problem in an attempt to determine fatigue life (Lonsdale et al, 2004). 
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With regard to τoct, present in the 12-20 mm depth range at significant magnitude, 

the following equation can be used to describe when yielding (permanent deformation) 

will occur in the wheel rim (Lonsdale et al, 2004): 

  yieldoct στ
3
2

=                                                                                           (1) 

 
where σyield is the yield strength of the wheel rim steel in uniaxial tension.  For Class C 

steel, this value is about 100,000 psi.  Thus, yielding occurs when octahedral shear stress 

exceeds approximately 47,000 psi.  Based upon this value, any significant wheel/rail 

impact load above the nominal load, or any discontinuity in the matrix (pore, inclusion, 

arrested crack, etc.) will act as a stress multiplier and can lead to localized yielding.  

Because the visual appearance of shattered rim crack fracture surfaces suggests that 

growth occurs due to shear stress, and the only shear stresses that are present at the 

relevant depth are τoct and τmax, Lonsdale et al (2004) suggest these are the stresses that 

logically drive crack growth for a shattered rim. 

Shattered rims are often noted when cracking exits the front rim face.  Complete 

fracture of a section of the wheel rim can also occur.  An examination of shattered rim 

fracture surfaces normally reveals obvious fatigue crack “beach marks,” also referred to 

as a “clamshell” or “bulls-eye” pattern.  If service damage is not too extensive, the crack 

initiation site is often clearly visible as Figure 5 shows (Stone et al, 2001). 

Past technical studies have suggested that the critical defect size necessary to 

initiate a shattered rim is 1 mm in diameter (Marais, 1998; Lundén, 1992).  Marais 

applied a local strain approach to the problem of shattered rim growth in cast wheels 

(Marais, 1998).  Marais’s field experience has been that shattered rims have been caused 
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by 1 mm voids, and a tightening of ultrasonic requirements will reduce their occurrence.  

Lundén (1992) calculated the size of a “safe” crack length in the wheel rim to be 1 mm in 

diameter.  His crack growth analysis was based upon use of stress intensity factors and 

took into account crack surface friction and wheel/rail friction.  Xing et al (1998) 

proposed a crack initiation process for shattered rims in forged wheels using the 

Murikami criterion (Murikami and Usuki, 1989) for crack initiation calculations.  In their 

initiation model, the wheel rim crack first forms at the inclusion/matrix interface of a 

ball-shaped aluminum oxide inclusion (Stone et al, 2001). 

 

 
 

Figure 5. Photograph of wheel section showing the “bulls-eye” pattern of a shattered rim; 
arrow points to origin 

 
 
 

Additional research has also centered upon the size of discontinuities that are 

sufficient to initiate a shattered rim and to the types of stresses that are responsible for the 

crack propagation (Lundén, 1992; Marais, 1998; Stone and Dahlman, 2000; Xing et al, 

1998). 
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Vertical Split Rim Failures 

A vertical split rim failure is believed to be due to strength failure.  The failure is 

a sudden failure characterized by vertical crack propagation where the tread of the wheel 

is detached.  Figure 6 schematically represents the failure mode of a vertical split rim.  In 

addition to occurring as a separate failure mode, vertical split rims often occur with 

shattered rim failures.  Generally when this occurs a crack resulting in a shattered rim 

failure is initiated and propagates; the crack propagation can result in the branching out of 

the crack which can lead to both failure modes occurring simultaneously.  In this case the 

vertical split rim would ultimately be initiated at the same deep surface initial crack as the 

shattered rim.  

 

 
 
 
 

vertical split rim 

 
Figure 6. Typical vertical split rim failure; the region with the angled lines represents the 
failed (missing) portion of the tread surface 

 
 

In the literature there are many references (Rail, 1994; Rail, 2000) to a vertical 

split head being the cause of derailment.  A common definition found for a "Vertical Split 

Head" is a vertical split through or near the middle of the head, and extending into or 
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through it.  A crack or rust streak may show under the head close to the web, or pieces 

may be split off the side of the head (Rules Respecting Track Safety, 1997).  A vertical 

split head seems to be a very similar failure mode to the vertical split rim except that the 

vertical split head is a failure of the rail, not the wheel.  Figures 7 and 8 schematically 

represent the rail and the vertical split head. 

 

       
 

  Figure 7. Schematic of the cross-section of a rail 
 

Figure 8. Typical vertical split head failure 

 
 

From Figures 6 and 8, it is seen that the geometry of the contact surface of the rail 

and wheel are very similar.  It also seems logical that both the rail and wheel are subject 

to the same loads since they are the two bodies exerting force on each other.  It is also 

reasonable to assume that the wheel and rail are made from similar materials in most 

cases.  Therefore, plausibly the failure mode for the vertical split head would be similar 

to the failure mode for the vertical split rim.  A discussion of the failure mode for a 

vertical split head follows. 

Vertical Split Head 

Base 

  Web 

Fillet

Side Head 

Running surface 
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A Canadian derailment report (Rail, 1994) determined that the cause of their 

accident was a closure rail fracture initiated by a vertical split head defect.  The vertical 

split head defect may have been initiated and propagated by wheel impacts at a loose 

bolted joint.  The operation of the train conformed to company instructions and 

government safety standards.  The train derailment and separation was sudden and 

without warning.  Evidence of considerable wear damage on the underside of the rail 

head indicated considerable vertical and longitudinal stresses likely as a result of the joint 

being loose and the repetitious impacts of the passing wheels on the rail ends.  These 

stresses and impacts may have initiated or propagated the development of the vertical 

split head defect (Rail, 1994).  

Another Canadian derailment report (Rail, 2000) stated that failure started with a 

crack originating in an elongated inclusion of manganese sulfide, then propagated 

transversely to the rail web, then longitudinally.  They concluded that this type of failure 

is typical of a vertical split head (VSH).  Oxidation in the rail section indicated that the 

vertical separation had existed for several months.  The VSH originated as cracks 

initiated by inclusions.  The crack was not recent, and had progressed over a period of 

time; however, it was not detected because the crack was probably not long enough when 

the last rail test was done about seven months before the derailment.  Once vertical split 

heads are initiated, they propagate rapidly (Rail, 2000). 

It is clear from the examination of the above cases that vertical split heads 

propagate rapidly and without warning.  It has also been stated that high vertical and 

longitudinal stresses may be responsible for the vertical split head failures.  As stated at 
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the beginning of the section, by similarity, the vertical split rim is assumed to be caused 

by similar stresses and impacts, and have a similar failure mode as the vertical split head. 

 

Shelling/Spalling 

Ekberg and Bjarnehed (1995) refer to shelling as subsurface induced cracks, and 

refer to spalling as surface cracks joining to produce losses of small pieces of tread 

material.  Shelling and spalling combine to produce the failure mode of concern.  The 

presence of thermal cracks and spalling on the tread of a railroad wheel can be seen in 

Figures 9 and 10. 

Principal stress components are present at and below the tread surface in the x, y 

and z directions and they can be calculated using general contact equations found in 

Norton (2000).  The x direction is oriented along the length of the rail and the y direction 

is across the rail head.  The z direction is taken as normal to the wheel tread surface, and 

therefore can be considered as the “depth” below the tread surface (Lonsdale et al, 2004).  

The equations for surface principal stresses are as follows (Norton, 2000): 
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where σx is the principal stress in the x direction, σy is the principal stress in the y 

direction, σz is the principal stress in the z direction, ν is Poisson’s ratio, a and b are the 
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semi-major and semi-minor elliptical axes of the contact patch, respectively (Lonsdale et 

al, 2004).  

 
 

 

 
 

 
 
 
 
 
 
 

Spalling 
 
 

Thermal Cracks 

Figure 9. Thermal cracking and spalling 

 
 

 

 

 
 
 
spalling 

 
Figure 10. Typical spalling failure; region A (with the angled lines) represents the failed 
(missing) portion of the tread surface 

 

    A
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The maximum shear stress τmax can be calculated at the wheel/rail surface using 

the following equation from Norton (2000): 

  
2max

zx σσ
τ

−
=                                                                                         (5) 

 
Norton (2000) then estimates the change in the various stress components with a 

change in depth, z, below the wheel tread surface using Equations 6 to 9.  It is important 

to note that the equations for a spherical contact case have only a radius a, while an 

elliptical contact patch which is appropriate for the general contact case has different 

radii a and b.  For σx vs. depth calculations Norton (2000) uses the semi-minor axis b and 

for the σy vs. depth calculations uses the semi-major axis a.  Thus, the true stress 

distribution below the surface may be slightly different if more exact general contact 

“stress vs. depth z” equations are used (Lonsdale et al, 2004). 
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It is important to emphasis that the maximum sub-surface shear stress τmax occurs 

at a depth of about 5-6 mm.  Other shear stress components include τxy (subsurface shear 

stress caused by x and y components) and τoct (octahedral shear stress).  τxy is a very small 

stress below the surface and is the shear stress created by principal stresses in the x and y 

directions (Lonsdale et al, 2004). 

The octahedral shear stress (τoct) is the stress component responsible for plastic 

deformation and yielding (Dieter, 1986).  It is slightly less in magnitude than τmax, and a 

sub-surface maximum occurs at the same depth.  The following equation (Dieter, 1986) is 

used to calculate the octahedral shear stress (Lonsdale et al, 2004): 

  ( ) ( ) ( )[ ] 2/1222

3
1

xzzyyxoct σσσσσστ −+−+−=                                    (10) 

 
 

Summary 

 The summary of the three failure modes and their causes are: 

1. Shelling occurs at initial cracks about 4 mm below the tread surface. 

2. There is some disagreement about the depth of the initial cracks 

responsible for shattered rims, but the cracks are deep surface initiated 

cracks at a depth about 10-25 mm below the tread surface. 

3. The maximum sub-surface shear stress τmax, occurs at a depth of about 5-6 

mm, which subsequently results in shelling (initial cracks for shelling are 

at 4-6 mm.) 

4. For shattered rim failure, τoct and τmax are the stresses that drive crack 

growth. 
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5. It appears that impact loading is the major factor in the initiation of 

shattered rim defects in wheels. 

6. The failure mode that causes the wheel to fail (i.e. spalling, shattered rim, 

or vertical split rim) depends on where the initial crack that propagates is 

located.  This is true because all of the failure modes start out as cracks 

which eventually propagate to failure; and as stated in conclusions one and 

two, the individual failure modes consistently initiate at cracks at a range 

of depths. 

7. Vertical split rims result because of high vertical and longitudinal stresses, 

and they occur rapidly. 

8. Shattered rim failure occurs slowly as a crack propagates over time.  The 

critical defect size necessary to initiate a shattered rim is 1 mm in 

diameter. 

 

This chapter discussed the three most common failure modes of railroad 

wheels.  However, the proposed methodology in subsequent chapters to optimize 

the inspection schedule of railroad wheels is designed to prevent shattered rim 

failures as they are the most common and detrimental railroad wheel failure 

mode.  Chapters III to V use a smaller illustrative example for railroad wheel 

inspection optimization to develop the overall methodology.  The following 

chapter develops a methodology for identifying critical samples out of a large 

population in which inspections should be focused. 
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CHAPTER III 

 

CLUSTER ANALYSIS 
 

 
 

Overview 
 

Since there are millions of railroad wheels which need to be inspected, but there 

are limited inspection resources, it becomes necessary to identify the critical wheels for 

which the inspections should be focused.  This chapter develops a methodology for 

identifying such critical wheels.  The general methodology is demonstrated on a small 

illustrative example in this chapter to demonstrate the method’s effectiveness toward 

practical applications.  The method is then applied toward a large population of railroad 

wheels in Chapter VI.   

In the past, the railroad industry has used inspection methods that lack robustness. 

A commonly used method is drive-by inspections, where all of the wheels on the train are 

glanced at while an inspection vehicle drives by, to identify critical wheels.  Crude 

methods such as these are not as accurate and reliable as the more rigorous and 

quantitative identification methods to identify critical wheels.  The railroad industry has 

attempted to identify critical wheels by comparing individual features using common 

statistical techniques; however this did not produce much success in improving the 

identification accuracy.   

A more informed way to look for differences between known critical and non-

critical wheels is to employ statistically relevant methods for the extraction of implicit, 

previously unknown and potentially useful information in the data.  More recently, such 
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methods have come to be known as knowledge discovery techniques.  There are two 

types of primary discovery schemes that one may apply to derive classificatory 

information from data: (i) supervised classification schemes, and (ii) unsupervised 

classification or clustering schemes.  Supervised classification schemes assume that the 

partitioning identifiers of the data samples being analyzed are known.  The goal is to 

derive feature-value sets that define the classes of interest.  When new data observations 

with unknown labels are presented, their feature values are used to assign them into one 

of a set of known categories.  In our example, this would imply that all wheels used for 

deriving the classifier are labeled “critical” and “non-critical” wheels.    Unsupervised 

classification or clustering schemes make no assumptions about the class structure; they 

use objective criterion functions to define similarity or dissimilarity among pairs of 

objects.  The goal of the clustering scheme is to partition the set of samples into groups 

such that the samples that are more similar tend to fall into the same group and samples 

that are relatively distinct tend to separate into different groups.   

In our application domain, we assume that the features of the critical railroad 

wheels are not known, and, therefore, need to be identified using an unsupervised 

clustering technique.  This is done by initially clustering the wheels into groups; the 

groups that contain the highest percentage of known failed wheels are then identified as 

the critical wheels, and their feature values are used to identify other potentially critical 

wheels. 

The proposed method for identifying critical wheels uses static features, i.e., 

features that don’t change with time, to determine which wheels are most likely to fail.  

Another method to identify critical wheels would be to observe a large sample of wheels 
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over time to determine which wheels have the greatest deterioration.  The wheel samples 

that have the most deterioration would be considered critical and would, therefore, 

identify the set of critical wheels for future inspections.  However, the railroad industry 

does not collect data for individual wheels over large periods of time, so identifying 

critical wheels by looking at the wheels’ deterioration is currently not feasible.  

Therefore, a methodology for identifying critical wheels using only static features has to 

be employed. 

 It is also important to note that railroad wheel data, like many industries, include 

both numeric and nominal features.  Thus, the clustering methodology used must be 

designed for mixed numeric and nominal data.  This chapter pursues the Similarity-Based 

Agglomerative Clustering (SBAC) technique (Li and Biswas, 2002) to identify critical 

samples since it can cluster data that contains both numeric and nominal features.   

 

Railroad Wheel Inspection 

In addition to visual inspections and ultrasonic testing, the U.S. railroad industry 

uses Wheel Impact Load Detectors (WILDS), to identify critical wheels1.  A WILD 

system is composed of a series of strain gages welded to a rail.  The strain gages measure 

the force applied by a wheel as it goes over the rail using a mathematical function that 

uses the applied load and the deflection at the foot of the rail.  These impact forces are 

used to monitor locomotive and rail car wheel health to ensure safe train operations.  

More specifically, if an individual wheel surpasses the impact load limit, as detected by 

WILDS, that wheel can be (it’s not required) taken out of service.  Currently the 

                                                 
1 Author worked in the industry and knows this from experience. 
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Association of American Railroads’ (AAR) wheel impact load limit for wayside detectors 

is 400.3 kN (90,000 pounds) (AAR, 2005); meaning any wheel with an impact higher 

than 400.3 kN (90,000 pounds) can be taken out of service.  However, even though the 

impact limit may be surpassed by an individual wheel, the railroads still have the choice 

to leave the wheel in service or to remove it.  The 400.3 kN (90,000 pound) impact load 

limit is set so that railroads don’t remove their competitor’s wheels, and charge their 

competitor, until a wheel surpasses the 400.3 kN (90,000 pound) impact load limit.  

Therefore, the 400.3 kN (90,000 pound) impact load limit is used to identify critical 

wheels but it’s not required that those critical wheels be taken out of service.  This means, 

because of time constraints involved in removing a wheel, among other reasons, many 

wheels are left in-service even after they surpass the 400.3 kN (90,000 pound) impact 

load limit.  It is also important to note that many of the catastrophic wheel failure modes, 

namely shattered rim failures and vertical split rim failures, occur below the 400.3 kN 

(90,000 pound) condemning limit making the WILD system ineffective when looking at 

individual impacts.   

Stratman et al (2007) proposed two additional criteria for the removal of wheels 

with high likelihood of failure.  The study observed two real-time structural health 

monitoring trends using the WILD system in data collected from in-service trains.  These 

impact trends can identify, in real-time, the wheels that have a high probability of failure 

from high impact wheels.   

Railroad wheels fail in different ways that can be attributed to different failure 

mechanisms, as discussed in Chapter II.  Subsurface defect-initiated failure, such as 

shattered rim failures, is the critical wheel failure mode that needs to be prevented.  
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Therefore, wheels with the highest probability of resulting in a shattered rim failure need 

to be inspected more regularly than the general population of wheels. 

Results of a preliminary analysis to identify critical wheels in the entire wheel 

population using individual features are shown in Figures 11 to 21.  When comparing the 

individual feature values of failed wheels to the same feature values for the entire wheel 

population, there does not seem to be individual feature value differences that separate 

the failed wheels from the rest of the wheel population. 

For further discussion, it is seen that when comparing the percentage of wheels in 

the failed population (Figures (a)) to the percentage of wheels in the total population 

(Figures (b)) that their distributions are very similar.  As an example, approximately 70 

percent of wheels in the total population have a wheel diameter of 36 inches (as seen in 

Figure 11(b)).  Also, approximately 70 percent of wheels in the failed population have a 

wheel diameter of 36 inches (Figure 11(a)).  The percentage similarity holds true for each 

wheel diameter which means that there isn’t a specific diameter that occurs in failures 

more often than it occurs in the total population.  If, on the other, had only 3 percent of 

wheels in the total population had a wheel diameter of 28 inches while 20 percent of 

wheels in the failed population had a wheel diameter of 28 inches, then that would 

indicate that wheels with a 28 inch wheel diameter fail at a greater rate compared to their 

total population than other wheel diameters; indicating a critical feature.  However, as 

seen in Figures 11 to 21, there are no individual features or feature values with significant 

differences between total and failed populations that could indicate a critical wheel. 

Common statistical techniques based on numerical methods have not been very 

successful in identifying the critical wheels with a high probability of failure either.  A 
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primary reason for this is that a number of important features are symbolic-valued and 

not numeric.  A systematic clustering approach for mixed numeric and symbolic features 

is used to overcome this problem, to create groups of wheels that have similar 

characteristics, and then study the groups with dominant failed wheels to derive the 

feature values that define critical wheels.   
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b) Entire Wheel Population 

Figure 20. Manufacturing date feature comparison between wheel population and failed 
wheels 
 
 
 
 In Figure 19 it is seen that there are differences between the failed population and 

total population when comparing individual rim thicknesses.  This is expected because as 

a wheel wears due to usage it becomes more likely to fail.  Therefore, although the 

differences between the total and failed populations are significant, they are expected and 
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don’t indicate critical feature values.  The same logic holds true for Figure 20; as wheels 

age they are expected to fail at greater rates and therefore the differences between failed 

and safe populations don’t indicate critical feature values. 
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Figure 21. Wheel manufacturer feature comparison between wheel population and failed 
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A clustering approach was used as opposed to classification, because the purpose 

was to group, or “cluster”, the most similar samples in the feature space without using 

previous knowledge of how to group the samples.  Classification techniques assume class 

labels, such as safe and failed wheels, and then employ information-theoretic measures to 

the feature sets to create the “best” separation between the pre-defined classes.  For 

complex domains, this may produce decision schemes that are non-intuitive and hard to 

interpret.  On the other hand, clustering schemes group by context that is defined by the 

multi-dimensional space of feature values, and within different contexts attempt to 

separate the critical wheels from those that are less likely to fail.  In this case, the 

identification of critical wheels in the multi-dimensional space is further governed by 

contexts that may be attributed to different classes of wheels. 

 

Cluster Analysis 
 

Clustering is a useful exploratory tool for multi-dimensional data analysis.  When 

the underlying structure of the data is not readily apparent (i.e., the class structure or the 

number of groups in the data are unknown), cluster analysis may be applied to uncover 

this knowledge.  Clustering schemes require data objects to be defined in terms of a 

predefined set of features.  Features represent properties of the object that are relevant to 

the problem solving task.  For example, if we wish to classify automobiles by speed and 

power, then body weight, body shape, and engine size are relevant features, but the color 

of the car body is not.  Selection of appropriate features is an important pre-processing 

step for cluster analysis. 

There are three components that primarily govern the clustering process: (i) 
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distance or similarity metric, (ii) the control algorithm, and (iii) the criterion function.  

The distance metric typically uses an objective measure, e.g., the Euclidean distance or 

the Mahalanobis distance, to define the proximity between pairs of objects in the data set. 

The control algorithm can be agglomerative, where the partition structure is constructed 

bottom-up through successive merging of atomic clusters into larger groups, or divisive, 

where clusters are formed top-down from one large cluster that includes all of the data 

objects, and then is successively subdivided into smaller groups.  The criterion function is 

used for evaluating the goodness of a partition structure once it is formed; typically the 

mean square error is used in numeric partitioning schemes.  

Regardless of the distance metric, control algorithm or criterion function, the most 

defining characteristic of a clustering scheme is the type of data the scheme is intended to 

cluster.  For static data clustering, e.g., each data is represented as a vector of feature 

values with one value per feature2, clustering schemes have been developed for numeric, 

nominal and mixed data types. 

 Traditional clustering algorithms focus on numerical data whose inherent 

geometric properties can be exploited naturally to define distance functions between data 

points.  These algorithms include K-means (MacQueen, 1967), DBSCAN (Ester et al, 

1996), BIRTH (Zhang et al, 1996), C2P (Nanopoulos et al, 2001), CURE (Guha et al, 

1998), CHAMELEON (Karypis et al, 1999), and WaveCluster (Sheikholeslami et al, 

1998).  The illustrative railroad wheel example data set includes numeric features, such 

as the manufactured date, rim thickness, flange thickness, and wheel diameter. Distance 

metrics like the Euclidean distance can be applied to such feature sets, and a number of 

                                                 
2 Clustering schemes developed for time series data and multimedia data, for example video, audio, or 
image data, are not discussed in this study. 
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numeric data clustering algorithms can be applied to form the groups or clusters.  

However, the numeric distance metrics cannot be used to compute the proximity for data 

objects with nominal features, e.g., wheel manufacturer, or the type of heat treatment the 

wheel was subjected to.  Therefore, the traditional numeric clustering algorithms are not 

suitable for clustering data with mixed numeric and nominal features.  

On the other hand, for data sets that contain only nominal-valued features, 

frequency counts of feature value matches or conditional probability estimates form the 

basis for defining the similarities/dissimilarities between the data objects.  The illustrative 

railroad wheel data set includes a number of nominal-valued features: wheel 

manufacturer, heat treatment, wheel design, wheel type, plate design, car type the wheel 

was on, and the wheel location on the car.  Algorithms have been proposed in the past for 

clustering nominal data (e.g., He et al, 2002; Guha et al, 1999; Gibson et al, 1998; Zhang 

et al, 2000; Han et al, 1997; Ganti et al, 1999; Huang, 1997; Wang et al, 1999), however 

all of these algorithms work only with nominal-valued features, and they cannot be easily 

extended to clustering mixed types.  

 The railroad wheel data includes both numeric and nominal-valued features, as 

seen in Figures 11 to 21.  Thus, a clustering methodology that is appropriate for mixed 

numeric and nominal data is pursued here.  

 
 
Clustering Mixed Numeric and Nominal Data 
 

Some research efforts have been reported (e.g., Huang, 1997; Wang et al, 1999; 

Huang, 1998; Chiu et al, 2001; Fisher, 1987; Gluck and Corter, 1985; Hanson and Bauer, 

1989; McKusick and Thompson, 1990; Reich and Fenves, 1991; Reich, 1991; Cheesman 
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and Stutz, 1995; Li and Biswas, 2002) for the problem of clustering mixed type features.  

Huang (1998) presents two algorithms, k-modes and k-prototypes, which extend the k-

means paradigm to nominal domains and domains with mixed attributes.  A new distance 

measure for nominal features based on the total mismatches of the nominal features of 

two data records is proposed in the k-modes algorithm.  For mixed attributes, the k-

prototypes algorithm used a weighted sum of Euclidean distance for numeric attributes 

and the k-modes distance measure for nominal attributes.  However, the weights have to 

be determined a priori.  Improper weight assignments result in biased treatment of 

different attribute types, and the clusters formed are very sensitive to the weights chosen. 

The clustering algorithm presented by Chiu et al (2001) is available commercially 

in the Clementine 6.0 data mining tool.  The distance measure is derived from a 

probabilistic model, where the distance between two clusters is equivalent to the decrease 

in the log-likelihood function as a result of merging the two clusters.  This algorithm is 

based on the framework and distance measure proposed in the BIRTH system (Zhang et 

al, 1996).  The BIRTH algorithm has the drawback that it may not work well when 

clusters are not “spherical” and it is sensitive to the order in which the data objects are 

considered by the clustering algorithm.  The same problems carry over to Chiu et al 

(2001) clustering algorithm. 

Methods, such as COBWEB (Fisher, 1987) use the Category Utility (CU) 

measure (Gluck et al, 1985) to partition a data set in a manner that maximizes the 

probability of correctly predicting a feature value given group Ck.  The category utility 

measure represents a tradeoff between intra-class similarity and inter-class dissimilarity 

of samples.  Methods like WITT (Hanson and Bauer, 1989) use correlation measures to 
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define the similarity between pairs of objects.  These measures are tailored for nominal 

attributes, though variations, such as COBWEB/3 (McKusick and Thompson, 1990) and 

ECOBWEB (Reich and Fenves, 1991) use modifications of the CU measure to handle 

numeric attributes.  In COBWEB/3 the numeric CU measure does not take into account 

an important piece of information, the actual distances between object values, in 

determining class structure; also, the accuracy of the CU measure for numeric features is 

difficult to bound.  In ECOBWEB the clustering results are very much dependent on two 

user defined parameters: (i) the method for calculating 2Ii, and (ii) n, the “expected 

number of distinct intervals of property attribute Ai.”  This may not be an issue when a 

hierarchical structure is used for prediction purposes (Reich, 1991), but it is not a 

desirable characteristic in knowledge discovery tasks. 

AUTOCLASS (Cheesman and Stutz, 1995) uses a finite mixture model and 

derives groupings of objects that locally maximize the posterior probability of individual 

clusters given the feature distribution functions.  Unfortunately, AUTOCLASS suffers 

from the over-fitting problem associated with the maximum likelihood optimization 

methods for probabilistic models.  Also, the computational complexity required by the 

nested three-level search process is extremely high making AUTOCLASS inconvenient 

for handling large datasets. 

The Similarity-Based Agglomerative Clustering (SBAC) algorithm (Li and 

Biswas, 2002) works well for data with mixed numeric and nominal features.  SBAC is 

based on a similarity measure proposed by Goodall (1966) for biological taxonomy that 

gives higher weight to less common feature values.  It makes no assumptions about the 

underlying distributions of the feature values.  An agglomerative algorithm is employed 
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to construct a classification tree and a simple distinctness heuristic is used to extract a 

partition of the data.  The performance of SBAC has been studied on real and artificially 

generated data sets (Li and Biswas, 2002).  Results demonstrate the effectiveness of this 

algorithm in unsupervised discovery tasks.  Comparisons with other clustering schemes 

illustrate the superior performance of this approach. 

   

Similarity-Based Agglomerative Clustering (SBAC) 
 
 A brief overview of the Similarity-Based Agglomerative Clustering (SBAC) 

algorithm (Li and Biswas, 2002) is presented below.  A similarity measure inspired by 

biological taxonomy proposed by Goodall (1966) provides the basis for defining the 

proximity of objects described by both numeric and symbolic features.  The control 

algorithm uses an agglomerative approach (Li and Biswas, 2002) to build the partition 

structure.   

 
 
The Similarity Measure 
 

The Goodall similarity measure (Goodall, 1966) inspired by biological taxonomy, 

provides a unified framework for handling both nominal and numeric features.  The 

SBAC algorithm (Li and Biswas, 2002) adopts this similarity measure into a general 

framework for clustering in many different domains.  A pair of objects (i, j) is considered 

more similar than a second pair of objects (l, m), if and only if the objects i and j exhibit a 

greater match in feature values that are less common in the population.  In other words, 

similarity among objects is decided by the uncommonality of their feature value matches. 

The similarity measure computed using this heuristic helps to define more cohesive, tight 
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clusters where objects grouped into the same cluster are likely to share special and 

characteristic feature values.  

In order to calculate the similarity value for a pair of categorical features, the 

More Similar Feature Value Set, MSFVS((Vi)k) is defined first.  This is the set of all pairs 

of values for feature k that are equally or more similar to the pair ((Vi)k, (Vi)k).  A value 

pair is more similar if it has a lower frequency of occurrence.  The square of the 

probability of picking a pair ((Vl)k, (Vl)k) ∈  MSFVS((Vi)k) at random is: 
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where (fl)k is the frequency of occurrence of value (Vl)k in the population and n is the total 

number of objects in the population.  Summation of the squares of the probabilities of all 

such pairs, by definition, gives the dissimilarity score of the pair, (Dii)k.  Thus, the 

similarity of the pair ((Vi)k, (Vi)k) is computed as: 
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The similarity score for a numeric feature value pair is calculated in a similar 

fashion as for a nominal-valued pair.  For numeric feature values, the similarity measure 

takes both the magnitude of the feature value difference and the uniqueness of the feature 

value pair into account.  The magnitude of the feature value difference is considered first.  

The smaller the magnitude of the difference between the values ((Vi)k, (Vj)k), the less 

likely it is that a pair of values picked at random will fall in the segment defined by the 

endpoints (Vi)k and (Vj)k, therefore, the more similar this pair of objects.  

When the magnitudes of difference for two pairs of values are equal, the 

similarity value is influenced by the uniqueness of the segment defined by the values.  
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The uniqueness of a segment is computed by summing up the frequency of occurrence of 

all other values in the population that are between the pair of values that define the 

segment.  For two pairs of values of equal length but different endpoints, the segment 

which includes the lower cumulative frequency of occurrence of other values within its 

endpoints is defined to be more unique and, therefore, the more similar the pair of values 

that define the segment. 

For numeric feature k, to calculate the similarity score for a pair of values ((Vi)k, 

(Vj)k), first the More Similarity Feature Segment Set, MSFSS((Vi)k, (Vj)k) is determined.  

This is the set of all pairs of values ((Vl)k, (Vm)k) for feature k that are equally or more 

similar to the pair ((Vi)k, (Vj)k); comparing similarities of value pairs ((Vl)k, (Vm)k) to the 

pair ((Vi)k, (Vj)k) follows the procedures discussed above.  The probability of picking two 

objects from the population having values (Vl)k and (Vm)k for feature k, where ((Vl)k, 

(Vm)k) ∈  MSFSS((Vi)k, (Vj)k), is: 
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where (fl)k and (fm)k are the frequencies of occurrence of values (Vl)k and (Vm)k, 

respectively, and n is the total number of objects in the population.  Summing up the 

probabilities of all value pairs in MSFSS((Vi)k, (Vj)k) gives the dissimilarity contribution 

of feature k, (Dij)k.  Thus the similarity of the pair ((Vi)k, (Vj)k) is computed as: 
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Up to this point, the similarity score computations for individual features have 
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been discussed.  Now the similarity score computations for individual features are 

extended to a collective similarity score for a pair of objects described by multiple, mixed 

type features.   

First however, the combined similarity score for the numeric features is calculated 

using Fisher’s (Fisher, 1963) χ2 transformation: 
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where tc is the number of numeric features in the data.  χc also follows a χ2 distribution 

with tc degrees of freedom.  The similarity test scores for the nominal features are then 

combined using Lancaster's mean value (Lancaster, 1949) χ2 transformation: 
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where td is the number of nominal attributes in the data, (Dij)k is the dissimilarity score for 

nominal attribute value pair ((Vi)k, (Vj)k), and (Dij)/
k is the next smaller dissimilarity score 

in the nominal set.  χd
2 is χ2 distributed with td degrees of freedom. 

 The addition of two χ2 distributions is still χ2 with the number of degrees of 

freedom equal to the sum of the two degrees of freedom values.  Therefore, the sum of 

the two types of features is χ2 distributed with (tc + td) degrees of freedom.  Now, the 

collective dissimilarity score for the pair of objects with mixed feature types is calculated 

from the expression:    
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where χij
2 = (χc)ij

2 + (χd)ij
2.  The overall similarity score representing the set of (tc + td) 

independent similarity measures is Sij = 1 – Dij. 

 
 
The Control Structure 
 

SBAC’s control algorithm is agglomerative; meaning the partition structure is 

constructed bottom-up through successive merging of atomic clusters into larger groups.  

Specifically, SBAC's agglomerative hierarchical clustering algorithm uses the 

Unweighted Pair Group Method with Arithmetic Average (UPGMA) method (Jain and 

Dubes, 1988).  The algorithm starts with a pairwise dissimilarity matrix D of the set of 

objects to be clustered.  Dissimilarity between a pair of objects is the complement of their 

similarity score, Dij = 1 - Sij.  At any step, the clusters that have the minimum pairwise 

dissimilarity value are merged into a single cluster.  Dissimilarity between the new 

cluster and the other clusters is defined as the average dissimilarity between an old cluster 

and the component clusters of the new cluster.  The end result is a classification tree 

whose leaf nodes are individual objects and whose root defines a cluster or group that 

includes all objects.  The steps of the algorithm are described in (Li and Biswas, 2002) in 

detail. 

In the classification tree, each node has an associated dissimilarity score, which 

indicates the dissimilarity level at which its child nodes merge together.  The decrease in 

dissimilarity score from a parent node to a child node indicates that the objects in the 

child node form a more cohesive group than the ones in the parent node.  From the root 

of the tree to the leaves, the dissimilarity score along each path decreases monotonically.  

The defining clusters in the classification tree are the clusters that are cohesive yet not 
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fragmented.  To achieve the proper balance between cohesiveness and fragmentation, the 

tree is evaluated top-down in a depth first fashion, comparing the dissimilarity values 

between parent and child nodes.  The classification tree is cut off at points where the 

difference between the two dissimilarity values is greater than a certain percentage 

threshold, t.  The set of nodes on the frontier of the traversal along the different paths 

define the partition structure (the clusters of interest). 

 
 

Railroad Wheel Inspection Planning 
 

This section illustrates the SBAC approach to railroad wheel analysis.  The goal is 

to identify the set of critical wheels from the entire population in which inspections 

should be focused.  All of the samples contain a failed/safe feature value which is used to 

identify the critical clusters once the clusters are formed by identifying the clusters with 

the highest percentages of failed wheels.  The wheels were described by 12 features; four 

of the features were numeric-valued, and eight were nominal-valued (see Table 1).  This 

illustrative analysis included 200 wheels that have not yet failed (denoted as safe) and 50 

wheels that have failed (denoted as failed), (i.e., total population = 250). 

 

Table 1. Wheel clustering features 

Clustering Feature Feature Type Number of Possible Feature Values 
wheel manufacturer Nominal 28 
manufactured date Numeric 462 (month intervals) 

heat treatment Nominal 5 
rim thickness Numeric 17 (1/16” intervals) 

flange thickness Numeric 9 (1/16” intervals) 
wheel design Nominal 13 
wheel type Nominal 3 
plate design Nominal 2 

wheel diameter Numeric 4 
car type the wheel was on Nominal 9 
wheel location on the car Nominal 8 

safe/failed indicator Nominal 2 
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Description of the Dataset 
 

Some of the features are stamped into the wheels when they are manufactured 

which means that these values do not change with time; these features include the wheel 

manufacturer, manufactured date, heat treatment, wheel design, wheel type, plate design, 

and wheel diameter.  Other features that need to be recorded when the wheel is being 

removed from the train are: the car type the wheel was on and the wheel location.  

Additional features are measured and recorded when the wheel is in a wheel shop, either 

because the wheel failed or its mate wheel needed service.  These features change over 

time based on the age and condition of the wheel; they include the rim thickness, flange 

thickness and if the wheel is considered failed or safe. 

For the cluster analysis study, we used the wheel manufacturer as a nominal 

feature.  The data set included national and international train wheel manufacturers.  

Some of the manufacturers have multiple plants in which the wheels are manufactured; it 

has been assumed in the past by industry personnel that the different manufacturing 

processes of each plant may influence the wheels’ lifetime.  To take into account the 

manufacturing differences, the wheel manufacturer feature was defined by the 

manufacturing plant, and not simply the name of the manufacturer.  In this data set, we 

used the specified manufacturing code abbreviation (AAR, 1998, 2005) stamped on the 

wheel at manufacture time as the feature value.  The data set included 28 possible 

manufacturing codes. 

The manufactured date is a numeric feature that is incremented in months.  The 

dates range from April 1965 to September 2003 for this analysis.  The months (1-12) and 

years (1965-2003) were considered separate features during this analysis; however, the 
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combined month-year manufactured date for an individual wheel is maintained because 

of the clustering process.  

The heat treatment feature is defined by the markings that designate class and the 

method of heat treatment used on the steel (AAR, 1998, 2005).  These markings indicate 

the class of steel that was used to manufacture the wheel as well as the heat treatment 

used: (i) either the entire wheel was heat treated, (ii) only the rim was heat treated, or (iii) 

the wheel was not heat treated at all.  There are 5 possible heat treatment codes included 

in the data being used for this illustrative example. 

The rim thickness is measured by taking a side scale reading (AAR, 1998); the 

side scale measures the amount of metal on the tread surface above the measuring line, in 

effect supplying a rim thickness measurement.  The rim thickness is given in 1/16th of an 

inch increments; a thicker rim has a larger side scale reading.  The rim thickness is a 

numeric feature ranging from 18/16” (18) to 34/16” (34) in this analysis. 

A finger reading is taken in order to get an idea of the flange thickness (AAR, 

1998); the measurement starts at 0 (0/16”) for a new wheel and as the flange gets thinner 

with wear, the measurement increases in increments of 1/16th of an inch.  The flange 

thickness is a numeric feature ranging from 0/16” (0) to 8/16” (8) in this illustrative 

analysis. 

Wheel design is a nominal feature. There are many wheel designs which vary 

according to manufacturer and wheel diameter.  In this illustrative analysis 13 wheel 

designs are included in the samples. 

Wheels can be reshaped, known as “turning” the wheel in the railroad industry, 

after they have been in service and considerable wear of the tread surface has taken place.  
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Wheels are turned to specifications in accordance with the Association of American 

Railroads’ (AAR) guidelines.  Wheels are designed so that they can be turned either once, 

twice, multiple times (three or more), or not at all.  This design parameter is known as the 

wheel type.  The wheel type is a nominal feature which, in this analysis, includes three of 

the possible designs.  

The plate design can be either a straight plate or a curved plate design.  Most of 

the wheels manufactured during and after the mid-1970s are curved plate wheels; 

however, there are still straight plate wheels in service, so both types of wheels are 

included in this analysis.  The plate design is a nominal feature. 

The wheels in this analysis have diameters of 28, 33, 36, and 38 inches in size.  

As shown in Figure 11, 36 inch wheels are the largest percentage of wheels in the 

population.  The wheel diameter is a numeric feature.     

Different types of cars carry different loads and also have different activity levels; 

therefore the car type the wheel was on is an important feature that is included in this 

analysis.  There are nine different car types included in the samples for this analysis. 

Generally, wheels are in the 1st, 2nd, 3rd, or 4th position on a car on either the left 

or right side.  This means that generally a wheel has eight possible locations on a car; 

location is considered as a nominal feature in this analysis. 

The safe/failed indicator is a nominal feature indicating the condition of the wheel 

when the features discussed above were recorded.  This feature includes two possible 

scenarios, either safe or failed. 

Thus twelve features are considered: wheel manufacturer, manufactured date, heat 

treatment, wheel design, wheel type, plate design, wheel diameter, rim thickness, flange 
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thickness, the car type the wheel was on, the wheel location, and if the wheel is 

considered failed or safe.  It is evident that there are many possible combinations of these 

12 features.  Because some of the features imply the value of other features, i.e. the wheel 

design indicates the wheel diameter, the total number of combinations isn’t simply a 

product of the numbers of the individual possible feature values; however, the total 

number of feature combinations is still very large.  This illustrative example obviously 

won’t include all of the possible feature combinations in the real wheel population 

because only 250 samples are used; however, it will be able to indicate which feature 

combinations among the given samples have the highest percentage of failed wheels.  In 

order to develop the actual inspection scheme for the railroad industry a much larger 

sample size will need to be used for the clustering study.  This is pursued in Chapter VI. 

 

 
 
Figure 22. Illustrative example of how the threshold value (t = 0.25) determines the 
critical clusters 
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classification tree, as described above.  The first analysis used a threshold valued of 0.4, 

and the second analysis used a threshold value of 0.25.  These two threshold values were 

chosen because analyses with threshold values around 0.3 have been shown to produce 

the best results (Li and Biswas, 2002); 0.25 and 0.4 are on either side of 0.3 and were 

therefore included in the analysis. 

The results of the first analysis with the threshold value set at 0.4 resulted in 15 

clusters of interest.  The results of the second analysis with a threshold of 0.25 resulted in 

21 clusters of interest.  It was concluded based on the partition structure that the threshold 

value in the first analysis (0.4) resulted in clusters that were fragmented but not cohesive 

to the desired level.  This was determined because the clusters of interest identified from 

the first analysis contained more samples per cluster with lower percentages of failed 

wheels per cluster than the second analysis.  The second analysis resulted in more 

cohesive clusters, some of which (the critical clusters) contained higher percentages of 

failed wheels.  Therefore, the following section discusses the results from the second 

analysis.  

 
 
Discussion of the Results 
 

As stated above, the analysis with threshold value, t = 0.25, resulted in 21 clusters 

of interest (see Table 2).  Had the failed wheels been evenly distributed throughout the 

entire wheel population, then each cluster would contain approximately 20 percent failed 

wheels (based on 50 failed wheels and 200 safe wheels in the overall population) and 80 

percent safe wheels.  Based on the results it is obvious that certain feature combinations 

result in more failed wheels.  The corresponding clusters are the critical clusters in which 
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inspections should be focused. 

 

Table 2. Results of clustering analysis 

Cluster Number of 
Samples in Cluster

Percent Failed 
Wheels in Cluster 

Percent Safe 
Wheels in Cluster 

A 10 0 100 
B 27 0 100 
C 8 100 0 
D 9 0 100 
E 8 0 100 
F 2 50 50 
G 15 0 100 
H 15 0 100 
I 10 30 70 
J 1 0 100 
K 3 0 100 
L 6 0 100 
M 9 11.1 88.9 
N 15 53.3 46.7 
O 18 44.4 55.6 
P 5 0 100 
Q 27 33.3 66.6 
R 15 53.3 46.7 
S 11 0 100 
T 30 13.3 86.7 
U 6 0 100 

 
 
 

 Clusters that contain considerably greater than 20 percent failed wheels were 

therefore considered as candidates for the critical clusters.  However, it is also necessary 

to examine the number of total samples in a cluster to determine whether the percentage 

of failed wheels in that cluster is significant.  For example, cluster F is composed of 50 

percent failed wheels, however there are only 2 samples contained in that cluster.  

Because of the insignificant number of samples contained in that cluster, cluster F is 

eliminated as a candidate for a critical cluster. 
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 From Table 2 and the above discussion it is seen that clusters C, N, O, and R have 

greater than 40 percent failed wheels in their cluster and contain a significant number of 

samples in their cluster; therefore they make up the critical clusters in which inspections 

should be focused.   

It is important to note that the samples in a particular cluster will have similar 

feature combinations but they will generally vary slightly.  Therefore each critical cluster 

needs to be analyzed further to determine which feature combinations specifically 

resulted in failures.  Then those feature combinations in the critical clusters that resulted 

in failures will be the feature combinations towards which inspections are focused.  To 

help understand this, an examination of critical clusters C, N, O and R follows. 

A closer examination of critical cluster C shows that there are three critical 

feature combinations that comprise the cluster’s makeup; i.e., of the eight samples 

contained in critical cluster C there were three critical feature combinations present.  

Most of the features are the same in the three critical feature combinations, which is why 

the samples were clustered together, but there are some features that vary per critical 

feature combination; the critical feature combinations for cluster C are listed in Table 3.  

Note, because of proprietary information, the actual results can’t be provided so the 

numeric features have been changed and the nominal features have been disguised in 

Tables 3-6. 

 

Table 3. Critical feature combinations from cluster C 

Flange 
Thickness 

Wheel 
Diameter 

Wheel 
Manufacturer 

Heat 
Treatment 

Wheel 
Type 

Plate 
Design 

Wheel 
Design 

2 36 BA S 2W CP XY33RS 
2 36 TD S 2W CP XY33RS 
2 36 AC S 2W CP XY33RS 
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Note that only 11 of the 12 features can actually be used to identical critical 

wheels in the population because the safe/failed feature is only an indicator used to help 

identify the critical clusters.  It is also important to point out that only 7 of the 11 features 

are shown in Table 3.  The other four features appear to be insignificant.  These four 

features are: the manufacturing date, car type the wheel was on, wheel location, and the 

rim thickness. 

The manufacturing dates in cluster C covered a wide range of values, which 

means that feature is considered insignificant for predicting wheel failures for wheels 

with that specific feature combination.  Practically this means a wheel with any 

manufacturing date is considered critical and needs to be removed if its feature 

combination follows one of the critical feature combinations given in Table 3.   

The wheels in cluster C were on four out of the nine possible car types included in 

the analysis so the car type the wheel was on is also considered insignificant.  Similarly, 

the wheel location and rim thickness are not important for the wheels in cluster C.  As 

seen in Table 3, the flange thickness, wheel diameter, heat treatment, wheel type, plate 

design, and wheel design are the same for the three critical feature combinations obtained 

from the samples in cluster C.  There were three different manufacturers included in 

cluster C, and because there were 28 wheel manufactures included in the overall analysis 

this was considered a significant feature.  The only feature that is different in the three 

critical feature combinations for critical cluster C is the wheel manufacturer.   

In summary, inspection resources should be partially focused on the three critical 

feature combinations identified from critical cluster C.  Additional critical feature 

combinations in which inspections should be focused are identified from the other three 
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critical clusters as described below. 

Analysis of clusters N, O and R follow the same procedure as above except that 

because clusters N, O and R contain some wheels that have not yet failed, only the 

samples that resulted in failures are further analyzed.  Therefore, the candidate critical 

feature combinations in those clusters are reduced to only the feature combinations that 

resulted in the wheels failing and therefore need to be the focus of inspection.  The 

critical feature combinations for cluster N, O and R are given in Tables 4, 5 and 6.  

 

Table 4. Critical feature combinations from cluster N 

Rim 
Thickness 

Flange 
Thickness 

Wheel 
Diameter 

Heat 
Treatment

Car 
Type 

Wheel 
Type 

Plate 
Design 

Wheel 
Design 

19 2 38 S BD 2W CP D38PR 
18 2 36 S BD 2W CP T36XX 
20 2 36 S BD 2W CP T36XX 
19 2 36 S BD 2W CP Y36FE 

 
 

Table 5. Critical feature combinations from cluster O 

Rim 
Thickness 

Flange 
Thickness 

Wheel 
Diameter 

Wheel 
Manufacturer 

Heat 
Treatment 

Car 
Type 

Wheel 
Type 

Plate 
Design 

Wheel 
Design 

19 2 38 TD S G 2W CP JK38SG
20 2 38 TD S G 2W CP JK38SG
20 2 38 TD V G 2W CP JK38SG

 
 
 

Table 6. Critical feature combinations from cluster R 

Flange 
Thickness

Wheel 
Diameter

Wheel 
Type 

Plate 
Design

Wheel 
Design 

1 33 2W SP J33HA 
2 33 2W SP J33HA 
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Table 7. Critical feature combinations found from the SBAC analysis 
 

Critical 
Feature 

Combination 
Rim 

Thickness 
Flange 

Thickness 
Wheel 

Diameter 
Wheel 

Manufacturer 
Heat 

Treatment 
Car 

Type 
Wheel 
Type 

Plate 
Design 

Wheel 
Design 

1 insignf. 1 33 insignf. insignf. insignf. 2W SP J33HA 
2 insignf. 2 33 insignf. insignf. insignf. 2W SP J33HA 
3 19 2 38 TD S G 2W CP JK38SG 
4 20 2 38 TD S G 2W CP JK38SG 
5 20 2 38 TD V G 2W CP JK38SG 
6 19 2 38 insignf. S BD 2W CP D38PR 
7 18 2 36 insignf. S BD 2W CP T36XX 
8 20 2 36 insignf. S BD 2W CP T36XX 
9 19 2 36 insignf. S BD 2W CP Y36FE 
10 insignf. 2 36 BA S insignf. 2W CP XY33RS 
11 insignf. 2 36 TD S insignf. 2W CP XY33RS 
12 insignf. 2 36 AC S insignf. 2W CP XY33RS 

 
 
 
These four critical clusters contain twelve critical feature combinations (given in 

Table 7) in which inspections should be focused (in Table 7, when insign (insignificant) 

is listed as a feature value it means that specific feature is insignificant for that critical 

feature combination and that any value for that feature is acceptable).  These twelve 

critical feature combinations contain 52 percent of the failed wheels (26 out of the 50 

failed samples).  Out of the 250 samples included in the analysis, 39 had one of the 

critical feature combinations; i.e., 15.6 percent of the samples had a feature combination 

that was considered critical.  This means that if inspection resources were focused on this 

critical 15.6 percent of the population then wheel failures could possibly decrease by 

approximately 52 percent. 

The average yearly cost from wheel failures is approximately $6,000,000 when 

considering only derailment costs which were caused by shattered rim failures.  

Decreasing wheel failures by approximately 52% would result in annual savings of 

approximately $3,120,000 minus the costs of the additional inspections which will be 

calculated once the inspection times are optimized in future work.  However, based on 
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preliminary calculations, the additional inspection costs will be approximately 

$2,000,000 per year; resulting in annual saving of approximately $1,120,000 while at the 

same time increasing the safety of the industry.    

 For results that will be implemented in industry, analyses need to be performed 

with much larger sample sizes and additional features.  In order to get the best results 

large numbers of samples (on the order of hundreds of thousands to millions of samples) 

will need to be used.  However, there are generally many more safe samples than failed 

samples (generally on the order of a few thousand).  Because the clustering 

methodology’s time demands grow exponentially it is infeasible to cluster the entire 

dataset.  Therefore, a modification of the clustering methodology discussed above 

follows: 

1. Cluster only the failed samples in order to find all of the feature combinations.   

2. Once all of the feature combinations are found then they can be queried 

against all of the safe samples in order to determine the percentage of 

failed/safe samples for each feature combination. 

3. These percentages are then used to identify the critical feature combinations 

in which inspections should be focused. 

 

This modified methodology has been applied to the railroad wheel application, in 

Chapter VI, using the full dataset.  As discussed in Chapter VI, this modified 

methodology successfully identified the critical feature combinations in which 

inspections should be focused in actual industry implementation.   
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Conclusion 
 

Railroads generally remove and replace a large number of wheelsets per year 

using either visual inspections or Wheel Impact Load Detectors.  However, these wheels 

aren’t necessarily critical wheels that need to be taken out of service based on their 

likelihood of failing.  Therefore, clustering analysis results could help the railroads focus 

their removals on actual critical wheels that have a higher probability of failing.  The 

Similarity-Based Agglomerative Clustering algorithm has been shown to identify these 

critical wheels with much success.   

It is important to note that railroads will need to inspect all of the wheels that have 

a specific critical feature combination.  If only a portion of the wheels with that specific 

critical feature combination are inspected then the confidence level of the reliability 

assessment will fall.  Further study needs to be done to explore how inspecting only a 

portion of the wheels with a specific critical feature combination will affect the 

assessment.  It is also important to point out that each of the critical feature combinations 

will need to be optimized individually and will have individual inspection schedules, as 

discussed in Chapter V. 

As noted above, once the critical wheels are identified, they can be taken out of 

service or inspected on an optimized inspection schedule.  Many railroads are currently 

implementing technology that will allow them to identify a specific wheel while it is in-

service.  Being able to identify the critical wheels that are in-service will allow the 

railroads to focus their inspections on the critical wheels at the wheels’ critical inspection 

times.  Chapter V develops a methodology for optimizing the inspection schedules of the 

critical wheels, which will in effect prolong the usable lives of the wheels while 
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maintaining acceptable reliability levels for those wheels.   

However, in order to optimize the inspection schedules of the critical feature 

combinations, first the reliability corresponding to each critical feature combination 

needs to be calculated.  Therefore, the next chapter develops a simulation-based 

methodology for life prediction of wheels with the critical feature combinations.  These 

life estimates are then implemented in the reliability-based inspection schedule 

optimization algorithm in Chapter V.   

Note that while the reliability-based inspection scheduling algorithm is general, 

the clustering and reliability analysis are confined to shattered rim failures in this study. 
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CHAPTER IV 

 

RELIABILITY ANALYSIS 
 
 

 
The cluster analysis discussed in Chapter III was used to identify the critical 

feature combinations and their corresponding feature values that result in wheel failures.  

This chapter analyzes wheels with these critical feature combinations in order to find 

their corresponding reliability with respect to shattered rim failure.  The reliability 

estimates are then used for the inspection optimization in Chapter V.  The reliability is 

estimated through a combination of finite element-based stress analysis, multi-axial 

fatigue modeling and stochastic life prediction analysis.   

 
 

Introduction 
 

Damage accumulation due to fatigue, plastic deformation and wear significantly 

reduces the service life of railroad wheels.  As discussed perviously, higher train speeds 

and increased axle loads have led to larger wheel/rail contact forces.  Also, efforts have 

been made to optimize wheel and rail design.  This evolution tends to change the major 

wheel rim damage from wear to fatigue (Tournay and Mulder, 1996).  Unlike the slow 

deterioration process of wear, fatigue causes abrupt fractures in wheels, or tread surface 

material loss.  These failures may cause damage to rails, damage to train suspensions and, 

in some cases, serious derailment of the train.  

As discussed in Chapter I, railroad wheels may fail in different ways 

corresponding to different failure mechanisms (Stone and Moyar, 1989; Marais, 1998; 

Mutton et al, 1991).  Shattered rim failure is the failure mode considered in this chapter.   
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The methods for fatigue life prediction of mechanical/structural components 

could be divided into several groups.  Among these, fatigue crack initiation prediction 

models based on the S-N or e-N curve approach, and fatigue crack propagation prediction 

models based on fracture mechanics are predominantly used.  The fatigue crack initiation 

models are appropriate for the analysis of components with non-crack-like geometries or 

without large initial defects.  The fatigue crack propagation models are appropriate for 

the analysis of components with crack-like geometries or with large initial defects.  If 

neither stage (initiation or propagation) dominates the entire life of the mechanical 

component, a total life methodology is required to accurately predict the component 

fatigue reliability.  

There are two major difficulties in deterministic railroad wheel fatigue modeling.  

One is that the wheels are usually under rolling contact condition, which leads to a non-

proportional multi-axial stress state within the wheels.  An appropriate multi-axial fatigue 

model is required to handle this type of fatigue life prediction, which should be able to 

handle non-proportional loading conditions.  The other difficulty is how to accurately 

describe the stress state in contact analysis.  Analytical solutions and simplified 2D finite 

element models are not appropriate for the rolling contact analysis of mechanical 

components with complex geometries, such as railroad wheels (Liu et al, 2006). 

A large amount of scatter has been observed in the fatigue life distribution of 

railroad wheels, ranging from several months to several decades.  A probabilistic fatigue 

analysis is more appropriate in order to consider the large observed variability, due to 

variability in material properties, structural geometries and applied loadings.  Due to the 

complex mechanism involved in rolling contact fatigue analysis and large number of 
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random variables affecting the final reliability, a direct analytical reliability calculation is 

impractical. 

Therefore, a general methodology for rolling contact fatigue life prediction under 

a stochastic loading process has been proposed by Liu et al (2006).  The total fatigue life 

of railroad wheels is separated into two parts, crack initiation life and crack propagation 

life 

npropogatioinitiationtotal NNN +=                                                                     (18) 

where totalN , initiationN  and npropogatioN  are the total fatigue life, fatigue crack initiation life 

and fatigue crack propagation life, respectively.  The details regarding the calculation of 

each part of the fatigue life and the transition between crack initiation and crack 

propagation are discussed later in this section, and can also be found in (Liu and 

Mahadevan, 2005; Liu et al, 2006; Liu, 2006; Liu and Mahadevan, 2007).  A brief 

illustration of the finite element models used for the fatigue crack initiation and fatigue 

crack propagation life predictions is shown below; details of the models can be found in 

Liu et al (2006) and Liu et al (2007).    

Discussed first is the fatigue crack initiation life prediction model for railroad 

wheels.  Initially, available profiles are used to build the geometry model of one wheel 

and a piece of rail.  This model is called the full model.  The rail length equals the length 

between two sleepers (which is assumed to be 600 mm).  Fixed boundary conditions are 

applied to the two ends of the rail.  Different mesh is applied to the full model using 3D 

elements (SOLID 45 in ANSYS).  In the contact region, a relatively finer mesh is used.  

At the wheel center, a pilot node is connected to the wheel using some rigid link 

elements.  All of the external loading and boundary conditions of the wheel are applied 
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on the pilot point.  These loading and boundary conditions can be obtained through field 

measurements or from numerical simulation of the track system motion analysis.  On the 

possible contact areas of the railhead and the wheel tread, area contact elements 

(CONTACT 174 and TARGET 170 in ANSYS) are used corresponding to the geometry 

mesh of the wheel.  The contact algorithm is the augmented Lagrangian method (Ansys, 

2003).  Friction effect is included in the material properties of the contact elements.  A 

Coulomb friction model is used in ANSYS.  Friction coefficients can be calibrated using 

field measurement data.  The material properties of the wheel and rail are described using 

a bilinear kinematic hardening model in ANSYS.  The material properties of the rail and 

wheel are assumed to be the same (yielding strength = 500 MPa; Young’s Modulus = 205 

MPa; Friction coefficient = 0.25).  No isotropic hardening is included in the current 

model.  The finite element model is shown in Figure 23.  

 
 
 
 
 

 

 

 

 

 

Figure 23. Finite element modeling of wheel/rail contact 
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A quasi-static analysis is performed for the full model and the results for each step 

are stored.  Next, the geometry model of the contact region is cut out to be a sub-model.  

The size of the sub-model depends on the analysis objective and also on the wheel 

motion simulated.  The same types of elements as those in the full-model analysis are 

used to mesh the sub-model.  A very fine mesh is applied from the contact area to below 

the tread surface a few millimeters.  The results of the full-model are interpolated on the 

cut boundaries of the sub-model corresponding to different calculation steps, and the 

interpolation results are applied as boundary conditions to the sub-model.  The stress 

response from the sub-model is used for fatigue life prediction. 

Next, a finite element model similar to the one for the fatigue crack initiation 

analysis is used for the fatigue crack propagation analysis.  The difference is that an 

embedded elliptical crack is built into the model.  The crack location and orientation are 

determined from the previous numerical prediction of the initial fatigue crack profiles.  

The major axis is along the track direction and the minor axis is perpendicular to the track 

direction.  Based on the field observations of the initial fatigue crack profile, the aspect 

ratio of the elliptical crack is assumed to be 1.5.  The subsurface crack is modeled as two 

contact surfaces to make sure that the two crack surfaces do not penetrate each other 

during the calculation.  On the crack surfaces, area contact elements (CONTACT 174 and 

TARGET 170 in ANSYS) are used.  Friction effect is also included between the two 

crack surfaces.  A very fine mesh (the average element length is about 0.1 mm) is applied 

near the crack region.  The finite element models of the full model, sub-model and crack 

are shown in Figure 24. 
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Figure 24. Finite element modeling of wheel/rail contact with subsurface crack 
 
 

A quasi-static analysis is performed to simulate the rolling motion of the wheel.  

The calculated stress intensity factors (SIF) are used for the fatigue crack propagation 

analysis. 

A response surface is developed from the finite element model simulations to 

calculate the fatigue crack initiation and propagation lives.  A stress intensity factor (SIF) 

amplitude approximation is required for fatigue crack propagation life prediction.  Liu 

(2006) has performed a parametric study for the fatigue crack propagation analysis of 

railroad wheels and found that the applied load, the crack length and the crack depth 

below the tread surface have significant influences on the SIF ranges.  Based on first 

principles of fracture mechanics, a simple formula was proposed (Liu, 2006) to calculate 

the equivalent SIF range as 

)dd2(da)FF(K cceq −−= πξ                                                             (19) 

where eqK  is the equivalent SIF, F  is the applied loading, a  is the half length of the 

embedded crack along the axis, and cF , cd  and ξ are regression constants.  The 
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prediction using Equation (19) and the finite element results for the SIF along the major 

axis were shown to agree well (Liu et al, 2007).  Therefore, the SIF equation replaced the 

finite element results for the fatigue crack propagation life prediction. 

In addition to the features included in Liu (2006), the effects of rim thickness and 

plate design on the fatigue damage of the wheels were considered in this research.  The 

plate design did not affect the fatigue damage, and was therefore excluded from the SIF 

equation.  The rim thickness, on the other had, did significantly affect the fatigue damage, 

and was therefore included in the SIF equation in the form of a multiplier.  The effect the 

rim thickness has on the SIF can be seen in Figure 25. 
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Figure 25. Stress intensity factor multiplier dependent on wheel rim thickness 
 
 
 

The updated equation to include rim thickness in the equivalent SIF calculation is 

therefore 

rcceq tdddaFFK )2()( −−= πξ                                                            (20) 

where eqK  is the equivalent SIF, F  is the applied loading, a  is the half length of the 
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embedded crack along the axis, tr is a multiplier based on the rim thickness (see Figure 

25), and cF , cd  and ξ are regression constants. 

As mentioned above, the crack initiation life and crack propagation life are 

calculated using a stochastic fatigue life prediction approach proposed by Liu et al 

(2006).  The details of the methodology are discussed below.   

First consider the stress response at a specific location and time instant.  The 

equivalent stress amplitude eqS  is calculated using the combination of a characteristic 

plane-based multi-axial fatigue theory (Liu and Mahadevan, 2005) and the 3D finite 

element model approach (Liu et al, 2006) discussed above.  Where, at any fixed location, 

eqS  is a random variable with probability density function (PDF) of ( )eqS Sf
eq

, and the 

fatigue damage caused by the stress amplitude is usually expressed as a fraction of the 

total number of cycles to failure 

N
1D =                                                                                                     (21) 

where N  is the fatigue life estimation from the S-N curve under constant stress 

amplitude eqS .  N  represents the material resistance to fatigue loading.  It is also a 

random variable at a specific stress amplitude.  The conditional PDF of N  can be found 

from experimental data and is expressed as )N(f
eqSN .  The single cycle damage which 

considers both the randomness in material resistance and applied stress amplitude is a 

random variable whose joint PDF can be expressed as 

 ( ) ( ) ( ) ( )eqSSN2eqSSDD Sf
D
1f

D
1SfDfDf

eqeqeqeq






==                              (22) 

For the fatigue damage accumulation process, a damage accumulation rule is 
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required.  A linear damage accumulation rule, known as the Miner’s rule, is used for its 

simplicity.  Equation (23) is the general expression for the Miner’s rule. 

∑∑
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K
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iinitiation N

n
DD                                                                          (23) 

where K  is the number of loading blocks, in  is the ith applied loading cycle.  For 

stochastic loading during a certain time period, not only is the stress amplitude eqS  a 

random variable, but also the number of cycles in  at the stress amplitude eqS .  Nagode 

and Fajdiga (1998) proved that the conditional PDF ( )n(f iSn eqi
) of number of cycles in  

at the stress amplitude level eqS  can be modeled by a normal distribution based on the 

DeMoivre–Laplace principle, with the mean and standard deviation expressed as  
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where T  is the total number of load cycles during each block, )S(F eq  is the cumulative 

density function (CDF) of the stress amplitude which can be obtained from cycle 

counting techniques such as the rain-flow counting method (Liu, 2006).  The joint PDF of 

the total damage at a specific location can be expressed as 

)S(f)n(f)
D
1(f

D
1)D(f eqSiSnSN2ntinitiatioD eqeqieqintinitiatio

=                           (25) 

When the fatigue damage equals or exceeds unity, it is assumed that the initial 

fatigue crack is formed.  The damage accumulation at different locations is checked.  If 

fatigue damage exceeds unity at one location, the number of loading blocks is the fatigue 

crack initiation life of the structure.  Equation (26) is a general expression for the 

structural fatigue crack initiation criterion 
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1)R,...R,N,x(G)Dmax(D P1initiationjx,totalstructure j
===                           (26) 

where jx  is the coordinate at different locations, initiationN  is the number of loading cycles 

to fatigue crack initiation, 1R  through PR , are random variables which affect the fatigue 

damage in the structure.  Solving Equation (26) for initiationN  the following expression is 

obtained 

( )P1jiinitiation R,...R,xfN =                                                                         (27) 

Equation (27) shows that the fatigue crack initiation life is a function of geometric 

locations and input random variables.  The analytical solution for initiationN  using Equation 

(27) is rather complicated and sometimes impractical.   In the current study, a Monte 

Carlo simulation is used to calculate the probabilistic fatigue crack initiation life.  

Once the fatigue crack is initiated, a fatigue crack propagation model developed 

by Liu (2006) is used to calculate the fatigue crack propagation life.  A finite element 

model similar to the one for the fatigue crack initiation analysis is used.  The difference is 

that an embedded elliptical crack was built into the model.  The equivalent stress 

intensity amplitude, eqK  (Equation 20), used in this study was discussed earlier in this 

section.  At any point at the crack tip, eqK  is a random variable with the probability 

density function (PDF) of ( )eqK Kf
eq

.  The crack growth rate at a specific SIF amplitude is 

also a random variable with the conditional PDF of 







dN
daf

eqK
dN
da .  Following a similar 

procedure as the stochastic fatigue crack initiation life prediction, the single cycle fatigue 

crack length increment a∆  is a random variable and its joint PDF can be expressed as 
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During the entire loading history, the crack propagation length is added to the 

initial crack length.  When the crack reaches the critical length, the wheel is assumed to 

fail.  The failure criterion is expressed as 

∑
=

≥+=
R

1m
cmitotal aaaa ∆                                                                          (29) 

where R  is the number of loading cycles, ma∆  is the crack length increment during each 

loading cycle.  In Equation (29), ia , ma∆  and ca are random variables.  ia  is calculated 

using Equation (23) and is related to material properties.  ca is obtained using field 

observations of failed components (failed railroad wheels in the current study).  ma  is 

calculated using Equation (28) and is related to the applied stochastic loading and 

material properties.  Solving Equation (29) for fatigue crack propagation, npropagatioN , 

results in 

)R,...R,a,a(fN p1cipnpropagatio =                                                              (30) 

Equation (30) shows that the fatigue crack propagation life is a function of several 

random variables.  Again, the analytical solution for npropagatioN  using Equation (30) is 

rather complicated and sometimes impractical.   In the current study, Monte Carlo 

simulations are used to calculate the probabilistic fatigue crack propagation life.  

Substituting Equations (27) and (30) into Equation (18) obtains the total fatigue 

life of the wheel.   

As discussed above, in the current study, a Monte Carlo simulation based on 

Equations (18) to (30) is used to calculate the probabilistic life distribution and reliability 
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degradation of railroad wheels.  The statistics of material properties, wheel geometry, and 

applied loadings are included in the analysis.   

 

Statistics of input random variables 
 

Using the probability distribution functions of the input random variables a Monte 

Carlo simulation was used to predict the fatigue life of railroad wheels.  Known feature 

values from the critical feature combinations were set constant and were no longer 

considered random variables.  Each critical feature combination was analyzed separately 

based on its feature values.  The details are discussed below. 

The median fatigue S-N curve and its 90% confidence bounds are plotted with the 

experimental data in Figure 26.  The fatigue life at a specific stress level is assumed to 

follow the lognormal distribution.  The wheel diameter and rim thickness were set 

constant based on the critical feature combinations’ feature values for those features.  

When the rim thickness feature value was insign (given in Table 7) then 14 (14/16ths; the 

minimum rim thickness generally allowed in service) was used.   

The applied loading on the wheel is represented by a multinomial distribution.  

The applied loading depends on the car type the wheel was on, and each car type carries 

different cargo which affects the loading levels.  The car type feature value for a specific 

critical feature combination determined the applied loading.  No experimental data for the 

material hardness distribution is available.  However, the hardness value for class B and 

C railroad wheels is bounded between 277 and 363 (AAR, 1998).  In was assumed that 

the hardness follows a Beta distribution.  The PDF of the beta distribution is plotted in 

Figure 27. 
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Figure 26. Fatigue S-N curve 

 
 
 
 

 
 

 
 
 
 
 

Figure 27. PDF of hardness distribution 
 
 

The fatigue crack propagation curve suggested in AAR (1998) is used.  The 

median and 90% confidence bounds are plotted in Figure 28.  The crack growth rate at a 

specific stress intensity factor amplitude is assumed to follow the lognormal distribution.  

The final failure crack length (i.e., critical crack length) used field observation data and is 

approximated using a lognormal distribution.  The histogram and lognormal fit for 

critical crack length are plotted in Figure 29. 
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Figure 28. Fatigue crack growth curve 

 
   

 
 

 
 

 

 

 
 
 
 
 

Figure 29. Histogram of critical crack length 

 
 

Ultrasonic inspection (the detailed inspection technique for railroad wheels which 

will be used at the wheels’ optimized inspection intervals) of railroad wheels only detects 

cracks that are 3.175 mm or greater.  Therefore, the wheels’ life prediction was 

performed with an initial crack size for all of the wheels set constant at 3.175 mm.   
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Probabilistic life distribution and reliability 
 

Using the described statistics of the input random variables, Monte Carlo 

simulation were used to predict the fatigue life of railroad wheels.  Monte Carlo 

simulation using the response surface is much more computationally efficient than with 

the finite element model; however, the computational time is still relatively large.  Ten 

thousand Monte Carlo simulations were used to calculate the fatigue failure life of the 

railroad wheels.   

It is important to note that the accuracy of the estimate depends on the number of 

simulation cycles.  Haldar and Mahadevan (2000) define the percentage error, ε%, with a 

95% confidence interval as 

  
( )

%200
1

% ×
×

−
= T

f

T
f

pN
p

ε                                                                           (31) 

where T
fp  is the true probability of failure, and N is the total number of simulation 

cycles.  As an example, if T
fp  is 0.1667 (corresponding to a reliability of 0.8333) and if 

10,000 trials are used in the simulation, it indicates that there will be about 4.47% error.  

It can also be stated that there is 95% probability that the probability of failure, pf, will be 

in the range of 0.1667 ± 0.000447 with 10,000 simulations.   

For comparison purposes, a life prediction assuming no initial defects was 

performed.  Field data regarding the number of cycles to failure of railroad wheels was 

collected and compared with the Monte Carlo simulation results that assumed no initial 

defects were present.  The CDF and the frequency histogram of the numerical fatigue life 

prediction are plotted in Figure 30 together with the corresponding curves from field 

observations.  The fatigue life in Figure 30 is censored at 2x109 cycles because it is 
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assumed that the wheel would fail due to other failure mechanisms by the end of this 

time-period.  

In Figure 30(a), the numerical fatigue life predictions agree with the field 

observations reasonably well and capture the major trend of the life distribution.  

However, a large difference is observed at the early life regime, i.e. near the tail region of 

the fatigue life distribution.  The reason is that the field data shows two ranges of fatigue 

life distribution.  This phenomenon can be clearly seen in the frequency diagram (Figure 

30(b)).  It also can be seen that the number of wheels experiencing premature failure is 

only a small fraction of wheels (around 10%) and does not greatly affect the overall mean 

fatigue life.  However, their effects are significant at the tail region, which affects the 

reliability evaluation.  

 
 

 

 

 
 
 
 
 
 

 

Figure 30. Empirical CDF and frequency histogram of the field data and numerical 
predictions with no initial defects 

 
 
 
Berge (2000) and Stone and Geoffrey (2000) suggest that the large stress, perhaps 

due to wheel/rail impact or material discontinuity, has an important effect on the 

shattered rim failure, as discussed in Chapter I.  Also, the large on-tread brake loading 
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and the thermal stresses arising from on-tread friction braking will reduce the fatigue life 

of railroad wheels (Gordon and Perlman, 1998).  The observed premature fatigue failure 

(earlier failure mode in Figure 30(b)) is possibly due to the above mentioned factors or 

their combinations, such as initial defects, brake loading, and thermal loading. 

The brake loading and the thermal loading effects were beyond the scope of this 

study.  Only the effect of initial defects was considered here to predict the premature 

fatigue failure.  Based on the ultrasonic inspection capabilities, the length of the initial 

defect was assumed to be 3.175 mm (1/8 in).  The location of the initial defect was 

assumed to be uniformly distributed between 5 mm to 8 mm below the tread surface.  A 

Monte Carlo simulation was used again to calculate the fatigue life of defective railroad 

wheels, in which 10% of the failed wheels were assumed to be controlled by the large 

initial defects.  The numerical prediction and field observations are plotted in Figure 31.  

It is seen that the numerical prediction are closer to the field observations when large 

initial defects were included in 10% of the wheels.  

 
 
 

 

 

 

 

 
Figure 31. Empirical CDF and frequency histogram of the field data and numerical 
predictions with 3.175 mm defects included in 10% of the wheels 
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As discussed in the previous section, the wheels’ life prediction was performed 

with an initial defect size of 3.175 mm included in all of the wheels.  This ultimately 

means the crack initiation life is not included in the total fatigue life (only the crack 

propagation life assuming an initial crack size of 3.175 mm is included in the total fatigue 

life).   

This assumption is significant for actual implementation in the industry because it 

is possible that a wheel could pass the ultrasonic inspection at the wheel’s optimized 

inspection time while containing a crack slightly less than 3.175 mm (because the 

ultrasonic inspection would not detect a crack smaller than 3.175 mm).  This conservative 

assumption will ultimately decrease the inspection interval between the optimized 

inspection times, but it is necessary in order to maintain confidence in the optimized 

inspection schedule.  The numerical prediction and field observations are plotted in 

Figure 32.  As expected, when crack initiation is ignored in the total life of the wheel 

(since an initial crack of 3.175 mm was present in all of the wheels) the fatigue life 

predictions were drastically reduced, as can be seen in Figure 32. 

 
 

0

0.2

0.4

0.6

0.8

1

5 6 7 8 9 10

Fatigue life (log(N))

Pr
ob

ab
ili

ty

Field data
Monte Carlo simulation

0

0.05

0.1

0.15

0.2

0.25

0.3

5 6 7 8 9 10
Fatigue life (log(N))

Fr
eq

ue
nc

y

Field data
Monte Carlo simulation

a) CDF b) Frequency histogram 
Figure 32. Empirical CDF of the field data and numerical predictions with 3.175 mm 
defects included in all of the wheels 
 



 78

The reliability of each critical feature combination was calculated separately, 

using the Monte Carol simulation method, based on the feature values of the critical 

feature combinations given in Table 7.  The inspection intervals are in terms of days, 

therefore the fatigue lives were converted from cycles to failure to days to failure.  This 

was done by first converting cycles to failure to miles to failure based on the wheel 

diameter.  Next, the miles to failure were divided by the average miles per day the wheel 

traveled, as indicated by the car type feature value for the corresponding critical feature 

combination; this resulted in days to failure.  The average miles per day each car type 

travels is shown in Table 8 (Guins, 2006).  The fatigue life data, in terms of days to 

failure, was then fit to a curve using TableCurve 2D version 5.01.  Therefore, each 

critical feature combination has a reliability curve associated with it that was calculated 

from its corresponding feature values.   

 

Table 8. Data used to convert cycles to failure to days to failure  

Car type feature 
value 

Average miles 
per year 

Average miles 
per day 

A 19355 53 
B 17300 47 
C 15866 43 
D 17300 47 
E 7372 20 
F 18192 50 
G 13742 38 
H 21844 60 
J 62435 171 
K 35468 97 
L 28027 77 
M 28027 77 
P 60859 167 
Q 60859 167 
R 30637 84 
S 60859 167 
T 12406 34 
V 49158 135 
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Illustrative Example’s Reliability Curves 
 
 The reliability curves, calculated from the method described above, for the 12 

critical feature combinations used in the illustrative example are shown in Figures 33-44.  

From the reliability charts (Figures 33-44) it is difficult to see the significant differences 

between the wheels during their early live regime; however the equations can not be 

given for proprietary reasons. 
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Figure 33. Reliability for critical feature combination 1 given in Table 7 
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Figure 34. Reliability for critical feature combination 2 given in Table 7 



 80

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000

days to failure (days)
re

lia
bi

lit
y

 
 

Figure 35. Reliability for critical feature combination 3 given in Table 7 
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Figure 36. Reliability for critical feature combination 4 given in Table 7 
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Figure 37. Reliability for critical feature combination 5 given in Table 7 
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Figure 38. Reliability for critical feature combination 6 given in Table 7 
 
 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000

days to failure (days)

re
lia

bi
lit

y

 
 

Figure 39. Reliability for critical feature combination 7 given in Table 7 
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Figure 40. Reliability for critical feature combination 8 given in Table 7 
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Figure 41. Reliability for critical feature combination 9 given in Table 7 
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Figure 42. Reliability for critical feature combination 10 given in Table 7 
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Figure 43. Reliability for critical feature combination 11 given in Table 7 
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Figure 44. Reliability for critical feature combination 12 given in Table 7 
 
 
 

Summary 
 

The Monte Carlo simulation predictions provide a conservative life estimate, as 

compared to the field data, for each critical feature combination.  However, a 

conservative life estimate is desirable in order to insure the reliability of the critical 

feature combinations are maintained by periodic inspections.  The reliability curves for 

each critical feature combination are then used to optimize their inspection schedules, as 

discussed in the next chapter, using the inspection optimization methodology developed 

in the next chapter.  
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CHAPTER V 
 
 
 

INSPECTION OPTIMIZATION 
 
 
 

This chapter develops a methodology for optimizing inspection schedules of large 

populations, with the purpose of maintaining or exceeding the minimum target reliability 

level of the critical feature combinations (which were found in Chapter III) while 

minimizing inspection costs.  The proposed methodology builds on the Similarity-Based 

Agglomerative Clustering (SBAC) algorithm (Li and Biswas, 2002) which was used to 

identify the critical feature combinations in Chapter III, and a multi-axial fatigue life 

prediction methodology (Liu et al, 2007; Liu and Mahadevan, 2005; Liu et al, 2006; Liu, 

2006; Liu and Mahadevan, 2007) which was used in Chapter IV to calculate the 

reliability of wheels with the critical feature combinations.  A reliability-based inspection 

optimization technique is developed in this chapter, in order to optimize the inspection 

schedules of wheels with the critical feature combinations.     

 
 

Reliability-Based Inspection Optimization (RBIO) 
 

Various tools and methodologies have been developed for fatigue reliability 

analysis and inspection updating (Faccioli et al, 1995; Onoufriou et al, 1994; Shetty et al, 

1997).  Garbatov and Soares (2001) proposed a method of optimized inspection planning 

for floating structures, in which inspection planning was treated as an optimization 

problem under reliability constraints.  Zhang and Mahadevan (2001) proposed an 

approach for reliability-based reassessment of corrosion fatigue.  The reassessment 
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approach incorporates the reliability of the NDI (non-destructive inspection) technique, 

inspection data, and prior prediction in a probabilistic framework for decisions regarding 

maintenance and repair.  Other techniques and methodologies for reliability-based 

inspection optimization can be found elsewhere (Acar and Haftka, 2005; Chung et al, 

2003; Estes and Frangopol, 2000).   

 

 

 

 

 

 
 
 
 
 

  
Figure 45. Reliability variation with and without inspection 

 
 
 

For a specified target reliability (or equivalently, a minimum allowable safety 

level), the objective of reliability-based inspection optimization is to decide the 

inspection program that is the most economical while at the same time also maintains the 

reliability of the device or system above the target reliability.  A graphical representation 

of this concept is given in Figure 45.   

One application of RBIO was toward the inspection schedule optimization of an 

aircraft structure containing multiple site damage (Garbatov and Soares, 2001) in which 

the First Order Reliability Method (FORM) was used to calculate the probability of 
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failure.  The initial crack lengths, crack growth equation constants, and the applied load 

were considered as random variables.  The optimization of the inspection schedule for the 

structure was accomplished by minimizing the life cycle cost including materials, 

manufacturing, fuel consumption, and inspections, under the constraint of a pre-specified 

level of safety. 

Another application of RBIO developed a methodology for optimizing the timing, 

frequency, and type of inspection over the expected useful life of a deteriorating structure 

such as an underwater cable (Estes and Frangopol, 2000).  A decision tree analysis was 

used to develop an optimum lifetime inspection plan which could be updated as 

inspections proceeded and more data became available.  This methodology included the 

expected life of the structure, the minimum prescribed safety level of the structure, costs 

of inspection and specific repairs, discount rates, the capability of the test equipment to 

detect a flaw, and the management approach of the owner towards making repairs. 

In general, the objective function for a RBIO problem includes the cost of 

inspections, expected costs associated with any needed repairs, and expected costs 

associated with failure.  The objective function to be minimized is total cost, while the 

reliability of the structure is kept above an acceptable level. 

 
 

Railroad Wheel Inspection Optimization 
 

The overall optimization problem may be stated as 
 
 Minimize   Overall cost 
            s.t.   Reliability > Target Reliability                                             (32) 
 

where inspection interval is the decision variable. 
 
For this application, the objective function is found by summing the cost of 
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inspection; which includes both the cost of drive-by inspections, 
dIC , and the cost of 

ultrasonic inspections, 
UTIC , the cost of repairs, CR, and the costs associated with a 

failure, CF.  The cost of drive-by inspections, 
dIC , is a sunk cost because they occur 

regardless of whether a failure, repair, or ultrasonic inspection takes place.  In order to 

formulate the remaining cost terms for the objective function the four possible outcomes 

are considered: “no inspection and no failure”, “no inspection and failure”, “inspection 

and no failure”, and “inspection and failure”. 

There are no costs associated with the “no inspection and no failure” case, 

therefore this term is left out of the objective function.  For the “no inspection and failure 

case”, the cost of repair and the cost of failure are dependent on the wheel failing.  

Therefore, CR and CF are both multiplied by the probability that the wheel will fail, pf.  

Also, each term is divided by the number of days to inspection, T, because the daily cost 

(cost per day) is being minimized in the objective function.  Therefore the costs 

associated for this case can be formulated as 

   





+








T
Cp

T
Cp F

f
R

f                                                                               (33) 

For the “inspection and no failure” case, it is important to note that all of the 

critical wheels within the critical feature combination must be inspected at their 

optimized inspection time in order to maintain the desired reliability of that critical 

feature combination.  As discussed previously, the detailed inspection method that is 

being used for this application is ultrasonic inspection, and is therefore the inspection 

method that is scheduled at time, T.  Since all of the wheels in the critical feature 
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combination must be ultrasonically inspected at time T, then the cost of ultrasonic 

inspections, 
UTIC , needs to be multiplied by the number of wheels in the North American 

population, N, with that specific critical feature combination.  Once again the cost is 

divided by T since the cost per day was being minimized.  Also, for this case the wheels 

are being inspected but they don’t fail, therefore the term is multiplied by (1 – pf).  

Therefore the costs for this case are formulated as 

( )f
I p
T

NC
UT −







 ⋅
1

                                                                                   (34)
 

Finally, the “inspection and failure” case is formulated by summing the costs 

associated with inspecting the wheels and having a failure still occur.  Included in this 

term are the same values associated with an ultrasonic inspection as in the “inspection 

and no failure” case, except this time the cost is multiplied by the probability of failure, 

pf.  Also included in this term are the costs associated with a repair and failure, CR and 

CF.  However, for this case the wheels are inspected but they still failed, which means the 

crack wasn’t detected by the ultrasonic inspection.  Therefore, since the cracks weren’t 

detected, the CR and CF terms are multiplied by (1 – pd), where pd is the probability of 

detection.  The cost for this case is thus 
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The optimization problem finds the optimal interval between inspections for all of 

the wheels with that specific critical feature combination in the population.  Based on the 

above discussion, the total cost per day, CT, is the sum of the four cases and the sunk 

costs 
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Since all of the wheels in the critical feature combination are inspected daily with 

drive-by inspection, 
dIC  is multiplied by N. 

The above equation may be simplified by assuming that all of the cracks in the 

wheels are detectable since, in the reliability calculations in Chapter IV, all of the wheels 

are assumed to contain initial cracks of size 3.175 mm.  It is also assumed that ultrasonic 

testing has a 100% probability of detection, pd, for cracks that are 3.175 mm or larger.  

Based on these assumptions, the terms containing (1 – pd) are reduced to zero.  Summing 

the remaining terms produces the final objective function   
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The cost of repair included in the objective function, CR, depends on the wheel 

design, the wheel size, and if the wheel was turned.  Based on the wheels’ critical 

features, found in the cluster analysis, the cost to replace a wheel with that specific 

feature combination is considered a constant.  

The cost of a failed wheel could range from simply the cost to replace the wheel, 

which would be considered a replacement cost, to a $100,000,000 derailment.  Because 

of the unpredictable damage a derailment will cause, the failure cost, CF, is simply 

considered the average cost per derailment.  

The cost of ultrasonic inspections, 
UTIC , is assumed to be the value of the average 

cost of ultrasonically inspecting wheels on a rip track.  Specifically, this includes the 
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costs of the ultrasonic testing equipment, actually testing the wheels, as well as the costs 

associated with lost service time because of testing (called “setting the car out” in 

industry terms). 

The constraints are formulated as follows.  The optimized inspection interval, T, 

must be greater than or equal to a minimum inspection interval, Tmin, as determined by 

the decision makers.  Therefore the constraint is written as 

  minTT ≥                                                                                                    (38) 

where Tmin is equal to one day for this application.  It is possible that the failure cost 

could outweigh the inspection costs so greatly that it would be more economical to 

rigorously inspect (ultrasonic test) all of the wheels with a critical feature combination 

every day than it would be to not rigorously inspect them and risk a possible derailment.  

However, it is not practically feasible to take a car out of service everyday to inspect its 

wheels.  Therefore, the implemented inspection interval will need to be equal to or more 

than the time corresponding to the practically feasible inspection interval, as determined 

by the decision makers.   

It is also required to keep the safety (or reliability) above a minimum acceptable 

level, Rmin.  The expected time-dependent reliability, E[R(T)], was found during the 

reliability analysis as discussed in Chapter IV.  Therefore the following constraint is 

  ( )[ ] minRTRE ≥                                                                                          (39) 

 As mentioned previously, the minimum allowable reliability level for the critical 

feature combinations, Rmin, is chosen to be 0.8333 for this application.  

Therefore, from the above discussion, the optimization problem for the inspection 

scheduling of railroad wheels was formulated as follows 
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                          (40) 

where,  
  CF = cost of failure 
  

dIC  = cost of drive-by inspection 
  

UTIC = cost of ultra sonic inspection 

  CR = cost of repairs 
                        CT = total cost per day 
  E[R(Τ)] = the expected time-dependent reliability 
  N = number of wheels in the population with that critical feature combination 
  pf = calculated probability of failure; which is dependent on T 
  Rmin = the minimum acceptable reliability level 
  T = time of ultrasonic inspection 
  Tmin = minimum inspection interval  

  
 
 

Equation 40 is a constrained nonlinear optimization problem, and can be solved 

using many different algorithms; the authors used Matlab’s fmincon function 

(MathWorks, 2001), which employs a Sequential Quadratic Programming (SQP) method, 

for this purpose.   

 
 

Discussion of the Railroad Wheel Inspection Optimization 
Illustrative Example Results 

 
 For the illustrative example in Chapter III, four critical clusters were found which 

contain twelve critical feature combinations (Table 7) in which inspections should be 

focused.   

The reliability methodology proposed in Chapter IV was used to calculate the 
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reliability of wheels with each critical feature combination.  The reliability curve of 

critical feature combination 2 is shown in Figure 46, as an example. 
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a) Reliability of Total Wheel Life 

 
b) Zoomed Reliability Curve of Figure 46(a) 

Figure 46. Reliability of critical feature combination 2 from Table 7 
 

 
 

An equation is fit to the above reliability curve so that the reliability, as a function 

of time, can be implemented in the optimization problem.  The probability of failure 

equation is simply 

pf = 1 – Reliability = 1 – E[R(T)]                                                            (41) 

where T, in days, is the inspection interval being optimized.  Both the reliability and 

probability of failure are functions of time.  Each critical feature combination has its own 

reliability and probability of failure equations.  Therefore, for this illustrative example 

there are twelve reliability and twelve probability of failure equations corresponding to 

their specific critical feature combination. 

For this application the goal is to maintain the reliability of the critical feature 

combinations at or above 0.8333.  Each critical feature combination will have a different 

reliability, and thus will have a different interval before required inspection (this time 
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corresponds to the reliability value of 0.8333).  

Once the critical wheels are identified and their reliabilities are computed, a 

simple way to determine inspection interval is to set a reliability target (e.g., R ≥ 0.8333 

as in Figure 46(b)), and compute the corresponding inspection interval (e.g., 23 days in 

Figure 46(b), for critical feature combination 2).  Each critical feature combination will 

need to be considered individually in order to get the inspection time for that specific 

critical feature combination.  In order to maintain the reliability of the critical feature 

combination above the required safety level all of the wheels with that critical feature 

combination will need to be inspected at or before the optimized inspection time of that 

critical feature combination. 

However, a more comprehensive approach is to consider various costs such as 

inspection cost, failure cost, etc. in deciding the inspection schedule.  The optimization 

procedure developed above considers both reliability and cost.  The results of the 

illustrative example’s inspection scheduling optimization are discussed below.  

The solution for the inspection interval is highly dependent on the number of 

wheels within the population that have a particular critical feature combination.  If there 

were only 5,000 wheels within the population that have that specific critical feature 

combination then they could be inspected more often (which would keep the reliability 

higher than the minimum allowable reliability level) than if there were 10,000 wheels 

with that critical feature combination.  Table 9 shows the number of wheels in the entire 

North American wheel population (including all railroads) with the given critical feature 

combinations (the actual numbers used in the illustrative example have been disguised). 

 
 



 94

Table 9. Number of wheels in the population for the individual critical feature 
combinations in the illustrative example 

 
Critical 
Feature 

Combination 

Approximate Number of Wheels 
in North America with given 

Feature Combination 
1 678 
2 678 
3 339 
4 452 
5 452 
6 339 
7 565 
8 226 
9 339 
10 904 
11 452 
12 226 

 
 
 

The reliability is time dependent, which means that it changes over time, 

however, because of the rigorous inspection method it is assumed that the reliability of 

the wheels is reset to the initial reliability level (which assumes the wheels initially 

contain a 3.175 mm crack) after each ultrasonic inspection.  This assumption may or may 

not be valid for different applications.  Because the reliability is assumed to be reset after 

each ultrasonic inspection, the optimized inspection interval remains constant.  Table 10 

presents the optimized inspection intervals for the twelve critical clusters found in this 

example. 

The more often wheels with a specific feature combination are inspected the 

higher the reliability those wheels will maintain.  However, those inspections will also 

result in higher costs since they are performed more often than inspecting them at the 

minimum reliability level.  A balance between cost and increased reliability above the set 

minimum reliability level can be made based on the overall objective of the industry.  
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Table 11 shows a cost/reliability comparison for the critical feature combinations 

discussed in this illustrative example. 

 
 

Table 10. Optimized inspection intervals for individual critical feature combinations 
 

Critical 
Feature 

Combination 

Optimized Inspection 
Time (days between 

ultrasonic inspections) 
1 9 
2 23 
3 1 
4 5 
5 8 
6 9 
7 4 
8 8 
9 4 
10 1 
11 25 
12 1 

 
 
 

For this illustrative example, the cost per year for the ultrasonic inspections was 

reduced by approximately $271,116 ($303,896 - $32,780) per year when the wheels were 

inspected at the times corresponding to their minimum required reliability levels, as 

opposed to inspecting them at their optimized inspection times.  However, for some 

industries it may be beneficial to spend the additional money to maintain the increased 

reliability associated with inspecting the wheels at their optimized inspection times.  It is 

also possible to inspect some critical feature combinations at the times corresponding to 

their minimum reliability levels (increase the inspection interval to decrease cost) while 

inspecting the other critical feature combinations at their optimal inspection intervals.  

The purpose of this would be to find the optimal balance between cost and reliability for 
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the industry. 

 
 

Table 11. Total ultrasonic inspection costs for the additional inspections of the critical 
feature combinations 

 

Critical 
Feature 

Combination 

Optimized 
Inspection 

Interval 
(days) 

Reliability of wheels 
with given Critical 

Feature 
Combination at 

Optimal Inspection 
Time 

Cost per Year to 
Inspect all wheels 

with given 
Critical Feature 
Combination at 

Optimal 
Inspection 

Interval (dollars) 

Inspection 
Interval at 
minimum 

Reliability level 
(days) 

Cost per Year to 
Inspect all wheels 

with given 
Critical Feature 
Combination at 

minimum 
reliability level 

(dollars) 
1 9 0.9545 11274 22 4612 
2 23 0.8333 4411 23 4411 
3 1 0.9999 50731 35 1449 
4 5 0.9935 13528 37 1828 
5 8 0.9830 8455 39 1734 
6 9 0.9570 5637 26 1951 
7 4 0.9875 21138 21 4026 
8 8 0.9690 4228 27 1253 
9 4 0.9895 12683 22 2306 
10 1 0.9999 135284 26 5203 
11 25 0.8333 2706 25 2706 
12 1 0.9999 33821 26 1301 
  

Total cost per year 
to inspect all 
wheels with 

critical feature 
combinations at 

optimal inspection 
time 

303896 

Total cost per 
year to inspect 
all wheels with 
critical feature 

combinations at 
inspection time 
corresponding 
to minimum 

reliability level 

32780 

 
 

For this illustrative example the cost per year to inspect all of the wheels with all 

twelve critical feature combinations at their optimized inspection intervals is $303,896.  

As mentioned in Chapter III, if inspection resources were focused on these critical feature 

combinations then wheel failures could possibly decrease by approximately 52 percent.  

However, only 83.33 percent of the 52 percent of critical wheel failures will be prevented 
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since the probability of failure is being maintained at or above the 0.8333 level and not 

completely eliminated.  The costs associated with wheel failures vary each year, 

however, the average failure cost per year for a major railroad company is approximately 

$6,000,000.  This means that if 83.33 percent of the 52 percent of wheel failures were 

prevented then the railroad company would save approximately $2,600,000 on wheel 

failure costs.  However, because of the additional inspection costs the actual savings are 

approximately $2,296,104 per year.  This translates in to an approximate return on 

investment (ROI) of 755.6% when inspecting the wheels at their optimized inspection 

intervals.  However, because of the practical infeasibility of inspecting the wheels as 

often as the optimized inspection intervals require, it is more realistic to inspect the 

wheels at the times corresponding to their minimum reliability level.  Doing this would 

save the railroad company approximately $2,567,220 per year, resulting in a return on 

investment of 7831.7%.  In addition to the monetary savings, the critical feature 

combinations would be more reliable than without the additional ultrasonic inspections, 

which also means increased safety of the railroad industry. 

It is important to note that some features change over time based on the age and 

condition of the wheel; for this illustrative example these features include the rim 

thickness and flange thickness.  Inspection intervals for wheels will be determined by the 

rim thickness and flange thickness at the current inspection time.  Table 12 explains this 

scenario.  For example, critical feature combinations 7 and 8 are exactly the same except 

that their feature values for rim thickness are different, and the corresponding inspection 

intervals are 21 days and 27 days respectively.  If a specific wheel has critical feature 

combination 8 then it would be scheduled to be ultrasonically inspected in 27 days.  If, at 
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that next ultrasonic inspection, the rim thickness decreased because of age and wear to 

have feature values corresponding to critical feature combination 7, then its next 

ultrasonic inspection would be scheduled for 21 days later.   

 
 

Table 12. Optimized inspection scheduling table for critical feature combinations in 
illustrative example 

 

Critical 
Feature 

Combination 
Rim 

Thickness 
Flange 

Thickness 
Wheel 

Diameter 
Wheel 

Manufacturer 
Heat 

Treatment 
Car 

Type 
Wheel 
Type 

Plate 
Design 

Wheel 
Design 

Inspection 
Interval at 
minimum 
reliability 

level (days) 
1 insignf. 1 33 insignf. insignf. insignf. 2W SP J33HA 22 
2 insignf. 2 33 insignf. insignf. insignf. 2W SP J33HA 23 
3 19 2 38 TD S G 2W CP JK38SG 35 
4 20 2 38 TD S G 2W CP JK38SG 37 
5 20 2 38 TD V G 2W CP JK38SG 39 
6 19 2 38 insignf. S BD 2W CP D38PR 26 
7 18 2 36 insignf. S BD 2W CP T36XX 21 
8 20 2 36 insignf. S BD 2W CP T36XX 27 
9 19 2 36 insignf. S BD 2W CP Y36FE 22 

10 insignf. 2 36 BA S insignf. 2W CP XY33RS 26 
11 insignf. 2 36 TD S insignf. 2W CP XY33RS 25 
12 insignf. 2 36 AC S insignf. 2W CP XY33RS 26 

 
 

 
In summary, a wheel’s reliability does change over time based on its current 

features.  This means that a specific wheel can change critical feature combinations and 

will consequently change its inspection interval.  When applying this method to large 

populations, there will be a much larger number of critical feature combinations which 

means once a wheel becomes a critical wheel it will always be associated with a critical 

feature combination regardless of its changing features.  This is because the (numerical) 

feature values for the changing features, i.e. rim thickness and flange thickness, in the 

critical feature combinations will be ranges as opposed to a single value (this can be seen 

in the full analysis results in Chapter VI).  Therefore, all of the possible values will 

generally be accounted for, so once a wheel becomes critical it will remain critical. 

The total number of wheels associated with a specific critical feature combination 
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will also change because of the wheels’ changing feature values.  But, it is assumed that 

because the wheels age and wear at approximately the same rate that each critical feature 

combination will always have approximately the same number of wheels associated with 

it.  Thus, the overall ultrasonic inspection costs will remain relatively constant over time; 

maintaining the cost savings for the railroad.   

It is an option to re-analyze the data and perform a new cluster analysis once 

additional data is collected in order to “start over” and find new critical feature 

combinations.  However, it is assumed that since the critical feature combinations have 

been identified, that they are the wheels that will continue to fail; it seems illogical that 

wheels with feature values that don’t currently result in failures will start to fail simply 

because the current critical feature combination wheel failures will be prevented by the 

ultrasonic inspections.   

However, as another option to increase the proposed methodology’s effectiveness 

it is possible to maintain the critical feature combinations, but to update their inspection 

intervals based on new failure data.  It is inevitable that some wheels with a critical 

feature combination will fail despite being inspected at their inspection interval.  The 

reliability analysis, as developed in Chapter IV, assumes a 3.175 mm initial defect in the 

wheels.  Also, ultrasonic inspection will detect cracks that are 3.175 mm in size or 

greater.  This means that if a wheel was ultrasonically tested and failed before its next 

scheduled inspection, then the inspection interval should perhaps be tightened. 

This can be done by using a Bayesian updating technique to update the reliability 

estimate, found from the methodology proposed in Chapter IV, with the new failure data.  

The updated reliability estimate can then be used to update the minimum allowable 
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inspection interval, as well as the probability of failure, pf, used in the optimization 

problem.  Once the updated equations are used in the optimization problem, a new 

optimized inspection interval can be calculated.  Figure 47 shows the use of Bayesian 

updating for this purpose. 

 
 

 
 

Figure 47. Updating the probability of failure using Bayesian methods 
 
 
 

Conclusion 
 

The concepts of clustering analysis (to identify critical samples), reliability 

analysis (to calculate the expected life of the critical samples), and reliability-based 

inspection optimization are combined into an overall methodology to optimize the 

inspection schedule of a large population.  The proposed methodology will minimize the 

number of components inspected while at the same time maintain or exceed the desired 

reliability of the population.  

To help expedite the inspection process an optimized inspection scheduling table 

(such as Table 12) should be created to list the critical feature combinations along with 
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their respective inspection intervals.  The methodology is able to account for features that 

change over time as well as static features that remain the same.  This overall 

methodology is suitable for any industry in which inspection scheduling optimization of 

large populations is needed.   

The methodology developed in Chapters III, IV, and V is applied to a large 

population of railroad wheels in the next chapter. 
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CHAPTER VI 
 
 
 

ANALYSIS OF LARGE RAILROAD WHEEL POPULATION DATA 
 
 
 

The overall methodology developed in the previous chapters is applied to a large 

railroad wheel population data set in this chapter.  A description of the full data set is 

provided in the following section, and then the results of the full analysis are presented 

and discussed. 

 
 

Description of Data set 
 

As with the illustrative example, the goal of the full analysis was to identify the 

critical wheels out of the entire population in which inspections should be focused.  All of 

the samples contained a failed/safe feature value which was used to identify the critical 

feature combinations, i.e., feature combinations with the highest percentages of failed 

wheels.   

The modified clustering methodology (discussed at the end of Chapter III) was 

used to identify the critical feature combinations.  Initially the failed samples were 

clustered in order to find all of the feature combinations.  Once all of the feature 

combinations were found then they were queried against all of the safe samples in order 

to determine the percentage of failed/safe samples for each feature combination.  These 

percentages were then used to identify the critical feature combinations in which 

inspections should be focused. 
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The wheels were clustered based on 12 features: six numeric features and six 

nominal features (see Table 13).  This full analysis included 112,218 wheels that had not 

yet failed (denoted as safe) and 1,078 wheels that had failed (denoted as failed), (i.e., total 

population = 113,296).  The safe samples that were used in the cluster analysis were data 

from Union Pacific Railroad’s database.  The failed samples used data from the 

WABL_MD115 database and included both Why Made Codes 68 (vertical split rim 

failures) and 71 (shattered rim failures) because of data recording inconsistencies 

amongst railroads (i.e., it is not uncommon that a shattered rim failure is mistakenly 

recorded as a vertical split rim failure).  The WABL_MD115 database contains 

confirmed failed wheels for all of the North American railroads.   

 
 

Table 13. Wheel Clustering Features 
 

Clustering Feature Feature Type Number of Possible Feature Values 
manufactured year Numeric 100 

rim thickness Numeric 41 (1/16” intervals) 
flange thickness Numeric 32 (1/16” intervals) 
wheel diameter Numeric 4 

age (days) Numeric continuous values from 
1 – 36122 

gross ton mileage Numeric continuous values from 
4470 – 843631210 

heat treatment Nominal 3 
plate design Nominal 2 

car type the wheel 
was on Nominal 17 

wheel 
manufacturer Nominal 155 

cast/forged Nominal 3 
wheel design Nominal 27 
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Many of these features have been discussed in Chapter III.  The manufactured 

year is a numeric feature that is incremented in years.  The dates range from 1907 to 2006 

for this full analysis.  The rim thickness and flange thickness are both numeric features 

which are measured following the procedures discussed in Chapter III.  The rim thickness 

ranged from 0/16” (0) to 40/16” (40) in this analysis and the flange thickness ranged from 

0/16” (0) to 31/16” (31).  The wheels in this analysis had diameters of 28, 33, 36, and 38 

inches in size.   

The age and gross ton mileage are numeric features which have a wide range of 

values.  The age of the wheel was calculated and recorded in days for this analysis.  It is 

important to point out that the age changed depending on the wheel failure/recording 

date, whereas the wheel manufactured year stayed the same regardless of when the wheel 

failed or the data was recorded.  The gross ton mileage was calculated by multiplying the 

total miles the wheel had traveled by the maximum weight, in tons, the wheel was 

certified to carry (including car and cargo weight). 

The heat treatment was a nominal feature that had 3 possible values in this 

analysis: B, C, U.  The plate design feature designated either a straight plate or a curved 

plate design (nominal feature with 2 possible feature values).  The feature indicating the 

car type the wheel was on was also a nominal feature which had 18 possible feature 

values.   

The wheel manufacturer was considered a nominal feature which included both 

national and international train wheel manufacturers.  This feature indicated which plant 

of its manufacturer that it was manufactured in; 155 possible feature values were 

included in the analysis.   
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The cast/forged feature indicated if the wheel was cast or forged when it was 

manufactured.  Wheels manufactured by Griffin were assigned one cast designation, 

while wheels manufactured by Southern were assigned a different cast designation.  The 

wheels manufactured by all of the other manufacturers were assigned a forged 

designation.  This resulted in 3 possible feature values for this feature. 

The final feature included in this analysis, was the wheel design.  The wheel 

design is a nominal feature which signifies the design of the wheel.  There are many 

wheel designs which vary according to manufacturer and wheel diameter.  In this analysis 

27 wheel designs were included. 

Thus, the twelve features included in this analysis were: manufactured year, rim 

thickness, flange thickness, wheel diameter, age, gross ton mileage, heat treatment, plate 

design, car type the wheel was on, wheel manufacturer, cast/forged, and wheel design.  

The results of the full analysis are presented and discussed in the following section. 

 

Results of the Full Railroad Wheel Data Analysis 
 

All of the failed wheels were clustered using SBAC with a threshold value t = 

0.25.  From the cluster analysis 32 clusters were found for the failed wheels.  The 32 

clusters were then analyzed further to find 363 feature combinations that could identify 

specific groups of failed wheels.  All of the feature combinations were then queried 

against the entire population of failed and safe samples in order to determine the 

percentage of failed and safe wheels that each feature combination would identify out of 

the entire population.  This analysis resulted in 214 critical feature combinations; a 

critical feature combination was determined to be a feature combination that contained 
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equal or more failed samples than safe samples when the entire population of both failed 

and safe wheels was queried (i.e., a feature combination that included four (out of the 

total 1,078 failed samples) failed samples was considered critical when four (out of the 

total 112,218 safe samples) or less safe samples was also included in the queried feature 

combination).  The critical feature combinations in which inspections should be focused 

are presented in Table 14 in the order of significance based on the percentage and number 

of failed wheels in the critical feature combination.  In Table 14, the manufacturer feature 

is masked for proprietary reasons.  It is important to note that the number of failed wheels 

and the percentage of failed wheels in the critical feature combination are given in Table 

14 only to show how the critical feature combinations were ranked; they are not used to 

identify the wheels which need inspection. 

The criteria for each feature in Table 14 are discussed below:   

1. A critical feature combination that included samples with a range of 10 or 

more years for the manufactured year was assigned a feature value of 

insign (i.e., insignificant) for the manufactured year feature.   

2. A critical feature combination that included samples with a range of 10 or 

more (i.e., 10/16 inch or more) for the rim thickness was assigned a 

feature value of insign for the rim thickness feature.   

3. For the flange thickness a range was only included when the lower value 

of the range was greater than zero (i.e., 3 or 5), otherwise it was assigned 

insign for its feature value.   

4. A diameter was listed in Table 14 when all of the samples in the critical 

feature combination had the same diameter; if all of the samples didn’t 
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have the same diameter then insign was assigned for the diameter feature 

value. 

5. If the range of samples in the critical feature combination had age values 

of more than 365 days then it was assigned insign for the age feature 

value.  If the range was within 365 days then each end of the range was 

rounded to the nearest 25 days (rounded range could exceed 365 days). 

6. The gross ton mileage must have had all samples within 10% of each other 

(i.e., range’s upper bound must be equal or less than 110% of range’s 

lower bound).  If the range was within 10% for all of the samples in the 

critical feature combination then each end of the range was rounded to the 

nearest 1000000 miles (rounded range could exceed a difference greater 

than 10% in feature values). 

7. The heat treatment feature values that were given in Table 14 required that 

all of the samples for that critical feature combination have the same 

feature values (B, C, or U).  A feature value of HT was assigned for 

critical feature combinations that contained samples with heat treatment 

feature values of both B and C, which simply means that the wheel was 

heat treated in one way or another.  If all of the samples didn’t have the 

same heat treatment, or a combination of B and C, then insign was 

assigned for that feature value. 

8. If all of the samples in the critical feature combination didn’t have the 

same plate design feature value, then insign was assigned for the plate 

design feature value for that critical feature combination. 
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9. If all of the samples in the critical feature combination didn’t have the 

same car type feature value, then insign was assigned for the car type 

feature value for that critical feature combination. 

10. If all of the samples in the critical feature combination didn’t have the 

same manufacturer feature value, then insign was assigned for the 

manufacturer feature value for that critical feature combination. 

11. All of the samples in a critical feature combination had to have the same 

feature value to be listed in Table 14 for the cast/forged feature value (C1, 

C2, or F).  If the samples in the critical feature combination contained 

both cast designations (C1 and C2) then Cast was assigned as the feature 

value.  If all of the samples in the critical feature combination were not the 

same, or some combination of the two cast designations, then insign was 

assigned for the cast/forged feature value for that critical feature 

combination. 

12. If all of the samples in the critical feature combination did not have the 

same wheel design feature value, then insign was assigned for the wheel 

design feature value for that critical feature combination. 
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Table 14. Critical feature combinations in which inspections should be focused 
 

critical 
feature 

combination 
number

manufactured 
year

rim 
thickness

flange 
thickness diameter

age 
(days) gross ton mileage

heat 
treatment

plate 
design car type manufacturer cast/forged

wheel 
design

number 
of failed 
wheels

percentage of failed 
wheels in the critical 
feature combination

1 insign 14-19 insign 36 insign insign C CP C P C1 CJ36 32 100
2 1993-2000 17-32 insign 36 insign insign C CP C P C1 CJ36 21 100
3 1990-1999 12 to 22 insign 33 insign insign C CP S E C2 CJ33 13 100
4 1991-1999 15-19 insign 33 insign insign C CP S Q C1 CJ33 12 100
5 1990-1995 15-20 0 to 2 38 insign insign C CP S B F B38 11 100
6 1993-1998 19 insign 36 insign insign C CP J insign insign insign 10 100
7 insign 14-16 insign 36 insign insign C CP C P C1 CJ36 8 100
8 2000-2004 19-24 0 33 insign insign C CP S B F J33 8 100
9 1981-1988 20-26 insign 36 insign insign C CP C P C1 CJ36 8 100
10 1968-1972 16-24 insign 36 insign insign C SP T B F H36 8 100
11 1998 20-22 0 33 insign insign C CP Q T F J33 7 100
12 1981-1982 20-22 insign 36 insign insign U CP C G C1 CH36 7 100
13 1987-1997 13-20 0 33 insign insign C CP Q Q C1 CJ33 7 100
14 1979-1985 19-25 insign 36 insign insign U CP C E C2 CH36 7 100
15 1990-1999 15-22 insign 36 insign insign C CP J P C1 CJ36 7 100
16 1994-1998 23-25 0 36 insign insign C CP J insign F insign 7 100
17 insign 22 0 36 insign insign C CP C P C1 CJ36 6 100
18 1990-1996 15-20 0 33 insign insign C CP V Q C1 CJ33 6 100
19 1991-1998 18 insign 36 insign insign C CP C P C1 CJ36 6 100
20 1967-1973 19-24 insign 36 insign 40000000-46000000 C SP T insign F H36 6 100
21 1970 14-21 insign 36 insign insign C SP insign Y F H36 6 100
22 insign 17 insign 36 insign insign C CP C P C1 CJ36 5 100
23 1991-1997 20 insign 36 insign insign C CP C P C1 CJ36 5 100
24 1993-1994 14-16 0 33 insign insign C CP Q B F J33 5 100
25 1989-1996 19 0 36 insign insign C CP C P C1 CJ36 5 100
26 1991-1995 19 insign 36 insign insign C CP J E C2 CH36 5 100
27 1995-1997 18-24 0 36 insign insign C CP C V C1 CH36 5 100
28 1974 21-23 insign 36 insign 62000000-64000000 U SP H D F H36 5 100
29 1973-1977 29-35 insign 36 insign insign C SP H Y F J36 5 100
30 1971-1976 26-32 insign 36 insign insign C SP H B F J36 5 100
31 1989-1998 17 insign 36 insign insign C CP J V C1 CH36 5 100
32 insign 16-18 0 36 insign insign C CP E P C1 CJ36 5 100
33 1969-1970 16-20 insign 36 insign 92000000-99000000 C SP H B F H36 5 100
34 1992-1999 19-20 0 to 1 38 insign insign HT CP S insign Cast insign 5 100
35 1991-1994 14 0 33 insign insign C CP insign B F J33 5 100
36 1991-1996 17-21 insign 36 insign insign C CP C P C1 CH36 4 100
37 1990-1996 24 0 36 insign insign C CP C E C2 CH36 4 100
38 insign 21 0 36 insign insign C CP C P C1 CJ36 4 100
39 1988-1994 28-32 insign 36 insign insign C CP C P C1 CJ36 4 100
40 1980-1986 21-26 insign 36 insign insign U CP C B F H36 4 100
41 1974-1979 21-26 insign 36 insign insign U SP C insign F insign 4 100
42 1984-1994 12 to 14 0 33 insign insign C CP S Q C1 CJ33 4 100
43 1975-1979 19-24 insign 36 insign insign U CP C insign F H36 4 100
44 1991-1997 19 insign 36 insign insign C CP J G C1 CH36 4 100
45 1995-1998 26 0 36 insign insign C CP J E C2 CH36 4 100
46 1996-2001 28-33 0 36 insign insign C CP J P C1 CJ36 4 100
47 1994-1995 21-26 0 36 insign insign C CP J C F H36 4 100
48 1995-1998 21-24 insign 36 insign insign C CP J T F H36 4 100
49 1989-1994 13-16 0 33 insign insign C CP P E C2 CJ33 4 100
50 1990-1999 19-20 0 33 insign insign C CP V B F J33 4 100
51 1968-1969 16-19 2 to 4 36 insign 264000000-294000000 U SP J R F J36 4 100
52 1990-1993 20 insign 36 insign insign C CP J V C1 CH36 4 100
53 1993-1995 19 insign 36 insign insign C CP K E C2 CH36 4 100
54 1996-2000 16-18 insign 38 insign insign C CP S E C2 CB38 4 100
55 1993-2001 22-24 insign 36 insign insign C CP Q P C1 CJ36 4 100
56 1981-1984 14-19 insign 36 insign insign U CP J E C2 CJ36 4 100
57 1967-1968 18-25 insign 36 insign insign U SP H L F J36 4 100
58 1978-1988 14-17 insign 33 insign insign U CP A Q C1 CJ33 4 100
59 1971-1977 19-28 insign 36 insign insign C SP insign Y F J36 4 100
60 1965-1973 19 insign 36 insign insign U SP insign insign F J36 4 100
61 insign 17-18 insign 33 insign insign C SP insign insign F J33 4 100
62 1973-1975 insign 0 36 insign 43000000-46000000 U SP C E C2 CJ36 3 100
63 1968-1970 17-20 insign 36 insign insign C SP C Y F H36 3 100
64 1991-1994 24 0 36 insign insign C CP C P C1 CJ36 3 100
65 1988-1995 23 insign 36 insign insign C CP C P C1 CJ36 3 100
66 1996-2003 25-26 insign 36 insign insign C CP C P C1 CH36 3 100
67 1980-1987 25-28 insign 36 insign insign U SP C insign F H36 3 100
68 1980 20-23 0 36 insign insign U SP C insign F H36 3 100
69 1992-1993 19 insign 36 insign insign C CP J V C1 CH36 3 100
70 1979 18-20 2 to 3 36 insign insign U SP C K F H36 3 100
71 1971-1977 18-21 insign 36 insign insign U SP C E C2 CH36 3 100
72 1968-1972 18-20 insign 36 insign insign U SP C B F H36 3 100
73 1968-1976 26-31 insign 36 insign insign C SP J B F J36 3 100
74 1976 19-24 insign 36 insign insign U SP T L F H36 3 100
75 1982-1992 16 0 36 insign insign C CP J G C1 CH36 3 100
76 1980-1984 16 insign 36 insign insign U CP J E C2 CH36 3 100
77 1991-1999 20 0 36 insign insign C CP J Q C1 CH36 3 100
78 1989-1990 insign 0 36 insign 52000000-58000000 C CP J insign insign insign 3 100
79 1988-1996 18 0 36 insign insign C CP J V C1 CH36 3 100
80 1995 18 insign 36 insign insign C CP J V C1 CH36 3 100
81 1981-1987 19-21 0 36 insign 41000000-42000000 U CP H E C2 CH36 3 100
82 1992-1998 21-22 0 33 insign insign C CP A P C1 CJ33 3 100
83 1993-1995 11 to 20 0 33 insign insign C CP V E C2 CJ33 3 100
84 1988-1993 17-22 0 36 insign insign C CP S Q C1 CH36 3 100
85 1994-1995 16 insign 36 insign insign C CP C E C2 CH36 3 100
86 1994-1996 18-23 5 to 9 36 insign insign C CP P P C1 CJ36 3 100
87 1975-1977 18-21 insign 33 insign 54000000-58000000 C SP A B F J33 3 100
88 1967-1968 30-32 insign 36 insign 79000000-84000000 U SP H R F J36 3 100
89 1993-1995 17-19 insign 36 insign insign C CP K V C1 CH36 3 100
90 1973-1975 22-24 insign 36 insign insign U SP E D F H36 3 100
91 1967-1970 17-19 insign 36 insign insign C SP H Y F H36 3 100
92 1988-1989 12 to 21 insign 33 insign insign U CP C A F J33 3 100
93 1971-1973 insign 0 36 insign insign U SP insign E C2 CJ36 3 100
94 1994-1995 23-25 insign 36 insign insign C CP insign D F H36 3 100  
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Table 14 -- continued 
 

critical 
feature 

combination 
number

manufactured 
year

rim 
thickness

flange 
thickness diameter

age 
(days) gross ton mileage

heat 
treatment

plate 
design car type manufacturer cast/forged

wheel 
design

number 
of failed 
wheels

percentage of failed 
wheels in the critical 
feature combination

95 1978-1979 18-23 insign 36 insign insign B SP insign L F H36 3 100
96 1986-1988 0 18-20 33 insign insign U SP insign insign F J33 3 100
97 1991-1999 <=15 0 36 insign insign C CP C V C1 CH36 2 100
98 1981-1984 17-24 insign 36 insign 43000000-46000000 C CP C E C2 CH36 2 100
99 1987-1994 17 0 36 insign 20000000-22000000 insign CP C B F insign 2 100
100 1982 22-23 0 36 insign 35000000-36000000 C CP C G C1 CH36 2 100
101 1995-1996 28 0 36 insign insign C CP C E C2 CH36 2 100
102 1970-1976 21 0 36 insign insign U SP C Y F H36 2 100
103 1974-1976 21-24 0 36 insign insign C SP C B F H36 2 100
104 1971-1973 28-32 insign 36 insign 49000000-50000000 C SP C E C2 CJ36 2 100
105 1995 25-26 insign 36 insign insign C CP C C F H36 2 100
106 1987 21-23 insign 36 insign insign U CP C Q C1 CH36 2 100
107 1972-1982 21-24 insign 36 insign insign U CP C V C1 CH36 2 100
108 1994-1995 17-25 0 36 insign 26000000-28000000 C CP A E C2 CH36 2 100
109 1994 20-21 0 33 insign 63000000-64000000 C CP Q T F J33 2 100
110 1988-1994 20 insign 36 insign insign C CP C V C1 CH36 2 100
111 1979-1980 20-22 insign 36 insign 35000000-36000000 U CP C Z F CJ36 2 100
112 1987-1996 19 0 36 insign insign C CP C V C1 CH36 2 100
113 1986-1989 19-21 0 36 insign 28000000-32000000 U CP C M C1 CH36 2 100
114 1986-1995 19-21 0 36 insign 19000000-20000000 insign CP C E C2 CH36 2 100
115 1995-1999 15 0 36 insign insign C CP J G C1 CH36 2 100
116 1989-1995 19 insign 36 insign insign C CP J E C2 CJ36 2 100
117 1975-1976 19-22 insign 36 insign insign C SP J B F J36 2 100
118 1972-1979 18-22 0 36 insign insign B SP C E C2 CJ36 2 100
119 1973-1977 18-24 0 36 insign insign C SP C Y F J36 2 100
120 1999 21 0 36 insign insign C CP J E C2 CH36 2 100
121 1995 24 0 36 insign insign C CP J E C2 CH36 2 100
122 1999 26-28 0 36 insign 42000000-43000000 C CP J F F H36 2 100
123 1995-1997 27 0 36 insign insign C CP J E C2 CH36 2 100
124 1986 23-25 2 to 4 36 insign 86000000-87000000 U CP J E C2 CH36 2 100
125 1969-1970 28-30 2 to 4 36 insign 241000000-266000000 B SP J Y F J36 2 100
126 1970-1975 29-33 0 36 insign 77000000-82000000 C SP H Y F H36 2 100
127 1993-1995 21 insign 36 insign 19000000-20000000 C CP H E C2 CH36 2 100
128 1995 23-24 insign 36 insign 22000000-24000000 C CP H E C2 CH36 2 100
129 1971-1975 28-30 0 36 insign insign C CP H Y F J36 2 100
130 1979-1980 21-26 insign 36 insign insign U SP H E C2 CH36 2 100
131 1977-1978 19-24  3 to 5 36 insign 30000000-34000000 U SP T H F H36 2 100
132 1974-1975 19-21 insign 36 insign 35000000-38000000 B SP T R F H36 2 100
133 1979-1988 17 0 36 insign 153000000-157000000 C CP J P C1 CJ36 2 100
134 1982-1984 16-19 0 36 insign insign U CP H E C2 CJ36 2 100
135 1997-1998 16 insign 36 insign insign C CP J V C1 CH36 2 100
136 1995-1997 16-18 insign 36 insign insign C CP J G C1 CH36 2 100
137 2000-2003 22-23 insign 38 insign insign C CP S G C1 CB38 2 100
138 1993-1994 24-29 0 38 insign insign C insign S B F insign 2 100
139 1968 20-24 2 to 4 36 insign 252000000-271000000 U SP J L F J36 2 100
140 1998 19-24 0 36 insign insign C CP K T F H36 2 100
141 1989-1990 insign 0 36 insign insign C CP J V C1 CH36 2 100
142 1990 insign 0 36 insign 126000000-138000000 C CP J insign Cast CH36 2 100
143 1985-1986 18-21 insign 36 insign 40000000-42000000 C CP H E C2 CH36 2 100
144 1993-1995 27 0 36 insign 19000000-21000000 C CP A E C2 CH36 2 100
145 1997-1998 18 0 36 insign insign C CP J V C1 insign 2 100
146 1993-1996 18-19 0 36 insign 71000000-75000000 C CP J P C1 insign 2 100
147 1996-2000 18-25 insign 36 insign insign C CP J P C1 CH36 2 100
148 1968-1977 18-21 insign 36 insign insign U SP J L F H36 2 100
149 insign 18-22 4 to 8 36 insign insign U SP J B F J36 2 100
150 1992-1996 19-20 0 38 insign insign C CP S V C1 CB38 2 100
151 1994-1999 16 insign 36 insign insign C CP C V C1 CH36 2 100
152 1972-1974 23-28 0 36 insign 23000000-26000000 U SP E L F insign 2 100
153 1985 19 0 36 insign 41000000-42000000 C CP F P C1 CH36 2 100
154 1991 21 0 36 insign insign C CP K V C1 CH36 2 100
155 1975-1976 28-32 insign 36 insign 117000000-120000000 C SP K B F J36 2 100
156 1979 21-23 0 36 insign insign U SP T E C2 CH36 2 100
157 1973 24 insign 36 insign insign U SP T Y F H36 2 100
158 1970-1974 23-24 insign 36 insign 52000000-55000000 U SP T B F H36 2 100
159 1981-1984 24-26 insign 36 insign 25000000-28000000 U CP T Q C1 insign 2 100
160 1995 16-19 0 33 insign 17000000-20000000 C CP A Q C1 CJ33 2 100
161 1979 16-19 insign 33 insign 52000000-55000000 U CP A E C2 CJ33 2 100
162 1996-1998 20 0 33 insign insign C CP V P C1 CJ33 2 100
163 1982-1988 17 0 36 insign insign C CP F P C1 CJ36 2 100
164 1985-1992 20-24 0 36 insign 43000000-46000000 C CP M P C1 CJ36 2 100
165 1990- 1991 16 0 36 insign 32000000-36000000 C CP F E C2 insign 2 100
166 1994-1997 18-19 4 36 insign insign C CP K G C1 CH36 2 100
167 1981-1985 18 0 insign insign insign U CP K Q C1 insign 2 100
168 1997-2005 21-26 0 33 insign insign C CP S M C1 CJ33 2 100
169 1987-1992 18-19 0 36 insign insign C CP S P C1 CJ36 2 100
170 1969 16-17 0 36 insign insign C insign K S F H36 2 100
171 1983-1988 16-18 insign 36 insign insign U CP K E C2 CH36 2 100
172 1994-2000 19 insign 33 insign 68000000-70000000 C CP Q B F J33 2 100
173 1990-1994 12 to 16 0 36 insign insign C CP E Q C1 CH36 2 100
174 1980-1983 insign 0 36 insign insign C CP E E C2 insign 2 100
175 1986-1989 14-21 insign 36 insign insign U CP E Q C1 CH36 2 100
176 1985-1989 16 0 33 insign insign C CP P insign F J33 2 100
177 insign 16-23 2 36 insign insign C CP M Q C1 CH36 2 100
178 1985-1988 14-21 insign 36 insign insign C CP A P C1 CJ36 2 100
179 1975-1976 insign insign 36 insign 68000000-71000000 C SP H E C2 CJ36 2 100
180 1988-1992 insign insign 36 insign 18000000-20000000 C CP F B F H36 2 100
181 1981-1987 24-25 0 36 insign insign C insign P insign F J36 2 100
182 1988-1991 insign 0 36 insign insign C CP insign N F CJ36 2 100
183 1971-1976 insign insign 36 insign 73000000-76000000 C CP insign B F J36 2 100
184 1975-1985 13 0 33 insign insign U SP insign insign F J33 2 100
185 1979-1989 12 to 13 0 33 insign insign insign CP insign P C1 CJ33 2 100
186 1991-1994 14-15 2 to 5 33 insign insign C CP insign insign F J33 2 100
187 1994-1998 28 1 36 insign insign C CP insign E C2 CH36 2 100
188 1986 29-31 0 36 insign insign U CP insign E C2 CJ36 2 100  
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Table 14 -- continued 
 

critical 
feature 

combination 
number

manufactured 
year

rim 
thickness

flange 
thickness diameter

age 
(days) gross ton mileage

heat 
treatment

plate 
design car type manufacturer cast/forged

wheel 
design

number 
of failed 
wheels

percentage of failed 
wheels in the critical 
feature combination

189 1978 27-28 2 36 insign insign U CP insign X C1 insign 2 100
190 1972 27-31 insign 36 insign insign U SP insign Y F J36 2 100
191 1968-1971 21-27 insign 36 insign insign C SP insign S F J36 2 100
192 1970-1971 19 insign 36 insign insign U SP insign L F H36 2 100
193 1968-1977 18-20 insign 36 insign 83000000-88000000 C SP insign L F H36 2 100
194 1967-1970 18-20 0 36 insign insign U insign insign Y F H36 2 100
195 1970-1974 18-22 insign 36 insign insign U SP insign I F H36 2 100
196 1972-1977 19-21 0 33 insign insign C SP insign Y F J33 2 100
197 1976-1982 16 insign 36 insign insign C CP insign J C1 CJ36 2 100
198 1975-1976 32 insign 36 insign insign U SP insign Y F insign 2 100
199 1975-1976 3 to 5 30 36 insign insign C SP insign Y F J36 2 100
200 1968-1971 0 19-21 36 insign insign C SP insign insign F H36 2 100
201 1979-1980 0 22-25 36 insign insign U insign insign insign F H36 2 100
202 insign 21-30 insign 36 insign insign C CP C Q C1 CJ36 24 92.30769231
203 1960-1970 22-30 1 to 5 36 insign insign U SP insign insign F J36 7 87.5
204 1995-2001 22-28 insign 38 insign insign C CP S E C2 CB38 6 85.71428571
205 1968-1972 17-18 insign 36 insign insign C SP insign insign F insign 6 85.71428571
206 1993-1999 12 to 26 0 36 insign insign C CP C B F H36 5 83.33333333
207 1993-2000 17-27 0-4 36 insign insign C CP A P C1 CH36 5 83.33333333
208 insign 17-28 0-7 36 insign insign C CP A P C1 CJ36 16 76.19047619
209 1991-1995 21-31 0 36 insign insign C CP A E C2 CH36 6 75
210 1975 16-24 insign 36 insign insign C CP insign P C1 CJ36 3 75
211 insign insign insign 36 insign insign C CP C insign F H36 10 71.42857143
212 1988-1996 15 0 36 insign insign C CP insign E C2 CH36 6 66.66666667
213 1965-1975 22-30 insign 36 insign insign U SP insign R F J36 6 54.54545455
214 insign 12 to 17 0 36 insign insign C CP insign P C1 CJ36 24 52.17391304  

 
 

 
For the full analysis, as in the illustrative example of Chapter V, the optimum 

inspection schedule is highly dependent on the number of wheels within the population 

that have a particular critical feature combination.  Table 15 shows the number of wheels 

in the wheel population with the specific critical feature combination corresponding to 

the critical feature combination number in Table 14. 

The reliability analysis and optimization of inspection intervals follow the same 

procedures discussed in Chapters IV and V.  For this application, as discussed in the 

illustrative example, the goal was to keep the reliability of wheels in each critical feature 

combination at or above the minimum allowable reliability level of 0.8333.  
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Table 15. Number of wheels in North American population for each critical feature 
combination 

 

critical 
feature 

combination 
number

approximate number 
of wheels in North 
America with given 

critical feature 
combination

critical 
feature 

combination 
number

approximate 
number of wheels in 
North America with 
given critical feature 

combination

critical 
feature 

combination 
number

approximate 
number of wheels in 
North America with 
given critical feature 

combination
1 3615 73 339 145 226
2 2373 74 339 146 226
3 1469 75 339 147 226
4 1356 76 339 148 226
5 1243 77 339 149 226
6 1130 78 339 150 226
7 904 79 339 151 226
8 904 80 339 152 226
9 904 81 339 153 226
10 904 82 339 154 226
11 791 83 339 155 226
12 791 84 339 156 226
13 791 85 339 157 226
14 791 86 339 158 226
15 791 87 339 159 226
16 791 88 339 160 226
17 678 89 339 161 226
18 678 90 339 162 226
19 678 91 339 163 226
20 678 92 339 164 226
21 678 93 339 165 226
22 565 94 339 166 226
23 565 95 339 167 226
24 565 96 339 168 226
25 565 97 226 169 226
26 565 98 226 170 226
27 565 99 226 171 226
28 565 100 226 172 226
29 565 101 226 173 226
30 565 102 226 174 226
31 565 103 226 175 226
32 565 104 226 176 226
33 565 105 226 177 226
34 565 106 226 178 226
35 565 107 226 179 226
36 452 108 226 180 226
37 452 109 226 181 226
38 452 110 226 182 226
39 452 111 226 183 226
40 452 112 226 184 226
41 452 113 226 185 226
42 452 114 226 186 226
43 452 115 226 187 226
44 452 116 226 188 226
45 452 117 226 189 226
46 452 118 226 190 226
47 452 119 226 191 226
48 452 120 226 192 226
49 452 121 226 193 226
50 452 122 226 194 226
51 452 123 226 195 226
52 452 124 226 196 226
53 452 125 226 197 226
54 452 126 226 198 226
55 452 127 226 199 226
56 452 128 226 200 226
57 452 129 226 201 226
58 452 130 226 202 2937
59 452 131 226 203 904
60 452 132 226 204 791
61 452 133 226 205 791
62 339 134 226 206 678
63 339 135 226 207 678
64 339 136 226 208 2373
65 339 137 226 209 904
66 339 138 226 210 452
67 339 139 226 211 1582
68 339 140 226 212 1017
69 339 141 226 213 1243
70 339 142 226 214 5197
71 339 143 226
72 339 144 226  
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Table 16. Inspection interval and cost per year for each critical feature combination 
 

critical 
feature 

combination 
number

inspection 
time at 

minimum 
reliability level 

for given 
critical feature 
combination 

(days)

cost per year 
to inspect all 

wheels at 
minimum 

reliability level 
for given 

critical feature 
combination 

(dollars)

critical 
feature 

combination 
number

inspection 
time at 

minimum 
reliability level 

for given 
critical 
feature 

combination 
(days)

cost per year 
to inspect all 

wheels at 
minimum 

reliability level 
for given 

critical feature 
combination 

(dollars)

critical 
feature 

combination 
number

inspection 
time at 

minimum 
reliability level 

for given 
critical feature 
combination 

(days)

cost per year 
to inspect all 

wheels at 
minimum 

reliability level 
for given 

critical feature 
combination 

(dollars)
1 57 9455 73 20 2600 145 21 1609
2 97 3655 74 127 400 146 21 1609
3 17 12853 75 19 2704 147 21 1609
4 25 8264 76 19 2704 148 21 1609
5 27 6879 77 21 2394 149 21 1609
6 22 7766 78 11 4493 150 35 970
7 57 2364 79 21 2414 151 98 345
8 31 4423 80 21 2414 152 204 166
9 105 1283 81 64 791 153 125 271
10 123 1095 82 110 461 154 40 843
11 69 1711 83 60 843 155 40 843
12 105 1122 84 32 1563 156 131 258
13 37 3194 85 98 518 157 131 258
14 104 1133 86 39 1306 158 131 258
15 16 7601 87 106 477 159 131 258
16 20 6066 88 68 747 160 98 346
17 101 1005 89 39 1317 161 98 346
18 83 1221 90 204 248 162 112 302
19 111 916 91 60 841 163 110 308
20 127 799 92 53 952 164 82 411
21 25 4018 93 25 2009 165 98 344
22 97 870 94 46 1108 166 41 834
23 105 802 95 42 1210 167 41 834
24 37 2282 96 discard NA 168 31 1108
25 104 809 97 57 591 169 31 1090
26 22 3883 98 97 348 170 35 969
27 111 763 99 97 348 171 35 969
28 60 1399 100 101 335 172 68 495
29 60 1399 101 101 335 173 113 298
30 60 1399 102 101 335 174 113 298
31 20 4311 103 101 335 175 113 298
32 202 418 104 101 335 176 34 994
33 58 1451 105 101 335 177 70 485
34 35 2424 106 101 335 178 59 576
35 22 3794 107 101 335 179 37 924
36 97 696 108 106 319 180 61 558
37 101 670 109 69 489 181 41 821
38 101 670 110 105 321 182 25 1339
39 101 670 111 105 321 183 25 1339
40 101 670 112 104 324 184 22 1518
41 101 670 113 104 324 185 22 1518
42 17 3955 114 104 324 186 22 1518
43 104 648 115 16 2172 187 46 739
44 22 3107 116 22 1553 188 46 739
45 20 3466 117 22 1553 189 46 739
46 20 3466 118 111 305 190 46 739
47 20 3466 119 111 305 191 46 739
48 20 3466 120 20 1733 192 47 720
49 21 3211 121 20 1733 193 42 807
50 114 596 122 20 1733 194 42 807
51 19 3605 123 20 1733 195 42 807
52 21 3192 124 20 1733 196 41 817
53 40 1689 125 20 1733 197 41 834
54 31 2189 126 60 559 198 47 727
55 69 979 127 60 559 199 discard NA
56 11 5990 128 60 559 200 discard NA
57 64 1062 129 60 559 201 discard NA
58 60 1136 130 60 559 202 101 4357
59 47 1440 131 127 266 203 46 2955
60 47 1440 132 127 266 204 37 3164
61 40 1693 133 20 1724 205 42 2792
62 57 886 134 58 580 206 57 1773
63 97 522 135 19 1802 207 106 958
64 101 503 136 19 1802 208 106 3351
65 101 503 137 37 904 209 114 1181
66 101 503 138 37 904 210 41 1668
67 101 503 139 21 1596 211 57 4136
68 105 481 140 40 845 212 37 4067
69 22 2330 141 11 2995 213 46 4063
70 111 458 142 11 2995 214 25 30801
71 111 458 143 64 531
72 111 458 144 114 295  
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The optimized inspection times and the cost per year to inspect all of the wheels 

in the critical feature combinations at their optimized inspection times are presented in 

Table 16.  As discussed in Chapter V, even though it is financially feasible, it is 

practically infeasible to inspect the railroad wheels as often as the optimized inspection 

intervals concluded.  Therefore, the inspection times corresponding to the minimum 

allowable reliability level for each critical feature combination are given in Table 16.  It 

is important to note that in Table 16, when the inspection interval for a critical feature 

combination is given as discard it means the wheels with that critical feature combination 

should be removed from service instead of scheduled for their next inspection.  

It is important to once again note that some features change over time based on 

the age and condition of the wheel; for the full analysis these features include the rim 

thickness and flange thickness.  The next inspection interval for wheels will be 

determined by the rim thickness and flange thickness at the wheels’ current inspection 

time.  Also, the railroads will need to inspect all of the wheels that have a specific critical 

feature combination.  If only a portion of the wheels with that specific critical feature 

combination are inspected then the reliability level of that critical feature combination 

will fall. 

For this full analysis of railroad wheels, the cost per year to inspect all of the 

wheels with a critical feature combination at their minimum reliability inspection 

intervals is $359,604.  If inspection resources were focused on these 214 critical feature 

combinations then wheel failures could possibly decrease by approximately 75.7 percent.  

It is important to note that only 0.72 percent of the samples had a feature combination 

that was considered critical.  This means that if inspection resources were focused on this 
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critical 0.72 percent of the population then wheel failures could possibly decrease by 

approximately 63 percent (83.33 percent of the 75.7 percent of wheels identified by the 

critical feature combinations).  Once again, the average failure cost per year for a major 

railroad company from derailments caused by shattered rim failures is approximately 

$6,000,000; this means that if 83.33 percent of the 75.7 percent of wheel failures were 

prevented then the railroad company would save approximately $3,784,849 on wheel 

failure costs.  However, because of the additional inspection costs the actual savings are 

approximately $3,425,245 per year.  This translates to an approximate return on 

investment (ROI) of 953% when inspecting the wheels at their minimum allowable 

reliability inspection intervals.  In addition to the monetary savings, the critical feature 

combinations would be more reliable than without the additional ultrasonic inspections, 

which also means increased safety of the railroad industry. 
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CHAPTER VII 
 
 
 

CONCLUSIONS AND FUTURE WORK 
 
 
 

The methodology developed in this dissertation for optimizing the inspection 

schedules of large populations, has been shown to produce promising results, as 

demonstrated through applying the methodology to a railroad wheel population.  The 

proposed methodology combines clustering, reliability, and optimization techniques, and 

is transferable to many industries in which there are large populations of samples that 

need to be inspected.  Not only are there monetary benefits for applying this 

methodology, but the reliability of the critical samples within the optimized population is 

also maintained at or above the desired level.  In addition, the proposed methodology is 

able to handle features that remain constant, as well as features that change over time.  

The optimized inspection intervals can also be optimized further using Bayesian updating 

to update the reliability estimates based on inspection data. 

Currently the proposed methodology optimizes the inspection intervals of the 

critical feature combinations individually without simultaneously considering the 

inspection costs of the other critical feature combinations.  This means that all of the 

critical feature combinations are optimized separately and the total cost of inspections is 

then calculated at the end of the analysis.  A methodology that includes a total inspection 

cost constraint would optimize the total cost of all of the critical feature combinations at 

once.   
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The proposed methodology also requires that all of the samples contained within 

the critical feature combinations be inspected at their calculated inspection intervals in 

order to maintain the critical feature combinations’ desired reliability.  However, some 

industries may not be able to, either for financial or logistical reasons, inspect all of the 

samples within a critical feature combinations, especially if the sample size is very large.  

A methodology for selecting a reduced number of samples for inspection within a critical 

feature combination that could simultaneously satisfy the overall reliability requirement 

for that critical feature combination needs to be explored in the future. 

  A methodology that includes the population reliability in the inspection 

scheduling optimization algorithm could account for changes in the population’s 

reliability when selected critical feature combinations’ reliability changes.  Being able to 

relate the reliability of a particular feature combination to the population reliability would 

add further versatility to the proposed methodology. 

For the railroad wheel application specifically, currently only shattered rim 

failures have been included in the analysis.  Therefore, the methodology needs to be 

extended to other failure modes, such as vertical split rims.  In order to increase the 

precision of the calculations the railroad industry also needs to increase the accuracy of 

their data collection, e.g., confusing failure types when recording data. 

Another important issue to consider in the future is cross-feature interaction and 

feature correlation.  Additional modifications to the methodology can also be made based 

on individual requirements of each application.  
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