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CHAPTER I 
 
 
 

INTRODUCTION 
 

The islets of Langerhans play a central role in maintaining glucose homeostasis.  

Beta cells of the islet synthesize the polypeptide hormone insulin and regulate its 

secretion.  The importance of insulin is readily apparent in its absence: islet apoptosis or 

defects in insulin secretion lead to diabetes mellitus, a metabolic disease characterized 

by persistent hyperglycemia.  Diabetes is a chronic condition with a multitude of long-

term complications, typically ameliorated with insulin injections.  However, periodic 

insulin injections typically fail to achieve the rigorous glycemic control required to prevent 

diabetes-associated complications.  An attractive treatment alternative is the newly 

emergent technique of islet transplantation, which seeks to restore insulin production by 

implanting functioning pancreatic islets into diabetic hosts.   

The ability to non-invasively image or assess the pancreatic islet would yield 

valuable insight into the progression of diabetes.  Techniques capable of detecting loss 

of islet mass prior to metabolic indicators could guide interventions intended to slow or 

halt diabetes progression.  The ability to image and track islets after transplantation into 

the liver would help overcome the obstacles facing islet transplantation.   

The islets of Langerhans pose a formidable challenge to imaging modalities.  The 

functional importance of the islet is belied by its small size.  A typical islet ranges in size 

from 50 microns to 300 microns, consisting of a cluster of several thousand cells, 

primarily the insulin-producing beta cells interspersed with other endocrine cells.  The 

term ‘islet’ describes the appearance of these cell clusters under microscopic evaluation: 

the islets of Langerhans appear as small islands surrounded by a sea of pancreatic 
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acinar tissue.  The islets are scattered sparsely throughout the pancreas, where they 

constitute only 1-2% of the total pancreatic mass, as well as after transplantation into the 

liver.  Compounding this sparse distribution is the fact that islets lack any intrinsic 

contrast from the surrounding tissue.   

 

1.1. Specific Aims 

 The primary objective of this research was to establish and validate a technique 

capable of non-invasively imaging the pancreatic islet.  The bulk of this work focuses on 

the use of bioluminescence imaging in small animal models.  The final aim focuses on 

modalities with the capacity for clinical translation and highlights the relative merits and 

obstacles facing each one.   

 

Specific Aim 1: Label the islets of Langerhans with an optical reporter gene for 

bioluminescence imaging 

Bioluminescent imaging (BLI) can be used for sensitive, high-throughput tracking 

of optically labeled cells.  Pancreatic islets tagged with a bioluminescent reporter gene 

encoding firefly luciferase (luc) emit visible light.  Using highly sensitive CCD cameras 

this light emission can be imaged non-invasively and repeatedly in small animal models.  

Our approach utilized two different techniques for integrating the luciferase reporter gene 

into pancreatic islets.  Initial efforts employed viral transfection of isolated pancreatic 

islets, limiting experiments to studies of transplanted islets.  We subsequently generated 

a transgenic mouse line expressing luciferase under control of the mouse insulin I 

promoter.   

 

Specific Aim 2: Determine factors that influence bioluminescence signal quantification in 

order to correlate BLI with islet mass 
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 This light emission from BLI is a quantifiable measure that can be imaged non-

invasively and repeatedly in small animal models.  However, several factors can 

influence the detected luminescence signal; these factors were accounted for using 

constant light-emitting probes to mimic bioluminescence.  Detailed analysis of light 

transmission from the implantation source was used to correlate bioluminescence 

intensity to islet mass and determine islet survival rates post transplantation.   

 

Specific Aim 3:  Evaluate luminescent source reconstruction using single-view spectrally 

resolved bioluminescence imaging   

Standard bioluminescence imaging yields low-resolution planar images of 

surface light projection.  The application of three-dimensional techniques to BLI has the 

potential to vastly improve the image quality and information available.  Light-emitting 

probes were used to provide constant, known light emission from a controllable and 

known location.  Light source location and intensity were reconstructed in both an 

optically homogeneous phantom and optically heterogeneous mouse abdomen.   

 

Specific Aim 4: Investigate clinically relevant modalities for imaging the islet of 

Langerhans 

 Bioluminescence imaging is limited by optical attenuation to small animal models, 

relegating its role to a pre-clinical tool.  Several techniques were employed to image the 

islet using modalities that are translatable to human imaging.  Islets were labeled with 

MRI contrast agents: both a paramagnetic gadolinium agent and superparamagnetic iron 

oxide particles.  A targeted contrast agent was developed and evaluated using near 

infrared fluorescence imaging.   
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1.2. Dissertation Outline 

 This work has been organized in the following manner.  This first chapter 

provides a brief introduction to the problem addressed in this research, establishing the 

significance of the work.  The specific aims of the project are outlined and summarized.   

 The second chapter provides background information regarding islet 

transplantation.  Studies attempting to image the pancreatic islet using various 

modalities are also described in Chapter II.  Portions of this review were published in the 

August 2006 issue of Current Diabetes Reports [1].   

 Chapter III presents studies using islets virally transfected to express the 

luciferase optical reporter gene.  In vivo BLI measurements are found to provide 

quantitative, serial measurements of pancreatic islet mass after transplantation.  This 

work was published in the April 15, 2005 issue of the journal Transplantation [3].   

 Chapter IV reports on the generation and characterization of a transgenic animal 

expressing luciferase under control of the islet specific mouse insulin I promoter.  

Experiments employing this transgenic animal in disease models and transplantation 

studies are described.  This work will be submitted for publication to Endocrinology in 

December 2006.   

 Chapter V details a set of experiments using luminescent standards to normalize 

and accurately quantify in vivo bioluminescence imaging (BLI).  These experiments were 

essential for subsequent quantification of islet mass from bioluminescence intensity 

measurements.  This manuscript was published in the October 2004 issue of Molecular 

Imaging [2].   

 Chapter VI presents a systemic evaluation of a three-dimensional luminescent 

source reconstruction algorithm.  The benefits and limitations of the reconstruction 

algorithm are assessed.   This manuscript was submitted to Applied Optics in August 

2006.    
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 Chapter VII outlines a series of attempts to image the islet using modalities 

translatable to human studies.  A variety of approaches and modalities were pursued.  

The advantages and potential pitfalls of each technique are summarized.   

 Chapter VIII summarizes the results of Chapters III through VII and the overall 

objectives of this dissertation.  The societal implications and potential for future studies 

are discussed.    

 

1.3. Works Cited 

1. J. Virostko, E. D. Jansen, and A. C. Powers. "Current status of imaging 
pancreatic islets." Curr Diab Rep. 6(4), 328-32 (2006). 

2. J. Virostko, Z. Chen, M. Fowler, G. Poffenberger, A. C. Powers, and E. D. 
Jansen. "Factors influencing quantification of in vivo bioluminescence imaging: 
application to assessment of pancreatic islet transplants." Mol Imaging. 3(4), 333-
42 (2004). 

3. M. Fowler, J. Virostko, Z. Chen, G. Poffenberger, A. Radhika, M. Brissova, M. 
Shiota, W. E. Nicholson, Y. Shi, B. Hirshberg, D. M. Harlan, E. D. Jansen, and A. 
C. Powers. "Assessment of pancreatic islet mass after islet transplantation using 
in vivo bioluminescence imaging." Transplantation. 79(7), 768-76 (2005). 
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CHAPTER II 
 
 

BACKGROUND AND SIGNIFICANCE 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Portions of this chapter have been published in: 

Virostko J, Jansen ED, Powers AC,   

“Current status of imaging pancreatic islets,” 

Curr Diab Rep. 6(4), 328-32 (2006). 
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2.1. Introduction 

 A technique capable of imaging the pancreatic islet would be of great utility to the 

diabetes research community.  The inability to measure islet mass loss in pathological 

states precludes early diagnosis of Type 1 diabetes.  Moreover, the inability to non-

invasively track transplanted islets limits studies developing the technique.  Despite the 

success of the Edmonton Protocol, a number of issues must be resolved before islet 

transplantation can be adopted as routine treatment [1-3].  Efforts to overcome these 

obstacles are hampered by lack of a non-invasive measure of transplanted islet mass.  

Hormone secretion testing measures islet function rather than islet mass; it is unclear if 

such techniques are sensitive enough and whether mass correlates with such functional 

measures.  The primary difficulty in imaging the pancreatic islet stems from its small size 

(50 – 300 µm).   Furthermore islets are sparsely distributed both natively, where they 

constitute only 2% of the pancreatic mass, and after transplantation to the liver.  As islets 

possess no intrinsic contrast from surrounding tissue, imaging techniques have focused 

on labeling the pancreatic islet with exogenous contrast agents.  The development of 

novel islet labeling techniques for islet imaging and quantification is an area of active 

research [4].  This article reviews the application of magnetic resonance imaging (MRI), 

positron emission tomography (PET), and optical imaging modalities to image the 

pancreatic islet.   

 

2.2. Islet Transplantation 

While the current success of islet transplantation has only recently established it 

as an effective clinical treatment for type 1 diabetes, the motivation behind islet 

transplantation is over a century old.  The link between diabetes and the pancreas was 

first discovered in 1889 in studies of a pancreatectomized dog which developed acute 
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hyperglycemia and glucosuria [5].  Three years later Minkowski successfully 

transplanted autologous sections of the pancreas into a pancreatectomized dog [6].  The 

first human implementation of pancreas transplantation was performed in 1894 on a 

patient with diabetes ketoacidosis.  Three pieces of a sheep pancreas were transplanted 

subcutaneously in a 13-year-old recipient.   The patient showed temporary improvement 

in glucosuria before his death three days later from autoimmune rejection of the 

xenograft [7].  The first successful reversal of hyperglycemia was accomplished by 

Banting, et al, in 1922 by treatment with bovine pancreatic extract [8].  Purified insulin 

production commenced the following year.  Insulin therapy became the definitive 

treatment for diabetics.   

 Despite the success of insulin injections in overcoming hyperglycemia, the 

treatment fails to prevent a number of the chronic ailments associated with diabetes.   

Renal failure, blindness, heart disease, neuropathy, and atherosclerosis continue to 

afflict diabetics despite insulin therapy [9].  The ability of the islets of Langerhans to 

exquisitely control carbohydrate metabolism cannot be fully accomplished by insulin 

injections alone, primarily due to lack of real-time feedback and consequent significant 

swings in blood glucose levels.  These shortcomings of insulin renewed interest in 

pancreas transplantation.  The first successful clinical pancreatic transplant was 

performed in 1967 [10].  The patient’s hyperglycemia was reversed until complications 

later forced removal of the graft.  Later attempts at pancreas transplantation proved 

more successful.  Over 1000 pancreas transplants are now performed annually, with a 

success rate of 70% [11].  A successful pancreatic transplantation renders the recipient 

free from any exogenous insulin injections with normal blood glucose and HbA1c levels 

[12].  The chronic effects of diabetes are lessened: diabetic retinopathy is partially 

reversed [13] and native renal structure is restored ten years post implant [14].  

Transplant recipients report a higher quality of life [15].   
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Pancreatic transplants have demonstrated benefits over insulin injections for the 

alleviation of chronic ailments and improved quality of life.  Patient survival rates one 

year after pancreatic transplantation surpass 90% [16].  However, pancreatic 

transplantation has disadvantages.  Successful transplantation typically requires 

simultaneous transplantation of both the pancreas and kidneys.  This surgery is plagued 

by complications resulting in prolonged hospital stays and repeat surgeries [3].  This in 

turn results in high medical cost. The diabetes community has thus begun focusing on 

transplanting solely the insulin-producing pancreatic islets.  The majority of the pancreas 

is an exocrine digestive gland; only 1-2% of the pancreas is composed of the islets that 

contain insulin-producing β-cells.   Transplanting solely the islets of the pancreas is a 

much less invasive procedure expected to be much safer and less costly to the patient 

[12].  Pancreatic islets removed from cadaver pancreata can be isolated using 

collagenase enzyme extracts to yield purified islets [3].  These purified islets can 

subsequently be transplanted into diabetic recipients.  The first successful 

transplantation of islets into rats showed promise that it would soon become the 

definitive treatment for type 1 diabetes [17].  However, four years later the first clinical 

trial on seven diabetics using corticosteroid immunosuppression failed to render any of 

the seven patients insulin independent [18].  Success came with islet autotransplantation 

on patients undergoing a total pancreatectomy and infused with their own islets [19].  

Without the need for any immunosuppressive drugs these patients with islet autografts 

delayed the onset of diabetes for over a decade [20].  Results with allografts – 

transplants from a different individual of the same species - have proven less promising.  

Of the 237 adult islet allotransplants reported to the International Islet Transplant 

Registry (IITR) by December 31, 2001 fewer than 12% remained free from insulin 

injections one year following transplantation [20,21].   
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The failure of allotransplants to succeed while autotransplants thrived focused 

attention on the high levels of immunosuppressive drugs given to patients with allografts.  

The potent immunosuppressive drugs tacrolimus (FK) and cyclosporine (CSA), regularly 

given to organ transplant recipients to prevent rejection, were found to be toxic to islets, 

causing distinct morphological damage to beta cells [22].  In 2000 researchers at the 

University of Alberta reported a modified protocol to treat seven patients with type 1 

diabetes.  The equivalencies of two donor pancreata were infused into patients via a 

percutaneous transhepatic portal embolization.  Transplant recipients were given a 

glucocorticoid-free immunosuppressive regimen of sirolimus, tacrolimus, and 

daclizumab.  All seven patients attained insulin independence following transplant and 

maintained freedom from insulin injections one year post op [2].  The modified protocol 

has subsequently been dubbed the Edmonton Protocol.  A major multi-center study is 

now being conducted to test the feasibility of the Edmonton Protocol.  Initial results are 

promising; a 90% success rate was recently reported by three participating centers with 

extensive experience in islet isolation [9].   

However, despite these advances in islet transplantation, numerous obstacles 

remain before islet transplantation can be implemented as the de facto treatment for 

type 1 diabetes [23-25].  Typically the equivalent of two donor pancreata are necessary 

to successfully reverse diabetes [2]; using this quantity of islets per recipient means the 

donor islet supply is insufficient to treat even 0.1% of patients with type 1 diabetes [26].  

Attempts to increase the supply of donor islets, whether by in vitro cultivation [27,28], 

use of islets from another species (typically porcine) [29-31], or beta cell differentiation 

from stem cells [32-34], show promise but are far from clinical implementation.  

Furthermore, the survival rate of transplanted islets is unknown.  Evidence suggests that 

hypoxia, nutrient deprivation, and inflammation hamper islet engraftment and survival 

and result in significant islet loss in the early post-transplantation period [35,36].  Long-
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term survival rates are also unknown.  Native islets undergo apoptosis with an estimated 

turnover of <58 days [37], continuously replaced by islet replication and differentiation of 

islet precursors [4].  It is unclear if transplanted islets show similar apoptotic rates or 

retain potential for replication; however, the gradual loss of insulin independence seen in 

some studies indicates that transplanted islet mass or functionality declines over time.     

Significant efforts are focused on increasing or sustaining islet mass post 

transplantation [38-40], however, these efforts are largely hampered by the inability to 

non-invasively measure pancreatic islet mass post transplantation.  Islet mass is 

commonly estimated from insulin secretion following glucose tolerance testing [41] or 

additional biochemical assays [42]; however, these methods assess islet function, which 

does not necessarily correlate with islet mass.  Morphometric analysis of histological 

sections of islet grafts can be used to measure islet mass [43], but requires removal of 

the organ containing the islets, preventing any sequential studies.  Furthermore, while 

this analysis is useful for islets transplanted beneath the renal capsule in rodent models, 

it is difficult to perform when islets are scattered, as they are when embolized throughout 

the liver.    

 

2.3. Magnetic Resonance Imaging of Islets 

MRI is an attractive candidate for islet imaging due to its noninvasive nature and 

repeatable clinical application.  MRI images have micron resolution and can be acquired 

using various sources of contrast.  MRI remains expensive to implement, however, and 

imaging times are long compared to other modalities.  Furthermore, MRI is relatively 

insensitive (millimolar concentrations required for detection), confounding its application 

to microscopic cellular imaging [44].  Attempts to circumvent this limitation have focused 

on labeling cells with exogenous contrast agents to enhance contrast.    
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 Superparamagnetic iron oxide (SPIO) particles have long been used as a MRI 

contrast agent for imaging the vasculature.  The disturbances these particles create in 

the local magnetic field lead to rapid proton dephasing detectable using MRI.  More 

recently, SPIOs have been internalized into several cell types and subsequently imaged 

in studies of cell migration and trafficking [45].   The MR signal change due to iron oxide 

labeling has permitted imaging of a single cell [4].  Rat pancreatic islets co-cultured with 

SPIOs internalized the contrast agent and were visible on MRI in vitro.  These iron-

labeled islets were then transplanted into the liver of a rat and remained visible on MRI 

for 22 weeks post transplantation [46].  The SPIO islet labeling approach was used to 

compare the survival of transplanted syngenic and allogenic islets, showing a relative 

loss of MRI signal for the allogenic transplantation.  The iron labeling technique used in 

the study was demonstrably benign, with no effect on islet survival or insulin secretion 

[47].  A similar method was used to label human islets with SPIOs and image them 

transplanted to both the kidney capsule and liver of a mouse [48].  A fluorescent dye was 

incorporated in the iron particle to determine its pattern of internalization and found SPIO 

uptake primarily in beta cells of the islet, in contrast with other results indicating SPIO 

internalization by islet macrophages and exclusion from beta cells [47].  The primary 

limitation of MRI of SPIO labeled islets is a difficulty in quantification.  While the volume 

of contiguous islet grafts (such as those in the kidney capsule) can be correlated with the 

number of islets transplanted [48], islets transplanted into the liver prove more difficult to 

quantify.  SPIOs result in ‘negative contrast’ on MR images: they appear as hypointense 

spots that can be difficult to distinguish from the heterogeneous hepatic MRI 

background.  Furthermore, as the area of contrast exceeds the size of the islets 

themselves a single hypointense spot can represent either a single labeled islet or a 

cluster of many islets closely spaced [47].  Further work is also needed to confirm that 
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SPIOs remain sequestered in the islet and are not metabolized in the liver, leading to 

false positive results [49].   

 A second class of MRI contrast agents uses paramagnetic ions (typically Gd3+) to 

generate positive contrast enhancement.  The resulting hyperintense spots are easier to 

identify and quantify than SPIO labeled cells, as the volume of enhancement is equal to 

the cell size.    Zheng et al. synthesized a novel lipophillic Gd3+ complex which binds to 

the cell membrane and labeled islets by co-culture in the complex [50].  They then 

performed MRI imaging on labeled islets in vitro and on a labeled beta cell line housed in 

an implanted fiber tube.  The labeled cell line remained visible on MRI for 15 days post 

implantation.  Despite these successes, the contrast enhancement currently achieved 

with Gd3+ agents is currently lower than that possible with SPIOs.  The development of 

novel paramagnetic MR contrast agents with high relaxivities (and thus high contrast) is 

an area of active investigation [51].   

 Two novel methods show great promise for labeling cells for MRI, and while they 

are currently still in their infancy, show potential for future islet labeling experiments.  

The first technique avoids the issue of background by utilizing 19F rather than hydrogen 

for an MR contrast agent [52].  As the body contains negligible endogenous 19F there is 

effectively no background and quantification is straightforward.  The second new 

approach derives from other imaging modalities that previously benefited from 

transgenic technology.  A MRI reporter vector has been developed for monitoring 

transgene expression using viral transfection to introduce a ferretin metalloprotein into 

cells [53].  This protein then sequesters endogenous iron from the organism within the 

cell, becoming superparamagnetic similarly to SPIO labeling, but without requiring 

internalization of the bulky SPIO.   

 With the low inherent sensitivity of MRI for imaging transplanted islets, several 

studies have attempted to image surrogate markers of islet engraftment and 
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inflammation.  MR imaging of patients who previously received islet transplantation 

revealed fat deposition in the liver of two individuals [54].  Interestingly, the presence of 

steatosis correlated with graft function (steatosis was present for successful grafts and 

absent in patients with degraded graft function), raising the prospect of steatosis as a 

surrogate marker of transplanted islet functionality.  However, subsequent larger scale 

studies found steatosis in only a small minority of islet transplant recipients and found 

that the incidence of steatosis was highest for partially functioning grafts rather than fully 

functional grafts [4,55].  Histological studies of liver morphology post transplantation 

revealed focal, drop-shaped fatty degenerations matching the expected islet distribution 

[56].  It is hypothesized that the observed steatosis is due to a paracrine action of insulin 

promoting sequestration of free fatty acids within hepatocytes [4].  This conclusion is 

supported by previous studies of insulinoma metastases in the liver revealing similar 

patterns of focal steatosis [57].  The pathological significance of steatosis is unknown, 

but its irregular occurrence in fully functional grafts and prevalence in partially 

dysfunctional grafts indicates that it does not correlate with transplanted islet mass or 

function.   

Another surrogate imaging candidate is islet infiltration by cells mediating the 

autoimmune attack of Type 1 diabetes.  Much as islets can be labeled with SPIO 

particles for MRI detection, diabetogenic lymphocytes can be labeled for MRI 

visualization [58].  These autoimmune cells were then tracked non-invasively and 

temporally to investigate their recruitment to the pancreas in a mouse model of diabetes.  

MRI can be used to image the vasculature by infusing SPIO particles into the systemic 

circulation.  The alterations in islet microvasculature caused by leukocyte infiltration can 

then be imaged [59].  Denis et al. applied this technique to a mouse model of Type 1 

diabetes to monitor the progression of insulitis in real time [60].  They found positive 

correlation between the degree of insulitis and SPIO uptake and tracked SPIO 
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accumulation temporally.  It is unclear, however, whether SPIO retention was caused by 

microvascular changes such as vascular permeability, blood flow, or vessel size; or due 

to SPIO uptake by phagocytic cells in the islet infiltrate.   

  

2.4. Positron Emission Tomography of Islets 

PET has been used extensively in molecular imaging to non-invasively image 

cellular events.  The sensitivity of PET is much higher than MRI, on the order of 

picomoles [44].  Nuclear imaging instrumentation is typically less expensive than MRI 

with shorter imaging times, but scanners must be located near a cyclotron for access to 

radioisotopes.  While the spatial resolution of PET has improved in recent years to 

several millimeters, it is still inferior to MRI.  Nuclear imaging also requires administration 

of radioactive substances, raising questions of safety for repeated exposures.   

Targeted PET contrast agents bind specific cell types in vivo, eliminating the 

need for ex vivo labeling methods and permitting imaging of native pancreatic islets.  An 

extensive library of contrast agents has been developed to image various cellular 

surface receptors using PET reporters.  While these radiopharmaceutical agents were 

developed primarily for neurological application, the application of existing agents and 

development of novel compounds has potential to target pancreatic islets.  Potential beta 

cell labeling strategies include targeting the sulfonylurea receptor, compounds that are 

sequestered in secretory granules, and molecules that exploit the unique glucose 

metabolism of the beta cell.  A systematic approach for screening potential imaging 

compounds in vitro was applied to these PET reporters and determined that none 

achieved the necessary signal to background ratio [61].  Human studies targeting the 

sulfonylurea receptor verified these predictions.  High levels of the radiotracer in the liver 

and plasma led to high background unsuitable for imaging, although chemical 

modifications may be able to increase signal to background ratio [62].  Similarly, 
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application of dopaminergic PET compounds found enhanced uptake by islets in focal 

hyperinsulinism of infancy, but did not show sufficient sensitivity to image normal islets 

[63].  An alternate strategy targets the autonomic innervation of the pancreas through 

the presynaptic vesicular acetylcholine transporter [64].  The high acetylcholine-related 

enzyme content of islets suggests that such an approach may bind islets specifically, 

although binding by the exocrine pancreas again raises the issue of signal to 

background ratio.   

Researchers are actively pursuing novel islet and beta cell specific peptides and 

antibodies that can be tagged with PET reporters.  Phage display of combinatorial 

peptide libraries has revealed a candidate under investigation for islet specific targeting 

[65].  Immunohistochemistry has demonstrated islet specificity of the peptide although 

the peptide has not been attached to a PET reporter for imaging validation.  Moore et al. 

fused a radionuclide to the beta cell specific monoclonal antibody IC2 for PET imaging 

[66].  Following systemic administration of the PET reporter the radioactivity of the 

excised pancreas correlated with beta cell mass (as assessed by post-mortem 

morphometry).  Another group used a similar approach, using a different monoclonal 

antibody that specifically binds to the beta cell membrane [67].  Despite demonstrated 

beta cell specificity the technique was unable to measure a difference in PET signals 

between control rats and those treated with the beta cell toxin STZ.   This finding 

demonstrates the primarily limitation of targeted PET imaging of islets: probe binding to 

the exocrine pancreas, blood plasma, and liver leads to low signal to background ratio.  

Taking into account the relatively small islet contribution to the pancreatic mass, analysis 

of PET capabilities indicates that beta cells must retain a PET probe 1000 times more 

strongly than the exocrine pancreas to be an adequate imaging candidate [61].  The 

anatomical location of the pancreas further complicates matters, as radiolabel 
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accumulation in the neighboring liver can be difficult to distinguish from the pancreatic 

signal.   

An alternate PET strategy for islet imaging is ex vivo cell labeling.  These 

methods are similar to MRI studies involving islet impregnation with SPIO, although 

radiolabels have demonstrably higher sensitivity and easier signal quantification [68].   

Islets co-cultured with the radiotracer Fluorodeoxyglucose (FDG) uptake the compound 

through glucose channels and can then be imaged with PET following hepatic 

transplantation [69].  However, washout of the label from islets and the relatively short 

half-life of the radioactive isotope limit imaging to six hours post transplantation.  Use of 

isotopes with longer half-lives such as 64Cu permit imaging 24-36 hours post labeling, 

although these compounds use passive methods for cellular internalization and have yet 

to be applied to islets [70].  Transgenic cell labeling with a thymidine kinase reporter 

gene avoids the time-limiting issues of radio decay [71]. After cells are labeled with the 

reporter gene, a PET radiolabel that specifically binds to the reporter gene can be 

infused repeatedly, allowing for serial imaging.   

 

2.5. Optical Imaging of Islets 

Optical imaging has the highest sensitivity of any modality, with a detection 

threshold exceeding femtomoles [72].  Optical imaging equipment tends to be the lowest 

priced and easiest to implement.  Imaging times are short and several subjects can be 

imaged at once, leading to very high throughput.  However, as light (measured in 

photons) traverses through tissue it is subject to fundamental optical phenomena.  

Photons are absorbed by chromophores – primarily water, hemoglobin, and melanin – 

limiting optical penetration to several centimeters of tissue depth.  Thus while optical 

imaging has proven useful for research studies imaging small animal models, the 
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techniques are not translatable to human studies.  Photons are also scattered from their 

initial path by mismatches in the refractive index of tissue.  The practical implication of 

this scattering is a blurring of deep light sources.  The nanometer resolution of superficial 

optical techniques such as fluorescence microscopy degrades to the order of 

centimeters for deeper light sources.   

 Bioluminescence imaging (BLI) is a promising optical technique for imaging 

islets.  To perform BLI, a luciferase reporter gene (typically from the firefly) is first 

transfected into the cell of interest.  This reporter gene catalyzes a chemiluminescent 

reaction that emits visible light and can be visualized from outside the body of small 

animal models [73].  Bioluminescence holds the advantage of extremely high sensitivity 

with relatively no background and relatively easy quantification [74].  The luciferase 

optical reporter gene was virally transfected into rodent and human islets with no effect 

on islet morphology or function [4,75].  The amount of light emission from labeled islets 

correlated with the number of islets in vitro.  These bioluminescent islets were 

subsequently transplanted to either the renal capsule or liver of mice.  The amount of 

light emission post transplantation correlated with the number of islets transplanted with 

a stable optical signal up to 140 days post transplantation [4].  The method proved 

sensitive enough to detect as few as 50 islets transplanted to a mouse liver [75].  

Quantification of islet bioluminescence before and after transplantation revealed 

information regarding the survival rate of transplanted islets [76].  One caveat of viral 

islet transfection is that all islet cell types express the optical reporter gene.  Park et al. 

generated a transgenic mouse line expressing luciferase under control of the mouse 

insulin promoter [44].  As light is produced by the native pancreatic beta cells (requiring 

no ex vivo labeling), this animal model provides a sensitive, quantitative measure of beta 

cell mass or function.   
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 Fluorescence has also proven useful for studies imaging the pancreatic islet.  

Fluorescence differs from bioluminescence in that excitation light is required to generate 

the light signal, rather than a chemical substrate.  Researchers have generated a 

transgenic mouse line expressing green fluorescent protein (GFP) under control of the 

mouse insulin promoter [77].  These fluorescent islets can be imaged after hepatic 

transplantation to visualize microscopic processes of islet engraftment.  However, as this 

wavelength of light is highly attenuated by tissue, the tissue overlying the fluorescent 

islets must be removed.    A transgenic mouse expressing red fluorescent protein (RFP) 

under control of the same mouse insulin promoter has also been developed [78].  These 

islets were imaged in an excised pancreas in studies of islet development and 

distribution.  Fluorescence imaging can also be used to track other markers of islet 

pathology.   After systemic administration of a fluorescent marker of apoptosis, 

fluorescence signal was detected ex vivo in the pancreas of a mouse model of diabetes 

corresponding to regions of islet apoptosis [79].  The incorporation of fluorescent 

reporter proteins in both islets and islet markers will allow for high-resolution cell 

trafficking studies, although limited penetration depth typically requires removal of the 

islet-bearing organ.   

 

2.6. Conclusions 

 Techniques under development for imaging the pancreatic islet illustrate the 

capabilities and limitations of each imaging modality.  The choice of optimal imaging 

technique is dependent on the information sought by each study.  MRI provides high-

resolution images but requires ex vivo islet labeling that is not beta cell specific.  MRI 

techniques must also overcome issues of difficult signal quantification.  PET has higher 

sensitivity than MRI and more straightforward quantification.  As with MRI, islets can be 

labeled with PET radiotracers ex vivo.  However, the radioactivity of these labels 
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diminishes over time, limiting the time course over which these labels can be imaged.  

Systemically administered PET compounds are an alternate labeling strategy that can 

label both native and transplanted islets.  However, despite demonstrated beta cell 

specificity of several compounds, none have achieved the high signal to background 

ratio needed to distinguish islets from exocrine pancreas, blood plasma, and liver.  

Optical methods have proven useful in studies of small animal models, providing highly 

sensitive, easily quantifiable signals.  However, the shallow optical penetration of 

biological tissue currently limits bioluminescence studies to small animal models.  

Imaging of fluorescent probes provides highly spatially resolved images of islet 

microstructure but optical attenuation limits application to ex vivo studies.   Further 

advances in each imaging modality are needed to address these limitations and optimize 

techniques for imaging the pancreatic islet.   
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3.1. Abstract 

Background: Pancreatic islet transplantation is an emerging therapy for type 1 

diabetes, but it is difficult to assess islets after transplantation and thus to design 

interventions to improve islet survival.  Methods:  To image and quantify islets, the 

authors transplanted luciferase-expressing murine or human islets (by adenovirus-

mediated gene transfer) into the liver or beneath the renal capsule of immunodeficient 

mice and quantified the in vivo bioluminescence imaging (BLI) of mice using a cooled 

charge-coupled device camera and digital photon counting image analysis. To account 

for variables that are independent of islet mass such as transplant site, animal 

positioning, and wound healing, the BLI of transplanted islets was calibrated against 

measurement of luminescence of an implanted bead emitting a constant light intensity.  

Results:  BLI of mice bearing islet transplants was seen in the expected anatomic 

location, was stable for more than 8 weeks after transplantation, and correlated with the 

number of islets transplanted into the liver or kidney. BLI of the luminescent bead and of 

transplanted islets in the kidney was approximately four times greater than when 

transplanted in the liver, indicating that photon emission is dependent on optical 

absorption of generated light and thus light source location.  Conclusion:  In vivo BLI 

allows for quantitative, serial measurements of pancreatic islet mass after 

transplantation and should be useful in assessing interventions to sustain or increase 

islet survival of transplanted islets. 

 

3.2. Introduction 

For transplantation of pancreatic islets—an emerging therapy for type 1 

diabetes—to achieve its full potential, a number of scientific obstacles must be overcome 

[1-4].  One obstacle is the large number of pancreatic islets required to reverse diabetes, 

which is further compounded by the presumed death of a substantial number of islets 
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posttransplant.  Furthermore, neither the long-term survival of transplanted islets nor the 

stability of islet mass is known with certainty, but recent data suggest that it may decline 

as some patients, once independent after islet transplantation, now require insulin 

supplementation to maintain near-normoglycemia.  However, assessment of islet mass 

after transplantation is imprecise and thus interventions to increase or sustain islet mass 

are not available and cannot be rigorously evaluated.  In humans, pancreatic islets are 

transplanted into the liver by infusion into the portal vein, but the assessment of 

intrahepatic islets in humans or in animal models of islet transplantation is extremely 

difficult.  The scattered location of intrahepatic islets limits studies examining basic 

processes such as changes in islet mass, cell proliferation, and vascularization.  A 

technique capable of noninvasively measuring pancreatic islet mass would facilitate 

efforts to increase or sustain islet survival after transplantation and to understand the 

natural history of islet mass in the native pancreas during islet development or when 

diabetes develops.  As pancreatic islets range in diameter from 50 to 300 µm and 

account for only 1% to 2% of pancreatic mass, the challenge for imaging or assessing 

native or transplanted islets is great.  Currently available imaging techniques using 

magnetic resonance, positron emission tomography, or computed tomography have not 

been useful to image or assess islets in the pancreas because of a lack of sensitivity, 

contrast, and spatial resolution.  The most widely used approach to assess islet mass 

estimates islet mass from the amount of insulin secreted after a glucose or meal 

challenge [5].  Although it provides a measurement of islet function, insulin secretion 

does not necessarily correlate with islet mass or islet survival.  In a second approach, 

pancreatic islet mass can be accurately quantified by morphometric analysis of histologic 

sections in the native pancreas or in islet grafts beneath the renal capsule (as developed 

by Bonner-Weir and colleagues [6-8]).  Obviously, this requires removal of the organ 

bearing the islets.  Although useful for islets transplanted beneath the renal capsule in 
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rodents, this approach is not easily adapted to the study of intrahepatic islets and cannot 

be performed sequentially.  To address the challenge of assessing islet mass, we 

describe the development of a system to quantitatively assess the survival of 

transplanted human and murine islets.  The components of this system, similar to the 

recent report by Lu and colleagues [9], are the expression of luciferase in pancreatic 

islets and the use of in vivo bioluminescence imaging (BLI) [10]. BLI refers to the 

emission of visible light from a living organism; that light is generated by an enzyme-

catalyzed reaction of molecular oxygen with a substrate (in our case, the enzyme is 

firefly luciferase and the substrate is luciferin). Bioluminescent imaging techniques have 

recently been used successfully to study tumor growth, to investigate spatiotemporal 

patterns of gene expression in a variety of transgenic mice, and to monitor inflammatory 

processes [11-25].    

 

3.3. Materials and Methods 

 

3.3.1. Mouse and Human Islets 

Murine islets were isolated from B6D2 mice by ductal infusion of collagenase P 

digestion (Roche Molecular Biochemicals, Mannheim, Germany) and dissection of the 

splenic portion of the pancreas as described [26].  All animal studies adhered to the 

animal care guidelines of the Vanderbilt University Institutional Animal Care and Use 

Committee.  Murine islets were handpicked under microscopic guidance, washed three 

times with 10 mM phosphate-buffered saline (PBS) containing 1% mouse serum, and 

suspended in 30 µL of the same solution before transplantation. Human islets, obtained 

from the Islet and Autoimmunity Branch of the National Institute of Diabetes and 

Digestive and Kidney Diseases of the National Institutes of Health and through the 
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Juvenile Diabetes Foundation Human Islet Distribution Program, were shipped in CMRL 

media by overnight courier to Vanderbilt, assessed for viability in a cell-perifusion 

system, and then cultured for an additional 24 hr in CMRL media and 95% carbon 

dioxide/5% oxygen at 37°C. Before transplantation, human islet function was verified by 

ensuring insulin secretion by human islets increased more than fourfold in response to 

an increase in glucose from 2.8 to 16.8 mM or 16.8 mM glucose plus 0.045 mM 

isobutylmethyl xanthine in a cell perifusion system (data not shown). Mouse islets were 

evaluated in the cell perifusion apparatus by changing the perfusate from 5.6 mM 

glucose to 16.8 mM glucose or 16.8 mM glucose plus 0.045 mM isobutylmethyl 

xanthine.   

 

3.3.2. Luciferase Adenovirus 

An adenovirus (Adv-luciferase) that bicistronically encodes firefly luciferase and 

green fluorescent protein (GFP) under the control of the cytomegalovirus (CMV) 

promoter was created to express luciferase in pancreatic islets.  An XbaI/SmaI DNA 

fragment containing an internal ribosome entry site (IRES) and GFP was isolated from 

pIRES-EGFP (Clontech,Palo Alto, CA).  To construct the adenovirus, a XbaI/XhoI 

luciferase DNA fragment was cut from pGL-Basic (Promega, Madison, WI) and 

separately subcloned into the pShuttle-CMV vector (Quantum Biotechnologies, 

Montreal, Canada).  The resulting plasmid was co-transformed into BJ5381 cells with an 

Ad-Easy-1 adenoviral backbone DNA that is E1 and E3 deleted and is replication-

deficient.  The recombinant adenoviral construct was transfected into 293A cells to 

produce viral particles.  Murine and human islets were infected in culture with Adv-

luciferase at a multiplicity of infection of 500 to 1,000 (assuming 500 cells per islet) for 

approximately 16 hr beginning on the day of arrival at Vanderbilt (human) or isolation 

(murine). Adenovirus infection at these multiplicities of infection did not alter the glucose-
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stimulated insulin secretion profile in the cell perifusion system (data not shown); by 

confocal microscopy, only a minority of islet cells (<10%)  were infected with the 

adenovirus.  Luciferase activity in islet extracts was measured with the Pharmingen 

Monolight 3010 Luminometer (BD Biosciences Pharmingen, San Diego, CA).   

 

3.3.3. Islet Transplantation 

Nonobese diabetic (NOD)-severe combined immunodeficient (SCID) mice (8–12 

weeks of age) from Jackson Laboratories (Bar Harbor, ME) were used as transplant 

recipients as described [26].  Murine or human islets were transplanted into the liver of 

NOD-SCID mice by injection into the portal venous system or beneath the renal capsule 

of NOD-SCID mice approximately 24 hr (murine) or 48 hr (human) after islet isolation as 

described [26]. After transplantation of human islets into nondiabetic NOD-SCID mice, 

insulin secretion in vivo was measured in response to intraperitoneal glucose 

administration (2 g/kg) by radioimmunoassay of mouse plasma using species-specific 

antisera from Linco Research, Inc. (St. Charles, MO) (human C-peptide, catalogue No. 

1020; human insulin, catalogue No. 1014) [27].  To determine the effectiveness of 

transplanted islets to reverse diabetes, we developed a model system where islets are 

transplanted and engraft under normoglycemic conditions. NOD-SCID mice were 

rendered diabetic by the intraperitoneal injection of streptozotocin (175 mg/kg in 0.1 M 

citrate buffer, pH 4.5).  After hyperglycemia was documented by a blood glucose 

greater than 350 mg/dL (saphenous vein blood measured with an Accu-chek glucose 

meter; Roche Diagnostics, Indianapolis, IN), an Alzet minipump (model 1002 with a 

pump volume of 100 µL; Durect Corporation, Cupertino, CA) containing regular human 

insulin (diluted to 3 U/100 µL; Eli Lilly Corporation, Indianapolis, IN) was implanted in the 

subcutaneous area near the scapula. Implantation of the pump normalized the blood 

 33 
 



glucose within 2 to 3 days.  At that time, murine islets expressing luciferase or control 

islets were transplanted beneath the renal capsule.  After 7 to 10 days, the pump was 

removed and the blood glucose was monitored on a weekly basis. To document that the 

diabetes reversal was indeed attributable to the islet transplant, a nephrectomy of the 

islet-bearing kidney was performed.   

 

3.3.4. Implantation of Luminescent Beads 

Luminescent beads were obtained from Mb-Microtec (Bern, Switzerland). These 

beads consist of glass capillaries (0.9 mm wide and 2 mm long) filled with tritium (a β-

emitter with a half-life > 10 years) that excites a phosphor and emits constant-intensity 

light, with peak emission at 600 nm and an emission spectrum similar to that of firefly 

luciferase [28,29].  As described [29], a single luminescent bead was surgically placed to 

anatomically simulate where transplanted islets are placed; the bead was fixed in 

position with a surgical adhesive (Vetbond; 3M Animal Care Products, St. Paul, MN).  

For the kidney site, the location was on the lateral aspect of the left kidney.  For the liver 

site, the location was within the midhepatic lobes.  At the conclusion of the experiment (6 

weeks after implantation), the anatomic location of the bead was confirmed at autopsy.   

 

3.3.5. Imaging Luminescence 

Bioluminescence imaging was performed using a backthinned, back-illuminated, 

liquid nitrogen-cooled, charge coupled device (CCD) camera with a 1,300x1,340-pixel 

chip (Roper Scientific, Trenton, NJ) or on an IVIS 200 imaging system (Xenogen Corp., 

Alameda, CA).  Mice or islets in a culture dish were placed on the imaging stage of a 

light-tight imaging chamber.  For all images, a 1-msec background image was taken to 

enable subtraction of chip bias and readout noise.  An overlay image (black-and-white 

picture) was taken with a light inside the imaging chamber turned on to illuminate the 
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subject.  Luminescence was quantified using Metamorph software (Version 4.6r6; 

Universal Imaging Corporation, Downingtown, PA).  Using Metamorph, regions of equal 

area were drawn around the region of interest (ROI).  Luminescence was quantified by 

summing pixel intensities within the ROI as described [10,29]. 

 

3.3.6. In Vitro Bioluminescence 

Islets were suspended in 10 mM PBS with 1% fetal bovine serum (Invitrogen, 

Carlsbad, CA) and kept on ice before imaging. Islets were then placed in six-well plates 

in PBS.  The bioluminescence substrate D-luciferin (Promega) was added in excess (10 

µL of 15-mg/mL solution) to each well.  The six-well plate was placed in the light-tight 

box of the camera system.  Bioluminescence was imaged with a 4-min CCD camera 

exposure using the Roper imaging system. Peak luminescence was found to occur in 

the initial 4-min post luciferin administration for in vitro samples. On-chip binning of 2 

was used for imaging to increase the signal-to-noise ratio (i.e., four adjacent pixels [a 

2x2 square] were combined to generate one pixel).  Background subtraction was 

performed on the image.   

 

3.3.7. In Vivo Imaging of Luminescence 

After bead implantation, each mouse was imaged weekly for 6 weeks as 

described [29].  For imaging of mice with islet transplants, the hair overlying the 

implanted bead was shaved before imaging to reduce light scattering.  Mice were 

anesthetized using an intraperitoneal injection of 50 mg/kg of sodium pentobarbital and 

then gently secured to a black felt pad using Velcro to minimize motion during imaging 

(using the Roper imaging system) or anesthetized with isoflurane (using the Xenogen 

system).  Mice were placed in the lateral decubitus position for renal transplant imaging 

and the supine position for hepatic transplant imaging. A 1-sec exposure was taken for 
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all bead images.  A saturating concentration of the substrate D-luciferin was injected 

intraperitoneally (150 mg/kg; data not shown).  Serial 4-min exposures (using the Roper 

imaging system) or serial 1-min exposures (using the Xenogen imaging system) were 

used to generate a bioluminescence image.  Peak light emission was determined to 

occur by 10 to 15 min after luciferin injection and images for BLI were collected during 

this time frame.  On-chip binning of 5 was used for imaging to increase the signal-to-

noise ratio (i.e., 25 adjacent pixels [a 5x5 square] were combined to generate 1 pixel). 

Background subtraction was performed on all images. Bioluminescence was quantified 

by summing pixel intensities within equal area ROI. 

 

3.3.8. Tissue Collection and Histologic Assessment of Islet Graft 

Insulin, glucagon, or GFP expression in kidneys or livers bearing islet transplants 

(4–8 weeks after transplantation) was assessed by immunocytochemistry of whole-

mount images as described [26]. 

 

3.4. Results 

 

3.4.1. In Vitro and In Vivo Bioluminescence 

Bioluminescence of murine and human islets infected with an adenovirus 

encoding luciferase (Adv-luc) was easily detectable by the CCD camera on addition of 

luciferin to the culture media; bioluminescence from individual islets was clearly visible 

(Fig. 3.1A) [29]. No bioluminescence was observed from islets not expressing luciferase. 

Quantification of photon emission from luciferase-expressing islets in vitro correlated 

with the number of islets per well and with the amount of luciferase activity detected in 

islet extracts (Fig. 3.1B and C). By histology and immunocytochemistry for insulin and 

glucagon, luciferase-expressing human or murine islets transplanted beneath the renal 
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capsule or infused into the portal vein of NOD-SCID mice were similar to islets not 

infected with the adenovirus (Fig. 3.2A–D) (and data not shown).  BLI of islets was seen 

in the expected anatomic location (liver or kidney) with an extremely low background 

over other regions (Fig. 3.2E and F). After luciferin injection, transplanted islet in vivo 

bioluminescence peaked at 5 to 20 min, was detectable for 6 to 8 hr, and could be 

reassessed repeatedly for more than 4 months in the same animal (see below).   
Figure 3.1. In vitro bioluminescence of murine and human pancreatic islets. (A) Human islets, 
infected with Ad-luciferase, were quantified for size and number, and 0, 50, 100, 500, or 1,000 
islets were placed into different wells of a six-well plate.  Five minutes after addition of luciferin 
to the culture medium, the plate was imaged for bioluminescence. The middle well of the 
upper row contains 1,000 islets not infected with the adenovirus. (B) Luminescence (photon 
counts) from wells with different numbers of human islets (triplicate wells) expressing 
luciferase were quantified and graphed as a function of the number of islets per well. (C) 
Luminescence (photon counts; open squares) as assessed with a CCD camera or luciferase 
activity (relative light units as assessed in a Luminometer; filled squares) in extracts from 50, 
100, and 200 murine islets (triplicates) infected with Adv-luciferase were quantified and 
graphed as a function of the number of islets in the extract or well.
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3.4.2. Quantification of In Vivo Bioluminescence 

 
Figure 3.2. Transplantation of luciferase-expressing murine and human pancreatic 
islets into NOD-SCID mice. Murine or human islets were transplanted beneath the renal 
capsule or infused into the portal vein of NOD-SCID mice and the kidney or liver was 
removed 4 to 8 weeks later. (A) Human islet graft (arrow) in the kidney; (B) 
immunocytochemistry for insulin (green) in a renal graft of human islets (magnification 
x10); (C) immunocytochemistry for insulin (green) of an intrahepatic human islet 
(magnification x20); (D) immunocytochemistry for glucagon (green) or somatostatin 
(red) of an intrahepatic human islet; (E) an anesthetized mouse bearing a renal graft of 
human islets (1,000 islet equivalents) infected with Adv-luciferase was imaged after the 
intraperitoneal injection of luciferin (Islet Tx). A control mouse is shown on the left. (F) 
An anesthetized mouse bearing a hepatic graft of murine islets (50 islet equivalents) 
infected with Adv-luciferase was imaged after the intraperitoneal injection of luciferin. A 
color scale on the right shows the relative color intensity (photon counts).  A black cloth 
band, placed loosely over the anesthetized mouse to prevent movement during imaging,
is seen over the neck area. (G) Imaging of an anesthetized mouse bearing a 
luminescent bead implanted onto the renal capsule. A color scale on the right shows the 
luminescence (photon counts) or relative color intensity. 

To determine the effect of the transplant site on BLI and to standardize imaging 

parameters, we implanted a luminescent bead emitting a constant light intensity at the 

sites used for islet transplantation (Fig. 3.2G) [29].  Using integrated photon 

measurements before implantation, light emission from a bead was constant and stable 
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for a period of several months (< 5% variation in photon measurements). Furthermore, 

light emission from luminescent beads before transplantation closely matched the 

emission spectrum of light from the luciferase reaction [29].  Implantation of the 

luminescent bead allowed a systematic and detailed examination of the effects of animal 

position, light scattering, and the effect of posttransplant recovery on light emission [29].  

For example, in vivo luminescence of beads beneath the renal capsule increased slightly 

for the first 2 weeks after surgical implantation and then became constant, presumably 

because of a subsiding of factors (sutures, inflammatory response, tissue edema) 

influencing light transport from the surgical site to the surface of the animal [29].  On the 

basis of the information for imaging and photon emission quantification of mice bearing a 

luminescent bead regarding animal position and time after implantation [29], we imaged 

mice that underwent transplantation with different numbers of luciferase-expressing 

murine or human islets and quantified photon emission.  Murine islets expressing 

luciferase had greater in vitro and in vivo bioluminescence per islet than human islets.  

Presumably, this reflects species differences in parameters such as efficiency of 

adenovirus infection, activity of the CMV promoter, islet purity, and islet health.  In vivo 

bioluminescence from transplanted luciferase-expressing islets was detectable from as 

few as 25 murine islets or 200 human islets. The number of human islets transplanted 

beneath the renal capsule of NOD-SCID mice correlated with in vivo bioluminescence 

and with human islet function as reflected by insulin secretion from the transplanted 

islets after a glucose challenge (Fig. 3.3A and B).  The BLI of luciferase-expressing 

murine islets transplanted beneath the renal capsule correlated with the number of islets  
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transplanted and was stable for at least 18 weeks after transplantation (Figs. 3.3C and D 

and 3.4A). The BLI of luciferase-expressing murine islets transplanted into the liver was 

relatively stable for at least 8 weeks after transplantation but appeared to decline slightly 

at the longer time points (Fig. 3.4B).  Luciferase-expressing islets transplanted beneath 

the renal capsules were similar to uninfected islets in their ability to reverse 

streptozotocin-induced diabetes (Fig. 3.4C) (data not shown).  Using the imaging 

information from the implanted luminescent beads, we estimated that differences in light 

 
 
Figure 3.3. Quantification of in vivo bioluminescence of transplanted murine and human 
pancreatic islets. (A) Different numbers of human islets (500, 1,000, and 2,000) infected with 
Adv-luciferase were transplanted beneath the renal capsule of NOD-SCID mice; 
approximately 1 month later, the mice were imaged after the intraperitoneal injection of 
luciferin. (B) Luminescence over the renal area of mice bearing human islet transplants was 
quantified (photon counts; open squares) and plotted as a function of the number of islets 
transplanted; the amount of human C-peptide (filled diamonds) in the plasma after an 
intraperitoneal glucose injection is expressed as a function of the number of transplanted 
islets. Each point represents the mean ± SEM of three or four mice. (C) Murine islets infected 
with Adv-luciferase (50, 100, and 200 islets) were transplanted beneath the renal capsule of 
NOD-SCID mice or infused into the portal vein and the mice were imaged 4 weeks later. The 
images of mice with hepatic transplants are not shown. (D) Luminescence over the renal or 
hepatic area of mice bearing murine islet transplants was quantified (photon counts) and 
plotted (y-axis); the number of islets transplanted is shown on the x-axis. 
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Figure 3.4. Long-term survival of luciferase-
expressing transplanted islets. (A) Mice 
bearing 50 Adv-luciferase–infected murine 
islets transplanted beneath the renal capsule 
were imaged each week and the in vivo 
bioluminescence was quantified. (B) Mice 
bearing 125 Adv-luciferase–infected murine 
islets transplanted intrahepatically were imaged
each week and the in vivo bioluminescence 
was quantified. Each point represents the 
mean ± SEM of three or four mice. (C) Mice 
rendered diabetic with streptozotocin (n=3) 
were implanted with an Alzet pump that infused 
human insulin. After normoglycemia was 
established, 125 islets (approximately 250 islet 
equivalents) of luciferase-expressing murine 
islets were transplanted beneath the renal 
capsule. The pump was removed 7 to 10 days 
later and the blood glucose of the mice was 
monitored on a weekly basis. At the conclusion 
of the experiment, a nephrectomy was 
performed to document that the islet transplant 
was responsible for the diabetes reversal. 

attenuation at the hepatic and renal sites 

resulted in three- to fourfold less in vivo 

bioluminescence for intrahepatic murine 

islets compared with murine islets 

transplanted beneath the renal capsule 

(Fig. 3.3D) [29].  By combining the data 

about the implanted beads [29], the in 

vitro bioluminescence of murine islets 

before transplantation, and the in vivo 

bioluminescence of mice bearing islet 

transplants, we calculated the expected in 

vivo bioluminescence at each site if all 

islets survived the transplant procedure 

[29].  For both the renal and hepatic sites, 

the ratio of in vivo to in vitro luminescence 

for the luminescent bead was 

approximately sixfold greater than for 

luciferase-expressing murine islets 

transplanted at the corresponding site 

[29].  This suggests that only a minority of 

transplanted islets survive posttransplant 

in the renal or hepatic 

site or that the surviving islets no longer 

express luciferase.   
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3.5. Discussion 

New methods to assess the survival and function of transplanted islets are 

needed to improve the outcome of pancreatic islet transplantation, as current methods 

for assessing islet survival are limited and imprecise.  This report describes the use of 

BLI as a new method for assessing transplanted pancreatic islets.  BLI of luciferase-

expressing murine and human islets transplanted into NOD-SCID mice is a sensitive and 

noninvasive technique with a high signal-to-noise ratio.  In addition, bioluminescence of 

transplanted islets persisted for an extended period of time (months), is a quantitative 

surrogate marker for the number of islets transplanted, and allowed for serial 

measurements of islets transplanted beneath the renal capsule or into the liver.  When 

combined with a similar recent report by Lu and colleagues [9], these results indicate 

that BLI of transplanted islets provides a powerful approach for addressing a number of 

important questions about islet transplantation, such as islet survival and the stability of 

islet mass after transplantation and studies to monitor human islets after transplantation 

in immunodeficient xenograft models.  Furthermore, BLI should be useful in testing 

interventions that may increase or sustain islets after transplantation.  For example, 

quantitative analysis of BLI of in vitro and in vivo islets relative to similar data from our 

luminescent bead study [29] suggest that only a minority of transplanted islets survive 

when transplanted into the liver or kidney site.  However, for BLI to be a reliable and 

quantitative surrogate for a biologic phenomena (in this case, islet mass), the specific 

animal model must be carefully characterized to account for variables that may affect 

photon measurements (e.g., transplant site, animal positioning, wound healing) [29].  

Other new approaches that exploit unique islet properties to noninvasively measure or 

assess islet mass are under development.  One approach is using a labeled β-cell– or 

islet specific antibody as reported by Moore and colleagues using the monoclonal 

antibody IC2 (rat immunoglobulin M antibody that binds a 103-kDa cell surface protein 
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by immunoblotting or immunocytochemistry) [30] and by Ladriere and colleagues using a 

monoclonal antibody directed at an islet ganglioside [31].  The latter group concluded 

that such an approach was not promising in terms of quantifying islet mass by positron 

emission tomographic scanning because of the inability to distinguish islet mass in 

diabetic and normal animals [31].  In contrast, Moore et al. found that 111InCl2- labeled 

IC2 monoclonal antibody preferentially bound murine pancreatic islets and distinguished 

the β-cell mass of normal and diabetic mice (streptozotocin-induced) by nuclear imaging 

[30].  These investigators hope to adapt this antibody for use with magnetic resonance 

imaging or nuclear medicine imaging.   However, there are theoretical and practical 

concerns about using antibodies to quantify β-cell mass. Although the IC2 antibody is β-

cell specific, the binding of this monoclonal antibody varies with the functional state of 

the β cell (reduced binding with abnormal β cells or increased binding after glucose 

stimulation) [32,33].  Furthermore, because many antibodies fix complement, cell 

surface antibodies may be toxic to β cells. Another approach to noninvasively assess 

islet mass attempted to use the β cell’s distinctive metabolism as influenced by GLUT2 

and glucokinase.  Malaisse and colleagues found that D-[3H]mannoheptulose and [2-

(14)C]alloxan are preferentially concentrated in islets after the pancreas is perfused with 

these compounds [34-36].  Although promising, the metabolic state of the β cell will 

influence the amount of activity and thus such an approach may not correlate with actual 

β-cell number under fluctuating metabolic conditions (such as after islet transplantation 

or during the development of type 1 or type 2 diabetes).  Bertera and colleagues recently 

reported that transgenic expression of a mutated form of the red fluorescent protein in 

the murine insulin gene allowed one to monitor insulin secretion in islets transplanted 

beneath the renal capsule [37].  We envision that BLI will complement such new 

approaches while overcoming some of the limitations such as sensitivity and will be 
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applicable to murine and human islets at renal and hepatic sites of transplantation.  

Several features of our BLI model system merit further discussion.  First, the lack of an 

immune reaction to the luciferase enzyme or to the adenovirus-infected islet cells in the 

NOD-SCID model system and the slow proliferation rate of islet cells allow for persistent 

expression of the episomally located adenoviral transgene (Fig. 3.4A and B).  In contrast 

to immunocompetent transplant recipients, our system with NOD-SCID mice allowed for 

luciferase expression for up to 18 weeks.  Second, transplantation of human islets into 

this xenograft model system allows one to examine insulin secretion using species-

specific insulin or C-peptide assays.  Third, because currently the assessment of 

surviving intrahepatic islets is extremely difficult, BLI of transplanted islets should allow 

new studies to monitor the mass of murine and human islets that are transplanted at the 

same site used for human islet transplantation.  Finally, using the luminescent beads in 

the murine model should allow comparison of other sites of islet transplantation in 

addition to the liver and kidney.   

As currently applied, there are several limitations or questions that have yet to be 

addressed about BLI as a method for assessing transplanted islets.  In vivo 

bioluminescence simply reflects photons generated by luciferase-mediated oxidation of 

luciferin and is dependent on Mg2+, adenosine triphosphate, and oxygen as co-factors.   

Therefore, although in vivo bioluminescence appears to be a surrogate for islet cell 

survival, additional studies are needed to address this in greater detail.  Whether islet 

health or function influences photon generation must also be examined.  Although 

adenovirus-mediated gene transfer is efficient in introducing transgenes into normal 

islets, the transgene is not integrated into the islet genome.  Thus, interventions that 

stimulate islet proliferation will not stimulate propagation of the luciferase transgene and 

in vivo bioluminescence will not accurately reflect the increased islet cell number.   

Adaptation of BLI to immunocompetent mice will likely require use of vectors that do not 
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incite an immunologic reaction.  Both limitations can be overcome by adopting 

alternative methods for gene transfer into the islet genome (adenoassociated virus or 

lentivirus) as reported by Flotte and colleagues [38] or lentivirus as shown by Lu et al. 

[9].  Lu and colleagues studied BLI-transplanted islets using a lentivirus or an adenovirus 

to express luciferase [9].  They concluded that lentivirus-mediated BLI was superior 

because of the rapid decline in BLI using the adenovirus approach. However, lentivirus-

mediated BLI was not assessed as early as adenovirus-mediated BLI in their report, 

presumably because expression after lentivirus-mediated gene transfer is slower.  

Similar to our results (Fig. 3.4D), Lu and colleagues noted adenovirus-mediated BLI was 

stable after the first week in their system [9].  An alternative explanation for the decline in 

adenovirus-mediated BLI in the first week is that a large number of islets die in the 

immediate posttransplant period; our results using the luminescent bead (Fig. 3.4E and 

F) suggest that this may be an important component of the decline in BLI in the first 

week.  With any viral approach to introduce luciferase, it is likely that expression is 

greater in the periphery of the islet, and thus BLI may not completely reflect cell survival 

in the core of the islet.  Another limitation of our gene transfer approach is that it uses 

the CMV promoter to express luciferase and thus luciferase will be expressed in all cells 

within the islet preparation.  In our handpicked murine islets, luciferase is likely to be 

expressed in β as well as non-β cells.  In the less pure human islet preparations, 

luciferase could also be expressed in non–insulin producing islet cells and pancreatic 

exocrine cells.  Shapiro et al. and other investigators have shown that a significant 

number of cells within isolated human islets are not β cells (produce glucagon or 

amylase) [2].  A refinement of the BLI model would be to restrict expression of the 

luciferase transgene to β cells using a β-cell–specific promoter like the insulin promoter.  

Finally, current technical limitations of bioluminescent imaging prevent this imaging 
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modality from being adapted to large-animal model systems used to study islet 

transplantation (canine or nonhuman primate).  Although the spatial resolution of BLI is 

less than that of other imaging modalities, if BLI can be combined with other reporter 

genes (i.e., GFP) or with improved image reconstruction, improvements 

in spatial resolution will be possible.   

 

3.6. Conclusion 

BLI in appropriate animal models of diabetes should provide a unique approach 

that may elucidate strategies directly relevant to human diabetes or islet transplantation.   

For example, measurement of islet mass by a technique independent of insulin secretory 

capacity may provide insight into the problem of islet graft nonfunction and determine 

whether the inability to reverse diabetes or recurrence of diabetes after initially 

successful islet transplantation is the result of cell death or islet cell nonfunction. 

Furthermore, the ability to measure islet mass noninvasively should allow future studies 

to assess interventions to increase islet mass and reduce the number of  transplanted 

islets required to achieve insulin independence. 
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4.1. Introduction 

 The integral role of the pancreatic beta cell in the etiology of diabetes has 

resulted in a large body of research dedicated to this unique cell type.  Both type 1 and 

type 2 diabetes are characterized by death of the insulin-producing beta cells [1-3].  

However, studies of the complex dynamics of beta cell loss in the diabetic state are 

complicated by current limitations in non-invasively monitoring the pancreatic beta cell.  

Non-invasive imaging capabilities would aid the development of therapeutic interventions 

intended to slow or halt diabetes-induced beta cell loss.  The novel technique of islet 

transplantation for diabetes reversal would similarly benefit from the capacity for tracking 

islet engraftment and survival post transplantation [4-7].  Islet mass is commonly 

estimated from measurements of beta cell insulin secretion [8].  However, such 

metabolic assays monitor aspects of beta cell function rather than mass; the two metrics 

do not necessarily correlate, especially in pathological diabetic states.  For instance, 

fasting hyperglycemia typically presents only after beta cell mass has been reduced by 

over 50% [9-14], supporting a paradigm of compensatory insulin secretion.  Islet mass 

can be accurately measured by morphometric analysis of histological sections [15,16].  

Unfortunately this technique requires sacrificing the animal, preventing sequential 

studies in the same animal.     

 From the perspective of imaging physics, the pancreatic beta cell is a 

problematic candidate for imaging.  The pancreatic islet is small, ranging in diameter 

from 50 to 300 µm.  The islets are distributed sparsely throughout the pancreas and 

constitute only 2% of the total pancreatic mass [17].  These scattered islets possess no 

intrinsic contrast from the surrounding exocrine pancreas.  Studies seeking to 

specifically image the beta cell rather than the entire islet are further complicated by the 

fact that the beta cell comprises only one of the four major islet cell types, interspersed 
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with the glucagon secreting alpha cell, the somatostatin producing delta cell, and a 

fourth cell type which secretes pancreatic polypeptide.   

Several international workshops have focused on overcoming the difficulties in 

imaging the beta cell and spurring development of novel islet imaging techniques [18].  A 

variety of modalities have now been applied in attempts to image the beta cell.  Efforts 

using MRI have largely focused on labeling islets in vitro with MRI contrast agents [19-

23].  Studies using positron emission tomography (PET) have also used in vitro islet 

labeling techniques [24,25] as well as radioligands targeted in vivo to the beta cell [26-

30].  While such techniques have shown promise, obstacles remain before they can be 

adopted for clinical application.  MRI relies on labeling of isolated islets, limiting its use to 

studies of transplanted islets; quantification of islet mass using MRI is also difficult 

[21,22].  Targeted PET agents suffer low beta cell binding ratios leading to low signal to 

noise ratio [31,32], although the radioligand recently proposed by Souza, et al. shows 

promise for sufficient beta cell specificity [30].   

Bioluminescence imaging (BLI) was recently developed as a means of imaging 

gene expression non-invasively using an optical reporter gene [33].  While optical 

attenuation precludes bioluminescence imaging from clinical administration, the 

extremely high throughput and sensitivity of BLI have cemented its position as an 

invaluable pre-clinical tool [34,35].  Early attempts to harness BLI for islet imaging by our 

group and others [36-38] labeled isolated islets with a viral vector encoding the optical 

reporter gene.  As with studies using MRI, this strategy was limited to studies of 

transplanted islets.  More recently, transgenic mice expressing the luciferase optical 

reporter under control of the insulin promoter have been created [39-41].  These mice 

have been used to track pancreatic islet bioluminescence in animal models of diabetes 

and post transplantation.  However, in vitro experiments have indicated that luciferase 

expression may reflect up-regulation of the insulin promoter in the hyperglycemic state 
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[39,40].  This study compares the bioluminescence signal with conventional measures of 

beta cell mass and insulin content in a diabetic mouse model.   

 

4.2. Materials and Methods 

 

4.2.1. Generation of Transgenic Mouse Line 

 We generated transgenic mice expressing the luciferase optical reporter gene 

under control of the insulin regulatory region.  The transgene consisted of the 9.2 kb 

mouse insulin I promoter and a 1.7 kb sequence encoding firefly luciferase.  A β globin 

region and 3' non-transgenic region flanked the firefly fragment on each side to stabilize 

the transgene.  The fragment was released from the blue script vector (Stratagene) by 

digestion with Kpm I and Not I and purified by agarose gel electrophoresis.  The purified 

DNA was submitted to the Vanderbilt University transgenic mouse core.  The transgene 

was integrated in FVB mice by pronuclear microinjection into mouse embryos.  Five 

founder lines were generated and genotyped by Southern blot.  In vivo bioluminescence 

imaging was used to phenotype the founder lines, as previously described by Contag 

and co-workers [42].  From this screening the founder line with the highest and most 

consistent luciferase expression was selected for further studies.  The copy number of 

this transgene was found to be 3 using Southern blot standardized to a known amount of 

DNA.  Mice used in these studies were heterozygous for the transgene.  The Vanderbilt 

University Institutional Animal Care and Use Committee approved all experiments 

involving animal subjects. 
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4.2.2. Islet Isolation 

Islets were isolated from transgenic insulin/luciferase mice by ductal infusion of 

collagenase P digestion (Roche Molecular Biochemicals, Mannheim, Germany) and 

dissection of the splenic portion of the pancreas as previously described [43].   Islets 

were handpicked under microscopic guidance and washed three times with 10 mM 

phosphate-buffered saline (PBS) containing 1% mouse serum, and suspended in 30 µL 

of the same solution before transplantation.  A cell perifusion system was used to test 

the response of transgenic islet preparations to stimuli of 16.8 mM glucose, 16.8 mM 

glucose + 250 µM isobutylmethyl xanthine, and 2.8 mM glucose + 300 µM tolbutamide 

as described [44].   

 

4.2.3. Diabetes Induction 

Transgenic mice (males 8 weeks of age) were rendered diabetic by the 

intraperitoneal injection of streptozotocin (STZ, 175 mg/kg in 0.1 M citrate buffer, pH 

4.5).  A separate cohort of mice was injected with streptozotocin at a concentration of 

100 mg/kg, a concentration insufficient to induce hyperglycemia.  Blood glucose 

measurements were obtained using tail vein blood measured with an Accu-chek glucose 

meter (Roche Diagnostics, Indianapolis, IN).   

 

4.2.4. Islet Transplantation 

Immunodeficient (NOD-SCID) mice (8–12 weeks of age) from Jackson 

Laboratories (Bar Harbor, ME) were used as transplant recipients as described [43].  

Transgenic insulin-luciferase islets were transplanted after overnight culture in RPMI 

with 11 mM glucose and 10% FBS.  Islets were transplanted into the liver of NOD-SCID 
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mice by injection into the portal venous system or beneath the renal capsule of NOD-

SCID mice [43].   

 

4.2.5. Insulin Content 

 Pancreata of transgenic mice or renal islet grafts were excised from anesthetized 

animals.  Pancreata or grafts were cleaned of other tissues, blotted dry, and weighed.  

Tissue was homogenized in 1 mL HCl in 100 mL of 95% ethanol and incubated for 48 

hours at 4°C under mild agitation.  The homogenate was centrifuged at 2500 rpm for 30 

minutes at 4°C.  The supernatant was collected for radioimmunoassay and stored at -

20°C.  Insulin content was measured with a heterospecies specific radioimmunoassay 

using antibody-coated tubes (ICN Diagnostics, Costa Mesa, CA), I125-human insulin 

(Diagnostic Products, Los Angeles, California) and a rat insulin standard (Linco 

Research, St. Charles, Missouri) at a 1:1000 dilution, as previously described [45].     

 

4.2.6. Immunocytochemistry 

Dissected mouse pancreata were rinsed in ice-cold 10 mM PBS and fixed in 

freshly prepared 4% paraformaldehyde (Electron Microscopy Sciences; Washington, 

PA)/100 mM PBS for 1.5 hr on ice using methods previous described [46].  Following 

fixation, tissues were washed with 100 mM PBS and equilibrated in 30% sucrose/10 mM 

PBS overnight at 4°C. The tissues were embedded in optimum cutting temperature 

compound (VWR Scientific Products; Willard, OH) at –80°C.  Seven µm sections were 

cut and mounted on charged slides.  Cryosections were permeabilized with 0.2% Triton 

X-100 for 10 min at room temperature, blocked with 5% normal donkey serum (Jackson 

ImmunoResearch Laboratories, Inc.) for 1.5 hr, and then incubated with primary 

antibodies overnight at 4°C.   Guinea pig anti-insulin IgG (1:1000) and rabbit anti-
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glucagon IgG (1:5000) were from Linco Research, Inc. (St. Charles, MO).  Rabbit anti-

luciferase (1:250) was obtained from Cortex Biochem, Inc (San Leandro, CA).  

Secondary antibodies conjugated with Cy2, Cy3, and Cy5 fluorophores (1:1000, Jackson 

ImmunoResearch Laboratories, Inc., West Grove, PA) were applied to the tissue 

sections for 1 hr at room temperature.  Both primary and secondary antibodies were 

diluted in 10 mM PBS containing 1% BSA and 0.1% Triton X-100. Digital images of the 

7-µm cryosections mounted with AquaPoly/Mount (Polysciences; Warrington, PA) were 

acquired with a MagnaFire digital camera (Optronics; Goleta, CA) connected to an 

Olympus BX-41 fluorescence microscope (Olympus; Tokyo, Japan). 

To systematically examine β cell mass and luciferase expression in the pancreas 

of transgenic mice treated with streptozotocin, pancreatic sections spaced by 250 µm 

from three different levels of the pancreatic tissue block were imaged.  To determine 

populations of β cells and luciferase expressing cells, islets were imaged under x4 

objectives. Using MetaMorph v6.1 software (Universal Imaging, Downington, PA), 

integrated morphometry of 10–15 islets per section (3 sections/mouse) was used to 

calculate the relative area of islet β cells and luciferase expressing cells [45,47].  

 

4.2.7. Bioluminescence Imaging 

 All bioluminescence imaging was performed using an IVIS 200 CCD camera 

(Xenogen, Alameda, CA).  For studies using BLI in vitro, islets were cultured overnight in 

RPMI with 10% FBS and 2.5, 5.6, 11.0, or 25.0 mM glucose.  Islets were placed in a 

black well plate (10 islets per well) and placed on the imaging platform of the IVIS 

system.  Thirty-five µL of the substrate D-luciferin (Promega, Madison, WI) at a 

concentration of 15 mg/ml was added to 500 µL of solution prior to imaging.  

Bioluminescence images were integrated for a period of 1 minute.  Images were taken 
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from immediately post substrate addition to 5 minutes post administration, in order to 

capture the peak in bioluminescence intensity.  The luciferase activity of islet 

homogenates was measured with a Pharmingen Monolight 3010 Luminometer (BD 

Biosciences Pharmingen, San Diego, CA).   

For in vivo BLI, anesthesia was induced and maintained with isoflurane and 

animals were placed on the imaging platform.  D-luciferin was injected via the 

intraperitoneal cavity at a concentration of 150 mg/kg.  Bioluminescence images were 

again integrated for 1 minute.  However, as in vivo bioluminescence tended to peak later 

after substrate administration, animals were imaged up to 12 minutes post injection to 

ensure peak bioluminescence was captured.  Bioluminescence was quantified using 

Living Image analysis software (Xenogen, Alameda, CA).  Equal area regions of interest 

(ROI) were centered over the bioluminescent region.  Photon counting measurements 

summed bioluminescent intensity for all pixels within the ROI over the integration time.  

Measurements were normalized for exposure time, ROI area, and solid angle.   

  

4.2.8. Three-Dimensional BLI Image Reconstruction 

 Three-dimensional reconstruction of in vivo bioluminescence was performed 

using the Living Image® Software 3D Analysis Package (Xenogen, Alameda, CA) as 

described [Virostko et al, manuscript submitted].  Briefly, the diffusion model of light 

propagation was applied to spectrally filtered bioluminescent image information to 

reconstruct the bioluminescent source location and intensity.  Spectral imaging was 

obtained by imaging bioluminescence through six 20 nm bandpass filters at wavelengths 

from 560 to 660 nm.  Additionally, a structured light image was taken to reconstruct the 

surface topography of the mouse.  Images were reconstructed using the optical 

properties of muscle tissue.   
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4.3. Results 

 

4.3.1. In Vivo Bioluminescence Imaging 

 After injection of the substrate luciferin into transgenic mice expressing luciferase 

under control of the insulin promoter, bioluminescence was visible in an area consistent 

with the anatomical location of the pancreas (Figure 4.1A).  A lateral abdominal incision 

was performed and the viscera were shifted to expose the pancreas of the transgenic 

animal.  A bioluminescence image of the exposed pancreas confirmed that all light was 

emanating from the pancreas (Figure 4.1B).  No light was emitted from any other organs 

of the mouse.  A three-dimensional bioluminescence reconstruction was performed on 

an intact transgenic mouse.  This three-dimensional bioluminescence image of the 

animal reconstructed the location of bioluminescent islets (Figure 4.1C).   
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1.  In vivo bioluminescence imaging of transgenic insulin luciferase mice.  (A) 
essing luciferase under control of the mouse insulin I promoter emitted light after 
tion of the luciferin substrate in an anatomical region consistent with the 
  This bioluminescence was visible through the skin of the animal.  (B) However, 
 was made in the animal to expose the pancreas to verify that all light emission 
ating from the pancreas; no other organs emitted light.  (C) Three dimensional 
tion of light emission from a transgenic MIP-Luc mouse revealed the spatial 

f bioluminescent islets.  In the image red voxels indicate bioluminescent sources, 
ay views on the left reveal depth of these cells.   
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4.3.2. Transgenic Islet Function 

Rigorous functional testing of transgenic animals was performed to ensure that 

the transgene driving luciferase expression did not affect islet function.  Intraperitoneal 

glucose tolerance testing of transgenic animals confirmed normal response to a glucose 

challenge (Figure 4.2A). Islets isolated from transgenic animals were tested in a cell 

perifusion system.  Transgenic islets displayed a similar response to islet secretagogues 

as wild type islets (Figure 4.2B).   Immunocytochemistry of transgenic pancreata 

revealed the typical murine islet architecture: a core of β cells surrounded by a mantle of 

α and δ cells (Figure 4.2C).   
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Figure 4.2.  Functional characterization of transgenic insulin luciferase mice.  (A) 
Intraperitoneal glucose tolerance testing of transgenic animals revealed similar response to a 
glucose bolus as wild type control animals (n = 5 each group) .  (B) Isolated transgenic islets 
were tested in a cell perifusion apparatus. Transgenic islets displayed similar insulin release in
response to several islet secretagogues as control islets isolated from wild type animals (n = 4 
each group).  (C) Immunocytochemistry of transgenic islets verified normal murine islet 
architecture with a core of beta cells (shown in green) and mantel of alpha and delta cells 
(shown in red and blue, respectively).   
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4.3.3. In Vitro Bioluminescence Imaging 

 After addition of luciferin to the culture media isolated islets emitted 

bioluminescence.  Individual islets and islet clusters could be detected by CCD camera 

(Figure 4.3A).  The amount of bioluminescence detected was proportional to the number 

of islets in each well (Figure 4.3B).  The luciferase activity of islet lysates similarly 

correlated with the number of islets (Figure 4.3B).   
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Figure 4.3.  Factors affecting bioluminescence quantification.  (A) In vitro bioluminescence 
image of islets in a 24 well plate after addition of luciferin.  Islets are in quantities of 10, 25, 50, 
and 100 islets, top to bottom.  (B) Quantification of in vitro bioluminescence reveals correlation 
between bioluminescence intensity and the number of islets.  Luciferase activity, as measured 
by luminometer, also correlates with the number of islets.  (C) In vitro bioluminescence image 
of islets cultured overnight in increasing glucose concentrations.  Top to bottom: 2.8 mM, 5.6, 
16.7, and 25 mM glucose.  (D) Quantification of bioluminescence shows that the glucose level 
islets are exposed to affects the amount of light emitted.  Islets exposed to 16.7 mM glucose 
emit the most of light as determined by BLI and produce the most luciferase, as determined by
luminometer. 
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 The glucose levels at which isolated islets were incubated also affected the 

emitted bioluminescence.  Ten islets incubated overnight in different glucose 

concentrations emitted differing amounts of light (Figure 4.3C).  Increasing glucose 

concentrations from 5.6 mM (levels corresponding to a non-diabetic animal) to 11 mM (a 

level consistent with a diabetic animal) led to increasing bioluminescence (Figure 4.3D).  

A further increase in glucose level to 25 mM led to a decline in bioluminescence, likely 

owing to glucose toxicity.  The luciferase activity of islet lysates again correlated with the 

quantification of bioluminescence from intact islets (Figure 4.3D).   

 

4.3.4. In Vivo Imaging of Diabetes 

 The injection of the beta cell toxin streptozotocin was employed as a model of 

diabetes.  Following the injection of STZ into transgenic insulin-luciferase mice there was 

a gradual decline in bioluminescence intensity (Figure 4.4A).  The blood glucose levels 

of these mice rose from normal values before STZ administration to levels exceeding 

500 mg/dl 8 days after STZ injection, reflected marked hyperglycemia (Figure 4.4B).  

During this same period BLI measurements fell approximately 6 fold (Figure 4.4B).  

However, the insulin content of pancreata from mice receiving STZ treatment fell nearly 

40 fold as compared to untreated transgenic animals (Figure 4.4C).   

 Immunocytochemistry staining for insulin and luciferase in transgenic insulin-

luciferase pancreata demonstrated that luciferase staining was present only in insulin 

producing beta cells (Figure 4.4E).  Morphometric measurements of insulin and 

luciferase staining indicate that approximately 20% of beta cells express luciferase.  

After STZ treatment the number of cells staining for insulin drops approximately 4 hold; 

the number of cells staining for luciferase shows a similar decrease (Figure 4.4D).  Thus, 

the rate of apoptosis of beta cells expressing luciferase and beta cells that do not 

express luciferase appears to be similar.  Figure 4.4E shows a representative islet from 
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Figure 4.4.  Effect of STZ-induced diabetes on bioluminescence.  (A) After injection of STZ 
there is a gradual decrease in BLI values (n = 4).  (B) Bioluminescence intensity has 
dropped 8 days after STZ, whereas blood glucose levels have increased to diabetic levels 
(n = 4).  (C)  Mice exposed to STZ treatment for 8 days have reduced bioluminescence 
intensity and lower pancreatic insulin content compared with untreated control mice (n = 4).  
(D)  Morphometric measurements of insulin and luciferase staining demonstrate that 
approximately 30% of beta cells express luciferase.  After STZ treatment, morphometric 
measurements of both insulin and luciferase expression drop by the same proportion, 
indicated that cell death of luciferase-expressing cells is the same as other insulin-
producing cells.  (E)  Immunocytochemistry of control islet stained for insulin in green and 
luciferase in red.  (F) Immunocytochemistry of an islet from 8 days after STZ treatment.  
There is notable loss of both insulin staining and luciferase staining.  Note the higher level 
of luciferase staining, indicating that the diabetic state induces high luciferase production.   
 

a normal control animal; Figure 4F shows a representative islet from an STZ-treated 

animal.  There is an obvious decrease in both beta cells and luciferase-expressing cells.  
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However, the luciferase expression in the STZ-treated animal (Figure 4.4F) stains much 

more intensely, indicated higher levels of luciferase within these cells.   

 A longer duration study of STZ administration compared a cohort of mice treated 

with the same STZ dosage as the previous study (175 mg/kg) with a cohort receiving 

only 100 mg/kg STZ, a concentration insufficient to induce overt hyperglycemia.  One 

month after STZ administration, the fasting blood glucose levels of mice treated with the 

high STZ dosage rose to 589 ± 18 mg/dl, whereas mice receiving the lower STZ dose 

reached blood glucose levels of 238 ± 72 mg/dl.  Over the course of the study, mice 

receiving the high STZ dosage demonstrated a drop in BLI intensity, while mice 

receiving the lower dose had a slight increase in BLI (Figure 4.5).  At the end of one 

month, the pancreata of diabetic mice receiving the high STZ dose contained 5.4 ± 2.3 

µg insulin per gram pancreas, while the pancreata of non-diabetic animals contained 

100.1 ± 20.4 µg insulin per gram pancreas. 

0 10 20 30 40
0

1

2

Non-diabetic
Diabetic

Days post STZ injection
 

 
Figure 4.5.  Long term effect of STZ-induced diabetes on bioluminescence.  Non-diabetic 
mice treated with a low STZ dose (100 mg/kg)  that does not result in diabetes display 
constant bioluminescence for 1 month after STZ treatment.  Mice treated with a high dose of 
STZ (175 mg/kg) become diabetic and show a sharp loss of bioluminescence intensity at 1 
week after STZ treatment.   
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4.3.5. In Vivo Imaging of Transplanted Islets 

 Transgenic insulin-luciferase islets transplanted into the renal capsule (Figure 

4.6A) or liver via portal vein infusion (Figure 4.6B) were visible in the expected 

anatomical location.  Islets transplanted to the renal capsule continued to emit 

bioluminescence 5 months after transplantation (data not shown).  Three-dimensional 

reconstruction of transplanted bioluminescent islets was performed for both kidney and 

liver transplants.   Islets transplanted to the renal capsule were reconstructed as smaller, 

contiguous grafts (Figure 4.6C), consistent with graft appearance upon removal.    Islets 

transplanted through the portal vein were more dispersed: bioluminescent reconstruction 

revealed the location of these islets scattered throughout the liver (Figure 4.6D).   

 Transgenic insulin-luciferase islets transplanted to the kidney capsule were 

imaged 4 weeks after transplantation using BLI; grafts were subsequently excised and 

assayed for insulin content.  The insulin content of islet grafts correlated with the number 

of islets transplanted (R2 = 0.4633).  However, there was a wide range in insulin content 

at each number of islets (Figure 4.6E).  There was stronger correlation between the 

insulin content of grafts and bioluminescence intensity (R2 = 0.6742).  Bioluminescence 

is a better predictor of graft insulin content than the number of islets transplanted.   

 

4.4. Discussion 

 A method capable of non-invasively assessing the pancreatic beta cell would 

enable novel studies of beta cell growth and death in the diabetic state and aid the 

development of new treatments.  Such a technique would also be useful in studies of 

transplanted islets, facilitating studies of islet engraftment and survival.  This manuscript 

details studies generating and characterizing a transgenic mouse line expressing 

luciferase under control of the mouse insulin I promoter.  The expression of luciferase in  
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Figure 4.6.  Transplantation of transgenic MIP-Luc islets.  (A) Seventy five transgenic islets 
transplanted to the renal capsule emitted light emission from the kidney after injection of 
luciferin.  (B) Two hundred transgenic islets transplanted to the liver via portal vein infusion 
emitted strong light emission from the liver after injection of luciferin. (C)  Three dimensional 
bioluminescence reconstruction of the mouse pictured in A. The red voxels indicate the 
location of islets transplanted to the kidney.  (D) Three dimensional bioluminescence 
reconstruction of the mouse pictured in B. The red voxels indicate the location of islets 
transplanted to the liver. (E)  Quantification of bioluminescence from islets transplanted to the 
renal capsule 4 weeks after transplantation.  Islets were transplanted in quantities of 25, 50, 
75, and 100 islets (n = 4-5 per group).  Bioluminescence correlates with the number of islets 
transplanted.    (F)  Bioluminescence shows stronger correlation with the insulin content of 
islet grafts.  Thus bioluminescence is a better metric of the number of islets surviving post 
transplantation than the number of islets originally transplanted.   
 



the beta cells of these animals provides an optical label which can be imaged non-

invasively and repeatedly in small animal models using a technique known as 

bioluminescence imaging (BLI) [33-35].  While BLI is not applicable to human studies, its 

use in small animal models provides a link between in vitro studies and clinical 

application.  The described studies builds upon our previous work using a viral vector to 

label islets with luciferase [36,37], achieving beta cell specificity and the abolishing the 

need for in vitro islet labeling.  Furthermore, as the transgene is now integrated into the 

islet genome, this technique can be used to track islet proliferation.   

One concern with transgenic animals is whether expression of the transgene 

alters normal functioning.  Rigorous functional testing ensured that transgenic animals 

exhibited no alteration in islet function.  Immunocytochemistry confirmed normal islet 

architecture and uniform luciferase expression throughout the beta cell population of the 

islet, with approximately 20% of beta cells expressing luciferase.   

Other groups have generated similar transgenic mouse models for studies using 

bioluminescence [39-41].  Studies published using these islets found increased light 

emission from islets exposed to hyperglycemic states in vitro [39,40].  We encountered 

similar results: higher glucose levels stimulated higher luciferase expression and thus 

higher bioluminescence intensity.  This finding has implications for studies of diabetic 

mouse models, as hyperglycemia may affect the bioluminescence signal.  Our studies 

using an STZ-induced model of diabetes indicate that beta cell apoptosis, as evidenced 

by hyperglycemia and a drop in pancreatic insulin content, is accompanied by a drop in 

bioluminescence.  However, the magnitude of bioluminescence loss is not as great as 

the decrease in insulin content.  Morphometric measurements of insulin and luciferase 

expression indicate that beta cells labeled with luciferase apoptosis at the same rate as 

unlabeled beta cells after STZ administration.  Thus transgene expression does not 

seem to alter STZ responsiveness of a beta cell.  However, luciferase staining of islets 
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from STZ treated animals appears much brighter than control animals, indicating higher 

luciferase content in these islets.  Pancreatic insulin content measurements are needed 

to ensure that hyperglycemia induces higher luciferase expression.  The up regulation of 

luciferase expression due to hyperglycemia is most likely due to glucose-mediated 

regulation of insulin gene expression.  The practical implication of this finding is that 

while bioluminescence intensity does decline due to beta cell death, the BLI magnitude 

may not accurately reflect beta cell mass in hyperglycemic states.  BLI is rather a 

measure of beta cell mass incorporating some aspects of islet function.   

The application of transgenic bioluminescent islets to transplant studies enables 

non-invasive tracking of islet grafts.  Our studies illustrate a common issue with islet 

transplantation: the number of islets actually engrafting can differ greatly.  Thus the 

number of islets initially transplanted shows weak correlation with graft insulin content.  

However, bioluminescence imaging can provide a better metric of surviving islet mass.  

Bioluminescence measurements correlate more strongly with graft insulin content.   

Bioluminescence measurements of transgenic mice expressing luciferase under 

control of the mouse insulin I promoter can provide non-invasive measures of islet mass.  

Bioluminescence measurements correlate with the number of transgenic islets.  

However, luciferase expression is affected by glucose levels, complicating application to 

diabetic models.  Studies applying this model must take hyperglycemia into account for 

accurate quantification of beta cell mass.  This transgenic animal should be useful for 

future studies of the beta cell in diabetic models and transplant settings and pre-clinical 

evaluation of treatment interventions. 
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5.1. Abstract 

The aim of this study is to determine and characterize factors influencing in vivo 

bioluminescence imaging (BLI) and apply them to the specific application of imaging 

transplanted pancreatic islets.  Non-invasive, quantitative assessment of transplanted 

pancreatic islets poses a formidable challenge. Murine pancreatic islets expressing 

firefly luciferase were transplanted under the renal capsule or into the portal vein of 

NOD-SCID mice and the bioluminescence was quantified with a cooled CCD camera 

and digital photon image analysis. The important, but often neglected, effects of wound 

healing, mouse positioning, and transplantation site on bioluminescence measurements 

were investigated by imaging a constant emission, isotropic light-emitting bead (λ=600) 

implanted at the renal or hepatic site. The renal beads emitted nearly 4 times more light 

than hepatic beads with a smaller spot size, indicating that light absorption and scatter 

are greatly influenced by the transplant site and must be accounted for in BLI 

measurements. Detected luminescence decreased with increasing angle between the 

mouse surface normal and optical axis. By defining imaging parameters such as post-

surgical effects, animal positioning, and light attenuation as a function of transplant site, 

this study develops BLI as a useful imaging modality for quantitative assessment of 

islets post transplantation.  

 

5.2. Introduction 

 Pancreatic islet transplantation has great potential for the treatment of type 1 

diabetes mellitus [1-3].  However, the number of transplanted islets needed to overcome 

diabetes presents a major obstacle precluding islet transplantation from being adopted 

as a routine treatment.  In addition, diabetes reversal in most patients requires islets 
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isolated from at least two donor pancreata [2]; the supply of donor pancreata for islet 

isolation falls well short of the number needed to treat type 1 diabetics in the United 

States [2,3]. Thus, significant efforts are focused on preserving or increasing islet mass 

post transplantation [4-6].  The survival rate of transplanted islets is incompletely 

defined; in addition to immune factors, studies indicate that hypoxia, nutrient deprivation, 

and inflammation hamper islet engraftment and survival and result in significant islet loss 

in the early post-transplantation period [7,8]. Efforts to overcome these obstacles are 

limited because no suitable method of non-invasively measuring the number of surviving 

islets or islet mass currently exists.  Islet mass is commonly estimated from insulin 

secretion following glucose tolerance testing, but this method assesses islet function, 

which does not necessarily correlate with islet mass.  Morphometric analysis of 

histological sections of islet grafts can be used to measure islet mass, but requires 

removal of the organ containing the islets, preventing any sequential studies [9].  

Additionally, this morphometric analysis is difficult to perform when islets are scattered, 

as they are when embolized throughout the liver, the most common site of transplant 

[2,3].   

This study seeks to further develop in vivo bioluminescence imaging (BLI) as a 

method to quantify the number of islets surviving post transplantation.  BLI refers to the 

generation of photons by a biologic source such as cells or bacteria as a result of an 

ATP- and oxygen-dependent enzyme reaction (usually luciferase) with the enzyme 

substrate [10,11].  BLI has been utilized to assess a number of biologic processes such 

as inflammation, wound healing, and tumor cell growth in vivo [12-15].  As recently 

described by Lu and colleagues [16] and by our group [Fowler et al, manuscript 

submitted], BLI has recently shown promise for monitoring transplanted pancreatic islets.  

However, a number of imaging parameters remain undefined and these must be 

addressed before BLI can be used to accurately quantify transplanted islet mass.  For 
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example, islets are commonly transplanted to different anatomical locations in animal 

models.  Correlation of light emission and transplanted islet mass must take into account 

the factors that influence light transmission from the bioluminescent source to the CCD 

camera aperture.  Light transmission is determined by the optical properties of the tissue 

through which the light must pass [17]; different islet graft locations are subject to 

different degrees of light attenuation.  In this report, constant emission, isotropic light-

emitting beads with spectral emission similar to the luciferase reaction were implanted 

beneath the renal capsule or into the liver of mice to serve as a model of transplanted 

islet bioluminescence.  The luminescent beads provide a constant, known light intensity 

that is reliable and reproducible, allowing for validation and calibration of the imaging 

method.  In contrast, bioluminescent islets are subject to biological variability as islet 

light emission depends on the health and size of the islets and survival of islets post 

transplantation. The effects of wound healing, mouse positioning, and light attenuation 

by tissues overlying the islet grafts were determined by imaging these bead-bearing 

mice to identify factors that must be taken into account when correlating light emission 

with islet mass.  While applied to the BLI of transplanted islets, the findings in this study 

are relevant for quantitative BLI in general where subtleties of confounding factors that 

may alter the amount of light detected are often ignored.   

 

5.3. Materials & Methods 

 
5.3.1. Animal Model 

 NOD-SCID mice from Jackson Laboratories (Bar Harbor, Maine) were used for 

transplant studies as previously described [18].  The NOD-SCID strain is homozygous 

for the severe combined immune deficiency (SCID) spontaneous mutation, 
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characterized by an absence of functional T cells and B cells.  The NOD-SCID strain 

accepts allografts without immune rejection.  

 

5.3.2. Mouse Islet Isolation and Luciferase Expression 

 Murine pancreatic islets were isolated from adult B6D2 mice as previously 

described [18]. Briefly, mouse pancreata were digested with collagenase P  (Roche 

Molecular Biochemicals, Indianapolis, IN) in Hanks buffered saline (0.6 mg/ml) using a 

wrist action shaker.  Some islets were then handpicked under microscopic guidance.  

Others were purified by histopaque gradient centrifugation and washed 3 times with 10 

mM PBS containing 1% mouse serum.  Islets were suspended in 30 µL of 10 mM PBS 

with 1% mouse serum for transplantantion.  Murine islets were cultured in RPMI 1640 

(Invitrogen, Carlsbad, CA) with 10% Fetal Bovine Serum (Invitrogen, Carlsbad, CA) and 

11 mM glucose.  Islets were infected with a recombinant adenovirus that bicistronically 

encodes the dual reporter genes luciferase and green fluorescence protein (Adv-

luciferase) under control of the CMV promoter at a multiplicity of infection (MOI) of 1000 

for 16 hours using techniques previously described [19].  Luciferase activity of extracts 

from islets transduced with Adv-luciferase was measured in a Pharmingen Monolight 

3010 Luminometer. 

 

5.3.3. Islet Transplantation 

 Murine islets were transplanted beneath the renal capsule or infused into the 

portal vein of NOD-SCID mice as previously described [18].   Briefly, the islet suspension 

was injected in a 30 µL volume just beneath the renal capsule with a 23-gauge butterfly 

needle.  The needle was withdrawn and the insertion point was cauterized. For the 

hepatic transplants, islets were infused into the portal vein via PE10 tubing attached to a 
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30-gauge needle.  Slight pressure was applied to the insertion point to stop blood loss.   

Incisions were closed with black subcutaneous sutures (Prolene, Ethicon, Somerville, 

NJ) and aluminum skin staples (Autoclips, 9 mm size, Clay Adams, Parsippany, NJ).  

Clips were removed six days after surgery.   

 

5.3.4. Luminescent Beads 

 As a surrogate for luciferase-expressing islets, we used luminescent beads (Mb-

Microtec, Bern, Switzerland) that consisted of glass capillaries (0.9 mm diameter and 2 

mm long).  These beads are filled with tritium (a β-emitter with a half life of over 10 

years) that excites a phosphor and isotropically emits constant intensity light (Figures 

5A, 5B).  The spectral emission of these beads was measured using a fiber optic probe 

attached to a spectrometer (Ocean Optics Inc., Dunedin, FL) equipped with a 360 nm 

cutoff filter.  Spectral emission of a single bead within a centrifuge tube was measured 

with one-second integration time.  An attached laptop computer was used to record the 

spectral data.  To implant a luminescent bead in a NOD-SCID mouse, an incision was 

made above either the kidney or liver, as described previously for the islet 

transplantations [18].  The luminescent bead was glued onto the kidney or liver at a site 

that was deemed anatomically similar to the site of islet engraftment using Vetbond™ 

tissue adhesive (3M, St. Paul, Minnesota).  The incision was closed with subcutaneous 

sutures and skin staples as previously described [18]. 

 

5.3.5. Bioluminescence Imaging 

For luminescence imaging of islets and beads, we used a liquid nitrogen cooled, 

back thinned, back illuminated charge coupled device (CCD) camera with a 1300x1340 

pixel chip (EEV 1300 series, Roper Scientific, Trenton, NJ).   Prior to luminescent 

imaging a black and white image of the field of view was taken to allow correlation of the 
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bioluminescent signal to anatomical sites on the animal.  A one-millisecond background 

image (shutter closed) was taken prior to each bioluminescence image. Background 

subtraction was performed on all images. Metamorph software (Version 4.6r6, Universal 

Imaging Corporation, Downingtown, PA) was used to analyze the bioluminescence 

image with peak intensity [regions of equal area were drawn around the region of 

interest (ROI)]. On chip binning of 5 was used for imaging to increase signal to noise 

ratio.  Pixel intensities within the ROI were summed to yield integrated intensity of 

luminescence.   

 

5.3.6. Islet Bioluminescence Imaging 

 For in vitro imaging, the luciferase substrate D-Luciferin (Biosynth International, 

Naperville, IL) was added in excess (10 µL of 0.15 mg/ml concentration) to murine islets 

in 6 well plates with 100 µl of phosphate-buffered saline (PBS).  After placing the plate in 

the imaging chamber, bioluminescence was imaged with a four-minute exposure taken 

with the CCD camera.  Light emission was integrated from 2 minutes to 6 minutes after 

luciferin addition to capture peak bioluminescence activity.  To image mice bearing 

transplants of luciferase-expressing pancreatic islets, the hair overlying the islet graft 

was shaved in the anesthetized mice (intra-peritoneal injection of 50 mg/kg body weight 

sodium pentobarbital). The substrate D-luciferin, dissolved in sterile de-ionized water, 

was injected intra-peritoneally (150 mg/kg body weight). Mice were gently secured to a 

black felt pad to minimize any motion artifacts in lateral decubitis orientation (graft facing 

up) for renal grafts and supine orientation for hepatic grafts.  This pad was then placed in 

the light-tight imaging chamber.  Bioluminescence images were taken with four-minute 

integration time.  Luminescence emission was found to peak/plateau approximately 8 
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minutes post substrate administration, hence images used for quantification was taken 

from approximately 6 minutes post luciferin administration to 10 minutes post injection.   

 

5.3.7. Imaging of Luminescent Beads 

Prior to implantation, a black felt pad holding the luminescent beads was imaged 

with the CCD camera. Beads were first imaged with a 1 second exposure time and then 

re-imaged 4 times, reorienting the bead between each image, in order to quantify 

variability in bead light emission.  Bead luminescence was quantified using circles of 

equal area drawn around the ROI.  Luminescence was quantified by summing pixel 

intensities within the ROI to yield integrated intensity.   

Imaging of mice with an implanted bead was performed as described above for 

mice bearing islet transplants except no luciferin was injected.   A one second exposure 

was taken for all images.  Background subtraction was performed and implanted bead 

luminescence was quantified by photon counting of the ROI.  Spot size was determined 

using Metamorph.  The maximum intensity pixel from each bead was found and 

measured.  A threshold was then applied at half the maximum intensity for all pixels 

above that value.  The number of pixels exceeding threshold was determined.  This area 

is the spot size; full width at half maximum (FWHM) was calculated as the diameter of 

this circular spot size.   

π
thresholdArea

FWHM
⋅

=
4

          (5.1) 

                  

5.3.8. Rotational Variability Study 

 The effect of mouse rotation (relative to the imaging axis) on the measured 

photon flux from an implanted bead was measured using a rotational stage (Figure 5A, 

5B).  This stage consisted of a hinged black felt platform that allowed 50-degree rotation 
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in either direction.  An anesthetized mouse with a luminescent bead was placed on the 

stage with the mouse gently secured in position with a black strap; the stage was then 

placed in the light-tight imaging box of the CCD camera.  Mice with the bead on the renal 

capsule were placed in a lateral decubitis position (bead facing up); mice with a hepatic 

bead were placed in the supine position.  The stage was rotated in ten-degree 

increments from –50 degrees to 50 degrees (with 0 degrees indicating parallel to the 

floor).  Positive rotation was defined as clockwise rotation when viewed from the head of 

the mouse.  Thus for renal beads, positive rotation was defined as rotation toward the 

prone orientation, while negative rotation indicated rotation towards the supine 

orientation.  One-second camera exposures were taken at each angle.  Luminescence 

was quantified using Metamorph’s photon counting ROI analysis, as previously 

described.  Luminescence at each angle was normalized to the measured luminescence 

at 0 degrees.   

 

5.3.9. Monte Carlo Simulation 

Monte Carlo simulation was used to model the propagation of photons from the 

luminescent bead to the aperture of the CCD camera.  Monte Carlo simulation provides 

a well-accepted numerical simulation of light transport in multi-layer tissues close to 

tissue boundaries.  Monte Carlo simulation has been used to model light propagation in 

a variety of applications [20-22].  The Monte Carlo code used was based on the MCML 

code developed by Steven Jacques and others, modified for isotropic sources [23].  

Transmission of light through the tissue was determined as a function of radial position; 

photon transmission reaching the camera aperture was calculated as the photon weight 

transmitted within the radius of the camera aperture.  Monte Carlo simulation was run for 

three conditions: the bead alone, the bead implanted in the renal capsule, and the bead 

implanted beneath the liver (Figure 5.3).  The bead simulation consisted of a single layer 
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of non-absorbing, non-scattering media corresponding to the air between the camera 

stage and aperture.  The renal bead simulation added a layer of skin to the air layer.  

The hepatic bead simulation added a layer of liver tissue to the skin and air layers for a 

three-layer model.  Thickness of the tissue layers was determined by sacrificing the 

animal and measuring tissue thickness overlying the bead using calipers.  Tissue optical 

properties used in the simulations were obtained from work by Cheong, et al. [24]. The 

following optical properties were used in simulation:  Air layer: n = 1, g = 1, µa = 10-9 cm-

1, µs = 0 cm-1; Skin layer: n = 1.37, g = 0.9, µa = 10 cm-1, µs = 20 cm-1; Liver layer: n = 

1.37, g = 0.9, µa = 9.6 cm-1, µs = 89 cm-1. 

 

5.4. Results 

 

5.4.1. Bioluminescence of Luciferase-Expressing Islets 

 Pancreatic islets transduced with an increasing MOI of Adv-luciferase expressed 

increasing luciferase activity (Figure 5.1A).  For subsequent studies, a MOI of 1000 was 

used.  Adenovirus infection of murine islets did not alter glucose-stimulated insulin 

secretion of islets in a cell perifusion system (data not shown).  Luminescence of 

luciferase-expressing murine islets in culture was easily detected (Figure 5.1B) after 

addition of luciferin to the culture media. Bioluminescence intensity increased linearly 

with the number of islets/well.  Two different anatomical sites are typically used for 

murine islet transplantation.  Islets transplanted beneath the renal capsule form an islet 

graft localized in a small area; this site is widely used in murine models of islet 

transplantation.  However, liver transplantation is more applicable to clinical studies, as 

the liver is the site of human islet transplantations.   Following an intra-peritoneal 
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injection of luciferin, bioluminescence emission was detected in mice bearing luciferase-

expressing islets transplanted beneath the renal capsule or into the liver (Figure 5.1C). 

 
Figure 5.1.  Luminescence of pancreatic islets expressing luciferase.  (A) Luciferase activity 
of murine islets transduced with an increasing multiplicity of infection of Adv-luciferase (50 
islets/point; expressed as number of viral particles/cell with the assumption of 500 cells/islet) 
was measured in a luminometer.  (B) Luciferase-expressing murine islets in a six-well plate.  
Islets in quantities of 50, 100, and 200 islets from left to right; upper and lower rows 
duplicates.  (C) Luciferase-expressing murine islets (100) transplanted beneath the renal 
capsule (left) or transplanted into liver (right). 

 

5.4.2. Luminescent Beads In Vitro 

Light emission from the luminescent beads was quantified using a CCD camera 

and integrated photon measurements (Figures 5.2A, 5.2B). Multiple images of the same 

bead resulted in similar photon measurements with less than 3% variation from mean 

(n=10).  Additionally, photon measurements of the same bead did not change over a 

period of several months.  Luminescent beads provide a constant light source with a 

half-life of 10 years and hence they can be considered isotropic and constant intensity 

emitters for the duration of the experiment.  The spectral emission of these beads 
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measured using a fiber optic probe attached to a spectrometer was similar to that of light 

generated by the firefly luciferase reaction (Figure 5.2C).   

 

5.4.3. Luminescent Beads In Vivo 

 Luminescent beads were implanted at the sites used for islet transplantation: the 

renal capsule and the liver (Figures 5.2D, 5.2E). The renal beads show a brighter, more 

concise region of luminescence.  Light emission from the hepatic beads is less bright 

and spread over a larger area.  Note the difference in scale between the two images.   

 Mice (n = 4) with luminescent beads implanted at the renal capsule were imaged 

weekly for 6 weeks post implantation to determine the temporal variation in 

luminescence intensity (Figure 5.2F).  Bead intensity is quantified as the ratio of bead 

light luminescence in vivo (implanted bead) to the constant light emission of the bead in 

vitro (pre-implantation).  At one-week post implantation, the mice with renal beads 

showed significantly lower luminescence than in later weeks (t-test, α = 0.05).  The 

detected luminescence increased two-fold over the week one measurement.  Six weeks 

post implantation, the ratio of implanted bead luminescence to pre-implantation bead 

luminescence was 0.2394 +/- 0.0261.  The renal beads also showed the greatest mouse 

to mouse difference in detected light the week immediately post implantation.  By the 

second week post implantation the spread in detected light among different mice had 

decreased.   

 Luminescent beads implanted beneath the liver showed lower light emission 

(Figure 5.2F).  In the first week post implantation, the detected luminescence was lower 

than in later weeks.  At six weeks, the ratio of implanted bead intensity to pre-

implantation bead intensity was at a steady state value of 0.0645 +/- 0.0140. 
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Figure 5.2.  (A) Luminescent beads shown next to a ruler (each mark 
corresponds to one millimeter).  (B) A CCD camera image taken of four 
luminescent beads with a one-second exposure.  (C) The emission 
spectrum of the luminescent bead (shown in blue) plotted with the 
emission spectrum of the luciferase reaction (shown in magenta). (D) 
Luminescent bead implanted beneath renal capsule. (E) Luminescent 
bead implanted in liver. (F) Quantification of luminescence from mice with 
renal or hepatic bead weekly post implantation.  Data is shown as the 
ratio of implanted bead luminescence to bead luminescence pre-
implantation.  Each point represents average of 3-4 mice.  Error bars 
indicate the standard error of the mean.   
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The luminescence from the renal and hepatic implanted beads was also 

analyzed for light scattering.  Spot size, full width at half maximum (FWHM), was 

determined each week post implantation.  There was no statistically significant change in 

spotsize over the six weeks post transplantation. The FWHM of the liver implanted 

beads was 17% larger than the FWHM of the renal beads.  As in the intensity 

measurements, the greatest variability was seen one week following surgery.   

 

5.4.4. Monte Carlo Simulation 

 
Figure 5.3.  Geometry used for 
Monte Carlo simulation of light 
propagation from either the renal or 
hepatic bead to the camera aperture. 
Modeling of the bead alone included 
only the non-absorbing, non-
scattering air layer.  The following 
optical properties were used in 
simulation:  Air layer: n = 1, g = 1, µa 
= 10-9 cm-1, µs = 0 cm-1; Skin layer: 
n = 1.37, g = 0.9, µa = 10 cm-1, µs = 
20 cm-1; Liver layer: n = 1.37, g = 
0.9, µa = 9.6 cm-1, µs = 89 cm-1. 

 Light propagation from the luminescent 

bead to the camera aperture was modeled 

using Monte Carlo simulation.  Simulation was 

run for the bead alone, for the bead implanted 

on the renal capsule, and for the bead 

implanted beneath the renal capsule.  

Geometry and optical properties used in 

simulation are listed in the caption of Figure 5.3.  

The results of this simulation are in agreement 

with experimental values found using the 

constant light-emitting bead (Table 5.1).   

 

5.4.5. Rotational Variation 

 Figure 5.4 shows the luminescence 

intensity from the implanted beads as a function 

of rotational angle.  As the mouse was rotated 

from a normal (i.e. surface of animal normal to 
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the optical axis of the imaging system) position (lateral decubitis for renal beads, supine 

for hepatic beads), the luminescence intensity decreased.  At small deviation from the 

optical axis, intensity decreased only slightly.  But at 50-degree rotation from flat, 

luminescence intensity decreased to approximately one quarter (0.27) of the normal 

angle intensity for the renal bead (Figure 5.4D) and half (0.48) of the normal angle 

intensity for the hepatic bead (Figure 5.4C).  The angular dependence was stronger for 

beads at the renal capsule site than for hepatic beads.   

 

 
Figure 5.4.  (A) Image of a mouse with an implanted hepatic bead. The mouse was secured 
to the rotational stage.  (B) Schematic of the rotational stage, showing the relationship 
between the rotational angle of the stage and the angle between the camera optical axis and 
surface normal of the mouse.  (C) Change in hepatic bead luminescence intensity with angle 
of rotation.  Bioluminescence intensity at each angle is normalized to normal position (θ = 0°) 
(supine for hepatic implantation).  Shown is the mean of 4 mice; error bars indicate the 
standard error of the mean.  (D) Change in renal bead luminescence intensity with angle of 
rotation.  Bioluminescence intensity at each angle is normalized to normal position (θ = 0°) 
(lateral decubitis for renal implantation).  Shown is the mean of 4 mice; error bars indicate the 
standard error of the mean. 
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5.4.6. Bioluminescence of Islets In Vivo 

Bioluminescence intensity correlates linearly with the number of islets 

transplanted [25].  As expected from the studies with the luminescent bead, light 

emission from hepatical transplanted islets is less than that from renally transplanted 

islets (Table 5.1).  The spot size of hepatic islet grafts is greater than the spot size of 

renal islet grafts.   

To investigate the survival of transplanted islets, we calculated the in vivo / in 

vitro luminescence ratio of the luminescent beads and the luciferase-expressing islets for 

both the hepatic and renal sites.  Since the effects of the surrounding tissue on light 

transmission should be similar for beads and islets, the in vivo / in vitro luminescence 

ratio provides an estimate of the amount of luciferase expression that has survived post 

transplant.   As mentioned above, the in vivo / in vitro luminescence ratio for hepatic 

bead implants was nearly 4 times lower than the ratio for renal bead implants (0.0645 +/-

.0140 vs. 0.239 +/- 0.0261).  Transplanted islets show a similar relationship, with higher 

light emission from renal islet grafts than hepatic grafts.  However, the in vivo / in vitro 

luminescence ratio for transplanted islets was markedly less than the ratio for implanted 

beads at both the renal and hepatic sites (Table 5.1).  This suggests that only a minority 

of the luciferase-expressing islets survive after transplantation.   

Table 5.1.  The ratio of in vivo to in vitro bioluminescence intensity for renal transplantation site 
(left column) and hepatic transplantation site (right column).  Top row: Monte Carlo simulation; 
Second row: results from constant light-emitting bead (values expressed as mean +/- SEM); Third 
row: 100 islets; Fourth row: 200 islets. 
  

Renal In Vivo Intensity / In             Hepatic In Vivo Intensity / In 
                    Vitro Intensity              Vitro Intensity 
 
Monte Carlo Simulation        0.2744           0.0495  
Bead           0.2394 +/- 0.0261                                0.0645+/ - 0.0140  
100 Islets      0.0476                       0.0116  
200 Islets      0.0284                       0.0112 

 89 
 



5.5. Discussion 

 In this report we characterized imaging parameters that must be understood and 

accounted for to accurately quantify bioluminescence imaging and applied these findings 

to BLI of transplanted islets.  Bioluminescence from islet grafts was simulated by 

implanting a constant light-emitting bead, allowing investigation of important imaging 

parameters, including the effect of geometric features and tissue optical properties on 

bioluminescence measurements.  Using this constant light-emitting source, we have 

shown that post-surgical effects (i.e. wound healing), animal positioning, and the 

anatomic location of the light source influence bioluminescence measurements.   

 A major parameter of interest when tracking transplanted islets is the number of 

islets surviving post-transplantation.  The relationship between number of 

bioluminescent islets and emitted light intensity could be useful for monitoring the 

survival of transplanted islets.  However, a number of biologic variables and imaging 

parameters influence bioluminescence.  For example, the measured light intensity 

depends on the transduction efficiency of the adenovirus, the size of the islets, and 

various other geometric and biological factors such as thickness of overlying tissue (and 

changes in tissue thickness due to for example wound healing and/or scar formation), 

optical properties of tissue, perfusion/hemoglobin content, and substrate availability. The 

implanted beads mimic bioluminescence by emitting a constant and known intensity light 

from the site used for islet transplantation.    The emission spectrum of the beads closely 

mimics that of firefly luciferase induced bioluminescence (Figure 5.2C).  The peak bead 

luminescence (600 nm) is slightly higher than the peak emission of the luciferase 

reaction (563 nm).  However, studies indicate that the firefly luciferase reaction shows 

temperature dependence, with peak emission at 590 nm at physiological temperatures 

[personal communication with Dr. Brad Rice, Xenogen Corp.].  The strategy of 

 90 
 



measuring light emission from the beads in vivo allows us to distinguish changes in 

measured bioluminescence owing to actual changes in islet light emission from changes 

caused by other factors that may influence light transport in the animal and toward the 

imaging detector. 

Light transmitted to the CCD camera is dependent on transplantation site.  Use 

of the constant light-emitting bead implanted at a transplantation site allowed 

quantification of light attenuation at each implantation site.  Comparison of renally 

implanted beads to hepatically implanted beads showed a marked difference between 

light transmission from each site.  Bioluminescence signals collected from renal implants 

are brighter and spatially more concise than signals from implants in the liver.  Monte 

Carlo modeling of light propagation supports the finding that light is attenuated 4 times 

more strongly from the hepatic site.  The renal capsule implantation site is more 

superficial; the mean optical path length for light emitted from this site is shorter than that 

for light emitted from the liver.  Light emanating from the hepatic transplants must pass 

through liver tissue, a highly perfused tissue that contributes significant light scattering 

and absorption, resulting in lower light emission and increased spatial spread of light at 

the skin surface.   

The spot size of luminescence differed between hepatic islets and renal islets.  

Islets infused into the portal vein are thought to embolize throughout the liver, leading to 

a more diffuse light source.  Renally transplanted islets are typically confined to a 

contiguous and highly localized graft.   However, spot size is also a function of the tissue 

optics through which propagating photons pass.  Bioluminescence from the liver passes 

through hepatic tissue, leading to increased scattering and thus a larger spot size than 

renal grafts.  The extent to which increased hepatic light scattering leads to larger spot 

size was analyzed using the mice with implanted beads.  The full width at half maximum 

(FWHM) for the hepatic beads was 17% higher than the renal bead implants.  The islet 
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transplants showed a much greater difference in spot size between hepatic and renal 

sites than the bead implantations.  This indicates that hepatic islet dispersion is likely the 

primary reason for larger hepatic islet spot size.    Intra-hepatic islets are more spatially 

dispersed throughout the organ than those beneath the renal capsule where the graft is 

clustered in a contiguous area. 

The luminescence from implanted beads was tracked temporally to investigate 

post-surgical effects on light transmission.  Our results with the light-emitting beads 

demonstrate that the effect of the inflammatory response on bioluminescence 

measurements is dynamic as the wound healing progresses.  The metal clips interfered 

with imaging less than one-week post surgery by blocking underlying light emission, 

preventing accurate measurement of bioluminescence.  After surgical clip removal, 

tissue changes at the surgical site also effected light emission for 1-2 weeks post 

implantation before stabilizing to consistent measurements in later weeks.  Both the 

renal and hepatic bead implants showed less luminescence the first week post 

transplantation, with the renal implants showing the greatest variation in light 

transmission one week post-op.  This finding emphasizes that the surgical site may 

induce imaging artifacts that must be considered when BLI is used to quantitatively 

assess biological processes.  Lu and colleagues [16] found that islet bioluminescence 

decreased considerably the week immediately following surgery. It was postulated that 

insufficient vascularization of the islets one-week post-op could hamper delivery of the 

substrate luciferin to the islet graft.  Thus, dynamic changes in light transport by surgery-

related edema, angiogenesis, or scar tissue overlying the bioluminescent source or even 

the presence of tissue ridges and/or sutures or clips at the suture site can significantly 

decrease bioluminescence measurements by increasing optical path length, resulting in 

light quantification that does not accurately reflect light emission from the bioluminescent 

source.  For accurate quantitative use of bioluminescence as a surrogate marker for 
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biological processes, whether these by islet mass, tumor volume, gene transcription, or 

one of many other uses of this technology, these effects must be taken into 

consideration.   

Bioluminescence measurements can also be affected by rotation of the sample.  

Detected photon emission depends on the angle the surface normal makes with the 

optical axis of the camera system. The practical implication of this finding is that the 

exact positioning of the mouse relative to the camera axis is an important parameter that 

must be carefully controlled.  Failure to do so can induce variations in the photon 

counting measurements that are not representative of the biological processes for which 

bioluminescence is the surrogate marker.  The application of tomographic analysis to 

bioluminescence imaging, thus far still in a developmental state, must take into account 

these rotational effects.  The effect of rotation on luminescence measurements was 

determined for both the renal and hepatic implanted beads.  Both implantation sites 

showed a parabolic relationship between angle and luminescence, with luminescence 

decreasing with an increasing angle from normal.  At rotations of 50 degrees from 

normal, measured luminescence decreased to approximately a quarter compared to the 

normal measurement for renal beads.  For hepatic beads, the decrease at 50 degrees 

from normal was less, resulting in measured intensity less than half of the normal 

measurement.  The drop in renal intensity was sharper and more pronounced than that 

seen from the hepatic bead.  Supine orientation served as normal placement for hepatic 

bead imaging while lateral orientation was used for renal imaging to minimize the optical 

path length of light through tissue.  The animal surface overlying the liver bead thus has 

more surface area normal to the camera axis than the animal surface overlying the renal 

bead. This, in turn, results in a slower decrease in luminescence with increasing rotation 

for the hepatic implantation.    
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Light emitted from islet grafts is significantly lower than light emission from islets 

in vitro.  However, it was unclear how much of this decrease in luminescence was due to 

islet death post-transplantation and how much could be attributed to light attenuation by 

tissues overlying the implants. The light-emitting beads transplanted at the site of islet 

grafts were used to quantify light transmission through the tissues overlying the 

luminescent source.  For renal implantation, the ratio between luminescence after 

implantation (in vivo) to luminescence of the bead alone (prior to implantation) stabilized 

at a constant value two weeks post-implantation.  Experimental results for both renal and 

hepatic implanted beads are in agreement with Monte Carlo modeling of photon 

propagation.  Light attenuation by tissue overlying hepatic transplants results in a nearly 

four-fold less light transmission from hepatic islets than renal islets.  This is in agreement 

with the ratio found using the constant light-emitting bead, suggesting that the survival 

rate of islets at the renal and hepatic site is similar.  Interestingly, the ratio between in 

vivo and in vitro luminescence of the beads was much greater than the ratio for islets, 

suggesting a large (six to eight fold) drop in viable islets post transplantation (Table 5.1).  

This conclusion assumes that the BLI of islets reflects islet survival of luciferase-

expressing islet cells.  However, bioluminescence measurements could be affected by 

loss of the luciferase transgene and differences in substrate availability.  Additional work 

is needed to conclusively prove that transplanted islet mass, assessed by morphologic 

and histologic approaches, correlates with BLI.   

Bioluminescence measurements are subject to some inherent limitations.  In vivo 

BLI can be applied only to small animal models; the tissue thickness of larger animal 

models or humans currently prevents BLI studies.  Additionally, islets transduced with 

our adenovirus constitutively express the reporter gene luciferase in all islet cell types, 

not just β-cells.  This limitation can be circumvented by the using a beta-cell specific 

promoter or by creating transgenic islets that express luciferase solely in the β-cells.  
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The adenovirus system used for islet transduction also has a limitation in that dividing 

cells the transgene is passed to only one of the daughter cells and thus β-cell replication 

post transplantation would not be reflected in bioluminescence measurements.  As 

reported by Lu and colleagues [16], the use of lentivirus-mediated gene transfer may 

allow for integration of the luciferase DNA into the genome before cell division but 

typically has much lower transfection efficiency compared to the adenovirus. 

The correlation of light emission to islet number in vivo enables the use of BLI as 

a non-invasive means of islet assessment in mouse models of diabetes and islet 

transplants. In turn, these models may be used as models for assessing and screening 

of novel therapeutic approaches to improve islet survival.  Information regarding relative 

islet mass or number as function of time or in response to pharmacological intervention 

should be readily obtainable from the bioluminescence measurements (i.e. increase or 

decrease of signal).  Absolute information regarding the number of islets surviving 

requires additional investigation correlating islet histology with BLI using the imaging 

parameters optimized in this study.  In conclusion, BLI is shown to be a valuable method 

to assess transplanted islet mass in vivo.  However, we have shown using our 

luminescent bead studies that post-surgical dynamics, animal positioning, and light 

source location can significantly alter the measured bioluminescence.  Clearly these 

findings are not unique to the application of transplanted islet imaging, but hold important 

clues for the field of BLI in general.  Our findings suggest that for accurate use of BLI as 

a quantitative surrogate marker for biological processes, detailed and careful system 

characterization and calibration is required.   
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6.1. Abstract 

The application of three-dimensional techniques to bioluminescence imaging 

(BLI) has the potential to vastly improve the image quality and information available.  

The recently developed Living Image® Software 3D Analysis Package (Xenogen, 

Alameda, CA) employs the diffusion model of light propagation to reconstruct 

bioluminescent source position and intensity from single view, multi-spectral images.  

The purpose of this study was to independently characterize the capabilities and 

limitations of this technique.  Light-emitting beads with spectral emission similar to that 

emitted by the firefly luciferase reaction provided constant, known light emission from a 

controllable and known location.  Reconstruction of light sources placed within optically 

homogenous tissue had an average inaccuracy of 17% for the actual depth and intensity 

across all depths tested.  The greatest error in reconstruction was found for shallow 

sources less than the mean free path, for which the diffusion approximation breaks 

down.  For sources deeper than the mean free path depth, the error in depth 

reconstruction was less than 4% and error in intensity reconstruction less than 12%.  

Reconstruction of luminescent beads implanted within an optically heterogeneous 

mouse abdomen proved less accurate, with accuracy dependent on input tissue optical 

properties.  The ability to distinguish multiple sources was a function of source depth: 

sources spaced by a distance approximately equal to twice the depth could be resolved. 

The current depth and optical heterogeneity limitations of 3D bioluminescence 

reconstruction establish the need for advancements in instrumentation and modeling.   

  

6.2. Introduction 

 Advances in small animal imaging are transforming the face of biomedical 

research.  Small animal models of disease and treatment responses are emerging as 
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key bridges between in vitro investigation and clinical trials, accelerating the pace of 

research and drug development.  Bioluminescence imaging (BLI) has recently emerged 

as a valuable small animal imaging modality.  While firefly luciferase was characterized 

decades ago [1], early attempts to harness luciferase as an optical reporter gene were 

confined to in vitro cell work and immunoassays [2]. The development of cooled charge-

coupled device (CCD) cameras and progress in efficient methods of viral luciferase 

transfection permitted imaging of bioluminescent sources located deep within small 

animal models [3].  As the technology has become commercially available, application of 

in vivo BLI has enabled researchers to track cell migration and distribution [4], quantify 

tumor growth and assess treatment response [5], and track gene expression using 

transgenic animals [6].   

 BLI holds many advantages as a small animal imaging modality.  

Bioluminescence analysis is relatively straightforward for providing quantitative 

information on the number of metabolically active cells or relative amounts of gene 

expression [6-9].  BLI benefits from high sensitivity with inherently low background.  The 

technology can be easy to implement, as BLI instrumentation is typically less expensive 

and easier to perform by a non-specialist than other imaging modalities.  Lastly, BLI is a 

high throughput imaging modality: several animals can be imaged in a single imaging 

session, with imaging times generally on the order of several minutes.   

 The primary limitations of bioluminescence imaging stem from fundamental 

optical phenomena.  Photons are absorbed by biological tissue, with the attenuation 

being a non-linear function of tissue depth.  Thus, quantification of a bioluminescent 

signal is subject to signal location.  In studies of luciferase-labeled cells transplanted into 

either a superficial renal location or hepatic site, we have observed a four-fold difference 

in light quantification due solely to source depth [10].  This can lead to erroneous 

interpretation of BLI quantification if these depth effects are not corrected.  Photons are 
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also subject to scattering by biological tissue overlying the source location.  The low 

spatial resolutions caused by optical scatter results in planar images of bioluminescence 

that typically appear as a diffuse cloud of photons overlying the actual light source.  

Studies seeking to track stem cell migration to specific organs, locate tumor metastasis, 

or spatially localize transgene expression are hampered by the inability to spatially 

reconstruct bioluminescent sources.   

The development of bioluminescence tomography (BLT) capable of 

reconstructing source location and intensity would overcome these current limitations of 

BLI.  A number of groups have published algorithms for three dimensional 

bioluminescence reconstruction [11-20].  The first commercially available software 

package that reconstructs three-dimensional bioluminescent source information was 

recently developed by Xenogen Corporation (Alameda, CA).  This Living Image® 

Software 3D Analysis Package performs reconstruction of source location and intensity 

using the diffusion model of light propagation [21].  The diffusion approximation is 

applied to spectrally-filtered bioluminescent image information to reconstruct the 

bioluminescent source location and intensity. The algorithm first determines the subject 

topography from a structured light image and divides the subject volume into a mesh of 

voxels.  A Green’s function relates the light source intensity in each voxel to the photon 

density at each surface element.  This Green’s function incorporates tissue optical 

properties to analytically solve the diffusion equation for spectrally filtered 

bioluminescent data.  The result is a three-dimensional subject mesh mapping light 

source localization and intensity.  Further details regarding the algorithm used by the 

Living Image® Software 3D Analysis Package can be found in the conference 

proceedings [22,23] and the manuscript by Kuo, et al [24].  

The purpose of this study was to independently determine the accuracy of the 

Living Image® Software 3D Analysis to reconstruct light source location and intensity.  
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Constant intensity light-emitting beads with spectral emission similar to the firefly 

luciferase (luc) reaction provided constant, known light emission from a controllable and 

known location.  The effect of source depth on the accuracy of reconstructed source 

location, intensity, and ability to distinguish multiple sources was investigated in an 

optically homogeneous tissue slab.  As the reconstruction algorithm assumes 

homogeneous subject optical properties, the effects of tissue heterogeneity on 

reconstruction accuracy were investigated using luminescent bead implantation within a 

live mouse.  This research demonstrates practical implementation of the Living Image® 

Software 3D Analysis to establish the capabilities and limitations of bioluminescent 

source reconstruction. 

6.3. Materials & Methods 

 

6.3.1. Tissue Slab Setup 

  Uncooked chicken breast was used as a representative biological tissue, as it 

could be divided into large slabs of tissue with uniform optical properties.  Square slabs 

approximately 6 cm on each side were cut from the chicken breast using a scalpel.  

These slabs were then cut to a thickness of 2.5 mm, 5.0 mm, 7.5 mm, 10.0 mm, 12.5 

mm, and 15.0 mm, as assessed by micrometer.  Another slab with a thickness of 20 mm 

was placed on a 10 cm petri dish to serve as the bottom tissue layer.  Luminescent 

beads (Mb-Microtec, Bern, Switzerland) were used as a surrogate bioluminescent 

source.  These beads consisted of glass capillaries (0.9 mm diameter and 2 mm long) 

filled with tritium (a β-emitter with a half life of over 10 years) that excites a phosphor and 

isotropically emits constant and known intensity light. The bead was placed on top of the 

bottom tissue slab and maintained at the same distance relative to the camera aperture 

for all images.  For each tissue thickness, the prescribed tissue slab was placed over the 
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bead, centering the bead underneath the tissue slab.  Each experiment was performed 

four times with results presented as mean ± standard deviation.  For the spatial 

resolution experiments, two luminescent beads were placed the specified distance apart 

and covered with the corresponding tissue slab thickness.   

 

6.3.2 Mouse Luminescent Bead Implantation  

Luminescent beads were implanted in NOD-SCID mice, a mouse model with 

white fur to limit photon scatter and absorption.  Briefly, an incision was made in the 

abdomen of an anesthetized mouse to expose the viscera.  The luminescent bead was 

secured at various locations within the abdomen using Vetbond™ tissue adhesive (3M, 

St. Paul, Minnesota).  The depth and bead location was varied for each of five mice.  

Care was taken to implant the beads in various tissues of with widely varying optical 

properties.  The incision was closed with subcutaneous sutures and allowed to heal for 

two weeks to prevent surgical artifacts from affecting light transmission [10]. 

 

6.3.3. Luminescence Imaging 

 All imaging was performed using an IVIS® 200 Imaging system (Xenogen, 

Alameda, CA).  Luminescent bead intensity was measured by integrating light intensity 

over the surface area and multiplying by 2π steradians to convert to absolute flux over 

the entire sphere.  The tissue phantom or mouse was placed on the imaging platform 

within the light-tight chamber.  For mouse imaging the animal was anesthetized with 2% 

isoflurane via a nose cone within the imaging chamber.  Spectral imaging was obtained 

by imaging the implanted bead through six 20 nm bandpass filters at wavelengths from 

560 to 660 nm.  Additionally, a structured light image was taken to reconstruct the 

surface topography of the imaged object.   
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6.3.4. Image reconstruction 

Reconstruction was performed using the Living Image® Software 3D Analysis 

software package.  For tissue slab studies, tissue properties were set to ‘chicken breast’ 

(with corresponding optical properties as shown in Table 6.1).  The source spectrum was 

set to ‘Tritium Bead 5’ with spectral emission as previously determined using a 

spectrometer [10].  For mouse bead implantation studies, various tissue properties were 

used for reconstruction.  The tissue optical properties used in reconstruction are shown 

in Table 6.1.  Internal medium index of refraction was set to 1.40.  Six wavelengths, 

ranging from 560 to 660 nm in 20 nm increments, were used for reconstruction.   

6.3.5 Computed Tomography 

Table 6.1.  Tissue optical properties used in reconstruction.  Listed are the absorption 
coefficients (µa) and reduced scattering coefficients (µs′) for each of the four tissues used in 
reconstruction: chicken breast, muscle, skin, and liver.  The optical properties are shown for 
each of the six wavelengths used in reconstruction.   
 

 Chicken 
Breast Muscle Skin Liver 

Wavelength 
[nm] 

µa  
[cm-1] 

µs′  
[cm-1] 

µa 

 [cm-1] 
µs′  

[cm-1] 
µa  

[cm-1] 
µs′  

[cm-1] 
µa  

[cm-1] 
µs′  

[cm-1] 

560 0.47 3.03 5.07 9.84 4.22 19.20 19.37 8.91 
580 0.36 2.87 4.63 9.75 3.73 18.16 14.05 8.65 
600 0.21 2.73 1.87 9.29 2.75 17.11 5.98 8.42 
620 0.12 2.64 1.07 9.22 1.69 16.25 2.62 8.19 
640 0.09 2.51 0.88 9.13 1.35 15.78 1.82 7.97 
660 0.06 2.26 0.80 9.02 1.25 15.35 1.43 7.77 

 

  Computed tomography (CT) imaging was used to determine the actual location 

of the implanted bead within the mouse abdomen.  As the luminescent bead is 

radiopaque, the implanted beads were visible as hyperintense voxels on the CT image.  

Mice were scanned using an Imtek MicroCAT II small animal CT scanner and 

immobilized on an imaging platform for both CT and bioluminescence imaging to prevent 
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animal movement.  CT scans were analyzed using AMIRA™ image visualization 

software (Mercury Computer Systems, Chelmsford, MA).  The distance between the 

centroid of the luminescent bead and the mouse surface was measured using AMIRA™.   

  

6.4. Results 

 

6.4.1. Tissue Slab 

 Representative three-dimensional luminescence reconstructions from the tissue 

slab experiments are shown in Figure 6.1.  The reconstructed source voxel is shown in 

red within the subject volume.  The depth of the source voxel was determined by 

measuring a line inserted between the center of this pixel and the upper surface of the 

tissue slab, as indicated in the left panels of Figure 6.1.  The effect of source depth on 

reconstruction accuracy was determined by varying the thickness of the tissue slab 

overlying the luminescent bead.  The depth reconstruction for the tissue slab is plotted  

as a function of true depth in Figure 6.2.  The line indicates ideal depth reconstruction for 

reference.  As Figure 6.2 shows, the depth reconstruction displays a high degree of 

linearity (correlation coefficient, r2 = 0.98).  The accuracy of reconstruction is a function 

of source depth.  At the most shallow depths of 2.5 mm and 5.0 mm, the depth is 

overestimated by 1.7 ± 0.7 mm (68%) and 1.1 ± 0.6 mm (22%), respectively.  However,  

at further depths (7.5 mm to 15 mm) the error in depth reconstruction averages less than 

0.4 mm (3%).   

Surface light flux decreases as the source depth is increased, in accordance with 

Beer’s law, as plotted in Figure 6.3.  An ideal reconstruction of source intensity would 

reconstruct source intensity at a constant value equal to the actual light emission of the 

bead, indicated by the dashed line in Figure 6.3.  The accuracy of three-dimensional 
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Figure 6.1.  Representative output of Living Image® Software 3D Analysis Package 
reconstruction from a luminescent bead beneath 5 mm of chicken breast.  Pictured in the large 
right panel of the image is the reconstructed subject volume, with the light source indicated by 
the highlighted pixel.  The left panels show cut-away views indicating the position of the light 
source and demonstrating the manner in which source depth was measured.  The axis labels 
show dimensions in millimeters.   
reconstruction of source intensity (Figure 6.3) is a function of source depth.  At the most 

shallow depth of 2.5 mm the surface flux was actually closer to the actual intensity, 

underestimating it by 8%, whereas the reconstruction overestimates the actual intensity, 

underestimating it by 31%.  At 5.0 mm depth the reconstruction accuracy was slightly 

more accurate (22% overestimation) than the surface flux (27% underestimation).  The 

intensity reconstruction was most accurate for intermediate depths of 7.5 mm and 10.0 

mm for which intensity was overestimated by only 3% and 1% respectively.  For depths 

above 10.0 mm increasing depth led to increased error in intensity reconstruction.   
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Figure 6.2.  Reconstructed source depth as a function of actual source depth under a tissue slab.  
A luminescent bead was placed beneath the prescribed thickness of muscle tissue (chicken 
breast).  Source depth was reconstructed using the Living Image® reconstruction software.  
Shown is the mean of four experiments ± the standard deviation.  The dashed line indicates ideal 
reconstruction of the correct source depth.   
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Figure 6.3.  Reconstructed source intensity as a function of source depth under a tissue slab.  A
luminescent bead was placed beneath the prescribed thickness of chicken breast.  Source 
intensity was reconstructed using the Living Image® software package.  The mean of four 
experiments ± the standard deviation is plotted.  The dashed line indicates the true light source 
intensity, as determined by imaging the luminescent bead with no tissue above the bead. 
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The ability of the reconstruction algorithm to distinguish between two co-planar 

equal intensity light sources is a function of source separation and source depth, as 

shown in Table 6.2.  At 2.5 mm tissue depth, sources separated by 5.0 mm can be 

discriminated.  For deeper sources, higher separation distances are needed to 

distinguish multiple sources.  Our results indicate that the reconstruction algorithm has 

the ability to reconstruct two sources separated by a distance approximately equal to 

twice the source depth.  Two exceptions are the beads at 10 mm and 15 mm depth that 

could be distinguished with 15 mm and 25 mm spatial separation, respectively.  Light 

emitting beads separated by a distance too small to be distinguished were reconstructed 

as a single diffuse source, centered between the two beads.  The distance between the 

two sources was determined by measuring a line between the two brightest source 

voxels.  These reconstructed source separation distances are similar to the true 

separation gaps, as shown in Table 6.2.   

 

 

 

Table 6.2.  The ability of the Living Image®  reconstruction algorithm to accurately distinguish two 
separate luminescent beads separated by the indicated spatial separation is a function of the source 
depth.  Three asterisks (***) indicate that the algorithm was unable to differentiate the two light 
sources.  Numerical values indicate the reconstructed source separation, as determined by 
measuring the distance between the two highest intensity voxels.   
 

Depth [mm] 
Spatial Separation [mm] 

  
        5                  10                  15                    20                  25                   30 

2.5 5.1 9 17.6 19.4 27.7 30.7 
5 *** 7.7 17.8 19.8 26.4 31.5 

7.5 *** *** 18.3 21.1 24.4 27.5 
10 *** *** 13.7 17.5 28.1 33.7 

12.5 *** *** *** *** 23.9 27.5 
15 *** *** *** *** 24.4 28.5 
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6.4.2. Mouse Bead Implantation 

 The tissue slab experiments allow for easily controllable source location, but the 

chicken breast tissue used has uniform optical properties, which greatly simplifies three-

dimensional reconstruction.  

The Living Image® Software 

3D Analysis Package 

assumes a single tissue with 

uniform optical properties.  

However, light propagation in 

small animal models must 

traverse tissues with widely 

varying optical properties.  

To test the effect of optical 

heterogeneity on source 

reconstruction, constant light 

emitting beads were 

implanted into various 

locations within a mouse 

abdomen.  The bead location 

was varied in depth, ranging 

from approximately 2 mm 

depth to 6 mm depth.  As the 

true tissue optical properties 

vary through a mouse 

 

A 

B
2.1 1 mm 

 
Figure 6.4.  Three-dimensional bioluminescence reconstruction 
of a bead implanted in the liver of a mouse (A) and 
corresponding CT scan (B) showing the actual location of the 
luminescent (and radio-opaque) bead.  Three-dimensional BLI 
image was reconstructed using the Living Image® algorithm; 
the reconstructed light source is shown as the highlighted voxel 
within the mouse volume.    On the CT scan the solid arrow 
indicates the luminescent bead, with the measured depth 
indicated.  The dashed arrow indicates the spine of the mouse.  

 110 
 



abdomen, a number of tissue optical properties were tested to determine the optimum 

input for reconstruction.  The tissue optical properties of the liver, skin and muscle were 

used for reconstruction (see Table 6.1).   

 Source depth of the implanted beads was reconstructed using the Living Image® 

Software 3D Analysis Package. Figure 6.4 shows a representative 3D BLI reconstruction 

of a luminescent bead in a mouse abdomen (Panel A).  Also shown in Figure 6.4 (Panel 

B) is a CT slice through the mouse abdomen showing the implanted bead, illustrating the 

method used to determine actual bead depth.  As shown in Figure 6.5, accuracy of 

reconstruction depth was a function of the optical properties used for reconstruction.  

There was a general tendency for the algorithm to overestimate the source depth, 

especially at the two most shallow bead locations.  Liver optical properties led to severe 

underestimation of the deepest source (6.0 mm depth reconstructed as 2.8 mm deep).  

Overall, reconstruction using the optical properties of skin yielded the most accurate 

depth estimation with an average error of 0.6 mm (15%) while muscle had an average 

error of 1.0 mm and liver had an average error of 1.3 mm.   

 The reconstructed intensity of beads implanted within the mouse abdomen is 

shown in Figure 6.6.  Again, accuracy of reconstruction was a function of the optical 

properties used in reconstruction.  Using the optical properties of skin for reconstruction 

yielded significant overestimation of the source intensity, especially for the deeper 

sources.  Overall, the optical properties of liver yielded the most accurate intensity 

reconstruction (18% average error), followed by muscle tissue (41%), and skin (95%).   
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Figure 6.5.  Reconstructed source depth as a function of actual source depth.  The actual 
depth of luminescent beads implanted in the abdomen of mice was determined by CT.  
Source location was reconstructed using the Living Image®  algorithm inputting three 
different tissue optical properties.  The dashed line indicates correct source depth 
reconstruction. 
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Figure 6.6.  Reconstructed source intensity as a function of source depth.  Source intensity 
was reconstructed with the Living Image® software reconstruction using three different 
tissue optical properties for reconstruction.  The actual source intensity is plotted as a 
dashed line. 
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6.5. Discussion 

The ability to create three dimensional tomographic bioluminescence images will 

greatly enhance the information available from bioluminescence imaging.  Accurate 

source localization will aid cell-tracking studies of stem cell migration, tumor metastases, 

and transgene expression.  Accurate intensity reconstruction will correct for the source 

depth dependency of BLI measurements and lead to more accurate quantitative 

measurements, in particular in longitudinal studies (i.e., BLI as a surrogate marker for 

biological processes in a single growing animal over time).   

In this study we performed practical implementation of the commercially available 

Living Image® Software 3D Analysis Package to assess the accuracy of source depth 

and intensity reconstruction.  This software performs rapid reconstruction of 

bioluminescence source and location information using spectrally resolved images and 

the diffusion approximation of light propagation.  In a homogeneous tissue slab the 

accuracy of both location and intensity reconstruction are functions of source depth.  At 

the most superficial depths (2.5 and 5.0 mm) the source depth and intensity are 

overestimated.  This error likely stems from an inherent limitation in the use of the 

diffusion approximation: at depths shorter than the mean free path (1/µa+µs′) diffusion 

theory tends to fail.  The mean free path using the optical properties of the tissue slab 

ranges from 2.8 mm (at 560 nm) to 4.3 mm (at 660 nm), consistent with the depths at 

which the reconstruction is least accurate.  Comsa, et al. found similar breakdown of the 

diffusion approximation at shallow depths [25].  At depths greater than the mean free 

path the algorithm accurately reconstructed source depth with an average error of less 

than half a millimeter.  While this spatial resolution falls short of the 50 micron resolution 

currently achieved by MRI and CT [26], it is superior to the millimeter resolution of PET 

[26].  Source intensity reconstruction was accurate (less than 3% error) at 7.5 mm and 

10 mm source depth, but at increasing depth overestimated the actual intensity.  The 
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depth limitation on the accurate reconstruction of both source depth and source intensity 

restricts the utility of 3D reconstruction using diffusion theory to sources 

The Living Image® reconstruction algorithm used in this study assumes 

homogeneous optical properties throughout the subject volume.  This simplifying 

assumption clearly induces error in source reconstruction, as evident from comparing 

accuracy in the optically homogeneous tissue slab and heterogeneous mouse abdomen. 

The luminescent bead depth is reconstructed more accurately for the homogeneous 

tissue slab than the mouse abdomen implantations.  The average error in depth 

reconstruction across all depths tested was 17% for the homogeneous tissue slab; the 

beads implanted within the mouse abdomen had an average error of 27% across all 

depths and tissue properties used for reconstruction.  The average error in intensity was 

reconstruction was even more drastic: the homogeneous tissue again had an average 

error of 17% while the heterogeneous mouse reconstruction resulted in a 51% average 

error.  The accuracy of reconstruction within the mouse abdomen was greatly influenced 

by the choice of optical properties used for reconstruction.  Indeed, the optical properties 

that govern light transmission through biological tissue can differ by over an order of 

magnitude depending on the density and composition of the tissue [27].   The failure to 

account for optical heterogeneity has been previously shown to adversely affect 

reconstruction accuracy [17,28].  However, as the Living Image® software assumes 

homogeneous optical properties, a single set of optimal optical properties must be input 

for reconstruction.  In this study, the optimal choice of optical properties for 

reconstruction was dependent on which reconstruction metric was optimized.  Using the 

optical properties of skin resulted in the most accurate depth reconstruction, but the 

greatest overestimation of intensity.  The use of liver optical properties resulted in the 

more accurate intensity reconstruction, but gave the least accurate depth reconstruction.  

The use of muscle optical properties represents a compromise between these two 
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extremes, yielding decent reconstruction of both depth (average error of 1.0 mm) and 

intensity (41% average error).  As muscle tissue has fairly average optical properties its 

use as an average of the heterogeneous optical properties of the mouse abdomen is 

warranted.  There is considerable potential for improvement by implementing a 

compartmentalized model of a mouse with varying optical properties, as previously 

demonstrated [17,29].  

The ability of the Living Image® Software 3D Analysis Package to accurately 

resolve two equal intensity point sources in homogeneous tissue is a function of source 

depth and source separation.  The ability to distinguish multiple sources decreases as 

the source depth increases.  We have shown here that the discrimination criterion for 

homogeneous tissue is that source separation must be approximately twice the source 

depth.  At smaller source separation, two sources are reconstructed as a single source.    

This finding establishes a key limitation to luminescent source reconstruction using the 

Living Image® algorithm for single view tomography.  The practical implication is that 

using BLI to distinguish two closely spaced cell populations at deep tissue depths (for 

instance, tumor metastases within the liver) may be difficult using currently available 

technology.   

Novel methods for bioluminescence tomography using multiple viewing angle 

hardware are under development [14,17,19].  Models of photon propagation indicate that 

these methods will improve upon the reconstruction accuracy presented in this 

manuscript that used single-view images to reconstruct tomographic information.  

However, these multiple view techniques will sacrifice a major advantage of 

bioluminescence imaging, high throughput, by limiting images to a single subject and 

requiring multiple images of that mouse thus increasing imaging time.  The techniques 

described herein allow for simultaneous imaging of multiple animals, and hence 

represent a compromise between imaging throughput and accuracy.  Furthermore, 
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multiple angle imaging will require new imaging systems, while single view tomographic 

reconstruction can be performed with any of several commercially available CCD 

cameras.  Advancements in bioluminescent tomography will be aided by incorporation of 

fluorescence tomographic principles, as bioluminescence can be modeled as 

fluorescence in the steady state domain [16].  However, any bioluminescent tomography 

algorithms will require solution of a mathematically difficult inverse problem due to a lack 

of source-detector pairs [30].  Further work is needed both in instrumentation as well as 

modeling of photon propagation and incorporation of optical heterogeneity.   
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CHAPTER VII 
 
 
 

APPROACHES TOWARD CLINICALLY RELEVANT MONITORING OF ISLET MASS 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

While the data contained within this chapter are not suitable for publication on their own, 

they present challenges facing clinically relevant imaging of the islet of Langerhans.   
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7.1. Introduction 

Non-invasive measurements of islet mass would greatly facilitate efforts to 

increase islet mass and to monitor islet mass in both natural development and 

pathophysiologic states.  Currently available approaches are not adequate, relying either 

on functional measures or sacrificing the animal for post-mortem analysis [1-3].  The 

primary technical challenge in non-invasive imaging of the pancreatic beta cell stems 

from its small size and relatively sparse (1-2%) distribution throughout the pancreas.  An 

adequate imaging modality must possess high specificity to distinguish islets from the 

exocrine pancreas.  As islets possess no intrinsic contrast from surrounding tissue, 

imaging techniques have focused on labeling the pancreatic islet with exogenous 

contrast agents.  The development of novel islet labeling techniques for islet imaging 

and quantification is an area of active research [4].   

Our group and others have used the optical technique of bioluminescence 

imaging (BLI) to assay the pancreatic islet [5-10].  This technique has proven to be a 

powerful tool, permitting high throughput imaging of small animals.  Light emission was 

shown to correlate to islet mass [5-7,9,10].  This light emission can then be quantified to 

estimate islet mass after transplantation.  Islet mass can also be tracked in mouse 

models of diabetes, yielding valuable insight into the progression of diabetes [9,10].   

The limitation of bioluminescence imaging is penetration depth: optical 

attenuation by chromophores – primarily water, hemoglobin, and melanin – limits optical 

penetration to several centimeters of tissue depth.  BLI is thus not adaptable to human 

studies; its strength lies rather as a pre-clinical tool.  A clinically applicable imaging 

modality would be valuable for tracking islet mass in human diabetics and pre-diabetics.  

Such a technique could be used for early detection of diabetes prior to metabolic 

disorders and permit earlier diagnosis and treatment.  The impact of early interventions 

on islet mass could then be monitored using this imaging technique.  Clinically relevant 
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attempts to image the islet of Langerhans have focused on the use of magnetic 

resonance imaging (MRI) and positron emission tomography (PET).   

As the sensitivity of magnetic resonance imaging is inherently low compared to 

other imaging modalities [11], attempts using MRI have relied primarily on labeling the 

islet with contrast agents.  Islets have been labeled with superparamagnetic iron oxide 

(SPIO) particles [12,13].  These islets have subsequently been transplanted and are 

visible as hypo-intensities on MR images.  Rejection of transplanted islets has been 

demonstrated showing the loss of these hypointense spots [14,15].  An alternative 

labeling technique employs paramagnetic ions to generate hyperintense MR signal.  A 

paramagnetic Gd3+ complex was used to label a beta cell line and image the cells after 

implantation in a hollow fiber [16].  A recent report uses an alternate Gd3+ molecule to 

label and image islets after transplantation to the kidney capsule [17].   

Approaches using positron emission tomography benefit from the higher 

sensitivity of PET [11].  Several PET techniques have focused on ex vivo islet labeling, 

similarly to MRI attempts.  One study internalized an 18F radiotracer into islets to study 

events immediately post transplantation [18].  An alternate method labeled islets with a 

PET reporter gene that sequesters an injected radiolabeled probe [19,20].  An alternate 

PET strategy employs targeted radiolabeled compounds that specifically bind to the 

islets of Langerhans.  The search for suitable radiotracers has encompassed labeled 

antibodies [21,22], molecules that utilize the unique metabolism of the islet [23-25], and 

a variety of islet specific ligands [26-29].  However, lack of specificity or high background 

levels of the radiotracer have rendered most candidates unsuitable for in vivo application 

[30].  A recent study indicates that a radiotracer targeting the vesicular monoamine 

transporter 2 may prove useful for PET imaging of the pancreatic islet [31].   
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7. 2. Materials and Methods 

 

7.2.1. Cell Culture 

The immortalized βTC-3 cell line was grown in monolayer culture in 10 cm plates 

containing Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal 

bovine serum.  Cells were grown to 80% confluence under standard culture conditions 

(CO2 incubator: 37°C 5% CO2) and trypsinized.  Cells were washed three times with 

phosphate buffered saline (PBS) to remove excess trypsin.   

 

7.2.2. Islet Isolation 

Murine pancreatic islets were isolated from adult B6D2 and FVB mice.  Mouse 

pancreata were digested with collagenase P (Roche Molecular Biochemicals, 

Indianapolis, IN) in Hanks buffered saline (0.6 mg/ml) using a wrist action shaker.  Islets 

were then handpicked under microscopic guidance.  Islets were cultured in RPMI 1640 

(Invitrogen, Carlsbad, CA) with 10% Fetal Bovine Serum (Invitrogen, Carlsbad, CA) and 

11 mM glucose.   

 

7.2.3. Islet / Cell labeling 

Cultured cells and islets were labeled using similar procedures.  Two contrast 

agents were used.  Superparamagnetic iron oxide particles (SPIO) particles consisted of 

1.63 µm polymer encapsulated iron oxide particles (Bangs Labs, Fishers, IN).  

Magnevist (Schering AG, Germany) was used as a paramagnetic labeling agent.  

Passive labeling consisted of co-culture of islets or cells with the labeling compound for 

incremental periods of time.  Cells/islets were then washed three times with PBS to 

remove free contrast agent.   
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Electroporation was performed using the Gene-Pulser system (Bio-Rad, 

Hercules, CA).  Briefly, cells or islets were placed in PBS with the labeling agent (SPIO 

or Magnevist) in 0.4 cm Gene-Pulser cuvettes.  Electroporation parameters were 

adjusted to 960 µF and 250 mV.  Immediately after delivering the electrical pulse 

cells/islets were re-suspended in media.  Cells/islets were washed three times in PBS to 

remove residual contrast agent.   

Fugene 6 (Roche Applied Science, Indianapolis, IN) was used for lipofection of 

the Magnevist contrast agent into cells/islets.  Thirty-six µL of Fugene was incubated in 

450 µL of Dulbecco's Modified Eagle Medium (DMEM) at room temperature for 5 

minutes.  A solution containing 25 µL of 0.5M Magnevist in 100 µL DMEM was then 

mixed with the Fugene solution and incubated at room temperature for 30 minutes.  

Cells/islets were incubated with transfection-Magnevist complexes for 4 hours under 

standard culture conditions (CO2 incubator: 37°C 5% CO2).  Cells/islets were washed 3 

times with PBS to remove free contrast particles in the supernatant.  Cells were then 

trypsinized and centrifuged in 15 mL tubes.  The supernatant was removed, cells were 

sonicated to resuspend, and then centrifuged in 1.5 mL tubes to pellet.  The supernatant 

was removed due to the presence of free Magnevist and replaced with water. 

 

7.2.4. Inductively Coupled Plasma - Mass Spectrometry 

The iron content of islets incubated with SPIO particles was determined using an 

inductively coupled plasma mass spectrometer (Perkin Elmer Elan 6100 DRC ICPMS, 

Wellesley, MA).  The purified islet mixture was digested in a 2% HNO3 matrix.  Iron 

content was quantified by standard calibration and divided by the number of islets in the 

sample to yield iron content per islet.   
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7.2.5. Microscopy 

Confocal microscopy was performed on islets labeled with fluorescent SPIO 

particles.  Islets were placed between glass cover slips.  Imaging was performed using 

an inverted LSM510 confocal microscope (Zeiss, Germany).  A 633 nm filter set was 

used to image the red fluorescence wavelength of the SPIO.   

Pseudo-confocal microscopy was performed on islets labeled with a fluorescent 

Magnevist analogue.  This molecule substituted europium for gadolinium and had a 

fluorescent antenna to allow visualization of label internalization and localization.  A 

Nikon Eclipse TE2000-U (Tokyo, Japan) microscope was then used to image the 

fluorescent label.   

 

7.2.6. Cellular MR Imaging 

All MR data was acquired at 400 Mhz using a 9.4 Tesla 21-cm horizontal bore 

MR scanner (Varian, Palo Alto, CA).  A 38 mm diameter Litz coil was used for RF 

transmission and signal reception.  For islets labeled with SPIO, islets were suspended 

in serum albumin in a 6 cm dish positioned in the isocenter of the magnet bore.  A T2 

weighted gradient echo image was taken for imaging.  For cells/islets labeled with 

Magnevist, cells were pelleted in 1.5 ml micro-centrifuge tubes placed in a water bath to 

avoid susceptibility effects from surrounding air.  A T1 weighted spin echo image was 

taken with the following parameters: TR = 1000, TE = 12, sampling grid = 128x128.  

 

7.2.7. Targeted Peptide Synthesis 

A 20-mer peptide with the sequence LSGTPERSGQAVKVKLKAIP was found to 

home to the islets of Langerhans using phage display [32].  We modified this 20-mer 

peptide with biotin on the N-terminal and amidation of the C-terminal and a 6-carbon 

linker between biotin and the N-terminus (GenScript Corporation, Piscataway, New 
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Jersey).  A near-infrared dye (IRDye800 CW, Licor, Lincoln, Nebraska) was conjugated 

to avidin, yielding approximately 11.5 dye molecules per avidin.  This dye-avidin complex 

was then conjugated to the peptide-biotin complex.   

 

7.2.8. Targeted Peptide Imaging 

In vivo fluorescence imaging was performed on a Xenogen IVIS 200 imaging 

system (Alameda, CA).  FVB mice were anesthetized with constant inhalation of 

isoflurane.  In order to capture the near infrared fluorescence, Cy 5.5 filter sets were 

used for imaging.  The purified dye-peptide complex was injected via retro-orbital 

injection.  Images were taken at incremental periods after injection with a 1 second 

exposure time.  Twenty-four hours after administration animals were sacrificed.  Organs 

were extracted and imaged with the IVIS 200 system to determine label accumulation.   

 

7.3 Results 

 

7.3.1. SPIO labeling 

Islets co-incubated for 48 hours with SPIO particles were visible on T2 weighted 

MRI.  These SPIO particles created hypointense signal voids within the homogeneous 

medium surrounding the islets (Figure 7.1A).  After MR imaging, the location of labeled 

islets was visually verified to coincide with the location of MR hypo intensity.   

The location of SPIO accumulation within an islet was determined with confocal 

microscopy.  As SPIO particles were impregnated with a fluorescent dye, the iron 

particle location could be determined.  Figure 7.1B shows the results of a confocal 

reconstruction of an islet sandwiched between two cover slips.  SPIO location is shown 

in red.  The red signal is present predominantly on the edges of the islet, indicated SPIO 

accumulation peripherally and exclusion from the center of the islet.   
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As MRI signal is a function of the amount of iron present, ICP mass spectrometry 

was performed to determine the amount of iron sequestered within islets.  Incubation of 

iron oxide particles with increasing concentrations of SPIOs affected the amount of iron 

trapped per islet (Figure 7.1C).  However, incubation with the same concentration of 

SPIO did not provide constant iron accumulation per islet; iron content varied by 36%.   

   

0.08

0.1

0.12

0.14

0.16

1.00E+06 1.00E+07 1.00E+08 1.00E+09 1.00E+10

Concentration of SPIO

ug
 Ir

on
 / 

Is
le

t

A B

C

 
Figure 7.1.  (A) T2-weighted MR image of SPIO labeled islets suspended in serum albumin.  
The labeled islets are visible as hypointense voids.  The arrow indicates one such void.  (B) 
Confocal microscopy of an islet labeled with fluorescent SPIOs.  The islet is flattened between 
two cover slips.  The red fluorescence comes from a dye within the SPIO; the green 
fluorescence are islet cells virally transfected with GFP.  (C) Iron content of islets as 
determined by ICP-MS.  Islets were co-cultured with various concentrations of SPIOs for 48h.  
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7.3.2. Magnevist labeling 

Several techniques for cellular 

internalization were used to incorporate 

the Magnevist contrast agent into islets.  

The cell line βTC-3 was used as an islet 

surrogate.  Passive co-incubation of 

Magnevist with cells did not result in any 

detectable MR signal.  Electroporation 

resulted in some label accumulation, but 

resulted in high rates of apoptosis.  The 

best results were found using lipofection 

of βTC-3 cells with Magnevist.  Cell 

pellets lipofected with Magnevist 

became hyperintense (left tube, Figure 7.2) compared with unlabeled control cells (right 

tube, Figure 7.2).   

No hyper intensity was present when the same lipofection technique was 

attempted on pancreatic islets.  To visualize Magnevist internalization into islets, a 

fluorescent Magnevist analogue was synthesized (Figure 7.3A).  This compound was 

then lipofected into islets.  Pseudo confocal microscopy was performed to track 

localization of the compound after lipofection (Figures 7.3B & 7.3C).  The optical 

Magnevist tracer was present throughout the islet.   

 

 

 

 

Gd Labeled UnlabeledGd Labeled UnlabeledGd Labeled Unlabeled

Figure 7.2.  βTC-3 cells pelleted in the bottom 
of micro centrifuge tubes.  The left tube was 
lipofected with Magnevist contrast agent.  The 
right tube contains unlabeled cells as control.  
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Figure 7.3. (A) Chemical structure of Magnevist and an optical analogue of 
Magnevist.  (B) Phase contrast image of a pancreatic islet.  (C) Pseudo confocal 
fluorescence image of the same islet.  The fluorescent Magnevist compound is 
visible as orange cells distributed throughout the islet.   

7.3.3. Targeted Peptide 

An islet-targeted peptide was conjugated to a near infrared fluorescent dye for 

imaging.  An avidin-biotin complex was used to attach the components (Figure 7.4).  

This compound was then injected into FVB mice via retro orbital injection.  Thirty 

minutes after injection free dye was visibly metabolized in a region consist with the 

location of the liver and excreted in the bladder (Figure 7.4A).  The targeted dye 

appeared sequester in the abdomen, in an area consistent with the anatomical location 

of the pancreas.  However, three hours after injection the targeted dye also appeared to 

be excreting through the bladed (Figure 7.4B).  Twenty-four hours after injection, the 

liver, pancreas, liver, stomach, and intestines were removed and imaged to determine 

probe accumulation.  Both free (Figure 7.4C) and targeted dye (Figure 7.4D) was found 

exclusively in the liver, with no detectable levels present in the pancreas.  In a 

subsequent experiment, imaging was performed immediately after injection and the liver 

and pancreas were exposed for imaging.  All probe accumulation was in the liver, with 

no detectable accumulation in the pancreas (data not shown).   
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Figure 7.4. (A) In vivo fluorescence image of a mouse injected with free NIR dye (left mouse) 
and NIR dye attached to a targeting peptide (right) 30 minutes post retro orbital injection.  The 
free dye appears to be cleared through the liver and bladder.  (B) In vivo fluorescence image of 
the same mice injected with free NIR dye (left mouse) and NIR dye attached to a targeting 
peptide (right) 3 hours post retro orbital injection.  Both mice show dye clearance through the 
liver and bladder.  (C) Excised organs from the mouse injected with free NIR dye.  (D)  Excised 
organs from the mouse injected with the peptide targeted dye.   

7.4. Discussion 

Islets labeled with iron oxide particles were detectable as hypo intense spots in 

MR images.  However, confocal microscopy of these particles indicated that these 

particles were associated solely with the periphery of the islet.  As dynamic changes in 

islet structure accompany islet transplantation [33], an optimal labeling agent must be 

distributed throughout the islet to accurately reflect islet mass.  Furthermore, the amount 
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of iron associated with each islet was not constant after labeling.  Variability in iron 

internalization was echoed by other studies [14], and has implication for quantifying the 

number of islets surviving transplantation.  As the size of the disturbance in the local 

magnetic field caused by SPIOs exceeds the size of the islets themselves, it is unclear if 

a hypo intense spot represents a single islet or a cluster of many islets [12].  Studies 

seeking to quantify SPIO labeled islets transplanted into the liver have relied on 

manually counting signal voids on MR images [14,15], a technique prone to islet 

clustering and user bias.   

Islets labeled with a paramagnetic contrast agent are easier to quantify, as the 

area of signal hyper intensity correlates with the number of labeled cells.  Cultured cell 

lines labeled with Magnevist, a paramagnetic contrast agent, were apparent on T1-

weighted MR images.   Furthermore, use of an optical Magnevist analogue 

demonstrated that this label penetrated throughout the islet, likely due to its smaller size 

than SPIOs.  However, attempts to achieve the same contrast with islets failed, owing 

either to a smaller cell volume or difference in internalization rate.   

Techniques using MR contrast agents relied on ex vivo labeling of islets.  This 

caveat limits this technique exclusively to studies of transplanted islets.  Native 

pancreatic islets cannot be labeled in this manner.  The practice of transplanting islets to 

reverse diabetes captivated the diabetes community half a decade ago with the 

publication of the Edmonton protocol [34].  However, over the course of this project, this 

early promise has waned.  A recently published multi-center evaluation of the Edmonton 

protocol found that the majority of transplanted islet grafts failed to reverse 

hyperglycemia two years after transplantation [35].   Thus, the ability to label only 

transplanted islets is a major weakness of ex vivo labeling with MR contrast agents. 

The use of agents that specifically target the pancreatic islet would permit 

imaging of not only transplanted islets, but also islets in the pancreas.  However, the 
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search for candidate targeting agents has proven largely unsuccessful [21-25,30].  We 

tested the hypothesis that a peptide found to specifically bind the islet [32] could provide 

the islet targeting for in vivo labeling.  Although our approach utilized near infrared 

fluorescence, the technique could be easily adapted to clinically applicable modalities 

such as PET.  However, although initial results were promising, the peptide targeting 

fluorescent agent was home specifically to the liver, with negligible uptake in the 

pancreas.   
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CHAPTER VIII 
 
 

CONCLUSIONS AND FUTURE WORK 
 

 

8.1. Summary 

 The overall objective of this research was to develop techniques to non-

invasively image the pancreatic islet.  These techniques were subsequently validated 

and applied to applicable models of disease and transplantation.   

 The review of islet transplantation in Chapter II established the need for an 

imaging modality capable of imaging the pancreatic islet.  The central role of the islets of 

Langerhans in the pathogenesis of diabetes was highlighted, establishing the impetus 

for tracking these cells.  The challenges facing successful imaging of the islet were 

discussed.  Approaches by other researchers attempting to image the islet were 

summarized.  These techniques spanned a variety of imaging modalities encompassing 

magnetic resonance imaging, nuclear imaging, and optical imaging.  The strengths and 

weaknesses of each modality were discussed in the scope of islet imaging.   

 Chapter III presents work using bioluminescence imaging (BLI) to track 

transplanted pancreatic islets.  Islets labeled with the luciferase reporter gene via 

adenoviral vector were visible in vitro.  The light emitted from these islets was found to 

be proportional to the number of islets.  Islets could also be imaged non-invasively after 

transplantation, with light intensity again correlating to the number of islets transplanted.  

Viral transfection was shown to have no adverse affect on islet function or morphology.   

 Chapter IV discusses generation of a transgenic mouse line expressing 

luciferase under control of the mouse insulin I promoter.  The functionality and 

morphology of transgenic islets was found to be normal.  Light emitted from the beta 
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cells of these animals could be imaged with a CCD camera.  As found with virally 

transfected islets, the amount of light emission correlated with the number of islets.  

Light emission was also found to be affected by glucose levels.  A mouse model of 

diabetes using the beta cell toxin streptozotocin was applied to transgenic 

insulin/luciferase mice.  Diabetes induced a drop in bioluminescence intensity, 

correlating with the loss of beta cells.  Transgenic islets could be imaged non-invasively 

after transplantation.  As islet survival after transplantation varied, bioluminescence 

intensity provided an indicator of the number of surviving islets.   

 Chapter V recounts a set of experiments using light emitting standards to 

determine factors that influence quantification of bioluminescence imaging.  These 

standards emit known, constant intensity light that mimic the light produced by the 

luciferase reaction.  Using these standards it was determined that surgical artifacts after 

islet transplantation affect BLI measurements.  The affect of transplantation location was 

also quantified and standardized.  Rotation of the animal was found to induce changes in 

bioluminescence quantification.   

 A three-dimensional luminescent source reconstruction algorithm is 

systematically evaluated in Chapter VI.  Light emitted standards were employed to 

determine the accuracy of bioluminescent source position and intensity reconstruction.  

The accuracy was found to be a function of source depth.  Sources more shallow than 

the mean free path depth led to increased error in the reconstruction.  The ability of the 

algorithm to distinguish two equal intensity sources decreased with increased source 

depth.  Reconstruction of light sources in optically heterogeneous media (such as a 

mouse abdomen) was less accurate than optically homogeneous media.   

 Chapter VII summarizes several projects seeking to establish clinically relevant 

imaging modalities for islet imaging.  The previously discussed work using 

bioluminescence imaging provides a valuable pre-clinical tool, but is not applicable for 
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human studies.  Work using magnetic resonance imaging used islets labeled with MRI 

contrast agents.  However, these techniques suffered from issues with labeling 

efficiency, sensitivity, and signal quantification.  The main inadequacy of the MRI 

approach used was that it requires ex vivo islet labeling, limiting the technique to studies 

of transplanted islets.  A targeted compound that specifically targets or accumulates in 

the islet could be labeled for imaging purposes.  One such targeted peptide was 

evaluated for in vivo imaging using near infrared fluorescence.  Unfortunately, no islet 

accumulation was achieved. 

 

8.2. Future Work 

 The work presented in this dissertation has established the basis for a wealth of 

future studies.  The development of bioluminescence imaging for non-invasive imaging 

of pancreatic islets is a valuable pre-clinical tool.  This modality can be applied to an 

array of murine models of disease, yielding valuable insight into the dynamics of beta 

cell loss and regeneration.  Several of these studies are currently underway, including 

using BLI to examine the effects of a high fat diet on beta cell hypertrophy.  

Bioluminescence imaging can also be applied to transplant settings to determine factors 

affecting transplant survival and optimizing the optimal engraftment site.   

 Bioluminescence imaging is limited by optical attenuation to studies involving 

small animals.  Ultimately, a modality applicable to human imaging is sought to guide 

clinical intervention.  The clinically applicable approaches attempted in these studies 

proved inadequate for assessing islet mass.  However, the development of targeted 

imaging agents is an area of active research.  Evaluating promising candidates requires 

a correlative measure of beta cell mass; bioluminescence imaging can provide such a 

metric.  Future correlation between BLI measurements and alternate modalities will aid 

evaluation of such modalities.  Furthermore, determining the anatomical location of 
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targeted agent can be difficult, as demonstrated with the studies using a targeted 

peptide described in Chapter VII.  Three-dimensional reconstruction of the location of 

bioluminescent islets can be used to guide image analysis in co-registered data sets, 

providing an atlas of the islet location.   

 

8.3. Research Considerations 

The protection of research subjects and the societal impact of this research were 

considered throughout the course of these studies.   

 

8.3.1. Protection of Research Subjects 

No human subjects were used in this research.  As this research project was 

directed towards development of in vivo imaging modalities, animal experimentation was 

necessary.  The proper and ethical use of animals in scientific research was ensured in 

all experimentation. All lab personnel completed the Animal Research Training Program 

sponsored by the Institutional Animal Care and Use Committee, as required by 

Vanderbilt University.  All experiments were conducted in accordance with National 

Institutes of Health regulations for the ethical use of animals in research and were pre-

approved by the Vanderbilt Institutional Animal Care and Use Committee. 

Appropriate training on general lab safety and standard chemical, biological, and 

radiation safety was required for personnel involved in this study in compliance with 

institutional guidelines. 

 

8.3.2. Societal Implications 

Diabetes mellitus is a prevalent disease with rising incidence rates.  An increased 

understanding of the dynamics of beta cell growth and death will yield valuable insight 
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into diabetes.  This knowledge can be used to guide future treatment of diabetics, 

leading to increased quality of life and life expectancy.   
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