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CHAPTER I 

 

BACKGROUND 

 

Autoimmunity 

Basic Paradigms in Autoimmunity: Immune Response to Self-Antigen 
 

Basic concepts in immunology have shaped current theories regarding the 

mechanisms responsible for autoimmunity.  One of the fundamental principles arising 

from decades of research is that the immune system is able to discriminate self from non-

self.  VDJ recombination at the TCR (T cell receptor) and BCR (B cell receptor) loci 

generate a vast polyclonal repertoire.  Due to the random nature of this recombination 

process, the receptors generated may be viable, nonfunctional, or autoreactive. During 

development, central tolerance is achieved through the combined action of positive and 

negative selection, resulting in the removal of the nonfunctional and autoreactive 

lymphocytes.  Despite central tolerance, autoreactive clones do survive the selection 

process and escape into the peripheral circulation.  Additional mechanisms, collectively 

termed peripheral tolerance, prevent autoreactive clones from reacting against self.  The 

mechanisms typically invoked as maintaining peripheral tolerance include anergy 

(functional unresponsiveness in a lymphocyte), clonal ignorance (lymphocytes remain 

responsive, but do not recognize autoantigen), and clonal deletion (autoreactive clones 

undergo apoptosis).  
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Given that autoimmune disorders arise from immune mediated damage against 

self, it follows that the mechanisms that allow self:non-self discrimination have broken 

down.  Molecular mimicry, the notion that environmental antigens (such as those from 

bacteria or viruses) resembling self antigens can promote cross-reactivity against self, has 

been proposed as a method for instigating loss of tolerance.  In the case of T cells, it 

would be expected that autoreactive lymphocytes recognize and react against self-antigen 

in the context of MHC (major histocompatability complex). Recognition of autoantigen 

would ultimately lead to an immune response against self, resulting in end organ damage.  

Supporting evidence that foreign antigens resembling self can initiate 

autoimmunity comes from animal models, such as collagen induced arthritis (CIA) and 

experimental autoimmune encephalomyelitis (EAE).  CIA, an animal model of RA, is 

perhaps the most well characterized model.  In this model, mice immunized intradermally 

with Complete Fruend’s Adjuvant (CFA, a mixture of oil and M. tuberculosis products) 

and heterologous type II collagen (the major form of collagen present in joint cartilage ) 

develop a monophasic, progressive polyarthritis that ultimately resolves2.  Alternatively, 

EAE is an inflammatory demyelinating disease induced in mice through immunization 

with myelin proteins in CFA.  EAE is characterized by ascending paralysis and numbness 

caused by demyelination and interruption of motor and sensory neurons3. 

Studies examining the susceptibility of mice to CIA support the notion that cross-

reactive epitopes, in the context of the strain specific MHC polymorphisms, contribute to 

the development of CIA.  Early experiments demonstrated that not all strains of mice 

were susceptible to CIA.  Genetic studies revealed that the most important genetic 

interval contributing to CIA susceptibility was the MHC locus4.  It is now known I-Aq 
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and I-Ar  MHC Class II polymorphisms are responsible for CIA susceptibility in mice, 

supporting a role for antigen presentation and CD4+ T lymphocytes in the disease model5. 

A further role of MHC and T lymphocytes in the disease has been illustrated by 

prevention of arthritis using blocking antibodies directed against the TCR6, 7 and MHC 

II8. 

Further studies examining the immunogenicity of the antigen have revealed that 

only particular epitopes on type II collage promote autoimmunity.  Immunization of 

susceptible strains of mice with proteolytic fragments of type II collagen reveal that the 

cyanogen bromide 11 fragment (amino acids 124-402) of type II collagen is capable of 

mediating disease, with amino acids 260-267 serving as the immunodominant epitope9.  

Additional type II collagen epitopes have also been identified.  Similar results, 

demonstrating a dependence on specific MHC polymorphisms and cross-reactive 

epitopes, have been found in the EAE mouse model3.   

In general, animal models of autoimmunity provide support for an immunological 

view of autoimmunity.  These models reveal that cross-reactive antigen in the context of 

disease-associated MHC polymorphisms can promote loss of tolerance.  Cross-reactive 

lymphocytes mount an immune response against self, targeting and damaging end organs, 

ultimately leading to autoimmune disease manifestations. 

         

Human Autoimmune Disorders:  RA, SLE, MS, and IDDM 

As a group, the human autoimmune disorders are relatively common, affecting 

approximately 5% of the population10.  Autoimmune disorders are thought to arise from 

immune-mediated attack against self.  While the role of MHC and cross reactive foreign 
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antigens is clear in animal models of autoimmunity, the mechanisms responsible for loss 

of tolerance are not known for the human diseases11.   

Considerable heterogeneity characterizes human autoimmune disorders, both 

within a disease and among the different disorders.  For example, depending on the type 

of disease, the average age of onset can range from the teens for type I diabetes (IDDM) 

(10-20 years of age, Table I) through late adulthood for rheumatoid arthritis (RA) (30-50 

years of age, Table I).  The major sites of attack for these diseases can be highly organ- or 

tissue-specific, such as the myelin sheath in multiple sclerosis (MS) or pancreatic β-cells 

in IDDM to disorders that are more systemic in nature, such as RA and SLE.  

Epidemiologic and clinical information are compiled in Table I to highlight further 

differences among these four distinct diseases.   

Closer examination further illustrates some of features that are unique to 

individual autoimmune disorders.  For example, SLE is a complex autoimmune disease 

characterized by the production of autoantibodies directed against components of the cell 

cytoplasm and the nucleus.  Women are affected with SLE approximately 8-10 times 

more frequently than men (See Table I)12.  The overall population prevalence of SLE is 

approximately 0.05 % (see Table I), however there is a racial disparity, with African 

Americans suffering from SLE with a prevalence as high as 0.4%13. 

Patients typically present with a portion of a spectrum of SLE-associate clinical 

symptoms, including autoantibodies, skin rashes, arthritis, glomerulonephritis, and 

hematologic abnormalities14.  In many cases, the symptoms arise from the deposition of 

immune complexes (autoantibodies complexed to antigen) in the vasculature and at 

various sites throughout the body, resulting in inflammation at multiple organ systems.  
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For example, the deposition of autoantibodies within the mesangium and near the 

basement membrane of the kidney15, 16 contributes to the development of 

glomerulonephritis.  Similarly, the deposition of immune complexes and complement at 

the dermal-epidermal junction17, 18 can promote skin lesions and rashes characteristic of 

SLE. 

MS is a neuroimmune disorder involving the central nervous system (CNS), 

which is characterized by infiltration of leukocytes into the CNS, localized inflammation, 

demyelination, and axon damage.  MS predominantly affects women, with approximately 

70-75% of MS patients being female (Table I)19.  The incidence of disease also 

demonstrates racial disparity, with 90% of MS cases occurring in Caucasians.  

Interestingly, the incidence of MS displays a striking geographical distribution, with 

increasing risk zones moving away from the equator20. 

There are two major clinical patterns that occur in patients with MS: relapsing MS 

and progressive MS.  Relapsing MS is characterized by acute neurological attacks, 

followed by periods of recovery.  On the other hand, progressive MS involves the slow 

onset of neurological abnormalities.  In some cases relapsing MS can evolve into 

secondary progressive MS 21.  Clinically, patients with MS may present with any number 

of a range of symptoms, with varying degrees of severity, including motor, sensory, and 

visual disturbances, fatigue, and cognitive loss (Table I)21.  Regardless of the clinical 

pattern, many of the symptoms arise from the immune-mediated axonal demyelination 

and damage in the CNS.  This demyelinating damage is believed to occur at discreet 

inflammatory lesions, termed plaques.  Plaques arise as a result of the penetration of 

inflammatory cells into the CNS22, 23. 
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IDDM results from immune mediated destruction of β-islet cells in the pancreatic 

islets of langerhans.  Decreased pancreatic insulin output results in the inability to 

maintain appropriate blood glucose levels, ultimately contributing to symptoms such as 

polyuria, polydispia, and weight loss.  IDDM typically occurs in individuals during 

youth, with a peak incidence between 10-20 years of age24.  Unlike many of the other 

autoimmune disorders, there is a lack of gender bias in incidence for Type I diabetes.  

The incidence of Type I diabetes is higher in Caucasian populations than other 

ethnicities25.  On a global scale, the incidence of IDDM can vary widely depending on 

geographical location and ethnicity, however generally speaking European populations 

tend to be the most predisposed to IDDM, with the Nordic countries (Finland, Sweden, 

and Norway) displaying the highest incidence.  Conversely, countries in Asia and South 

America appear to have a relatively low incidence of IDDM26. 

Since significant destruction of pancreatic β cells occurs prior to clinical 

presentation of IDDM, identifying the events responsible for disease initiation in humans 

has been difficult. Signs of autoimmune dysregulation are believed to occur years prior to 

the clinical presentation of IDDM.  For example, autoantibodies against islet cell 

antigens, such as insulin27 and GAD6528, have been detected in the serum of patients with 

IDDM. These autoantibodies are present both prior to diagnosis of disease29 and at 
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TABLE I.  Comparison of epidemiologic, genetic, and clinical features 
for four distinct human autoimmune disorders       

Data for table compiled from:

  J. Cush, A. Kavanaugh, N. Olsen, C. Stein,  S. Kazi, and K. Saag. In J. Pine, Jr.
(ed.),Rheumatology:  Diagnosis and Therapeutics.  Williams & Wilkins.
Baltimore.1999

Lahita, R.G., Weyand, C.M., Goronzy, J.J.,Brey, R.L., Barohn R.J., and Amato,
A.A. (2000).  In Lahita, R.G. (ed.), Textbook of the Autoimmune Diseases.
Lippincott Williams & Wilkins, Philadelphia, pp. 351-375.

Data compiled for four distinct autoimmune disorders, systemic lupus 
erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), and 
type I diabetes (IDDM).  Epidemiological factors include:  average age of disease 
onset (Onset age), ratio of female to male prevalence (F:M), and an estimate of 
overall prevalence in the population (Prevalence).  Epidemiological support of a 
genetic contribution to autoimmunity (Genetics) is shown by examination of the 
relative risk of disease (Relative Risk) for either siblings (Sibs) or monozygotic 
twins (mono) relative to the general population.  Clinical features of the 
individual disorder are also included, with a list of some of the clinical symptoms 
(Symptoms) and the general disease course (Course).         

             Epidemiology                           Genetics                           Clinical Features

 Onset Age  Ε :Γ      Prevalence                     Relative Risk                          Symptoms           Course

  Sibs          Mono

SLE       15-40     8:1     ≈0.05%                20       250 Glomeruloneph.
Skin rashes
Cardiovascular

Flares that
decrease in
activity with
age

RA         30-50   2-4:1     ≈1%                   3-10   20-60
Joint pain/swelling
Rh. vasculitis
Rh. Nodules
Pleurisy

50-70% of
patients with
progressive
disease

MS         15-50    3:1     ≈0.03%                20-40   250 Fatigue
Cognitive Loss
Motor Disturbance
Visual Loss
Sensory Disturbance

85% Relapsing
also with
Progressive
Variants

IDDM     10-20   1:1       ≈1%                     15       60 Polyuria
Polydipsia
Weight Loss
Microvascular

Progressive
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disease onset30, suggesting that defects in B lymphocyte tolerance occurs prior to clinical 

detection of type I diabetes in patients. The accumulation of TH1 CD4+ T lymphocytes in 

pancreatic islets of patients with IDDM suggests they also play a key role in mediating 

islet destruction24.  Studies in NOD mice, a spontaneous animal model for human IDDM, 

supports the necessity for both B31, 32 and T lymphocytes33 in disease initiation. 

RA is a progressive, erosive polyarthritis that affects the smaller diarthroidal 

joints in a symmetric manner.  In addition to joint erosion, there are additional extra-

articular aspects of the disease that may be present in a subset of patients.  These include 

rheumatoid nodules, pleurisy, and cardiovascular abnormalities such as vasculitis34.  RA 

predominantly affects women, and has a prevalence of about 1% throughout the world, 

with certain Native American populations displaying higher rates of disease (Table I)14.  

Other aspects of RA will be covered in greater detail in the RA section of the 

introduction.       

For all of the autoimmune diseases discussed, the inciting events that initiate 

disease are not known.  The specific antigens that are the target of immune attack are also 

poorly defined in these disorders.  Regardless of these facts, evidence supports the notion 

that environmental and genetic factors ultimately dictate whether an individual will 

develop autoimmunity.  Environmental factors that may play a role in a predisposition to 

autoimmunity include diet, climate, and toxins, however the data supporting these notions 

are incomplete.   

It has been further postulated that viruses and bacteria bearing epitopes 

resembling self antigens may provoke a loss of tolerance against self.  Indeed, pharyngeal 

infection with certain strains of group A streptococci are associated with acute rheumatic 



 9

fever (ARF).  The onset of ARF occurs after initial infection, and may be accompanied 

by migratory arthritis of the large joints, possible clinical signs of carditis, and in rare 

cases involvement of the CNS35.  Many of the symptoms of ARF are believed to arise 

from cross-reactive antibodies generated during the immune response to different 

components of the streptococcal cell wall or membrane36-39.  Despite the convincing 

association between an underlying infectious agent and the loss of tolerance in ARF, it 

has proven difficult to establish an underlying infectious cause for other chronic 

autoimmune disorders.  

The evidence supporting an underlying genetic predisposition for autoimmunity 

has been more convincingly established.  Even in the absence of specific genetic factors, 

epidemiological evidence suggests an underlying genetic contribution to disease 

susceptibility. Studies examining the relative risk of disease between two populations, 

most often siblings or monozygotic twins compared with the general population, support 

an underlying genetic contribution.  The finding that the relative risk of disease is greater 

than 1 for most autoimmune disorders (Table I) supports the notion that there is a genetic 

contribution40-42. 

Genetic linkage studies, the quest to identify genetic polymorphisms associated 

with autoimmune diseases in the population, provide more direct evidence of a genetic 

contribution to disease susceptibility.  A large number of these studies have been 

performed in MS43-45, IDDM 46-48,  SLE49-52and RA53, 54. Generally speaking, these 

studies have revealed that the strongest linkage for susceptibility to autoimmunity resides 

in the HLA locus, with disease-specific polymorphisms enriched in the different patient 

populations.  As mentioned previously, similar results have been found in numerous 
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animal models of autoimmunity, and support a role for antigen presentation and T 

lymphocytes in the pathogenesis for many of these diseases. 

In addition to linkage to the HLA locus, genetic screens have identified non-

MHC-linked loci that also appear to contribute to autoimmunity.  In an interesting study, 

researchers made comparisons between numerous genomic screens for five distinct  

human autoimmune disorders, including IDDM and MS55.  After statistical analysis, the 

group found that the positive markers from the different studies clustered non-randomly 

throughout the genome.  Eighteen genetic clusters, comprised of markers from at least 

two different autoimmune diseases, were identified (Fig. 1)55.   As a control, comparisons 

of susceptibility loci identified for seven non-autoimmune diseases (such as type II 

diabetes or schizophrenia) were also compared.  No clustering of genetic loci was 

observed for the non-autoimmune disorders.  Additional studies in RA have identified 

non-MHC loci that also cluster with the previously defined autoimmune clusters53.   

Collectively, these results suggest that there are multiple non-MHC genetic 

intervals that can predispose individuals to generalized autoimmunity.  Epidemiological 

evidence supports the possibility of a genetic generalized predisposition to autoimmunity. 

Familial clustering of autoimmune diseases is not uncommon.  A susceptible family can 

contain multiple individuals suffering from more than one type of autoimmune disease56-

58.  

 

Basic Paradigms in Autoimmunity: Genetic Modulation of Immunoreactivity 
 

Despite the striking findings from the human genetic studies, the specific genes 

and their roles in modulating immune function is poorly understood.  However, studies in 
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animal models of autoimmunity clearly show that genetic susceptibility intervals can 

impact global immune function.  Similar to the human genomic screens, studies in 

spontaneous animal models of autoimmunity have also revealed that multiple non-MHC  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

Fig. 1.  Clustering of autoimmune candidate loci.   Positive markers for 
human autoimmune diseases are denoted by solid colored bars to the right 
of the chromosomes.  Control human non-autoimmune diseases are 
indicated by a small colored triangle to the left of the chromosomes.  
Remaining markers represent susceptibility loci from animal models of 
autoimmunity.  Clusters of susceptibility loci for multiple human 
autoimmune diseases are denoted by the boxes encompassing the clustered 
loci.    

Becker, K., et al. “Clustering of non-major histocompatability 
complex susceptibility candidate loci in human autoimmune diseases”   
PNAS. 95. 1998. 95  9979-9984 
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loci can contribute to a predisposition to autoimmunity.  One of the animal models 

investigated most intensively from a genetics standpoint is the NZM2410 mouse strain, a 

spontaneous inbred animal model of SLE. Female mice suffer from more severe disease, 

which is characterized by the production of autoantibodies to nuclear components, 

splenomegaly, and ultimately fatal glomerulonephritis.  Initial genetic analysis of the 

NZM2410 strain revealed that three major non-MHC susceptibility intervals, Sle1, Sle2, 

and Sle3, contribute to autoimmune susceptibility59. 

A congenic dissection approach was taken in an attempt to determine the 

functional role of these susceptibility loci.  Congenic dissection refers to the reduction of 

a polygenic system, in this case the NZM2410 strain, into congenic strains each carrying 

one or more intervals from the susceptible strain introgressed into a resistant genetic 

background (i.e. C57/B6 mice)60.  Characterization of these congenic strains for 

manifestations of autoimmunity has allowed researchers to determine the functional role 

of the susceptibility loci either individually or in combination.  For example, after 6-9 

months of age, B6.Sle1 mice displays a loss of tolerance toward nuclear antigens, as 

measured by the production of autoantibodies against subnucleosomal components61.  

These results implicate Sle1 in loss of tolerance to nuclear antigen.  Studies in B6.Sle2 

mice revealed that the Sle2 interval increases serum levels of polyclonal IgM and 

increases B lymphocyte responsiveness to in vitro and in vivo stimuli62.  T lymphocytes 

from B6.Sle3 mice display signs of T lymphocyte dysregulation, with congenic mice 

containing age related increases in the number of activated CD4+ lymphocytes, enhanced 
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responses to T-lymphocyte dependent antigens, and reduced activation induced cell death 

(AICD) in response to in vitro anti-CD3 stimulation63.   

While each of these genetic intervals appears to contribute to some aspect of 

immunological dysfunction, no single locus is able to mediate completely penetrant SLE 

with glomerulonephritis in the B6 congenic strains60.  However, the cumulative effects of 

multiple Sle intervals is sufficient to cause disease on a B6 background64.  This series of 

studies illustrates how genetic regions outside of the MHC locus can impact global 

immunoreactivity.  Individually, each locus impacts an aspect of the immune function, 

such as tolerance to nuclear antigen, B lymphocyte reactivity threshold, or T lymphocyte 

reactivity and apoptosis.  The cumulative impact of all loci is sufficient to drive the 

immune system to autoreactivity even on a normally resistant genetic background 

 

Rheumatoid Arthritis 

Since RA is the disorder we have studied the most extensively, a separate section 

is provided to cover basic clinical and science background regarding the disease.  RA is 

classically characterized as a chronic, progressive erosive polyarthritis that targets 

diarthroidal joints in a symmetric pattern, most commonly affecting the hands and feet14.  

In addition to the cardinal finding of inflammatory arthritis, there are additional systemic 

manifestations, such as pleuritis, rheumatoid nodules and vasculitis, which may be 

present in some patients34.  

The most prominent pathologic changes associated with RA occur within the 

joints of patients (Fig. 2).  In active disease, the synovial lining hypertrophies and has 

been invaded by CD4+ T lymphocytes, B lymphocytes, and macrophages. Synoviocytes, 
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which consist of fibroblast-like cells and macrophage-like cells, also display signs of 

activation and actively produce extracellular matrix components, metalloproteinases, and  

proinflammatory cytokines such as IL-1 and IL-665.  This heterogeneous inflammatory 

tissue comprised of synoviocytes and leukocytes, commonly referred to as pannus, acts as 

the major destructive unit in RA resulting in the erosion of subchondral bone.  The large 

number of neutrophils and elevated levels of IL-1, IL-6, and TNFα, in the synovial fluid 

of RA patients further highlights the inflammatory nature of this disease14.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Olsen, N and Stein, M.  “New Drugs for Rheumatoid Arthritis.”  New 
England Journal of Medicine.  350. 2004. p. 2167-2179 

Fig. 2.  Diagram of the RA joint. 
 
Schematic illustrating the potential role of lymphocytes, rheumatoid 
factor, complement, and pro-inflammatory cytokines in RA joint 
damage.     
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Closer examination of the long-term natural history of RA reveals that the disease 

does not simply result in irreversible joint damage, but also results in high levels of work 

disability and increased mortality in patients.  Studies show consistent radiographic 

evidence of progressive erosive disease with time66-68.  Longitudinal radiographic reports 

reveal that much of the joint damage occurs within the first 5-10 years of disease onset, 

highlighting the necessity to correctly diagnose RA patients early in their disease 

course69-71.  Progression of RA is also associated with declines in functional status, as 

assessed by grip strength, button tests, and questionnaire scoring72, 73.  Work disability is 

also a major problem in the RA patient population, with disability levels as high as 50-

75% in patients 10 years after disease onset74, 75.  Most striking, reports from diverse 

locations around the world have documented increased levels of mortality in the RA 

population when compared to age matched healthy individuals76-83.  Elevated levels of 

mortality result from infections, renal disease, cardiovascular disease, and lymphoma84, 

85.  Interestingly, increased mortality in RA patients was predicted by severe RA 

documented 5-15 years earlier77, 86.  Patients with poor functional capacity had 5 year 

survival outcomes.  This is comparable to patients with three-vessel coronary artery 

disease or type IV Hodgkin’s disease87. 

The recognition that much of the irreversible joint damage occurs early in the 

course of the disease and that severe RA is associated with increased mortality72 has 

altered strategies for disease treatment88-90.  Currently rheumatologists use non-steroidal 

anti-inflammatory (NSAIDS), glucocorticoids, and disease modifying anti-rheumatic 

drugs (DMARDS) in order to treat RA.  While NSAIDs (such as aspirin and COX-2 

inhibitors) are effective at decreasing pain and inflammation, they have not proven useful 
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for preventing the progression of erosive arthritis91.  Low dose glucocorticoids (3 to <10 

mg) are also typically given, with lower doses of steroid better tolerated by patients. The 

DMARDS, or second line agents, such as methotrexate, sulfasalazine, and intramuscular 

gold injections, have proven to be effective at slowing the progression of RA; in general, 

the mechanism by which DMARDs alter the course of disease remains largely 

unknown91. 

Rheumatologists now initiate aggressive DMARD treatments early in the disease 

course, in an attempt to prevent joint damage, relieve pain, and improve long-term 

outcomes.  Current evidence shows that this fundamental change in strategy promises to 

be more effective in slowing RA disease progression.  Radiographic evidence reveals that 

continuous, early treatment with DMARDs was capable of slowing the progression of 

joint erosion92-94.  Furthermore, studies show that long-term treatment with DMARDS 

results in improved functional capacity95 and improves survival rates in RA patients96-98.      

The newest lines of treatment available for RA, the biological agents, are opening 

new possibilities for treating patients with RA90.  Scientists are taking advantage of the 

growing body of knowledge in immunology in an attempt to curb the ongoing 

inflammatory processes in established RA.  Several strategies have been attempted, such 

as the depletion of T lymphocytes using antibodies directed against cell surface markers, 

oral tolerization protocols with type II collagen, and cytokine directed therapies99.  Many 

of these recent biological therapies are aimed at the immunosupression of branches of the 

immune response that might play a role in the pathogenesis of RA.  Unfortunately, with 

the exception of the TNFα inhibitors100, 101, these immunological approaches have been 

largely unsuccessful due to lack of efficacy or unacceptable adverse side effects.   
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The difficulty in developing successful treatment arises, in part, from the fact that 

the underlying mechanism(s) leading to chronic inflammation and damage in RA are still 

largely unknown.  We have attempted to use insights gained from our microarray studies 

to examine biochemical liabilities in the peripheral blood mononuclear cells (PBMC) of 

patients with RA.  Understanding these defects might help to identify new potential 

targets for drug design.   Keeping this in mind, it is important to understand what is 

currently known about lymphocyte function in RA. 

It is generally believed that RA results from an inappropriate T lymphocyte 

mediated immune response against antigens present in the joints of patients.  Organized 

lymphoid follicles with germinal centers have been identified in the synovium of patients 

with RA102-104. Since germinal centers represent sites of antigen driven T cell/B cell 

interaction, their presence supports the notion that antigens are being inappropriately 

recognized by the immune system.   The involvement of T lymphocytes and antigen 

presentation is further supported by the association of MHC class II HLA-DR4 

polymorphisms with the disease105, 106.  However, examination of synovial T lymphocyte 

TCR (T cell receptor) sequences for evidence of antigen driven clonal expansion has 

yielded mixed, inconsistent results among RA patients104, 107, 108.  While there is evidence 

of expanded T lymphocyte clones within the synovium or synovial fluid of an individual 

patient109, 110, no common expanded TCR sequences have been identified among the RA 

patient population, suggesting that different lymphocyte populations may be clonally 

expanded among RA patients107.   

Alternatively, multiple studies provide consistent support for systemic 

abnormalities in RA lymphocytes.  Early observations in the clinical setting revealed that 
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a portion of RA patients were unresponsive to PPD skin tests compared to control 

individuals111.  Further, ex vivo studies revealed that RA lymphocytes proliferate poorly 

in response to tuberculin and a panel recall antigens when compared to control 

lymphocytes112, 113.  One possible explanation for these observations is that the chronic 

pro-inflammatory immunological environment that characterizes RA somehow inhibits T 

lymphocyte function.  In support of this hypothesis, studies have shown that chronic 

exposure to the proinflammatory cytokine TNF-α can suppress T lymphocyte 

proliferation and differentiation in response to TCR stimulation114.  Follow-up studies in 

mouse hybridoma T cell lines revealed that TNF-α attenuation of TCR signaling is 

mediated by down regulation of the TCRζ subunit, which ultimately results in impaired 

TCR/CD3 assembly and cell surface expression115.  

Although chronic exposure to TNF offers one possible explanation for 

lymphocyte unresponsiveness in RA, recent findings suggest that additional 

abnormalities in peripheral lymphocyte homeostasis may also account for defective T 

lymphocyte responses.  Examination of the CD4+ TCR repertoire in peripheral blood has 

revealed a marked decrease in receptor diversity that appears to be independent of the 

lymphocyte activation/memory status (as assessed by expression of CD45RO)116.  

Furthermore, measurements of recent thymic T lymphocyte emigrants, as assessed by 

TCR Recombination Excision Circle (TREC) levels, revealed that RA patients contain 

fewer TREC positive CD4+ T lymphocytes compared to age matched control 

lymphocytes117.   

Decreases in TREC can be accounted for by decreased thymic output or 

lymphocyte proliferation in the periphery.  The finding that RA CD4+ T lymphocytes 
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contain telomeres shortened in an age-inappropriate manner, suggests an increased 

replicative history116, 118.  Propidium-iodide profiles of DNA content from freshly isolated 

peripheral CD4+ lymphocytes reveal that a greater number of RA lymphocytes are in the 

S-G2/M phase of the cell cycle compared to control individuals, supporting the notion of 

abnormal lymphocyte cell division in vivo116.  Studies examining the functional impact of 

telomeric attrition revealed that CD4+ lymphocytes from RA patients proliferated less 

readily ex vivo when stimulated with plate bound anti-CD3 for extended periods of time 

(up to 6-7 weeks)117, a finding highly reminiscent of the T lymphocyte unresponsiveness 

initially described in RA112.  The authors hypothesize that due to perturbations in 

lymphocyte homeostasis, RA CD4 lymphocytes are approaching immunosenescence, and 

therefore have exhausted their replicative potential119.   

Although the most thorough examination of lymphocyte homeostasis has been 

performed in RA, other autoimmune disorders also display evidence of altered 

homeostasis in the periphery. For example, lymphocytes from patients with SLE 120 and 

type I diabetes121 suffer from age inappropriate telomeric loss in a manner highly 

reminiscent of RA.  Although initial observation of patients with multiple sclerosis have 

not confirmed telomeric shortening, decreased TREC levels were found in MS 

lymphocytes compared to age matched control individuals122.  Growing evidence 

supports the notion that defects in lymphocyte homeostasis, as assessed by proliferation 

studies, TREC levels, and telomeric erosion, are associated with autoimmunity and may 

contribute to the development of these diseases. 
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Microarray Technology and Analysis 

Recent advances in microarray technology have made it possible to 

simultaneously measure the levels of thousands of transcripts, providing a vastly more 

detailed phenotypic picture than possible with gross clinical measurements.  The 

association of differentially expressed genes with a particular autoimmune disease, or 

shared among disease groups, might provide new insights into the molecular liabilities 

contributing to the autoimmune condition in patients.  Since a considerable amount of the 

data in this dissertation is derived from microarray analysis, I will provide background 

into the technology and data analysis. 

A general microarray experiment is comprised of a few fundamental steps: 1) the 

extraction of mRNA from a given source, 2) labeling of the target nucleotide, 3) parallel 

hybridization of labeled target to immobilized DNA organized in a grid on a solid 

surface, and 4) imaging and measurement of relative hybridization intensities123. 

Technical variations at each step can impact the reliability and interpretation of a given 

experiment.  One of the major challenges, at least during the early development of 

microarray technology, was obtaining sufficient RNA for hybridization.  Depending on 

the method of labeling and the type of array used, upwards of 50 µg of total RNA is 

necessary to obtain reliable hybridization.  This amount of RNA has represented a 

significant barrier to the performance of microarray analysis on biopsy samples obtained 

from living humans.  However the development of techniques allowing the linear 

synthesis of cDNA has made it possible to amplify small amounts of starting material124-

126.  Several microarray studies have now been successfully performed using RNA 

isolated from laser microdissected tissue127  or even from a single cell128.  As a caveat, it 
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should be noted that addition of extra amplification steps introduces more technical 

complexity, ultimately introducing the greater possibility of experimental error.  

Technical variations in the labeling of the cDNA target can also impact results.  

The most common technique for labeling target RNA relies on the incorporation of 

fluorescent nucleotides into cDNA during reverse transcription.  Typically two separate 

dyes, Cy3 and Cy5, are used to label RNA from an experimental and control source, 

respectively.  Both labeled cDNAs are hybridized simultaneously to the microarray 

platform, allowing the direct calculation of the ratio of gene expression between the 

experimental and control conditions.  Although common, there are some drawbacks to 

this technique.  For reliable signal detection, relatively large quantities of RNA are 

needed, thus necessitating large amounts of source material or additional amplification 

steps.  Additionally, Cy3 and Cy5 dyes may not be incorporated equally into cDNA, 

resulting in possible errors in analysis123.  As an alternate labeling method, a single probe 

may be used to label samples.  For example, biotinylated or radiolabeled nucleotide may 

be incorporated into the cDNA target during reverse transcription, and this labeled 

sample can be directly hybridized to the microarray platform.  This technique is more 

sensitive and requires less starting total RNA (typically around 5-10 µg), making it more 

amenable to human studies.  However, gene expression ratios cannot be calculated from a 

single hybridization, thus requiring a greater number of microarrays and incurring greater 

cost.  Additionally, consistent internal controls and normalization against background are 

required to make comparisons among arrays and calculate gene expression ratios. 

Two major types of microarray platforms are typically used: cDNA and 

oligonucleotide microarrays.  Probes for cDNA microarrays are typically derived from 
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PCR products generated from a cDNA library, using either gene- or vector-specific 

primers to amplify the particular product123.  Amplified products are usually spotted onto 

a supporting surface, such as glass or nylon membrane, in an organized matrix.  The 

coding strand is chemically crosslinked to the supporting surface.  cDNA microarrays are 

more commonly utilized in academic settings, allowing more customizability and 

detection of previously unsequenced clones from cDNA libraries123.  Alternatively, 

companies such as Affymetrix produce oligonucleotide arrays.  Oligonucleotides from 

these arrays are typically generated in situ using photolithography on a supporting 

surface.  The chosen probes typically represent 20-25 mers selected from the sequence of 

known target transcripts 123.  Selection of oligomers allows hybridization to specific 

regions of a target transcript, however their shorter length may result in false 

hybridization.  Additionally, since the generation of the probes requires knowledge of the 

target sequence, genes with unknown sequence will be missed using oligonucleotide 

arrays. 

We utilized Research Genetics GF-211 microarrays for our experiments, which 

were ideal for addressing constraints of studying human patient samples.  The GF-211 

filter is a cDNA microarray spotted onto a nylon membrane.  The source clones chosen 

for amplification and spotting represented approximately 4,300 human genes, around 

3,900 were known genes.  Total RNA isolated from individual blood samples was labeled 

by reverse transcription in the presence of radiolabeled 33P-dCTP.  Radiolabeled cDNA 

was hybridized to the filters, the image was captured using a phosphorimager, and 

digitally processed using Research Genetics Pathways 4.0 software suite.  The software 

normalized the hybridization intensity for each individual gene relative to both the 
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background and total genomic cDNA control clones present at regular intervals on all 

arrays.  This normalization process allowed us to make inter-microarray comparisons to 

determine gene expression ratios between groups of patients.  Furthermore, since human 

PBMCs served as our RNA source, we were restricted in the amount of material we could 

use for hybridization.  The use of radiolabeled probe allowed us to use relatively small 

amounts of total RNA for hybridization (5 µg), so patient samples were not exhausted by 

the hybridization process.  Furthermore, the Pathways 4.0 software included bundled 

analytic tools specifically designed to analyzing data from the GF-211 filters.   

In fact, the most challenging aspect of the microarray experiment is actually 

analyzing the resulting data in a meaningful way.  Researchers using microarray analysis 

to compare different experimental conditions find that hundreds of differentially 

expressed genes can be identified, many with functions that are not known in a given 

experimental context or whose function is entirely unknown.  Furthermore, it is difficult 

to understand which genes are primarily differentially expressed as a result of differences 

in experimental samples, or represent secondary downstream effects of, for example, the 

presence or absence of a transcription factor or other factor that determines transcript 

levels of a gene or group of genes126.  Because of the nature of the results in microarray 

experiments, it has been difficult to utilize microarrays to identify primary targets 

responsible for biological phenomena, an endeavor that has been likened to finding a 

needle in haystack126.  Microarrays have proven most successful when utilized as pattern 

recognition tools.  In this sense, gene expression patterns identified by microarray 

analysis have already shown potential as diagnostic tools.  Gene expression profiles have 

been able to discriminate between subtypes of lymphomas129, 130 and breast cancers131. 
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Clustering algorithms serve as the key tool to identify gene expression patterns 

that are either shared or discriminate among groups of gene profiles.  In the general 

context of microarrays, these algorithms cluster differentially expressed genes or 

microarray profiles into groups that share similar expression patterns over a range of 

conditions.  Clustering methods fall into either supervised or unsupervised classes.  The 

supervised class of clustering algorithms involves the analysis of data in which the 

identity of genes or microarrays is specified prior to computational analysis.  These 

algorithms typically focus on identifying patterns that are capable of discriminating 

between the specified groups.  We have used true supervised clustering only to a limited 

extent with our datasets.  None of these data will be presented in this dissertation, thus I 

will not cover this class of clustering algorithm.   Alternatively, in unsupervised 

clustering, the algorithm is blind with regards to the identity of the individual gene or 

expression profile, and instead relies solely on the data to define the clusters132.  The 

three most commonly used unsupervised clustering algorithms are hierarchical, k-means, 

and self-organizing maps.  We will discuss aspects of each of these algorithms. 

Hierarchical clustering, or pairwise average-linkage cluster analysis, was initially 

used in the 1950’s for phylogenetic analysis.  In the context of microarray data, 

“hierarchical clustering iteratively join(s) the closest elements in the data into a tree 

structure”133 “whose branch lengths reflect the degree of similarity between the 

objects”132.  Thus differentially expressed genes or microarray profiles which display the 

highest degree of similarity cluster into the same or nearby branches on the tree.  

Currently, because of the ease of interpreting the visual data output, and the relative 
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speed of the algorithm, hierarchical clustering is the most popular method for analyzing 

microarray data.   

Alternatively, k-means clustering identifies k number of centroids (specified by 

the algorithm’s user) that serve as cluster centers.  Microarray data points are assigned to 

each of these cluster centers, such that the total distance between the data points and the 

cluster centers are minimized.  The algorithm then readjusts the centers, compares the 

dataset against the new center locations, and repeats the process in an effort to obtain the 

optimal position for the cluster centers.  The algorithm is complete once the optimal 

cluster location has been identified133, 134.  From a practical standpoint, the user of the k-

means algorithm simply indicates the number of centroids, and the software will group 

the differentially expressed genes or microarray profiles into an equivalent number of 

clusters. 

The self-organizing map (SOM) unsupervised algorithm operates in a manner 

relatively similar to k-means clustering.  Again, the user specifies k numbers of cluster 

centers.  Each of the cluster centers represent a point on a pre-specified two-dimensional 

geometric grid134, 135.  Data points are plotted onto this grid in an iterative fashion, until 

each of the cluster centers lies at the natural center of the data 133.   Practically, the user of 

a SOM algorithm must specify the grid geometry and k number of clusters desired. 

We have utilized EisenCluster, EisenTreeview, and Research Genetic’s Pathways 

4.0 software packages for our cluster analyses.  EisenCluster and EisenTreeview 

(http://rana.stanford.edu/clustering) were used when examining the degree of similarity 

between overall expression profiles.  For a typical analysis, all three clustering algorithms 

were utilized (through EisenCluster) to ensure that the clustering did not represent an 
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artifact of any particular method.  Given the current standards of microarray analysis, we 

typically present hierarchical clustering results.  The results for these types of analyses 

were visualized using EisenTreeview.  Throughout our studies we also performed 

pseudo-supervised clustering to analyze the differentially expressed genes between 

conditions.  For this type of analysis, the average gene expression for a specified group of 

microarrays was plotted relative to other groups.  In this manner, we plotted the average 

gene expression level for 4,300 genes in control/ immune response individuals, and RA, 

early RA, SLE, MS, and IDDM patients.  Genes that were not significantly different 

between conditions were removed from the analysis.  The remaining differentially 

expressed genes were subjected to k means clustering with ten centroids.  In this manner, 

we have been able to use standard unsupervised clustering algorithms to identify genes 

that were capable of discriminating between previously specified patient groups.      

 

p53 and the DNA Damage Response Pathway  

Examination of gene expression profiles in patients with a range of autoimmune 

disorders revealed a gene expression signature that was shared by all the autoimmune 

patient groups (Results Section).  This signature was comprised of 96 over-expressed and 

113 under-expressed genes.  Most notably, many of the genes that were under-expressed 

encoded proteins that played key roles in apoptosis and cell cycle progression.  Closer 

examination of the genes present in the autoimmune signature revealed that they were 

differentially expressed in a manner consistent with dysfunction in the p53-dependent 

damage response pathways.  We have performed studies to examine the function of these 

pathways in the lymphocytes of RA patients.  Since these studies are an important portion 
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of the dissertation, I will provide background regarding p53 and the damage response 

pathways.  Currently, our studies have only addressed the cellular response to γ-radiation, 

therefore I will only the cover the pathways necessary to understand this response.   

The DNA damage response consists of several overlapping signaling pathways 

comprised of DNA damage sensors, signal transducers, and effectors, which detect and 

respond to specific types of DNA damage136. The proteins that “sense” and bind to DNA 

lesions are the most poorly understood portion of the DNA damage response, but are 

believed to play key roles in distinguishing the type of DNA lesion and in recruiting 

substrates for subsequent signal transduction events. It is believed that ionizing radiation-

induced double strand DNA breaks (DSBs) are bound by the MRN complex (Mre-11, 

Rad50, and Nbs-1)137, which co-localizes to DNA breaks and exhibits DNA unwinding 

and endonuclease activities138.   

Cellular recognition of DSB DNA lesions initiates a signal transduction cascade 

which ultimately converges on effectors which, depending on the extent of the damage, 

mediate DNA repair, cell cycle arrest, and/or apoptosis (Fig. 3).  The most upstream 

signaling molecule in the DSB damage response pathway is ATM (ataxia telangiectasia 

mutant); a high molecular weight member of the phosphoinositide 3-kinase related 

(PIKK) family of proteins.  ATM is preferentially activated by DSB and its activation 

and substrate recognition requires interaction with the sensor complexes.  For example, in 

response to γ-irradiation, ATM is recruited to the DSB foci with the MRN complex.  

Cellular studies of samples from patients with the related Nijmegen Break Syndrome, 

Ataxia Telangiectasia, and AT-like disorders have shown that ATM activation requires a 

functional MRN complex139, 140.   
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Activated ATM phosphorylates a number of substrates, however we will focus on 

the targets most relevant to our studies.  One of the major phosphorylation targets of 

ATM are the checkpoint kinases, a group of functionally related but structurally distinct 

Ser/Thr kinases, which rapidly amplify the damage signal and target downstream 

effectors141. One of the major targets of γ-irradiation activated ATM is checkpoint kinase 

2 (Chk2), which is phosphorylated by ATM at Thr68142-144.  This phosphorylation 

activates Chk2, which then phosphorylates downstream effector targets. 

Like ATM, the activated checkpoint kinases share a number of effector targets 

that play key roles in mediating cell cycle arrest and/or apoptosis in the cellular response 

to DNA damage.  Again, we will only focus on targets of particular interest to our 

studies.  The p53 protein is one of the key targets of activated Chk2. Under normal 

conditions, levels of cellular p53 protein are relatively low due to MDM2 dependent 

turnover of p53 through the ubiquitin-proteasome pathway145, 146. In vivo and in vitro 

experiments indicate that activated checkpoint kinases phosphorylate a series of serines 

in the N terminal domain of p53147, a region associated with p53 stability and MDM2 

binding148, 149.  Importantly, Chk2-dependent phosphorylation at Ser20150 results in DNA-

damage dependent stabilization of p53 protein by disrupting MDM2 interactions in 

certain cell lines.  However recent studies have called into question the absolute necessity 

of Chk2 for p53 protein accumulation in response to DNA damage under all 

conditions151, 152. 

Increased steady state levels of p53, in addition to numerous other post-

translational modifications149, allows p53 to bind DNA targets in a sequence specific 

manner153, and act as a transcriptional regulator of a number of target genes that mediate 
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cell cycle arrest and/or apoptosis149.   One of the earliest described genes targeted by p53 

transcriptional activity was the cell cycle arrest factor, p21154.  p21 binds to Cyclin 

E/Cdk2, inhibiting the complexes activity and arresting the cell cycle at the G1→S 

transition155-158.  Due to the nature of p53 regulation and p21 expression, this G1→S 

transitional arrest typically takes over six hours to be established159.  Additional cell cycle 

arrest factors, such as GADD45α160, 161 are also transcriptional targets of p53. 

In addition to inducing the expression of cell cycle arrest factors, p53 also acts to 

induce the expression of a number of pro-apoptotic targets.  Most notably, p53 induces 

the expression of a number of pro-apoptotic bcl-2 family members, such as Bax 162, 

Noxa163, 164, and PUMA165, 166, thus initiating apoptosis through the receptor-independent 

pathways.  Under certain conditions p53 can also initiate apoptosis through receptor 

dependent means, by inducing the expression of DR5167 and/or FAS/FASL 168-170.  Thus, 

DNA damage initiated post-translation modifications in the p53 protein play a central 

role in initiating a transcriptional program which culminates in cell cycle arrest, and if the 

DNA damage is extensive enough, apoptosis.       
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Fig. 3.  Diagram of the p53-dependent DSB DNA Damage Response Pathway 
 
Schematic of the p53-dependent DSB DNA damage response pathway, 
illustrating the location of DNA-damage sensors, transducers, and effectors in 
the cascade.   
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CHAPTER II 

 

IDENTIFICATION OF THE AUTOIMMUNE SIGANTURE 

 

Abstract 

Autoimmune diseases are relatively common, affecting approximately 5% of the human 

population.  These disorders are believed to arise from immune mediated attack against 

self, however the underlying cause of these diseases is currently unknown.  In part, the 

difficulty in identifying a pathogenic mechanism arises from the considerable 

heterogeneity both within and among the autoimmune disease groups.  We wanted to 

determine if microarray profiling would allow us to detect common expression signatures 

either within a particular autoimmune disease group, or among autoimmune disease 

groups.  To accomplish this, we compared differences in gene expression (>4000 genes) 

in the peripheral blood mononuclear cells of normal individuals to those expressed by 

individuals with four different autoimmune diseases (rheumatoid arthritis, systemic lupus 

erythematosus, insulin dependent diabetes mellitus, and multiple sclerosis). Each 

individual from all disease groups displayed a similar pattern of gene expression that was 

highly distinct from the gene expression pattern of the control group. Of note, expression 

levels of genes that encode key proteins in several distinct apoptosis pathways were 

markedly reduced in all autoimmune disease groups. Taken together, these data indicate 

that the pattern of gene expression describes a molecular portrait of autoimmunity that is 
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constant among individuals with autoimmune disease but is independent of the type 

autoimmune disease.  

 

Introduction 

Autoimmune diseases occur in up to 3-5% of the population10.  Most represent 

organ specific immune responses, but some have systemic effects11.  The site of attack 

can be highly selective: pancreatic β cells in the islets of langerhans cells for IDDM171, 

myelin basic protein in MS172, or more systemic: synovial lining, lung, heart in RA173, 

skin, kidney or heart in SLE174. 

In addition to the distinct targets among these disorders, there is also considerable 

heterogeneity in the clinical symptoms associated with many of these diseases.  For 

example, patients with RA typically present with symmetric erosive polyarthritis 

affecting diarthroidal joints.  However, RA is also associated with cutaneous, pulmonary, 

and cardiovascular symptoms14.  Patients diagnosed with SLE typically suffer from a 

wide range of symptoms, including rashes, glomerulonephritis, atherosclerosis, and 

arthralgias14, 174.  The heterogeneity that characterizes autoimmunity contributes to the 

difficulty in determining the underlying causes of these disorders.  Despite intense efforts 

in the field, consistent functional, cellular, or molecular defects have not been identified 

in patients with any of these disorders.      

We utilized gene expression microarrays to search for differences in gene 

expression in PBMC that might be characteristic of all individuals with an autoimmune 

disorder or might characterize individual autoimmune disorders.  We found that gene 

expression profiles from individuals with autoimmune disease were completely distinct 
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from those of control individuals. Surprisingly, PBMCs from autoimmune patients 

exhibited a common gene expression signature that was independent of the type of 

autoimmune disease and other clinical parameters. Many of the under-expressed genes 

represented in this autoimmune gene expression signature encode proteins that play key 

roles in apoptosis, cell cycle regulation, and the induction of peripheral tolerance. The 

dysregulation of these fundamental cell function pathways may impact the normal 

immune response by making lymphocytes more susceptible to a loss of tolerance and 

immune response to self-antigen.  

 

Materials and Methods 

 

Patient Populations 

Seven control subjects with no family history of autoimmunity, or evidence of 

acute or chronic infection were used for our study.  Additionally, patients with RA (nine), 

SLE (nine), IDDM (seven), and MS (four) were enrolled in the study.  A clinical 

diagnosis of each autoimmune disorder was the sole criterion for inclusion. Human 

subject studies were approved by the Committee for the Protection of Human Subjects of 

the Vanderbilt University Institutional Review Board. 

 

Sample Preparation and RNA Isolation  

All samples were processed within two hours of initial collection.  PBMC were 

isolated from heparinized blood by centrifugation on a Ficoll-Hypaque gradient. After 

isolation of PBMCs, flow cytometry was used to estimate the relative leukocyte 
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distribution in representative samples from control, normal immune response (discussed 

in Chapter 2), and autoimmune disease groups. All groups were composed of about 75% 

T lymphocytes, 10% B lymphocytes, 5% monocytes, and less than 1% contaminating 

neutrophils. Tri-Reagent (Molecular Research Ctr. Inc., Cincinnati Ohio) was used to 

isolate total RNA according to the manufacturer’s protocol.  

 

Probe Synthesis and Microarray Hybridization  

Total RNA was reversed transcribed with Superscript II reverse transcriptase 

(Gibco BRL Life Technologies, Rockville, Maryland) in the presence of 33P-dCTP, to 

yield radio-labeled cDNA probes.  The cDNA probes were hybridized to the Research 

Genetics GF-211 gene filters (Research Genetics, Huntsville Alabama) according to the 

manufacturer’s protocol. After overnight incubation, unhybridized probe was 

successively washed from the filters using 2X SSC buffer/1 % SDS (2 X 20 minutes) and 

0.5X SSC buffer/1 % SDS (1 X 10 minutes).  The filters were exposed on a 

phosphorimaging screen for 24 hours, scanned, and digitally imported for computer 

analysis. 

 

Clustering Data Analysis of Differentially Expressed Genes  

The resulting images were digitally imported and processed using Research 

Genetic’s Pathways 3.0 software package.  Data were normalized to yield an average 

intensity of 1.0 for each clone (4329) represented on the cDNA microarray.  Global 

expression profile comparisons were made using Eisen’s Cluster and Treeview software 

132.  Microarray gene expression intensities were entered into a tab delimited database and 
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analyzed using the Cluster software. Genes whose expression levels did not vary 

significantly could be filtered out prior to clustering. The various datasets were clustered 

using Hierarchical, K Means, and Self-Organizing Map algorithms134 

Research Genetics Pathways 3.0 program was used to identify the most 

differentially expressed genes after immunization and in the different autoimmune 

disease classes. Microarrays were grouped into one of several conditions: control (healthy 

individuals before immunization), post-immunization (healthy individuals at different 

time points after immunization: 3, 6-9, and 19-21 days), and one of the four autoimmune 

groups (systemic lupus erythematosus, rheumatoid arthritis, insulin dependent diabetes 

mellitus, and multiple sclerosis).  The gene intensities for each condition group were 

averaged. The expression levels were represented graphically by plotting the natural 

logarithm of the ratio of gene expression intensity in the experimental group versus the 

control group for each condition.  Genes that did not change significantly (99% 

confidence, Chen test175) over any of the conditions were removed from the database.  

The remaining genes in the data set were then clustered using an unsupervised K Means 

clustering algorithm132 134 with ten centroids.  The gene identities, chromosome number, 

and functions were further analyzed for each cluster using Stanford’s GeneCards 

database (http://genome-www.stanford.edu/genecards). 

 

Clustering Data Analysis of Differentially Expressed Genes 

Microarray gene expression raw data for control individuals and autoimmune 

patients is available at PubMed’s GEO site at under accession number GSE3447 and 

GSE 3459 at http://www.ncbi.nlm.nih.gov/projects/geo/index.cgi.   
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Results 

Gene expression variables were monitored in PBMCs to permit us to focus on 

changes that occur in both the innate (monocytes and NK cells) and acquired (B and T 

lymphocytes) branches of the immune system.  Reproducibility of our method was first 

established by performing four hybridizations to separate microarrays using the same 

RNA sample.  We also exposed hybridized filters to phosphorimager screens for two 

different lengths of time (6 and 24 hrs).  Data were normalized and linear regression 

analysis was employed to estimate reproducibility.  The separate hybridizations yielded 

R2 values ranging from 0.87 to 0.96.  Different exposure lengths of identical filters also 

produced high R2 values (0.99).  The results indicated that the array data were highly 

reproducible. 

To determine if microarray profiling would allow us to detect common gene 

expression signatures either within a particular autoimmune disease group, or among the 

autoimmune diseases, we obtained samples from patients diagnosed with one of four 

common autoimmune disorders: RA, MS, IDDM and SLE.  The relatedness of gene 

expression profiles in the PBMC from individuals with autoimmune disease was 

examined relative to profiles from control individuals (CONT) (Fig. 4).  
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Hierarchical clustering of expression profiles for all the autoimmune groups (MS, 

RA, SLE, and IDDM) with the controls resulted in separation into three major branches 

(Fig. 4).  One branch consisted of control individuals and two IDDM individuals.  All 

other autoimmune samples were segregated into the other two branches.  As evidenced 

by the dendrogram, the clustering algorithm did not permit discrimination among the 

different autoimmune diseases based upon gene expression variables.  This inability to 

segregate autoimmune gene expression profiles into disease-specific groups was retained 

even when invariant genes were statistically removed (genes were removed with standard 

deviations under 1.5-5 from the mean) from the data set (data not shown).  One 

explanation for the clustering algorithm’s inability to distinguish between the  

 

phenotypically distinct autoimmune diseases is that the gene expression patterns 

associated with these different diseases are relatively similar. 

Fig. 4. Comparison of the control and autoimmune classes by cluster analysis. 
Control, RA, MS, SLE and IDDM groups were analyzed using a hierarchical 
clustering algorithm based upon expression variables of 4329 genes.  Three major 
branches were apparent from the dendrogram.  All control samples segregated 
within one major branch, with the remaining branches containing mixed 
autoimmune profiles.   
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We further analyzed the data set to identify genes that were most differentially 

expressed in autoimmune disease patients compared to control individuals (K-means 

clustering, 99% significance, Chen test).  Individual samples from the autoimmune 

groups were segregated based upon disease type (IDDM, MS, RA, and SLE) and were 

compared to the control gene profiles.  The gene expression differences among the 

groups were plotted as the natural logarithm of the ratio between experimental condition 

and the control group (Fig. 5 A, B).  

Two distinct clusters of differentially expressed genes were identified.  The first  

major cluster (Fig. 5 A) consisted of 127 genes that were over-expressed in all 

autoimmune disease groups (IDDM, MS, RA, and SLE).  The genes in this over-

expressed autoimmune cluster represented several distinct functional categories: 

receptors (CSF3R, HLA-DMB, HLALS, TGFBR2 and BMPR2), inflammatory mediators 

(MSTP9, BDNF, CES1, ELA3, and CYR61), signaling/2nd messenger molecules (FASTK, 

DGKA, and DGKD), and autoantigens (GARS and GAD2).  The second major cluster  

(Fig. 5 B) contained 181 genes that were strongly under-expressed in all autoimmune 

groups.  Many of these down-regulated genes are known to play key roles in apoptosis 

(TRADD, TRAP1, TRIP, TRAF2, CASP6, CASP8, TP53, and SIVA) and ubiquitin-

proteasome function (UBE2M, UBE2G2, and POH1).  Inhibitors of various cellular 

functions were also widely represented in this cluster.  These included direct inhibitors of 

cell cycle progression (CDKN1B, CDKN2A, and BRCA1), as well as inducers of cell 

differentiation (LIF and CD24).  Certain enzyme inhibitors (APOC3 and KAL1) were also 

represented in this class.  
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Fig. 5 Cluster analysis of the differentially expressed genes associated with 
autoimmune disease.  Kmeans clustering analysis identified two distinct clusters 
of genes that were A. uniformly over-expressed in all four autoimmune groups 
and B. uniformly under-expressed in all four autoimmune groups. Data are 
presented as the natural logarithm of the ratio of the immune group 
(MidImm)/control, or each autoimmune group (IDDM, MS, RA, or SLE)/control. 
Each individual line in the plot represents the expression ratio for an individual 
gene for each class (MidImm, MS, RA, SLE, etc.) Expression ratios that did not 
achieve a 99% significance level excluded from analysis.  Below each graph, a 
partial list of genes is identified by dominant functional category within each of 
the clusters. 

Receptors Inflammatory
CSF3R, CSF 3 receptor
HLA-DMB, MHC, DM β
HLALS, MHC, class I-like
TGFBR2, TGFβ receptor II
BMPR2, BMP receptor II
RYR1, ryanodine receptor 1
RARA, retinoic acid
        receptor
ESRRA, estrogen-like
        receptor
ADORA2A, adenosine
        receptor

IFITM3, IFN-induced
MSTP9, macrophage
         stimulating
BDNF, brain-derived
         neurotrophic factor
ELA3, elastase
CES1, monocyte/mφ
         serine esterase
SPINK2, protease inhbitor
CRYBA4, crystallin, β A4
CYR61, cyteine-rich
         angiogenic inducer

2nd Messengers Autoantigens
FASTK, Fas-activate kinase
PMAIP4, PMA-induced
MPP3, NFκB activation
RELA, NFκB p65
LAP18, stathmin
RAD5IL3, RAD51-like 3
ABR, gtpase-activating
         Protein for rac and
         Cdc 42
COPS3
DGKA, DAG kinase, α

GAD2
GAD65
GARS, glycyl-tRNA
          sythetase

Inhibitors Apoptosis
SUDD, extragenic supressor
PDE6A, phophodiesterase
CDKN1B, cyclin-dependent
          kinase inhibitor (p27)
CKN2A, cyclin-dependent
          kinase inhibitor (p16)
HGS, human growth factor-
          regulated tyrosine
          kinase
LIF, leukemia inhibitory
          Factor
SEMA3B, semaphorin 3B
BRCA1, breast cancer 1
APOC3, apolipoprotein
          CIII, lipase inhibitor
CD24, prevents B cell
          Differentiation
KAL1, Kallmann syndrome
          1 sequence,
          anti-protease

CASP6, caspase 6
CASP8, caspase 8
APAF1, apoptosis
         activating factor
SIVA, CD-27 binding
         (SIVA) protein
TP53, p53
PIG11, p53-induced protein
NME3, protein expressed in
         non-metastatic cell 3
TRAP1, TNFR1 associated
         Protein
TRADD, TNFRSF1A-
        associated via death
        domain
TRIP, TRAF interacting
        protein
TRAF2, TNFR-associated
        factor 2
MAP4K2, mitogen-
        activated protein kinase
         kinase kinase kinase 2

A. B.

A. B. 
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Differences in gene expression between the control and the autoimmune 

populations may be attributed to alterations in distribution or activation status of the cells 

that make up the PBMC.  We performed two types of analyses to test this possibility.  

First, we analyzed PBMC preparations for frequency of CD3 (T cells), CD14 

(monocytes), CD19 (B cells), and leukocyte alkaline phosphatase (LAP, neutrophils) 

positive cells by flow cytometry.  All PBMC preparations from both subject groups 

contained 75-80 % T cells, ~ 10 % monocytes, ~ 5 % B cells, and < 1 % neutrophils.  

Second, we determined if expression levels of genes that are either restricted to a given 

sub-population or reflect activation status were differentially expressed in the control 

population compared to the autoimmune population (Table II).  Expression levels of 

these genes varied by less than two-fold between the control and autoimmune groups and 

this difference did not achieve statistical significance.  Taken together, these data argue 

that alterations in composition or activation status of PBMC did not account for the 

observed differences in gene expression between the control population and autoimmune 

population.  

These results point to pervasive changes in gene expression that are relatively 

uniform among four phenotypically distinct autoimmune diseases relative to the control 

individuals. To examine this in greater detail, we compared expression levels of 

individual genes between controls and patients with each of four autoimmune diseases.  

We selected ten genes that exhibited the greatest level of under-expression (Fig. 6 A) or 

over-expression (Fig. 6 B) at the population level.  Expression levels of under-expressed 

genes were lower in all autoimmune individuals than in all control individuals (Fig. 6 A).  

In contrast, over-expressed genes in the autoimmune population showed greater 
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individual variation in expression (Fig 6 B).  In this group, no individual gene was over-

expressed in all autoimmune individuals compared to all control individuals.  However, 

each of these genes was significantly over-expressed in the autoimmune population (P < 

0.05). 

Since genes under-expressed in autoimmune disease exhibited a more 

homogeneous pattern of expression among individuals than the over-expressed genes 

(Fig. 6), we wanted to determine if we could employ this pattern to classify individuals 

with autoimmune disease and predict if new samples were derived from autoimmune or 

control individuals.  First, we selected 35 core signature genes that were most under-

expressed with the greatest statistical significance in the SLE population compared to the 

control population.  Second, in order to give each gene equal weight in the determination 

we summed the average of the control population and the SLE population for each gene 

and divided by 2 ([control + SLE]/2).  Third, we inspected expression levels of each of 

the 35 genes in each sample and assigned it a value of 0 if it was less than the average 

and 1 if it was greater than the average.  In this analysis, the maximum possible score was 

35 and the minimum possible score was 0 (Fig 7).  The range of scores for control 

individuals was 18-35.  Most control individuals achieved a score of 35 (8 of 11). In 

contrast, the range of scores in individuals with autoimmune disease was 0-5 (SLE), 0-6 

(RA), 0-1 (type I diabetes), and 0 (MS) (P < 0.000001).  Next, we tested a new set of 

SLE and RA patients that were not included in the initial data analysis to determine if 

these individuals would obtain a similar score.  The range of scores for this second group 

of patients was 0-5 (SLE) and 0-6 (RA).  These results illustrate that a core set of 

autoimmune signature genes are capable of perfectly discriminating gene expression  
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Table II.  Expression levels of genes that encode proteins distinguishing  among  
lymphocyte subsets or activation state.     
Population:  Control  SLE  RA  IDDM  MS  
Expression Level:   Avg +/- Stdev     
T Cell Antigens       
CD3δ   0.7±0.2a 0.6±0.4  0.5±0.2  0.5±0.2  0.4±0.2 
CD3γ   0.5±0.1  0.6±0.9  0.4±0.1  0.3±0.1  0.4±0.1 
CD8β (Tc)  0.8±0.3  0.8±0.2  0.6±0.2  0.5±0.2  0.5±0.2 
CD44 (memory) 0.5±0.1  0.8±0.5  0.7±0.4  0.8±0.5  0.7±0.4 
CD69 (activation) 0.5±0.2  0.7±0.3  0.6±0.2  0.8±0.3  0.7±0.4 
CD62 (L-selectin) 1.3±0.6  1.4±0.9  1.8±1.1  1.7±1.1  1.9±1.1 
CD122 (IL-2R β) 0.4±0.1  0.4±0.2  0.5±0.2  0.3±0.1  0.3±0.1 
B Cell Antigens         
CD79a    0.6±0.3  0.4±0.2  0.4±0.2  0.4±0.2  0.4±0.2 
CD79b    0.5±0.2  0.6±0.3  0.8±0.7  0.8±0.4  0.7±0.3 
CD72    0.4±0.1  0.4±0.3  0.4±0.2  0.3±0.1  0.3±0.1 
CD22    0.3±0.1  0.4±0.3  0.4±0.4  0.3±0.1  0.3±0.1 
Monocyte Antigens         
CD14   0.5±0.2  0.4±0.2  0.3±0.1  0.3±0.2  0.3±0.2 
CD163    0.3±0.1  0.4±0.2  0.4±0.2  0.3±0.1  0.3±0.2 
CD32 (B /mθ)  0.3±0.1  0.5±0.4  0.5±0.3  0.3±0.1  0.4±0.2 
Activation-Induced Antigens         
CD54 (ICAM-1) 4.4±1.8  3.1±2.1  4.3±0.7  4.3±2.2  3.9±1.0 
CD38    0.4±0.3  0.3±0.2  0.3±0.1  0.3±0.1  0.3±0.1 
CD71    0.2±0.1  0.2±0.2  0.2±0.1  0.2±0.1  0.2±0.1  
aaverage expression level of the indicated genes within the different  
populations. 
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FIGURE 6.  Analysis of the most under- and over-expressed genes in the autoimmune population on
an individual basis.  Expression levels of individual genes were compared among 7 control
individuals (black bars) and 25 individuals (gray bars) with an autoimmune disease.  The ten most
over-expressed (A), and ten most under-expressed (B) genes were analyzed.
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Fig. 7.  Classification and prediction of autoimmune disease.  The score (Y-axis) is 
shown for each individual sample analyzed from the different populations (X-axis).  
Immune response group (immune) will be discussed in Chapter 2.  P-values are 
depicted in the legend.  The 35 genes employed to derive this score were (gene 
symbols or accession #): TGM2, SSP29, TAF2I, LLGL2, TNFAIP2, SIP1, BPHL, 
TP53, DIPA, ASL, DKFZp58601922, MAN1A1, R09503, LOC51643, BMP8, ORC1L, 
W04674, R94175, CDH1, SUDD, EPB72, CDKN1B, CASP6, TXK, MYO1B, LIF, 
HSJ2, BRCA1, GUCY1B3, AP3S2, N68565, SC65, UBE2G2, SLC16A4, and MMP17. 
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profiles from control individuals and patients suffering from a range of autoimmune 

disorders.   

The under-expressed autoimmune cluster contained a disproportionate number of 

genes involved in various apoptosis pathways.  Because defects in apoptosis have been 

associated with autoimmunity176, we decided to investigate these pathways in greater 

detail.  We selected three major apoptosis pathways: the Fas/FasL, TNFR1, and p53 

pathways. Next, the three pathways were reconstructed to illustrate potential blocks in 

apoptosis resulting from reduced expression of key members of each of these pathways 

(Fig. 8 A).  Both the average expression levels of these genes within each disease class, 

as well as individual variability within a disease group are shown (Fig. 8 B, C, and D).  

In the TNFR I apoptotic pathway, several genes (TRADD, TRIP, TRAF2, and 

MAP4K2) were significantly under-expressed in all autoimmune diseases (RA, SLE, 

IDDM, and MS) relative to the control and normal immune response individuals (Fig. 8 

B).  In the FAS/FASL pathway, CASP6 and CASP8 were significantly under-expressed in 

the autoimmune groups (Fig 8 C).  The trend of under-expression of apoptosis-associated 

gene was also found in the p53 pathway, with TP53, PIG11, APAF1, and GADD45 all 

differing significantly from the normal immune response and control levels (Fig. 8 D). 

These data indicate that there are substantial defects in levels of expression of key genes 

involved in apoptosis in the PBMCs from patients with a range of autoimmune disorders. 
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Fig. 8 Expression levels of numerous genes encoding proteins involved in apoptosis in
lymphocytes from autoimmune individuals.  A.  An illustration shows the key proteins involved in
apoptosis pathways.  The key identifies the mRNAs a) for which we do not have expression data
(absent from the microarray filter), b) exhibit constant expression levels in the three major classes
(pre-immune, immune, and autoimmune), c) are relatively over-expressed in the autoimmune
group, or d) are relatively under-expressed in the autoimmune group.  B, C, & D.  Relative
expression levels of individual genes illustrated in A. are shown for each individual(Ο) from the
immune class and all disease groups within the autoimmune class and the average of the group ( )
+/- SEM (error bars).  p values < 0.01 for all comparisons of immune vs. each autoimmune group
except where noted: * not significant.
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Discussion 
 

DNA microarray technology is a powerful tool to compare differences in gene 

expression under distinct biological conditions.  Our study represents the first 

examination of gene expression profiles in individuals with autoimmune disorders.  

Given the considerable heterogeneity both within and among autoimmune disease 

groups, we wanted to determine if we could detect gene expression patterns that were 

either characteristic of a particular autoimmune disorder or were shared among several 

autoimmune disorders.  To accomplish this we compared four distinct diseases that 

varied primarily by the target of autoimmune attack.  We found that the overall gene 

expression patterns found in autoimmune disease were distinct and were distinguishable 

from patterns found in control individuals.  Surprisingly, the four autoimmune disease 

subclasses, RA, SLE, IDDM, and MS, exhibited highly similar profiles of gene 

expression. This permitted us to identify two clusters of genes that are markedly over-

expressed or under-expressed, respectively, in all four autoimmune diseases. 

Since our study, several other groups have also used gene expression profiling to 

examine gene expression patterns in autoimmune disease.  Currently, all of the studies 

have reported that profiles from autoimmune patients can be distinguished from control 

individuals.  In particular, researchers have compared the expression patterns in the 

PBMCs of adult and pediatric SLE patients177, 178.  Both groups reported signatures 

consistent with exposure to interferon α/β in patients with severe disease, supporting the 

suspected role of the type I interferons in SLE pathogenesis.  Additional studies 

examining gene expression profiles in the peripheral blood of patients with MS have 
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found, similar to our own study, that many genes that encode proteins that regulate cell 

cycle progression and apoptosis are under-expressed in MS179, 180.     

Interestingly, animal models of autoimmunity have shown that defects in 

apoptosis can contribute to autoimmunity.  One of the most well known examples of 

defects in apoptosis contributing to autoimmunity comes from studies in the lpr/MRL and 

gld/MRL mice.  These mice contain spontaneously occurring mutations in FAS and 

FASL, respectively181.  These mutations, on the MRL background, result in development 

of systemic autoimmunity characterized by production of autoantibodies, and fatal 

glomerulonephritis182.  Interestingly, both inactivating and dominant negative mutations 

in FAS have been found in patients suffering from the rare autoimmune disorder, 

autoimmune lymphoproliferative syndrome (ALPS, also referred to as Canale-Smith 

syndrome)183, 184.  However, consistent defects in FAS or FASL have not been 

demonstrated in the more common autoimmune disorders185-187. 

Our microarray screening has identified multiple potential apoptosis defects not 

associated with the FAS/FASL pathway.  The linkage of this gene expression pattern to a 

range of autoimmune diseases suggests that under-expression of these genes may play a 

key role in the development of disease.  Further experiments are needed to verify under-

expression of target pro-apoptotic genes in autoimmune patients and to determine if 

decreased gene expression results in actual functional defects in apoptosis.  We will cover 

studies that demonstrate that RA lymphocytes actually exhibit defects in specific 

apoptosis pathways in Chapter 4 of this dissertation.     

This study is currently the only microarray screen to make comparisons across a 

range of autoimmune disorders.   Given the fact that there is a remarkably consistent 
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pattern of gene expression despite the nature of the autoimmune disease, several 

possibilities may explain the origin of our autoimmune signature. It is generally believed 

that autoimmune disorders arise from a loss of tolerance against self-antigens, ultimately 

resulting in an immune response against self.  One prediction of this hypothesis is that 

our autoimmune gene expression signature may recapitulate the immune response to a 

foreign antigen.  Alternatively, many of the patients studied have suffered from their 

respective disorders for a number of years.  Therefore, it is possible that the observed 

gene expression signature arises from autoimmune disease duration.  As another possible 

explanation, numerous epidemiological studies have revealed a heritable component to 

autoimmunity40, 42, 188.  Perhaps this conserved autoimmune signature reflects an inherited 

trait or traits.  We will address each of these possibilities in Chapter 3 of the dissertation. 
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CHAPTER III 

 
 

ORIGIN OF THE AUTOIMMUNE SIGNATURE 

 

Abstract 

We have observed a highly reproducible gene expression profiles in the PBMCs 

of patients with a range of autoimmune disorders .  Although the underlying mechanism 

is unclear, we considered three possible explanations for our observations.  First, we 

tested the hypothesis that the autoimmune signature is a recapitulation of the immune 

response to foreign antigen by examining gene expression changes during a model 

immune response (influenza vaccination).  To address if disease duration contributes to 

the differential expression of autoimmune signature genes, we compared expression 

profiles in individuals with established disease (an average of ten years history of 

disease) to patterns in individuals with early disease (< two years duration).  Finally, to 

determine if our autoimmune gene expression signature reflects an inherited trait, we 

examined expression signatures in unaffected first-degree relatives of individuals with 

autoimmune disease.  We found that neither differentially expressed immune response 

genes or disease duration accounted for the observed autoimmune expression pattern. 

However, gene expression patterns in unaffected first-degree relatives resembled profiles 

found in individuals with autoimmune disease.  A high percentage of differentially 

expressed genes in unaffected first-degree relatives were previously identified 

autoimmune signature genes.  Comparison of gene expression levels between parent-

offspring pairs revealed that expression levels of autoimmune signature genes tended to 
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have higher correlation levels than other genes on the microarray.  Taken together, these 

results support the hypothesis that the autoimmune gene expression signature reflects an 

inherited trait or traits rather than a disease process. 

 

Introduction  

The break in tolerance to self-antigen is generally believed to represent the critical 

factor leading to autoimmunity. This model predicts that self-reactive T or B cell clones 

escape their normal regulatory mechanisms, recognize self-antigen and develop a normal 

immune response to self-antigen. Following this line of reasoning, we hypothesized that 

our autoimmune gene expression signature reflected an immune response simply directed 

against self.  To address this hypothesis, we compared gene expression profiles from a 

normal immune response to profiles associated with autoimmune disease.  The response 

to inactivated influenza vaccine in healthy individuals was used as our model of the 

normal immune response. Comparison of the most differentially expressed immune 

response genes did not overlap with our autoimmune gene expression signature, 

indicating our autoimmune signature did not appear to reflect a normal immune response 

against an antigen.  

The majority of autoimmune patients used for our microarray analysis have 

histories of established disease over an extended period of time.  As an alternate 

possibility, we hypothesized that the autoimmune expression signature reflected disease 

duration.  To address whether disease duration contributed to our autoimmune signature, 

we obtained PBMCs from patients diagnosed with RA for less than two years, and 

compared their profiles to patients with established RA.  Examination of the DEGs 
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(relative to control individuals) revealed that our previously identified autoimmune 

expression signature was present in the early RA patients, indicating that disease duration 

did not contribute to this expression pattern.   

As reviewed in the introduction, evidence from epidemiologic and genetic linkage 

studies points toward a heritable component for many autoimmune disorders. To 

determine whether the autoimmune gene expression signature displayed family 

resemblance, we examined expression profiles in unaffected first-degree relatives of 

patients with known autoimmune disorders.  Our studies reveal that unaffected first-

degree relatives exhibit gene expression patterns distinct from normal control individuals 

but similar to autoimmune individuals.  Many of the differentially expressed genes 

(DEGs) found in unaffected family members were the same genes that were found in 

patients with autoimmune disease. Based upon these observations, our data support the 

notion that the autoimmune signature reflects an inherited trait or traits.        

 

Materials and Methods 

 

Patient Population  

Immune Response Studies: Nine healthy control subjects were studied before and 

after receiving the inactivated influenza vaccine in order to characterize the normal 

immune response.  The same autoimmune patient populations described in Chapter 1 was 

used for comparison. 

Disease Duration Studies: We defined individuals with early RA (ERA) as 

patients diagnosed with rheumatoid arthritis for less than two years.  Eleven patients were 



 53

selected that met our criteria for early RA, and had an average disease duration of 1 ± 0.2 

years.  Profiles from these individuals were compared to the previously examined RA 

patients.  These patients have been diagnosed with RA for an average of 10 ± 3 years.  

Patient age and treatment regimens were not significantly different between the 

established RA and early RA groups.  Profiles from previously analyzed autoimmune 

patients (SLE, IDDM, and MS) were used for comparison in the study.      

Inheritance Studies: Six previously studied control individuals without active 

infection or family history of autoimmunity were selected for inclusion in our study. 

Additionally, previously examined individuals diagnosed with rheumatoid arthritis (n=4) 

or systemic lupus erythematosus (n=4) served as patients with clinically diagnosed 

autoimmune disease.  All autoimmune patients satisfied established ACR criteria for 

diagnosis of their respective diseases.  Additionally, five families were selected for study.  

A total of 8 unaffected first degree relatives of patients with autoimmune disease were 

included in our study.  Human subject studies were approved by the committee for the 

protection of human subjects of the Vanderbilt University Institutional Review Board.   

 

Sample Preparation/RNA Isolation and Probe Synthesis with Microarray Hybridization  

As described in chapter 1, Materials and methods section 

 

Clustering Analysis of Gene Expression Profiles  

As described in chapter 1, Materials and methods section 
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Identification of Autoimmune Genes in Differentially Expressed Gene Clusters 

Research Genetics Pathways 4.0 program was used to identify the most 

differentially expressed genes after immunization and in the different autoimmune 

disease classes. Microarrays were grouped into one of several conditions: control (healthy 

individuals before immunization), post-immunization (healthy individuals at different 

time points after immunization: 3, 6-9, and 19-21 days), or an autoimmune group 

(systemic lupus erythematosus, rheumatoid arthritis, insulin dependent diabetes mellitus, 

multiple sclerosis, and early rheumatoid arthritis).  The gene intensities for each condition 

group were averaged. The expression levels of each gene were represented graphically by 

plotting the natural logarithm of the ratio of gene expression intensity in the experimental 

group versus the control group for each condition.  Genes that did not change 

significantly (99% confidence, Chen test175) over any of the conditions were removed 

from the database.  The remaining genes in the data set were then clustered using an 

unsupervised K Means clustering algorithm132 134 with ten centroids.  The gene identities, 

chromosome number, and functions were further analyzed for each cluster using 

Stanford’s GeneCards database (http://genome-www.stanford.edu/genecards). 

A similar computational analysis was employed for our analysis of unaffected 

first-degree relatives.  In order to identify autoimmune genes present among the most 

differentially expressed genes in individual profiles, microarrays from previously 

compiled control groups were separated into two reference conditions: control (control 

individuals) and post-immunization (6-9 days after immunization with flu vaccine).  The 

gene intensities for each control condition group were averaged.  Individual expression 

profiles for control individuals, RA and SLE patients, and unaffected first-degree family 
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members were compared against the compiled control conditions.  Expression levels 

were represented graphically by plotting the natural logarithm of the ratio of the gene 

expression intensity in the experimental group versus the control group for each 

condition.  Genes that did not change significantly (99% confidence, Chen test) over any 

of the conditions were removed from the database.  The remaining genes in the data set 

were clustered using an unsupervised K Means clustering algorithm with ten centroids. 

The major under- and over-expressed clusters in the individual profiles were isolated, and 

the total number of genes in the respective clusters determined. The differentially 

expressed clusters were restricted to previously identify over-expressed, under-expressed, 

and core autoimmune genes using Pathways 4.0 Paths command. 

 

Hybridization Intensity Correlation Coefficient Calculations   

Parent-offspring pairings were used to estimate the family resemblance of gene 

expression levels.  Five autoimmune parent-offspring pairings were used, with only one 

individual in a pair having an autoimmune disease.  Three control parent-offspring 

pairings were also included in the study, with no individual having one of the four 

autoimmune diseases previously studied.  The hybridization intensity for each individual 

gene was used to determine the spearman correlation coefficient between family pairs.  

Spearman correlation coefficients were calculated for over-expressed and under-

expressed autoimmune genes, and for non-autoimmune genes. Pairwise comparison for 

each of the categories were performed using a permutation t-test. 
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Results 

 

Immune response and the autoimmune gene expression signatures:  Characterization of a 
model immune response reveals dynamic changes in gene expression 
 

In order to determine if genes differentially expressed during an immune response 

were found in our autoimmune signature, we began by modeling and characterizing an 

immune response in healthy individuals. To model a normal immune response, we 

measured gene expression in PBMCs from healthy control subjects (n=9) before and after 

immunization with inactivated influenza vaccine.  Samples were collected from subjects 

at three major time points: 3 days, 6-9 days, and 19-21 days after immunization.  Total 

RNA was purified from PBMCs and reverse-transcribed to cDNA in the presence of 33P-

dCTP.  Labeled cDNA was hybridized to microarray filters and hybridization levels were 

quantitated by phosphorimager analysis.  Data from different hybridizations were 

normalized to yield an average intensity of 1.0 for each spotted clone (4,329) over the 

entire array. 

A self-organizing map clustering algorithm132 was employed to compare the 

control (pre-immunized) to the immunized group based upon similarities in gene 

expression variables. This method segregated microarrays such that an individual’s 

profile appeared highly similar before and after immunization, as demonstrated by the 

relative proximity of individual samples (Fig. 9 A).  This indicates that total gene 

expression patterns remain relatively unchanged after immunization.  However, this type 

of clustering analysis does not focus on the most differentially expressed genes.  In order 

to examine distinctions that arise from the most differentially expressed genes, we 

filtered out genes whose expression level did not vary by more than 3 standard deviations 
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from their respective means.  After filtering, expression profiles segregated primarily by 

pre- and post-immunization status (Fig. 9 B).  This suggests that there are uniform 

changes in expression variables of a smaller subset of genes that distinguish pre- and 

post-immunization groups. 

To identify which individual genes were differentially expressed, we analyzed the 

immune response in more detail using K-means clustering to group genes on the basis of 

similarity in expression patterns134.  The immune response profiles were separated into 

control (no immunization), early (3 day post-immunized), middle (6-9 days), and late 

(19-21 days) post-immunization groups. Expression changes were plotted as the natural 

logarithm of the ratio between the post-immunization group relative to the control group  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Cluster analysis of the pre-immune and post-immune data set. A. Pre- and 
post-immune samples were analyzed using an unsupervised self-organizing map 
algorithm based upon expression levels of 4329 genes.  Samples are identified as 
control (pre-immune) and imm (after immunization).  Individuals are designated 
11 to 18 and are connected by brackets.  B.  Gene expression levels that did not 
differ by greater than 3 standard deviations were eliminated from the data set.  The 
clustering analysis was repeated based upon expression levels of the 99 genes that 
remained after filtering.  Groups of profiles that share similar patterns of gene 
expression are boxed. 

A. B. 
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(Fig 10 A-C).  Genes that did not change significantly over the time course (99% 

significance, Chen test 175) were filtered from the data set. 

We found three distinct clusters associated with the normal immune response.  

The first cluster consisted of 304 genes were over-expressed 3 days after immunization 

(Fig. 10 A). This cluster mainly contained genes that encode proteins involved in key 

signal transduction pathways in lymphocytes and other cell types (e.g. PKC, PLC, DAG 

kinase, MAP kinase, STATs and STAT inhibitors, AP-1 transcription factors, IRFs, and 

proteins required for proliferation).  Genes in this cluster exhibited an increase in 

expression ranging from 2-12 fold compared to the control group. 

The second cluster of 88 late (19-21 days) response genes represented a shift 

away from signaling and proliferation pathways, towards increased functional activity 

(Fig. 10 B).  Among the late immune response gene cluster, chemokines (SCYA3, 

SCYA13, and SCYA14), complement components (C1S), IFN-inducible proteins (IFI35), 

and leukocyte homing/adhesion (ICAM2) genes were over-expressed.  Receptors for 

serotonin, glutamate, estrogen and retinoic acid were also over-expressed.  Increases in 

the expression level of this group of genes varied from 2-8 fold greater than controls. 

The final immune response cluster contained 78 genes that exhibited reduced 

expression levels over the entire time-course (Fig. 10 C).  Strikingly, twelve of the 

seventy-eight under-expressed immune response genes encoded ribosomal proteins.  This 

represented a decrease in the expression of 32% of all the ribosomal protein-encoding 

genes present on our cDNA microarray filters.  Interestingly, coordinate changes in 

ribosomal protein gene expression have been linked to differentiation in eukaryotic 

cells189 and may reflect differentiation of lymphocytes from a naïve to effector state in 
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response to immunization. Taken together, these data illustrate dynamic, coordinate 

changes in mRNA expression that accompany the immune response, in vivo.  First, genes 

were induced that are required for signal transduction and cell proliferation; two key 

elements of the early immune response.  Second, as the immune response against antigen 

progresses, we observed a shift towards genes that mediate inflammation and lymphocyte 

effector functions. 

 

Differentially expressed immune response genes do not contribute to the autoimmune 
gene expression signature  

 
Given the above results, we wanted to compare gene expression profiles of the 

normal immune response to profiles of autoimmune disease.  We initially subjected 

profiles from immunized individuals and autoimmune patients to hierarchical clustering 

analysis, in order to examine the degree of relatedness between the two groups based on 

overall expression patters.  Comparison of 6-9 day post-immunized individuals with 

profiles from patients diagnosed with established RA and SLE resulted in a dendrogram 

that clustered all immune response gene expression profiles (IMM) into a branch that 

excludes the autoimmune profiles (Fig. 11A).  These results indicate that gene expression 

profiles associated with the immune response are globally distinct from autoimmune gene 

expression patterns.   Hierarchical clustering analysis comparing the immune response 

profiles to patients with type 1 diabetes (IDDM) and MS supports the notion that 

autoimmune gene expression profiles do not resemble the normal immune response (Fig. 

11B).   Clustering of all the autoimmune groups (MS, RA, SLE, and IDDM) with both 

the normal immune response and control groups resulted in separation into three major  
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Signaling
PRKCZ, protein kinase C zeta
PRKCSH, PKC substrate
PLCB3, phopholipase C, β3
INPPL1, inositol phosphate ppase
DGKZ, DAG kinase ζ
GNAT1, G protein
GNAL, G protein
MAP4K2, MAP kinase cascade
STAT3
STAT5B
SSI-1, JAK binding protein
SSI-3, STAT induced STAT inhibitor 3
STATI2, STAT induced inhibitor
CDC34, Cell division cycle 34
TCF3, E2A Ig enhancer binding factor
TCF7, T cell transciption
TCF17, Zinc finger protein
FOS, c-fos
FOSL1, fra-1
JUND
MYBL2, c-myb
IRF5, interferon regulatory factor
IRF7, interferon regulatory factor
GAK, cyclin G associated kinase

Inflammatory/Immune
SCYA3, chemokine MIP1a
SCYA13, chemokine
SCYA14, chemokine
CD79B, Ig associated
TIAL1, CTL granules
CRYBB2, crystallin
ICAM2, adhesion
LY6E, thymic shared antigen
IFI35, IFN inducible
SCG2, secretogranin
AXL, receptor tyrosine kinase
C1S, complement
FASTK, FAS activated ser/thr kinase
KLK5, kallikrein 6
GAS6 growth arrest-specific 6

Other
AP3D1, adaptor-related protein
GARS, glycyl-tRNA synthetase
ARF5, ADP-ribosylation factor 5
ESR1, estrogen receptor 1
GRIN1, glutamate receptor
HTR2B, serotonin recpetor 2B
PCAF, p300/CBP-associated factor

Ribosomal & Related
RPL36A
RPL24
RPS4Y
RPS13
RPL35
RPS16
RPL27A
RPL5
RPS15A
RPL11
RPS29
RPL30
NACA
PABPC1
EIF3S6

Inflammatory/Immune
B2M, beta-2-microglobulin
CD9
HLA-C
IFI30, IFN-γ-inducible protein 30
IFITM1, IFN induced protein 1
LCP1, L-plastin
LTA, lymphotoxin alpha
LYZ, lysozyme

A. B. C.

 

Fig. 10 Cluster analysis of differentially expressed genes during normal immune response.  Kmeans 
clustering analysis identified three distinct gene clusters based upon similarities in gene expression 
variables.  These are A., a cluster of 304 early response genes (3 days post-immunization),  B., a 
cluster of 88 late response genes (19-21 d after immunization) and C., a cluster of 78 genes with 
decreased expression levels over the time course of investigation.  Data are presented as the natural 
logarithm of the ratio of the early immune group/pre-immune group, the middle immune group (6-8 
d after immunization)/pre-immune group, or the late immune group/pre-immune group.  The 
individual lines in the plot represents the expression ratio for an individual gene over the early, 
middle, and late immunization time course.  Expression ratios that did not achieve a 99% 
significance level were filtered from the data set.  Below each graph, a partial list of genes is 
identified by dominant functional category within each of the clusters. 
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branches (Fig. 11 C).  One of the branches consisted primarily of pre-immunized controls 

and normal immune response samples, while the two remaining branches exclusively 

contained autoimmune samples.   

These results indicate that the gene expression patterns associated with the 

autoimmune signature are globally distinct from the immune response.  However, this 

type of clustering analysis does not exclude the possibility that a small subset of 

differentially expressed genes could be shared between the immune response and 

autoimmune disease groups.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Comparison of the immune and autoimmune classes by cluster analysis. 
A.  The immune (6-9 d post-immunization), RA and SLE groups were analyzed 
using a hierarchical clustering algorithm based upon expression variables of 4329 
genes.  Three major branches were apparent from the dendrogram.  All immune 
samples segregated within one major branch.  B.  The immune, MS, and IDDM 
groups were subjected to cluster analysis as in A.  C.  Hierarchical clustering of all 
autoimmune disease groups with pre-(Cont) and post- (Imm) immunized control 
individuals   
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To address this issue directly, we compared the most differentially expressed 

immune response genes from our previous K means clustering analysis (Fig. 10) to the 

most differentially expressed autoimmune signature genes originally described in Chapter 

1 (Fig. 5).  This comparison revealed that there were two major differentially expressed 

clusters: a cluster containing 96 genes over-expressed in all autoimmune disease groups 

and a second cluster of 113 genes under-expressed in all autoimmune disease groups 

(Fig. 12).  Examination of these genes revealed that these differentially expressed genes 

were the same autoimmune signature genes identified in Chapter 1.  We found there was 

absolutely no overlap in the most differentially expressed middle immune response genes 

and our autoimmune signature genes.  Additional comparisons using the differentially 

expressed early and late immune response genes also did not overlap with the 

autoimmune signature genes (data not shown).  Taken together, our hierarchical 

clustering analysis and examination of differentially expressed genes reveal that 

differentially expressed immune response genes do not contribute to our autoimmune 

signature. 

 

Disease duration and the autoimmune signature: Early RA gene expression profiles 
contain the autoimmune gene expression signature 

 
The RA patients that we analyzed in our microarray studies had an average 

history of autoimmune disease of 10 ± 2 years. These patients contained a high 

percentage of the autoimmune signature genes differentially expressed in their PBMCs.  

To address whether disease duration contributed to our autoimmune signature, we 

obtained PBMCs from patients diagnosed with RA for less than two years (early RA 
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patients- ERA).  We initially utilized a hierarchical clustering algorithm to determine if 

the gene expression profiles from ERA patients resembled profiles from RA patients 

(Fig. 13).  The analysis revealed that the expression patterns for both ERA and RA 

patients were distinct from both pre- and post-immunization control individuals.  

Additionally, hierarchical clustering grouped the ERA and RA profiles into distinct 

branches on the dendrogram, indicating that differences in the overall expression patterns 

were capable of discriminating these patient groups.  RA9 clustered into the ERA patient 

branch.  Interestingly, examination of the medical history of RA9 revealed that this 

patient has been diagnosed with RA for less than two years. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A B 

Fig. 12 Comparison of autoimmune signature with differentially expressed 
immune response genes   Kmeans clustering analysis identified two distinct 
clusters (A and B) of genes that were uniformly differentially expressed in all 
four autoimmune groups. Data are presented as the natural logarithm of the ratio 
of the immune response group (MidImm)/control, or each autoimmune group 
(IDDM, MS, RA, or SLE)/control. Each individual line in the plot represents the 
expression ratio for an individual gene for each class (MidImm, MS, RA, SLE, 
etc.) Expression ratios that did not achieve a 99% significance level were filtered 
from the data set.  The genes present in these clusters were all previously 
identified autoimmune genes. 
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Since the hierarchical clustering algorithm detected differences between the 

expression patterns associated with the RA and ERA groups, we wanted to determine if 

these distinctions arose through alterations or absence of the autoimmune expression 

signature in the ERA patients.  We addressed this question by examining the most 

differentially expressed genes in the immunized, ERA, and RA groups relative to control 

profiles (K-means clustering, 99% significance, Chen test) (Fig. 14).  Many of the most 

under- and over-expressed genes in the established RA group were similarly 

differentially expressed in the ERA patients.  Closer examination of these differentially 

expressed genes revealed that approximately 90% of the total over- (92/96 autoimmune 

signature genes) and under-expressed (98 /113 autoimmune signature genes) were 

previously identified autoimmune signature genes.   

 

Fig. 13  Clustering of Early RA Gene Expression profiles.  A. Clustering 
of early RA (ERA) and established RA (RA) patients using the self-
organizing map algorithm and B.  the hierarchical clustering algorithm 
with complete linkage clustering C.  Hierarchical clustering of ERA, RA, 
Imm (post-immunization 6-9d), and Control (Cont) gene expression 
profiles  
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The finding that hierarchical clustering can discriminate ERA patients from 

established RA patients suggests that there are additional differences between these two 

groups on a gene expression level.  Indeed, ERA-specific differentially expressed clusters 

have been identified, with nine over- and forty-four under-expressed genes present in the 

ERA group relative to established RA patients190.  These differentially expressed genes 

encode proteins with diverse functions, ranging from bone remodeling to oxidative 

phosphorylation190.  Additional differentially expressed genes in ERA patients encode 

proteins previously identified in our characterization of the immune response to viral 

antigen, suggesting that an active immune response may occur early in the disease course 

of RA.  We believe that this collection of immune response and ERA specific genes 

account for the segregation of ERA profiles from the established RA profiles. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14 Analysis of differentially expressed genes in Early RA. Kmeans 
clustering analysis identified two distinct clusters of genes that were A. 
under-expressed and B. over-expressed in the ERA and RA groups. Data 
are presented as the natural logarithm of the ratio of the immune group 
(MidImm)/control, or (ERA and RA groups)/control. Each individual line 
in the plot represents the expression ratio for an individual gene for each 
class (Control, MidImm, MS, ERA and RA).  Expression ratios that did 
not achieve a 99% significance level were filtered from the data set. 

A B 
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In summary, our examination of the differentially expressed genes in ERA 

patients revealed that this patient population carries a large proportion of the previously 

identified autoimmune gene expression signature.  Since this signature is present in 

patients with relatively recent autoimmune disease onset and in individuals with an 

established history of autoimmunity, it is unlikely that disease duration accounts for the 

autoimmune signature.       

 

Gene expression profiles of unaffected first-degree relatives of autoimmune individuals 
resemble individuals with autoimmune disease   

 
To address the possibility that gene expression profiles from unaffected first 

relatives resembled those of autoimmune patients, we compared their expression profiles 

to those of control individuals and unrelated autoimmune patients.  We used standard 

microarray analysis to collect gene expression profiles.  Initially, a hierarchical clustering 

algorithm was used to compare unaffected family members to control individuals by 

overall relatedness of gene expression profiles (using all 4000+ genes).  This clustering 

analysis grouped all control individuals into a single branch and all unaffected family 

members into separate branches (Fig. 15 A).  A representative node of genes reflects the 

clustering of the overall profiles. 

Since unaffected first-degree relatives displayed expression patterns distinct from 

control individuals, we wanted to determine if gene expression profiles of unaffected 

family members were also distinct from unrelated patients with autoimmune disease.  

The same hierarchical clustering algorithm was employed to group individuals and genes 

by overall similarities in expression patterns.   In contrast to the above results, the 



 67

program did not group unaffected family members and individuals with autoimmune 

disease into separate branches (Fig. 15 B).   

We were unable to find gene nodes that accurately discriminated between 

autoimmune patients and unaffected family members, as illustrated by the representative 

node.  Next, we compared individuals in all three groups using the same clustering 

algorithm.  All control individuals were segregated into a single branch and all unaffected 

family members and autoimmune individuals were segregated into the remaining 

branches (Fig. 15 C).  Unaffected family members and autoimmune individuals did not 

segregate into separate branches.  Rather, each branch with autoimmune individuals also 

contained unaffected first-degree relatives.  As above, we chose a node of genes that 

reflected the differences in the clustering profiles (Fig. 15 C).  Of note, many of the genes 

present in this node have been previously defined as part of an under-expressed 

autoimmune gene expression signature1. 

 

"Autoimmune signature genes" are differentially expressed in unaffected first-degree 
relatives 
 

The above results suggest that unaffected family members exhibit the same 

pattern of differential gene expression as individuals with autoimmune disease.  To  

determine if differentially expressed genes from unaffected family members overlapped 

with autoimmune expression signatures, we performed a k-means clustering analysis on 

profiles from control (n=6)  and immune response individuals (n=6), autoimmune 
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B. Unaffected Family Members & 
Autoimmune Individuals 

 
A. Unaffected Family Members & Controls 

Fig. 15.  Hierarchical clustering of total gene expression profiles.  A hierarchical 
clustering algorithm was employed to group individuals based upon similarities in 
overall gene expression profiles.  Representative nodes are shown to provide sample 
genes that discriminate between branches.  Hybridization intensities for individual 
genes across the profiles are represented as a range from black (no expression) to red 
(high expression level). Genes are represented by their gene symbols.  Clustering and 
nodes for: A. Control individuals (Cont) and unaffected first-degree relatives (Family 
Number- F#), B.  Unaffected first-degree relatives and individuals with autoimmune 
disease (RA, SLE), C.  Control individuals, unaffected first-degree relatives, and 
autoimmune individuals.   

C. Unaffected Family Members & 
Autoimmune Individuals 
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patients (RA (n=4) and SLE (n=4) patients), and unaffected first degree relatives (n=6). 

We found that the most differentially expressed gene clusters in autoimmune patients 

were differentially expressed to the same extent in unaffected family members (Fig 16).  

The over-expressed autoimmune/unaffected family cluster contained a total of 127 genes, 

and the under-expressed cluster contained 74 genes.  Approximately 52% (66/127) of the 

total over-expressed and 55% (41/74) of the total under-expressed genes were 

autoimmune genes, revealing that a large percentage of the most differentially expressed 

genes were "autoimmune signature genes" (Figure 16 A).  When the stringency for  
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Fig. 16.  Percentage of DEGs in unaffected first-degree relatives that are autoimmunity 
genes. we determined the percent contribution of autoimmune genes to the most 
differentially expressed clusters identified in unaffected family members compared to 
random controls.  Gene expression data is presented as the natural logarithm of ratio 
(control/control, immune/control, unaffected first-degree relative/control, and 
autoimmune/control).  A. % autoimmune signature genes found in DEGs (P<0.01, 
Chen test) for unaffected family members.  B. % autoimmune signature genes found in 
DEGs (P<0.001, Chen test). 
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significance was increased to 99.9% (Chen test, P<0.001), over 90% of the remaining 

DEGs were previously identified "autoimmune signature genes" (Fig. 16 B).   

We also performed analyses to determine the contribution of the autoimmune 

signature to differentially expressed genes in individual profiles.  To do this, we first used 

the clustering algorithm to group genes with similar expression patterns among control 

individuals, immune response individuals (an additional control group comprised of 

control individuals immunized with inactivated influenza vaccine), and an individual 

unaffected family member (Fig. 17-1).  The ratio of gene expression 

(Experimental/Control, LN) was plotted for each of the 4000+ genes for the control 

group, the immune response group and each unaffected family member or autoimmune 

individual (RA and SLE).  Differences in gene expression among the groups that did not 

achieve statistical significance (P<0.01, Chen Test) were excluded from further analysis 

(Fig. 17-2).  Both the major over- and under-expressed clusters were isolated (Fig. 17-3a 

and –3b).  We further restricted these DEG clusters to the 96 over-expressed and 113 

under-expressed autoimmune signature genes (Fig. 17-4a and 4b) identified in the 

immune response/autoimmune disease studies (Fig. 12).  

Using results from this type of analysis, we determined the percentage of 

“autoimmune genes” present in the DEGs of unaffected family members.  For example, 

after clustering and statistical treatment, the unaffected first-degree relative F1-M had 

two major differentially expressed gene clusters: an under-expressed cluster of 246 genes 

and an over-expressed cluster of 245 genes. We previously defined the "autoimmune 

signature genes" (RA, SLE, IDDM, and MS) as an under-expressed cluster of 113 genes  
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and an over expressed cluster of 96 genes1.  When we restricted the DEG clusters in 

individual F1-M to autoimmune genes, the under-expressed cluster retained 75 genes and 

 

 

 

 

the over-expressed cluster retained 86 genes.  Therefore, after clustering, statistical 

treatment, and restriction of non-autoimmune genes, we found that individual F1-M 

contained 66 % (75/113) of the under-expressed and 90% (86/96) of the over-expressed 

autoimmune signature genes.    

 

3a) Isolate over-
expressed

3b) Isolate under-
expressed

4a) Restricted to
previously defined
autoimmune genes

4b) Restrict to
previously defined
autoimmune genes

1) K-means clustering
algorithm groups
genes with similar
expression patterns
across conditions.

2) Genes that are not
differentially
expressed with 99%
confidence are
excluded.

Fig. 17.  Schematic of analytic method to determine overlap between differentially expressed 
genes and autoimmune signature genes. A. The average ratio of gene expression relative to the 
control group was calculated for each group or individual, and expressed on a natural logarithm 
scale.  B. Genes that were not significantly differentially expressed (P < 0.01, Chen test) were 
removed from the data set.  Remaining differentially expressed genes were grouped into ten 
clusters using a K-means clustering algorithm.  C. Over- and under-expressed clusters were 
isolated for further analysis.  D. Isolated clusters were further restricted to previously identified 
autoimmune signature genes.  The genes that remained were used to calculate the percent of the 
total autoimmune signature gene present in the clusters, see Table I. 
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Results have been summarized in Table 3 for control individuals, autoimmune 

patients, and unaffected family members.  DEGs in control individuals contained only a 

small percentage of genes from the autoimmune signature.  Conversely, both the over- 

and under-expressed genes present in individuals diagnosed with autoimmune disease 

contained significantly higher percentages of the autoimmune signature (47% ± 44, 

P<0.02 and 54% ± 15, P<10-4, respectively).  Unaffected first-degree relatives contained 

significantly higher numbers of autoimmune genes represented in the under-expressed 

cluster compared to control individuals (44% ± 24, P<0.01).  The over-expressed cluster 

in family members had a higher percentage of autoimmune genes, but these differences 

did not achieve statistical significance.  

         In addition to the total autoimmune signature, we previously identified a core set of 

thirty genes that were consistently under-expressed in autoimmune individuals 1.  We 

utilized the same method as outlined above (Fig. 16) to determine the representation of 

this core of thirty autoimmune genes in unaffected family members (Table 3).  Control 

individuals had few of these core genes present among their most differentially expressed 

genes (7% ± 10%). Differentially expressed genes for both autoimmune patients and 

unaffected first-degree relatives were highly represented (90% ± 12% and 76% ± 25, 

respectively) and were statistically significant compared to controls (P<10-7 and P<10-3, 

respectively).  There was no statistically significant difference between the percent of 

these core genes present in autoimmune patients and unaffected family members.  

Overall, these data demonstrate that genes differentially expressed in individuals with 

autoimmune disease are also differentially expressed in unaffected first-degree relatives.  
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Given the fact the core genes were so highly represented in the unaffected family 

members, we wanted to see how the individual profiles would cluster if we restricted the 

microarray data set down to the 30 gene autoimmune core. Profiles from control 

individuals sorted with a remarkable degree of precision to a single branch (Fig. 18), 

while both autoimmune and unaffected family member profiles segregated into the other 

branches.  This analysis further supports the hypothesis that gene expression profiles of 

individuals with autoimmune disease and unaffected first-degree family members are 

highly similar to each other and that both groups are highly distinct from control 

individuals. 

Unaffected family members do not display signs of autoimmune disease, however 

they contain a high number of autoimmune DEGs.  We wanted to determine if there were 

DEGs that could discriminate unaffected first-degree relatives from individuals with 

autoimmune disease.   Using a variety of approaches, we have been unable to identify 

combinations of DEGs that successfully discriminate all unaffected family members from 

all individuals with autoimmune disease (not shown).   

 

Transcript levels of autoimmune signature genes display high levels of family 
resemblance 

 
The above results indicate that the gene expression profile of a first-degree 

relative of an individual with autoimmune disease is more similar to an individual with 

autoimmune disease than an individual without autoimmune disease.  This argues that 

transcript levels of a proportion of autoimmune signature genes may be determined by 

family resemblance rather than by disease activity. We wanted to use a combination of 
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Table III.  Conservation of autoimmune gene expression  

Profiles in unaffected first-degree relatives    
     Gene Expression Clusters  
   Over  Under  Core   
# Genes:   96   113   29    
Sample 
Control      

1   0  3  0 
2   1  13  27 
3   1  7  3 
4   3  5  0 
5   6  8  7 
6   0  7  3 

Avg±StdDev  2±2  7±4  7±10  
Autoimmune 

RA1  2  66  97 
RA2  14  66  97 
RA3  88  65  93 
RA4  94  37  80 
SLE1  3  63  97 
SLE2  4  61  97 
SLE3  76  45  97 
SLE4  93  27  63 

Avg±StdDev  47±44  54±15  90±12 
      P value  0.02  < 10-4  < 10-7  
 
 
(Table continued on next page)       
Unaffected 1st degree relative 

F1-M  89  66  97 
F2-F  30  54  93 
F2-M  39  60  97 
F3-D  10  52  80 
F4-M  0  4  37 
F5-GM  1  26  53 

Avg±StdDev  28±34  44±24  76±25 
         P value  NS  0.01  < 10-3   
Data resulting from analysis described in Figure 2.   
The percentage of autoimmune signature genes  
present in the DEG (p<0.01, Chen test) clusters were  
calculated for each individual.  Over= over-expressed  
autoimmune signature, Under=under-expressed autoimmune 
signature.  The percent of core autoimmune DEGs (Core)   
were also calculated for each individual.  P values for the  
autoimmune and unaffected first-degree relative groups 
were calculated relative to the control group  
averages (student's T test). 
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computational techniques and statistical analyses to determine the degree of gene 

expression resemblance between family members. We reasoned that if expression levels 

of autoimmune genes demonstrated a highly family resemblance, they should be similar 

between a parent and offspring.  

 

Fig. 18.  Hierarchical clustering using core autoimmune genes.  Microarray data 
were restricted to 29 previously identified core autoimmune genes 1.  Profiles 
for control individuals, unaffected family members, and autoimmune 
individuals were subjected to hierarchical clustering.  Hybridization intensities 
are represented as a range from black (no expression) to red (high expression). 
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We examined the correlation between eight parent-offspring pairings to determine 

the family resemblance of gene expression levels.  For five of these pairings, one 

individual suffered from a previously examined autoimmune disorder (RA, MS, IDDM, 

or SLE) while the other individual was unaffected.  Neither parent nor offspring had one 

of the four major autoimmune diseases in the three remaining pairs.  Because of small 

sample size, we utilized the non-parametric Spearman correlation coefficient to 

determine the degree of parent-offspring relatedness for a give gene.  Genes and 

expression data were divided into one of three major categories:  over-expressed 

autoimmune genes (94 genes), under-expressed autoimmune genes (111 genes), and non-

autoimmune genes (3,924 genes).  The average Spearman correlation coefficient for each 

category was calculated.  Samples of the autoimmune signature genes displaying the 

highest average levels of correlation are provided in Tables IV and V.   

The Kruskal-Wallis test was used to test the null hypothesis that the correlations 

among the three gene categories are the same. Since the result did not support the null 

hypothesis(p < 0.0001), we performed further pairwise comparisons using a permutation 

test on t statistics based on the rank score of Spearman correlation to determine which of 

the categories (over-, under-, or non-autoimmune genes) were significantly different.  

Pairwise comparisons revealed that, on average, expression levels for both the over- and 

under-expressed autoimmune genes were more highly correlated between parent and 

offspring relative to non-autoimmune genes (Fig. 19).  These difference were highly 

significant (p<0.0001, for over-expressed autoimmune vs. non-autoimmune and under-

expressed autoimmune vs. non-autoimmune, permutation T-test).  Comparison of the 

average correlation for the over- and under-expressed autoimmune genes were not 
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significant (p=.8279, permutation t-test).  These results support the notion that the 

expression levels of previously identified autoimmune genes display higher levels of 

family resemblance than the majority of other genes present on the microarrays.    

 

Statistical analysis of data supports validity of analysis 

Analysis of microarray data sets can require unfamiliar computational and 

statistical methods.  We wanted to determine if the relationships in gene expression 

between individuals might be observed by chance.  To do so we compared gene 

expression profiles in 8 control individuals who were randomly grouped into two groups 

of 4 each (Table VI).  We compared this 4 x 4 group of control individuals to a 4 x 4 

group containing 4 individuals from our control group and 4 individuals from our 

unaffected first-degree relative group.  All individuals were unrelated to each other.  

First, we identified the total number of DEGs in the 4 x 4 random control group and in 

the 4 x 4 random control versus unaffected, unrelated first-degree relatives group.  We 

used ratios of 3-, 4-, 5-, and 10-fold differences in expression to define DEGs.  When we 

performed the comparison in the 4 random controls x 4 random controls group, we 

identified small numbers of DEGs (15 to 0).  None of these differences in gene 

expression between the two groups of 4 achieved statistical significance (Student's T 

test).  In contrast, when we compared gene expression differences between the 4 random 

controls and the 4 unaffected relatives group, we identified large numbers of DEGs (208 

to 4, depending upon the ratio employed).  A larger number of these gene expression 

differences achieved 
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N68565  0.836378997 0.009651192 
AA458785 GUCY1B3 0.841525993 0.008804689 
H45618  0.841525993 0.008804689 
AA464198 E1B-AP5 0.848500432 0.00773527 
AA702422 MJD 0.848500432 0.00773527 
AA779480 BMP8 0.848500432 0.00773527 
AA778919 P2RY6 0.860621867 0.006081129 
R83277 ORC1L 0.860621867 0.006081129 
T65407 HADHSC 0.860621867 0.006081129 
T97615 CRP 0.860621867 0.006081129 
H12312 TXK 0.884864736 0.003493723 
R51835  0.884864736 0.003493723 
AA033564 DGCR6 0.909107605 0.001751608 
AA485355 SSI-1 0.909107605 0.001751608 
AA497020 TRAP1 0.909107605 0.001751608 
AA844930 GP2 0.909107605 0.001751608 
H94949 TROAP 0.909107605 0.001751608 
N53169 APOC3 0.909107605 0.001751608 
R09503  0.909107605 0.001751608 
AA143437 ARHD 0.94547191 0.000388927 
AA452353 PPP2R3 0.94547191 0.000388927 
AA485922 CPNE1 0.94547191 0.000388927 
AA496334 DNM1 0.94547191 0.000388927 
AA778663 TNFSF9 0.94547191 0.000388927 
AA825491 IRF4 0.94547191 0.000388927 
R39356 TP53 0.94547191 0.000388927 
R50354 LIF 0.94547191 0.000388927 
T50527 GYPB 0.94547191 0.000388927 
R40127 RANBP1 0.951290253 0.000278474 
AA668527 MADCAM1 0.963486282 0.000118396 
AA130874 LOC51643 0.981836214 1.47783E-05 
AA457114 TNFAIP2 0.981836214 1.47783E-05 
AA486741 ASL 0.981836214 1.47783E-05 
H69834 KNG 0.981836214 1.47783E-05 
R62817 EPB72 0.981836214 1.47783E-05 

Table IV.  Most correlated under-expressed autoimmune signature 
genes 

ACC GENE Rs p-value 

List of under-expressed autoimmune genes displaying the highest 
correlation coefficient in parent offspring pairs.  Only genes displaying 
correlations with greater than 99% significance are shown.  Genes are 
denoted by accession number (ACC) and gene symbol (GENE).  The 
corresponding Spearman correlation coefficient (Rs) and significance 
(p-value) are shown for each gene. 
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AA600189 ADAR 0.836378997 0.009651192 
AA134555 HUMGT198A 0.848500432 0.00773527 
AA253413 FRDA 0.848500432 0.00773527 
AA293218 CSTF2 0.848500432 0.00773527 
AA405800 DCI 0.848500432 0.00773527 
AA443584 CD8A 0.848500432 0.00773527 
AA443638 SNCG 0.848500432 0.00773527 
AA481464 PPIB 0.848500432 0.00773527 
AA485626 AHCY 0.848500432 0.00773527 
AA700876 ORM1 0.848500432 0.00773527 
AA701860 FST 0.848500432 0.00773527 
AA625888 SPINK2 0.860621867 0.006081129 
AA397813 CKS2 0.884864736 0.003493723 
AA405987 GKP2 0.884864736 0.003493723 
AA504625 KNSL1 0.884864736 0.003493723 
AA705069 RARA 0.884864736 0.003493723 
AA884167 ANXA13 0.884864736 0.003493723 
N63968 POU6F1 0.884864736 0.003493723 
AA458507 CSF3R 0.896986171 0.002526122 
AA845167 ELA3 0.896986171 0.002526122 
AA098896 ESRRA 0.909107605 0.001751608 
AA447781 LUM 0.909107605 0.001751608 
AA449982 CRYBA4 0.909107605 0.001751608 
AA488979 MCRS1 0.909107605 0.001751608 
AA521339 GARS 0.909107605 0.001751608 
AA709271 NCAM2 0.909107605 0.001751608 
AA777187 CYR61 0.909107605 0.001751608 
AA815407 RYR1 0.909107605 0.001751608 
AA866113 APBB2 0.909107605 0.001751608 
AA633811 NFIL3 0.94547191 0.000388927 
AA810225 GPR30 0.94547191 0.000388927 
AA894557 CKB 0.94547191 0.000388927 
W37769 CHGB 0.94547191 0.000388927 
AA456830 DGKA 0.981836214 1.47783E-05 
AA478273 APEX 0.981836214 1.47783E-05 

Table V.  Most correlated over-expressed autoimmune signature 
genes 

ACC GENE Rs p-value 

List of over-expressed autoimmune genes displaying the highest 
correlation coefficient in parent offspring pairs.  Only genes displaying 
correlations with greater than 99% significance are shown.  Genes are 
denoted by accession number (ACC) and gene symbol (GENE).  The 
corresponding Spearman correlation coefficient (Rs) and significance 
(p-value) are shown for each gene.   
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statistical significance even with this small sample size (108 to 3, depending upon the 

ratio).  The differences between the numbers of DEGs in the 4 random controls x 4 

random controls group and the 4 random controls x 4 unrelated, unaffected relatives 

group achieved high statistical significance (P< 10-4).  These data argue that it is possible 

to use simple computational and statistical methods to analyze these complex data sets 

and that small sample sizes are sufficient to establish statistical confidence. 
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Fig. 19 Comparison of parent-offspring average gene expression correlation 
coefficients.  The average spearman correlation coefficients from 8 parent-offspring 
pairing for the following categories:   non- (Non-autoimmune), over- (Over-
autoimmune), and under-expressed (Under-autoimmune) autoimmune signature 
genes.  Significance was established using a permutation t-test.        
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Table VI.  Numbers of DEGs found by comparing random controls to random controls or by 
comparing random controls to random unaffected 1st degree relatives of individuals with 
autoimmune disease.  
 
   
Groups:    Random Controls vs.      
          Controls Unaffected Family  Statistics     
    4 x 4        4 x 4   χ2 (P)  χ2 (P) _____________  
DEGs   ALL P < 0.05     ALL     P < 0.05  ALL  P < 0.05   
3-fold   15 0       208      108    77 (< 10-4) 104 (< 10-4) 
4-fold     10 0       78      38   32 (< 10-4) 30 (<10-4) 
5-fold    5 0       45      21   21(< 10-4) 19 (< 10-4) 
10-fold    0 0       4      3   4 (NS)  2 (NS)  ______ 
DEGs are defined as genes that are 3-, 4-, 5-, or 10-fold differentially expressed between groups.  
ALL is the number of total DEGs and P < 0.05 is the number of DEGs that achieve statistical 
significance in the groups.  χ2 analysis was used to compare differences between the 4 x 4 
random control group and the 4 x 4 controls versus unaffected family members group.  P values 
were calculated by ANOVA. 

 

 

Discussion 

 In this series of experiments, we addressed three possible explanations for the 

origin of our identified autoimmune gene expression signature.  We first examined if the 

genes that are differentially expressed in autoimmune disease are also differentially 

expressed during a host immune response against a foreign antigen.  We investigated the 

host immune response to foreign antigen by examining PBMC gene expression profiles at 

various time points after immunization with influenza vaccine.  We found that the 

immune response was characterized by dynamic changes in gene expression that most 

likely reflected early signaling and proliferation events, with a shift toward lymphocyte 

effector functions at later time points.  However, comparison of the differentially 

expressed immune response genes with our autoimmune signature genes revealed that 

there was no overlap between the two expression patterns.  These results imply that our 

autoimmune signature is not modeled by a host immune response to a foreign antigen. 
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 Many patients in our initial analysis of gene expression profiles in autoimmune 

disease were diagnosed with disease for an extended period of time. As an alternative 

explanation for our autoimmune gene expression signature, we examined whether the 

signature changed as a result of disease duration.  Hierarchical clustering of gene 

expression profiles from ERA and RA patients revealed that there were distinguishable 

differences between the two patient populations.  However, additional analysis of the 

most differentially expressed genes among the ERA and RA patients revealed that the 

ERA patients contained the autoimmune gene expression signature.  Closer examination 

of the differentially expressed genes in the ERA and RA patients has identified clusters of 

genes that are ERA specific190. These ERA-specific differentially expressed genes allow 

the hierarchical clustering algorithms to distinguish between the ERA and RA groups.  In 

contrast, the autoimmune gene expression signature does not change as a function of 

disease duration.        

We also examined the gene expression signature of unaffected first-degree 

relatives of individuals with autoimmune disease. We used several different approaches 

to compare gene expression profiles between control individuals, unaffected family 

members, and autoimmune patients.  Initial hierarchical clustering of gene expression 

profiles showed that unaffected family members more closely resembled unrelated 

autoimmune patients than control individuals.   Examination of the DEGs in unaffected 

family members revealed that a significant portion of these genes were previously 

defined autoimmune genes.  This finding was further confirmed by examining the 

contribution of the autoimmune signature to the DEGs in individual unaffected family 

members. Finally, correlation coefficients were derived for gene expression levels from 
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parent-offspring pairs.  Pairwise analysis of the average correlation coefficients revealed 

that the autoimmune signature genes (both the under- and over-expressed) have 

significantly higher correlations compared to non-autoimmune genes.  These results show 

that the autoimmune signature displays a high level of family resemblance, and supports 

the notion that this expression pattern is heritable.   

Several recent studies have addressed the genetics of gene expression.  Through 

the combined approach of microarray profiling and genetic linkage analysis, researchers 

have shown that gene expression patterns are heritable across a range of species 191-195.  In 

all systems studied, a mixture of cis and trans interactions between loci have been shown 

to contribute to the differential expression of genes.   

Our current study reveals that all unaffected family members contain a significant 

number of differentially expressed autoimmune genes. This observation raises the 

question: how can a signature composed of over 200 differentially expressed autoimmune 

genes be inherited so readily?  Studies examining the association between genetics and 

the differential expression of genes reveal that trans genetic regulation plays an important 

role in the differential expression of genes.  For example, studies found that differential 

expression of ~ 40% genes is linked to just eight loci in budding yeast, suggesting that 

trans regulation plays an important role in the differential expression of a large number of 

genes 194.  Similarly, heterozygosity for mutant ATM in human lymphoblastoid cells 

results in the differential expression of 71 genes compared to controls 196.  Interestingly, 

examination of our expression signature reveals that approximately 10% of the 

differentially expressed genes appear to be either direct or secondary targets of p53 

(presented in Chapter 3 of the dissertation).  This finding leads us to believe that absence 
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of p53 as a transcription factor may contribute to a significant portion of our autoimmune 

signature.  

The evidence presented here indicates that the autoimmune gene expression 

signature reflects a heritable trait rather than a disease process.  Since screening patients 

with a range of autoimmune disorders identified this gene expression signature, we 

believe it reflects a common property of autoimmune disease.  Family 56, 197 and genetic 

linkage studies53, 55 suggest that there are common genetic regions that are linked to 

multiple autoimmune disorders.  Since gene expression profiles reflect genotype, we 

believe that this autoimmune expression signature may arise through a heritable trait or 

traits that predispose individuals to autoimmune disease.   

Complementing patient clinical phenotypes with gene expression profiles 

promises to add increased resolving power to genetic linkage studies.  Since gene 

expression levels are closely related to the biochemical processes associated with disease, 

microarray profiles offer the most accurate phenotype by allowing discrimination based 

on subclinical variations195. Conversely, our studies have identified a common expression 

signature present among patients with a range of autoimmune disorders and unaffected 

family members.  In this case, examination of expression data has revealed a common 

feature that would have otherwise been lost based on traditional clinical parameters.  The 

identification of a possible heritable gene expression signature in the autoimmune patient 

population serves as an early first step towards understanding differential expression in 

complex pathological states.  
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CHAPTER IV 

 

FUNCTIONAL LIABILITIES ASSOCIATED WITH THE 
AUTOIMMUNE SIGNATURE 

 
 
 

Abstract 

Patients with autoimmune disorders exhibit highly reproducible gene expression profiles 

in their peripheral blood mononuclear cells.  This profile includes, at least in part, a 

collection of under-expressed genes that encode proteins that inhibit cell cycle 

progression and stimulate apoptosis.  We wanted to determine if this gene expression 

profile confers a functional liability upon lymphocytes from autoimmune individuals and 

measured lymphocyte death after different treatments known to induce apoptosis.  T 

lymphocytes from individuals with RA were resistant to γ-irradiation induced apoptosis, 

a process known to be dependent upon p53, but were not resistant to apoptosis induced 

by p53-independent mechanisms.  Lymphocytes from RA patients had lower baseline 

levels of TP53 mRNA and p53 protein and were deficient in their ability to increase p53 

protein after γ-irradiation.  A sub-group of RA patients had a second biochemical defect 

and expressed very low baseline levels of checkpoint kinase 2 mRNA and protein.  We 

conclude that defects in expression of TP53 mRNA and, in a sub-group, defects in 

expression of CHK2 mRNA, lead to severe defects in apoptosis in RA.  We hypothesize 

that this liability may contribute to autoimmunity. 
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Introduction  

We have identified an autoimmune gene expression signature present in the 

PBMCs of patients with RA, MS, IDDM, and SLE.  Many of the under-expressed 

autoimmune signature genes encode proteins involved in basic cellular homeostatic 

processes, such a proliferation and apoptosis.  One of the most highly under-expressed 

genes in the signature is TP53, which encodes the tumor suppressor p53.  p53 is known to 

play a key role in regulating cell cycle progression and apoptosis. 

The tumor suppressor protein p53 is required for the γ-radiation induced apoptosis 

in thymocytes, TCR α/β T cells, and B lymphocytes in mice and humans198, 199.  To 

determine if lack of TP53 transcript levels in human autoimmune disease had functional 

consequence, we examined lymphocytes from RA patients for apoptosis defects to γ-

radiation and p-53 independent pro-apoptotic agents. We also measured p53 baseline 

protein levels in PBMCs from RA patients and control individuals.   To assess the 

function of the γ-radiation DNA damage response, we also measured p53 protein levels 

after γ-radiation.  Additionally, we measured levels of upstream regulators of p53, such 

as Chk2 and ATM, and downstream effectors of p53 function, such as p21 and PUMA.  

Our results demonstrate that there are multiple defects in the p53-dependent 

damage response pathway in lymphocytes from individuals with RA.  First, all 

individuals have markedly lower levels of TP53 transcript and p53 protein.  In addition, 

defects in expression of Chk2 message and Chk2 protein are also found, but these defects 

occur in only a portion of the RA population. 
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Materials and Methods 

 
 
Patient populations 

Control individuals (n=38), with no current chronic or acute infections or family 

history of autoimmunity, and individuals meeting the ACR clinical criteria for 

rheumatoid arthritis (n=46) were included in this study.  Both control and autoimmune 

populations had approximate female/male ratios of 3:1.  Age ranges (22-55 yrs) and 

racial distributions of both groups were similar. Human subject studies were approved by 

the Committee for the Protection of Human Subjects of the Vanderbilt University 

Institutional Review Board. 

 

Sample processing and PBMC isolation   

PBMC were isolated from heparinized blood by centrifugation on a Histopaque 

gradient (Sigma, St. Louis, MO).  Isolated PBMCs were washed twice in HBSS. 

 

Analysis of cell viability by flow cytometry   

PBMC were suspended at 1 X 106 cells/ml in complete media (RPMI 1640 

medium, 10% fetal calf serum, glutamine, and penicillin/streptomycin). Cells were 

untreated or treated with different apoptosis inducing agents: 10 gray ionizing γ-radiation, 

5 µM dexamethasone, 1 µM staurosporine, or 100 J/m2 UV radiation.  Pilot experiments 

with PBMCs from control individuals were used to establish optimal doses and time 

points for each apoptosis-inducing agents.  At appropriate time points, cells were 

harvested and washed with FACS buffer (10% BSA in PBS with 0.2% sodium azide) and 
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incubated with FITC- and PE-labeled antibodies against CD3, CD4, CD14, CD 19, and 

CD45RO (Becton-Dickinson, San Jose, CA).  Cells were washed and suspended in 500 

µl FACS buffer supplemented with 2 µl of 0.5 µM 7-AAD (Molecular Probes, Eugene, 

OR) as a viability marker prior to flow cytometric analysis.  Samples were analyzed for 1 

minute at high flow rate. 7-AAD positive cells were excluded from analysis and the total 

numbers of remaining lymphocytes were tabulated to determine viability.  

 

RNA isolation and quantitative PCR   

Tri-Reagent (Molecular Research Ctr. Inc., Cincinnati Ohio) was used to isolate 

total RNA from PBMCs. 5 µg total RNA was reverse transcribed with Superscript II 

reverse transcriptase (Gibco BRL Life Technologies, Rockville, Maryland) to prepare 

cDNA.  cDNA was also prepared from the HCT116 cell line to construct relative 

standard curves.  TP53 (TP53 Forward Primer- 5’ CTG TCC CTT CCC AGA AAA CCT  

3’, TP53 Reverse Primer- 5’ GGC TGT CCC AGA ATG CAA GA 3’) and GAPDH 

(GAPDH Forward Primer- 5’ CCA CCC ATG GCA AAT TCC 3’, GAPDH Reverse 

Primer- 5’ TGG GAT TTC CAT TGA TGA CAA) specific primers were used to amplify 

cDNA samples with SYBR-green PCR master mix (Applied Biosystems, Foster City, 

CA).  Fluorescence was monitored using an ABI PRISM 7000 detector (Applied 

Biosystems, Foster City, CA).  Relative quantities of TP53 and GAPDH transcripts in 

control and patient samples were calculated using a standard curve derived from the 

HCT116 cell line. 
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Western blot analysis 

  Whole cell lysates were prepared in 1X PBS, 1% NP-40, 0.5% Na Deoxycholate, 

0.1% SDS plus a protease inhibitor cocktail (Sigma-Aldrich, St. Louis, MO).  For each 

sample, equal amounts of total protein were electrophoresed and transferred to 

Immobilon P membranes (Millipore, Bedford, MA).  Membranes were blocked in a 5% 

non-fat milk, 0.1% Tween 20 in PBS and probed with combinations of the following 

primary antibodies diluted in 1% non-fat milk 0.1% Tween 20 PBS solution:  p53, Chk2, 

β-actin (Santa Cruz Biotechnology, Santa Cruz, CA), p21 (Oncogene Research Products, 

San Diego, CA), PUMA (Abcam, Cambridge, MA), PARP-1 (Cell Signaling 

Technologies Inc., Beverly, MA), and PCNA (Calbiochem, San Diego, CA).  Membranes 

were washed three times with PBST, and probed with goat anti-mouse HRP-conjugated 

secondary antibodies (Santa Cruz Biotechnology) in 1% non-fat milk PBST.  Membranes 

were washed 3 X 20 minutes with PBST.   The ECL Plus chemiluminescence kit 

(Applied Biosciences, Foster City, CA) was used to visualize bands.   

 

Western blot luminescent intensity analysis   

Multiple exposures of films were captured using the Fluor-S-Max imaging system 

(BioRad, Hercules, CA).  Both background chemiluminescence and chemiluminescent 

intensities for individual bands were measured.  Background chemiluminescence was 

subtracted from all band intensities.  Images of bands that were overexposed (as detected 

by Fluor-S-Max software suite) were excluded from analysis. Intensities of samples were 

normalized relative to baseline HCT-116 levels to make inter-blot comparisons and 

compensate for differences in exposure time.  
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RT-PCR and semi-quantitative PCR analysis   

cDNA prepared from PBMC RNA from control individuals or RA patients was 

used for Chk2 (Chk2 Forward Primer- 5’ AGC AGT CTC ATG GCA GCA G 3’, Chk2 

Reverse Primer- 5’ AAT GCC TTA GGA TAA ACT GAC TGA 3’) and GAPDH 

(GAPDH Forward Primer- 5’ CCA CCC ATG GCA AAT TCC ATG GCA 3’, GAPDH 

Reverse Primer- TCT AGA CGG CAG GTC AGG TCC ACC) amplifications.  Thirty 

cycles were used for initial RT-PCR amplification of samples.  Semi-quantitative PCR 

was performed on control and RA samples.  PCR reactions were carried out as described 

above, with the exception that cDNA was serially diluted and amplifications were for 

thirty-five cycles.   

 

Statistical analysis   

Results are expressed as mean ± S.E.M.  Groups were compared for statistical 

significance using student’s T-test with a P value of <0.05 considered significant.   

 

Results 

 

Defects in γ-radiation induced apoptosis in RA PBMC 

 A unique gene expression profile found in the PBMCs of patients with 

autoimmune disease suggest that these lymphocytes may be defective in apoptosis 1, 179, 

180.  To test this hypothesis, we performed viability studies on lymphocytes from RA and 

control individuals with a panel of agents that induce apoptosis, dexamethasone, 
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staurosporine, UV radiation, and γ radiation.  PBMCs from control and RA individuals 

were cultured in the presence or absence of agents that induce apoptosis.  Cells were 

harvested at the indicated time points, stained for surface markers (CD8, CD4, and 

CD19), and incubated with the cell viability dye, 7-amino actinomycin D (7-AAD).  

Viability was determined using flow cytometry by calculating the ratio of viable cells (7-

AAD negative) between the treated and untreated groups. 

Each apoptosis-inducing agent caused apoptosis in lymphocytes (Fig. 1).  We 

found no difference in the level of apoptosis between RA and control lymphocytes after 

treatment with dexamethasone, staurosporine or UV radiation.  In contrast, lymphocytes 

from RA patients were resistant to γ-radiation induced apoptosis relative to controls.  

This defect in apoptosis was restricted to CD4+ and CD8+ T lymphocytes (p<0.002 and 

P <0.001, respectively) (Fig. 20 A).  A scatter plot of CD4+ T cell viability after γ- 

radiation in different individuals demonstrated a highly homogeneous γ-radiation induced 

apoptosis response in the control population, while there was substantial variability 

among lymphocytes from RA patients (Fig. 20 B).  Quantitative differences were 

observed in the response to γ-radiation by memory and naive T cells.  Naïve T cells 

exhibited greater cell death than memory T cells (Figure 20 C).  Both populations of 

lymphocytes from individuals with RA were more resistant to apoptosis induced by γ-

radiation than were lymphocytes from controls.  These results reveal a significant defect 

in γ-radiation induced apoptosis in T lymphocytes from RA patients.  
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 Under-expression of TP53 RNA and p53 protein in RA PBMCs 

Since γ-radiation induced apoptosis is dependent on functional p53 in thymocytes 

and peripheral lymphocytes198, 199, low baseline TP53 mRNA and p53 protein levels 

could contribute to defective apoptosis in RA.  Results from previous microarray studies1 

revealed that TP53 transcript levels were lower in RA patients than control individuals 
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Fig. 20. Defects in γ-radiation mediated apoptosis in RA PBMCs. A.  PBMCs 
isolated from control (n=6) or RA patients (n=9), were left untreated or challenged 
with one of the following apoptosis inducing agents: Dexamethasone (5µM), UV 
(100 J/m2), Staurosporine (1µM), or γ-radiation (10 gy).  Cell viability was 
determined by flow cytometry after either three days (dexamethasone, UV, and γ-
radiation) or one day (staurosporine).  B.  A representative scatter plot showing the 
viability of CD4+ lymphocytes from controls (n=6) and RA patients (n=12) three 
days after γ-radiation (10 gray).  Data were collected and analyzed as described in 
A.  C.  Fractional viability of activated/memory (CD3+ CD45RO+) and naïve 
(CD3+ CD45RO-) T lymphocytes for controls (n=6) and RA patients (n=12) three 
days after γ-radiation (10 gray). Data were collected and analyzed as described in 
A. 
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(Fig. 21 A).  TP53 mRNA levels were relatively heterogeneous in control individuals but 

uniformly higher than in RA.  Real-time RT-PCR analysis confirmed that TP53 message 

levels were lower in individuals with RA than controls (Fig. 21 B).  These results reveal 

that TP53 mRNA was consistently under-expressed in the RA population relative to the 

control population. 

           To further characterize p53 in the RA population, we measured baseline p53 

levels by western blotting.  PBMCs from control individuals and RA patients were 

isolated, whole cell extracts prepared, electrophoresed, and immunoblotted with specific 

anti-p53 mAb.  Luminescent intensities were measured using a Fluor-S-Max imaging 

system.  A representative blot with a human cell line (HCT116), control individuals, and 

RA patients clearly demonstrated a marked reduction in p53 levels in RA patient PBMC 

in the resting state (Fig. 21 C).  Compiled luminescence data revealed that baseline p53 

levels were significantly lower (>10-fold) in the PBMC of individuals with RA compared 

to control individuals (p<0.001) (Fig. 21 D). 

 

p53 levels after γ-radiation 

In addition to measuring basal levels of p53 in the RA population, we wanted to 

examine p53 protein levels after γ-radiation.  Under normal circumstances, p53 levels are 

relatively low in the resting state due to its rapid turnover through the ubiquitin-

proteasome pathway146.  In response to DNA damaging agents (i.e. γ-radiation), the N-

terminal domain of p53 is phosphorylated, blocking protein turnover200, 201.  As a result, 

levels of p53 increase markedly after γ-radiation.  p53 acts as a transcription factor to 
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induce damage response target genes such as CDKN1A (p21)154, GADD45A161, 

NOXA1164, and BBC3 (PUMA)165.  

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

We measured increases in steady state levels of p53 in response to γ-radiation.  

We also measured p21 protein levels in the lysates, as an indicator of p53 transcriptional 
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Fig. 21. Baseline TP53 transcript and p53 protein levels in RA PBMCs.  A.  A scatter 
plot displaying microarray results for TP53 transcript levels in control (n=9) and RA 
PBMC (n=9) 1.  B.  Analysis of TP53 transcript levels in control (n=4) and RA PBMC 
(n=5).  Real-time PCR was performed using TP53 and GAPDH specific primers.  
Relative quantities of both TP53 and GAPDH were determined by comparing 
threshold cycles to a standard curve constructed with serial dilutions of cDNA from a 
cell line standard. TP53 was normalized to GAPDH and expressed as relative units.  C.  
A representative immunoblot comparing baseline p53 levels in a cell line control 
(untreated HCT116), control (C1-3), and RA (RA 1-3) PBMC.  β actin was included as 
a loading control.  D. Compiled luminescence data for all individuals (control, n=9, 
RA, n=10) expressed in relative units.  Background intensity was subtracted from all 
samples.  Corrected intensities were normalized relative to the HCT116 cell line to 
permit comparisons among blots. 
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activity.  PBMCs from control individuals and RA patients were challenged with 10 gy γ-

radiation or untreated.  Twenty-four hours after challenge, whole cell extracts were 

prepared and immunoblotted for p53, p21, and β-actin.  The high intensity of β-actin on 

the immunoblots made obtaining reproducible exposures between blots difficult, and thus 

it served as a control for equal protein loading within a blot rather than as a loading 

control between blots.   Instead, the HCT116 cell line was included as a positive control 

for p53-responsiveness to γ-radiation202 and to serve as an indicator for exposure time and 

normalization in later quantitative analyses.   

As expected, levels of p53 in control individuals (n=5) increased markedly in 

response to γ-radiation (Fig. 22 A).  Increased levels of p21 confirmed downstream p53 

transcriptional activity in response to γ-radiation.   The p53 dependent γ-radiation 

response in individuals with RA (n=10) differed from the control population.  While 

some RA patients demonstrated increases in p53 protein after radiation, the most striking 

difference was that approximately half of the patients failed to increase p53 steady state 

levels after γ-radiation (Fig. 22).  Based upon these results, RA patients were organized 

into two distinct groups.  The γ-radiation non-responder (GNR) RA PBMC group failed 

to increase p53 levels in response to radiation (Fig. 22 B). The γ-radiation partial-

responder (GPR) RA PBMC group displayed a modest increase in p53 levels, albeit to 

lower levels than controls (Fig. 22 C).  In addition to the failure to increase levels of p53, 

GNR lymphocytes did not increase p21 levels after γ-radiation (Fig. 22 B).  In contrast, 

GPR lymphocytes had increased p53 and p21 levels in response to γ-radiation, albeit to 

lower levels than controls (Fig. 22 C).   
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Two distinct defects in the p53 damage response in RA patients  

To compare p53 levels in the different patient populations, we determined 

luminescent intensities from immunoblots (Fig. 23: control individuals (n=10), RA GNRs 

(n=7), and RA GPRs (n=5)) using the Fluor-S-Max imaging system.  We examined 

protein levels for the untreated and irradiated conditions in control, GPR, and GNR 

groups. To accomplish this, we normalized luminescent intensities using the untreated 

HCT116 cell line present on all blots to make comparisons among blots.  These results 

revealed that p53 levels in untreated and γ-irradiated cells from both the RA GNR and 
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Fig. 22.  Defects in p53 protein induction after γ-radiation in RA PBMC.  PBMCs 
[control (n=5), RA (n=10)] were untreated (-) or treated (+) with 10 gy γ-radiation.  
Twenty-four hours later, whole cell extracts were prepared, electrophoresed, and 
immunoblotted for p53, p21, and β-actin.  Due to high levels of β-actin in the samples, 
it was difficult to obtain equivalent exposures between immunoblots.  Instead, in these 
figures β-actin serves to indicate equal protein loading of samples within a blot.  RA 
PBMC were segregated into RA γ-radiation partial responders (GPRs, n=5) or RA γ-
radiation non-responders (GNRs, n=7) based upon steady state p53 protein levels 
before and after radiation.  Representative exposures are shown for each group: A) 
Control (C 1-5, n=5), B) RA GNRs (RA 1-5, n=5), and C) RA GPRs (RA 1-5, n=5). 
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GPR groups were significantly lower than in controls (p<0.001 for both groups) (Fig. 23 

A).  We believe that these lower p53 levels arise from lower TP53 transcript levels in the 

RA patient population.    

We also calculated γ-radiation induced fold induction of p53 and p21 for each 

individual in the control (n=10), GPR (n=5), and GNR (n=7) groups.  Fold induction was 

calculated as the ratio of the luminescent intensity of protein bands between the γ-

irradiated group and the untreated group.  Fold induction was averaged for all individuals 

within the control, GPR, and GNR groups.  Both control individuals and RA GPRs 

demonstrated increased induction of p53 in response to γ-radiation of comparable 

magnitude (Fig. 23 B).  This implies that, despite low baseline p53 levels, the signaling 

events needed to increase p53 levels after γ-radiation are intact in GPRs.   In contrast, the 

GNR group showed undetectable induction of p53 after γ-radiation, suggesting that 

additional defects are present in the p53-dependent damage response pathway in this 

group of RA patients.  To a large degree, induction of p21 after γ-radiation mirrored the 

p53 results for the control, GPR, and GNR groups.  

  

Defective induction of effectors of apoptosis in RA lymphocytes 

p53 that accumulates after γ-radiation acts as a transcription factor to induce pro-

apoptotic target genes203, 204.  Since we observed defects in γ-radiation induced apoptosis, 

we wanted to determine if this was accompanied by defective induction of pro-apoptotic 

target genes.  This was accomplished by immunoblotting whole cell lysates from 

representative untreated and γ-irradiated previously analyzed controls (n=2), RA GPRs 

(n=2), and RA GNRs (n=2).  Protein extracts were analyzed for p53 levels to confirm  
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their partial responder/non-responder status. Extracts were also analyzed for “p53-

upregulated mediator of apoptosis” (PUMA)165, 166, poly (ADP-ribose) polymerase-1 

(PARP-1) cleavage, a biochemical marker for apoptosis205, PCNA as a measure of 

cellular proliferative status, and β-actin as a control.  PCNA and β-actin levels were 

relatively consistent among samples and thus also served as protein loading controls (Fig. 

24).  

 GNR RA patients, and to a more limited extent, GPR RA patients, demonstrated 

marked differences when compared to control individuals.  Control individual 

lymphocytes exhibited increased p53 levels in response to γ-radiation with corresponding 

increases in PUMA and PARP-1 cleavage compared to untreated samples (Fig. 24).  In 

 

Fig. 23.  Quantitative analysis of radiation response in control, GPR, and GNR groups.  
Luminescent intensities were compiled to permit quantitative comparisons among the 
groups previously analyzed as in Fig. 4.   A) Untreated and post-radiation p53 levels 
were determined for control (n=12), RA GPR (n=5), and RA GNR (n=7) groups.  
Untreated HCT116 cell lysates present on all blots were used for normalization, to 
correct for exposure time, and allow inter-blot comparisons.  B)  Average protein fold 
induction in response to γ-radiation was calculated for p53, p21, and β-actin among the 
different groups.  Fold induction is defined as the ratio of γ-irradiated luminescent 
intensity versus the untreated luminescent intensity. 
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contrast, lymphocytes from GNR patients exhibited negligible increases in p53 levels and 

PUMA after γ-radiation.  GNR patients had lower levels of both full length and cleavage 

forms of PARP-1 and did not display increased PARP-1 cleavage after γ-radiation.  The 

RA GPR patients exhibited variability in p53 levels and downstream effector function 

after γ-radiation.  One patient had low p53 levels, as well as negligible PUMA induction 

and PARP-1 cleavage.  The other RA patient had a somewhat higher response. These  

results provide further evidence that downstream p53 apoptotic effector function is 

compromised in lymphocytes of individuals with RA.   
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Fig. 24.  Defective induction of p53 downstream effectors in RA PBMC.  Whole cell extracts were 
from representative controls (n=2), GPRs (n=2), and GNRs (n=2) (see Fig. 4).  Untreated (-) and γ-
irradiated (+) samples were immunblotted twenty-four hours after challenge.   Lysates were probed 
for PARP-1, PCNA, PUMA, and β-actin. 
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Decreased Chk2 expression correlates with RA GNR status  

Our quantitative analysis of relative protein levels and protein induction revealed 

that RA patients contain lower levels of p53 both before and after γ-radiation. However, 

the GNR group appeared to contain additional defects in their p53-dependent damage 

response that prevented them from increasing p53 levels after radiation.  To explore 

potential causes for this additional defect, we examined Chk2, an upstream kinase that 

can phosphorylate p53147 and prevent its ubiquitin-mediated degradation150.  Extracts 

from previously identified RA GNR (n=5), RA GPR (n=5), and control individuals (n=5) 

were reanalyzed for Chk2.  All control PBMCs contained comparable levels of Chk2 

(Fig. 25 A).  Levels of Chk2 in control lymphocytes decreased after γ-radiation, an 

observation that has been made in several other cell lines and is attributable to p53 

activity206.  RA GNR PBMC had uniformly low levels of Chk2 (Fig. 25 B), while RA 

GPR PBMC contained levels of Chk2 equivalent to control PBMC (Fig. 25 C).  

To determine if low Chk2 levels in RA patients correlated with low transcript 

levels of CHK2, we analyzed PBMC RNA derived from previously unexamined RA 

patients and controls (Fig. 25 D). A portion of RA patients had CHK2 transcript levels 

similar to controls and a portion had very low CHK2 transcript levels.  Semi-quantitative 

RT-PCR analysis was used to more accurately determine relative levels of transcript in a 

representative control sample and RA sample with very low CHK2 transcript abundance.  

This confirmed that CHK2 transcript levels were substantially lower in a subset of RA 

patients compared to controls (Fig. 25 D).  We believe that under-expression of CHK2 

mRNA may account, at least in part, for the GNR/GPR γ-radiation response status in RA 

lymphocytes. 
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Many p53-regulated genes are differentially expressed in PBMC from individuals with 
RA 

 
Above studies focused on p53 protein, TP53 transcript levels, and a few well-

characterized downstream transcriptional targets of p53.  We also wanted to determine 

whether additional known p53-regulated genes were differentially expressed in RA 

compared to control PBMCs.  To do so, we compared results from our microarray 

analysis of differential gene expression between control and RA PBMC1 to microarray 

analysis of differential gene expression between cell lines that have or do not have 

functional p53207, 208.  Genes identified in these studies include both known direct 

transcriptional targets of p53 (p21, PUMA) as well as genes that may be direct 

transcriptional targets of p53 or may be differentially expressed as a result of secondary 

effects of the presence or absence of p53.  We examined our microarray data to determine 

expression levels of genes identified in cell line studies with altered expression profiles in 

the presence or absence of p53 (Table VII).  All genes that were over-expressed in p53 

positive cell lines were under-expressed in RA PBMC.  Conversely, all genes that were 

under-expressed p53 positive cell lines were over-expressed in RA PBMC.  These results 

further support our hypothesis that defects in p53 expression and induction in PBMC of 

individuals with RA may account for a significant portion of the unique gene expression 

profile observed in these affected individuals.   
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Fig. 25.  RA PBMCs have low levels of Chk2 protein and Chk2 transcript.  Whole 
cell extracts from the same patient lysates (Untreated -, γ-irradiated +) in Fig. 4 were 
immunoblotted for Chk2 protein.  A) Immunoblots of controls (n=5).  B) 
Immunoblots of RA GNR PBMC (n=4).  C) Immunoblots of RA GPR PBMC who 
stabilized p53 (n=5).   D)  RT-PCR was performed on cDNA prepared from total 
RNA for previously unexamined control (n=3) and RA (n=6) PBMC.  CHK2 and 
GAPDH specific primers were used for amplification.  Top panel shows 
amplification results after thirty cycles.  Thirty-five cycle amplifications were 
performed on serial dilutions of cDNA for semi-quantitative PCR.  Results for 
control (C8) and RA PBMC with low CHK2 transcript levels (RA16) are shown in 
the paired lower figures. 
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Table VII. Expression levels of p53-regulated genes    
p53-inducible genes  p53-repressible genes  ______ 
_____  fold reduced   fold increased_______  
Gene Title  RA  Gene Title   RA  
transglutaminase -11.1  adenosine deaminase  3.8 
E-cadherin  -6.3  DAG kinase    4.1 
CDKN1B, p27 -5.0  fibronectin 1   4.8 
caspase 6  -5.3  IL-8    5.4 
myosin 1B  -5.6  EGF receptor   3.6 
epoxide hydrolase -8.3  cyclin A2    3.4 
RAD52 homolog -4.8  stathmin   2.9 
Ubiquinone  -4.5  NF-IL3   3.1 
APAF1  -4.3  RAD51 homolog  2.9 
GADD45A  -3.2  carboxypeptidase  3.5 
PIG11   -2.6  CDC28 PK2   2.4 
c-fos   -1.8  COP9    1.9 
endoglin  -2.5  cyclin E1   2.5 
BTG family, 2  -2.1  CDC6 homolog  1.9 
tyrosinase  -2.1  galectin 3   2.5 
                               SGK    2.1  
 
Compiled data from previous microarray experiments1.  p53-responsive genes207, 208  
were selected from our microarray data.  Fold induction values represent the 
ratio of the average expression level of the RA population over the average 
expression intensity of controls.  Under-expressed fold induction values are 
shown as the negative inverse of the ratio. 

 

 

 Discussion 

In this study, we found uniform defects in the p53 damage response pathway in 

lymphocytes from patients with RA.  T lymphocytes from patients diagnosed with RA 

are significantly more resistant to γ-radiation induced cell death than control individuals.  

In contrast, lymphocytes from RA patients do not display defects in p53-independent 

modes of apoptosis.  Both p53 protein and TP53 mRNA baseline levels are substantially 

reduced in RA PBMCs, providing a possible explanation for defects in γ-radiation 
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induced apoptosis.  p21 (a cyclin dependent kinase inhibitor) levels are also substantially 

lower in RA patients.  Furthermore, half the RA patients fail to exhibit increased steady 

state levels of p53 after γ-radiation.  We have classified the RA patients that exhibit 

relatively normal increases in p53 protein in response to γ-radiation “GPRs”, while 

patients that do not demonstrate increased p53 protein in response to γ-radiation are 

termed “GNRs”.   These GNR RA patients also contain negligible levels of Chk2, an 

upstream kinase that phosphorylates p53147 and may prevent ubiquitin-mediated 

degradation of p53209 after DNA damage.  

Defects in lymphocyte apoptosis are hypothesized to contribute to development of 

autoimmunity.  Some of the best support for this theory comes from observations of lpr 

or gld mutations (mutations in FAS or FASL, respectively) on the MRL murine 

background182.  These mice develop autoantibodies and succumb to fatal 

glomerulonephritis.  With the exception of the rare Autoimmune Lymphoproliferative 

Syndrome (ALPS)183, efforts to identify defects in FAS or FASL in more common human 

autoimmune disorders have been relatively unsuccessful210.  Our results clearly 

demonstrate that there are uniform defects in apoptosis in lymphocytes from individuals 

with RA, but that these defects are present in the p53 damage response pathway.  

Other investigators have addressed the role of p53 in RA.  The majority of these 

studies have focused on the synovium.  It has been proposed that high levels of oxidative 

stress in rheumatoid synovium may cause somatic mutations in the TP53 gene211.  

Presumably mutant synovial cell p53 allows pathological proliferation of synovial cells 

that may lead to joint destruction and other clinical manifestations of RA.  Alternatively, 

it has been proposed that the cytokine, macrophage migratory inhibitory factor (MIF), 
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may cause decreased cellular p53 levels212, 213.  MIF lowers endogenous p53 levels both 

in vivo and in vitro, and high levels of MIF could contribute to synovial proliferation and 

pannus formation.  Although these results specifically address the impact of MIF on the 

synovium, serum levels of MIF are also elevated in RA patients compared to controls214.  

Elevated MIF levels may contribute to the under-expression of p53 in the PBMC of RA 

patients.  However, our results clearly show that T lymphocytes, representing 80% of our 

PBMC preparations, are defective in p53-mediated apoptosis and T lymphocytes are not 

known to respond to MIF. 

There is also evidence that p53 maintains tolerance in lymphocytes by regulating 

cell cycle progression.  Human T lymphocytes from peripheral blood or intestinal lamina 

propria show an inverse relationship between p53 levels and the rate of progression 

through the cell cycle215.  Cell cycle delays mediated by elevated levels of p53 in lamina 

propria T lymphocytes may be a mechanism that maintains tolerance against 

environmental antigens.  Preliminary studies by Morand et al., using an antigen-induced 

arthritis model on a p53 -/- background, reveal that T lymphocytes proliferate more 

readily and produce more IFN-γ in the absence of p53216.  Similar results in models of 

collagen-induced arthritis217, suggest that inflammatory responses may be exacerbated in 

the absence of p53. 

Lymphocytes from healthy individuals with the HLA-DRB1∗04 allele218 and 

rheumatoid arthritis patients117 show signs of inappropriate aging as measured by 

telomeric shortening.  T lymphocytes from RA patients also proliferate less readily 

(compared to controls) in response to stimulation with anti-CD3 or recall antigens.  

Similar observations have been made in Trp53 -/- mice219.  These studies revealed no 
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defects in lymphocyte development.  Rather, lymphocytes from p53 -/- mice exhibited 

signs of accelerated aging and unresponsiveness to TCR stimuli.  Recent studies also 

demonstrate that p53 is a necessary element of cellular senescence220-222.  Therefore, we 

speculate that chronic under-expression of TP53 mRNA and p53 protein and perhaps 

CHK2 mRNA and Chk2 protein may explain accelerated aging and lack of lymphocyte 

responsiveness to TCR signals found in RA patients. 

We found that approximately half the RA patients failed to demonstrate increased 

steady-state levels of p53 in response to γ-radiation, and that this correlated with 

depressed levels of Chk2.  CHK2 mRNA levels are almost absent in this subset of RA 

patients.  Chk2 is believed to be an upstream regulator of p53 stability in response to 

certain types of DNA damage201, 209, although there is now debate in the field about its 

absolute necessity for p53 stabilization151, 223.  Studies in Chk2 -/- mice reveal no 

abnormalities in lymphocyte development, however nothing more is known about the 

role of Chk2 in the immune system.  

Defects in downstream p53 target genes may also play a role in promoting 

systemic autoimmunity.  Microarray results and our studies presented here demonstrate 

that many p53 downstream gene targets are dysregulated in a fashion consistent with p53 

dysfunction.  For example, p21, a downstream cyclin dependent kinase inhibitor and 

transcriptional target of p53, is also under-expressed in RA patients.  Although 

controversial224, studies have documented increased autoantibody production, 

glomerulonephritis, and mortality in p21 -/- female mice225.  T lymphocytes from these 

mice are hyperproliferative when cultured with IL-2 after activation compared to wild 

type littermates.  Additional studies examining GADD45A, another downstream target of 
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p53 effector function, link this gene to systemic autoimmunity and abnormalities in T 

lymphocyte function226.  p21 -/- GADD45A -/- mice exhibit aggressive autoimmunity 

comparable to lpr/MRL mice.  These observations, combined with our results in the RA 

patient population, indicate that defects in the expression of molecules in the DNA 

damage response pathway might play a role in autoimmune pathogenesis.  These proteins 

may also represent new targets for therapeutic approaches.  It might be possible to design 

therapies to either correct defects in the p53 damage response pathway or to inhibit 

downstream effectors that are normally inhibited by damage response proteins such as 

p53, p21 or GADD45A.  
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CHAPTER V 

 

OVERVIEW 

 

 The underlying disease mechanisms for most autoimmune disorders remain 

elusive. In large part, this difficulty arises from the fact that there is considerable 

heterogeneity in the symptoms and presentation of individual autoimmune disease, and 

additional heterogeneity among these disorders.  We initiated this set of experiments with 

the ultimate goal of identifying gene expression patterns that either characterized an 

individual disease or were shared among disorders. 

    To accomplish these ends, we utilized microarrays to obtain the gene 

expression profiles from control individuals and patients with a range of autoimmune 

disorders.  Gene expression profiling allowed us to screen over 4,000 variables in a single 

experiment.  Since gene expression more closely reflects cellular biochemistry than is 

possible by gross clinical measurements, patterns revealed through this type of analysis 

might reflect cellular liabilities.  Potential liabilities can be reconfirmed by measuring 

protein and transcript levels.  However, to determine if the defects have a biological 

impact, the ultimate test of a functional liability requires examination of the known 

biochemistry of the target(s) of interest.  In this set of studies we have attempted to 

address all of these issues through our identification of novel defects in the lymphocytes 

of patients with RA.   
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In the first chapter of the dissertation, we compared the gene expression profiles 

of control individuals with patients suffering from a range of autoimmune disorders (RA, 

SLE, IDDM, and MS).  Initial unsupervised clustering revealed that gene expression 

profiles from control individuals were distinct from profiles of patients with autoimmune 

disorders.  Furthermore, the gene expression profiles from the autoimmune patients did 

not segregate into disease specific branches, suggesting that the gene expression profiles 

of autoimmune patients were relatively similar.  Closer examination of the clustered 

differentially expressed genes confirmed that patients with autoimmune disease shared a 

common gene expression pattern that we refer to as the autoimmune signature.  While the 

over-expressed cluster of autoimmune genes was comprised of genes with relatively 

heterogeneous functions, we found that many of under-expressed autoimmune genes 

encode proteins that regulate cell cycle progression and apoptosis. 

The identification of an autoimmune gene expression signature promises to have 

direct clinical applicability.  Early diagnosis and treatment of many autoimmune 

disorders can prevent irreversible end-organ damage.  For example, as mentioned in the 

introduction much of the erosive joint damage in RA occurs within the first 5-10 years of 

disease.  One study shows the majority of damage takes place as early as two years after 

symptomatic onset of disease.  Early intervention with DMARDs has proven effective at 

slowing or preventing the damage.  However, early diagnosis is difficult due to the range 

of symptoms present in patients.  It may take from six months to one year to establish a 

definitive diagnosis.  Our ability to detect an unambiguous gene expression pattern in the 

peripheral blood of patients with a range of autoimmune disorders promises to have 

applicability as a rapid diagnostic tool in the clinic. 



 110

In the second chapter of the dissertation, we wanted to determine the origin of the 

autoimmune signature.  Since autoimmune disorders are believed to arise from an 

immune response against self, we considered the hypothesis that the autoimmune 

signature reflected an immune response.  To address this hypothesis, we modeled an in 

vivo immune response by immunizing healthy individuals with inactivated influenza 

vaccine.  Ultimately, we found that there was no overlap between our autoimmune 

signature and the genes differentially expressed during an immune response.   

In addition to the immune response, we also considered the possibility that 

disease duration might contribute to the autoimmune signature.  In this sense, our initial 

selection of autoimmune patients was biased, since many of the patients had established 

disease.  To address this possibility, we compared expression patterns in established RA 

patients (average disease duration: 10 ± 3 years) to early RA patients (average disease 

duration:  1 year ± 0.2 years).  While the early RA patients did contain unique clusters of 

differentially expressed genes, they also contained the autoimmune signature in its 

entirety.  This suggests that our autoimmune signature does not reflect disease duration.   

Both epidemiologic and genetic linkage studies support an underlying genetic 

component to autoimmunity.  In light of this evidence, we hypothesized that our 

autoimmune signature reflected family resemblance between parent and offspring.  To 

test this hypothesis, we examined gene expression profiles in unaffected first degree 

relatives and compared them to profiles from control individuals and patients with 

established autoimmune disease.  Initial hierarchical clustering comparisons revealed that 

the unaffected family members were distinct from control individuals, and instead more 

closely resembled autoimmune patients.  Closer examination of the gene expression 
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profiles in unaffected family members revealed that a majority of the differentially 

expressed genes were indeed autoimmune signature genes.  Studies conducted in parent-

offspring pairs revealed that the expression levels of the autoimmune genes displayed a 

high degree of family resemblance.  These data support the notion that our observed 

autoimmune signature reflects a heritable trait or traits. 

In the third chapter of this dissertation, we attempted to determine if the 

autoimmune signature is associated with a functional liability.  As mentioned previously, 

numerous under-expressed genes in the autoimmune signature encode proteins involved 

in basic cellular processes such as cell cycle progression and apoptosis.  Closer 

examination of the signature revealed that approximately 10% of the differentially 

expressed genes have been previously shown to be primary or secondary targets of p53.  

Additionally, TP53, the gene that encodes p53, is one of the most consistently under-

expressed genes in the autoimmune signature.  

Based on this information, we hypothesized that p53 dependent pathways would 

be defective in PBMCs from patients with autoimmune disorders.  To test this, we 

utilized γ-radiation to examine the p53-dependent damage response in PBMCs from 

patients with RA.  Initial baseline TP53 transcript and p53 protein measurements 

confirmed that p53 levels were lower in RA PBMCs compared to control individuals.  

We found that T lymphocytes from RA patients were resistant to γ-radiation induced 

apoptosis compared to control lymphocytes.  In order to mediate apoptosis, p53 protein 

levels increase after DNA damage, thus allowing it to act as a transcription factor for 

genes that can initiate cell cycle arrest or apoptosis.  Examination of PBMC p53 protein 

levels after γ-radiation challenge revealed that post-IR p53 protein levels were 
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universally lower in RA lymphocytes compared to controls.  We also found that the 

downstream effectors of p53 activity, such as p21 and PUMA, were also lower in the RA 

patient population, providing a plausible explanation for the decreases in apoptosis. 

However, the most striking observation was that approximately half of RA patient did not 

demonstrate any appreciable increase in p53 protein levels, and correspondingly did not 

display any downstream effector function.   

p53 protein increases in response to DNA damage requires the function of 

upstream damage response signal transducers. Since approximately half of the RA 

patients did not display significant increases in p53 protein, we examined Chk2, a protein 

kinase shown to phosphorylate and block p53 turnover in some cell culture and animal 

models.  We found that the patients who did not display increases in post-IR p53 protein 

levels also did not have detectable levels of Chk2 protein when compared to controls and 

responsive RA patients.  

Based on these results, we conclude that observations based on our initial 

microarray analysis of autoimmune patients have revealed functional defects in RA 

PBMCs.  Our functional analysis has uncovered at least two defects in the p53-dependent 

damage response pathway in RA patients:  one defect associated with low p53 transcript 

and protein levels, and a second defect, present in a subset of the RA patients, associated 

with the inability to increase p53 protein levels and the absence of Chk2 protein.  In the 

course of these studies, we have also documented abnormal PARP protein levels in some 

of the RA patients, suggesting that additional defects may be additionally be present in 

other non-p53 dependent DNA repair pathways227.   Polymorphisms in the PARP-1 

promoter have been associated with RA228.  Perhaps these RA associated polymorphism 



 113

might explain the low level expression of PARP-1 in some of the RA patients.  

Regardless, further studies will have to be conducted in RA lymphocytes to gain a greater 

appreciation of the extent of defective DNA damage and repair responses in the RA 

population. 

Our identification of these functional defects raises several important questions 

that have yet to be answered.  One of the most interesting questions posed by the studies 

is whether defects in the cellular DNA damage response can contribute to the 

development of autoimmunity, or simply reflects an endpoint of autoimmunity.  

Relatively little is known about the role of these pathways in the immune response.  

However, there is evidence that p53 could play an immunomodulatory role.  For 

example, while p53 -/- mice do not develop spontaneous autoimmunity, both the AIA and 

CIA murine models of autoimmunity are aggravated when performed on a p53 -/- 

background.  What role p53 plays in regulating the immune system is currently unknown, 

but given p53’s central role in mediating cell cycle arrest and apoptosis, numerous 

possibilities exist.  

The cause of decreased p53 protein and transcript levels in the PBMC of RA 

patients is also unknown.  It is possible that there are RA-associated alterations in the 

promoter region of TP53 could alter the expression level of p53.  Alternatively, 

abnormalities in p53 levels may reflect the autoimmune environment rather than a cell 

intrinsic defect.  The identification of pro-inflammatory cytokines such as MIF, which are 

capable of altering p53 functional activity and RNA/protein levels, could an alternate 

explanation for our observations.  Regardless, further experiments will have to be 

conducted to clarify our observations. 
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CHAPTER VI 

 
REVIEW:  IMPLICATIONS OF MICROARRAY SIGNATURES 

IN THE CONTEXT OF RHEUMATOID ARTHRITIS 
 

 
Introduction:  Challenges to the Classical View of Autoimmunity  
 

Basic concepts in immunology have shaped current theories regarding 

mechanisms responsible for autoimmunity.  One of the fundamental principles arising 

from decades of research is that the immune system is able to discriminate self from non-

self.  Due to the random nature of VDJ recombination during the generation of a 

polyclonal lymphocyte repertoire, the receptors generated may be viable, nonfunctional, 

or auto-reactive.  However, despite positive and negative selection during thymocyte 

development, auto-reactive T lymphocytes persist in periphery.  Mechanisms such as 

molecular mimicry have been proposed to result in cross reactivity against self-antigen, 

culminating in the activation of auto-reactive lymphocytes in an antigen specific manner.  

The end result of such a process would be organ specific autoimmunity. While there is 

evidence in animal models to support this notion, findings from patients with rheumatoid 

arthritis (RA) raise questions regarding the role of a single, dominant antigen driven 

immune response as an inciting cause for autoimmunity.   

Examination of synovial T lymphocyte TCR (T cell receptor) sequences for 

evidence of antigen driven clonal expansion in RA instead reveal oligoclonal T 

lymphocyte expansion229-231 with no common expanded TCR sequence identified among 

RA patients108.   Oligoclonal T lymphocyte expansions are not restricted solely to 
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synovium of patients with RA, but are also present in the periphery116 in both RA patients 

and their unaffected siblings232.  These findings appear related to elevated levels of 

lymphocyte proliferation in the RA population. This is supported by an increased number 

of RA T lymphocytes in the S-G2/M phase of the cell cycle116 age inappropriate telomere 

shortening116,118, and decreased TCR Recombination Excision Circles (TRECs) positive 

CD4+ T lymphocytes when compared to age matched control lymphocytes117.  These 

findings appear to be independent of disease duration or severity, but rather reflect a 

genetic predisposition.  In particular, HLA-DR4 positivity was identified as a key genetic 

determinant for telomere shortening218. 

In addition to evidence of increased proliferation in the periphery, functional 

changes are present in lymphocytes from patients with RA that suggest 

immunosenescence.  RA patients have increased levels of CD28 null T lymphocytes (a 

marker of T lymphocyte immunosenescence)233 which display abnormal function such as 

the presence of killer immunoglobulin-like receptor (KIR) surface markers, deregulated 

production of IFN-γ234-236 and resistance to apoptosis237,238.  Additionally, CD4+ 

lymphocytes from RA patients proliferate less readily ex vivo when stimulated with plate 

bound anti-CD3 for extended periods of time (up to 6-7 weeks).   

These collective observations have lead to an alternate model to explain origins of 

RA based upon the concept of homeostatic proliferation (Fig 26).  In this model, 

lymphopenia followed by repeated rounds of compensatory homeostatic expansion 

ultimately gives rise to immunosenescence.  Immunosenescence results in a deregulated 

immune system, which could ultimately promote an autoimmune state119,239. Evidence 

from model systems lends support to aspects of this model.  Lymphopenia in model 
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systems, such as thymectomy in the newborn mice, give rise to autoimmunity240.  Several 

prior studies focusing on homeostatic lymphocyte expansion indicate that T cell 

proliferation in the setting of lymphopenia is dependent upon competition for self-

antigen/MHC complexes resulting in expansion of autoreative clones241-244.  In support of 

these findings, lymphopenia in the NOD mouse is accompanied by homeostatic 

expansion of autoreactive CD4 T lymphocytes245. 

 

 

 

 

 

 

 

 

 

 

 

 

Parallels Between Cellular And Gene Expression Profile Studies 
 

Several intriguing parallels exist between the extensive body of cellular data 

gathered in the RA patient population and recent gene expression profile studies in 

patients with autoimmune disease.  As mentioned previously, one paradigm regarding the 

origin of autoimmunity suggests that after an initial break in the mechanisms of tolerance, 

Fig. 26.  Homeostatic Expansion in RA.  Under conditions of lymphopenia, autoreactive 
clones undergo compensatory homeostatic expansion.  This process is dependent upon self -
antigen in the context of MHC.  Repeated rounds of proliferation could ultimately lead to a 
state of immunosenescence.  The expanded populations of auto-reactive immunosenescent 
lymphocytes are functionally abnormal, and may promote autoimmunity.    



 117

the immune system mounts an antigen driven immune response against self.  If this 

theory is true, there should be some degree of resemblance between a model in vivo 

immune response and ongoing autoimmune disease.   

In an effort to test this hypothesis, gene expression profiles from patients with a 

range of autoimmune disorders (RA, SLE, IDDM, and SLE) were compared to those of 

healthy control individuals before and at various time points after immunization with 

inactivated influenza vaccine.  These studies revealed no overlap between gene 

expression profiles from healthy control individuals (either before or after immunization) 

relative to patients with autoimmune disease1.  Interestingly, patients with autoimmune 

disease had relatively similar profiles and shared a common set of under-expressed genes, 

dubbed “autoimmune signature genes”.  Many of these downregulated genes encode 

proteins involved in apoptosis and cell cycle regulation, such as p53, BRCA1, 

GADD45A, and p211. 

Like observations of T lymphocyte oligoclonality, decreased TREC levels, and 

telomere erosion in RA, the observed autoimmune gene expression signature appears to 

be independent of disease severity or duration.  The initial autoimmune signature was 

derived from patients with a range of disease severity, some with well-controlled 

rheumatoid arthritis, while others suffered from flares in the disease.  Thus, it seems 

unlikely that the gene expression signatures observed could be explained by disease 

activity.  In an effort to determine if the previously identified autoimmune signature was 

a reflection of disease activity, signatures from “early” RA patients (patients diagnosed 

with RA for less than two years duration) were compared to profiles from patients with 

established RA (average duration of ten years).  Both early and established RA patients 
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contained the autoimmune signature in its entirety, discounting the notion that disease 

duration accounted for the gene expression pattern190.  

While disease duration and severity do not account for the cellular abnormalities 

seen in RA, studies in unaffected individuals indicate that there might be a genetic 

predisposition for these phenomena.  Similarly, studies indicate a possible genetic 

contribution to the autoimmune signature.  This notion is supported by comparisons of 

gene expression profiles from autoimmune patients with profiles from unaffected first-

degree relatives of autoimmune patients.  These studies revealed that the autoimmune 

signatures were present in unaffected individuals, thus suggesting a heritable 

component246.  Further work will be necessary to determine the precise genetic 

determinants necessary for conferring the observed gene expression pattern. 

Numerous under-expressed genes in the autoimmune signature encode proteins 

involved in basic cellular processes such as cell cycle progression and apoptosis.  In 

particular, gene expression profiles revealed that genes such as p53, BRCA1, p21, and 

GADD45 are under-expressed in the autoimmune signature1.  Confirmatory studies 

demonstrate defects in p53-dependent pathways in lymphocytes from patients with RA.  

Levels of p53 and p21 proteins at baseline were lower in the RA patient population 

compared to control subjects247.  T lymphocytes from individuals with RA were resistant 

to γ-irradiation induced apoptosis, a process known to be dependent upon p53, but were 

not resistant to apoptosis induced by p53-independent mechanisms (such as 

staurosporine, UV radiation, and dexamethasone).  Additionally, in response to γ-

irradiation challenge, downstream targets of normally induced by p53 were either absent 

or only weakly induced247.   
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Role for the Autoimmune Signature in the Context of Homeostatic Expansion 
 

The number of parallels between the cellular findings and microarray results in 

patients with RA indicates that these results are inter-related.  We propose that the 

autoimmune signature acts as a catalyst to drive autoimmunity by contributing to 

homeostatic proliferation and alterations in lymphocyte function.  In modification of the 

proposed model of homeostatic expansion, absence of cell cycle regulation would 

contribute to the abnormal proliferation observed in the periphery of patients with RA.  

Furthermore, loss of the damage response pathway components, such as p53, results in 

alterations in lymphocyte effector functions, such as cytokine secretion and apoptosis 

(Fig. 27). 

Several lines of evidence support the notion that decreased levels of these 

proliferation control and damage response genes contribute to autoimmunity.  Studies in 

an antigen-induced arthritis model on a p53 -/- background reveal that T lymphocytes 

proliferate more readily and produce more IFN-γ in the absence of p53(216).  Similar 

results in models of collagen-induced arthritis, suggest that inflammatory responses may 

be exacerbated in the absence of p53217.  Lymphocytes from p53 -/- mice exhibit signs of 

accelerated aging and unresponsiveness to TCR stimuli, a finding highly reminiscent of 

the immunosenescence found in the lymphocytes of RA patients219.  Additionally, 

resistance to FAS mediated apoptosis has been reported in lymphocytes from patients 

with RA. Studies show that p53 controls cell surface trafficking of FAS170, thus serving 

as a possible explanation for this set of observations.        
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Evidence also supports the notion that decreased levels of cell cycle regulatory  

 

gene products, such as p21 and GADD45, contribute to systemic autoimmunity.  Studies 

have documented increased autoantibody production, glomerulonephritis, and mortality 

in p21 -/- female mice225.  T lymphocytes from these mice are hyperproliferative 

compared to wild type littermates.  Additional studies examining GADD45A, another 

downstream target of p53 effector function, link this gene to systemic autoimmunity and 

Fig. 27.  Gene Expression Signature Gives Rise to Perturbations in the Periphery.  
Under-expressed damage response and cell cycle regulation genes may promote more 
a) aggressive proliferation in the periphery and b) alterations in lymphocyte effector 
function, such as abnormal cytokine secretion and decreased apoptosis, which could 
favor autoimmunity.  Additionally, given the correct combination of deficits in these 
pathways, an initiating lymphopenic environment could be generated. 
 

? A) B) 
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abnormalities in T lymphocyte function226.  p21 -/- GADD45A -/- mice exhibit 

aggressive autoimmunity comparable to that in the lpr/MRL mice.  

Some of the observed deficits associated with the signature may also provide an 

alternate explanation for initial lymphopenia that triggers homeostatic expansion.  It has 

been proposed that age-associated thymic involution contributes to the lymphopenia 

found in patients with RA239.  The correct combination of damage response deficits could 

also result in a genetically predetermined lymphopenia.  For example, another damage 

response gene, BRCA1, is also highly under-expressed in RA lymphocytes248. In murine 

models, BRCA1 -/- thymocytes are completely deleted, in vivo, by p53 dependent 

apoptosis because absence of BRCA1 results in loss of chromosome integrity, which 

stimulates p53-dependent apoptosis.  Mice that are BRCA1 -/-, p53 -/- have a 

reconstituted immune system but remain lymphopenic throughout life249.  Thus, reduced 

levels of both BRCA1 and p53 could cause smoldering lymphopenia and stimulate 

homeostatic expansion of lymphocytes.   

 

Conclusion 

Loss of tolerance to specific self-antigens is generally believed to cause autoimmunity.  

However, data gathered over the past decade are inconsistent with this notion.  Instead, studies 

in patients with RA have revealed multiple systemic abnormalities in their lymphocytes, 

including oligoclonal expansions, telomere erosions, and decreased TREC levels; findings 

consistent with increased general lymphocyte proliferation in the periphery.  Additionally, as a 

result of multiple rounds of replication, T lymphocytes from RA patients appear to be 

immunosenescent.  Rather than heralding inactivity, these immunosenescent lymphocytes are 
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resistant to apoptosis, secrete cytokines, and express a new set of surface markers.  In general, 

these observations in RA patients appear to be independent of disease activity or duration, but 

do appear to have a heritable component.    

Although the most thorough examination of lymphocyte abnormalities has been 

performed in RA, other autoimmune disorders display evidence of similar perturbations.  

For example, lymphocytes from patients with SLE120  and type I diabetes121 also suffer 

from age inappropriate telomere loss.  Although initial observation of patients with 

multiple sclerosis have not confirmed telomere shortening, decreased TREC levels were 

found in MS lymphocytes compared to age matched control individuals122.  Growing 

evidence supports the notion that defects in lymphocyte homeostasis, as assessed by 

proliferation studies, TREC levels, and telomere erosion, are associated with 

autoimmunity and may contribute to the development of these diseases. 

In order to explain these findings, autoimmunity arising from homeostatic 

expansion has been forwarded as an alternate model.  According to this model, 

lymphopenia, possibly secondary to age-associated thymic involution or infection, is 

accompanied by compensatory lymphocyte homeostatic expansion.  Homeostatic 

expansion is dependent on self-antigen presented in the context of MHC, thus resulting in 

expansion of potentially autoreactive clones.  Repeated rounds of replication may be 

accompanied by the development of immunosenescence, further altering lymphocyte 

function and possibly contributing to the development of autoimmunity. 

Several parallels exist between the human data supporting homeostatic expansion 

and recent microarray studies.  Initial examination of gene expression profiles from 

autoimmune patients reveal that there was no resemblance with an in vivo model immune 
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response, a finding inconsistent with classical views of autoimmunity.  The gene 

expression patterns observed in the autoimmune patients do not appear to be related to 

disease activity or duration, but did appear to be heritable.  Additionally, many of the 

genes under-expressed in the autoimmune signature are associated with apoptosis and 

cell cycle regulation.  We hypothesize that many of the cellular abnormalities observed in 

human RA may be a result of deficits in cell cycle regulation and damage response 

pathways that may further exacerbate the process of pathologic homeostatic expansion. 
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